Loading...
1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33#include <linux/dma-mapping.h>
34#include <linux/iommu.h>
35#include <linux/pagemap.h>
36#include <linux/sched/task.h>
37#include <linux/sched/mm.h>
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/dma-buf.h>
42#include <linux/sizes.h>
43#include <linux/module.h>
44
45#include <drm/drm_drv.h>
46#include <drm/ttm/ttm_bo.h>
47#include <drm/ttm/ttm_placement.h>
48#include <drm/ttm/ttm_range_manager.h>
49#include <drm/ttm/ttm_tt.h>
50
51#include <drm/amdgpu_drm.h>
52
53#include "amdgpu.h"
54#include "amdgpu_object.h"
55#include "amdgpu_trace.h"
56#include "amdgpu_amdkfd.h"
57#include "amdgpu_sdma.h"
58#include "amdgpu_ras.h"
59#include "amdgpu_hmm.h"
60#include "amdgpu_atomfirmware.h"
61#include "amdgpu_res_cursor.h"
62#include "bif/bif_4_1_d.h"
63
64MODULE_IMPORT_NS(DMA_BUF);
65
66#define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77{
78 return ttm_range_man_init(&adev->mman.bdev, type,
79 false, size_in_page);
80}
81
82/**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92{
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 return;
106 }
107
108 /* Object isn't an AMDGPU object so ignore */
109 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 placement->placement = &placements;
111 placement->num_placement = 1;
112 return;
113 }
114
115 abo = ttm_to_amdgpu_bo(bo);
116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 placement->num_placement = 0;
118 return;
119 }
120
121 switch (bo->resource->mem_type) {
122 case AMDGPU_PL_GDS:
123 case AMDGPU_PL_GWS:
124 case AMDGPU_PL_OA:
125 case AMDGPU_PL_DOORBELL:
126 placement->num_placement = 0;
127 return;
128
129 case TTM_PL_VRAM:
130 if (!adev->mman.buffer_funcs_enabled) {
131 /* Move to system memory */
132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133
134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 amdgpu_res_cpu_visible(adev, bo->resource)) {
137
138 /* Try evicting to the CPU inaccessible part of VRAM
139 * first, but only set GTT as busy placement, so this
140 * BO will be evicted to GTT rather than causing other
141 * BOs to be evicted from VRAM
142 */
143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 AMDGPU_GEM_DOMAIN_GTT |
145 AMDGPU_GEM_DOMAIN_CPU);
146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 abo->placements[0].lpfn = 0;
148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 } else {
150 /* Move to GTT memory */
151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 AMDGPU_GEM_DOMAIN_CPU);
153 }
154 break;
155 case TTM_PL_TT:
156 case AMDGPU_PL_PREEMPT:
157 default:
158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 break;
160 }
161 *placement = abo->placement;
162}
163
164/**
165 * amdgpu_ttm_map_buffer - Map memory into the GART windows
166 * @bo: buffer object to map
167 * @mem: memory object to map
168 * @mm_cur: range to map
169 * @window: which GART window to use
170 * @ring: DMA ring to use for the copy
171 * @tmz: if we should setup a TMZ enabled mapping
172 * @size: in number of bytes to map, out number of bytes mapped
173 * @addr: resulting address inside the MC address space
174 *
175 * Setup one of the GART windows to access a specific piece of memory or return
176 * the physical address for local memory.
177 */
178static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 struct ttm_resource *mem,
180 struct amdgpu_res_cursor *mm_cur,
181 unsigned int window, struct amdgpu_ring *ring,
182 bool tmz, uint64_t *size, uint64_t *addr)
183{
184 struct amdgpu_device *adev = ring->adev;
185 unsigned int offset, num_pages, num_dw, num_bytes;
186 uint64_t src_addr, dst_addr;
187 struct amdgpu_job *job;
188 void *cpu_addr;
189 uint64_t flags;
190 unsigned int i;
191 int r;
192
193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195
196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 return -EINVAL;
198
199 /* Map only what can't be accessed directly */
200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 mm_cur->start;
203 return 0;
204 }
205
206
207 /*
208 * If start begins at an offset inside the page, then adjust the size
209 * and addr accordingly
210 */
211 offset = mm_cur->start & ~PAGE_MASK;
212
213 num_pages = PFN_UP(*size + offset);
214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215
216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217
218 *addr = adev->gmc.gart_start;
219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 AMDGPU_GPU_PAGE_SIZE;
221 *addr += offset;
222
223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225
226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 AMDGPU_FENCE_OWNER_UNDEFINED,
228 num_dw * 4 + num_bytes,
229 AMDGPU_IB_POOL_DELAYED, &job);
230 if (r)
231 return r;
232
233 src_addr = num_dw * 4;
234 src_addr += job->ibs[0].gpu_addr;
235
236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 dst_addr, num_bytes, false);
240
241 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 WARN_ON(job->ibs[0].length_dw > num_dw);
243
244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 if (tmz)
246 flags |= AMDGPU_PTE_TMZ;
247
248 cpu_addr = &job->ibs[0].ptr[num_dw];
249
250 if (mem->mem_type == TTM_PL_TT) {
251 dma_addr_t *dma_addr;
252
253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 } else {
256 dma_addr_t dma_address;
257
258 dma_address = mm_cur->start;
259 dma_address += adev->vm_manager.vram_base_offset;
260
261 for (i = 0; i < num_pages; ++i) {
262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 flags, cpu_addr);
264 dma_address += PAGE_SIZE;
265 }
266 }
267
268 dma_fence_put(amdgpu_job_submit(job));
269 return 0;
270}
271
272/**
273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274 * @adev: amdgpu device
275 * @src: buffer/address where to read from
276 * @dst: buffer/address where to write to
277 * @size: number of bytes to copy
278 * @tmz: if a secure copy should be used
279 * @resv: resv object to sync to
280 * @f: Returns the last fence if multiple jobs are submitted.
281 *
282 * The function copies @size bytes from {src->mem + src->offset} to
283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284 * move and different for a BO to BO copy.
285 *
286 */
287int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 const struct amdgpu_copy_mem *src,
289 const struct amdgpu_copy_mem *dst,
290 uint64_t size, bool tmz,
291 struct dma_resv *resv,
292 struct dma_fence **f)
293{
294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 struct amdgpu_res_cursor src_mm, dst_mm;
296 struct dma_fence *fence = NULL;
297 int r = 0;
298
299 if (!adev->mman.buffer_funcs_enabled) {
300 DRM_ERROR("Trying to move memory with ring turned off.\n");
301 return -EINVAL;
302 }
303
304 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
305 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
306
307 mutex_lock(&adev->mman.gtt_window_lock);
308 while (src_mm.remaining) {
309 uint64_t from, to, cur_size;
310 struct dma_fence *next;
311
312 /* Never copy more than 256MiB at once to avoid a timeout */
313 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
314
315 /* Map src to window 0 and dst to window 1. */
316 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
317 0, ring, tmz, &cur_size, &from);
318 if (r)
319 goto error;
320
321 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
322 1, ring, tmz, &cur_size, &to);
323 if (r)
324 goto error;
325
326 r = amdgpu_copy_buffer(ring, from, to, cur_size,
327 resv, &next, false, true, tmz);
328 if (r)
329 goto error;
330
331 dma_fence_put(fence);
332 fence = next;
333
334 amdgpu_res_next(&src_mm, cur_size);
335 amdgpu_res_next(&dst_mm, cur_size);
336 }
337error:
338 mutex_unlock(&adev->mman.gtt_window_lock);
339 if (f)
340 *f = dma_fence_get(fence);
341 dma_fence_put(fence);
342 return r;
343}
344
345/*
346 * amdgpu_move_blit - Copy an entire buffer to another buffer
347 *
348 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
349 * help move buffers to and from VRAM.
350 */
351static int amdgpu_move_blit(struct ttm_buffer_object *bo,
352 bool evict,
353 struct ttm_resource *new_mem,
354 struct ttm_resource *old_mem)
355{
356 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
357 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
358 struct amdgpu_copy_mem src, dst;
359 struct dma_fence *fence = NULL;
360 int r;
361
362 src.bo = bo;
363 dst.bo = bo;
364 src.mem = old_mem;
365 dst.mem = new_mem;
366 src.offset = 0;
367 dst.offset = 0;
368
369 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
370 new_mem->size,
371 amdgpu_bo_encrypted(abo),
372 bo->base.resv, &fence);
373 if (r)
374 goto error;
375
376 /* clear the space being freed */
377 if (old_mem->mem_type == TTM_PL_VRAM &&
378 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
379 struct dma_fence *wipe_fence = NULL;
380
381 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
382 false);
383 if (r) {
384 goto error;
385 } else if (wipe_fence) {
386 dma_fence_put(fence);
387 fence = wipe_fence;
388 }
389 }
390
391 /* Always block for VM page tables before committing the new location */
392 if (bo->type == ttm_bo_type_kernel)
393 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
394 else
395 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
396 dma_fence_put(fence);
397 return r;
398
399error:
400 if (fence)
401 dma_fence_wait(fence, false);
402 dma_fence_put(fence);
403 return r;
404}
405
406/**
407 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
408 * @adev: amdgpu device
409 * @res: the resource to check
410 *
411 * Returns: true if the full resource is CPU visible, false otherwise.
412 */
413bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
414 struct ttm_resource *res)
415{
416 struct amdgpu_res_cursor cursor;
417
418 if (!res)
419 return false;
420
421 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
422 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
423 return true;
424
425 if (res->mem_type != TTM_PL_VRAM)
426 return false;
427
428 amdgpu_res_first(res, 0, res->size, &cursor);
429 while (cursor.remaining) {
430 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
431 return false;
432 amdgpu_res_next(&cursor, cursor.size);
433 }
434
435 return true;
436}
437
438/*
439 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
440 *
441 * Called by amdgpu_bo_move()
442 */
443static bool amdgpu_res_copyable(struct amdgpu_device *adev,
444 struct ttm_resource *mem)
445{
446 if (!amdgpu_res_cpu_visible(adev, mem))
447 return false;
448
449 /* ttm_resource_ioremap only supports contiguous memory */
450 if (mem->mem_type == TTM_PL_VRAM &&
451 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
452 return false;
453
454 return true;
455}
456
457/*
458 * amdgpu_bo_move - Move a buffer object to a new memory location
459 *
460 * Called by ttm_bo_handle_move_mem()
461 */
462static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
463 struct ttm_operation_ctx *ctx,
464 struct ttm_resource *new_mem,
465 struct ttm_place *hop)
466{
467 struct amdgpu_device *adev;
468 struct amdgpu_bo *abo;
469 struct ttm_resource *old_mem = bo->resource;
470 int r;
471
472 if (new_mem->mem_type == TTM_PL_TT ||
473 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
474 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
475 if (r)
476 return r;
477 }
478
479 abo = ttm_to_amdgpu_bo(bo);
480 adev = amdgpu_ttm_adev(bo->bdev);
481
482 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
483 bo->ttm == NULL)) {
484 amdgpu_bo_move_notify(bo, evict, new_mem);
485 ttm_bo_move_null(bo, new_mem);
486 return 0;
487 }
488 if (old_mem->mem_type == TTM_PL_SYSTEM &&
489 (new_mem->mem_type == TTM_PL_TT ||
490 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
491 amdgpu_bo_move_notify(bo, evict, new_mem);
492 ttm_bo_move_null(bo, new_mem);
493 return 0;
494 }
495 if ((old_mem->mem_type == TTM_PL_TT ||
496 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
497 new_mem->mem_type == TTM_PL_SYSTEM) {
498 r = ttm_bo_wait_ctx(bo, ctx);
499 if (r)
500 return r;
501
502 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
503 amdgpu_bo_move_notify(bo, evict, new_mem);
504 ttm_resource_free(bo, &bo->resource);
505 ttm_bo_assign_mem(bo, new_mem);
506 return 0;
507 }
508
509 if (old_mem->mem_type == AMDGPU_PL_GDS ||
510 old_mem->mem_type == AMDGPU_PL_GWS ||
511 old_mem->mem_type == AMDGPU_PL_OA ||
512 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
513 new_mem->mem_type == AMDGPU_PL_GDS ||
514 new_mem->mem_type == AMDGPU_PL_GWS ||
515 new_mem->mem_type == AMDGPU_PL_OA ||
516 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
517 /* Nothing to save here */
518 amdgpu_bo_move_notify(bo, evict, new_mem);
519 ttm_bo_move_null(bo, new_mem);
520 return 0;
521 }
522
523 if (bo->type == ttm_bo_type_device &&
524 new_mem->mem_type == TTM_PL_VRAM &&
525 old_mem->mem_type != TTM_PL_VRAM) {
526 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
527 * accesses the BO after it's moved.
528 */
529 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
530 }
531
532 if (adev->mman.buffer_funcs_enabled &&
533 ((old_mem->mem_type == TTM_PL_SYSTEM &&
534 new_mem->mem_type == TTM_PL_VRAM) ||
535 (old_mem->mem_type == TTM_PL_VRAM &&
536 new_mem->mem_type == TTM_PL_SYSTEM))) {
537 hop->fpfn = 0;
538 hop->lpfn = 0;
539 hop->mem_type = TTM_PL_TT;
540 hop->flags = TTM_PL_FLAG_TEMPORARY;
541 return -EMULTIHOP;
542 }
543
544 amdgpu_bo_move_notify(bo, evict, new_mem);
545 if (adev->mman.buffer_funcs_enabled)
546 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
547 else
548 r = -ENODEV;
549
550 if (r) {
551 /* Check that all memory is CPU accessible */
552 if (!amdgpu_res_copyable(adev, old_mem) ||
553 !amdgpu_res_copyable(adev, new_mem)) {
554 pr_err("Move buffer fallback to memcpy unavailable\n");
555 return r;
556 }
557
558 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
559 if (r)
560 return r;
561 }
562
563 /* update statistics after the move */
564 if (evict)
565 atomic64_inc(&adev->num_evictions);
566 atomic64_add(bo->base.size, &adev->num_bytes_moved);
567 return 0;
568}
569
570/*
571 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
572 *
573 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
574 */
575static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
576 struct ttm_resource *mem)
577{
578 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
579
580 switch (mem->mem_type) {
581 case TTM_PL_SYSTEM:
582 /* system memory */
583 return 0;
584 case TTM_PL_TT:
585 case AMDGPU_PL_PREEMPT:
586 break;
587 case TTM_PL_VRAM:
588 mem->bus.offset = mem->start << PAGE_SHIFT;
589
590 if (adev->mman.aper_base_kaddr &&
591 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
592 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
593 mem->bus.offset;
594
595 mem->bus.offset += adev->gmc.aper_base;
596 mem->bus.is_iomem = true;
597 break;
598 case AMDGPU_PL_DOORBELL:
599 mem->bus.offset = mem->start << PAGE_SHIFT;
600 mem->bus.offset += adev->doorbell.base;
601 mem->bus.is_iomem = true;
602 mem->bus.caching = ttm_uncached;
603 break;
604 default:
605 return -EINVAL;
606 }
607 return 0;
608}
609
610static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
611 unsigned long page_offset)
612{
613 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
614 struct amdgpu_res_cursor cursor;
615
616 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
617 &cursor);
618
619 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
620 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
621
622 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
623}
624
625/**
626 * amdgpu_ttm_domain_start - Returns GPU start address
627 * @adev: amdgpu device object
628 * @type: type of the memory
629 *
630 * Returns:
631 * GPU start address of a memory domain
632 */
633
634uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
635{
636 switch (type) {
637 case TTM_PL_TT:
638 return adev->gmc.gart_start;
639 case TTM_PL_VRAM:
640 return adev->gmc.vram_start;
641 }
642
643 return 0;
644}
645
646/*
647 * TTM backend functions.
