Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
// SPDX-License-Identifier: GPL-2.0
/*
 * Analog Devices LTC4282 I2C High Current Hot Swap Controller over I2C
 *
 * Copyright 2023 Analog Devices Inc.
 */
#include <linux/bitfield.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/i2c.h>
#include <linux/math.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/regmap.h>
#include <linux/property.h>
#include <linux/string.h>
#include <linux/units.h>
#include <linux/util_macros.h>

#define LTC4282_CTRL_LSB			0x00
  #define LTC4282_CTRL_OV_RETRY_MASK		BIT(0)
  #define LTC4282_CTRL_UV_RETRY_MASK		BIT(1)
  #define LTC4282_CTRL_OC_RETRY_MASK		BIT(2)
  #define LTC4282_CTRL_ON_ACTIVE_LOW_MASK	BIT(5)
  #define LTC4282_CTRL_ON_DELAY_MASK		BIT(6)
#define LTC4282_CTRL_MSB			0x01
  #define LTC4282_CTRL_VIN_MODE_MASK		GENMASK(1, 0)
  #define LTC4282_CTRL_OV_MODE_MASK		GENMASK(3, 2)
  #define LTC4282_CTRL_UV_MODE_MASK		GENMASK(5, 4)
#define LTC4282_FAULT_LOG			0x04
  #define LTC4282_OV_FAULT_MASK			BIT(0)
  #define LTC4282_UV_FAULT_MASK			BIT(1)
  #define LTC4282_VDD_FAULT_MASK \
		(LTC4282_OV_FAULT_MASK | LTC4282_UV_FAULT_MASK)
  #define LTC4282_OC_FAULT_MASK			BIT(2)
  #define LTC4282_POWER_BAD_FAULT_MASK		BIT(3)
  #define LTC4282_FET_SHORT_FAULT_MASK		BIT(5)
  #define LTC4282_FET_BAD_FAULT_MASK		BIT(6)
  #define LTC4282_FET_FAILURE_FAULT_MASK \
		(LTC4282_FET_SHORT_FAULT_MASK | LTC4282_FET_BAD_FAULT_MASK)
#define LTC4282_ADC_ALERT_LOG			0x05
  #define LTC4282_GPIO_ALARM_L_MASK		BIT(0)
  #define LTC4282_GPIO_ALARM_H_MASK		BIT(1)
  #define LTC4282_VSOURCE_ALARM_L_MASK		BIT(2)
  #define LTC4282_VSOURCE_ALARM_H_MASK		BIT(3)
  #define LTC4282_VSENSE_ALARM_L_MASK		BIT(4)
  #define LTC4282_VSENSE_ALARM_H_MASK		BIT(5)
  #define LTC4282_POWER_ALARM_L_MASK		BIT(6)
  #define LTC4282_POWER_ALARM_H_MASK		BIT(7)
#define LTC4282_FET_BAD_FAULT_TIMEOUT		0x06
  #define LTC4282_FET_BAD_MAX_TIMEOUT		255
#define LTC4282_GPIO_CONFIG			0x07
  #define LTC4282_GPIO_2_FET_STRESS_MASK	BIT(1)
  #define LTC4282_GPIO_1_CONFIG_MASK		GENMASK(5, 4)
#define LTC4282_VGPIO_MIN			0x08
#define LTC4282_VGPIO_MAX			0x09
#define LTC4282_VSOURCE_MIN			0x0a
#define LTC4282_VSOURCE_MAX			0x0b
#define LTC4282_VSENSE_MIN			0x0c
#define LTC4282_VSENSE_MAX			0x0d
#define LTC4282_POWER_MIN			0x0e
#define LTC4282_POWER_MAX			0x0f
#define LTC4282_CLK_DIV				0x10
  #define LTC4282_CLK_DIV_MASK			GENMASK(4, 0)
  #define LTC4282_CLKOUT_MASK			GENMASK(6, 5)
#define LTC4282_ILIM_ADJUST			0x11
  #define LTC4282_GPIO_MODE_MASK		BIT(1)
  #define LTC4282_VDD_MONITOR_MASK		BIT(2)
  #define LTC4282_FOLDBACK_MODE_MASK		GENMASK(4, 3)
  #define LTC4282_ILIM_ADJUST_MASK		GENMASK(7, 5)
#define LTC4282_ENERGY				0x12
#define LTC4282_TIME_COUNTER			0x18
#define LTC4282_ALERT_CTRL			0x1c
  #define LTC4282_ALERT_OUT_MASK		BIT(6)
#define LTC4282_ADC_CTRL			0x1d
  #define LTC4282_FAULT_LOG_EN_MASK		BIT(2)
  #define LTC4282_METER_HALT_MASK		BIT(5)
  #define LTC4282_METER_RESET_MASK		BIT(6)
  #define LTC4282_RESET_MASK			BIT(7)
#define LTC4282_STATUS_LSB			0x1e
  #define LTC4282_OV_STATUS_MASK		BIT(0)
  #define LTC4282_UV_STATUS_MASK		BIT(1)
  #define LTC4282_VDD_STATUS_MASK \
		(LTC4282_OV_STATUS_MASK | LTC4282_UV_STATUS_MASK)
  #define LTC4282_OC_STATUS_MASK		BIT(2)
  #define LTC4282_POWER_GOOD_MASK		BIT(3)
  #define LTC4282_FET_FAILURE_MASK		GENMASK(6, 5)
#define LTC4282_STATUS_MSB			0x1f
#define LTC4282_RESERVED_1			0x32
#define LTC4282_RESERVED_2			0x33
#define LTC4282_VGPIO				0x34
#define LTC4282_VGPIO_LOWEST			0x36
#define LTC4282_VGPIO_HIGHEST			0x38
#define LTC4282_VSOURCE				0x3a
#define LTC4282_VSOURCE_LOWEST			0x3c
#define LTC4282_VSOURCE_HIGHEST			0x3e
#define LTC4282_VSENSE				0x40
#define LTC4282_VSENSE_LOWEST			0x42
#define LTC4282_VSENSE_HIGHEST			0x44
#define LTC4282_POWER				0x46
#define LTC4282_POWER_LOWEST			0x48
#define LTC4282_POWER_HIGHEST			0x4a
#define LTC4282_RESERVED_3			0x50

#define LTC4282_CLKIN_MIN	(250 * KILO)
#define LTC4282_CLKIN_MAX	(15500 * KILO)
#define LTC4282_CLKIN_RANGE	(LTC4282_CLKIN_MAX - LTC4282_CLKIN_MIN + 1)
#define LTC4282_CLKOUT_SYSTEM	(250 * KILO)
#define LTC4282_CLKOUT_CNV	15

enum {
	LTC4282_CHAN_VSOURCE,
	LTC4282_CHAN_VDD,
	LTC4282_CHAN_VGPIO,
};

struct ltc4282_cache {
	u32 in_max_raw;
	u32 in_min_raw;
	long in_highest;
	long in_lowest;
	bool en;
};

struct ltc4282_state {
	struct regmap *map;
	/* Protect against multiple accesses to the device registers */
	struct mutex lock;
	struct clk_hw clk_hw;
	/*
	 * Used to cache values for VDD/VSOURCE depending which will be used
	 * when hwmon is not enabled for that channel. Needed because they share
	 * the same registers.
	 */
	struct ltc4282_cache in0_1_cache[LTC4282_CHAN_VGPIO];
	u32 vsense_max;
	long power_max;
	u32 rsense;
	u16 vdd;
	u16 vfs_out;
	bool energy_en;
};

enum {
	LTC4282_CLKOUT_NONE,
	LTC4282_CLKOUT_INT,
	LTC4282_CLKOUT_TICK,
};

static int ltc4282_set_rate(struct clk_hw *hw,
			    unsigned long rate, unsigned long parent_rate)
{
	struct ltc4282_state *st = container_of(hw, struct ltc4282_state,
						clk_hw);
	u32 val = LTC4282_CLKOUT_INT;

	if (rate == LTC4282_CLKOUT_CNV)
		val = LTC4282_CLKOUT_TICK;

	return regmap_update_bits(st->map, LTC4282_CLK_DIV, LTC4282_CLKOUT_MASK,
				  FIELD_PREP(LTC4282_CLKOUT_MASK, val));
}

