Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v6.9.4
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
  30 *    Dave Airlie
  31 */
  32
  33#include <linux/dma-mapping.h>
  34#include <linux/iommu.h>
  35#include <linux/pagemap.h>
  36#include <linux/sched/task.h>
  37#include <linux/sched/mm.h>
  38#include <linux/seq_file.h>
  39#include <linux/slab.h>
  40#include <linux/swap.h>
  41#include <linux/dma-buf.h>
  42#include <linux/sizes.h>
  43#include <linux/module.h>
  44
  45#include <drm/drm_drv.h>
  46#include <drm/ttm/ttm_bo.h>
  47#include <drm/ttm/ttm_placement.h>
  48#include <drm/ttm/ttm_range_manager.h>
  49#include <drm/ttm/ttm_tt.h>
  50
  51#include <drm/amdgpu_drm.h>
  52
  53#include "amdgpu.h"
  54#include "amdgpu_object.h"
  55#include "amdgpu_trace.h"
  56#include "amdgpu_amdkfd.h"
  57#include "amdgpu_sdma.h"
  58#include "amdgpu_ras.h"
  59#include "amdgpu_hmm.h"
  60#include "amdgpu_atomfirmware.h"
  61#include "amdgpu_res_cursor.h"
  62#include "bif/bif_4_1_d.h"
  63
  64MODULE_IMPORT_NS(DMA_BUF);
  65
  66#define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
  67
  68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
  69				   struct ttm_tt *ttm,
  70				   struct ttm_resource *bo_mem);
  71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
  72				      struct ttm_tt *ttm);
  73
  74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
  75				    unsigned int type,
  76				    uint64_t size_in_page)
  77{
  78	return ttm_range_man_init(&adev->mman.bdev, type,
  79				  false, size_in_page);
  80}
  81
  82/**
  83 * amdgpu_evict_flags - Compute placement flags
  84 *
  85 * @bo: The buffer object to evict
  86 * @placement: Possible destination(s) for evicted BO
  87 *
  88 * Fill in placement data when ttm_bo_evict() is called
  89 */
  90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
  91				struct ttm_placement *placement)
  92{
  93	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
  94	struct amdgpu_bo *abo;
  95	static const struct ttm_place placements = {
  96		.fpfn = 0,
  97		.lpfn = 0,
  98		.mem_type = TTM_PL_SYSTEM,
  99		.flags = 0
 100	};
 101
 102	/* Don't handle scatter gather BOs */
 103	if (bo->type == ttm_bo_type_sg) {
 104		placement->num_placement = 0;
 
 105		return;
 106	}
 107
 108	/* Object isn't an AMDGPU object so ignore */
 109	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
 110		placement->placement = &placements;
 
 111		placement->num_placement = 1;
 
 112		return;
 113	}
 114
 115	abo = ttm_to_amdgpu_bo(bo);
 116	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
 117		placement->num_placement = 0;
 
 118		return;
 119	}
 120
 121	switch (bo->resource->mem_type) {
 122	case AMDGPU_PL_GDS:
 123	case AMDGPU_PL_GWS:
 124	case AMDGPU_PL_OA:
 125	case AMDGPU_PL_DOORBELL:
 126		placement->num_placement = 0;
 
 127		return;
 128
 129	case TTM_PL_VRAM:
 130		if (!adev->mman.buffer_funcs_enabled) {
 131			/* Move to system memory */
 132			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 133
 134		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
 135			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
 136			   amdgpu_res_cpu_visible(adev, bo->resource)) {
 137
 138			/* Try evicting to the CPU inaccessible part of VRAM
 139			 * first, but only set GTT as busy placement, so this
 140			 * BO will be evicted to GTT rather than causing other
 141			 * BOs to be evicted from VRAM
 142			 */
 143			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
 144							AMDGPU_GEM_DOMAIN_GTT |
 145							AMDGPU_GEM_DOMAIN_CPU);
 146			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
 147			abo->placements[0].lpfn = 0;
 148			abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
 
 149		} else {
 150			/* Move to GTT memory */
 151			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
 152							AMDGPU_GEM_DOMAIN_CPU);
 153		}
 154		break;
 155	case TTM_PL_TT:
 156	case AMDGPU_PL_PREEMPT:
 157	default:
 158		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 159		break;
 160	}
 161	*placement = abo->placement;
 162}
 163
 164/**
 165 * amdgpu_ttm_map_buffer - Map memory into the GART windows
 166 * @bo: buffer object to map
 167 * @mem: memory object to map
 168 * @mm_cur: range to map
 169 * @window: which GART window to use
 170 * @ring: DMA ring to use for the copy
 171 * @tmz: if we should setup a TMZ enabled mapping
 172 * @size: in number of bytes to map, out number of bytes mapped
 173 * @addr: resulting address inside the MC address space
 174 *
 175 * Setup one of the GART windows to access a specific piece of memory or return
 176 * the physical address for local memory.
 177 */
 178static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
 179				 struct ttm_resource *mem,
 180				 struct amdgpu_res_cursor *mm_cur,
 181				 unsigned int window, struct amdgpu_ring *ring,
 182				 bool tmz, uint64_t *size, uint64_t *addr)
 183{
 184	struct amdgpu_device *adev = ring->adev;
 185	unsigned int offset, num_pages, num_dw, num_bytes;
 186	uint64_t src_addr, dst_addr;
 187	struct amdgpu_job *job;
 188	void *cpu_addr;
 189	uint64_t flags;
 190	unsigned int i;
 191	int r;
 192
 193	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
 194	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
 195
 196	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
 197		return -EINVAL;
 198
 199	/* Map only what can't be accessed directly */
 200	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
 201		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
 202			mm_cur->start;
 203		return 0;
 204	}
 205
 206
 207	/*
 208	 * If start begins at an offset inside the page, then adjust the size
 209	 * and addr accordingly
 210	 */
 211	offset = mm_cur->start & ~PAGE_MASK;
 212
 213	num_pages = PFN_UP(*size + offset);
 214	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
 215
 216	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
 217
 218	*addr = adev->gmc.gart_start;
 219	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
 220		AMDGPU_GPU_PAGE_SIZE;
 221	*addr += offset;
 222
 223	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
 224	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
 225
 226	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
 227				     AMDGPU_FENCE_OWNER_UNDEFINED,
 228				     num_dw * 4 + num_bytes,
 229				     AMDGPU_IB_POOL_DELAYED, &job);
 230	if (r)
 231		return r;
 232
 233	src_addr = num_dw * 4;
 234	src_addr += job->ibs[0].gpu_addr;
 235
 236	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
 237	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
 238	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
 239				dst_addr, num_bytes, false);
 240
 241	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
 242	WARN_ON(job->ibs[0].length_dw > num_dw);
 243
 244	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
 245	if (tmz)
 246		flags |= AMDGPU_PTE_TMZ;
 247
 248	cpu_addr = &job->ibs[0].ptr[num_dw];
 249
 250	if (mem->mem_type == TTM_PL_TT) {
 251		dma_addr_t *dma_addr;
 252
 253		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
 254		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
 255	} else {
 256		dma_addr_t dma_address;
 257
 258		dma_address = mm_cur->start;
 259		dma_address += adev->vm_manager.vram_base_offset;
 260
 261		for (i = 0; i < num_pages; ++i) {
 262			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
 263					flags, cpu_addr);
 264			dma_address += PAGE_SIZE;
 265		}
 266	}
 267
 268	dma_fence_put(amdgpu_job_submit(job));
 269	return 0;
 270}
 271
 272/**
 273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
 274 * @adev: amdgpu device
 275 * @src: buffer/address where to read from
 276 * @dst: buffer/address where to write to
 277 * @size: number of bytes to copy
 278 * @tmz: if a secure copy should be used
 279 * @resv: resv object to sync to
 280 * @f: Returns the last fence if multiple jobs are submitted.
 281 *
 282 * The function copies @size bytes from {src->mem + src->offset} to
 283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
 284 * move and different for a BO to BO copy.
 285 *
 286 */
 287int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
 288			       const struct amdgpu_copy_mem *src,
 289			       const struct amdgpu_copy_mem *dst,
 290			       uint64_t size, bool tmz,
 291			       struct dma_resv *resv,
 292			       struct dma_fence **f)
 293{
 294	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
 295	struct amdgpu_res_cursor src_mm, dst_mm;
 296	struct dma_fence *fence = NULL;
 297	int r = 0;
 298
 299	if (!adev->mman.buffer_funcs_enabled) {
 300		DRM_ERROR("Trying to move memory with ring turned off.\n");
 301		return -EINVAL;
 302	}
 303
 304	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
 305	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
 306
 307	mutex_lock(&adev->mman.gtt_window_lock);
 308	while (src_mm.remaining) {
 309		uint64_t from, to, cur_size;
 310		struct dma_fence *next;
 311
 312		/* Never copy more than 256MiB at once to avoid a timeout */
 313		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
 314
 315		/* Map src to window 0 and dst to window 1. */
 316		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
 317					  0, ring, tmz, &cur_size, &from);
 318		if (r)
 319			goto error;
 320
 321		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
 322					  1, ring, tmz, &cur_size, &to);
 323		if (r)
 324			goto error;
 325
 326		r = amdgpu_copy_buffer(ring, from, to, cur_size,
 327				       resv, &next, false, true, tmz);
 328		if (r)
 329			goto error;
 330
 331		dma_fence_put(fence);
 332		fence = next;
 333
 334		amdgpu_res_next(&src_mm, cur_size);
 335		amdgpu_res_next(&dst_mm, cur_size);
 336	}
 337error:
 338	mutex_unlock(&adev->mman.gtt_window_lock);
 339	if (f)
 340		*f = dma_fence_get(fence);
 341	dma_fence_put(fence);
 342	return r;
 343}
 344
 345/*
 346 * amdgpu_move_blit - Copy an entire buffer to another buffer
 347 *
 348 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
 349 * help move buffers to and from VRAM.
 350 */
 351static int amdgpu_move_blit(struct ttm_buffer_object *bo,
 352			    bool evict,
 353			    struct ttm_resource *new_mem,
 354			    struct ttm_resource *old_mem)
 355{
 356	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 357	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 358	struct amdgpu_copy_mem src, dst;
 359	struct dma_fence *fence = NULL;
 360	int r;
 361
 362	src.bo = bo;
 363	dst.bo = bo;
 364	src.mem = old_mem;
 365	dst.mem = new_mem;
 366	src.offset = 0;
 367	dst.offset = 0;
 368
 369	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
 370				       new_mem->size,
 371				       amdgpu_bo_encrypted(abo),
 372				       bo->base.resv, &fence);
 373	if (r)
 374		goto error;
 375
 376	/* clear the space being freed */
 377	if (old_mem->mem_type == TTM_PL_VRAM &&
 378	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
 379		struct dma_fence *wipe_fence = NULL;
 380
 381		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
 382					false);
 383		if (r) {
 384			goto error;
 385		} else if (wipe_fence) {
 386			dma_fence_put(fence);
 387			fence = wipe_fence;
 388		}
 389	}
 390
 391	/* Always block for VM page tables before committing the new location */
 392	if (bo->type == ttm_bo_type_kernel)
 393		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
 394	else
 395		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
 396	dma_fence_put(fence);
 397	return r;
 398
 399error:
 400	if (fence)
 401		dma_fence_wait(fence, false);
 402	dma_fence_put(fence);
 403	return r;
 404}
 405
 406/**
 407 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
 408 * @adev: amdgpu device
 409 * @res: the resource to check
 410 *
 411 * Returns: true if the full resource is CPU visible, false otherwise.
 412 */
 413bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
 414			    struct ttm_resource *res)
 415{
 
 416	struct amdgpu_res_cursor cursor;
 
 417
 418	if (!res)
 419		return false;
 420
 421	if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
 422	    res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
 423		return true;
 424
 425	if (res->mem_type != TTM_PL_VRAM)
 426		return false;
 427
 428	amdgpu_res_first(res, 0, res->size, &cursor);
 
 429	while (cursor.remaining) {
 430		if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
 431			return false;
 432		amdgpu_res_next(&cursor, cursor.size);
 433	}
 434
 435	return true;
 436}
 437
 438/*
 439 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
 440 *
 441 * Called by amdgpu_bo_move()
 442 */
 443static bool amdgpu_res_copyable(struct amdgpu_device *adev,
 444				struct ttm_resource *mem)
 445{
 446	if (!amdgpu_res_cpu_visible(adev, mem))
 447		return false;
 448
 449	/* ttm_resource_ioremap only supports contiguous memory */
 450	if (mem->mem_type == TTM_PL_VRAM &&
 451	    !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
 452		return false;
 453
 454	return true;
 455}
 456
 457/*
 458 * amdgpu_bo_move - Move a buffer object to a new memory location
 459 *
 460 * Called by ttm_bo_handle_move_mem()
 461 */
 462static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
 463			  struct ttm_operation_ctx *ctx,
 464			  struct ttm_resource *new_mem,
 465			  struct ttm_place *hop)
 466{
 467	struct amdgpu_device *adev;
 468	struct amdgpu_bo *abo;
 469	struct ttm_resource *old_mem = bo->resource;
 470	int r;
 471
 472	if (new_mem->mem_type == TTM_PL_TT ||
 473	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
 474		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
 475		if (r)
 476			return r;
 477	}
 478
 479	abo = ttm_to_amdgpu_bo(bo);
 480	adev = amdgpu_ttm_adev(bo->bdev);
 481
 482	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
 483			 bo->ttm == NULL)) {
 484		amdgpu_bo_move_notify(bo, evict, new_mem);
 485		ttm_bo_move_null(bo, new_mem);
 486		return 0;
 487	}
 488	if (old_mem->mem_type == TTM_PL_SYSTEM &&
 489	    (new_mem->mem_type == TTM_PL_TT ||
 490	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
 491		amdgpu_bo_move_notify(bo, evict, new_mem);
 492		ttm_bo_move_null(bo, new_mem);
 493		return 0;
 494	}
 495	if ((old_mem->mem_type == TTM_PL_TT ||
 496	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
 497	    new_mem->mem_type == TTM_PL_SYSTEM) {
 498		r = ttm_bo_wait_ctx(bo, ctx);
 499		if (r)
 500			return r;
 501
 502		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
 503		amdgpu_bo_move_notify(bo, evict, new_mem);
 504		ttm_resource_free(bo, &bo->resource);
 505		ttm_bo_assign_mem(bo, new_mem);
 506		return 0;
 507	}
 508
 509	if (old_mem->mem_type == AMDGPU_PL_GDS ||
 510	    old_mem->mem_type == AMDGPU_PL_GWS ||
 511	    old_mem->mem_type == AMDGPU_PL_OA ||
 512	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
 513	    new_mem->mem_type == AMDGPU_PL_GDS ||
 514	    new_mem->mem_type == AMDGPU_PL_GWS ||
 515	    new_mem->mem_type == AMDGPU_PL_OA ||
 516	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
 517		/* Nothing to save here */
 518		amdgpu_bo_move_notify(bo, evict, new_mem);
 519		ttm_bo_move_null(bo, new_mem);
 520		return 0;
 521	}
 522
 523	if (bo->type == ttm_bo_type_device &&
 524	    new_mem->mem_type == TTM_PL_VRAM &&
 525	    old_mem->mem_type != TTM_PL_VRAM) {
 526		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
 527		 * accesses the BO after it's moved.
 528		 */
 529		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 530	}
 531
 532	if (adev->mman.buffer_funcs_enabled &&
 533	    ((old_mem->mem_type == TTM_PL_SYSTEM &&
 534	      new_mem->mem_type == TTM_PL_VRAM) ||
 535	     (old_mem->mem_type == TTM_PL_VRAM &&
 536	      new_mem->mem_type == TTM_PL_SYSTEM))) {
 537		hop->fpfn = 0;
 538		hop->lpfn = 0;
 539		hop->mem_type = TTM_PL_TT;
 540		hop->flags = TTM_PL_FLAG_TEMPORARY;
 541		return -EMULTIHOP;
 542	}
 543
 544	amdgpu_bo_move_notify(bo, evict, new_mem);
 545	if (adev->mman.buffer_funcs_enabled)
 546		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
 547	else
 548		r = -ENODEV;
 
 549
 550	if (r) {
 551		/* Check that all memory is CPU accessible */
 552		if (!amdgpu_res_copyable(adev, old_mem) ||
 553		    !amdgpu_res_copyable(adev, new_mem)) {
 554			pr_err("Move buffer fallback to memcpy unavailable\n");
 555			return r;
 556		}
 557
 558		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
 559		if (r)
 560			return r;
 561	}
 562
 563	/* update statistics after the move */
 564	if (evict)
 565		atomic64_inc(&adev->num_evictions);
 566	atomic64_add(bo->base.size, &adev->num_bytes_moved);
 
 567	return 0;
 568}
 569
 570/*
 571 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
 572 *
 573 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
 574 */
 575static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
 576				     struct ttm_resource *mem)
 577{
 578	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 
 579
 580	switch (mem->mem_type) {
 581	case TTM_PL_SYSTEM:
 582		/* system memory */
 583		return 0;
 584	case TTM_PL_TT:
 585	case AMDGPU_PL_PREEMPT:
 586		break;
 587	case TTM_PL_VRAM:
 588		mem->bus.offset = mem->start << PAGE_SHIFT;
 