648 */
649struct amdgpu_ttm_tt {
650 struct ttm_tt ttm;
651 struct drm_gem_object *gobj;
652 u64 offset;
653 uint64_t userptr;
654 struct task_struct *usertask;
655 uint32_t userflags;
656 bool bound;
657 int32_t pool_id;
658};
659
660#define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
661
662#ifdef CONFIG_DRM_AMDGPU_USERPTR
663/*
664 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
665 * memory and start HMM tracking CPU page table update
666 *
667 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
668 * once afterwards to stop HMM tracking
669 */
670int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
671 struct hmm_range **range)
672{
673 struct ttm_tt *ttm = bo->tbo.ttm;
674 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
675 unsigned long start = gtt->userptr;
676 struct vm_area_struct *vma;
677 struct mm_struct *mm;
678 bool readonly;
679 int r = 0;
680
681 /* Make sure get_user_pages_done() can cleanup gracefully */
682 *range = NULL;
683
684 mm = bo->notifier.mm;
685 if (unlikely(!mm)) {
686 DRM_DEBUG_DRIVER("BO is not registered?\n");
687 return -EFAULT;
688 }
689
690 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
691 return -ESRCH;
692
693 mmap_read_lock(mm);
694 vma = vma_lookup(mm, start);
695 if (unlikely(!vma)) {
696 r = -EFAULT;
697 goto out_unlock;
698 }
699 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
700 vma->vm_file)) {
701 r = -EPERM;
702 goto out_unlock;
703 }
704
705 readonly = amdgpu_ttm_tt_is_readonly(ttm);
706 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
707 readonly, NULL, pages, range);
708out_unlock:
709 mmap_read_unlock(mm);
710 if (r)
711 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
712
713 mmput(mm);
714
715 return r;
716}
717
718/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
719 */
720void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
721 struct hmm_range *range)
722{
723 struct amdgpu_ttm_tt *gtt = (void *)ttm;
724
725 if (gtt && gtt->userptr && range)
726 amdgpu_hmm_range_get_pages_done(range);
727}
728
729/*
730 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
731 * Check if the pages backing this ttm range have been invalidated
732 *
733 * Returns: true if pages are still valid
734 */
735bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
736 struct hmm_range *range)
737{
738 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
739
740 if (!gtt || !gtt->userptr || !range)
741 return false;
742
743 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
744 gtt->userptr, ttm->num_pages);
745
746 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
747
748 return !amdgpu_hmm_range_get_pages_done(range);
749}
750#endif
751
752/*
753 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
754 *
755 * Called by amdgpu_cs_list_validate(). This creates the page list
756 * that backs user memory and will ultimately be mapped into the device
757 * address space.
758 */
759void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
760{
761 unsigned long i;
762
763 for (i = 0; i < ttm->num_pages; ++i)
764 ttm->pages[i] = pages ? pages[i] : NULL;
765}
766
767/*
768 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
769 *
770 * Called by amdgpu_ttm_backend_bind()
771 **/
772static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
773 struct ttm_tt *ttm)
774{
775 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
776 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
777 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
778 enum dma_data_direction direction = write ?
779 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
780 int r;
781
782 /* Allocate an SG array and squash pages into it */
783 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
784 (u64)ttm->num_pages << PAGE_SHIFT,
785 GFP_KERNEL);
786 if (r)
787 goto release_sg;
788
789 /* Map SG to device */
790 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
791 if (r)
792 goto release_sg;
793
794 /* convert SG to linear array of pages and dma addresses */
795 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
796 ttm->num_pages);
797
798 return 0;
799
800release_sg:
801 kfree(ttm->sg);
802 ttm->sg = NULL;
803 return r;
804}
805
806/*
807 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
808 */
809static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
810 struct ttm_tt *ttm)
811{
812 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
813 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
814 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
815 enum dma_data_direction direction = write ?
816 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
817
818 /* double check that we don't free the table twice */
819 if (!ttm->sg || !ttm->sg->sgl)
820 return;
821
822 /* unmap the pages mapped to the device */
823 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
824 sg_free_table(ttm->sg);
825}
826
827/*
828 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
829 * MQDn+CtrlStackn where n is the number of XCCs per partition.
830 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
831 * and uses memory type default, UC. The rest of pages_per_xcc are
832 * Ctrl stack and modify their memory type to NC.
833 */
834static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
835 struct ttm_tt *ttm, uint64_t flags)
836{
837 struct amdgpu_ttm_tt *gtt = (void *)ttm;
838 uint64_t total_pages = ttm->num_pages;
839 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
840 uint64_t page_idx, pages_per_xcc;
841 int i;
842 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
843 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
844
845 pages_per_xcc = total_pages;
846 do_div(pages_per_xcc, num_xcc);
847
848 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
849 /* MQD page: use default flags */
850 amdgpu_gart_bind(adev,
851 gtt->offset + (page_idx << PAGE_SHIFT),
852 1, >t->ttm.dma_address[page_idx], flags);
853 /*
854 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
855 * the second page of the BO onward.
856 */
857 amdgpu_gart_bind(adev,
858 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
859 pages_per_xcc - 1,
860 >t->ttm.dma_address[page_idx + 1],
861 ctrl_flags);
862 }
863}
864
865static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
866 struct ttm_buffer_object *tbo,
867 uint64_t flags)
868{
869 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
870 struct ttm_tt *ttm = tbo->ttm;
871 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
872
873 if (amdgpu_bo_encrypted(abo))
874 flags |= AMDGPU_PTE_TMZ;
875
876 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
877 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
878 } else {
879 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
880 gtt->ttm.dma_address, flags);
881 }
882 gtt->bound = true;
883}
884
885/*
886 * amdgpu_ttm_backend_bind - Bind GTT memory
887 *
888 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
889 * This handles binding GTT memory to the device address space.
890 */
891static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
892 struct ttm_tt *ttm,
893 struct ttm_resource *bo_mem)
894{
895 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
896 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
897 uint64_t flags;
898 int r;
899
900 if (!bo_mem)
901 return -EINVAL;
902
903 if (gtt->bound)
904 return 0;
905
906 if (gtt->userptr) {
907 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
908 if (r) {
909 DRM_ERROR("failed to pin userptr\n");
910 return r;
911 }
912 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
913 if (!ttm->sg) {
914 struct dma_buf_attachment *attach;
915 struct sg_table *sgt;
916
917 attach = gtt->gobj->import_attach;
918 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
919 if (IS_ERR(sgt))
920 return PTR_ERR(sgt);
921
922 ttm->sg = sgt;
923 }
924
925 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
926 ttm->num_pages);
927 }
928
929 if (!ttm->num_pages) {
930 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
931 ttm->num_pages, bo_mem, ttm);
932 }
933
934 if (bo_mem->mem_type != TTM_PL_TT ||
935 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
936 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
937 return 0;
938 }
939
940 /* compute PTE flags relevant to this BO memory */
941 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
942
943 /* bind pages into GART page tables */
944 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
945 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
946 gtt->ttm.dma_address, flags);
947 gtt->bound = true;
948 return 0;
949}
950
951/*
952 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
953 * through AGP or GART aperture.
954 *
955 * If bo is accessible through AGP aperture, then use AGP aperture
956 * to access bo; otherwise allocate logical space in GART aperture
957 * and map bo to GART aperture.
958 */
959int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
960{
961 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
962 struct ttm_operation_ctx ctx = { false, false };
963 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
964 struct ttm_placement placement;
965 struct ttm_place placements;
966 struct ttm_resource *tmp;
967 uint64_t addr, flags;
968 int r;
969
970 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
971 return 0;
972
973 addr = amdgpu_gmc_agp_addr(bo);
974 if (addr != AMDGPU_BO_INVALID_OFFSET)
975 return 0;
976
977 /* allocate GART space */
978 placement.num_placement = 1;
979 placement.placement = &placements;
980 placements.fpfn = 0;
981 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
982 placements.mem_type = TTM_PL_TT;
983 placements.flags = bo->resource->placement;
984
985 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
986 if (unlikely(r))
987 return r;
988
989 /* compute PTE flags for this buffer object */
990 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
991
992 /* Bind pages */
993 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
994 amdgpu_ttm_gart_bind(adev, bo, flags);
995 amdgpu_gart_invalidate_tlb(adev);
996 ttm_resource_free(bo, &bo->resource);
997 ttm_bo_assign_mem(bo, tmp);
998
999 return 0;
1000}
1001
1002/*
1003 * amdgpu_ttm_recover_gart - Rebind GTT pages
1004 *
1005 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1006 * rebind GTT pages during a GPU reset.
1007 */
1008void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1009{
1010 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1011 uint64_t flags;
1012
1013 if (!tbo->ttm)
1014 return;
1015
1016 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1017 amdgpu_ttm_gart_bind(adev, tbo, flags);
1018}
1019
1020/*
1021 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1022 *
1023 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1024 * ttm_tt_destroy().
1025 */
1026static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1027 struct ttm_tt *ttm)
1028{
1029 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1030 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1031
1032 /* if the pages have userptr pinning then clear that first */
1033 if (gtt->userptr) {
1034 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1035 } else if (ttm->sg && gtt->gobj->import_attach) {
1036 struct dma_buf_attachment *attach;
1037
1038 attach = gtt->gobj->import_attach;
1039 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1040 ttm->sg = NULL;
1041 }
1042
1043 if (!gtt->bound)
1044 return;
1045
1046 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1047 return;
1048
1049 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1050 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1051 gtt->bound = false;
1052}
1053
1054static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1055 struct ttm_tt *ttm)
1056{
1057 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1058
1059 if (gtt->usertask)
1060 put_task_struct(gtt->usertask);
1061
1062 ttm_tt_fini(>t->ttm);
1063 kfree(gtt);
1064}
1065
1066/**
1067 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1068 *
1069 * @bo: The buffer object to create a GTT ttm_tt object around
1070 * @page_flags: Page flags to be added to the ttm_tt object
1071 *
1072 * Called by ttm_tt_create().
1073 */
1074static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1075 uint32_t page_flags)
1076{
1077 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1078 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1079 struct amdgpu_ttm_tt *gtt;
1080 enum ttm_caching caching;
1081
1082 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1083 if (!gtt)
1084 return NULL;
1085
1086 gtt->gobj = &bo->base;
1087 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1088 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1089 else
1090 gtt->pool_id = abo->xcp_id;
1091
1092 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1093 caching = ttm_write_combined;
1094 else
1095 caching = ttm_cached;
1096
1097 /* allocate space for the uninitialized page entries */
1098 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1099 kfree(gtt);
1100 return NULL;
1101 }
1102 return >t->ttm;
1103}
1104
1105/*
1106 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1107 *
1108 * Map the pages of a ttm_tt object to an address space visible
1109 * to the underlying device.
1110 */
1111static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1112 struct ttm_tt *ttm,
1113 struct ttm_operation_ctx *ctx)
1114{
1115 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1116 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1117 struct ttm_pool *pool;
1118 pgoff_t i;
1119 int ret;
1120
1121 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1122 if (gtt->userptr) {
1123 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1124 if (!ttm->sg)
1125 return -ENOMEM;
1126 return 0;
1127 }
1128
1129 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1130 return 0;
1131
1132 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1133 pool = &adev->mman.ttm_pools[gtt->pool_id];
1134 else
1135 pool = &adev->mman.bdev.pool;
1136 ret = ttm_pool_alloc(pool, ttm, ctx);
1137 if (ret)
1138 return ret;
1139
1140 for (i = 0; i < ttm->num_pages; ++i)
1141 ttm->pages[i]->mapping = bdev->dev_mapping;
1142
1143 return 0;
1144}
1145
1146/*
1147 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1148 *
1149 * Unmaps pages of a ttm_tt object from the device address space and
1150 * unpopulates the page array backing it.
1151 */
1152static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1153 struct ttm_tt *ttm)
1154{
1155 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1156 struct amdgpu_device *adev;
1157 struct ttm_pool *pool;
1158 pgoff_t i;
1159
1160 amdgpu_ttm_backend_unbind(bdev, ttm);
1161
1162 if (gtt->userptr) {
1163 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1164 kfree(ttm->sg);
1165 ttm->sg = NULL;
1166 return;
1167 }
1168
1169 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1170 return;
1171
1172 for (i = 0; i < ttm->num_pages; ++i)
1173 ttm->pages[i]->mapping = NULL;
1174
1175 adev = amdgpu_ttm_adev(bdev);
1176
1177 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1178 pool = &adev->mman.ttm_pools[gtt->pool_id];
1179 else
1180 pool = &adev->mman.bdev.pool;
1181
1182 return ttm_pool_free(pool, ttm);
1183}
1184
1185/**
1186 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1187 * task
1188 *
1189 * @tbo: The ttm_buffer_object that contains the userptr
1190 * @user_addr: The returned value
1191 */
1192int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1193 uint64_t *user_addr)
1194{
1195 struct amdgpu_ttm_tt *gtt;
1196
1197 if (!tbo->ttm)
1198 return -EINVAL;
1199
1200 gtt = (void *)tbo->ttm;
1201 *user_addr = gtt->userptr;
1202 return 0;
1203}
1204
1205/**
1206 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1207 * task
1208 *
1209 * @bo: The ttm_buffer_object to bind this userptr to
1210 * @addr: The address in the current tasks VM space to use
1211 * @flags: Requirements of userptr object.
1212 *
1213 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1214 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1215 * initialize GPU VM for a KFD process.
1216 */
1217int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1218 uint64_t addr, uint32_t flags)
1219{
1220 struct amdgpu_ttm_tt *gtt;
1221
1222 if (!bo->ttm) {
1223 /* TODO: We want a separate TTM object type for userptrs */
1224 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1225 if (bo->ttm == NULL)
1226 return -ENOMEM;
1227 }
1228
1229 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1230 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1231
1232 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1233 gtt->userptr = addr;
1234 gtt->userflags = flags;
1235
1236 if (gtt->usertask)
1237 put_task_struct(gtt->usertask);
1238 gtt->usertask = current->group_leader;
1239 get_task_struct(gtt->usertask);
1240
1241 return 0;
1242}
1243
1244/*
1245 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1246 */
1247struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1248{
1249 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1250
1251 if (gtt == NULL)
1252 return NULL;
1253
1254 if (gtt->usertask == NULL)
1255 return NULL;
1256
1257 return gtt->usertask->mm;
1258}
1259
1260/*
1261 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1262 * address range for the current task.
1263 *
1264 */
1265bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1266 unsigned long end, unsigned long *userptr)
1267{
1268 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1269 unsigned long size;
1270
1271 if (gtt == NULL || !gtt->userptr)
1272 return false;
1273
1274 /* Return false if no part of the ttm_tt object lies within
1275 * the range
1276 */
1277 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1278 if (gtt->userptr > end || gtt->userptr + size <= start)
1279 return false;
1280
1281 if (userptr)
1282 *userptr = gtt->userptr;
1283 return true;
1284}
1285
1286/*
1287 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1288 */
1289bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1290{
1291 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1292
1293 if (gtt == NULL || !gtt->userptr)
1294 return false;
1295
1296 return true;
1297}
1298
1299/*
1300 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1301 */
1302bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1303{
1304 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1305
1306 if (gtt == NULL)
1307 return false;
1308
1309 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1310}
1311
1312/**
1313 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1314 *
1315 * @ttm: The ttm_tt object to compute the flags for
1316 * @mem: The memory registry backing this ttm_tt object
1317 *
1318 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1319 */
1320uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1321{
1322 uint64_t flags = 0;
1323
1324 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1325 flags |= AMDGPU_PTE_VALID;
1326
1327 if (mem && (mem->mem_type == TTM_PL_TT ||
1328 mem->mem_type == AMDGPU_PL_DOORBELL ||
1329 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1330 flags |= AMDGPU_PTE_SYSTEM;
1331
1332 if (ttm->caching == ttm_cached)
1333 flags |= AMDGPU_PTE_SNOOPED;
1334 }
1335
1336 if (mem && mem->mem_type == TTM_PL_VRAM &&
1337 mem->bus.caching == ttm_cached)
1338 flags |= AMDGPU_PTE_SNOOPED;
1339
1340 return flags;
1341}
1342
1343/**
1344 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1345 *
1346 * @adev: amdgpu_device pointer
1347 * @ttm: The ttm_tt object to compute the flags for
1348 * @mem: The memory registry backing this ttm_tt object
1349 *
1350 * Figure out the flags to use for a VM PTE (Page Table Entry).
