Loading...
1/*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47#include <linux/pktcdvd.h>
48#include <linux/module.h>
49#include <linux/types.h>
50#include <linux/kernel.h>
51#include <linux/compat.h>
52#include <linux/kthread.h>
53#include <linux/errno.h>
54#include <linux/spinlock.h>
55#include <linux/file.h>
56#include <linux/proc_fs.h>
57#include <linux/seq_file.h>
58#include <linux/miscdevice.h>
59#include <linux/freezer.h>
60#include <linux/mutex.h>
61#include <linux/slab.h>
62#include <scsi/scsi_cmnd.h>
63#include <scsi/scsi_ioctl.h>
64#include <scsi/scsi.h>
65#include <linux/debugfs.h>
66#include <linux/device.h>
67
68#include <asm/uaccess.h>
69
70#define DRIVER_NAME "pktcdvd"
71
72#if PACKET_DEBUG
73#define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74#else
75#define DPRINTK(fmt, args...)
76#endif
77
78#if PACKET_DEBUG > 1
79#define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
80#else
81#define VPRINTK(fmt, args...)
82#endif
83
84#define MAX_SPEED 0xffff
85
86#define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
87
88static DEFINE_MUTEX(pktcdvd_mutex);
89static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
90static struct proc_dir_entry *pkt_proc;
91static int pktdev_major;
92static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
93static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
94static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
95static mempool_t *psd_pool;
96
97static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
98static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
99
100/* forward declaration */
101static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
102static int pkt_remove_dev(dev_t pkt_dev);
103static int pkt_seq_show(struct seq_file *m, void *p);
104
105
106
107/*
108 * create and register a pktcdvd kernel object.
109 */
110static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
111 const char* name,
112 struct kobject* parent,
113 struct kobj_type* ktype)
114{
115 struct pktcdvd_kobj *p;
116 int error;
117
118 p = kzalloc(sizeof(*p), GFP_KERNEL);
119 if (!p)
120 return NULL;
121 p->pd = pd;
122 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
123 if (error) {
124 kobject_put(&p->kobj);
125 return NULL;
126 }
127 kobject_uevent(&p->kobj, KOBJ_ADD);
128 return p;
129}
130/*
131 * remove a pktcdvd kernel object.
132 */
133static void pkt_kobj_remove(struct pktcdvd_kobj *p)
134{
135 if (p)
136 kobject_put(&p->kobj);
137}
138/*
139 * default release function for pktcdvd kernel objects.
140 */
141static void pkt_kobj_release(struct kobject *kobj)
142{
143 kfree(to_pktcdvdkobj(kobj));
144}
145
146
147/**********************************************************
148 *
149 * sysfs interface for pktcdvd
150 * by (C) 2006 Thomas Maier <balagi@justmail.de>
151 *
152 **********************************************************/
153
154#define DEF_ATTR(_obj,_name,_mode) \
155 static struct attribute _obj = { .name = _name, .mode = _mode }
156
157/**********************************************************
158 /sys/class/pktcdvd/pktcdvd[0-7]/
159 stat/reset
160 stat/packets_started
161 stat/packets_finished
162 stat/kb_written
163 stat/kb_read
164 stat/kb_read_gather
165 write_queue/size
166 write_queue/congestion_off
167 write_queue/congestion_on
168 **********************************************************/
169
170DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
171DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
172DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
173DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
174DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
175DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
176
177static struct attribute *kobj_pkt_attrs_stat[] = {
178 &kobj_pkt_attr_st1,
179 &kobj_pkt_attr_st2,
180 &kobj_pkt_attr_st3,
181 &kobj_pkt_attr_st4,
182 &kobj_pkt_attr_st5,
183 &kobj_pkt_attr_st6,
184 NULL
185};
186
187DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
188DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
189DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
190
191static struct attribute *kobj_pkt_attrs_wqueue[] = {
192 &kobj_pkt_attr_wq1,
193 &kobj_pkt_attr_wq2,
194 &kobj_pkt_attr_wq3,
195 NULL
196};
197
198static ssize_t kobj_pkt_show(struct kobject *kobj,
199 struct attribute *attr, char *data)
200{
201 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
202 int n = 0;
203 int v;
204 if (strcmp(attr->name, "packets_started") == 0) {
205 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
206
207 } else if (strcmp(attr->name, "packets_finished") == 0) {
208 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
209
210 } else if (strcmp(attr->name, "kb_written") == 0) {
211 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
212
213 } else if (strcmp(attr->name, "kb_read") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
215
216 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
217 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
218
219 } else if (strcmp(attr->name, "size") == 0) {
220 spin_lock(&pd->lock);
221 v = pd->bio_queue_size;
222 spin_unlock(&pd->lock);
223 n = sprintf(data, "%d\n", v);
224
225 } else if (strcmp(attr->name, "congestion_off") == 0) {
226 spin_lock(&pd->lock);
227 v = pd->write_congestion_off;
228 spin_unlock(&pd->lock);
229 n = sprintf(data, "%d\n", v);
230
231 } else if (strcmp(attr->name, "congestion_on") == 0) {
232 spin_lock(&pd->lock);
233 v = pd->write_congestion_on;
234 spin_unlock(&pd->lock);
235 n = sprintf(data, "%d\n", v);
236 }
237 return n;
238}
239
240static void init_write_congestion_marks(int* lo, int* hi)
241{
242 if (*hi > 0) {
243 *hi = max(*hi, 500);
244 *hi = min(*hi, 1000000);
245 if (*lo <= 0)
246 *lo = *hi - 100;
247 else {
248 *lo = min(*lo, *hi - 100);
249 *lo = max(*lo, 100);
250 }
251 } else {
252 *hi = -1;
253 *lo = -1;
254 }
255}
256
257static ssize_t kobj_pkt_store(struct kobject *kobj,
258 struct attribute *attr,
259 const char *data, size_t len)
260{
261 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
262 int val;
263
264 if (strcmp(attr->name, "reset") == 0 && len > 0) {
265 pd->stats.pkt_started = 0;
266 pd->stats.pkt_ended = 0;
267 pd->stats.secs_w = 0;
268 pd->stats.secs_rg = 0;
269 pd->stats.secs_r = 0;
270
271 } else if (strcmp(attr->name, "congestion_off") == 0
272 && sscanf(data, "%d", &val) == 1) {
273 spin_lock(&pd->lock);
274 pd->write_congestion_off = val;
275 init_write_congestion_marks(&pd->write_congestion_off,
276 &pd->write_congestion_on);
277 spin_unlock(&pd->lock);
278
279 } else if (strcmp(attr->name, "congestion_on") == 0
280 && sscanf(data, "%d", &val) == 1) {
281 spin_lock(&pd->lock);
282 pd->write_congestion_on = val;
283 init_write_congestion_marks(&pd->write_congestion_off,
284 &pd->write_congestion_on);
285 spin_unlock(&pd->lock);
286 }
287 return len;
288}
289
290static const struct sysfs_ops kobj_pkt_ops = {
291 .show = kobj_pkt_show,
292 .store = kobj_pkt_store
293};
294static struct kobj_type kobj_pkt_type_stat = {
295 .release = pkt_kobj_release,
296 .sysfs_ops = &kobj_pkt_ops,
297 .default_attrs = kobj_pkt_attrs_stat
298};
299static struct kobj_type kobj_pkt_type_wqueue = {
300 .release = pkt_kobj_release,
301 .sysfs_ops = &kobj_pkt_ops,
302 .default_attrs = kobj_pkt_attrs_wqueue
303};
304
305static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306{
307 if (class_pktcdvd) {
308 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
309 "%s", pd->name);
310 if (IS_ERR(pd->dev))
311 pd->dev = NULL;
312 }
313 if (pd->dev) {
314 pd->kobj_stat = pkt_kobj_create(pd, "stat",
315 &pd->dev->kobj,
316 &kobj_pkt_type_stat);
317 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
318 &pd->dev->kobj,
319 &kobj_pkt_type_wqueue);
320 }
321}
322
323static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
324{
325 pkt_kobj_remove(pd->kobj_stat);
326 pkt_kobj_remove(pd->kobj_wqueue);
327 if (class_pktcdvd)
328 device_unregister(pd->dev);
329}
330
331
332/********************************************************************
333 /sys/class/pktcdvd/
334 add map block device
335 remove unmap packet dev
336 device_map show mappings
337 *******************************************************************/
338
339static void class_pktcdvd_release(struct class *cls)
340{
341 kfree(cls);
342}
343static ssize_t class_pktcdvd_show_map(struct class *c,
344 struct class_attribute *attr,
345 char *data)
346{
347 int n = 0;
348 int idx;
349 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
350 for (idx = 0; idx < MAX_WRITERS; idx++) {
351 struct pktcdvd_device *pd = pkt_devs[idx];
352 if (!pd)
353 continue;
354 n += sprintf(data+n, "%s %u:%u %u:%u\n",
355 pd->name,
356 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
357 MAJOR(pd->bdev->bd_dev),
358 MINOR(pd->bdev->bd_dev));
359 }
360 mutex_unlock(&ctl_mutex);
361 return n;
362}
363
364static ssize_t class_pktcdvd_store_add(struct class *c,
365 struct class_attribute *attr,
366 const char *buf,
367 size_t count)
368{
369 unsigned int major, minor;
370
371 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
372 /* pkt_setup_dev() expects caller to hold reference to self */
373 if (!try_module_get(THIS_MODULE))
374 return -ENODEV;
375
376 pkt_setup_dev(MKDEV(major, minor), NULL);
377
378 module_put(THIS_MODULE);
379
380 return count;
381 }
382
383 return -EINVAL;
384}
385
386static ssize_t class_pktcdvd_store_remove(struct class *c,
387 struct class_attribute *attr,
388 const char *buf,
389 size_t count)
390{
391 unsigned int major, minor;
392 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393 pkt_remove_dev(MKDEV(major, minor));
394 return count;
395 }
396 return -EINVAL;
397}
398
399static struct class_attribute class_pktcdvd_attrs[] = {
400 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
401 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
402 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
403 __ATTR_NULL
404};
405
406
407static int pkt_sysfs_init(void)
408{
409 int ret = 0;
410
411 /*
412 * create control files in sysfs
413 * /sys/class/pktcdvd/...
414 */
415 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
416 if (!class_pktcdvd)
417 return -ENOMEM;
418 class_pktcdvd->name = DRIVER_NAME;
419 class_pktcdvd->owner = THIS_MODULE;
420 class_pktcdvd->class_release = class_pktcdvd_release;
421 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
422 ret = class_register(class_pktcdvd);
423 if (ret) {
424 kfree(class_pktcdvd);
425 class_pktcdvd = NULL;
426 printk(DRIVER_NAME": failed to create class pktcdvd\n");
427 return ret;
428 }
429 return 0;
430}
431
432static void pkt_sysfs_cleanup(void)
433{
434 if (class_pktcdvd)
435 class_destroy(class_pktcdvd);
436 class_pktcdvd = NULL;
437}
438
439/********************************************************************
440 entries in debugfs
441
442 /sys/kernel/debug/pktcdvd[0-7]/
443 info
444
445 *******************************************************************/
446
447static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
448{
449 return pkt_seq_show(m, p);
450}
451
452static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
453{
454 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
455}
456
457static const struct file_operations debug_fops = {
458 .open = pkt_debugfs_fops_open,
459 .read = seq_read,
460 .llseek = seq_lseek,
461 .release = single_release,
462 .owner = THIS_MODULE,
463};
464
465static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
466{
467 if (!pkt_debugfs_root)
468 return;
469 pd->dfs_f_info = NULL;
470 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471 if (IS_ERR(pd->dfs_d_root)) {
472 pd->dfs_d_root = NULL;
473 return;
474 }
475 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
476 pd->dfs_d_root, pd, &debug_fops);
477 if (IS_ERR(pd->dfs_f_info)) {
478 pd->dfs_f_info = NULL;
479 return;
480 }
481}
482
483static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
484{
485 if (!pkt_debugfs_root)
486 return;
487 if (pd->dfs_f_info)
488 debugfs_remove(pd->dfs_f_info);
489 pd->dfs_f_info = NULL;
490 if (pd->dfs_d_root)
491 debugfs_remove(pd->dfs_d_root);
492 pd->dfs_d_root = NULL;
493}
494
495static void pkt_debugfs_init(void)
496{
497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498 if (IS_ERR(pkt_debugfs_root)) {
499 pkt_debugfs_root = NULL;
500 return;
501 }
502}
503
504static void pkt_debugfs_cleanup(void)
505{
506 if (!pkt_debugfs_root)
507 return;
508 debugfs_remove(pkt_debugfs_root);
509 pkt_debugfs_root = NULL;
510}
511
512/* ----------------------------------------------------------*/
513
514
515static void pkt_bio_finished(struct pktcdvd_device *pd)
516{
517 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
518 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
519 VPRINTK(DRIVER_NAME": queue empty\n");
520 atomic_set(&pd->iosched.attention, 1);
521 wake_up(&pd->wqueue);
522 }
523}
524
525static void pkt_bio_destructor(struct bio *bio)
526{
527 kfree(bio->bi_io_vec);
528 kfree(bio);
529}
530
531static struct bio *pkt_bio_alloc(int nr_iovecs)
532{
533 struct bio_vec *bvl = NULL;
534 struct bio *bio;
535
536 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
537 if (!bio)
538 goto no_bio;
539 bio_init(bio);
540
541 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
542 if (!bvl)
543 goto no_bvl;
544
545 bio->bi_max_vecs = nr_iovecs;
546 bio->bi_io_vec = bvl;
547 bio->bi_destructor = pkt_bio_destructor;
548
549 return bio;
550
551 no_bvl:
552 kfree(bio);
553 no_bio:
554 return NULL;
555}
556
557/*
558 * Allocate a packet_data struct
559 */
560static struct packet_data *pkt_alloc_packet_data(int frames)
561{
562 int i;
563 struct packet_data *pkt;
564
565 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
566 if (!pkt)
567 goto no_pkt;
568
569 pkt->frames = frames;
570 pkt->w_bio = pkt_bio_alloc(frames);
571 if (!pkt->w_bio)
572 goto no_bio;
573
574 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
575 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
576 if (!pkt->pages[i])
577 goto no_page;
578 }
579
580 spin_lock_init(&pkt->lock);
581 bio_list_init(&pkt->orig_bios);
582
583 for (i = 0; i < frames; i++) {
584 struct bio *bio = pkt_bio_alloc(1);
585 if (!bio)
586 goto no_rd_bio;
587 pkt->r_bios[i] = bio;
588 }
589
590 return pkt;
591
592no_rd_bio:
593 for (i = 0; i < frames; i++) {
594 struct bio *bio = pkt->r_bios[i];
595 if (bio)
596 bio_put(bio);
597 }
598
599no_page:
600 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
601 if (pkt->pages[i])
602 __free_page(pkt->pages[i]);
603 bio_put(pkt->w_bio);
604no_bio:
605 kfree(pkt);
606no_pkt:
607 return NULL;
608}
609
610/*
611 * Free a packet_data struct
612 */
613static void pkt_free_packet_data(struct packet_data *pkt)
614{
615 int i;
616
617 for (i = 0; i < pkt->frames; i++) {
618 struct bio *bio = pkt->r_bios[i];
619 if (bio)
620 bio_put(bio);
621 }
622 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
623 __free_page(pkt->pages[i]);
624 bio_put(pkt->w_bio);
625 kfree(pkt);
626}
627
628static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
629{
630 struct packet_data *pkt, *next;
631
632 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
633
634 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
635 pkt_free_packet_data(pkt);
636 }
637 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
638}
639
640static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
641{
642 struct packet_data *pkt;
643
644 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
645
646 while (nr_packets > 0) {
647 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
648 if (!pkt) {
649 pkt_shrink_pktlist(pd);
650 return 0;
651 }
652 pkt->id = nr_packets;
653 pkt->pd = pd;
654 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
655 nr_packets--;
656 }
657 return 1;
658}
659
660static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
661{
662 struct rb_node *n = rb_next(&node->rb_node);
663 if (!n)
664 return NULL;
665 return rb_entry(n, struct pkt_rb_node, rb_node);
666}
667
668static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
669{
670 rb_erase(&node->rb_node, &pd->bio_queue);
671 mempool_free(node, pd->rb_pool);
672 pd->bio_queue_size--;
673 BUG_ON(pd->bio_queue_size < 0);
674}
675
676/*
677 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
678 */
679static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
680{
681 struct rb_node *n = pd->bio_queue.rb_node;
682 struct rb_node *next;
683 struct pkt_rb_node *tmp;
684
685 if (!n) {
686 BUG_ON(pd->bio_queue_size > 0);
687 return NULL;
688 }
689
690 for (;;) {
691 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
692 if (s <= tmp->bio->bi_sector)
693 next = n->rb_left;
694 else
695 next = n->rb_right;
696 if (!next)
697 break;
698 n = next;
699 }
700
701 if (s > tmp->bio->bi_sector) {
702 tmp = pkt_rbtree_next(tmp);
703 if (!tmp)
704 return NULL;
705 }
706 BUG_ON(s > tmp->bio->bi_sector);
707 return tmp;
708}
709
710/*
711 * Insert a node into the pd->bio_queue rb tree.
712 */
713static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
714{
715 struct rb_node **p = &pd->bio_queue.rb_node;
716 struct rb_node *parent = NULL;
717 sector_t s = node->bio->bi_sector;
718 struct pkt_rb_node *tmp;
719
720 while (*p) {
721 parent = *p;
722 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
723 if (s < tmp->bio->bi_sector)
724 p = &(*p)->rb_left;
725 else
726 p = &(*p)->rb_right;
727 }
728 rb_link_node(&node->rb_node, parent, p);
729 rb_insert_color(&node->rb_node, &pd->bio_queue);
730 pd->bio_queue_size++;
731}
732
733/*
734 * Send a packet_command to the underlying block device and
735 * wait for completion.
736 */
737static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
738{
739 struct request_queue *q = bdev_get_queue(pd->bdev);
740 struct request *rq;
741 int ret = 0;
742
743 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
744 WRITE : READ, __GFP_WAIT);
745
746 if (cgc->buflen) {
747 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
748 goto out;
749 }
750
751 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
752 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
753
754 rq->timeout = 60*HZ;
755 rq->cmd_type = REQ_TYPE_BLOCK_PC;
756 if (cgc->quiet)
757 rq->cmd_flags |= REQ_QUIET;
758
759 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
760 if (rq->errors)
761 ret = -EIO;
762out:
763 blk_put_request(rq);
764 return ret;
765}
766
767/*
768 * A generic sense dump / resolve mechanism should be implemented across
769 * all ATAPI + SCSI devices.
770 */
771static void pkt_dump_sense(struct packet_command *cgc)
772{
773 static char *info[9] = { "No sense", "Recovered error", "Not ready",
774 "Medium error", "Hardware error", "Illegal request",
775 "Unit attention", "Data protect", "Blank check" };
776 int i;
777 struct request_sense *sense = cgc->sense;
778
779 printk(DRIVER_NAME":");
780 for (i = 0; i < CDROM_PACKET_SIZE; i++)
781 printk(" %02x", cgc->cmd[i]);
782 printk(" - ");
783
784 if (sense == NULL) {
785 printk("no sense\n");
786 return;
787 }
788
789 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
790
791 if (sense->sense_key > 8) {
792 printk(" (INVALID)\n");
793 return;
794 }
795
796 printk(" (%s)\n", info[sense->sense_key]);
797}
798
799/*
800 * flush the drive cache to media
801 */
802static int pkt_flush_cache(struct pktcdvd_device *pd)
803{
804 struct packet_command cgc;
805
806 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
807 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
808 cgc.quiet = 1;
809
810 /*
811 * the IMMED bit -- we default to not setting it, although that
812 * would allow a much faster close, this is safer
813 */
814#if 0
815 cgc.cmd[1] = 1 << 1;
816#endif
817 return pkt_generic_packet(pd, &cgc);
818}
819
820/*
821 * speed is given as the normal factor, e.g. 4 for 4x
822 */
823static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
824 unsigned write_speed, unsigned read_speed)
825{
826 struct packet_command cgc;
827 struct request_sense sense;
828 int ret;
829
830 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
831 cgc.sense = &sense;
832 cgc.cmd[0] = GPCMD_SET_SPEED;
833 cgc.cmd[2] = (read_speed >> 8) & 0xff;
834 cgc.cmd[3] = read_speed & 0xff;
835 cgc.cmd[4] = (write_speed >> 8) & 0xff;
836 cgc.cmd[5] = write_speed & 0xff;
837
838 if ((ret = pkt_generic_packet(pd, &cgc)))
839 pkt_dump_sense(&cgc);
840
841 return ret;
842}
843
844/*
845 * Queue a bio for processing by the low-level CD device. Must be called
846 * from process context.