/*
 * Note the 15HZ conversion rate assumes 12bit ADC which is what we are
 * supporting for now.
 */
static const unsigned int ltc4282_out_rates[] = {
	LTC4282_CLKOUT_CNV, LTC4282_CLKOUT_SYSTEM
};

static long ltc4282_round_rate(struct clk_hw *hw, unsigned long rate,
			       unsigned long *parent_rate)
{
	int idx = find_closest(rate, ltc4282_out_rates,
			       ARRAY_SIZE(ltc4282_out_rates));

	return ltc4282_out_rates[idx];
}

static unsigned long ltc4282_recalc_rate(struct clk_hw *hw,
					 unsigned long parent)
{
	struct ltc4282_state *st = container_of(hw, struct ltc4282_state,
						clk_hw);
	u32 clkdiv;
	int ret;

	ret = regmap_read(st->map, LTC4282_CLK_DIV, &clkdiv);
	if (ret)
		return 0;

	clkdiv = FIELD_GET(LTC4282_CLKOUT_MASK, clkdiv);
	if (!clkdiv)
		return 0;
	if (clkdiv == LTC4282_CLKOUT_INT)
		return LTC4282_CLKOUT_SYSTEM;

	return LTC4282_CLKOUT_CNV;
}

static void ltc4282_disable(struct clk_hw *clk_hw)
{
	struct ltc4282_state *st = container_of(clk_hw, struct ltc4282_state,
						clk_hw);

	regmap_clear_bits(st->map, LTC4282_CLK_DIV, LTC4282_CLKOUT_MASK);
}

static int ltc4282_read_voltage_word(const struct ltc4282_state *st, u32 reg,
				     u32 fs, long *val)
{
	__be16 in;
	int ret;

	ret = regmap_bulk_read(st->map, reg, &in, sizeof(in));
	if (ret)
		return ret;

	/*
	 * This is also used to calculate current in which case fs comes in
	 * 10 * uV. Hence the ULL usage.
	 */
	*val = DIV_ROUND_CLOSEST_ULL(be16_to_cpu(in) * (u64)fs, U16_MAX);
	return 0;
}

static int ltc4282_read_voltage_byte_cached(const struct ltc4282_state *st,
					    u32 reg, u32 fs, long *val,
					    u32 *cached_raw)
{
	int ret;
	u32 in;

	if (cached_raw) {
		in = *cached_raw;
	} else {
		ret = regmap_read(st->map, reg, &in);
		if (ret)
			return ret;
	}

	*val = DIV_ROUND_CLOSEST(in * fs, U8_MAX);
	return 0;
}

static int ltc4282_read_voltage_byte(const struct ltc4282_state *st, u32 reg,
				     u32 fs, long *val)
{
	return ltc4282_read_voltage_byte_cached(st, reg, fs, val, NULL);
}

static int __ltc4282_read_alarm(struct ltc4282_state *st, u32 reg, u32 mask,
				long *val)
{
	u32 alarm;
	int ret;

	ret = regmap_read(st->map, reg, &alarm);
	if (ret)
		return ret;

	*val = !!(alarm & mask);

	/* if not status/fault logs, clear the alarm after reading it */
	if (reg != LTC4282_STATUS_LSB && reg != LTC4282_FAULT_LOG)
		return regmap_clear_bits(st->map, reg, mask);

	return 0;
}

static int ltc4282_read_alarm(struct ltc4282_state *st, u32 reg, u32 mask,
			      long *val)
{
	guard(mutex)(&st->lock);
	return __ltc4282_read_alarm(st, reg, mask, val);
}

static int ltc4282_vdd_source_read_in(struct ltc4282_state *st, u32 channel,
				      long *val)
{
	guard(mutex)(&st->lock);
	if (!st->in0_1_cache[channel].en)
		return -ENODATA;

	return ltc4282_read_voltage_word(st, LTC4282_VSOURCE, st->vfs_out, val);
}

static int ltc4282_vdd_source_read_hist(struct ltc4282_state *st, u32 reg,
					u32 channel, long *cached, long *val)
{
	int ret;

	guard(mutex)(&st->lock);
	if (!st->in0_1_cache[channel].en) {
		*val = *cached;
		return 0;
	}

	ret = ltc4282_read_voltage_word(st, reg, st->vfs_out, val);
	if (ret)
		return ret;

	*cached = *val;
	return 0;
}

static int ltc4282_vdd_source_read_lim(struct ltc4282_state *st, u32 reg,
				       u32 channel, u32 *cached, long *val)
{
	guard(mutex)(&st->lock);
	if (!st->in0_1_cache[channel].en)
		return ltc4282_read_voltage_byte_cached(st, reg, st->vfs_out,
							val, cached);

	return ltc4282_read_voltage_byte(st, reg, st->vfs_out, val);
}

static int ltc4282_vdd_source_read_alm(struct ltc4282_state *st, u32 mask,
				       u32 channel, long *val)
{
	guard(mutex)(&st->lock);
	if (!st->in0_1_cache[channel].en) {
		/*
		 * Do this otherwise alarms can get confused because we clear
		 * them after reading them. So, if someone mistakenly reads
		 * VSOURCE right before VDD (or the other way around), we might
		 * get no alarm just because it was cleared when reading VSOURCE
		 * and had no time for a new conversion and thus having the
		 * alarm again.
		 */
		*val = 0;
		return 0;
	}

	return __ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG, mask, val);
}

static int ltc4282_read_in(struct ltc4282_state *st, u32 attr, long *val,
			   u32 channel)
{
	switch (attr) {
	case hwmon_in_input:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_read_voltage_word(st, LTC4282_VGPIO,
							 1280, val);

		return ltc4282_vdd_source_read_in(st, channel, val);
	case hwmon_in_highest:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_read_voltage_word(st,
							 LTC4282_VGPIO_HIGHEST,
							 1280, val);

		return ltc4282_vdd_source_read_hist(st, LTC4282_VSOURCE_HIGHEST,
						    channel,
						    &st->in0_1_cache[channel].in_highest, val);
	case hwmon_in_lowest:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_read_voltage_word(st, LTC4282_VGPIO_LOWEST,
							 1280, val);

		return ltc4282_vdd_source_read_hist(st, LTC4282_VSOURCE_LOWEST,
						    channel,
						    &st->in0_1_cache[channel].in_lowest, val);
	case hwmon_in_max_alarm:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
						  LTC4282_GPIO_ALARM_H_MASK,
						  val);

		return ltc4282_vdd_source_read_alm(st,
						   LTC4282_VSOURCE_ALARM_H_MASK,
						   channel, val);
	case hwmon_in_min_alarm:
		if (channel == LTC4282_CHAN_VGPIO)
			ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
					   LTC4282_GPIO_ALARM_L_MASK, val);

		return ltc4282_vdd_source_read_alm(st,
						   LTC4282_VSOURCE_ALARM_L_MASK,
						   channel, val);
	case hwmon_in_crit_alarm:
		return ltc4282_read_alarm(st, LTC4282_STATUS_LSB,
					  LTC4282_OV_STATUS_MASK, val);
	case hwmon_in_lcrit_alarm:
		return ltc4282_read_alarm(st, LTC4282_STATUS_LSB,
					  LTC4282_UV_STATUS_MASK, val);
	case hwmon_in_max:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_read_voltage_byte(st, LTC4282_VGPIO_MAX,
							 1280, val);

		return ltc4282_vdd_source_read_lim(st, LTC4282_VSOURCE_MAX,
						   channel,
						   &st->in0_1_cache[channel].in_max_raw, val);
	case hwmon_in_min:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_read_voltage_byte(st, LTC4282_VGPIO_MIN,
							 1280, val);

		return ltc4282_vdd_source_read_lim(st, LTC4282_VSOURCE_MIN,
						   channel,
						   &st->in0_1_cache[channel].in_min_raw, val);
	case hwmon_in_enable:
		scoped_guard(mutex, &st->lock) {
			*val = st->in0_1_cache[channel].en;
		}
		return 0;
	case hwmon_in_fault:
		/*
		 * We report failure if we detect either a fer_bad or a
		 * fet_short in the status register.
		 */
		return ltc4282_read_alarm(st, LTC4282_STATUS_LSB,
					  LTC4282_FET_FAILURE_MASK, val);
	default:
		return -EOPNOTSUPP;
	}
}

static int ltc4282_read_current_word(const struct ltc4282_state *st, u32 reg,
				     long *val)
{
	long in;
	int ret;