1351 */
1352uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1353 struct ttm_resource *mem)
1354{
1355 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1356
1357 flags |= adev->gart.gart_pte_flags;
1358 flags |= AMDGPU_PTE_READABLE;
1359
1360 if (!amdgpu_ttm_tt_is_readonly(ttm))
1361 flags |= AMDGPU_PTE_WRITEABLE;
1362
1363 return flags;
1364}
1365
1366/*
1367 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1368 * object.
1369 *
1370 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1371 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1372 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1373 * used to clean out a memory space.
1374 */
1375static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1376 const struct ttm_place *place)
1377{
1378 struct dma_resv_iter resv_cursor;
1379 struct dma_fence *f;
1380
1381 if (!amdgpu_bo_is_amdgpu_bo(bo))
1382 return ttm_bo_eviction_valuable(bo, place);
1383
1384 /* Swapout? */
1385 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1386 return true;
1387
1388 if (bo->type == ttm_bo_type_kernel &&
1389 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1390 return false;
1391
1392 /* If bo is a KFD BO, check if the bo belongs to the current process.
1393 * If true, then return false as any KFD process needs all its BOs to
1394 * be resident to run successfully
1395 */
1396 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1397 DMA_RESV_USAGE_BOOKKEEP, f) {
1398 if (amdkfd_fence_check_mm(f, current->mm))
1399 return false;
1400 }
1401
1402 /* Preemptible BOs don't own system resources managed by the
1403 * driver (pages, VRAM, GART space). They point to resources
1404 * owned by someone else (e.g. pageable memory in user mode
1405 * or a DMABuf). They are used in a preemptible context so we
1406 * can guarantee no deadlocks and good QoS in case of MMU
1407 * notifiers or DMABuf move notifiers from the resource owner.
1408 */
1409 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1410 return false;
1411
1412 if (bo->resource->mem_type == TTM_PL_TT &&
1413 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1414 return false;
1415
1416 return ttm_bo_eviction_valuable(bo, place);
1417}
1418
1419static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1420 void *buf, size_t size, bool write)
1421{
1422 while (size) {
1423 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1424 uint64_t bytes = 4 - (pos & 0x3);
1425 uint32_t shift = (pos & 0x3) * 8;
1426 uint32_t mask = 0xffffffff << shift;
1427 uint32_t value = 0;
1428
1429 if (size < bytes) {
1430 mask &= 0xffffffff >> (bytes - size) * 8;
1431 bytes = size;
1432 }
1433
1434 if (mask != 0xffffffff) {
1435 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1436 if (write) {
1437 value &= ~mask;
1438 value |= (*(uint32_t *)buf << shift) & mask;
1439 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1440 } else {
1441 value = (value & mask) >> shift;
1442 memcpy(buf, &value, bytes);
1443 }
1444 } else {
1445 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1446 }
1447
1448 pos += bytes;
1449 buf += bytes;
1450 size -= bytes;
1451 }
1452}
1453
1454static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1455 unsigned long offset, void *buf,
1456 int len, int write)
1457{
1458 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1459 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1460 struct amdgpu_res_cursor src_mm;
1461 struct amdgpu_job *job;
1462 struct dma_fence *fence;
1463 uint64_t src_addr, dst_addr;
1464 unsigned int num_dw;
1465 int r, idx;
1466
1467 if (len != PAGE_SIZE)
1468 return -EINVAL;
1469
1470 if (!adev->mman.sdma_access_ptr)
1471 return -EACCES;
1472
1473 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1474 return -ENODEV;
1475
1476 if (write)
1477 memcpy(adev->mman.sdma_access_ptr, buf, len);
1478
1479 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1480 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1481 AMDGPU_FENCE_OWNER_UNDEFINED,
1482 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1483 &job);
1484 if (r)
1485 goto out;
1486
1487 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1488 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1489 src_mm.start;
1490 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1491 if (write)
1492 swap(src_addr, dst_addr);
1493
1494 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1495 PAGE_SIZE, false);
1496
1497 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1498 WARN_ON(job->ibs[0].length_dw > num_dw);
1499
1500 fence = amdgpu_job_submit(job);
1501
1502 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1503 r = -ETIMEDOUT;
1504 dma_fence_put(fence);
1505
1506 if (!(r || write))
1507 memcpy(buf, adev->mman.sdma_access_ptr, len);
1508out:
1509 drm_dev_exit(idx);
1510 return r;
1511}
1512
1513/**
1514 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1515 *
1516 * @bo: The buffer object to read/write
1517 * @offset: Offset into buffer object
1518 * @buf: Secondary buffer to write/read from
1519 * @len: Length in bytes of access
1520 * @write: true if writing
1521 *
1522 * This is used to access VRAM that backs a buffer object via MMIO
1523 * access for debugging purposes.
1524 */
1525static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1526 unsigned long offset, void *buf, int len,
1527 int write)
1528{
1529 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1530 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1531 struct amdgpu_res_cursor cursor;
1532 int ret = 0;
1533
1534 if (bo->resource->mem_type != TTM_PL_VRAM)
1535 return -EIO;
1536
1537 if (amdgpu_device_has_timeouts_enabled(adev) &&
1538 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1539 return len;
1540
1541 amdgpu_res_first(bo->resource, offset, len, &cursor);
1542 while (cursor.remaining) {
1543 size_t count, size = cursor.size;
1544 loff_t pos = cursor.start;
1545
1546 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1547 size -= count;
1548 if (size) {
1549 /* using MM to access rest vram and handle un-aligned address */
1550 pos += count;
1551 buf += count;
1552 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1553 }
1554
1555 ret += cursor.size;
1556 buf += cursor.size;
1557 amdgpu_res_next(&cursor, cursor.size);
1558 }
1559
1560 return ret;
1561}
1562
1563static void
1564amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1565{
1566 amdgpu_bo_move_notify(bo, false, NULL);
1567}
1568
1569static struct ttm_device_funcs amdgpu_bo_driver = {
1570 .ttm_tt_create = &amdgpu_ttm_tt_create,
1571 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1572 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1573 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1574 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1575 .evict_flags = &amdgpu_evict_flags,
1576 .move = &amdgpu_bo_move,
1577 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1578 .release_notify = &amdgpu_bo_release_notify,
1579 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1580 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1581 .access_memory = &amdgpu_ttm_access_memory,
1582};
1583
1584/*
1585 * Firmware Reservation functions
1586 */
1587/**
1588 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1589 *
1590 * @adev: amdgpu_device pointer
1591 *
1592 * free fw reserved vram if it has been reserved.
1593 */
1594static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1595{
1596 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1597 NULL, &adev->mman.fw_vram_usage_va);
1598}
1599
1600/*
1601 * Driver Reservation functions
1602 */
1603/**
1604 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1605 *
1606 * @adev: amdgpu_device pointer
1607 *
1608 * free drv reserved vram if it has been reserved.
1609 */
1610static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1611{
1612 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1613 NULL,
1614 &adev->mman.drv_vram_usage_va);
1615}
1616
1617/**
1618 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1619 *
1620 * @adev: amdgpu_device pointer
1621 *
1622 * create bo vram reservation from fw.
1623 */
1624static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1625{
1626 uint64_t vram_size = adev->gmc.visible_vram_size;
1627
1628 adev->mman.fw_vram_usage_va = NULL;
1629 adev->mman.fw_vram_usage_reserved_bo = NULL;
1630
1631 if (adev->mman.fw_vram_usage_size == 0 ||
1632 adev->mman.fw_vram_usage_size > vram_size)
1633 return 0;
1634
1635 return amdgpu_bo_create_kernel_at(adev,
1636 adev->mman.fw_vram_usage_start_offset,
1637 adev->mman.fw_vram_usage_size,
1638 &adev->mman.fw_vram_usage_reserved_bo,
1639 &adev->mman.fw_vram_usage_va);
1640}
1641
1642/**
1643 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1644 *
1645 * @adev: amdgpu_device pointer
1646 *
1647 * create bo vram reservation from drv.
1648 */
1649static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1650{
1651 u64 vram_size = adev->gmc.visible_vram_size;
1652
1653 adev->mman.drv_vram_usage_va = NULL;
1654 adev->mman.drv_vram_usage_reserved_bo = NULL;
1655
1656 if (adev->mman.drv_vram_usage_size == 0 ||
1657 adev->mman.drv_vram_usage_size > vram_size)
1658 return 0;
1659
1660 return amdgpu_bo_create_kernel_at(adev,
1661 adev->mman.drv_vram_usage_start_offset,
1662 adev->mman.drv_vram_usage_size,
1663 &adev->mman.drv_vram_usage_reserved_bo,
1664 &adev->mman.drv_vram_usage_va);
1665}
1666
1667/*
1668 * Memoy training reservation functions
1669 */
1670
1671/**
1672 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1673 *
1674 * @adev: amdgpu_device pointer
1675 *
1676 * free memory training reserved vram if it has been reserved.
1677 */
1678static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1679{
1680 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1681
1682 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1683 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1684 ctx->c2p_bo = NULL;
1685
1686 return 0;
1687}
1688
1689static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1690 uint32_t reserve_size)
1691{
1692 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1693
1694 memset(ctx, 0, sizeof(*ctx));
1695
1696 ctx->c2p_train_data_offset =
1697 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1698 ctx->p2c_train_data_offset =
1699 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1700 ctx->train_data_size =
1701 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1702
1703 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1704 ctx->train_data_size,
1705 ctx->p2c_train_data_offset,
1706 ctx->c2p_train_data_offset);
1707}
1708
1709/*
1710 * reserve TMR memory at the top of VRAM which holds
1711 * IP Discovery data and is protected by PSP.
1712 */
1713static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1714{
1715 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1716 bool mem_train_support = false;
1717 uint32_t reserve_size = 0;
1718 int ret;
1719
1720 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1721 if (amdgpu_atomfirmware_mem_training_supported(adev))
1722 mem_train_support = true;
1723 else
1724 DRM_DEBUG("memory training does not support!\n");
1725 }
1726
1727 /*
1728 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1729 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1730 *
1731 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1732 * discovery data and G6 memory training data respectively
1733 */
1734 if (adev->bios)
1735 reserve_size =
1736 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1737
1738 if (!adev->bios &&
1739 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1740 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1741 else if (!reserve_size)
1742 reserve_size = DISCOVERY_TMR_OFFSET;
1743
1744 if (mem_train_support) {
1745 /* reserve vram for mem train according to TMR location */
1746 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1747 ret = amdgpu_bo_create_kernel_at(adev,
1748 ctx->c2p_train_data_offset,
1749 ctx->train_data_size,
1750 &ctx->c2p_bo,
1751 NULL);
1752 if (ret) {
1753 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1754 amdgpu_ttm_training_reserve_vram_fini(adev);
1755 return ret;
1756 }
1757 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1758 }
1759
1760 if (!adev->gmc.is_app_apu) {
1761 ret = amdgpu_bo_create_kernel_at(
1762 adev, adev->gmc.real_vram_size - reserve_size,
1763 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1764 if (ret) {
1765 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1766 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1767 NULL, NULL);
1768 return ret;
1769 }
1770 } else {
1771 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1772 }
1773
1774 return 0;
1775}
1776
1777static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1778{
1779 int i;
1780
1781 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1782 return 0;
1783
1784 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1785 sizeof(*adev->mman.ttm_pools),
1786 GFP_KERNEL);
1787 if (!adev->mman.ttm_pools)
1788 return -ENOMEM;
1789
1790 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1791 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1792 adev->gmc.mem_partitions[i].numa.node,
1793 false, false);
1794 }
1795 return 0;
1796}
1797
1798static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1799{
1800 int i;
1801
1802 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1803 return;
1804
1805 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1806 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1807
1808 kfree(adev->mman.ttm_pools);
1809 adev->mman.ttm_pools = NULL;
1810}
1811
1812/*
1813 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1814 * gtt/vram related fields.
1815 *
1816 * This initializes all of the memory space pools that the TTM layer
1817 * will need such as the GTT space (system memory mapped to the device),
1818 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1819 * can be mapped per VMID.
1820 */
1821int amdgpu_ttm_init(struct amdgpu_device *adev)
1822{
1823 uint64_t gtt_size;
1824 int r;
1825
1826 mutex_init(&adev->mman.gtt_window_lock);
1827
1828 /* No others user of address space so set it to 0 */
1829 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1830 adev_to_drm(adev)->anon_inode->i_mapping,
1831 adev_to_drm(adev)->vma_offset_manager,
1832 adev->need_swiotlb,
1833 dma_addressing_limited(adev->dev));
1834 if (r) {
1835 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1836 return r;
1837 }
1838
1839 r = amdgpu_ttm_pools_init(adev);
1840 if (r) {
1841 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1842 return r;
1843 }
1844 adev->mman.initialized = true;
1845
1846 /* Initialize VRAM pool with all of VRAM divided into pages */
1847 r = amdgpu_vram_mgr_init(adev);
1848 if (r) {
1849 DRM_ERROR("Failed initializing VRAM heap.\n");
1850 return r;
1851 }
1852
1853 /* Change the size here instead of the init above so only lpfn is affected */
1854 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1855#ifdef CONFIG_64BIT
1856#ifdef CONFIG_X86
1857 if (adev->gmc.xgmi.connected_to_cpu)
1858 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1859 adev->gmc.visible_vram_size);
1860
1861 else if (adev->gmc.is_app_apu)
1862 DRM_DEBUG_DRIVER(
1863 "No need to ioremap when real vram size is 0\n");
1864 else
1865#endif
1866 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1867 adev->gmc.visible_vram_size);
1868#endif
1869
1870 /*
1871 *The reserved vram for firmware must be pinned to the specified
1872 *place on the VRAM, so reserve it early.
1873 */
1874 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1875 if (r)
1876 return r;
1877
1878 /*
1879 *The reserved vram for driver must be pinned to the specified
1880 *place on the VRAM, so reserve it early.
1881 */
1882 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1883 if (r)
1884 return r;
1885
1886 /*
1887 * only NAVI10 and onwards ASIC support for IP discovery.
1888 * If IP discovery enabled, a block of memory should be
1889 * reserved for IP discovey.
1890 */
1891 if (adev->mman.discovery_bin) {
1892 r = amdgpu_ttm_reserve_tmr(adev);
1893 if (r)
1894 return r;
1895 }
1896
1897 /* allocate memory as required for VGA
1898 * This is used for VGA emulation and pre-OS scanout buffers to
1899 * avoid display artifacts while transitioning between pre-OS
1900 * and driver.
1901 */
1902 if (!adev->gmc.is_app_apu) {
1903 r = amdgpu_bo_create_kernel_at(adev, 0,
1904 adev->mman.stolen_vga_size,
1905 &adev->mman.stolen_vga_memory,
1906 NULL);
1907 if (r)
1908 return r;
1909
1910 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1911 adev->mman.stolen_extended_size,
1912 &adev->mman.stolen_extended_memory,
1913 NULL);
1914
1915 if (r)
1916 return r;
1917
1918 r = amdgpu_bo_create_kernel_at(adev,
1919 adev->mman.stolen_reserved_offset,
1920 adev->mman.stolen_reserved_size,
1921 &adev->mman.stolen_reserved_memory,
1922 NULL);
1923 if (r)
1924 return r;
1925 } else {
1926 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1927 }
1928
1929 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1930 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1931
1932 /* Compute GTT size, either based on TTM limit
1933 * or whatever the user passed on module init.
