Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Remote Processor Framework
   4 *
   5 * Copyright (C) 2011 Texas Instruments, Inc.
   6 * Copyright (C) 2011 Google, Inc.
   7 *
   8 * Ohad Ben-Cohen <ohad@wizery.com>
   9 * Brian Swetland <swetland@google.com>
  10 * Mark Grosen <mgrosen@ti.com>
  11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
  12 * Suman Anna <s-anna@ti.com>
  13 * Robert Tivy <rtivy@ti.com>
  14 * Armando Uribe De Leon <x0095078@ti.com>
  15 */
  16
  17#define pr_fmt(fmt)    "%s: " fmt, __func__
  18
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/device.h>
  22#include <linux/slab.h>
  23#include <linux/mutex.h>
  24#include <linux/dma-mapping.h>
  25#include <linux/firmware.h>
  26#include <linux/string.h>
  27#include <linux/debugfs.h>
  28#include <linux/devcoredump.h>
  29#include <linux/remoteproc.h>
  30#include <linux/iommu.h>
  31#include <linux/idr.h>
  32#include <linux/elf.h>
  33#include <linux/crc32.h>
  34#include <linux/of_reserved_mem.h>
  35#include <linux/virtio_ids.h>
  36#include <linux/virtio_ring.h>
  37#include <asm/byteorder.h>
  38#include <linux/platform_device.h>
  39
  40#include "remoteproc_internal.h"
  41
  42#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
  43
  44static DEFINE_MUTEX(rproc_list_mutex);
  45static LIST_HEAD(rproc_list);
  46
  47typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
  48				struct resource_table *table, int len);
  49typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
  50				 void *, int offset, int avail);
  51
  52static int rproc_alloc_carveout(struct rproc *rproc,
  53				struct rproc_mem_entry *mem);
  54static int rproc_release_carveout(struct rproc *rproc,
  55				  struct rproc_mem_entry *mem);
  56
  57/* Unique indices for remoteproc devices */
  58static DEFINE_IDA(rproc_dev_index);
  59
  60static const char * const rproc_crash_names[] = {
  61	[RPROC_MMUFAULT]	= "mmufault",
  62	[RPROC_WATCHDOG]	= "watchdog",
  63	[RPROC_FATAL_ERROR]	= "fatal error",
  64};
  65
  66/* translate rproc_crash_type to string */
  67static const char *rproc_crash_to_string(enum rproc_crash_type type)
  68{
  69	if (type < ARRAY_SIZE(rproc_crash_names))
  70		return rproc_crash_names[type];
  71	return "unknown";
  72}
  73
  74/*
  75 * This is the IOMMU fault handler we register with the IOMMU API
  76 * (when relevant; not all remote processors access memory through
  77 * an IOMMU).
  78 *
  79 * IOMMU core will invoke this handler whenever the remote processor
  80 * will try to access an unmapped device address.
  81 */
  82static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
  83			     unsigned long iova, int flags, void *token)
  84{
  85	struct rproc *rproc = token;
  86
  87	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
  88
  89	rproc_report_crash(rproc, RPROC_MMUFAULT);
  90
  91	/*
  92	 * Let the iommu core know we're not really handling this fault;
  93	 * we just used it as a recovery trigger.
  94	 */
  95	return -ENOSYS;
  96}
  97
  98static int rproc_enable_iommu(struct rproc *rproc)
  99{
 100	struct iommu_domain *domain;
 101	struct device *dev = rproc->dev.parent;
 102	int ret;
 103
 104	if (!rproc->has_iommu) {
 105		dev_dbg(dev, "iommu not present\n");
 106		return 0;
 107	}
 108
 109	domain = iommu_domain_alloc(dev->bus);
 110	if (!domain) {
 111		dev_err(dev, "can't alloc iommu domain\n");
 112		return -ENOMEM;
 113	}
 114
 115	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
 116
 117	ret = iommu_attach_device(domain, dev);
 118	if (ret) {
 119		dev_err(dev, "can't attach iommu device: %d\n", ret);
 120		goto free_domain;
 121	}
 122
 123	rproc->domain = domain;
 124
 125	return 0;
 126
 127free_domain:
 128	iommu_domain_free(domain);
 129	return ret;
 130}
 131
 132static void rproc_disable_iommu(struct rproc *rproc)
 133{
 134	struct iommu_domain *domain = rproc->domain;
 135	struct device *dev = rproc->dev.parent;
 136
 137	if (!domain)
 138		return;
 139
 140	iommu_detach_device(domain, dev);
 141	iommu_domain_free(domain);
 142}
 143
 144phys_addr_t rproc_va_to_pa(void *cpu_addr)
 145{
 146	/*
 147	 * Return physical address according to virtual address location
 148	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
 149	 * - in kernel: if region allocated in generic dma memory pool
 150	 */
 151	if (is_vmalloc_addr(cpu_addr)) {
 152		return page_to_phys(vmalloc_to_page(cpu_addr)) +
 153				    offset_in_page(cpu_addr);
 154	}
 155
 156	WARN_ON(!virt_addr_valid(cpu_addr));
 157	return virt_to_phys(cpu_addr);
 158}
 159EXPORT_SYMBOL(rproc_va_to_pa);
 160
 161/**
 162 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
 163 * @rproc: handle of a remote processor
 164 * @da: remoteproc device address to translate
 165 * @len: length of the memory region @da is pointing to
 166 *
 167 * Some remote processors will ask us to allocate them physically contiguous
 168 * memory regions (which we call "carveouts"), and map them to specific
 169 * device addresses (which are hardcoded in the firmware). They may also have
 170 * dedicated memory regions internal to the processors, and use them either
 171 * exclusively or alongside carveouts.
 172 *
 173 * They may then ask us to copy objects into specific device addresses (e.g.
 174 * code/data sections) or expose us certain symbols in other device address
 175 * (e.g. their trace buffer).
 176 *
 177 * This function is a helper function with which we can go over the allocated
 178 * carveouts and translate specific device addresses to kernel virtual addresses
 179 * so we can access the referenced memory. This function also allows to perform
 180 * translations on the internal remoteproc memory regions through a platform
 181 * implementation specific da_to_va ops, if present.
 182 *
 183 * The function returns a valid kernel address on success or NULL on failure.
 184 *
 185 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 186 * but only on kernel direct mapped RAM memory. Instead, we're just using
 187 * here the output of the DMA API for the carveouts, which should be more
 188 * correct.
 189 */
 190void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
 191{
 192	struct rproc_mem_entry *carveout;
 193	void *ptr = NULL;
 194
 195	if (rproc->ops->da_to_va) {
 196		ptr = rproc->ops->da_to_va(rproc, da, len);
 197		if (ptr)
 198			goto out;
 199	}
 200
 201	list_for_each_entry(carveout, &rproc->carveouts, node) {
 202		int offset = da - carveout->da;
 203
 204		/*  Verify that carveout is allocated */
 205		if (!carveout->va)
 206			continue;
 207
 208		/* try next carveout if da is too small */
 209		if (offset < 0)
 210			continue;
 211
 212		/* try next carveout if da is too large */
 213		if (offset + len > carveout->len)
 214			continue;
 215
 216		ptr = carveout->va + offset;
 217
 218		break;
 219	}
 220
 221out:
 222	return ptr;
 223}
 224EXPORT_SYMBOL(rproc_da_to_va);
 225
 226/**
 227 * rproc_find_carveout_by_name() - lookup the carveout region by a name
 228 * @rproc: handle of a remote processor
 229 * @name,..: carveout name to find (standard printf format)
 230 *
 231 * Platform driver has the capability to register some pre-allacoted carveout
 232 * (physically contiguous memory regions) before rproc firmware loading and
 233 * associated resource table analysis. These regions may be dedicated memory
 234 * regions internal to the coprocessor or specified DDR region with specific
 235 * attributes
 236 *
 237 * This function is a helper function with which we can go over the
 238 * allocated carveouts and return associated region characteristics like
 239 * coprocessor address, length or processor virtual address.
 240 *
 241 * Return: a valid pointer on carveout entry on success or NULL on failure.
 242 */
 243struct rproc_mem_entry *
 244rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
 245{
 246	va_list args;
 247	char _name[32];
 248	struct rproc_mem_entry *carveout, *mem = NULL;
 249
 250	if (!name)
 251		return NULL;
 252
 253	va_start(args, name);
 254	vsnprintf(_name, sizeof(_name), name, args);
 255	va_end(args);
 256
 257	list_for_each_entry(carveout, &rproc->carveouts, node) {
 258		/* Compare carveout and requested names */
 259		if (!strcmp(carveout->name, _name)) {
 260			mem = carveout;
 261			break;
 262		}
 263	}
 264
 265	return mem;
 266}
 267
 268/**
 269 * rproc_check_carveout_da() - Check specified carveout da configuration
 270 * @rproc: handle of a remote processor
 271 * @mem: pointer on carveout to check
 272 * @da: area device address
 273 * @len: associated area size
 274 *
 275 * This function is a helper function to verify requested device area (couple
 276 * da, len) is part of specified carveout.
