Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */

#include <net/xdp_sock_drv.h>
#include "ice_base.h"
#include "ice_lib.h"
#include "ice_dcb_lib.h"
#include "ice_sriov.h"

/**
 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
 *
 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 */
static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
{
	unsigned int offset, i;

	mutex_lock(qs_cfg->qs_mutex);
	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
					    0, qs_cfg->q_count, 0);
	if (offset >= qs_cfg->pf_map_size) {
		mutex_unlock(qs_cfg->qs_mutex);
		return -ENOMEM;
	}

	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
	for (i = 0; i < qs_cfg->q_count; i++)
		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
	mutex_unlock(qs_cfg->qs_mutex);

	return 0;
}

/**
 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 *
 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 */
static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
{
	unsigned int i, index = 0;

	mutex_lock(qs_cfg->qs_mutex);
	for (i = 0; i < qs_cfg->q_count; i++) {
		index = find_next_zero_bit(qs_cfg->pf_map,
					   qs_cfg->pf_map_size, index);
		if (index >= qs_cfg->pf_map_size)
			goto err_scatter;
		set_bit(index, qs_cfg->pf_map);
		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
	}
	mutex_unlock(qs_cfg->qs_mutex);

	return 0;
err_scatter:
	for (index = 0; index < i; index++) {
		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
	}
	mutex_unlock(qs_cfg->qs_mutex);

	return -ENOMEM;
}

/**
 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
 * @pf: the PF being configured
 * @pf_q: the PF queue
 * @ena: enable or disable state of the queue
 *
 * This routine will wait for the given Rx queue of the PF to reach the
 * enabled or disabled state.
 * Returns -ETIMEDOUT in case of failing to reach the requested state after
 * multiple retries; else will return 0 in case of success.
 */
static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
{
	int i;

	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
			      QRX_CTRL_QENA_STAT_M))
			return 0;

		usleep_range(20, 40);
	}

	return -ETIMEDOUT;
}

/**
 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
 * @vsi: the VSI being configured
 * @v_idx: index of the vector in the VSI struct
 *
 * We allocate one q_vector and set default value for ITR setting associated
 * with this q_vector. If allocation fails we return -ENOMEM.
 */
static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
{
	struct ice_pf *pf = vsi->back;
	struct ice_q_vector *q_vector;
	int err;

	/* allocate q_vector */
	q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
	if (!q_vector)
		return -ENOMEM;

	q_vector->vsi = vsi;
	q_vector->v_idx = v_idx;
	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
	q_vector->tx.itr_mode = ITR_DYNAMIC;
	q_vector->rx.itr_mode = ITR_DYNAMIC;
	q_vector->tx.type = ICE_TX_CONTAINER;
	q_vector->rx.type = ICE_RX_CONTAINER;
	q_vector->irq.index = -ENOENT;

	if (vsi->type == ICE_VSI_VF) {
		q_vector->reg_idx = ice_calc_vf_reg_idx(vsi->vf, q_vector);
		goto out;
	} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
		struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);

		if (ctrl_vsi) {
			if (unlikely(!ctrl_vsi->q_vectors)) {
				err = -ENOENT;
				goto err_free_q_vector;
			}

			q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
			goto skip_alloc;
		}
	}

	q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
	if (q_vector->irq.index < 0) {
		err = -ENOMEM;
		goto err_free_q_vector;
	}

skip_alloc:
	q_vector->reg_idx = q_vector->irq.index;

	/* only set affinity_mask if the CPU is online */
	if (cpu_online(v_idx))
		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);

	/* This will not be called in the driver load path because the netdev
	 * will not be created yet. All other cases with register the NAPI
	 * handler here (i.e. resume, reset/rebuild, etc.)
	 */
	if (vsi->netdev)
		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);

out:
	/* tie q_vector and VSI together */
	vsi->q_vectors[v_idx] = q_vector;

	return 0;

err_free_q_vector:
	kfree(q_vector);

	return err;
}

/**
 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
 * @vsi: VSI having the memory freed
 * @v_idx: index of the vector to be freed
 */
static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
{
	struct ice_q_vector *q_vector;
	struct ice_pf *pf = vsi->back;
	struct ice_tx_ring *tx_ring;
	struct ice_rx_ring *rx_ring;
	struct device *dev;

	dev = ice_pf_to_dev(pf);
	if (!vsi->q_vectors[v_idx]) {
		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
		return;
	}
	q_vector = vsi->q_vectors[v_idx];