1934 */
1935 if (amdgpu_gtt_size == -1)
1936 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1937 else
1938 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1939
1940 /* Initialize GTT memory pool */
1941 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1942 if (r) {
1943 DRM_ERROR("Failed initializing GTT heap.\n");
1944 return r;
1945 }
1946 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1947 (unsigned int)(gtt_size / (1024 * 1024)));
1948
1949 /* Initiailize doorbell pool on PCI BAR */
1950 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1951 if (r) {
1952 DRM_ERROR("Failed initializing doorbell heap.\n");
1953 return r;
1954 }
1955
1956 /* Create a boorbell page for kernel usages */
1957 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1958 if (r) {
1959 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1960 return r;
1961 }
1962
1963 /* Initialize preemptible memory pool */
1964 r = amdgpu_preempt_mgr_init(adev);
1965 if (r) {
1966 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1967 return r;
1968 }
1969
1970 /* Initialize various on-chip memory pools */
1971 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1972 if (r) {
1973 DRM_ERROR("Failed initializing GDS heap.\n");
1974 return r;
1975 }
1976
1977 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1978 if (r) {
1979 DRM_ERROR("Failed initializing gws heap.\n");
1980 return r;
1981 }
1982
1983 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1984 if (r) {
1985 DRM_ERROR("Failed initializing oa heap.\n");
1986 return r;
1987 }
1988 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1989 AMDGPU_GEM_DOMAIN_GTT,
1990 &adev->mman.sdma_access_bo, NULL,
1991 &adev->mman.sdma_access_ptr))
1992 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1993
1994 return 0;
1995}
1996
1997/*
1998 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1999 */
2000void amdgpu_ttm_fini(struct amdgpu_device *adev)
2001{
2002 int idx;
2003
2004 if (!adev->mman.initialized)
2005 return;
2006
2007 amdgpu_ttm_pools_fini(adev);
2008
2009 amdgpu_ttm_training_reserve_vram_fini(adev);
2010 /* return the stolen vga memory back to VRAM */
2011 if (!adev->gmc.is_app_apu) {
2012 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2013 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2014 /* return the FW reserved memory back to VRAM */
2015 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2016 NULL);
2017 if (adev->mman.stolen_reserved_size)
2018 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2019 NULL, NULL);
2020 }
2021 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2022 &adev->mman.sdma_access_ptr);
2023 amdgpu_ttm_fw_reserve_vram_fini(adev);
2024 amdgpu_ttm_drv_reserve_vram_fini(adev);
2025
2026 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2027
2028 if (adev->mman.aper_base_kaddr)
2029 iounmap(adev->mman.aper_base_kaddr);
2030 adev->mman.aper_base_kaddr = NULL;
2031
2032 drm_dev_exit(idx);
2033 }
2034
2035 amdgpu_vram_mgr_fini(adev);
2036 amdgpu_gtt_mgr_fini(adev);
2037 amdgpu_preempt_mgr_fini(adev);
2038 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2039 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2040 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2041 ttm_device_fini(&adev->mman.bdev);
2042 adev->mman.initialized = false;
2043 DRM_INFO("amdgpu: ttm finalized\n");
2044}
2045
2046/**
2047 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2048 *
2049 * @adev: amdgpu_device pointer
2050 * @enable: true when we can use buffer functions.
2051 *
2052 * Enable/disable use of buffer functions during suspend/resume. This should
2053 * only be called at bootup or when userspace isn't running.
2054 */
2055void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2056{
2057 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2058 uint64_t size;
2059 int r;
2060
2061 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2062 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2063 return;
2064
2065 if (enable) {
2066 struct amdgpu_ring *ring;
2067 struct drm_gpu_scheduler *sched;
2068
2069 ring = adev->mman.buffer_funcs_ring;
2070 sched = &ring->sched;
2071 r = drm_sched_entity_init(&adev->mman.high_pr,
2072 DRM_SCHED_PRIORITY_KERNEL, &sched,
2073 1, NULL);
2074 if (r) {
2075 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2076 r);
2077 return;
2078 }
2079
2080 r = drm_sched_entity_init(&adev->mman.low_pr,
2081 DRM_SCHED_PRIORITY_NORMAL, &sched,
2082 1, NULL);
2083 if (r) {
2084 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2085 r);
2086 goto error_free_entity;
2087 }
2088 } else {
2089 drm_sched_entity_destroy(&adev->mman.high_pr);
2090 drm_sched_entity_destroy(&adev->mman.low_pr);
2091 dma_fence_put(man->move);
2092 man->move = NULL;
2093 }
2094
2095 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2096 if (enable)
2097 size = adev->gmc.real_vram_size;
2098 else
2099 size = adev->gmc.visible_vram_size;
2100 man->size = size;
2101 adev->mman.buffer_funcs_enabled = enable;
2102
2103 return;
2104
2105error_free_entity:
2106 drm_sched_entity_destroy(&adev->mman.high_pr);
2107}
2108
2109static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2110 bool direct_submit,
2111 unsigned int num_dw,
2112 struct dma_resv *resv,
2113 bool vm_needs_flush,
2114 struct amdgpu_job **job,
2115 bool delayed)
2116{
2117 enum amdgpu_ib_pool_type pool = direct_submit ?
2118 AMDGPU_IB_POOL_DIRECT :
2119 AMDGPU_IB_POOL_DELAYED;
2120 int r;
2121 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2122 &adev->mman.high_pr;
2123 r = amdgpu_job_alloc_with_ib(adev, entity,
2124 AMDGPU_FENCE_OWNER_UNDEFINED,
2125 num_dw * 4, pool, job);
2126 if (r)
2127 return r;
2128
2129 if (vm_needs_flush) {
2130 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2131 adev->gmc.pdb0_bo :
2132 adev->gart.bo);
2133 (*job)->vm_needs_flush = true;
2134 }
2135 if (!resv)
2136 return 0;
2137
2138 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2139 DMA_RESV_USAGE_BOOKKEEP);
2140}
2141
2142int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2143 uint64_t dst_offset, uint32_t byte_count,
2144 struct dma_resv *resv,
2145 struct dma_fence **fence, bool direct_submit,
2146 bool vm_needs_flush, bool tmz)
2147{
2148 struct amdgpu_device *adev = ring->adev;
2149 unsigned int num_loops, num_dw;
2150 struct amdgpu_job *job;
2151 uint32_t max_bytes;
2152 unsigned int i;
2153 int r;
2154
2155 if (!direct_submit && !ring->sched.ready) {
2156 DRM_ERROR("Trying to move memory with ring turned off.\n");
2157 return -EINVAL;
2158 }
2159
2160 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2161 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2162 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2163 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2164 resv, vm_needs_flush, &job, false);
2165 if (r)
2166 return r;
2167
2168 for (i = 0; i < num_loops; i++) {
2169 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2170
2171 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2172 dst_offset, cur_size_in_bytes, tmz);
2173
2174 src_offset += cur_size_in_bytes;
2175 dst_offset += cur_size_in_bytes;
2176 byte_count -= cur_size_in_bytes;
2177 }
2178
2179 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2180 WARN_ON(job->ibs[0].length_dw > num_dw);
2181 if (direct_submit)
2182 r = amdgpu_job_submit_direct(job, ring, fence);
2183 else
2184 *fence = amdgpu_job_submit(job);
2185 if (r)
2186 goto error_free;
2187
2188 return r;
2189
2190error_free:
2191 amdgpu_job_free(job);
2192 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2193 return r;
2194}
2195
2196static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2197 uint64_t dst_addr, uint32_t byte_count,
2198 struct dma_resv *resv,
2199 struct dma_fence **fence,
2200 bool vm_needs_flush, bool delayed)
2201{
2202 struct amdgpu_device *adev = ring->adev;
2203 unsigned int num_loops, num_dw;
2204 struct amdgpu_job *job;
2205 uint32_t max_bytes;
2206 unsigned int i;
2207 int r;
2208
2209 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2210 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2211 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2212 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2213 &job, delayed);
2214 if (r)
2215 return r;
2216
2217 for (i = 0; i < num_loops; i++) {
2218 uint32_t cur_size = min(byte_count, max_bytes);
2219
2220 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2221 cur_size);
2222
2223 dst_addr += cur_size;
2224 byte_count -= cur_size;
2225 }
2226
2227 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2228 WARN_ON(job->ibs[0].length_dw > num_dw);
2229 *fence = amdgpu_job_submit(job);
2230 return 0;
2231}
2232
2233int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2234 uint32_t src_data,
2235 struct dma_resv *resv,
2236 struct dma_fence **f,
2237 bool delayed)
2238{
2239 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2240 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2241 struct dma_fence *fence = NULL;
2242 struct amdgpu_res_cursor dst;
2243 int r;
2244
2245 if (!adev->mman.buffer_funcs_enabled) {
2246 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2247 return -EINVAL;
2248 }
2249
2250 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2251
2252 mutex_lock(&adev->mman.gtt_window_lock);
2253 while (dst.remaining) {
2254 struct dma_fence *next;
2255 uint64_t cur_size, to;
2256
2257 /* Never fill more than 256MiB at once to avoid timeouts */
2258 cur_size = min(dst.size, 256ULL << 20);
2259
2260 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2261 1, ring, false, &cur_size, &to);
2262 if (r)
2263 goto error;
2264
2265 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2266 &next, true, delayed);
2267 if (r)
2268 goto error;
2269
2270 dma_fence_put(fence);
2271 fence = next;
2272
2273 amdgpu_res_next(&dst, cur_size);
2274 }
2275error:
2276 mutex_unlock(&adev->mman.gtt_window_lock);
2277 if (f)
2278 *f = dma_fence_get(fence);
2279 dma_fence_put(fence);
2280 return r;
2281}
2282
2283/**
2284 * amdgpu_ttm_evict_resources - evict memory buffers
2285 * @adev: amdgpu device object
2286 * @mem_type: evicted BO's memory type
2287 *
2288 * Evicts all @mem_type buffers on the lru list of the memory type.
2289 *
2290 * Returns:
2291 * 0 for success or a negative error code on failure.
2292 */
2293int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2294{
2295 struct ttm_resource_manager *man;
2296
2297 switch (mem_type) {
2298 case TTM_PL_VRAM:
2299 case TTM_PL_TT:
2300 case AMDGPU_PL_GWS:
2301 case AMDGPU_PL_GDS:
2302 case AMDGPU_PL_OA:
2303 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2304 break;
2305 default:
2306 DRM_ERROR("Trying to evict invalid memory type\n");
2307 return -EINVAL;
2308 }
2309
2310 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2311}
2312
2313#if defined(CONFIG_DEBUG_FS)
2314
2315static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2316{
2317 struct amdgpu_device *adev = m->private;
2318
2319 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2320}
2321
2322DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2323
2324/*
2325 * amdgpu_ttm_vram_read - Linear read access to VRAM
2326 *
2327 * Accesses VRAM via MMIO for debugging purposes.
2328 */
2329static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2330 size_t size, loff_t *pos)
2331{
2332 struct amdgpu_device *adev = file_inode(f)->i_private;
2333 ssize_t result = 0;
2334
2335 if (size & 0x3 || *pos & 0x3)
2336 return -EINVAL;
2337
2338 if (*pos >= adev->gmc.mc_vram_size)
2339 return -ENXIO;
2340
2341 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2342 while (size) {
2343 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2344 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2345
2346 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2347 if (copy_to_user(buf, value, bytes))
2348 return -EFAULT;
2349
2350 result += bytes;
2351 buf += bytes;
2352 *pos += bytes;
2353 size -= bytes;
2354 }
2355
2356 return result;
2357}
2358
2359/*
2360 * amdgpu_ttm_vram_write - Linear write access to VRAM
2361 *
2362 * Accesses VRAM via MMIO for debugging purposes.
2363 */
2364static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2365 size_t size, loff_t *pos)
2366{
2367 struct amdgpu_device *adev = file_inode(f)->i_private;
2368 ssize_t result = 0;
2369 int r;
2370
2371 if (size & 0x3 || *pos & 0x3)
2372 return -EINVAL;
2373
2374 if (*pos >= adev->gmc.mc_vram_size)
2375 return -ENXIO;
2376
2377 while (size) {
2378 uint32_t value;
2379
2380 if (*pos >= adev->gmc.mc_vram_size)
2381 return result;
2382
2383 r = get_user(value, (uint32_t *)buf);
2384 if (r)
2385 return r;
2386
2387 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2388
2389 result += 4;
2390 buf += 4;
2391 *pos += 4;
2392 size -= 4;
2393 }
2394
2395 return result;
2396}
2397
2398static const struct file_operations amdgpu_ttm_vram_fops = {
2399 .owner = THIS_MODULE,
2400 .read = amdgpu_ttm_vram_read,
2401 .write = amdgpu_ttm_vram_write,
2402 .llseek = default_llseek,
2403};
2404
2405/*
2406 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2407 *
2408 * This function is used to read memory that has been mapped to the
2409 * GPU and the known addresses are not physical addresses but instead
2410 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2411 */
2412static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2413 size_t size, loff_t *pos)
2414{
2415 struct amdgpu_device *adev = file_inode(f)->i_private;
2416 struct iommu_domain *dom;
2417 ssize_t result = 0;
2418 int r;
2419
2420 /* retrieve the IOMMU domain if any for this device */
2421 dom = iommu_get_domain_for_dev(adev->dev);
2422
2423 while (size) {
2424 phys_addr_t addr = *pos & PAGE_MASK;
2425 loff_t off = *pos & ~PAGE_MASK;
2426 size_t bytes = PAGE_SIZE - off;
2427 unsigned long pfn;
2428 struct page *p;
2429 void *ptr;
2430
2431 bytes = min(bytes, size);
2432
2433 /* Translate the bus address to a physical address. If
2434 * the domain is NULL it means there is no IOMMU active
2435 * and the address translation is the identity
2436 */
2437 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2438
2439 pfn = addr >> PAGE_SHIFT;
2440 if (!pfn_valid(pfn))
2441 return -EPERM;
2442
2443 p = pfn_to_page(pfn);
2444 if (p->mapping != adev->mman.bdev.dev_mapping)
2445 return -EPERM;
2446
2447 ptr = kmap_local_page(p);
2448 r = copy_to_user(buf, ptr + off, bytes);
2449 kunmap_local(ptr);
2450 if (r)
2451 return -EFAULT;
2452
2453 size -= bytes;
2454 *pos += bytes;
2455 result += bytes;
2456 }
2457
2458 return result;
2459}
2460
2461/*
2462 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2463 *
2464 * This function is used to write memory that has been mapped to the
2465 * GPU and the known addresses are not physical addresses but instead
2466 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2467 */
2468static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2469 size_t size, loff_t *pos)
2470{
2471 struct amdgpu_device *adev = file_inode(f)->i_private;
2472 struct iommu_domain *dom;
2473 ssize_t result = 0;
2474 int r;
2475
2476 dom = iommu_get_domain_for_dev(adev->dev);
2477
2478 while (size) {
2479 phys_addr_t addr = *pos & PAGE_MASK;
2480 loff_t off = *pos & ~PAGE_MASK;
2481 size_t bytes = PAGE_SIZE - off;
2482 unsigned long pfn;
2483 struct page *p;
2484 void *ptr;
2485
2486 bytes = min(bytes, size);
2487
2488 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2489
2490 pfn = addr >> PAGE_SHIFT;
2491 if (!pfn_valid(pfn))
2492 return -EPERM;
2493
2494 p = pfn_to_page(pfn);
2495 if (p->mapping != adev->mman.bdev.dev_mapping)
2496 return -EPERM;
2497
2498 ptr = kmap_local_page(p);
2499 r = copy_from_user(ptr + off, buf, bytes);
2500 kunmap_local(ptr);
2501 if (r)
2502 return -EFAULT;
2503
2504 size -= bytes;
2505 *pos += bytes;
2506 result += bytes;
2507 }
2508
2509 return result;
2510}
2511
2512static const struct file_operations amdgpu_ttm_iomem_fops = {
2513 .owner = THIS_MODULE,
2514 .read = amdgpu_iomem_read,
2515 .write = amdgpu_iomem_write,
2516 .llseek = default_llseek
2517};
2518
2519#endif
2520
2521void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2522{
2523#if defined(CONFIG_DEBUG_FS)
2524 struct drm_minor *minor = adev_to_drm(adev)->primary;
2525 struct dentry *root = minor->debugfs_root;
2526
2527 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2528 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2529 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2530 &amdgpu_ttm_iomem_fops);
2531 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2532 &amdgpu_ttm_page_pool_fops);
2533 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2534 TTM_PL_VRAM),
2535 root, "amdgpu_vram_mm");
2536 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2537 TTM_PL_TT),
2538 root, "amdgpu_gtt_mm");
2539 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2540 AMDGPU_PL_GDS),
2541 root, "amdgpu_gds_mm");
2542 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2543 AMDGPU_PL_GWS),
2544 root, "amdgpu_gws_mm");
2545 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2546 AMDGPU_PL_OA),
2547 root, "amdgpu_oa_mm");
2548
2549#endif
2550}
1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33#include <linux/dma-mapping.h>
34#include <linux/iommu.h>
35#include <linux/pagemap.h>
36#include <linux/sched/task.h>
37#include <linux/sched/mm.h>
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/dma-buf.h>
42#include <linux/sizes.h>
43#include <linux/module.h>
44
45#include <drm/drm_drv.h>
46#include <drm/ttm/ttm_bo.h>
47#include <drm/ttm/ttm_placement.h>
48#include <drm/ttm/ttm_range_manager.h>
49#include <drm/ttm/ttm_tt.h>
50
51#include <drm/amdgpu_drm.h>
52
53#include "amdgpu.h"
54#include "amdgpu_object.h"
55#include "amdgpu_trace.h"
56#include "amdgpu_amdkfd.h"
57#include "amdgpu_sdma.h"
58#include "amdgpu_ras.h"
59#include "amdgpu_hmm.h"
60#include "amdgpu_atomfirmware.h"
61#include "amdgpu_res_cursor.h"
62#include "bif/bif_4_1_d.h"
63
64MODULE_IMPORT_NS(DMA_BUF);
65
66#define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77{
78 return ttm_range_man_init(&adev->mman.bdev, type,
79 false, size_in_page);
80}
81
82/**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92{
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 placement->num_busy_placement = 0;
106 return;
107 }
108
109 /* Object isn't an AMDGPU object so ignore */
110 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111 placement->placement = &placements;
112 placement->busy_placement = &placements;
113 placement->num_placement = 1;
114 placement->num_busy_placement = 1;
115 return;
116 }
117
118 abo = ttm_to_amdgpu_bo(bo);
119 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120 placement->num_placement = 0;
121 placement->num_busy_placement = 0;
122 return;
123 }
124
125 switch (bo->resource->mem_type) {
126 case AMDGPU_PL_GDS:
127 case AMDGPU_PL_GWS:
128 case AMDGPU_PL_OA:
129 case AMDGPU_PL_DOORBELL:
130 placement->num_placement = 0;
131 placement->num_busy_placement = 0;
132 return;
133
134 case TTM_PL_VRAM:
135 if (!adev->mman.buffer_funcs_enabled) {
136 /* Move to system memory */
137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 amdgpu_bo_in_cpu_visible_vram(abo)) {
141
142 /* Try evicting to the CPU inaccessible part of VRAM
143 * first, but only set GTT as busy placement, so this
144 * BO will be evicted to GTT rather than causing other
145 * BOs to be evicted from VRAM
146 */
147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 AMDGPU_GEM_DOMAIN_GTT |
149 AMDGPU_GEM_DOMAIN_CPU);
150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 abo->placements[0].lpfn = 0;
152 abo->placement.busy_placement = &abo->placements[1];
153 abo->placement.num_busy_placement = 1;
154 } else {
155 /* Move to GTT memory */
156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 AMDGPU_GEM_DOMAIN_CPU);
158 }
159 break;
160 case TTM_PL_TT:
161 case AMDGPU_PL_PREEMPT:
162 default:
163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 break;
165 }
166 *placement = abo->placement;
167}
168
169/**
170 * amdgpu_ttm_map_buffer - Map memory into the GART windows
171 * @bo: buffer object to map
172 * @mem: memory object to map
173 * @mm_cur: range to map
174 * @window: which GART window to use
175 * @ring: DMA ring to use for the copy
176 * @tmz: if we should setup a TMZ enabled mapping
177 * @size: in number of bytes to map, out number of bytes mapped
178 * @addr: resulting address inside the MC address space
179 *
180 * Setup one of the GART windows to access a specific piece of memory or return
181 * the physical address for local memory.