 277 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
 278 * checked.
 279 *
 280 * Return: 0 if carveout matches request else error
 281 */
 282static int rproc_check_carveout_da(struct rproc *rproc,
 283				   struct rproc_mem_entry *mem, u32 da, u32 len)
 284{
 285	struct device *dev = &rproc->dev;
 286	int delta;
 287
 288	/* Check requested resource length */
 289	if (len > mem->len) {
 290		dev_err(dev, "Registered carveout doesn't fit len request\n");
 291		return -EINVAL;
 292	}
 293
 294	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
 295		/* Address doesn't match registered carveout configuration */
 296		return -EINVAL;
 297	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
 298		delta = da - mem->da;
 299
 300		/* Check requested resource belongs to registered carveout */
 301		if (delta < 0) {
 302			dev_err(dev,
 303				"Registered carveout doesn't fit da request\n");
 304			return -EINVAL;
 305		}
 306
 307		if (delta + len > mem->len) {
 308			dev_err(dev,
 309				"Registered carveout doesn't fit len request\n");
 310			return -EINVAL;
 311		}
 312	}
 313
 314	return 0;
 315}
 316
 317int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
 318{
 319	struct rproc *rproc = rvdev->rproc;
 320	struct device *dev = &rproc->dev;
 321	struct rproc_vring *rvring = &rvdev->vring[i];
 322	struct fw_rsc_vdev *rsc;
 323	int ret, size, notifyid;
 324	struct rproc_mem_entry *mem;
 325
 326	/* actual size of vring (in bytes) */
 327	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
 328
 329	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
 330
 331	/* Search for pre-registered carveout */
 332	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
 333					  i);
 334	if (mem) {
 335		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
 336			return -ENOMEM;
 337	} else {
 338		/* Register carveout in in list */
 339		mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da,
 340					   rproc_alloc_carveout,
 341					   rproc_release_carveout,
 342					   "vdev%dvring%d",
 343					   rvdev->index, i);
 344		if (!mem) {
 345			dev_err(dev, "Can't allocate memory entry structure\n");
 346			return -ENOMEM;
 347		}
 348
 349		rproc_add_carveout(rproc, mem);
 350	}
 351
 352	/*
 353	 * Assign an rproc-wide unique index for this vring
 354	 * TODO: assign a notifyid for rvdev updates as well
 355	 * TODO: support predefined notifyids (via resource table)
 356	 */
 357	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
 358	if (ret < 0) {
 359		dev_err(dev, "idr_alloc failed: %d\n", ret);
 360		return ret;
 361	}
 362	notifyid = ret;
 363
 364	/* Potentially bump max_notifyid */
 365	if (notifyid > rproc->max_notifyid)
 366		rproc->max_notifyid = notifyid;
 367
 368	rvring->notifyid = notifyid;
 369
 370	/* Let the rproc know the notifyid of this vring.*/
 371	rsc->vring[i].notifyid = notifyid;
 372	return 0;
 373}
 374
 375static int
 376rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
 377{
 378	struct rproc *rproc = rvdev->rproc;
 379	struct device *dev = &rproc->dev;
 380	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
 381	struct rproc_vring *rvring = &rvdev->vring[i];
 382
 383	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
 384		i, vring->da, vring->num, vring->align);
 385
 386	/* verify queue size and vring alignment are sane */
 387	if (!vring->num || !vring->align) {
 388		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
 389			vring->num, vring->align);
 390		return -EINVAL;
 391	}
 392
 393	rvring->len = vring->num;
 394	rvring->align = vring->align;
 395	rvring->rvdev = rvdev;
 396
 397	return 0;
 398}
 399
 400void rproc_free_vring(struct rproc_vring *rvring)
 401{
 402	struct rproc *rproc = rvring->rvdev->rproc;
 403	int idx = rvring->rvdev->vring - rvring;
 404	struct fw_rsc_vdev *rsc;
 405
 406	idr_remove(&rproc->notifyids, rvring->notifyid);
 407
 408	/* reset resource entry info */
 409	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
 410	rsc->vring[idx].da = 0;
 411	rsc->vring[idx].notifyid = -1;
 412}
 413
 414static int rproc_vdev_do_start(struct rproc_subdev *subdev)
 415{
 416	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
 417
 418	return rproc_add_virtio_dev(rvdev, rvdev->id);
 419}
 420
 421static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
 422{
 423	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
 424	int ret;
 425
 426	ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
 427	if (ret)
 428		dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
 429}
 430
 431/**
 432 * rproc_rvdev_release() - release the existence of a rvdev
 433 *
 434 * @dev: the subdevice's dev
 435 */
 436static void rproc_rvdev_release(struct device *dev)
 437{
 438	struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
 439
 440	of_reserved_mem_device_release(dev);
 441
 442	kfree(rvdev);
 443}
 444
 445/**
 446 * rproc_handle_vdev() - handle a vdev fw resource
 447 * @rproc: the remote processor
 448 * @rsc: the vring resource descriptor
 449 * @avail: size of available data (for sanity checking the image)
 450 *
 451 * This resource entry requests the host to statically register a virtio
 452 * device (vdev), and setup everything needed to support it. It contains
 453 * everything needed to make it possible: the virtio device id, virtio
 454 * device features, vrings information, virtio config space, etc...
 455 *
 456 * Before registering the vdev, the vrings are allocated from non-cacheable
 457 * physically contiguous memory. Currently we only support two vrings per
 458 * remote processor (temporary limitation). We might also want to consider
 459 * doing the vring allocation only later when ->find_vqs() is invoked, and
 460 * then release them upon ->del_vqs().
 461 *
 462 * Note: @da is currently not really handled correctly: we dynamically
 463 * allocate it using the DMA API, ignoring requested hard coded addresses,
 464 * and we don't take care of any required IOMMU programming. This is all
 465 * going to be taken care of when the generic iommu-based DMA API will be
 466 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 467 * use RSC_DEVMEM resource entries to map their required @da to the physical
 468 * address of their base CMA region (ouch, hacky!).
 469 *
 470 * Returns 0 on success, or an appropriate error code otherwise
 471 */
 472static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
 473			     int offset, int avail)
 474{
 475	struct device *dev = &rproc->dev;
 476	struct rproc_vdev *rvdev;
 477	int i, ret;
 478	char name[16];
 479
 480	/* make sure resource isn't truncated */
 481	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
 482			+ rsc->config_len > avail) {
 483		dev_err(dev, "vdev rsc is truncated\n");
 484		return -EINVAL;
 485	}
 486
 487	/* make sure reserved bytes are zeroes */
 488	if (rsc->reserved[0] || rsc->reserved[1]) {
 489		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
 490		return -EINVAL;
 491	}
 492
 493	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
 494		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
 495
 496	/* we currently support only two vrings per rvdev */
 497	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
 498		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
 499		return -EINVAL;
 500	}
 501
 502	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
 503	if (!rvdev)
 504		return -ENOMEM;
 505
 506	kref_init(&rvdev->refcount);
 507
 508	rvdev->id = rsc->id;
 509	rvdev->rproc = rproc;
 510	rvdev->index = rproc->nb_vdev++;
 511
 512	/* Initialise vdev subdevice */
 513	snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
 514	rvdev->dev.parent = rproc->dev.parent;
 515	rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset;
 516	rvdev->dev.release = rproc_rvdev_release;
 517	dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
 518	dev_set_drvdata(&rvdev->dev, rvdev);
 519
 520	ret = device_register(&rvdev->dev);
 521	if (ret) {
 522		put_device(&rvdev->dev);
 523		return ret;
 524	}
 525	/* Make device dma capable by inheriting from parent's capabilities */
 526	set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
 527
 528	ret = dma_coerce_mask_and_coherent(&rvdev->dev,
 529					   dma_get_mask(rproc->dev.parent));
 530	if (ret) {
 531		dev_warn(dev,
 532			 "Failed to set DMA mask %llx. Trying to continue... %x\n",
 533			 dma_get_mask(rproc->dev.parent), ret);
 534	}
 535
 536	/* parse the vrings */
 537	for (i = 0; i < rsc->num_of_vrings; i++) {
 538		ret = rproc_parse_vring(rvdev, rsc, i);
 539		if (ret)
 540			goto free_rvdev;
 541	}
 542
 543	/* remember the resource offset*/
 544	rvdev->rsc_offset = offset;
 545
 546	/* allocate the vring resources */
 547	for (i = 0; i < rsc->num_of_vrings; i++) {
 548		ret = rproc_alloc_vring(rvdev, i);
 549		if (ret)
 550			goto unwind_vring_allocations;
 551	}
 552
 553	list_add_tail(&rvdev->node, &rproc->rvdevs);
 554
 555	rvdev->subdev.start = rproc_vdev_do_start;
 556	rvdev->subdev.stop = rproc_vdev_do_stop;
 557
 558	rproc_add_subdev(rproc, &rvdev->subdev);
 559
 560	return 0;
 561
 562unwind_vring_allocations:
 563	for (i--; i >= 0; i--)
 564		rproc_free_vring(&rvdev->vring[i]);
 565free_rvdev:
 566	device_unregister(&rvdev->dev);
 567	return ret;
 568}
 569
 570void rproc_vdev_release(struct kref *ref)
 571{
 572	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
 573	struct rproc_vring *rvring;
 574	struct rproc *rproc = rvdev->rproc;
 575	int id;
 576
 577	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
 578		rvring = &rvdev->vring[id];
 579		rproc_free_vring(rvring);
 580	}
 581
 582	rproc_remove_subdev(rproc, &rvdev->subdev);
 583	list_del(&rvdev->node);
 584	device_unregister(&rvdev->dev);
 585}
 586
 587/**
 588 * rproc_handle_trace() - handle a shared trace buffer resource
 589 * @rproc: the remote processor
 590 * @rsc: the trace resource descriptor
 591 * @avail: size of available data (for sanity checking the image)
 592 *
 593 * In case the remote processor dumps trace logs into memory,
 594 * export it via debugfs.