847 */
848static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
849{
850 spin_lock(&pd->iosched.lock);
851 if (bio_data_dir(bio) == READ)
852 bio_list_add(&pd->iosched.read_queue, bio);
853 else
854 bio_list_add(&pd->iosched.write_queue, bio);
855 spin_unlock(&pd->iosched.lock);
856
857 atomic_set(&pd->iosched.attention, 1);
858 wake_up(&pd->wqueue);
859}
860
861/*
862 * Process the queued read/write requests. This function handles special
863 * requirements for CDRW drives:
864 * - A cache flush command must be inserted before a read request if the
865 * previous request was a write.
866 * - Switching between reading and writing is slow, so don't do it more often
867 * than necessary.
868 * - Optimize for throughput at the expense of latency. This means that streaming
869 * writes will never be interrupted by a read, but if the drive has to seek
870 * before the next write, switch to reading instead if there are any pending
871 * read requests.
872 * - Set the read speed according to current usage pattern. When only reading
873 * from the device, it's best to use the highest possible read speed, but
874 * when switching often between reading and writing, it's better to have the
875 * same read and write speeds.
876 */
877static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
878{
879
880 if (atomic_read(&pd->iosched.attention) == 0)
881 return;
882 atomic_set(&pd->iosched.attention, 0);
883
884 for (;;) {
885 struct bio *bio;
886 int reads_queued, writes_queued;
887
888 spin_lock(&pd->iosched.lock);
889 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
890 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
891 spin_unlock(&pd->iosched.lock);
892
893 if (!reads_queued && !writes_queued)
894 break;
895
896 if (pd->iosched.writing) {
897 int need_write_seek = 1;
898 spin_lock(&pd->iosched.lock);
899 bio = bio_list_peek(&pd->iosched.write_queue);
900 spin_unlock(&pd->iosched.lock);
901 if (bio && (bio->bi_sector == pd->iosched.last_write))
902 need_write_seek = 0;
903 if (need_write_seek && reads_queued) {
904 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
905 VPRINTK(DRIVER_NAME": write, waiting\n");
906 break;
907 }
908 pkt_flush_cache(pd);
909 pd->iosched.writing = 0;
910 }
911 } else {
912 if (!reads_queued && writes_queued) {
913 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
914 VPRINTK(DRIVER_NAME": read, waiting\n");
915 break;
916 }
917 pd->iosched.writing = 1;
918 }
919 }
920
921 spin_lock(&pd->iosched.lock);
922 if (pd->iosched.writing)
923 bio = bio_list_pop(&pd->iosched.write_queue);
924 else
925 bio = bio_list_pop(&pd->iosched.read_queue);
926 spin_unlock(&pd->iosched.lock);
927
928 if (!bio)
929 continue;
930
931 if (bio_data_dir(bio) == READ)
932 pd->iosched.successive_reads += bio->bi_size >> 10;
933 else {
934 pd->iosched.successive_reads = 0;
935 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
936 }
937 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
938 if (pd->read_speed == pd->write_speed) {
939 pd->read_speed = MAX_SPEED;
940 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
941 }
942 } else {
943 if (pd->read_speed != pd->write_speed) {
944 pd->read_speed = pd->write_speed;
945 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
946 }
947 }
948
949 atomic_inc(&pd->cdrw.pending_bios);
950 generic_make_request(bio);
951 }
952}
953
954/*
955 * Special care is needed if the underlying block device has a small
956 * max_phys_segments value.
957 */
958static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
959{
960 if ((pd->settings.size << 9) / CD_FRAMESIZE
961 <= queue_max_segments(q)) {
962 /*
963 * The cdrom device can handle one segment/frame
964 */
965 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
966 return 0;
967 } else if ((pd->settings.size << 9) / PAGE_SIZE
968 <= queue_max_segments(q)) {
969 /*
970 * We can handle this case at the expense of some extra memory
971 * copies during write operations
972 */
973 set_bit(PACKET_MERGE_SEGS, &pd->flags);
974 return 0;
975 } else {
976 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
977 return -EIO;
978 }
979}
980
981/*
982 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
983 */
984static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
985{
986 unsigned int copy_size = CD_FRAMESIZE;
987
988 while (copy_size > 0) {
989 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
990 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
991 src_bvl->bv_offset + offs;
992 void *vto = page_address(dst_page) + dst_offs;
993 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
994
995 BUG_ON(len < 0);
996 memcpy(vto, vfrom, len);
997 kunmap_atomic(vfrom, KM_USER0);
998
999 seg++;
1000 offs = 0;
1001 dst_offs += len;
1002 copy_size -= len;
1003 }
1004}
1005
1006/*
1007 * Copy all data for this packet to pkt->pages[], so that
1008 * a) The number of required segments for the write bio is minimized, which
1009 * is necessary for some scsi controllers.
1010 * b) The data can be used as cache to avoid read requests if we receive a
1011 * new write request for the same zone.
1012 */
1013static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1014{
1015 int f, p, offs;
1016
1017 /* Copy all data to pkt->pages[] */
1018 p = 0;
1019 offs = 0;
1020 for (f = 0; f < pkt->frames; f++) {
1021 if (bvec[f].bv_page != pkt->pages[p]) {
1022 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1023 void *vto = page_address(pkt->pages[p]) + offs;
1024 memcpy(vto, vfrom, CD_FRAMESIZE);
1025 kunmap_atomic(vfrom, KM_USER0);
1026 bvec[f].bv_page = pkt->pages[p];
1027 bvec[f].bv_offset = offs;
1028 } else {
1029 BUG_ON(bvec[f].bv_offset != offs);
1030 }
1031 offs += CD_FRAMESIZE;
1032 if (offs >= PAGE_SIZE) {
1033 offs = 0;
1034 p++;
1035 }
1036 }
1037}
1038
1039static void pkt_end_io_read(struct bio *bio, int err)
1040{
1041 struct packet_data *pkt = bio->bi_private;
1042 struct pktcdvd_device *pd = pkt->pd;
1043 BUG_ON(!pd);
1044
1045 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1046 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1047
1048 if (err)
1049 atomic_inc(&pkt->io_errors);
1050 if (atomic_dec_and_test(&pkt->io_wait)) {
1051 atomic_inc(&pkt->run_sm);
1052 wake_up(&pd->wqueue);
1053 }
1054 pkt_bio_finished(pd);
1055}
1056
1057static void pkt_end_io_packet_write(struct bio *bio, int err)
1058{
1059 struct packet_data *pkt = bio->bi_private;
1060 struct pktcdvd_device *pd = pkt->pd;
1061 BUG_ON(!pd);
1062
1063 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1064
1065 pd->stats.pkt_ended++;
1066
1067 pkt_bio_finished(pd);
1068 atomic_dec(&pkt->io_wait);
1069 atomic_inc(&pkt->run_sm);
1070 wake_up(&pd->wqueue);
1071}
1072
1073/*
1074 * Schedule reads for the holes in a packet
1075 */
1076static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077{
1078 int frames_read = 0;
1079 struct bio *bio;
1080 int f;
1081 char written[PACKET_MAX_SIZE];
1082
1083 BUG_ON(bio_list_empty(&pkt->orig_bios));
1084
1085 atomic_set(&pkt->io_wait, 0);
1086 atomic_set(&pkt->io_errors, 0);
1087
1088 /*
1089 * Figure out which frames we need to read before we can write.
1090 */
1091 memset(written, 0, sizeof(written));
1092 spin_lock(&pkt->lock);
1093 bio_list_for_each(bio, &pkt->orig_bios) {
1094 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1095 int num_frames = bio->bi_size / CD_FRAMESIZE;
1096 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1097 BUG_ON(first_frame < 0);
1098 BUG_ON(first_frame + num_frames > pkt->frames);
1099 for (f = first_frame; f < first_frame + num_frames; f++)
1100 written[f] = 1;
1101 }
1102 spin_unlock(&pkt->lock);
1103
1104 if (pkt->cache_valid) {
1105 VPRINTK("pkt_gather_data: zone %llx cached\n",
1106 (unsigned long long)pkt->sector);
1107 goto out_account;
1108 }
1109
1110 /*
1111 * Schedule reads for missing parts of the packet.
1112 */
1113 for (f = 0; f < pkt->frames; f++) {
1114 struct bio_vec *vec;
1115
1116 int p, offset;
1117 if (written[f])
1118 continue;
1119 bio = pkt->r_bios[f];
1120 vec = bio->bi_io_vec;
1121 bio_init(bio);
1122 bio->bi_max_vecs = 1;
1123 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1124 bio->bi_bdev = pd->bdev;
1125 bio->bi_end_io = pkt_end_io_read;
1126 bio->bi_private = pkt;
1127 bio->bi_io_vec = vec;
1128 bio->bi_destructor = pkt_bio_destructor;
1129
1130 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1131 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1132 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1133 f, pkt->pages[p], offset);
1134 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1135 BUG();
1136
1137 atomic_inc(&pkt->io_wait);
1138 bio->bi_rw = READ;
1139 pkt_queue_bio(pd, bio);
1140 frames_read++;
1141 }
1142
1143out_account:
1144 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1145 frames_read, (unsigned long long)pkt->sector);
1146 pd->stats.pkt_started++;
1147 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1148}
1149
1150/*
1151 * Find a packet matching zone, or the least recently used packet if
1152 * there is no match.
1153 */
1154static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1155{
1156 struct packet_data *pkt;
1157
1158 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1159 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1160 list_del_init(&pkt->list);
1161 if (pkt->sector != zone)
1162 pkt->cache_valid = 0;
1163 return pkt;
1164 }
1165 }
1166 BUG();
1167 return NULL;
1168}
1169
1170static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1171{
1172 if (pkt->cache_valid) {
1173 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1174 } else {
1175 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1176 }
1177}
1178
1179/*
1180 * recover a failed write, query for relocation if possible
1181 *
1182 * returns 1 if recovery is possible, or 0 if not
1183 *
1184 */
1185static int pkt_start_recovery(struct packet_data *pkt)
1186{
1187 /*
1188 * FIXME. We need help from the file system to implement
1189 * recovery handling.
1190 */
1191 return 0;
1192#if 0
1193 struct request *rq = pkt->rq;
1194 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1195 struct block_device *pkt_bdev;
1196 struct super_block *sb = NULL;
1197 unsigned long old_block, new_block;
1198 sector_t new_sector;
1199
1200 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1201 if (pkt_bdev) {
1202 sb = get_super(pkt_bdev);
1203 bdput(pkt_bdev);
1204 }
1205
1206 if (!sb)
1207 return 0;
1208
1209 if (!sb->s_op->relocate_blocks)
1210 goto out;
1211
1212 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1213 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1214 goto out;
1215
1216 new_sector = new_block * (CD_FRAMESIZE >> 9);
1217 pkt->sector = new_sector;
1218
1219 pkt->bio->bi_sector = new_sector;
1220 pkt->bio->bi_next = NULL;
1221 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1222 pkt->bio->bi_idx = 0;
1223
1224 BUG_ON(pkt->bio->bi_rw != REQ_WRITE);
1225 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1226 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1227 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1228 BUG_ON(pkt->bio->bi_private != pkt);
1229
1230 drop_super(sb);
1231 return 1;
1232
1233out:
1234 drop_super(sb);
1235 return 0;
1236#endif
1237}
1238
1239static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1240{
1241#if PACKET_DEBUG > 1
1242 static const char *state_name[] = {
1243 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1244 };
1245 enum packet_data_state old_state = pkt->state;
1246 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1247 state_name[old_state], state_name[state]);
1248#endif
1249 pkt->state = state;
1250}
1251
1252/*
1253 * Scan the work queue to see if we can start a new packet.
1254 * returns non-zero if any work was done.
1255 */
1256static int pkt_handle_queue(struct pktcdvd_device *pd)
1257{
1258 struct packet_data *pkt, *p;
1259 struct bio *bio = NULL;
1260 sector_t zone = 0; /* Suppress gcc warning */
1261 struct pkt_rb_node *node, *first_node;
1262 struct rb_node *n;
1263 int wakeup;
1264
1265 VPRINTK("handle_queue\n");
1266
1267 atomic_set(&pd->scan_queue, 0);
1268
1269 if (list_empty(&pd->cdrw.pkt_free_list)) {
1270 VPRINTK("handle_queue: no pkt\n");
1271 return 0;
1272 }
1273
1274 /*
1275 * Try to find a zone we are not already working on.
1276 */
1277 spin_lock(&pd->lock);
1278 first_node = pkt_rbtree_find(pd, pd->current_sector);
1279 if (!first_node) {
1280 n = rb_first(&pd->bio_queue);
1281 if (n)
1282 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1283 }
1284 node = first_node;
1285 while (node) {
1286 bio = node->bio;
1287 zone = ZONE(bio->bi_sector, pd);
1288 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1289 if (p->sector == zone) {
1290 bio = NULL;
1291 goto try_next_bio;
1292 }
1293 }
1294 break;
1295try_next_bio:
1296 node = pkt_rbtree_next(node);
1297 if (!node) {
1298 n = rb_first(&pd->bio_queue);
1299 if (n)
1300 node = rb_entry(n, struct pkt_rb_node, rb_node);
1301 }
1302 if (node == first_node)
1303 node = NULL;
1304 }
1305 spin_unlock(&pd->lock);
1306 if (!bio) {
1307 VPRINTK("handle_queue: no bio\n");
1308 return 0;
1309 }
1310
1311 pkt = pkt_get_packet_data(pd, zone);
1312
1313 pd->current_sector = zone + pd->settings.size;
1314 pkt->sector = zone;
1315 BUG_ON(pkt->frames != pd->settings.size >> 2);
1316 pkt->write_size = 0;
1317
1318 /*
1319 * Scan work queue for bios in the same zone and link them
1320 * to this packet.
1321 */
1322 spin_lock(&pd->lock);
1323 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1324 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1325 bio = node->bio;
1326 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1327 (unsigned long long)ZONE(bio->bi_sector, pd));
1328 if (ZONE(bio->bi_sector, pd) != zone)
1329 break;
1330 pkt_rbtree_erase(pd, node);
1331 spin_lock(&pkt->lock);
1332 bio_list_add(&pkt->orig_bios, bio);
1333 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1334 spin_unlock(&pkt->lock);
1335 }
1336 /* check write congestion marks, and if bio_queue_size is
1337 below, wake up any waiters */
1338 wakeup = (pd->write_congestion_on > 0
1339 && pd->bio_queue_size <= pd->write_congestion_off);
1340 spin_unlock(&pd->lock);
1341 if (wakeup) {
1342 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1343 BLK_RW_ASYNC);
1344 }
1345
1346 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1347 pkt_set_state(pkt, PACKET_WAITING_STATE);
1348 atomic_set(&pkt->run_sm, 1);
1349
1350 spin_lock(&pd->cdrw.active_list_lock);
1351 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1352 spin_unlock(&pd->cdrw.active_list_lock);
1353
1354 return 1;
1355}
1356
1357/*
1358 * Assemble a bio to write one packet and queue the bio for processing
1359 * by the underlying block device.
1360 */
1361static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1362{
1363 struct bio *bio;
1364 int f;
1365 int frames_write;
1366 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1367
1368 for (f = 0; f < pkt->frames; f++) {
1369 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1370 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1371 }
1372
1373 /*
1374 * Fill-in bvec with data from orig_bios.
1375 */
1376 frames_write = 0;
1377 spin_lock(&pkt->lock);
1378 bio_list_for_each(bio, &pkt->orig_bios) {
1379 int segment = bio->bi_idx;
1380 int src_offs = 0;
1381 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1382 int num_frames = bio->bi_size / CD_FRAMESIZE;
1383 BUG_ON(first_frame < 0);
1384 BUG_ON(first_frame + num_frames > pkt->frames);
1385 for (f = first_frame; f < first_frame + num_frames; f++) {
1386 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1387
1388 while (src_offs >= src_bvl->bv_len) {
1389 src_offs -= src_bvl->bv_len;
1390 segment++;
1391 BUG_ON(segment >= bio->bi_vcnt);
1392 src_bvl = bio_iovec_idx(bio, segment);
1393 }
1394
1395 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1396 bvec[f].bv_page = src_bvl->bv_page;
1397 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1398 } else {
1399 pkt_copy_bio_data(bio, segment, src_offs,
1400 bvec[f].bv_page, bvec[f].bv_offset);
1401 }
1402 src_offs += CD_FRAMESIZE;
1403 frames_write++;
1404 }
1405 }
1406 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1407 spin_unlock(&pkt->lock);
1408
1409 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1410 frames_write, (unsigned long long)pkt->sector);
1411 BUG_ON(frames_write != pkt->write_size);
1412
1413 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1414 pkt_make_local_copy(pkt, bvec);
1415 pkt->cache_valid = 1;
1416 } else {
1417 pkt->cache_valid = 0;
1418 }
1419
1420 /* Start the write request */
1421 bio_init(pkt->w_bio);
1422 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1423 pkt->w_bio->bi_sector = pkt->sector;
1424 pkt->w_bio->bi_bdev = pd->bdev;
1425 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1426 pkt->w_bio->bi_private = pkt;
1427 pkt->w_bio->bi_io_vec = bvec;
1428 pkt->w_bio->bi_destructor = pkt_bio_destructor;
1429 for (f = 0; f < pkt->frames; f++)
1430 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1431 BUG();
1432 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1433
1434 atomic_set(&pkt->io_wait, 1);
1435 pkt->w_bio->bi_rw = WRITE;
1436 pkt_queue_bio(pd, pkt->w_bio);
1437}
1438
1439static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1440{
1441 struct bio *bio;
1442
1443 if (!uptodate)
1444 pkt->cache_valid = 0;
1445
1446 /* Finish all bios corresponding to this packet */
1447 while ((bio = bio_list_pop(&pkt->orig_bios)))
1448 bio_endio(bio, uptodate ? 0 : -EIO);
1449}
1450
1451static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1452{
1453 int uptodate;
1454
1455 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1456
1457 for (;;) {
1458 switch (pkt->state) {
1459 case PACKET_WAITING_STATE:
1460 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1461 return;
1462
1463 pkt->sleep_time = 0;
1464 pkt_gather_data(pd, pkt);
1465 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1466 break;
1467
1468 case PACKET_READ_WAIT_STATE:
1469 if (atomic_read(&pkt->io_wait) > 0)
1470 return;
1471
1472 if (atomic_read(&pkt->io_errors) > 0) {
1473 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1474 } else {
1475 pkt_start_write(pd, pkt);
1476 }
1477 break;
1478
1479 case PACKET_WRITE_WAIT_STATE:
1480 if (atomic_read(&pkt->io_wait) > 0)
1481 return;
1482
1483 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1484 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1485 } else {
1486 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1487 }
1488 break;
1489
1490 case PACKET_RECOVERY_STATE:
1491 if (pkt_start_recovery(pkt)) {
1492 pkt_start_write(pd, pkt);
1493 } else {
1494 VPRINTK("No recovery possible\n");
1495 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1496 }
1497 break;
1498
1499 case PACKET_FINISHED_STATE:
1500 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1501 pkt_finish_packet(pkt, uptodate);
1502 return;
1503
1504 default:
1505 BUG();
1506 break;
1507 }
1508 }
1509}
1510
1511static void pkt_handle_packets(struct pktcdvd_device *pd)
1512{
1513 struct packet_data *pkt, *next;
1514
1515 VPRINTK("pkt_handle_packets\n");
1516
1517 /*
1518 * Run state machine for active packets
1519 */
1520 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1521 if (atomic_read(&pkt->run_sm) > 0) {
1522 atomic_set(&pkt->run_sm, 0);
1523 pkt_run_state_machine(pd, pkt);
1524 }
1525 }
1526
1527 /*
1528 * Move no longer active packets to the free list
1529 */
1530 spin_lock(&pd->cdrw.active_list_lock);
1531 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1532 if (pkt->state == PACKET_FINISHED_STATE) {
1533 list_del(&pkt->list);
1534 pkt_put_packet_data(pd, pkt);
1535 pkt_set_state(pkt, PACKET_IDLE_STATE);
1536 atomic_set(&pd->scan_queue, 1);
1537 }
1538 }
1539 spin_unlock(&pd->cdrw.active_list_lock);
1540}
1541
1542static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1543{
1544 struct packet_data *pkt;
1545 int i;
1546
1547 for (i = 0; i < PACKET_NUM_STATES; i++)
1548 states[i] = 0;
1549
1550 spin_lock(&pd->cdrw.active_list_lock);
1551 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1552 states[pkt->state]++;
1553 }
1554 spin_unlock(&pd->cdrw.active_list_lock);
1555}
1556
1557/*
1558 * kcdrwd is woken up when writes have been queued for one of our
1559 * registered devices
1560 */
1561static int kcdrwd(void *foobar)
1562{
1563 struct pktcdvd_device *pd = foobar;
1564 struct packet_data *pkt;
1565 long min_sleep_time, residue;
1566
1567 set_user_nice(current, -20);
1568 set_freezable();
1569
1570 for (;;) {
1571 DECLARE_WAITQUEUE(wait, current);
1572
1573 /*
1574 * Wait until there is something to do
1575 */
1576 add_wait_queue(&pd->wqueue, &wait);
1577 for (;;) {
1578 set_current_state(TASK_INTERRUPTIBLE);
1579
1580 /* Check if we need to run pkt_handle_queue */
1581 if (atomic_read(&pd->scan_queue) > 0)
1582 goto work_to_do;
1583
1584 /* Check if we need to run the state machine for some packet */
1585 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1586 if (atomic_read(&pkt->run_sm) > 0)
1587 goto work_to_do;
1588 }
1589
1590 /* Check if we need to process the iosched queues */
1591 if (atomic_read(&pd->iosched.attention) != 0)
1592 goto work_to_do;
1593
1594 /* Otherwise, go to sleep */
1595 if (PACKET_DEBUG > 1) {
1596 int states[PACKET_NUM_STATES];
1597 pkt_count_states(pd, states);
1598 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1599 states[0], states[1], states[2], states[3],
1600 states[4], states[5]);
1601 }
1602
1603 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1604 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1605 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1606 min_sleep_time = pkt->sleep_time;
1607 }
1608
1609 VPRINTK("kcdrwd: sleeping\n");
1610 residue = schedule_timeout(min_sleep_time);
1611 VPRINTK("kcdrwd: wake up\n");
1612
1613 /* make swsusp happy with our thread */
1614 try_to_freeze();
1615
1616 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1617 if (!pkt->sleep_time)
1618 continue;
1619 pkt->sleep_time -= min_sleep_time - residue;
1620 if (pkt->sleep_time <= 0) {
1621 pkt->sleep_time = 0;
1622 atomic_inc(&pkt->run_sm);
1623 }
1624 }
1625
1626 if (kthread_should_stop())
1627 break;
1628 }
1629work_to_do:
1630 set_current_state(TASK_RUNNING);
1631 remove_wait_queue(&pd->wqueue, &wait);
1632
1633 if (kthread_should_stop())
1634 break;
1635
1636 /*
1637 * if pkt_handle_queue returns true, we can queue
1638 * another request.
