Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/stddef.h>
  13#include <linux/ioport.h>
  14#include <linux/delay.h>
  15#include <linux/utsname.h>
  16#include <linux/initrd.h>
  17#include <linux/console.h>
  18#include <linux/bootmem.h>
  19#include <linux/seq_file.h>
  20#include <linux/screen_info.h>
 
  21#include <linux/init.h>
  22#include <linux/kexec.h>
  23#include <linux/of_fdt.h>
  24#include <linux/crash_dump.h>
  25#include <linux/root_dev.h>
  26#include <linux/cpu.h>
  27#include <linux/interrupt.h>
  28#include <linux/smp.h>
  29#include <linux/fs.h>
  30#include <linux/proc_fs.h>
  31#include <linux/memblock.h>
 
 
 
  32
  33#include <asm/unified.h>
 
  34#include <asm/cpu.h>
  35#include <asm/cputype.h>
  36#include <asm/elf.h>
  37#include <asm/procinfo.h>
 
  38#include <asm/sections.h>
  39#include <asm/setup.h>
  40#include <asm/smp_plat.h>
  41#include <asm/mach-types.h>
  42#include <asm/cacheflush.h>
  43#include <asm/cachetype.h>
  44#include <asm/tlbflush.h>
  45
  46#include <asm/prom.h>
  47#include <asm/mach/arch.h>
  48#include <asm/mach/irq.h>
  49#include <asm/mach/time.h>
 
 
  50#include <asm/traps.h>
  51#include <asm/unwind.h>
 
 
  52
  53#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
  54#include "compat.h"
  55#endif
  56#include "atags.h"
  57#include "tcm.h"
  58
  59#ifndef MEM_SIZE
  60#define MEM_SIZE	(16*1024*1024)
  61#endif
  62
  63#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  64char fpe_type[8];
  65
  66static int __init fpe_setup(char *line)
  67{
  68	memcpy(fpe_type, line, 8);
  69	return 1;
  70}
  71
  72__setup("fpe=", fpe_setup);
  73#endif
  74
  75extern void paging_init(struct machine_desc *desc);
 
 
  76extern void sanity_check_meminfo(void);
  77extern void reboot_setup(char *str);
 
  78
  79unsigned int processor_id;
  80EXPORT_SYMBOL(processor_id);
  81unsigned int __machine_arch_type __read_mostly;
  82EXPORT_SYMBOL(__machine_arch_type);
  83unsigned int cacheid __read_mostly;
  84EXPORT_SYMBOL(cacheid);
  85
  86unsigned int __atags_pointer __initdata;
  87
  88unsigned int system_rev;
  89EXPORT_SYMBOL(system_rev);
  90
  91unsigned int system_serial_low;
  92EXPORT_SYMBOL(system_serial_low);
  93
  94unsigned int system_serial_high;
  95EXPORT_SYMBOL(system_serial_high);
  96
  97unsigned int elf_hwcap __read_mostly;
  98EXPORT_SYMBOL(elf_hwcap);
  99
 
 
 
 100
 101#ifdef MULTI_CPU
 102struct processor processor __read_mostly;
 103#endif
 104#ifdef MULTI_TLB
 105struct cpu_tlb_fns cpu_tlb __read_mostly;
 106#endif
 107#ifdef MULTI_USER
 108struct cpu_user_fns cpu_user __read_mostly;
 109#endif
 110#ifdef MULTI_CACHE
 111struct cpu_cache_fns cpu_cache __read_mostly;
 112#endif
 113#ifdef CONFIG_OUTER_CACHE
 114struct outer_cache_fns outer_cache __read_mostly;
 115EXPORT_SYMBOL(outer_cache);
 116#endif
 117
 
 
 
 
 
 
 
 118struct stack {
 119	u32 irq[3];
 120	u32 abt[3];
 121	u32 und[3];
 122} ____cacheline_aligned;
 123
 
 124static struct stack stacks[NR_CPUS];
 
 125
 126char elf_platform[ELF_PLATFORM_SIZE];
 127EXPORT_SYMBOL(elf_platform);
 128
 129static const char *cpu_name;
 130static const char *machine_name;
 131static char __initdata cmd_line[COMMAND_LINE_SIZE];
 132struct machine_desc *machine_desc __initdata;
 133
 134static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
 135static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 136#define ENDIANNESS ((char)endian_test.l)
 137
 138DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 139
 140/*
 141 * Standard memory resources
 142 */
 143static struct resource mem_res[] = {
 144	{
 145		.name = "Video RAM",
 146		.start = 0,
 147		.end = 0,
 148		.flags = IORESOURCE_MEM
 149	},
 150	{
 151		.name = "Kernel text",
 152		.start = 0,
 153		.end = 0,
 154		.flags = IORESOURCE_MEM
 155	},
 156	{
 157		.name = "Kernel data",
 158		.start = 0,
 159		.end = 0,
 160		.flags = IORESOURCE_MEM
 161	}
 162};
 163
 164#define video_ram   mem_res[0]
 165#define kernel_code mem_res[1]
 166#define kernel_data mem_res[2]
 167
 168static struct resource io_res[] = {
 169	{
 170		.name = "reserved",
 171		.start = 0x3bc,
 172		.end = 0x3be,
 173		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 174	},
 175	{
 176		.name = "reserved",
 177		.start = 0x378,
 178		.end = 0x37f,
 179		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 180	},
 181	{
 182		.name = "reserved",
 183		.start = 0x278,
 184		.end = 0x27f,
 185		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 186	}
 187};
 188
 189#define lp0 io_res[0]
 190#define lp1 io_res[1]
 191#define lp2 io_res[2]
 192
 193static const char *proc_arch[] = {
 194	"undefined/unknown",
 195	"3",
 196	"4",
 197	"4T",
 198	"5",
 199	"5T",
 200	"5TE",
 201	"5TEJ",
 202	"6TEJ",
 203	"7",
 204	"?(11)",
 205	"?(12)",
 206	"?(13)",
 207	"?(14)",
 208	"?(15)",
 209	"?(16)",
 210	"?(17)",
 211};
 212
 213int cpu_architecture(void)
 
 
 
 
 
 
 214{
 215	int cpu_arch;
 216
 217	if ((read_cpuid_id() & 0x0008f000) == 0) {
 218		cpu_arch = CPU_ARCH_UNKNOWN;
 219	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 220		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 221	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 222		cpu_arch = (read_cpuid_id() >> 16) & 7;
 223		if (cpu_arch)
 224			cpu_arch += CPU_ARCH_ARMv3;
 225	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 226		unsigned int mmfr0;
 227
 228		/* Revised CPUID format. Read the Memory Model Feature
 229		 * Register 0 and check for VMSAv7 or PMSAv7 */
 230		asm("mrc	p15, 0, %0, c0, c1, 4"
 231		    : "=r" (mmfr0));
 232		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 233		    (mmfr0 & 0x000000f0) >= 0x00000030)
 234			cpu_arch = CPU_ARCH_ARMv7;
 235		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 236			 (mmfr0 & 0x000000f0) == 0x00000020)
 237			cpu_arch = CPU_ARCH_ARMv6;
 238		else
 239			cpu_arch = CPU_ARCH_UNKNOWN;
 240	} else
 241		cpu_arch = CPU_ARCH_UNKNOWN;
 242
 243	return cpu_arch;
 244}
 
 
 
 
 
 
 
 
 245
 246static int cpu_has_aliasing_icache(unsigned int arch)
 247{
 248	int aliasing_icache;
 249	unsigned int id_reg, num_sets, line_size;
 250
 
 
 
 
 251	/* arch specifies the register format */
 252	switch (arch) {
 253	case CPU_ARCH_ARMv7:
 254		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
 255		    : /* No output operands */
 256		    : "r" (1));
 257		isb();
 258		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 259		    : "=r" (id_reg));
 260		line_size = 4 << ((id_reg & 0x7) + 2);
 261		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 262		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 263		break;
 264	case CPU_ARCH_ARMv6:
 265		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 266		break;
 267	default:
 268		/* I-cache aliases will be handled by D-cache aliasing code */
 269		aliasing_icache = 0;
 270	}
 271
 272	return aliasing_icache;
 273}
 274
 275static void __init cacheid_init(void)
 276{
 277	unsigned int cachetype = read_cpuid_cachetype();
 278	unsigned int arch = cpu_architecture();
 279
 280	if (arch >= CPU_ARCH_ARMv6) {
 
 
 
