Linux Audio

Check our new training course

Loading...
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include <net/xdp_sock_drv.h>
   5#include "ice_base.h"
   6#include "ice_lib.h"
   7#include "ice_dcb_lib.h"
   8#include "ice_sriov.h"
   9
  10/**
  11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
  12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
  13 *
  14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
  15 */
  16static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
  17{
  18	unsigned int offset, i;
  19
  20	mutex_lock(qs_cfg->qs_mutex);
  21	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
  22					    0, qs_cfg->q_count, 0);
  23	if (offset >= qs_cfg->pf_map_size) {
  24		mutex_unlock(qs_cfg->qs_mutex);
  25		return -ENOMEM;
  26	}
  27
  28	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
  29	for (i = 0; i < qs_cfg->q_count; i++)
  30		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
  31	mutex_unlock(qs_cfg->qs_mutex);
  32
  33	return 0;
  34}
  35
  36/**
  37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
  38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
  39 *
  40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
  41 */
  42static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
  43{
  44	unsigned int i, index = 0;
  45
  46	mutex_lock(qs_cfg->qs_mutex);
  47	for (i = 0; i < qs_cfg->q_count; i++) {
  48		index = find_next_zero_bit(qs_cfg->pf_map,
  49					   qs_cfg->pf_map_size, index);
  50		if (index >= qs_cfg->pf_map_size)
  51			goto err_scatter;
  52		set_bit(index, qs_cfg->pf_map);
  53		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
  54	}
  55	mutex_unlock(qs_cfg->qs_mutex);
  56
  57	return 0;
  58err_scatter:
  59	for (index = 0; index < i; index++) {
  60		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
  61		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
  62	}
  63	mutex_unlock(qs_cfg->qs_mutex);
  64
  65	return -ENOMEM;
  66}
  67
  68/**
  69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
  70 * @pf: the PF being configured
  71 * @pf_q: the PF queue
  72 * @ena: enable or disable state of the queue
  73 *
  74 * This routine will wait for the given Rx queue of the PF to reach the
  75 * enabled or disabled state.
  76 * Returns -ETIMEDOUT in case of failing to reach the requested state after
  77 * multiple retries; else will return 0 in case of success.
  78 */
  79static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
  80{
  81	int i;
  82
  83	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
  84		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
  85			      QRX_CTRL_QENA_STAT_M))
  86			return 0;
  87
  88		usleep_range(20, 40);
  89	}
  90
  91	return -ETIMEDOUT;
  92}
  93
  94/**
  95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
  96 * @vsi: the VSI being configured
  97 * @v_idx: index of the vector in the VSI struct
  98 *
  99 * We allocate one q_vector and set default value for ITR setting associated
 100 * with this q_vector. If allocation fails we return -ENOMEM.
 101 */
 102static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
 103{
 104	struct ice_pf *pf = vsi->back;
 105	struct ice_q_vector *q_vector;
 106	int err;
 107
 108	/* allocate q_vector */
 109	q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
 110	if (!q_vector)
 111		return -ENOMEM;
 112
 113	q_vector->vsi = vsi;
 114	q_vector->v_idx = v_idx;
 115	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
 116	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
 117	q_vector->tx.itr_mode = ITR_DYNAMIC;
 118	q_vector->rx.itr_mode = ITR_DYNAMIC;
 119	q_vector->tx.type = ICE_TX_CONTAINER;
 120	q_vector->rx.type = ICE_RX_CONTAINER;
 121	q_vector->irq.index = -ENOENT;
 122
 123	if (vsi->type == ICE_VSI_VF) {
 124		q_vector->reg_idx = ice_calc_vf_reg_idx(vsi->vf, q_vector);
 125		goto out;
 126	} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
 127		struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
 128
 129		if (ctrl_vsi) {
 130			if (unlikely(!ctrl_vsi->q_vectors)) {
 131				err = -ENOENT;
 132				goto err_free_q_vector;
 133			}
 134
 135			q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
 136			goto skip_alloc;
 137		}
 138	}
 139
 140	q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
 141	if (q_vector->irq.index < 0) {
 142		err = -ENOMEM;
 143		goto err_free_q_vector;
 144	}
 145
 146skip_alloc:
 147	q_vector->reg_idx = q_vector->irq.index;
 148
 149	/* only set affinity_mask if the CPU is online */
 150	if (cpu_online(v_idx))
 151		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
 152
 153	/* This will not be called in the driver load path because the netdev
 154	 * will not be created yet. All other cases with register the NAPI
 155	 * handler here (i.e. resume, reset/rebuild, etc.)