1639 */
1640 while (pkt_handle_queue(pd))
1641 ;
1642
1643 /*
1644 * Handle packet state machine
1645 */
1646 pkt_handle_packets(pd);
1647
1648 /*
1649 * Handle iosched queues
1650 */
1651 pkt_iosched_process_queue(pd);
1652 }
1653
1654 return 0;
1655}
1656
1657static void pkt_print_settings(struct pktcdvd_device *pd)
1658{
1659 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1660 printk("%u blocks, ", pd->settings.size >> 2);
1661 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1662}
1663
1664static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1665{
1666 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1667
1668 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1669 cgc->cmd[2] = page_code | (page_control << 6);
1670 cgc->cmd[7] = cgc->buflen >> 8;
1671 cgc->cmd[8] = cgc->buflen & 0xff;
1672 cgc->data_direction = CGC_DATA_READ;
1673 return pkt_generic_packet(pd, cgc);
1674}
1675
1676static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1677{
1678 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1679 memset(cgc->buffer, 0, 2);
1680 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1681 cgc->cmd[1] = 0x10; /* PF */
1682 cgc->cmd[7] = cgc->buflen >> 8;
1683 cgc->cmd[8] = cgc->buflen & 0xff;
1684 cgc->data_direction = CGC_DATA_WRITE;
1685 return pkt_generic_packet(pd, cgc);
1686}
1687
1688static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1689{
1690 struct packet_command cgc;
1691 int ret;
1692
1693 /* set up command and get the disc info */
1694 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1695 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1696 cgc.cmd[8] = cgc.buflen = 2;
1697 cgc.quiet = 1;
1698
1699 if ((ret = pkt_generic_packet(pd, &cgc)))
1700 return ret;
1701
1702 /* not all drives have the same disc_info length, so requeue
1703 * packet with the length the drive tells us it can supply
1704 */
1705 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1706 sizeof(di->disc_information_length);
1707
1708 if (cgc.buflen > sizeof(disc_information))
1709 cgc.buflen = sizeof(disc_information);
1710
1711 cgc.cmd[8] = cgc.buflen;
1712 return pkt_generic_packet(pd, &cgc);
1713}
1714
1715static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1716{
1717 struct packet_command cgc;
1718 int ret;
1719
1720 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1721 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1722 cgc.cmd[1] = type & 3;
1723 cgc.cmd[4] = (track & 0xff00) >> 8;
1724 cgc.cmd[5] = track & 0xff;
1725 cgc.cmd[8] = 8;
1726 cgc.quiet = 1;
1727
1728 if ((ret = pkt_generic_packet(pd, &cgc)))
1729 return ret;
1730
1731 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1732 sizeof(ti->track_information_length);
1733
1734 if (cgc.buflen > sizeof(track_information))
1735 cgc.buflen = sizeof(track_information);
1736
1737 cgc.cmd[8] = cgc.buflen;
1738 return pkt_generic_packet(pd, &cgc);
1739}
1740
1741static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1742 long *last_written)
1743{
1744 disc_information di;
1745 track_information ti;
1746 __u32 last_track;
1747 int ret = -1;
1748
1749 if ((ret = pkt_get_disc_info(pd, &di)))
1750 return ret;
1751
1752 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1753 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1754 return ret;
1755
1756 /* if this track is blank, try the previous. */
1757 if (ti.blank) {
1758 last_track--;
1759 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1760 return ret;
1761 }
1762
1763 /* if last recorded field is valid, return it. */
1764 if (ti.lra_v) {
1765 *last_written = be32_to_cpu(ti.last_rec_address);
1766 } else {
1767 /* make it up instead */
1768 *last_written = be32_to_cpu(ti.track_start) +
1769 be32_to_cpu(ti.track_size);
1770 if (ti.free_blocks)
1771 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1772 }
1773 return 0;
1774}
1775
1776/*
1777 * write mode select package based on pd->settings
1778 */
1779static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1780{
1781 struct packet_command cgc;
1782 struct request_sense sense;
1783 write_param_page *wp;
1784 char buffer[128];
1785 int ret, size;
1786
1787 /* doesn't apply to DVD+RW or DVD-RAM */
1788 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1789 return 0;
1790
1791 memset(buffer, 0, sizeof(buffer));
1792 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1793 cgc.sense = &sense;
1794 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1795 pkt_dump_sense(&cgc);
1796 return ret;
1797 }
1798
1799 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1800 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1801 if (size > sizeof(buffer))
1802 size = sizeof(buffer);
1803
1804 /*
1805 * now get it all
1806 */
1807 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1808 cgc.sense = &sense;
1809 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1810 pkt_dump_sense(&cgc);
1811 return ret;
1812 }
1813
1814 /*
1815 * write page is offset header + block descriptor length
1816 */
1817 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1818
1819 wp->fp = pd->settings.fp;
1820 wp->track_mode = pd->settings.track_mode;
1821 wp->write_type = pd->settings.write_type;
1822 wp->data_block_type = pd->settings.block_mode;
1823
1824 wp->multi_session = 0;
1825
1826#ifdef PACKET_USE_LS
1827 wp->link_size = 7;
1828 wp->ls_v = 1;
1829#endif
1830
1831 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1832 wp->session_format = 0;
1833 wp->subhdr2 = 0x20;
1834 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1835 wp->session_format = 0x20;
1836 wp->subhdr2 = 8;
1837#if 0
1838 wp->mcn[0] = 0x80;
1839 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1840#endif
1841 } else {
1842 /*
1843 * paranoia
1844 */
1845 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1846 return 1;
1847 }
1848 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1849
1850 cgc.buflen = cgc.cmd[8] = size;
1851 if ((ret = pkt_mode_select(pd, &cgc))) {
1852 pkt_dump_sense(&cgc);
1853 return ret;
1854 }
1855
1856 pkt_print_settings(pd);
1857 return 0;
1858}
1859
1860/*
1861 * 1 -- we can write to this track, 0 -- we can't
1862 */
1863static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1864{
1865 switch (pd->mmc3_profile) {
1866 case 0x1a: /* DVD+RW */
1867 case 0x12: /* DVD-RAM */
1868 /* The track is always writable on DVD+RW/DVD-RAM */
1869 return 1;
1870 default:
1871 break;
1872 }
1873
1874 if (!ti->packet || !ti->fp)
1875 return 0;
1876
1877 /*
1878 * "good" settings as per Mt Fuji.
1879 */
1880 if (ti->rt == 0 && ti->blank == 0)
1881 return 1;
1882
1883 if (ti->rt == 0 && ti->blank == 1)
1884 return 1;
1885
1886 if (ti->rt == 1 && ti->blank == 0)
1887 return 1;
1888
1889 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1890 return 0;
1891}
1892
1893/*
1894 * 1 -- we can write to this disc, 0 -- we can't
1895 */
1896static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1897{
1898 switch (pd->mmc3_profile) {
1899 case 0x0a: /* CD-RW */
1900 case 0xffff: /* MMC3 not supported */
1901 break;
1902 case 0x1a: /* DVD+RW */
1903 case 0x13: /* DVD-RW */
1904 case 0x12: /* DVD-RAM */
1905 return 1;
1906 default:
1907 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1908 return 0;
1909 }
1910
1911 /*
1912 * for disc type 0xff we should probably reserve a new track.
1913 * but i'm not sure, should we leave this to user apps? probably.
1914 */
1915 if (di->disc_type == 0xff) {
1916 printk(DRIVER_NAME": Unknown disc. No track?\n");
1917 return 0;
1918 }
1919
1920 if (di->disc_type != 0x20 && di->disc_type != 0) {
1921 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1922 return 0;
1923 }
1924
1925 if (di->erasable == 0) {
1926 printk(DRIVER_NAME": Disc not erasable\n");
1927 return 0;
1928 }
1929
1930 if (di->border_status == PACKET_SESSION_RESERVED) {
1931 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1932 return 0;
1933 }
1934
1935 return 1;
1936}
1937
1938static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1939{
1940 struct packet_command cgc;
1941 unsigned char buf[12];
1942 disc_information di;
1943 track_information ti;
1944 int ret, track;
1945
1946 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1947 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1948 cgc.cmd[8] = 8;
1949 ret = pkt_generic_packet(pd, &cgc);
1950 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1951
1952 memset(&di, 0, sizeof(disc_information));
1953 memset(&ti, 0, sizeof(track_information));
1954
1955 if ((ret = pkt_get_disc_info(pd, &di))) {
1956 printk("failed get_disc\n");
1957 return ret;
1958 }
1959
1960 if (!pkt_writable_disc(pd, &di))
1961 return -EROFS;
1962
1963 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1964
1965 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1966 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1967 printk(DRIVER_NAME": failed get_track\n");
1968 return ret;
1969 }
1970
1971 if (!pkt_writable_track(pd, &ti)) {
1972 printk(DRIVER_NAME": can't write to this track\n");
1973 return -EROFS;
1974 }
1975
1976 /*
1977 * we keep packet size in 512 byte units, makes it easier to
1978 * deal with request calculations.
1979 */
1980 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1981 if (pd->settings.size == 0) {
1982 printk(DRIVER_NAME": detected zero packet size!\n");
1983 return -ENXIO;
1984 }
1985 if (pd->settings.size > PACKET_MAX_SECTORS) {
1986 printk(DRIVER_NAME": packet size is too big\n");
1987 return -EROFS;
1988 }
1989 pd->settings.fp = ti.fp;
1990 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1991
1992 if (ti.nwa_v) {
1993 pd->nwa = be32_to_cpu(ti.next_writable);
1994 set_bit(PACKET_NWA_VALID, &pd->flags);
1995 }
1996
1997 /*
1998 * in theory we could use lra on -RW media as well and just zero
1999 * blocks that haven't been written yet, but in practice that
2000 * is just a no-go. we'll use that for -R, naturally.
2001 */
2002 if (ti.lra_v) {
2003 pd->lra = be32_to_cpu(ti.last_rec_address);
2004 set_bit(PACKET_LRA_VALID, &pd->flags);
2005 } else {
2006 pd->lra = 0xffffffff;
2007 set_bit(PACKET_LRA_VALID, &pd->flags);
2008 }
2009
2010 /*
2011 * fine for now
2012 */
2013 pd->settings.link_loss = 7;
2014 pd->settings.write_type = 0; /* packet */
2015 pd->settings.track_mode = ti.track_mode;
2016
2017 /*
2018 * mode1 or mode2 disc
2019 */
2020 switch (ti.data_mode) {
2021 case PACKET_MODE1:
2022 pd->settings.block_mode = PACKET_BLOCK_MODE1;
2023 break;
2024 case PACKET_MODE2:
2025 pd->settings.block_mode = PACKET_BLOCK_MODE2;
2026 break;
2027 default:
2028 printk(DRIVER_NAME": unknown data mode\n");
2029 return -EROFS;
2030 }
2031 return 0;
2032}
2033
2034/*
2035 * enable/disable write caching on drive
2036 */
2037static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2038 int set)
2039{
2040 struct packet_command cgc;
2041 struct request_sense sense;
2042 unsigned char buf[64];
2043 int ret;
2044
2045 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2046 cgc.sense = &sense;
2047 cgc.buflen = pd->mode_offset + 12;
2048
2049 /*
2050 * caching mode page might not be there, so quiet this command
2051 */
2052 cgc.quiet = 1;
2053
2054 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2055 return ret;
2056
2057 buf[pd->mode_offset + 10] |= (!!set << 2);
2058
2059 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2060 ret = pkt_mode_select(pd, &cgc);
2061 if (ret) {
2062 printk(DRIVER_NAME": write caching control failed\n");
2063 pkt_dump_sense(&cgc);
2064 } else if (!ret && set)
2065 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2066 return ret;
2067}
2068
2069static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2070{
2071 struct packet_command cgc;
2072
2073 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2074 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2075 cgc.cmd[4] = lockflag ? 1 : 0;
2076 return pkt_generic_packet(pd, &cgc);
2077}
2078
2079/*
2080 * Returns drive maximum write speed
2081 */
2082static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2083 unsigned *write_speed)
2084{
2085 struct packet_command cgc;
2086 struct request_sense sense;
2087 unsigned char buf[256+18];
2088 unsigned char *cap_buf;
2089 int ret, offset;
2090
2091 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2092 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2093 cgc.sense = &sense;
2094
2095 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2096 if (ret) {
2097 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2098 sizeof(struct mode_page_header);
2099 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2100 if (ret) {
2101 pkt_dump_sense(&cgc);
2102 return ret;
2103 }
2104 }
2105
2106 offset = 20; /* Obsoleted field, used by older drives */
2107 if (cap_buf[1] >= 28)
2108 offset = 28; /* Current write speed selected */
2109 if (cap_buf[1] >= 30) {
2110 /* If the drive reports at least one "Logical Unit Write
2111 * Speed Performance Descriptor Block", use the information
2112 * in the first block. (contains the highest speed)
2113 */
2114 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2115 if (num_spdb > 0)
2116 offset = 34;
2117 }
2118
2119 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2120 return 0;
2121}
2122
2123/* These tables from cdrecord - I don't have orange book */
2124/* standard speed CD-RW (1-4x) */
2125static char clv_to_speed[16] = {
2126 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2127 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2128};
2129/* high speed CD-RW (-10x) */
2130static char hs_clv_to_speed[16] = {
2131 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2132 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2133};
2134/* ultra high speed CD-RW */
2135static char us_clv_to_speed[16] = {
2136 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2137 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2138};
2139
2140/*
2141 * reads the maximum media speed from ATIP
2142 */
2143static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2144 unsigned *speed)
2145{
2146 struct packet_command cgc;
2147 struct request_sense sense;
2148 unsigned char buf[64];
2149 unsigned int size, st, sp;
2150 int ret;
2151
2152 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2153 cgc.sense = &sense;
2154 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2155 cgc.cmd[1] = 2;
2156 cgc.cmd[2] = 4; /* READ ATIP */
2157 cgc.cmd[8] = 2;
2158 ret = pkt_generic_packet(pd, &cgc);
2159 if (ret) {
2160 pkt_dump_sense(&cgc);
2161 return ret;
2162 }
2163 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2164 if (size > sizeof(buf))
2165 size = sizeof(buf);
2166
2167 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2168 cgc.sense = &sense;
2169 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2170 cgc.cmd[1] = 2;
2171 cgc.cmd[2] = 4;
2172 cgc.cmd[8] = size;
2173 ret = pkt_generic_packet(pd, &cgc);
2174 if (ret) {
2175 pkt_dump_sense(&cgc);
2176 return ret;
2177 }
2178
2179 if (!(buf[6] & 0x40)) {
2180 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2181 return 1;
2182 }
2183 if (!(buf[6] & 0x4)) {
2184 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2185 return 1;
2186 }
2187
2188 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2189
2190 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2191
2192 /* Info from cdrecord */
2193 switch (st) {
2194 case 0: /* standard speed */
2195 *speed = clv_to_speed[sp];
2196 break;
2197 case 1: /* high speed */
2198 *speed = hs_clv_to_speed[sp];
2199 break;
2200 case 2: /* ultra high speed */
2201 *speed = us_clv_to_speed[sp];
2202 break;
2203 default:
2204 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2205 return 1;
2206 }
2207 if (*speed) {
2208 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2209 return 0;
2210 } else {
2211 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2212 return 1;
2213 }
2214}
2215
2216static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2217{
2218 struct packet_command cgc;
2219 struct request_sense sense;
2220 int ret;
2221
2222 VPRINTK(DRIVER_NAME": Performing OPC\n");
2223
2224 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2225 cgc.sense = &sense;
2226 cgc.timeout = 60*HZ;
2227 cgc.cmd[0] = GPCMD_SEND_OPC;
2228 cgc.cmd[1] = 1;
2229 if ((ret = pkt_generic_packet(pd, &cgc)))
2230 pkt_dump_sense(&cgc);
2231 return ret;
2232}
2233
2234static int pkt_open_write(struct pktcdvd_device *pd)
2235{
2236 int ret;
2237 unsigned int write_speed, media_write_speed, read_speed;
2238
2239 if ((ret = pkt_probe_settings(pd))) {
2240 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2241 return ret;
2242 }
2243
2244 if ((ret = pkt_set_write_settings(pd))) {
2245 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2246 return -EIO;
2247 }
2248
2249 pkt_write_caching(pd, USE_WCACHING);
2250
2251 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2252 write_speed = 16 * 177;
2253 switch (pd->mmc3_profile) {
2254 case 0x13: /* DVD-RW */
2255 case 0x1a: /* DVD+RW */
2256 case 0x12: /* DVD-RAM */
2257 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2258 break;
2259 default:
2260 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2261 media_write_speed = 16;
2262 write_speed = min(write_speed, media_write_speed * 177);
2263 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2264 break;
2265 }
2266 read_speed = write_speed;
2267
2268 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2269 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2270 return -EIO;
2271 }
2272 pd->write_speed = write_speed;
2273 pd->read_speed = read_speed;
2274
2275 if ((ret = pkt_perform_opc(pd))) {
2276 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2277 }
2278
2279 return 0;
2280}
2281
2282/*
2283 * called at open time.
2284 */
2285static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2286{
2287 int ret;
2288 long lba;
2289 struct request_queue *q;
2290
2291 /*
2292 * We need to re-open the cdrom device without O_NONBLOCK to be able
2293 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2294 * so bdget() can't fail.
2295 */
2296 bdget(pd->bdev->bd_dev);
2297 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2298 goto out;
2299
2300 if ((ret = pkt_get_last_written(pd, &lba))) {
2301 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2302 goto out_putdev;
2303 }
2304
2305 set_capacity(pd->disk, lba << 2);
2306 set_capacity(pd->bdev->bd_disk, lba << 2);
2307 bd_set_size(pd->bdev, (loff_t)lba << 11);
2308
2309 q = bdev_get_queue(pd->bdev);
2310 if (write) {
2311 if ((ret = pkt_open_write(pd)))
2312 goto out_putdev;
2313 /*
2314 * Some CDRW drives can not handle writes larger than one packet,
2315 * even if the size is a multiple of the packet size.
2316 */
2317 spin_lock_irq(q->queue_lock);
2318 blk_queue_max_hw_sectors(q, pd->settings.size);
2319 spin_unlock_irq(q->queue_lock);
2320 set_bit(PACKET_WRITABLE, &pd->flags);
2321 } else {
2322 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2323 clear_bit(PACKET_WRITABLE, &pd->flags);
2324 }
2325
2326 if ((ret = pkt_set_segment_merging(pd, q)))
2327 goto out_putdev;
2328
2329 if (write) {
2330 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2331 printk(DRIVER_NAME": not enough memory for buffers\n");
2332 ret = -ENOMEM;
2333 goto out_putdev;
2334 }
2335 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2336 }
2337
2338 return 0;
2339
2340out_putdev:
2341 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2342out:
2343 return ret;
2344}
2345
2346/*
2347 * called when the device is closed. makes sure that the device flushes
2348 * the internal cache before we close.