 281		if ((cachetype & (7 << 29)) == 4 << 29) {
 282			/* ARMv7 register format */
 283			arch = CPU_ARCH_ARMv7;
 284			cacheid = CACHEID_VIPT_NONALIASING;
 285			if ((cachetype & (3 << 14)) == 1 << 14)
 
 286				cacheid |= CACHEID_ASID_TAGGED;
 
 
 
 
 
 287		} else {
 288			arch = CPU_ARCH_ARMv6;
 289			if (cachetype & (1 << 23))
 290				cacheid = CACHEID_VIPT_ALIASING;
 291			else
 292				cacheid = CACHEID_VIPT_NONALIASING;
 293		}
 294		if (cpu_has_aliasing_icache(arch))
 295			cacheid |= CACHEID_VIPT_I_ALIASING;
 296	} else {
 297		cacheid = CACHEID_VIVT;
 298	}
 299
 300	printk("CPU: %s data cache, %s instruction cache\n",
 301		cache_is_vivt() ? "VIVT" :
 302		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 303		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown",
 304		cache_is_vivt() ? "VIVT" :
 305		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 306		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 
 307		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 308}
 309
 310/*
 311 * These functions re-use the assembly code in head.S, which
 312 * already provide the required functionality.
 313 */
 314extern struct proc_info_list *lookup_processor_type(unsigned int);
 315
 316void __init early_print(const char *str, ...)
 317{
 318	extern void printascii(const char *);
 319	char buf[256];
 320	va_list ap;
 321
 322	va_start(ap, str);
 323	vsnprintf(buf, sizeof(buf), str, ap);
 324	va_end(ap);
 325
 326#ifdef CONFIG_DEBUG_LL
 327	printascii(buf);
 328#endif
 329	printk("%s", buf);
 330}
 331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 332static void __init feat_v6_fixup(void)
 333{
 334	int id = read_cpuid_id();
 335
 336	if ((id & 0xff0f0000) != 0x41070000)
 337		return;
 338
 339	/*
 340	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 341	 * see also kuser_get_tls_init.
 342	 */
 343	if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
 344		elf_hwcap &= ~HWCAP_TLS;
 345}
 346
 347/*
 348 * cpu_init - initialise one CPU.
 349 *
 350 * cpu_init sets up the per-CPU stacks.
 351 */
 352void cpu_init(void)
 353{
 
 354	unsigned int cpu = smp_processor_id();
 355	struct stack *stk = &stacks[cpu];
 356
 357	if (cpu >= NR_CPUS) {
 358		printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
 359		BUG();
 360	}
 361
 
 
 
 
 
 
 362	cpu_proc_init();
 363
 364	/*
 365	 * Define the placement constraint for the inline asm directive below.
 366	 * In Thumb-2, msr with an immediate value is not allowed.
 367	 */
 368#ifdef CONFIG_THUMB2_KERNEL
 369#define PLC	"r"
 370#else
 371#define PLC	"I"
 372#endif
 373
 374	/*
 375	 * setup stacks for re-entrant exception handlers
 376	 */
 377	__asm__ (
 378	"msr	cpsr_c, %1\n\t"
 379	"add	r14, %0, %2\n\t"
 380	"mov	sp, r14\n\t"
 381	"msr	cpsr_c, %3\n\t"
 382	"add	r14, %0, %4\n\t"
 383	"mov	sp, r14\n\t"
 384	"msr	cpsr_c, %5\n\t"
 385	"add	r14, %0, %6\n\t"
 386	"mov	sp, r14\n\t"
 387	"msr	cpsr_c, %7"
 388	    :
 389	    : "r" (stk),
 390	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 391	      "I" (offsetof(struct stack, irq[0])),
 392	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 393	      "I" (offsetof(struct stack, abt[0])),
 394	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 395	      "I" (offsetof(struct stack, und[0])),
 396	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 397	    : "r14");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398}
 399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 400static void __init setup_processor(void)
 401{
 402	struct proc_info_list *list;
 403
 404	/*
 405	 * locate processor in the list of supported processor
 406	 * types.  The linker builds this table for us from the
 407	 * entries in arch/arm/mm/proc-*.S
 408	 */
 409	list = lookup_processor_type(read_cpuid_id());
 410	if (!list) {
 411		printk("CPU configuration botched (ID %08x), unable "
 412		       "to continue.\n", read_cpuid_id());
 413		while (1);
 414	}
 415
 416	cpu_name = list->cpu_name;
 
 417
 418#ifdef MULTI_CPU
 419	processor = *list->proc;
 420#endif
 421#ifdef MULTI_TLB
 422	cpu_tlb = *list->tlb;
 423#endif
 424#ifdef MULTI_USER
 425	cpu_user = *list->user;
 426#endif
 427#ifdef MULTI_CACHE
 428	cpu_cache = *list->cache;
 429#endif
 430
 431	printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 432	       cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 433	       proc_arch[cpu_architecture()], cr_alignment);
 434
 435	sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
 436	sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
 
 
 437	elf_hwcap = list->elf_hwcap;
 
 
 
 438#ifndef CONFIG_ARM_THUMB
 439	elf_hwcap &= ~HWCAP_THUMB;
 440#endif
 441
 
 
 442	feat_v6_fixup();
 443
 444	cacheid_init();
 445	cpu_init();
 446}
 447
 448void __init dump_machine_table(void)
 449{
 450	struct machine_desc *p;
 451
 452	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 453	for_each_machine_desc(p)
 454		early_print("%08x\t%s\n", p->nr, p->name);
 455
 456	early_print("\nPlease check your kernel config and/or bootloader.\n");
 457
 458	while (true)
 459		/* can't use cpu_relax() here as it may require MMU setup */;
 460}
 461
 462int __init arm_add_memory(phys_addr_t start, unsigned long size)
 463{
 464	struct membank *bank = &meminfo.bank[meminfo.nr_banks];
 