 595 *
 596 * Currently, the 'da' member of @rsc should contain the device address
 597 * where the remote processor is dumping the traces. Later we could also
 598 * support dynamically allocating this address using the generic
 599 * DMA API (but currently there isn't a use case for that).
 600 *
 601 * Returns 0 on success, or an appropriate error code otherwise
 602 */
 603static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
 604			      int offset, int avail)
 605{
 606	struct rproc_debug_trace *trace;
 607	struct device *dev = &rproc->dev;
 608	char name[15];
 609
 610	if (sizeof(*rsc) > avail) {
 611		dev_err(dev, "trace rsc is truncated\n");
 612		return -EINVAL;
 613	}
 614
 615	/* make sure reserved bytes are zeroes */
 616	if (rsc->reserved) {
 617		dev_err(dev, "trace rsc has non zero reserved bytes\n");
 618		return -EINVAL;
 619	}
 620
 621	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
 622	if (!trace)
 623		return -ENOMEM;
 624
 625	/* set the trace buffer dma properties */
 626	trace->trace_mem.len = rsc->len;
 627	trace->trace_mem.da = rsc->da;
 628
 629	/* set pointer on rproc device */
 630	trace->rproc = rproc;
 631
 632	/* make sure snprintf always null terminates, even if truncating */
 633	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
 634
 635	/* create the debugfs entry */
 636	trace->tfile = rproc_create_trace_file(name, rproc, trace);
 637	if (!trace->tfile) {
 638		kfree(trace);
 639		return -EINVAL;
 640	}
 641
 642	list_add_tail(&trace->node, &rproc->traces);
 643
 644	rproc->num_traces++;
 645
 646	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
 647		name, rsc->da, rsc->len);
 648
 649	return 0;
 650}
 651
 652/**
 653 * rproc_handle_devmem() - handle devmem resource entry
 654 * @rproc: remote processor handle
 655 * @rsc: the devmem resource entry
 656 * @avail: size of available data (for sanity checking the image)
 657 *
 658 * Remote processors commonly need to access certain on-chip peripherals.
 659 *
 660 * Some of these remote processors access memory via an iommu device,
 661 * and might require us to configure their iommu before they can access
 662 * the on-chip peripherals they need.
 663 *
 664 * This resource entry is a request to map such a peripheral device.
 665 *
 666 * These devmem entries will contain the physical address of the device in
 667 * the 'pa' member. If a specific device address is expected, then 'da' will
 668 * contain it (currently this is the only use case supported). 'len' will
 669 * contain the size of the physical region we need to map.
 670 *
 671 * Currently we just "trust" those devmem entries to contain valid physical
 672 * addresses, but this is going to change: we want the implementations to
 673 * tell us ranges of physical addresses the firmware is allowed to request,
 674 * and not allow firmwares to request access to physical addresses that
 675 * are outside those ranges.
 676 */
 677static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
 678			       int offset, int avail)
 679{
 680	struct rproc_mem_entry *mapping;
 681	struct device *dev = &rproc->dev;
 682	int ret;
 683
 684	/* no point in handling this resource without a valid iommu domain */
 685	if (!rproc->domain)
 686		return -EINVAL;
 687
 688	if (sizeof(*rsc) > avail) {
 689		dev_err(dev, "devmem rsc is truncated\n");
 690		return -EINVAL;
 691	}
 692
 693	/* make sure reserved bytes are zeroes */
 694	if (rsc->reserved) {
 695		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
 696		return -EINVAL;
 697	}
 698
 699	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 700	if (!mapping)
 701		return -ENOMEM;
 702
 703	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
 704	if (ret) {
 705		dev_err(dev, "failed to map devmem: %d\n", ret);
 706		goto out;
 707	}
 708
 709	/*
 710	 * We'll need this info later when we'll want to unmap everything
 711	 * (e.g. on shutdown).
 712	 *
 713	 * We can't trust the remote processor not to change the resource
 714	 * table, so we must maintain this info independently.
 715	 */
 716	mapping->da = rsc->da;
 717	mapping->len = rsc->len;
 718	list_add_tail(&mapping->node, &rproc->mappings);
 719
 720	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
 721		rsc->pa, rsc->da, rsc->len);
 722
 723	return 0;
 724
 725out:
 726	kfree(mapping);
 727	return ret;
 728}
 729
 730/**
 731 * rproc_alloc_carveout() - allocated specified carveout
 732 * @rproc: rproc handle
 733 * @mem: the memory entry to allocate
 734 *
 735 * This function allocate specified memory entry @mem using
 736 * dma_alloc_coherent() as default allocator
 737 */
 738static int rproc_alloc_carveout(struct rproc *rproc,
 739				struct rproc_mem_entry *mem)
 740{
 741	struct rproc_mem_entry *mapping = NULL;
 742	struct device *dev = &rproc->dev;
 743	dma_addr_t dma;
 744	void *va;
 745	int ret;
 746
 747	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
 748	if (!va) {
 749		dev_err(dev->parent,
 750			"failed to allocate dma memory: len 0x%x\n", mem->len);
 751		return -ENOMEM;
 752	}
 753
 754	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
 755		va, &dma, mem->len);
 756
 757	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
 758		/*
 759		 * Check requested da is equal to dma address
 760		 * and print a warn message in case of missalignment.
 761		 * Don't stop rproc_start sequence as coprocessor may
 762		 * build pa to da translation on its side.
 763		 */
 764		if (mem->da != (u32)dma)
 765			dev_warn(dev->parent,
 766				 "Allocated carveout doesn't fit device address request\n");
 767	}
 768
 769	/*
 770	 * Ok, this is non-standard.
 771	 *
 772	 * Sometimes we can't rely on the generic iommu-based DMA API
 773	 * to dynamically allocate the device address and then set the IOMMU
 774	 * tables accordingly, because some remote processors might
 775	 * _require_ us to use hard coded device addresses that their
 776	 * firmware was compiled with.
 777	 *
 778	 * In this case, we must use the IOMMU API directly and map
 779	 * the memory to the device address as expected by the remote
 780	 * processor.
 781	 *
 782	 * Obviously such remote processor devices should not be configured
 783	 * to use the iommu-based DMA API: we expect 'dma' to contain the
 784	 * physical address in this case.
 785	 */
 786	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
 787		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 788		if (!mapping) {
 789			ret = -ENOMEM;
 790			goto dma_free;
 791		}
 792
 793		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
 794				mem->flags);
 795		if (ret) {
 796			dev_err(dev, "iommu_map failed: %d\n", ret);
 797			goto free_mapping;
 798		}
 799
 800		/*
 801		 * We'll need this info later when we'll want to unmap
 802		 * everything (e.g. on shutdown).