2349 */
2350static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2351{
2352 if (flush && pkt_flush_cache(pd))
2353 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2354
2355 pkt_lock_door(pd, 0);
2356
2357 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2358 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2359
2360 pkt_shrink_pktlist(pd);
2361}
2362
2363static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2364{
2365 if (dev_minor >= MAX_WRITERS)
2366 return NULL;
2367 return pkt_devs[dev_minor];
2368}
2369
2370static int pkt_open(struct block_device *bdev, fmode_t mode)
2371{
2372 struct pktcdvd_device *pd = NULL;
2373 int ret;
2374
2375 VPRINTK(DRIVER_NAME": entering open\n");
2376
2377 mutex_lock(&pktcdvd_mutex);
2378 mutex_lock(&ctl_mutex);
2379 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2380 if (!pd) {
2381 ret = -ENODEV;
2382 goto out;
2383 }
2384 BUG_ON(pd->refcnt < 0);
2385
2386 pd->refcnt++;
2387 if (pd->refcnt > 1) {
2388 if ((mode & FMODE_WRITE) &&
2389 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2390 ret = -EBUSY;
2391 goto out_dec;
2392 }
2393 } else {
2394 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2395 if (ret)
2396 goto out_dec;
2397 /*
2398 * needed here as well, since ext2 (among others) may change
2399 * the blocksize at mount time
2400 */
2401 set_blocksize(bdev, CD_FRAMESIZE);
2402 }
2403
2404 mutex_unlock(&ctl_mutex);
2405 mutex_unlock(&pktcdvd_mutex);
2406 return 0;
2407
2408out_dec:
2409 pd->refcnt--;
2410out:
2411 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2412 mutex_unlock(&ctl_mutex);
2413 mutex_unlock(&pktcdvd_mutex);
2414 return ret;
2415}
2416
2417static int pkt_close(struct gendisk *disk, fmode_t mode)
2418{
2419 struct pktcdvd_device *pd = disk->private_data;
2420 int ret = 0;
2421
2422 mutex_lock(&pktcdvd_mutex);
2423 mutex_lock(&ctl_mutex);
2424 pd->refcnt--;
2425 BUG_ON(pd->refcnt < 0);
2426 if (pd->refcnt == 0) {
2427 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2428 pkt_release_dev(pd, flush);
2429 }
2430 mutex_unlock(&ctl_mutex);
2431 mutex_unlock(&pktcdvd_mutex);
2432 return ret;
2433}
2434
2435
2436static void pkt_end_io_read_cloned(struct bio *bio, int err)
2437{
2438 struct packet_stacked_data *psd = bio->bi_private;
2439 struct pktcdvd_device *pd = psd->pd;
2440
2441 bio_put(bio);
2442 bio_endio(psd->bio, err);
2443 mempool_free(psd, psd_pool);
2444 pkt_bio_finished(pd);
2445}
2446
2447static int pkt_make_request(struct request_queue *q, struct bio *bio)
2448{
2449 struct pktcdvd_device *pd;
2450 char b[BDEVNAME_SIZE];
2451 sector_t zone;
2452 struct packet_data *pkt;
2453 int was_empty, blocked_bio;
2454 struct pkt_rb_node *node;
2455
2456 pd = q->queuedata;
2457 if (!pd) {
2458 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2459 goto end_io;
2460 }
2461
2462 /*
2463 * Clone READ bios so we can have our own bi_end_io callback.
2464 */
2465 if (bio_data_dir(bio) == READ) {
2466 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2467 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2468
2469 psd->pd = pd;
2470 psd->bio = bio;
2471 cloned_bio->bi_bdev = pd->bdev;
2472 cloned_bio->bi_private = psd;
2473 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2474 pd->stats.secs_r += bio->bi_size >> 9;
2475 pkt_queue_bio(pd, cloned_bio);
2476 return 0;
2477 }
2478
2479 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2480 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2481 pd->name, (unsigned long long)bio->bi_sector);
2482 goto end_io;
2483 }
2484
2485 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2486 printk(DRIVER_NAME": wrong bio size\n");
2487 goto end_io;
2488 }
2489
2490 blk_queue_bounce(q, &bio);
2491
2492 zone = ZONE(bio->bi_sector, pd);
2493 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2494 (unsigned long long)bio->bi_sector,
2495 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2496
2497 /* Check if we have to split the bio */
2498 {
2499 struct bio_pair *bp;
2500 sector_t last_zone;
2501 int first_sectors;
2502
2503 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2504 if (last_zone != zone) {
2505 BUG_ON(last_zone != zone + pd->settings.size);
2506 first_sectors = last_zone - bio->bi_sector;
2507 bp = bio_split(bio, first_sectors);
2508 BUG_ON(!bp);
2509 pkt_make_request(q, &bp->bio1);
2510 pkt_make_request(q, &bp->bio2);
2511 bio_pair_release(bp);
2512 return 0;
2513 }
2514 }
2515
2516 /*
2517 * If we find a matching packet in state WAITING or READ_WAIT, we can
2518 * just append this bio to that packet.
2519 */
2520 spin_lock(&pd->cdrw.active_list_lock);
2521 blocked_bio = 0;
2522 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2523 if (pkt->sector == zone) {
2524 spin_lock(&pkt->lock);
2525 if ((pkt->state == PACKET_WAITING_STATE) ||
2526 (pkt->state == PACKET_READ_WAIT_STATE)) {
2527 bio_list_add(&pkt->orig_bios, bio);
2528 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2529 if ((pkt->write_size >= pkt->frames) &&
2530 (pkt->state == PACKET_WAITING_STATE)) {
2531 atomic_inc(&pkt->run_sm);
2532 wake_up(&pd->wqueue);
2533 }
2534 spin_unlock(&pkt->lock);
2535 spin_unlock(&pd->cdrw.active_list_lock);
2536 return 0;
2537 } else {
2538 blocked_bio = 1;
2539 }
2540 spin_unlock(&pkt->lock);
2541 }
2542 }
2543 spin_unlock(&pd->cdrw.active_list_lock);
2544
2545 /*
2546 * Test if there is enough room left in the bio work queue
2547 * (queue size >= congestion on mark).
2548 * If not, wait till the work queue size is below the congestion off mark.
2549 */
2550 spin_lock(&pd->lock);
2551 if (pd->write_congestion_on > 0
2552 && pd->bio_queue_size >= pd->write_congestion_on) {
2553 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2554 do {
2555 spin_unlock(&pd->lock);
2556 congestion_wait(BLK_RW_ASYNC, HZ);
2557 spin_lock(&pd->lock);
2558 } while(pd->bio_queue_size > pd->write_congestion_off);
2559 }
2560 spin_unlock(&pd->lock);
2561
2562 /*
2563 * No matching packet found. Store the bio in the work queue.
2564 */
2565 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2566 node->bio = bio;
2567 spin_lock(&pd->lock);
2568 BUG_ON(pd->bio_queue_size < 0);
2569 was_empty = (pd->bio_queue_size == 0);
2570 pkt_rbtree_insert(pd, node);
2571 spin_unlock(&pd->lock);
2572
2573 /*
2574 * Wake up the worker thread.
2575 */
2576 atomic_set(&pd->scan_queue, 1);
2577 if (was_empty) {
2578 /* This wake_up is required for correct operation */
2579 wake_up(&pd->wqueue);
2580 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2581 /*
2582 * This wake up is not required for correct operation,
2583 * but improves performance in some cases.
2584 */
2585 wake_up(&pd->wqueue);
2586 }
2587 return 0;
2588end_io:
2589 bio_io_error(bio);
2590 return 0;
2591}
2592
2593
2594
2595static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2596 struct bio_vec *bvec)
2597{
2598 struct pktcdvd_device *pd = q->queuedata;
2599 sector_t zone = ZONE(bmd->bi_sector, pd);
2600 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2601 int remaining = (pd->settings.size << 9) - used;
2602 int remaining2;
2603
2604 /*
2605 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2606 * boundary, pkt_make_request() will split the bio.
2607 */
2608 remaining2 = PAGE_SIZE - bmd->bi_size;
2609 remaining = max(remaining, remaining2);
2610
2611 BUG_ON(remaining < 0);
2612 return remaining;
2613}
2614
2615static void pkt_init_queue(struct pktcdvd_device *pd)
2616{
2617 struct request_queue *q = pd->disk->queue;
2618
2619 blk_queue_make_request(q, pkt_make_request);
2620 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2621 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2622 blk_queue_merge_bvec(q, pkt_merge_bvec);
2623 q->queuedata = pd;
2624}
2625
2626static int pkt_seq_show(struct seq_file *m, void *p)
2627{
2628 struct pktcdvd_device *pd = m->private;
2629 char *msg;
2630 char bdev_buf[BDEVNAME_SIZE];
2631 int states[PACKET_NUM_STATES];
2632
2633 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2634 bdevname(pd->bdev, bdev_buf));
2635
2636 seq_printf(m, "\nSettings:\n");
2637 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2638
2639 if (pd->settings.write_type == 0)
2640 msg = "Packet";
2641 else
2642 msg = "Unknown";
2643 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2644
2645 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2646 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2647
2648 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2649
2650 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2651 msg = "Mode 1";
2652 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2653 msg = "Mode 2";
2654 else
2655 msg = "Unknown";
2656 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2657
2658 seq_printf(m, "\nStatistics:\n");
2659 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2660 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2661 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2662 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2663 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2664
2665 seq_printf(m, "\nMisc:\n");
2666 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2667 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2668 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2669 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2670 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2671 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2672
2673 seq_printf(m, "\nQueue state:\n");
2674 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2675 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2676 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2677
2678 pkt_count_states(pd, states);
2679 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2680 states[0], states[1], states[2], states[3], states[4], states[5]);
2681
2682 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2683 pd->write_congestion_off,
2684 pd->write_congestion_on);
2685 return 0;
2686}
2687
2688static int pkt_seq_open(struct inode *inode, struct file *file)
2689{
2690 return single_open(file, pkt_seq_show, PDE(inode)->data);
2691}
2692
2693static const struct file_operations pkt_proc_fops = {
2694 .open = pkt_seq_open,
2695 .read = seq_read,
2696 .llseek = seq_lseek,
2697 .release = single_release
2698};
2699
2700static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2701{
2702 int i;
2703 int ret = 0;
2704 char b[BDEVNAME_SIZE];
2705 struct block_device *bdev;
2706
2707 if (pd->pkt_dev == dev) {
2708 printk(DRIVER_NAME": Recursive setup not allowed\n");
2709 return -EBUSY;
2710 }
2711 for (i = 0; i < MAX_WRITERS; i++) {
2712 struct pktcdvd_device *pd2 = pkt_devs[i];
2713 if (!pd2)
2714 continue;
2715 if (pd2->bdev->bd_dev == dev) {
2716 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2717 return -EBUSY;
2718 }
2719 if (pd2->pkt_dev == dev) {
2720 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2721 return -EBUSY;
2722 }
2723 }
2724
2725 bdev = bdget(dev);
2726 if (!bdev)
2727 return -ENOMEM;
2728 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2729 if (ret)
2730 return ret;
2731
2732 /* This is safe, since we have a reference from open(). */
2733 __module_get(THIS_MODULE);
2734
2735 pd->bdev = bdev;
2736 set_blocksize(bdev, CD_FRAMESIZE);
2737
2738 pkt_init_queue(pd);
2739
2740 atomic_set(&pd->cdrw.pending_bios, 0);
2741 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2742 if (IS_ERR(pd->cdrw.thread)) {
2743 printk(DRIVER_NAME": can't start kernel thread\n");
2744 ret = -ENOMEM;
2745 goto out_mem;
2746 }
2747
2748 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2749 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2750 return 0;
2751
2752out_mem:
2753 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2754 /* This is safe: open() is still holding a reference. */
2755 module_put(THIS_MODULE);
2756 return ret;
2757}
2758
2759static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2760{
2761 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2762 int ret;
2763
2764 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2765 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2766
2767 mutex_lock(&pktcdvd_mutex);
2768 switch (cmd) {
2769 case CDROMEJECT:
2770 /*
2771 * The door gets locked when the device is opened, so we
2772 * have to unlock it or else the eject command fails.
2773 */
2774 if (pd->refcnt == 1)
2775 pkt_lock_door(pd, 0);
2776 /* fallthru */
2777 /*
2778 * forward selected CDROM ioctls to CD-ROM, for UDF
2779 */
2780 case CDROMMULTISESSION:
2781 case CDROMREADTOCENTRY:
2782 case CDROM_LAST_WRITTEN:
2783 case CDROM_SEND_PACKET:
2784 case SCSI_IOCTL_SEND_COMMAND:
2785 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2786 break;
2787
2788 default:
2789 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2790 ret = -ENOTTY;
2791 }
2792 mutex_unlock(&pktcdvd_mutex);
2793
2794 return ret;
2795}
2796
2797static unsigned int pkt_check_events(struct gendisk *disk,
2798 unsigned int clearing)
2799{
2800 struct pktcdvd_device *pd = disk->private_data;
2801 struct gendisk *attached_disk;
2802
2803 if (!pd)
2804 return 0;
2805 if (!pd->bdev)
2806 return 0;
2807 attached_disk = pd->bdev->bd_disk;
2808 if (!attached_disk || !attached_disk->fops->check_events)
2809 return 0;
2810 return attached_disk->fops->check_events(attached_disk, clearing);
2811}
2812
2813static const struct block_device_operations pktcdvd_ops = {
2814 .owner = THIS_MODULE,
2815 .open = pkt_open,
2816 .release = pkt_close,
2817 .ioctl = pkt_ioctl,
2818 .check_events = pkt_check_events,
2819};
2820
2821static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode)
2822{
2823 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2824}
2825
2826/*
2827 * Set up mapping from pktcdvd device to CD-ROM device.
2828 */
2829static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2830{
2831 int idx;
2832 int ret = -ENOMEM;
2833 struct pktcdvd_device *pd;
2834 struct gendisk *disk;
2835
2836 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2837
2838 for (idx = 0; idx < MAX_WRITERS; idx++)
2839 if (!pkt_devs[idx])
2840 break;
2841 if (idx == MAX_WRITERS) {
2842 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2843 ret = -EBUSY;
2844 goto out_mutex;
2845 }
2846
2847 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2848 if (!pd)
2849 goto out_mutex;
2850
2851 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2852 sizeof(struct pkt_rb_node));
2853 if (!pd->rb_pool)
2854 goto out_mem;
2855
2856 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2857 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2858 spin_lock_init(&pd->cdrw.active_list_lock);
2859
2860 spin_lock_init(&pd->lock);
2861 spin_lock_init(&pd->iosched.lock);
2862 bio_list_init(&pd->iosched.read_queue);
2863 bio_list_init(&pd->iosched.write_queue);
2864 sprintf(pd->name, DRIVER_NAME"%d", idx);
2865 init_waitqueue_head(&pd->wqueue);
2866 pd->bio_queue = RB_ROOT;
2867
2868 pd->write_congestion_on = write_congestion_on;
2869 pd->write_congestion_off = write_congestion_off;
2870
2871 disk = alloc_disk(1);
2872 if (!disk)
2873 goto out_mem;
2874 pd->disk = disk;
2875 disk->major = pktdev_major;
2876 disk->first_minor = idx;
2877 disk->fops = &pktcdvd_ops;
2878 disk->flags = GENHD_FL_REMOVABLE;
2879 strcpy(disk->disk_name, pd->name);
2880 disk->devnode = pktcdvd_devnode;
2881 disk->private_data = pd;
2882 disk->queue = blk_alloc_queue(GFP_KERNEL);
2883 if (!disk->queue)
2884 goto out_mem2;
2885
2886 pd->pkt_dev = MKDEV(pktdev_major, idx);
2887 ret = pkt_new_dev(pd, dev);
2888 if (ret)
2889 goto out_new_dev;
2890
2891 /* inherit events of the host device */
2892 disk->events = pd->bdev->bd_disk->events;
2893 disk->async_events = pd->bdev->bd_disk->async_events;
2894
2895 add_disk(disk);
2896
2897 pkt_sysfs_dev_new(pd);
2898 pkt_debugfs_dev_new(pd);
2899
2900 pkt_devs[idx] = pd;
2901 if (pkt_dev)
2902 *pkt_dev = pd->pkt_dev;
2903
2904 mutex_unlock(&ctl_mutex);
2905 return 0;
2906
2907out_new_dev:
2908 blk_cleanup_queue(disk->queue);
2909out_mem2:
2910 put_disk(disk);
2911out_mem:
2912 if (pd->rb_pool)
2913 mempool_destroy(pd->rb_pool);
2914 kfree(pd);
2915out_mutex:
2916 mutex_unlock(&ctl_mutex);
2917 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2918 return ret;
2919}
2920
2921/*
2922 * Tear down mapping from pktcdvd device to CD-ROM device.
2923 */
2924static int pkt_remove_dev(dev_t pkt_dev)
2925{
2926 struct pktcdvd_device *pd;
2927 int idx;
2928 int ret = 0;
2929
2930 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2931
2932 for (idx = 0; idx < MAX_WRITERS; idx++) {
2933 pd = pkt_devs[idx];
2934 if (pd && (pd->pkt_dev == pkt_dev))
2935 break;
2936 }
2937 if (idx == MAX_WRITERS) {
2938 DPRINTK(DRIVER_NAME": dev not setup\n");
2939 ret = -ENXIO;
2940 goto out;
2941 }
2942
2943 if (pd->refcnt > 0) {
2944 ret = -EBUSY;
2945 goto out;
2946 }
2947 if (!IS_ERR(pd->cdrw.thread))
2948 kthread_stop(pd->cdrw.thread);
2949
2950 pkt_devs[idx] = NULL;
2951
2952 pkt_debugfs_dev_remove(pd);
2953 pkt_sysfs_dev_remove(pd);
2954
2955 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2956
2957 remove_proc_entry(pd->name, pkt_proc);
2958 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2959
2960 del_gendisk(pd->disk);
2961 blk_cleanup_queue(pd->disk->queue);
2962 put_disk(pd->disk);
2963
2964 mempool_destroy(pd->rb_pool);
2965 kfree(pd);
2966
2967 /* This is safe: open() is still holding a reference. */
2968 module_put(THIS_MODULE);
2969
2970out:
2971 mutex_unlock(&ctl_mutex);
2972 return ret;
2973}
2974
2975static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2976{
2977 struct pktcdvd_device *pd;
2978
2979 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2980
2981 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2982 if (pd) {
2983 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2984 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2985 } else {
2986 ctrl_cmd->dev = 0;
2987 ctrl_cmd->pkt_dev = 0;
2988 }
2989 ctrl_cmd->num_devices = MAX_WRITERS;
2990
2991 mutex_unlock(&ctl_mutex);
2992}
2993
2994static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2995{
2996 void __user *argp = (void __user *)arg;
2997 struct pkt_ctrl_command ctrl_cmd;
2998 int ret = 0;
2999 dev_t pkt_dev = 0;
3000
3001 if (cmd != PACKET_CTRL_CMD)
3002 return -ENOTTY;
3003
3004 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3005 return -EFAULT;
3006
3007 switch (ctrl_cmd.command) {
3008 case PKT_CTRL_CMD_SETUP:
3009 if (!capable(CAP_SYS_ADMIN))
3010 return -EPERM;
3011 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3012 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3013 break;
3014 case PKT_CTRL_CMD_TEARDOWN:
3015 if (!capable(CAP_SYS_ADMIN))
3016 return -EPERM;
3017 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3018 break;
3019 case PKT_CTRL_CMD_STATUS:
3020 pkt_get_status(&ctrl_cmd);
3021 break;
3022 default:
3023 return -ENOTTY;
3024 }
3025
3026 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3027 return -EFAULT;
3028 return ret;
3029}
3030
3031#ifdef CONFIG_COMPAT
3032static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3033{
3034 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
3035}
3036#endif
3037
3038static const struct file_operations pkt_ctl_fops = {
3039 .open = nonseekable_open,
3040 .unlocked_ioctl = pkt_ctl_ioctl,
3041#ifdef CONFIG_COMPAT
3042 .compat_ioctl = pkt_ctl_compat_ioctl,
3043#endif
3044 .owner = THIS_MODULE,
3045 .llseek = no_llseek,
3046};
3047
3048static struct miscdevice pkt_misc = {
3049 .minor = MISC_DYNAMIC_MINOR,
3050 .name = DRIVER_NAME,
3051 .nodename = "pktcdvd/control",
3052 .fops = &pkt_ctl_fops
3053};
3054
3055static int __init pkt_init(void)
3056{
3057 int ret;
3058
3059 mutex_init(&ctl_mutex);
3060
3061 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3062 sizeof(struct packet_stacked_data));
3063 if (!psd_pool)
3064 return -ENOMEM;
3065
3066 ret = register_blkdev(pktdev_major, DRIVER_NAME);
3067 if (ret < 0) {
3068 printk(DRIVER_NAME": Unable to register block device\n");
3069 goto out2;
3070 }
3071 if (!pktdev_major)
3072 pktdev_major = ret;
3073
3074 ret = pkt_sysfs_init();
3075 if (ret)
3076 goto out;
3077
3078 pkt_debugfs_init();
3079
3080 ret = misc_register(&pkt_misc);
3081 if (ret) {
3082 printk(DRIVER_NAME": Unable to register misc device\n");
3083 goto out_misc;
3084 }
3085
3086 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3087
3088 return 0;
3089
3090out_misc:
3091 pkt_debugfs_cleanup();
3092 pkt_sysfs_cleanup();
3093out:
3094 unregister_blkdev(pktdev_major, DRIVER_NAME);
3095out2:
3096 mempool_destroy(psd_pool);
3097 return ret;
3098}
3099
3100static void __exit pkt_exit(void)
3101{
3102 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3103 misc_deregister(&pkt_misc);
3104
3105 pkt_debugfs_cleanup();
3106 pkt_sysfs_cleanup();
3107
3108 unregister_blkdev(pktdev_major, DRIVER_NAME);
3109 mempool_destroy(psd_pool);
3110}
3111
3112MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3113MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3114MODULE_LICENSE("GPL");
3115
3116module_init(pkt_init);
3117module_exit(pkt_exit);
1/*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49#include <linux/pktcdvd.h>
50#include <linux/module.h>
51#include <linux/types.h>
52#include <linux/kernel.h>
53#include <linux/compat.h>
54#include <linux/kthread.h>
55#include <linux/errno.h>
56#include <linux/spinlock.h>
57#include <linux/file.h>
58#include <linux/proc_fs.h>
59#include <linux/seq_file.h>
60#include <linux/miscdevice.h>
61#include <linux/freezer.h>
62#include <linux/mutex.h>
63#include <linux/slab.h>
64#include <scsi/scsi_cmnd.h>
65#include <scsi/scsi_ioctl.h>
66#include <scsi/scsi.h>
67#include <linux/debugfs.h>
68#include <linux/device.h>
69
70#include <asm/uaccess.h>
71
72#define DRIVER_NAME "pktcdvd"
73
74#define pkt_err(pd, fmt, ...) \
75 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
76#define pkt_notice(pd, fmt, ...) \
77 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
78#define pkt_info(pd, fmt, ...) \
79 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
80
81#define pkt_dbg(level, pd, fmt, ...) \
82do { \
83 if (level == 2 && PACKET_DEBUG >= 2) \
84 pr_notice("%s: %s():" fmt, \
85 pd->name, __func__, ##__VA_ARGS__); \
86 else if (level == 1 && PACKET_DEBUG >= 1) \
87 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \
88} while (0)
89
90#define MAX_SPEED 0xffff
91
92static DEFINE_MUTEX(pktcdvd_mutex);
93static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
94static struct proc_dir_entry *pkt_proc;
95static int pktdev_major;
96static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
97static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
98static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
99static mempool_t *psd_pool;
100
101static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
102static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
103
104/* forward declaration */
105static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
106static int pkt_remove_dev(dev_t pkt_dev);
107static int pkt_seq_show(struct seq_file *m, void *p);
108
109static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
110{
111 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
112}
113
114/*
115 * create and register a pktcdvd kernel object.
