Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2023 Red Hat */ #include "slab-depot.h" #include <linux/atomic.h> #include <linux/bio.h> #include <linux/err.h> #include <linux/log2.h> #include <linux/min_heap.h> #include <linux/minmax.h> #include "logger.h" #include "memory-alloc.h" #include "numeric.h" #include "permassert.h" #include "string-utils.h" #include "action-manager.h" #include "admin-state.h" #include "completion.h" #include "constants.h" #include "data-vio.h" #include "encodings.h" #include "io-submitter.h" #include "physical-zone.h" #include "priority-table.h" #include "recovery-journal.h" #include "repair.h" #include "status-codes.h" #include "types.h" #include "vdo.h" #include "vio.h" #include "wait-queue.h" static const u64 BYTES_PER_WORD = sizeof(u64); static const bool NORMAL_OPERATION = true; /** * get_lock() - Get the lock object for a slab journal block by sequence number. * @journal: vdo_slab journal to retrieve from. * @sequence_number: Sequence number of the block. * * Return: The lock object for the given sequence number. */ static inline struct journal_lock * __must_check get_lock(struct slab_journal *journal, sequence_number_t sequence_number) { return &journal->locks[sequence_number % journal->size]; } static bool is_slab_open(struct vdo_slab *slab) { return (!vdo_is_state_quiescing(&slab->state) && !vdo_is_state_quiescent(&slab->state)); } /** * must_make_entries_to_flush() - Check whether there are entry waiters which should delay a flush. * @journal: The journal to check. * * Return: true if there are no entry waiters, or if the slab is unrecovered. */ static inline bool __must_check must_make_entries_to_flush(struct slab_journal *journal) { return ((journal->slab->status != VDO_SLAB_REBUILDING) && vdo_waitq_has_waiters(&journal->entry_waiters)); } /** * is_reaping() - Check whether a reap is currently in progress. * @journal: The journal which may be reaping. * * Return: true if the journal is reaping. */ static inline bool __must_check is_reaping(struct slab_journal *journal) { return (journal->head != journal->unreapable); } /** * initialize_tail_block() - Initialize tail block as a new block. * @journal: The journal whose tail block is being initialized. */ static void initialize_tail_block(struct slab_journal *journal) { struct slab_journal_block_header *header = &journal->tail_header; header->sequence_number = journal->tail; header->entry_count = 0; header->has_block_map_increments = false; } /** * initialize_journal_state() - Set all journal fields appropriately to start journaling. * @journal: The journal to be reset, based on its tail sequence number. */ static void initialize_journal_state(struct slab_journal *journal) { journal->unreapable = journal->head; journal->reap_lock = get_lock(journal, journal->unreapable); journal->next_commit = journal->tail; journal->summarized = journal->last_summarized = journal->tail; initialize_tail_block(journal); } /** * block_is_full() - Check whether a journal block is full. * @journal: The slab journal for the block. * * Return: true if the tail block is full. */ static bool __must_check block_is_full(struct slab_journal *journal) { journal_entry_count_t count = journal->tail_header.entry_count; return (journal->tail_header.has_block_map_increments ? (journal->full_entries_per_block == count) : (journal->entries_per_block == count)); } static void add_entries(struct slab_journal *journal); static void update_tail_block_location(struct slab_journal *journal); static void release_journal_locks(struct vdo_waiter *waiter, void *context); /** * is_slab_journal_blank() - Check whether a slab's journal is blank. * * A slab journal is blank if it has never had any entries recorded in it. * * Return: true if the slab's journal has never been modified. */ static bool is_slab_journal_blank(const struct vdo_slab *slab) { return ((slab->journal.tail == 1) && (slab->journal.tail_header.entry_count == 0)); } /** * mark_slab_journal_dirty() - Put a slab journal on the dirty ring of its allocator in the correct * order. * @journal: The journal to be marked dirty. * @lock: The recovery journal lock held by the slab journal. */ static void mark_slab_journal_dirty(struct slab_journal *journal, sequence_number_t lock) { struct slab_journal *dirty_journal; struct list_head *dirty_list = &journal->slab->allocator->dirty_slab_journals; VDO_ASSERT_LOG_ONLY(journal->recovery_lock == 0, "slab journal was clean"); journal->recovery_lock = lock; list_for_each_entry_reverse(dirty_journal, dirty_list, dirty_entry) { if (dirty_journal->recovery_lock <= journal->recovery_lock) break; } list_move_tail(&journal->dirty_entry, dirty_journal->dirty_entry.next); } static void mark_slab_journal_clean(struct slab_journal *journal) { journal->recovery_lock = 0; list_del_init(&journal->dirty_entry); } static void check_if_slab_drained(struct vdo_slab *slab) { bool read_only; struct slab_journal *journal = &slab->journal; const struct admin_state_code *code; if (!vdo_is_state_draining(&slab->state) || must_make_entries_to_flush(journal) || is_reaping(journal) || journal->waiting_to_commit || !list_empty(&journal->uncommitted_blocks) || journal->updating_slab_summary || (slab->active_count > 0)) return; /* When not suspending or recovering, the slab must be clean. */ code = vdo_get_admin_state_code(&slab->state); read_only = vdo_is_read_only(slab->allocator->depot->vdo); if (!read_only && vdo_waitq_has_waiters(&slab->dirty_blocks) && (code != VDO_ADMIN_STATE_SUSPENDING) && (code != VDO_ADMIN_STATE_RECOVERING)) return; vdo_finish_draining_with_result(&slab->state, (read_only ? VDO_READ_ONLY : VDO_SUCCESS)); } /* FULLNESS HINT COMPUTATION */ /** * compute_fullness_hint() - Translate a slab's free block count into a 'fullness hint' that can be * stored in a slab_summary_entry's 7 bits that are dedicated to its free * count. * @depot: The depot whose summary being updated. * @free_blocks: The number of free blocks. * * Note: the number of free blocks must be strictly less than 2^23 blocks, even though * theoretically slabs could contain precisely 2^23 blocks; there is an assumption that at least * one block is used by metadata. This assumption is necessary; otherwise, the fullness hint might * overflow. The fullness hint formula is roughly (fullness >> 16) & 0x7f, but (2^23 >> 16) & 0x7f * is 0, which would make it impossible to distinguish completely full from completely empty. * * Return: A fullness hint, which can be stored in 7 bits. */ static u8 __must_check compute_fullness_hint(struct slab_depot *depot, block_count_t free_blocks) { block_count_t hint; VDO_ASSERT_LOG_ONLY((free_blocks < (1 << 23)), "free blocks must be less than 2^23"); if (free_blocks == 0) return 0; hint = free_blocks >> depot->hint_shift; return ((hint == 0) ? 1 : hint); } /** * check_summary_drain_complete() - Check whether an allocators summary has finished draining. */ static void check_summary_drain_complete(struct block_allocator *allocator) { if (!vdo_is_state_draining(&allocator->summary_state) || (allocator->summary_write_count > 0)) return; vdo_finish_operation(&allocator->summary_state, (vdo_is_read_only(allocator->depot->vdo) ? VDO_READ_ONLY : VDO_SUCCESS)); } /** * notify_summary_waiters() - Wake all the waiters in a given queue. * @allocator: The block allocator summary which owns the queue. * @queue: The queue to notify. */ static void notify_summary_waiters(struct block_allocator *allocator, struct vdo_wait_queue *queue) { int result = (vdo_is_read_only(allocator->depot->vdo) ? VDO_READ_ONLY : VDO_SUCCESS); vdo_waitq_notify_all_waiters(queue, NULL, &result); } static void launch_write(struct slab_summary_block *summary_block); /** * finish_updating_slab_summary_block() - Finish processing a block which attempted to write, * whether or not the attempt succeeded. * @block: The block. */ static void finish_updating_slab_summary_block(struct slab_summary_block *block) { notify_summary_waiters(block->allocator, &block->current_update_waiters); block->writing = false; block->allocator->summary_write_count--; if (vdo_waitq_has_waiters(&block->next_update_waiters)) launch_write(block); else check_summary_drain_complete(block->allocator); } /** * finish_update() - This is the callback for a successful summary block write. * @completion: The write vio. */ static void finish_update(struct vdo_completion *completion) { struct slab_summary_block *block = container_of(as_vio(completion), struct slab_summary_block, vio); atomic64_inc(&block->allocator->depot->summary_statistics.blocks_written); finish_updating_slab_summary_block(block); } /** * handle_write_error() - Handle an error writing a slab summary block. * @completion: The write VIO. */ static void handle_write_error(struct vdo_completion *completion) { struct slab_summary_block *block = container_of(as_vio(completion), struct slab_summary_block, vio); vio_record_metadata_io_error(as_vio(completion)); vdo_enter_read_only_mode(completion->vdo, completion->result); finish_updating_slab_summary_block(block); } static void write_slab_summary_endio(struct bio *bio) { struct vio *vio = bio->bi_private; struct slab_summary_block *block = container_of(vio, struct slab_summary_block, vio); continue_vio_after_io(vio, finish_update, block->allocator->thread_id); } /** * launch_write() - Write a slab summary block unless it is currently out for writing. * @block: The block that needs to be committed. */ static void launch_write(struct slab_summary_block *block) { struct block_allocator *allocator = block->allocator; struct slab_depot *depot = allocator->depot; physical_block_number_t pbn; if (block->writing) return; allocator->summary_write_count++; vdo_waitq_transfer_all_waiters(&block->next_update_waiters, &block->current_update_waiters); block->writing = true; if (vdo_is_read_only(depot->vdo)) { finish_updating_slab_summary_block(block); return; } memcpy(block->outgoing_entries, block->entries, VDO_BLOCK_SIZE); /* * Flush before writing to ensure that the slab journal tail blocks and reference updates * covered by this summary update are stable. Otherwise, a subsequent recovery could * encounter a slab summary update that refers to a slab journal tail block that has not * actually been written. In such cases, the slab journal referenced will be treated as * empty, causing any data within the slab which predates the existing recovery journal * entries to be lost. */ pbn = (depot->summary_origin + (VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE * allocator->zone_number) + block->index); vdo_submit_metadata_vio(&block->vio, pbn, write_slab_summary_endio, handle_write_error, REQ_OP_WRITE | REQ_PREFLUSH); } /** * update_slab_summary_entry() - Update the entry for a slab. * @slab: The slab whose entry is to be updated * @waiter: The waiter that is updating the summary. * @tail_block_offset: The offset of the slab journal's tail block. * @load_ref_counts: Whether the reference counts must be loaded from disk on the vdo load. * @is_clean: Whether the slab is clean. * @free_blocks: The number of free blocks. */ static void update_slab_summary_entry(struct vdo_slab *slab, struct vdo_waiter *waiter, tail_block_offset_t tail_block_offset, bool load_ref_counts, bool is_clean, block_count_t free_blocks) { u8 index = slab->slab_number / VDO_SLAB_SUMMARY_ENTRIES_PER_BLOCK; struct block_allocator *allocator = slab->allocator; struct slab_summary_block *block = &allocator->summary_blocks[index]; int result; struct slab_summary_entry *entry; if (vdo_is_read_only(block->vio.completion.vdo)) { result = VDO_READ_ONLY; waiter->callback(waiter, &result); return; } if (vdo_is_state_draining(&allocator->summary_state) || vdo_is_state_quiescent(&allocator->summary_state)) { result = VDO_INVALID_ADMIN_STATE; waiter->callback(waiter, &result); return; } entry = &allocator->summary_entries[slab->slab_number]; *entry = (struct slab_summary_entry) { .tail_block_offset = tail_block_offset, .load_ref_counts = (entry->load_ref_counts || load_ref_counts), .is_dirty = !is_clean, .fullness_hint = compute_fullness_hint(allocator->depot, free_blocks), }; vdo_waitq_enqueue_waiter(&block->next_update_waiters, waiter); launch_write(block); } /** * finish_reaping() - Actually advance the head of the journal now that any necessary flushes are * complete. * @journal: The journal to be reaped. */ static void finish_reaping(struct slab_journal *journal) { journal->head = journal->unreapable; add_entries(journal); check_if_slab_drained(journal->slab); } static void reap_slab_journal(struct slab_journal *journal); /** * complete_reaping() - Finish reaping now that we have flushed the lower layer and then try * reaping again in case we deferred reaping due to an outstanding vio. * @completion: The flush vio. */ static void complete_reaping(struct vdo_completion *completion) { struct slab_journal *journal = completion->parent; return_vio_to_pool(journal->slab->allocator->vio_pool, vio_as_pooled_vio(as_vio(vdo_forget(completion)))); finish_reaping(journal); reap_slab_journal(journal); } /** * handle_flush_error() - Handle an error flushing the lower layer. * @completion: The flush vio. */ static void handle_flush_error(struct vdo_completion *completion) { vio_record_metadata_io_error(as_vio(completion)); vdo_enter_read_only_mode(completion->vdo, completion->result); complete_reaping(completion); } static void flush_endio(struct bio *bio) { struct vio *vio = bio->bi_private; struct slab_journal *journal = vio->completion.parent; continue_vio_after_io(vio, complete_reaping, journal->slab->allocator->thread_id); } /** * flush_for_reaping() - A waiter callback for getting a vio with which to flush the lower layer * prior to reaping. * @waiter: The journal as a flush waiter. * @context: The newly acquired flush vio. */ static void flush_for_reaping(struct vdo_waiter *waiter, void *context) { struct slab_journal *journal = container_of(waiter, struct slab_journal, flush_waiter); struct pooled_vio *pooled = context; struct vio *vio = &pooled->vio; vio->completion.parent = journal; vdo_submit_flush_vio(vio, flush_endio, handle_flush_error); } /** * reap_slab_journal() - Conduct a reap on a slab journal to reclaim unreferenced blocks. * @journal: The slab journal. */ static void reap_slab_journal(struct slab_journal *journal) { bool reaped = false; if (is_reaping(journal)) { /* We already have a reap in progress so wait for it to finish. */ return; } if ((journal->slab->status != VDO_SLAB_REBUILT) || !vdo_is_state_normal(&journal->slab->state) || vdo_is_read_only(journal->slab->allocator->depot->vdo)) { /* * We must not reap in the first two cases, and there's no point in read-only mode. */ return; } /* * Start reclaiming blocks only when the journal head has no references. Then stop when a * block is referenced or reap reaches the most recently written block, referenced by the * slab summary, which has the sequence number just before the tail. */ while ((journal->unreapable < journal->tail) && (journal->reap_lock->count == 0)) { reaped = true; journal->unreapable++; journal->reap_lock++; if (journal->reap_lock == &journal->locks[journal->size]) journal->reap_lock = &journal->locks[0]; } if (!reaped) return; /* * It is never safe to reap a slab journal block without first issuing a flush, regardless * of whether a user flush has been received or not. In the absence of the flush, the * reference block write which released the locks allowing the slab journal to reap may not * be persisted. Although slab summary writes will eventually issue flushes, multiple slab * journal block writes can be issued while previous slab summary updates have not yet been * made. Even though those slab journal block writes will be ignored if the slab summary * update is not persisted, they may still overwrite the to-be-reaped slab journal block * resulting in a loss of reference count updates. */ journal->flush_waiter.callback = flush_for_reaping; acquire_vio_from_pool(journal->slab->allocator->vio_pool, &journal->flush_waiter); } /** * adjust_slab_journal_block_reference() - Adjust the reference count for a slab journal block. * @journal: The slab journal. * @sequence_number: The journal sequence number of the referenced block. * @adjustment: Amount to adjust the reference counter. * * Note that when the adjustment is negative, the slab journal will be reaped. */ static void adjust_slab_journal_block_reference(struct slab_journal *journal, sequence_number_t sequence_number, int adjustment) { struct journal_lock *lock; if (sequence_number == 0) return; if (journal->slab->status == VDO_SLAB_REPLAYING) { /* Locks should not be used during offline replay. */ return; } VDO_ASSERT_LOG_ONLY((adjustment != 0), "adjustment must be non-zero"); lock = get_lock(journal, sequence_number); if (adjustment < 0) { VDO_ASSERT_LOG_ONLY((-adjustment <= lock->count), "adjustment %d of lock count %u for slab journal block %llu must not underflow", adjustment, lock->count, (unsigned long long) sequence_number); } lock->count += adjustment; if (lock->count == 0) reap_slab_journal(journal); } /** * release_journal_locks() - Callback invoked after a slab summary update completes. * @waiter: The slab summary waiter that has just been notified. * @context: The result code of the update. * * Registered in the constructor on behalf of update_tail_block_location(). * * Implements waiter_callback_fn. */ static void release_journal_locks(struct vdo_waiter *waiter, void *context) { sequence_number_t first, i; struct slab_journal *journal = container_of(waiter, struct slab_journal, slab_summary_waiter); int result = *((int *) context); if (result != VDO_SUCCESS) { if (result != VDO_READ_ONLY) { /* * Don't bother logging what might be lots of errors if we are already in * read-only mode. */ vdo_log_error_strerror(result, "failed slab summary update %llu", (unsigned long long) journal->summarized); } journal->updating_slab_summary = false; vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, result); check_if_slab_drained(journal->slab); return; } if (journal->partial_write_in_progress && (journal->summarized == journal->tail)) { journal->partial_write_in_progress = false; add_entries(journal); } first = journal->last_summarized; journal->last_summarized = journal->summarized; for (i = journal->summarized - 1; i >= first; i--) { /* * Release the lock the summarized block held on the recovery journal. (During * replay, recovery_start will always be 0.) */ if (journal->recovery_journal != NULL) { zone_count_t zone_number = journal->slab->allocator->zone_number; struct journal_lock *lock = get_lock(journal, i); vdo_release_recovery_journal_block_reference(journal->recovery_journal, lock->recovery_start, VDO_ZONE_TYPE_PHYSICAL, zone_number); } /* * Release our own lock against reaping for blocks that are committed. (This * function will not change locks during replay.) */ adjust_slab_journal_block_reference(journal, i, -1); } journal->updating_slab_summary = false; reap_slab_journal(journal); /* Check if the slab summary needs to be updated again. */ update_tail_block_location(journal); } /** * update_tail_block_location() - Update the tail block location in the slab summary, if necessary. * @journal: The slab journal that is updating its tail block location. */ static void update_tail_block_location(struct slab_journal *journal) { block_count_t free_block_count; struct vdo_slab *slab = journal->slab; if (journal->updating_slab_summary || vdo_is_read_only(journal->slab->allocator->depot->vdo) || (journal->last_summarized >= journal->next_commit)) { check_if_slab_drained(slab); return; } if (slab->status != VDO_SLAB_REBUILT) { u8 hint = slab->allocator->summary_entries[slab->slab_number].fullness_hint; free_block_count = ((block_count_t) hint) << slab->allocator->depot->hint_shift; } else { free_block_count = slab->free_blocks; } journal->summarized = journal->next_commit; journal->updating_slab_summary = true; /* * Update slab summary as dirty. * vdo_slab journal can only reap past sequence number 1 when all the ref counts for this * slab have been written to the layer. Therefore, indicate that the ref counts must be * loaded when the journal head has reaped past sequence number 1. */ update_slab_summary_entry(slab, &journal->slab_summary_waiter, journal->summarized % journal->size, (journal->head > 1), false, free_block_count); } /** * reopen_slab_journal() - Reopen a slab's journal by emptying it and then adding pending entries. */ static void reopen_slab_journal(struct vdo_slab *slab) { struct slab_journal *journal = &slab->journal; sequence_number_t block; VDO_ASSERT_LOG_ONLY(journal->tail_header.entry_count == 0, "vdo_slab journal's active block empty before reopening"); journal->head = journal->tail; initialize_journal_state(journal); /* Ensure no locks are spuriously held on an empty journal. */ for (block = 1; block <= journal->size; block++) { VDO_ASSERT_LOG_ONLY((get_lock(journal, block)->count == 0), "Scrubbed journal's block %llu is not locked", (unsigned long long) block); } add_entries(journal); } static sequence_number_t get_committing_sequence_number(const struct pooled_vio *vio) { const struct packed_slab_journal_block *block = (const struct packed_slab_journal_block *) vio->vio.data; return __le64_to_cpu(block->header.sequence_number); } /** * complete_write() - Handle post-commit processing. * @completion: The write vio as a completion. * * This is the callback registered by write_slab_journal_block(). */ static void complete_write(struct vdo_completion *completion) { int result = completion->result; struct pooled_vio *pooled = vio_as_pooled_vio(as_vio(completion)); struct slab_journal *journal = completion->parent; sequence_number_t committed = get_committing_sequence_number(pooled); list_del_init(&pooled->list_entry); return_vio_to_pool(journal->slab->allocator->vio_pool, vdo_forget(pooled)); if (result != VDO_SUCCESS) { vio_record_metadata_io_error(as_vio(completion)); vdo_log_error_strerror(result, "cannot write slab journal block %llu", (unsigned long long) committed); vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, result); check_if_slab_drained(journal->slab); return; } WRITE_ONCE(journal->events->blocks_written, journal->events->blocks_written + 1); if (list_empty(&journal->uncommitted_blocks)) { /* If no blocks are outstanding, then the commit point is at the tail. */ journal->next_commit = journal->tail; } else { /* The commit point is always the beginning of the oldest incomplete block. */ pooled = container_of(journal->uncommitted_blocks.next, struct pooled_vio, list_entry); journal->next_commit = get_committing_sequence_number(pooled); } update_tail_block_location(journal); } static void write_slab_journal_endio(struct bio *bio) { struct vio *vio = bio->bi_private; struct slab_journal *journal = vio->completion.parent; continue_vio_after_io(vio, complete_write, journal->slab->allocator->thread_id); } /** * write_slab_journal_block() - Write a slab journal block. * @waiter: The vio pool waiter which was just notified. * @context: The vio pool entry for the write. * * Callback from acquire_vio_from_pool() registered in commit_tail(). */ static void write_slab_journal_block(struct vdo_waiter *waiter, void *context) { struct pooled_vio *pooled = context; struct vio *vio = &pooled->vio; struct slab_journal *journal = container_of(waiter, struct slab_journal, resource_waiter); struct slab_journal_block_header *header = &journal->tail_header; int unused_entries = journal->entries_per_block - header->entry_count; physical_block_number_t block_number; const struct admin_state_code *operation; header->head = journal->head; list_add_tail(&pooled->list_entry, &journal->uncommitted_blocks); vdo_pack_slab_journal_block_header(header, &journal->block->header); /* Copy the tail block into the vio. */ memcpy(pooled->vio.data, journal->block, VDO_BLOCK_SIZE); VDO_ASSERT_LOG_ONLY(unused_entries >= 0, "vdo_slab journal block is not overfull"); if (unused_entries > 0) { /* * Release the per-entry locks for any unused entries in the block we are about to * write. */ adjust_slab_journal_block_reference(journal, header->sequence_number, -unused_entries); journal->partial_write_in_progress = !block_is_full(journal); } block_number = journal->slab->journal_origin + (header->sequence_number % journal->size); vio->completion.parent = journal; /* * This block won't be read in recovery until the slab summary is updated to refer to it. * The slab summary update does a flush which is sufficient to protect us from corruption * due to out of order slab journal, reference block, or block map writes. */ vdo_submit_metadata_vio(vdo_forget(vio), block_number, write_slab_journal_endio, complete_write, REQ_OP_WRITE); /* Since the write is submitted, the tail block structure can be reused. */ journal->tail++; initialize_tail_block(journal); journal->waiting_to_commit = false; operation = vdo_get_admin_state_code(&journal->slab->state); if (operation == VDO_ADMIN_STATE_WAITING_FOR_RECOVERY) { vdo_finish_operation(&journal->slab->state, (vdo_is_read_only(journal->slab->allocator->depot->vdo) ? VDO_READ_ONLY : VDO_SUCCESS)); return; } add_entries(journal); } /** * commit_tail() - Commit the tail block of the slab journal. * @journal: The journal whose tail block should be committed. */ static void commit_tail(struct slab_journal *journal) { if ((journal->tail_header.entry_count == 0) && must_make_entries_to_flush(journal)) { /* * There are no entries at the moment, but there are some waiters, so defer * initiating the flush until those entries are ready to write. */ return; } if (vdo_is_read_only(journal->slab->allocator->depot->vdo) || journal->waiting_to_commit || (journal->tail_header.entry_count == 0)) { /* * There is nothing to do since the tail block is empty, or writing, or the journal * is in read-only mode. */ return; } /* * Since we are about to commit the tail block, this journal no longer needs to be on the * ring of journals which the recovery journal might ask to commit. */ mark_slab_journal_clean(journal); journal->waiting_to_commit = true; journal->resource_waiter.callback = write_slab_journal_block; acquire_vio_from_pool(journal->slab->allocator->vio_pool, &journal->resource_waiter); } /** * encode_slab_journal_entry() - Encode a slab journal entry. * @tail_header: The unpacked header for the block. * @payload: The journal block payload to hold the entry. * @sbn: The slab block number of the entry to encode. * @operation: The type of the entry. * @increment: True if this is an increment. * * Exposed for unit tests. */ static void encode_slab_journal_entry(struct slab_journal_block_header *tail_header, slab_journal_payload *payload, slab_block_number sbn, enum journal_operation operation, bool increment) { journal_entry_count_t entry_number = tail_header->entry_count++; if (operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING) { if (!tail_header->has_block_map_increments) { memset(payload->full_entries.entry_types, 0, VDO_SLAB_JOURNAL_ENTRY_TYPES_SIZE); tail_header->has_block_map_increments = true; } payload->full_entries.entry_types[entry_number / 8] |= ((u8)1 << (entry_number % 8)); } vdo_pack_slab_journal_entry(&payload->entries[entry_number], sbn, increment); } /** * expand_journal_point() - Convert a recovery journal journal_point which refers to both an * increment and a decrement to a single point which refers to one or the * other. * @recovery_point: The journal point to convert. * @increment: Whether the current entry is an increment. * * Return: The expanded journal point * * Because each data_vio has but a single recovery journal point, but may need to make both * increment and decrement entries in the same slab journal. In order to distinguish the two * entries, the entry count of the expanded journal point is twice the actual recovery journal * entry count for increments, and one more than that for decrements. */ static struct journal_point expand_journal_point(struct journal_point recovery_point, bool increment) { recovery_point.entry_count *= 2; if (!increment) recovery_point.entry_count++; return recovery_point; } /** * add_entry() - Actually add an entry to the slab journal, potentially firing off a write if a * block becomes full. * @journal: The slab journal to append to. * @pbn: The pbn being adjusted. * @operation: The type of entry to make. * @increment: True if this is an increment. * @recovery_point: The expanded recovery point. * * This function is synchronous. */ static void add_entry(struct slab_journal *journal, physical_block_number_t pbn, enum journal_operation operation, bool increment, struct journal_point recovery_point) { struct packed_slab_journal_block *block = journal->block; int result; result = VDO_ASSERT(vdo_before_journal_point(&journal->tail_header.recovery_point, &recovery_point), "recovery journal point is monotonically increasing, recovery point: %llu.%u, block recovery point: %llu.%u", (unsigned long long) recovery_point.sequence_number, recovery_point.entry_count, (unsigned long long) journal->tail_header.recovery_point.sequence_number, journal->tail_header.recovery_point.entry_count); if (result != VDO_SUCCESS) { vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, result); return; } if (operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING) { result = VDO_ASSERT((journal->tail_header.entry_count < journal->full_entries_per_block), "block has room for full entries"); if (result != VDO_SUCCESS) { vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, result); return; } } encode_slab_journal_entry(&journal->tail_header, &block->payload, pbn - journal->slab->start, operation, increment); journal->tail_header.recovery_point = recovery_point; if (block_is_full(journal)) commit_tail(journal); } static inline block_count_t journal_length(const struct slab_journal *journal) { return journal->tail - journal->head; } /** * vdo_attempt_replay_into_slab() - Replay a recovery journal entry into a slab's journal. * @slab: The slab to play into. * @pbn: The PBN for the entry. * @operation: The type of entry to add. * @increment: True if this entry is an increment. * @recovery_point: The recovery journal point corresponding to this entry. * @parent: The completion to notify when there is space to add the entry if the entry could not be * added immediately. * * Return: true if the entry was added immediately. */ bool vdo_attempt_replay_into_slab(struct vdo_slab *slab, physical_block_number_t pbn, enum journal_operation operation, bool increment, struct journal_point *recovery_point, struct vdo_completion *parent) { struct slab_journal *journal = &slab->journal; struct slab_journal_block_header *header = &journal->tail_header; struct journal_point expanded = expand_journal_point(*recovery_point, increment); /* Only accept entries after the current recovery point. */ if (!vdo_before_journal_point(&journal->tail_header.recovery_point, &expanded)) return true; if ((header->entry_count >= journal->full_entries_per_block) && (header->has_block_map_increments || (operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING))) { /* * The tail block does not have room for the entry we are attempting to add so * commit the tail block now. */ commit_tail(journal); } if (journal->waiting_to_commit) { vdo_start_operation_with_waiter(&journal->slab->state, VDO_ADMIN_STATE_WAITING_FOR_RECOVERY, parent, NULL); return false; } if (journal_length(journal) >= journal->size) { /* * We must have reaped the current head before the crash, since the blocked * threshold keeps us from having more entries than fit in a slab journal; hence we * can just advance the head (and unreapable block), as needed. */ journal->head++; journal->unreapable++; } if (journal->slab->status == VDO_SLAB_REBUILT) journal->slab->status = VDO_SLAB_REPLAYING; add_entry(journal, pbn, operation, increment, expanded); return true; } /** * requires_reaping() - Check whether the journal must be reaped before adding new entries. * @journal: The journal to check. * * Return: true if the journal must be reaped. */ static bool requires_reaping(const struct slab_journal *journal) { return (journal_length(journal) >= journal->blocking_threshold); } /** finish_summary_update() - A waiter callback that resets the writing state of a slab. */ static void finish_summary_update(struct vdo_waiter *waiter, void *context) { struct vdo_slab *slab = container_of(waiter, struct vdo_slab, summary_waiter); int result = *((int *) context); slab->active_count--; if ((result != VDO_SUCCESS) && (result != VDO_READ_ONLY)) { vdo_log_error_strerror(result, "failed to update slab summary"); vdo_enter_read_only_mode(slab->allocator->depot->vdo, result); } check_if_slab_drained(slab); } static void write_reference_block(struct vdo_waiter *waiter, void *context); /** * launch_reference_block_write() - Launch the write of a dirty reference block by first acquiring * a VIO for it from the pool. * @waiter: The waiter of the block which is starting to write. * @context: The parent slab of the block. * * This can be asynchronous since the writer will have to wait if all VIOs in the pool are * currently in use. */ static void launch_reference_block_write(struct vdo_waiter *waiter, void *context) { struct vdo_slab *slab = context; if (vdo_is_read_only(slab->allocator->depot->vdo)) return; slab->active_count++; container_of(waiter, struct reference_block, waiter)->is_writing = true; waiter->callback = write_reference_block; acquire_vio_from_pool(slab->allocator->vio_pool, waiter); } static void save_dirty_reference_blocks(struct vdo_slab *slab) { vdo_waitq_notify_all_waiters(&slab->dirty_blocks, launch_reference_block_write, slab); check_if_slab_drained(slab); } /** * finish_reference_block_write() - After a reference block has written, clean it, release its * locks, and return its VIO to the pool. * @completion: The VIO that just finished writing. */ static void finish_reference_block_write(struct vdo_completion *completion) { struct vio *vio = as_vio(completion); struct pooled_vio *pooled = vio_as_pooled_vio(vio); struct reference_block *block = completion->parent; struct vdo_slab *slab = block->slab; tail_block_offset_t offset; slab->active_count--; /* Release the slab journal lock. */ adjust_slab_journal_block_reference(&slab->journal, block->slab_journal_lock_to_release, -1); return_vio_to_pool(slab->allocator->vio_pool, pooled); /* * We can't clear the is_writing flag earlier as releasing the slab journal lock may cause * us to be dirtied again, but we don't want to double enqueue. */ block->is_writing = false; if (vdo_is_read_only(completion->vdo)) { check_if_slab_drained(slab); return; } /* Re-queue the block if it was re-dirtied while it was writing. */ if (block->is_dirty) { vdo_waitq_enqueue_waiter(&block->slab->dirty_blocks, &block->waiter); if (vdo_is_state_draining(&slab->state)) { /* We must be saving, and this block will otherwise not be relaunched. */ save_dirty_reference_blocks(slab); } return; } /* * Mark the slab as clean in the slab summary if there are no dirty or writing blocks * and no summary update in progress. */ if ((slab->active_count > 0) || vdo_waitq_has_waiters(&slab->dirty_blocks)) { check_if_slab_drained(slab); return; } offset = slab->allocator->summary_entries[slab->slab_number].tail_block_offset; slab->active_count++; slab->summary_waiter.callback = finish_summary_update; update_slab_summary_entry(slab, &slab->summary_waiter, offset, true, true, slab->free_blocks); } /** * get_reference_counters_for_block() - Find the reference counters for a given block. * @block: The reference_block in question. * * Return: A pointer to the reference counters for this block. */ static vdo_refcount_t * __must_check get_reference_counters_for_block(struct reference_block *block) { size_t block_index = block - block->slab->reference_blocks; return &block->slab->counters[block_index * COUNTS_PER_BLOCK]; } /** * pack_reference_block() - Copy data from a reference block to a buffer ready to be written out. * @block: The block to copy. * @buffer: The char buffer to fill with the packed block. */ static void pack_reference_block(struct reference_block *block, void *buffer) { struct packed_reference_block *packed = buffer; vdo_refcount_t *counters = get_reference_counters_for_block(block); sector_count_t i; struct packed_journal_point commit_point; vdo_pack_journal_point(&block->slab->slab_journal_point, &commit_point); for (i = 0; i < VDO_SECTORS_PER_BLOCK; i++) { packed->sectors[i].commit_point = commit_point; memcpy(packed->sectors[i].counts, counters + (i * COUNTS_PER_SECTOR), (sizeof(vdo_refcount_t) * COUNTS_PER_SECTOR)); } } static void write_reference_block_endio(struct bio *bio) { struct vio *vio = bio->bi_private; struct reference_block *block = vio->completion.parent; thread_id_t thread_id = block->slab->allocator->thread_id; continue_vio_after_io(vio, finish_reference_block_write, thread_id); } /** * handle_io_error() - Handle an I/O error reading or writing a reference count block. * @completion: The VIO doing the I/O as a completion. */ static void handle_io_error(struct vdo_completion *completion) { int result = completion->result; struct vio *vio = as_vio(completion); struct vdo_slab *slab = ((struct reference_block *) completion->parent)->slab; vio_record_metadata_io_error(vio); return_vio_to_pool(slab->allocator->vio_pool, vio_as_pooled_vio(vio)); slab->active_count--; vdo_enter_read_only_mode(slab->allocator->depot->vdo, result); check_if_slab_drained(slab); } /** * write_reference_block() - After a dirty block waiter has gotten a VIO from the VIO pool, copy * its counters and associated data into the VIO, and launch the write. * @waiter: The waiter of the dirty block. * @context: The VIO returned by the pool. */ static void write_reference_block(struct vdo_waiter *waiter, void *context) { size_t block_offset; physical_block_number_t pbn; struct pooled_vio *pooled = context; struct vdo_completion *completion = &pooled->vio.completion; struct reference_block *block = container_of(waiter, struct reference_block, waiter); pack_reference_block(block, pooled->vio.data); block_offset = (block - block->slab->reference_blocks); pbn = (block->slab->ref_counts_origin + block_offset); block->slab_journal_lock_to_release = block->slab_journal_lock; completion->parent = block; /* * Mark the block as clean, since we won't be committing any updates that happen after this * moment. As long as VIO order is preserved, two VIOs updating this block at once will not * cause complications. */ block->is_dirty = false; /* * Flush before writing to ensure that the recovery journal and slab journal entries which * cover this reference update are stable. This prevents data corruption that can be caused * by out of order writes. */ WRITE_ONCE(block->slab->allocator->ref_counts_statistics.blocks_written, block->slab->allocator->ref_counts_statistics.blocks_written + 1); completion->callback_thread_id = ((struct block_allocator *) pooled->context)->thread_id; vdo_submit_metadata_vio(&pooled->vio, pbn, write_reference_block_endio, handle_io_error, REQ_OP_WRITE | REQ_PREFLUSH); } static void reclaim_journal_space(struct slab_journal *journal) { block_count_t length = journal_length(journal); struct vdo_slab *slab = journal->slab; block_count_t write_count = vdo_waitq_num_waiters(&slab->dirty_blocks); block_count_t written; if ((length < journal->flushing_threshold) || (write_count == 0)) return; /* The slab journal is over the first threshold, schedule some reference block writes. */ WRITE_ONCE(journal->events->flush_count, journal->events->flush_count + 1); if (length < journal->flushing_deadline) { /* Schedule more writes the closer to the deadline we get. */ write_count /= journal->flushing_deadline - length + 1; write_count = max_t(block_count_t, write_count, 1); } for (written = 0; written < write_count; written++) { vdo_waitq_notify_next_waiter(&slab->dirty_blocks, launch_reference_block_write, slab); } } /** * reference_count_to_status() - Convert a reference count to a reference status. * @count: The count to convert. * * Return: The appropriate reference status. */ static enum reference_status __must_check reference_count_to_status(vdo_refcount_t count) { if (count == EMPTY_REFERENCE_COUNT) return RS_FREE; else if (count == 1) return RS_SINGLE; else if (count == PROVISIONAL_REFERENCE_COUNT) return RS_PROVISIONAL; else return RS_SHARED; } /** * dirty_block() - Mark a reference count block as dirty, potentially adding it to the dirty queue * if it wasn't already dirty. * @block: The reference block to mark as dirty. */ static void dirty_block(struct reference_block *block) { if (block->is_dirty) return; block->is_dirty = true; if (!block->is_writing) vdo_waitq_enqueue_waiter(&block->slab->dirty_blocks, &block->waiter); } /** * get_reference_block() - Get the reference block that covers the given block index. */ static struct reference_block * __must_check get_reference_block(struct vdo_slab *slab, slab_block_number index) { return &slab->reference_blocks[index / COUNTS_PER_BLOCK]; } /** * slab_block_number_from_pbn() - Determine the index within the slab of a particular physical * block number. * @slab: The slab. * @physical_block_number: The physical block number. * @slab_block_number_ptr: A pointer to the slab block number. * * Return: VDO_SUCCESS or an error code. */ static int __must_check slab_block_number_from_pbn(struct vdo_slab *slab, physical_block_number_t pbn, slab_block_number *slab_block_number_ptr) { u64 slab_block_number; if (pbn < slab->start) return VDO_OUT_OF_RANGE; slab_block_number = pbn - slab->start; if (slab_block_number >= slab->allocator->depot->slab_config.data_blocks) return VDO_OUT_OF_RANGE; *slab_block_number_ptr = slab_block_number; return VDO_SUCCESS; } /** * get_reference_counter() - Get the reference counter that covers the given physical block number. * @slab: The slab to query. * @pbn: The physical block number. * @counter_ptr: A pointer to the reference counter. */ static int __must_check get_reference_counter(struct vdo_slab *slab, physical_block_number_t pbn, vdo_refcount_t **counter_ptr) { slab_block_number index; int result = slab_block_number_from_pbn(slab, pbn, &index); if (result != VDO_SUCCESS) return result; *counter_ptr = &slab->counters[index]; return VDO_SUCCESS; } static unsigned int calculate_slab_priority(struct vdo_slab *slab) { block_count_t free_blocks = slab->free_blocks; unsigned int unopened_slab_priority = slab->allocator->unopened_slab_priority; unsigned int priority; /* * Wholly full slabs must be the only ones with lowest priority, 0. * * Slabs that have never been opened (empty, newly initialized, and never been written to) * have lower priority than previously opened slabs that have a significant number of free * blocks. This ranking causes VDO to avoid writing physical blocks for the first time * unless there are very few free blocks that have been previously written to. * * Since VDO doesn't discard blocks currently, reusing previously written blocks makes VDO * a better client of any underlying storage that is thinly-provisioned (though discarding * would be better). * * For all other slabs, the priority is derived from the logarithm of the number of free * blocks. Slabs with the same order of magnitude of free blocks have the same priority. * With 2^23 blocks, the priority will range from 1 to 25. The reserved * unopened_slab_priority divides the range and is skipped by the logarithmic mapping. */ if (free_blocks == 0) return 0; if (is_slab_journal_blank(slab)) return unopened_slab_priority; priority = (1 + ilog2(free_blocks)); return ((priority < unopened_slab_priority) ? priority : priority + 1); } /* * Slabs are essentially prioritized by an approximation of the number of free blocks in the slab * so slabs with lots of free blocks will be opened for allocation before slabs that have few free * blocks. */ static void prioritize_slab(struct vdo_slab *slab) { VDO_ASSERT_LOG_ONLY(list_empty(&slab->allocq_entry), "a slab must not already be on a ring when prioritizing"); slab->priority = calculate_slab_priority(slab); vdo_priority_table_enqueue(slab->allocator->prioritized_slabs, slab->priority, &slab->allocq_entry); } /** * adjust_free_block_count() - Adjust the free block count and (if needed) reprioritize the slab. * @incremented: true if the free block count went up. */ static void adjust_free_block_count(struct vdo_slab *slab, bool incremented) { struct block_allocator *allocator = slab->allocator; WRITE_ONCE(allocator->allocated_blocks, allocator->allocated_blocks + (incremented ? -1 : 1)); /* The open slab doesn't need to be reprioritized until it is closed. */ if (slab == allocator->open_slab) return; /* Don't bother adjusting the priority table if unneeded. */ if (slab->priority == calculate_slab_priority(slab)) return; /* * Reprioritize the slab to reflect the new free block count by removing it from the table * and re-enqueuing it with the new priority. */ vdo_priority_table_remove(allocator->prioritized_slabs, &slab->allocq_entry); prioritize_slab(slab); } /** * increment_for_data() - Increment the reference count for a data block. * @slab: The slab which owns the block. * @block: The reference block which contains the block being updated. * @block_number: The block to update. * @old_status: The reference status of the data block before this increment. * @lock: The pbn_lock associated with this increment (may be NULL). * @counter_ptr: A pointer to the count for the data block (in, out). * @adjust_block_count: Whether to update the allocator's free block count. * * Return: VDO_SUCCESS or an error. */ static int increment_for_data(struct vdo_slab *slab, struct reference_block *block, slab_block_number block_number, enum reference_status old_status, struct pbn_lock *lock, vdo_refcount_t *counter_ptr, bool adjust_block_count) { switch (old_status) { case RS_FREE: *counter_ptr = 1; block->allocated_count++; slab->free_blocks--; if (adjust_block_count) adjust_free_block_count(slab, false); break; case RS_PROVISIONAL: *counter_ptr = 1; break; default: /* Single or shared */ if (*counter_ptr >= MAXIMUM_REFERENCE_COUNT) { return vdo_log_error_strerror(VDO_REF_COUNT_INVALID, "Incrementing a block already having 254 references (slab %u, offset %u)", slab->slab_number, block_number); } (*counter_ptr)++; } if (lock != NULL) vdo_unassign_pbn_lock_provisional_reference(lock); return VDO_SUCCESS; } /** * decrement_for_data() - Decrement the reference count for a data block. * @slab: The slab which owns the block. * @block: The reference block which contains the block being updated. * @block_number: The block to update. * @old_status: The reference status of the data block before this decrement. * @updater: The reference updater doing this operation in case we need to look up the pbn lock. * @lock: The pbn_lock associated with the block being decremented (may be NULL). * @counter_ptr: A pointer to the count for the data block (in, out). * @adjust_block_count: Whether to update the allocator's free block count. * * Return: VDO_SUCCESS or an error. */ static int decrement_for_data(struct vdo_slab *slab, struct reference_block *block, slab_block_number block_number, enum reference_status old_status, struct reference_updater *updater, vdo_refcount_t *counter_ptr, bool adjust_block_count) { switch (old_status) { case RS_FREE: return vdo_log_error_strerror(VDO_REF_COUNT_INVALID, "Decrementing free block at offset %u in slab %u", block_number, slab->slab_number); case RS_PROVISIONAL: case RS_SINGLE: if (updater->zpbn.zone != NULL) { struct pbn_lock *lock = vdo_get_physical_zone_pbn_lock(updater->zpbn.zone, updater->zpbn.pbn); if (lock != NULL) { /* * There is a read lock on this block, so the block must not become * unreferenced. */ *counter_ptr = PROVISIONAL_REFERENCE_COUNT; vdo_assign_pbn_lock_provisional_reference(lock); break; } } *counter_ptr = EMPTY_REFERENCE_COUNT; block->allocated_count--; slab->free_blocks++; if (adjust_block_count) adjust_free_block_count(slab, true); break; default: /* Shared */ (*counter_ptr)--; } return VDO_SUCCESS; } /** * increment_for_block_map() - Increment the reference count for a block map page. * @slab: The slab which owns the block. * @block: The reference block which contains the block being updated. * @block_number: The block to update. * @old_status: The reference status of the block before this increment. * @lock: The pbn_lock associated with this increment (may be NULL). * @normal_operation: Whether we are in normal operation vs. recovery or rebuild. * @counter_ptr: A pointer to the count for the block (in, out). * @adjust_block_count: Whether to update the allocator's free block count. * * All block map increments should be from provisional to MAXIMUM_REFERENCE_COUNT. Since block map * blocks never dedupe they should never be adjusted from any other state. The adjustment always * results in MAXIMUM_REFERENCE_COUNT as this value is used to prevent dedupe against block map * blocks. * * Return: VDO_SUCCESS or an error. */ static int increment_for_block_map(struct vdo_slab *slab, struct reference_block *block, slab_block_number block_number, enum reference_status old_status, struct pbn_lock *lock, bool normal_operation, vdo_refcount_t *counter_ptr, bool adjust_block_count) { switch (old_status) { case RS_FREE: if (normal_operation) { return vdo_log_error_strerror(VDO_REF_COUNT_INVALID, "Incrementing unallocated block map block (slab %u, offset %u)", slab->slab_number, block_number); } *counter_ptr = MAXIMUM_REFERENCE_COUNT; block->allocated_count++; slab->free_blocks--; if (adjust_block_count) adjust_free_block_count(slab, false); return VDO_SUCCESS; case RS_PROVISIONAL: if (!normal_operation) return vdo_log_error_strerror(VDO_REF_COUNT_INVALID, "Block map block had provisional reference during replay (slab %u, offset %u)", slab->slab_number, block_number); *counter_ptr = MAXIMUM_REFERENCE_COUNT; if (lock != NULL) vdo_unassign_pbn_lock_provisional_reference(lock); return VDO_SUCCESS; default: return vdo_log_error_strerror(VDO_REF_COUNT_INVALID, "Incrementing a block map block which is already referenced %u times (slab %u, offset %u)", *counter_ptr, slab->slab_number, block_number); } } static bool __must_check is_valid_journal_point(const struct journal_point *point) { return ((point != NULL) && (point->sequence_number > 0)); } /** * update_reference_count() - Update the reference count of a block. * @slab: The slab which owns the block. * @block: The reference block which contains the block being updated. * @block_number: The block to update. * @slab_journal_point: The slab journal point at which this update is journaled. * @updater: The reference updater. * @normal_operation: Whether we are in normal operation vs. recovery or rebuild. * @adjust_block_count: Whether to update the slab's free block count. * @provisional_decrement_ptr: A pointer which will be set to true if this update was a decrement * of a provisional reference. * * Return: VDO_SUCCESS or an error. */ static int update_reference_count(struct vdo_slab *slab, struct reference_block *block, slab_block_number block_number, const struct journal_point *slab_journal_point, struct reference_updater *updater, bool normal_operation, bool adjust_block_count, bool *provisional_decrement_ptr) { vdo_refcount_t *counter_ptr = &slab->counters[block_number]; enum reference_status old_status = reference_count_to_status(*counter_ptr); int result; if (!updater->increment) { result = decrement_for_data(slab, block, block_number, old_status, updater, counter_ptr, adjust_block_count); if ((result == VDO_SUCCESS) && (old_status == RS_PROVISIONAL)) { if (provisional_decrement_ptr != NULL) *provisional_decrement_ptr = true; return VDO_SUCCESS; } } else if (updater->operation == VDO_JOURNAL_DATA_REMAPPING) { result = increment_for_data(slab, block, block_number, old_status, updater->lock, counter_ptr, adjust_block_count); } else { result = increment_for_block_map(slab, block, block_number, old_status, updater->lock, normal_operation, counter_ptr, adjust_block_count); } if (result != VDO_SUCCESS) return result; if (is_valid_journal_point(slab_journal_point)) slab->slab_journal_point = *slab_journal_point; return VDO_SUCCESS; } static int __must_check adjust_reference_count(struct vdo_slab *slab, struct reference_updater *updater, const struct journal_point *slab_journal_point) { slab_block_number block_number; int result; struct reference_block *block; bool provisional_decrement = false; if (!is_slab_open(slab)) return VDO_INVALID_ADMIN_STATE; result = slab_block_number_from_pbn(slab, updater->zpbn.pbn, &block_number); if (result != VDO_SUCCESS) return result; block = get_reference_block(slab, block_number); result = update_reference_count(slab, block, block_number, slab_journal_point, updater, NORMAL_OPERATION, true, &provisional_decrement); if ((result != VDO_SUCCESS) || provisional_decrement) return result; if (block->is_dirty && (block->slab_journal_lock > 0)) { sequence_number_t entry_lock = slab_journal_point->sequence_number; /* * This block is already dirty and a slab journal entry has been made for it since * the last time it was clean. We must release the per-entry slab journal lock for * the entry associated with the update we are now doing. */ result = VDO_ASSERT(is_valid_journal_point(slab_journal_point), "Reference count adjustments need slab journal points."); if (result != VDO_SUCCESS) return result; adjust_slab_journal_block_reference(&slab->journal, entry_lock, -1); return VDO_SUCCESS; } /* * This may be the first time we are applying an update for which there is a slab journal * entry to this block since the block was cleaned. Therefore, we convert the per-entry * slab journal lock to an uncommitted reference block lock, if there is a per-entry lock. */ if (is_valid_journal_point(slab_journal_point)) block->slab_journal_lock = slab_journal_point->sequence_number; else block->slab_journal_lock = 0; dirty_block(block); return VDO_SUCCESS; } /** * add_entry_from_waiter() - Add an entry to the slab journal. * @waiter: The vio which should make an entry now. * @context: The slab journal to make an entry in. * * This callback is invoked by add_entries() once it has determined that we are ready to make * another entry in the slab journal. Implements waiter_callback_fn. */ static void add_entry_from_waiter(struct vdo_waiter *waiter, void *context) { int result; struct reference_updater *updater = container_of(waiter, struct reference_updater, waiter); struct data_vio *data_vio = data_vio_from_reference_updater(updater); struct slab_journal *journal = context; struct slab_journal_block_header *header = &journal->tail_header; struct journal_point slab_journal_point = { .sequence_number = header->sequence_number, .entry_count = header->entry_count, }; sequence_number_t recovery_block = data_vio->recovery_journal_point.sequence_number; if (header->entry_count == 0) { /* * This is the first entry in the current tail block, so get a lock on the recovery * journal which we will hold until this tail block is committed. */ get_lock(journal, header->sequence_number)->recovery_start = recovery_block; if (journal->recovery_journal != NULL) { zone_count_t zone_number = journal->slab->allocator->zone_number; vdo_acquire_recovery_journal_block_reference(journal->recovery_journal, recovery_block, VDO_ZONE_TYPE_PHYSICAL, zone_number); } mark_slab_journal_dirty(journal, recovery_block); reclaim_journal_space(journal); } add_entry(journal, updater->zpbn.pbn, updater->operation, updater->increment, expand_journal_point(data_vio->recovery_journal_point, updater->increment)); if (journal->slab->status != VDO_SLAB_REBUILT) { /* * If the slab is unrecovered, scrubbing will take care of the count since the * update is now recorded in the journal. */ adjust_slab_journal_block_reference(journal, slab_journal_point.sequence_number, -1); result = VDO_SUCCESS; } else { /* Now that an entry has been made in the slab journal, update the counter. */ result = adjust_reference_count(journal->slab, updater, &slab_journal_point); } if (updater->increment) continue_data_vio_with_error(data_vio, result); else vdo_continue_completion(&data_vio->decrement_completion, result); } /** * is_next_entry_a_block_map_increment() - Check whether the next entry to be made is a block map * increment. * @journal: The journal. * * Return: true if the first entry waiter's operation is a block map increment. */ static inline bool is_next_entry_a_block_map_increment(struct slab_journal *journal) { struct vdo_waiter *waiter = vdo_waitq_get_first_waiter(&journal->entry_waiters); struct reference_updater *updater = container_of(waiter, struct reference_updater, waiter); return (updater->operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING); } /** * add_entries() - Add as many entries as possible from the queue of vios waiting to make entries. * @journal: The journal to which entries may be added. * * By processing the queue in order, we ensure that slab journal entries are made in the same order * as recovery journal entries for the same increment or decrement. */ static void add_entries(struct slab_journal *journal) { if (journal->adding_entries) { /* Protect against re-entrancy. */ return; } journal->adding_entries = true; while (vdo_waitq_has_waiters(&journal->entry_waiters)) { struct slab_journal_block_header *header = &journal->tail_header; if (journal->partial_write_in_progress || (journal->slab->status == VDO_SLAB_REBUILDING)) { /* * Don't add entries while rebuilding or while a partial write is * outstanding, as it could result in reference count corruption. */ break; } if (journal->waiting_to_commit) { /* * If we are waiting for resources to write the tail block, and the tail * block is full, we can't make another entry. */ WRITE_ONCE(journal->events->tail_busy_count, journal->events->tail_busy_count + 1); break; } else if (is_next_entry_a_block_map_increment(journal) && (header->entry_count >= journal->full_entries_per_block)) { /* * The tail block does not have room for a block map increment, so commit * it now. */ commit_tail(journal); if (journal->waiting_to_commit) { WRITE_ONCE(journal->events->tail_busy_count, journal->events->tail_busy_count + 1); break; } } /* If the slab is over the blocking threshold, make the vio wait. */ if (requires_reaping(journal)) { WRITE_ONCE(journal->events->blocked_count, journal->events->blocked_count + 1); save_dirty_reference_blocks(journal->slab); break; } if (header->entry_count == 0) { struct journal_lock *lock = get_lock(journal, header->sequence_number); /* * Check if the on disk slab journal is full. Because of the blocking and * scrubbing thresholds, this should never happen. */ if (lock->count > 0) { VDO_ASSERT_LOG_ONLY((journal->head + journal->size) == journal->tail, "New block has locks, but journal is not full"); /* * The blocking threshold must let the journal fill up if the new * block has locks; if the blocking threshold is smaller than the * journal size, the new block cannot possibly have locks already. */ VDO_ASSERT_LOG_ONLY((journal->blocking_threshold >= journal->size), "New block can have locks already iff blocking threshold is at the end of the journal"); WRITE_ONCE(journal->events->disk_full_count, journal->events->disk_full_count + 1); save_dirty_reference_blocks(journal->slab); break; } /* * Don't allow the new block to be reaped until all of the reference count * blocks are written and the journal block has been fully committed as * well. */ lock->count = journal->entries_per_block + 1; if (header->sequence_number == 1) { struct vdo_slab *slab = journal->slab; block_count_t i; /* * This is the first entry in this slab journal, ever. Dirty all of * the reference count blocks. Each will acquire a lock on the tail * block so that the journal won't be reaped until the reference * counts are initialized. The lock acquisition must be done by the * ref_counts since here we don't know how many reference blocks * the ref_counts has. */ for (i = 0; i < slab->reference_block_count; i++) { slab->reference_blocks[i].slab_journal_lock = 1; dirty_block(&slab->reference_blocks[i]); } adjust_slab_journal_block_reference(journal, 1, slab->reference_block_count); } } vdo_waitq_notify_next_waiter(&journal->entry_waiters, add_entry_from_waiter, journal); } journal->adding_entries = false; /* If there are no waiters, and we are flushing or saving, commit the tail block. */ if (vdo_is_state_draining(&journal->slab->state) && !vdo_is_state_suspending(&journal->slab->state) && !vdo_waitq_has_waiters(&journal->entry_waiters)) commit_tail(journal); } /** * reset_search_cursor() - Reset the free block search back to the first reference counter in the * first reference block of a slab. */ static void reset_search_cursor(struct vdo_slab *slab) { struct search_cursor *cursor = &slab->search_cursor; cursor->block = cursor->first_block; cursor->index = 0; /* Unit tests have slabs with only one reference block (and it's a runt). */ cursor->end_index = min_t(u32, COUNTS_PER_BLOCK, slab->block_count); } /** * advance_search_cursor() - Advance the search cursor to the start of the next reference block in * a slab, * * Wraps around to the first reference block if the current block is the last reference block. * * Return: true unless the cursor was at the last reference block. */ static bool advance_search_cursor(struct vdo_slab *slab) { struct search_cursor *cursor = &slab->search_cursor; /* * If we just finished searching the last reference block, then wrap back around to the * start of the array. */ if (cursor->block == cursor->last_block) { reset_search_cursor(slab); return false; } /* We're not already at the end, so advance to cursor to the next block. */ cursor->block++; cursor->index = cursor->end_index; if (cursor->block == cursor->last_block) { /* The last reference block will usually be a runt. */ cursor->end_index = slab->block_count; } else { cursor->end_index += COUNTS_PER_BLOCK; } return true; } /** * vdo_adjust_reference_count_for_rebuild() - Adjust the reference count of a block during rebuild. * * Return: VDO_SUCCESS or an error. */ int vdo_adjust_reference_count_for_rebuild(struct slab_depot *depot, physical_block_number_t pbn, enum journal_operation operation) { int result; slab_block_number block_number; struct reference_block *block; struct vdo_slab *slab = vdo_get_slab(depot, pbn); struct reference_updater updater = { .operation = operation, .increment = true, }; result = slab_block_number_from_pbn(slab, pbn, &block_number); if (result != VDO_SUCCESS) return result; block = get_reference_block(slab, block_number); result = update_reference_count(slab, block, block_number, NULL, &updater, !NORMAL_OPERATION, false, NULL); if (result != VDO_SUCCESS) return result; dirty_block(block); return VDO_SUCCESS; } /** * replay_reference_count_change() - Replay the reference count adjustment from a slab journal * entry into the reference count for a block. * @slab: The slab. * @entry_point: The slab journal point for the entry. * @entry: The slab journal entry being replayed. * * The adjustment will be ignored if it was already recorded in the reference count. * * Return: VDO_SUCCESS or an error code. */ static int replay_reference_count_change(struct vdo_slab *slab, const struct journal_point *entry_point, struct slab_journal_entry entry) { int result; struct reference_block *block = get_reference_block(slab, entry.sbn); sector_count_t sector = (entry.sbn % COUNTS_PER_BLOCK) / COUNTS_PER_SECTOR; struct reference_updater updater = { .operation = entry.operation, .increment = entry.increment, }; if (!vdo_before_journal_point(&block->commit_points[sector], entry_point)) { /* This entry is already reflected in the existing counts, so do nothing. */ return VDO_SUCCESS; } /* This entry is not yet counted in the reference counts. */ result = update_reference_count(slab, block, entry.sbn, entry_point, &updater, !NORMAL_OPERATION, false, NULL); if (result != VDO_SUCCESS) return result; dirty_block(block); return VDO_SUCCESS; } /** * find_zero_byte_in_word() - Find the array index of the first zero byte in word-sized range of * reference counters. * @word_ptr: A pointer to the eight counter bytes to check. * @start_index: The array index corresponding to word_ptr[0]. * @fail_index: The array index to return if no zero byte is found. * * The search does no bounds checking; the function relies on the array being sufficiently padded. * * Return: The array index of the first zero byte in the word, or the value passed as fail_index if * no zero byte was found. */ static inline slab_block_number find_zero_byte_in_word(const u8 *word_ptr, slab_block_number start_index, slab_block_number fail_index) { u64 word = get_unaligned_le64(word_ptr); /* This looks like a loop, but GCC will unroll the eight iterations for us. */ unsigned int offset; for (offset = 0; offset < BYTES_PER_WORD; offset++) { /* Assumes little-endian byte order, which we have on X86. */ if ((word & 0xFF) == 0) return (start_index + offset); word >>= 8; } return fail_index; } /** * find_free_block() - Find the first block with a reference count of zero in the specified * range of reference counter indexes. * @slab: The slab counters to scan. * @index_ptr: A pointer to hold the array index of the free block. * * Exposed for unit testing. * * Return: true if a free block was found in the specified range. */ static bool find_free_block(const struct vdo_slab *slab, slab_block_number *index_ptr) { slab_block_number zero_index; slab_block_number next_index = slab->search_cursor.index; slab_block_number end_index = slab->search_cursor.end_index; u8 *next_counter = &slab->counters[next_index]; u8 *end_counter = &slab->counters[end_index]; /* * Search every byte of the first unaligned word. (Array is padded so reading past end is * safe.) */ zero_index = find_zero_byte_in_word(next_counter, next_index, end_index); if (zero_index < end_index) { *index_ptr = zero_index; return true; } /* * On architectures where unaligned word access is expensive, this would be a good place to * advance to an alignment boundary. */ next_index += BYTES_PER_WORD; next_counter += BYTES_PER_WORD; /* * Now we're word-aligned; check an word at a time until we find a word containing a zero. * (Array is padded so reading past end is safe.) */ while (next_counter < end_counter) { /* * The following code is currently an exact copy of the code preceding the loop, * but if you try to merge them by using a do loop, it runs slower because a jump * instruction gets added at the start of the iteration. */ zero_index = find_zero_byte_in_word(next_counter, next_index, end_index); if (zero_index < end_index) { *index_ptr = zero_index; return true; } next_index += BYTES_PER_WORD; next_counter += BYTES_PER_WORD; } return false; } /** * search_current_reference_block() - Search the reference block currently saved in the search * cursor for a reference count of zero, starting at the saved * counter index. * @slab: The slab to search. * @free_index_ptr: A pointer to receive the array index of the zero reference count. * * Return: true if an unreferenced counter was found. */ static bool search_current_reference_block(const struct vdo_slab *slab, slab_block_number *free_index_ptr) { /* Don't bother searching if the current block is known to be full. */ return ((slab->search_cursor.block->allocated_count < COUNTS_PER_BLOCK) && find_free_block(slab, free_index_ptr)); } /** * search_reference_blocks() - Search each reference block for a reference count of zero. * @slab: The slab to search. * @free_index_ptr: A pointer to receive the array index of the zero reference count. * * Searches each reference block for a reference count of zero, starting at the reference block and * counter index saved in the search cursor and searching up to the end of the last reference * block. The search does not wrap. * * Return: true if an unreferenced counter was found. */ static bool search_reference_blocks(struct vdo_slab *slab, slab_block_number *free_index_ptr) { /* Start searching at the saved search position in the current block. */ if (search_current_reference_block(slab, free_index_ptr)) return true; /* Search each reference block up to the end of the slab. */ while (advance_search_cursor(slab)) { if (search_current_reference_block(slab, free_index_ptr)) return true; } return false; } /** * make_provisional_reference() - Do the bookkeeping for making a provisional reference. */ static void make_provisional_reference(struct vdo_slab *slab, slab_block_number block_number) { struct reference_block *block = get_reference_block(slab, block_number); /* * Make the initial transition from an unreferenced block to a * provisionally allocated block. */ slab->counters[block_number] = PROVISIONAL_REFERENCE_COUNT; /* Account for the allocation. */ block->allocated_count++; slab->free_blocks--; } /** * dirty_all_reference_blocks() - Mark all reference count blocks in a slab as dirty. */ static void dirty_all_reference_blocks(struct vdo_slab *slab) { block_count_t i; for (i = 0; i < slab->reference_block_count; i++) dirty_block(&slab->reference_blocks[i]); } /** * clear_provisional_references() - Clear the provisional reference counts from a reference block. * @block: The block to clear. */ static void clear_provisional_references(struct reference_block *block) { vdo_refcount_t *counters = get_reference_counters_for_block(block); block_count_t j; for (j = 0; j < COUNTS_PER_BLOCK; j++) { if (counters[j] == PROVISIONAL_REFERENCE_COUNT) { counters[j] = EMPTY_REFERENCE_COUNT; block->allocated_count--; } } } static inline bool journal_points_equal(struct journal_point first, struct journal_point second) { return ((first.sequence_number == second.sequence_number) && (first.entry_count == second.entry_count)); } /** * unpack_reference_block() - Unpack reference counts blocks into the internal memory structure. * @packed: The written reference block to be unpacked. * @block: The internal reference block to be loaded. */ static void unpack_reference_block(struct packed_reference_block *packed, struct reference_block *block) { block_count_t index; sector_count_t i; struct vdo_slab *slab = block->slab; vdo_refcount_t *counters = get_reference_counters_for_block(block); for (i = 0; i < VDO_SECTORS_PER_BLOCK; i++) { struct packed_reference_sector *sector = &packed->sectors[i]; vdo_unpack_journal_point(§or->commit_point, &block->commit_points[i]); memcpy(counters + (i * COUNTS_PER_SECTOR), sector->counts, (sizeof(vdo_refcount_t) * COUNTS_PER_SECTOR)); /* The slab_journal_point must be the latest point found in any sector. */ if (vdo_before_journal_point(&slab->slab_journal_point, &block->commit_points[i])) slab->slab_journal_point = block->commit_points[i]; if ((i > 0) && !journal_points_equal(block->commit_points[0], block->commit_points[i])) { size_t block_index = block - block->slab->reference_blocks; vdo_log_warning("Torn write detected in sector %u of reference block %zu of slab %u", i, block_index, block->slab->slab_number); } } block->allocated_count = 0; for (index = 0; index < COUNTS_PER_BLOCK; index++) { if (counters[index] != EMPTY_REFERENCE_COUNT) block->allocated_count++; } } /** * finish_reference_block_load() - After a reference block has been read, unpack it. * @completion: The VIO that just finished reading. */ static void finish_reference_block_load(struct vdo_completion *completion) { struct vio *vio = as_vio(completion); struct pooled_vio *pooled = vio_as_pooled_vio(vio); struct reference_block *block = completion->parent; struct vdo_slab *slab = block->slab; unpack_reference_block((struct packed_reference_block *) vio->data, block); return_vio_to_pool(slab->allocator->vio_pool, pooled); slab->active_count--; clear_provisional_references(block); slab->free_blocks -= block->allocated_count; check_if_slab_drained(slab); } static void load_reference_block_endio(struct bio *bio) { struct vio *vio = bio->bi_private; struct reference_block *block = vio->completion.parent; continue_vio_after_io(vio, finish_reference_block_load, block->slab->allocator->thread_id); } /** * load_reference_block() - After a block waiter has gotten a VIO from the VIO pool, load the * block. * @waiter: The waiter of the block to load. * @context: The VIO returned by the pool. */ static void load_reference_block(struct vdo_waiter *waiter, void *context) { struct pooled_vio *pooled = context; struct vio *vio = &pooled->vio; struct reference_block *block = container_of(waiter, struct reference_block, waiter); size_t block_offset = (block - block->slab->reference_blocks); vio->completion.parent = block; vdo_submit_metadata_vio(vio, block->slab->ref_counts_origin + block_offset, load_reference_block_endio, handle_io_error, REQ_OP_READ); } /** * load_reference_blocks() - Load a slab's reference blocks from the underlying storage into a * pre-allocated reference counter. */ static void load_reference_blocks(struct vdo_slab *slab) { block_count_t i; slab->free_blocks = slab->block_count; slab->active_count = slab->reference_block_count; for (i = 0; i < slab->reference_block_count; i++) { struct vdo_waiter *waiter = &slab->reference_blocks[i].waiter; waiter->callback = load_reference_block; acquire_vio_from_pool(slab->allocator->vio_pool, waiter); } } /** * drain_slab() - Drain all reference count I/O. * * Depending upon the type of drain being performed (as recorded in the ref_count's vdo_slab), the * reference blocks may be loaded from disk or dirty reference blocks may be written out. */ static void drain_slab(struct vdo_slab *slab) { bool save; bool load; const struct admin_state_code *state = vdo_get_admin_state_code(&slab->state); if (state == VDO_ADMIN_STATE_SUSPENDING) return; if ((state != VDO_ADMIN_STATE_REBUILDING) && (state != VDO_ADMIN_STATE_SAVE_FOR_SCRUBBING)) commit_tail(&slab->journal); if ((state == VDO_ADMIN_STATE_RECOVERING) || (slab->counters == NULL)) return; save = false; load = slab->allocator->summary_entries[slab->slab_number].load_ref_counts; if (state == VDO_ADMIN_STATE_SCRUBBING) { if (load) { load_reference_blocks(slab); return; } } else if (state == VDO_ADMIN_STATE_SAVE_FOR_SCRUBBING) { if (!load) { /* These reference counts were never written, so mark them all dirty. */ dirty_all_reference_blocks(slab); } save = true; } else if (state == VDO_ADMIN_STATE_REBUILDING) { /* * Write out the counters if the slab has written them before, or it has any * non-zero reference counts, or there are any slab journal blocks. */ block_count_t data_blocks = slab->allocator->depot->slab_config.data_blocks; if (load || (slab->free_blocks != data_blocks) || !is_slab_journal_blank(slab)) { dirty_all_reference_blocks(slab); save = true; } } else if (state == VDO_ADMIN_STATE_SAVING) { save = (slab->status == VDO_SLAB_REBUILT); } else { vdo_finish_draining_with_result(&slab->state, VDO_SUCCESS); return; } if (save) save_dirty_reference_blocks(slab); } static int allocate_slab_counters(struct vdo_slab *slab) { int result; size_t index, bytes; result = VDO_ASSERT(slab->reference_blocks == NULL, "vdo_slab %u doesn't allocate refcounts twice", slab->slab_number); if (result != VDO_SUCCESS) return result; result = vdo_allocate(slab->reference_block_count, struct reference_block, __func__, &slab->reference_blocks); if (result != VDO_SUCCESS) return result; /* * Allocate such that the runt slab has a full-length memory array, plus a little padding * so we can word-search even at the very end. */ bytes = (slab->reference_block_count * COUNTS_PER_BLOCK) + (2 * BYTES_PER_WORD); result = vdo_allocate(bytes, vdo_refcount_t, "ref counts array", &slab->counters); if (result != VDO_SUCCESS) { vdo_free(vdo_forget(slab->reference_blocks)); return result; } slab->search_cursor.first_block = slab->reference_blocks; slab->search_cursor.last_block = &slab->reference_blocks[slab->reference_block_count - 1]; reset_search_cursor(slab); for (index = 0; index < slab->reference_block_count; index++) { slab->reference_blocks[index] = (struct reference_block) { .slab = slab, }; } return VDO_SUCCESS; } static int allocate_counters_if_clean(struct vdo_slab *slab) { if (vdo_is_state_clean_load(&slab->state)) return allocate_slab_counters(slab); return VDO_SUCCESS; } static void finish_loading_journal(struct vdo_completion *completion) { struct vio *vio = as_vio(completion); struct slab_journal *journal = completion->parent; struct vdo_slab *slab = journal->slab; struct packed_slab_journal_block *block = (struct packed_slab_journal_block *) vio->data; struct slab_journal_block_header header; vdo_unpack_slab_journal_block_header(&block->header, &header); /* FIXME: should it be an error if the following conditional fails? */ if ((header.metadata_type == VDO_METADATA_SLAB_JOURNAL) && (header.nonce == slab->allocator->nonce)) { journal->tail = header.sequence_number + 1; /* * If the slab is clean, this implies the slab journal is empty, so advance the * head appropriately. */ journal->head = (slab->allocator->summary_entries[slab->slab_number].is_dirty ? header.head : journal->tail); journal->tail_header = header; initialize_journal_state(journal); } return_vio_to_pool(slab->allocator->vio_pool, vio_as_pooled_vio(vio)); vdo_finish_loading_with_result(&slab->state, allocate_counters_if_clean(slab)); } static void read_slab_journal_tail_endio(struct bio *bio) { struct vio *vio = bio->bi_private; struct slab_journal *journal = vio->completion.parent; continue_vio_after_io(vio, finish_loading_journal, journal->slab->allocator->thread_id); } static void handle_load_error(struct vdo_completion *completion) { int result = completion->result; struct slab_journal *journal = completion->parent; struct vio *vio = as_vio(completion); vio_record_metadata_io_error(vio); return_vio_to_pool(journal->slab->allocator->vio_pool, vio_as_pooled_vio(vio)); vdo_finish_loading_with_result(&journal->slab->state, result); } /** * read_slab_journal_tail() - Read the slab journal tail block by using a vio acquired from the vio * pool. * @waiter: The vio pool waiter which has just been notified. * @context: The vio pool entry given to the waiter. * * This is the success callback from acquire_vio_from_pool() when loading a slab journal. */ static void read_slab_journal_tail(struct vdo_waiter *waiter, void *context) { struct slab_journal *journal = container_of(waiter, struct slab_journal, resource_waiter); struct vdo_slab *slab = journal->slab; struct pooled_vio *pooled = context; struct vio *vio = &pooled->vio; tail_block_offset_t last_commit_point = slab->allocator->summary_entries[slab->slab_number].tail_block_offset; /* * Slab summary keeps the commit point offset, so the tail block is the block before that. * Calculation supports small journals in unit tests. */ tail_block_offset_t tail_block = ((last_commit_point == 0) ? (tail_block_offset_t)(journal->size - 1) : (last_commit_point - 1)); vio->completion.parent = journal; vio->completion.callback_thread_id = slab->allocator->thread_id; vdo_submit_metadata_vio(vio, slab->journal_origin + tail_block, read_slab_journal_tail_endio, handle_load_error, REQ_OP_READ); } /** * load_slab_journal() - Load a slab's journal by reading the journal's tail. */ static void load_slab_journal(struct vdo_slab *slab) { struct slab_journal *journal = &slab->journal; tail_block_offset_t last_commit_point; last_commit_point = slab->allocator->summary_entries[slab->slab_number].tail_block_offset; if ((last_commit_point == 0) && !slab->allocator->summary_entries[slab->slab_number].load_ref_counts) { /* * This slab claims that it has a tail block at (journal->size - 1), but a head of * 1. This is impossible, due to the scrubbing threshold, on a real system, so * don't bother reading the (bogus) data off disk. */ VDO_ASSERT_LOG_ONLY(((journal->size < 16) || (journal->scrubbing_threshold < (journal->size - 1))), "Scrubbing threshold protects against reads of unwritten slab journal blocks"); vdo_finish_loading_with_result(&slab->state, allocate_counters_if_clean(slab)); return; } journal->resource_waiter.callback = read_slab_journal_tail; acquire_vio_from_pool(slab->allocator->vio_pool, &journal->resource_waiter); } static void register_slab_for_scrubbing(struct vdo_slab *slab, bool high_priority) { struct slab_scrubber *scrubber = &slab->allocator->scrubber; VDO_ASSERT_LOG_ONLY((slab->status != VDO_SLAB_REBUILT), "slab to be scrubbed is unrecovered"); if (slab->status != VDO_SLAB_REQUIRES_SCRUBBING) return; list_del_init(&slab->allocq_entry); if (!slab->was_queued_for_scrubbing) { WRITE_ONCE(scrubber->slab_count, scrubber->slab_count + 1); slab->was_queued_for_scrubbing = true; } if (high_priority) { slab->status = VDO_SLAB_REQUIRES_HIGH_PRIORITY_SCRUBBING; list_add_tail(&slab->allocq_entry, &scrubber->high_priority_slabs); return; } list_add_tail(&slab->allocq_entry, &scrubber->slabs); } /* Queue a slab for allocation or scrubbing. */ static void queue_slab(struct vdo_slab *slab) { struct block_allocator *allocator = slab->allocator; block_count_t free_blocks; int result; VDO_ASSERT_LOG_ONLY(list_empty(&slab->allocq_entry), "a requeued slab must not already be on a ring"); if (vdo_is_read_only(allocator->depot->vdo)) return; free_blocks = slab->free_blocks; result = VDO_ASSERT((free_blocks <= allocator->depot->slab_config.data_blocks), "rebuilt slab %u must have a valid free block count (has %llu, expected maximum %llu)", slab->slab_number, (unsigned long long) free_blocks, (unsigned long long) allocator->depot->slab_config.data_blocks); if (result != VDO_SUCCESS) { vdo_enter_read_only_mode(allocator->depot->vdo, result); return; } if (slab->status != VDO_SLAB_REBUILT) { register_slab_for_scrubbing(slab, false); return; } if (!vdo_is_state_resuming(&slab->state)) { /* * If the slab is resuming, we've already accounted for it here, so don't do it * again. * FIXME: under what situation would the slab be resuming here? */ WRITE_ONCE(allocator->allocated_blocks, allocator->allocated_blocks - free_blocks); if (!is_slab_journal_blank(slab)) { WRITE_ONCE(allocator->statistics.slabs_opened, allocator->statistics.slabs_opened + 1); } } if (allocator->depot->vdo->suspend_type == VDO_ADMIN_STATE_SAVING) reopen_slab_journal(slab); prioritize_slab(slab); } /** * initiate_slab_action() - Initiate a slab action. * * Implements vdo_admin_initiator_fn. */ static void initiate_slab_action(struct admin_state *state) { struct vdo_slab *slab = container_of(state, struct vdo_slab, state); if (vdo_is_state_draining(state)) { const struct admin_state_code *operation = vdo_get_admin_state_code(state); if (operation == VDO_ADMIN_STATE_SCRUBBING) slab->status = VDO_SLAB_REBUILDING; drain_slab(slab); check_if_slab_drained(slab); return; } if (vdo_is_state_loading(state)) { load_slab_journal(slab); return; } if (vdo_is_state_resuming(state)) { queue_slab(slab); vdo_finish_resuming(state); return; } vdo_finish_operation(state, VDO_INVALID_ADMIN_STATE); } /** * get_next_slab() - Get the next slab to scrub. * @scrubber: The slab scrubber. * * Return: The next slab to scrub or NULL if there are none. */ static struct vdo_slab *get_next_slab(struct slab_scrubber *scrubber) { struct vdo_slab *slab; slab = list_first_entry_or_null(&scrubber->high_priority_slabs, struct vdo_slab, allocq_entry); if (slab != NULL) return slab; return list_first_entry_or_null(&scrubber->slabs, struct vdo_slab, allocq_entry); } /** * has_slabs_to_scrub() - Check whether a scrubber has slabs to scrub. * @scrubber: The scrubber to check. * * Return: true if the scrubber has slabs to scrub. */ static inline bool __must_check has_slabs_to_scrub(struct slab_scrubber *scrubber) { return (get_next_slab(scrubber) != NULL); } /** * uninitialize_scrubber_vio() - Clean up the slab_scrubber's vio. * @scrubber: The scrubber. */ static void uninitialize_scrubber_vio(struct slab_scrubber *scrubber) { vdo_free(vdo_forget(scrubber->vio.data)); free_vio_components(&scrubber->vio); } /** * finish_scrubbing() - Stop scrubbing, either because there are no more slabs to scrub or because * there's been an error. * @scrubber: The scrubber. */ static void finish_scrubbing(struct slab_scrubber *scrubber, int result) { bool notify = vdo_waitq_has_waiters(&scrubber->waiters); bool done = !has_slabs_to_scrub(scrubber); struct block_allocator *allocator = container_of(scrubber, struct block_allocator, scrubber); if (done) uninitialize_scrubber_vio(scrubber); if (scrubber->high_priority_only) { scrubber->high_priority_only = false; vdo_fail_completion(vdo_forget(scrubber->vio.completion.parent), result); } else if (done && (atomic_add_return(-1, &allocator->depot->zones_to_scrub) == 0)) { /* All of our slabs were scrubbed, and we're the last allocator to finish. */ enum vdo_state prior_state = atomic_cmpxchg(&allocator->depot->vdo->state, VDO_RECOVERING, VDO_DIRTY); /* * To be safe, even if the CAS failed, ensure anything that follows is ordered with * respect to whatever state change did happen. */ smp_mb__after_atomic(); /* * We must check the VDO state here and not the depot's read_only_notifier since * the compare-swap-above could have failed due to a read-only entry which our own * thread does not yet know about. */ if (prior_state == VDO_DIRTY) vdo_log_info("VDO commencing normal operation"); else if (prior_state == VDO_RECOVERING) vdo_log_info("Exiting recovery mode"); } /* * Note that the scrubber has stopped, and inform anyone who might be waiting for that to * happen. */ if (!vdo_finish_draining(&scrubber->admin_state)) WRITE_ONCE(scrubber->admin_state.current_state, VDO_ADMIN_STATE_SUSPENDED); /* * We can't notify waiters until after we've finished draining or they'll just requeue. * Fortunately if there were waiters, we can't have been freed yet. */ if (notify) vdo_waitq_notify_all_waiters(&scrubber->waiters, NULL, NULL); } static void scrub_next_slab(struct slab_scrubber *scrubber); /** * slab_scrubbed() - Notify the scrubber that a slab has been scrubbed. * @completion: The slab rebuild completion. * * This callback is registered in apply_journal_entries(). */ static void slab_scrubbed(struct vdo_completion *completion) { struct slab_scrubber *scrubber = container_of(as_vio(completion), struct slab_scrubber, vio); struct vdo_slab *slab = scrubber->slab; slab->status = VDO_SLAB_REBUILT; queue_slab(slab); reopen_slab_journal(slab); WRITE_ONCE(scrubber->slab_count, scrubber->slab_count - 1); scrub_next_slab(scrubber); } /** * abort_scrubbing() - Abort scrubbing due to an error. * @scrubber: The slab scrubber. * @result: The error. */ static void abort_scrubbing(struct slab_scrubber *scrubber, int result) { vdo_enter_read_only_mode(scrubber->vio.completion.vdo, result); finish_scrubbing(scrubber, result); } /** * handle_scrubber_error() - Handle errors while rebuilding a slab. * @completion: The slab rebuild completion. */ static void handle_scrubber_error(struct vdo_completion *completion) { struct vio *vio = as_vio(completion); vio_record_metadata_io_error(vio); abort_scrubbing(container_of(vio, struct slab_scrubber, vio), completion->result); } /** * apply_block_entries() - Apply all the entries in a block to the reference counts. * @block: A block with entries to apply. * @entry_count: The number of entries to apply. * @block_number: The sequence number of the block. * @slab: The slab to apply the entries to. * * Return: VDO_SUCCESS or an error code. */ static int apply_block_entries(struct packed_slab_journal_block *block, journal_entry_count_t entry_count, sequence_number_t block_number, struct vdo_slab *slab) { struct journal_point entry_point = { .sequence_number = block_number, .entry_count = 0, }; int result; slab_block_number max_sbn = slab->end - slab->start; while (entry_point.entry_count < entry_count) { struct slab_journal_entry entry = vdo_decode_slab_journal_entry(block, entry_point.entry_count); if (entry.sbn > max_sbn) { /* This entry is out of bounds. */ return vdo_log_error_strerror(VDO_CORRUPT_JOURNAL, "vdo_slab journal entry (%llu, %u) had invalid offset %u in slab (size %u blocks)", (unsigned long long) block_number, entry_point.entry_count, entry.sbn, max_sbn); } result = replay_reference_count_change(slab, &entry_point, entry); if (result != VDO_SUCCESS) { vdo_log_error_strerror(result, "vdo_slab journal entry (%llu, %u) (%s of offset %u) could not be applied in slab %u", (unsigned long long) block_number, entry_point.entry_count, vdo_get_journal_operation_name(entry.operation), entry.sbn, slab->slab_number); return result; } entry_point.entry_count++; } return VDO_SUCCESS; } /** * apply_journal_entries() - Find the relevant vio of the slab journal and apply all valid entries. * @completion: The metadata read vio completion. * * This is a callback registered in start_scrubbing(). */ static void apply_journal_entries(struct vdo_completion *completion) { int result; struct slab_scrubber *scrubber = container_of(as_vio(completion), struct slab_scrubber, vio); struct vdo_slab *slab = scrubber->slab; struct slab_journal *journal = &slab->journal; /* Find the boundaries of the useful part of the journal. */ sequence_number_t tail = journal->tail; tail_block_offset_t end_index = (tail - 1) % journal->size; char *end_data = scrubber->vio.data + (end_index * VDO_BLOCK_SIZE); struct packed_slab_journal_block *end_block = (struct packed_slab_journal_block *) end_data; sequence_number_t head = __le64_to_cpu(end_block->header.head); tail_block_offset_t head_index = head % journal->size; block_count_t index = head_index; struct journal_point ref_counts_point = slab->slab_journal_point; struct journal_point last_entry_applied = ref_counts_point; sequence_number_t sequence; for (sequence = head; sequence < tail; sequence++) { char *block_data = scrubber->vio.data + (index * VDO_BLOCK_SIZE); struct packed_slab_journal_block *block = (struct packed_slab_journal_block *) block_data; struct slab_journal_block_header header; vdo_unpack_slab_journal_block_header(&block->header, &header); if ((header.nonce != slab->allocator->nonce) || (header.metadata_type != VDO_METADATA_SLAB_JOURNAL) || (header.sequence_number != sequence) || (header.entry_count > journal->entries_per_block) || (header.has_block_map_increments && (header.entry_count > journal->full_entries_per_block))) { /* The block is not what we expect it to be. */ vdo_log_error("vdo_slab journal block for slab %u was invalid", slab->slab_number); abort_scrubbing(scrubber, VDO_CORRUPT_JOURNAL); return; } result = apply_block_entries(block, header.entry_count, sequence, slab); if (result != VDO_SUCCESS) { abort_scrubbing(scrubber, result); return; } last_entry_applied.sequence_number = sequence; last_entry_applied.entry_count = header.entry_count - 1; index++; if (index == journal->size) index = 0; } /* * At the end of rebuild, the reference counters should be accurate to the end of the * journal we just applied. */ result = VDO_ASSERT(!vdo_before_journal_point(&last_entry_applied, &ref_counts_point), "Refcounts are not more accurate than the slab journal"); if (result != VDO_SUCCESS) { abort_scrubbing(scrubber, result); return; } /* Save out the rebuilt reference blocks. */ vdo_prepare_completion(completion, slab_scrubbed, handle_scrubber_error, slab->allocator->thread_id, completion->parent); vdo_start_operation_with_waiter(&slab->state, VDO_ADMIN_STATE_SAVE_FOR_SCRUBBING, completion, initiate_slab_action); } static void read_slab_journal_endio(struct bio *bio) { struct vio *vio = bio->bi_private; struct slab_scrubber *scrubber = container_of(vio, struct slab_scrubber, vio); continue_vio_after_io(bio->bi_private, apply_journal_entries, scrubber->slab->allocator->thread_id); } /** * start_scrubbing() - Read the current slab's journal from disk now that it has been flushed. * @completion: The scrubber's vio completion. * * This callback is registered in scrub_next_slab(). */ static void start_scrubbing(struct vdo_completion *completion) { struct slab_scrubber *scrubber = container_of(as_vio(completion), struct slab_scrubber, vio); struct vdo_slab *slab = scrubber->slab; if (!slab->allocator->summary_entries[slab->slab_number].is_dirty) { slab_scrubbed(completion); return; } vdo_submit_metadata_vio(&scrubber->vio, slab->journal_origin, read_slab_journal_endio, handle_scrubber_error, REQ_OP_READ); } /** * scrub_next_slab() - Scrub the next slab if there is one. * @scrubber: The scrubber. */ static void scrub_next_slab(struct slab_scrubber *scrubber) { struct vdo_completion *completion = &scrubber->vio.completion; struct vdo_slab *slab; /* * Note: this notify call is always safe only because scrubbing can only be started when * the VDO is quiescent. */ vdo_waitq_notify_all_waiters(&scrubber->waiters, NULL, NULL); if (vdo_is_read_only(completion->vdo)) { finish_scrubbing(scrubber, VDO_READ_ONLY); return; } slab = get_next_slab(scrubber); if ((slab == NULL) || (scrubber->high_priority_only && list_empty(&scrubber->high_priority_slabs))) { finish_scrubbing(scrubber, VDO_SUCCESS); return; } if (vdo_finish_draining(&scrubber->admin_state)) return; list_del_init(&slab->allocq_entry); scrubber->slab = slab; vdo_prepare_completion(completion, start_scrubbing, handle_scrubber_error, slab->allocator->thread_id, completion->parent); vdo_start_operation_with_waiter(&slab->state, VDO_ADMIN_STATE_SCRUBBING, completion, initiate_slab_action); } /** * scrub_slabs() - Scrub all of an allocator's slabs that are eligible for scrubbing. * @allocator: The block_allocator to scrub. * @parent: The completion to notify when scrubbing is done, implies high_priority, may be NULL. */ static void scrub_slabs(struct block_allocator *allocator, struct vdo_completion *parent) { struct slab_scrubber *scrubber = &allocator->scrubber; scrubber->vio.completion.parent = parent; scrubber->high_priority_only = (parent != NULL); if (!has_slabs_to_scrub(scrubber)) { finish_scrubbing(scrubber, VDO_SUCCESS); return; } if (scrubber->high_priority_only && vdo_is_priority_table_empty(allocator->prioritized_slabs) && list_empty(&scrubber->high_priority_slabs)) register_slab_for_scrubbing(get_next_slab(scrubber), true); vdo_resume_if_quiescent(&scrubber->admin_state); scrub_next_slab(scrubber); } static inline void assert_on_allocator_thread(thread_id_t thread_id, const char *function_name) { VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == thread_id), "%s called on correct thread", function_name); } static void register_slab_with_allocator(struct block_allocator *allocator, struct vdo_slab *slab) { allocator->slab_count++; allocator->last_slab = slab->slab_number; } /** * get_depot_slab_iterator() - Return a slab_iterator over the slabs in a slab_depot. * @depot: The depot over which to iterate. * @start: The number of the slab to start iterating from. * @end: The number of the last slab which may be returned. * @stride: The difference in slab number between successive slabs. * * Iteration always occurs from higher to lower numbered slabs. * * Return: An initialized iterator structure. */ static struct slab_iterator get_depot_slab_iterator(struct slab_depot *depot, slab_count_t start, slab_count_t end, slab_count_t stride) { struct vdo_slab **slabs = depot->slabs; return (struct slab_iterator) { .slabs = slabs, .next = (((slabs == NULL) || (start < end)) ? NULL : slabs[start]), .end = end, .stride = stride, }; } static struct slab_iterator get_slab_iterator(const struct block_allocator *allocator) { return get_depot_slab_iterator(allocator->depot, allocator->last_slab, allocator->zone_number, allocator->depot->zone_count); } /** * next_slab() - Get the next slab from a slab_iterator and advance the iterator * @iterator: The slab_iterator. * * Return: The next slab or NULL if the iterator is exhausted. */ static struct vdo_slab *next_slab(struct slab_iterator *iterator) { struct vdo_slab *slab = iterator->next; if ((slab == NULL) || (slab->slab_number < iterator->end + iterator->stride)) iterator->next = NULL; else iterator->next = iterator->slabs[slab->slab_number - iterator->stride]; return slab; } /** * abort_waiter() - Abort vios waiting to make journal entries when read-only. * * This callback is invoked on all vios waiting to make slab journal entries after the VDO has gone * into read-only mode. Implements waiter_callback_fn. */ static void abort_waiter(struct vdo_waiter *waiter, void *context __always_unused) { struct reference_updater *updater = container_of(waiter, struct reference_updater, waiter); struct data_vio *data_vio = data_vio_from_reference_updater(updater); if (updater->increment) { continue_data_vio_with_error(data_vio, VDO_READ_ONLY); return; } vdo_continue_completion(&data_vio->decrement_completion, VDO_READ_ONLY); } /* Implements vdo_read_only_notification_fn. */ static void notify_block_allocator_of_read_only_mode(void *listener, struct vdo_completion *parent) { struct block_allocator *allocator = listener; struct slab_iterator iterator; assert_on_allocator_thread(allocator->thread_id, __func__); iterator = get_slab_iterator(allocator); while (iterator.next != NULL) { struct vdo_slab *slab = next_slab(&iterator); vdo_waitq_notify_all_waiters(&slab->journal.entry_waiters, abort_waiter, &slab->journal); check_if_slab_drained(slab); } vdo_finish_completion(parent); } /** * vdo_acquire_provisional_reference() - Acquire a provisional reference on behalf of a PBN lock if * the block it locks is unreferenced. * @slab: The slab which contains the block. * @pbn: The physical block to reference. * @lock: The lock. * * Return: VDO_SUCCESS or an error. */ int vdo_acquire_provisional_reference(struct vdo_slab *slab, physical_block_number_t pbn, struct pbn_lock *lock) { slab_block_number