 156	 */
 157	if (vsi->netdev)
 158		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);
 159
 160out:
 161	/* tie q_vector and VSI together */
 162	vsi->q_vectors[v_idx] = q_vector;
 163
 164	return 0;
 165
 166err_free_q_vector:
 167	kfree(q_vector);
 168
 169	return err;
 170}
 171
 172/**
 173 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
 174 * @vsi: VSI having the memory freed
 175 * @v_idx: index of the vector to be freed
 176 */
 177static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
 178{
 179	struct ice_q_vector *q_vector;
 180	struct ice_pf *pf = vsi->back;
 181	struct ice_tx_ring *tx_ring;
 182	struct ice_rx_ring *rx_ring;
 183	struct device *dev;
 184
 185	dev = ice_pf_to_dev(pf);
 186	if (!vsi->q_vectors[v_idx]) {
 187		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
 188		return;
 189	}
 190	q_vector = vsi->q_vectors[v_idx];
 191
 192	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
 193		ice_queue_set_napi(vsi, tx_ring->q_index, NETDEV_QUEUE_TYPE_TX,
 194				   NULL);
 195		tx_ring->q_vector = NULL;
 196	}
 197	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
 198		ice_queue_set_napi(vsi, rx_ring->q_index, NETDEV_QUEUE_TYPE_RX,
 199				   NULL);
 200		rx_ring->q_vector = NULL;
 201	}
 202
 203	/* only VSI with an associated netdev is set up with NAPI */
 204	if (vsi->netdev)
 205		netif_napi_del(&q_vector->napi);
 206
 207	/* release MSIX interrupt if q_vector had interrupt allocated */
 208	if (q_vector->irq.index < 0)
 209		goto free_q_vector;
 210
 211	/* only free last VF ctrl vsi interrupt */
 212	if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
 213	    ice_get_vf_ctrl_vsi(pf, vsi))
 214		goto free_q_vector;
 215
 216	ice_free_irq(pf, q_vector->irq);
 217
 218free_q_vector:
 219	kfree(q_vector);
 220	vsi->q_vectors[v_idx] = NULL;
 221}
 222
 223/**
 224 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
 225 * @hw: board specific structure
 226 */
 227static void ice_cfg_itr_gran(struct ice_hw *hw)
 228{
 229	u32 regval = rd32(hw, GLINT_CTL);
 230
 231	/* no need to update global register if ITR gran is already set */
 232	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
 233	    (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
 234	    (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
 235	    (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
 236	    (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
 237		return;
 238
 239	regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
 240		 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
 241		 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
 242		 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
 243	wr32(hw, GLINT_CTL, regval);
 244}
 245
 246/**
 247 * ice_calc_txq_handle - calculate the queue handle
 248 * @vsi: VSI that ring belongs to
 249 * @ring: ring to get the absolute queue index
 250 * @tc: traffic class number
 251 */
 252static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
 253{
 254	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
 255
 256	if (ring->ch)
 257		return ring->q_index - ring->ch->base_q;
 258
 259	/* Idea here for calculation is that we subtract the number of queue
 260	 * count from TC that ring belongs to from it's absolute queue index
 261	 * and as a result we get the queue's index within TC.
 262	 */
 263	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
 264}
 265
 266/**
 267 * ice_eswitch_calc_txq_handle
 268 * @ring: pointer to ring which unique index is needed
 269 *
 270 * To correctly work with many netdevs ring->q_index of Tx rings on switchdev
 271 * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it
 272 * here by finding index in vsi->tx_rings of this ring.
 273 *
 274 * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen,
 275 * because VSI is get from ring->vsi, so it has to be present in this VSI.
 276 */
 277static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring)
 278{
 279	const struct ice_vsi *vsi = ring->vsi;
 280	int i;
 281
 282	ice_for_each_txq(vsi, i) {
 283		if (vsi->tx_rings[i] == ring)
 284			return i;
 285	}
 286
 287	return ICE_INVAL_Q_INDEX;
 288}
 289
 290/**
 291 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
 292 * @ring: The Tx ring to configure
 293 *
 294 * This enables/disables XPS for a given Tx descriptor ring
 295 * based on the TCs enabled for the VSI that ring belongs to.
