Loading...
1#include <linux/types.h>
2#include <linux/string.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/ctype.h>
6#include <linux/dmi.h>
7#include <linux/efi.h>
8#include <linux/bootmem.h>
9#include <asm/dmi.h>
10
11/*
12 * DMI stands for "Desktop Management Interface". It is part
13 * of and an antecedent to, SMBIOS, which stands for System
14 * Management BIOS. See further: http://www.dmtf.org/standards
15 */
16static char dmi_empty_string[] = " ";
17
18/*
19 * Catch too early calls to dmi_check_system():
20 */
21static int dmi_initialized;
22
23static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
24{
25 const u8 *bp = ((u8 *) dm) + dm->length;
26
27 if (s) {
28 s--;
29 while (s > 0 && *bp) {
30 bp += strlen(bp) + 1;
31 s--;
32 }
33
34 if (*bp != 0) {
35 size_t len = strlen(bp)+1;
36 size_t cmp_len = len > 8 ? 8 : len;
37
38 if (!memcmp(bp, dmi_empty_string, cmp_len))
39 return dmi_empty_string;
40 return bp;
41 }
42 }
43
44 return "";
45}
46
47static char * __init dmi_string(const struct dmi_header *dm, u8 s)
48{
49 const char *bp = dmi_string_nosave(dm, s);
50 char *str;
51 size_t len;
52
53 if (bp == dmi_empty_string)
54 return dmi_empty_string;
55
56 len = strlen(bp) + 1;
57 str = dmi_alloc(len);
58 if (str != NULL)
59 strcpy(str, bp);
60 else
61 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
62
63 return str;
64}
65
66/*
67 * We have to be cautious here. We have seen BIOSes with DMI pointers
68 * pointing to completely the wrong place for example
69 */
70static void dmi_table(u8 *buf, int len, int num,
71 void (*decode)(const struct dmi_header *, void *),
72 void *private_data)
73{
74 u8 *data = buf;
75 int i = 0;
76
77 /*
78 * Stop when we see all the items the table claimed to have
79 * OR we run off the end of the table (also happens)
80 */
81 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
82 const struct dmi_header *dm = (const struct dmi_header *)data;
83
84 /*
85 * We want to know the total length (formatted area and
86 * strings) before decoding to make sure we won't run off the
87 * table in dmi_decode or dmi_string
88 */
89 data += dm->length;
90 while ((data - buf < len - 1) && (data[0] || data[1]))
91 data++;
92 if (data - buf < len - 1)
93 decode(dm, private_data);
94 data += 2;
95 i++;
96 }
97}
98
99static u32 dmi_base;
100static u16 dmi_len;
101static u16 dmi_num;
102
103static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
104 void *))
105{
106 u8 *buf;
107
108 buf = dmi_ioremap(dmi_base, dmi_len);
109 if (buf == NULL)
110 return -1;
111
112 dmi_table(buf, dmi_len, dmi_num, decode, NULL);
113
114 dmi_iounmap(buf, dmi_len);
115 return 0;
116}
117
118static int __init dmi_checksum(const u8 *buf)
119{
120 u8 sum = 0;
121 int a;
122
123 for (a = 0; a < 15; a++)
124 sum += buf[a];
125
126 return sum == 0;
127}
128
129static char *dmi_ident[DMI_STRING_MAX];
130static LIST_HEAD(dmi_devices);
131int dmi_available;
132
133/*
134 * Save a DMI string
135 */
136static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
137{
138 const char *d = (const char*) dm;
139 char *p;
140
141 if (dmi_ident[slot])
142 return;
143
144 p = dmi_string(dm, d[string]);
145 if (p == NULL)
146 return;
147
148 dmi_ident[slot] = p;
149}
150
151static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
152{
153 const u8 *d = (u8*) dm + index;
154 char *s;
155 int is_ff = 1, is_00 = 1, i;
156
157 if (dmi_ident[slot])
158 return;
159
160 for (i = 0; i < 16 && (is_ff || is_00); i++) {
161 if(d[i] != 0x00) is_ff = 0;
162 if(d[i] != 0xFF) is_00 = 0;
163 }
164
165 if (is_ff || is_00)
166 return;
167
168 s = dmi_alloc(16*2+4+1);
169 if (!s)
170 return;
171
172 sprintf(s, "%pUB", d);
173
174 dmi_ident[slot] = s;
175}
176
177static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
178{
179 const u8 *d = (u8*) dm + index;
180 char *s;
181
182 if (dmi_ident[slot])
183 return;
184
185 s = dmi_alloc(4);
186 if (!s)
187 return;
188
189 sprintf(s, "%u", *d & 0x7F);
190 dmi_ident[slot] = s;
191}
192
193static void __init dmi_save_one_device(int type, const char *name)
194{
195 struct dmi_device *dev;
196
197 /* No duplicate device */
198 if (dmi_find_device(type, name, NULL))
199 return;
200
201 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
202 if (!dev) {
203 printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
204 return;
205 }
206
207 dev->type = type;
208 strcpy((char *)(dev + 1), name);
209 dev->name = (char *)(dev + 1);
210 dev->device_data = NULL;
211 list_add(&dev->list, &dmi_devices);
212}
213
214static void __init dmi_save_devices(const struct dmi_header *dm)
215{
216 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
217
218 for (i = 0; i < count; i++) {
219 const char *d = (char *)(dm + 1) + (i * 2);
220
221 /* Skip disabled device */
222 if ((*d & 0x80) == 0)
223 continue;
224
225 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
226 }
227}
228
229static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
230{
231 int i, count = *(u8 *)(dm + 1);
232 struct dmi_device *dev;
233
234 for (i = 1; i <= count; i++) {
235 char *devname = dmi_string(dm, i);
236
237 if (devname == dmi_empty_string)
238 continue;
239
240 dev = dmi_alloc(sizeof(*dev));
241 if (!dev) {
242 printk(KERN_ERR
243 "dmi_save_oem_strings_devices: out of memory.\n");
244 break;
245 }
246
247 dev->type = DMI_DEV_TYPE_OEM_STRING;
248 dev->name = devname;
249 dev->device_data = NULL;
250
251 list_add(&dev->list, &dmi_devices);
252 }
253}
254
