Loading...
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2022 Intel Corporation
4 */
5
6#include <linux/hwmon.h>
7#include <linux/hwmon-sysfs.h>
8#include <linux/types.h>
9
10#include "i915_drv.h"
11#include "i915_hwmon.h"
12#include "i915_reg.h"
13#include "intel_mchbar_regs.h"
14#include "intel_pcode.h"
15#include "gt/intel_gt.h"
16#include "gt/intel_gt_regs.h"
17
18/*
19 * SF_* - scale factors for particular quantities according to hwmon spec.
20 * - voltage - millivolts
21 * - power - microwatts
22 * - curr - milliamperes
23 * - energy - microjoules
24 * - time - milliseconds
25 */
26#define SF_VOLTAGE 1000
27#define SF_POWER 1000000
28#define SF_CURR 1000
29#define SF_ENERGY 1000000
30#define SF_TIME 1000
31
32struct hwm_reg {
33 i915_reg_t gt_perf_status;
34 i915_reg_t pkg_power_sku_unit;
35 i915_reg_t pkg_power_sku;
36 i915_reg_t pkg_rapl_limit;
37 i915_reg_t energy_status_all;
38 i915_reg_t energy_status_tile;
39};
40
41struct hwm_energy_info {
42 u32 reg_val_prev;
43 long accum_energy; /* Accumulated energy for energy1_input */
44};
45
46struct hwm_drvdata {
47 struct i915_hwmon *hwmon;
48 struct intel_uncore *uncore;
49 struct device *hwmon_dev;
50 struct hwm_energy_info ei; /* Energy info for energy1_input */
51 char name[12];
52 int gt_n;
53 bool reset_in_progress;
54 wait_queue_head_t waitq;
55};
56
57struct i915_hwmon {
58 struct hwm_drvdata ddat;
59 struct hwm_drvdata ddat_gt[I915_MAX_GT];
60 struct mutex hwmon_lock; /* counter overflow logic and rmw */
61 struct hwm_reg rg;
62 int scl_shift_power;
63 int scl_shift_energy;
64 int scl_shift_time;
65};
66
67static void
68hwm_locked_with_pm_intel_uncore_rmw(struct hwm_drvdata *ddat,
69 i915_reg_t reg, u32 clear, u32 set)
70{
71 struct i915_hwmon *hwmon = ddat->hwmon;
72 struct intel_uncore *uncore = ddat->uncore;
73 intel_wakeref_t wakeref;
74
75 with_intel_runtime_pm(uncore->rpm, wakeref) {
76 mutex_lock(&hwmon->hwmon_lock);
77
78 intel_uncore_rmw(uncore, reg, clear, set);
79
80 mutex_unlock(&hwmon->hwmon_lock);
81 }
82}
83
84/*
85 * This function's return type of u64 allows for the case where the scaling
86 * of the field taken from the 32-bit register value might cause a result to
87 * exceed 32 bits.
88 */
89static u64
90hwm_field_read_and_scale(struct hwm_drvdata *ddat, i915_reg_t rgadr,
91 u32 field_msk, int nshift, u32 scale_factor)
92{
93 struct intel_uncore *uncore = ddat->uncore;
94 intel_wakeref_t wakeref;
95 u32 reg_value;
96
97 with_intel_runtime_pm(uncore->rpm, wakeref)
98 reg_value = intel_uncore_read(uncore, rgadr);
99
100 reg_value = REG_FIELD_GET(field_msk, reg_value);
101
102 return mul_u64_u32_shr(reg_value, scale_factor, nshift);
103}
104
105/*
106 * hwm_energy - Obtain energy value
107 *
108 * The underlying energy hardware register is 32-bits and is subject to
109 * overflow. How long before overflow? For example, with an example
110 * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
111 * a power draw of 1000 watts, the 32-bit counter will overflow in
112 * approximately 4.36 minutes.
113 *
114 * Examples:
115 * 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days
116 * 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes
117 *
118 * The function significantly increases overflow duration (from 4.36
119 * minutes) by accumulating the energy register into a 'long' as allowed by
120 * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
121 * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
122 * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
123 * energy1_input overflows. This at 1000 W is an overflow duration of 278 years.
124 */
125static void
126hwm_energy(struct hwm_drvdata *ddat, long *energy)
127{
128 struct intel_uncore *uncore = ddat->uncore;
129 struct i915_hwmon *hwmon = ddat->hwmon;
130 struct hwm_energy_info *ei = &ddat->ei;
131 intel_wakeref_t wakeref;
132 i915_reg_t rgaddr;
133 u32 reg_val;
134
135 if (ddat->gt_n >= 0)
136 rgaddr = hwmon->rg.energy_status_tile;
137 else
138 rgaddr = hwmon->rg.energy_status_all;
139
140 with_intel_runtime_pm(uncore->rpm, wakeref) {
141 mutex_lock(&hwmon->hwmon_lock);
142
143 reg_val = intel_uncore_read(uncore, rgaddr);
144
145 if (reg_val >= ei->reg_val_prev)
146 ei->accum_energy += reg_val - ei->reg_val_prev;
147 else
148 ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val;
149 ei->reg_val_prev = reg_val;
150
151 *energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
152 hwmon->scl_shift_energy);
153 mutex_unlock(&hwmon->hwmon_lock);
154 }
155}
156
157static ssize_t
158hwm_power1_max_interval_show(struct device *dev, struct device_attribute *attr,
159 char *buf)
160{
161 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
162 struct i915_hwmon *hwmon = ddat->hwmon;
163 intel_wakeref_t wakeref;
164 u32 r, x, y, x_w = 2; /* 2 bits */
165 u64 tau4, out;
166
167 with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
168 r = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
169
170 x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r);
171 y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r);
172 /*
173 * tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17)
174 * = (4 | x) << (y - 2)
175 * where (y - 2) ensures a 1.x fixed point representation of 1.x
176 * However because y can be < 2, we compute
177 * tau4 = (4 | x) << y
178 * but add 2 when doing the final right shift to account for units
179 */
180 tau4 = (u64)((1 << x_w) | x) << y;
181 /* val in hwmon interface units (millisec) */
182 out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
183
184 return sysfs_emit(buf, "%llu\n", out);
185}
186
187static ssize_t
188hwm_power1_max_interval_store(struct device *dev,
189 struct device_attribute *attr,
190 const char *buf, size_t count)
191{
192 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
193 struct i915_hwmon *hwmon = ddat->hwmon;
194 u32 x, y, rxy, x_w = 2; /* 2 bits */
195 u64 tau4, r, max_win;
196 unsigned long val;
197 int ret;
198
199 ret = kstrtoul(buf, 0, &val);
200 if (ret)
201 return ret;
202
203 /*
204 * Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12
205 * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds
206 */