116 */
117static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
118 const char* name,
119 struct kobject* parent,
120 struct kobj_type* ktype)
121{
122 struct pktcdvd_kobj *p;
123 int error;
124
125 p = kzalloc(sizeof(*p), GFP_KERNEL);
126 if (!p)
127 return NULL;
128 p->pd = pd;
129 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
130 if (error) {
131 kobject_put(&p->kobj);
132 return NULL;
133 }
134 kobject_uevent(&p->kobj, KOBJ_ADD);
135 return p;
136}
137/*
138 * remove a pktcdvd kernel object.
139 */
140static void pkt_kobj_remove(struct pktcdvd_kobj *p)
141{
142 if (p)
143 kobject_put(&p->kobj);
144}
145/*
146 * default release function for pktcdvd kernel objects.
147 */
148static void pkt_kobj_release(struct kobject *kobj)
149{
150 kfree(to_pktcdvdkobj(kobj));
151}
152
153
154/**********************************************************
155 *
156 * sysfs interface for pktcdvd
157 * by (C) 2006 Thomas Maier <balagi@justmail.de>
158 *
159 **********************************************************/
160
161#define DEF_ATTR(_obj,_name,_mode) \
162 static struct attribute _obj = { .name = _name, .mode = _mode }
163
164/**********************************************************
165 /sys/class/pktcdvd/pktcdvd[0-7]/
166 stat/reset
167 stat/packets_started
168 stat/packets_finished
169 stat/kb_written
170 stat/kb_read
171 stat/kb_read_gather
172 write_queue/size
173 write_queue/congestion_off
174 write_queue/congestion_on
175 **********************************************************/
176
177DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
178DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
179DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
180DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
181DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
182DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
183
184static struct attribute *kobj_pkt_attrs_stat[] = {
185 &kobj_pkt_attr_st1,
186 &kobj_pkt_attr_st2,
187 &kobj_pkt_attr_st3,
188 &kobj_pkt_attr_st4,
189 &kobj_pkt_attr_st5,
190 &kobj_pkt_attr_st6,
191 NULL
192};
193
194DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
195DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
196DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
197
198static struct attribute *kobj_pkt_attrs_wqueue[] = {
199 &kobj_pkt_attr_wq1,
200 &kobj_pkt_attr_wq2,
201 &kobj_pkt_attr_wq3,
202 NULL
203};
204
205static ssize_t kobj_pkt_show(struct kobject *kobj,
206 struct attribute *attr, char *data)
207{
208 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
209 int n = 0;
210 int v;
211 if (strcmp(attr->name, "packets_started") == 0) {
212 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
213
214 } else if (strcmp(attr->name, "packets_finished") == 0) {
215 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
216
217 } else if (strcmp(attr->name, "kb_written") == 0) {
218 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
219
220 } else if (strcmp(attr->name, "kb_read") == 0) {
221 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
222
223 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
224 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
225
226 } else if (strcmp(attr->name, "size") == 0) {
227 spin_lock(&pd->lock);
228 v = pd->bio_queue_size;
229 spin_unlock(&pd->lock);
230 n = sprintf(data, "%d\n", v);
231
232 } else if (strcmp(attr->name, "congestion_off") == 0) {
233 spin_lock(&pd->lock);
234 v = pd->write_congestion_off;
235 spin_unlock(&pd->lock);
236 n = sprintf(data, "%d\n", v);
237
238 } else if (strcmp(attr->name, "congestion_on") == 0) {
239 spin_lock(&pd->lock);
240 v = pd->write_congestion_on;
241 spin_unlock(&pd->lock);
242 n = sprintf(data, "%d\n", v);
243 }
244 return n;
245}
246
247static void init_write_congestion_marks(int* lo, int* hi)
248{
249 if (*hi > 0) {
250 *hi = max(*hi, 500);
251 *hi = min(*hi, 1000000);
252 if (*lo <= 0)
253 *lo = *hi - 100;
254 else {
255 *lo = min(*lo, *hi - 100);
256 *lo = max(*lo, 100);
257 }
258 } else {
259 *hi = -1;
260 *lo = -1;
261 }
262}
263
264static ssize_t kobj_pkt_store(struct kobject *kobj,
265 struct attribute *attr,
266 const char *data, size_t len)
267{
268 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
269 int val;
270
271 if (strcmp(attr->name, "reset") == 0 && len > 0) {
272 pd->stats.pkt_started = 0;
273 pd->stats.pkt_ended = 0;
274 pd->stats.secs_w = 0;
275 pd->stats.secs_rg = 0;
276 pd->stats.secs_r = 0;
277
278 } else if (strcmp(attr->name, "congestion_off") == 0
279 && sscanf(data, "%d", &val) == 1) {
280 spin_lock(&pd->lock);
281 pd->write_congestion_off = val;
282 init_write_congestion_marks(&pd->write_congestion_off,
283 &pd->write_congestion_on);
284 spin_unlock(&pd->lock);
285
286 } else if (strcmp(attr->name, "congestion_on") == 0
287 && sscanf(data, "%d", &val) == 1) {
288 spin_lock(&pd->lock);
289 pd->write_congestion_on = val;
290 init_write_congestion_marks(&pd->write_congestion_off,
291 &pd->write_congestion_on);
292 spin_unlock(&pd->lock);
293 }
294 return len;
295}
296
297static const struct sysfs_ops kobj_pkt_ops = {
298 .show = kobj_pkt_show,
299 .store = kobj_pkt_store
300};
301static struct kobj_type kobj_pkt_type_stat = {
302 .release = pkt_kobj_release,
303 .sysfs_ops = &kobj_pkt_ops,
304 .default_attrs = kobj_pkt_attrs_stat
305};
306static struct kobj_type kobj_pkt_type_wqueue = {
307 .release = pkt_kobj_release,
308 .sysfs_ops = &kobj_pkt_ops,
309 .default_attrs = kobj_pkt_attrs_wqueue
310};
311
312static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
313{
314 if (class_pktcdvd) {
315 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
316 "%s", pd->name);
317 if (IS_ERR(pd->dev))
318 pd->dev = NULL;
319 }
320 if (pd->dev) {
321 pd->kobj_stat = pkt_kobj_create(pd, "stat",
322 &pd->dev->kobj,
323 &kobj_pkt_type_stat);
324 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
325 &pd->dev->kobj,
326 &kobj_pkt_type_wqueue);
327 }
328}
329
330static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
331{
332 pkt_kobj_remove(pd->kobj_stat);
333 pkt_kobj_remove(pd->kobj_wqueue);
334 if (class_pktcdvd)
335 device_unregister(pd->dev);
336}
337
338
339/********************************************************************
340 /sys/class/pktcdvd/
341 add map block device
342 remove unmap packet dev
343 device_map show mappings
344 *******************************************************************/
345
346static void class_pktcdvd_release(struct class *cls)
347{
348 kfree(cls);
349}
350static ssize_t class_pktcdvd_show_map(struct class *c,
351 struct class_attribute *attr,
352 char *data)
353{
354 int n = 0;
355 int idx;
356 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
357 for (idx = 0; idx < MAX_WRITERS; idx++) {
358 struct pktcdvd_device *pd = pkt_devs[idx];
359 if (!pd)
360 continue;
361 n += sprintf(data+n, "%s %u:%u %u:%u\n",
362 pd->name,
363 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
364 MAJOR(pd->bdev->bd_dev),
365 MINOR(pd->bdev->bd_dev));
366 }
367 mutex_unlock(&ctl_mutex);
368 return n;
369}
370
371static ssize_t class_pktcdvd_store_add(struct class *c,
372 struct class_attribute *attr,
373 const char *buf,
374 size_t count)
375{
376 unsigned int major, minor;
377
378 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
379 /* pkt_setup_dev() expects caller to hold reference to self */
380 if (!try_module_get(THIS_MODULE))
381 return -ENODEV;
382
383 pkt_setup_dev(MKDEV(major, minor), NULL);
384
385 module_put(THIS_MODULE);
386
387 return count;
388 }
389
390 return -EINVAL;
391}
392
393static ssize_t class_pktcdvd_store_remove(struct class *c,
394 struct class_attribute *attr,
395 const char *buf,
396 size_t count)
397{
398 unsigned int major, minor;
399 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 pkt_remove_dev(MKDEV(major, minor));
401 return count;
402 }
403 return -EINVAL;
404}
405
406static struct class_attribute class_pktcdvd_attrs[] = {
407 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
408 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
409 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
410 __ATTR_NULL
411};
412
413
414static int pkt_sysfs_init(void)
415{
416 int ret = 0;
417
418 /*
419 * create control files in sysfs
420 * /sys/class/pktcdvd/...
421 */
422 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
423 if (!class_pktcdvd)
424 return -ENOMEM;
425 class_pktcdvd->name = DRIVER_NAME;
426 class_pktcdvd->owner = THIS_MODULE;
427 class_pktcdvd->class_release = class_pktcdvd_release;
428 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
429 ret = class_register(class_pktcdvd);
430 if (ret) {
431 kfree(class_pktcdvd);
432 class_pktcdvd = NULL;
433 pr_err("failed to create class pktcdvd\n");
434 return ret;
435 }
436 return 0;
437}
438
439static void pkt_sysfs_cleanup(void)
440{
441 if (class_pktcdvd)
442 class_destroy(class_pktcdvd);
443 class_pktcdvd = NULL;
444}
445
446/********************************************************************
447 entries in debugfs
448
449 /sys/kernel/debug/pktcdvd[0-7]/
450 info
451
452 *******************************************************************/
453
454static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
455{
456 return pkt_seq_show(m, p);
457}
458
459static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
460{
461 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
462}
463
464static const struct file_operations debug_fops = {
465 .open = pkt_debugfs_fops_open,
466 .read = seq_read,
467 .llseek = seq_lseek,
468 .release = single_release,
469 .owner = THIS_MODULE,
470};
471
472static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
473{
474 if (!pkt_debugfs_root)
475 return;
476 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
477 if (!pd->dfs_d_root)
478 return;
479
480 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
481 pd->dfs_d_root, pd, &debug_fops);
482}
483
484static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
485{
486 if (!pkt_debugfs_root)
487 return;
488 debugfs_remove(pd->dfs_f_info);
489 debugfs_remove(pd->dfs_d_root);
490 pd->dfs_f_info = NULL;
491 pd->dfs_d_root = NULL;
492}
493
494static void pkt_debugfs_init(void)
495{
496 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
497}
498
499static void pkt_debugfs_cleanup(void)
500{
501 debugfs_remove(pkt_debugfs_root);
502 pkt_debugfs_root = NULL;
503}
504
505/* ----------------------------------------------------------*/
506
507
508static void pkt_bio_finished(struct pktcdvd_device *pd)
509{
510 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
511 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
512 pkt_dbg(2, pd, "queue empty\n");
513 atomic_set(&pd->iosched.attention, 1);
514 wake_up(&pd->wqueue);
515 }
516}
517
518/*
519 * Allocate a packet_data struct
520 */
521static struct packet_data *pkt_alloc_packet_data(int frames)
522{
523 int i;
524 struct packet_data *pkt;
525
526 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
527 if (!pkt)
528 goto no_pkt;
529
530 pkt->frames = frames;
531 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
532 if (!pkt->w_bio)
533 goto no_bio;
534
535 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
536 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
537 if (!pkt->pages[i])
538 goto no_page;
539 }
540
541 spin_lock_init(&pkt->lock);
542 bio_list_init(&pkt->orig_bios);
543
544 for (i = 0; i < frames; i++) {
545 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
546 if (!bio)
547 goto no_rd_bio;
548
549 pkt->r_bios[i] = bio;
550 }
551
552 return pkt;
553
554no_rd_bio:
555 for (i = 0; i < frames; i++) {
556 struct bio *bio = pkt->r_bios[i];
557 if (bio)
558 bio_put(bio);
559 }
560
561no_page:
562 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
563 if (pkt->pages[i])
564 __free_page(pkt->pages[i]);
565 bio_put(pkt->w_bio);
566no_bio:
567 kfree(pkt);
568no_pkt:
569 return NULL;
570}
571
572/*
573 * Free a packet_data struct
574 */
575static void pkt_free_packet_data(struct packet_data *pkt)
576{
577 int i;
578
579 for (i = 0; i < pkt->frames; i++) {
580 struct bio *bio = pkt->r_bios[i];
581 if (bio)
582 bio_put(bio);
583 }
584 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
585 __free_page(pkt->pages[i]);
586 bio_put(pkt->w_bio);
587 kfree(pkt);
588}
589
590static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
591{
592 struct packet_data *pkt, *next;
593
594 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
595
596 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
597 pkt_free_packet_data(pkt);
598 }
599 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
600}
601
602static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
603{
604 struct packet_data *pkt;
605
606 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
607
608 while (nr_packets > 0) {
609 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
610 if (!pkt) {
611 pkt_shrink_pktlist(pd);
612 return 0;
613 }
614 pkt->id = nr_packets;
615 pkt->pd = pd;
616 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
617 nr_packets--;
618 }
619 return 1;
620}
621
622static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
623{
624 struct rb_node *n = rb_next(&node->rb_node);
625 if (!n)
626 return NULL;
627 return rb_entry(n, struct pkt_rb_node, rb_node);
628}
629
630static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
631{
632 rb_erase(&node->rb_node, &pd->bio_queue);
633 mempool_free(node, pd->rb_pool);
634 pd->bio_queue_size--;
635 BUG_ON(pd->bio_queue_size < 0);
636}
637
638/*
639 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
640 */
641static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
642{
643 struct rb_node *n = pd->bio_queue.rb_node;
644 struct rb_node *next;
645 struct pkt_rb_node *tmp;
646
647 if (!n) {
648 BUG_ON(pd->bio_queue_size > 0);
649 return NULL;
650 }
651
652 for (;;) {
653 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
654 if (s <= tmp->bio->bi_iter.bi_sector)
655 next = n->rb_left;
656 else
657 next = n->rb_right;
658 if (!next)
659 break;
660 n = next;
661 }
662
663 if (s > tmp->bio->bi_iter.bi_sector) {
664 tmp = pkt_rbtree_next(tmp);
665 if (!tmp)
666 return NULL;
667 }
668 BUG_ON(s > tmp->bio->bi_iter.bi_sector);
669 return tmp;
670}
671
672/*
673 * Insert a node into the pd->bio_queue rb tree.
674 */
675static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
676{
677 struct rb_node **p = &pd->bio_queue.rb_node;
678 struct rb_node *parent = NULL;
679 sector_t s = node->bio->bi_iter.bi_sector;
680 struct pkt_rb_node *tmp;
681
682 while (*p) {
683 parent = *p;
684 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
685 if (s < tmp->bio->bi_iter.bi_sector)
686 p = &(*p)->rb_left;
687 else
688 p = &(*p)->rb_right;
689 }
690 rb_link_node(&node->rb_node, parent, p);
691 rb_insert_color(&node->rb_node, &pd->bio_queue);
692 pd->bio_queue_size++;
693}
694
695/*
696 * Send a packet_command to the underlying block device and
697 * wait for completion.
698 */
699static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
700{
701 struct request_queue *q = bdev_get_queue(pd->bdev);
702 struct request *rq;
703 int ret = 0;
704
705 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
706 WRITE : READ, __GFP_WAIT);
707
708 if (cgc->buflen) {
709 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
710 __GFP_WAIT);
711 if (ret)
712 goto out;
713 }
714
715 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
716 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
717
718 rq->timeout = 60*HZ;
719 rq->cmd_type = REQ_TYPE_BLOCK_PC;
720 if (cgc->quiet)
721 rq->cmd_flags |= REQ_QUIET;
722
723 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
724 if (rq->errors)
725 ret = -EIO;
726out:
727 blk_put_request(rq);
728 return ret;
729}
730
731static const char *sense_key_string(__u8 index)
732{
733 static const char * const info[] = {
734 "No sense", "Recovered error", "Not ready",
735 "Medium error", "Hardware error", "Illegal request",
736 "Unit attention", "Data protect", "Blank check",
737 };
738
739 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
740}
741
742/*
743 * A generic sense dump / resolve mechanism should be implemented across
744 * all ATAPI + SCSI devices.
745 */
746static void pkt_dump_sense(struct pktcdvd_device *pd,
747 struct packet_command *cgc)
748{
749 struct request_sense *sense = cgc->sense;
750
751 if (sense)
752 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
753 CDROM_PACKET_SIZE, cgc->cmd,
754 sense->sense_key, sense->asc, sense->ascq,
755 sense_key_string(sense->sense_key));
756 else
757 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
758}
759
760/*
761 * flush the drive cache to media
762 */
763static int pkt_flush_cache(struct pktcdvd_device *pd)
764{
765 struct packet_command cgc;
766
767 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
768 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
769 cgc.quiet = 1;
770
771 /*
772 * the IMMED bit -- we default to not setting it, although that
773 * would allow a much faster close, this is safer
774 */
775#if 0
776 cgc.cmd[1] = 1 << 1;
777#endif
778 return pkt_generic_packet(pd, &cgc);
779}
780
781/*
782 * speed is given as the normal factor, e.g. 4 for 4x
783 */
784static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
785 unsigned write_speed, unsigned read_speed)
786{
787 struct packet_command cgc;
788 struct request_sense sense;
789 int ret;
790
791 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
792 cgc.sense = &sense;
793 cgc.cmd[0] = GPCMD_SET_SPEED;
794 cgc.cmd[2] = (read_speed >> 8) & 0xff;
795 cgc.cmd[3] = read_speed & 0xff;
796 cgc.cmd[4] = (write_speed >> 8) & 0xff;
797 cgc.cmd[5] = write_speed & 0xff;
798
799 if ((ret = pkt_generic_packet(pd, &cgc)))
800 pkt_dump_sense(pd, &cgc);
801
802 return ret;
803}
804
805/*
806 * Queue a bio for processing by the low-level CD device. Must be called
807 * from process context.