block_number; int result; if (vdo_pbn_lock_has_provisional_reference(lock)) return VDO_SUCCESS; if (!is_slab_open(slab)) return VDO_INVALID_ADMIN_STATE; result = slab_block_number_from_pbn(slab, pbn, &block_number); if (result != VDO_SUCCESS) return result; if (slab->counters[block_number] == EMPTY_REFERENCE_COUNT) { make_provisional_reference(slab, block_number); if (lock != NULL) vdo_assign_pbn_lock_provisional_reference(lock); } if (vdo_pbn_lock_has_provisional_reference(lock)) adjust_free_block_count(slab, false); return VDO_SUCCESS; } static int __must_check allocate_slab_block(struct vdo_slab *slab, physical_block_number_t *block_number_ptr) { slab_block_number free_index; if (!is_slab_open(slab)) return VDO_INVALID_ADMIN_STATE; if (!search_reference_blocks(slab, &free_index)) return VDO_NO_SPACE; VDO_ASSERT_LOG_ONLY((slab->counters[free_index] == EMPTY_REFERENCE_COUNT), "free block must have ref count of zero"); make_provisional_reference(slab, free_index); adjust_free_block_count(slab, false); /* * Update the search hint so the next search will start at the array index just past the * free block we just found. */ slab->search_cursor.index = (free_index + 1); *block_number_ptr = slab->start + free_index; return VDO_SUCCESS; } /** * open_slab() - Prepare a slab to be allocated from. * @slab: The slab. */ static void open_slab(struct vdo_slab *slab) { reset_search_cursor(slab); if (is_slab_journal_blank(slab)) { WRITE_ONCE(slab->allocator->statistics.slabs_opened, slab->allocator->statistics.slabs_opened + 1); dirty_all_reference_blocks(slab); } else { WRITE_ONCE(slab->allocator->statistics.slabs_reopened, slab->allocator->statistics.slabs_reopened + 1); } slab->allocator->open_slab = slab; } /* * The block allocated will have a provisional reference and the reference must be either confirmed * with a subsequent increment or vacated with a subsequent decrement via * vdo_release_block_reference(). */ int vdo_allocate_block(struct block_allocator *allocator, physical_block_number_t *block_number_ptr) { int result; if (allocator->open_slab != NULL) { /* Try to allocate the next block in the currently open slab. */ result = allocate_slab_block(allocator->open_slab, block_number_ptr); if ((result == VDO_SUCCESS) || (result != VDO_NO_SPACE)) return result; /* Put the exhausted open slab back into the priority table. */ prioritize_slab(allocator->open_slab); } /* Remove the highest priority slab from the priority table and make it the open slab. */ open_slab(list_entry(vdo_priority_table_dequeue(allocator->prioritized_slabs), struct vdo_slab, allocq_entry)); /* * Try allocating again. If we're out of space immediately after opening a slab, then every * slab must be fully allocated. */ return allocate_slab_block(allocator->open_slab, block_number_ptr); } /** * vdo_enqueue_clean_slab_waiter() - Wait for a clean slab. * @allocator: The block_allocator on which to wait. * @waiter: The waiter. * * Return: VDO_SUCCESS if the waiter was queued, VDO_NO_SPACE if there are no slabs to scrub, and * some other error otherwise. */ int vdo_enqueue_clean_slab_waiter(struct block_allocator *allocator, struct vdo_waiter *waiter) { if (vdo_is_read_only(allocator->depot->vdo)) return VDO_READ_ONLY; if (vdo_is_state_quiescent(&allocator->scrubber.admin_state)) return VDO_NO_SPACE; vdo_waitq_enqueue_waiter(&allocator->scrubber.waiters, waiter); return VDO_SUCCESS; } /** * vdo_modify_reference_count() - Modify the reference count of a block by first making a slab * journal entry and then updating the reference counter. * * @data_vio: The data_vio for which to add the entry. * @updater: Which of the data_vio's reference updaters is being submitted. */ void vdo_modify_reference_count(struct vdo_completion *completion, struct reference_updater *updater) { struct vdo_slab *slab = vdo_get_slab(completion->vdo->depot, updater->zpbn.pbn); if (!is_slab_open(slab)) { vdo_continue_completion(completion, VDO_INVALID_ADMIN_STATE); return; } if (vdo_is_read_only(completion->vdo)) { vdo_continue_completion(completion, VDO_READ_ONLY); return; } vdo_waitq_enqueue_waiter(&slab->journal.entry_waiters, &updater->waiter); if ((slab->status != VDO_SLAB_REBUILT) && requires_reaping(&slab->journal)) register_slab_for_scrubbing(slab, true); add_entries(&slab->journal); } /* Release an unused provisional reference. */ int vdo_release_block_reference(struct block_allocator *allocator, physical_block_number_t pbn) { struct reference_updater updater; if (pbn == VDO_ZERO_BLOCK) return VDO_SUCCESS; updater = (struct reference_updater) { .operation = VDO_JOURNAL_DATA_REMAPPING, .increment = false, .zpbn = { .pbn = pbn, }, }; return adjust_reference_count(vdo_get_slab(allocator->depot, pbn), &updater, NULL); } /* * This is a min_heap callback function orders slab_status structures using the 'is_clean' field as * the primary key and the 'emptiness' field as the secondary key. * * Slabs need to be pushed onto the rings in the same order they are to be popped off. Popping * should always get the most empty first, so pushing should be from most empty to least empty. * Thus, the ordering is reversed from the usual sense since min_heap returns smaller elements * before larger ones. */ static bool slab_status_is_less_than(const void *item1, const void *item2) { const struct slab_status *info1 = item1; const struct slab_status *info2 = item2; if (info1->is_clean != info2->is_clean) return info1->is_clean; if (info1->emptiness != info2->emptiness) return info1->emptiness > info2->emptiness; return info1->slab_number < info2->slab_number; } static void swap_slab_statuses(void *item1, void *item2) { struct slab_status *info1 = item1; struct slab_status *info2 = item2; swap(*info1, *info2); } static const struct min_heap_callbacks slab_status_min_heap = { .elem_size = sizeof(struct slab_status), .less = slab_status_is_less_than, .swp = swap_slab_statuses, }; /* Inform the slab actor that a action has finished on some slab; used by apply_to_slabs(). */ static void slab_action_callback(struct vdo_completion *completion) { struct block_allocator *allocator = vdo_as_block_allocator(completion); struct slab_actor *actor = &allocator->slab_actor; if (--actor->slab_action_count == 0) { actor->callback(completion); return; } vdo_reset_completion(completion); } /* Preserve the error from part of an action and continue. */ static void handle_operation_error(struct vdo_completion *completion) { struct block_allocator *allocator = vdo_as_block_allocator(completion); if (allocator->state.waiter != NULL) vdo_set_completion_result(allocator->state.waiter, completion->result); completion->callback(completion); } /* Perform an action on each of an allocator's slabs in parallel. */ static void apply_to_slabs(struct block_allocator *allocator, vdo_action_fn callback) { struct slab_iterator iterator; vdo_prepare_completion(&allocator->completion, slab_action_callback, handle_operation_error, allocator->thread_id, NULL); allocator->completion.requeue = false; /* * Since we are going to dequeue all of the slabs, the open slab will become invalid, so * clear it. */ allocator->open_slab = NULL; /* Ensure that we don't finish before we're done starting. */ allocator->slab_actor = (struct slab_actor) { .slab_action_count = 1, .callback = callback, }; iterator = get_slab_iterator(allocator); while (iterator.next != NULL) { const struct admin_state_code *operation = vdo_get_admin_state_code(&allocator->state); struct vdo_slab *slab = next_slab(&iterator); list_del_init(&slab->allocq_entry); allocator->slab_actor.slab_action_count++; vdo_start_operation_with_waiter(&slab->state, operation, &allocator->completion, initiate_slab_action); } slab_action_callback(&allocator->completion); } static void finish_loading_allocator(struct vdo_completion *completion) { struct block_allocator *allocator = vdo_as_block_allocator(completion); const struct admin_state_code *operation = vdo_get_admin_state_code(&allocator->state); if (allocator->eraser != NULL) dm_kcopyd_client_destroy(vdo_forget(allocator->eraser)); if (operation == VDO_ADMIN_STATE_LOADING_FOR_RECOVERY) { void *context = vdo_get_current_action_context(allocator->depot->action_manager); vdo_replay_into_slab_journals(allocator, context); return; } vdo_finish_loading(&allocator->state); } static void erase_next_slab_journal(struct block_allocator *allocator); static void copy_callback(int read_err, unsigned long write_err, void *context) { struct block_allocator *allocator = context; int result = (((read_err == 0) && (write_err == 0)) ? VDO_SUCCESS : -EIO); if (result != VDO_SUCCESS) { vdo_fail_completion(&allocator->completion, result); return; } erase_next_slab_journal(allocator); } /* erase_next_slab_journal() - Erase the next slab journal. */ static void erase_next_slab_journal(struct block_allocator *allocator) { struct vdo_slab *slab; physical_block_number_t pbn; struct dm_io_region regions[1]; struct slab_depot *depot = allocator->depot; block_count_t blocks = depot->slab_config.slab_journal_blocks; if (allocator->slabs_to_erase.next == NULL) { vdo_finish_completion(&allocator->completion); return; } slab = next_slab(&allocator->slabs_to_erase); pbn = slab->journal_origin - depot->vdo->geometry.bio_offset; regions[0] = (struct dm_io_region) { .bdev = vdo_get_backing_device(depot->vdo), .sector = pbn * VDO_SECTORS_PER_BLOCK, .count = blocks * VDO_SECTORS_PER_BLOCK, }; dm_kcopyd_zero(allocator->eraser, 1, regions, 0, copy_callback, allocator); } /* Implements vdo_admin_initiator_fn. */ static void initiate_load(struct admin_state *state) { struct block_allocator *allocator = container_of(state, struct block_allocator, state); const struct admin_state_code *operation = vdo_get_admin_state_code(state); if (operation == VDO_ADMIN_STATE_LOADING_FOR_REBUILD) { /* * Must requeue because the kcopyd client cannot be freed in the same stack frame * as the kcopyd callback, lest it deadlock. */ vdo_prepare_completion_for_requeue(&allocator->completion, finish_loading_allocator, handle_operation_error, allocator->thread_id, NULL); allocator->eraser = dm_kcopyd_client_create(NULL); if (IS_ERR(allocator->eraser)) { vdo_fail_completion(&allocator->completion, PTR_ERR(allocator->eraser)); allocator->eraser = NULL; return; } allocator->slabs_to_erase = get_slab_iterator(allocator); erase_next_slab_journal(allocator); return; } apply_to_slabs(allocator, finish_loading_allocator); } /** * vdo_notify_slab_journals_are_recovered() - Inform a block allocator that its slab journals have * been recovered from the recovery journal. * @completion The allocator completion */ void vdo_notify_slab_journals_are_recovered(struct vdo_completion *completion) { struct block_allocator *allocator = vdo_as_block_allocator(completion); vdo_finish_loading_with_result(&allocator->state, completion->result); } static int get_slab_statuses(struct block_allocator *allocator, struct slab_status **statuses_ptr) { int result; struct slab_status *statuses; struct slab_iterator iterator = get_slab_iterator(allocator); result = vdo_allocate(allocator->slab_count, struct slab_status, __func__, &statuses); if (result != VDO_SUCCESS) return result; *statuses_ptr = statuses; while (iterator.next != NULL) { slab_count_t slab_number = next_slab(&iterator)->slab_number; *statuses++ = (struct slab_status) { .slab_number = slab_number, .is_clean = !allocator->summary_entries[slab_number].is_dirty, .emptiness = allocator->summary_entries[slab_number].fullness_hint, }; } return VDO_SUCCESS; } /* Prepare slabs for allocation or scrubbing. */ static int __must_check vdo_prepare_slabs_for_allocation(struct block_allocator *allocator) { struct slab_status current_slab_status; struct min_heap heap; int result; struct slab_status *slab_statuses; struct slab_depot *depot = allocator->depot; WRITE_ONCE(allocator->allocated_blocks, allocator->slab_count * depot->slab_config.data_blocks); result = get_slab_statuses(allocator, &slab_statuses); if (result != VDO_SUCCESS) return result; /* Sort the slabs by cleanliness, then by emptiness hint. */ heap = (struct min_heap) { .data = slab_statuses, .nr = allocator->slab_count, .size = allocator->slab_count, }; min_heapify_all(&heap, &slab_status_min_heap); while (heap.nr > 0) { bool high_priority; struct vdo_slab *slab; struct slab_journal *journal; current_slab_status = slab_statuses[0]; min_heap_pop(&heap, &slab_status_min_heap); slab = depot->slabs[current_slab_status.slab_number]; if ((depot->load_type == VDO_SLAB_DEPOT_REBUILD_LOAD) || (!allocator->summary_entries[slab->slab_number].load_ref_counts && current_slab_status.is_clean)) { queue_slab(slab); continue; } slab->status = VDO_SLAB_REQUIRES_SCRUBBING; journal = &slab->journal; high_priority = ((current_slab_status.is_clean && (depot->load_type == VDO_SLAB_DEPOT_NORMAL_LOAD)) || (journal_length(journal) >= journal->scrubbing_threshold)); register_slab_for_scrubbing(slab, high_priority); } vdo_free(slab_statuses); return VDO_SUCCESS; } static const char *status_to_string(enum slab_rebuild_status status) { switch (status) { case VDO_SLAB_REBUILT: return "REBUILT"; case VDO_SLAB_REQUIRES_SCRUBBING: return "SCRUBBING"; case VDO_SLAB_REQUIRES_HIGH_PRIORITY_SCRUBBING: return "PRIORITY_SCRUBBING"; case VDO_SLAB_REBUILDING: return "REBUILDING"; case VDO_SLAB_REPLAYING: return "REPLAYING"; default: return "UNKNOWN"; } } void vdo_dump_block_allocator(const struct block_allocator *allocator) { unsigned int pause_counter = 0; struct slab_iterator iterator = get_slab_iterator(allocator); const struct slab_scrubber *scrubber = &allocator->scrubber; vdo_log_info("block_allocator zone %u", allocator->zone_number); while (iterator.next != NULL) { struct vdo_slab *slab = next_slab(&iterator); struct slab_journal *journal = &slab->journal; if (slab->reference_blocks != NULL) { /* Terse because there are a lot of slabs to dump and syslog is lossy. */ vdo_log_info("slab %u: P%u, %llu free", slab->slab_number, slab->priority, (unsigned long long) slab->free_blocks); } else { vdo_log_info("slab %u: status %s", slab->slab_number, status_to_string(slab->status)); } vdo_log_info(" slab journal: entry_waiters=%zu waiting_to_commit=%s updating_slab_summary=%s head=%llu unreapable=%llu tail=%llu next_commit=%llu summarized=%llu last_summarized=%llu recovery_lock=%llu dirty=%s", vdo_waitq_num_waiters(&journal->entry_waiters), vdo_bool_to_string(journal->waiting_to_commit), vdo_bool_to_string(journal->updating_slab_summary), (unsigned long long) journal->head, (unsigned long long) journal->unreapable, (unsigned long long) journal->tail, (unsigned long long) journal->next_commit, (unsigned long long) journal->summarized, (unsigned long long) journal->last_summarized, (unsigned long long) journal->recovery_lock, vdo_bool_to_string(journal->recovery_lock != 0)); /* * Given the frequency with which the locks are just a tiny bit off, it might be * worth dumping all the locks, but that might be too much logging. */ if (slab->counters != NULL) { /* Terse because there are a lot of slabs to dump and syslog is lossy. */ vdo_log_info(" slab: free=%u/%u blocks=%u dirty=%zu active=%zu journal@(%llu,%u)", slab->free_blocks, slab->block_count, slab->reference_block_count, vdo_waitq_num_waiters(&slab->dirty_blocks), slab->active_count, (unsigned long long) slab->slab_journal_point.sequence_number, slab->slab_journal_point.entry_count); } else { vdo_log_info(" no counters"); } /* * Wait for a while after each batch of 32 slabs dumped, an arbitrary number, * allowing the kernel log a chance to be flushed instead of being overrun. */ if (pause_counter++ == 31) { pause_counter = 0; vdo_pause_for_logger(); } } vdo_log_info("slab_scrubber slab_count %u waiters %zu %s%s", READ_ONCE(scrubber->slab_count), vdo_waitq_num_waiters(&scrubber->waiters), vdo_get_admin_state_code(&scrubber->admin_state)->name, scrubber->high_priority_only ? ", high_priority_only " : ""); } static void free_slab(struct vdo_slab *slab) { if (slab == NULL) return; list_del(&slab->allocq_entry); vdo_free(vdo_forget(slab->journal.block)); vdo_free(vdo_forget(slab->journal.locks)); vdo_free(vdo_forget(slab->counters)); vdo_free(vdo_forget(slab->reference_blocks)); vdo_free(slab); } static int initialize_slab_journal(struct vdo_slab *slab) { struct slab_journal *journal = &slab->journal; const struct slab_config *slab_config = &slab->allocator->depot->slab_config; int result; result = vdo_allocate(slab_config->slab_journal_blocks, struct journal_lock, __func__, &journal->locks); if (result != VDO_SUCCESS) return result; result = vdo_allocate(VDO_BLOCK_SIZE, char, "struct packed_slab_journal_block", (char **) &journal->block); if (result != VDO_SUCCESS) return result; journal->slab = slab; journal->size = slab_config->slab_journal_blocks; journal->flushing_threshold = slab_config->slab_journal_flushing_threshold; journal->blocking_threshold = slab_config->slab_journal_blocking_threshold; journal->scrubbing_threshold = slab_config->slab_journal_scrubbing_threshold; journal->entries_per_block = VDO_SLAB_JOURNAL_ENTRIES_PER_BLOCK; journal->full_entries_per_block = VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK; journal->events = &slab->allocator->slab_journal_statistics; journal->recovery_journal = slab->allocator->depot->vdo->recovery_journal; journal->tail = 1; journal->head = 1; journal->flushing_deadline = journal->flushing_threshold; /* * Set there to be some time between the deadline and the blocking threshold, so that * hopefully all are done before blocking. */ if ((journal->blocking_threshold - journal->flushing_threshold) > 5) journal->flushing_deadline = journal->blocking_threshold - 5; journal->slab_summary_waiter.callback = release_journal_locks; INIT_LIST_HEAD(&journal->dirty_entry); INIT_LIST_HEAD(&journal->uncommitted_blocks); journal->tail_header.nonce = slab->allocator->nonce; journal->tail_header.metadata_type = VDO_METADATA_SLAB_JOURNAL; initialize_journal_state(journal); return VDO_SUCCESS; } /** * make_slab() - Construct a new, empty slab. * @slab_origin: The physical block number within the block allocator partition of the first block * in the slab. * @allocator: The block allocator to which the slab belongs. * @slab_number: The slab number of the slab. * @is_new: true if this slab is being allocated as part of a resize. * @slab_ptr: A pointer to receive the new slab. * * Return: VDO_SUCCESS or an error code. */ static int __must_check make_slab(physical_block_number_t slab_origin, struct block_allocator *allocator, slab_count_t slab_number, bool is_new, struct vdo_slab **slab_ptr) { const struct slab_config *slab_config = &allocator->depot->slab_config; struct vdo_slab *slab; int result; result = vdo_allocate(1, struct vdo_slab, __func__, &slab); if (result != VDO_SUCCESS) return result; *slab = (struct vdo_slab) { .allocator = allocator, .start = slab_origin, .end = slab_origin + slab_config->slab_blocks, .slab_number = slab_number, .ref_counts_origin = slab_origin + slab_config->data_blocks, .journal_origin = vdo_get_slab_journal_start_block(slab_config, slab_origin), .block_count = slab_config->data_blocks, .free_blocks = slab_config->data_blocks, .reference_block_count = vdo_get_saved_reference_count_size(slab_config->data_blocks), }; INIT_LIST_HEAD(&slab->allocq_entry); result = initialize_slab_journal(slab); if (result != VDO_SUCCESS) { free_slab(slab); return result; } if (is_new) { vdo_set_admin_state_code(&slab->state, VDO_ADMIN_STATE_NEW); result = allocate_slab_counters(slab); if (result != VDO_SUCCESS) { free_slab(slab); return