 
 
 589
 590		if (adev->mman.aper_base_kaddr &&
 591		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
 592			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
 593					mem->bus.offset;
 594
 595		mem->bus.offset += adev->gmc.aper_base;
 596		mem->bus.is_iomem = true;
 597		break;
 598	case AMDGPU_PL_DOORBELL:
 599		mem->bus.offset = mem->start << PAGE_SHIFT;
 600		mem->bus.offset += adev->doorbell.base;
 601		mem->bus.is_iomem = true;
 602		mem->bus.caching = ttm_uncached;
 603		break;
 604	default:
 605		return -EINVAL;
 606	}
 607	return 0;
 608}
 609
 610static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
 611					   unsigned long page_offset)
 612{
 613	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 614	struct amdgpu_res_cursor cursor;
 615
 616	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
 617			 &cursor);
 618
 619	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
 620		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
 621
 622	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
 623}
 624
 625/**
 626 * amdgpu_ttm_domain_start - Returns GPU start address
 627 * @adev: amdgpu device object
 628 * @type: type of the memory
 629 *
 630 * Returns:
 631 * GPU start address of a memory domain
 632 */
 633
 634uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
 635{
 636	switch (type) {
 637	case TTM_PL_TT:
 638		return adev->gmc.gart_start;
 639	case TTM_PL_VRAM:
 640		return adev->gmc.vram_start;
 641	}
 642
 643	return 0;
 644}
 645
 646/*
 647 * TTM backend functions.
 648 */
 649struct amdgpu_ttm_tt {
 650	struct ttm_tt	ttm;
 651	struct drm_gem_object	*gobj;
 652	u64			offset;
 653	uint64_t		userptr;
 654	struct task_struct	*usertask;
 655	uint32_t		userflags;
 656	bool			bound;
 657	int32_t			pool_id;
 658};
 659
 660#define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
 661
 662#ifdef CONFIG_DRM_AMDGPU_USERPTR
 663/*
 664 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
 665 * memory and start HMM tracking CPU page table update
 666 *
 667 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
 668 * once afterwards to stop HMM tracking
 669 */
 670int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
 671				 struct hmm_range **range)
 672{
 673	struct ttm_tt *ttm = bo->tbo.ttm;
 674	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 675	unsigned long start = gtt->userptr;
 676	struct vm_area_struct *vma;
 677	struct mm_struct *mm;
 678	bool readonly;
 679	int r = 0;
 680
 681	/* Make sure get_user_pages_done() can cleanup gracefully */
 682	*range = NULL;
 683
 684	mm = bo->notifier.mm;
 685	if (unlikely(!mm)) {
 686		DRM_DEBUG_DRIVER("BO is not registered?\n");
 687		return -EFAULT;
 688	}
 689
 690	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
 691		return -ESRCH;
 692
 693	mmap_read_lock(mm);
 694	vma = vma_lookup(mm, start);
 695	if (unlikely(!vma)) {
 696		r = -EFAULT;
 697		goto out_unlock;
 698	}
 699	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
 700		vma->vm_file)) {
 701		r = -EPERM;
 702		goto out_unlock;
 703	}
 704
 705	readonly = amdgpu_ttm_tt_is_readonly(ttm);
 706	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
 707				       readonly, NULL, pages, range);
 708out_unlock:
 709	mmap_read_unlock(mm);
 710	if (r)
 711		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
 712
 713	mmput(mm);
 714
 715	return r;
 716}
 717
 718/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
 719 */
 720void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
 721				      struct hmm_range *range)
 722{
 723	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 724
 725	if (gtt && gtt->userptr && range)
 726		amdgpu_hmm_range_get_pages_done(range);
 727}
 728
 729/*
 730 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
 731 * Check if the pages backing this ttm range have been invalidated
 732 *
 733 * Returns: true if pages are still valid
 734 */
 735bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
 736				       struct hmm_range *range)
 737{
 738	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 739
 740	if (!gtt || !gtt->userptr || !range)
 741		return false;
 742
 743	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
 744		gtt->userptr, ttm->num_pages);
 745
 746	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
 747
 748	return !amdgpu_hmm_range_get_pages_done(range);
 749}
 750#endif
 751
 752/*
 753 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
 754 *
 755 * Called by amdgpu_cs_list_validate(). This creates the page list
 756 * that backs user memory and will ultimately be mapped into the device
 757 * address space.
 758 */
 759void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
 760{
 761	unsigned long i;
 762
 763	for (i = 0; i < ttm->num_pages; ++i)
 764		ttm->pages[i] = pages ? pages[i] : NULL;
 765}
 766
 767/*
 768 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
 769 *
 770 * Called by amdgpu_ttm_backend_bind()
 771 **/
 772static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
 773				     struct ttm_tt *ttm)
 774{
 775	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 776	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 777	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 778	enum dma_data_direction direction = write ?
 779		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 780	int r;
 781
 782	/* Allocate an SG array and squash pages into it */
 783	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
 784				      (u64)ttm->num_pages << PAGE_SHIFT,
 785				      GFP_KERNEL);
 786	if (r)
 787		goto release_sg;
 788
 789	/* Map SG to device */
 790	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
 791	if (r)
 792		goto release_sg;
 793
 794	/* convert SG to linear array of pages and dma addresses */
 795	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 796				       ttm->num_pages);
 797
 798	return 0;
 799
 800release_sg:
 801	kfree(ttm->sg);
 802	ttm->sg = NULL;
 803	return r;
 804}
 805
 806/*
 807 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
 808 */
 809static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
 810					struct ttm_tt *ttm)
 811{
 812	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 813	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 814	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 815	enum dma_data_direction direction = write ?
 816		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 817
 818	/* double check that we don't free the table twice */
 819	if (!ttm->sg || !ttm->sg->sgl)
 820		return;
 821
 822	/* unmap the pages mapped to the device */
 823	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
 824	sg_free_table(ttm->sg);
 825}
 826
 827/*
 828 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
 829 * MQDn+CtrlStackn where n is the number of XCCs per partition.
 830 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
 831 * and uses memory type default, UC. The rest of pages_per_xcc are
 832 * Ctrl stack and modify their memory type to NC.
 833 */
 834static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
 835				struct ttm_tt *ttm, uint64_t flags)
 836{
 837	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 838	uint64_t total_pages = ttm->num_pages;
 839	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
 840	uint64_t page_idx, pages_per_xcc;
 841	int i;
 842	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
 843			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
 844
 845	pages_per_xcc = total_pages;
 846	do_div(pages_per_xcc, num_xcc);
 847
 848	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
 849		/* MQD page: use default flags */
 850		amdgpu_gart_bind(adev,
 851				gtt->offset + (page_idx << PAGE_SHIFT),
 852				1, &gtt->ttm.dma_address[page_idx], flags);
 853		/*
 854		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
 855		 * the second page of the BO onward.
 856		 */
 857		amdgpu_gart_bind(adev,
 858				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
 859				pages_per_xcc - 1,
 860				&gtt->ttm.dma_address[page_idx + 1],
 861				ctrl_flags);
 862	}
 863}
 864
 865static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
 866				 struct ttm_buffer_object *tbo,
 867				 uint64_t flags)
 868{
 869	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
 870	struct ttm_tt *ttm = tbo->ttm;
 871	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 872
 873	if (amdgpu_bo_encrypted(abo))
 874		flags |= AMDGPU_PTE_TMZ;
 875
 876	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
 877		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
 878	} else {
 879		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 880				 gtt->ttm.dma_address, flags);
 881	}
 882	gtt->bound = true;
 883}
 884
 885/*
 886 * amdgpu_ttm_backend_bind - Bind GTT memory
 887 *
 888 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
 889 * This handles binding GTT memory to the device address space.
 890 */
 891static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
 892				   struct ttm_tt *ttm,
 893				   struct ttm_resource *bo_mem)
 894{
 895	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 896	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 897	uint64_t flags;
 898	int r;
 899
 900	if (!bo_mem)
 901		return -EINVAL;
 902
 903	if (gtt->bound)
 904		return 0;
 905
 906	if (gtt->userptr) {
 907		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
 908		if (r) {
 909			DRM_ERROR("failed to pin userptr\n");
 910			return r;
 911		}
 912	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
 913		if (!ttm->sg) {
 914			struct dma_buf_attachment *attach;
 915			struct sg_table *sgt;
 916
 917			attach = gtt->gobj->import_attach;
 918			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
 919			if (IS_ERR(sgt))
 920				return PTR_ERR(sgt);
 921
 922			ttm->sg = sgt;
 923		}
 924
 925		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 926					       ttm->num_pages);
 927	}
 928
 929	if (!ttm->num_pages) {
 930		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
 931		     ttm->num_pages, bo_mem, ttm);
 932	}
 933
 934	if (bo_mem->mem_type != TTM_PL_TT ||
 935	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
 936		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
 937		return 0;
 938	}
 939
 940	/* compute PTE flags relevant to this BO memory */
 941	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
 942
 943	/* bind pages into GART page tables */
 944	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
 945	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 946			 gtt->ttm.dma_address, flags);
 947	gtt->bound = true;
 948	return 0;
 949}
 950
 951/*
 952 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
 953 * through AGP or GART aperture.
 954 *
 955 * If bo is accessible through AGP aperture, then use AGP aperture
 956 * to access bo; otherwise allocate logical space in GART aperture
 957 * and map bo to GART aperture.
 958 */
 959int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
 960{
 961	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 962	struct ttm_operation_ctx ctx = { false, false };
 963	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
 964	struct ttm_placement placement;
 965	struct ttm_place placements;
 966	struct ttm_resource *tmp;
 967	uint64_t addr, flags;
 968	int r;
 969
 970	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
 971		return 0;
 972
 973	addr = amdgpu_gmc_agp_addr(bo);
 974	if (addr != AMDGPU_BO_INVALID_OFFSET)
 975		return 0;
 976
 977	/* allocate GART space */
 978	placement.num_placement = 1;
 979	placement.placement = &placements;
 