	/*
	 * We pass in full scale in 10 * micro (note that 40 is already
	 * millivolt) so we have better approximations to calculate current.
	 */
	ret = ltc4282_read_voltage_word(st, reg, DECA * 40 * MILLI, &in);
	if (ret)
		return ret;

	*val = DIV_ROUND_CLOSEST(in * MILLI, st->rsense);

	return 0;
}

static int ltc4282_read_current_byte(const struct ltc4282_state *st, u32 reg,
				     long *val)
{
	long in;
	int ret;

	ret = ltc4282_read_voltage_byte(st, reg, DECA * 40 * MILLI, &in);
	if (ret)
		return ret;

	*val = DIV_ROUND_CLOSEST(in * MILLI, st->rsense);

	return 0;
}

static int ltc4282_read_curr(struct ltc4282_state *st, const u32 attr,
			     long *val)
{
	switch (attr) {
	case hwmon_curr_input:
		return ltc4282_read_current_word(st, LTC4282_VSENSE, val);
	case hwmon_curr_highest:
		return ltc4282_read_current_word(st, LTC4282_VSENSE_HIGHEST,
						 val);
	case hwmon_curr_lowest:
		return ltc4282_read_current_word(st, LTC4282_VSENSE_LOWEST,
						 val);
	case hwmon_curr_max:
		return ltc4282_read_current_byte(st, LTC4282_VSENSE_MAX, val);
	case hwmon_curr_min:
		return ltc4282_read_current_byte(st, LTC4282_VSENSE_MIN, val);
	case hwmon_curr_max_alarm:
		return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
					  LTC4282_VSENSE_ALARM_H_MASK, val);
	case hwmon_curr_min_alarm:
		return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
					  LTC4282_VSENSE_ALARM_L_MASK, val);
	case hwmon_curr_crit_alarm:
		return ltc4282_read_alarm(st, LTC4282_STATUS_LSB,
					  LTC4282_OC_STATUS_MASK, val);
	default:
		return -EOPNOTSUPP;
	}
}

static int ltc4282_read_power_word(const struct ltc4282_state *st, u32 reg,
				   long *val)
{
	u64 temp =  DECA * 40ULL * st->vfs_out * BIT(16), temp_2;
	__be16 raw;
	u16 power;
	int ret;

	ret = regmap_bulk_read(st->map, reg, &raw, sizeof(raw));
	if (ret)
		return ret;

	power = be16_to_cpu(raw);
	/*
	 * Power is given by:
	 *     P = CODE(16b) * 0.040 * Vfs(out) * 2^16 / ((2^16 - 1)^2 * Rsense)
	 */
	if (check_mul_overflow(power * temp, MICRO, &temp_2)) {
		temp = DIV_ROUND_CLOSEST_ULL(power * temp, U16_MAX);
		*val = DIV64_U64_ROUND_CLOSEST(temp * MICRO,
					       U16_MAX * (u64)st->rsense);
		return 0;
	}

	*val = DIV64_U64_ROUND_CLOSEST(temp_2,
				       st->rsense * int_pow(U16_MAX, 2));

	return 0;
}

static int ltc4282_read_power_byte(const struct ltc4282_state *st, u32 reg,
				   long *val)
{
	u32 power;
	u64 temp;
	int ret;

	ret = regmap_read(st->map, reg, &power);
	if (ret)
		return ret;

	temp = power * 40 * DECA * st->vfs_out * BIT_ULL(8);
	*val = DIV64_U64_ROUND_CLOSEST(temp * MICRO,
				       int_pow(U8_MAX, 2) * st->rsense);

	return 0;
}

static int ltc4282_read_energy(const struct ltc4282_state *st, u64 *val)
{
	u64 temp, energy;
	__be64 raw;
	int ret;

	ret = regmap_bulk_read(st->map, LTC4282_ENERGY, &raw, 6);
	if (ret)
		return ret;

	energy =  be64_to_cpu(raw) >> 16;
	/*
	 * The formula for energy is given by:
	 *	E = CODE(48b) * 0.040 * Vfs(out) * Tconv * 256 /
	 *						((2^16 - 1)^2 * Rsense)
	 *
	 * Since we only support 12bit ADC, Tconv = 0.065535s. Passing Vfs(out)
	 * and 0.040 to mV and Tconv to us, we can simplify the formula to:
	 *	E = CODE(48b) * 40 * Vfs(out) * 256 / (U16_MAX * Rsense)
	 *
	 * As Rsense can have tenths of micro-ohm resolution, we need to
	 * multiply by DECA to get microujoule.
	 */
	if (check_mul_overflow(DECA * st->vfs_out * 40 * BIT(8), energy, &temp)) {
		temp = DIV_ROUND_CLOSEST(DECA * st->vfs_out * 40 * BIT(8), U16_MAX);
		*val = DIV_ROUND_CLOSEST_ULL(temp * energy, st->rsense);
		return 0;
	}

	*val = DIV64_U64_ROUND_CLOSEST(temp, U16_MAX * (u64)st->rsense);

	return 0;
}

static int ltc4282_read_power(struct ltc4282_state *st, const u32 attr,
			      long *val)
{
	switch (attr) {
	case hwmon_power_input:
		return ltc4282_read_power_word(st, LTC4282_POWER, val);
	case hwmon_power_input_highest:
		return ltc4282_read_power_word(st, LTC4282_POWER_HIGHEST, val);
	case hwmon_power_input_lowest:
		return ltc4282_read_power_word(st, LTC4282_POWER_LOWEST, val);
	case hwmon_power_max_alarm:
		return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
					  LTC4282_POWER_ALARM_H_MASK, val);
	case hwmon_power_min_alarm:
		return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
					  LTC4282_POWER_ALARM_L_MASK, val);
	case hwmon_power_max:
		return ltc4282_read_power_byte(st, LTC4282_POWER_MAX, val);
	case hwmon_power_min:
		return ltc4282_read_power_byte(st, LTC4282_POWER_MIN, val);
	default:
		return -EOPNOTSUPP;
	}
}

static int ltc4282_read(struct device *dev, enum hwmon_sensor_types type,
			u32 attr, int channel, long *val)
{
	struct ltc4282_state *st = dev_get_drvdata(dev);

	switch (type) {
	case hwmon_in:
		return ltc4282_read_in(st, attr, val, channel);
	case hwmon_curr:
		return ltc4282_read_curr(st, attr, val);
	case hwmon_power:
		return ltc4282_read_power(st, attr, val);
	case hwmon_energy:
		scoped_guard(mutex, &st->lock) {
			*val = st->energy_en;
		}
		return 0;
	default:
		return -EOPNOTSUPP;
	}
}

static int ltc4282_write_power_byte(const struct ltc4282_state *st, u32 reg,
				    long val)
{
	u32 power;
	u64 temp;

	if (val > st->power_max)
		val = st->power_max;

	temp = val * int_pow(U8_MAX, 2) * st->rsense;
	power = DIV64_U64_ROUND_CLOSEST(temp,
					MICRO * DECA * 256ULL * st->vfs_out * 40);

	return regmap_write(st->map, reg, power);
}

static int ltc4282_write_power_word(const struct ltc4282_state *st, u32 reg,
				    long val)
{
	u64 temp = int_pow(U16_MAX, 2) * st->rsense, temp_2;
	__be16 __raw;
	u16 code;

	if (check_mul_overflow(temp, val, &temp_2)) {
		temp = DIV_ROUND_CLOSEST_ULL(temp, DECA * MICRO);
		code = DIV64_U64_ROUND_CLOSEST(temp * val,
					       40ULL * BIT(16) * st->vfs_out);
	} else {
		temp =  DECA * MICRO * 40ULL * BIT(16) * st->vfs_out;
		code = DIV64_U64_ROUND_CLOSEST(temp_2, temp);
	}