 465
 466	if (meminfo.nr_banks >= NR_BANKS) {
 467		printk(KERN_CRIT "NR_BANKS too low, "
 468			"ignoring memory at 0x%08llx\n", (long long)start);
 469		return -EINVAL;
 470	}
 471
 472	/*
 473	 * Ensure that start/size are aligned to a page boundary.
 474	 * Size is appropriately rounded down, start is rounded up.
 475	 */
 476	size -= start & ~PAGE_MASK;
 477	bank->start = PAGE_ALIGN(start);
 478	bank->size  = size & PAGE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479
 480	/*
 481	 * Check whether this memory region has non-zero size or
 482	 * invalid node number.
 483	 */
 484	if (bank->size == 0)
 485		return -EINVAL;
 486
 487	meminfo.nr_banks++;
 488	return 0;
 489}
 490
 491/*
 492 * Pick out the memory size.  We look for mem=size@start,
 493 * where start and size are "size[KkMm]"
 494 */
 495static int __init early_mem(char *p)
 496{
 497	static int usermem __initdata = 0;
 498	unsigned long size;
 499	phys_addr_t start;
 500	char *endp;
 501
 502	/*
 503	 * If the user specifies memory size, we
 504	 * blow away any automatically generated
 505	 * size.
 506	 */
 507	if (usermem == 0) {
 508		usermem = 1;
 509		meminfo.nr_banks = 0;
 510	}
 511
 512	start = PHYS_OFFSET;
 513	size  = memparse(p, &endp);
 514	if (*endp == '@')
 515		start = memparse(endp + 1, NULL);
 516
 517	arm_add_memory(start, size);
 518
 519	return 0;
 520}
 521early_param("mem", early_mem);
 522
 523static void __init
 524setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
 525{
 526#ifdef CONFIG_BLK_DEV_RAM
 527	extern int rd_size, rd_image_start, rd_prompt, rd_doload;
 528
 529	rd_image_start = image_start;
 530	rd_prompt = prompt;
 531	rd_doload = doload;
 532
 533	if (rd_sz)
 534		rd_size = rd_sz;
 535#endif
 536}
 537
 538static void __init request_standard_resources(struct machine_desc *mdesc)
 539{
 540	struct memblock_region *region;
 541	struct resource *res;
 542
 543	kernel_code.start   = virt_to_phys(_text);
 544	kernel_code.end     = virt_to_phys(_etext - 1);
 545	kernel_data.start   = virt_to_phys(_sdata);
 546	kernel_data.end     = virt_to_phys(_end - 1);
 547
 548	for_each_memblock(memory, region) {
 549		res = alloc_bootmem_low(sizeof(*res));
 550		res->name  = "System RAM";
 551		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 552		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 553		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 554
 555		request_resource(&iomem_resource, res);
 556
 557		if (kernel_code.start >= res->start &&
 558		    kernel_code.end <= res->end)
 559			request_resource(res, &kernel_code);
 560		if (kernel_data.start >= res->start &&
 561		    kernel_data.end <= res->end)
 562			request_resource(res, &kernel_data);
 563	}
 564
 565	if (mdesc->video_start) {
 566		video_ram.start = mdesc->video_start;
 567		video_ram.end   = mdesc->video_end;
 568		request_resource(&iomem_resource, &video_ram);
 569	}
 570
 571	/*
 572	 * Some machines don't have the possibility of ever
 573	 * possessing lp0, lp1 or lp2
 574	 */
 575	if (mdesc->reserve_lp0)
 576		request_resource(&ioport_resource, &lp0);
 577	if (mdesc->reserve_lp1)
 578		request_resource(&ioport_resource, &lp1);
 579	if (mdesc->reserve_lp2)
 580		request_resource(&ioport_resource, &lp2);
 581}
 582
 583/*
 584 *  Tag parsing.
 585 *
 586 * This is the new way of passing data to the kernel at boot time.  Rather
 587 * than passing a fixed inflexible structure to the kernel, we pass a list
 588 * of variable-sized tags to the kernel.  The first tag must be a ATAG_CORE
 589 * tag for the list to be recognised (to distinguish the tagged list from
 590 * a param_struct).  The list is terminated with a zero-length tag (this tag
 591 * is not parsed in any way).
 592 */
 593static int __init parse_tag_core(const struct tag *tag)
 594{
 595	if (tag->hdr.size > 2) {
 596		if ((tag->u.core.flags & 1) == 0)
 597			root_mountflags &= ~MS_RDONLY;
 598		ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
 599	}
 600	return 0;
 601}
 602
 603__tagtable(ATAG_CORE, parse_tag_core);
 604
 605static int __init parse_tag_mem32(const struct tag *tag)
 606{
 607	return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
 608}
 609
 610__tagtable(ATAG_MEM, parse_tag_mem32);
 611
 612#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 613struct screen_info screen_info = {
 614 .orig_video_lines	= 30,
 615 .orig_video_cols	= 80,
 616 .orig_video_mode	= 0,
 617 .orig_video_ega_bx	= 0,
 618 .orig_video_isVGA	= 1,
 619 .orig_video_points	= 8
 620};
 621
 622static int __init parse_tag_videotext(const struct tag *tag)
 623{
 624	screen_info.orig_x            = tag->u.videotext.x;
 625	screen_info.orig_y            = tag->u.videotext.y;
 626	screen_info.orig_video_page   = tag->u.videotext.video_page;
 627	screen_info.orig_video_mode   = tag->u.videotext.video_mode;
 628	screen_info.orig_video_cols   = tag->u.videotext.video_cols;
 629	screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
 630	screen_info.orig_video_lines  = tag->u.videotext.video_lines;
 631	screen_info.orig_video_isVGA  = tag->u.videotext.video_isvga;
 632	screen_info.orig_video_points = tag->u.videotext.video_points;
 633	return 0;
 634}
 635
 636__tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
 637#endif
 638
 639static int __init parse_tag_ramdisk(const struct tag *tag)
 640{
 641	setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
 642		      (tag->u.ramdisk.flags & 2) == 0,
 643		      tag->u.ramdisk.start, tag->u.ramdisk.size);
 644	return 0;
 645}
 646
 647__tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
 648
 649static int __init parse_tag_serialnr(const struct tag *tag)
 650{
 651	system_serial_low = tag->u.serialnr.low;
 652	system_serial_high = tag->u.serialnr.high;
 653	return 0;
 654}
 655
 656__tagtable(ATAG_SERIAL, parse_tag_serialnr);
 657
 658static int __init parse_tag_revision(const struct tag *tag)
 659{
 660	system_rev = tag->u.revision.rev;
 661	return 0;
 662}
 663
 664__tagtable(ATAG_REVISION, parse_tag_revision);
 665
 666static int __init parse_tag_cmdline(const struct tag *tag)
 667{
 668#if defined(CONFIG_CMDLINE_EXTEND)
 669	strlcat(default_command_line, " ", COMMAND_LINE_SIZE);
 670	strlcat(default_command_line, tag->u.cmdline.cmdline,
 671		COMMAND_LINE_SIZE);
 672#elif defined(CONFIG_CMDLINE_FORCE)
 673	pr_warning("Ignoring tag cmdline (using the default kernel command line)\n");
 674#else
 675	strlcpy(default_command_line, tag->u.cmdline.cmdline,
 676		COMMAND_LINE_SIZE);
 
 
 
 677#endif
 678	return 0;
 679}
 
 680
 681__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
 682
 683/*
 684 * Scan the tag table for this tag, and call its parse function.
 685 * The tag table is built by the linker from all the __tagtable
 686 * declarations.
 687 */
 688static int __init parse_tag(const struct tag *tag)
 689{
 690	extern struct tagtable __tagtable_begin, __tagtable_end;
 691	struct tagtable *t;
 692
 693	for (t = &__tagtable_begin; t < &__tagtable_end; t++)
 694		if (tag->hdr.tag == t->tag) {
 695			t->parse(tag);
 696			break;
 697		}
 698
 699	return t < &__tagtable_end;
 700}
 701
 702/*
 703 * Parse all tags in the list, checking both the global and architecture
 704 * specific tag tables.
 705 */
 706static void __init parse_tags(const struct tag *t)
 707{
 708	for (; t->hdr.size; t = tag_next(t))
 709		if (!parse_tag(t))
 710			printk(KERN_WARNING
 711				"Ignoring unrecognised tag 0x%08x\n",
 712				t->hdr.tag);
 713}
 714
 715/*
 716 * This holds our defaults.
 717 */
 718static struct init_tags {
 719	struct tag_header hdr1;
 720	struct tag_core   core;
 721	struct tag_header hdr2;
 722	struct tag_mem32  mem;
 723	struct tag_header hdr3;
 724} init_tags __initdata = {
 725	{ tag_size(tag_core), ATAG_CORE },
 726	{ 1, PAGE_SIZE, 0xff },
 727	{ tag_size(tag_mem32), ATAG_MEM },
 728	{ MEM_SIZE },
 729	{ 0, ATAG_NONE }
 730};
 731
 732static int __init customize_machine(void)
 733{
 734	/* customizes platform devices, or adds new ones */
 735	if (machine_desc->init_machine)
 736		machine_desc->init_machine();
 737	return 0;
 738}
 739arch_initcall(customize_machine);
 740
 741#ifdef CONFIG_KEXEC
 742static inline unsigned long long get_total_mem(void)
 743{
 744	unsigned long total;
 745
 746	total = max_low_pfn - min_low_pfn;
 747	return total << PAGE_SHIFT;
 748}
 749
 750/**
 751 * reserve_crashkernel() - reserves memory are for crash kernel
 752 *
 753 * This function reserves memory area given in "crashkernel=" kernel command
 754 * line parameter. The memory reserved is used by a dump capture kernel when
 755 * primary kernel is crashing.
 756 */
 757static void __init reserve_crashkernel(void)
 758{
 759	unsigned long long crash_size, crash_base;
 760	unsigned long long total_mem;
 761	int ret;
 762
 763	total_mem = get_total_mem();
 764	ret = parse_crashkernel(boot_command_line, total_mem,
 765				&crash_size, &crash_base);
 766	if (ret)
 767		return;
 768
 769	ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
 770	if (ret < 0) {
 771		printk(KERN_WARNING "crashkernel reservation failed - "
 772		       "memory is in use (0x%lx)\n", (unsigned long)crash_base);
 773		return;
 774	}
 775
 776	printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 777	       "for crashkernel (System RAM: %ldMB)\n",
 778	       (unsigned long)(crash_size >> 20),
 779	       (unsigned long)(crash_base >> 20),
 780	       (unsigned long)(total_mem >> 20));
 781
 782	crashk_res.start = crash_base;
 783	crashk_res.end = crash_base + crash_size - 1;
 784	insert_resource(&iomem_resource, &crashk_res);
 785}
 786#else
 787static inline void reserve_crashkernel(void) {}
 788#endif /* CONFIG_KEXEC */
 789
 790static void __init squash_mem_tags(struct tag *tag)
 791{
 792	for (; tag->hdr.size; tag = tag_next(tag))
 793		if (tag->hdr.tag == ATAG_MEM)
 794			tag->hdr.tag = ATAG_NONE;
 795}
 796
 797static struct machine_desc * __init setup_machine_tags(unsigned int nr)
 798{
 799	struct tag *tags = (struct tag *)&init_tags;
 800	struct machine_desc *mdesc = NULL, *p;
 801	char *from = default_command_line;
 802
 803	init_tags.mem.start = PHYS_OFFSET;
 804
 805	/*
 806	 * locate machine in the list of supported machines.
 807	 */
 808	for_each_machine_desc(p)
 809		if (nr == p->nr) {
 810			printk("Machine: %s\n", p->name);
 811			mdesc = p;
 812			break;
 813		}
 814
 815	if (!mdesc) {
 816		early_print("\nError: unrecognized/unsupported machine ID"
 817			" (r1 = 0x%08x).\n\n", nr);
 818		dump_machine_table(); /* does not return */
 819	}
 820
 821	if (__atags_pointer)
 822		tags = phys_to_virt(__atags_pointer);
 823	else if (mdesc->boot_params) {
 824#ifdef CONFIG_MMU
 825		/*
 826		 * We still are executing with a minimal MMU mapping created
 827		 * with the presumption that the machine default for this
 828		 * is located in the first MB of RAM.  Anything else will
 829		 * fault and silently hang the kernel at this point.
 830		 */
 831		if (mdesc->boot_params < PHYS_OFFSET ||
 832		    mdesc->boot_params >= PHYS_OFFSET + SZ_1M) {
 833			printk(KERN_WARNING
 834			       "Default boot params at physical 0x%08lx out of reach\n",
 835			       mdesc->boot_params);
 836		} else
 837#endif
 838		{
 839			tags = phys_to_virt(mdesc->boot_params);
 840		}
 841	}
 842
 843#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
 844	/*
 845	 * If we have the old style parameters, convert them to
 846	 * a tag list.
 847	 */
 848	if (tags->hdr.tag != ATAG_CORE)
 849		convert_to_tag_list(tags);
 850#endif
 851
 852	if (tags->hdr.tag != ATAG_CORE) {
 853#if defined(CONFIG_OF)
 854		/*
 855		 * If CONFIG_OF is set, then assume this is a reasonably
 856		 * modern system that should pass boot parameters
 857		 */
 858		early_print("Warning: Neither atags nor dtb found\n");
 859#endif
 860		tags = (struct tag *)&init_tags;
 861	}
 862
 863	if (mdesc->fixup)
 864		mdesc->fixup(mdesc, tags, &from, &meminfo);
 865
 866	if (tags->hdr.tag == ATAG_CORE) {
 867		if (meminfo.nr_banks != 0)
 868			squash_mem_tags(tags);
 869		save_atags(tags);
 870		parse_tags(tags);
 871	}
 872
 873	/* parse_early_param needs a boot_command_line */
 874	strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
 875
 876	return mdesc;
 877}
 878
 879
 880void __init setup_arch(char **cmdline_p)
 881{
 882	struct machine_desc *mdesc;
 883
 884	unwind_init();
 885
 886	setup_processor();
 887	mdesc = setup_machine_fdt(__atags_pointer);
 888	if (!mdesc)
 889		mdesc = setup_machine_tags(machine_arch_type);
 890	machine_desc = mdesc;
 891	machine_name = mdesc->name;
 892
 893	if (mdesc->soft_reboot)
 894		reboot_setup("s");
 895
 896	init_mm.start_code = (unsigned long) _text;
 897	init_mm.end_code   = (unsigned long) _etext;
 898	init_mm.end_data   = (unsigned long) _edata;
 899	init_mm.brk	   = (unsigned long) _end;
 900
 901	/* populate cmd_line too for later use, preserving boot_command_line */
 902	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
 903	*cmdline_p = cmd_line;
 904
 905	parse_early_param();
 906
 