255static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
256{
257 struct dmi_device *dev;
258 void * data;
259
260 data = dmi_alloc(dm->length);
261 if (data == NULL) {
262 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
263 return;
264 }
265
266 memcpy(data, dm, dm->length);
267
268 dev = dmi_alloc(sizeof(*dev));
269 if (!dev) {
270 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
271 return;
272 }
273
274 dev->type = DMI_DEV_TYPE_IPMI;
275 dev->name = "IPMI controller";
276 dev->device_data = data;
277
278 list_add_tail(&dev->list, &dmi_devices);
279}
280
281static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
282 int devfn, const char *name)
283{
284 struct dmi_dev_onboard *onboard_dev;
285
286 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
287 if (!onboard_dev) {
288 printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
289 return;
290 }
291 onboard_dev->instance = instance;
292 onboard_dev->segment = segment;
293 onboard_dev->bus = bus;
294 onboard_dev->devfn = devfn;
295
296 strcpy((char *)&onboard_dev[1], name);
297 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
298 onboard_dev->dev.name = (char *)&onboard_dev[1];
299 onboard_dev->dev.device_data = onboard_dev;
300
301 list_add(&onboard_dev->dev.list, &dmi_devices);
302}
303
304static void __init dmi_save_extended_devices(const struct dmi_header *dm)
305{
306 const u8 *d = (u8*) dm + 5;
307
308 /* Skip disabled device */
309 if ((*d & 0x80) == 0)
310 return;
311
312 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
313 dmi_string_nosave(dm, *(d-1)));
314 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
315}
316
317/*
318 * Process a DMI table entry. Right now all we care about are the BIOS
319 * and machine entries. For 2.5 we should pull the smbus controller info
320 * out of here.
321 */
322static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
323{
324 switch(dm->type) {
325 case 0: /* BIOS Information */
326 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
327 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
328 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
329 break;
330 case 1: /* System Information */
331 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
332 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
333 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
334 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
335 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
336 break;
337 case 2: /* Base Board Information */
338 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
339 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
340 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
341 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
342 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
343 break;
344 case 3: /* Chassis Information */
345 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
346 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
347 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
348 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
349 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
350 break;
351 case 10: /* Onboard Devices Information */
352 dmi_save_devices(dm);
353 break;
354 case 11: /* OEM Strings */
355 dmi_save_oem_strings_devices(dm);
356 break;
357 case 38: /* IPMI Device Information */
358 dmi_save_ipmi_device(dm);
359 break;
360 case 41: /* Onboard Devices Extended Information */
361 dmi_save_extended_devices(dm);
362 }
363}
364
365static void __init print_filtered(const char *info)
366{
367 const char *p;
368
369 if (!info)
370 return;
371
372 for (p = info; *p; p++)
373 if (isprint(*p))
374 printk(KERN_CONT "%c", *p);
375 else
376 printk(KERN_CONT "\\x%02x", *p & 0xff);
377}
378
379static void __init dmi_dump_ids(void)
380{
381 const char *board; /* Board Name is optional */
382
383 printk(KERN_DEBUG "DMI: ");
384 print_filtered(dmi_get_system_info(DMI_SYS_VENDOR));
385 printk(KERN_CONT " ");
386 print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME));
387 board = dmi_get_system_info(DMI_BOARD_NAME);
388 if (board) {
389 printk(KERN_CONT "/");
390 print_filtered(board);
391 }
392 printk(KERN_CONT ", BIOS ");
393 print_filtered(dmi_get_system_info(DMI_BIOS_VERSION));
394 printk(KERN_CONT " ");
395 print_filtered(dmi_get_system_info(DMI_BIOS_DATE));
396 printk(KERN_CONT "\n");
397}
398
399static int __init dmi_present(const char __iomem *p)
400{
401 u8 buf[15];
402
403 memcpy_fromio(buf, p, 15);
404 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
405 dmi_num = (buf[13] << 8) | buf[12];
406 dmi_len = (buf[7] << 8) | buf[6];
407 dmi_base = (buf[11] << 24) | (buf[10] << 16) |
408 (buf[9] << 8) | buf[8];
409
410 /*
411 * DMI version 0.0 means that the real version is taken from
412 * the SMBIOS version, which we don't know at this point.
413 */
414 if (buf[14] != 0)
415 printk(KERN_INFO "DMI %d.%d present.\n",
416 buf[14] >> 4, buf[14] & 0xF);
417 else
418 printk(KERN_INFO "DMI present.\n");
419 if (dmi_walk_early(dmi_decode) == 0) {
420 dmi_dump_ids();
421 return 0;
422 }
423 }
424 return 1;
425}
426
427void __init dmi_scan_machine(void)
428{
429 char __iomem *p, *q;
430 int rc;
431
432 if (efi_enabled) {
433 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
434 goto error;
435
436 /* This is called as a core_initcall() because it isn't
437 * needed during early boot. This also means we can
438 * iounmap the space when we're done with it.