 
 980	placements.fpfn = 0;
 981	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
 982	placements.mem_type = TTM_PL_TT;
 983	placements.flags = bo->resource->placement;
 984
 985	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
 986	if (unlikely(r))
 987		return r;
 988
 989	/* compute PTE flags for this buffer object */
 990	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
 991
 992	/* Bind pages */
 993	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
 994	amdgpu_ttm_gart_bind(adev, bo, flags);
 995	amdgpu_gart_invalidate_tlb(adev);
 996	ttm_resource_free(bo, &bo->resource);
 997	ttm_bo_assign_mem(bo, tmp);
 998
 999	return 0;
1000}
1001
1002/*
1003 * amdgpu_ttm_recover_gart - Rebind GTT pages
1004 *
1005 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1006 * rebind GTT pages during a GPU reset.
1007 */
1008void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1009{
1010	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1011	uint64_t flags;
1012
1013	if (!tbo->ttm)
1014		return;
1015
1016	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1017	amdgpu_ttm_gart_bind(adev, tbo, flags);
1018}
1019
1020/*
1021 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1022 *
1023 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1024 * ttm_tt_destroy().
1025 */
1026static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1027				      struct ttm_tt *ttm)
1028{
1029	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1030	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1031
1032	/* if the pages have userptr pinning then clear that first */
1033	if (gtt->userptr) {
1034		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1035	} else if (ttm->sg && gtt->gobj->import_attach) {
1036		struct dma_buf_attachment *attach;
1037
1038		attach = gtt->gobj->import_attach;
1039		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1040		ttm->sg = NULL;
1041	}
1042
1043	if (!gtt->bound)
1044		return;
1045
1046	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1047		return;
1048
1049	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1050	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1051	gtt->bound = false;
1052}
1053
1054static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1055				       struct ttm_tt *ttm)
1056{
1057	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1058
1059	if (gtt->usertask)
1060		put_task_struct(gtt->usertask);
1061
1062	ttm_tt_fini(&gtt->ttm);
1063	kfree(gtt);
1064}
1065
1066/**
1067 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1068 *
1069 * @bo: The buffer object to create a GTT ttm_tt object around
1070 * @page_flags: Page flags to be added to the ttm_tt object
1071 *
1072 * Called by ttm_tt_create().
1073 */
1074static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1075					   uint32_t page_flags)
1076{
1077	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1078	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1079	struct amdgpu_ttm_tt *gtt;
1080	enum ttm_caching caching;
1081
1082	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1083	if (!gtt)
1084		return NULL;
1085
1086	gtt->gobj = &bo->base;
1087	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1088		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1089	else
1090		gtt->pool_id = abo->xcp_id;
1091
1092	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1093		caching = ttm_write_combined;
1094	else
1095		caching = ttm_cached;
1096
1097	/* allocate space for the uninitialized page entries */
1098	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1099		kfree(gtt);
1100		return NULL;
1101	}
1102	return &gtt->ttm;
1103}
1104
1105/*
1106 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1107 *
1108 * Map the pages of a ttm_tt object to an address space visible
1109 * to the underlying device.
1110 */
1111static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1112				  struct ttm_tt *ttm,
1113				  struct ttm_operation_ctx *ctx)
1114{
1115	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1116	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1117	struct ttm_pool *pool;
1118	pgoff_t i;
1119	int ret;
1120
1121	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1122	if (gtt->userptr) {
1123		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1124		if (!ttm->sg)
1125			return -ENOMEM;
1126		return 0;
1127	}
1128
1129	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1130		return 0;
1131
1132	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1133		pool = &adev->mman.ttm_pools[gtt->pool_id];
1134	else
1135		pool = &adev->mman.bdev.pool;
1136	ret = ttm_pool_alloc(pool, ttm, ctx);
1137	if (ret)
1138		return ret;
1139
1140	for (i = 0; i < ttm->num_pages; ++i)
1141		ttm->pages[i]->mapping = bdev->dev_mapping;
1142
1143	return 0;
1144}
1145
1146/*
1147 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1148 *
1149 * Unmaps pages of a ttm_tt object from the device address space and
1150 * unpopulates the page array backing it.
1151 */
1152static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1153				     struct ttm_tt *ttm)
1154{
1155	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1156	struct amdgpu_device *adev;
1157	struct ttm_pool *pool;
1158	pgoff_t i;
1159
1160	amdgpu_ttm_backend_unbind(bdev, ttm);
1161
1162	if (gtt->userptr) {
1163		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1164		kfree(ttm->sg);
1165		ttm->sg = NULL;
1166		return;
1167	}
1168
1169	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1170		return;
1171
1172	for (i = 0; i < ttm->num_pages; ++i)
1173		ttm->pages[i]->mapping = NULL;
1174
1175	adev = amdgpu_ttm_adev(bdev);
1176
1177	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1178		pool = &adev->mman.ttm_pools[gtt->pool_id];
1179	else
1180		pool = &adev->mman.bdev.pool;
1181
1182	return ttm_pool_free(pool, ttm);
1183}
1184
1185/**
1186 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1187 * task
1188 *
1189 * @tbo: The ttm_buffer_object that contains the userptr
1190 * @user_addr:  The returned value
1191 */
1192int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1193			      uint64_t *user_addr)
1194{
1195	struct amdgpu_ttm_tt *gtt;
1196
1197	if (!tbo->ttm)
1198		return -EINVAL;
1199
1200	gtt = (void *)tbo->ttm;
1201	*user_addr = gtt->userptr;
1202	return 0;
1203}
1204
1205/**
1206 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1207 * task
1208 *
1209 * @bo: The ttm_buffer_object to bind this userptr to
1210 * @addr:  The address in the current tasks VM space to use
1211 * @flags: Requirements of userptr object.
1212 *
1213 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1214 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1215 * initialize GPU VM for a KFD process.
1216 */
1217int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1218			      uint64_t addr, uint32_t flags)
1219{
1220	struct amdgpu_ttm_tt *gtt;
1221
1222	if (!bo->ttm) {
1223		/* TODO: We want a separate TTM object type for userptrs */
1224		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1225		if (bo->ttm == NULL)
1226			return -ENOMEM;
1227	}
1228
1229	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1230	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1231
1232	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1233	gtt->userptr = addr;
1234	gtt->userflags = flags;
1235
1236	if (gtt->usertask)
1237		put_task_struct(gtt->usertask);
1238	gtt->usertask = current->group_leader;
1239	get_task_struct(gtt->usertask);
1240
1241	return 0;
1242}
1243
1244/*
1245 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1246 */
1247struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1248{
1249	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1250
1251	if (gtt == NULL)
1252		return NULL;
1253
1254	if (gtt->usertask == NULL)
1255		return NULL;
1256
1257	return gtt->usertask->mm;
1258}
1259
1260/*
1261 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1262 * address range for the current task.
1263 *
1264 */
1265bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1266				  unsigned long end, unsigned long *userptr)
1267{
1268	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1269	unsigned long size;
1270
1271	if (gtt == NULL || !gtt->userptr)
1272		return false;
1273
1274	/* Return false if no part of the ttm_tt object lies within
1275	 * the range
1276	 */
1277	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1278	if (gtt->userptr > end || gtt->userptr + size <= start)
1279		return false;
1280
1281	if (userptr)
1282		*userptr = gtt->userptr;
1283	return true;
1284}
1285
1286/*
1287 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1288 */
1289bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1290{
1291	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1292
1293	if (gtt == NULL || !gtt->userptr)
1294		return false;
1295
1296	return true;
1297}
1298
1299/*
1300 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1301 */
1302bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1303{
1304	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1305
1306	if (gtt == NULL)
1307		return false;
1308
1309	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1310}
1311
1312/**
1313 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1314 *
1315 * @ttm: The ttm_tt object to compute the flags for
1316 * @mem: The memory registry backing this ttm_tt object
1317 *
1318 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1319 */
1320uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1321{
1322	uint64_t flags = 0;
1323
1324	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1325		flags |= AMDGPU_PTE_VALID;
1326
1327	if (mem && (mem->mem_type == TTM_PL_TT ||
1328		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1329		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1330		flags |= AMDGPU_PTE_SYSTEM;
1331
1332		if (ttm->caching == ttm_cached)
1333			flags |= AMDGPU_PTE_SNOOPED;
1334	}
1335
1336	if (mem && mem->mem_type == TTM_PL_VRAM &&
1337			mem->bus.caching == ttm_cached)
1338		flags |= AMDGPU_PTE_SNOOPED;
1339
1340	return flags;
1341}
1342
1343/**
1344 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1345 *
1346 * @adev: amdgpu_device pointer
1347 * @ttm: The ttm_tt object to compute the flags for
1348 * @mem: The memory registry backing this ttm_tt object
1349 *
1350 * Figure out the flags to use for a VM PTE (Page Table Entry).
1351 */
1352uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1353				 struct ttm_resource *mem)
1354{
1355	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1356
1357	flags |= adev->gart.gart_pte_flags;
1358	flags |= AMDGPU_PTE_READABLE;
1359
1360	if (!amdgpu_ttm_tt_is_readonly(ttm))
1361		flags |= AMDGPU_PTE_WRITEABLE;
1362
1363	return flags;
1364}
1365
1366/*
1367 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1368 * object.
1369 *
1370 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1371 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1372 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1373 * used to clean out a memory space.
1374 */
1375static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1376					    const struct ttm_place *place)
1377{
1378	struct dma_resv_iter resv_cursor;
1379	struct dma_fence *f;
1380
1381	if (!amdgpu_bo_is_amdgpu_bo(bo))
1382		return ttm_bo_eviction_valuable(bo, place);
1383
1384	/* Swapout? */
1385	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1386		return true;
1387
1388	if (bo->type == ttm_bo_type_kernel &&
1389	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1390		return false;
1391
1392	/* If bo is a KFD BO, check if the bo belongs to the current process.
1393	 * If true, then return false as any KFD process needs all its BOs to
1394	 * be resident to run successfully
1395	 */
1396	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1397				DMA_RESV_USAGE_BOOKKEEP, f) {
1398		if (amdkfd_fence_check_mm(f, current->mm))
1399			return false;
1400	}
1401
1402	/* Preemptible BOs don't own system resources managed by the
1403	 * driver (pages, VRAM, GART space). They point to resources
1404	 * owned by someone else (e.g. pageable memory in user mode
1405	 * or a DMABuf). They are used in a preemptible context so we
1406	 * can guarantee no deadlocks and good QoS in case of MMU
1407	 * notifiers or DMABuf move notifiers from the resource owner.
1408	 */
1409	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1410		return false;
1411
1412	if (bo->resource->mem_type == TTM_PL_TT &&
1413	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1414		return false;
1415
1416	return ttm_bo_eviction_valuable(bo, place);
1417}
1418
1419static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1420				      void *buf, size_t size, bool write)
1421{
1422	while (size) {
1423		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1424		uint64_t bytes = 4 - (pos & 0x3);
1425		uint32_t shift = (pos & 0x3) * 8;
1426		uint32_t mask = 0xffffffff << shift;
1427		uint32_t value = 0;
1428
1429		if (size < bytes) {
1430			mask &= 0xffffffff >> (bytes - size) * 8;
1431			bytes = size;
1432		}
1433
1434		if (mask != 0xffffffff) {
1435			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1436			if (write) {
1437				value &= ~mask;
1438				value |= (*(uint32_t *)buf << shift) & mask;
1439				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1440			} else {
1441				value = (value & mask) >> shift;
1442				memcpy(buf, &value, bytes);
1443			}
1444		} else {
1445			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1446		}
1447
1448		pos += bytes;
1449		buf += bytes;
1450		size -= bytes;
1451	}
1452}
1453
1454static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1455					unsigned long offset, void *buf,
1456					int len, int write)
1457{
1458	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1459	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1460	struct amdgpu_res_cursor src_mm;
1461	struct amdgpu_job *job;
1462	struct dma_fence *fence;
1463	uint64_t src_addr, dst_addr;
1464	unsigned int num_dw;
1465	int r, idx;
1466
1467	if (len != PAGE_SIZE)
1468		return -EINVAL;
1469
1470	if (!adev->mman.sdma_access_ptr)
1471		return -EACCES;
1472
1473	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1474		return -ENODEV;
1475
1476	if (write)
1477		memcpy(adev->mman.sdma_access_ptr, buf, len);
1478
1479	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1480	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1481				     AMDGPU_FENCE_OWNER_UNDEFINED,
1482				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1483				     &job);
1484	if (r)
1485		goto out;
1486
1487	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1488	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1489		src_mm.start;
1490	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1491	if (write)
1492		swap(src_addr, dst_addr);
1493
1494	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1495				PAGE_SIZE, false);
1496
1497	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1498	WARN_ON(job->ibs[0].length_dw > num_dw);
1499
1500	fence = amdgpu_job_submit(job);
1501
1502	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1503		r = -ETIMEDOUT;
1504	dma_fence_put(fence);
1505
1506	if (!(r || write))
1507		memcpy(buf, adev->mman.sdma_access_ptr, len);
1508out:
1509	drm_dev_exit(idx);
1510	return r;
1511}
1512
1513/**
1514 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1515 *
1516 * @bo:  The buffer object to read/write
1517 * @offset:  Offset into buffer object
1518 * @buf:  Secondary buffer to write/read from
1519 * @len: Length in bytes of access
1520 * @write:  true if writing
1521 *
1522 * This is used to access VRAM that backs a buffer object via MMIO
1523 * access for debugging purposes.
1524 */
1525static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1526				    unsigned long offset, void *buf, int len,
1527				    int write)
1528{
1529	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1530	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1531	struct amdgpu_res_cursor cursor;
1532	int ret = 0;
1533
1534	if (bo->resource->mem_type != TTM_PL_VRAM)
1535		return -EIO;
1536
1537	if (amdgpu_device_has_timeouts_enabled(adev) &&
1538			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1539		return len;
1540
1541	amdgpu_res_first(bo->resource, offset, len, &cursor);
1542	while (cursor.remaining) {
1543		size_t count, size = cursor.size;
1544		loff_t pos = cursor.start;
1545
1546		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1547		size -= count;
1548		if (size) {
1549			/* using MM to access rest vram and handle un-aligned address */
1550			pos += count;
1551			buf += count;
1552			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1553		}
1554
1555		ret += cursor.size;
1556		buf += cursor.size;
1557		amdgpu_res_next(&cursor, cursor.size);
1558	}
1559
1560	return ret;
1561}
1562
1563static void
1564amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1565{
1566	amdgpu_bo_move_notify(bo, false, NULL);
1567}
1568
1569static struct ttm_device_funcs amdgpu_bo_driver = {
1570	.ttm_tt_create = &amdgpu_ttm_tt_create,
1571	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1572	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1573	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1574	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1575	.evict_flags = &amdgpu_evict_flags,
1576	.move = &amdgpu_bo_move,
1577	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1578	.release_notify = &amdgpu_bo_release_notify,
1579	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1580	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1581	.access_memory = &amdgpu_ttm_access_memory,
1582};
1583
1584/*
1585 * Firmware Reservation functions
1586 */
1587/**
1588 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1589 *
1590 * @adev: amdgpu_device pointer
1591 *
1592 * free fw reserved vram if it has been reserved.
1593 */
1594static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1595{
1596	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1597		NULL, &adev->mman.fw_vram_usage_va);
1598}
1599
1600/*
1601 * Driver Reservation functions
1602 */
1603/**
1604 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1605 *
1606 * @adev: amdgpu_device pointer
1607 *
1608 * free drv reserved vram if it has been reserved.
1609 */
1610static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1611{
1612	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1613						  NULL,
1614						  &adev->mman.drv_vram_usage_va);
1615}
1616
1617/**
1618 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1619 *
1620 * @adev: amdgpu_device pointer
1621 *
1622 * create bo vram reservation from fw.
1623 */
1624static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1625{
1626	uint64_t vram_size = adev->gmc.visible_vram_size;
1627
1628	adev->mman.fw_vram_usage_va = NULL;
1629	adev->mman.fw_vram_usage_reserved_bo = NULL;
1630
1631	if (adev->mman.fw_vram_usage_size == 0 ||
1632	    adev->mman.fw_vram_usage_size > vram_size)
1633		return 0;
1634
1635	return amdgpu_bo_create_kernel_at(adev,
1636					  adev->mman.fw_vram_usage_start_offset,
1637					  adev->mman.fw_vram_usage_size,
1638					  &adev->mman.fw_vram_usage_reserved_bo,
1639					  &adev->mman.fw_vram_usage_va);
1640}
1641
1642/**
1643 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1644 *
1645 * @adev: amdgpu_device pointer
1646 *
1647 * create bo vram reservation from drv.
1648 */
1649static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1650{
1651	u64 vram_size = adev->gmc.visible_vram_size;
1652
1653	adev->mman.drv_vram_usage_va = NULL;
1654	adev->mman.drv_vram_usage_reserved_bo = NULL;
1655
1656	if (adev->mman.drv_vram_usage_size == 0 ||
1657	    adev->mman.drv_vram_usage_size > vram_size)
1658		return 0;
1659
1660	return amdgpu_bo_create_kernel_at(adev,
1661					  adev->mman.drv_vram_usage_start_offset,
1662					  adev->mman.drv_vram_usage_size,
1663					  &adev->mman.drv_vram_usage_reserved_bo,
1664					  &adev->mman.drv_vram_usage_va);
1665}
1666
1667/*
1668 * Memoy training reservation functions
1669 */
1670
1671/**
1672 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1673 *
1674 * @adev: amdgpu_device pointer
1675 *
1676 * free memory training reserved vram if it has been reserved.
1677 */
1678static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1679{
1680	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1681
1682	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1683	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1684	ctx->c2p_bo = NULL;
1685
1686	return 0;
1687}
1688
1689static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1690						uint32_t reserve_size)
1691{
1692	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1693
1694	memset(ctx, 0, sizeof(*ctx));
1695
1696	ctx->c2p_train_data_offset =
1697		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1698	ctx->p2c_train_data_offset =
1699		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1700	ctx->train_data_size =
1701		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1702
1703	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1704			ctx->train_data_size,
1705			ctx->p2c_train_data_offset,
1706			ctx->c2p_train_data_offset);
1707}
1708
1709/*
1710 * reserve TMR memory at the top of VRAM which holds
1711 * IP Discovery data and is protected by PSP.
1712 */
1713static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1714{
1715	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1716	bool mem_train_support = false;
1717	uint32_t reserve_size = 0;
1718	int ret;
1719
1720	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1721		if (amdgpu_atomfirmware_mem_training_supported(adev))
1722			mem_train_support = true;
1723		else
1724			DRM_DEBUG("memory training does not support!\n");
1725	}
1726
1727	/*
1728	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1729	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1730	 *
1731	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1732	 * discovery data and G6 memory training data respectively
1733	 */
1734	if (adev->bios)
1735		reserve_size =
1736			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1737
1738	if (!adev->bios &&
1739	    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1740		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1741	else if (!reserve_size)
1742		reserve_size = DISCOVERY_TMR_OFFSET;
1743
1744	if (mem_train_support) {
1745		/* reserve vram for mem train according to TMR location */
1746		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1747		ret = amdgpu_bo_create_kernel_at(adev,
1748						 ctx->c2p_train_data_offset,
1749						 ctx->train_data_size,
1750						 &ctx->c2p_bo,
1751						 NULL);
1752		if (ret) {
1753			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1754			amdgpu_ttm_training_reserve_vram_fini(adev);
1755			return ret;
1756		}
1757		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1758	}
1759
1760	if (!adev->gmc.is_app_apu) {
1761		ret = amdgpu_bo_create_kernel_at(
1762			adev, adev->gmc.real_vram_size - reserve_size,
1763			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1764		if (ret) {
1765			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1766			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1767					      NULL, NULL);
1768			return ret;
1769		}
1770	} else {
1771		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1772	}
1773
1774	return 0;
1775}
1776
1777static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1778{
1779	int i;
1780
1781	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1782		return 0;
1783
1784	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1785				       sizeof(*adev->mman.ttm_pools),
1786				       GFP_KERNEL);
1787	if (!adev->mman.ttm_pools)
1788		return -ENOMEM;
1789
1790	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1791		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1792			      adev->gmc.mem_partitions[i].numa.node,
1793			      false, false);
1794	}
1795	return 0;
1796}
1797
1798static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1799{
1800	int i;
1801
1802	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1803		return;
1804
1805	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1806		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1807
1808	kfree(adev->mman.ttm_pools);
1809	adev->mman.ttm_pools = NULL;
1810}
1811
1812/*
1813 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1814 * gtt/vram related fields.
1815 *
1816 * This initializes all of the memory space pools that the TTM layer
1817 * will need such as the GTT space (system memory mapped to the device),
1818 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1819 * can be mapped per VMID.
1820 */
1821int amdgpu_ttm_init(struct amdgpu_device *adev)
1822{
1823	uint64_t gtt_size;
1824	int r;
1825
1826	mutex_init(&adev->mman.gtt_window_lock);
1827
1828	/* No others user of address space so set it to 0 */
1829	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1830			       adev_to_drm(adev)->anon_inode->i_mapping,
1831			       adev_to_drm(adev)->vma_offset_manager,
1832			       adev->need_swiotlb,
1833			       dma_addressing_limited(adev->dev));
1834	if (r) {
1835		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1836		return r;
1837	}
1838
1839	r = amdgpu_ttm_pools_init(adev);
1840	if (r) {
1841		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1842		return r;
1843	}
1844	adev->mman.initialized = true;
1845
1846	/* Initialize VRAM pool with all of VRAM divided into pages */
1847	r = amdgpu_vram_mgr_init(adev);
1848	if (r) {
1849		DRM_ERROR("Failed initializing VRAM heap.\n");
1850		return r;
1851	}
1852
1853	/* Change the size here instead of the init above so only lpfn is affected */
1854	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1855#ifdef CONFIG_64BIT
1856#ifdef CONFIG_X86
1857	if (adev->gmc.xgmi.connected_to_cpu)
1858		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1859				adev->gmc.visible_vram_size);
1860
1861	else if (adev->gmc.is_app_apu)
1862		DRM_DEBUG_DRIVER(
1863			"No need to ioremap when real vram size is 0\n");
1864	else
1865#endif
1866		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1867				adev->gmc.visible_vram_size);
1868#endif
1869
1870	/*
1871	 *The reserved vram for firmware must be pinned to the specified
1872	 *place on the VRAM, so reserve it early.
1873	 */
1874	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1875	if (r)
1876		return r;
1877
1878	/*
1879	 *The reserved vram for driver must be pinned to the specified
1880	 *place on the VRAM, so reserve it early.
1881	 */
1882	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1883	if (r)
1884		return r;
1885
1886	/*
1887	 * only NAVI10 and onwards ASIC support for IP discovery.
1888	 * If IP discovery enabled, a block of memory should be
1889	 * reserved for IP discovey.
1890	 */
1891	if (adev->mman.discovery_bin) {
1892		r = amdgpu_ttm_reserve_tmr(adev);
1893		if (r)
1894			return r;
1895	}
1896
1897	/* allocate memory as required for VGA
1898	 * This is used for VGA emulation and pre-OS scanout buffers to
1899	 * avoid display artifacts while transitioning between pre-OS
1900	 * and driver.
1901	 */
1902	if (!adev->gmc.is_app_apu) {
1903		r = amdgpu_bo_create_kernel_at(adev, 0,
1904					       adev->mman.stolen_vga_size,
1905					       &adev->mman.stolen_vga_memory,
1906					       NULL);
1907		if (r)
1908			return r;
1909
1910		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1911					       adev->mman.stolen_extended_size,
1912					       &adev->mman.stolen_extended_memory,
1913					       NULL);
1914
1915		if (r)
1916			return r;
1917
1918		r = amdgpu_bo_create_kernel_at(adev,
1919					       adev->mman.stolen_reserved_offset,
1920					       adev->mman.stolen_reserved_size,
1921					       &adev->mman.stolen_reserved_memory,
1922					       NULL);
1923		if (r)
1924			return r;
1925	} else {
1926		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1927	}
1928
1929	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1930		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1931
1932	/* Compute GTT size, either based on TTM limit
1933	 * or whatever the user passed on module init.
1934	 */
1935	if (amdgpu_gtt_size == -1)
1936		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1937	else
1938		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1939
1940	/* Initialize GTT memory pool */
1941	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1942	if (r) {
1943		DRM_ERROR("Failed initializing GTT heap.\n");
1944		return r;
1945	}
1946	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1947		 (unsigned int)(gtt_size / (1024 * 1024)));
1948
1949	/* Initiailize doorbell pool on PCI BAR */
1950	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1951	if (r) {
1952		DRM_ERROR("Failed initializing doorbell heap.\n");
1953		return r;
1954	}
1955
1956	/* Create a boorbell page for kernel usages */