 
 
 
 907	sanity_check_meminfo();
 908	arm_memblock_init(&meminfo, mdesc);
 909
 910	paging_init(mdesc);
 911	request_standard_resources(mdesc);
 912
 
 
 
 913	unflatten_device_tree();
 914
 
 
 915#ifdef CONFIG_SMP
 916	if (is_smp())
 
 
 
 
 
 
 917		smp_init_cpus();
 
 
 918#endif
 919	reserve_crashkernel();
 920
 921	tcm_init();
 
 
 
 922
 923#ifdef CONFIG_ZONE_DMA
 924	if (mdesc->dma_zone_size) {
 925		extern unsigned long arm_dma_zone_size;
 926		arm_dma_zone_size = mdesc->dma_zone_size;
 927	}
 928#endif
 929#ifdef CONFIG_MULTI_IRQ_HANDLER
 930	handle_arch_irq = mdesc->handle_irq;
 931#endif
 932
 933#ifdef CONFIG_VT
 934#if defined(CONFIG_VGA_CONSOLE)
 935	conswitchp = &vga_con;
 936#elif defined(CONFIG_DUMMY_CONSOLE)
 937	conswitchp = &dummy_con;
 938#endif
 939#endif
 940	early_trap_init();
 941
 942	if (mdesc->init_early)
 943		mdesc->init_early();
 944}
 945
 946
 947static int __init topology_init(void)
 948{
 949	int cpu;
 950
 951	for_each_possible_cpu(cpu) {
 952		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
 953		cpuinfo->cpu.hotpluggable = 1;
 954		register_cpu(&cpuinfo->cpu, cpu);
 955	}
 956
 957	return 0;
 958}
 959subsys_initcall(topology_init);
 960
 961#ifdef CONFIG_HAVE_PROC_CPU
 962static int __init proc_cpu_init(void)
 963{
 964	struct proc_dir_entry *res;
 965
 966	res = proc_mkdir("cpu", NULL);
 967	if (!res)
 968		return -ENOMEM;
 969	return 0;
 970}
 971fs_initcall(proc_cpu_init);
 972#endif
 973
 974static const char *hwcap_str[] = {
 975	"swp",
 976	"half",
 977	"thumb",
 978	"26bit",
 979	"fastmult",
 980	"fpa",
 981	"vfp",
 982	"edsp",
 983	"java",
 984	"iwmmxt",
 985	"crunch",
 986	"thumbee",
 987	"neon",
 988	"vfpv3",
 989	"vfpv3d16",
 990	"tls",
 991	"vfpv4",
 992	"idiva",
 993	"idivt",
 
 
 
 
 
 
 
 
 
 
 
 
 994	NULL
 995};
 996
 997static int c_show(struct seq_file *m, void *v)
 998{
 999	int i;
 
1000
1001	seq_printf(m, "Processor\t: %s rev %d (%s)\n",
1002		   cpu_name, read_cpuid_id() & 15, elf_platform);
1003
1004#if defined(CONFIG_SMP)
1005	for_each_online_cpu(i) {
1006		/*
1007		 * glibc reads /proc/cpuinfo to determine the number of
1008		 * online processors, looking for lines beginning with
1009		 * "processor".  Give glibc what it expects.
1010		 */
1011		seq_printf(m, "processor\t: %d\n", i);
1012		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
1013			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1014			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1015	}
1016#else /* CONFIG_SMP */
1017	seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1018		   loops_per_jiffy / (500000/HZ),
1019		   (loops_per_jiffy / (5000/HZ)) % 100);
1020#endif
1021
1022	/* dump out the processor features */
1023	seq_puts(m, "Features\t: ");
1024
1025	for (i = 0; hwcap_str[i]; i++)
1026		if (elf_hwcap & (1 << i))
1027			seq_printf(m, "%s ", hwcap_str[i]);
1028
1029	seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
1030	seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
1031
1032	if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
1033		/* pre-ARM7 */
1034		seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
1035	} else {
1036		if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
1037			/* ARM7 */
1038			seq_printf(m, "CPU variant\t: 0x%02x\n",
1039				   (read_cpuid_id() >> 16) & 127);
1040		} else {
1041			/* post-ARM7 */
1042			seq_printf(m, "CPU variant\t: 0x%x\n",
1043				   (read_cpuid_id() >> 20) & 15);
 
 
 
 
 
 
 