439 */
440 p = dmi_ioremap(efi.smbios, 32);
441 if (p == NULL)
442 goto error;
443
444 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
445 dmi_iounmap(p, 32);
446 if (!rc) {
447 dmi_available = 1;
448 goto out;
449 }
450 }
451 else {
452 /*
453 * no iounmap() for that ioremap(); it would be a no-op, but
454 * it's so early in setup that sucker gets confused into doing
455 * what it shouldn't if we actually call it.
456 */
457 p = dmi_ioremap(0xF0000, 0x10000);
458 if (p == NULL)
459 goto error;
460
461 for (q = p; q < p + 0x10000; q += 16) {
462 rc = dmi_present(q);
463 if (!rc) {
464 dmi_available = 1;
465 dmi_iounmap(p, 0x10000);
466 goto out;
467 }
468 }
469 dmi_iounmap(p, 0x10000);
470 }
471 error:
472 printk(KERN_INFO "DMI not present or invalid.\n");
473 out:
474 dmi_initialized = 1;
475}
476
477/**
478 * dmi_matches - check if dmi_system_id structure matches system DMI data
479 * @dmi: pointer to the dmi_system_id structure to check
480 */
481static bool dmi_matches(const struct dmi_system_id *dmi)
482{
483 int i;
484
485 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
486
487 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
488 int s = dmi->matches[i].slot;
489 if (s == DMI_NONE)
490 break;
491 if (dmi_ident[s]
492 && strstr(dmi_ident[s], dmi->matches[i].substr))
493 continue;
494 /* No match */
495 return false;
496 }
497 return true;
498}
499
500/**
501 * dmi_is_end_of_table - check for end-of-table marker
502 * @dmi: pointer to the dmi_system_id structure to check
503 */
504static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
505{
506 return dmi->matches[0].slot == DMI_NONE;
507}
508
509/**
510 * dmi_check_system - check system DMI data
511 * @list: array of dmi_system_id structures to match against
512 * All non-null elements of the list must match
513 * their slot's (field index's) data (i.e., each
514 * list string must be a substring of the specified
515 * DMI slot's string data) to be considered a
516 * successful match.
517 *
518 * Walk the blacklist table running matching functions until someone
519 * returns non zero or we hit the end. Callback function is called for
520 * each successful match. Returns the number of matches.
521 */
522int dmi_check_system(const struct dmi_system_id *list)
523{
524 int count = 0;
525 const struct dmi_system_id *d;
526
527 for (d = list; !dmi_is_end_of_table(d); d++)
528 if (dmi_matches(d)) {
529 count++;
530 if (d->callback && d->callback(d))
531 break;
532 }
533
534 return count;
535}
536EXPORT_SYMBOL(dmi_check_system);
537
538/**
539 * dmi_first_match - find dmi_system_id structure matching system DMI data
540 * @list: array of dmi_system_id structures to match against
541 * All non-null elements of the list must match
542 * their slot's (field index's) data (i.e., each
543 * list string must be a substring of the specified
544 * DMI slot's string data) to be considered a
545 * successful match.
546 *
547 * Walk the blacklist table until the first match is found. Return the
548 * pointer to the matching entry or NULL if there's no match.
549 */
550const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
551{
552 const struct dmi_system_id *d;
553
554 for (d = list; !dmi_is_end_of_table(d); d++)
555 if (dmi_matches(d))
556 return d;
557
558 return NULL;
559}
560EXPORT_SYMBOL(dmi_first_match);
561
562/**
563 * dmi_get_system_info - return DMI data value
564 * @field: data index (see enum dmi_field)
565 *
566 * Returns one DMI data value, can be used to perform
567 * complex DMI data checks.
568 */
569const char *dmi_get_system_info(int field)
570{
571 return dmi_ident[field];
572}
573EXPORT_SYMBOL(dmi_get_system_info);
574
575/**
576 * dmi_name_in_serial - Check if string is in the DMI product serial information
577 * @str: string to check for
578 */
579int dmi_name_in_serial(const char *str)
580{
581 int f = DMI_PRODUCT_SERIAL;
582 if (dmi_ident[f] && strstr(dmi_ident[f], str))
583 return 1;
584 return 0;
585}
586
587/**
588 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
589 * @str: Case sensitive Name
590 */
591int dmi_name_in_vendors(const char *str)
592{
593 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
594 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
595 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
596 int i;
597 for (i = 0; fields[i] != DMI_NONE; i++) {
598 int f = fields[i];
599 if (dmi_ident[f] && strstr(dmi_ident[f], str))
600 return 1;
601 }
602 return 0;
603}
604EXPORT_SYMBOL(dmi_name_in_vendors);
605
606/**
607 * dmi_find_device - find onboard device by type/name
608 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
609 * @name: device name string or %NULL to match all
610 * @from: previous device found in search, or %NULL for new search.
611 *
612 * Iterates through the list of known onboard devices. If a device is
613 * found with a matching @vendor and @device, a pointer to its device
614 * structure is returned. Otherwise, %NULL is returned.
615 * A new search is initiated by passing %NULL as the @from argument.
616 * If @from is not %NULL, searches continue from next device.