 296 */
 297static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
 298{
 299	if (!ring->q_vector || !ring->netdev)
 300		return;
 301
 302	/* We only initialize XPS once, so as not to overwrite user settings */
 303	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
 304		return;
 305
 306	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
 307			    ring->q_index);
 308}
 309
 310/**
 311 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
 312 * @ring: The Tx ring to configure
 313 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
 314 * @pf_q: queue index in the PF space
 315 *
 316 * Configure the Tx descriptor ring in TLAN context.
 317 */
 318static void
 319ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
 320{
 321	struct ice_vsi *vsi = ring->vsi;
 322	struct ice_hw *hw = &vsi->back->hw;
 323
 324	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
 325
 326	tlan_ctx->port_num = vsi->port_info->lport;
 327
 328	/* Transmit Queue Length */
 329	tlan_ctx->qlen = ring->count;
 330
 331	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
 332
 333	/* PF number */
 334	tlan_ctx->pf_num = hw->pf_id;
 335
 336	/* queue belongs to a specific VSI type
 337	 * VF / VM index should be programmed per vmvf_type setting:
 338	 * for vmvf_type = VF, it is VF number between 0-256
 339	 * for vmvf_type = VM, it is VM number between 0-767
 340	 * for PF or EMP this field should be set to zero
 341	 */
 342	switch (vsi->type) {
 343	case ICE_VSI_LB:
 344	case ICE_VSI_CTRL:
 345	case ICE_VSI_PF:
 346		if (ring->ch)
 347			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
 348		else
 349			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
 350		break;
 351	case ICE_VSI_VF:
 352		/* Firmware expects vmvf_num to be absolute VF ID */
 353		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
 354		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
 355		break;
 356	case ICE_VSI_SWITCHDEV_CTRL:
 357		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
 358		break;
 359	default:
 360		return;
 361	}
 362
 363	/* make sure the context is associated with the right VSI */
 364	if (ring->ch)
 365		tlan_ctx->src_vsi = ring->ch->vsi_num;
 366	else
 367		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
 368
 369	/* Restrict Tx timestamps to the PF VSI */
 370	switch (vsi->type) {
 371	case ICE_VSI_PF:
 372		tlan_ctx->tsyn_ena = 1;
 373		break;
 374	default:
 375		break;
 376	}
 377
 378	tlan_ctx->tso_ena = ICE_TX_LEGACY;
 379	tlan_ctx->tso_qnum = pf_q;
 380
 381	/* Legacy or Advanced Host Interface:
 382	 * 0: Advanced Host Interface
 383	 * 1: Legacy Host Interface
 384	 */
 385	tlan_ctx->legacy_int = ICE_TX_LEGACY;
 386}
 387
 388/**
 389 * ice_rx_offset - Return expected offset into page to access data
 390 * @rx_ring: Ring we are requesting offset of
 391 *
 392 * Returns the offset value for ring into the data buffer.
 393 */
 394static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
 395{
 396	if (ice_ring_uses_build_skb(rx_ring))
 397		return ICE_SKB_PAD;
 398	return 0;
 399}
 400
 401/**
 402 * ice_setup_rx_ctx - Configure a receive ring context
 403 * @ring: The Rx ring to configure
 404 *
 405 * Configure the Rx descriptor ring in RLAN context.
 406 */
 407static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
 408{
 409	struct ice_vsi *vsi = ring->vsi;
 410	u32 rxdid = ICE_RXDID_FLEX_NIC;
 411	struct ice_rlan_ctx rlan_ctx;
 412	struct ice_hw *hw;
 413	u16 pf_q;
 414	int err;
 415
 416	hw = &vsi->back->hw;
 417
 418	/* what is Rx queue number in global space of 2K Rx queues */
 419	pf_q = vsi->rxq_map[ring->q_index];
 420
 421	/* clear the context structure first */
 422	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
 423
 424	/* Receive Queue Base Address.
 425	 * Indicates the starting address of the descriptor queue defined in
 426	 * 128 Byte units.
 427	 */
 428	rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
 429
 430	rlan_ctx.qlen = ring->count;
 431
 432	/* Receive Packet Data Buffer Size.
 433	 * The Packet Data Buffer Size is defined in 128 byte units.
 434	 */
 435	rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
 436				     BIT_ULL(ICE_RLAN_CTX_DBUF_S));
 437
 438	/* use 32 byte descriptors */
 439	rlan_ctx.dsize = 1;
 440
 441	/* Strip the Ethernet CRC bytes before the packet is posted to host
 442	 * memory.