1957	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1958	if (r) {
1959		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1960		return r;
1961	}
1962
1963	/* Initialize preemptible memory pool */
1964	r = amdgpu_preempt_mgr_init(adev);
1965	if (r) {
1966		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1967		return r;
1968	}
1969
1970	/* Initialize various on-chip memory pools */
1971	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1972	if (r) {
1973		DRM_ERROR("Failed initializing GDS heap.\n");
1974		return r;
1975	}
1976
1977	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1978	if (r) {
1979		DRM_ERROR("Failed initializing gws heap.\n");
1980		return r;
1981	}
1982
1983	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1984	if (r) {
1985		DRM_ERROR("Failed initializing oa heap.\n");
1986		return r;
1987	}
1988	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1989				AMDGPU_GEM_DOMAIN_GTT,
1990				&adev->mman.sdma_access_bo, NULL,
1991				&adev->mman.sdma_access_ptr))
1992		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1993
1994	return 0;
1995}
1996
1997/*
1998 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1999 */
2000void amdgpu_ttm_fini(struct amdgpu_device *adev)
2001{
2002	int idx;
2003
2004	if (!adev->mman.initialized)
2005		return;
2006
2007	amdgpu_ttm_pools_fini(adev);
2008
2009	amdgpu_ttm_training_reserve_vram_fini(adev);
2010	/* return the stolen vga memory back to VRAM */
2011	if (!adev->gmc.is_app_apu) {
2012		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2013		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2014		/* return the FW reserved memory back to VRAM */
2015		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2016				      NULL);
2017		if (adev->mman.stolen_reserved_size)
2018			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2019					      NULL, NULL);
2020	}
2021	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2022					&adev->mman.sdma_access_ptr);
2023	amdgpu_ttm_fw_reserve_vram_fini(adev);
2024	amdgpu_ttm_drv_reserve_vram_fini(adev);
2025
2026	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2027
2028		if (adev->mman.aper_base_kaddr)
2029			iounmap(adev->mman.aper_base_kaddr);
2030		adev->mman.aper_base_kaddr = NULL;
2031
2032		drm_dev_exit(idx);
2033	}
2034
2035	amdgpu_vram_mgr_fini(adev);
2036	amdgpu_gtt_mgr_fini(adev);
2037	amdgpu_preempt_mgr_fini(adev);
2038	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2039	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2040	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2041	ttm_device_fini(&adev->mman.bdev);
2042	adev->mman.initialized = false;
2043	DRM_INFO("amdgpu: ttm finalized\n");
2044}
2045
2046/**
2047 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2048 *
2049 * @adev: amdgpu_device pointer
2050 * @enable: true when we can use buffer functions.
2051 *
2052 * Enable/disable use of buffer functions during suspend/resume. This should
2053 * only be called at bootup or when userspace isn't running.
2054 */
2055void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2056{
2057	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2058	uint64_t size;
2059	int r;
2060
2061	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2062	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2063		return;
2064
2065	if (enable) {
2066		struct amdgpu_ring *ring;
2067		struct drm_gpu_scheduler *sched;
2068
2069		ring = adev->mman.buffer_funcs_ring;
2070		sched = &ring->sched;
2071		r = drm_sched_entity_init(&adev->mman.high_pr,
2072					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2073					  1, NULL);
2074		if (r) {
2075			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2076				  r);
2077			return;
2078		}
2079
2080		r = drm_sched_entity_init(&adev->mman.low_pr,
2081					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2082					  1, NULL);
2083		if (r) {
2084			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2085				  r);
2086			goto error_free_entity;
2087		}
2088	} else {
2089		drm_sched_entity_destroy(&adev->mman.high_pr);
2090		drm_sched_entity_destroy(&adev->mman.low_pr);
2091		dma_fence_put(man->move);
2092		man->move = NULL;
2093	}
2094
2095	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2096	if (enable)
2097		size = adev->gmc.real_vram_size;
2098	else
2099		size = adev->gmc.visible_vram_size;
2100	man->size = size;
2101	adev->mman.buffer_funcs_enabled = enable;
2102
2103	return;
2104
2105error_free_entity:
2106	drm_sched_entity_destroy(&adev->mman.high_pr);
2107}
2108
2109static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2110				  bool direct_submit,
2111				  unsigned int num_dw,
2112				  struct dma_resv *resv,
2113				  bool vm_needs_flush,
2114				  struct amdgpu_job **job,
2115				  bool delayed)
2116{
2117	enum amdgpu_ib_pool_type pool = direct_submit ?
2118		AMDGPU_IB_POOL_DIRECT :
2119		AMDGPU_IB_POOL_DELAYED;
2120	int r;
2121	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2122						    &adev->mman.high_pr;
2123	r = amdgpu_job_alloc_with_ib(adev, entity,
2124				     AMDGPU_FENCE_OWNER_UNDEFINED,
2125				     num_dw * 4, pool, job);
2126	if (r)
2127		return r;
2128
2129	if (vm_needs_flush) {
2130		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2131							adev->gmc.pdb0_bo :
2132							adev->gart.bo);
2133		(*job)->vm_needs_flush = true;
2134	}
2135	if (!resv)
2136		return 0;
2137
2138	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2139						   DMA_RESV_USAGE_BOOKKEEP);
2140}
2141
2142int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2143		       uint64_t dst_offset, uint32_t byte_count,
2144		       struct dma_resv *resv,
2145		       struct dma_fence **fence, bool direct_submit,
2146		       bool vm_needs_flush, bool tmz)
2147{
2148	struct amdgpu_device *adev = ring->adev;
2149	unsigned int num_loops, num_dw;
2150	struct amdgpu_job *job;
2151	uint32_t max_bytes;
2152	unsigned int i;
2153	int r;
2154
2155	if (!direct_submit && !ring->sched.ready) {
2156		DRM_ERROR("Trying to move memory with ring turned off.\n");
2157		return -EINVAL;
2158	}
2159
2160	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2161	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2162	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2163	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2164				   resv, vm_needs_flush, &job, false);
2165	if (r)
2166		return r;
2167
2168	for (i = 0; i < num_loops; i++) {
2169		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2170
2171		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2172					dst_offset, cur_size_in_bytes, tmz);
2173
2174		src_offset += cur_size_in_bytes;
2175		dst_offset += cur_size_in_bytes;
2176		byte_count -= cur_size_in_bytes;
2177	}
2178
2179	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2180	WARN_ON(job->ibs[0].length_dw > num_dw);
2181	if (direct_submit)
2182		r = amdgpu_job_submit_direct(job, ring, fence);
2183	else
2184		*fence = amdgpu_job_submit(job);
2185	if (r)
2186		goto error_free;
2187
2188	return r;
2189
2190error_free:
2191	amdgpu_job_free(job);
2192	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2193	return r;
2194}
2195
2196static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2197			       uint64_t dst_addr, uint32_t byte_count,
2198			       struct dma_resv *resv,
2199			       struct dma_fence **fence,
2200			       bool vm_needs_flush, bool delayed)
2201{
2202	struct amdgpu_device *adev = ring->adev;
2203	unsigned int num_loops, num_dw;
2204	struct amdgpu_job *job;
2205	uint32_t max_bytes;
2206	unsigned int i;
2207	int r;
2208
2209	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2210	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2211	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2212	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2213				   &job, delayed);
2214	if (r)
2215		return r;
2216
2217	for (i = 0; i < num_loops; i++) {
2218		uint32_t cur_size = min(byte_count, max_bytes);
2219
2220		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2221					cur_size);
2222
2223		dst_addr += cur_size;
2224		byte_count -= cur_size;
2225	}
2226
2227	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2228	WARN_ON(job->ibs[0].length_dw > num_dw);
2229	*fence = amdgpu_job_submit(job);
2230	return 0;
2231}
2232
2233int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2234			uint32_t src_data,
2235			struct dma_resv *resv,
2236			struct dma_fence **f,
2237			bool delayed)
2238{
2239	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2240	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2241	struct dma_fence *fence = NULL;
2242	struct amdgpu_res_cursor dst;
2243	int r;
2244
2245	if (!adev->mman.buffer_funcs_enabled) {
2246		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2247		return -EINVAL;
2248	}
2249
2250	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2251
2252	mutex_lock(&adev->mman.gtt_window_lock);
2253	while (dst.remaining) {
2254		struct dma_fence *next;
2255		uint64_t cur_size, to;
2256
2257		/* Never fill more than 256MiB at once to avoid timeouts */
2258		cur_size = min(dst.size, 256ULL << 20);
2259
2260		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2261					  1, ring, false, &cur_size, &to);
2262		if (r)
2263			goto error;
2264
2265		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2266					&next, true, delayed);
2267		if (r)
2268			goto error;
2269
2270		dma_fence_put(fence);
2271		fence = next;
2272
2273		amdgpu_res_next(&dst, cur_size);
2274	}
2275error:
2276	mutex_unlock(&adev->mman.gtt_window_lock);
2277	if (f)
2278		*f = dma_fence_get(fence);
2279	dma_fence_put(fence);
2280	return r;
2281}
2282
2283/**
2284 * amdgpu_ttm_evict_resources - evict memory buffers
2285 * @adev: amdgpu device object
2286 * @mem_type: evicted BO's memory type
2287 *
2288 * Evicts all @mem_type buffers on the lru list of the memory type.
2289 *
2290 * Returns:
2291 * 0 for success or a negative error code on failure.
2292 */
2293int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2294{
2295	struct ttm_resource_manager *man;
2296
2297	switch (mem_type) {
2298	case TTM_PL_VRAM:
2299	case TTM_PL_TT:
2300	case AMDGPU_PL_GWS:
2301	case AMDGPU_PL_GDS:
2302	case AMDGPU_PL_OA:
2303		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2304		break;
2305	default:
2306		DRM_ERROR("Trying to evict invalid memory type\n");
2307		return -EINVAL;
2308	}
2309
2310	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2311}
2312
2313#if defined(CONFIG_DEBUG_FS)
2314
2315static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2316{
2317	struct amdgpu_device *adev = m->private;
2318
2319	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2320}
2321
2322DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2323
2324/*
2325 * amdgpu_ttm_vram_read - Linear read access to VRAM
2326 *
2327 * Accesses VRAM via MMIO for debugging purposes.
2328 */
2329static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2330				    size_t size, loff_t *pos)
2331{
2332	struct amdgpu_device *adev = file_inode(f)->i_private;
2333	ssize_t result = 0;
2334
2335	if (size & 0x3 || *pos & 0x3)
2336		return -EINVAL;
2337
2338	if (*pos >= adev->gmc.mc_vram_size)
2339		return -ENXIO;
2340
2341	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2342	while (size) {
2343		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2344		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2345
2346		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2347		if (copy_to_user(buf, value, bytes))
2348			return -EFAULT;
2349
2350		result += bytes;
2351		buf += bytes;
2352		*pos += bytes;
2353		size -= bytes;
2354	}
2355
2356	return result;
2357}
2358
2359/*
2360 * amdgpu_ttm_vram_write - Linear write access to VRAM
2361 *
2362 * Accesses VRAM via MMIO for debugging purposes.
2363 */
2364static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2365				    size_t size, loff_t *pos)
2366{
2367	struct amdgpu_device *adev = file_inode(f)->i_private;
2368	ssize_t result = 0;
2369	int r;
2370
2371	if (size & 0x3 || *pos & 0x3)
2372		return -EINVAL;
2373
2374	if (*pos >= adev->gmc.mc_vram_size)
2375		return -ENXIO;
2376
2377	while (size) {
2378		uint32_t value;
2379
2380		if (*pos >= adev->gmc.mc_vram_size)
2381			return result;
2382
2383		r = get_user(value, (uint32_t *)buf);
2384		if (r)
2385			return r;
2386
2387		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2388
2389		result += 4;
2390		buf += 4;
2391		*pos += 4;
2392		size -= 4;
2393	}
2394
2395	return result;
2396}
2397
2398static const struct file_operations amdgpu_ttm_vram_fops = {
2399	.owner = THIS_MODULE,
2400	.read = amdgpu_ttm_vram_read,
2401	.write = amdgpu_ttm_vram_write,
2402	.llseek = default_llseek,
2403};
2404
2405/*
2406 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2407 *
2408 * This function is used to read memory that has been mapped to the
2409 * GPU and the known addresses are not physical addresses but instead
2410 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2411 */
2412static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2413				 size_t size, loff_t *pos)
2414{
2415	struct amdgpu_device *adev = file_inode(f)->i_private;
2416	struct iommu_domain *dom;
2417	ssize_t result = 0;
2418	int r;
2419
2420	/* retrieve the IOMMU domain if any for this device */
2421	dom = iommu_get_domain_for_dev(adev->dev);
2422
2423	while (size) {
2424		phys_addr_t addr = *pos & PAGE_MASK;
2425		loff_t off = *pos & ~PAGE_MASK;
2426		size_t bytes = PAGE_SIZE - off;
2427		unsigned long pfn;
2428		struct page *p;
2429		void *ptr;
2430
2431		bytes = min(bytes, size);
2432
2433		/* Translate the bus address to a physical address.  If
2434		 * the domain is NULL it means there is no IOMMU active
2435		 * and the address translation is the identity
2436		 */
2437		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2438
2439		pfn = addr >> PAGE_SHIFT;
2440		if (!pfn_valid(pfn))
2441			return -EPERM;
2442
2443		p = pfn_to_page(pfn);
2444		if (p->mapping != adev->mman.bdev.dev_mapping)
2445			return -EPERM;
2446
2447		ptr = kmap_local_page(p);
2448		r = copy_to_user(buf, ptr + off, bytes);
2449		kunmap_local(ptr);
2450		if (r)
2451			return -EFAULT;
2452
2453		size -= bytes;
2454		*pos += bytes;
2455		result += bytes;
2456	}
2457
2458	return result;
2459}
2460
2461/*
2462 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2463 *
2464 * This function is used to write memory that has been mapped to the
2465 * GPU and the known addresses are not physical addresses but instead
2466 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2467 */
2468static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2469				 size_t size, loff_t *pos)
2470{
2471	struct amdgpu_device *adev = file_inode(f)->i_private;
2472	struct iommu_domain *dom;
2473	ssize_t result = 0;
2474	int r;
2475
2476	dom = iommu_get_domain_for_dev(adev->dev);
2477
2478	while (size) {
2479		phys_addr_t addr = *pos & PAGE_MASK;
2480		loff_t off = *pos & ~PAGE_MASK;
2481		size_t bytes = PAGE_SIZE - off;
2482		unsigned long pfn;
2483		struct page *p;
2484		void *ptr;
2485
2486		bytes = min(bytes, size);
2487
2488		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2489
2490		pfn = addr >> PAGE_SHIFT;
2491		if (!pfn_valid(pfn))
2492			return -EPERM;
2493
2494		p = pfn_to_page(pfn);
2495		if (p->mapping != adev->mman.bdev.dev_mapping)
2496			return -EPERM;
2497
2498		ptr = kmap_local_page(p);
2499		r = copy_from_user(ptr + off, buf, bytes);
2500		kunmap_local(ptr);
2501		if (r)
2502			return -EFAULT;
2503
2504		size -= bytes;
2505		*pos += bytes;
2506		result += bytes;
2507	}
2508
2509	return result;
2510}
2511
2512static const struct file_operations amdgpu_ttm_iomem_fops = {
2513	.owner = THIS_MODULE,
2514	.read = amdgpu_iomem_read,
2515	.write = amdgpu_iomem_write,
2516	.llseek = default_llseek
2517};
2518
2519#endif
2520
2521void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2522{
2523#if defined(CONFIG_DEBUG_FS)
2524	struct drm_minor *minor = adev_to_drm(adev)->primary;
2525	struct dentry *root = minor->debugfs_root;
2526
2527	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2528				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2529	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2530			    &amdgpu_ttm_iomem_fops);
2531	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2532			    &amdgpu_ttm_page_pool_fops);
2533	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2534							     TTM_PL_VRAM),
2535					    root, "amdgpu_vram_mm");
2536	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2537							     TTM_PL_TT),
2538					    root, "amdgpu_gtt_mm");
2539	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2540							     AMDGPU_PL_GDS),
2541					    root, "amdgpu_gds_mm");
2542	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2543							     AMDGPU_PL_GWS),
2544					    root, "amdgpu_gws_mm");
2545	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2546							     AMDGPU_PL_OA),
2547					    root, "amdgpu_oa_mm");
2548
2549#endif
2550}
v6.8
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
  30 *    Dave Airlie
  31 */
  32
  33#include <linux/dma-mapping.h>
  34#include <linux/iommu.h>
  35#include <linux/pagemap.h>
  36#include <linux/sched/task.h>
  37#include <linux/sched/mm.h>
  38#include <linux/seq_file.h>
  39#include <linux/slab.h>
  40#include <linux/swap.h>
  41#include <linux/dma-buf.h>
  42#include <linux/sizes.h>
  43#include <linux/module.h>
  44
  45#include <drm/drm_drv.h>
  46#include <drm/ttm/ttm_bo.h>
  47#include <drm/ttm/ttm_placement.h>
  48#include <drm/ttm/ttm_range_manager.h>
  49#include <drm/ttm/ttm_tt.h>
  50
  51#include <drm/amdgpu_drm.h>
  52
  53#include "amdgpu.h"
  54#include "amdgpu_object.h"
  55#include "amdgpu_trace.h"
  56#include "amdgpu_amdkfd.h"
  57#include "amdgpu_sdma.h"
  58#include "amdgpu_ras.h"
  59#include "amdgpu_hmm.h"
  60#include "amdgpu_atomfirmware.h"
  61#include "amdgpu_res_cursor.h"
  62#include "bif/bif_4_1_d.h"
  63
  64MODULE_IMPORT_NS(DMA_BUF);
  65
  66#define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
  67
  68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
  69				   struct ttm_tt *ttm,
  70				   struct ttm_resource *bo_mem);
  71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
  72				      struct ttm_tt *ttm);
  73
  74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
  75				    unsigned int type,
  76				    uint64_t size_in_page)
  77{
  78	return ttm_range_man_init(&adev->mman.bdev, type,
  79				  false, size_in_page);
  80}
  81
  82/**
  83 * amdgpu_evict_flags - Compute placement flags
  84 *
  85 * @bo: The buffer object to evict
  86 * @placement: Possible destination(s) for evicted BO
  87 *
  88 * Fill in placement data when ttm_bo_evict() is called
  89 */
  90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
  91				struct ttm_placement *placement)
  92{
  93	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
  94	struct amdgpu_bo *abo;
  95	static const struct ttm_place placements = {
  96		.fpfn = 0,
  97		.lpfn = 0,
  98		.mem_type = TTM_PL_SYSTEM,
  99		.flags = 0
 100	};
 101
 102	/* Don't handle scatter gather BOs */
 103	if (bo->type == ttm_bo_type_sg) {
 104		placement->num_placement = 0;
 105		placement->num_busy_placement = 0;
 106		return;
 107	}
 108
 109	/* Object isn't an AMDGPU object so ignore */
 110	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
 111		placement->placement = &placements;
 112		placement->busy_placement = &placements;
 113		placement->num_placement = 1;
 114		placement->num_busy_placement = 1;
 115		return;
 116	}
 117
 118	abo = ttm_to_amdgpu_bo(bo);
 119	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
 120		placement->num_placement = 0;
 121		placement->num_busy_placement = 0;
 122		return;
 123	}
 124
 125	switch (bo->resource->mem_type) {
 126	case AMDGPU_PL_GDS:
 127	case AMDGPU_PL_GWS:
 128	case AMDGPU_PL_OA:
 129	case AMDGPU_PL_DOORBELL:
 130		placement->num_placement = 0;
 131		placement->num_busy_placement = 0;
 132		return;
 133
 134	case TTM_PL_VRAM:
 135		if (!adev->mman.buffer_funcs_enabled) {
 136			/* Move to system memory */
 137			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 
 138		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
 139			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
 140			   amdgpu_bo_in_cpu_visible_vram(abo)) {
 141
 142			/* Try evicting to the CPU inaccessible part of VRAM
 143			 * first, but only set GTT as busy placement, so this
 144			 * BO will be evicted to GTT rather than causing other
 145			 * BOs to be evicted from VRAM
 146			 */
 147			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
 148							AMDGPU_GEM_DOMAIN_GTT |
 149							AMDGPU_GEM_DOMAIN_CPU);
 150			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
 151			abo->placements[0].lpfn = 0;
 152			abo->placement.busy_placement = &abo->placements[1];
 153			abo->placement.num_busy_placement = 1;
 154		} else {
 155			/* Move to GTT memory */
 156			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
 157							AMDGPU_GEM_DOMAIN_CPU);
 158		}
 159		break;
 160	case TTM_PL_TT:
 161	case AMDGPU_PL_PREEMPT:
 162	default:
 163		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 164		break;
 165	}
 166	*placement = abo->placement;
 167}
 168
 169/**
 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows
 171 * @bo: buffer object to map
 172 * @mem: memory object to map
 173 * @mm_cur: range to map
 174 * @window: which GART window to use
 175 * @ring: DMA ring to use for the copy
 176 * @tmz: if we should setup a TMZ enabled mapping
 177 * @size: in number of bytes to map, out number of bytes mapped
 178 * @addr: resulting address inside the MC address space
 179 *
 180 * Setup one of the GART windows to access a specific piece of memory or return
 181 * the physical address for local memory.
 182 */
 183static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
 184				 struct ttm_resource *mem,
 185				 struct amdgpu_res_cursor *mm_cur,
 186				 unsigned int window, struct amdgpu_ring *ring,
 187				 bool tmz, uint64_t *size, uint64_t *addr)
 188{
 189	struct amdgpu_device *adev = ring->adev;
 190	unsigned int offset, num_pages, num_dw, num_bytes;
 191	uint64_t src_addr, dst_addr;
 192	struct amdgpu_job *job;
 193	void *cpu_addr;
 194	uint64_t flags;
 195	unsigned int i;
 196	int r;
 197
 198	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
 199	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
 200
 201	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
 202		return -EINVAL;
 203
 204	/* Map only what can't be accessed directly */
 205	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
 206		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
 207			mm_cur->start;
 208		return 0;
 209	}
 210
 211
 212	/*
 213	 * If start begins at an offset inside the page, then adjust the size
 214	 * and addr accordingly
 215	 */
 216	offset = mm_cur->start & ~PAGE_MASK;
 217
 218	num_pages = PFN_UP(*size + offset);
 219	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
 220
 221	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
 222
 223	*addr = adev->gmc.gart_start;
 224	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
 225		AMDGPU_GPU_PAGE_SIZE;
 226	*addr += offset;
 227
 228	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
 229	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
 230
 231	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
 232				     AMDGPU_FENCE_OWNER_UNDEFINED,
 233				     num_dw * 4 + num_bytes,
 234				     AMDGPU_IB_POOL_DELAYED, &job);
 235	if (r)
 236		return r;
 237
 238	src_addr = num_dw * 4;
 239	src_addr += job->ibs[0].gpu_addr;
 240
 241	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
 242	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
 243	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
 244				dst_addr, num_bytes, false);
 245
 246	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
 247	WARN_ON(job->ibs[0].length_dw > num_dw);
 248
 249	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
 250	if (tmz)
 251		flags |= AMDGPU_PTE_TMZ;
 252
 253	cpu_addr = &job->ibs[0].ptr[num_dw];
 254
 255	if (mem->mem_type == TTM_PL_TT) {
 256		dma_addr_t *dma_addr;
 257
 258		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
 259		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
 260	} else {
 261		dma_addr_t dma_address;
 262
 263		dma_address = mm_cur->start;
 264		dma_address += adev->vm_manager.vram_base_offset;
 265
 266		for (i = 0; i < num_pages; ++i) {
 267			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
 268					flags, cpu_addr);
 269			dma_address += PAGE_SIZE;
 270		}
 271	}
 272
 273	dma_fence_put(amdgpu_job_submit(job));
 274	return 0;
 275}
 276
 277/**
 278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
 279 * @adev: amdgpu device
 280 * @src: buffer/address where to read from
 281 * @dst: buffer/address where to write to
 282 * @size: number of bytes to copy
 283 * @tmz: if a secure copy should be used
 284 * @resv: resv object to sync to
 285 * @f: Returns the last fence if multiple jobs are submitted.
 286 *
 287 * The function copies @size bytes from {src->mem + src->offset} to
 288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
 289 * move and different for a BO to BO copy.
 290 *
 291 */
 292int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
 293			       const struct amdgpu_copy_mem *src,
 294			       const struct amdgpu_copy_mem *dst,
 295			       uint64_t size, bool tmz,
 296			       struct dma_resv *resv,
 297			       struct dma_fence **f)
 298{
 299	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
 300	struct amdgpu_res_cursor src_mm, dst_mm;
 301	struct dma_fence *fence = NULL;
 302	int r = 0;
 303
 304	if (!adev->mman.buffer_funcs_enabled) {
 305		DRM_ERROR("Trying to move memory with ring turned off.\n");
 306		return -EINVAL;
 307	}
 308
 309	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
 310	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
 311
 312	mutex_lock(&adev->mman.gtt_window_lock);
 313	while (src_mm.remaining) {
 314		uint64_t from, to, cur_size;
 315		struct dma_fence *next;
 316
 317		/* Never copy more than 256MiB at once to avoid a timeout */
 318		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
 319
 320		/* Map src to window 0 and dst to window 1. */
 321		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
 322					  0, ring, tmz, &cur_size, &from);
 323		if (r)
 324			goto error;
 325
 326		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
 327					  1, ring, tmz, &cur_size, &to);
 328		if (r)
 329			goto error;
 330
 331		r = amdgpu_copy_buffer(ring, from, to, cur_size,
 332				       resv, &next, false, true, tmz);
 333		if (r)
 334			goto error;
 335
 336		dma_fence_put(fence);
 337		fence = next;
 338
 339		amdgpu_res_next(&src_mm, cur_size);
 340		amdgpu_res_next(&dst_mm, cur_size);
 341	}
 342error:
 343	mutex_unlock(&adev->mman.gtt_window_lock);
 344	if (f)
 345		*f = dma_fence_get(fence);
 346	dma_fence_put(fence);
 347	return r;
 348}
 349
 350/*
 351 * amdgpu_move_blit - Copy an entire buffer to another buffer
 352 *
 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
 354 * help move buffers to and from VRAM.
 355 */
 356static int amdgpu_move_blit(struct ttm_buffer_object *bo,
 357			    bool evict,
 358			    struct ttm_resource *new_mem,
 359			    struct ttm_resource *old_mem)
 360{
 361	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 362	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 363	struct amdgpu_copy_mem src, dst;
 364	struct dma_fence *fence = NULL;
 365	int r;
 366
 367	src.bo = bo;
 368	dst.bo = bo;
 369	src.mem = old_mem;
 370	dst.mem = new_mem;
 371	src.offset = 0;
 372	dst.offset = 0;
 373
 374	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
 375				       new_mem->size,
 376				       amdgpu_bo_encrypted(abo),
 377				       bo->base.resv, &fence);
 378	if (r)
 379		goto error;
 380
 381	/* clear the space being freed */
 382	if (old_mem->mem_type == TTM_PL_VRAM &&
 383	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
 384		struct dma_fence *wipe_fence = NULL;
 385
 386		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
 387					false);
 388		if (r) {
 389			goto error;
 390		} else if (wipe_fence) {
 391			dma_fence_put(fence);
 392			fence = wipe_fence;
 393		}
 394	}
 395
 396	/* Always block for VM page tables before committing the new location */
 397	if (bo->type == ttm_bo_type_kernel)
 398		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
 399	else
 400		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
 401	dma_fence_put(fence);
 402	return r;
 403
 404error:
 405	if (fence)
 406		dma_fence_wait(fence, false);
 407	dma_fence_put(fence);
 408	return r;
 409}
 410
 411/*
 412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
 