	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
		ice_queue_set_napi(vsi, tx_ring->q_index, NETDEV_QUEUE_TYPE_TX,
				   NULL);
		tx_ring->q_vector = NULL;
	}
	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
		ice_queue_set_napi(vsi, rx_ring->q_index, NETDEV_QUEUE_TYPE_RX,
				   NULL);
		rx_ring->q_vector = NULL;
	}

	/* only VSI with an associated netdev is set up with NAPI */
	if (vsi->netdev)
		netif_napi_del(&q_vector->napi);

	/* release MSIX interrupt if q_vector had interrupt allocated */
	if (q_vector->irq.index < 0)
		goto free_q_vector;

	/* only free last VF ctrl vsi interrupt */
	if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
	    ice_get_vf_ctrl_vsi(pf, vsi))
		goto free_q_vector;

	ice_free_irq(pf, q_vector->irq);

free_q_vector:
	kfree(q_vector);
	vsi->q_vectors[v_idx] = NULL;
}

/**
 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
 * @hw: board specific structure
 */
static void ice_cfg_itr_gran(struct ice_hw *hw)
{
	u32 regval = rd32(hw, GLINT_CTL);

	/* no need to update global register if ITR gran is already set */
	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
	    (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
	    (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
	    (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
	    (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
		return;

	regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
		 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
		 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
		 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
	wr32(hw, GLINT_CTL, regval);
}

/**
 * ice_calc_txq_handle - calculate the queue handle
 * @vsi: VSI that ring belongs to
 * @ring: ring to get the absolute queue index
 * @tc: traffic class number
 */
static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
{
	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");

	if (ring->ch)
		return ring->q_index - ring->ch->base_q;

	/* Idea here for calculation is that we subtract the number of queue
	 * count from TC that ring belongs to from it's absolute queue index
	 * and as a result we get the queue's index within TC.
	 */
	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
}

/**
 * ice_eswitch_calc_txq_handle
 * @ring: pointer to ring which unique index is needed
 *
 * To correctly work with many netdevs ring->q_index of Tx rings on switchdev
 * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it
 * here by finding index in vsi->tx_rings of this ring.
 *
 * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen,
 * because VSI is get from ring->vsi, so it has to be present in this VSI.
 */
static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring)
{
	const struct ice_vsi *vsi = ring->vsi;
	int i;

	ice_for_each_txq(vsi, i) {
		if (vsi->tx_rings[i] == ring)
			return i;
	}

	return ICE_INVAL_Q_INDEX;
}

/**
 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
 * @ring: The Tx ring to configure
 *
 * This enables/disables XPS for a given Tx descriptor ring
 * based on the TCs enabled for the VSI that ring belongs to.
 */
static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
{
	if (!ring->q_vector || !ring->netdev)
		return;

	/* We only initialize XPS once, so as not to overwrite user settings */
	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
		return;

	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
			    ring->q_index);
}

/**
 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
 * @ring: The Tx ring to configure
 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
 * @pf_q: queue index in the PF space
 *
 * Configure the Tx descriptor ring in TLAN context.
 */
static void
ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
{
	struct ice_vsi *vsi = ring->vsi;
	struct ice_hw *hw = &vsi->back->hw;

	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;

	tlan_ctx->port_num = vsi->port_info->lport;

	/* Transmit Queue Length */
	tlan_ctx->qlen = ring->count;

	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);

	/* PF number */
	tlan_ctx->pf_num = hw->pf_id;