808 */
809static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
810{
811 spin_lock(&pd->iosched.lock);
812 if (bio_data_dir(bio) == READ)
813 bio_list_add(&pd->iosched.read_queue, bio);
814 else
815 bio_list_add(&pd->iosched.write_queue, bio);
816 spin_unlock(&pd->iosched.lock);
817
818 atomic_set(&pd->iosched.attention, 1);
819 wake_up(&pd->wqueue);
820}
821
822/*
823 * Process the queued read/write requests. This function handles special
824 * requirements for CDRW drives:
825 * - A cache flush command must be inserted before a read request if the
826 * previous request was a write.
827 * - Switching between reading and writing is slow, so don't do it more often
828 * than necessary.
829 * - Optimize for throughput at the expense of latency. This means that streaming
830 * writes will never be interrupted by a read, but if the drive has to seek
831 * before the next write, switch to reading instead if there are any pending
832 * read requests.
833 * - Set the read speed according to current usage pattern. When only reading
834 * from the device, it's best to use the highest possible read speed, but
835 * when switching often between reading and writing, it's better to have the
836 * same read and write speeds.
837 */
838static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
839{
840
841 if (atomic_read(&pd->iosched.attention) == 0)
842 return;
843 atomic_set(&pd->iosched.attention, 0);
844
845 for (;;) {
846 struct bio *bio;
847 int reads_queued, writes_queued;
848
849 spin_lock(&pd->iosched.lock);
850 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
851 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
852 spin_unlock(&pd->iosched.lock);
853
854 if (!reads_queued && !writes_queued)
855 break;
856
857 if (pd->iosched.writing) {
858 int need_write_seek = 1;
859 spin_lock(&pd->iosched.lock);
860 bio = bio_list_peek(&pd->iosched.write_queue);
861 spin_unlock(&pd->iosched.lock);
862 if (bio && (bio->bi_iter.bi_sector ==
863 pd->iosched.last_write))
864 need_write_seek = 0;
865 if (need_write_seek && reads_queued) {
866 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
867 pkt_dbg(2, pd, "write, waiting\n");
868 break;
869 }
870 pkt_flush_cache(pd);
871 pd->iosched.writing = 0;
872 }
873 } else {
874 if (!reads_queued && writes_queued) {
875 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
876 pkt_dbg(2, pd, "read, waiting\n");
877 break;
878 }
879 pd->iosched.writing = 1;
880 }
881 }
882
883 spin_lock(&pd->iosched.lock);
884 if (pd->iosched.writing)
885 bio = bio_list_pop(&pd->iosched.write_queue);
886 else
887 bio = bio_list_pop(&pd->iosched.read_queue);
888 spin_unlock(&pd->iosched.lock);
889
890 if (!bio)
891 continue;
892
893 if (bio_data_dir(bio) == READ)
894 pd->iosched.successive_reads +=
895 bio->bi_iter.bi_size >> 10;
896 else {
897 pd->iosched.successive_reads = 0;
898 pd->iosched.last_write = bio_end_sector(bio);
899 }
900 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
901 if (pd->read_speed == pd->write_speed) {
902 pd->read_speed = MAX_SPEED;
903 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
904 }
905 } else {
906 if (pd->read_speed != pd->write_speed) {
907 pd->read_speed = pd->write_speed;
908 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
909 }
910 }
911
912 atomic_inc(&pd->cdrw.pending_bios);
913 generic_make_request(bio);
914 }
915}
916
917/*
918 * Special care is needed if the underlying block device has a small
919 * max_phys_segments value.
920 */
921static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
922{
923 if ((pd->settings.size << 9) / CD_FRAMESIZE
924 <= queue_max_segments(q)) {
925 /*
926 * The cdrom device can handle one segment/frame
927 */
928 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
929 return 0;
930 } else if ((pd->settings.size << 9) / PAGE_SIZE
931 <= queue_max_segments(q)) {
932 /*
933 * We can handle this case at the expense of some extra memory
934 * copies during write operations
935 */
936 set_bit(PACKET_MERGE_SEGS, &pd->flags);
937 return 0;
938 } else {
939 pkt_err(pd, "cdrom max_phys_segments too small\n");
940 return -EIO;
941 }
942}
943
944/*
945 * Copy all data for this packet to pkt->pages[], so that
946 * a) The number of required segments for the write bio is minimized, which
947 * is necessary for some scsi controllers.
948 * b) The data can be used as cache to avoid read requests if we receive a
949 * new write request for the same zone.
950 */
951static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
952{
953 int f, p, offs;
954
955 /* Copy all data to pkt->pages[] */
956 p = 0;
957 offs = 0;
958 for (f = 0; f < pkt->frames; f++) {
959 if (bvec[f].bv_page != pkt->pages[p]) {
960 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
961 void *vto = page_address(pkt->pages[p]) + offs;
962 memcpy(vto, vfrom, CD_FRAMESIZE);
963 kunmap_atomic(vfrom);
964 bvec[f].bv_page = pkt->pages[p];
965 bvec[f].bv_offset = offs;
966 } else {
967 BUG_ON(bvec[f].bv_offset != offs);
968 }
969 offs += CD_FRAMESIZE;
970 if (offs >= PAGE_SIZE) {
971 offs = 0;
972 p++;
973 }
974 }
975}
976
977static void pkt_end_io_read(struct bio *bio, int err)
978{
979 struct packet_data *pkt = bio->bi_private;
980 struct pktcdvd_device *pd = pkt->pd;
981 BUG_ON(!pd);
982
983 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
984 bio, (unsigned long long)pkt->sector,
985 (unsigned long long)bio->bi_iter.bi_sector, err);
986
987 if (err)
988 atomic_inc(&pkt->io_errors);
989 if (atomic_dec_and_test(&pkt->io_wait)) {
990 atomic_inc(&pkt->run_sm);
991 wake_up(&pd->wqueue);
992 }
993 pkt_bio_finished(pd);
994}
995
996static void pkt_end_io_packet_write(struct bio *bio, int err)
997{
998 struct packet_data *pkt = bio->bi_private;
999 struct pktcdvd_device *pd = pkt->pd;
1000 BUG_ON(!pd);
1001
1002 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, err);
1003
1004 pd->stats.pkt_ended++;
1005
1006 pkt_bio_finished(pd);
1007 atomic_dec(&pkt->io_wait);
1008 atomic_inc(&pkt->run_sm);
1009 wake_up(&pd->wqueue);
1010}
1011
1012/*
1013 * Schedule reads for the holes in a packet
1014 */
1015static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1016{
1017 int frames_read = 0;
1018 struct bio *bio;
1019 int f;
1020 char written[PACKET_MAX_SIZE];
1021
1022 BUG_ON(bio_list_empty(&pkt->orig_bios));
1023
1024 atomic_set(&pkt->io_wait, 0);
1025 atomic_set(&pkt->io_errors, 0);
1026
1027 /*
1028 * Figure out which frames we need to read before we can write.
1029 */
1030 memset(written, 0, sizeof(written));
1031 spin_lock(&pkt->lock);
1032 bio_list_for_each(bio, &pkt->orig_bios) {
1033 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1034 (CD_FRAMESIZE >> 9);
1035 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1036 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1037 BUG_ON(first_frame < 0);
1038 BUG_ON(first_frame + num_frames > pkt->frames);
1039 for (f = first_frame; f < first_frame + num_frames; f++)
1040 written[f] = 1;
1041 }
1042 spin_unlock(&pkt->lock);
1043
1044 if (pkt->cache_valid) {
1045 pkt_dbg(2, pd, "zone %llx cached\n",
1046 (unsigned long long)pkt->sector);
1047 goto out_account;
1048 }
1049
1050 /*
1051 * Schedule reads for missing parts of the packet.
1052 */
1053 for (f = 0; f < pkt->frames; f++) {
1054 int p, offset;
1055
1056 if (written[f])
1057 continue;
1058
1059 bio = pkt->r_bios[f];
1060 bio_reset(bio);
1061 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1062 bio->bi_bdev = pd->bdev;
1063 bio->bi_end_io = pkt_end_io_read;
1064 bio->bi_private = pkt;
1065
1066 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1067 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1068 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1069 f, pkt->pages[p], offset);
1070 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1071 BUG();
1072
1073 atomic_inc(&pkt->io_wait);
1074 bio->bi_rw = READ;
1075 pkt_queue_bio(pd, bio);
1076 frames_read++;
1077 }
1078
1079out_account:
1080 pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1081 frames_read, (unsigned long long)pkt->sector);
1082 pd->stats.pkt_started++;
1083 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1084}
1085
1086/*
1087 * Find a packet matching zone, or the least recently used packet if
1088 * there is no match.
1089 */
1090static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1091{
1092 struct packet_data *pkt;
1093
1094 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1095 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1096 list_del_init(&pkt->list);
1097 if (pkt->sector != zone)
1098 pkt->cache_valid = 0;
1099 return pkt;
1100 }
1101 }
1102 BUG();
1103 return NULL;
1104}
1105
1106static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1107{
1108 if (pkt->cache_valid) {
1109 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1110 } else {
1111 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1112 }
1113}
1114
1115/*
1116 * recover a failed write, query for relocation if possible
1117 *
1118 * returns 1 if recovery is possible, or 0 if not
1119 *
1120 */
1121static int pkt_start_recovery(struct packet_data *pkt)
1122{
1123 /*
1124 * FIXME. We need help from the file system to implement
1125 * recovery handling.
1126 */
1127 return 0;
1128#if 0
1129 struct request *rq = pkt->rq;
1130 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1131 struct block_device *pkt_bdev;
1132 struct super_block *sb = NULL;
1133 unsigned long old_block, new_block;
1134 sector_t new_sector;
1135
1136 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1137 if (pkt_bdev) {
1138 sb = get_super(pkt_bdev);
1139 bdput(pkt_bdev);
1140 }
1141
1142 if (!sb)
1143 return 0;
1144
1145 if (!sb->s_op->relocate_blocks)
1146 goto out;
1147
1148 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1149 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1150 goto out;
1151
1152 new_sector = new_block * (CD_FRAMESIZE >> 9);
1153 pkt->sector = new_sector;
1154
1155 bio_reset(pkt->bio);
1156 pkt->bio->bi_bdev = pd->bdev;
1157 pkt->bio->bi_rw = REQ_WRITE;
1158 pkt->bio->bi_iter.bi_sector = new_sector;
1159 pkt->bio->bi_iter.bi_size = pkt->frames * CD_FRAMESIZE;
1160 pkt->bio->bi_vcnt = pkt->frames;
1161
1162 pkt->bio->bi_end_io = pkt_end_io_packet_write;
1163 pkt->bio->bi_private = pkt;
1164
1165 drop_super(sb);
1166 return 1;
1167
1168out:
1169 drop_super(sb);
1170 return 0;
1171#endif
1172}
1173
1174static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1175{
1176#if PACKET_DEBUG > 1
1177 static const char *state_name[] = {
1178 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1179 };
1180 enum packet_data_state old_state = pkt->state;
1181 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1182 pkt->id, (unsigned long long)pkt->sector,
1183 state_name[old_state], state_name[state]);
1184#endif
1185 pkt->state = state;
1186}
1187
1188/*
1189 * Scan the work queue to see if we can start a new packet.
1190 * returns non-zero if any work was done.
1191 */
1192static int pkt_handle_queue(struct pktcdvd_device *pd)
1193{
1194 struct packet_data *pkt, *p;
1195 struct bio *bio = NULL;
1196 sector_t zone = 0; /* Suppress gcc warning */
1197 struct pkt_rb_node *node, *first_node;
1198 struct rb_node *n;
1199 int wakeup;
1200
1201 atomic_set(&pd->scan_queue, 0);
1202
1203 if (list_empty(&pd->cdrw.pkt_free_list)) {
1204 pkt_dbg(2, pd, "no pkt\n");
1205 return 0;
1206 }
1207
1208 /*
1209 * Try to find a zone we are not already working on.
1210 */
1211 spin_lock(&pd->lock);
1212 first_node = pkt_rbtree_find(pd, pd->current_sector);
1213 if (!first_node) {
1214 n = rb_first(&pd->bio_queue);
1215 if (n)
1216 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1217 }
1218 node = first_node;
1219 while (node) {
1220 bio = node->bio;
1221 zone = get_zone(bio->bi_iter.bi_sector, pd);
1222 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1223 if (p->sector == zone) {
1224 bio = NULL;
1225 goto try_next_bio;
1226 }
1227 }
1228 break;
1229try_next_bio:
1230 node = pkt_rbtree_next(node);
1231 if (!node) {
1232 n = rb_first(&pd->bio_queue);
1233 if (n)
1234 node = rb_entry(n, struct pkt_rb_node, rb_node);
1235 }
1236 if (node == first_node)
1237 node = NULL;
1238 }
1239 spin_unlock(&pd->lock);
1240 if (!bio) {
1241 pkt_dbg(2, pd, "no bio\n");
1242 return 0;
1243 }
1244
1245 pkt = pkt_get_packet_data(pd, zone);
1246
1247 pd->current_sector = zone + pd->settings.size;
1248 pkt->sector = zone;
1249 BUG_ON(pkt->frames != pd->settings.size >> 2);
1250 pkt->write_size = 0;
1251
1252 /*
1253 * Scan work queue for bios in the same zone and link them
1254 * to this packet.
1255 */
1256 spin_lock(&pd->lock);
1257 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1258 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1259 bio = node->bio;
1260 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1261 get_zone(bio->bi_iter.bi_sector, pd));
1262 if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1263 break;
1264 pkt_rbtree_erase(pd, node);
1265 spin_lock(&pkt->lock);
1266 bio_list_add(&pkt->orig_bios, bio);
1267 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1268 spin_unlock(&pkt->lock);
1269 }
1270 /* check write congestion marks, and if bio_queue_size is
1271 below, wake up any waiters */
1272 wakeup = (pd->write_congestion_on > 0
1273 && pd->bio_queue_size <= pd->write_congestion_off);
1274 spin_unlock(&pd->lock);
1275 if (wakeup) {
1276 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1277 BLK_RW_ASYNC);
1278 }
1279
1280 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1281 pkt_set_state(pkt, PACKET_WAITING_STATE);
1282 atomic_set(&pkt->run_sm, 1);
1283
1284 spin_lock(&pd->cdrw.active_list_lock);
1285 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1286 spin_unlock(&pd->cdrw.active_list_lock);
1287
1288 return 1;
1289}
1290
1291/*
1292 * Assemble a bio to write one packet and queue the bio for processing
1293 * by the underlying block device.
1294 */
1295static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1296{
1297 int f;
1298 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1299
1300 bio_reset(pkt->w_bio);
1301 pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1302 pkt->w_bio->bi_bdev = pd->bdev;
1303 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1304 pkt->w_bio->bi_private = pkt;
1305
1306 /* XXX: locking? */
1307 for (f = 0; f < pkt->frames; f++) {
1308 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1309 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1310 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1311 BUG();
1312 }
1313 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1314
1315 /*
1316 * Fill-in bvec with data from orig_bios.
1317 */
1318 spin_lock(&pkt->lock);
1319 bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1320
1321 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1322 spin_unlock(&pkt->lock);
1323
1324 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1325 pkt->write_size, (unsigned long long)pkt->sector);
1326
1327 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1328 pkt_make_local_copy(pkt, bvec);
1329 pkt->cache_valid = 1;
1330 } else {
1331 pkt->cache_valid = 0;
1332 }
1333
1334 /* Start the write request */
1335 atomic_set(&pkt->io_wait, 1);
1336 pkt->w_bio->bi_rw = WRITE;
1337 pkt_queue_bio(pd, pkt->w_bio);
1338}
1339
1340static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1341{
1342 struct bio *bio;
1343
1344 if (!uptodate)
1345 pkt->cache_valid = 0;
1346
1347 /* Finish all bios corresponding to this packet */
1348 while ((bio = bio_list_pop(&pkt->orig_bios)))
1349 bio_endio(bio, uptodate ? 0 : -EIO);
1350}
1351
1352static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1353{
1354 int uptodate;
1355
1356 pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1357
1358 for (;;) {
1359 switch (pkt->state) {
1360 case PACKET_WAITING_STATE:
1361 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1362 return;
1363
1364 pkt->sleep_time = 0;
1365 pkt_gather_data(pd, pkt);
1366 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1367 break;
1368
1369 case PACKET_READ_WAIT_STATE:
1370 if (atomic_read(&pkt->io_wait) > 0)
1371 return;
1372
1373 if (atomic_read(&pkt->io_errors) > 0) {
1374 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1375 } else {
1376 pkt_start_write(pd, pkt);
1377 }
1378 break;
1379
1380 case PACKET_WRITE_WAIT_STATE:
1381 if (atomic_read(&pkt->io_wait) > 0)
1382 return;
1383
1384 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1385 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1386 } else {
1387 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1388 }
1389 break;
1390
1391 case PACKET_RECOVERY_STATE:
1392 if (pkt_start_recovery(pkt)) {
1393 pkt_start_write(pd, pkt);
1394 } else {
1395 pkt_dbg(2, pd, "No recovery possible\n");
1396 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1397 }
1398 break;
1399
1400 case PACKET_FINISHED_STATE:
1401 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1402 pkt_finish_packet(pkt, uptodate);
1403 return;
1404
1405 default:
1406 BUG();
1407 break;
1408 }
1409 }
1410}
1411
1412static void pkt_handle_packets(struct pktcdvd_device *pd)
1413{
1414 struct packet_data *pkt, *next;
1415
1416 /*
1417 * Run state machine for active packets
1418 */
1419 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1420 if (atomic_read(&pkt->run_sm) > 0) {
1421 atomic_set(&pkt->run_sm, 0);
1422 pkt_run_state_machine(pd, pkt);
1423 }
1424 }
1425
1426 /*
1427 * Move no longer active packets to the free list
1428 */
1429 spin_lock(&pd->cdrw.active_list_lock);
1430 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1431 if (pkt->state == PACKET_FINISHED_STATE) {
1432 list_del(&pkt->list);
1433 pkt_put_packet_data(pd, pkt);
1434 pkt_set_state(pkt, PACKET_IDLE_STATE);
1435 atomic_set(&pd->scan_queue, 1);
1436 }
1437 }
1438 spin_unlock(&pd->cdrw.active_list_lock);
1439}
1440
1441static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1442{
1443 struct packet_data *pkt;
1444 int i;
1445
1446 for (i = 0; i < PACKET_NUM_STATES; i++)
1447 states[i] = 0;
1448
1449 spin_lock(&pd->cdrw.active_list_lock);
1450 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1451 states[pkt->state]++;
1452 }
1453 spin_unlock(&pd->cdrw.active_list_lock);
1454}
1455
1456/*
1457 * kcdrwd is woken up when writes have been queued for one of our
1458 * registered devices
1459 */
1460static int kcdrwd(void *foobar)
1461{
1462 struct pktcdvd_device *pd = foobar;
1463 struct packet_data *pkt;
1464 long min_sleep_time, residue;
1465
1466 set_user_nice(current, -20);
1467 set_freezable();
1468
1469 for (;;) {
1470 DECLARE_WAITQUEUE(wait, current);
1471
1472 /*
1473 * Wait until there is something to do
1474 */
1475 add_wait_queue(&pd->wqueue, &wait);
1476 for (;;) {
1477 set_current_state(TASK_INTERRUPTIBLE);
1478
1479 /* Check if we need to run pkt_handle_queue */
1480 if (atomic_read(&pd->scan_queue) > 0)
1481 goto work_to_do;
1482
1483 /* Check if we need to run the state machine for some packet */
1484 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1485 if (atomic_read(&pkt->run_sm) > 0)
1486 goto work_to_do;
1487 }
1488
1489 /* Check if we need to process the iosched queues */
1490 if (atomic_read(&pd->iosched.attention) != 0)
1491 goto work_to_do;
1492
1493 /* Otherwise, go to sleep */
1494 if (PACKET_DEBUG > 1) {
1495 int states[PACKET_NUM_STATES];
1496 pkt_count_states(pd, states);
1497 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1498 states[0], states[1], states[2],
1499 states[3], states[4], states[5]);
1500 }
1501
1502 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1503 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1504 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1505 min_sleep_time = pkt->sleep_time;
1506 }
1507
1508 pkt_dbg(2, pd, "sleeping\n");
1509 residue = schedule_timeout(min_sleep_time);
1510 pkt_dbg(2, pd, "wake up\n");
1511
1512 /* make swsusp happy with our thread */
1513 try_to_freeze();
1514
1515 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1516 if (!pkt->sleep_time)
1517 continue;
1518 pkt->sleep_time -= min_sleep_time - residue;
1519 if (pkt->sleep_time <= 0) {
1520 pkt->sleep_time = 0;
1521 atomic_inc(&pkt->run_sm);
1522 }
1523 }
1524
1525 if (kthread_should_stop())
1526 break;
1527 }
1528work_to_do:
1529 set_current_state(TASK_RUNNING);
1530 remove_wait_queue(&pd->wqueue, &wait);
1531
1532 if (kthread_should_stop())
1533 break;
1534
1535 /*
1536 * if pkt_handle_queue returns true, we can queue
1537 * another request.