 
1044		}
1045		seq_printf(m, "CPU part\t: 0x%03x\n",
1046			   (read_cpuid_id() >> 4) & 0xfff);
1047	}
1048	seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
1049
1050	seq_puts(m, "\n");
1051
1052	seq_printf(m, "Hardware\t: %s\n", machine_name);
1053	seq_printf(m, "Revision\t: %04x\n", system_rev);
1054	seq_printf(m, "Serial\t\t: %08x%08x\n",
1055		   system_serial_high, system_serial_low);
1056
1057	return 0;
1058}
1059
1060static void *c_start(struct seq_file *m, loff_t *pos)
1061{
1062	return *pos < 1 ? (void *)1 : NULL;
1063}
1064
1065static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1066{
1067	++*pos;
1068	return NULL;
1069}
1070
1071static void c_stop(struct seq_file *m, void *v)
1072{
1073}
1074
1075const struct seq_operations cpuinfo_op = {
1076	.start	= c_start,
1077	.next	= c_next,
1078	.stop	= c_stop,
1079	.show	= c_show
1080};
v3.15
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/export.h>
  11#include <linux/kernel.h>
  12#include <linux/stddef.h>
  13#include <linux/ioport.h>
  14#include <linux/delay.h>
  15#include <linux/utsname.h>
  16#include <linux/initrd.h>
  17#include <linux/console.h>
  18#include <linux/bootmem.h>
  19#include <linux/seq_file.h>
  20#include <linux/screen_info.h>
  21#include <linux/of_platform.h>
  22#include <linux/init.h>
  23#include <linux/kexec.h>
  24#include <linux/of_fdt.h>
 
 
  25#include <linux/cpu.h>
  26#include <linux/interrupt.h>
  27#include <linux/smp.h>
 
  28#include <linux/proc_fs.h>
  29#include <linux/memblock.h>
  30#include <linux/bug.h>
  31#include <linux/compiler.h>
  32#include <linux/sort.h>
  33
  34#include <asm/unified.h>
  35#include <asm/cp15.h>
  36#include <asm/cpu.h>
  37#include <asm/cputype.h>
  38#include <asm/elf.h>
  39#include <asm/procinfo.h>
  40#include <asm/psci.h>
  41#include <asm/sections.h>
  42#include <asm/setup.h>
  43#include <asm/smp_plat.h>
  44#include <asm/mach-types.h>
  45#include <asm/cacheflush.h>
  46#include <asm/cachetype.h>
  47#include <asm/tlbflush.h>
  48
  49#include <asm/prom.h>
  50#include <asm/mach/arch.h>
  51#include <asm/mach/irq.h>
  52#include <asm/mach/time.h>
  53#include <asm/system_info.h>
  54#include <asm/system_misc.h>
  55#include <asm/traps.h>
  56#include <asm/unwind.h>
  57#include <asm/memblock.h>
  58#include <asm/virt.h>
  59
 
 
 
  60#include "atags.h"
 
  61
 
 
 
  62
  63#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  64char fpe_type[8];
  65
  66static int __init fpe_setup(char *line)
  67{
  68	memcpy(fpe_type, line, 8);
  69	return 1;
  70}
  71
  72__setup("fpe=", fpe_setup);
  73#endif
  74
  75extern void paging_init(const struct machine_desc *desc);
  76extern void early_paging_init(const struct machine_desc *,
  77			      struct proc_info_list *);
  78extern void sanity_check_meminfo(void);
  79extern enum reboot_mode reboot_mode;
  80extern void setup_dma_zone(const struct machine_desc *desc);
  81
  82unsigned int processor_id;
  83EXPORT_SYMBOL(processor_id);
  84unsigned int __machine_arch_type __read_mostly;
  85EXPORT_SYMBOL(__machine_arch_type);
  86unsigned int cacheid __read_mostly;
  87EXPORT_SYMBOL(cacheid);
  88
  89unsigned int __atags_pointer __initdata;
  90
  91unsigned int system_rev;
  92EXPORT_SYMBOL(system_rev);
  93
  94unsigned int system_serial_low;
  95EXPORT_SYMBOL(system_serial_low);
  96
  97unsigned int system_serial_high;
  98EXPORT_SYMBOL(system_serial_high);
  99
 100unsigned int elf_hwcap __read_mostly;
 101EXPORT_SYMBOL(elf_hwcap);
 102
 103unsigned int elf_hwcap2 __read_mostly;
 104EXPORT_SYMBOL(elf_hwcap2);
 105
 106
 107#ifdef MULTI_CPU
 108struct processor processor __read_mostly;
 109#endif
 110#ifdef MULTI_TLB
 111struct cpu_tlb_fns cpu_tlb __read_mostly;
 112#endif
 113#ifdef MULTI_USER
 114struct cpu_user_fns cpu_user __read_mostly;
 115#endif
 116#ifdef MULTI_CACHE
 117struct cpu_cache_fns cpu_cache __read_mostly;
 118#endif
 119#ifdef CONFIG_OUTER_CACHE
 120struct outer_cache_fns outer_cache __read_mostly;
 121EXPORT_SYMBOL(outer_cache);
 122#endif
 123
 124/*
 125 * Cached cpu_architecture() result for use by assembler code.
 126 * C code should use the cpu_architecture() function instead of accessing this
 127 * variable directly.
 128 */
 129int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 130
 131struct stack {
 132	u32 irq[3];
 133	u32 abt[3];
 134	u32 und[3];
 135} ____cacheline_aligned;
 136
 137#ifndef CONFIG_CPU_V7M
 138static struct stack stacks[NR_CPUS];
 139#endif
 140
 141char elf_platform[ELF_PLATFORM_SIZE];
 142EXPORT_SYMBOL(elf_platform);
 143
 144static const char *cpu_name;
 145static const char *machine_name;
 146static char __initdata cmd_line[COMMAND_LINE_SIZE];
 147const struct machine_desc *machine_desc __initdata;
 148
 
 149static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 150#define ENDIANNESS ((char)endian_test.l)
 151
 152DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 153
 154/*
 155 * Standard memory resources
 156 */
 157static struct resource mem_res[] = {
 158	{
 159		.name = "Video RAM",
 160		.start = 0,
 161		.end = 0,
 162		.flags = IORESOURCE_MEM
 163	},
 164	{
 165		.name = "Kernel code",
 166		.start = 0,
 167		.end = 0,
 168		.flags = IORESOURCE_MEM
 169	},
 170	{
 171		.name = "Kernel data",
 172		.start = 0,
 173		.end = 0,
 174		.flags = IORESOURCE_MEM
 175	}
 176};
 177
 178#define video_ram   mem_res[0]
 179#define kernel_code mem_res[1]
 180#define kernel_data mem_res[2]
 181
 182static struct resource io_res[] = {
 183	{
 184		.name = "reserved",
 185		.start = 0x3bc,
 186		.end = 0x3be,
 187		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 188	},
 189	{
 190		.name = "reserved",
 191		.start = 0x378,
 192		.end = 0x37f,
 193		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 194	},
 195	{
 196		.name = "reserved",
 197		.start = 0x278,
 198		.end = 0x27f,
 199		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 200	}
 201};
 202
 203#define lp0 io_res[0]
 204#define lp1 io_res[1]
 205#define lp2 io_res[2]
 206
 207static const char *proc_arch[] = {
 208	"undefined/unknown",
 209	"3",
 210	"4",
 211	"4T",
 212	"5",
 213	"5T",
 214	"5TE",
 215	"5TEJ",
 216	"6TEJ",
 217	"7",
 218	"7M",
 219	"?(12)",
 220	"?(13)",
 221	"?(14)",
 222	"?(15)",
 223	"?(16)",
 224	"?(17)",
 225};
 226
 227#ifdef CONFIG_CPU_V7M
 228static int __get_cpu_architecture(void)
 229{
 230	return CPU_ARCH_ARMv7M;
 231}
 232#else
 233static int __get_cpu_architecture(void)
 234{
 235	int cpu_arch;
 236
 237	if ((read_cpuid_id() & 0x0008f000) == 0) {
 238		cpu_arch = CPU_ARCH_UNKNOWN;
 239	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 240		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 241	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 242		cpu_arch = (read_cpuid_id() >> 16) & 7;
 243		if (cpu_arch)
 244			cpu_arch += CPU_ARCH_ARMv3;
 245	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 246		unsigned int mmfr0;
 247
 248		/* Revised CPUID format. Read the Memory Model Feature
 249		 * Register 0 and check for VMSAv7 or PMSAv7 */
 250		asm("mrc	p15, 0, %0, c0, c1, 4"
 251		    : "=r" (mmfr0));
 252		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 253		    (mmfr0 & 0x000000f0) >= 0x00000030)
 254			cpu_arch = CPU_ARCH_ARMv7;
 255		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 256			 (mmfr0 & 0x000000f0) == 0x00000020)
 257			cpu_arch = CPU_ARCH_ARMv6;
 258		else
 259			cpu_arch = CPU_ARCH_UNKNOWN;
 260	} else
 261		cpu_arch = CPU_ARCH_UNKNOWN;
 262
 263	return cpu_arch;
 264}
 265#endif
 266
 267int __pure cpu_architecture(void)
 268{
 269	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 270
 271	return __cpu_architecture;
 272}
 273
 274static int cpu_has_aliasing_icache(unsigned int arch)
 275{
 276	int aliasing_icache;
 277	unsigned int id_reg, num_sets, line_size;
 278
 279	/* PIPT caches never alias. */
 280	if (icache_is_pipt())
 281		return 0;
 282
 283	/* arch specifies the register format */
 284	switch (arch) {
 285	case CPU_ARCH_ARMv7:
 286		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
 287		    : /* No output operands */
 288		    : "r" (1));
 289		isb();
 290		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 291		    : "=r" (id_reg));
 292		line_size = 4 << ((id_reg & 0x7) + 2);
 293		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 294		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 295		break;
 296	case CPU_ARCH_ARMv6:
 297		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 298		break;
 299	default:
 300		/* I-cache aliases will be handled by D-cache aliasing code */
 301		aliasing_icache = 0;
 302	}
 303
 304	return aliasing_icache;
 305}
 306
 307static void __init cacheid_init(void)
 308{
 