 443	 */
 444	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
 445
 446	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
 447	 * and it needs to remain 1 for non-DVM capable configurations to not
 448	 * break backward compatibility for VF drivers. Setting this field to 0
 449	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
 450	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
 451	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
 452	 * check for the tag
 453	 */
 454	if (ice_is_dvm_ena(hw))
 455		if (vsi->type == ICE_VSI_VF &&
 456		    ice_vf_is_port_vlan_ena(vsi->vf))
 457			rlan_ctx.l2tsel = 1;
 458		else
 459			rlan_ctx.l2tsel = 0;
 460	else
 461		rlan_ctx.l2tsel = 1;
 462
 463	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
 464	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
 465	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
 466
 467	/* This controls whether VLAN is stripped from inner headers
 468	 * The VLAN in the inner L2 header is stripped to the receive
 469	 * descriptor if enabled by this flag.
 470	 */
 471	rlan_ctx.showiv = 0;
 472
 473	/* Max packet size for this queue - must not be set to a larger value
 474	 * than 5 x DBUF
 475	 */
 476	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
 477			       ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
 478
 479	/* Rx queue threshold in units of 64 */
 480	rlan_ctx.lrxqthresh = 1;
 481
 482	/* Enable Flexible Descriptors in the queue context which
 483	 * allows this driver to select a specific receive descriptor format
 484	 * increasing context priority to pick up profile ID; default is 0x01;
 485	 * setting to 0x03 to ensure profile is programming if prev context is
 486	 * of same priority
 487	 */
 488	if (vsi->type != ICE_VSI_VF)
 489		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
 490	else
 491		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
 492					false);
 493
 494	/* Absolute queue number out of 2K needs to be passed */
 495	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
 496	if (err) {
 497		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
 498			pf_q, err);
 499		return -EIO;
 500	}
 501
 502	if (vsi->type == ICE_VSI_VF)
 503		return 0;
 504
 505	/* configure Rx buffer alignment */
 506	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
 507		ice_clear_ring_build_skb_ena(ring);
 508	else
 509		ice_set_ring_build_skb_ena(ring);
 510
 511	ring->rx_offset = ice_rx_offset(ring);
 512
 513	/* init queue specific tail register */
 514	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
 515	writel(0, ring->tail);
 516
 517	return 0;
 518}
 519
 520static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring)
 521{
 522	void *ctx_ptr = &ring->pkt_ctx;
 523	struct xsk_cb_desc desc = {};
 524
 525	XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff);
 526	desc.src = &ctx_ptr;
 527	desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) -
 528		   sizeof(struct xdp_buff);
 529	desc.bytes = sizeof(ctx_ptr);
 530	xsk_pool_fill_cb(ring->xsk_pool, &desc);
 531}
 532
 533/**
 534 * ice_vsi_cfg_rxq - Configure an Rx queue
 535 * @ring: the ring being configured
 536 *
 537 * Return 0 on success and a negative value on error.