182 */
183static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 struct ttm_resource *mem,
185 struct amdgpu_res_cursor *mm_cur,
186 unsigned int window, struct amdgpu_ring *ring,
187 bool tmz, uint64_t *size, uint64_t *addr)
188{
189 struct amdgpu_device *adev = ring->adev;
190 unsigned int offset, num_pages, num_dw, num_bytes;
191 uint64_t src_addr, dst_addr;
192 struct amdgpu_job *job;
193 void *cpu_addr;
194 uint64_t flags;
195 unsigned int i;
196 int r;
197
198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200
201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202 return -EINVAL;
203
204 /* Map only what can't be accessed directly */
205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207 mm_cur->start;
208 return 0;
209 }
210
211
212 /*
213 * If start begins at an offset inside the page, then adjust the size
214 * and addr accordingly
215 */
216 offset = mm_cur->start & ~PAGE_MASK;
217
218 num_pages = PFN_UP(*size + offset);
219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220
221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222
223 *addr = adev->gmc.gart_start;
224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225 AMDGPU_GPU_PAGE_SIZE;
226 *addr += offset;
227
228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230
231 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232 AMDGPU_FENCE_OWNER_UNDEFINED,
233 num_dw * 4 + num_bytes,
234 AMDGPU_IB_POOL_DELAYED, &job);
235 if (r)
236 return r;
237
238 src_addr = num_dw * 4;
239 src_addr += job->ibs[0].gpu_addr;
240
241 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244 dst_addr, num_bytes, false);
245
246 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247 WARN_ON(job->ibs[0].length_dw > num_dw);
248
249 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250 if (tmz)
251 flags |= AMDGPU_PTE_TMZ;
252
253 cpu_addr = &job->ibs[0].ptr[num_dw];
254
255 if (mem->mem_type == TTM_PL_TT) {
256 dma_addr_t *dma_addr;
257
258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260 } else {
261 dma_addr_t dma_address;
262
263 dma_address = mm_cur->start;
264 dma_address += adev->vm_manager.vram_base_offset;
265
266 for (i = 0; i < num_pages; ++i) {
267 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268 flags, cpu_addr);
269 dma_address += PAGE_SIZE;
270 }
271 }
272
273 dma_fence_put(amdgpu_job_submit(job));
274 return 0;
275}
276
277/**
278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279 * @adev: amdgpu device
280 * @src: buffer/address where to read from
281 * @dst: buffer/address where to write to
282 * @size: number of bytes to copy
283 * @tmz: if a secure copy should be used
284 * @resv: resv object to sync to
285 * @f: Returns the last fence if multiple jobs are submitted.
286 *
287 * The function copies @size bytes from {src->mem + src->offset} to
288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289 * move and different for a BO to BO copy.
290 *
291 */
292int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293 const struct amdgpu_copy_mem *src,
294 const struct amdgpu_copy_mem *dst,
295 uint64_t size, bool tmz,
296 struct dma_resv *resv,
297 struct dma_fence **f)
298{
299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300 struct amdgpu_res_cursor src_mm, dst_mm;
301 struct dma_fence *fence = NULL;
302 int r = 0;
303
304 if (!adev->mman.buffer_funcs_enabled) {
305 DRM_ERROR("Trying to move memory with ring turned off.\n");
306 return -EINVAL;
307 }
308
309 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311
312 mutex_lock(&adev->mman.gtt_window_lock);
313 while (src_mm.remaining) {
314 uint64_t from, to, cur_size;
315 struct dma_fence *next;
316
317 /* Never copy more than 256MiB at once to avoid a timeout */
318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319
320 /* Map src to window 0 and dst to window 1. */
321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322 0, ring, tmz, &cur_size, &from);
323 if (r)
324 goto error;
325
326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327 1, ring, tmz, &cur_size, &to);
328 if (r)
329 goto error;
330
331 r = amdgpu_copy_buffer(ring, from, to, cur_size,
332 resv, &next, false, true, tmz);
333 if (r)
334 goto error;
335
336 dma_fence_put(fence);
337 fence = next;
338
339 amdgpu_res_next(&src_mm, cur_size);
340 amdgpu_res_next(&dst_mm, cur_size);
341 }
342error:
343 mutex_unlock(&adev->mman.gtt_window_lock);
344 if (f)
345 *f = dma_fence_get(fence);
346 dma_fence_put(fence);
347 return r;
348}
349
350/*
351 * amdgpu_move_blit - Copy an entire buffer to another buffer
352 *
353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354 * help move buffers to and from VRAM.
355 */
356static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357 bool evict,
358 struct ttm_resource *new_mem,
359 struct ttm_resource *old_mem)
360{
361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363 struct amdgpu_copy_mem src, dst;
364 struct dma_fence *fence = NULL;
365 int r;
366
367 src.bo = bo;
368 dst.bo = bo;
369 src.mem = old_mem;
370 dst.mem = new_mem;
371 src.offset = 0;
372 dst.offset = 0;
373
374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375 new_mem->size,
376 amdgpu_bo_encrypted(abo),
377 bo->base.resv, &fence);
378 if (r)
379 goto error;
380
381 /* clear the space being freed */
382 if (old_mem->mem_type == TTM_PL_VRAM &&
383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 struct dma_fence *wipe_fence = NULL;
385
386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387 false);
388 if (r) {
389 goto error;
390 } else if (wipe_fence) {
391 dma_fence_put(fence);
392 fence = wipe_fence;
393 }
394 }
395
396 /* Always block for VM page tables before committing the new location */
397 if (bo->type == ttm_bo_type_kernel)
398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 else
400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 dma_fence_put(fence);
402 return r;
403
404error:
405 if (fence)
406 dma_fence_wait(fence, false);
407 dma_fence_put(fence);
408 return r;
409}
410
411/*
412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
413 *
414 * Called by amdgpu_bo_move()
415 */
416static bool amdgpu_mem_visible(struct amdgpu_device *adev,
417 struct ttm_resource *mem)
418{
419 u64 mem_size = (u64)mem->size;
420 struct amdgpu_res_cursor cursor;
421 u64 end;
422
423 if (mem->mem_type == TTM_PL_SYSTEM ||
424 mem->mem_type == TTM_PL_TT)
425 return true;
426 if (mem->mem_type != TTM_PL_VRAM)
427 return false;
428
429 amdgpu_res_first(mem, 0, mem_size, &cursor);
430 end = cursor.start + cursor.size;
431 while (cursor.remaining) {
432 amdgpu_res_next(&cursor, cursor.size);
433
434 if (!cursor.remaining)
435 break;
436
437 /* ttm_resource_ioremap only supports contiguous memory */
438 if (end != cursor.start)
439 return false;
440
441 end = cursor.start + cursor.size;
442 }
443
444 return end <= adev->gmc.visible_vram_size;
445}
446
447/*
448 * amdgpu_bo_move - Move a buffer object to a new memory location
449 *
450 * Called by ttm_bo_handle_move_mem()
451 */
452static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
453 struct ttm_operation_ctx *ctx,
454 struct ttm_resource *new_mem,
455 struct ttm_place *hop)
456{
457 struct amdgpu_device *adev;
458 struct amdgpu_bo *abo;
459 struct ttm_resource *old_mem = bo->resource;
460 int r;
461
462 if (new_mem->mem_type == TTM_PL_TT ||
463 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
464 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
465 if (r)
466 return r;
467 }
468
469 abo = ttm_to_amdgpu_bo(bo);
470 adev = amdgpu_ttm_adev(bo->bdev);
471
472 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
473 bo->ttm == NULL)) {
474 ttm_bo_move_null(bo, new_mem);
475 goto out;
476 }
477 if (old_mem->mem_type == TTM_PL_SYSTEM &&
478 (new_mem->mem_type == TTM_PL_TT ||
479 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
480 ttm_bo_move_null(bo, new_mem);
481 goto out;
482 }
483 if ((old_mem->mem_type == TTM_PL_TT ||
484 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
485 new_mem->mem_type == TTM_PL_SYSTEM) {
486 r = ttm_bo_wait_ctx(bo, ctx);
487 if (r)
488 return r;
489
490 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
491 ttm_resource_free(bo, &bo->resource);
492 ttm_bo_assign_mem(bo, new_mem);
493 goto out;
494 }
495
496 if (old_mem->mem_type == AMDGPU_PL_GDS ||
497 old_mem->mem_type == AMDGPU_PL_GWS ||
498 old_mem->mem_type == AMDGPU_PL_OA ||
499 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
500 new_mem->mem_type == AMDGPU_PL_GDS ||
501 new_mem->mem_type == AMDGPU_PL_GWS ||
502 new_mem->mem_type == AMDGPU_PL_OA ||
503 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
504 /* Nothing to save here */
505 ttm_bo_move_null(bo, new_mem);
506 goto out;
507 }
508
509 if (bo->type == ttm_bo_type_device &&
510 new_mem->mem_type == TTM_PL_VRAM &&
511 old_mem->mem_type != TTM_PL_VRAM) {
512 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
513 * accesses the BO after it's moved.
514 */
515 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
516 }
517
518 if (adev->mman.buffer_funcs_enabled) {
519 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
520 new_mem->mem_type == TTM_PL_VRAM) ||
521 (old_mem->mem_type == TTM_PL_VRAM &&
522 new_mem->mem_type == TTM_PL_SYSTEM))) {
523 hop->fpfn = 0;
524 hop->lpfn = 0;
525 hop->mem_type = TTM_PL_TT;
526 hop->flags = TTM_PL_FLAG_TEMPORARY;
527 return -EMULTIHOP;
528 }
529
530 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
531 } else {
532 r = -ENODEV;
533 }
534
535 if (r) {
536 /* Check that all memory is CPU accessible */
537 if (!amdgpu_mem_visible(adev, old_mem) ||
538 !amdgpu_mem_visible(adev, new_mem)) {
539 pr_err("Move buffer fallback to memcpy unavailable\n");
540 return r;
541 }
542
543 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
544 if (r)
545 return r;
546 }
547
548 trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
549out:
550 /* update statistics */
551 atomic64_add(bo->base.size, &adev->num_bytes_moved);
552 amdgpu_bo_move_notify(bo, evict);
553 return 0;
554}
555
556/*
557 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
558 *
559 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
560 */
561static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
562 struct ttm_resource *mem)
563{
564 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
565 size_t bus_size = (size_t)mem->size;
566
567 switch (mem->mem_type) {
568 case TTM_PL_SYSTEM:
569 /* system memory */
570 return 0;
571 case TTM_PL_TT:
572 case AMDGPU_PL_PREEMPT:
573 break;
574 case TTM_PL_VRAM:
575 mem->bus.offset = mem->start << PAGE_SHIFT;
576 /* check if it's visible */
577 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
578 return -EINVAL;
579
580 if (adev->mman.aper_base_kaddr &&
581 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
582 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
583 mem->bus.offset;
584
585 mem->bus.offset += adev->gmc.aper_base;
586 mem->bus.is_iomem = true;
587 break;
588 case AMDGPU_PL_DOORBELL:
589 mem->bus.offset = mem->start << PAGE_SHIFT;
590 mem->bus.offset += adev->doorbell.base;
591 mem->bus.is_iomem = true;
592 mem->bus.caching = ttm_uncached;
593 break;
594 default:
595 return -EINVAL;
596 }
597 return 0;
598}
599
600static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
601 unsigned long page_offset)
602{
603 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
604 struct amdgpu_res_cursor cursor;
605
606 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
607 &cursor);
608
609 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
610 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
611
612 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
613}
614
615/**
616 * amdgpu_ttm_domain_start - Returns GPU start address
617 * @adev: amdgpu device object
618 * @type: type of the memory
619 *
620 * Returns:
621 * GPU start address of a memory domain
622 */
623
624uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
625{
626 switch (type) {
627 case TTM_PL_TT:
628 return adev->gmc.gart_start;
629 case TTM_PL_VRAM:
630 return adev->gmc.vram_start;
631 }
632
633 return 0;
634}
635
636/*
637 * TTM backend functions.