	__raw = cpu_to_be16(code);
	return regmap_bulk_write(st->map, reg, &__raw, sizeof(__raw));
}

static int __ltc4282_in_write_history(const struct ltc4282_state *st, u32 reg,
				      long lowest, long highest, u32 fs)
{
	__be16 __raw;
	u16 tmp;
	int ret;

	tmp = DIV_ROUND_CLOSEST(U16_MAX * lowest, fs);

	__raw = cpu_to_be16(tmp);

	ret = regmap_bulk_write(st->map, reg, &__raw, 2);
	if (ret)
		return ret;

	tmp = DIV_ROUND_CLOSEST(U16_MAX * highest, fs);

	__raw = cpu_to_be16(tmp);

	return regmap_bulk_write(st->map, reg + 2, &__raw, 2);
}

static int ltc4282_in_write_history(struct ltc4282_state *st, u32 reg,
				    long lowest, long highest, u32 fs)
{
	guard(mutex)(&st->lock);
	return __ltc4282_in_write_history(st, reg, lowest, highest, fs);
}

static int ltc4282_power_reset_hist(struct ltc4282_state *st)
{
	int ret;

	guard(mutex)(&st->lock);

	ret = ltc4282_write_power_word(st, LTC4282_POWER_LOWEST,
				       st->power_max);
	if (ret)
		return ret;

	ret = ltc4282_write_power_word(st, LTC4282_POWER_HIGHEST, 0);
	if (ret)
		return ret;

	/* now, let's also clear possible power_bad fault logs */
	return regmap_clear_bits(st->map, LTC4282_FAULT_LOG,
				 LTC4282_POWER_BAD_FAULT_MASK);
}

static int ltc4282_write_power(struct ltc4282_state *st, u32 attr,
			       long val)
{
	switch (attr) {
	case hwmon_power_max:
		return ltc4282_write_power_byte(st, LTC4282_POWER_MAX, val);
	case hwmon_power_min:
		return ltc4282_write_power_byte(st, LTC4282_POWER_MIN, val);
	case hwmon_power_reset_history:
		return ltc4282_power_reset_hist(st);
	default:
		return -EOPNOTSUPP;
	}
}

static int ltc4282_write_voltage_byte_cached(const struct ltc4282_state *st,
					     u32 reg, u32 fs, long val,
					     u32 *cache_raw)
{
	u32 in;

	val = clamp_val(val, 0, fs);
	in = DIV_ROUND_CLOSEST(val * U8_MAX, fs);

	if (cache_raw) {
		*cache_raw = in;
		return 0;
	}

	return regmap_write(st->map, reg, in);
}

static int ltc4282_write_voltage_byte(const struct ltc4282_state *st, u32 reg,
				      u32 fs, long val)
{
	return ltc4282_write_voltage_byte_cached(st, reg, fs, val, NULL);
}

static int ltc4282_cache_history(struct ltc4282_state *st, u32 channel)
{
	long val;
	int ret;

	ret = ltc4282_read_voltage_word(st, LTC4282_VSOURCE_LOWEST, st->vfs_out,
					&val);
	if (ret)
		return ret;

	st->in0_1_cache[channel].in_lowest = val;

	ret = ltc4282_read_voltage_word(st, LTC4282_VSOURCE_HIGHEST,
					st->vfs_out, &val);
	if (ret)
		return ret;

	st->in0_1_cache[channel].in_highest = val;

	ret = regmap_read(st->map, LTC4282_VSOURCE_MIN,
			  &st->in0_1_cache[channel].in_min_raw);
	if (ret)
		return ret;

	return regmap_read(st->map, LTC4282_VSOURCE_MAX,
			  &st->in0_1_cache[channel].in_max_raw);
}

static int ltc4282_cache_sync(struct ltc4282_state *st, u32 channel)
{
	int ret;

	ret = __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST,
					 st->in0_1_cache[channel].in_lowest,
					 st->in0_1_cache[channel].in_highest,
					 st->vfs_out);
	if (ret)
		return ret;

	ret = regmap_write(st->map, LTC4282_VSOURCE_MIN,
			   st->in0_1_cache[channel].in_min_raw);
	if (ret)
		return ret;

	return regmap_write(st->map, LTC4282_VSOURCE_MAX,
			    st->in0_1_cache[channel].in_max_raw);
}

static int ltc4282_vdd_source_write_lim(struct ltc4282_state *st, u32 reg,
					int channel, u32 *cache, long val)
{
	int ret;

	guard(mutex)(&st->lock);
	if (st->in0_1_cache[channel].en)
		ret = ltc4282_write_voltage_byte(st, reg, st->vfs_out, val);
	else
		ret = ltc4282_write_voltage_byte_cached(st, reg, st->vfs_out,
							val, cache);

	return ret;
}

static int ltc4282_vdd_source_reset_hist(struct ltc4282_state *st, int channel)
{
	long lowest = st->vfs_out;
	int ret;

	if (channel == LTC4282_CHAN_VDD)
		lowest = st->vdd;

	guard(mutex)(&st->lock);
	if (st->in0_1_cache[channel].en) {
		ret = __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST,
						 lowest, 0, st->vfs_out);
		if (ret)
			return ret;
	}

	st->in0_1_cache[channel].in_lowest = lowest;
	st->in0_1_cache[channel].in_highest = 0;

	/*
	 * We are also clearing possible fault logs in reset_history. Clearing
	 * the logs might be important when the auto retry bits are not enabled
	 * as the chip only enables the output again after having these logs
	 * cleared. As some of these logs are related to limits, it makes sense
	 * to clear them in here. For VDD, we need to clear under/over voltage
	 * events. For VSOURCE, fet_short and fet_bad...
	 */
	if (channel == LTC4282_CHAN_VSOURCE)
		return regmap_clear_bits(st->map, LTC4282_FAULT_LOG,
					 LTC4282_FET_FAILURE_FAULT_MASK);

	return regmap_clear_bits(st->map, LTC4282_FAULT_LOG,
				 LTC4282_VDD_FAULT_MASK);
}

/*
 * We need to mux between VSOURCE and VDD which means they are mutually
 * exclusive. Moreover, we can't really disable both VDD and VSOURCE as the ADC
 * is continuously running (we cannot independently halt it without also
 * stopping VGPIO). Hence, the logic is that disabling or enabling VDD will
 * automatically have the reverse effect on VSOURCE and vice-versa.
 */
static int ltc4282_vdd_source_enable(struct ltc4282_state *st, int channel,
				     long val)
{
	int ret, other_chan = ~channel & 0x1;
	u8 __val = val;

	guard(mutex)(&st->lock);
	if (st->in0_1_cache[channel].en == !!val)
		return 0;