617 */
618const struct dmi_device * dmi_find_device(int type, const char *name,
619 const struct dmi_device *from)
620{
621 const struct list_head *head = from ? &from->list : &dmi_devices;
622 struct list_head *d;
623
624 for(d = head->next; d != &dmi_devices; d = d->next) {
625 const struct dmi_device *dev =
626 list_entry(d, struct dmi_device, list);
627
628 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
629 ((name == NULL) || (strcmp(dev->name, name) == 0)))
630 return dev;
631 }
632
633 return NULL;
634}
635EXPORT_SYMBOL(dmi_find_device);
636
637/**
638 * dmi_get_date - parse a DMI date
639 * @field: data index (see enum dmi_field)
640 * @yearp: optional out parameter for the year
641 * @monthp: optional out parameter for the month
642 * @dayp: optional out parameter for the day
643 *
644 * The date field is assumed to be in the form resembling
645 * [mm[/dd]]/yy[yy] and the result is stored in the out
646 * parameters any or all of which can be omitted.
647 *
648 * If the field doesn't exist, all out parameters are set to zero
649 * and false is returned. Otherwise, true is returned with any
650 * invalid part of date set to zero.
651 *
652 * On return, year, month and day are guaranteed to be in the
653 * range of [0,9999], [0,12] and [0,31] respectively.
654 */
655bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
656{
657 int year = 0, month = 0, day = 0;
658 bool exists;
659 const char *s, *y;
660 char *e;
661
662 s = dmi_get_system_info(field);
663 exists = s;
664 if (!exists)
665 goto out;
666
667 /*
668 * Determine year first. We assume the date string resembles
669 * mm/dd/yy[yy] but the original code extracted only the year
670 * from the end. Keep the behavior in the spirit of no
671 * surprises.
672 */
673 y = strrchr(s, '/');
674 if (!y)
675 goto out;
676
677 y++;
678 year = simple_strtoul(y, &e, 10);
679 if (y != e && year < 100) { /* 2-digit year */
680 year += 1900;
681 if (year < 1996) /* no dates < spec 1.0 */
682 year += 100;
683 }
684 if (year > 9999) /* year should fit in %04d */
685 year = 0;
686
687 /* parse the mm and dd */
688 month = simple_strtoul(s, &e, 10);
689 if (s == e || *e != '/' || !month || month > 12) {
690 month = 0;
691 goto out;
692 }
693
694 s = e + 1;
695 day = simple_strtoul(s, &e, 10);
696 if (s == y || s == e || *e != '/' || day > 31)
697 day = 0;
698out:
699 if (yearp)
700 *yearp = year;
701 if (monthp)
702 *monthp = month;
703 if (dayp)
704 *dayp = day;
705 return exists;
706}
707EXPORT_SYMBOL(dmi_get_date);
708
709/**
710 * dmi_walk - Walk the DMI table and get called back for every record
711 * @decode: Callback function
712 * @private_data: Private data to be passed to the callback function
713 *
714 * Returns -1 when the DMI table can't be reached, 0 on success.
715 */
716int dmi_walk(void (*decode)(const struct dmi_header *, void *),
717 void *private_data)
718{
719 u8 *buf;
720
721 if (!dmi_available)
722 return -1;
723
724 buf = ioremap(dmi_base, dmi_len);
725 if (buf == NULL)
726 return -1;
727
728 dmi_table(buf, dmi_len, dmi_num, decode, private_data);
729
730 iounmap(buf);
731 return 0;
732}
733EXPORT_SYMBOL_GPL(dmi_walk);
734
735/**
736 * dmi_match - compare a string to the dmi field (if exists)
737 * @f: DMI field identifier
738 * @str: string to compare the DMI field to
739 *
740 * Returns true if the requested field equals to the str (including NULL).
741 */
742bool dmi_match(enum dmi_field f, const char *str)
743{
744 const char *info = dmi_get_system_info(f);
745
746 if (info == NULL || str == NULL)
747 return info == str;
748
749 return !strcmp(info, str);
750}
751EXPORT_SYMBOL_GPL(dmi_match);
1#include <linux/types.h>
2#include <linux/string.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/ctype.h>
6#include <linux/dmi.h>
7#include <linux/efi.h>
8#include <linux/bootmem.h>
9#include <linux/random.h>
10#include <asm/dmi.h>
11#include <asm/unaligned.h>
12
13/*
14 * DMI stands for "Desktop Management Interface". It is part
15 * of and an antecedent to, SMBIOS, which stands for System
16 * Management BIOS. See further: http://www.dmtf.org/standards
17 */
18static const char dmi_empty_string[] = " ";
19
20static u16 __initdata dmi_ver;
21/*
22 * Catch too early calls to dmi_check_system():
23 */
24static int dmi_initialized;
25
26/* DMI system identification string used during boot */
27static char dmi_ids_string[128] __initdata;
28
29static struct dmi_memdev_info {
30 const char *device;
31 const char *bank;
32 u16 handle;
33} *dmi_memdev;
34static int dmi_memdev_nr;
35
36static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
37{
38 const u8 *bp = ((u8 *) dm) + dm->length;
39
40 if (s) {
41 s--;
42 while (s > 0 && *bp) {
43 bp += strlen(bp) + 1;
44 s--;
45 }
46
47 if (*bp != 0) {
48 size_t len = strlen(bp)+1;
49 size_t cmp_len = len > 8 ? 8 : len;
50
51 if (!memcmp(bp, dmi_empty_string, cmp_len))
52 return dmi_empty_string;
53 return bp;
54 }
55 }
56
57 return "";
58}
59
60static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
61{
62 const char *bp = dmi_string_nosave(dm, s);
63 char *str;
64 size_t len;
65
66 if (bp == dmi_empty_string)
67 return dmi_empty_string;
68
69 len = strlen(bp) + 1;
70 str = dmi_alloc(len);
71 if (str != NULL)
72 strcpy(str, bp);
73
74 return str;
75}
76
77/*
78 * We have to be cautious here. We have seen BIOSes with DMI pointers
79 * pointing to completely the wrong place for example
80 */
81static void dmi_table(u8 *buf, int len, int num,
82 void (*decode)(const struct dmi_header *, void *),
83 void *private_data)
84{
85 u8 *data = buf;
86 int i = 0;
87
88 /*
89 * Stop when we see all the items the table claimed to have
90 * OR we run off the end of the table (also happens)