1538 */
1539 while (pkt_handle_queue(pd))
1540 ;
1541
1542 /*
1543 * Handle packet state machine
1544 */
1545 pkt_handle_packets(pd);
1546
1547 /*
1548 * Handle iosched queues
1549 */
1550 pkt_iosched_process_queue(pd);
1551 }
1552
1553 return 0;
1554}
1555
1556static void pkt_print_settings(struct pktcdvd_device *pd)
1557{
1558 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1559 pd->settings.fp ? "Fixed" : "Variable",
1560 pd->settings.size >> 2,
1561 pd->settings.block_mode == 8 ? '1' : '2');
1562}
1563
1564static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1565{
1566 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1567
1568 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1569 cgc->cmd[2] = page_code | (page_control << 6);
1570 cgc->cmd[7] = cgc->buflen >> 8;
1571 cgc->cmd[8] = cgc->buflen & 0xff;
1572 cgc->data_direction = CGC_DATA_READ;
1573 return pkt_generic_packet(pd, cgc);
1574}
1575
1576static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1577{
1578 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1579 memset(cgc->buffer, 0, 2);
1580 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1581 cgc->cmd[1] = 0x10; /* PF */
1582 cgc->cmd[7] = cgc->buflen >> 8;
1583 cgc->cmd[8] = cgc->buflen & 0xff;
1584 cgc->data_direction = CGC_DATA_WRITE;
1585 return pkt_generic_packet(pd, cgc);
1586}
1587
1588static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1589{
1590 struct packet_command cgc;
1591 int ret;
1592
1593 /* set up command and get the disc info */
1594 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1595 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1596 cgc.cmd[8] = cgc.buflen = 2;
1597 cgc.quiet = 1;
1598
1599 if ((ret = pkt_generic_packet(pd, &cgc)))
1600 return ret;
1601
1602 /* not all drives have the same disc_info length, so requeue
1603 * packet with the length the drive tells us it can supply
1604 */
1605 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1606 sizeof(di->disc_information_length);
1607
1608 if (cgc.buflen > sizeof(disc_information))
1609 cgc.buflen = sizeof(disc_information);
1610
1611 cgc.cmd[8] = cgc.buflen;
1612 return pkt_generic_packet(pd, &cgc);
1613}
1614
1615static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1616{
1617 struct packet_command cgc;
1618 int ret;
1619
1620 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1621 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1622 cgc.cmd[1] = type & 3;
1623 cgc.cmd[4] = (track & 0xff00) >> 8;
1624 cgc.cmd[5] = track & 0xff;
1625 cgc.cmd[8] = 8;
1626 cgc.quiet = 1;
1627
1628 if ((ret = pkt_generic_packet(pd, &cgc)))
1629 return ret;
1630
1631 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1632 sizeof(ti->track_information_length);
1633
1634 if (cgc.buflen > sizeof(track_information))
1635 cgc.buflen = sizeof(track_information);
1636
1637 cgc.cmd[8] = cgc.buflen;
1638 return pkt_generic_packet(pd, &cgc);
1639}
1640
1641static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1642 long *last_written)
1643{
1644 disc_information di;
1645 track_information ti;
1646 __u32 last_track;
1647 int ret = -1;
1648
1649 if ((ret = pkt_get_disc_info(pd, &di)))
1650 return ret;
1651
1652 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1653 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1654 return ret;
1655
1656 /* if this track is blank, try the previous. */
1657 if (ti.blank) {
1658 last_track--;
1659 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1660 return ret;
1661 }
1662
1663 /* if last recorded field is valid, return it. */
1664 if (ti.lra_v) {
1665 *last_written = be32_to_cpu(ti.last_rec_address);
1666 } else {
1667 /* make it up instead */
1668 *last_written = be32_to_cpu(ti.track_start) +
1669 be32_to_cpu(ti.track_size);
1670 if (ti.free_blocks)
1671 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1672 }
1673 return 0;
1674}
1675
1676/*
1677 * write mode select package based on pd->settings
1678 */
1679static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1680{
1681 struct packet_command cgc;
1682 struct request_sense sense;
1683 write_param_page *wp;
1684 char buffer[128];
1685 int ret, size;
1686
1687 /* doesn't apply to DVD+RW or DVD-RAM */
1688 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1689 return 0;
1690
1691 memset(buffer, 0, sizeof(buffer));
1692 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1693 cgc.sense = &sense;
1694 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1695 pkt_dump_sense(pd, &cgc);
1696 return ret;
1697 }
1698
1699 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1700 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1701 if (size > sizeof(buffer))
1702 size = sizeof(buffer);
1703
1704 /*
1705 * now get it all
1706 */
1707 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1708 cgc.sense = &sense;
1709 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1710 pkt_dump_sense(pd, &cgc);
1711 return ret;
1712 }
1713
1714 /*
1715 * write page is offset header + block descriptor length
1716 */
1717 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1718
1719 wp->fp = pd->settings.fp;
1720 wp->track_mode = pd->settings.track_mode;
1721 wp->write_type = pd->settings.write_type;
1722 wp->data_block_type = pd->settings.block_mode;
1723
1724 wp->multi_session = 0;
1725
1726#ifdef PACKET_USE_LS
1727 wp->link_size = 7;
1728 wp->ls_v = 1;
1729#endif
1730
1731 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1732 wp->session_format = 0;
1733 wp->subhdr2 = 0x20;
1734 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1735 wp->session_format = 0x20;
1736 wp->subhdr2 = 8;
1737#if 0
1738 wp->mcn[0] = 0x80;
1739 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1740#endif
1741 } else {
1742 /*
1743 * paranoia
1744 */
1745 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1746 return 1;
1747 }
1748 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1749
1750 cgc.buflen = cgc.cmd[8] = size;
1751 if ((ret = pkt_mode_select(pd, &cgc))) {
1752 pkt_dump_sense(pd, &cgc);
1753 return ret;
1754 }
1755
1756 pkt_print_settings(pd);
1757 return 0;
1758}
1759
1760/*
1761 * 1 -- we can write to this track, 0 -- we can't
1762 */
1763static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1764{
1765 switch (pd->mmc3_profile) {
1766 case 0x1a: /* DVD+RW */
1767 case 0x12: /* DVD-RAM */
1768 /* The track is always writable on DVD+RW/DVD-RAM */
1769 return 1;
1770 default:
1771 break;
1772 }
1773
1774 if (!ti->packet || !ti->fp)
1775 return 0;
1776
1777 /*
1778 * "good" settings as per Mt Fuji.
1779 */
1780 if (ti->rt == 0 && ti->blank == 0)
1781 return 1;
1782
1783 if (ti->rt == 0 && ti->blank == 1)
1784 return 1;
1785
1786 if (ti->rt == 1 && ti->blank == 0)
1787 return 1;
1788
1789 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1790 return 0;
1791}
1792
1793/*
1794 * 1 -- we can write to this disc, 0 -- we can't
1795 */
1796static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1797{
1798 switch (pd->mmc3_profile) {
1799 case 0x0a: /* CD-RW */
1800 case 0xffff: /* MMC3 not supported */
1801 break;
1802 case 0x1a: /* DVD+RW */
1803 case 0x13: /* DVD-RW */
1804 case 0x12: /* DVD-RAM */
1805 return 1;
1806 default:
1807 pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1808 pd->mmc3_profile);
1809 return 0;
1810 }
1811
1812 /*
1813 * for disc type 0xff we should probably reserve a new track.
1814 * but i'm not sure, should we leave this to user apps? probably.
1815 */
1816 if (di->disc_type == 0xff) {
1817 pkt_notice(pd, "unknown disc - no track?\n");
1818 return 0;
1819 }
1820
1821 if (di->disc_type != 0x20 && di->disc_type != 0) {
1822 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1823 return 0;
1824 }
1825
1826 if (di->erasable == 0) {
1827 pkt_notice(pd, "disc not erasable\n");
1828 return 0;
1829 }
1830
1831 if (di->border_status == PACKET_SESSION_RESERVED) {
1832 pkt_err(pd, "can't write to last track (reserved)\n");
1833 return 0;
1834 }
1835
1836 return 1;
1837}
1838
1839static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1840{
1841 struct packet_command cgc;
1842 unsigned char buf[12];
1843 disc_information di;
1844 track_information ti;
1845 int ret, track;
1846
1847 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1848 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1849 cgc.cmd[8] = 8;
1850 ret = pkt_generic_packet(pd, &cgc);
1851 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1852
1853 memset(&di, 0, sizeof(disc_information));
1854 memset(&ti, 0, sizeof(track_information));
1855
1856 if ((ret = pkt_get_disc_info(pd, &di))) {
1857 pkt_err(pd, "failed get_disc\n");
1858 return ret;
1859 }
1860
1861 if (!pkt_writable_disc(pd, &di))
1862 return -EROFS;
1863
1864 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1865
1866 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1867 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1868 pkt_err(pd, "failed get_track\n");
1869 return ret;
1870 }
1871
1872 if (!pkt_writable_track(pd, &ti)) {
1873 pkt_err(pd, "can't write to this track\n");
1874 return -EROFS;
1875 }
1876
1877 /*
1878 * we keep packet size in 512 byte units, makes it easier to
1879 * deal with request calculations.
1880 */
1881 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1882 if (pd->settings.size == 0) {
1883 pkt_notice(pd, "detected zero packet size!\n");
1884 return -ENXIO;
1885 }
1886 if (pd->settings.size > PACKET_MAX_SECTORS) {
1887 pkt_err(pd, "packet size is too big\n");
1888 return -EROFS;
1889 }
1890 pd->settings.fp = ti.fp;
1891 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1892
1893 if (ti.nwa_v) {
1894 pd->nwa = be32_to_cpu(ti.next_writable);
1895 set_bit(PACKET_NWA_VALID, &pd->flags);
1896 }
1897
1898 /*
1899 * in theory we could use lra on -RW media as well and just zero
1900 * blocks that haven't been written yet, but in practice that
1901 * is just a no-go. we'll use that for -R, naturally.
1902 */
1903 if (ti.lra_v) {
1904 pd->lra = be32_to_cpu(ti.last_rec_address);
1905 set_bit(PACKET_LRA_VALID, &pd->flags);
1906 } else {
1907 pd->lra = 0xffffffff;
1908 set_bit(PACKET_LRA_VALID, &pd->flags);
1909 }
1910
1911 /*
1912 * fine for now
1913 */
1914 pd->settings.link_loss = 7;
1915 pd->settings.write_type = 0; /* packet */
1916 pd->settings.track_mode = ti.track_mode;
1917
1918 /*
1919 * mode1 or mode2 disc
1920 */
1921 switch (ti.data_mode) {
1922 case PACKET_MODE1:
1923 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1924 break;
1925 case PACKET_MODE2:
1926 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1927 break;
1928 default:
1929 pkt_err(pd, "unknown data mode\n");
1930 return -EROFS;
1931 }
1932 return 0;
1933}
1934
1935/*
1936 * enable/disable write caching on drive
1937 */
1938static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1939 int set)
1940{
1941 struct packet_command cgc;
1942 struct request_sense sense;
1943 unsigned char buf[64];
1944 int ret;
1945
1946 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1947 cgc.sense = &sense;
1948 cgc.buflen = pd->mode_offset + 12;
1949
1950 /*
1951 * caching mode page might not be there, so quiet this command
1952 */
1953 cgc.quiet = 1;
1954
1955 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1956 return ret;
1957
1958 buf[pd->mode_offset + 10] |= (!!set << 2);
1959
1960 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1961 ret = pkt_mode_select(pd, &cgc);
1962 if (ret) {
1963 pkt_err(pd, "write caching control failed\n");
1964 pkt_dump_sense(pd, &cgc);
1965 } else if (!ret && set)
1966 pkt_notice(pd, "enabled write caching\n");
1967 return ret;
1968}
1969
1970static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1971{
1972 struct packet_command cgc;
1973
1974 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1975 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1976 cgc.cmd[4] = lockflag ? 1 : 0;
1977 return pkt_generic_packet(pd, &cgc);
1978}
1979
1980/*
1981 * Returns drive maximum write speed
1982 */
1983static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1984 unsigned *write_speed)
1985{
1986 struct packet_command cgc;
1987 struct request_sense sense;
1988 unsigned char buf[256+18];
1989 unsigned char *cap_buf;
1990 int ret, offset;
1991
1992 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1993 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1994 cgc.sense = &sense;
1995
1996 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1997 if (ret) {
1998 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1999 sizeof(struct mode_page_header);
2000 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2001 if (ret) {
2002 pkt_dump_sense(pd, &cgc);
2003 return ret;
2004 }
2005 }
2006
2007 offset = 20; /* Obsoleted field, used by older drives */
2008 if (cap_buf[1] >= 28)
2009 offset = 28; /* Current write speed selected */
2010 if (cap_buf[1] >= 30) {
2011 /* If the drive reports at least one "Logical Unit Write
2012 * Speed Performance Descriptor Block", use the information
2013 * in the first block. (contains the highest speed)
2014 */
2015 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2016 if (num_spdb > 0)
2017 offset = 34;
2018 }
2019
2020 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2021 return 0;
2022}
2023
2024/* These tables from cdrecord - I don't have orange book */
2025/* standard speed CD-RW (1-4x) */
2026static char clv_to_speed[16] = {
2027 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2028 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2029};
2030/* high speed CD-RW (-10x) */
2031static char hs_clv_to_speed[16] = {
2032 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2033 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2034};
2035/* ultra high speed CD-RW */
2036static char us_clv_to_speed[16] = {
2037 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2038 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2039};
2040
2041/*
2042 * reads the maximum media speed from ATIP
2043 */
2044static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2045 unsigned *speed)
2046{
2047 struct packet_command cgc;
2048 struct request_sense sense;
2049 unsigned char buf[64];
2050 unsigned int size, st, sp;
2051 int ret;
2052
2053 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2054 cgc.sense = &sense;
2055 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2056 cgc.cmd[1] = 2;
2057 cgc.cmd[2] = 4; /* READ ATIP */
2058 cgc.cmd[8] = 2;
2059 ret = pkt_generic_packet(pd, &cgc);
2060 if (ret) {
2061 pkt_dump_sense(pd, &cgc);
2062 return ret;
2063 }
2064 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2065 if (size > sizeof(buf))
2066 size = sizeof(buf);
2067
2068 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2069 cgc.sense = &sense;
2070 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2071 cgc.cmd[1] = 2;
2072 cgc.cmd[2] = 4;
2073 cgc.cmd[8] = size;
2074 ret = pkt_generic_packet(pd, &cgc);
2075 if (ret) {
2076 pkt_dump_sense(pd, &cgc);
2077 return ret;
2078 }
2079
2080 if (!(buf[6] & 0x40)) {
2081 pkt_notice(pd, "disc type is not CD-RW\n");
2082 return 1;
2083 }
2084 if (!(buf[6] & 0x4)) {
2085 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2086 return 1;
2087 }
2088
2089 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2090
2091 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2092
2093 /* Info from cdrecord */
2094 switch (st) {
2095 case 0: /* standard speed */
2096 *speed = clv_to_speed[sp];
2097 break;
2098 case 1: /* high speed */
2099 *speed = hs_clv_to_speed[sp];
2100 break;
2101 case 2: /* ultra high speed */
2102 *speed = us_clv_to_speed[sp];
2103 break;
2104 default:
2105 pkt_notice(pd, "unknown disc sub-type %d\n", st);
2106 return 1;
2107 }
2108 if (*speed) {
2109 pkt_info(pd, "maximum media speed: %d\n", *speed);
2110 return 0;
2111 } else {
2112 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2113 return 1;
2114 }
2115}
2116
2117static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2118{
2119 struct packet_command cgc;
2120 struct request_sense sense;
2121 int ret;
2122
2123 pkt_dbg(2, pd, "Performing OPC\n");
2124
2125 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2126 cgc.sense = &sense;
2127 cgc.timeout = 60*HZ;
2128 cgc.cmd[0] = GPCMD_SEND_OPC;
2129 cgc.cmd[1] = 1;
2130 if ((ret = pkt_generic_packet(pd, &cgc)))
2131 pkt_dump_sense(pd, &cgc);
2132 return ret;
2133}
2134
2135static int pkt_open_write(struct pktcdvd_device *pd)
2136{
2137 int ret;
2138 unsigned int write_speed, media_write_speed, read_speed;
2139
2140 if ((ret = pkt_probe_settings(pd))) {
2141 pkt_dbg(2, pd, "failed probe\n");
2142 return ret;
2143 }
2144
2145 if ((ret = pkt_set_write_settings(pd))) {
2146 pkt_dbg(1, pd, "failed saving write settings\n");
2147 return -EIO;
2148 }
2149
2150 pkt_write_caching(pd, USE_WCACHING);
2151
2152 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2153 write_speed = 16 * 177;
2154 switch (pd->mmc3_profile) {
2155 case 0x13: /* DVD-RW */
2156 case 0x1a: /* DVD+RW */
2157 case 0x12: /* DVD-RAM */
2158 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2159 break;
2160 default:
2161 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2162 media_write_speed = 16;
2163 write_speed = min(write_speed, media_write_speed * 177);
2164 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2165 break;
2166 }
2167 read_speed = write_speed;
2168
2169 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2170 pkt_dbg(1, pd, "couldn't set write speed\n");
2171 return -EIO;
2172 }
2173 pd->write_speed = write_speed;
2174 pd->read_speed = read_speed;
2175
2176 if ((ret = pkt_perform_opc(pd))) {
2177 pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2178 }
2179
2180 return 0;
2181}
2182
2183/*
2184 * called at open time.
2185 */
2186static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2187{
2188 int ret;
2189 long lba;
2190 struct request_queue *q;
2191
2192 /*
2193 * We need to re-open the cdrom device without O_NONBLOCK to be able
2194 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2195 * so bdget() can't fail.
2196 */
2197 bdget(pd->bdev->bd_dev);
2198 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2199 goto out;
2200
2201 if ((ret = pkt_get_last_written(pd, &lba))) {
2202 pkt_err(pd, "pkt_get_last_written failed\n");
2203 goto out_putdev;
2204 }
2205
2206 set_capacity(pd->disk, lba << 2);
2207 set_capacity(pd->bdev->bd_disk, lba << 2);
2208 bd_set_size(pd->bdev, (loff_t)lba << 11);
2209
2210 q = bdev_get_queue(pd->bdev);
2211 if (write) {
2212 if ((ret = pkt_open_write(pd)))
2213 goto out_putdev;
2214 /*
2215 * Some CDRW drives can not handle writes larger than one packet,
2216 * even if the size is a multiple of the packet size.
2217 */
2218 spin_lock_irq(q->queue_lock);
2219 blk_queue_max_hw_sectors(q, pd->settings.size);
2220 spin_unlock_irq(q->queue_lock);
2221 set_bit(PACKET_WRITABLE, &pd->flags);
2222 } else {
2223 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2224 clear_bit(PACKET_WRITABLE, &pd->flags);
2225 }
2226
2227 if ((ret = pkt_set_segment_merging(pd, q)))
2228 goto out_putdev;
2229
2230 if (write) {
2231 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2232 pkt_err(pd, "not enough memory for buffers\n");
2233 ret = -ENOMEM;
2234 goto out_putdev;
2235 }
2236 pkt_info(pd, "%lukB available on disc\n", lba << 1);
2237 }
2238
2239 return 0;
2240
2241out_putdev:
2242 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2243out:
2244 return ret;
2245}
2246
2247/*
2248 * called when the device is closed. makes sure that the device flushes
2249 * the internal cache before we close.