 
 413 *
 414 * Called by amdgpu_bo_move()
 415 */
 416static bool amdgpu_mem_visible(struct amdgpu_device *adev,
 417			       struct ttm_resource *mem)
 418{
 419	u64 mem_size = (u64)mem->size;
 420	struct amdgpu_res_cursor cursor;
 421	u64 end;
 422
 423	if (mem->mem_type == TTM_PL_SYSTEM ||
 424	    mem->mem_type == TTM_PL_TT)
 
 
 
 425		return true;
 426	if (mem->mem_type != TTM_PL_VRAM)
 
 427		return false;
 428
 429	amdgpu_res_first(mem, 0, mem_size, &cursor);
 430	end = cursor.start + cursor.size;
 431	while (cursor.remaining) {
 
 
 432		amdgpu_res_next(&cursor, cursor.size);
 
 433
 434		if (!cursor.remaining)
 435			break;
 436
 437		/* ttm_resource_ioremap only supports contiguous memory */
 438		if (end != cursor.start)
 439			return false;
 
 
 
 
 
 
 
 440
 441		end = cursor.start + cursor.size;
 442	}
 
 
 443
 444	return end <= adev->gmc.visible_vram_size;
 445}
 446
 447/*
 448 * amdgpu_bo_move - Move a buffer object to a new memory location
 449 *
 450 * Called by ttm_bo_handle_move_mem()
 451 */
 452static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
 453			  struct ttm_operation_ctx *ctx,
 454			  struct ttm_resource *new_mem,
 455			  struct ttm_place *hop)
 456{
 457	struct amdgpu_device *adev;
 458	struct amdgpu_bo *abo;
 459	struct ttm_resource *old_mem = bo->resource;
 460	int r;
 461
 462	if (new_mem->mem_type == TTM_PL_TT ||
 463	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
 464		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
 465		if (r)
 466			return r;
 467	}
 468
 469	abo = ttm_to_amdgpu_bo(bo);
 470	adev = amdgpu_ttm_adev(bo->bdev);
 471
 472	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
 473			 bo->ttm == NULL)) {
 
 474		ttm_bo_move_null(bo, new_mem);
 475		goto out;
 476	}
 477	if (old_mem->mem_type == TTM_PL_SYSTEM &&
 478	    (new_mem->mem_type == TTM_PL_TT ||
 479	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
 
 480		ttm_bo_move_null(bo, new_mem);
 481		goto out;
 482	}
 483	if ((old_mem->mem_type == TTM_PL_TT ||
 484	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
 485	    new_mem->mem_type == TTM_PL_SYSTEM) {
 486		r = ttm_bo_wait_ctx(bo, ctx);
 487		if (r)
 488			return r;
 489
 490		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
 
 491		ttm_resource_free(bo, &bo->resource);
 492		ttm_bo_assign_mem(bo, new_mem);
 493		goto out;
 494	}
 495
 496	if (old_mem->mem_type == AMDGPU_PL_GDS ||
 497	    old_mem->mem_type == AMDGPU_PL_GWS ||
 498	    old_mem->mem_type == AMDGPU_PL_OA ||
 499	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
 500	    new_mem->mem_type == AMDGPU_PL_GDS ||
 501	    new_mem->mem_type == AMDGPU_PL_GWS ||
 502	    new_mem->mem_type == AMDGPU_PL_OA ||
 503	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
 504		/* Nothing to save here */
 
 505		ttm_bo_move_null(bo, new_mem);
 506		goto out;
 507	}
 508
 509	if (bo->type == ttm_bo_type_device &&
 510	    new_mem->mem_type == TTM_PL_VRAM &&
 511	    old_mem->mem_type != TTM_PL_VRAM) {
 512		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
 513		 * accesses the BO after it's moved.
 514		 */
 515		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 516	}
 517
 518	if (adev->mman.buffer_funcs_enabled) {
 519		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
 520		      new_mem->mem_type == TTM_PL_VRAM) ||
 521		     (old_mem->mem_type == TTM_PL_VRAM &&
 522		      new_mem->mem_type == TTM_PL_SYSTEM))) {
 523			hop->fpfn = 0;
 524			hop->lpfn = 0;
 525			hop->mem_type = TTM_PL_TT;
 526			hop->flags = TTM_PL_FLAG_TEMPORARY;
 527			return -EMULTIHOP;
 528		}
 529
 