207#define PKG_MAX_WIN_DEFAULT 0x12ull
208
209 /*
210 * val must be < max in hwmon interface units. The steps below are
211 * explained in i915_power1_max_interval_show()
212 */
213 r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
214 x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
215 y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
216 tau4 = (u64)((1 << x_w) | x) << y;
217 max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
218
219 if (val > max_win)
220 return -EINVAL;
221
222 /* val in hw units */
223 val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME);
224 /* Convert to 1.x * power(2,y) */
225 if (!val) {
226 /* Avoid ilog2(0) */
227 y = 0;
228 x = 0;
229 } else {
230 y = ilog2(val);
231 /* x = (val - (1 << y)) >> (y - 2); */
232 x = (val - (1ul << y)) << x_w >> y;
233 }
234
235 rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y);
236
237 hwm_locked_with_pm_intel_uncore_rmw(ddat, hwmon->rg.pkg_rapl_limit,
238 PKG_PWR_LIM_1_TIME, rxy);
239 return count;
240}
241
242static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
243 hwm_power1_max_interval_show,
244 hwm_power1_max_interval_store, 0);
245
246static struct attribute *hwm_attributes[] = {
247 &sensor_dev_attr_power1_max_interval.dev_attr.attr,
248 NULL
249};
250
251static umode_t hwm_attributes_visible(struct kobject *kobj,
252 struct attribute *attr, int index)
253{
254 struct device *dev = kobj_to_dev(kobj);
255 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
256 struct i915_hwmon *hwmon = ddat->hwmon;
257
258 if (attr == &sensor_dev_attr_power1_max_interval.dev_attr.attr)
259 return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? attr->mode : 0;
260
261 return 0;
262}
263
264static const struct attribute_group hwm_attrgroup = {
265 .attrs = hwm_attributes,
266 .is_visible = hwm_attributes_visible,
267};
268
269static const struct attribute_group *hwm_groups[] = {
270 &hwm_attrgroup,
271 NULL
272};
273
274static const struct hwmon_channel_info * const hwm_info[] = {
275 HWMON_CHANNEL_INFO(in, HWMON_I_INPUT),
276 HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT),
277 HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT),
278 HWMON_CHANNEL_INFO(curr, HWMON_C_CRIT),
279 NULL
280};
281
282static const struct hwmon_channel_info * const hwm_gt_info[] = {
283 HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT),
284 NULL
285};
286
287/* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
288static int hwm_pcode_read_i1(struct drm_i915_private *i915, u32 *uval)
289{
290 /* Avoid ILLEGAL_SUBCOMMAND "mailbox access failed" warning in snb_pcode_read */
291 if (IS_DG1(i915) || IS_DG2(i915))
292 return -ENXIO;
293
294 return snb_pcode_read_p(&i915->uncore, PCODE_POWER_SETUP,
295 POWER_SETUP_SUBCOMMAND_READ_I1, 0, uval);
296}
297
298static int hwm_pcode_write_i1(struct drm_i915_private *i915, u32 uval)
299{
300 return snb_pcode_write_p(&i915->uncore, PCODE_POWER_SETUP,
301 POWER_SETUP_SUBCOMMAND_WRITE_I1, 0, uval);
302}
303
304static umode_t
305hwm_in_is_visible(const struct hwm_drvdata *ddat, u32 attr)
306{
307 struct drm_i915_private *i915 = ddat->uncore->i915;
308
309 switch (attr) {
310 case hwmon_in_input:
311 return IS_DG1(i915) || IS_DG2(i915) ? 0444 : 0;
312 default:
313 return 0;
314 }
315}
316
317static int
318hwm_in_read(struct hwm_drvdata *ddat, u32 attr, long *val)
319{
320 struct i915_hwmon *hwmon = ddat->hwmon;
321 intel_wakeref_t wakeref;
322 u32 reg_value;
323
324 switch (attr) {
325 case hwmon_in_input:
326 with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
327 reg_value = intel_uncore_read(ddat->uncore, hwmon->rg.gt_perf_status);
328 /* HW register value in units of 2.5 millivolt */
329 *val = DIV_ROUND_CLOSEST(REG_FIELD_GET(GEN12_VOLTAGE_MASK, reg_value) * 25, 10);
330 return 0;
331 default:
332 return -EOPNOTSUPP;
333 }
334}
335
336static umode_t
337hwm_power_is_visible(const struct hwm_drvdata *ddat, u32 attr, int chan)
338{
339 struct drm_i915_private *i915 = ddat->uncore->i915;
340 struct i915_hwmon *hwmon = ddat->hwmon;
341 u32 uval;
342
343 switch (attr) {
344 case hwmon_power_max:
345 return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? 0664 : 0;
346 case hwmon_power_rated_max:
347 return i915_mmio_reg_valid(hwmon->rg.pkg_power_sku) ? 0444 : 0;
348 case hwmon_power_crit:
349 return (hwm_pcode_read_i1(i915, &uval) ||
350 !(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
351 default:
352 return 0;
353 }
354}
355
356#define PL1_DISABLE 0
357
358/*
359 * HW allows arbitrary PL1 limits to be set but silently clamps these values to
360 * "typical but not guaranteed" min/max values in rg.pkg_power_sku. Follow the
361 * same pattern for sysfs, allow arbitrary PL1 limits to be set but display
362 * clamped values when read. Write/read I1 also follows the same pattern.
363 */
364static int
365hwm_power_max_read(struct hwm_drvdata *ddat, long *val)
366{
367 struct i915_hwmon *hwmon = ddat->hwmon;
368 intel_wakeref_t wakeref;
369 u64 r, min, max;
370
371 /* Check if PL1 limit is disabled */
372 with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
373 r = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
374 if (!(r & PKG_PWR_LIM_1_EN)) {
375 *val = PL1_DISABLE;
376 return 0;
377 }
378
379 *val = hwm_field_read_and_scale(ddat,
380 hwmon->rg.pkg_rapl_limit,
381 PKG_PWR_LIM_1,
382 hwmon->scl_shift_power,
383 SF_POWER);
384
385 with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
386 r = intel_uncore_read64(ddat->uncore, hwmon->rg.pkg_power_sku);
387 min = REG_FIELD_GET(PKG_MIN_PWR, r);
388 min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
389 max = REG_FIELD_GET(PKG_MAX_PWR, r);
390 max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
391
392 if (min && max)
393 *val = clamp_t(u64, *val, min, max);
394
395 return 0;
396}
397
398static int
399hwm_power_max_write(struct hwm_drvdata *ddat, long val)
400{
401 struct i915_hwmon *hwmon = ddat->hwmon;
402 intel_wakeref_t wakeref;
403 DEFINE_WAIT(wait);
404 int ret = 0;
405 u32 nval;
406
407 /* Block waiting for GuC reset to complete when needed */
408 for (;;) {
409 wakeref = intel_runtime_pm_get(ddat->uncore->rpm);