	/* queue belongs to a specific VSI type
	 * VF / VM index should be programmed per vmvf_type setting:
	 * for vmvf_type = VF, it is VF number between 0-256
	 * for vmvf_type = VM, it is VM number between 0-767
	 * for PF or EMP this field should be set to zero
	 */
	switch (vsi->type) {
	case ICE_VSI_LB:
	case ICE_VSI_CTRL:
	case ICE_VSI_PF:
		if (ring->ch)
			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
		else
			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
		break;
	case ICE_VSI_VF:
		/* Firmware expects vmvf_num to be absolute VF ID */
		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
		break;
	case ICE_VSI_SWITCHDEV_CTRL:
		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
		break;
	default:
		return;
	}

	/* make sure the context is associated with the right VSI */
	if (ring->ch)
		tlan_ctx->src_vsi = ring->ch->vsi_num;
	else
		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);

	/* Restrict Tx timestamps to the PF VSI */
	switch (vsi->type) {
	case ICE_VSI_PF:
		tlan_ctx->tsyn_ena = 1;
		break;
	default:
		break;
	}

	tlan_ctx->tso_ena = ICE_TX_LEGACY;
	tlan_ctx->tso_qnum = pf_q;

	/* Legacy or Advanced Host Interface:
	 * 0: Advanced Host Interface
	 * 1: Legacy Host Interface
	 */
	tlan_ctx->legacy_int = ICE_TX_LEGACY;
}

/**
 * ice_rx_offset - Return expected offset into page to access data
 * @rx_ring: Ring we are requesting offset of
 *
 * Returns the offset value for ring into the data buffer.
 */
static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
{
	if (ice_ring_uses_build_skb(rx_ring))
		return ICE_SKB_PAD;
	return 0;
}

/**
 * ice_setup_rx_ctx - Configure a receive ring context
 * @ring: The Rx ring to configure
 *
 * Configure the Rx descriptor ring in RLAN context.
 */
static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
{
	struct ice_vsi *vsi = ring->vsi;
	u32 rxdid = ICE_RXDID_FLEX_NIC;
	struct ice_rlan_ctx rlan_ctx;
	struct ice_hw *hw;
	u16 pf_q;
	int err;

	hw = &vsi->back->hw;

	/* what is Rx queue number in global space of 2K Rx queues */
	pf_q = vsi->rxq_map[ring->q_index];

	/* clear the context structure first */
	memset(&rlan_ctx, 0, sizeof(rlan_ctx));

	/* Receive Queue Base Address.
	 * Indicates the starting address of the descriptor queue defined in
	 * 128 Byte units.
	 */
	rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;

	rlan_ctx.qlen = ring->count;

	/* Receive Packet Data Buffer Size.
	 * The Packet Data Buffer Size is defined in 128 byte units.
	 */
	rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
				     BIT_ULL(ICE_RLAN_CTX_DBUF_S));

	/* use 32 byte descriptors */
	rlan_ctx.dsize = 1;

	/* Strip the Ethernet CRC bytes before the packet is posted to host
	 * memory.
	 */
	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);

	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
	 * and it needs to remain 1 for non-DVM capable configurations to not
	 * break backward compatibility for VF drivers. Setting this field to 0
	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
	 * check for the tag
	 */
	if (ice_is_dvm_ena(hw))
		if (vsi->type == ICE_VSI_VF &&
		    ice_vf_is_port_vlan_ena(vsi->vf))
			rlan_ctx.l2tsel = 1;
		else
			rlan_ctx.l2tsel = 0;
	else
		rlan_ctx.l2tsel = 1;

	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;

	/* This controls whether VLAN is stripped from inner headers
	 * The VLAN in the inner L2 header is stripped to the receive
	 * descriptor if enabled by this flag.
	 */
	rlan_ctx.showiv = 0;

	/* Max packet size for this queue - must not be set to a larger value
	 * than 5 x DBUF
	 */
	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
			       ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);

	/* Rx queue threshold in units of 64 */
	rlan_ctx.lrxqthresh = 1;

	/* Enable Flexible Descriptors in the queue context which
	 * allows this driver to select a specific receive descriptor format
	 * increasing context priority to pick up profile ID; default is 0x01;
	 * setting to 0x03 to ensure profile is programming if prev context is
	 * of same priority
	 */
	if (vsi->type != ICE_VSI_VF)
		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
	else
		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
					false);