 
 530		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
 531	} else {
 532		r = -ENODEV;
 533	}
 534
 535	if (r) {
 536		/* Check that all memory is CPU accessible */
 537		if (!amdgpu_mem_visible(adev, old_mem) ||
 538		    !amdgpu_mem_visible(adev, new_mem)) {
 539			pr_err("Move buffer fallback to memcpy unavailable\n");
 540			return r;
 541		}
 542
 543		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
 544		if (r)
 545			return r;
 546	}
 547
 548	trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
 549out:
 550	/* update statistics */
 551	atomic64_add(bo->base.size, &adev->num_bytes_moved);
 552	amdgpu_bo_move_notify(bo, evict);
 553	return 0;
 554}
 555
 556/*
 557 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
 558 *
 559 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
 560 */
 561static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
 562				     struct ttm_resource *mem)
 563{
 564	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 565	size_t bus_size = (size_t)mem->size;
 566
 567	switch (mem->mem_type) {
 568	case TTM_PL_SYSTEM:
 569		/* system memory */
 570		return 0;
 571	case TTM_PL_TT:
 572	case AMDGPU_PL_PREEMPT:
 573		break;
 574	case TTM_PL_VRAM:
 575		mem->bus.offset = mem->start << PAGE_SHIFT;
 576		/* check if it's visible */
 577		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
 578			return -EINVAL;
 579
 580		if (adev->mman.aper_base_kaddr &&
 581		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
 582			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
 583					mem->bus.offset;
 584
 585		mem->bus.offset += adev->gmc.aper_base;
 586		mem->bus.is_iomem = true;
 587		break;
 588	case AMDGPU_PL_DOORBELL:
 589		mem->bus.offset = mem->start << PAGE_SHIFT;
 590		mem->bus.offset += adev->doorbell.base;
 591		mem->bus.is_iomem = true;
 592		mem->bus.caching = ttm_uncached;
 593		break;
 594	default:
 595		return -EINVAL;
 596	}
 597	return 0;
 598}
 599
 600static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
 601					   unsigned long page_offset)
 602{
 603	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 604	struct amdgpu_res_cursor cursor;
 605
 606	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
 607			 &cursor);
 608
 609	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
 610		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
 611
 612	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
 613}
 614
 615/**
 616 * amdgpu_ttm_domain_start - Returns GPU start address
 617 * @adev: amdgpu device object
 618 * @type: type of the memory
 619 *
 620 * Returns:
 621 * GPU start address of a memory domain
 622 */
 623
 624uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
 625{
 626	switch (type) {
 627	case TTM_PL_TT:
 628		return adev->gmc.gart_start;
 629	case TTM_PL_VRAM:
 630		return adev->gmc.vram_start;
 631	}
 632
 633	return 0;
 634}
 635
 636/*
 637 * TTM backend functions.
 638 */
 639struct amdgpu_ttm_tt {
 640	struct ttm_tt	ttm;
 641	struct drm_gem_object	*gobj;
 642	u64			offset;
 643	uint64_t		userptr;
 644	struct task_struct	*usertask;
 645	uint32_t		userflags;
 646	bool			bound;
 647	int32_t			pool_id;
 648};
 649
 650#define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
 651
 652#ifdef CONFIG_DRM_AMDGPU_USERPTR
 653/*
 654 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
 655 * memory and start HMM tracking CPU page table update
 656 *
 657 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
 658 * once afterwards to stop HMM tracking
 659 */
 660int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
 661				 struct hmm_range **range)
 662{
 663	struct ttm_tt *ttm = bo->tbo.ttm;
 664	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 665	unsigned long start = gtt->userptr;
 666	struct vm_area_struct *vma;
 667	struct mm_struct *mm;
 668	bool readonly;
 669	int r = 0;
 670
 671	/* Make sure get_user_pages_done() can cleanup gracefully */
 672	*range = NULL;
 673
 674	mm = bo->notifier.mm;
 675	if (unlikely(!mm)) {
 676		DRM_DEBUG_DRIVER("BO is not registered?\n");
 677		return -EFAULT;
 678	}
 679
 680	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
 681		return -ESRCH;
 682
 683	mmap_read_lock(mm);
 684	vma = vma_lookup(mm, start);
 685	if (unlikely(!vma)) {
 686		r = -EFAULT;
 687		goto out_unlock;
 688	}
 689	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
 690		vma->vm_file)) {
 691		r = -EPERM;
 692		goto out_unlock;
 693	}
 694
 695	readonly = amdgpu_ttm_tt_is_readonly(ttm);
 696	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
 697				       readonly, NULL, pages, range);
 698out_unlock:
 699	mmap_read_unlock(mm);
 700	if (r)
 701		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
 702
 703	mmput(mm);
 704
 705	return r;
 706}
 707
 708/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
 709 */
 710void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
 711				      struct hmm_range *range)
 712{
 713	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 714
 715	if (gtt && gtt->userptr && range)
 716		amdgpu_hmm_range_get_pages_done(range);
 717}
 718
 719/*
 720 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
 721 * Check if the pages backing this ttm range have been invalidated
 722 *
 723 * Returns: true if pages are still valid
 724 */
 725bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
 726				       struct hmm_range *range)
 727{
 728	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 729
 730	if (!gtt || !gtt->userptr || !range)
 731		return false;
 732
 733	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
 734		gtt->userptr, ttm->num_pages);
 735
 736	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
 737
 738	return !amdgpu_hmm_range_get_pages_done(range);
 739}
 740#endif
 741
 742/*
 743 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
 744 *
 745 * Called by amdgpu_cs_list_validate(). This creates the page list
 746 * that backs user memory and will ultimately be mapped into the device
 747 * address space.
 748 */
 749void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
 750{
 751	unsigned long i;
 752
 753	for (i = 0; i < ttm->num_pages; ++i)
 754		ttm->pages[i] = pages ? pages[i] : NULL;
 755}
 756
 757/*
 758 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
 759 *
 760 * Called by amdgpu_ttm_backend_bind()
 761 **/
 762static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
 763				     struct ttm_tt *ttm)
 764{
 765	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 766	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 767	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 768	enum dma_data_direction direction = write ?
 769		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 770	int r;
 771
 772	/* Allocate an SG array and squash pages into it */
 773	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
 774				      (u64)ttm->num_pages << PAGE_SHIFT,
 775				      GFP_KERNEL);
 776	if (r)
 777		goto release_sg;
 778
 779	/* Map SG to device */
 780	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
 781	if (r)
 782		goto release_sg;
 783
 784	/* convert SG to linear array of pages and dma addresses */
 785	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 786				       ttm->num_pages);
 787
 788	return 0;
 789
 790release_sg:
 791	kfree(ttm->sg);
 792	ttm->sg = NULL;
 793	return r;
 794}
 795
 796/*
 797 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
 798 */
 799static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
 800					struct ttm_tt *ttm)
 801{
 802	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 803	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 804	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 805	enum dma_data_direction direction = write ?
 806		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 807
 808	/* double check that we don't free the table twice */
 809	if (!ttm->sg || !ttm->sg->sgl)
 810		return;
 811
 812	/* unmap the pages mapped to the device */
 813	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
 814	sg_free_table(ttm->sg);
 815}
 816
 817/*
 818 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
 819 * MQDn+CtrlStackn where n is the number of XCCs per partition.
 820 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
 821 * and uses memory type default, UC. The rest of pages_per_xcc are
 822 * Ctrl stack and modify their memory type to NC.
 823 */
 824static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
 825				struct ttm_tt *ttm, uint64_t flags)
 826{
 827	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 828	uint64_t total_pages = ttm->num_pages;
 829	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
 830	uint64_t page_idx, pages_per_xcc;
 831	int i;
 832	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
 833			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
 834
 835	pages_per_xcc = total_pages;
 836	do_div(pages_per_xcc, num_xcc);
 837
 838	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
 839		/* MQD page: use default flags */
 840		amdgpu_gart_bind(adev,
 841				gtt->offset + (page_idx << PAGE_SHIFT),
 842				1, &gtt->ttm.dma_address[page_idx], flags);
 843		/*
 844		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
 845		 * the second page of the BO onward.
 846		 */
 847		amdgpu_gart_bind(adev,
 848				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
 849				pages_per_xcc - 1,
 850				&gtt->ttm.dma_address[page_idx + 1],
 851				ctrl_flags);
 852	}
 853}
 854
 855static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
 856				 struct ttm_buffer_object *tbo,
 857				 uint64_t flags)
 858{
 859	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
 860	struct ttm_tt *ttm = tbo->ttm;
 861	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 862
 863	if (amdgpu_bo_encrypted(abo))
 864		flags |= AMDGPU_PTE_TMZ;
 865
 866	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
 867		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
 868	} else {
 869		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 870				 gtt->ttm.dma_address, flags);
 871	}
 