410 mutex_lock(&hwmon->hwmon_lock);
411
412 prepare_to_wait(&ddat->waitq, &wait, TASK_INTERRUPTIBLE);
413
414 if (!hwmon->ddat.reset_in_progress)
415 break;
416
417 if (signal_pending(current)) {
418 ret = -EINTR;
419 break;
420 }
421
422 mutex_unlock(&hwmon->hwmon_lock);
423 intel_runtime_pm_put(ddat->uncore->rpm, wakeref);
424
425 schedule();
426 }
427 finish_wait(&ddat->waitq, &wait);
428 if (ret)
429 goto exit;
430
431 /* Disable PL1 limit and verify, because the limit cannot be disabled on all platforms */
432 if (val == PL1_DISABLE) {
433 intel_uncore_rmw(ddat->uncore, hwmon->rg.pkg_rapl_limit,
434 PKG_PWR_LIM_1_EN, 0);
435 nval = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
436
437 if (nval & PKG_PWR_LIM_1_EN)
438 ret = -ENODEV;
439 goto exit;
440 }
441
442 /* Computation in 64-bits to avoid overflow. Round to nearest. */
443 nval = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_power, SF_POWER);
444 nval = PKG_PWR_LIM_1_EN | REG_FIELD_PREP(PKG_PWR_LIM_1, nval);
445
446 intel_uncore_rmw(ddat->uncore, hwmon->rg.pkg_rapl_limit,
447 PKG_PWR_LIM_1_EN | PKG_PWR_LIM_1, nval);
448exit:
449 mutex_unlock(&hwmon->hwmon_lock);
450 intel_runtime_pm_put(ddat->uncore->rpm, wakeref);
451 return ret;
452}
453
454static int
455hwm_power_read(struct hwm_drvdata *ddat, u32 attr, int chan, long *val)
456{
457 struct i915_hwmon *hwmon = ddat->hwmon;
458 int ret;
459 u32 uval;
460
461 switch (attr) {
462 case hwmon_power_max:
463 return hwm_power_max_read(ddat, val);
464 case hwmon_power_rated_max:
465 *val = hwm_field_read_and_scale(ddat,
466 hwmon->rg.pkg_power_sku,
467 PKG_PKG_TDP,
468 hwmon->scl_shift_power,
469 SF_POWER);
470 return 0;
471 case hwmon_power_crit:
472 ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval);
473 if (ret)
474 return ret;
475 if (!(uval & POWER_SETUP_I1_WATTS))
476 return -ENODEV;
477 *val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
478 SF_POWER, POWER_SETUP_I1_SHIFT);
479 return 0;
480 default:
481 return -EOPNOTSUPP;
482 }
483}
484
485static int
486hwm_power_write(struct hwm_drvdata *ddat, u32 attr, int chan, long val)
487{
488 u32 uval;
489
490 switch (attr) {
491 case hwmon_power_max:
492 return hwm_power_max_write(ddat, val);
493 case hwmon_power_crit:
494 uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_POWER);
495 return hwm_pcode_write_i1(ddat->uncore->i915, uval);
496 default:
497 return -EOPNOTSUPP;
498 }
499}
500
501void i915_hwmon_power_max_disable(struct drm_i915_private *i915, bool *old)
502{
503 struct i915_hwmon *hwmon = i915->hwmon;
504 u32 r;
505
506 if (!hwmon || !i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit))
507 return;
508
509 mutex_lock(&hwmon->hwmon_lock);
510
511 hwmon->ddat.reset_in_progress = true;
512 r = intel_uncore_rmw(hwmon->ddat.uncore, hwmon->rg.pkg_rapl_limit,
513 PKG_PWR_LIM_1_EN, 0);
514 *old = !!(r & PKG_PWR_LIM_1_EN);
515
516 mutex_unlock(&hwmon->hwmon_lock);
517}
518
519void i915_hwmon_power_max_restore(struct drm_i915_private *i915, bool old)
520{
521 struct i915_hwmon *hwmon = i915->hwmon;
522
523 if (!hwmon || !i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit))
524 return;
525
526 mutex_lock(&hwmon->hwmon_lock);
527
528 intel_uncore_rmw(hwmon->ddat.uncore, hwmon->rg.pkg_rapl_limit,
529 PKG_PWR_LIM_1_EN, old ? PKG_PWR_LIM_1_EN : 0);
530 hwmon->ddat.reset_in_progress = false;
531 wake_up_all(&hwmon->ddat.waitq);
532
533 mutex_unlock(&hwmon->hwmon_lock);
534}
535
536static umode_t
537hwm_energy_is_visible(const struct hwm_drvdata *ddat, u32 attr)
538{
539 struct i915_hwmon *hwmon = ddat->hwmon;
540 i915_reg_t rgaddr;
541
542 switch (attr) {
543 case hwmon_energy_input:
544 if (ddat->gt_n >= 0)
545 rgaddr = hwmon->rg.energy_status_tile;
546 else
547 rgaddr = hwmon->rg.energy_status_all;
548 return i915_mmio_reg_valid(rgaddr) ? 0444 : 0;
549 default:
550 return 0;
551 }
552}
553
554static int
555hwm_energy_read(struct hwm_drvdata *ddat, u32 attr, long *val)
556{
557 switch (attr) {
558 case hwmon_energy_input:
559 hwm_energy(ddat, val);
560 return 0;
561 default:
562 return -EOPNOTSUPP;
563 }
564}
565
566static umode_t
567hwm_curr_is_visible(const struct hwm_drvdata *ddat, u32 attr)
568{
569 struct drm_i915_private *i915 = ddat->uncore->i915;
570 u32 uval;
571
572 switch (attr) {
573 case hwmon_curr_crit:
574 return (hwm_pcode_read_i1(i915, &uval) ||
575 (uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
576 default:
577 return 0;
578 }
579}
580
581static int
582hwm_curr_read(struct hwm_drvdata *ddat, u32 attr, long *val)
583{
584 int ret;
585 u32 uval;
586
587 switch (attr) {
588 case hwmon_curr_crit:
589 ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval);
590 if (ret)
591 return ret;
592 if (uval & POWER_SETUP_I1_WATTS)
593 return -ENODEV;
594 *val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
595 SF_CURR, POWER_SETUP_I1_SHIFT);
596 return 0;
597 default:
598 return -EOPNOTSUPP;
599 }
600}
601
602static int
603hwm_curr_write(struct hwm_drvdata *ddat, u32 attr, long val)
604{
605 u32 uval;
606
607 switch (attr) {
608 case hwmon_curr_crit:
609 uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_CURR);
610 return hwm_pcode_write_i1(ddat->uncore->i915, uval);
611 default:
612 return -EOPNOTSUPP;
613 }
614}
615
616static umode_t
617hwm_is_visible(const void *drvdata, enum hwmon_sensor_types type,
618 u32 attr, int channel)
619{
620 struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata;
621
622 switch (type) {
623 case hwmon_in:
624 return hwm_in_is_visible(ddat, attr);
625 case hwmon_power:
626 return hwm_power_is_visible(ddat, attr, channel);
627 case hwmon_energy:
628 return hwm_energy_is_visible(ddat, attr);
629 case hwmon_curr:
630 return hwm_curr_is_visible(ddat, attr);
631 default:
632 return 0;
633 }
634}
635
636static int
637hwm_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
638 int channel, long *val)
639{
640 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
641
642 switch (type) {
643 case hwmon_in:
644 return hwm_in_read(ddat, attr, val);
645 case hwmon_power:
646 return hwm_power_read(ddat, attr, channel, val);
647 case hwmon_energy:
648 return hwm_energy_read(ddat, attr, val);