638 */
639struct amdgpu_ttm_tt {
640 struct ttm_tt ttm;
641 struct drm_gem_object *gobj;
642 u64 offset;
643 uint64_t userptr;
644 struct task_struct *usertask;
645 uint32_t userflags;
646 bool bound;
647 int32_t pool_id;
648};
649
650#define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
651
652#ifdef CONFIG_DRM_AMDGPU_USERPTR
653/*
654 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
655 * memory and start HMM tracking CPU page table update
656 *
657 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
658 * once afterwards to stop HMM tracking
659 */
660int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
661 struct hmm_range **range)
662{
663 struct ttm_tt *ttm = bo->tbo.ttm;
664 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
665 unsigned long start = gtt->userptr;
666 struct vm_area_struct *vma;
667 struct mm_struct *mm;
668 bool readonly;
669 int r = 0;
670
671 /* Make sure get_user_pages_done() can cleanup gracefully */
672 *range = NULL;
673
674 mm = bo->notifier.mm;
675 if (unlikely(!mm)) {
676 DRM_DEBUG_DRIVER("BO is not registered?\n");
677 return -EFAULT;
678 }
679
680 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
681 return -ESRCH;
682
683 mmap_read_lock(mm);
684 vma = vma_lookup(mm, start);
685 if (unlikely(!vma)) {
686 r = -EFAULT;
687 goto out_unlock;
688 }
689 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
690 vma->vm_file)) {
691 r = -EPERM;
692 goto out_unlock;
693 }
694
695 readonly = amdgpu_ttm_tt_is_readonly(ttm);
696 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
697 readonly, NULL, pages, range);
698out_unlock:
699 mmap_read_unlock(mm);
700 if (r)
701 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
702
703 mmput(mm);
704
705 return r;
706}
707
708/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
709 */
710void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
711 struct hmm_range *range)
712{
713 struct amdgpu_ttm_tt *gtt = (void *)ttm;
714
715 if (gtt && gtt->userptr && range)
716 amdgpu_hmm_range_get_pages_done(range);
717}
718
719/*
720 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
721 * Check if the pages backing this ttm range have been invalidated
722 *
723 * Returns: true if pages are still valid
724 */
725bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
726 struct hmm_range *range)
727{
728 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
729
730 if (!gtt || !gtt->userptr || !range)
731 return false;
732
733 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
734 gtt->userptr, ttm->num_pages);
735
736 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
737
738 return !amdgpu_hmm_range_get_pages_done(range);
739}
740#endif
741
742/*
743 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
744 *
745 * Called by amdgpu_cs_list_validate(). This creates the page list
746 * that backs user memory and will ultimately be mapped into the device
747 * address space.
748 */
749void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
750{
751 unsigned long i;
752
753 for (i = 0; i < ttm->num_pages; ++i)
754 ttm->pages[i] = pages ? pages[i] : NULL;
755}
756
757/*
758 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
759 *
760 * Called by amdgpu_ttm_backend_bind()
761 **/
762static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
763 struct ttm_tt *ttm)
764{
765 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
766 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
767 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
768 enum dma_data_direction direction = write ?
769 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
770 int r;
771
772 /* Allocate an SG array and squash pages into it */
773 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
774 (u64)ttm->num_pages << PAGE_SHIFT,
775 GFP_KERNEL);
776 if (r)
777 goto release_sg;
778
779 /* Map SG to device */
780 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
781 if (r)
782 goto release_sg;
783
784 /* convert SG to linear array of pages and dma addresses */
785 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
786 ttm->num_pages);
787
788 return 0;
789
790release_sg:
791 kfree(ttm->sg);
792 ttm->sg = NULL;
793 return r;
794}
795
796/*
797 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
798 */
799static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
800 struct ttm_tt *ttm)
801{
802 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
803 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
804 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
805 enum dma_data_direction direction = write ?
806 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
807
808 /* double check that we don't free the table twice */
809 if (!ttm->sg || !ttm->sg->sgl)
810 return;
811
812 /* unmap the pages mapped to the device */
813 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
814 sg_free_table(ttm->sg);
815}
816
817/*
818 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
819 * MQDn+CtrlStackn where n is the number of XCCs per partition.
820 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
821 * and uses memory type default, UC. The rest of pages_per_xcc are
822 * Ctrl stack and modify their memory type to NC.
823 */
824static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
825 struct ttm_tt *ttm, uint64_t flags)
826{
827 struct amdgpu_ttm_tt *gtt = (void *)ttm;
828 uint64_t total_pages = ttm->num_pages;
829 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
830 uint64_t page_idx, pages_per_xcc;
831 int i;
832 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
833 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
834
835 pages_per_xcc = total_pages;
836 do_div(pages_per_xcc, num_xcc);
837
838 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
839 /* MQD page: use default flags */
840 amdgpu_gart_bind(adev,
841 gtt->offset + (page_idx << PAGE_SHIFT),
842 1, >t->ttm.dma_address[page_idx], flags);
843 /*
844 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
845 * the second page of the BO onward.
846 */
847 amdgpu_gart_bind(adev,
848 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
849 pages_per_xcc - 1,
850 >t->ttm.dma_address[page_idx + 1],
851 ctrl_flags);
852 }
853}
854
855static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
856 struct ttm_buffer_object *tbo,
857 uint64_t flags)
858{
859 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
860 struct ttm_tt *ttm = tbo->ttm;
861 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
862
863 if (amdgpu_bo_encrypted(abo))
864 flags |= AMDGPU_PTE_TMZ;
865
866 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
867 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
868 } else {
869 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
870 gtt->ttm.dma_address, flags);
871 }
872}
873
874/*
875 * amdgpu_ttm_backend_bind - Bind GTT memory
876 *
877 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
878 * This handles binding GTT memory to the device address space.
879 */
880static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
881 struct ttm_tt *ttm,
882 struct ttm_resource *bo_mem)
883{
884 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
885 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
886 uint64_t flags;
887 int r;
888
889 if (!bo_mem)
890 return -EINVAL;
891
892 if (gtt->bound)
893 return 0;
894
895 if (gtt->userptr) {
896 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
897 if (r) {
898 DRM_ERROR("failed to pin userptr\n");
899 return r;
900 }
901 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
902 if (!ttm->sg) {
903 struct dma_buf_attachment *attach;
904 struct sg_table *sgt;
905
906 attach = gtt->gobj->import_attach;
907 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
908 if (IS_ERR(sgt))
909 return PTR_ERR(sgt);
910
911 ttm->sg = sgt;
912 }
913
914 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
915 ttm->num_pages);
916 }
917
918 if (!ttm->num_pages) {
919 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
920 ttm->num_pages, bo_mem, ttm);
921 }
922
923 if (bo_mem->mem_type != TTM_PL_TT ||
924 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
925 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
926 return 0;
927 }
928
929 /* compute PTE flags relevant to this BO memory */
930 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
931
932 /* bind pages into GART page tables */
933 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
934 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
935 gtt->ttm.dma_address, flags);
936 gtt->bound = true;
937 return 0;
938}
939
940/*
941 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
942 * through AGP or GART aperture.
943 *
944 * If bo is accessible through AGP aperture, then use AGP aperture
945 * to access bo; otherwise allocate logical space in GART aperture
946 * and map bo to GART aperture.
947 */
948int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
949{
950 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
951 struct ttm_operation_ctx ctx = { false, false };
952 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
953 struct ttm_placement placement;
954 struct ttm_place placements;
955 struct ttm_resource *tmp;
956 uint64_t addr, flags;
957 int r;
958
959 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
960 return 0;
961
962 addr = amdgpu_gmc_agp_addr(bo);
963 if (addr != AMDGPU_BO_INVALID_OFFSET)
964 return 0;
965
966 /* allocate GART space */
967 placement.num_placement = 1;
968 placement.placement = &placements;
969 placement.num_busy_placement = 1;
970 placement.busy_placement = &placements;
971 placements.fpfn = 0;
972 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
973 placements.mem_type = TTM_PL_TT;
974 placements.flags = bo->resource->placement;
975
976 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
977 if (unlikely(r))
978 return r;
979
980 /* compute PTE flags for this buffer object */
981 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
982
983 /* Bind pages */
984 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
985 amdgpu_ttm_gart_bind(adev, bo, flags);
986 amdgpu_gart_invalidate_tlb(adev);
987 ttm_resource_free(bo, &bo->resource);
988 ttm_bo_assign_mem(bo, tmp);
989
990 return 0;
991}
992
993/*
994 * amdgpu_ttm_recover_gart - Rebind GTT pages
995 *
996 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
997 * rebind GTT pages during a GPU reset.
998 */
999void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1000{
1001 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1002 uint64_t flags;
1003
1004 if (!tbo->ttm)
1005 return;
1006
1007 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1008 amdgpu_ttm_gart_bind(adev, tbo, flags);
1009}
1010
1011/*
1012 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1013 *
1014 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1015 * ttm_tt_destroy().
1016 */
1017static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1018 struct ttm_tt *ttm)
1019{
1020 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1021 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1022
1023 /* if the pages have userptr pinning then clear that first */
1024 if (gtt->userptr) {
1025 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1026 } else if (ttm->sg && gtt->gobj->import_attach) {
1027 struct dma_buf_attachment *attach;
1028
1029 attach = gtt->gobj->import_attach;
1030 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1031 ttm->sg = NULL;
1032 }
1033
1034 if (!gtt->bound)
1035 return;
1036
1037 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1038 return;
1039
1040 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1041 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1042 gtt->bound = false;
1043}
1044
1045static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1046 struct ttm_tt *ttm)
1047{
1048 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1049
1050 if (gtt->usertask)
1051 put_task_struct(gtt->usertask);
1052
1053 ttm_tt_fini(>t->ttm);
1054 kfree(gtt);
1055}
1056
1057/**
1058 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1059 *
1060 * @bo: The buffer object to create a GTT ttm_tt object around
1061 * @page_flags: Page flags to be added to the ttm_tt object
1062 *
1063 * Called by ttm_tt_create().
1064 */
1065static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1066 uint32_t page_flags)
1067{
1068 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1069 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1070 struct amdgpu_ttm_tt *gtt;
1071 enum ttm_caching caching;
1072
1073 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1074 if (!gtt)
1075 return NULL;
1076
1077 gtt->gobj = &bo->base;
1078 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1079 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1080 else
1081 gtt->pool_id = abo->xcp_id;
1082
1083 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1084 caching = ttm_write_combined;
1085 else
1086 caching = ttm_cached;
1087
1088 /* allocate space for the uninitialized page entries */
1089 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1090 kfree(gtt);
1091 return NULL;
1092 }
1093 return >t->ttm;
1094}
1095
1096/*
1097 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1098 *
1099 * Map the pages of a ttm_tt object to an address space visible
1100 * to the underlying device.
1101 */
1102static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1103 struct ttm_tt *ttm,
1104 struct ttm_operation_ctx *ctx)
1105{
1106 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1107 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1108 struct ttm_pool *pool;
1109 pgoff_t i;
1110 int ret;
1111
1112 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1113 if (gtt->userptr) {
1114 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1115 if (!ttm->sg)
1116 return -ENOMEM;
1117 return 0;
1118 }
1119
1120 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1121 return 0;
1122
1123 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1124 pool = &adev->mman.ttm_pools[gtt->pool_id];
1125 else
1126 pool = &adev->mman.bdev.pool;
1127 ret = ttm_pool_alloc(pool, ttm, ctx);
1128 if (ret)
1129 return ret;
1130
1131 for (i = 0; i < ttm->num_pages; ++i)
1132 ttm->pages[i]->mapping = bdev->dev_mapping;
1133
1134 return 0;
1135}
1136
1137/*
1138 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1139 *
1140 * Unmaps pages of a ttm_tt object from the device address space and
1141 * unpopulates the page array backing it.
1142 */
1143static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1144 struct ttm_tt *ttm)
1145{
1146 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1147 struct amdgpu_device *adev;
1148 struct ttm_pool *pool;
1149 pgoff_t i;
1150
1151 amdgpu_ttm_backend_unbind(bdev, ttm);
1152
1153 if (gtt->userptr) {
1154 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1155 kfree(ttm->sg);
1156 ttm->sg = NULL;
1157 return;
1158 }
1159
1160 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1161 return;
1162
1163 for (i = 0; i < ttm->num_pages; ++i)
1164 ttm->pages[i]->mapping = NULL;
1165
1166 adev = amdgpu_ttm_adev(bdev);
1167
1168 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1169 pool = &adev->mman.ttm_pools[gtt->pool_id];
1170 else
1171 pool = &adev->mman.bdev.pool;
1172
1173 return ttm_pool_free(pool, ttm);
1174}
1175
1176/**
1177 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1178 * task
1179 *
1180 * @tbo: The ttm_buffer_object that contains the userptr
1181 * @user_addr: The returned value
1182 */
1183int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1184 uint64_t *user_addr)
1185{
1186 struct amdgpu_ttm_tt *gtt;
1187
1188 if (!tbo->ttm)
1189 return -EINVAL;
1190
1191 gtt = (void *)tbo->ttm;
1192 *user_addr = gtt->userptr;
1193 return 0;
1194}
1195
1196/**
1197 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1198 * task
1199 *
1200 * @bo: The ttm_buffer_object to bind this userptr to
1201 * @addr: The address in the current tasks VM space to use
1202 * @flags: Requirements of userptr object.
1203 *
1204 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1205 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1206 * initialize GPU VM for a KFD process.
1207 */
1208int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1209 uint64_t addr, uint32_t flags)
1210{
1211 struct amdgpu_ttm_tt *gtt;
1212
1213 if (!bo->ttm) {
1214 /* TODO: We want a separate TTM object type for userptrs */
1215 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1216 if (bo->ttm == NULL)
1217 return -ENOMEM;
1218 }
1219
1220 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1221 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1222
1223 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1224 gtt->userptr = addr;
1225 gtt->userflags = flags;
1226
1227 if (gtt->usertask)
1228 put_task_struct(gtt->usertask);
1229 gtt->usertask = current->group_leader;
1230 get_task_struct(gtt->usertask);
1231
1232 return 0;
1233}
1234
1235/*
1236 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1237 */
1238struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1239{
1240 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1241
1242 if (gtt == NULL)
1243 return NULL;
1244
1245 if (gtt->usertask == NULL)
1246 return NULL;
1247
1248 return gtt->usertask->mm;
1249}
1250
1251/*
1252 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1253 * address range for the current task.
1254 *
1255 */
1256bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1257 unsigned long end, unsigned long *userptr)
1258{
1259 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1260 unsigned long size;
1261
1262 if (gtt == NULL || !gtt->userptr)
1263 return false;
1264
1265 /* Return false if no part of the ttm_tt object lies within
1266 * the range
1267 */
1268 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1269 if (gtt->userptr > end || gtt->userptr + size <= start)
1270 return false;
1271
1272 if (userptr)
1273 *userptr = gtt->userptr;
1274 return true;
1275}
1276
1277/*
1278 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1279 */
1280bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1281{
1282 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1283
1284 if (gtt == NULL || !gtt->userptr)
1285 return false;
1286
1287 return true;
1288}
1289
1290/*
1291 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1292 */
1293bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1294{
1295 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1296
1297 if (gtt == NULL)
1298 return false;
1299
1300 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1301}
1302
1303/**
1304 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1305 *
1306 * @ttm: The ttm_tt object to compute the flags for
1307 * @mem: The memory registry backing this ttm_tt object
1308 *
1309 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1310 */
1311uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1312{
1313 uint64_t flags = 0;
1314
1315 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1316 flags |= AMDGPU_PTE_VALID;
1317
1318 if (mem && (mem->mem_type == TTM_PL_TT ||
1319 mem->mem_type == AMDGPU_PL_DOORBELL ||
1320 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1321 flags |= AMDGPU_PTE_SYSTEM;
1322
1323 if (ttm->caching == ttm_cached)
1324 flags |= AMDGPU_PTE_SNOOPED;
1325 }
1326
1327 if (mem && mem->mem_type == TTM_PL_VRAM &&
1328 mem->bus.caching == ttm_cached)
1329 flags |= AMDGPU_PTE_SNOOPED;
1330
1331 return flags;
1332}
1333
1334/**
1335 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1336 *
1337 * @adev: amdgpu_device pointer
1338 * @ttm: The ttm_tt object to compute the flags for
1339 * @mem: The memory registry backing this ttm_tt object
1340 *
1341 * Figure out the flags to use for a VM PTE (Page Table Entry).