 538 */
 539static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
 540{
 541	struct device *dev = ice_pf_to_dev(ring->vsi->back);
 542	u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
 543	int err;
 544
 545	ring->rx_buf_len = ring->vsi->rx_buf_len;
 546
 547	if (ring->vsi->type == ICE_VSI_PF) {
 548		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
 549			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
 550						 ring->q_index,
 551						 ring->q_vector->napi.napi_id,
 552						 ring->rx_buf_len);
 553			if (err)
 554				return err;
 555		}
 556
 557		ring->xsk_pool = ice_xsk_pool(ring);
 558		if (ring->xsk_pool) {
 559			xdp_rxq_info_unreg(&ring->xdp_rxq);
 560
 561			ring->rx_buf_len =
 562				xsk_pool_get_rx_frame_size(ring->xsk_pool);
 563			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
 564						 ring->q_index,
 565						 ring->q_vector->napi.napi_id,
 566						 ring->rx_buf_len);
 567			if (err)
 568				return err;
 569			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
 570							 MEM_TYPE_XSK_BUFF_POOL,
 571							 NULL);
 572			if (err)
 573				return err;
 574			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
 575			ice_xsk_pool_fill_cb(ring);
 576
 577			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
 578				 ring->q_index);
 579		} else {
 580			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
 581				err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
 582							 ring->q_index,
 583							 ring->q_vector->napi.napi_id,
 584							 ring->rx_buf_len);
 585				if (err)
 586					return err;
 587			}
 588
 589			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
 590							 MEM_TYPE_PAGE_SHARED,
 591							 NULL);
 592			if (err)
 593				return err;
 594		}
 595	}
 596
 597	xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq);
 598	ring->xdp.data = NULL;
 599	ring->xdp_ext.pkt_ctx = &ring->pkt_ctx;
 600	err = ice_setup_rx_ctx(ring);
 601	if (err) {
 602		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
 603			ring->q_index, err);
 604		return err;
 605	}
 606
 607	if (ring->xsk_pool) {
 608		bool ok;
 609
 610		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
 611			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
 612				 num_bufs, ring->q_index);
 613			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
 614
 615			return 0;
 616		}
 617
 618		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
 619		if (!ok) {
 620			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
 621
 622			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
 623				 ring->q_index, pf_q);
 624		}
 625
 626		return 0;
 627	}
 628
 629	ice_alloc_rx_bufs(ring, num_bufs);
 630
 631	return 0;
 632}
 633
 634int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
 635{
 636	if (q_idx >= vsi->num_rxq)
 637		return -EINVAL;
 638
 639	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
 640}
 641
 642/**
 643 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
 644 * @vsi: VSI
 645 */
 646static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
 647{
 648	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
 649		vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
 650		vsi->rx_buf_len = ICE_RXBUF_1664;
 651#if (PAGE_SIZE < 8192)
 652	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
 653		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
 654		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
 655		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
 656#endif
 657	} else {
 658		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
 659		vsi->rx_buf_len = ICE_RXBUF_3072;
 660	}
 661}
 662
 663/**
 664 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
 665 * @vsi: the VSI being configured
 666 *
 667 * Return 0 on success and a negative value on error
 668 * Configure the Rx VSI for operation.
 669 */
 670int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
 671{
 672	u16 i;
 673
 674	if (vsi->type == ICE_VSI_VF)
 675		goto setup_rings;
 676
 677	ice_vsi_cfg_frame_size(vsi);
 678setup_rings:
 679	/* set up individual rings */
 680	ice_for_each_rxq(vsi, i) {
 681		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
 682
 683		if (err)
 684			return err;
 685	}
 686
 687	return 0;
 688}
 689
 690/**
 691 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
 692 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 693 *
 694 * This function first tries to find contiguous space. If it is not successful,
 695 * it tries with the scatter approach.
 696 *
 697 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 698 */
 699int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
 700{
 701	int ret = 0;
 702
 703	ret = __ice_vsi_get_qs_contig(qs_cfg);
 704	if (ret) {
 705		/* contig failed, so try with scatter approach */
 706		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
 707		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
 708					qs_cfg->scatter_count);
 709		ret = __ice_vsi_get_qs_sc(qs_cfg);
 710	}
 711	return ret;
 712}
 713
 714/**
 715 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
 716 * @vsi: the VSI being configured
 717 * @ena: start or stop the Rx ring
 718 * @rxq_idx: 0-based Rx queue index for the VSI passed in
 719 * @wait: wait or don't wait for configuration to finish in hardware
 720 *
 721 * Return 0 on success and negative on error.
 722 */
 723int
 724ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
 725{
 726	int pf_q = vsi->rxq_map[rxq_idx];
 727	struct ice_pf *pf = vsi->back;
 728	struct ice_hw *hw = &pf->hw;
 729	u32 rx_reg;
 730
 731	rx_reg = rd32(hw, QRX_CTRL(pf_q));
 732
 733	/* Skip if the queue is already in the requested state */
 734	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
 735		return 0;
 736
 737	/* turn on/off the queue */
 738	if (ena)
 739		rx_reg |= QRX_CTRL_QENA_REQ_M;
 740	else
 741		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
 742	wr32(hw, QRX_CTRL(pf_q), rx_reg);
 743
 744	if (!wait)
 745		return 0;
 746
 747	ice_flush(hw);
 748	return ice_pf_rxq_wait(pf, pf_q, ena);
 749}
 750
 751/**
 752 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
 753 * @vsi: the VSI being configured
 754 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
 755 * @rxq_idx: 0-based Rx queue index for the VSI passed in
 756 *
 757 * This routine will wait for the given Rx queue of the VSI to reach the
 758 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
 759 * the requested state after multiple retries; else will return 0 in case of
 760 * success.