 309	unsigned int arch = cpu_architecture();
 310
 311	if (arch == CPU_ARCH_ARMv7M) {
 312		cacheid = 0;
 313	} else if (arch >= CPU_ARCH_ARMv6) {
 314		unsigned int cachetype = read_cpuid_cachetype();
 315		if ((cachetype & (7 << 29)) == 4 << 29) {
 316			/* ARMv7 register format */
 317			arch = CPU_ARCH_ARMv7;
 318			cacheid = CACHEID_VIPT_NONALIASING;
 319			switch (cachetype & (3 << 14)) {
 320			case (1 << 14):
 321				cacheid |= CACHEID_ASID_TAGGED;
 322				break;
 323			case (3 << 14):
 324				cacheid |= CACHEID_PIPT;
 325				break;
 326			}
 327		} else {
 328			arch = CPU_ARCH_ARMv6;
 329			if (cachetype & (1 << 23))
 330				cacheid = CACHEID_VIPT_ALIASING;
 331			else
 332				cacheid = CACHEID_VIPT_NONALIASING;
 333		}
 334		if (cpu_has_aliasing_icache(arch))
 335			cacheid |= CACHEID_VIPT_I_ALIASING;
 336	} else {
 337		cacheid = CACHEID_VIVT;
 338	}
 339
 340	pr_info("CPU: %s data cache, %s instruction cache\n",
 341		cache_is_vivt() ? "VIVT" :
 342		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 343		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 344		cache_is_vivt() ? "VIVT" :
 345		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 346		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 347		icache_is_pipt() ? "PIPT" :
 348		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 349}
 350
 351/*
 352 * These functions re-use the assembly code in head.S, which
 353 * already provide the required functionality.
 354 */
 355extern struct proc_info_list *lookup_processor_type(unsigned int);
 356
 357void __init early_print(const char *str, ...)
 358{
 359	extern void printascii(const char *);
 360	char buf[256];
 361	va_list ap;
 362
 363	va_start(ap, str);
 364	vsnprintf(buf, sizeof(buf), str, ap);
 365	va_end(ap);
 366
 367#ifdef CONFIG_DEBUG_LL
 368	printascii(buf);
 369#endif
 370	printk("%s", buf);
 371}
 372
 373static void __init cpuid_init_hwcaps(void)
 374{
 375	unsigned int divide_instrs, vmsa;
 376
 377	if (cpu_architecture() < CPU_ARCH_ARMv7)
 378		return;
 379
 380	divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
 381
 382	switch (divide_instrs) {
 383	case 2:
 384		elf_hwcap |= HWCAP_IDIVA;
 385	case 1:
 386		elf_hwcap |= HWCAP_IDIVT;
 387	}
 388
 389	/* LPAE implies atomic ldrd/strd instructions */
 390	vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
 391	if (vmsa >= 5)
 392		elf_hwcap |= HWCAP_LPAE;
 393}
 394
 395static void __init feat_v6_fixup(void)
 396{
 397	int id = read_cpuid_id();
 398
 399	if ((id & 0xff0f0000) != 0x41070000)
 400		return;
 401
 402	/*
 403	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 404	 * see also kuser_get_tls_init.
 405	 */
 406	if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
 407		elf_hwcap &= ~HWCAP_TLS;
 408}
 409
 410/*
 411 * cpu_init - initialise one CPU.
 412 *
 413 * cpu_init sets up the per-CPU stacks.
 414 */
 415void notrace cpu_init(void)
 416{
 417#ifndef CONFIG_CPU_V7M
 418	unsigned int cpu = smp_processor_id();
 419	struct stack *stk = &stacks[cpu];
 420
 421	if (cpu >= NR_CPUS) {
 422		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 423		BUG();
 424	}
 425
 426	/*
 427	 * This only works on resume and secondary cores. For booting on the
 428	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 429	 */
 430	set_my_cpu_offset(per_cpu_offset(cpu));
 431
 432	cpu_proc_init();
 433
 434	/*
 435	 * Define the placement constraint for the inline asm directive below.
 436	 * In Thumb-2, msr with an immediate value is not allowed.
 437	 */
 438#ifdef CONFIG_THUMB2_KERNEL
 439#define PLC	"r"
 440#else
 441#define PLC	"I"
 442#endif
 443
 444	/*
 445	 * setup stacks for re-entrant exception handlers
 446	 */
 447	__asm__ (
 448	"msr	cpsr_c, %1\n\t"
 449	"add	r14, %0, %2\n\t"
 450	"mov	sp, r14\n\t"
 451	"msr	cpsr_c, %3\n\t"
 452	"add	r14, %0, %4\n\t"
 453	"mov	sp, r14\n\t"
 454	"msr	cpsr_c, %5\n\t"
 455	"add	r14, %0, %6\n\t"
 456	"mov	sp, r14\n\t"
 457	"msr	cpsr_c, %7"
 458	    :
 459	    : "r" (stk),
 460	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 461	      "I" (offsetof(struct stack, irq[0])),
 462	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 463	      "I" (offsetof(struct stack, abt[0])),
 464	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 465	      "I" (offsetof(struct stack, und[0])),
 466	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 467	    : "r14");
 468#endif
 469}
 470
 471u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 472
 473void __init smp_setup_processor_id(void)
 474{
 475	int i;
 476	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 477	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 478
 479	cpu_logical_map(0) = cpu;
 480	for (i = 1; i < nr_cpu_ids; ++i)
 481		cpu_logical_map(i) = i == cpu ? 0 : i;
 482
 483	/*
 484	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 485	 * using percpu variable early, for example, lockdep will
 486	 * access percpu variable inside lock_release
 487	 */
 488	set_my_cpu_offset(0);
 489
 490	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 491}
 492
 493struct mpidr_hash mpidr_hash;
 494#ifdef CONFIG_SMP
 495/**
 496 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 497 *			  level in order to build a linear index from an
 498 *			  MPIDR value. Resulting algorithm is a collision
 499 *			  free hash carried out through shifting and ORing
 500 */
 501static void __init smp_build_mpidr_hash(void)
 502{
 503	u32 i, affinity;
 504	u32 fs[3], bits[3], ls, mask = 0;
 505	/*
 506	 * Pre-scan the list of MPIDRS and filter out bits that do
 507	 * not contribute to affinity levels, ie they never toggle.
 508	 */
 509	for_each_possible_cpu(i)
 510		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 511	pr_debug("mask of set bits 0x%x\n", mask);
 512	/*
 513	 * Find and stash the last and first bit set at all affinity levels to
 514	 * check how many bits are required to represent them.
 515	 */
 516	for (i = 0; i < 3; i++) {
 517		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 518		/*
 519		 * Find the MSB bit and LSB bits position
 520		 * to determine how many bits are required
 521		 * to express the affinity level.
 522		 */
 523		ls = fls(affinity);
 524		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 525		bits[i] = ls - fs[i];
 526	}
 527	/*
 528	 * An index can be created from the MPIDR by isolating the
 529	 * significant bits at each affinity level and by shifting
 530	 * them in order to compress the 24 bits values space to a
 531	 * compressed set of values. This is equivalent to hashing
 532	 * the MPIDR through shifting and ORing. It is a collision free
 533	 * hash though not minimal since some levels might contain a number
 534	 * of CPUs that is not an exact power of 2 and their bit
 535	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 536	 */
 537	mpidr_hash.shift_aff[0] = fs[0];
 538	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 539	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 540						(bits[1] + bits[0]);
 541	mpidr_hash.mask = mask;
 542	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 543	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 544				mpidr_hash.shift_aff[0],
 545				mpidr_hash.shift_aff[1],
 546				mpidr_hash.shift_aff[2],
 547				mpidr_hash.mask,
 548				mpidr_hash.bits);
 549	/*
 550	 * 4x is an arbitrary value used to warn on a hash table much bigger
 551	 * than expected on most systems.
 552	 */
 553	if (mpidr_hash_size() > 4 * num_possible_cpus())
 554		pr_warn("Large number of MPIDR hash buckets detected\n");
 555	sync_cache_w(&mpidr_hash);
 556}
 557#endif
 558
 559static void __init setup_processor(void)
 560{
 561	struct proc_info_list *list;
 562
 563	/*
 564	 * locate processor in the list of supported processor
 565	 * types.  The linker builds this table for us from the
 566	 * entries in arch/arm/mm/proc-*.S
 567	 */
 568	list = lookup_processor_type(read_cpuid_id());
 569	if (!list) {
 570		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
 571		       read_cpuid_id());
 572		while (1);
 573	}
 574
 575	cpu_name = list->cpu_name;
 576	__cpu_architecture = __get_cpu_architecture();
 577
 578#ifdef MULTI_CPU
 579	processor = *list->proc;
 580#endif
 581#ifdef MULTI_TLB
 582	cpu_tlb = *list->tlb;
 583#endif
 584#ifdef MULTI_USER
 585	cpu_user = *list->user;
 586#endif
 587#ifdef MULTI_CACHE
 588	cpu_cache = *list->cache;
 589#endif
 590
 591	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 592		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 593		proc_arch[cpu_architecture()], cr_alignment);
 594
 595	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 596		 list->arch_name, ENDIANNESS);
 597	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 598		 list->elf_name, ENDIANNESS);
 599	elf_hwcap = list->elf_hwcap;
 600
 601	cpuid_init_hwcaps();
 602
 603#ifndef CONFIG_ARM_THUMB
 604	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 605#endif
 606
 607	erratum_a15_798181_init();
 608
 609	feat_v6_fixup();
 610
 611	cacheid_init();
 612	cpu_init();
 613}
 614
 615void __init dump_machine_table(void)
 616{
 617	const struct machine_desc *p;
 618
 619	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 620	for_each_machine_desc(p)
 621		early_print("%08x\t%s\n", p->nr, p->name);
 622
 623	early_print("\nPlease check your kernel config and/or bootloader.\n");
 624
 625	while (true)
 626		/* can't use cpu_relax() here as it may require MMU setup */;
 627}
 628
 629int __init arm_add_memory(u64 start, u64 size)
 630{
 631	struct membank *bank = &meminfo.bank[meminfo.nr_banks];
 632	u64 aligned_start;
 633
 634	if (meminfo.nr_banks >= NR_BANKS) {
 635		pr_crit("NR_BANKS too low, ignoring memory at 0x%08llx\n",
 636			(long long)start);
 637		return -EINVAL;
 638	}
 639
 640	/*
 641	 * Ensure that start/size are aligned to a page boundary.
 642	 * Size is appropriately rounded down, start is rounded up.
 643	 */
 644	size -= start & ~PAGE_MASK;
 645	aligned_start = PAGE_ALIGN(start);
 646
 647#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
 648	if (aligned_start > ULONG_MAX) {
 649		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 650			(long long)start);
 651		return -EINVAL;
 652	}
 653
 654	if (aligned_start + size > ULONG_MAX) {
 655		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 656			(long long)start);
 657		/*
 658		 * To ensure bank->start + bank->size is representable in
 659		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 660		 * This means we lose a page after masking.
 661		 */
 662		size = ULONG_MAX - aligned_start;
 663	}
 664#endif
 665
 666	if (aligned_start < PHYS_OFFSET) {
 667		if (aligned_start + size <= PHYS_OFFSET) {
 668			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 669				aligned_start, aligned_start + size);
 670			return -EINVAL;
 671		}
 672
 673		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 674			aligned_start, (u64)PHYS_OFFSET);
 675
 676		size -= PHYS_OFFSET - aligned_start;
 677		aligned_start = PHYS_OFFSET;
 678	}
 679
 680	bank->start = aligned_start;
 681	bank->size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 682
 683	/*
 684	 * Check whether this memory region has non-zero size or
 685	 * invalid node number.
 686	 */
 687	if (bank->size == 0)
 688		return -EINVAL;
 689
 690	meminfo.nr_banks++;
 691	return 0;
 692}
 693
 694/*
 695 * Pick out the memory size.  We look for mem=size@start,
 696 * where start and size are "size[KkMm]"
 697 */
 698static int __init early_mem(char *p)
 699{
 700	static int usermem __initdata = 0;
 701	u64 size;
 702	u64 start;
 703	char *endp;
 704
 705	/*
 706	 * If the user specifies memory size, we
 707	 * blow away any automatically generated
 708	 * size.
 709	 */
 710	if (usermem == 0) {
 711		usermem = 1;
 712		meminfo.nr_banks = 0;
 713	}
 714
 715	start = PHYS_OFFSET;
 716	size  = memparse(p, &endp);
 717	if (*endp == '@')
 718		start = memparse(endp + 1, NULL);
 719
 720	arm_add_memory(start, size);
 721
 722	return 0;
 723}
 724early_param("mem", early_mem);
 725
 726static void __init request_standard_resources(const struct machine_desc *mdesc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727{
 728	struct memblock_region *region;
 729	struct resource *res;
 730
 731	kernel_code.start   = virt_to_phys(_text);
 732	kernel_code.end     = virt_to_phys(_etext - 1);
 733	kernel_data.start   = virt_to_phys(_sdata);
 734	kernel_data.end     = virt_to_phys(_end - 1);
 735
 736	for_each_memblock(memory, region) {
 737		res = memblock_virt_alloc(sizeof(*res), 0);
 738		res->name  = "System RAM";
 739		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 740		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 741		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 742
 743		request_resource(&iomem_resource, res);
 744
 745		if (kernel_code.start >= res->start &&
 746		    kernel_code.end <= res->end)
 747			request_resource(res, &kernel_code);
 748		if (kernel_data.start >= res->start &&
 749		    kernel_data.end <= res->end)
 750			request_resource(res, &kernel_data);
 751	}
 752
 753	if (mdesc->video_start) {
 754		video_ram.start = mdesc->video_start;
 755		video_ram.end   = mdesc->video_end;
 756		request_resource(&iomem_resource, &video_ram);
 757	}
 758
 759	/*
 760	 * Some machines don't have the possibility of ever
 761	 * possessing lp0, lp1 or lp2
 762	 */
 763	if (mdesc->reserve_lp0)
 764		request_resource(&ioport_resource, &lp0);
 765	if (mdesc->reserve_lp1)
 766		request_resource(&ioport_resource, &lp1);
 767	if (mdesc->reserve_lp2)
 768		request_resource(&ioport_resource, &lp2);
 769}
 770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 772struct screen_info screen_info = {
 773 .orig_video_lines	= 30,
 774 .orig_video_cols	= 80,
 775 .orig_video_mode	= 0,
 776 .orig_video_ega_bx	= 0,
 777 .orig_video_isVGA	= 1,
 778 .orig_video_points	= 8
 779};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780#endif
 781
 782static int __init customize_machine(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 783{
 784	/*
 785	 * customizes platform devices, or adds new ones
 786	 * On DT based machines, we fall back to populating the
 787	 * machine from the device tree, if no callback is provided,
 788	 * otherwise we would always need an init_machine callback.
 789	 */
 790	if (machine_desc->init_machine)
 791		machine_desc->init_machine();
 792#ifdef CONFIG_OF
 793	else
 794		of_platform_populate(NULL, of_default_bus_match_table,
 795					NULL, NULL);
 796#endif
 797	return 0;
 798}
 799arch_initcall(customize_machine);
 800
 801static int __init init_machine_late(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802{
 803	if (machine_desc->init_late)
 804		machine_desc->init_late();
 