2250 */
2251static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2252{
2253 if (flush && pkt_flush_cache(pd))
2254 pkt_dbg(1, pd, "not flushing cache\n");
2255
2256 pkt_lock_door(pd, 0);
2257
2258 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2259 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2260
2261 pkt_shrink_pktlist(pd);
2262}
2263
2264static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2265{
2266 if (dev_minor >= MAX_WRITERS)
2267 return NULL;
2268 return pkt_devs[dev_minor];
2269}
2270
2271static int pkt_open(struct block_device *bdev, fmode_t mode)
2272{
2273 struct pktcdvd_device *pd = NULL;
2274 int ret;
2275
2276 mutex_lock(&pktcdvd_mutex);
2277 mutex_lock(&ctl_mutex);
2278 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2279 if (!pd) {
2280 ret = -ENODEV;
2281 goto out;
2282 }
2283 BUG_ON(pd->refcnt < 0);
2284
2285 pd->refcnt++;
2286 if (pd->refcnt > 1) {
2287 if ((mode & FMODE_WRITE) &&
2288 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2289 ret = -EBUSY;
2290 goto out_dec;
2291 }
2292 } else {
2293 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2294 if (ret)
2295 goto out_dec;
2296 /*
2297 * needed here as well, since ext2 (among others) may change
2298 * the blocksize at mount time
2299 */
2300 set_blocksize(bdev, CD_FRAMESIZE);
2301 }
2302
2303 mutex_unlock(&ctl_mutex);
2304 mutex_unlock(&pktcdvd_mutex);
2305 return 0;
2306
2307out_dec:
2308 pd->refcnt--;
2309out:
2310 mutex_unlock(&ctl_mutex);
2311 mutex_unlock(&pktcdvd_mutex);
2312 return ret;
2313}
2314
2315static void pkt_close(struct gendisk *disk, fmode_t mode)
2316{
2317 struct pktcdvd_device *pd = disk->private_data;
2318
2319 mutex_lock(&pktcdvd_mutex);
2320 mutex_lock(&ctl_mutex);
2321 pd->refcnt--;
2322 BUG_ON(pd->refcnt < 0);
2323 if (pd->refcnt == 0) {
2324 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2325 pkt_release_dev(pd, flush);
2326 }
2327 mutex_unlock(&ctl_mutex);
2328 mutex_unlock(&pktcdvd_mutex);
2329}
2330
2331
2332static void pkt_end_io_read_cloned(struct bio *bio, int err)
2333{
2334 struct packet_stacked_data *psd = bio->bi_private;
2335 struct pktcdvd_device *pd = psd->pd;
2336
2337 bio_put(bio);
2338 bio_endio(psd->bio, err);
2339 mempool_free(psd, psd_pool);
2340 pkt_bio_finished(pd);
2341}
2342
2343static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2344{
2345 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2346 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2347
2348 psd->pd = pd;
2349 psd->bio = bio;
2350 cloned_bio->bi_bdev = pd->bdev;
2351 cloned_bio->bi_private = psd;
2352 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2353 pd->stats.secs_r += bio_sectors(bio);
2354 pkt_queue_bio(pd, cloned_bio);
2355}
2356
2357static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2358{
2359 struct pktcdvd_device *pd = q->queuedata;
2360 sector_t zone;
2361 struct packet_data *pkt;
2362 int was_empty, blocked_bio;
2363 struct pkt_rb_node *node;
2364
2365 zone = get_zone(bio->bi_iter.bi_sector, pd);
2366
2367 /*
2368 * If we find a matching packet in state WAITING or READ_WAIT, we can
2369 * just append this bio to that packet.
2370 */
2371 spin_lock(&pd->cdrw.active_list_lock);
2372 blocked_bio = 0;
2373 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2374 if (pkt->sector == zone) {
2375 spin_lock(&pkt->lock);
2376 if ((pkt->state == PACKET_WAITING_STATE) ||
2377 (pkt->state == PACKET_READ_WAIT_STATE)) {
2378 bio_list_add(&pkt->orig_bios, bio);
2379 pkt->write_size +=
2380 bio->bi_iter.bi_size / CD_FRAMESIZE;
2381 if ((pkt->write_size >= pkt->frames) &&
2382 (pkt->state == PACKET_WAITING_STATE)) {
2383 atomic_inc(&pkt->run_sm);
2384 wake_up(&pd->wqueue);
2385 }
2386 spin_unlock(&pkt->lock);
2387 spin_unlock(&pd->cdrw.active_list_lock);
2388 return;
2389 } else {
2390 blocked_bio = 1;
2391 }
2392 spin_unlock(&pkt->lock);
2393 }
2394 }
2395 spin_unlock(&pd->cdrw.active_list_lock);
2396
2397 /*
2398 * Test if there is enough room left in the bio work queue
2399 * (queue size >= congestion on mark).
2400 * If not, wait till the work queue size is below the congestion off mark.
2401 */
2402 spin_lock(&pd->lock);
2403 if (pd->write_congestion_on > 0
2404 && pd->bio_queue_size >= pd->write_congestion_on) {
2405 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2406 do {
2407 spin_unlock(&pd->lock);
2408 congestion_wait(BLK_RW_ASYNC, HZ);
2409 spin_lock(&pd->lock);
2410 } while(pd->bio_queue_size > pd->write_congestion_off);
2411 }
2412 spin_unlock(&pd->lock);
2413
2414 /*
2415 * No matching packet found. Store the bio in the work queue.
2416 */
2417 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2418 node->bio = bio;
2419 spin_lock(&pd->lock);
2420 BUG_ON(pd->bio_queue_size < 0);
2421 was_empty = (pd->bio_queue_size == 0);
2422 pkt_rbtree_insert(pd, node);
2423 spin_unlock(&pd->lock);
2424
2425 /*
2426 * Wake up the worker thread.
2427 */
2428 atomic_set(&pd->scan_queue, 1);
2429 if (was_empty) {
2430 /* This wake_up is required for correct operation */
2431 wake_up(&pd->wqueue);
2432 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2433 /*
2434 * This wake up is not required for correct operation,
2435 * but improves performance in some cases.
2436 */
2437 wake_up(&pd->wqueue);
2438 }
2439}
2440
2441static void pkt_make_request(struct request_queue *q, struct bio *bio)
2442{
2443 struct pktcdvd_device *pd;
2444 char b[BDEVNAME_SIZE];
2445 struct bio *split;
2446
2447 pd = q->queuedata;
2448 if (!pd) {
2449 pr_err("%s incorrect request queue\n",
2450 bdevname(bio->bi_bdev, b));
2451 goto end_io;
2452 }
2453
2454 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2455 (unsigned long long)bio->bi_iter.bi_sector,
2456 (unsigned long long)bio_end_sector(bio));
2457
2458 /*
2459 * Clone READ bios so we can have our own bi_end_io callback.
2460 */
2461 if (bio_data_dir(bio) == READ) {
2462 pkt_make_request_read(pd, bio);
2463 return;
2464 }
2465
2466 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2467 pkt_notice(pd, "WRITE for ro device (%llu)\n",
2468 (unsigned long long)bio->bi_iter.bi_sector);
2469 goto end_io;
2470 }
2471
2472 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2473 pkt_err(pd, "wrong bio size\n");
2474 goto end_io;
2475 }
2476
2477 blk_queue_bounce(q, &bio);
2478
2479 do {
2480 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2481 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2482
2483 if (last_zone != zone) {
2484 BUG_ON(last_zone != zone + pd->settings.size);
2485
2486 split = bio_split(bio, last_zone -
2487 bio->bi_iter.bi_sector,
2488 GFP_NOIO, fs_bio_set);
2489 bio_chain(split, bio);
2490 } else {
2491 split = bio;
2492 }
2493
2494 pkt_make_request_write(q, split);
2495 } while (split != bio);
2496
2497 return;
2498end_io:
2499 bio_io_error(bio);
2500}
2501
2502
2503
2504static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2505 struct bio_vec *bvec)
2506{
2507 struct pktcdvd_device *pd = q->queuedata;
2508 sector_t zone = get_zone(bmd->bi_sector, pd);
2509 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2510 int remaining = (pd->settings.size << 9) - used;
2511 int remaining2;
2512
2513 /*
2514 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2515 * boundary, pkt_make_request() will split the bio.
2516 */
2517 remaining2 = PAGE_SIZE - bmd->bi_size;
2518 remaining = max(remaining, remaining2);
2519
2520 BUG_ON(remaining < 0);
2521 return remaining;
2522}
2523
2524static void pkt_init_queue(struct pktcdvd_device *pd)
2525{
2526 struct request_queue *q = pd->disk->queue;
2527
2528 blk_queue_make_request(q, pkt_make_request);
2529 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2530 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2531 blk_queue_merge_bvec(q, pkt_merge_bvec);
2532 q->queuedata = pd;
2533}
2534
2535static int pkt_seq_show(struct seq_file *m, void *p)
2536{
2537 struct pktcdvd_device *pd = m->private;
2538 char *msg;
2539 char bdev_buf[BDEVNAME_SIZE];
2540 int states[PACKET_NUM_STATES];
2541
2542 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2543 bdevname(pd->bdev, bdev_buf));
2544
2545 seq_printf(m, "\nSettings:\n");
2546 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2547
2548 if (pd->settings.write_type == 0)
2549 msg = "Packet";
2550 else
2551 msg = "Unknown";
2552 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2553
2554 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2555 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2556
2557 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2558
2559 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2560 msg = "Mode 1";
2561 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2562 msg = "Mode 2";
2563 else
2564 msg = "Unknown";
2565 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2566
2567 seq_printf(m, "\nStatistics:\n");
2568 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2569 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2570 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2571 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2572 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2573
2574 seq_printf(m, "\nMisc:\n");
2575 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2576 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2577 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2578 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2579 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2580 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2581
2582 seq_printf(m, "\nQueue state:\n");
2583 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2584 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2585 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2586
2587 pkt_count_states(pd, states);
2588 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2589 states[0], states[1], states[2], states[3], states[4], states[5]);
2590
2591 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2592 pd->write_congestion_off,
2593 pd->write_congestion_on);
2594 return 0;
2595}
2596
2597static int pkt_seq_open(struct inode *inode, struct file *file)
2598{
2599 return single_open(file, pkt_seq_show, PDE_DATA(inode));
2600}
2601
2602static const struct file_operations pkt_proc_fops = {
2603 .open = pkt_seq_open,
2604 .read = seq_read,
2605 .llseek = seq_lseek,
2606 .release = single_release
2607};
2608
2609static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2610{
2611 int i;
2612 int ret = 0;
2613 char b[BDEVNAME_SIZE];
2614 struct block_device *bdev;
2615
2616 if (pd->pkt_dev == dev) {
2617 pkt_err(pd, "recursive setup not allowed\n");
2618 return -EBUSY;
2619 }
2620 for (i = 0; i < MAX_WRITERS; i++) {
2621 struct pktcdvd_device *pd2 = pkt_devs[i];
2622 if (!pd2)
2623 continue;
2624 if (pd2->bdev->bd_dev == dev) {
2625 pkt_err(pd, "%s already setup\n",
2626 bdevname(pd2->bdev, b));
2627 return -EBUSY;
2628 }
2629 if (pd2->pkt_dev == dev) {
2630 pkt_err(pd, "can't chain pktcdvd devices\n");
2631 return -EBUSY;
2632 }
2633 }
2634
2635 bdev = bdget(dev);
2636 if (!bdev)
2637 return -ENOMEM;
2638 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2639 if (ret)
2640 return ret;
2641
2642 /* This is safe, since we have a reference from open(). */
2643 __module_get(THIS_MODULE);
2644
2645 pd->bdev = bdev;
2646 set_blocksize(bdev, CD_FRAMESIZE);
2647
2648 pkt_init_queue(pd);
2649
2650 atomic_set(&pd->cdrw.pending_bios, 0);
2651 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2652 if (IS_ERR(pd->cdrw.thread)) {
2653 pkt_err(pd, "can't start kernel thread\n");
2654 ret = -ENOMEM;
2655 goto out_mem;
2656 }
2657
2658 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2659 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2660 return 0;
2661
2662out_mem:
2663 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2664 /* This is safe: open() is still holding a reference. */
2665 module_put(THIS_MODULE);
2666 return ret;
2667}
2668
2669static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2670{
2671 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2672 int ret;
2673
2674 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2675 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2676
2677 mutex_lock(&pktcdvd_mutex);
2678 switch (cmd) {
2679 case CDROMEJECT:
2680 /*
2681 * The door gets locked when the device is opened, so we
2682 * have to unlock it or else the eject command fails.
2683 */
2684 if (pd->refcnt == 1)
2685 pkt_lock_door(pd, 0);
2686 /* fallthru */
2687 /*
2688 * forward selected CDROM ioctls to CD-ROM, for UDF
2689 */
2690 case CDROMMULTISESSION:
2691 case CDROMREADTOCENTRY:
2692 case CDROM_LAST_WRITTEN:
2693 case CDROM_SEND_PACKET:
2694 case SCSI_IOCTL_SEND_COMMAND:
2695 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2696 break;
2697
2698 default:
2699 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2700 ret = -ENOTTY;
2701 }
2702 mutex_unlock(&pktcdvd_mutex);
2703
2704 return ret;
2705}
2706
2707static unsigned int pkt_check_events(struct gendisk *disk,
2708 unsigned int clearing)
2709{
2710 struct pktcdvd_device *pd = disk->private_data;
2711 struct gendisk *attached_disk;
2712
2713 if (!pd)
2714 return 0;
2715 if (!pd->bdev)
2716 return 0;
2717 attached_disk = pd->bdev->bd_disk;
2718 if (!attached_disk || !attached_disk->fops->check_events)
2719 return 0;
2720 return attached_disk->fops->check_events(attached_disk, clearing);
2721}
2722
2723static const struct block_device_operations pktcdvd_ops = {
2724 .owner = THIS_MODULE,
2725 .open = pkt_open,
2726 .release = pkt_close,
2727 .ioctl = pkt_ioctl,
2728 .check_events = pkt_check_events,
2729};
2730
2731static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2732{
2733 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2734}
2735
2736/*
2737 * Set up mapping from pktcdvd device to CD-ROM device.
2738 */
2739static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2740{
2741 int idx;
2742 int ret = -ENOMEM;
2743 struct pktcdvd_device *pd;
2744 struct gendisk *disk;
2745
2746 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2747
2748 for (idx = 0; idx < MAX_WRITERS; idx++)
2749 if (!pkt_devs[idx])
2750 break;
2751 if (idx == MAX_WRITERS) {
2752 pr_err("max %d writers supported\n", MAX_WRITERS);
2753 ret = -EBUSY;
2754 goto out_mutex;
2755 }
2756
2757 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2758 if (!pd)
2759 goto out_mutex;
2760
2761 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2762 sizeof(struct pkt_rb_node));
2763 if (!pd->rb_pool)
2764 goto out_mem;
2765
2766 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2767 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2768 spin_lock_init(&pd->cdrw.active_list_lock);
2769
2770 spin_lock_init(&pd->lock);
2771 spin_lock_init(&pd->iosched.lock);
2772 bio_list_init(&pd->iosched.read_queue);
2773 bio_list_init(&pd->iosched.write_queue);
2774 sprintf(pd->name, DRIVER_NAME"%d", idx);
2775 init_waitqueue_head(&pd->wqueue);
2776 pd->bio_queue = RB_ROOT;
2777
2778 pd->write_congestion_on = write_congestion_on;
2779 pd->write_congestion_off = write_congestion_off;
2780
2781 disk = alloc_disk(1);
2782 if (!disk)
2783 goto out_mem;
2784 pd->disk = disk;
2785 disk->major = pktdev_major;
2786 disk->first_minor = idx;
2787 disk->fops = &pktcdvd_ops;
2788 disk->flags = GENHD_FL_REMOVABLE;
2789 strcpy(disk->disk_name, pd->name);
2790 disk->devnode = pktcdvd_devnode;
2791 disk->private_data = pd;
2792 disk->queue = blk_alloc_queue(GFP_KERNEL);
2793 if (!disk->queue)
2794 goto out_mem2;
2795
2796 pd->pkt_dev = MKDEV(pktdev_major, idx);
2797 ret = pkt_new_dev(pd, dev);
2798 if (ret)
2799 goto out_new_dev;
2800
2801 /* inherit events of the host device */
2802 disk->events = pd->bdev->bd_disk->events;
2803 disk->async_events = pd->bdev->bd_disk->async_events;
2804
2805 add_disk(disk);
2806
2807 pkt_sysfs_dev_new(pd);
2808 pkt_debugfs_dev_new(pd);
2809
2810 pkt_devs[idx] = pd;
2811 if (pkt_dev)
2812 *pkt_dev = pd->pkt_dev;
2813
2814 mutex_unlock(&ctl_mutex);
2815 return 0;
2816
2817out_new_dev:
2818 blk_cleanup_queue(disk->queue);
2819out_mem2:
2820 put_disk(disk);
2821out_mem:
2822 if (pd->rb_pool)
2823 mempool_destroy(pd->rb_pool);
2824 kfree(pd);
2825out_mutex:
2826 mutex_unlock(&ctl_mutex);
2827 pr_err("setup of pktcdvd device failed\n");
2828 return ret;
2829}
2830
2831/*
2832 * Tear down mapping from pktcdvd device to CD-ROM device.
2833 */
2834static int pkt_remove_dev(dev_t pkt_dev)
2835{
2836 struct pktcdvd_device *pd;
2837 int idx;
2838 int ret = 0;
2839
2840 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2841
2842 for (idx = 0; idx < MAX_WRITERS; idx++) {
2843 pd = pkt_devs[idx];
2844 if (pd && (pd->pkt_dev == pkt_dev))
2845 break;
2846 }
2847 if (idx == MAX_WRITERS) {
2848 pr_debug("dev not setup\n");
2849 ret = -ENXIO;
2850 goto out;
2851 }
2852
2853 if (pd->refcnt > 0) {
2854 ret = -EBUSY;
2855 goto out;
2856 }
2857 if (!IS_ERR(pd->cdrw.thread))
2858 kthread_stop(pd->cdrw.thread);
2859
2860 pkt_devs[idx] = NULL;
2861
2862 pkt_debugfs_dev_remove(pd);
2863 pkt_sysfs_dev_remove(pd);
2864
2865 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2866
2867 remove_proc_entry(pd->name, pkt_proc);
2868 pkt_dbg(1, pd, "writer unmapped\n");
2869
2870 del_gendisk(pd->disk);
2871 blk_cleanup_queue(pd->disk->queue);
2872 put_disk(pd->disk);
2873
2874 mempool_destroy(pd->rb_pool);
2875 kfree(pd);
2876
2877 /* This is safe: open() is still holding a reference. */
2878 module_put(THIS_MODULE);
2879
2880out:
2881 mutex_unlock(&ctl_mutex);
2882 return ret;
2883}
2884
2885static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2886{
2887 struct pktcdvd_device *pd;
2888
2889 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2890
2891 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2892 if (pd) {
2893 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2894 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2895 } else {
2896 ctrl_cmd->dev = 0;
2897 ctrl_cmd->pkt_dev = 0;
2898 }
2899 ctrl_cmd->num_devices = MAX_WRITERS;
2900
2901 mutex_unlock(&ctl_mutex);
2902}
2903
2904static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2905{
2906 void __user *argp = (void __user *)arg;
2907 struct pkt_ctrl_command ctrl_cmd;
2908 int ret = 0;
2909 dev_t pkt_dev = 0;
2910
2911 if (cmd != PACKET_CTRL_CMD)
2912 return -ENOTTY;
2913
2914 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2915 return -EFAULT;
2916
2917 switch (ctrl_cmd.command) {
2918 case PKT_CTRL_CMD_SETUP:
2919 if (!capable(CAP_SYS_ADMIN))
2920 return -EPERM;
2921 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2922 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2923 break;
2924 case PKT_CTRL_CMD_TEARDOWN:
2925 if (!capable(CAP_SYS_ADMIN))
2926 return -EPERM;
2927 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2928 break;
2929 case PKT_CTRL_CMD_STATUS:
2930 pkt_get_status(&ctrl_cmd);
2931 break;
2932 default:
2933 return -ENOTTY;
2934 }
2935
2936 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2937 return -EFAULT;
2938 return ret;
2939}
2940
2941#ifdef CONFIG_COMPAT
2942static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2943{
2944 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2945}
2946#endif
2947
2948static const struct file_operations pkt_ctl_fops = {
2949 .open = nonseekable_open,
2950 .unlocked_ioctl = pkt_ctl_ioctl,
2951#ifdef CONFIG_COMPAT
2952 .compat_ioctl = pkt_ctl_compat_ioctl,
2953#endif
2954 .owner = THIS_MODULE,
2955 .llseek = no_llseek,
2956};
2957
2958static struct miscdevice pkt_misc = {
2959 .minor = MISC_DYNAMIC_MINOR,
2960 .name = DRIVER_NAME,
2961 .nodename = "pktcdvd/control",
2962 .fops = &pkt_ctl_fops
2963};
2964
2965static int __init pkt_init(void)
2966{
2967 int ret;
2968
2969 mutex_init(&ctl_mutex);
2970
2971 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2972 sizeof(struct packet_stacked_data));
2973 if (!psd_pool)
2974 return -ENOMEM;
2975
2976 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2977 if (ret < 0) {
2978 pr_err("unable to register block device\n");
2979 goto out2;
2980 }
2981 if (!pktdev_major)
2982 pktdev_major = ret;
2983
2984 ret = pkt_sysfs_init();
2985 if (ret)
2986 goto out;
2987
2988 pkt_debugfs_init();
2989
2990 ret = misc_register(&pkt_misc);
2991 if (ret) {
2992 pr_err("unable to register misc device\n");
2993 goto out_misc;
2994 }
2995
2996 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2997
2998 return 0;
2999
3000out_misc:
3001 pkt_debugfs_cleanup();
3002 pkt_sysfs_cleanup();
3003out:
3004 unregister_blkdev(pktdev_major, DRIVER_NAME);
3005out2:
3006 mempool_destroy(psd_pool);
3007 return ret;
3008}
3009
3010static void __exit pkt_exit(void)
3011{
3012 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3013 misc_deregister(&pkt_misc);
3014
3015 pkt_debugfs_cleanup();
3016 pkt_sysfs_cleanup();
3017
3018 unregister_blkdev(pktdev_major, DRIVER_NAME);
3019 mempool_destroy(psd_pool);
3020}
3021
3022MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3023MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3024MODULE_LICENSE("GPL");
3025
3026module_init(pkt_init);
3027module_exit(pkt_exit);