 761 */
 762int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
 763{
 764	int pf_q = vsi->rxq_map[rxq_idx];
 765	struct ice_pf *pf = vsi->back;
 766
 767	return ice_pf_rxq_wait(pf, pf_q, ena);
 768}
 769
 770/**
 771 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
 772 * @vsi: the VSI being configured
 773 *
 774 * We allocate one q_vector per queue interrupt. If allocation fails we
 775 * return -ENOMEM.
 776 */
 777int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
 778{
 779	struct device *dev = ice_pf_to_dev(vsi->back);
 780	u16 v_idx;
 781	int err;
 782
 783	if (vsi->q_vectors[0]) {
 784		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
 785		return -EEXIST;
 786	}
 787
 788	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
 789		err = ice_vsi_alloc_q_vector(vsi, v_idx);
 790		if (err)
 791			goto err_out;
 792	}
 793
 794	return 0;
 795
 796err_out:
 797	while (v_idx--)
 798		ice_free_q_vector(vsi, v_idx);
 799
 800	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
 801		vsi->num_q_vectors, vsi->vsi_num, err);
 802	vsi->num_q_vectors = 0;
 803	return err;
 804}
 805
 806/**
 807 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
 808 * @vsi: the VSI being configured
 809 *
 810 * This function maps descriptor rings to the queue-specific vectors allotted
 811 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
 812 * and Rx rings to the vector as "efficiently" as possible.
 813 */
 814void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
 815{
 816	int q_vectors = vsi->num_q_vectors;
 817	u16 tx_rings_rem, rx_rings_rem;
 818	int v_id;
 819
 820	/* initially assigning remaining rings count to VSIs num queue value */
 821	tx_rings_rem = vsi->num_txq;
 822	rx_rings_rem = vsi->num_rxq;
 823
 824	for (v_id = 0; v_id < q_vectors; v_id++) {
 825		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
 826		u8 tx_rings_per_v, rx_rings_per_v;
 827		u16 q_id, q_base;
 828
 829		/* Tx rings mapping to vector */
 830		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
 831						  q_vectors - v_id);
 832		q_vector->num_ring_tx = tx_rings_per_v;
 833		q_vector->tx.tx_ring = NULL;
 834		q_vector->tx.itr_idx = ICE_TX_ITR;
 835		q_base = vsi->num_txq - tx_rings_rem;
 836
 837		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
 838			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
 839
 840			tx_ring->q_vector = q_vector;
 841			tx_ring->next = q_vector->tx.tx_ring;
 842			q_vector->tx.tx_ring = tx_ring;
 843		}
 844		tx_rings_rem -= tx_rings_per_v;
 845
 846		/* Rx rings mapping to vector */
 847		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
 848						  q_vectors - v_id);
 849		q_vector->num_ring_rx = rx_rings_per_v;
 850		q_vector->rx.rx_ring = NULL;
 851		q_vector->rx.itr_idx = ICE_RX_ITR;
 852		q_base = vsi->num_rxq - rx_rings_rem;
 853
 854		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
 855			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
 856
 857			rx_ring->q_vector = q_vector;
 858			rx_ring->next = q_vector->rx.rx_ring;
 859			q_vector->rx.rx_ring = rx_ring;
 860		}
 861		rx_rings_rem -= rx_rings_per_v;
 862	}
 863}
 864
 865/**
 866 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
 867 * @vsi: the VSI having memory freed
 868 */
 869void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
 870{
 871	int v_idx;
 872
 873	ice_for_each_q_vector(vsi, v_idx)
 874		ice_free_q_vector(vsi, v_idx);
 875
 876	vsi->num_q_vectors = 0;
 877}
 878
 879/**
 880 * ice_vsi_cfg_txq - Configure single Tx queue
 881 * @vsi: the VSI that queue belongs to
 882 * @ring: Tx ring to be configured
 883 * @qg_buf: queue group buffer
 884 */
 885static int
 886ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
 887		struct ice_aqc_add_tx_qgrp *qg_buf)
 888{
 889	u8 buf_len = struct_size(qg_buf, txqs, 1);
 890	struct ice_tlan_ctx tlan_ctx = { 0 };
 891	struct ice_aqc_add_txqs_perq *txq;
 892	struct ice_channel *ch = ring->ch;
 893	struct ice_pf *pf = vsi->back;
 894	struct ice_hw *hw = &pf->hw;
 895	int status;
 896	u16 pf_q;
 897	u8 tc;
 898
 899	/* Configure XPS */
 900	ice_cfg_xps_tx_ring(ring);
 901
 902	pf_q = ring->reg_idx;
 903	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
 904	/* copy context contents into the qg_buf */
 905	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
 906	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
 907		    ice_tlan_ctx_info);
 908
 909	/* init queue specific tail reg. It is referred as
 910	 * transmit comm scheduler queue doorbell.