1342 */
1343uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1344 struct ttm_resource *mem)
1345{
1346 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1347
1348 flags |= adev->gart.gart_pte_flags;
1349 flags |= AMDGPU_PTE_READABLE;
1350
1351 if (!amdgpu_ttm_tt_is_readonly(ttm))
1352 flags |= AMDGPU_PTE_WRITEABLE;
1353
1354 return flags;
1355}
1356
1357/*
1358 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1359 * object.
1360 *
1361 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1362 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1363 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1364 * used to clean out a memory space.
1365 */
1366static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1367 const struct ttm_place *place)
1368{
1369 struct dma_resv_iter resv_cursor;
1370 struct dma_fence *f;
1371
1372 if (!amdgpu_bo_is_amdgpu_bo(bo))
1373 return ttm_bo_eviction_valuable(bo, place);
1374
1375 /* Swapout? */
1376 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1377 return true;
1378
1379 if (bo->type == ttm_bo_type_kernel &&
1380 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1381 return false;
1382
1383 /* If bo is a KFD BO, check if the bo belongs to the current process.
1384 * If true, then return false as any KFD process needs all its BOs to
1385 * be resident to run successfully
1386 */
1387 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1388 DMA_RESV_USAGE_BOOKKEEP, f) {
1389 if (amdkfd_fence_check_mm(f, current->mm))
1390 return false;
1391 }
1392
1393 /* Preemptible BOs don't own system resources managed by the
1394 * driver (pages, VRAM, GART space). They point to resources
1395 * owned by someone else (e.g. pageable memory in user mode
1396 * or a DMABuf). They are used in a preemptible context so we
1397 * can guarantee no deadlocks and good QoS in case of MMU
1398 * notifiers or DMABuf move notifiers from the resource owner.
1399 */
1400 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1401 return false;
1402
1403 if (bo->resource->mem_type == TTM_PL_TT &&
1404 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1405 return false;
1406
1407 return ttm_bo_eviction_valuable(bo, place);
1408}
1409
1410static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1411 void *buf, size_t size, bool write)
1412{
1413 while (size) {
1414 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1415 uint64_t bytes = 4 - (pos & 0x3);
1416 uint32_t shift = (pos & 0x3) * 8;
1417 uint32_t mask = 0xffffffff << shift;
1418 uint32_t value = 0;
1419
1420 if (size < bytes) {
1421 mask &= 0xffffffff >> (bytes - size) * 8;
1422 bytes = size;
1423 }
1424
1425 if (mask != 0xffffffff) {
1426 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1427 if (write) {
1428 value &= ~mask;
1429 value |= (*(uint32_t *)buf << shift) & mask;
1430 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1431 } else {
1432 value = (value & mask) >> shift;
1433 memcpy(buf, &value, bytes);
1434 }
1435 } else {
1436 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1437 }
1438
1439 pos += bytes;
1440 buf += bytes;
1441 size -= bytes;
1442 }
1443}
1444
1445static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1446 unsigned long offset, void *buf,
1447 int len, int write)
1448{
1449 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1450 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1451 struct amdgpu_res_cursor src_mm;
1452 struct amdgpu_job *job;
1453 struct dma_fence *fence;
1454 uint64_t src_addr, dst_addr;
1455 unsigned int num_dw;
1456 int r, idx;
1457
1458 if (len != PAGE_SIZE)
1459 return -EINVAL;
1460
1461 if (!adev->mman.sdma_access_ptr)
1462 return -EACCES;
1463
1464 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1465 return -ENODEV;
1466
1467 if (write)
1468 memcpy(adev->mman.sdma_access_ptr, buf, len);
1469
1470 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1471 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1472 AMDGPU_FENCE_OWNER_UNDEFINED,
1473 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1474 &job);
1475 if (r)
1476 goto out;
1477
1478 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1479 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1480 src_mm.start;
1481 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1482 if (write)
1483 swap(src_addr, dst_addr);
1484
1485 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1486 PAGE_SIZE, false);
1487
1488 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1489 WARN_ON(job->ibs[0].length_dw > num_dw);
1490
1491 fence = amdgpu_job_submit(job);
1492
1493 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1494 r = -ETIMEDOUT;
1495 dma_fence_put(fence);
1496
1497 if (!(r || write))
1498 memcpy(buf, adev->mman.sdma_access_ptr, len);
1499out:
1500 drm_dev_exit(idx);
1501 return r;
1502}
1503
1504/**
1505 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1506 *
1507 * @bo: The buffer object to read/write
1508 * @offset: Offset into buffer object
1509 * @buf: Secondary buffer to write/read from
1510 * @len: Length in bytes of access
1511 * @write: true if writing
1512 *
1513 * This is used to access VRAM that backs a buffer object via MMIO
1514 * access for debugging purposes.
1515 */
1516static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1517 unsigned long offset, void *buf, int len,
1518 int write)
1519{
1520 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1521 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1522 struct amdgpu_res_cursor cursor;
1523 int ret = 0;
1524
1525 if (bo->resource->mem_type != TTM_PL_VRAM)
1526 return -EIO;
1527
1528 if (amdgpu_device_has_timeouts_enabled(adev) &&
1529 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1530 return len;
1531
1532 amdgpu_res_first(bo->resource, offset, len, &cursor);
1533 while (cursor.remaining) {
1534 size_t count, size = cursor.size;
1535 loff_t pos = cursor.start;
1536
1537 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1538 size -= count;
1539 if (size) {
1540 /* using MM to access rest vram and handle un-aligned address */
1541 pos += count;
1542 buf += count;
1543 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1544 }
1545
1546 ret += cursor.size;
1547 buf += cursor.size;
1548 amdgpu_res_next(&cursor, cursor.size);
1549 }
1550
1551 return ret;
1552}
1553
1554static void
1555amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1556{
1557 amdgpu_bo_move_notify(bo, false);
1558}
1559
1560static struct ttm_device_funcs amdgpu_bo_driver = {
1561 .ttm_tt_create = &amdgpu_ttm_tt_create,
1562 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1563 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1564 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1565 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1566 .evict_flags = &amdgpu_evict_flags,
1567 .move = &amdgpu_bo_move,
1568 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1569 .release_notify = &amdgpu_bo_release_notify,
1570 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1571 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1572 .access_memory = &amdgpu_ttm_access_memory,
1573};
1574
1575/*
1576 * Firmware Reservation functions
1577 */
1578/**
1579 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1580 *
1581 * @adev: amdgpu_device pointer
1582 *
1583 * free fw reserved vram if it has been reserved.
1584 */
1585static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1586{
1587 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1588 NULL, &adev->mman.fw_vram_usage_va);
1589}
1590
1591/*
1592 * Driver Reservation functions
1593 */
1594/**
1595 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1596 *
1597 * @adev: amdgpu_device pointer
1598 *
1599 * free drv reserved vram if it has been reserved.
1600 */
1601static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1602{
1603 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1604 NULL,
1605 &adev->mman.drv_vram_usage_va);
1606}
1607
1608/**
1609 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1610 *
1611 * @adev: amdgpu_device pointer
1612 *
1613 * create bo vram reservation from fw.
1614 */
1615static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1616{
1617 uint64_t vram_size = adev->gmc.visible_vram_size;
1618
1619 adev->mman.fw_vram_usage_va = NULL;
1620 adev->mman.fw_vram_usage_reserved_bo = NULL;
1621
1622 if (adev->mman.fw_vram_usage_size == 0 ||
1623 adev->mman.fw_vram_usage_size > vram_size)
1624 return 0;
1625
1626 return amdgpu_bo_create_kernel_at(adev,
1627 adev->mman.fw_vram_usage_start_offset,
1628 adev->mman.fw_vram_usage_size,
1629 &adev->mman.fw_vram_usage_reserved_bo,
1630 &adev->mman.fw_vram_usage_va);
1631}
1632
1633/**
1634 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1635 *
1636 * @adev: amdgpu_device pointer
1637 *
1638 * create bo vram reservation from drv.
1639 */
1640static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1641{
1642 u64 vram_size = adev->gmc.visible_vram_size;
1643
1644 adev->mman.drv_vram_usage_va = NULL;
1645 adev->mman.drv_vram_usage_reserved_bo = NULL;
1646
1647 if (adev->mman.drv_vram_usage_size == 0 ||
1648 adev->mman.drv_vram_usage_size > vram_size)
1649 return 0;
1650
1651 return amdgpu_bo_create_kernel_at(adev,
1652 adev->mman.drv_vram_usage_start_offset,
1653 adev->mman.drv_vram_usage_size,
1654 &adev->mman.drv_vram_usage_reserved_bo,
1655 &adev->mman.drv_vram_usage_va);
1656}
1657
1658/*
1659 * Memoy training reservation functions
1660 */
1661
1662/**
1663 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1664 *
1665 * @adev: amdgpu_device pointer
1666 *
1667 * free memory training reserved vram if it has been reserved.
1668 */
1669static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1670{
1671 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1672
1673 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1674 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1675 ctx->c2p_bo = NULL;
1676
1677 return 0;
1678}
1679
1680static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1681 uint32_t reserve_size)
1682{
1683 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1684
1685 memset(ctx, 0, sizeof(*ctx));
1686
1687 ctx->c2p_train_data_offset =
1688 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1689 ctx->p2c_train_data_offset =
1690 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1691 ctx->train_data_size =
1692 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1693
1694 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1695 ctx->train_data_size,
1696 ctx->p2c_train_data_offset,
1697 ctx->c2p_train_data_offset);
1698}
1699
1700/*
1701 * reserve TMR memory at the top of VRAM which holds
1702 * IP Discovery data and is protected by PSP.
1703 */
1704static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1705{
1706 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1707 bool mem_train_support = false;
1708 uint32_t reserve_size = 0;
1709 int ret;
1710
1711 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1712 if (amdgpu_atomfirmware_mem_training_supported(adev))
1713 mem_train_support = true;
1714 else
1715 DRM_DEBUG("memory training does not support!\n");
1716 }
1717
1718 /*
1719 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1720 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1721 *
1722 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1723 * discovery data and G6 memory training data respectively
1724 */
1725 if (adev->bios)
1726 reserve_size =
1727 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1728
1729 if (!adev->bios &&
1730 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1731 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1732 else if (!reserve_size)
1733 reserve_size = DISCOVERY_TMR_OFFSET;
1734
1735 if (mem_train_support) {
1736 /* reserve vram for mem train according to TMR location */
1737 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1738 ret = amdgpu_bo_create_kernel_at(adev,
1739 ctx->c2p_train_data_offset,
1740 ctx->train_data_size,
1741 &ctx->c2p_bo,
1742 NULL);
1743 if (ret) {
1744 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1745 amdgpu_ttm_training_reserve_vram_fini(adev);
1746 return ret;
1747 }
1748 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1749 }
1750
1751 if (!adev->gmc.is_app_apu) {
1752 ret = amdgpu_bo_create_kernel_at(
1753 adev, adev->gmc.real_vram_size - reserve_size,
1754 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1755 if (ret) {
1756 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1757 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1758 NULL, NULL);
1759 return ret;
1760 }
1761 } else {
1762 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1763 }
1764
1765 return 0;
1766}
1767
1768static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1769{
1770 int i;
1771
1772 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1773 return 0;
1774
1775 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1776 sizeof(*adev->mman.ttm_pools),
1777 GFP_KERNEL);
1778 if (!adev->mman.ttm_pools)
1779 return -ENOMEM;
1780
1781 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1782 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1783 adev->gmc.mem_partitions[i].numa.node,
1784 false, false);
1785 }
1786 return 0;
1787}
1788
1789static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1790{
1791 int i;
1792
1793 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1794 return;
1795
1796 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1797 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1798
1799 kfree(adev->mman.ttm_pools);
1800 adev->mman.ttm_pools = NULL;
1801}
1802
1803/*
1804 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1805 * gtt/vram related fields.
1806 *
1807 * This initializes all of the memory space pools that the TTM layer
1808 * will need such as the GTT space (system memory mapped to the device),
1809 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1810 * can be mapped per VMID.
1811 */
1812int amdgpu_ttm_init(struct amdgpu_device *adev)
1813{
1814 uint64_t gtt_size;
1815 int r;
1816
1817 mutex_init(&adev->mman.gtt_window_lock);
1818
1819 /* No others user of address space so set it to 0 */
1820 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1821 adev_to_drm(adev)->anon_inode->i_mapping,
1822 adev_to_drm(adev)->vma_offset_manager,
1823 adev->need_swiotlb,
1824 dma_addressing_limited(adev->dev));
1825 if (r) {
1826 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1827 return r;
1828 }
1829
1830 r = amdgpu_ttm_pools_init(adev);
1831 if (r) {
1832 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1833 return r;
1834 }
1835 adev->mman.initialized = true;
1836
1837 /* Initialize VRAM pool with all of VRAM divided into pages */
1838 r = amdgpu_vram_mgr_init(adev);
1839 if (r) {
1840 DRM_ERROR("Failed initializing VRAM heap.\n");
1841 return r;
1842 }
1843
1844 /* Change the size here instead of the init above so only lpfn is affected */
1845 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1846#ifdef CONFIG_64BIT
1847#ifdef CONFIG_X86
1848 if (adev->gmc.xgmi.connected_to_cpu)
1849 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1850 adev->gmc.visible_vram_size);
1851
1852 else if (adev->gmc.is_app_apu)
1853 DRM_DEBUG_DRIVER(
1854 "No need to ioremap when real vram size is 0\n");
1855 else
1856#endif
1857 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1858 adev->gmc.visible_vram_size);
1859#endif
1860
1861 /*
1862 *The reserved vram for firmware must be pinned to the specified
1863 *place on the VRAM, so reserve it early.
1864 */
1865 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1866 if (r)
1867 return r;
1868
1869 /*
1870 *The reserved vram for driver must be pinned to the specified
1871 *place on the VRAM, so reserve it early.
1872 */
1873 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1874 if (r)
1875 return r;
1876
1877 /*
1878 * only NAVI10 and onwards ASIC support for IP discovery.
1879 * If IP discovery enabled, a block of memory should be
1880 * reserved for IP discovey.
1881 */
1882 if (adev->mman.discovery_bin) {
1883 r = amdgpu_ttm_reserve_tmr(adev);
1884 if (r)
1885 return r;
1886 }
1887
1888 /* allocate memory as required for VGA
1889 * This is used for VGA emulation and pre-OS scanout buffers to
1890 * avoid display artifacts while transitioning between pre-OS
1891 * and driver.
1892 */
1893 if (!adev->gmc.is_app_apu) {
1894 r = amdgpu_bo_create_kernel_at(adev, 0,
1895 adev->mman.stolen_vga_size,
1896 &adev->mman.stolen_vga_memory,
1897 NULL);
1898 if (r)
1899 return r;
1900
1901 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1902 adev->mman.stolen_extended_size,
1903 &adev->mman.stolen_extended_memory,
1904 NULL);
1905
1906 if (r)
1907 return r;
1908
1909 r = amdgpu_bo_create_kernel_at(adev,
1910 adev->mman.stolen_reserved_offset,
1911 adev->mman.stolen_reserved_size,
1912 &adev->mman.stolen_reserved_memory,
1913 NULL);
1914 if (r)
1915 return r;
1916 } else {
1917 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1918 }
1919
1920 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1921 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1922
1923 /* Compute GTT size, either based on TTM limit
1924 * or whatever the user passed on module init.