 872}
 873
 874/*
 875 * amdgpu_ttm_backend_bind - Bind GTT memory
 876 *
 877 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
 878 * This handles binding GTT memory to the device address space.
 879 */
 880static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
 881				   struct ttm_tt *ttm,
 882				   struct ttm_resource *bo_mem)
 883{
 884	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 885	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 886	uint64_t flags;
 887	int r;
 888
 889	if (!bo_mem)
 890		return -EINVAL;
 891
 892	if (gtt->bound)
 893		return 0;
 894
 895	if (gtt->userptr) {
 896		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
 897		if (r) {
 898			DRM_ERROR("failed to pin userptr\n");
 899			return r;
 900		}
 901	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
 902		if (!ttm->sg) {
 903			struct dma_buf_attachment *attach;
 904			struct sg_table *sgt;
 905
 906			attach = gtt->gobj->import_attach;
 907			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
 908			if (IS_ERR(sgt))
 909				return PTR_ERR(sgt);
 910
 911			ttm->sg = sgt;
 912		}
 913
 914		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 915					       ttm->num_pages);
 916	}
 917
 918	if (!ttm->num_pages) {
 919		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
 920		     ttm->num_pages, bo_mem, ttm);
 921	}
 922
 923	if (bo_mem->mem_type != TTM_PL_TT ||
 924	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
 925		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
 926		return 0;
 927	}
 928
 929	/* compute PTE flags relevant to this BO memory */
 930	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
 931
 932	/* bind pages into GART page tables */
 933	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
 934	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 935			 gtt->ttm.dma_address, flags);
 936	gtt->bound = true;
 937	return 0;
 938}
 939
 940/*
 941 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
 942 * through AGP or GART aperture.
 943 *
 944 * If bo is accessible through AGP aperture, then use AGP aperture
 945 * to access bo; otherwise allocate logical space in GART aperture
 946 * and map bo to GART aperture.
 947 */
 948int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
 949{
 950	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 951	struct ttm_operation_ctx ctx = { false, false };
 952	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
 953	struct ttm_placement placement;
 954	struct ttm_place placements;
 955	struct ttm_resource *tmp;
 956	uint64_t addr, flags;
 957	int r;
 958
 959	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
 960		return 0;
 961
 962	addr = amdgpu_gmc_agp_addr(bo);
 963	if (addr != AMDGPU_BO_INVALID_OFFSET)
 964		return 0;
 965
 966	/* allocate GART space */
 967	placement.num_placement = 1;
 968	placement.placement = &placements;
 969	placement.num_busy_placement = 1;
 970	placement.busy_placement = &placements;
 971	placements.fpfn = 0;
 972	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
 973	placements.mem_type = TTM_PL_TT;
 974	placements.flags = bo->resource->placement;
 975
 976	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
 977	if (unlikely(r))
 978		return r;
 979
 980	/* compute PTE flags for this buffer object */
 981	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
 982
 983	/* Bind pages */
 984	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
 985	amdgpu_ttm_gart_bind(adev, bo, flags);
 986	amdgpu_gart_invalidate_tlb(adev);
 987	ttm_resource_free(bo, &bo->resource);
 988	ttm_bo_assign_mem(bo, tmp);
 989
 990	return 0;
 991}
 992
 993/*
 994 * amdgpu_ttm_recover_gart - Rebind GTT pages
 995 *
 996 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
 997 * rebind GTT pages during a GPU reset.
 998 */
 999void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1000{
1001	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1002	uint64_t flags;
1003
1004	if (!tbo->ttm)
1005		return;
1006
1007	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1008	amdgpu_ttm_gart_bind(adev, tbo, flags);
1009}
1010
1011/*
1012 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1013 *
1014 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1015 * ttm_tt_destroy().
1016 */
1017static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1018				      struct ttm_tt *ttm)
1019{
1020	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1021	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1022
1023	/* if the pages have userptr pinning then clear that first */
1024	if (gtt->userptr) {
1025		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1026	} else if (ttm->sg && gtt->gobj->import_attach) {
1027		struct dma_buf_attachment *attach;
1028
1029		attach = gtt->gobj->import_attach;
1030		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1031		ttm->sg = NULL;
1032	}
1033
1034	if (!gtt->bound)
1035		return;
1036
1037	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1038		return;
1039
1040	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1041	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1042	gtt->bound = false;
1043}
1044
1045static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1046				       struct ttm_tt *ttm)
1047{
1048	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1049
1050	if (gtt->usertask)
1051		put_task_struct(gtt->usertask);
1052
1053	ttm_tt_fini(&gtt->ttm);
1054	kfree(gtt);
1055}
1056
1057/**
1058 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1059 *
1060 * @bo: The buffer object to create a GTT ttm_tt object around
1061 * @page_flags: Page flags to be added to the ttm_tt object
1062 *
1063 * Called by ttm_tt_create().
1064 */
1065static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1066					   uint32_t page_flags)
1067{
1068	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1069	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1070	struct amdgpu_ttm_tt *gtt;
1071	enum ttm_caching caching;
1072
1073	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1074	if (!gtt)
1075		return NULL;
1076
1077	gtt->gobj = &bo->base;
1078	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1079		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1080	else
1081		gtt->pool_id = abo->xcp_id;
1082
1083	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1084		caching = ttm_write_combined;
1085	else
1086		caching = ttm_cached;
1087
1088	/* allocate space for the uninitialized page entries */
1089	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1090		kfree(gtt);
1091		return NULL;
1092	}
1093	return &gtt->ttm;
1094}
1095
1096/*
1097 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1098 *
1099 * Map the pages of a ttm_tt object to an address space visible
1100 * to the underlying device.
1101 */
1102static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1103				  struct ttm_tt *ttm,
1104				  struct ttm_operation_ctx *ctx)
1105{
1106	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1107	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1108	struct ttm_pool *pool;
1109	pgoff_t i;
1110	int ret;
1111
1112	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1113	if (gtt->userptr) {
1114		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1115		if (!ttm->sg)
1116			return -ENOMEM;
1117		return 0;
1118	}
1119
1120	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1121		return 0;
1122
1123	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1124		pool = &adev->mman.ttm_pools[gtt->pool_id];
1125	else
1126		pool = &adev->mman.bdev.pool;
1127	ret = ttm_pool_alloc(pool, ttm, ctx);
1128	if (ret)
1129		return ret;
1130
1131	for (i = 0; i < ttm->num_pages; ++i)
1132		ttm->pages[i]->mapping = bdev->dev_mapping;
1133
1134	return 0;
1135}
1136
1137/*
1138 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1139 *
1140 * Unmaps pages of a ttm_tt object from the device address space and
1141 * unpopulates the page array backing it.
1142 */
1143static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1144				     struct ttm_tt *ttm)
1145{
1146	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1147	struct amdgpu_device *adev;
1148	struct ttm_pool *pool;
1149	pgoff_t i;
1150
1151	amdgpu_ttm_backend_unbind(bdev, ttm);
1152
1153	if (gtt->userptr) {
1154		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1155		kfree(ttm->sg);
1156		ttm->sg = NULL;
1157		return;
1158	}
1159
1160	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1161		return;
1162
1163	for (i = 0; i < ttm->num_pages; ++i)
1164		ttm->pages[i]->mapping = NULL;
1165
1166	adev = amdgpu_ttm_adev(bdev);
1167
1168	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1169		pool = &adev->mman.ttm_pools[gtt->pool_id];
1170	else
1171		pool = &adev->mman.bdev.pool;
1172
1173	return ttm_pool_free(pool, ttm);
1174}
1175
1176/**
1177 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1178 * task
1179 *
1180 * @tbo: The ttm_buffer_object that contains the userptr
1181 * @user_addr:  The returned value
1182 */
1183int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1184			      uint64_t *user_addr)
1185{
1186	struct amdgpu_ttm_tt *gtt;
1187
1188	if (!tbo->ttm)
1189		return -EINVAL;
1190
1191	gtt = (void *)tbo->ttm;
1192	*user_addr = gtt->userptr;
1193	return 0;
1194}
1195
1196/**
1197 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1198 * task
1199 *
1200 * @bo: The ttm_buffer_object to bind this userptr to
1201 * @addr:  The address in the current tasks VM space to use
1202 * @flags: Requirements of userptr object.
1203 *
1204 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1205 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1206 * initialize GPU VM for a KFD process.
1207 */
1208int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1209			      uint64_t addr, uint32_t flags)
1210{
1211	struct amdgpu_ttm_tt *gtt;
1212
1213	if (!bo->ttm) {
1214		/* TODO: We want a separate TTM object type for userptrs */
1215		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1216		if (bo->ttm == NULL)
1217			return -ENOMEM;
1218	}
1219
1220	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1221	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1222
1223	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1224	gtt->userptr = addr;
1225	gtt->userflags = flags;
1226
1227	if (gtt->usertask)
1228		put_task_struct(gtt->usertask);
1229	gtt->usertask = current->group_leader;
1230	get_task_struct(gtt->usertask);
1231
1232	return 0;
1233}
1234
1235/*
1236 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1237 */
1238struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1239{
1240	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1241
1242	if (gtt == NULL)
1243		return NULL;
1244
1245	if (gtt->usertask == NULL)
1246		return NULL;
1247
1248	return gtt->usertask->mm;
1249}
1250
1251/*
1252 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1253 * address range for the current task.
1254 *
1255 */
1256bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1257				  unsigned long end, unsigned long *userptr)
1258{
1259	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1260	unsigned long size;
1261
1262	if (gtt == NULL || !gtt->userptr)
1263		return false;
1264
1265	/* Return false if no part of the ttm_tt object lies within
1266	 * the range
1267	 */
1268	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1269	if (gtt->userptr > end || gtt->userptr + size <= start)
1270		return false;
1271
1272	if (userptr)
1273		*userptr = gtt->userptr;
1274	return true;
1275}
1276
1277/*
1278 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1279 */
1280bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1281{
1282	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1283
1284	if (gtt == NULL || !gtt->userptr)
1285		return false;
1286
1287	return true;
1288}
1289
1290/*
1291 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1292 */
1293bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1294{
1295	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1296
1297	if (gtt == NULL)
1298		return false;
1299
1300	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1301}
1302
1303/**
1304 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1305 *
1306 * @ttm: The ttm_tt object to compute the flags for
1307 * @mem: The memory registry backing this ttm_tt object
1308 *
1309 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1310 */
1311uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1312{
1313	uint64_t flags = 0;
1314
1315	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1316		flags |= AMDGPU_PTE_VALID;
1317
1318	if (mem && (mem->mem_type == TTM_PL_TT ||
1319		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1320		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1321		flags |= AMDGPU_PTE_SYSTEM;
1322
1323		if (ttm->caching == ttm_cached)
1324			flags |= AMDGPU_PTE_SNOOPED;
1325	}
1326
1327	if (mem && mem->mem_type == TTM_PL_VRAM &&
1328			mem->bus.caching == ttm_cached)
1329		flags |= AMDGPU_PTE_SNOOPED;
1330
1331	return flags;
1332}
1333
1334/**
1335 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1336 *
1337 * @adev: amdgpu_device pointer
1338 * @ttm: The ttm_tt object to compute the flags for
1339 * @mem: The memory registry backing this ttm_tt object
1340 *
1341 * Figure out the flags to use for a VM PTE (Page Table Entry).
1342 */
1343uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1344				 struct ttm_resource *mem)
1345{
1346	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1347
1348	flags |= adev->gart.gart_pte_flags;
1349	flags |= AMDGPU_PTE_READABLE;
1350
1351	if (!amdgpu_ttm_tt_is_readonly(ttm))
1352		flags |= AMDGPU_PTE_WRITEABLE;
1353
1354	return flags;
1355}
1356
1357/*
1358 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1359 * object.
1360 *
1361 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1362 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1363 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1364 * used to clean out a memory space.
1365 */
1366static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1367					    const struct ttm_place *place)
1368{
1369	struct dma_resv_iter resv_cursor;
1370	struct dma_fence *f;
1371
1372	if (!amdgpu_bo_is_amdgpu_bo(bo))
1373		return ttm_bo_eviction_valuable(bo, place);
1374
1375	/* Swapout? */
1376	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1377		return true;
1378
1379	if (bo->type == ttm_bo_type_kernel &&
1380	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1381		return false;
1382
1383	/* If bo is a KFD BO, check if the bo belongs to the current process.
1384	 * If true, then return false as any KFD process needs all its BOs to
1385	 * be resident to run successfully
1386	 */
1387	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1388				DMA_RESV_USAGE_BOOKKEEP, f) {
1389		if (amdkfd_fence_check_mm(f, current->mm))
1390			return false;
1391	}
1392
1393	/* Preemptible BOs don't own system resources managed by the
1394	 * driver (pages, VRAM, GART space). They point to resources
1395	 * owned by someone else (e.g. pageable memory in user mode
1396	 * or a DMABuf). They are used in a preemptible context so we
1397	 * can guarantee no deadlocks and good QoS in case of MMU
1398	 * notifiers or DMABuf move notifiers from the resource owner.
1399	 */
1400	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1401		return false;
1402
1403	if (bo->resource->mem_type == TTM_PL_TT &&
1404	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1405		return false;
1406
1407	return ttm_bo_eviction_valuable(bo, place);
1408}
1409
1410static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1411				      void *buf, size_t size, bool write)
1412{
1413	while (size) {
1414		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1415		uint64_t bytes = 4 - (pos & 0x3);
1416		uint32_t shift = (pos & 0x3) * 8;
1417		uint32_t mask = 0xffffffff << shift;
1418		uint32_t value = 0;
1419
1420		if (size < bytes) {
1421			mask &= 0xffffffff >> (bytes - size) * 8;
1422			bytes = size;
1423		}
1424
1425		if (mask != 0xffffffff) {
1426			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1427			if (write) {
1428				value &= ~mask;
1429				value |= (*(uint32_t *)buf << shift) & mask;
1430				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1431			} else {
1432				value = (value & mask) >> shift;
1433				memcpy(buf, &value, bytes);
1434			}
1435		} else {
1436			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1437		}
1438
1439		pos += bytes;
1440		buf += bytes;
1441		size -= bytes;
1442	}
1443}
1444
1445static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1446					unsigned long offset, void *buf,
1447					int len, int write)
1448{
1449	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1450	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1451	struct amdgpu_res_cursor src_mm;
1452	struct amdgpu_job *job;
1453	struct dma_fence *fence;
1454	uint64_t src_addr, dst_addr;
1455	unsigned int num_dw;
1456	int r, idx;
1457
1458	if (len != PAGE_SIZE)
1459		return -EINVAL;
1460
1461	if (!adev->mman.sdma_access_ptr)
1462		return -EACCES;
1463
1464	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1465		return -ENODEV;
1466
1467	if (write)
1468		memcpy(adev->mman.sdma_access_ptr, buf, len);
1469
1470	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1471	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1472				     AMDGPU_FENCE_OWNER_UNDEFINED,
1473				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1474				     &job);
1475	if (r)
1476		goto out;
1477
1478	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1479	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1480		src_mm.start;
1481	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1482	if (write)
1483		swap(src_addr, dst_addr);
1484
1485	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1486				PAGE_SIZE, false);
1487
1488	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1489	WARN_ON(job->ibs[0].length_dw > num_dw);
1490
1491	fence = amdgpu_job_submit(job);
1492
1493	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1494		r = -ETIMEDOUT;
1495	dma_fence_put(fence);
1496
1497	if (!(r || write))
1498		memcpy(buf, adev->mman.sdma_access_ptr, len);
1499out:
1500	drm_dev_exit(idx);
1501	return r;
1502}
1503
1504/**
1505 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1506 *
1507 * @bo:  The buffer object to read/write
1508 * @offset:  Offset into buffer object
1509 * @buf:  Secondary buffer to write/read from
1510 * @len: Length in bytes of access
1511 * @write:  true if writing
1512 *
1513 * This is used to access VRAM that backs a buffer object via MMIO
1514 * access for debugging purposes.
1515 */
1516static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1517				    unsigned long offset, void *buf, int len,
1518				    int write)
1519{
1520	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1521	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1522	struct amdgpu_res_cursor cursor;
1523	int ret = 0;
1524
1525	if (bo->resource->mem_type != TTM_PL_VRAM)
1526		return -EIO;
1527
1528	if (amdgpu_device_has_timeouts_enabled(adev) &&
1529			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1530		return len;
1531
1532	amdgpu_res_first(bo->resource, offset, len, &cursor);
1533	while (cursor.remaining) {
1534		size_t count, size = cursor.size;
1535		loff_t pos = cursor.start;
1536
1537		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1538		size -= count;
1539		if (size) {
1540			/* using MM to access rest vram and handle un-aligned address */
1541			pos += count;
1542			buf += count;
1543			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1544		}
1545
1546		ret += cursor.size;
1547		buf += cursor.size;
1548		amdgpu_res_next(&cursor, cursor.size);
1549	}
1550
1551	return ret;
1552}
1553
1554static void
1555amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1556{
1557	amdgpu_bo_move_notify(bo, false);
1558}
1559
1560static struct ttm_device_funcs amdgpu_bo_driver = {
1561	.ttm_tt_create = &amdgpu_ttm_tt_create,
1562	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1563	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1564	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1565	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1566	.evict_flags = &amdgpu_evict_flags,
1567	.move = &amdgpu_bo_move,
1568	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1569	.release_notify = &amdgpu_bo_release_notify,
1570	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1571	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1572	.access_memory = &amdgpu_ttm_access_memory,
1573};
1574
1575/*
1576 * Firmware Reservation functions
1577 */
1578/**
1579 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1580 *
1581 * @adev: amdgpu_device pointer
1582 *
1583 * free fw reserved vram if it has been reserved.
1584 */
1585static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1586{
1587	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1588		NULL, &adev->mman.fw_vram_usage_va);
1589}
1590
1591/*
1592 * Driver Reservation functions
1593 */
1594/**
1595 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1596 *
1597 * @adev: amdgpu_device pointer
1598 *
1599 * free drv reserved vram if it has been reserved.
1600 */
1601static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1602{
1603	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1604						  NULL,
1605						  &adev->mman.drv_vram_usage_va);
1606}
1607
1608/**
1609 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1610 *
1611 * @adev: amdgpu_device pointer
1612 *
1613 * create bo vram reservation from fw.
1614 */
1615static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1616{
1617	uint64_t vram_size = adev->gmc.visible_vram_size;
1618
1619	adev->mman.fw_vram_usage_va = NULL;
1620	adev->mman.fw_vram_usage_reserved_bo = NULL;
1621
1622	if (adev->mman.fw_vram_usage_size == 0 ||
1623	    adev->mman.fw_vram_usage_size > vram_size)
1624		return 0;
1625
1626	return amdgpu_bo_create_kernel_at(adev,
1627					  adev->mman.fw_vram_usage_start_offset,
1628					  adev->mman.fw_vram_usage_size,
1629					  &adev->mman.fw_vram_usage_reserved_bo,
1630					  &adev->mman.fw_vram_usage_va);
1631}
1632
1633/**
1634 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1635 *
1636 * @adev: amdgpu_device pointer
1637 *
1638 * create bo vram reservation from drv.
1639 */
1640static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1641{
1642	u64 vram_size = adev->gmc.visible_vram_size;
1643
1644	adev->mman.drv_vram_usage_va = NULL;
1645	adev->mman.drv_vram_usage_reserved_bo = NULL;
1646
1647	if (adev->mman.drv_vram_usage_size == 0 ||
1648	    adev->mman.drv_vram_usage_size > vram_size)
1649		return 0;
1650
1651	return amdgpu_bo_create_kernel_at(adev,
1652					  adev->mman.drv_vram_usage_start_offset,
1653					  adev->mman.drv_vram_usage_size,
1654					  &adev->mman.drv_vram_usage_reserved_bo,
1655					  &adev->mman.drv_vram_usage_va);
1656}
1657
1658/*
1659 * Memoy training reservation functions
1660 */
1661
1662/**
1663 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1664 *
1665 * @adev: amdgpu_device pointer
1666 *
1667 * free memory training reserved vram if it has been reserved.
1668 */
1669static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1670{
1671	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1672
1673	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1674	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1675	ctx->c2p_bo = NULL;
1676
1677	return 0;
1678}
1679
1680static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1681						uint32_t reserve_size)
1682{
1683	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1684
1685	memset(ctx, 0, sizeof(*ctx));
1686
1687	ctx->c2p_train_data_offset =
1688		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1689	ctx->p2c_train_data_offset =
1690		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1691	ctx->train_data_size =
1692		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1693
1694	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1695			ctx->train_data_size,
1696			ctx->p2c_train_data_offset,
1697			ctx->c2p_train_data_offset);
1698}
1699
1700/*
1701 * reserve TMR memory at the top of VRAM which holds
1702 * IP Discovery data and is protected by PSP.
1703 */
1704static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1705{
1706	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1707	bool mem_train_support = false;