91 */
92 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
93 const struct dmi_header *dm = (const struct dmi_header *)data;
94
95 /*
96 * We want to know the total length (formatted area and
97 * strings) before decoding to make sure we won't run off the
98 * table in dmi_decode or dmi_string
99 */
100 data += dm->length;
101 while ((data - buf < len - 1) && (data[0] || data[1]))
102 data++;
103 if (data - buf < len - 1)
104 decode(dm, private_data);
105 data += 2;
106 i++;
107 }
108}
109
110static u32 dmi_base;
111static u16 dmi_len;
112static u16 dmi_num;
113
114static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
115 void *))
116{
117 u8 *buf;
118
119 buf = dmi_early_remap(dmi_base, dmi_len);
120 if (buf == NULL)
121 return -1;
122
123 dmi_table(buf, dmi_len, dmi_num, decode, NULL);
124
125 add_device_randomness(buf, dmi_len);
126
127 dmi_early_unmap(buf, dmi_len);
128 return 0;
129}
130
131static int __init dmi_checksum(const u8 *buf, u8 len)
132{
133 u8 sum = 0;
134 int a;
135
136 for (a = 0; a < len; a++)
137 sum += buf[a];
138
139 return sum == 0;
140}
141
142static const char *dmi_ident[DMI_STRING_MAX];
143static LIST_HEAD(dmi_devices);
144int dmi_available;
145
146/*
147 * Save a DMI string
148 */
149static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
150 int string)
151{
152 const char *d = (const char *) dm;
153 const char *p;
154
155 if (dmi_ident[slot])
156 return;
157
158 p = dmi_string(dm, d[string]);
159 if (p == NULL)
160 return;
161
162 dmi_ident[slot] = p;
163}
164
165static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
166 int index)
167{
168 const u8 *d = (u8 *) dm + index;
169 char *s;
170 int is_ff = 1, is_00 = 1, i;
171
172 if (dmi_ident[slot])
173 return;
174
175 for (i = 0; i < 16 && (is_ff || is_00); i++) {
176 if (d[i] != 0x00)
177 is_00 = 0;
178 if (d[i] != 0xFF)
179 is_ff = 0;
180 }
181
182 if (is_ff || is_00)
183 return;
184
185 s = dmi_alloc(16*2+4+1);
186 if (!s)
187 return;
188
189 /*
190 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
191 * the UUID are supposed to be little-endian encoded. The specification
192 * says that this is the defacto standard.
193 */
194 if (dmi_ver >= 0x0206)
195 sprintf(s, "%pUL", d);
196 else
197 sprintf(s, "%pUB", d);
198
199 dmi_ident[slot] = s;
200}
201
202static void __init dmi_save_type(const struct dmi_header *dm, int slot,
203 int index)
204{
205 const u8 *d = (u8 *) dm + index;
206 char *s;
207
208 if (dmi_ident[slot])
209 return;
210
211 s = dmi_alloc(4);
212 if (!s)
213 return;
214
215 sprintf(s, "%u", *d & 0x7F);
216 dmi_ident[slot] = s;
217}
218
219static void __init dmi_save_one_device(int type, const char *name)
220{
221 struct dmi_device *dev;
222
223 /* No duplicate device */
224 if (dmi_find_device(type, name, NULL))
225 return;
226
227 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
228 if (!dev)
229 return;
230
231 dev->type = type;
232 strcpy((char *)(dev + 1), name);
233 dev->name = (char *)(dev + 1);
234 dev->device_data = NULL;
235 list_add(&dev->list, &dmi_devices);
236}
237
238static void __init dmi_save_devices(const struct dmi_header *dm)
239{
240 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
241
242 for (i = 0; i < count; i++) {
243 const char *d = (char *)(dm + 1) + (i * 2);
244
245 /* Skip disabled device */
246 if ((*d & 0x80) == 0)
247 continue;
248
249 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
250 }
251}
252
253static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
254{
255 int i, count = *(u8 *)(dm + 1);
256 struct dmi_device *dev;
257
258 for (i = 1; i <= count; i++) {
259 const char *devname = dmi_string(dm, i);
260
261 if (devname == dmi_empty_string)
262 continue;
263
264 dev = dmi_alloc(sizeof(*dev));
265 if (!dev)
266 break;
267
268 dev->type = DMI_DEV_TYPE_OEM_STRING;
269 dev->name = devname;
270 dev->device_data = NULL;
271
272 list_add(&dev->list, &dmi_devices);
273 }
274}
275
276static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
277{
278 struct dmi_device *dev;
279 void *data;
280
281 data = dmi_alloc(dm->length);
282 if (data == NULL)
283 return;
284
285 memcpy(data, dm, dm->length);
286
287 dev = dmi_alloc(sizeof(*dev));
288 if (!dev)
289 return;
290
291 dev->type = DMI_DEV_TYPE_IPMI;
292 dev->name = "IPMI controller";
293 dev->device_data = data;
294
295 list_add_tail(&dev->list, &dmi_devices);
296}
297
298static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
299 int devfn, const char *name)
300{
301 struct dmi_dev_onboard *onboard_dev;
302
303 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
304 if (!onboard_dev)
305 return;
306
307 onboard_dev->instance = instance;
308 onboard_dev->segment = segment;
309 onboard_dev->bus = bus;
310 onboard_dev->devfn = devfn;
311
312 strcpy((char *)&onboard_dev[1], name);
313 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
314 onboard_dev->dev.name = (char *)&onboard_dev[1];
315 onboard_dev->dev.device_data = onboard_dev;
316
317 list_add(&onboard_dev->dev.list, &dmi_devices);
318}
319
320static void __init dmi_save_extended_devices(const struct dmi_header *dm)
321{
322 const u8 *d = (u8 *) dm + 5;
323
324 /* Skip disabled device */
325 if ((*d & 0x80) == 0)
326 return;
327
328 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
329 dmi_string_nosave(dm, *(d-1)));
330 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
331}
332
333static void __init count_mem_devices(const struct dmi_header *dm, void *v)
334{
335 if (dm->type != DMI_ENTRY_MEM_DEVICE)
336 return;
337 dmi_memdev_nr++;
338}
339
340static void __init save_mem_devices(const struct dmi_header *dm, void *v)
341{
342 const char *d = (const char *)dm;
343 static int nr;