 803		 *
 804		 * We can't trust the remote processor not to change the
 805		 * resource table, so we must maintain this info independently.
 806		 */
 807		mapping->da = mem->da;
 808		mapping->len = mem->len;
 809		list_add_tail(&mapping->node, &rproc->mappings);
 810
 811		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
 812			mem->da, &dma);
 813	}
 814
 815	if (mem->da == FW_RSC_ADDR_ANY) {
 816		/* Update device address as undefined by requester */
 817		if ((u64)dma & HIGH_BITS_MASK)
 818			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
 819
 820		mem->da = (u32)dma;
 821	}
 822
 823	mem->dma = dma;
 824	mem->va = va;
 825
 826	return 0;
 827
 828free_mapping:
 829	kfree(mapping);
 830dma_free:
 831	dma_free_coherent(dev->parent, mem->len, va, dma);
 832	return ret;
 833}
 834
 835/**
 836 * rproc_release_carveout() - release acquired carveout
 837 * @rproc: rproc handle
 838 * @mem: the memory entry to release
 839 *
 840 * This function releases specified memory entry @mem allocated via
 841 * rproc_alloc_carveout() function by @rproc.
 842 */
 843static int rproc_release_carveout(struct rproc *rproc,
 844				  struct rproc_mem_entry *mem)
 845{
 846	struct device *dev = &rproc->dev;
 847
 848	/* clean up carveout allocations */
 849	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
 850	return 0;
 851}
 852
 853/**
 854 * rproc_handle_carveout() - handle phys contig memory allocation requests
 855 * @rproc: rproc handle
 856 * @rsc: the resource entry
 857 * @avail: size of available data (for image validation)
 858 *
 859 * This function will handle firmware requests for allocation of physically
 860 * contiguous memory regions.
 861 *
 862 * These request entries should come first in the firmware's resource table,
 863 * as other firmware entries might request placing other data objects inside
 864 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 865 *
 866 * Allocating memory this way helps utilizing the reserved physical memory
 867 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 868 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 869 * pressure is important; it may have a substantial impact on performance.
 870 */
 871static int rproc_handle_carveout(struct rproc *rproc,
 872				 struct fw_rsc_carveout *rsc,
 873				 int offset, int avail)
 874{
 875	struct rproc_mem_entry *carveout;
 876	struct device *dev = &rproc->dev;
 877
 878	if (sizeof(*rsc) > avail) {
 879		dev_err(dev, "carveout rsc is truncated\n");
 880		return -EINVAL;
 881	}
 882
 883	/* make sure reserved bytes are zeroes */
 884	if (rsc->reserved) {
 885		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
 886		return -EINVAL;
 887	}
 888
 889	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
 890		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
 891
 892	/*
 893	 * Check carveout rsc already part of a registered carveout,
 894	 * Search by name, then check the da and length
 895	 */
 896	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
 897
 898	if (carveout) {
 899		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
 900			dev_err(dev,
 901				"Carveout already associated to resource table\n");
 902			return -ENOMEM;
 903		}
 904
 905		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
 906			return -ENOMEM;
 907
 908		/* Update memory carveout with resource table info */
 909		carveout->rsc_offset = offset;
 910		carveout->flags = rsc->flags;
 911
 912		return 0;
 913	}
 914
 915	/* Register carveout in in list */
 916	carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da,
 917					rproc_alloc_carveout,
 918					rproc_release_carveout, rsc->name);
 919	if (!carveout) {
 920		dev_err(dev, "Can't allocate memory entry structure\n");
 921		return -ENOMEM;
 922	}
 923
 924	carveout->flags = rsc->flags;
 925	carveout->rsc_offset = offset;
 926	rproc_add_carveout(rproc, carveout);
 927
 928	return 0;
 929}
 930
 931/**
 932 * rproc_add_carveout() - register an allocated carveout region
 933 * @rproc: rproc handle
 934 * @mem: memory entry to register
 935 *
 936 * This function registers specified memory entry in @rproc carveouts list.
 937 * Specified carveout should have been allocated before registering.
 938 */
 939void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
 940{
 941	list_add_tail(&mem->node, &rproc->carveouts);
 942}
 943EXPORT_SYMBOL(rproc_add_carveout);
 944
 945/**
 946 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
 947 * @dev: pointer on device struct
 948 * @va: virtual address
 949 * @dma: dma address
 950 * @len: memory carveout length
 951 * @da: device address
 952 * @alloc: memory carveout allocation function
 953 * @release: memory carveout release function
 954 * @name: carveout name
 955 *
 956 * This function allocates a rproc_mem_entry struct and fill it with parameters
 957 * provided by client.
 958 */
 959struct rproc_mem_entry *
 960rproc_mem_entry_init(struct device *dev,
 961		     void *va, dma_addr_t dma, int len, u32 da,
 962		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
 963		     int (*release)(struct rproc *, struct rproc_mem_entry *),
 964		     const char *name, ...)
 965{
 966	struct rproc_mem_entry *mem;
 967	va_list args;
 968
 969	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 970	if (!mem)
 971		return mem;
 972
 973	mem->va = va;
 974	mem->dma = dma;
 975	mem->da = da;
 976	mem->len = len;
 977	mem->alloc = alloc;
 978	mem->release = release;
 979	mem->rsc_offset = FW_RSC_ADDR_ANY;
 980	mem->of_resm_idx = -1;
 981
 982	va_start(args, name);
 983	vsnprintf(mem->name, sizeof(mem->name), name, args);
 984	va_end(args);
 985
 986	return mem;
 987}
 988EXPORT_SYMBOL(rproc_mem_entry_init);
 989
 990/**
 991 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
 992 * from a reserved memory phandle
 993 * @dev: pointer on device struct
 994 * @of_resm_idx: reserved memory phandle index in "memory-region"
 995 * @len: memory carveout length
 996 * @da: device address
 997 * @name: carveout name
 998 *
 999 * This function allocates a rproc_mem_entry struct and fill it with parameters
1000 * provided by client.
1001 */
1002struct rproc_mem_entry *
1003rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
1004			     u32 da, const char *name, ...)
1005{
1006	struct rproc_mem_entry *mem;
1007	va_list args;
1008
1009	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1010	if (!mem)
1011		return mem;
1012
1013	mem->da = da;
1014	mem->len = len;
1015	mem->rsc_offset = FW_RSC_ADDR_ANY;
1016	mem->of_resm_idx = of_resm_idx;
1017
1018	va_start(args, name);
1019	vsnprintf(mem->name, sizeof(mem->name), name, args);
1020	va_end(args);
1021
1022	return mem;
1023}
1024EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1025
1026/**
1027 * A lookup table for resource handlers. The indices are defined in
1028 * enum fw_resource_type.
1029 */
1030static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1031	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1032	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1033	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1034	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1035};
1036
1037/* handle firmware resource entries before booting the remote processor */
1038static int rproc_handle_resources(struct rproc *rproc,
1039				  rproc_handle_resource_t handlers[RSC_LAST])
1040{
1041	struct device *dev = &rproc->dev;
1042	rproc_handle_resource_t handler;
1043	int ret = 0, i;
1044
1045	if (!rproc->table_ptr)
1046		return 0;
1047
1048	for (i = 0; i < rproc->table_ptr->num; i++) {
1049		int offset = rproc->table_ptr->offset[i];
1050		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1051		int avail = rproc->table_sz - offset - sizeof(*hdr);
1052		void *rsc = (void *)hdr + sizeof(*hdr);
1053
1054		/* make sure table isn't truncated */
1055		if (avail < 0) {
1056			dev_err(dev, "rsc table is truncated\n");
1057			return -EINVAL;
1058		}
1059
1060		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1061
1062		if (hdr->type >= RSC_VENDOR_START &&
1063		    hdr->type <= RSC_VENDOR_END) {
1064			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1065					       offset + sizeof(*hdr), avail);
1066			if (ret == RSC_HANDLED)
1067				continue;
1068			else if (ret < 0)
1069				break;
1070
1071			dev_warn(dev, "unsupported vendor resource %d\n",
1072				 hdr->type);
1073			continue;
1074		}
1075
1076		if (hdr->type >= RSC_LAST) {
1077			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1078			continue;
1079		}
1080
1081		handler = handlers[hdr->type];
1082		if (!handler)
1083			continue;
1084
1085		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1086		if (ret)
1087			break;
1088	}
1089
1090	return ret;
1091}
1092
1093static int rproc_prepare_subdevices(struct rproc *rproc)
1094{
1095	struct rproc_subdev *subdev;
1096	int ret;
1097
1098	list_for_each_entry(subdev, &rproc->subdevs, node) {
1099		if (subdev->prepare) {
1100			ret = subdev->prepare(subdev);
1101			if (ret)
1102				goto unroll_preparation;
1103		}
1104	}
1105
1106	return 0;
1107
1108unroll_preparation:
1109	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1110		if (subdev->unprepare)
1111			subdev->unprepare(subdev);
1112	}
1113
1114	return ret;
1115}
1116
1117static int rproc_start_subdevices(struct rproc *rproc)
1118{
1119	struct rproc_subdev *subdev;
1120	int ret;
1121
1122	list_for_each_entry(subdev, &rproc->subdevs, node) {
1123		if (subdev->start) {
1124			ret = subdev->start(subdev);
1125			if (ret)
1126				goto unroll_registration;
1127		}
1128	}
1129
1130	return 0;
1131
1132unroll_registration:
1133	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1134		if (subdev->stop)
1135			subdev->stop(subdev, true);
1136	}
1137
1138	return ret;
1139}
1140
1141static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1142{
1143	struct rproc_subdev *subdev;
1144
1145	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1146		if (subdev->stop)
1147			subdev->stop(subdev, crashed);
1148	}
1149}
1150
1151static void rproc_unprepare_subdevices(struct rproc *rproc)
1152{
1153	struct rproc_subdev *subdev;
1154
1155	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1156		if (subdev->unprepare)
1157			subdev->unprepare(subdev);
1158	}
1159}
1160
1161/**
1162 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1163 * in the list
1164 * @rproc: the remote processor handle
1165 *
1166 * This function parses registered carveout list, performs allocation
1167 * if alloc() ops registered and updates resource table information
1168 * if rsc_offset set.