1708	uint32_t reserve_size = 0;
1709	int ret;
1710
1711	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1712		if (amdgpu_atomfirmware_mem_training_supported(adev))
1713			mem_train_support = true;
1714		else
1715			DRM_DEBUG("memory training does not support!\n");
1716	}
1717
1718	/*
1719	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1720	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1721	 *
1722	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1723	 * discovery data and G6 memory training data respectively
1724	 */
1725	if (adev->bios)
1726		reserve_size =
1727			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1728
1729	if (!adev->bios &&
1730	    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1731		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1732	else if (!reserve_size)
1733		reserve_size = DISCOVERY_TMR_OFFSET;
1734
1735	if (mem_train_support) {
1736		/* reserve vram for mem train according to TMR location */
1737		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1738		ret = amdgpu_bo_create_kernel_at(adev,
1739						 ctx->c2p_train_data_offset,
1740						 ctx->train_data_size,
1741						 &ctx->c2p_bo,
1742						 NULL);
1743		if (ret) {
1744			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1745			amdgpu_ttm_training_reserve_vram_fini(adev);
1746			return ret;
1747		}
1748		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1749	}
1750
1751	if (!adev->gmc.is_app_apu) {
1752		ret = amdgpu_bo_create_kernel_at(
1753			adev, adev->gmc.real_vram_size - reserve_size,
1754			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1755		if (ret) {
1756			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1757			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1758					      NULL, NULL);
1759			return ret;
1760		}
1761	} else {
1762		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1763	}
1764
1765	return 0;
1766}
1767
1768static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1769{
1770	int i;
1771
1772	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1773		return 0;
1774
1775	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1776				       sizeof(*adev->mman.ttm_pools),
1777				       GFP_KERNEL);
1778	if (!adev->mman.ttm_pools)
1779		return -ENOMEM;
1780
1781	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1782		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1783			      adev->gmc.mem_partitions[i].numa.node,
1784			      false, false);
1785	}
1786	return 0;
1787}
1788
1789static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1790{
1791	int i;
1792
1793	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1794		return;
1795
1796	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1797		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1798
1799	kfree(adev->mman.ttm_pools);
1800	adev->mman.ttm_pools = NULL;
1801}
1802
1803/*
1804 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1805 * gtt/vram related fields.
1806 *
1807 * This initializes all of the memory space pools that the TTM layer
1808 * will need such as the GTT space (system memory mapped to the device),
1809 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1810 * can be mapped per VMID.
1811 */
1812int amdgpu_ttm_init(struct amdgpu_device *adev)
1813{
1814	uint64_t gtt_size;
1815	int r;
1816
1817	mutex_init(&adev->mman.gtt_window_lock);
1818
1819	/* No others user of address space so set it to 0 */
1820	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1821			       adev_to_drm(adev)->anon_inode->i_mapping,
1822			       adev_to_drm(adev)->vma_offset_manager,
1823			       adev->need_swiotlb,
1824			       dma_addressing_limited(adev->dev));
1825	if (r) {
1826		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1827		return r;
1828	}
1829
1830	r = amdgpu_ttm_pools_init(adev);
1831	if (r) {
1832		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1833		return r;
1834	}
1835	adev->mman.initialized = true;
1836
1837	/* Initialize VRAM pool with all of VRAM divided into pages */
1838	r = amdgpu_vram_mgr_init(adev);
1839	if (r) {
1840		DRM_ERROR("Failed initializing VRAM heap.\n");
1841		return r;
1842	}
1843
1844	/* Change the size here instead of the init above so only lpfn is affected */
1845	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1846#ifdef CONFIG_64BIT
1847#ifdef CONFIG_X86
1848	if (adev->gmc.xgmi.connected_to_cpu)
1849		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1850				adev->gmc.visible_vram_size);
1851
1852	else if (adev->gmc.is_app_apu)
1853		DRM_DEBUG_DRIVER(
1854			"No need to ioremap when real vram size is 0\n");
1855	else
1856#endif
1857		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1858				adev->gmc.visible_vram_size);
1859#endif
1860
1861	/*
1862	 *The reserved vram for firmware must be pinned to the specified
1863	 *place on the VRAM, so reserve it early.
1864	 */
1865	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1866	if (r)
1867		return r;
1868
1869	/*
1870	 *The reserved vram for driver must be pinned to the specified
1871	 *place on the VRAM, so reserve it early.
1872	 */
1873	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1874	if (r)
1875		return r;
1876
1877	/*
1878	 * only NAVI10 and onwards ASIC support for IP discovery.
1879	 * If IP discovery enabled, a block of memory should be
1880	 * reserved for IP discovey.
1881	 */
1882	if (adev->mman.discovery_bin) {
1883		r = amdgpu_ttm_reserve_tmr(adev);
1884		if (r)
1885			return r;
1886	}
1887
1888	/* allocate memory as required for VGA
1889	 * This is used for VGA emulation and pre-OS scanout buffers to
1890	 * avoid display artifacts while transitioning between pre-OS
1891	 * and driver.
1892	 */
1893	if (!adev->gmc.is_app_apu) {
1894		r = amdgpu_bo_create_kernel_at(adev, 0,
1895					       adev->mman.stolen_vga_size,
1896					       &adev->mman.stolen_vga_memory,
1897					       NULL);
1898		if (r)
1899			return r;
1900
1901		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1902					       adev->mman.stolen_extended_size,
1903					       &adev->mman.stolen_extended_memory,
1904					       NULL);
1905
1906		if (r)
1907			return r;
1908
1909		r = amdgpu_bo_create_kernel_at(adev,
1910					       adev->mman.stolen_reserved_offset,
1911					       adev->mman.stolen_reserved_size,
1912					       &adev->mman.stolen_reserved_memory,
1913					       NULL);
1914		if (r)
1915			return r;
1916	} else {
1917		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1918	}
1919
1920	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1921		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1922
1923	/* Compute GTT size, either based on TTM limit
1924	 * or whatever the user passed on module init.
1925	 */
1926	if (amdgpu_gtt_size == -1)
1927		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1928	else
1929		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1930
1931	/* Initialize GTT memory pool */
1932	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1933	if (r) {
1934		DRM_ERROR("Failed initializing GTT heap.\n");
1935		return r;
1936	}
1937	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1938		 (unsigned int)(gtt_size / (1024 * 1024)));
1939
1940	/* Initiailize doorbell pool on PCI BAR */
1941	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1942	if (r) {
1943		DRM_ERROR("Failed initializing doorbell heap.\n");
1944		return r;
1945	}
1946
1947	/* Create a boorbell page for kernel usages */
1948	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1949	if (r) {
1950		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1951		return r;
1952	}
1953
1954	/* Initialize preemptible memory pool */
1955	r = amdgpu_preempt_mgr_init(adev);
1956	if (r) {
1957		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1958		return r;
1959	}
1960
1961	/* Initialize various on-chip memory pools */
1962	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1963	if (r) {
1964		DRM_ERROR("Failed initializing GDS heap.\n");
1965		return r;
1966	}
1967
1968	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1969	if (r) {
1970		DRM_ERROR("Failed initializing gws heap.\n");
1971		return r;
1972	}
1973
1974	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1975	if (r) {
1976		DRM_ERROR("Failed initializing oa heap.\n");
1977		return r;
1978	}
1979	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1980				AMDGPU_GEM_DOMAIN_GTT,
1981				&adev->mman.sdma_access_bo, NULL,
1982				&adev->mman.sdma_access_ptr))
1983		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1984
1985	return 0;
1986}
1987
1988/*
1989 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1990 */
1991void amdgpu_ttm_fini(struct amdgpu_device *adev)
1992{
1993	int idx;
1994
1995	if (!adev->mman.initialized)
1996		return;
1997
1998	amdgpu_ttm_pools_fini(adev);
1999
2000	amdgpu_ttm_training_reserve_vram_fini(adev);
2001	/* return the stolen vga memory back to VRAM */
2002	if (!adev->gmc.is_app_apu) {
2003		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2004		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2005		/* return the FW reserved memory back to VRAM */
2006		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2007				      NULL);
2008		if (adev->mman.stolen_reserved_size)
2009			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2010					      NULL, NULL);
2011	}
2012	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2013					&adev->mman.sdma_access_ptr);
2014	amdgpu_ttm_fw_reserve_vram_fini(adev);
2015	amdgpu_ttm_drv_reserve_vram_fini(adev);
2016
2017	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2018
2019		if (adev->mman.aper_base_kaddr)
2020			iounmap(adev->mman.aper_base_kaddr);
2021		adev->mman.aper_base_kaddr = NULL;
2022
2023		drm_dev_exit(idx);
2024	}
2025
2026	amdgpu_vram_mgr_fini(adev);
2027	amdgpu_gtt_mgr_fini(adev);
2028	amdgpu_preempt_mgr_fini(adev);
2029	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2030	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2031	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2032	ttm_device_fini(&adev->mman.bdev);
2033	adev->mman.initialized = false;
2034	DRM_INFO("amdgpu: ttm finalized\n");
2035}
2036
2037/**
2038 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2039 *
2040 * @adev: amdgpu_device pointer
2041 * @enable: true when we can use buffer functions.
2042 *
2043 * Enable/disable use of buffer functions during suspend/resume. This should
2044 * only be called at bootup or when userspace isn't running.
2045 */
2046void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2047{
2048	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2049	uint64_t size;
2050	int r;
2051
2052	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2053	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2054		return;
2055
2056	if (enable) {
2057		struct amdgpu_ring *ring;
2058		struct drm_gpu_scheduler *sched;
2059
2060		ring = adev->mman.buffer_funcs_ring;
2061		sched = &ring->sched;
2062		r = drm_sched_entity_init(&adev->mman.high_pr,
2063					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2064					  1, NULL);
2065		if (r) {
2066			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2067				  r);
2068			return;
2069		}
2070
2071		r = drm_sched_entity_init(&adev->mman.low_pr,
2072					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2073					  1, NULL);
2074		if (r) {
2075			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2076				  r);
2077			goto error_free_entity;
2078		}
2079	} else {
2080		drm_sched_entity_destroy(&adev->mman.high_pr);
2081		drm_sched_entity_destroy(&adev->mman.low_pr);
2082		dma_fence_put(man->move);
2083		man->move = NULL;
2084	}
2085
2086	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2087	if (enable)
2088		size = adev->gmc.real_vram_size;
2089	else
2090		size = adev->gmc.visible_vram_size;
2091	man->size = size;
2092	adev->mman.buffer_funcs_enabled = enable;
2093
2094	return;
2095
2096error_free_entity:
2097	drm_sched_entity_destroy(&adev->mman.high_pr);
2098}
2099
2100static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2101				  bool direct_submit,
2102				  unsigned int num_dw,
2103				  struct dma_resv *resv,
2104				  bool vm_needs_flush,
2105				  struct amdgpu_job **job,
2106				  bool delayed)
2107{
2108	enum amdgpu_ib_pool_type pool = direct_submit ?
2109		AMDGPU_IB_POOL_DIRECT :
2110		AMDGPU_IB_POOL_DELAYED;
2111	int r;
2112	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2113						    &adev->mman.high_pr;
2114	r = amdgpu_job_alloc_with_ib(adev, entity,
2115				     AMDGPU_FENCE_OWNER_UNDEFINED,
2116				     num_dw * 4, pool, job);
2117	if (r)
2118		return r;
2119
2120	if (vm_needs_flush) {
2121		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2122							adev->gmc.pdb0_bo :
2123							adev->gart.bo);
2124		(*job)->vm_needs_flush = true;
2125	}
2126	if (!resv)
2127		return 0;
2128
2129	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2130						   DMA_RESV_USAGE_BOOKKEEP);
2131}
2132
2133int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2134		       uint64_t dst_offset, uint32_t byte_count,
2135		       struct dma_resv *resv,
2136		       struct dma_fence **fence, bool direct_submit,
2137		       bool vm_needs_flush, bool tmz)
2138{
2139	struct amdgpu_device *adev = ring->adev;
2140	unsigned int num_loops, num_dw;
2141	struct amdgpu_job *job;
2142	uint32_t max_bytes;
2143	unsigned int i;
2144	int r;
2145
2146	if (!direct_submit && !ring->sched.ready) {
2147		DRM_ERROR("Trying to move memory with ring turned off.\n");
2148		return -EINVAL;
2149	}
2150
2151	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2152	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2153	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2154	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2155				   resv, vm_needs_flush, &job, false);
2156	if (r)
2157		return r;
2158
2159	for (i = 0; i < num_loops; i++) {
2160		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2161
2162		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2163					dst_offset, cur_size_in_bytes, tmz);
2164
2165		src_offset += cur_size_in_bytes;
2166		dst_offset += cur_size_in_bytes;
2167		byte_count -= cur_size_in_bytes;
2168	}
2169
2170	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2171	WARN_ON(job->ibs[0].length_dw > num_dw);
2172	if (direct_submit)
2173		r = amdgpu_job_submit_direct(job, ring, fence);
2174	else
2175		*fence = amdgpu_job_submit(job);
2176	if (r)
2177		goto error_free;
2178
2179	return r;
2180
2181error_free:
2182	amdgpu_job_free(job);
2183	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2184	return r;
2185}
2186
2187static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2188			       uint64_t dst_addr, uint32_t byte_count,
2189			       struct dma_resv *resv,
2190			       struct dma_fence **fence,
2191			       bool vm_needs_flush, bool delayed)
2192{
2193	struct amdgpu_device *adev = ring->adev;
2194	unsigned int num_loops, num_dw;
2195	struct amdgpu_job *job;
2196	uint32_t max_bytes;
2197	unsigned int i;
2198	int r;
2199
2200	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2201	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2202	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2203	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2204				   &job, delayed);
2205	if (r)
2206		return r;
2207
2208	for (i = 0; i < num_loops; i++) {
2209		uint32_t cur_size = min(byte_count, max_bytes);
2210
2211		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2212					cur_size);
2213
2214		dst_addr += cur_size;
2215		byte_count -= cur_size;
2216	}
2217
2218	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2219	WARN_ON(job->ibs[0].length_dw > num_dw);
2220	*fence = amdgpu_job_submit(job);
2221	return 0;
2222}
2223
2224int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2225			uint32_t src_data,
2226			struct dma_resv *resv,
2227			struct dma_fence **f,
2228			bool delayed)
2229{
2230	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2231	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2232	struct dma_fence *fence = NULL;
2233	struct amdgpu_res_cursor dst;
2234	int r;
2235
2236	if (!adev->mman.buffer_funcs_enabled) {
2237		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2238		return -EINVAL;
2239	}
2240
2241	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2242
2243	mutex_lock(&adev->mman.gtt_window_lock);
2244	while (dst.remaining) {
2245		struct dma_fence *next;
2246		uint64_t cur_size, to;
2247
2248		/* Never fill more than 256MiB at once to avoid timeouts */
2249		cur_size = min(dst.size, 256ULL << 20);
2250
2251		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2252					  1, ring, false, &cur_size, &to);
2253		if (r)
2254			goto error;
2255
2256		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2257					&next, true, delayed);
2258		if (r)
2259			goto error;
2260
2261		dma_fence_put(fence);
2262		fence = next;
2263
2264		amdgpu_res_next(&dst, cur_size);
2265	}
2266error:
2267	mutex_unlock(&adev->mman.gtt_window_lock);
2268	if (f)
2269		*f = dma_fence_get(fence);
2270	dma_fence_put(fence);
2271	return r;
2272}
2273
2274/**
2275 * amdgpu_ttm_evict_resources - evict memory buffers
2276 * @adev: amdgpu device object
2277 * @mem_type: evicted BO's memory type
2278 *
2279 * Evicts all @mem_type buffers on the lru list of the memory type.
2280 *
2281 * Returns:
2282 * 0 for success or a negative error code on failure.
2283 */
2284int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2285{
2286	struct ttm_resource_manager *man;
2287
2288	switch (mem_type) {
2289	case TTM_PL_VRAM:
2290	case TTM_PL_TT:
2291	case AMDGPU_PL_GWS:
2292	case AMDGPU_PL_GDS:
2293	case AMDGPU_PL_OA:
2294		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2295		break;
2296	default:
2297		DRM_ERROR("Trying to evict invalid memory type\n");
2298		return -EINVAL;
2299	}
2300
2301	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2302}
2303
2304#if defined(CONFIG_DEBUG_FS)
2305
2306static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2307{
2308	struct amdgpu_device *adev = m->private;
2309
2310	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2311}
2312
2313DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2314
2315/*
2316 * amdgpu_ttm_vram_read - Linear read access to VRAM
2317 *
2318 * Accesses VRAM via MMIO for debugging purposes.
2319 */
2320static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2321				    size_t size, loff_t *pos)
2322{
2323	struct amdgpu_device *adev = file_inode(f)->i_private;
2324	ssize_t result = 0;
2325
2326	if (size & 0x3 || *pos & 0x3)
2327		return -EINVAL;
2328
2329	if (*pos >= adev->gmc.mc_vram_size)
2330		return -ENXIO;
2331
2332	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2333	while (size) {
2334		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2335		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2336
2337		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2338		if (copy_to_user(buf, value, bytes))
2339			return -EFAULT;
2340
2341		result += bytes;
2342		buf += bytes;
2343		*pos += bytes;
2344		size -= bytes;
2345	}
2346
2347	return result;
2348}
2349
2350/*
2351 * amdgpu_ttm_vram_write - Linear write access to VRAM
2352 *
2353 * Accesses VRAM via MMIO for debugging purposes.
2354 */
2355static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2356				    size_t size, loff_t *pos)
2357{
2358	struct amdgpu_device *adev = file_inode(f)->i_private;
2359	ssize_t result = 0;
2360	int r;
2361
2362	if (size & 0x3 || *pos & 0x3)
2363		return -EINVAL;
2364
2365	if (*pos >= adev->gmc.mc_vram_size)
2366		return -ENXIO;
2367
2368	while (size) {
2369		uint32_t value;
2370
2371		if (*pos >= adev->gmc.mc_vram_size)
2372			return result;
2373
2374		r = get_user(value, (uint32_t *)buf);
2375		if (r)
2376			return r;
2377
2378		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2379
2380		result += 4;
2381		buf += 4;
2382		*pos += 4;
2383		size -= 4;
2384	}
2385
2386	return result;
2387}
2388
2389static const struct file_operations amdgpu_ttm_vram_fops = {
2390	.owner = THIS_MODULE,
2391	.read = amdgpu_ttm_vram_read,
2392	.write = amdgpu_ttm_vram_write,
2393	.llseek = default_llseek,
2394};
2395
2396/*
2397 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2398 *
2399 * This function is used to read memory that has been mapped to the
2400 * GPU and the known addresses are not physical addresses but instead
2401 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2402 */
2403static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2404				 size_t size, loff_t *pos)
2405{
2406	struct amdgpu_device *adev = file_inode(f)->i_private;
2407	struct iommu_domain *dom;
2408	ssize_t result = 0;
2409	int r;
2410
2411	/* retrieve the IOMMU domain if any for this device */
2412	dom = iommu_get_domain_for_dev(adev->dev);
2413
2414	while (size) {
2415		phys_addr_t addr = *pos & PAGE_MASK;
2416		loff_t off = *pos & ~PAGE_MASK;
2417		size_t bytes = PAGE_SIZE - off;
2418		unsigned long pfn;
2419		struct page *p;
2420		void *ptr;
2421
2422		bytes = min(bytes, size);
2423
2424		/* Translate the bus address to a physical address.  If
2425		 * the domain is NULL it means there is no IOMMU active
2426		 * and the address translation is the identity
2427		 */
2428		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2429
2430		pfn = addr >> PAGE_SHIFT;
2431		if (!pfn_valid(pfn))
2432			return -EPERM;
2433
2434		p = pfn_to_page(pfn);
2435		if (p->mapping != adev->mman.bdev.dev_mapping)
2436			return -EPERM;
2437
2438		ptr = kmap_local_page(p);
2439		r = copy_to_user(buf, ptr + off, bytes);
2440		kunmap_local(ptr);
2441		if (r)
2442			return -EFAULT;
2443
2444		size -= bytes;
2445		*pos += bytes;
2446		result += bytes;
2447	}
2448
2449	return result;
2450}
2451
2452/*
2453 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2454 *
2455 * This function is used to write memory that has been mapped to the
2456 * GPU and the known addresses are not physical addresses but instead
2457 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2458 */
2459static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2460				 size_t size, loff_t *pos)
2461{
2462	struct amdgpu_device *adev = file_inode(f)->i_private;
2463	struct iommu_domain *dom;
2464	ssize_t result = 0;
2465	int r;
2466
2467	dom = iommu_get_domain_for_dev(adev->dev);
2468
2469	while (size) {
2470		phys_addr_t addr = *pos & PAGE_MASK;
2471		loff_t off = *pos & ~PAGE_MASK;
2472		size_t bytes = PAGE_SIZE - off;
2473		unsigned long pfn;
2474		struct page *p;
2475		void *ptr;
2476
2477		bytes = min(bytes, size);
2478
2479		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2480
2481		pfn = addr >> PAGE_SHIFT;
2482		if (!pfn_valid(pfn))
2483			return -EPERM;
2484
2485		p = pfn_to_page(pfn);
2486		if (p->mapping != adev->mman.bdev.dev_mapping)
2487			return -EPERM;
2488
2489		ptr = kmap_local_page(p);
2490		r = copy_from_user(ptr + off, buf, bytes);
2491		kunmap_local(ptr);
2492		if (r)
2493			return -EFAULT;
2494
2495		size -= bytes;
2496		*pos += bytes;
2497		result += bytes;
2498	}
2499
2500	return result;
2501}
2502
2503static const struct file_operations amdgpu_ttm_iomem_fops = {
2504	.owner = THIS_MODULE,
2505	.read = amdgpu_iomem_read,
2506	.write = amdgpu_iomem_write,
2507	.llseek = default_llseek
2508};
2509
2510#endif
2511
2512void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2513{
2514#if defined(CONFIG_DEBUG_FS)
2515	struct drm_minor *minor = adev_to_drm(adev)->primary;
2516	struct dentry *root = minor->debugfs_root;
2517
2518	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2519				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2520	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2521			    &amdgpu_ttm_iomem_fops);
2522	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2523			    &amdgpu_ttm_page_pool_fops);
2524	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2525							     TTM_PL_VRAM),
2526					    root, "amdgpu_vram_mm");
2527	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2528							     TTM_PL_TT),
2529					    root, "amdgpu_gtt_mm");
2530	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2531							     AMDGPU_PL_GDS),
2532					    root, "amdgpu_gds_mm");
2533	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2534							     AMDGPU_PL_GWS),
2535					    root, "amdgpu_gws_mm");
2536	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2537							     AMDGPU_PL_OA),
2538					    root, "amdgpu_oa_mm");
2539
2540#endif
2541}