649 case hwmon_curr:
650 return hwm_curr_read(ddat, attr, val);
651 default:
652 return -EOPNOTSUPP;
653 }
654}
655
656static int
657hwm_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
658 int channel, long val)
659{
660 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
661
662 switch (type) {
663 case hwmon_power:
664 return hwm_power_write(ddat, attr, channel, val);
665 case hwmon_curr:
666 return hwm_curr_write(ddat, attr, val);
667 default:
668 return -EOPNOTSUPP;
669 }
670}
671
672static const struct hwmon_ops hwm_ops = {
673 .is_visible = hwm_is_visible,
674 .read = hwm_read,
675 .write = hwm_write,
676};
677
678static const struct hwmon_chip_info hwm_chip_info = {
679 .ops = &hwm_ops,
680 .info = hwm_info,
681};
682
683static umode_t
684hwm_gt_is_visible(const void *drvdata, enum hwmon_sensor_types type,
685 u32 attr, int channel)
686{
687 struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata;
688
689 switch (type) {
690 case hwmon_energy:
691 return hwm_energy_is_visible(ddat, attr);
692 default:
693 return 0;
694 }
695}
696
697static int
698hwm_gt_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
699 int channel, long *val)
700{
701 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
702
703 switch (type) {
704 case hwmon_energy:
705 return hwm_energy_read(ddat, attr, val);
706 default:
707 return -EOPNOTSUPP;
708 }
709}
710
711static const struct hwmon_ops hwm_gt_ops = {
712 .is_visible = hwm_gt_is_visible,
713 .read = hwm_gt_read,
714};
715
716static const struct hwmon_chip_info hwm_gt_chip_info = {
717 .ops = &hwm_gt_ops,
718 .info = hwm_gt_info,
719};
720
721static void
722hwm_get_preregistration_info(struct drm_i915_private *i915)
723{
724 struct i915_hwmon *hwmon = i915->hwmon;
725 struct intel_uncore *uncore = &i915->uncore;
726 struct hwm_drvdata *ddat = &hwmon->ddat;
727 intel_wakeref_t wakeref;
728 u32 val_sku_unit = 0;
729 struct intel_gt *gt;
730 long energy;
731 int i;
732
733 /* Available for all Gen12+/dGfx */
734 hwmon->rg.gt_perf_status = GEN12_RPSTAT1;
735
736 if (IS_DG1(i915) || IS_DG2(i915)) {
737 hwmon->rg.pkg_power_sku_unit = PCU_PACKAGE_POWER_SKU_UNIT;
738 hwmon->rg.pkg_power_sku = PCU_PACKAGE_POWER_SKU;
739 hwmon->rg.pkg_rapl_limit = PCU_PACKAGE_RAPL_LIMIT;
740 hwmon->rg.energy_status_all = PCU_PACKAGE_ENERGY_STATUS;
741 hwmon->rg.energy_status_tile = INVALID_MMIO_REG;
742 } else if (IS_XEHPSDV(i915)) {
743 hwmon->rg.pkg_power_sku_unit = GT0_PACKAGE_POWER_SKU_UNIT;
744 hwmon->rg.pkg_power_sku = INVALID_MMIO_REG;
745 hwmon->rg.pkg_rapl_limit = GT0_PACKAGE_RAPL_LIMIT;
746 hwmon->rg.energy_status_all = GT0_PLATFORM_ENERGY_STATUS;
747 hwmon->rg.energy_status_tile = GT0_PACKAGE_ENERGY_STATUS;
748 } else {
749 hwmon->rg.pkg_power_sku_unit = INVALID_MMIO_REG;
750 hwmon->rg.pkg_power_sku = INVALID_MMIO_REG;
751 hwmon->rg.pkg_rapl_limit = INVALID_MMIO_REG;
752 hwmon->rg.energy_status_all = INVALID_MMIO_REG;
753 hwmon->rg.energy_status_tile = INVALID_MMIO_REG;
754 }
755
756 with_intel_runtime_pm(uncore->rpm, wakeref) {
757 /*
758 * The contents of register hwmon->rg.pkg_power_sku_unit do not change,
759 * so read it once and store the shift values.
760 */
761 if (i915_mmio_reg_valid(hwmon->rg.pkg_power_sku_unit))
762 val_sku_unit = intel_uncore_read(uncore,
763 hwmon->rg.pkg_power_sku_unit);
764 }
765
766 hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
767 hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
768 hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
769
770 /*
771 * Initialize 'struct hwm_energy_info', i.e. set fields to the
772 * first value of the energy register read
773 */
774 if (i915_mmio_reg_valid(hwmon->rg.energy_status_all))
775 hwm_energy(ddat, &energy);
776 if (i915_mmio_reg_valid(hwmon->rg.energy_status_tile)) {
777 for_each_gt(gt, i915, i)
778 hwm_energy(&hwmon->ddat_gt[i], &energy);
779 }
780}
781
782void i915_hwmon_register(struct drm_i915_private *i915)
783{
784 struct device *dev = i915->drm.dev;
785 struct i915_hwmon *hwmon;
786 struct device *hwmon_dev;
787 struct hwm_drvdata *ddat;
788 struct hwm_drvdata *ddat_gt;
789 struct intel_gt *gt;
790 int i;
791
792 /* hwmon is available only for dGfx */
793 if (!IS_DGFX(i915))
794 return;
795
796 hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL);
797 if (!hwmon)
798 return;
799
800 i915->hwmon = hwmon;
801 mutex_init(&hwmon->hwmon_lock);
802 ddat = &hwmon->ddat;
803
804 ddat->hwmon = hwmon;
805 ddat->uncore = &i915->uncore;
806 snprintf(ddat->name, sizeof(ddat->name), "i915");
807 ddat->gt_n = -1;
808 init_waitqueue_head(&ddat->waitq);
809
810 for_each_gt(gt, i915, i) {
811 ddat_gt = hwmon->ddat_gt + i;
812
813 ddat_gt->hwmon = hwmon;
814 ddat_gt->uncore = gt->uncore;
815 snprintf(ddat_gt->name, sizeof(ddat_gt->name), "i915_gt%u", i);
816 ddat_gt->gt_n = i;
817 }
818
819 hwm_get_preregistration_info(i915);
820
821 /* hwmon_dev points to device hwmon<i> */
822 hwmon_dev = devm_hwmon_device_register_with_info(dev, ddat->name,
823 ddat,
824 &hwm_chip_info,
825 hwm_groups);
826 if (IS_ERR(hwmon_dev)) {
827 i915->hwmon = NULL;
828 return;
829 }
830
831 ddat->hwmon_dev = hwmon_dev;
832
833 for_each_gt(gt, i915, i) {
834 ddat_gt = hwmon->ddat_gt + i;
835 /*
836 * Create per-gt directories only if a per-gt attribute is
837 * visible. Currently this is only energy
838 */
839 if (!hwm_gt_is_visible(ddat_gt, hwmon_energy, hwmon_energy_input, 0))
840 continue;
841
842 hwmon_dev = devm_hwmon_device_register_with_info(dev, ddat_gt->name,
843 ddat_gt,
844 &hwm_gt_chip_info,
845 NULL);
846 if (!IS_ERR(hwmon_dev))
847 ddat_gt->hwmon_dev = hwmon_dev;
848 }
849}
850
851void i915_hwmon_unregister(struct drm_i915_private *i915)
852{
853 fetch_and_zero(&i915->hwmon);
854}
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2022 Intel Corporation
4 */
5
6#include <linux/hwmon.h>
7#include <linux/hwmon-sysfs.h>
8#include <linux/types.h>
9
10#include "i915_drv.h"
11#include "i915_hwmon.h"
12#include "i915_reg.h"
13#include "intel_mchbar_regs.h"
14#include "intel_pcode.h"
15#include "gt/intel_gt.h"
16#include "gt/intel_gt_regs.h"
17
18/*
19 * SF_* - scale factors for particular quantities according to hwmon spec.