	/* Absolute queue number out of 2K needs to be passed */
	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
	if (err) {
		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
			pf_q, err);
		return -EIO;
	}

	if (vsi->type == ICE_VSI_VF)
		return 0;

	/* configure Rx buffer alignment */
	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
		ice_clear_ring_build_skb_ena(ring);
	else
		ice_set_ring_build_skb_ena(ring);

	ring->rx_offset = ice_rx_offset(ring);

	/* init queue specific tail register */
	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
	writel(0, ring->tail);

	return 0;
}

static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring)
{
	void *ctx_ptr = &ring->pkt_ctx;
	struct xsk_cb_desc desc = {};

	XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff);
	desc.src = &ctx_ptr;
	desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) -
		   sizeof(struct xdp_buff);
	desc.bytes = sizeof(ctx_ptr);
	xsk_pool_fill_cb(ring->xsk_pool, &desc);
}

/**
 * ice_vsi_cfg_rxq - Configure an Rx queue
 * @ring: the ring being configured
 *
 * Return 0 on success and a negative value on error.
 */
static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
{
	struct device *dev = ice_pf_to_dev(ring->vsi->back);
	u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
	int err;

	ring->rx_buf_len = ring->vsi->rx_buf_len;

	if (ring->vsi->type == ICE_VSI_PF) {
		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
						 ring->q_index,
						 ring->q_vector->napi.napi_id,
						 ring->rx_buf_len);
			if (err)
				return err;
		}

		ring->xsk_pool = ice_xsk_pool(ring);
		if (ring->xsk_pool) {
			xdp_rxq_info_unreg(&ring->xdp_rxq);

			ring->rx_buf_len =
				xsk_pool_get_rx_frame_size(ring->xsk_pool);
			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
						 ring->q_index,
						 ring->q_vector->napi.napi_id,
						 ring->rx_buf_len);
			if (err)
				return err;
			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
							 MEM_TYPE_XSK_BUFF_POOL,
							 NULL);
			if (err)
				return err;
			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
			ice_xsk_pool_fill_cb(ring);

			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
				 ring->q_index);
		} else {
			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
				err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
							 ring->q_index,
							 ring->q_vector->napi.napi_id,
							 ring->rx_buf_len);
				if (err)
					return err;
			}

			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
							 MEM_TYPE_PAGE_SHARED,
							 NULL);
			if (err)
				return err;
		}
	}

	xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq);
	ring->xdp.data = NULL;
	ring->xdp_ext.pkt_ctx = &ring->pkt_ctx;
	err = ice_setup_rx_ctx(ring);
	if (err) {
		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
			ring->q_index, err);
		return err;
	}

	if (ring->xsk_pool) {
		bool ok;

		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
				 num_bufs, ring->q_index);
			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");

			return 0;
		}

		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
		if (!ok) {
			u16 pf_q = ring->vsi->rxq_map[ring->q_index];

			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
				 ring->q_index, pf_q);
		}

		return 0;
	}

	ice_alloc_rx_bufs(ring, num_bufs);

	return 0;
}

int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
{
	if (q_idx >= vsi->num_rxq)
		return -EINVAL;

	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
}

/**
 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
 * @vsi: VSI
 */
static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
{
	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
		vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
		vsi->rx_buf_len = ICE_RXBUF_1664;
#if (PAGE_SIZE < 8192)
	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
#endif
	} else {
		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
		vsi->rx_buf_len = ICE_RXBUF_3072;
	}
}

/**
 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
 * @vsi: the VSI being configured
 *
 * Return 0 on success and a negative value on error
 * Configure the Rx VSI for operation.
 */
int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
{
	u16 i;

	if (vsi->type == ICE_VSI_VF)
		goto setup_rings;

	ice_vsi_cfg_frame_size(vsi);
setup_rings:
	/* set up individual rings */
	ice_for_each_rxq(vsi, i) {
		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);

		if (err)
			return err;
	}

	return 0;
}

/**
 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 *
 * This function first tries to find contiguous space. If it is not successful,
 * it tries with the scatter approach.
 *
 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 */
int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
{
	int ret = 0;

	ret = __ice_vsi_get_qs_contig(qs_cfg);
	if (ret) {
		/* contig failed, so try with scatter approach */
		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
					qs_cfg->scatter_count);
		ret = __ice_vsi_get_qs_sc(qs_cfg);
	}
	return ret;
}