	/* clearing the bit makes the ADC to monitor VDD */
	if (channel == LTC4282_CHAN_VDD)
		__val = !__val;

	ret = regmap_update_bits(st->map, LTC4282_ILIM_ADJUST,
				 LTC4282_VDD_MONITOR_MASK,
				 FIELD_PREP(LTC4282_VDD_MONITOR_MASK, !!__val));
	if (ret)
		return ret;

	st->in0_1_cache[channel].en = !!val;
	st->in0_1_cache[other_chan].en = !val;

	if (st->in0_1_cache[channel].en) {
		/*
		 * Then, we are disabling @other_chan. Let's save it's current
		 * history.
		 */
		ret = ltc4282_cache_history(st, other_chan);
		if (ret)
			return ret;

		return ltc4282_cache_sync(st, channel);
	}
	/*
	 * Then, we are enabling @other_chan. We need to do the opposite from
	 * above.
	 */
	ret = ltc4282_cache_history(st, channel);
	if (ret)
		return ret;

	return ltc4282_cache_sync(st, other_chan);
}

static int ltc4282_write_in(struct ltc4282_state *st, u32 attr, long val,
			    int channel)
{
	switch (attr) {
	case hwmon_in_max:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_write_voltage_byte(st, LTC4282_VGPIO_MAX,
							  1280, val);

		return ltc4282_vdd_source_write_lim(st, LTC4282_VSOURCE_MAX,
						    channel,
						    &st->in0_1_cache[channel].in_max_raw, val);
	case hwmon_in_min:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_write_voltage_byte(st, LTC4282_VGPIO_MIN,
							  1280, val);

		return ltc4282_vdd_source_write_lim(st, LTC4282_VSOURCE_MIN,
						    channel,
						    &st->in0_1_cache[channel].in_min_raw, val);
	case hwmon_in_reset_history:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_in_write_history(st,
							LTC4282_VGPIO_LOWEST,
							1280, 0, 1280);

		return ltc4282_vdd_source_reset_hist(st, channel);
	case hwmon_in_enable:
		return ltc4282_vdd_source_enable(st, channel, val);
	default:
		return -EOPNOTSUPP;
	}
}

static int ltc4282_curr_reset_hist(struct ltc4282_state *st)
{
	int ret;

	guard(mutex)(&st->lock);

	ret = __ltc4282_in_write_history(st, LTC4282_VSENSE_LOWEST,
					 st->vsense_max, 0, 40 * MILLI);
	if (ret)
		return ret;

	/* now, let's also clear possible overcurrent fault logs */
	return regmap_clear_bits(st->map, LTC4282_FAULT_LOG,
				 LTC4282_OC_FAULT_MASK);
}

static int ltc4282_write_curr(struct ltc4282_state *st, u32 attr,
			      long val)
{
	/* need to pass it in millivolt */
	u32 in = DIV_ROUND_CLOSEST_ULL((u64)val * st->rsense, DECA * MICRO);

	switch (attr) {
	case hwmon_curr_max:
		return ltc4282_write_voltage_byte(st, LTC4282_VSENSE_MAX, 40,
						  in);
	case hwmon_curr_min:
		return ltc4282_write_voltage_byte(st, LTC4282_VSENSE_MIN, 40,
						  in);
	case hwmon_curr_reset_history:
		return ltc4282_curr_reset_hist(st);
	default:
		return -EOPNOTSUPP;
	}
}

static int ltc4282_energy_enable_set(struct ltc4282_state *st, long val)
{
	int ret;

	guard(mutex)(&st->lock);
	/* setting the bit halts the meter */
	ret = regmap_update_bits(st->map, LTC4282_ADC_CTRL,
				 LTC4282_METER_HALT_MASK,
				 FIELD_PREP(LTC4282_METER_HALT_MASK, !val));
	if (ret)
		return ret;

	st->energy_en = !!val;

	return 0;
}

static int ltc4282_write(struct device *dev,
			 enum hwmon_sensor_types type,
			 u32 attr, int channel, long val)
{
	struct ltc4282_state *st = dev_get_drvdata(dev);

	switch (type) {
	case hwmon_power:
		return ltc4282_write_power(st, attr, val);
	case hwmon_in:
		return ltc4282_write_in(st, attr, val, channel);
	case hwmon_curr:
		return ltc4282_write_curr(st, attr, val);
	case hwmon_energy:
		return ltc4282_energy_enable_set(st, val);
	default:
		return -EOPNOTSUPP;
	}
}

static umode_t ltc4282_in_is_visible(const struct ltc4282_state *st, u32 attr)
{
	switch (attr) {
	case hwmon_in_input:
	case hwmon_in_highest:
	case hwmon_in_lowest:
	case hwmon_in_max_alarm:
	case hwmon_in_min_alarm:
	case hwmon_in_label:
	case hwmon_in_lcrit_alarm:
	case hwmon_in_crit_alarm:
	case hwmon_in_fault:
		return 0444;
	case hwmon_in_max:
	case hwmon_in_min:
	case hwmon_in_enable:
	case hwmon_in_reset_history:
		return 0644;
	default:
		return 0;
	}
}

static umode_t ltc4282_curr_is_visible(u32 attr)
{
	switch (attr) {
	case hwmon_curr_input:
	case hwmon_curr_highest:
	case hwmon_curr_lowest:
	case hwmon_curr_max_alarm:
	case hwmon_curr_min_alarm:
	case hwmon_curr_crit_alarm:
	case hwmon_curr_label:
		return 0444;
	case hwmon_curr_max:
	case hwmon_curr_min:
	case hwmon_curr_reset_history:
		return 0644;
	default:
		return 0;
	}
}

static umode_t ltc4282_power_is_visible(u32 attr)
{
	switch (attr) {
	case hwmon_power_input:
	case hwmon_power_input_highest:
	case hwmon_power_input_lowest:
	case hwmon_power_label:
	case hwmon_power_max_alarm:
	case hwmon_power_min_alarm:
		return 0444;
	case hwmon_power_max:
	case hwmon_power_min:
	case hwmon_power_reset_history:
		return 0644;
	default:
		return 0;
	}
}

static umode_t ltc4282_is_visible(const void *data,
				  enum hwmon_sensor_types type,
				  u32 attr, int channel)
{
	switch (type) {
	case hwmon_in:
		return ltc4282_in_is_visible(data, attr);
	case hwmon_curr:
		return ltc4282_curr_is_visible(attr);
	case hwmon_power:
		return ltc4282_power_is_visible(attr);
	case hwmon_energy:
		/* hwmon_energy_enable */
		return 0644;
	default:
		return 0;
	}
}

static const char * const ltc4282_in_strs[] = {
	"VSOURCE", "VDD", "VGPIO"
};

static int ltc4282_read_labels(struct device *dev,
			       enum hwmon_sensor_types type,
			       u32 attr, int channel, const char **str)
{
	switch (type) {
	case hwmon_in:
		*str = ltc4282_in_strs[channel];
		return 0;
	case hwmon_curr:
		*str = "ISENSE";
		return 0;
	case hwmon_power:
		*str = "Power";
		return 0;
	default:
		return -EOPNOTSUPP;
	}
}

static ssize_t ltc4282_energy_show(struct device *dev,
				   struct device_attribute *da, char *buf)
{
	struct ltc4282_state *st = dev_get_drvdata(dev);
	u64 energy;
	int ret;

	guard(mutex)(&st->lock);
	if (!st->energy_en)
		return -ENODATA;

	ret = ltc4282_read_energy(st, &energy);
	if (ret < 0)
		return ret;

	return sysfs_emit(buf, "%llu\n", energy);
}

static const struct clk_ops ltc4282_ops = {
	.recalc_rate = ltc4282_recalc_rate,
	.round_rate = ltc4282_round_rate,
	.set_rate = ltc4282_set_rate,
	.disable = ltc4282_disable,
};

static int ltc428_clk_provider_setup(struct ltc4282_state *st,
				     struct device *dev)
{
	struct clk_init_data init;
	int ret;