344
345 if (dm->type != DMI_ENTRY_MEM_DEVICE)
346 return;
347 if (nr >= dmi_memdev_nr) {
348 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
349 return;
350 }
351 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
352 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
353 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
354 nr++;
355}
356
357void __init dmi_memdev_walk(void)
358{
359 if (!dmi_available)
360 return;
361
362 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
363 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
364 if (dmi_memdev)
365 dmi_walk_early(save_mem_devices);
366 }
367}
368
369/*
370 * Process a DMI table entry. Right now all we care about are the BIOS
371 * and machine entries. For 2.5 we should pull the smbus controller info
372 * out of here.
373 */
374static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
375{
376 switch (dm->type) {
377 case 0: /* BIOS Information */
378 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
379 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
380 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
381 break;
382 case 1: /* System Information */
383 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
384 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
385 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
386 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
387 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
388 break;
389 case 2: /* Base Board Information */
390 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
391 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
392 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
393 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
394 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
395 break;
396 case 3: /* Chassis Information */
397 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
398 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
399 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
400 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
401 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
402 break;
403 case 10: /* Onboard Devices Information */
404 dmi_save_devices(dm);
405 break;
406 case 11: /* OEM Strings */
407 dmi_save_oem_strings_devices(dm);
408 break;
409 case 38: /* IPMI Device Information */
410 dmi_save_ipmi_device(dm);
411 break;
412 case 41: /* Onboard Devices Extended Information */
413 dmi_save_extended_devices(dm);
414 }
415}
416
417static int __init print_filtered(char *buf, size_t len, const char *info)
418{
419 int c = 0;
420 const char *p;
421
422 if (!info)
423 return c;
424
425 for (p = info; *p; p++)
426 if (isprint(*p))
427 c += scnprintf(buf + c, len - c, "%c", *p);
428 else
429 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
430 return c;
431}
432
433static void __init dmi_format_ids(char *buf, size_t len)
434{
435 int c = 0;
436 const char *board; /* Board Name is optional */
437
438 c += print_filtered(buf + c, len - c,
439 dmi_get_system_info(DMI_SYS_VENDOR));
440 c += scnprintf(buf + c, len - c, " ");
441 c += print_filtered(buf + c, len - c,
442 dmi_get_system_info(DMI_PRODUCT_NAME));
443
444 board = dmi_get_system_info(DMI_BOARD_NAME);
445 if (board) {
446 c += scnprintf(buf + c, len - c, "/");
447 c += print_filtered(buf + c, len - c, board);
448 }
449 c += scnprintf(buf + c, len - c, ", BIOS ");
450 c += print_filtered(buf + c, len - c,
451 dmi_get_system_info(DMI_BIOS_VERSION));
452 c += scnprintf(buf + c, len - c, " ");
453 c += print_filtered(buf + c, len - c,
454 dmi_get_system_info(DMI_BIOS_DATE));
455}
456
457/*
458 * Check for DMI/SMBIOS headers in the system firmware image. Any
459 * SMBIOS header must start 16 bytes before the DMI header, so take a
460 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
461 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
462 * takes precedence) and return 0. Otherwise return 1.
463 */
464static int __init dmi_present(const u8 *buf)
465{
466 int smbios_ver;
467
468 if (memcmp(buf, "_SM_", 4) == 0 &&
469 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
470 smbios_ver = (buf[6] << 8) + buf[7];
471
472 /* Some BIOS report weird SMBIOS version, fix that up */
473 switch (smbios_ver) {
474 case 0x021F:
475 case 0x0221:
476 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
477 smbios_ver & 0xFF, 3);
478 smbios_ver = 0x0203;
479 break;
480 case 0x0233:
481 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
482 smbios_ver = 0x0206;
483 break;
484 }
485 } else {
486 smbios_ver = 0;
487 }
488
489 buf += 16;
490
491 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
492 dmi_num = (buf[13] << 8) | buf[12];
493 dmi_len = (buf[7] << 8) | buf[6];
494 dmi_base = (buf[11] << 24) | (buf[10] << 16) |
495 (buf[9] << 8) | buf[8];
496
497 if (dmi_walk_early(dmi_decode) == 0) {
498 if (smbios_ver) {
499 dmi_ver = smbios_ver;
500 pr_info("SMBIOS %d.%d present.\n",
501 dmi_ver >> 8, dmi_ver & 0xFF);
502 } else {
503 dmi_ver = (buf[14] & 0xF0) << 4 |
504 (buf[14] & 0x0F);
505 pr_info("Legacy DMI %d.%d present.\n",
506 dmi_ver >> 8, dmi_ver & 0xFF);
507 }
508 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
509 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
510 return 0;
511 }
512 }
513
514 return 1;
515}
516
517void __init dmi_scan_machine(void)
518{
519 char __iomem *p, *q;
520 char buf[32];
521
522 if (efi_enabled(EFI_CONFIG_TABLES)) {
523 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
524 goto error;
525
526 /* This is called as a core_initcall() because it isn't
527 * needed during early boot. This also means we can
528 * iounmap the space when we're done with it.