/**
 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
 * @vsi: the VSI being configured
 * @ena: start or stop the Rx ring
 * @rxq_idx: 0-based Rx queue index for the VSI passed in
 * @wait: wait or don't wait for configuration to finish in hardware
 *
 * Return 0 on success and negative on error.
 */
int
ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
{
	int pf_q = vsi->rxq_map[rxq_idx];
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	u32 rx_reg;

	rx_reg = rd32(hw, QRX_CTRL(pf_q));

	/* Skip if the queue is already in the requested state */
	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
		return 0;

	/* turn on/off the queue */
	if (ena)
		rx_reg |= QRX_CTRL_QENA_REQ_M;
	else
		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
	wr32(hw, QRX_CTRL(pf_q), rx_reg);

	if (!wait)
		return 0;

	ice_flush(hw);
	return ice_pf_rxq_wait(pf, pf_q, ena);
}

/**
 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
 * @vsi: the VSI being configured
 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
 * @rxq_idx: 0-based Rx queue index for the VSI passed in
 *
 * This routine will wait for the given Rx queue of the VSI to reach the
 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
 * the requested state after multiple retries; else will return 0 in case of
 * success.
 */
int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
{
	int pf_q = vsi->rxq_map[rxq_idx];
	struct ice_pf *pf = vsi->back;

	return ice_pf_rxq_wait(pf, pf_q, ena);
}

/**
 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
 * @vsi: the VSI being configured
 *
 * We allocate one q_vector per queue interrupt. If allocation fails we
 * return -ENOMEM.
 */
int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
{
	struct device *dev = ice_pf_to_dev(vsi->back);
	u16 v_idx;
	int err;

	if (vsi->q_vectors[0]) {
		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
		return -EEXIST;
	}

	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
		err = ice_vsi_alloc_q_vector(vsi, v_idx);
		if (err)
			goto err_out;
	}

	return 0;

err_out:
	while (v_idx--)
		ice_free_q_vector(vsi, v_idx);

	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
		vsi->num_q_vectors, vsi->vsi_num, err);
	vsi->num_q_vectors = 0;
	return err;
}

/**
 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
 * @vsi: the VSI being configured
 *
 * This function maps descriptor rings to the queue-specific vectors allotted
 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
 * and Rx rings to the vector as "efficiently" as possible.
 */
void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
{
	int q_vectors = vsi->num_q_vectors;
	u16 tx_rings_rem, rx_rings_rem;
	int v_id;

	/* initially assigning remaining rings count to VSIs num queue value */
	tx_rings_rem = vsi->num_txq;
	rx_rings_rem = vsi->num_rxq;

	for (v_id = 0; v_id < q_vectors; v_id++) {
		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
		u8 tx_rings_per_v, rx_rings_per_v;
		u16 q_id, q_base;

		/* Tx rings mapping to vector */
		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
						  q_vectors - v_id);
		q_vector->num_ring_tx = tx_rings_per_v;
		q_vector->tx.tx_ring = NULL;
		q_vector->tx.itr_idx = ICE_TX_ITR;
		q_base = vsi->num_txq - tx_rings_rem;

		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];

			tx_ring->q_vector = q_vector;
			tx_ring->next = q_vector->tx.tx_ring;
			q_vector->tx.tx_ring = tx_ring;
		}
		tx_rings_rem -= tx_rings_per_v;

		/* Rx rings mapping to vector */
		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
						  q_vectors - v_id);
		q_vector->num_ring_rx = rx_rings_per_v;
		q_vector->rx.rx_ring = NULL;
		q_vector->rx.itr_idx = ICE_RX_ITR;
		q_base = vsi->num_rxq - rx_rings_rem;