1169 *
1170 * Return: 0 on success
1171 */
1172static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1173{
1174	struct rproc_mem_entry *entry, *tmp;
1175	struct fw_rsc_carveout *rsc;
1176	struct device *dev = &rproc->dev;
1177	u64 pa;
1178	int ret;
1179
1180	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1181		if (entry->alloc) {
1182			ret = entry->alloc(rproc, entry);
1183			if (ret) {
1184				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1185					entry->name, ret);
1186				return -ENOMEM;
1187			}
1188		}
1189
1190		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1191			/* update resource table */
1192			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1193
1194			/*
1195			 * Some remote processors might need to know the pa
1196			 * even though they are behind an IOMMU. E.g., OMAP4's
1197			 * remote M3 processor needs this so it can control
1198			 * on-chip hardware accelerators that are not behind
1199			 * the IOMMU, and therefor must know the pa.
1200			 *
1201			 * Generally we don't want to expose physical addresses
1202			 * if we don't have to (remote processors are generally
1203			 * _not_ trusted), so we might want to do this only for
1204			 * remote processor that _must_ have this (e.g. OMAP4's
1205			 * dual M3 subsystem).
1206			 *
1207			 * Non-IOMMU processors might also want to have this info.
1208			 * In this case, the device address and the physical address
1209			 * are the same.
1210			 */
1211
1212			/* Use va if defined else dma to generate pa */
1213			if (entry->va)
1214				pa = (u64)rproc_va_to_pa(entry->va);
1215			else
1216				pa = (u64)entry->dma;
1217
1218			if (((u64)pa) & HIGH_BITS_MASK)
1219				dev_warn(dev,
1220					 "Physical address cast in 32bit to fit resource table format\n");
1221
1222			rsc->pa = (u32)pa;
1223			rsc->da = entry->da;
1224			rsc->len = entry->len;
1225		}
1226	}
1227
1228	return 0;
1229}
1230
1231/**
1232 * rproc_coredump_cleanup() - clean up dump_segments list
1233 * @rproc: the remote processor handle
1234 */
1235static void rproc_coredump_cleanup(struct rproc *rproc)
1236{
1237	struct rproc_dump_segment *entry, *tmp;
1238
1239	list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1240		list_del(&entry->node);
1241		kfree(entry);
1242	}
1243}
1244
1245/**
1246 * rproc_resource_cleanup() - clean up and free all acquired resources
1247 * @rproc: rproc handle
1248 *
1249 * This function will free all resources acquired for @rproc, and it
1250 * is called whenever @rproc either shuts down or fails to boot.
1251 */
1252static void rproc_resource_cleanup(struct rproc *rproc)
1253{
1254	struct rproc_mem_entry *entry, *tmp;
1255	struct rproc_debug_trace *trace, *ttmp;
1256	struct rproc_vdev *rvdev, *rvtmp;
1257	struct device *dev = &rproc->dev;
1258
1259	/* clean up debugfs trace entries */
1260	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1261		rproc_remove_trace_file(trace->tfile);
1262		rproc->num_traces--;
1263		list_del(&trace->node);
1264		kfree(trace);
1265	}
1266
1267	/* clean up iommu mapping entries */
1268	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1269		size_t unmapped;
1270
1271		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1272		if (unmapped != entry->len) {
1273			/* nothing much to do besides complaining */
1274			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
1275				unmapped);
1276		}
1277
1278		list_del(&entry->node);
1279		kfree(entry);
1280	}
1281
1282	/* clean up carveout allocations */
1283	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1284		if (entry->release)
1285			entry->release(rproc, entry);
1286		list_del(&entry->node);
1287		kfree(entry);
1288	}
1289
1290	/* clean up remote vdev entries */
1291	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1292		kref_put(&rvdev->refcount, rproc_vdev_release);
1293
1294	rproc_coredump_cleanup(rproc);
1295}
1296
1297static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1298{
1299	struct resource_table *loaded_table;
1300	struct device *dev = &rproc->dev;
1301	int ret;
1302
1303	/* load the ELF segments to memory */
1304	ret = rproc_load_segments(rproc, fw);
1305	if (ret) {
1306		dev_err(dev, "Failed to load program segments: %d\n", ret);
1307		return ret;
1308	}
1309
1310	/*
1311	 * The starting device has been given the rproc->cached_table as the
1312	 * resource table. The address of the vring along with the other
1313	 * allocated resources (carveouts etc) is stored in cached_table.
1314	 * In order to pass this information to the remote device we must copy
1315	 * this information to device memory. We also update the table_ptr so
1316	 * that any subsequent changes will be applied to the loaded version.
1317	 */
1318	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1319	if (loaded_table) {
1320		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1321		rproc->table_ptr = loaded_table;
1322	}
1323
1324	ret = rproc_prepare_subdevices(rproc);
1325	if (ret) {
1326		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1327			rproc->name, ret);
1328		goto reset_table_ptr;
1329	}
1330
1331	/* power up the remote processor */
1332	ret = rproc->ops->start(rproc);
1333	if (ret) {
1334		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1335		goto unprepare_subdevices;
1336	}
1337
1338	/* Start any subdevices for the remote processor */
1339	ret = rproc_start_subdevices(rproc);
1340	if (ret) {
1341		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1342			rproc->name, ret);
1343		goto stop_rproc;
1344	}
1345
1346	rproc->state = RPROC_RUNNING;
1347
1348	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1349
1350	return 0;
1351
1352stop_rproc:
1353	rproc->ops->stop(rproc);
1354unprepare_subdevices:
1355	rproc_unprepare_subdevices(rproc);
1356reset_table_ptr:
1357	rproc->table_ptr = rproc->cached_table;
1358
1359	return ret;
1360}
1361
1362/*
1363 * take a firmware and boot a remote processor with it.
1364 */
1365static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1366{
1367	struct device *dev = &rproc->dev;
1368	const char *name = rproc->firmware;
1369	int ret;
1370
1371	ret = rproc_fw_sanity_check(rproc, fw);
1372	if (ret)
1373		return ret;
1374
1375	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1376
1377	/*
1378	 * if enabling an IOMMU isn't relevant for this rproc, this is
1379	 * just a nop
1380	 */
1381	ret = rproc_enable_iommu(rproc);
1382	if (ret) {
1383		dev_err(dev, "can't enable iommu: %d\n", ret);
1384		return ret;
1385	}
1386
1387	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1388
1389	/* Load resource table, core dump segment list etc from the firmware */
1390	ret = rproc_parse_fw(rproc, fw);
1391	if (ret)
1392		goto disable_iommu;
1393
1394	/* reset max_notifyid */
1395	rproc->max_notifyid = -1;
1396
1397	/* reset handled vdev */
1398	rproc->nb_vdev = 0;
1399
1400	/* handle fw resources which are required to boot rproc */
1401	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1402	if (ret) {
1403		dev_err(dev, "Failed to process resources: %d\n", ret);
1404		goto clean_up_resources;
1405	}
1406
1407	/* Allocate carveout resources associated to rproc */
1408	ret = rproc_alloc_registered_carveouts(rproc);
1409	if (ret) {
1410		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1411			ret);
1412		goto clean_up_resources;
1413	}
1414
1415	ret = rproc_start(rproc, fw);
1416	if (ret)
1417		goto clean_up_resources;
1418
1419	return 0;
1420
1421clean_up_resources:
1422	rproc_resource_cleanup(rproc);
1423	kfree(rproc->cached_table);
1424	rproc->cached_table = NULL;
1425	rproc->table_ptr = NULL;
1426disable_iommu:
1427	rproc_disable_iommu(rproc);
1428	return ret;
1429}
1430
1431/*
1432 * take a firmware and boot it up.