 911	 */
 912	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
 913
 914	if (IS_ENABLED(CONFIG_DCB))
 915		tc = ring->dcb_tc;
 916	else
 917		tc = 0;
 918
 919	/* Add unique software queue handle of the Tx queue per
 920	 * TC into the VSI Tx ring
 921	 */
 922	if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
 923		ring->q_handle = ice_eswitch_calc_txq_handle(ring);
 924
 925		if (ring->q_handle == ICE_INVAL_Q_INDEX)
 926			return -ENODEV;
 927	} else {
 928		ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
 929	}
 930
 931	if (ch)
 932		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
 933					 ring->q_handle, 1, qg_buf, buf_len,
 934					 NULL);
 935	else
 936		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
 937					 ring->q_handle, 1, qg_buf, buf_len,
 938					 NULL);
 939	if (status) {
 940		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
 941			status);
 942		return status;
 943	}
 944
 945	/* Add Tx Queue TEID into the VSI Tx ring from the
 946	 * response. This will complete configuring and
 947	 * enabling the queue.
 948	 */
 949	txq = &qg_buf->txqs[0];
 950	if (pf_q == le16_to_cpu(txq->txq_id))
 951		ring->txq_teid = le32_to_cpu(txq->q_teid);
 952
 953	return 0;
 954}
 955
 956int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings,
 957			   u16 q_idx)
 958{
 959	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
 960
 961	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
 962		return -EINVAL;
 963
 964	qg_buf->num_txqs = 1;
 965
 966	return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
 967}
 968
 969/**
 970 * ice_vsi_cfg_txqs - Configure the VSI for Tx
 971 * @vsi: the VSI being configured
 972 * @rings: Tx ring array to be configured
 973 * @count: number of Tx ring array elements
 974 *
 975 * Return 0 on success and a negative value on error
 976 * Configure the Tx VSI for operation.
 977 */
 978static int
 979ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
 980{
 981	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
 982	int err = 0;
 983	u16 q_idx;
 984
 985	qg_buf->num_txqs = 1;
 986
 987	for (q_idx = 0; q_idx < count; q_idx++) {
 988		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
 989		if (err)
 990			break;
 991	}
 992
 993	return err;
 994}
 995
 996/**
 997 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
 998 * @vsi: the VSI being configured
 999 *
1000 * Return 0 on success and a negative value on error
1001 * Configure the Tx VSI for operation.
1002 */
1003int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1004{
1005	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1006}
1007
1008/**
1009 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1010 * @vsi: the VSI being configured
1011 *
1012 * Return 0 on success and a negative value on error
1013 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1014 */
1015int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1016{
1017	int ret;
1018	int i;
1019
1020	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1021	if (ret)
1022		return ret;
1023
1024	ice_for_each_rxq(vsi, i)
1025		ice_tx_xsk_pool(vsi, i);
1026
1027	return 0;
1028}
1029
1030/**
1031 * ice_cfg_itr - configure the initial interrupt throttle values
1032 * @hw: pointer to the HW structure
1033 * @q_vector: interrupt vector that's being configured
1034 *
1035 * Configure interrupt throttling values for the ring containers that are
1036 * associated with the interrupt vector passed in.
1037 */
1038void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1039{
1040	ice_cfg_itr_gran(hw);
1041
1042	if (q_vector->num_ring_rx)
1043		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
1044
1045	if (q_vector->num_ring_tx)
1046		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
1047
1048	ice_write_intrl(q_vector, q_vector->intrl);
1049}
1050
1051/**
1052 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1053 * @vsi: the VSI being configured
1054 * @txq: Tx queue being mapped to MSI-X vector
1055 * @msix_idx: MSI-X vector index within the function
1056 * @itr_idx: ITR index of the interrupt cause
1057 *
1058 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1059 * within the function space.