20 * - voltage - millivolts
21 * - power - microwatts
22 * - curr - milliamperes
23 * - energy - microjoules
24 * - time - milliseconds
25 */
26#define SF_VOLTAGE 1000
27#define SF_POWER 1000000
28#define SF_CURR 1000
29#define SF_ENERGY 1000000
30#define SF_TIME 1000
31
32struct hwm_reg {
33 i915_reg_t gt_perf_status;
34 i915_reg_t pkg_power_sku_unit;
35 i915_reg_t pkg_power_sku;
36 i915_reg_t pkg_rapl_limit;
37 i915_reg_t energy_status_all;
38 i915_reg_t energy_status_tile;
39};
40
41struct hwm_energy_info {
42 u32 reg_val_prev;
43 long accum_energy; /* Accumulated energy for energy1_input */
44};
45
46struct hwm_drvdata {
47 struct i915_hwmon *hwmon;
48 struct intel_uncore *uncore;
49 struct device *hwmon_dev;
50 struct hwm_energy_info ei; /* Energy info for energy1_input */
51 char name[12];
52 int gt_n;
53 bool reset_in_progress;
54 wait_queue_head_t waitq;
55};
56
57struct i915_hwmon {
58 struct hwm_drvdata ddat;
59 struct hwm_drvdata ddat_gt[I915_MAX_GT];
60 struct mutex hwmon_lock; /* counter overflow logic and rmw */
61 struct hwm_reg rg;
62 int scl_shift_power;
63 int scl_shift_energy;
64 int scl_shift_time;
65};
66
67static void
68hwm_locked_with_pm_intel_uncore_rmw(struct hwm_drvdata *ddat,
69 i915_reg_t reg, u32 clear, u32 set)
70{
71 struct i915_hwmon *hwmon = ddat->hwmon;
72 struct intel_uncore *uncore = ddat->uncore;
73 intel_wakeref_t wakeref;
74
75 mutex_lock(&hwmon->hwmon_lock);
76
77 with_intel_runtime_pm(uncore->rpm, wakeref)
78 intel_uncore_rmw(uncore, reg, clear, set);
79
80 mutex_unlock(&hwmon->hwmon_lock);
81}
82
83/*
84 * This function's return type of u64 allows for the case where the scaling
85 * of the field taken from the 32-bit register value might cause a result to
86 * exceed 32 bits.
87 */
88static u64
89hwm_field_read_and_scale(struct hwm_drvdata *ddat, i915_reg_t rgadr,
90 u32 field_msk, int nshift, u32 scale_factor)
91{
92 struct intel_uncore *uncore = ddat->uncore;
93 intel_wakeref_t wakeref;
94 u32 reg_value;
95
96 with_intel_runtime_pm(uncore->rpm, wakeref)
97 reg_value = intel_uncore_read(uncore, rgadr);
98
99 reg_value = REG_FIELD_GET(field_msk, reg_value);
100
101 return mul_u64_u32_shr(reg_value, scale_factor, nshift);
102}
103
104/*
105 * hwm_energy - Obtain energy value
106 *
107 * The underlying energy hardware register is 32-bits and is subject to
108 * overflow. How long before overflow? For example, with an example
109 * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
110 * a power draw of 1000 watts, the 32-bit counter will overflow in
111 * approximately 4.36 minutes.
112 *
113 * Examples:
114 * 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days
115 * 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes
116 *
117 * The function significantly increases overflow duration (from 4.36
118 * minutes) by accumulating the energy register into a 'long' as allowed by
119 * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
120 * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
121 * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
122 * energy1_input overflows. This at 1000 W is an overflow duration of 278 years.
123 */
124static void
125hwm_energy(struct hwm_drvdata *ddat, long *energy)
126{
127 struct intel_uncore *uncore = ddat->uncore;
128 struct i915_hwmon *hwmon = ddat->hwmon;
129 struct hwm_energy_info *ei = &ddat->ei;
130 intel_wakeref_t wakeref;
131 i915_reg_t rgaddr;
132 u32 reg_val;
133
134 if (ddat->gt_n >= 0)
135 rgaddr = hwmon->rg.energy_status_tile;
136 else
137 rgaddr = hwmon->rg.energy_status_all;
138
139 mutex_lock(&hwmon->hwmon_lock);
140
141 with_intel_runtime_pm(uncore->rpm, wakeref)
142 reg_val = intel_uncore_read(uncore, rgaddr);
143
144 if (reg_val >= ei->reg_val_prev)
145 ei->accum_energy += reg_val - ei->reg_val_prev;
146 else
147 ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val;
148 ei->reg_val_prev = reg_val;
149
150 *energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
151 hwmon->scl_shift_energy);
152 mutex_unlock(&hwmon->hwmon_lock);
153}
154
155static ssize_t
156hwm_power1_max_interval_show(struct device *dev, struct device_attribute *attr,
157 char *buf)
158{
159 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
160 struct i915_hwmon *hwmon = ddat->hwmon;
161 intel_wakeref_t wakeref;
162 u32 r, x, y, x_w = 2; /* 2 bits */
163 u64 tau4, out;
164
165 with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
166 r = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
167
168 x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r);
169 y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r);
170 /*
171 * tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17)
172 * = (4 | x) << (y - 2)
173 * where (y - 2) ensures a 1.x fixed point representation of 1.x
174 * However because y can be < 2, we compute
175 * tau4 = (4 | x) << y
176 * but add 2 when doing the final right shift to account for units
177 */
178 tau4 = (u64)((1 << x_w) | x) << y;
179 /* val in hwmon interface units (millisec) */
180 out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
181
182 return sysfs_emit(buf, "%llu\n", out);
183}
184
185static ssize_t
186hwm_power1_max_interval_store(struct device *dev,
187 struct device_attribute *attr,
188 const char *buf, size_t count)
189{
190 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
191 struct i915_hwmon *hwmon = ddat->hwmon;
192 u32 x, y, rxy, x_w = 2; /* 2 bits */
193 u64 tau4, r, max_win;
194 unsigned long val;
195 int ret;
196
197 ret = kstrtoul(buf, 0, &val);
198 if (ret)
199 return ret;
200
201 /*
202 * Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12
203 * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds
204 */
205#define PKG_MAX_WIN_DEFAULT 0x12ull
206
207 /*
208 * val must be < max in hwmon interface units. The steps below are
209 * explained in i915_power1_max_interval_show()
210 */
211 r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