	if (!IS_ENABLED(CONFIG_COMMON_CLK))
		return 0;

	init.name =  devm_kasprintf(dev, GFP_KERNEL, "%s-clk",
				    fwnode_get_name(dev_fwnode(dev)));
	if (!init.name)
		return -ENOMEM;

	init.ops = &ltc4282_ops;
	init.flags = CLK_GET_RATE_NOCACHE;
	st->clk_hw.init = &init;

	ret = devm_clk_hw_register(dev, &st->clk_hw);
	if (ret)
		return ret;

	return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get,
					   &st->clk_hw);
}

static int ltc428_clks_setup(struct ltc4282_state *st, struct device *dev)
{
	unsigned long rate;
	struct clk *clkin;
	u32 val;
	int ret;

	ret = ltc428_clk_provider_setup(st, dev);
	if (ret)
		return ret;

	clkin = devm_clk_get_optional_enabled(dev, NULL);
	if (IS_ERR(clkin))
		return dev_err_probe(dev, PTR_ERR(clkin),
				     "Failed to get clkin");
	if (!clkin)
		return 0;

	rate = clk_get_rate(clkin);
	if (!in_range(rate, LTC4282_CLKIN_MIN, LTC4282_CLKIN_RANGE))
		return dev_err_probe(dev, -EINVAL,
				     "Invalid clkin range(%lu) [%lu %lu]\n",
				     rate, LTC4282_CLKIN_MIN,
				     LTC4282_CLKIN_MAX);

	/*
	 * Clocks faster than 250KHZ should be reduced to 250KHZ. The clock
	 * frequency is divided by twice the value in the register.
	 */
	val = rate / (2 * LTC4282_CLKIN_MIN);

	return regmap_update_bits(st->map, LTC4282_CLK_DIV,
				  LTC4282_CLK_DIV_MASK,
				  FIELD_PREP(LTC4282_CLK_DIV_MASK, val));
}

static const int ltc4282_curr_lim_uv[] = {
	12500, 15625, 18750, 21875, 25000, 28125, 31250, 34375
};

static int ltc4282_get_defaults(struct ltc4282_state *st, u32 *vin_mode)
{
	u32 reg_val, ilm_adjust;
	int ret;

	ret = regmap_read(st->map, LTC4282_ADC_CTRL, &reg_val);
	if (ret)
		return ret;

	st->energy_en = !FIELD_GET(LTC4282_METER_HALT_MASK, reg_val);

	ret = regmap_read(st->map, LTC4282_CTRL_MSB, &reg_val);
	if (ret)
		return ret;

	*vin_mode = FIELD_GET(LTC4282_CTRL_VIN_MODE_MASK, reg_val);

	ret = regmap_read(st->map, LTC4282_ILIM_ADJUST, &reg_val);
	if (ret)
		return ret;

	ilm_adjust = FIELD_GET(LTC4282_ILIM_ADJUST_MASK, reg_val);
	st->vsense_max = ltc4282_curr_lim_uv[ilm_adjust];

	st->in0_1_cache[LTC4282_CHAN_VSOURCE].en = FIELD_GET(LTC4282_VDD_MONITOR_MASK,
							     ilm_adjust);
	if (!st->in0_1_cache[LTC4282_CHAN_VSOURCE].en) {
		st->in0_1_cache[LTC4282_CHAN_VDD].en = true;
		return regmap_read(st->map, LTC4282_VSOURCE_MAX,
				   &st->in0_1_cache[LTC4282_CHAN_VSOURCE].in_max_raw);
	}

	return regmap_read(st->map, LTC4282_VSOURCE_MAX,
			   &st->in0_1_cache[LTC4282_CHAN_VDD].in_max_raw);
}

/*
 * Set max limits for ISENSE and Power as that depends on the max voltage on
 * rsense that is defined in ILIM_ADJUST. This is specially important for power
 * because for some rsense and vfsout values, if we allow the default raw 255
 * value, that would overflow long in 32bit archs when reading back the max
 * power limit.
 *
 * Also set meaningful historic values for VDD and VSOURCE
 * (0 would not mean much).
 */
static int ltc4282_set_max_limits(struct ltc4282_state *st)
{
	int ret;

	ret = ltc4282_write_voltage_byte(st, LTC4282_VSENSE_MAX, 40 * MILLI,
					 st->vsense_max);
	if (ret)
		return ret;

	/* Power is given by ISENSE * Vout. */
	st->power_max = DIV_ROUND_CLOSEST(st->vsense_max * DECA * MILLI, st->rsense) * st->vfs_out;
	ret = ltc4282_write_power_byte(st, LTC4282_POWER_MAX, st->power_max);
	if (ret)
		return ret;

	if (st->in0_1_cache[LTC4282_CHAN_VDD].en) {
		st->in0_1_cache[LTC4282_CHAN_VSOURCE].in_lowest = st->vfs_out;
		return __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST,
						  st->vdd, 0, st->vfs_out);
	}

	st->in0_1_cache[LTC4282_CHAN_VDD].in_lowest = st->vdd;
	return __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST,
					  st->vfs_out, 0, st->vfs_out);
}

static const char * const ltc4282_gpio1_modes[] = {
	"power_bad", "power_good"
};

static const char * const ltc4282_gpio2_modes[] = {
	"adc_input", "stress_fet"
};

static int ltc4282_gpio_setup(struct ltc4282_state *st, struct device *dev)
{
	const char *func = NULL;
	int ret;

	ret = device_property_read_string(dev, "adi,gpio1-mode", &func);
	if (!ret) {
		ret = match_string(ltc4282_gpio1_modes,
				   ARRAY_SIZE(ltc4282_gpio1_modes), func);
		if (ret < 0)
			return dev_err_probe(dev, ret,
					     "Invalid func(%s) for gpio1\n",
					     func);

		ret = regmap_update_bits(st->map, LTC4282_GPIO_CONFIG,
					 LTC4282_GPIO_1_CONFIG_MASK,
					 FIELD_PREP(LTC4282_GPIO_1_CONFIG_MASK, ret));
		if (ret)
			return ret;
	}

	ret = device_property_read_string(dev, "adi,gpio2-mode", &func);
	if (!ret) {
		ret = match_string(ltc4282_gpio2_modes,
				   ARRAY_SIZE(ltc4282_gpio2_modes), func);
		if (ret < 0)
			return dev_err_probe(dev, ret,
					     "Invalid func(%s) for gpio2\n",
					     func);
		if (!ret) {
			/* setting the bit to 1 so the ADC to monitors GPIO2 */
			ret = regmap_set_bits(st->map, LTC4282_ILIM_ADJUST,
					      LTC4282_GPIO_MODE_MASK);
		} else {
			ret = regmap_update_bits(st->map, LTC4282_GPIO_CONFIG,
						 LTC4282_GPIO_2_FET_STRESS_MASK,
						 FIELD_PREP(LTC4282_GPIO_2_FET_STRESS_MASK, 1));
		}

		if (ret)
			return ret;
	}

	if (!device_property_read_bool(dev, "adi,gpio3-monitor-enable"))
		return 0;

	if (func && !strcmp(func, "adc_input"))
		return dev_err_probe(dev, -EINVAL,
				     "Cannot have both gpio2 and gpio3 muxed into the ADC");

	return regmap_clear_bits(st->map, LTC4282_ILIM_ADJUST,
				 LTC4282_GPIO_MODE_MASK);
}

static const char * const ltc4282_dividers[] = {
	"external", "vdd_5_percent", "vdd_10_percent", "vdd_15_percent"
};