529 */
530 p = dmi_early_remap(efi.smbios, 32);
531 if (p == NULL)
532 goto error;
533 memcpy_fromio(buf, p, 32);
534 dmi_early_unmap(p, 32);
535
536 if (!dmi_present(buf)) {
537 dmi_available = 1;
538 goto out;
539 }
540 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
541 p = dmi_early_remap(0xF0000, 0x10000);
542 if (p == NULL)
543 goto error;
544
545 /*
546 * Iterate over all possible DMI header addresses q.
547 * Maintain the 32 bytes around q in buf. On the
548 * first iteration, substitute zero for the
549 * out-of-range bytes so there is no chance of falsely
550 * detecting an SMBIOS header.
551 */
552 memset(buf, 0, 16);
553 for (q = p; q < p + 0x10000; q += 16) {
554 memcpy_fromio(buf + 16, q, 16);
555 if (!dmi_present(buf)) {
556 dmi_available = 1;
557 dmi_early_unmap(p, 0x10000);
558 goto out;
559 }
560 memcpy(buf, buf + 16, 16);
561 }
562 dmi_early_unmap(p, 0x10000);
563 }
564 error:
565 pr_info("DMI not present or invalid.\n");
566 out:
567 dmi_initialized = 1;
568}
569
570/**
571 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
572 *
573 * Invoke dump_stack_set_arch_desc() with DMI system information so that
574 * DMI identifiers are printed out on task dumps. Arch boot code should
575 * call this function after dmi_scan_machine() if it wants to print out DMI
576 * identifiers on task dumps.
577 */
578void __init dmi_set_dump_stack_arch_desc(void)
579{
580 dump_stack_set_arch_desc("%s", dmi_ids_string);
581}
582
583/**
584 * dmi_matches - check if dmi_system_id structure matches system DMI data
585 * @dmi: pointer to the dmi_system_id structure to check
586 */
587static bool dmi_matches(const struct dmi_system_id *dmi)
588{
589 int i;
590
591 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
592
593 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
594 int s = dmi->matches[i].slot;
595 if (s == DMI_NONE)
596 break;
597 if (dmi_ident[s]) {
598 if (!dmi->matches[i].exact_match &&
599 strstr(dmi_ident[s], dmi->matches[i].substr))
600 continue;
601 else if (dmi->matches[i].exact_match &&
602 !strcmp(dmi_ident[s], dmi->matches[i].substr))
603 continue;
604 }
605
606 /* No match */
607 return false;
608 }
609 return true;
610}
611
612/**
613 * dmi_is_end_of_table - check for end-of-table marker
614 * @dmi: pointer to the dmi_system_id structure to check
615 */
616static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
617{
618 return dmi->matches[0].slot == DMI_NONE;
619}
620
621/**
622 * dmi_check_system - check system DMI data
623 * @list: array of dmi_system_id structures to match against
624 * All non-null elements of the list must match
625 * their slot's (field index's) data (i.e., each
626 * list string must be a substring of the specified
627 * DMI slot's string data) to be considered a
628 * successful match.
629 *
630 * Walk the blacklist table running matching functions until someone
631 * returns non zero or we hit the end. Callback function is called for
632 * each successful match. Returns the number of matches.
633 */
634int dmi_check_system(const struct dmi_system_id *list)
635{
636 int count = 0;
637 const struct dmi_system_id *d;
638
639 for (d = list; !dmi_is_end_of_table(d); d++)
640 if (dmi_matches(d)) {
641 count++;
642 if (d->callback && d->callback(d))
643 break;
644 }
645
646 return count;
647}
648EXPORT_SYMBOL(dmi_check_system);
649
650/**
651 * dmi_first_match - find dmi_system_id structure matching system DMI data
652 * @list: array of dmi_system_id structures to match against
653 * All non-null elements of the list must match
654 * their slot's (field index's) data (i.e., each
655 * list string must be a substring of the specified
656 * DMI slot's string data) to be considered a
657 * successful match.
658 *
659 * Walk the blacklist table until the first match is found. Return the
660 * pointer to the matching entry or NULL if there's no match.
661 */
662const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
663{
664 const struct dmi_system_id *d;
665
666 for (d = list; !dmi_is_end_of_table(d); d++)
667 if (dmi_matches(d))
668 return d;
669
670 return NULL;
671}
672EXPORT_SYMBOL(dmi_first_match);
673
674/**
675 * dmi_get_system_info - return DMI data value
676 * @field: data index (see enum dmi_field)
677 *
678 * Returns one DMI data value, can be used to perform
679 * complex DMI data checks.