		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];

			rx_ring->q_vector = q_vector;
			rx_ring->next = q_vector->rx.rx_ring;
			q_vector->rx.rx_ring = rx_ring;
		}
		rx_rings_rem -= rx_rings_per_v;
	}
}

/**
 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
 * @vsi: the VSI having memory freed
 */
void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
{
	int v_idx;

	ice_for_each_q_vector(vsi, v_idx)
		ice_free_q_vector(vsi, v_idx);

	vsi->num_q_vectors = 0;
}

/**
 * ice_vsi_cfg_txq - Configure single Tx queue
 * @vsi: the VSI that queue belongs to
 * @ring: Tx ring to be configured
 * @qg_buf: queue group buffer
 */
static int
ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
		struct ice_aqc_add_tx_qgrp *qg_buf)
{
	u8 buf_len = struct_size(qg_buf, txqs, 1);
	struct ice_tlan_ctx tlan_ctx = { 0 };
	struct ice_aqc_add_txqs_perq *txq;
	struct ice_channel *ch = ring->ch;
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	int status;
	u16 pf_q;
	u8 tc;

	/* Configure XPS */
	ice_cfg_xps_tx_ring(ring);

	pf_q = ring->reg_idx;
	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
	/* copy context contents into the qg_buf */
	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
		    ice_tlan_ctx_info);

	/* init queue specific tail reg. It is referred as
	 * transmit comm scheduler queue doorbell.
	 */
	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);

	if (IS_ENABLED(CONFIG_DCB))
		tc = ring->dcb_tc;
	else
		tc = 0;

	/* Add unique software queue handle of the Tx queue per
	 * TC into the VSI Tx ring
	 */
	if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
		ring->q_handle = ice_eswitch_calc_txq_handle(ring);

		if (ring->q_handle == ICE_INVAL_Q_INDEX)
			return -ENODEV;
	} else {
		ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
	}

	if (ch)
		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
					 ring->q_handle, 1, qg_buf, buf_len,
					 NULL);
	else
		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
					 ring->q_handle, 1, qg_buf, buf_len,
					 NULL);
	if (status) {
		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
			status);
		return status;
	}

	/* Add Tx Queue TEID into the VSI Tx ring from the
	 * response. This will complete configuring and
	 * enabling the queue.
	 */
	txq = &qg_buf->txqs[0];
	if (pf_q == le16_to_cpu(txq->txq_id))
		ring->txq_teid = le32_to_cpu(txq->q_teid);

	return 0;
}

int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings,
			   u16 q_idx)
{
	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);

	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
		return -EINVAL;

	qg_buf->num_txqs = 1;

	return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
}

/**
 * ice_vsi_cfg_txqs - Configure the VSI for Tx
 * @vsi: the VSI being configured
 * @rings: Tx ring array to be configured
 * @count: number of Tx ring array elements
 *
 * Return 0 on success and a negative value on error
 * Configure the Tx VSI for operation.
 */
static int
ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
{
	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
	int err = 0;
	u16 q_idx;

	qg_buf->num_txqs = 1;

	for (q_idx = 0; q_idx < count; q_idx++) {
		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
		if (err)
			break;
	}

	return err;
}

/**
 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
 * @vsi: the VSI being configured
 *
 * Return 0 on success and a negative value on error
 * Configure the Tx VSI for operation.
 */
int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
{
	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
}

/**
 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
 * @vsi: the VSI being configured
 *
 * Return 0 on success and a negative value on error
 * Configure the Tx queues dedicated for XDP in given VSI for operation.
 */
int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
{
	int ret;
	int i;