/* This maps the Vout full scale for the given Vin mode */
static const u16 ltc4282_vfs_milli[] = { 5540, 8320, 16640, 33280 };

static const u16 ltc4282_vdd_milli[] = { 3300, 5000, 12000, 24000 };

enum {
	LTC4282_VIN_3_3V,
	LTC4282_VIN_5V,
	LTC4282_VIN_12V,
	LTC4282_VIN_24V,
};

static int ltc4282_setup(struct ltc4282_state *st, struct device *dev)
{
	const char *divider;
	u32 val, vin_mode;
	int ret;

	/* The part has an eeprom so let's get the needed defaults from it */
	ret = ltc4282_get_defaults(st, &vin_mode);
	if (ret)
		return ret;

	ret = device_property_read_u32(dev, "adi,rsense-nano-ohms",
				       &st->rsense);
	if (ret)
		return dev_err_probe(dev, ret,
				     "Failed to read adi,rsense-nano-ohms\n");
	if (st->rsense < CENTI)
		return dev_err_probe(dev, -EINVAL,
				     "adi,rsense-nano-ohms too small (< %lu)\n",
				     CENTI);

	/*
	 * The resolution for rsense is tenths of micro (eg: 62.5 uOhm) which
	 * means we need nano in the bindings. However, to make things easier to
	 * handle (with respect to overflows) we divide it by 100 as we don't
	 * really need the last two digits.
	 */
	st->rsense /= CENTI;

	val = vin_mode;
	ret = device_property_read_u32(dev, "adi,vin-mode-microvolt", &val);
	if (!ret) {
		switch (val) {
		case 3300000:
			val = LTC4282_VIN_3_3V;
			break;
		case 5000000:
			val = LTC4282_VIN_5V;
			break;
		case 12000000:
			val = LTC4282_VIN_12V;
			break;
		case 24000000:
			val = LTC4282_VIN_24V;
			break;
		default:
			return dev_err_probe(dev, -EINVAL,
					     "Invalid val(%u) for vin-mode-microvolt\n",
					     val);
		}

		ret = regmap_update_bits(st->map, LTC4282_CTRL_MSB,
					 LTC4282_CTRL_VIN_MODE_MASK,
					 FIELD_PREP(LTC4282_CTRL_VIN_MODE_MASK, val));
		if (ret)
			return ret;

		/* Foldback mode should also be set to the input voltage */
		ret = regmap_update_bits(st->map, LTC4282_ILIM_ADJUST,
					 LTC4282_FOLDBACK_MODE_MASK,
					 FIELD_PREP(LTC4282_FOLDBACK_MODE_MASK, val));
		if (ret)
			return ret;
	}

	st->vfs_out = ltc4282_vfs_milli[val];
	st->vdd = ltc4282_vdd_milli[val];

	ret = device_property_read_u32(dev, "adi,current-limit-sense-microvolt",
				       &st->vsense_max);
	if (!ret) {
		int reg_val;

		switch (val) {
		case 12500:
			reg_val = 0;
			break;
		case 15625:
			reg_val = 1;
			break;
		case 18750:
			reg_val = 2;
			break;
		case 21875:
			reg_val = 3;
			break;
		case 25000:
			reg_val = 4;
			break;
		case 28125:
			reg_val = 5;
			break;
		case 31250:
			reg_val = 6;
			break;
		case 34375:
			reg_val = 7;
			break;
		default:
			return dev_err_probe(dev, -EINVAL,
					     "Invalid val(%u) for adi,current-limit-microvolt\n",
					     st->vsense_max);
		}

		ret = regmap_update_bits(st->map, LTC4282_ILIM_ADJUST,
					 LTC4282_ILIM_ADJUST_MASK,
					 FIELD_PREP(LTC4282_ILIM_ADJUST_MASK, reg_val));
		if (ret)
			return ret;
	}

	ret = ltc4282_set_max_limits(st);
	if (ret)
		return ret;

	ret = device_property_read_string(dev, "adi,overvoltage-dividers",
					  &divider);
	if (!ret) {
		int div = match_string(ltc4282_dividers,
				       ARRAY_SIZE(ltc4282_dividers), divider);
		if (div < 0)
			return dev_err_probe(dev, -EINVAL,
					     "Invalid val(%s) for adi,overvoltage-divider\n",
					     divider);

		ret = regmap_update_bits(st->map, LTC4282_CTRL_MSB,
					 LTC4282_CTRL_OV_MODE_MASK,
					 FIELD_PREP(LTC4282_CTRL_OV_MODE_MASK, div));
	}

	ret = device_property_read_string(dev, "adi,undervoltage-dividers",
					  &divider);
	if (!ret) {
		int div = match_string(ltc4282_dividers,
				       ARRAY_SIZE(ltc4282_dividers), divider);
		if (div < 0)
			return dev_err_probe(dev, -EINVAL,
					     "Invalid val(%s) for adi,undervoltage-divider\n",
					     divider);

		ret = regmap_update_bits(st->map, LTC4282_CTRL_MSB,
					 LTC4282_CTRL_UV_MODE_MASK,
					 FIELD_PREP(LTC4282_CTRL_UV_MODE_MASK, div));
	}

	if (device_property_read_bool(dev, "adi,overcurrent-retry")) {
		ret = regmap_set_bits(st->map, LTC4282_CTRL_LSB,
				      LTC4282_CTRL_OC_RETRY_MASK);
		if (ret)
			return ret;
	}

	if (device_property_read_bool(dev, "adi,overvoltage-retry-disable")) {
		ret = regmap_clear_bits(st->map, LTC4282_CTRL_LSB,
					LTC4282_CTRL_OV_RETRY_MASK);
		if (ret)
			return ret;
	}

	if (device_property_read_bool(dev, "adi,undervoltage-retry-disable")) {
		ret = regmap_clear_bits(st->map, LTC4282_CTRL_LSB,
					LTC4282_CTRL_UV_RETRY_MASK);
		if (ret)
			return ret;
	}

	if (device_property_read_bool(dev, "adi,fault-log-enable")) {
		ret = regmap_set_bits(st->map, LTC4282_ADC_CTRL,
				      LTC4282_FAULT_LOG_EN_MASK);
		if (ret)
			return ret;
	}

	if (device_property_read_bool(dev, "adi,fault-log-enable")) {
		ret = regmap_set_bits(st->map, LTC4282_ADC_CTRL, LTC4282_FAULT_LOG_EN_MASK);
		if (ret)
			return ret;
	}

	ret = device_property_read_u32(dev, "adi,fet-bad-timeout-ms", &val);
	if (!ret) {
		if (val > LTC4282_FET_BAD_MAX_TIMEOUT)
			return dev_err_probe(dev, -EINVAL,
					     "Invalid value(%u) for adi,fet-bad-timeout-ms",
					     val);

		ret = regmap_write(st->map, LTC4282_FET_BAD_FAULT_TIMEOUT, val);
		if (ret)
			return ret;
	}

	return ltc4282_gpio_setup(st, dev);
}

static bool ltc4282_readable_reg(struct device *dev, unsigned int reg)
{
	if (reg == LTC4282_RESERVED_1 || reg == LTC4282_RESERVED_2)
		return false;

	return true;
}

static bool ltc4282_writable_reg(struct device *dev, unsigned int reg)
{
	if (reg == LTC4282_STATUS_LSB || reg == LTC4282_STATUS_MSB)
		return false;
	if (reg == LTC4282_RESERVED_1 || reg == LTC4282_RESERVED_2)
		return false;

	return true;
}

static const struct regmap_config ltc4282_regmap_config = {
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = LTC4282_RESERVED_3,
	.readable_reg = ltc4282_readable_reg,
	.writeable_reg = ltc4282_writable_reg,
};