1925 */
1926 if (amdgpu_gtt_size == -1)
1927 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1928 else
1929 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1930
1931 /* Initialize GTT memory pool */
1932 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1933 if (r) {
1934 DRM_ERROR("Failed initializing GTT heap.\n");
1935 return r;
1936 }
1937 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1938 (unsigned int)(gtt_size / (1024 * 1024)));
1939
1940 /* Initiailize doorbell pool on PCI BAR */
1941 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1942 if (r) {
1943 DRM_ERROR("Failed initializing doorbell heap.\n");
1944 return r;
1945 }
1946
1947 /* Create a boorbell page for kernel usages */
1948 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1949 if (r) {
1950 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1951 return r;
1952 }
1953
1954 /* Initialize preemptible memory pool */
1955 r = amdgpu_preempt_mgr_init(adev);
1956 if (r) {
1957 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1958 return r;
1959 }
1960
1961 /* Initialize various on-chip memory pools */
1962 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1963 if (r) {
1964 DRM_ERROR("Failed initializing GDS heap.\n");
1965 return r;
1966 }
1967
1968 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1969 if (r) {
1970 DRM_ERROR("Failed initializing gws heap.\n");
1971 return r;
1972 }
1973
1974 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1975 if (r) {
1976 DRM_ERROR("Failed initializing oa heap.\n");
1977 return r;
1978 }
1979 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1980 AMDGPU_GEM_DOMAIN_GTT,
1981 &adev->mman.sdma_access_bo, NULL,
1982 &adev->mman.sdma_access_ptr))
1983 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1984
1985 return 0;
1986}
1987
1988/*
1989 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1990 */
1991void amdgpu_ttm_fini(struct amdgpu_device *adev)
1992{
1993 int idx;
1994
1995 if (!adev->mman.initialized)
1996 return;
1997
1998 amdgpu_ttm_pools_fini(adev);
1999
2000 amdgpu_ttm_training_reserve_vram_fini(adev);
2001 /* return the stolen vga memory back to VRAM */
2002 if (!adev->gmc.is_app_apu) {
2003 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2004 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2005 /* return the FW reserved memory back to VRAM */
2006 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2007 NULL);
2008 if (adev->mman.stolen_reserved_size)
2009 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2010 NULL, NULL);
2011 }
2012 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2013 &adev->mman.sdma_access_ptr);
2014 amdgpu_ttm_fw_reserve_vram_fini(adev);
2015 amdgpu_ttm_drv_reserve_vram_fini(adev);
2016
2017 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2018
2019 if (adev->mman.aper_base_kaddr)
2020 iounmap(adev->mman.aper_base_kaddr);
2021 adev->mman.aper_base_kaddr = NULL;
2022
2023 drm_dev_exit(idx);
2024 }
2025
2026 amdgpu_vram_mgr_fini(adev);
2027 amdgpu_gtt_mgr_fini(adev);
2028 amdgpu_preempt_mgr_fini(adev);
2029 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2030 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2031 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2032 ttm_device_fini(&adev->mman.bdev);
2033 adev->mman.initialized = false;
2034 DRM_INFO("amdgpu: ttm finalized\n");
2035}
2036
2037/**
2038 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2039 *
2040 * @adev: amdgpu_device pointer
2041 * @enable: true when we can use buffer functions.
2042 *
2043 * Enable/disable use of buffer functions during suspend/resume. This should
2044 * only be called at bootup or when userspace isn't running.
2045 */
2046void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2047{
2048 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2049 uint64_t size;
2050 int r;
2051
2052 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2053 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2054 return;
2055
2056 if (enable) {
2057 struct amdgpu_ring *ring;
2058 struct drm_gpu_scheduler *sched;
2059
2060 ring = adev->mman.buffer_funcs_ring;
2061 sched = &ring->sched;
2062 r = drm_sched_entity_init(&adev->mman.high_pr,
2063 DRM_SCHED_PRIORITY_KERNEL, &sched,
2064 1, NULL);
2065 if (r) {
2066 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2067 r);
2068 return;
2069 }
2070
2071 r = drm_sched_entity_init(&adev->mman.low_pr,
2072 DRM_SCHED_PRIORITY_NORMAL, &sched,
2073 1, NULL);
2074 if (r) {
2075 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2076 r);
2077 goto error_free_entity;
2078 }
2079 } else {
2080 drm_sched_entity_destroy(&adev->mman.high_pr);
2081 drm_sched_entity_destroy(&adev->mman.low_pr);
2082 dma_fence_put(man->move);
2083 man->move = NULL;
2084 }
2085
2086 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2087 if (enable)
2088 size = adev->gmc.real_vram_size;
2089 else
2090 size = adev->gmc.visible_vram_size;
2091 man->size = size;
2092 adev->mman.buffer_funcs_enabled = enable;
2093
2094 return;
2095
2096error_free_entity:
2097 drm_sched_entity_destroy(&adev->mman.high_pr);
2098}
2099
2100static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2101 bool direct_submit,
2102 unsigned int num_dw,
2103 struct dma_resv *resv,
2104 bool vm_needs_flush,
2105 struct amdgpu_job **job,
2106 bool delayed)
2107{
2108 enum amdgpu_ib_pool_type pool = direct_submit ?
2109 AMDGPU_IB_POOL_DIRECT :
2110 AMDGPU_IB_POOL_DELAYED;
2111 int r;
2112 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2113 &adev->mman.high_pr;
2114 r = amdgpu_job_alloc_with_ib(adev, entity,
2115 AMDGPU_FENCE_OWNER_UNDEFINED,
2116 num_dw * 4, pool, job);
2117 if (r)
2118 return r;
2119
2120 if (vm_needs_flush) {
2121 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2122 adev->gmc.pdb0_bo :
2123 adev->gart.bo);
2124 (*job)->vm_needs_flush = true;
2125 }
2126 if (!resv)
2127 return 0;
2128
2129 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2130 DMA_RESV_USAGE_BOOKKEEP);
2131}
2132
2133int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2134 uint64_t dst_offset, uint32_t byte_count,
2135 struct dma_resv *resv,
2136 struct dma_fence **fence, bool direct_submit,
2137 bool vm_needs_flush, bool tmz)
2138{
2139 struct amdgpu_device *adev = ring->adev;
2140 unsigned int num_loops, num_dw;
2141 struct amdgpu_job *job;
2142 uint32_t max_bytes;
2143 unsigned int i;
2144 int r;
2145
2146 if (!direct_submit && !ring->sched.ready) {
2147 DRM_ERROR("Trying to move memory with ring turned off.\n");
2148 return -EINVAL;
2149 }
2150
2151 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2152 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2153 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2154 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2155 resv, vm_needs_flush, &job, false);
2156 if (r)
2157 return r;
2158
2159 for (i = 0; i < num_loops; i++) {
2160 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2161
2162 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2163 dst_offset, cur_size_in_bytes, tmz);
2164
2165 src_offset += cur_size_in_bytes;
2166 dst_offset += cur_size_in_bytes;
2167 byte_count -= cur_size_in_bytes;
2168 }
2169
2170 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2171 WARN_ON(job->ibs[0].length_dw > num_dw);
2172 if (direct_submit)
2173 r = amdgpu_job_submit_direct(job, ring, fence);
2174 else
2175 *fence = amdgpu_job_submit(job);
2176 if (r)
2177 goto error_free;
2178
2179 return r;
2180
2181error_free:
2182 amdgpu_job_free(job);
2183 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2184 return r;
2185}
2186
2187static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2188 uint64_t dst_addr, uint32_t byte_count,
2189 struct dma_resv *resv,
2190 struct dma_fence **fence,
2191 bool vm_needs_flush, bool delayed)
2192{
2193 struct amdgpu_device *adev = ring->adev;
2194 unsigned int num_loops, num_dw;
2195 struct amdgpu_job *job;
2196 uint32_t max_bytes;
2197 unsigned int i;
2198 int r;
2199
2200 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2201 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2202 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2203 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2204 &job, delayed);
2205 if (r)
2206 return r;
2207
2208 for (i = 0; i < num_loops; i++) {
2209 uint32_t cur_size = min(byte_count, max_bytes);
2210
2211 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2212 cur_size);
2213
2214 dst_addr += cur_size;
2215 byte_count -= cur_size;
2216 }
2217
2218 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2219 WARN_ON(job->ibs[0].length_dw > num_dw);
2220 *fence = amdgpu_job_submit(job);
2221 return 0;
2222}
2223
2224int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2225 uint32_t src_data,
2226 struct dma_resv *resv,
2227 struct dma_fence **f,
2228 bool delayed)
2229{
2230 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2231 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2232 struct dma_fence *fence = NULL;
2233 struct amdgpu_res_cursor dst;
2234 int r;
2235
2236 if (!adev->mman.buffer_funcs_enabled) {
2237 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2238 return -EINVAL;
2239 }
2240
2241 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2242
2243 mutex_lock(&adev->mman.gtt_window_lock);
2244 while (dst.remaining) {
2245 struct dma_fence *next;
2246 uint64_t cur_size, to;
2247
2248 /* Never fill more than 256MiB at once to avoid timeouts */
2249 cur_size = min(dst.size, 256ULL << 20);
2250
2251 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2252 1, ring, false, &cur_size, &to);
2253 if (r)
2254 goto error;
2255
2256 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2257 &next, true, delayed);
2258 if (r)
2259 goto error;
2260
2261 dma_fence_put(fence);
2262 fence = next;
2263
2264 amdgpu_res_next(&dst, cur_size);
2265 }
2266error:
2267 mutex_unlock(&adev->mman.gtt_window_lock);
2268 if (f)
2269 *f = dma_fence_get(fence);
2270 dma_fence_put(fence);
2271 return r;
2272}
2273
2274/**
2275 * amdgpu_ttm_evict_resources - evict memory buffers
2276 * @adev: amdgpu device object
2277 * @mem_type: evicted BO's memory type
2278 *
2279 * Evicts all @mem_type buffers on the lru list of the memory type.
2280 *
2281 * Returns:
2282 * 0 for success or a negative error code on failure.
2283 */
2284int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2285{
2286 struct ttm_resource_manager *man;
2287
2288 switch (mem_type) {
2289 case TTM_PL_VRAM:
2290 case TTM_PL_TT:
2291 case AMDGPU_PL_GWS:
2292 case AMDGPU_PL_GDS:
2293 case AMDGPU_PL_OA:
2294 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2295 break;
2296 default:
2297 DRM_ERROR("Trying to evict invalid memory type\n");
2298 return -EINVAL;
2299 }
2300
2301 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2302}
2303
2304#if defined(CONFIG_DEBUG_FS)
2305
2306static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2307{
2308 struct amdgpu_device *adev = m->private;
2309
2310 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2311}
2312
2313DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2314
2315/*
2316 * amdgpu_ttm_vram_read - Linear read access to VRAM
2317 *
2318 * Accesses VRAM via MMIO for debugging purposes.
2319 */
2320static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2321 size_t size, loff_t *pos)
2322{
2323 struct amdgpu_device *adev = file_inode(f)->i_private;
2324 ssize_t result = 0;
2325
2326 if (size & 0x3 || *pos & 0x3)
2327 return -EINVAL;
2328
2329 if (*pos >= adev->gmc.mc_vram_size)
2330 return -ENXIO;
2331
2332 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2333 while (size) {
2334 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2335 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2336
2337 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2338 if (copy_to_user(buf, value, bytes))
2339 return -EFAULT;
2340
2341 result += bytes;
2342 buf += bytes;
2343 *pos += bytes;
2344 size -= bytes;
2345 }
2346
2347 return result;
2348}
2349
2350/*
2351 * amdgpu_ttm_vram_write - Linear write access to VRAM
2352 *
2353 * Accesses VRAM via MMIO for debugging purposes.
2354 */
2355static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2356 size_t size, loff_t *pos)
2357{
2358 struct amdgpu_device *adev = file_inode(f)->i_private;
2359 ssize_t result = 0;
2360 int r;
2361
2362 if (size & 0x3 || *pos & 0x3)
2363 return -EINVAL;
2364
2365 if (*pos >= adev->gmc.mc_vram_size)
2366 return -ENXIO;
2367
2368 while (size) {
2369 uint32_t value;
2370
2371 if (*pos >= adev->gmc.mc_vram_size)
2372 return result;
2373
2374 r = get_user(value, (uint32_t *)buf);
2375 if (r)
2376 return r;
2377
2378 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2379
2380 result += 4;
2381 buf += 4;
2382 *pos += 4;
2383 size -= 4;
2384 }
2385
2386 return result;
2387}
2388
2389static const struct file_operations amdgpu_ttm_vram_fops = {
2390 .owner = THIS_MODULE,
2391 .read = amdgpu_ttm_vram_read,
2392 .write = amdgpu_ttm_vram_write,
2393 .llseek = default_llseek,
2394};
2395
2396/*
2397 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2398 *
2399 * This function is used to read memory that has been mapped to the
2400 * GPU and the known addresses are not physical addresses but instead
2401 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2402 */
2403static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2404 size_t size, loff_t *pos)
2405{
2406 struct amdgpu_device *adev = file_inode(f)->i_private;
2407 struct iommu_domain *dom;
2408 ssize_t result = 0;
2409 int r;
2410
2411 /* retrieve the IOMMU domain if any for this device */
2412 dom = iommu_get_domain_for_dev(adev->dev);
2413
2414 while (size) {
2415 phys_addr_t addr = *pos & PAGE_MASK;
2416 loff_t off = *pos & ~PAGE_MASK;
2417 size_t bytes = PAGE_SIZE - off;
2418 unsigned long pfn;
2419 struct page *p;
2420 void *ptr;
2421
2422 bytes = min(bytes, size);
2423
2424 /* Translate the bus address to a physical address. If
2425 * the domain is NULL it means there is no IOMMU active
2426 * and the address translation is the identity
2427 */
2428 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2429
2430 pfn = addr >> PAGE_SHIFT;
2431 if (!pfn_valid(pfn))
2432 return -EPERM;
2433
2434 p = pfn_to_page(pfn);
2435 if (p->mapping != adev->mman.bdev.dev_mapping)
2436 return -EPERM;
2437
2438 ptr = kmap_local_page(p);
2439 r = copy_to_user(buf, ptr + off, bytes);
2440 kunmap_local(ptr);
2441 if (r)
2442 return -EFAULT;
2443
2444 size -= bytes;
2445 *pos += bytes;
2446 result += bytes;
2447 }
2448
2449 return result;
2450}
2451
2452/*
2453 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2454 *
2455 * This function is used to write memory that has been mapped to the
2456 * GPU and the known addresses are not physical addresses but instead
2457 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2458 */
2459static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2460 size_t size, loff_t *pos)
2461{
2462 struct amdgpu_device *adev = file_inode(f)->i_private;
2463 struct iommu_domain *dom;
2464 ssize_t result = 0;
2465 int r;
2466
2467 dom = iommu_get_domain_for_dev(adev->dev);
2468
2469 while (size) {
2470 phys_addr_t addr = *pos & PAGE_MASK;
2471 loff_t off = *pos & ~PAGE_MASK;
2472 size_t bytes = PAGE_SIZE - off;
2473 unsigned long pfn;
2474 struct page *p;
2475 void *ptr;
2476
2477 bytes = min(bytes, size);
2478
2479 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2480
2481 pfn = addr >> PAGE_SHIFT;
2482 if (!pfn_valid(pfn))
2483 return -EPERM;
2484
2485 p = pfn_to_page(pfn);
2486 if (p->mapping != adev->mman.bdev.dev_mapping)
2487 return -EPERM;
2488
2489 ptr = kmap_local_page(p);
2490 r = copy_from_user(ptr + off, buf, bytes);
2491 kunmap_local(ptr);
2492 if (r)
2493 return -EFAULT;
2494
2495 size -= bytes;
2496 *pos += bytes;
2497 result += bytes;
2498 }
2499
2500 return result;
2501}
2502
2503static const struct file_operations amdgpu_ttm_iomem_fops = {
2504 .owner = THIS_MODULE,
2505 .read = amdgpu_iomem_read,
2506 .write = amdgpu_iomem_write,
2507 .llseek = default_llseek
2508};
2509
2510#endif
2511
2512void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2513{
2514#if defined(CONFIG_DEBUG_FS)
2515 struct drm_minor *minor = adev_to_drm(adev)->primary;
2516 struct dentry *root = minor->debugfs_root;
2517
2518 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2519 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2520 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2521 &amdgpu_ttm_iomem_fops);
2522 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2523 &amdgpu_ttm_page_pool_fops);
2524 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2525 TTM_PL_VRAM),
2526 root, "amdgpu_vram_mm");
2527 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2528 TTM_PL_TT),
2529 root, "amdgpu_gtt_mm");
2530 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2531 AMDGPU_PL_GDS),
2532 root, "amdgpu_gds_mm");
2533 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2534 AMDGPU_PL_GWS),
2535 root, "amdgpu_gws_mm");
2536 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2537 AMDGPU_PL_OA),
2538 root, "amdgpu_oa_mm");
2539
2540#endif
2541}