	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
	if (ret)
		return ret;

	ice_for_each_rxq(vsi, i)
		ice_tx_xsk_pool(vsi, i);

	return 0;
}

/**
 * ice_cfg_itr - configure the initial interrupt throttle values
 * @hw: pointer to the HW structure
 * @q_vector: interrupt vector that's being configured
 *
 * Configure interrupt throttling values for the ring containers that are
 * associated with the interrupt vector passed in.
 */
void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
{
	ice_cfg_itr_gran(hw);

	if (q_vector->num_ring_rx)
		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);

	if (q_vector->num_ring_tx)
		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);

	ice_write_intrl(q_vector, q_vector->intrl);
}

/**
 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
 * @vsi: the VSI being configured
 * @txq: Tx queue being mapped to MSI-X vector
 * @msix_idx: MSI-X vector index within the function
 * @itr_idx: ITR index of the interrupt cause
 *
 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
 * within the function space.
 */
void
ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
{
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	u32 val;

	itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);

	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
	      FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);

	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
	if (ice_is_xdp_ena_vsi(vsi)) {
		u32 xdp_txq = txq + vsi->num_xdp_txq;

		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
		     val);
	}
	ice_flush(hw);
}

/**
 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
 * @vsi: the VSI being configured
 * @rxq: Rx queue being mapped to MSI-X vector
 * @msix_idx: MSI-X vector index within the function
 * @itr_idx: ITR index of the interrupt cause
 *
 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
 * within the function space.
 */
void
ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
{
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	u32 val;

	itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);

	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
	      FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);

	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);

	ice_flush(hw);
}

/**
 * ice_trigger_sw_intr - trigger a software interrupt
 * @hw: pointer to the HW structure
 * @q_vector: interrupt vector to trigger the software interrupt for
 */
void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
{
	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
	     GLINT_DYN_CTL_SWINT_TRIG_M |
	     GLINT_DYN_CTL_INTENA_M);
}

/**
 * ice_vsi_stop_tx_ring - Disable single Tx ring
 * @vsi: the VSI being configured
 * @rst_src: reset source
 * @rel_vmvf_num: Relative ID of VF/VM
 * @ring: Tx ring to be stopped
 * @txq_meta: Meta data of Tx ring to be stopped
 */
int
ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
		     struct ice_txq_meta *txq_meta)
{
	struct ice_pf *pf = vsi->back;
	struct ice_q_vector *q_vector;
	struct ice_hw *hw = &pf->hw;
	int status;
	u32 val;

	/* clear cause_ena bit for disabled queues */
	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
	val &= ~QINT_TQCTL_CAUSE_ENA_M;
	wr32(hw, QINT_TQCTL(ring->reg_idx), val);

	/* software is expected to wait for 100 ns */
	ndelay(100);

	/* trigger a software interrupt for the vector
	 * associated to the queue to schedule NAPI handler
	 */
	q_vector = ring->q_vector;
	if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
		ice_trigger_sw_intr(hw, q_vector);

	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
				 txq_meta->tc, 1, &txq_meta->q_handle,
				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
				 rel_vmvf_num, NULL);

	/* if the disable queue command was exercised during an
	 * active reset flow, -EBUSY is returned.
	 * This is not an error as the reset operation disables
	 * queues at the hardware level anyway.
	 */
	if (status == -EBUSY) {
		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
	} else if (status == -ENOENT) {
		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
	} else if (status) {
		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
			status);
		return status;
	}

	return 0;
}

/**
 * ice_fill_txq_meta - Prepare the Tx queue's meta data
 * @vsi: VSI that ring belongs to
 * @ring: ring that txq_meta will be based on
 * @txq_meta: a helper struct that wraps Tx queue's information
 *
 * Set up a helper struct that will contain all the necessary fields that
 * are needed for stopping Tx queue
 */
void
ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
		  struct ice_txq_meta *txq_meta)
{
	struct ice_channel *ch = ring->ch;
	u8 tc;

	if (IS_ENABLED(CONFIG_DCB))
		tc = ring->dcb_tc;
	else
		tc = 0;

	txq_meta->q_id = ring->reg_idx;
	txq_meta->q_teid = ring->txq_teid;
	txq_meta->q_handle = ring->q_handle;
	if (ch) {
		txq_meta->vsi_idx = ch->ch_vsi->idx;
		txq_meta->tc = 0;
	} else {
		txq_meta->vsi_idx = vsi->idx;
		txq_meta->tc = tc;
	}
}