result; } } else { vdo_set_admin_state_code(&slab->state, VDO_ADMIN_STATE_NORMAL_OPERATION); } *slab_ptr = slab; return VDO_SUCCESS; } /** * allocate_slabs() - Allocate a new slab pointer array. * @depot: The depot. * @slab_count: The number of slabs the depot should have in the new array. * * Any existing slab pointers will be copied into the new array, and slabs will be allocated as * needed. The newly allocated slabs will not be distributed for use by the block allocators. * * Return: VDO_SUCCESS or an error code. */ static int allocate_slabs(struct slab_depot *depot, slab_count_t slab_count) { block_count_t slab_size; bool resizing = false; physical_block_number_t slab_origin; int result; result = vdo_allocate(slab_count, struct vdo_slab *, "slab pointer array", &depot->new_slabs); if (result != VDO_SUCCESS) return result; if (depot->slabs != NULL) { memcpy(depot->new_slabs, depot->slabs, depot->slab_count * sizeof(struct vdo_slab *)); resizing = true; } slab_size = depot->slab_config.slab_blocks; slab_origin = depot->first_block + (depot->slab_count * slab_size); for (depot->new_slab_count = depot->slab_count; depot->new_slab_count < slab_count; depot->new_slab_count++, slab_origin += slab_size) { struct block_allocator *allocator = &depot->allocators[depot->new_slab_count % depot->zone_count]; struct vdo_slab **slab_ptr = &depot->new_slabs[depot->new_slab_count]; result = make_slab(slab_origin, allocator, depot->new_slab_count, resizing, slab_ptr); if (result != VDO_SUCCESS) return result; } return VDO_SUCCESS; } /** * vdo_abandon_new_slabs() - Abandon any new slabs in this depot, freeing them as needed. * @depot: The depot. */ void vdo_abandon_new_slabs(struct slab_depot *depot) { slab_count_t i; if (depot->new_slabs == NULL) return; for (i = depot->slab_count; i < depot->new_slab_count; i++) free_slab(vdo_forget(depot->new_slabs[i])); depot->new_slab_count = 0; depot->new_size = 0; vdo_free(vdo_forget(depot->new_slabs)); } /** * get_allocator_thread_id() - Get the ID of the thread on which a given allocator operates. * * Implements vdo_zone_thread_getter_fn. */ static thread_id_t get_allocator_thread_id(void *context, zone_count_t zone_number) { return ((struct slab_depot *) context)->allocators[zone_number].thread_id; } /** * release_recovery_journal_lock() - Request the slab journal to release the recovery journal lock * it may hold on a specified recovery journal block. * @journal: The slab journal. * @recovery_lock: The sequence number of the recovery journal block whose locks should be * released. * * Return: true if the journal does hold a lock on the specified block (which it will release). */ static bool __must_check release_recovery_journal_lock(struct slab_journal *journal, sequence_number_t recovery_lock) { if (recovery_lock > journal->recovery_lock) { VDO_ASSERT_LOG_ONLY((recovery_lock < journal->recovery_lock), "slab journal recovery lock is not older than the recovery journal head"); return false; } if ((recovery_lock < journal->recovery_lock) || vdo_is_read_only(journal->slab->allocator->depot->vdo)) return false; /* All locks are held by the block which is in progress; write it. */ commit_tail(journal); return true; } /* * Request a commit of all dirty tail blocks which are locking the recovery journal block the depot * is seeking to release. * * Implements vdo_zone_action_fn. */ static void release_tail_block_locks(void *context, zone_count_t zone_number, struct vdo_completion *parent) { struct slab_journal *journal, *tmp; struct slab_depot *depot = context; struct list_head *list = &depot->allocators[zone_number].dirty_slab_journals; list_for_each_entry_safe(journal, tmp, list, dirty_entry) { if (!release_recovery_journal_lock(journal, depot->active_release_request)) break; } vdo_finish_completion(parent); } /** * prepare_for_tail_block_commit() - Prepare to commit oldest tail blocks. * * Implements vdo_action_preamble_fn. */ static void prepare_for_tail_block_commit(void *context, struct vdo_completion *parent) { struct slab_depot *depot = context; depot->active_release_request = depot->new_release_request; vdo_finish_completion(parent); } /** * schedule_tail_block_commit() - Schedule a tail block commit if necessary. * * This method should not be called directly. Rather, call vdo_schedule_default_action() on the * depot's action manager. * * Implements vdo_action_scheduler_fn. */ static bool schedule_tail_block_commit(void *context) { struct slab_depot *depot = context; if (depot->new_release_request == depot->active_release_request) return false; return vdo_schedule_action(depot->action_manager, prepare_for_tail_block_commit, release_tail_block_locks, NULL, NULL); } /** * initialize_slab_scrubber() - Initialize an allocator's slab scrubber. * @allocator: The allocator being initialized * * Return: VDO_SUCCESS or an error. */ static int initialize_slab_scrubber(struct block_allocator *allocator) { struct slab_scrubber *scrubber = &allocator->scrubber; block_count_t slab_journal_size = allocator->depot->slab_config.slab_journal_blocks; char *journal_data; int result; result = vdo_allocate(VDO_BLOCK_SIZE * slab_journal_size, char, __func__, &journal_data); if (result != VDO_SUCCESS) return result; result = allocate_vio_components(allocator->completion.vdo, VIO_TYPE_SLAB_JOURNAL, VIO_PRIORITY_METADATA, allocator, slab_journal_size, journal_data, &scrubber->vio); if (result != VDO_SUCCESS) { vdo_free(journal_data); return result; } INIT_LIST_HEAD(&scrubber->high_priority_slabs); INIT_LIST_HEAD(&scrubber->slabs); vdo_set_admin_state_code(&scrubber->admin_state, VDO_ADMIN_STATE_SUSPENDED); return VDO_SUCCESS; } /** * initialize_slab_summary_block() - Initialize a slab_summary_block. * @allocator: The allocator which owns the block. * @index: The index of this block in its zone's summary. * * Return: VDO_SUCCESS or an error. */ static int __must_check initialize_slab_summary_block(struct block_allocator *allocator, block_count_t index) { struct slab_summary_block *block = &allocator->summary_blocks[index]; int result; result = vdo_allocate(VDO_BLOCK_SIZE, char, __func__, &block->outgoing_entries); if (result != VDO_SUCCESS) return result; result = allocate_vio_components(allocator->depot->vdo, VIO_TYPE_SLAB_SUMMARY, VIO_PRIORITY_METADATA, NULL, 1, block->outgoing_entries, &block->vio); if (result != VDO_SUCCESS) return result; block->allocator = allocator; block->entries = &allocator->summary_entries[VDO_SLAB_SUMMARY_ENTRIES_PER_BLOCK * index]; block->index = index; return VDO_SUCCESS; } static int __must_check initialize_block_allocator(struct slab_depot *depot, zone_count_t zone) { int result; block_count_t i; struct block_allocator *allocator = &depot->allocators[zone]; struct vdo *vdo = depot->vdo; block_count_t max_free_blocks = depot->slab_config.data_blocks; unsigned int max_priority = (2 + ilog2(max_free_blocks)); *allocator = (struct block_allocator) { .depot = depot, .zone_number = zone, .thread_id = vdo->thread_config.physical_threads[zone], .nonce = vdo->states.vdo.nonce, }; INIT_LIST_HEAD(&allocator->dirty_slab_journals); vdo_set_admin_state_code(&allocator->state, VDO_ADMIN_STATE_NORMAL_OPERATION); result = vdo_register_read_only_listener(vdo, allocator, notify_block_allocator_of_read_only_mode, allocator->thread_id); if (result != VDO_SUCCESS) return result; vdo_initialize_completion(&allocator->completion, vdo, VDO_BLOCK_ALLOCATOR_COMPLETION); result = make_vio_pool(vdo, BLOCK_ALLOCATOR_VIO_POOL_SIZE, allocator->thread_id, VIO_TYPE_SLAB_JOURNAL, VIO_PRIORITY_METADATA, allocator, &allocator->vio_pool); if (result != VDO_SUCCESS) return result; result = initialize_slab_scrubber(allocator); if (result != VDO_SUCCESS) return result; result = vdo_make_priority_table(max_priority, &allocator->prioritized_slabs); if (result != VDO_SUCCESS) return result; result = vdo_allocate(VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE, struct slab_summary_block, __func__, &allocator->summary_blocks); if (result != VDO_SUCCESS) return result; vdo_set_admin_state_code(&allocator->summary_state, VDO_ADMIN_STATE_NORMAL_OPERATION); allocator->summary_entries = depot->summary_entries + (MAX_VDO_SLABS * zone); /* Initialize each summary block. */ for (i = 0; i < VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE; i++) { result = initialize_slab_summary_block(allocator, i); if (result != VDO_SUCCESS) return result; } /* * Performing well atop thin provisioned storage requires either that VDO discards freed * blocks, or that the block allocator try to use slabs that already have allocated blocks * in preference to slabs that have never been opened. For reasons we have not been able to * fully understand, some SSD machines have been have been very sensitive (50% reduction in * test throughput) to very slight differences in the timing and locality of block * allocation. Assigning a low priority to unopened slabs (max_priority/2, say) would be * ideal for the story, but anything less than a very high threshold (max_priority - 1) * hurts on these machines. * * This sets the free block threshold for preferring to open an unopened slab to the binary * floor of 3/4ths the total number of data blocks in a slab, which will generally evaluate * to about half the slab size. */ allocator->unopened_slab_priority = (1 + ilog2((max_free_blocks * 3) / 4)); return VDO_SUCCESS; } static int allocate_components(struct slab_depot *depot, struct partition *summary_partition) { int result; zone_count_t zone; slab_count_t slab_count; u8 hint; u32 i; const struct thread_config *thread_config = &depot->vdo->thread_config; result = vdo_make_action_manager(depot->zone_count, get_allocator_thread_id, thread_config->journal_thread, depot, schedule_tail_block_commit, depot->vdo, &depot->action_manager); if (result != VDO_SUCCESS) return result; depot->origin = depot->first_block; /* block size must be a multiple of entry size */ BUILD_BUG_ON((VDO_BLOCK_SIZE % sizeof(struct slab_summary_entry)) != 0); depot->summary_origin = summary_partition->offset; depot->hint_shift = vdo_get_slab_summary_hint_shift(depot->slab_size_shift); result = vdo_allocate(MAXIMUM_VDO_SLAB_SUMMARY_ENTRIES, struct slab_summary_entry, __func__, &depot->summary_entries); if (result != VDO_SUCCESS) return result; /* Initialize all the entries. */ hint = compute_fullness_hint(depot, depot->slab_config.data_blocks); for (i = 0; i < MAXIMUM_VDO_SLAB_SUMMARY_ENTRIES; i++) { /* * This default tail block offset must be reflected in * slabJournal.c::read_slab_journal_tail(). */ depot->summary_entries[i] = (struct slab_summary_entry) { .tail_block_offset = 0, .fullness_hint = hint, .load_ref_counts = false, .is_dirty = false, }; } slab_count = vdo_compute_slab_count(depot->first_block, depot->last_block, depot->slab_size_shift); if (thread_config->physical_zone_count > slab_count) { return vdo_log_error_strerror(VDO_BAD_CONFIGURATION, "%u physical zones exceeds slab count %u", thread_config->physical_zone_count, slab_count); } /* Initialize the block allocators. */ for (zone = 0; zone < depot->zone_count; zone++) { result = initialize_block_allocator(depot, zone); if (result != VDO_SUCCESS) return result; } /* Allocate slabs. */ result = allocate_slabs(depot, slab_count); if (result != VDO_SUCCESS) return result; /* Use the new slabs. */ for (i = depot->slab_count; i < depot->new_slab_count; i++) { struct vdo_slab *slab = depot->new_slabs[i]; register_slab_with_allocator(slab->allocator, slab); WRITE_ONCE(depot->slab_count, depot->slab_count + 1); } depot->slabs = depot->new_slabs; depot->new_slabs = NULL; depot->new_slab_count = 0; return VDO_SUCCESS; } /** * vdo_decode_slab_depot() - Make a slab depot and configure it with the state read from the super * block. * @state: The slab depot state from the super block. * @vdo: The VDO which will own the depot. * @summary_partition: The partition which holds the slab summary. * @depot_ptr: A pointer to hold the depot. * * Return: A success or error code. */ int vdo_decode_slab_depot(struct slab_depot_state_2_0 state, struct vdo *vdo, struct partition *summary_partition, struct slab_depot **depot_ptr) { unsigned int slab_size_shift; struct slab_depot *depot; int result; /* * Calculate the bit shift for efficiently mapping block numbers to slabs. Using a shift * requires that the slab size be a power of two. */ block_count_t slab_size = state.slab_config.slab_blocks; if (!is_power_of_2(slab_size)) { return vdo_log_error_strerror(UDS_INVALID_ARGUMENT, "slab size must be a power of two"); } slab_size_shift = ilog2(slab_size); result = vdo_allocate_extended(struct slab_depot, vdo->thread_config.physical_zone_count, struct block_allocator, __func__, &depot); if (result != VDO_SUCCESS) return result; depot->vdo = vdo; depot->old_zone_count = state.zone_count; depot->zone_count = vdo->thread_config.physical_zone_count; depot->slab_config = state.slab_config; depot->first_block = state.first_block; depot->last_block = state.last_block; depot->slab_size_shift = slab_size_shift; result = allocate_components(depot, summary_partition); if (result != VDO_SUCCESS) { vdo_free_slab_depot(depot); return result; } *depot_ptr = depot; return VDO_SUCCESS; } static void uninitialize_allocator_summary(struct block_allocator *allocator) { block_count_t i; if (allocator->summary_blocks == NULL) return; for (i = 0; i < VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE; i++) { free_vio_components(&allocator->summary_blocks[i].vio); vdo_free(vdo_forget(allocator->summary_blocks[i].outgoing_entries)); } vdo_free(vdo_forget(allocator->summary_blocks)); } /** * vdo_free_slab_depot() - Destroy a slab depot. * @depot: The depot to destroy. */ void vdo_free_slab_depot(struct slab_depot *depot) { zone_count_t zone = 0; if (depot == NULL) return; vdo_abandon_new_slabs(depot); for (zone = 0; zone < depot->zone_count; zone++) { struct block_allocator *allocator = &depot->allocators[zone]; if (allocator->eraser != NULL) dm_kcopyd_client_destroy(vdo_forget(allocator->eraser)); uninitialize_allocator_summary(allocator); uninitialize_scrubber_vio(&allocator->scrubber); free_vio_pool(vdo_forget(allocator->vio_pool)); vdo_free_priority_table(vdo_forget(allocator->prioritized_slabs)); } if (depot->slabs != NULL) { slab_count_t i; for (i = 0; i < depot->slab_count; i++) free_slab(vdo_forget(depot->slabs[i])); } vdo_free(vdo_forget(depot->slabs)); vdo_free(vdo_forget(depot->action_manager)); vdo_free(vdo_forget(depot->summary_entries)); vdo_free(depot); } /** * vdo_record_slab_depot() - Record the state of a slab depot for encoding into the super block. * @depot: The depot to encode. * * Return: The depot state. */ struct slab_depot_state_2_0 vdo_record_slab_depot(const struct slab_depot *depot) { /* * If this depot is currently using 0 zones, it must have been synchronously loaded by a * tool and is now being saved. We did not load and combine the slab summary, so we still * need to do that next time we load with the old zone count rather than 0. */ struct slab_depot_state_2_0 state; zone_count_t zones_to_record = depot->zone_count; if (depot->zone_count == 0) zones_to_record = depot->old_zone_count; state = (struct slab_depot_state_2_0) { .slab_config = depot->slab_config, .first_block = depot->first_block, .last_block = depot->last_block, .zone_count = zones_to_record, }; return state; } /** * vdo_allocate_reference_counters() - Allocate the reference counters for all slabs in the depot. * * Context: This method may be called only before entering normal operation from the load thread. * * Return: VDO_SUCCESS or an error. */ int vdo_allocate_reference_counters(struct slab_depot *depot) { struct slab_iterator iterator = get_depot_slab_iterator(depot, depot->slab_count - 1, 0, 1); while (iterator.next != NULL) { int result = allocate_slab_counters(next_slab(&iterator)); if (result != VDO_SUCCESS) return result; } return VDO_SUCCESS; } /** * get_slab_number() - Get the number of the slab that contains a specified block. * @depot: The slab depot. * @pbn: The physical block number. * @slab_number_ptr: A pointer to hold the slab number. * * Return: VDO_SUCCESS or an error. */ static int __must_check get_slab_number(const struct slab_depot *depot, physical_block_number_t pbn, slab_count_t *slab_number_ptr) { slab_count_t slab_number; if (pbn < depot->first_block) return VDO_OUT_OF_RANGE; slab_number = (pbn - depot->first_block) >> depot->slab_size_shift; if (slab_number >= depot->slab_count) return VDO_OUT_OF_RANGE; *slab_number_ptr = slab_number; return VDO_SUCCESS; } /** * vdo_get_slab() - Get the slab object for the slab that contains a specified block. * @depot: The slab depot. * @pbn: The physical block number. * * Will put the VDO in read-only mode if the PBN is not a valid data block nor the zero block. * * Return: The slab containing the block, or NULL if the block number is the zero block or * otherwise out of range. */ struct vdo_slab *vdo_get_slab(const struct slab_depot *depot, physical_block_number_t pbn) { slab_count_t slab_number; int result; if (pbn == VDO_ZERO_BLOCK) return NULL; result = get_slab_number(depot, pbn, &slab_number); if (result != VDO_SUCCESS) { vdo_enter_read_only_mode(depot->vdo, result); return NULL; } return depot->slabs[slab_number]; } /** * vdo_get_increment_limit() - Determine how many new references a block can acquire. * @depot: The slab depot. * @pbn: The physical block number that is being queried. * * Context: This method must be called from the physical zone thread of the PBN. * * Return: The number of available references. */ u8 vdo_get_increment_limit(struct slab_depot *depot, physical_block_number_t pbn) { struct vdo_slab *slab = vdo_get_slab(depot, pbn); vdo_refcount_t *counter_ptr = NULL; int result; if ((slab == NULL) || (slab->status != VDO_SLAB_REBUILT)) return 0; result = get_reference_counter(slab, pbn, &counter_ptr); if (result != VDO_SUCCESS) return 0; if (*counter_ptr == PROVISIONAL_REFERENCE_COUNT) return (MAXIMUM_REFERENCE_COUNT - 1); return (MAXIMUM_REFERENCE_COUNT - *counter_ptr); } /** * vdo_is_physical_data_block() - Determine whether the given PBN refers to a data block. * @depot: The depot. * @pbn: The physical block number to ask about. * * Return: True if the PBN corresponds to a data block. */ bool vdo_is_physical_data_block(const struct slab_depot *depot, physical_block_number_t pbn) { slab_count_t slab_number; slab_block_number sbn; return ((pbn == VDO_ZERO_BLOCK) || ((get_slab_number(depot, pbn, &slab_number) == VDO_SUCCESS) && (slab_block_number_from_pbn(depot->slabs[slab_number], pbn, &sbn) == VDO_SUCCESS))); } /** * vdo_get_slab_depot_allocated_blocks() - Get the total number of data blocks allocated across all * the slabs in the depot. * @depot: The slab depot. * * This is the total number of blocks with a non-zero reference count. * * Context: This may be called from any thread. * * Return: The total number of blocks with a non-zero reference count. */ block_count_t vdo_get_slab_depot_allocated_blocks(const struct slab_depot *depot) { block_count_t total = 0; zone_count_t zone; for (zone = 0; zone < depot->zone_count; zone++) { /* The allocators are responsible for thread safety. */ total += READ_ONCE(depot->allocators[zone].allocated_blocks); } return total; } /** * vdo_get_slab_depot_data_blocks() - Get the total number of data blocks in all the slabs in the * depot. * @depot: The slab depot. * * Context: This may be called from any thread. * * Return: The total number of data blocks in all slabs. */ block_count_t