680 */
681const char *dmi_get_system_info(int field)
682{
683 return dmi_ident[field];
684}
685EXPORT_SYMBOL(dmi_get_system_info);
686
687/**
688 * dmi_name_in_serial - Check if string is in the DMI product serial information
689 * @str: string to check for
690 */
691int dmi_name_in_serial(const char *str)
692{
693 int f = DMI_PRODUCT_SERIAL;
694 if (dmi_ident[f] && strstr(dmi_ident[f], str))
695 return 1;
696 return 0;
697}
698
699/**
700 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
701 * @str: Case sensitive Name
702 */
703int dmi_name_in_vendors(const char *str)
704{
705 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
706 int i;
707 for (i = 0; fields[i] != DMI_NONE; i++) {
708 int f = fields[i];
709 if (dmi_ident[f] && strstr(dmi_ident[f], str))
710 return 1;
711 }
712 return 0;
713}
714EXPORT_SYMBOL(dmi_name_in_vendors);
715
716/**
717 * dmi_find_device - find onboard device by type/name
718 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
719 * @name: device name string or %NULL to match all
720 * @from: previous device found in search, or %NULL for new search.
721 *
722 * Iterates through the list of known onboard devices. If a device is
723 * found with a matching @vendor and @device, a pointer to its device
724 * structure is returned. Otherwise, %NULL is returned.
725 * A new search is initiated by passing %NULL as the @from argument.
726 * If @from is not %NULL, searches continue from next device.
727 */
728const struct dmi_device *dmi_find_device(int type, const char *name,
729 const struct dmi_device *from)
730{
731 const struct list_head *head = from ? &from->list : &dmi_devices;
732 struct list_head *d;
733
734 for (d = head->next; d != &dmi_devices; d = d->next) {
735 const struct dmi_device *dev =
736 list_entry(d, struct dmi_device, list);
737
738 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
739 ((name == NULL) || (strcmp(dev->name, name) == 0)))
740 return dev;
741 }
742
743 return NULL;
744}
745EXPORT_SYMBOL(dmi_find_device);
746
747/**
748 * dmi_get_date - parse a DMI date
749 * @field: data index (see enum dmi_field)
750 * @yearp: optional out parameter for the year
751 * @monthp: optional out parameter for the month
752 * @dayp: optional out parameter for the day
753 *
754 * The date field is assumed to be in the form resembling
755 * [mm[/dd]]/yy[yy] and the result is stored in the out
756 * parameters any or all of which can be omitted.
757 *
758 * If the field doesn't exist, all out parameters are set to zero
759 * and false is returned. Otherwise, true is returned with any
760 * invalid part of date set to zero.
761 *
762 * On return, year, month and day are guaranteed to be in the
763 * range of [0,9999], [0,12] and [0,31] respectively.
764 */
765bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
766{
767 int year = 0, month = 0, day = 0;
768 bool exists;
769 const char *s, *y;
770 char *e;
771
772 s = dmi_get_system_info(field);
773 exists = s;
774 if (!exists)
775 goto out;
776
777 /*
778 * Determine year first. We assume the date string resembles
779 * mm/dd/yy[yy] but the original code extracted only the year
780 * from the end. Keep the behavior in the spirit of no
781 * surprises.
782 */
783 y = strrchr(s, '/');
784 if (!y)
785 goto out;
786
787 y++;
788 year = simple_strtoul(y, &e, 10);
789 if (y != e && year < 100) { /* 2-digit year */
790 year += 1900;
791 if (year < 1996) /* no dates < spec 1.0 */
792 year += 100;
793 }
794 if (year > 9999) /* year should fit in %04d */
795 year = 0;
796
797 /* parse the mm and dd */
798 month = simple_strtoul(s, &e, 10);
799 if (s == e || *e != '/' || !month || month > 12) {
800 month = 0;
801 goto out;
802 }
803
804 s = e + 1;
805 day = simple_strtoul(s, &e, 10);
806 if (s == y || s == e || *e != '/' || day > 31)
807 day = 0;
808out:
809 if (yearp)
810 *yearp = year;
811 if (monthp)
812 *monthp = month;
813 if (dayp)
814 *dayp = day;
815 return exists;
816}
817EXPORT_SYMBOL(dmi_get_date);
818
819/**
820 * dmi_walk - Walk the DMI table and get called back for every record
821 * @decode: Callback function
822 * @private_data: Private data to be passed to the callback function
823 *
824 * Returns -1 when the DMI table can't be reached, 0 on success.
825 */
826int dmi_walk(void (*decode)(const struct dmi_header *, void *),
827 void *private_data)
828{
829 u8 *buf;
830
831 if (!dmi_available)
832 return -1;
833
834 buf = dmi_remap(dmi_base, dmi_len);
835 if (buf == NULL)
836 return -1;
837
838 dmi_table(buf, dmi_len, dmi_num, decode, private_data);
839
840 dmi_unmap(buf);
841 return 0;
842}
843EXPORT_SYMBOL_GPL(dmi_walk);
844
845/**
846 * dmi_match - compare a string to the dmi field (if exists)
847 * @f: DMI field identifier
848 * @str: string to compare the DMI field to
849 *
850 * Returns true if the requested field equals to the str (including NULL).
851 */
852bool dmi_match(enum dmi_field f, const char *str)
853{
854 const char *info = dmi_get_system_info(f);
855
856 if (info == NULL || str == NULL)
857 return info == str;
858
859 return !strcmp(info, str);
860}
861EXPORT_SYMBOL_GPL(dmi_match);
862
863void dmi_memdev_name(u16 handle, const char **bank, const char **device)
864{
865 int n;
866
867 if (dmi_memdev == NULL)
868 return;
869
870 for (n = 0; n < dmi_memdev_nr; n++) {
871 if (handle == dmi_memdev[n].handle) {
872 *bank = dmi_memdev[n].bank;
873 *device = dmi_memdev[n].device;
874 break;
875 }
876 }
877}
878EXPORT_SYMBOL_GPL(dmi_memdev_name);