static const struct hwmon_channel_info * const ltc4282_info[] = {
	HWMON_CHANNEL_INFO(in,
			   HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST |
			   HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MIN_ALARM |
			   HWMON_I_MAX_ALARM | HWMON_I_ENABLE |
			   HWMON_I_RESET_HISTORY | HWMON_I_FAULT |
			   HWMON_I_LABEL,
			   HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST |
			   HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MIN_ALARM |
			   HWMON_I_MAX_ALARM | HWMON_I_LCRIT_ALARM |
			   HWMON_I_CRIT_ALARM | HWMON_I_ENABLE |
			   HWMON_I_RESET_HISTORY | HWMON_I_LABEL,
			   HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST |
			   HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MIN_ALARM |
			   HWMON_I_RESET_HISTORY | HWMON_I_MAX_ALARM |
			   HWMON_I_LABEL),
	HWMON_CHANNEL_INFO(curr,
			   HWMON_C_INPUT | HWMON_C_LOWEST | HWMON_C_HIGHEST |
			   HWMON_C_MAX | HWMON_C_MIN | HWMON_C_MIN_ALARM |
			   HWMON_C_MAX_ALARM | HWMON_C_CRIT_ALARM |
			   HWMON_C_RESET_HISTORY | HWMON_C_LABEL),
	HWMON_CHANNEL_INFO(power,
			   HWMON_P_INPUT | HWMON_P_INPUT_LOWEST |
			   HWMON_P_INPUT_HIGHEST | HWMON_P_MAX | HWMON_P_MIN |
			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
			   HWMON_P_RESET_HISTORY | HWMON_P_LABEL),
	HWMON_CHANNEL_INFO(energy,
			   HWMON_E_ENABLE),
	NULL
};

static const struct hwmon_ops ltc4282_hwmon_ops = {
	.read = ltc4282_read,
	.write = ltc4282_write,
	.is_visible = ltc4282_is_visible,
	.read_string = ltc4282_read_labels,
};

static const struct hwmon_chip_info ltc2947_chip_info = {
	.ops = &ltc4282_hwmon_ops,
	.info = ltc4282_info,
};

/* energy attributes are 6bytes wide so we need u64 */
static SENSOR_DEVICE_ATTR_RO(energy1_input, ltc4282_energy, 0);

static struct attribute *ltc4282_attrs[] = {
	&sensor_dev_attr_energy1_input.dev_attr.attr,
	NULL
};
ATTRIBUTE_GROUPS(ltc4282);

static int ltc4282_show_fault_log(void *arg, u64 *val, u32 mask)
{
	struct ltc4282_state *st = arg;
	long alarm;
	int ret;

	ret = ltc4282_read_alarm(st, LTC4282_FAULT_LOG,	mask, &alarm);
	if (ret)
		return ret;

	*val = alarm;

	return 0;
}

static int ltc4282_show_curr1_crit_fault_log(void *arg, u64 *val)
{
	return ltc4282_show_fault_log(arg, val, LTC4282_OC_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_curr1_crit_fault_log,
			 ltc4282_show_curr1_crit_fault_log, NULL, "%llu\n");

static int ltc4282_show_in1_lcrit_fault_log(void *arg, u64 *val)
{
	return ltc4282_show_fault_log(arg, val, LTC4282_UV_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_in1_lcrit_fault_log,
			 ltc4282_show_in1_lcrit_fault_log, NULL, "%llu\n");

static int ltc4282_show_in1_crit_fault_log(void *arg, u64 *val)
{
	return ltc4282_show_fault_log(arg, val, LTC4282_OV_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_in1_crit_fault_log,
			 ltc4282_show_in1_crit_fault_log, NULL, "%llu\n");

static int ltc4282_show_fet_bad_fault_log(void *arg, u64 *val)
{
	return ltc4282_show_fault_log(arg, val, LTC4282_FET_BAD_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_fet_bad_fault_log,
			 ltc4282_show_fet_bad_fault_log, NULL, "%llu\n");

static int ltc4282_show_fet_short_fault_log(void *arg, u64 *val)
{
	return ltc4282_show_fault_log(arg, val, LTC4282_FET_SHORT_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_fet_short_fault_log,
			 ltc4282_show_fet_short_fault_log, NULL, "%llu\n");

static int ltc4282_show_power1_bad_fault_log(void *arg, u64 *val)
{
	return ltc4282_show_fault_log(arg, val, LTC4282_POWER_BAD_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_power1_bad_fault_log,
			 ltc4282_show_power1_bad_fault_log, NULL, "%llu\n");

static void ltc4282_debugfs_remove(void *dir)
{
	debugfs_remove_recursive(dir);
}

static void ltc4282_debugfs_init(struct ltc4282_state *st,
				 struct i2c_client *i2c,
				 const struct device *hwmon)
{
	const char *debugfs_name;
	struct dentry *dentry;
	int ret;

	if (!IS_ENABLED(CONFIG_DEBUG_FS))
		return;

	debugfs_name = devm_kasprintf(&i2c->dev, GFP_KERNEL, "ltc4282-%s",
				      dev_name(hwmon));
	if (!debugfs_name)
		return;

	dentry = debugfs_create_dir(debugfs_name, NULL);
	if (IS_ERR(dentry))
		return;

	ret = devm_add_action_or_reset(&i2c->dev, ltc4282_debugfs_remove,
				       dentry);
	if (ret)
		return;

	debugfs_create_file_unsafe("power1_bad_fault_log", 0400, dentry, st,
				   &ltc4282_power1_bad_fault_log);
	debugfs_create_file_unsafe("in0_fet_short_fault_log", 0400, dentry, st,
				   &ltc4282_fet_short_fault_log);
	debugfs_create_file_unsafe("in0_fet_bad_fault_log", 0400, dentry, st,
				   &ltc4282_fet_bad_fault_log);
	debugfs_create_file_unsafe("in1_crit_fault_log", 0400, dentry, st,
				   &ltc4282_in1_crit_fault_log);
	debugfs_create_file_unsafe("in1_lcrit_fault_log", 0400, dentry, st,
				   &ltc4282_in1_lcrit_fault_log);
	debugfs_create_file_unsafe("curr1_crit_fault_log", 0400, dentry, st,
				   &ltc4282_curr1_crit_fault_log);
}

static int ltc4282_probe(struct i2c_client *i2c)
{
	struct device *dev = &i2c->dev, *hwmon;
	struct ltc4282_state *st;
	int ret;

	st = devm_kzalloc(dev, sizeof(*st), GFP_KERNEL);
	if (!st)
		return dev_err_probe(dev, -ENOMEM,
				     "Failed to allocate memory\n");

	st->map = devm_regmap_init_i2c(i2c, &ltc4282_regmap_config);
	if (IS_ERR(st->map))
		return dev_err_probe(dev, PTR_ERR(st->map),
				     "failed regmap init\n");

	/* Soft reset */
	ret = regmap_set_bits(st->map, LTC4282_ADC_CTRL, LTC4282_RESET_MASK);
	if (ret)
		return ret;

	/* Yes, it's big but it is as specified in the datasheet */
	msleep(3200);

	ret = ltc428_clks_setup(st, dev);
	if (ret)
		return ret;

	ret = ltc4282_setup(st, dev);
	if (ret)
		return ret;

	mutex_init(&st->lock);
	hwmon = devm_hwmon_device_register_with_info(dev, "ltc4282", st,
						     &ltc2947_chip_info,
						     ltc4282_groups);
	if (IS_ERR(hwmon))
		return PTR_ERR(hwmon);

	ltc4282_debugfs_init(st, i2c, hwmon);

	return 0;
}

static const struct of_device_id ltc4282_of_match[] = {
	{ .compatible = "adi,ltc4282" },
	{}
};
MODULE_DEVICE_TABLE(of, ltc4282_of_match);

static struct i2c_driver ltc4282_driver = {
	.driver = {
		.name = "ltc4282",
		.of_match_table = ltc4282_of_match,
	},
	.probe = ltc4282_probe,
};
module_i2c_driver(ltc4282_driver);

MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
MODULE_DESCRIPTION("LTC4282 I2C High Current Hot Swap Controller");
MODULE_LICENSE("GPL");