 805	return 0;
 806}
 807late_initcall(init_machine_late);
 808
 809#ifdef CONFIG_KEXEC
 810static inline unsigned long long get_total_mem(void)
 811{
 812	unsigned long total;
 813
 814	total = max_low_pfn - min_low_pfn;
 815	return total << PAGE_SHIFT;
 816}
 817
 818/**
 819 * reserve_crashkernel() - reserves memory are for crash kernel
 820 *
 821 * This function reserves memory area given in "crashkernel=" kernel command
 822 * line parameter. The memory reserved is used by a dump capture kernel when
 823 * primary kernel is crashing.
 824 */
 825static void __init reserve_crashkernel(void)
 826{
 827	unsigned long long crash_size, crash_base;
 828	unsigned long long total_mem;
 829	int ret;
 830
 831	total_mem = get_total_mem();
 832	ret = parse_crashkernel(boot_command_line, total_mem,
 833				&crash_size, &crash_base);
 834	if (ret)
 835		return;
 836
 837	ret = memblock_reserve(crash_base, crash_size);
 838	if (ret < 0) {
 839		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
 840			(unsigned long)crash_base);
 841		return;
 842	}
 843
 844	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 845		(unsigned long)(crash_size >> 20),
 846		(unsigned long)(crash_base >> 20),
 847		(unsigned long)(total_mem >> 20));
 