212 x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
213 y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
214 tau4 = (u64)((1 << x_w) | x) << y;
215 max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
216
217 if (val > max_win)
218 return -EINVAL;
219
220 /* val in hw units */
221 val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME);
222 /* Convert to 1.x * power(2,y) */
223 if (!val) {
224 /* Avoid ilog2(0) */
225 y = 0;
226 x = 0;
227 } else {
228 y = ilog2(val);
229 /* x = (val - (1 << y)) >> (y - 2); */
230 x = (val - (1ul << y)) << x_w >> y;
231 }
232
233 rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y);
234
235 hwm_locked_with_pm_intel_uncore_rmw(ddat, hwmon->rg.pkg_rapl_limit,
236 PKG_PWR_LIM_1_TIME, rxy);
237 return count;
238}
239
240static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
241 hwm_power1_max_interval_show,
242 hwm_power1_max_interval_store, 0);
243
244static struct attribute *hwm_attributes[] = {
245 &sensor_dev_attr_power1_max_interval.dev_attr.attr,
246 NULL
247};
248
249static umode_t hwm_attributes_visible(struct kobject *kobj,
250 struct attribute *attr, int index)
251{
252 struct device *dev = kobj_to_dev(kobj);
253 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
254 struct i915_hwmon *hwmon = ddat->hwmon;
255
256 if (attr == &sensor_dev_attr_power1_max_interval.dev_attr.attr)
257 return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? attr->mode : 0;
258
259 return 0;
260}
261
262static const struct attribute_group hwm_attrgroup = {
263 .attrs = hwm_attributes,
264 .is_visible = hwm_attributes_visible,
265};
266
267static const struct attribute_group *hwm_groups[] = {
268 &hwm_attrgroup,
269 NULL
270};
271
272static const struct hwmon_channel_info * const hwm_info[] = {
273 HWMON_CHANNEL_INFO(in, HWMON_I_INPUT),
274 HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT),
275 HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT),
276 HWMON_CHANNEL_INFO(curr, HWMON_C_CRIT),
277 NULL
278};
279
280static const struct hwmon_channel_info * const hwm_gt_info[] = {
281 HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT),
282 NULL
283};
284
285/* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
286static int hwm_pcode_read_i1(struct drm_i915_private *i915, u32 *uval)
287{
288 /* Avoid ILLEGAL_SUBCOMMAND "mailbox access failed" warning in snb_pcode_read */
289 if (IS_DG1(i915) || IS_DG2(i915))
290 return -ENXIO;
291
292 return snb_pcode_read_p(&i915->uncore, PCODE_POWER_SETUP,
293 POWER_SETUP_SUBCOMMAND_READ_I1, 0, uval);
294}
295
296static int hwm_pcode_write_i1(struct drm_i915_private *i915, u32 uval)
297{
298 return snb_pcode_write_p(&i915->uncore, PCODE_POWER_SETUP,
299 POWER_SETUP_SUBCOMMAND_WRITE_I1, 0, uval);
300}
301
302static umode_t
303hwm_in_is_visible(const struct hwm_drvdata *ddat, u32 attr)
304{
305 struct drm_i915_private *i915 = ddat->uncore->i915;
306
307 switch (attr) {
308 case hwmon_in_input:
309 return IS_DG1(i915) || IS_DG2(i915) ? 0444 : 0;
310 default:
311 return 0;
312 }
313}
314
315static int
316hwm_in_read(struct hwm_drvdata *ddat, u32 attr, long *val)
317{
318 struct i915_hwmon *hwmon = ddat->hwmon;
319 intel_wakeref_t wakeref;
320 u32 reg_value;
321
322 switch (attr) {
323 case hwmon_in_input:
324 with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
325 reg_value = intel_uncore_read(ddat->uncore, hwmon->rg.gt_perf_status);
326 /* HW register value in units of 2.5 millivolt */
327 *val = DIV_ROUND_CLOSEST(REG_FIELD_GET(GEN12_VOLTAGE_MASK, reg_value) * 25, 10);
328 return 0;
329 default:
330 return -EOPNOTSUPP;
331 }
332}
333
334static umode_t
335hwm_power_is_visible(const struct hwm_drvdata *ddat, u32 attr, int chan)
336{
337 struct drm_i915_private *i915 = ddat->uncore->i915;
338 struct i915_hwmon *hwmon = ddat->hwmon;
339 u32 uval;
340
341 switch (attr) {
342 case hwmon_power_max:
343 return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? 0664 : 0;
344 case hwmon_power_rated_max:
345 return i915_mmio_reg_valid(hwmon->rg.pkg_power_sku) ? 0444 : 0;
346 case hwmon_power_crit:
347 return (hwm_pcode_read_i1(i915, &uval) ||
348 !(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
349 default:
350 return 0;
351 }
352}
353
354#define PL1_DISABLE 0
355
356/*
357 * HW allows arbitrary PL1 limits to be set but silently clamps these values to
358 * "typical but not guaranteed" min/max values in rg.pkg_power_sku. Follow the
359 * same pattern for sysfs, allow arbitrary PL1 limits to be set but display
360 * clamped values when read. Write/read I1 also follows the same pattern.
361 */
362static int
363hwm_power_max_read(struct hwm_drvdata *ddat, long *val)
364{
365 struct i915_hwmon *hwmon = ddat->hwmon;
366 intel_wakeref_t wakeref;
367 u64 r, min, max;
368
369 /* Check if PL1 limit is disabled */
370 with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
371 r = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
372 if (!(r & PKG_PWR_LIM_1_EN)) {
373 *val = PL1_DISABLE;
374 return 0;
375 }
376
377 *val = hwm_field_read_and_scale(ddat,
378 hwmon->rg.pkg_rapl_limit,
379 PKG_PWR_LIM_1,
380 hwmon->scl_shift_power,
381 SF_POWER);
382
383 with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
384 r = intel_uncore_read64(ddat->uncore, hwmon->rg.pkg_power_sku);
385 min = REG_FIELD_GET(PKG_MIN_PWR, r);
386 min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
387 max = REG_FIELD_GET(PKG_MAX_PWR, r);
388 max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
389
390 if (min && max)
391 *val = clamp_t(u64, *val, min, max);
392
393 return 0;
394}
395
396static int
397hwm_power_max_write(struct hwm_drvdata *ddat, long val)
398{
399 struct i915_hwmon *hwmon = ddat->hwmon;
400 intel_wakeref_t wakeref;
401 DEFINE_WAIT(wait);
402 int ret = 0;
403 u32 nval;
404
405 /* Block waiting for GuC reset to complete when needed */
406 for (;;) {
407 mutex_lock(&hwmon->hwmon_lock);
408