vdo_get_slab_depot_data_blocks(const struct slab_depot *depot) { return (READ_ONCE(depot->slab_count) * depot->slab_config.data_blocks); } /** * finish_combining_zones() - Clean up after saving out the combined slab summary. * @completion: The vio which was used to write the summary data. */ static void finish_combining_zones(struct vdo_completion *completion) { int result = completion->result; struct vdo_completion *parent = completion->parent; free_vio(as_vio(vdo_forget(completion))); vdo_fail_completion(parent, result); } static void handle_combining_error(struct vdo_completion *completion) { vio_record_metadata_io_error(as_vio(completion)); finish_combining_zones(completion); } static void write_summary_endio(struct bio *bio) { struct vio *vio = bio->bi_private; struct vdo *vdo = vio->completion.vdo; continue_vio_after_io(vio, finish_combining_zones, vdo->thread_config.admin_thread); } /** * combine_summaries() - Treating the current entries buffer as the on-disk value of all zones, * update every zone to the correct values for every slab. * @depot: The depot whose summary entries should be combined. */ static void combine_summaries(struct slab_depot *depot) { /* * Combine all the old summary data into the portion of the buffer corresponding to the * first zone. */ zone_count_t zone = 0; struct slab_summary_entry *entries = depot->summary_entries; if (depot->old_zone_count > 1) { slab_count_t entry_number; for (entry_number = 0; entry_number < MAX_VDO_SLABS; entry_number++) { if (zone != 0) { memcpy(entries + entry_number, entries + (zone * MAX_VDO_SLABS) + entry_number, sizeof(struct slab_summary_entry)); } zone++; if (zone == depot->old_zone_count) zone = 0; } } /* Copy the combined data to each zones's region of the buffer. */ for (zone = 1; zone < MAX_VDO_PHYSICAL_ZONES; zone++) { memcpy(entries + (zone * MAX_VDO_SLABS), entries, MAX_VDO_SLABS * sizeof(struct slab_summary_entry)); } } /** * finish_loading_summary() - Finish loading slab summary data. * @completion: The vio which was used to read the summary data. * * Combines the slab summary data from all the previously written zones and copies the combined * summary to each partition's data region. Then writes the combined summary back out to disk. This * callback is registered in load_summary_endio(). */ static void finish_loading_summary(struct vdo_completion *completion) { struct slab_depot *depot = completion->vdo->depot; /* Combine the summary from each zone so each zone is correct for all slabs. */ combine_summaries(depot); /* Write the combined summary back out. */ vdo_submit_metadata_vio(as_vio(completion), depot->summary_origin, write_summary_endio, handle_combining_error, REQ_OP_WRITE); } static void load_summary_endio(struct bio *bio) { struct vio *vio = bio->bi_private; struct vdo *vdo = vio->completion.vdo; continue_vio_after_io(vio, finish_loading_summary, vdo->thread_config.admin_thread); } /** * load_slab_summary() - The preamble of a load operation. * * Implements vdo_action_preamble_fn. */ static void load_slab_summary(void *context, struct vdo_completion *parent) { int result; struct vio *vio; struct slab_depot *depot = context; const struct admin_state_code *operation = vdo_get_current_manager_operation(depot->action_manager); result = create_multi_block_metadata_vio(depot->vdo, VIO_TYPE_SLAB_SUMMARY, VIO_PRIORITY_METADATA, parent, VDO_SLAB_SUMMARY_BLOCKS, (char *) depot->summary_entries, &vio); if (result != VDO_SUCCESS) { vdo_fail_completion(parent, result); return; } if ((operation == VDO_ADMIN_STATE_FORMATTING) || (operation == VDO_ADMIN_STATE_LOADING_FOR_REBUILD)) { finish_loading_summary(&vio->completion); return; } vdo_submit_metadata_vio(vio, depot->summary_origin, load_summary_endio, handle_combining_error, REQ_OP_READ); } /* Implements vdo_zone_action_fn. */ static void load_allocator(void *context, zone_count_t zone_number, struct vdo_completion *parent) { struct slab_depot *depot = context; vdo_start_loading(&depot->allocators[zone_number].state, vdo_get_current_manager_operation(depot->action_manager), parent, initiate_load); } /** * vdo_load_slab_depot() - Asynchronously load any slab depot state that isn't included in the * super_block component. * @depot: The depot to load. * @operation: The type of load to perform. * @parent: The completion to notify when the load is complete. * @context: Additional context for the load operation; may be NULL. * * This method may be called only before entering normal operation from the load thread. */ void vdo_load_slab_depot(struct slab_depot *depot, const struct admin_state_code *operation, struct vdo_completion *parent, void *context) { if (!vdo_assert_load_operation(operation, parent)) return; vdo_schedule_operation_with_context(depot->action_manager, operation, load_slab_summary, load_allocator, NULL, context, parent); } /* Implements vdo_zone_action_fn. */ static void prepare_to_allocate(void *context, zone_count_t zone_number, struct vdo_completion *parent) { struct slab_depot *depot = context; struct block_allocator *allocator = &depot->allocators[zone_number]; int result; result = vdo_prepare_slabs_for_allocation(allocator); if (result != VDO_SUCCESS) { vdo_fail_completion(parent, result); return; } scrub_slabs(allocator, parent); } /** * vdo_prepare_slab_depot_to_allocate() - Prepare the slab depot to come online and start * allocating blocks. * @depot: The depot to prepare. * @load_type: The load type. * @parent: The completion to notify when the operation is complete. * * This method may be called only before entering normal operation from the load thread. It must be * called before allocation may proceed. */ void vdo_prepare_slab_depot_to_allocate(struct slab_depot *depot, enum slab_depot_load_type load_type, struct vdo_completion *parent) { depot->load_type = load_type; atomic_set(&depot->zones_to_scrub, depot->zone_count); vdo_schedule_action(depot->action_manager, NULL, prepare_to_allocate, NULL, parent); } /** * vdo_update_slab_depot_size() - Update the slab depot to reflect its new size in memory. * @depot: The depot to update. * * This size is saved to disk as part of the super block. */ void vdo_update_slab_depot_size(struct slab_depot *depot) { depot->last_block = depot->new_last_block; } /** * vdo_prepare_to_grow_slab_depot() - Allocate new memory needed for a resize of a slab depot to * the given size. * @depot: The depot to prepare to resize. * @partition: The new depot partition * * Return: VDO_SUCCESS or an error. */ int vdo_prepare_to_grow_slab_depot(struct slab_depot *depot, const struct partition *partition) { struct slab_depot_state_2_0 new_state; int result; slab_count_t new_slab_count; if ((partition->count >> depot->slab_size_shift) <= depot->slab_count) return VDO_INCREMENT_TOO_SMALL; /* Generate the depot configuration for the new block count. */ VDO_ASSERT_LOG_ONLY(depot->first_block == partition->offset, "New slab depot partition doesn't change origin"); result = vdo_configure_slab_depot(partition, depot->slab_config, depot->zone_count, &new_state); if (result != VDO_SUCCESS) return result; new_slab_count = vdo_compute_slab_count(depot->first_block, new_state.last_block, depot->slab_size_shift); if (new_slab_count <= depot->slab_count) return vdo_log_error_strerror(VDO_INCREMENT_TOO_SMALL, "Depot can only grow"); if (new_slab_count == depot->new_slab_count) { /* Check it out, we've already got all the new slabs allocated! */ return VDO_SUCCESS; } vdo_abandon_new_slabs(depot); result = allocate_slabs(depot, new_slab_count); if (result != VDO_SUCCESS) { vdo_abandon_new_slabs(depot); return result; } depot->new_size = partition->count; depot->old_last_block = depot->last_block; depot->new_last_block = new_state.last_block; return VDO_SUCCESS; } /** * finish_registration() - Finish registering new slabs now that all of the allocators have * received their new slabs. * * Implements vdo_action_conclusion_fn. */ static int finish_registration(void *context) { struct slab_depot *depot = context; WRITE_ONCE(depot->slab_count, depot->new_slab_count); vdo_free(depot->slabs); depot->slabs = depot->new_slabs; depot->new_slabs = NULL; depot->new_slab_count = 0; return VDO_SUCCESS; } /* Implements vdo_zone_action_fn. */ static void register_new_slabs(void *context, zone_count_t zone_number, struct vdo_completion *parent) { struct slab_depot *depot = context; struct block_allocator *allocator = &depot->allocators[zone_number]; slab_count_t i; for (i = depot->slab_count; i < depot->new_slab_count; i++) { struct vdo_slab *slab = depot->new_slabs[i]; if (slab->allocator == allocator) register_slab_with_allocator(allocator, slab); } vdo_finish_completion(parent); } /** * vdo_use_new_slabs() - Use the new slabs allocated for resize. * @depot: The depot. * @parent: The object to notify when complete. */ void vdo_use_new_slabs(struct slab_depot *depot, struct vdo_completion *parent) { VDO_ASSERT_LOG_ONLY(depot->new_slabs != NULL, "Must have new slabs to use"); vdo_schedule_operation(depot->action_manager, VDO_ADMIN_STATE_SUSPENDED_OPERATION, NULL, register_new_slabs, finish_registration, parent); } /** * stop_scrubbing() - Tell the scrubber to stop scrubbing after it finishes the slab it is * currently working on. * @scrubber: The scrubber to stop. * @parent: The completion to notify when scrubbing has stopped. */ static void stop_scrubbing(struct block_allocator *allocator) { struct slab_scrubber *scrubber = &allocator->scrubber; if (vdo_is_state_quiescent(&scrubber->admin_state)) { vdo_finish_completion(&allocator->completion); } else { vdo_start_draining(&scrubber->admin_state, VDO_ADMIN_STATE_SUSPENDING, &allocator->completion, NULL); } } /* Implements vdo_admin_initiator_fn. */ static void initiate_summary_drain(struct admin_state *state) { check_summary_drain_complete(container_of(state, struct block_allocator, summary_state)); } static void do_drain_step(struct vdo_completion *completion) { struct block_allocator *allocator = vdo_as_block_allocator(completion); vdo_prepare_completion_for_requeue(&allocator->completion, do_drain_step, handle_operation_error, allocator->thread_id, NULL); switch (++allocator->drain_step) { case VDO_DRAIN_ALLOCATOR_STEP_SCRUBBER: stop_scrubbing(allocator); return; case VDO_DRAIN_ALLOCATOR_STEP_SLABS: apply_to_slabs(allocator, do_drain_step); return; case VDO_DRAIN_ALLOCATOR_STEP_SUMMARY: vdo_start_draining(&allocator->summary_state, vdo_get_admin_state_code(&allocator->state), completion, initiate_summary_drain); return; case VDO_DRAIN_ALLOCATOR_STEP_FINISHED: VDO_ASSERT_LOG_ONLY(!is_vio_pool_busy(allocator->vio_pool), "vio pool not busy"); vdo_finish_draining_with_result(&allocator->state, completion->result); return; default: vdo_finish_draining_with_result(&allocator->state, UDS_BAD_STATE); } } /* Implements vdo_admin_initiator_fn. */ static void initiate_drain(struct admin_state *state) { struct block_allocator *allocator = container_of(state, struct block_allocator, state); allocator->drain_step = VDO_DRAIN_ALLOCATOR_START; do_drain_step(&allocator->completion); } /* * Drain all allocator I/O. Depending upon the type of drain, some or all dirty metadata may be * written to disk. The type of drain will be determined from the state of the allocator's depot. * * Implements vdo_zone_action_fn. */ static void drain_allocator(void *context, zone_count_t zone_number, struct vdo_completion *parent) { struct slab_depot *depot = context; vdo_start_draining(&depot->allocators[zone_number].state, vdo_get_current_manager_operation(depot->action_manager), parent, initiate_drain); } /** * vdo_drain_slab_depot() - Drain all slab depot I/O. * @depot: The depot to drain. * @operation: The drain operation (flush, rebuild, suspend, or save). * @parent: The completion to finish when the drain is complete. * * If saving, or flushing, all dirty depot metadata will be written out. If saving or suspending, * the depot will be left in a suspended state. */ void vdo_drain_slab_depot(struct slab_depot *depot, const struct admin_state_code *operation, struct vdo_completion *parent) { vdo_schedule_operation(depot->action_manager, operation, NULL, drain_allocator, NULL, parent); } /** * resume_scrubbing() - Tell the scrubber to resume scrubbing if it has been stopped. * @allocator: The allocator being resumed. */ static void resume_scrubbing(struct block_allocator *allocator) { int result; struct slab_scrubber *scrubber = &allocator->scrubber; if (!has_slabs_to_scrub(scrubber)) { vdo_finish_completion(&allocator->completion); return; } result = vdo_resume_if_quiescent(&scrubber->admin_state); if (result != VDO_SUCCESS) { vdo_fail_completion(&allocator->completion, result); return; } scrub_next_slab(scrubber); vdo_finish_completion(&allocator->completion); } static void do_resume_step(struct vdo_completion *completion) { struct block_allocator *allocator = vdo_as_block_allocator(completion); vdo_prepare_completion_for_requeue(&allocator->completion, do_resume_step, handle_operation_error, allocator->thread_id, NULL); switch (--allocator->drain_step) { case VDO_DRAIN_ALLOCATOR_STEP_SUMMARY: vdo_fail_completion(completion, vdo_resume_if_quiescent(&allocator->summary_state)); return; case VDO_DRAIN_ALLOCATOR_STEP_SLABS: apply_to_slabs(allocator, do_resume_step); return; case VDO_DRAIN_ALLOCATOR_STEP_SCRUBBER: resume_scrubbing(allocator); return; case VDO_DRAIN_ALLOCATOR_START: vdo_finish_resuming_with_result(&allocator->state, completion->result); return; default: vdo_finish_resuming_with_result(&allocator->state, UDS_BAD_STATE); } } /* Implements vdo_admin_initiator_fn. */ static void initiate_resume(struct admin_state *state) { struct block_allocator *allocator = container_of(state, struct block_allocator, state); allocator->drain_step = VDO_DRAIN_ALLOCATOR_STEP_FINISHED; do_resume_step(&allocator->completion); } /* Implements vdo_zone_action_fn. */ static void resume_allocator(void *context, zone_count_t zone_number, struct vdo_completion *parent) { struct slab_depot *depot = context; vdo_start_resuming(&depot->allocators[zone_number].state, vdo_get_current_manager_operation(depot->action_manager), parent, initiate_resume); } /** * vdo_resume_slab_depot() - Resume a suspended slab depot. * @depot: The depot to resume. * @parent: The completion to finish when the depot has resumed. */ void vdo_resume_slab_depot(struct slab_depot *depot, struct vdo_completion *parent) { if (vdo_is_read_only(depot->vdo)) { vdo_continue_completion(parent, VDO_READ_ONLY); return; } vdo_schedule_operation(depot->action_manager, VDO_ADMIN_STATE_RESUMING, NULL, resume_allocator, NULL, parent); } /** * vdo_commit_oldest_slab_journal_tail_blocks() - Commit all dirty tail blocks which are locking a * given recovery journal block. * @depot: The depot. * @recovery_block_number: The sequence number of the recovery journal block whose locks should be * released. * * Context: This method must be called from the journal zone thread. */ void vdo_commit_oldest_slab_journal_tail_blocks(struct slab_depot *depot, sequence_number_t recovery_block_number) { if (depot == NULL) return; depot->new_release_request = recovery_block_number; vdo_schedule_default_action(depot->action_manager); } /* Implements vdo_zone_action_fn. */ static void scrub_all_unrecovered_slabs(void *context, zone_count_t zone_number, struct vdo_completion *parent) { struct slab_depot *depot = context; scrub_slabs(&depot->allocators[zone_number], NULL); vdo_launch_completion(parent); } /** * vdo_scrub_all_unrecovered_slabs() - Scrub all unrecovered slabs. * @depot: The depot to scrub. * @parent: The object to notify when scrubbing has been launched for all zones. */ void vdo_scrub_all_unrecovered_slabs(struct slab_depot *depot, struct vdo_completion *parent) { vdo_schedule_action(depot->action_manager, NULL, scrub_all_unrecovered_slabs, NULL, parent); } /** * get_block_allocator_statistics() - Get the total of the statistics from all the block allocators * in the depot. * @depot: The slab depot. * * Return: The statistics from all block allocators in the depot. */ static struct block_allocator_statistics __must_check get_block_allocator_statistics(const struct slab_depot *depot) { struct block_allocator_statistics totals; zone_count_t zone; memset(&totals, 0, sizeof(totals)); for (zone = 0; zone < depot->zone_count; zone++) { const struct block_allocator *allocator = &depot->allocators[zone]; const struct block_allocator_statistics *stats = &allocator->statistics; totals.slab_count += allocator->slab_count; totals.slabs_opened += READ_ONCE(stats->slabs_opened); totals.slabs_reopened += READ_ONCE(stats->slabs_reopened); } return totals; } /** * get_ref_counts_statistics() - Get the cumulative ref_counts statistics for the depot. * @depot: The slab depot. * * Return: The cumulative statistics for all ref_counts in the depot. */ static struct ref_counts_statistics __must_check get_ref_counts_statistics(const struct slab_depot *depot) { struct ref_counts_statistics totals; zone_count_t zone; memset(&totals, 0, sizeof(totals)); for (zone = 0; zone < depot->zone_count; zone++) { totals.blocks_written += READ_ONCE(depot->allocators[zone].ref_counts_statistics.blocks_written); } return totals; } /** * get_slab_journal_statistics() - Get the aggregated slab journal statistics for the depot. * @depot: The slab depot. * * Return: The aggregated statistics for all slab journals in the depot. */ static struct slab_journal_statistics __must_check get_slab_journal_statistics(const struct slab_depot *depot) { struct slab_journal_statistics totals; zone_count_t zone; memset(&totals, 0, sizeof(totals)); for (zone = 0; zone < depot->zone_count; zone++) { const struct slab_journal_statistics *stats = &depot->allocators[zone].slab_journal_statistics; totals.disk_full_count += READ_ONCE(stats->disk_full_count); totals.flush_count += READ_ONCE(stats->flush_count); totals.blocked_count += READ_ONCE(stats->blocked_count); totals.blocks_written += READ_ONCE(stats->blocks_written); totals.tail_busy_count += READ_ONCE(stats->tail_busy_count); } return totals; } /** * vdo_get_slab_depot_statistics() - Get all the vdo_statistics fields that are properties of the * slab depot. * @depot: The slab depot. * @stats: The vdo statistics structure to partially fill. */ void vdo_get_slab_depot_statistics(const struct slab_depot *depot, struct vdo_statistics *stats) { slab_count_t slab_count = READ_ONCE(depot->slab_count); slab_count_t unrecovered = 0; zone_count_t zone; for (zone = 0; zone < depot->zone_count; zone++) { /* The allocators are responsible for thread safety. */ unrecovered += READ_ONCE(depot->allocators[zone].scrubber.slab_count); } stats->recovery_percentage = (slab_count - unrecovered) * 100 / slab_count; stats->allocator = get_block_allocator_statistics(depot); stats->ref_counts = get_ref_counts_statistics(depot); stats->slab_journal = get_slab_journal_statistics(depot); stats->slab_summary = (struct slab_summary_statistics) { .blocks_written = atomic64_read(&depot->summary_statistics.blocks_written), }; } /** * vdo_dump_slab_depot() - Dump the slab depot, in a thread-unsafe fashion. * @depot: The slab depot. */ void vdo_dump_slab_depot(const struct slab_depot *depot) { vdo_log_info("vdo slab depot"); vdo_log_info(" zone_count=%u old_zone_count=%u slabCount=%u active_release_request=%llu new_release_request=%llu", (unsigned int) depot->zone_count, (unsigned int) depot->old_zone_count, READ_ONCE(depot->slab_count), (unsigned long long) depot->active_release_request, (unsigned long long) depot->new_release_request); } |