1433 *
1434 * Note: this function is called asynchronously upon registration of the
1435 * remote processor (so we must wait until it completes before we try
1436 * to unregister the device. one other option is just to use kref here,
1437 * that might be cleaner).
1438 */
1439static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1440{
1441	struct rproc *rproc = context;
1442
1443	rproc_boot(rproc);
1444
1445	release_firmware(fw);
1446}
1447
1448static int rproc_trigger_auto_boot(struct rproc *rproc)
1449{
1450	int ret;
1451
1452	/*
1453	 * We're initiating an asynchronous firmware loading, so we can
1454	 * be built-in kernel code, without hanging the boot process.
1455	 */
1456	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1457				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1458				      rproc, rproc_auto_boot_callback);
1459	if (ret < 0)
1460		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1461
1462	return ret;
1463}
1464
1465static int rproc_stop(struct rproc *rproc, bool crashed)
1466{
1467	struct device *dev = &rproc->dev;
1468	int ret;
1469
1470	/* Stop any subdevices for the remote processor */
1471	rproc_stop_subdevices(rproc, crashed);
1472
1473	/* the installed resource table is no longer accessible */
1474	rproc->table_ptr = rproc->cached_table;
1475
1476	/* power off the remote processor */
1477	ret = rproc->ops->stop(rproc);
1478	if (ret) {
1479		dev_err(dev, "can't stop rproc: %d\n", ret);
1480		return ret;
1481	}
1482
1483	rproc_unprepare_subdevices(rproc);
1484
1485	rproc->state = RPROC_OFFLINE;
1486
1487	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1488
1489	return 0;
1490}
1491
1492/**
1493 * rproc_coredump_add_segment() - add segment of device memory to coredump
1494 * @rproc:	handle of a remote processor
1495 * @da:		device address
1496 * @size:	size of segment
1497 *
1498 * Add device memory to the list of segments to be included in a coredump for
1499 * the remoteproc.
1500 *
1501 * Return: 0 on success, negative errno on error.
1502 */
1503int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1504{
1505	struct rproc_dump_segment *segment;
1506
1507	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1508	if (!segment)
1509		return -ENOMEM;
1510
1511	segment->da = da;
1512	segment->size = size;
1513
1514	list_add_tail(&segment->node, &rproc->dump_segments);
1515
1516	return 0;
1517}
1518EXPORT_SYMBOL(rproc_coredump_add_segment);
1519
1520/**
1521 * rproc_coredump_add_custom_segment() - add custom coredump segment
1522 * @rproc:	handle of a remote processor
1523 * @da:		device address
1524 * @size:	size of segment
1525 * @dumpfn:	custom dump function called for each segment during coredump
1526 * @priv:	private data
1527 *
1528 * Add device memory to the list of segments to be included in the coredump
1529 * and associate the segment with the given custom dump function and private
1530 * data.
1531 *
1532 * Return: 0 on success, negative errno on error.
1533 */
1534int rproc_coredump_add_custom_segment(struct rproc *rproc,
1535				      dma_addr_t da, size_t size,
1536				      void (*dumpfn)(struct rproc *rproc,
1537						     struct rproc_dump_segment *segment,
1538						     void *dest),
1539				      void *priv)
1540{
1541	struct rproc_dump_segment *segment;
1542
1543	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1544	if (!segment)
1545		return -ENOMEM;
1546
1547	segment->da = da;
1548	segment->size = size;
1549	segment->priv = priv;
1550	segment->dump = dumpfn;
1551
1552	list_add_tail(&segment->node, &rproc->dump_segments);
1553
1554	return 0;
1555}
1556EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1557
1558/**
1559 * rproc_coredump() - perform coredump
1560 * @rproc:	rproc handle
1561 *
1562 * This function will generate an ELF header for the registered segments
1563 * and create a devcoredump device associated with rproc.
1564 */
1565static void rproc_coredump(struct rproc *rproc)
1566{
1567	struct rproc_dump_segment *segment;
1568	struct elf32_phdr *phdr;
1569	struct elf32_hdr *ehdr;
1570	size_t data_size;
1571	size_t offset;
1572	void *data;
1573	void *ptr;
1574	int phnum = 0;
1575
1576	if (list_empty(&rproc->dump_segments))
1577		return;
1578
1579	data_size = sizeof(*ehdr);
1580	list_for_each_entry(segment, &rproc->dump_segments, node) {
1581		data_size += sizeof(*phdr) + segment->size;
1582
1583		phnum++;
1584	}
1585
1586	data = vmalloc(data_size);
1587	if (!data)
1588		return;
1589
1590	ehdr = data;
1591
1592	memset(ehdr, 0, sizeof(*ehdr));
1593	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1594	ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1595	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1596	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1597	ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1598	ehdr->e_type = ET_CORE;
1599	ehdr->e_machine = EM_NONE;
1600	ehdr->e_version = EV_CURRENT;
1601	ehdr->e_entry = rproc->bootaddr;
1602	ehdr->e_phoff = sizeof(*ehdr);
1603	ehdr->e_ehsize = sizeof(*ehdr);
1604	ehdr->e_phentsize = sizeof(*phdr);
1605	ehdr->e_phnum = phnum;
1606
1607	phdr = data + ehdr->e_phoff;
1608	offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1609	list_for_each_entry(segment, &rproc->dump_segments, node) {
1610		memset(phdr, 0, sizeof(*phdr));
1611		phdr->p_type = PT_LOAD;
1612		phdr->p_offset = offset;
1613		phdr->p_vaddr = segment->da;
1614		phdr->p_paddr = segment->da;
1615		phdr->p_filesz = segment->size;
1616		phdr->p_memsz = segment->size;
1617		phdr->p_flags = PF_R | PF_W | PF_X;
1618		phdr->p_align = 0;
1619
1620		if (segment->dump) {
1621			segment->dump(rproc, segment, data + offset);
1622		} else {
1623			ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1624			if (!ptr) {
1625				dev_err(&rproc->dev,
1626					"invalid coredump segment (%pad, %zu)\n",
1627					&segment->da, segment->size);
1628				memset(data + offset, 0xff, segment->size);
1629			} else {
1630				memcpy(data + offset, ptr, segment->size);
1631			}
1632		}
1633
1634		offset += phdr->p_filesz;
1635		phdr++;
1636	}
1637
1638	dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1639}
1640
1641/**
1642 * rproc_trigger_recovery() - recover a remoteproc
1643 * @rproc: the remote processor
1644 *
1645 * The recovery is done by resetting all the virtio devices, that way all the
1646 * rpmsg drivers will be reseted along with the remote processor making the
1647 * remoteproc functional again.
1648 *
1649 * This function can sleep, so it cannot be called from atomic context.
1650 */
1651int rproc_trigger_recovery(struct rproc *rproc)
1652{
1653	const struct firmware *firmware_p;
1654	struct device *dev = &rproc->dev;
1655	int ret;
1656
1657	dev_err(dev, "recovering %s\n", rproc->name);
1658
1659	ret = mutex_lock_interruptible(&rproc->lock);
1660	if (ret)
1661		return ret;
1662
1663	ret = rproc_stop(rproc, true);
1664	if (ret)
1665		goto unlock_mutex;
1666
1667	/* generate coredump */
1668	rproc_coredump(rproc);
1669
1670	/* load firmware */
1671	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1672	if (ret < 0) {
1673		dev_err(dev, "request_firmware failed: %d\n", ret);
1674		goto unlock_mutex;
1675	}
1676
1677	/* boot the remote processor up again */
1678	ret = rproc_start(rproc, firmware_p);
1679
1680	release_firmware(firmware_p);
1681
1682unlock_mutex:
1683	mutex_unlock(&rproc->lock);
1684	return ret;
1685}
1686
1687/**
1688 * rproc_crash_handler_work() - handle a crash
1689 *
1690 * This function needs to handle everything related to a crash, like cpu
1691 * registers and stack dump, information to help to debug the fatal error, etc.