 848
 849	crashk_res.start = crash_base;
 850	crashk_res.end = crash_base + crash_size - 1;
 851	insert_resource(&iomem_resource, &crashk_res);
 852}
 853#else
 854static inline void reserve_crashkernel(void) {}
 855#endif /* CONFIG_KEXEC */
 856
 857static int __init meminfo_cmp(const void *_a, const void *_b)
 858{
 859	const struct membank *a = _a, *b = _b;
 860	long cmp = bank_pfn_start(a) - bank_pfn_start(b);
 861	return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
 862}
 863
 864void __init hyp_mode_check(void)
 865{
 866#ifdef CONFIG_ARM_VIRT_EXT
 867	sync_boot_mode();
 
 868
 869	if (is_hyp_mode_available()) {
 870		pr_info("CPU: All CPU(s) started in HYP mode.\n");
 871		pr_info("CPU: Virtualization extensions available.\n");
 872	} else if (is_hyp_mode_mismatched()) {
 873		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
 874			__boot_cpu_mode & MODE_MASK);
 875		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
 876	} else
 877		pr_info("CPU: All CPU(s) started in SVC mode.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879}
 880
 
 881void __init setup_arch(char **cmdline_p)
 882{
 883	const struct machine_desc *mdesc;
 
 
 884
 885	setup_processor();
 886	mdesc = setup_machine_fdt(__atags_pointer);
 887	if (!mdesc)
 888		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
 889	machine_desc = mdesc;
 890	machine_name = mdesc->name;
 891
 892	if (mdesc->reboot_mode != REBOOT_HARD)
 893		reboot_mode = mdesc->reboot_mode;
 894
 895	init_mm.start_code = (unsigned long) _text;
 896	init_mm.end_code   = (unsigned long) _etext;
 897	init_mm.end_data   = (unsigned long) _edata;
 898	init_mm.brk	   = (unsigned long) _end;
 899
 900	/* populate cmd_line too for later use, preserving boot_command_line */
 901	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
 902	*cmdline_p = cmd_line;
 903
 904	parse_early_param();
 905
 906	sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
 907
 908	early_paging_init(mdesc, lookup_processor_type(read_cpuid_id()));
 909	setup_dma_zone(mdesc);
 910	sanity_check_meminfo();
 911	arm_memblock_init(&meminfo, mdesc);
 912
 913	paging_init(mdesc);
 914	request_standard_resources(mdesc);
 915
 916	if (mdesc->restart)
 917		arm_pm_restart = mdesc->restart;
 918
 919	unflatten_device_tree();
 920
 921	arm_dt_init_cpu_maps();
 922	psci_init();
 923#ifdef CONFIG_SMP
 924	if (is_smp()) {
 925		if (!mdesc->smp_init || !mdesc->smp_init()) {
 926			if (psci_smp_available())
 927				smp_set_ops(&psci_smp_ops);
 928			else if (mdesc->smp)
 929				smp_set_ops(mdesc->smp);
 930		}
 931		smp_init_cpus();
 932		smp_build_mpidr_hash();
 933	}
 934#endif
 
 935
 936	if (!is_smp())
 937		hyp_mode_check();
 938
 939	reserve_crashkernel();
 940
 
 
 
 
 
 
 941#ifdef CONFIG_MULTI_IRQ_HANDLER
 942	handle_arch_irq = mdesc->handle_irq;
 943#endif
 944
 945#ifdef CONFIG_VT
 946#if defined(CONFIG_VGA_CONSOLE)
 947	conswitchp = &vga_con;
 948#elif defined(CONFIG_DUMMY_CONSOLE)
 949	conswitchp = &dummy_con;
 950#endif
 951#endif
 
 952
 953	if (mdesc->init_early)
 954		mdesc->init_early();
 955}
 956
 957
 958static int __init topology_init(void)
 959{
 960	int cpu;
 961
 962	for_each_possible_cpu(cpu) {
 963		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
 964		cpuinfo->cpu.hotpluggable = 1;
 965		register_cpu(&cpuinfo->cpu, cpu);
 966	}
 967
 968	return 0;
 969}
 970subsys_initcall(topology_init);
 971
 972#ifdef CONFIG_HAVE_PROC_CPU
 973static int __init proc_cpu_init(void)
 974{
 975	struct proc_dir_entry *res;
 976
 977	res = proc_mkdir("cpu", NULL);
 978	if (!res)
 979		return -ENOMEM;
 980	return 0;
 981}
 982fs_initcall(proc_cpu_init);
 983#endif
 984
 985static const char *hwcap_str[] = {
 986	"swp",
 987	"half",
 988	"thumb",
 989	"26bit",
 990	"fastmult",
 991	"fpa",
 992	"vfp",
 993	"edsp",
 994	"java",
 995	"iwmmxt",
 996	"crunch",
 997	"thumbee",
 998	"neon",
 999	"vfpv3",
1000	"vfpv3d16",
1001	"tls",
1002	"vfpv4",
1003	"idiva",
1004	"idivt",
1005	"vfpd32",
1006	"lpae",
1007	"evtstrm",
1008	NULL
1009};
1010
1011static const char *hwcap2_str[] = {
1012	"aes",
1013	"pmull",
1014	"sha1",
1015	"sha2",
1016	"crc32",
1017	NULL
1018};
1019
1020static int c_show(struct seq_file *m, void *v)
1021{
1022	int i, j;
1023	u32 cpuid;
1024
 
 
 
 
1025	for_each_online_cpu(i) {
1026		/*
1027		 * glibc reads /proc/cpuinfo to determine the number of
1028		 * online processors, looking for lines beginning with
1029		 * "processor".  Give glibc what it expects.
1030		 */
1031		seq_printf(m, "processor\t: %d\n", i);
1032		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1033		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1034			   cpu_name, cpuid & 15, elf_platform);
1035
1036		/* dump out the processor features */
1037		seq_puts(m, "Features\t: ");
1038
1039		for (j = 0; hwcap_str[j]; j++)
1040			if (elf_hwcap & (1 << j))
1041				seq_printf(m, "%s ", hwcap_str[j]);
1042
1043		for (j = 0; hwcap2_str[j]; j++)
1044			if (elf_hwcap2 & (1 << j))
1045				seq_printf(m, "%s ", hwcap2_str[j]);
1046
1047		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1048		seq_printf(m, "CPU architecture: %s\n",
1049			   proc_arch[cpu_architecture()]);
1050
1051		if ((cpuid & 0x0008f000) == 0x00000000) {
1052			/* pre-ARM7 */
1053			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
 
 
 
 
 
 
1054		} else {
1055			if ((cpuid & 0x0008f000) == 0x00007000) {
1056				/* ARM7 */
1057				seq_printf(m, "CPU variant\t: 0x%02x\n",
1058					   (cpuid >> 16) & 127);
1059			} else {
1060				/* post-ARM7 */
1061				seq_printf(m, "CPU variant\t: 0x%x\n",
1062					   (cpuid >> 20) & 15);
1063			}
1064			seq_printf(m, "CPU part\t: 0x%03x\n",
1065				   (cpuid >> 4) & 0xfff);
1066		}
1067		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
 
1068	}
 
 
 
1069
1070	seq_printf(m, "Hardware\t: %s\n", machine_name);
1071	seq_printf(m, "Revision\t: %04x\n", system_rev);
1072	seq_printf(m, "Serial\t\t: %08x%08x\n",
1073		   system_serial_high, system_serial_low);
1074
1075	return 0;
1076}
1077
1078static void *c_start(struct seq_file *m, loff_t *pos)
1079{
1080	return *pos < 1 ? (void *)1 : NULL;
1081}
1082
1083static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1084{
1085	++*pos;
1086	return NULL;
1087}
1088
1089static void c_stop(struct seq_file *m, void *v)
1090{
1091}
1092
1093const struct seq_operations cpuinfo_op = {
1094	.start	= c_start,
1095	.next	= c_next,
1096	.stop	= c_stop,
1097	.show	= c_show
1098};