409 prepare_to_wait(&ddat->waitq, &wait, TASK_INTERRUPTIBLE);
410
411 if (!hwmon->ddat.reset_in_progress)
412 break;
413
414 if (signal_pending(current)) {
415 ret = -EINTR;
416 break;
417 }
418
419 mutex_unlock(&hwmon->hwmon_lock);
420
421 schedule();
422 }
423 finish_wait(&ddat->waitq, &wait);
424 if (ret)
425 goto unlock;
426
427 wakeref = intel_runtime_pm_get(ddat->uncore->rpm);
428
429 /* Disable PL1 limit and verify, because the limit cannot be disabled on all platforms */
430 if (val == PL1_DISABLE) {
431 intel_uncore_rmw(ddat->uncore, hwmon->rg.pkg_rapl_limit,
432 PKG_PWR_LIM_1_EN, 0);
433 nval = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
434
435 if (nval & PKG_PWR_LIM_1_EN)
436 ret = -ENODEV;
437 goto exit;
438 }
439
440 /* Computation in 64-bits to avoid overflow. Round to nearest. */
441 nval = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_power, SF_POWER);
442 nval = PKG_PWR_LIM_1_EN | REG_FIELD_PREP(PKG_PWR_LIM_1, nval);
443
444 intel_uncore_rmw(ddat->uncore, hwmon->rg.pkg_rapl_limit,
445 PKG_PWR_LIM_1_EN | PKG_PWR_LIM_1, nval);
446exit:
447 intel_runtime_pm_put(ddat->uncore->rpm, wakeref);
448unlock:
449 mutex_unlock(&hwmon->hwmon_lock);
450 return ret;
451}
452
453static int
454hwm_power_read(struct hwm_drvdata *ddat, u32 attr, int chan, long *val)
455{
456 struct i915_hwmon *hwmon = ddat->hwmon;
457 int ret;
458 u32 uval;
459
460 switch (attr) {
461 case hwmon_power_max:
462 return hwm_power_max_read(ddat, val);
463 case hwmon_power_rated_max:
464 *val = hwm_field_read_and_scale(ddat,
465 hwmon->rg.pkg_power_sku,
466 PKG_PKG_TDP,
467 hwmon->scl_shift_power,
468 SF_POWER);
469 return 0;
470 case hwmon_power_crit:
471 ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval);
472 if (ret)
473 return ret;
474 if (!(uval & POWER_SETUP_I1_WATTS))
475 return -ENODEV;
476 *val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
477 SF_POWER, POWER_SETUP_I1_SHIFT);
478 return 0;
479 default:
480 return -EOPNOTSUPP;
481 }
482}
483
484static int
485hwm_power_write(struct hwm_drvdata *ddat, u32 attr, int chan, long val)
486{
487 u32 uval;
488
489 switch (attr) {
490 case hwmon_power_max:
491 return hwm_power_max_write(ddat, val);
492 case hwmon_power_crit:
493 uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_POWER);
494 return hwm_pcode_write_i1(ddat->uncore->i915, uval);
495 default:
496 return -EOPNOTSUPP;
497 }
498}
499
500void i915_hwmon_power_max_disable(struct drm_i915_private *i915, bool *old)
501{
502 struct i915_hwmon *hwmon = i915->hwmon;
503 u32 r;
504
505 if (!hwmon || !i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit))
506 return;
507
508 mutex_lock(&hwmon->hwmon_lock);
509
510 hwmon->ddat.reset_in_progress = true;
511 r = intel_uncore_rmw(hwmon->ddat.uncore, hwmon->rg.pkg_rapl_limit,
512 PKG_PWR_LIM_1_EN, 0);
513 *old = !!(r & PKG_PWR_LIM_1_EN);
514
515 mutex_unlock(&hwmon->hwmon_lock);
516}
517
518void i915_hwmon_power_max_restore(struct drm_i915_private *i915, bool old)
519{
520 struct i915_hwmon *hwmon = i915->hwmon;
521
522 if (!hwmon || !i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit))
523 return;
524
525 mutex_lock(&hwmon->hwmon_lock);
526
527 intel_uncore_rmw(hwmon->ddat.uncore, hwmon->rg.pkg_rapl_limit,
528 PKG_PWR_LIM_1_EN, old ? PKG_PWR_LIM_1_EN : 0);
529 hwmon->ddat.reset_in_progress = false;
530 wake_up_all(&hwmon->ddat.waitq);
531
532 mutex_unlock(&hwmon->hwmon_lock);
533}
534
535static umode_t
536hwm_energy_is_visible(const struct hwm_drvdata *ddat, u32 attr)
537{
538 struct i915_hwmon *hwmon = ddat->hwmon;
539 i915_reg_t rgaddr;
540
541 switch (attr) {
542 case hwmon_energy_input:
543 if (ddat->gt_n >= 0)
544 rgaddr = hwmon->rg.energy_status_tile;
545 else
546 rgaddr = hwmon->rg.energy_status_all;
547 return i915_mmio_reg_valid(rgaddr) ? 0444 : 0;
548 default:
549 return 0;
550 }
551}
552
553static int
554hwm_energy_read(struct hwm_drvdata *ddat, u32 attr, long *val)
555{
556 switch (attr) {
557 case hwmon_energy_input:
558 hwm_energy(ddat, val);
559 return 0;
560 default:
561 return -EOPNOTSUPP;
562 }
563}
564
565static umode_t
566hwm_curr_is_visible(const struct hwm_drvdata *ddat, u32 attr)
567{
568 struct drm_i915_private *i915 = ddat->uncore->i915;
569 u32 uval;
570
571 switch (attr) {
572 case hwmon_curr_crit:
573 return (hwm_pcode_read_i1(i915, &uval) ||
574 (uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
575 default:
576 return 0;
577 }
578}
579
580static int
581hwm_curr_read(struct hwm_drvdata *ddat, u32 attr, long *val)
582{
583 int ret;
584 u32 uval;
585
586 switch (attr) {
587 case hwmon_curr_crit:
588 ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval);
589 if (ret)
590 return ret;
591 if (uval & POWER_SETUP_I1_WATTS)
592 return -ENODEV;
593 *val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
594 SF_CURR, POWER_SETUP_I1_SHIFT);
595 return 0;
596 default:
597 return -EOPNOTSUPP;
598 }
599}
600
601static int
602hwm_curr_write(struct hwm_drvdata *ddat, u32 attr, long val)
603{
604 u32 uval;
605
606 switch (attr) {
607 case hwmon_curr_crit:
608 uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_CURR);
609 return hwm_pcode_write_i1(ddat->uncore->i915, uval);
610 default:
611 return -EOPNOTSUPP;
612 }
613}
614
615static umode_t
616hwm_is_visible(const void *drvdata, enum hwmon_sensor_types type,
617 u32 attr, int channel)
618{
619 struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata;
620
621 switch (type) {
622 case hwmon_in:
623 return hwm_in_is_visible(ddat, attr);
624 case hwmon_power:
625 return hwm_power_is_visible(ddat, attr, channel);
626 case hwmon_energy:
627 return hwm_energy_is_visible(ddat, attr);
628 case hwmon_curr:
629 return hwm_curr_is_visible(ddat, attr);
630 default:
631 return 0;
632 }
633}
634
635static int
636hwm_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
637 int channel, long *val)
638{
639 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
640
641 switch (type) {