1692 */
1693static void rproc_crash_handler_work(struct work_struct *work)
1694{
1695	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1696	struct device *dev = &rproc->dev;
1697
1698	dev_dbg(dev, "enter %s\n", __func__);
1699
1700	mutex_lock(&rproc->lock);
1701
1702	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1703		/* handle only the first crash detected */
1704		mutex_unlock(&rproc->lock);
1705		return;
1706	}
1707
1708	rproc->state = RPROC_CRASHED;
1709	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1710		rproc->name);
1711
1712	mutex_unlock(&rproc->lock);
1713
1714	if (!rproc->recovery_disabled)
1715		rproc_trigger_recovery(rproc);
1716}
1717
1718/**
1719 * rproc_boot() - boot a remote processor
1720 * @rproc: handle of a remote processor
1721 *
1722 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1723 *
1724 * If the remote processor is already powered on, this function immediately
1725 * returns (successfully).
1726 *
1727 * Returns 0 on success, and an appropriate error value otherwise.
1728 */
1729int rproc_boot(struct rproc *rproc)
1730{
1731	const struct firmware *firmware_p;
1732	struct device *dev;
1733	int ret;
1734
1735	if (!rproc) {
1736		pr_err("invalid rproc handle\n");
1737		return -EINVAL;
1738	}
1739
1740	dev = &rproc->dev;
1741
1742	ret = mutex_lock_interruptible(&rproc->lock);
1743	if (ret) {
1744		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1745		return ret;
1746	}
1747
1748	if (rproc->state == RPROC_DELETED) {
1749		ret = -ENODEV;
1750		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1751		goto unlock_mutex;
1752	}
1753
1754	/* skip the boot process if rproc is already powered up */
1755	if (atomic_inc_return(&rproc->power) > 1) {
1756		ret = 0;
1757		goto unlock_mutex;
1758	}
1759
1760	dev_info(dev, "powering up %s\n", rproc->name);
1761
1762	/* load firmware */
1763	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1764	if (ret < 0) {
1765		dev_err(dev, "request_firmware failed: %d\n", ret);
1766		goto downref_rproc;
1767	}
1768
1769	ret = rproc_fw_boot(rproc, firmware_p);
1770
1771	release_firmware(firmware_p);
1772
1773downref_rproc:
1774	if (ret)
1775		atomic_dec(&rproc->power);
1776unlock_mutex:
1777	mutex_unlock(&rproc->lock);
1778	return ret;
1779}
1780EXPORT_SYMBOL(rproc_boot);
1781
1782/**
1783 * rproc_shutdown() - power off the remote processor
1784 * @rproc: the remote processor
1785 *
1786 * Power off a remote processor (previously booted with rproc_boot()).
1787 *
1788 * In case @rproc is still being used by an additional user(s), then
1789 * this function will just decrement the power refcount and exit,
1790 * without really powering off the device.
1791 *
1792 * Every call to rproc_boot() must (eventually) be accompanied by a call
1793 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1794 *
1795 * Notes:
1796 * - we're not decrementing the rproc's refcount, only the power refcount.
1797 *   which means that the @rproc handle stays valid even after rproc_shutdown()
1798 *   returns, and users can still use it with a subsequent rproc_boot(), if
1799 *   needed.
1800 */
1801void rproc_shutdown(struct rproc *rproc)
1802{
1803	struct device *dev = &rproc->dev;
1804	int ret;
1805
1806	ret = mutex_lock_interruptible(&rproc->lock);
1807	if (ret) {
1808		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1809		return;
1810	}
1811
1812	/* if the remote proc is still needed, bail out */
1813	if (!atomic_dec_and_test(&rproc->power))
1814		goto out;
1815
1816	ret = rproc_stop(rproc, false);
1817	if (ret) {
1818		atomic_inc(&rproc->power);
1819		goto out;
1820	}
1821
1822	/* clean up all acquired resources */
1823	rproc_resource_cleanup(rproc);
1824
1825	rproc_disable_iommu(rproc);
1826
1827	/* Free the copy of the resource table */
1828	kfree(rproc->cached_table);
1829	rproc->cached_table = NULL;
1830	rproc->table_ptr = NULL;
1831out:
1832	mutex_unlock(&rproc->lock);
1833}
1834EXPORT_SYMBOL(rproc_shutdown);
1835
1836/**
1837 * rproc_get_by_phandle() - find a remote processor by phandle
1838 * @phandle: phandle to the rproc
1839 *
1840 * Finds an rproc handle using the remote processor's phandle, and then
1841 * return a handle to the rproc.
1842 *
1843 * This function increments the remote processor's refcount, so always
1844 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1845 *
1846 * Returns the rproc handle on success, and NULL on failure.
1847 */
1848#ifdef CONFIG_OF
1849struct rproc *rproc_get_by_phandle(phandle phandle)
1850{
1851	struct rproc *rproc = NULL, *r;
1852	struct device_node *np;
1853
1854	np = of_find_node_by_phandle(phandle);
1855	if (!np)
1856		return NULL;
1857
1858	mutex_lock(&rproc_list_mutex);
1859	list_for_each_entry(r, &rproc_list, node) {
1860		if (r->dev.parent && r->dev.parent->of_node == np) {
1861			/* prevent underlying implementation from being removed */
1862			if (!try_module_get(r->dev.parent->driver->owner)) {
1863				dev_err(&r->dev, "can't get owner\n");
1864				break;
1865			}
1866
1867			rproc = r;
1868			get_device(&rproc->dev);
1869			break;
1870		}
1871	}
1872	mutex_unlock(&rproc_list_mutex);
1873
1874	of_node_put(np);
1875
1876	return rproc;
1877}
1878#else
1879struct rproc *rproc_get_by_phandle(phandle phandle)
1880{
1881	return NULL;
1882}
1883#endif
1884EXPORT_SYMBOL(rproc_get_by_phandle);
1885
1886/**
1887 * rproc_add() - register a remote processor
1888 * @rproc: the remote processor handle to register
1889 *
1890 * Registers @rproc with the remoteproc framework, after it has been
1891 * allocated with rproc_alloc().
1892 *
1893 * This is called by the platform-specific rproc implementation, whenever
1894 * a new remote processor device is probed.
1895 *
1896 * Returns 0 on success and an appropriate error code otherwise.
1897 *
1898 * Note: this function initiates an asynchronous firmware loading
1899 * context, which will look for virtio devices supported by the rproc's
1900 * firmware.
1901 *
1902 * If found, those virtio devices will be created and added, so as a result
1903 * of registering this remote processor, additional virtio drivers might be
1904 * probed.
1905 */
1906int rproc_add(struct rproc *rproc)
1907{
1908	struct device *dev = &rproc->dev;
1909	int ret;
1910
1911	ret = device_add(dev);
1912	if (ret < 0)
1913		return ret;
1914
1915	dev_info(dev, "%s is available\n", rproc->name);
1916
1917	/* create debugfs entries */
1918	rproc_create_debug_dir(rproc);
1919
1920	/* if rproc is marked always-on, request it to boot */
1921	if (rproc->auto_boot) {
1922		ret = rproc_trigger_auto_boot(rproc);
1923		if (ret < 0)
1924			return ret;
1925	}
1926
1927	/* expose to rproc_get_by_phandle users */
1928	mutex_lock(&rproc_list_mutex);
1929	list_add(&rproc->node, &rproc_list);
1930	mutex_unlock(&rproc_list_mutex);
1931
1932	return 0;
1933}
1934EXPORT_SYMBOL(rproc_add);
1935
1936/**
1937 * rproc_type_release() - release a remote processor instance
1938 * @dev: the rproc's device
1939 *
1940 * This function should _never_ be called directly.
1941 *
1942 * It will be called by the driver core when no one holds a valid pointer
1943 * to @dev anymore.
1944 */
1945static void rproc_type_release(struct device *dev)
1946{
1947	struct rproc *rproc = container_of(dev, struct rproc, dev);
1948
1949	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1950
1951	idr_destroy(&rproc->notifyids);
1952
1953	if (rproc->index >= 0)
1954		ida_simple_remove(&rproc_dev_index, rproc->index);
1955
1956	kfree(rproc->firmware);
1957	kfree(rproc->ops);
1958	kfree(rproc);
1959}
1960
1961static const struct device_type rproc_type = {
1962	.name		= "remoteproc",
1963	.release	= rproc_type_release,
1964};
1965
1966/**
1967 * rproc_alloc() - allocate a remote processor handle
1968 * @dev: the underlying device
1969 * @name: name of this remote processor
1970 * @ops: platform-specific handlers (mainly start/stop)
1971 * @firmware: name of firmware file to load, can be NULL
1972 * @len: length of private data needed by the rproc driver (in bytes)
1973 *
1974 * Allocates a new remote processor handle, but does not register
1975 * it yet. if @firmware is NULL, a default name is used.