1060 */
1061void
1062ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1063{
1064	struct ice_pf *pf = vsi->back;
1065	struct ice_hw *hw = &pf->hw;
1066	u32 val;
1067
1068	itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);
1069
1070	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1071	      FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);
1072
1073	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1074	if (ice_is_xdp_ena_vsi(vsi)) {
1075		u32 xdp_txq = txq + vsi->num_xdp_txq;
1076
1077		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
1078		     val);
1079	}
1080	ice_flush(hw);
1081}
1082
1083/**
1084 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1085 * @vsi: the VSI being configured
1086 * @rxq: Rx queue being mapped to MSI-X vector
1087 * @msix_idx: MSI-X vector index within the function
1088 * @itr_idx: ITR index of the interrupt cause
1089 *
1090 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1091 * within the function space.
1092 */
1093void
1094ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1095{
1096	struct ice_pf *pf = vsi->back;
1097	struct ice_hw *hw = &pf->hw;
1098	u32 val;
1099
1100	itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);
1101
1102	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1103	      FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);
1104
1105	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1106
1107	ice_flush(hw);
1108}
1109
1110/**
1111 * ice_trigger_sw_intr - trigger a software interrupt
1112 * @hw: pointer to the HW structure
1113 * @q_vector: interrupt vector to trigger the software interrupt for
1114 */
1115void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
1116{
1117	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
1118	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
1119	     GLINT_DYN_CTL_SWINT_TRIG_M |
1120	     GLINT_DYN_CTL_INTENA_M);
1121}
1122
1123/**
1124 * ice_vsi_stop_tx_ring - Disable single Tx ring
1125 * @vsi: the VSI being configured
1126 * @rst_src: reset source
1127 * @rel_vmvf_num: Relative ID of VF/VM
1128 * @ring: Tx ring to be stopped
1129 * @txq_meta: Meta data of Tx ring to be stopped
1130 */
1131int
1132ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1133		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
1134		     struct ice_txq_meta *txq_meta)
1135{
1136	struct ice_pf *pf = vsi->back;
1137	struct ice_q_vector *q_vector;
1138	struct ice_hw *hw = &pf->hw;
1139	int status;
1140	u32 val;
1141
1142	/* clear cause_ena bit for disabled queues */
1143	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1144	val &= ~QINT_TQCTL_CAUSE_ENA_M;
1145	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1146
1147	/* software is expected to wait for 100 ns */
1148	ndelay(100);
1149
1150	/* trigger a software interrupt for the vector
1151	 * associated to the queue to schedule NAPI handler
1152	 */
1153	q_vector = ring->q_vector;
1154	if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1155		ice_trigger_sw_intr(hw, q_vector);
1156
1157	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1158				 txq_meta->tc, 1, &txq_meta->q_handle,
1159				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1160				 rel_vmvf_num, NULL);
1161
1162	/* if the disable queue command was exercised during an
1163	 * active reset flow, -EBUSY is returned.
1164	 * This is not an error as the reset operation disables
1165	 * queues at the hardware level anyway.
1166	 */
1167	if (status == -EBUSY) {
1168		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1169	} else if (status == -ENOENT) {
1170		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1171	} else if (status) {
1172		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1173			status);
1174		return status;
1175	}
1176
1177	return 0;
1178}
1179
1180/**
1181 * ice_fill_txq_meta - Prepare the Tx queue's meta data
1182 * @vsi: VSI that ring belongs to
1183 * @ring: ring that txq_meta will be based on
1184 * @txq_meta: a helper struct that wraps Tx queue's information
1185 *
1186 * Set up a helper struct that will contain all the necessary fields that
1187 * are needed for stopping Tx queue
1188 */
1189void
1190ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
1191		  struct ice_txq_meta *txq_meta)
1192{
1193	struct ice_channel *ch = ring->ch;
1194	u8 tc;
1195
1196	if (IS_ENABLED(CONFIG_DCB))
1197		tc = ring->dcb_tc;
1198	else
1199		tc = 0;
1200
1201	txq_meta->q_id = ring->reg_idx;
1202	txq_meta->q_teid = ring->txq_teid;
1203	txq_meta->q_handle = ring->q_handle;
1204	if (ch) {
1205		txq_meta->vsi_idx = ch->ch_vsi->idx;
1206		txq_meta->tc = 0;
1207	} else {
1208		txq_meta->vsi_idx = vsi->idx;
1209		txq_meta->tc = tc;
1210	}
1211}
1