642 case hwmon_in:
643 return hwm_in_read(ddat, attr, val);
644 case hwmon_power:
645 return hwm_power_read(ddat, attr, channel, val);
646 case hwmon_energy:
647 return hwm_energy_read(ddat, attr, val);
648 case hwmon_curr:
649 return hwm_curr_read(ddat, attr, val);
650 default:
651 return -EOPNOTSUPP;
652 }
653}
654
655static int
656hwm_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
657 int channel, long val)
658{
659 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
660
661 switch (type) {
662 case hwmon_power:
663 return hwm_power_write(ddat, attr, channel, val);
664 case hwmon_curr:
665 return hwm_curr_write(ddat, attr, val);
666 default:
667 return -EOPNOTSUPP;
668 }
669}
670
671static const struct hwmon_ops hwm_ops = {
672 .is_visible = hwm_is_visible,
673 .read = hwm_read,
674 .write = hwm_write,
675};
676
677static const struct hwmon_chip_info hwm_chip_info = {
678 .ops = &hwm_ops,
679 .info = hwm_info,
680};
681
682static umode_t
683hwm_gt_is_visible(const void *drvdata, enum hwmon_sensor_types type,
684 u32 attr, int channel)
685{
686 struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata;
687
688 switch (type) {
689 case hwmon_energy:
690 return hwm_energy_is_visible(ddat, attr);
691 default:
692 return 0;
693 }
694}
695
696static int
697hwm_gt_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
698 int channel, long *val)
699{
700 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
701
702 switch (type) {
703 case hwmon_energy:
704 return hwm_energy_read(ddat, attr, val);
705 default:
706 return -EOPNOTSUPP;
707 }
708}
709
710static const struct hwmon_ops hwm_gt_ops = {
711 .is_visible = hwm_gt_is_visible,
712 .read = hwm_gt_read,
713};
714
715static const struct hwmon_chip_info hwm_gt_chip_info = {
716 .ops = &hwm_gt_ops,
717 .info = hwm_gt_info,
718};
719
720static void
721hwm_get_preregistration_info(struct drm_i915_private *i915)
722{
723 struct i915_hwmon *hwmon = i915->hwmon;
724 struct intel_uncore *uncore = &i915->uncore;
725 struct hwm_drvdata *ddat = &hwmon->ddat;
726 intel_wakeref_t wakeref;
727 u32 val_sku_unit = 0;
728 struct intel_gt *gt;
729 long energy;
730 int i;
731
732 /* Available for all Gen12+/dGfx */
733 hwmon->rg.gt_perf_status = GEN12_RPSTAT1;
734
735 if (IS_DG1(i915) || IS_DG2(i915)) {
736 hwmon->rg.pkg_power_sku_unit = PCU_PACKAGE_POWER_SKU_UNIT;
737 hwmon->rg.pkg_power_sku = PCU_PACKAGE_POWER_SKU;
738 hwmon->rg.pkg_rapl_limit = PCU_PACKAGE_RAPL_LIMIT;
739 hwmon->rg.energy_status_all = PCU_PACKAGE_ENERGY_STATUS;
740 hwmon->rg.energy_status_tile = INVALID_MMIO_REG;
741 } else if (IS_XEHPSDV(i915)) {
742 hwmon->rg.pkg_power_sku_unit = GT0_PACKAGE_POWER_SKU_UNIT;
743 hwmon->rg.pkg_power_sku = INVALID_MMIO_REG;
744 hwmon->rg.pkg_rapl_limit = GT0_PACKAGE_RAPL_LIMIT;
745 hwmon->rg.energy_status_all = GT0_PLATFORM_ENERGY_STATUS;
746 hwmon->rg.energy_status_tile = GT0_PACKAGE_ENERGY_STATUS;
747 } else {
748 hwmon->rg.pkg_power_sku_unit = INVALID_MMIO_REG;
749 hwmon->rg.pkg_power_sku = INVALID_MMIO_REG;
750 hwmon->rg.pkg_rapl_limit = INVALID_MMIO_REG;
751 hwmon->rg.energy_status_all = INVALID_MMIO_REG;
752 hwmon->rg.energy_status_tile = INVALID_MMIO_REG;
753 }
754
755 with_intel_runtime_pm(uncore->rpm, wakeref) {
756 /*
757 * The contents of register hwmon->rg.pkg_power_sku_unit do not change,
758 * so read it once and store the shift values.
759 */
760 if (i915_mmio_reg_valid(hwmon->rg.pkg_power_sku_unit))
761 val_sku_unit = intel_uncore_read(uncore,
762 hwmon->rg.pkg_power_sku_unit);
763 }
764
765 hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
766 hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
767 hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
768
769 /*
770 * Initialize 'struct hwm_energy_info', i.e. set fields to the
771 * first value of the energy register read
772 */
773 if (i915_mmio_reg_valid(hwmon->rg.energy_status_all))
774 hwm_energy(ddat, &energy);
775 if (i915_mmio_reg_valid(hwmon->rg.energy_status_tile)) {
776 for_each_gt(gt, i915, i)
777 hwm_energy(&hwmon->ddat_gt[i], &energy);
778 }
779}
780
781void i915_hwmon_register(struct drm_i915_private *i915)
782{
783 struct device *dev = i915->drm.dev;
784 struct i915_hwmon *hwmon;
785 struct device *hwmon_dev;
786 struct hwm_drvdata *ddat;
787 struct hwm_drvdata *ddat_gt;
788 struct intel_gt *gt;
789 int i;
790
791 /* hwmon is available only for dGfx */
792 if (!IS_DGFX(i915))
793 return;
794
795 hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL);
796 if (!hwmon)
797 return;
798
799 i915->hwmon = hwmon;
800 mutex_init(&hwmon->hwmon_lock);
801 ddat = &hwmon->ddat;
802
803 ddat->hwmon = hwmon;
804 ddat->uncore = &i915->uncore;
805 snprintf(ddat->name, sizeof(ddat->name), "i915");
806 ddat->gt_n = -1;
807 init_waitqueue_head(&ddat->waitq);
808
809 for_each_gt(gt, i915, i) {
810 ddat_gt = hwmon->ddat_gt + i;
811
812 ddat_gt->hwmon = hwmon;
813 ddat_gt->uncore = gt->uncore;
814 snprintf(ddat_gt->name, sizeof(ddat_gt->name), "i915_gt%u", i);
815 ddat_gt->gt_n = i;
816 }
817
818 hwm_get_preregistration_info(i915);
819
820 /* hwmon_dev points to device hwmon<i> */
821 hwmon_dev = devm_hwmon_device_register_with_info(dev, ddat->name,
822 ddat,
823 &hwm_chip_info,
824 hwm_groups);
825 if (IS_ERR(hwmon_dev)) {
826 i915->hwmon = NULL;
827 return;
828 }
829
830 ddat->hwmon_dev = hwmon_dev;
831
832 for_each_gt(gt, i915, i) {
833 ddat_gt = hwmon->ddat_gt + i;
834 /*
835 * Create per-gt directories only if a per-gt attribute is
836 * visible. Currently this is only energy
837 */
838 if (!hwm_gt_is_visible(ddat_gt, hwmon_energy, hwmon_energy_input, 0))
839 continue;
840
841 hwmon_dev = devm_hwmon_device_register_with_info(dev, ddat_gt->name,
842 ddat_gt,
843 &hwm_gt_chip_info,
844 NULL);
845 if (!IS_ERR(hwmon_dev))
846 ddat_gt->hwmon_dev = hwmon_dev;
847 }
848}
849
850void i915_hwmon_unregister(struct drm_i915_private *i915)
851{
852 fetch_and_zero(&i915->hwmon);
853}