1976 *
1977 * This function should be used by rproc implementations during initialization
1978 * of the remote processor.
1979 *
1980 * After creating an rproc handle using this function, and when ready,
1981 * implementations should then call rproc_add() to complete
1982 * the registration of the remote processor.
1983 *
1984 * On success the new rproc is returned, and on failure, NULL.
1985 *
1986 * Note: _never_ directly deallocate @rproc, even if it was not registered
1987 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1988 */
1989struct rproc *rproc_alloc(struct device *dev, const char *name,
1990			  const struct rproc_ops *ops,
1991			  const char *firmware, int len)
1992{
1993	struct rproc *rproc;
1994	char *p, *template = "rproc-%s-fw";
1995	int name_len;
1996
1997	if (!dev || !name || !ops)
1998		return NULL;
1999
2000	if (!firmware) {
2001		/*
2002		 * If the caller didn't pass in a firmware name then
2003		 * construct a default name.
2004		 */
2005		name_len = strlen(name) + strlen(template) - 2 + 1;
2006		p = kmalloc(name_len, GFP_KERNEL);
2007		if (!p)
2008			return NULL;
2009		snprintf(p, name_len, template, name);
2010	} else {
2011		p = kstrdup(firmware, GFP_KERNEL);
2012		if (!p)
2013			return NULL;
2014	}
2015
2016	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2017	if (!rproc) {
2018		kfree(p);
2019		return NULL;
2020	}
2021
2022	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2023	if (!rproc->ops) {
2024		kfree(p);
2025		kfree(rproc);
2026		return NULL;
2027	}
2028
2029	rproc->firmware = p;
2030	rproc->name = name;
2031	rproc->priv = &rproc[1];
2032	rproc->auto_boot = true;
2033
2034	device_initialize(&rproc->dev);
2035	rproc->dev.parent = dev;
2036	rproc->dev.type = &rproc_type;
2037	rproc->dev.class = &rproc_class;
2038	rproc->dev.driver_data = rproc;
2039
2040	/* Assign a unique device index and name */
2041	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2042	if (rproc->index < 0) {
2043		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2044		put_device(&rproc->dev);
2045		return NULL;
2046	}
2047
2048	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2049
2050	atomic_set(&rproc->power, 0);
2051
2052	/* Default to ELF loader if no load function is specified */
2053	if (!rproc->ops->load) {
2054		rproc->ops->load = rproc_elf_load_segments;
2055		rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2056		rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2057		rproc->ops->sanity_check = rproc_elf_sanity_check;
2058		rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2059	}
2060
2061	mutex_init(&rproc->lock);
2062
2063	idr_init(&rproc->notifyids);
2064
2065	INIT_LIST_HEAD(&rproc->carveouts);
2066	INIT_LIST_HEAD(&rproc->mappings);
2067	INIT_LIST_HEAD(&rproc->traces);
2068	INIT_LIST_HEAD(&rproc->rvdevs);
2069	INIT_LIST_HEAD(&rproc->subdevs);
2070	INIT_LIST_HEAD(&rproc->dump_segments);
2071
2072	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2073
2074	rproc->state = RPROC_OFFLINE;
2075
2076	return rproc;
2077}
2078EXPORT_SYMBOL(rproc_alloc);
2079
2080/**
2081 * rproc_free() - unroll rproc_alloc()
2082 * @rproc: the remote processor handle
2083 *
2084 * This function decrements the rproc dev refcount.
2085 *
2086 * If no one holds any reference to rproc anymore, then its refcount would
2087 * now drop to zero, and it would be freed.
2088 */
2089void rproc_free(struct rproc *rproc)
2090{
2091	put_device(&rproc->dev);
2092}
2093EXPORT_SYMBOL(rproc_free);
2094
2095/**
2096 * rproc_put() - release rproc reference
2097 * @rproc: the remote processor handle
2098 *
2099 * This function decrements the rproc dev refcount.
2100 *
2101 * If no one holds any reference to rproc anymore, then its refcount would
2102 * now drop to zero, and it would be freed.
2103 */
2104void rproc_put(struct rproc *rproc)
2105{
2106	module_put(rproc->dev.parent->driver->owner);
2107	put_device(&rproc->dev);
2108}
2109EXPORT_SYMBOL(rproc_put);
2110
2111/**
2112 * rproc_del() - unregister a remote processor
2113 * @rproc: rproc handle to unregister
2114 *
2115 * This function should be called when the platform specific rproc
2116 * implementation decides to remove the rproc device. it should
2117 * _only_ be called if a previous invocation of rproc_add()
2118 * has completed successfully.
2119 *
2120 * After rproc_del() returns, @rproc isn't freed yet, because
2121 * of the outstanding reference created by rproc_alloc. To decrement that
2122 * one last refcount, one still needs to call rproc_free().
2123 *
2124 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2125 */
2126int rproc_del(struct rproc *rproc)
2127{
2128	if (!rproc)
2129		return -EINVAL;
2130
2131	/* if rproc is marked always-on, rproc_add() booted it */
2132	/* TODO: make sure this works with rproc->power > 1 */
2133	if (rproc->auto_boot)
2134		rproc_shutdown(rproc);
2135
2136	mutex_lock(&rproc->lock);
2137	rproc->state = RPROC_DELETED;
2138	mutex_unlock(&rproc->lock);
2139
2140	rproc_delete_debug_dir(rproc);
2141
2142	/* the rproc is downref'ed as soon as it's removed from the klist */
2143	mutex_lock(&rproc_list_mutex);
2144	list_del(&rproc->node);
2145	mutex_unlock(&rproc_list_mutex);
2146
2147	device_del(&rproc->dev);
2148
2149	return 0;
2150}
2151EXPORT_SYMBOL(rproc_del);
2152
2153/**
2154 * rproc_add_subdev() - add a subdevice to a remoteproc
2155 * @rproc: rproc handle to add the subdevice to
2156 * @subdev: subdev handle to register
2157 *
2158 * Caller is responsible for populating optional subdevice function pointers.
2159 */
2160void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2161{
2162	list_add_tail(&subdev->node, &rproc->subdevs);
2163}
2164EXPORT_SYMBOL(rproc_add_subdev);
2165
2166/**
2167 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2168 * @rproc: rproc handle to remove the subdevice from
2169 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2170 */
2171void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2172{
2173	list_del(&subdev->node);
2174}
2175EXPORT_SYMBOL(rproc_remove_subdev);
2176
2177/**
2178 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2179 * @dev:	child device to find ancestor of
2180 *
2181 * Returns the ancestor rproc instance, or NULL if not found.
2182 */
2183struct rproc *rproc_get_by_child(struct device *dev)
2184{
2185	for (dev = dev->parent; dev; dev = dev->parent) {
2186		if (dev->type == &rproc_type)
2187			return dev->driver_data;
2188	}
2189
2190	return NULL;
2191}
2192EXPORT_SYMBOL(rproc_get_by_child);
2193
2194/**
2195 * rproc_report_crash() - rproc crash reporter function
2196 * @rproc: remote processor
2197 * @type: crash type
2198 *
2199 * This function must be called every time a crash is detected by the low-level
2200 * drivers implementing a specific remoteproc. This should not be called from a
2201 * non-remoteproc driver.
2202 *
2203 * This function can be called from atomic/interrupt context.
2204 */
2205void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2206{
2207	if (!rproc) {
2208		pr_err("NULL rproc pointer\n");
2209		return;
2210	}
2211
2212	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2213		rproc->name, rproc_crash_to_string(type));
2214
2215	/* create a new task to handle the error */
2216	schedule_work(&rproc->crash_handler);
2217}
2218EXPORT_SYMBOL(rproc_report_crash);
2219
2220static int __init remoteproc_init(void)
2221{
2222	rproc_init_sysfs();
2223	rproc_init_debugfs();
2224
2225	return 0;
2226}
2227module_init(remoteproc_init);
2228
2229static void __exit remoteproc_exit(void)
2230{
2231	ida_destroy(&rproc_dev_index);
2232
2233	rproc_exit_debugfs();
2234	rproc_exit_sysfs();
2235}
2236module_exit(remoteproc_exit);
2237
2238MODULE_LICENSE("GPL v2");
2239MODULE_DESCRIPTION("Generic Remote Processor Framework");