Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include <linux/backing-dev.h>
8#include <linux/dax.h>
9
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
14#include "xfs_mount.h"
15#include "xfs_trace.h"
16#include "xfs_log.h"
17#include "xfs_log_recover.h"
18#include "xfs_log_priv.h"
19#include "xfs_trans.h"
20#include "xfs_buf_item.h"
21#include "xfs_errortag.h"
22#include "xfs_error.h"
23#include "xfs_ag.h"
24#include "xfs_buf_mem.h"
25
26struct kmem_cache *xfs_buf_cache;
27
28/*
29 * Locking orders
30 *
31 * xfs_buf_ioacct_inc:
32 * xfs_buf_ioacct_dec:
33 * b_sema (caller holds)
34 * b_lock
35 *
36 * xfs_buf_stale:
37 * b_sema (caller holds)
38 * b_lock
39 * lru_lock
40 *
41 * xfs_buf_rele:
42 * b_lock
43 * pag_buf_lock
44 * lru_lock
45 *
46 * xfs_buftarg_drain_rele
47 * lru_lock
48 * b_lock (trylock due to inversion)
49 *
50 * xfs_buftarg_isolate
51 * lru_lock
52 * b_lock (trylock due to inversion)
53 */
54
55static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
56
57static inline int
58xfs_buf_submit(
59 struct xfs_buf *bp)
60{
61 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
62}
63
64static inline bool xfs_buf_is_uncached(struct xfs_buf *bp)
65{
66 return bp->b_rhash_key == XFS_BUF_DADDR_NULL;
67}
68
69static inline int
70xfs_buf_is_vmapped(
71 struct xfs_buf *bp)
72{
73 /*
74 * Return true if the buffer is vmapped.
75 *
76 * b_addr is null if the buffer is not mapped, but the code is clever
77 * enough to know it doesn't have to map a single page, so the check has
78 * to be both for b_addr and bp->b_page_count > 1.
79 */
80 return bp->b_addr && bp->b_page_count > 1;
81}
82
83static inline int
84xfs_buf_vmap_len(
85 struct xfs_buf *bp)
86{
87 return (bp->b_page_count * PAGE_SIZE);
88}
89
90/*
91 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
92 * this buffer. The count is incremented once per buffer (per hold cycle)
93 * because the corresponding decrement is deferred to buffer release. Buffers
94 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
95 * tracking adds unnecessary overhead. This is used for sychronization purposes
96 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
97 * in-flight buffers.
98 *
99 * Buffers that are never released (e.g., superblock, iclog buffers) must set
100 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
101 * never reaches zero and unmount hangs indefinitely.
102 */
103static inline void
104xfs_buf_ioacct_inc(
105 struct xfs_buf *bp)
106{
107 if (bp->b_flags & XBF_NO_IOACCT)
108 return;
109
110 ASSERT(bp->b_flags & XBF_ASYNC);
111 spin_lock(&bp->b_lock);
112 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
113 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
114 percpu_counter_inc(&bp->b_target->bt_io_count);
115 }
116 spin_unlock(&bp->b_lock);
117}
118
119/*
120 * Clear the in-flight state on a buffer about to be released to the LRU or
121 * freed and unaccount from the buftarg.
122 */
123static inline void
124__xfs_buf_ioacct_dec(
125 struct xfs_buf *bp)
126{
127 lockdep_assert_held(&bp->b_lock);
128
129 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
130 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
131 percpu_counter_dec(&bp->b_target->bt_io_count);
132 }
133}
134
135static inline void
136xfs_buf_ioacct_dec(
137 struct xfs_buf *bp)
138{
139 spin_lock(&bp->b_lock);
140 __xfs_buf_ioacct_dec(bp);
141 spin_unlock(&bp->b_lock);
142}
143
144/*
145 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
146 * b_lru_ref count so that the buffer is freed immediately when the buffer
147 * reference count falls to zero. If the buffer is already on the LRU, we need
148 * to remove the reference that LRU holds on the buffer.
149 *
150 * This prevents build-up of stale buffers on the LRU.
151 */
152void
153xfs_buf_stale(
154 struct xfs_buf *bp)
155{
156 ASSERT(xfs_buf_islocked(bp));
157
158 bp->b_flags |= XBF_STALE;
159
160 /*
161 * Clear the delwri status so that a delwri queue walker will not
162 * flush this buffer to disk now that it is stale. The delwri queue has
163 * a reference to the buffer, so this is safe to do.
164 */
165 bp->b_flags &= ~_XBF_DELWRI_Q;
166
167 /*
168 * Once the buffer is marked stale and unlocked, a subsequent lookup
169 * could reset b_flags. There is no guarantee that the buffer is
170 * unaccounted (released to LRU) before that occurs. Drop in-flight
171 * status now to preserve accounting consistency.
172 */
173 spin_lock(&bp->b_lock);
174 __xfs_buf_ioacct_dec(bp);
175
176 atomic_set(&bp->b_lru_ref, 0);
177 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
178 (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru)))
179 atomic_dec(&bp->b_hold);
180
181 ASSERT(atomic_read(&bp->b_hold) >= 1);
182 spin_unlock(&bp->b_lock);
183}
184
185static int
186xfs_buf_get_maps(
187 struct xfs_buf *bp,
188 int map_count)
189{
190 ASSERT(bp->b_maps == NULL);
191 bp->b_map_count = map_count;
192
193 if (map_count == 1) {
194 bp->b_maps = &bp->__b_map;
195 return 0;
196 }
197
198 bp->b_maps = kzalloc(map_count * sizeof(struct xfs_buf_map),
199 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
200 if (!bp->b_maps)
201 return -ENOMEM;
202 return 0;
203}
204
205/*
206 * Frees b_pages if it was allocated.
207 */
208static void
209xfs_buf_free_maps(
210 struct xfs_buf *bp)
211{
212 if (bp->b_maps != &bp->__b_map) {
213 kfree(bp->b_maps);
214 bp->b_maps = NULL;
215 }
216}
217
218static int
219_xfs_buf_alloc(
220 struct xfs_buftarg *target,
221 struct xfs_buf_map *map,
222 int nmaps,
223 xfs_buf_flags_t flags,
224 struct xfs_buf **bpp)
225{
226 struct xfs_buf *bp;
227 int error;
228 int i;
229
230 *bpp = NULL;
231 bp = kmem_cache_zalloc(xfs_buf_cache,
232 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
233
234 /*
235 * We don't want certain flags to appear in b_flags unless they are
236 * specifically set by later operations on the buffer.
237 */
238 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
239
240 atomic_set(&bp->b_hold, 1);
241 atomic_set(&bp->b_lru_ref, 1);
242 init_completion(&bp->b_iowait);
243 INIT_LIST_HEAD(&bp->b_lru);
244 INIT_LIST_HEAD(&bp->b_list);
245 INIT_LIST_HEAD(&bp->b_li_list);
246 sema_init(&bp->b_sema, 0); /* held, no waiters */
247 spin_lock_init(&bp->b_lock);
248 bp->b_target = target;
249 bp->b_mount = target->bt_mount;
250 bp->b_flags = flags;
251
252 /*
253 * Set length and io_length to the same value initially.
254 * I/O routines should use io_length, which will be the same in
255 * most cases but may be reset (e.g. XFS recovery).
256 */
257 error = xfs_buf_get_maps(bp, nmaps);
258 if (error) {
259 kmem_cache_free(xfs_buf_cache, bp);
260 return error;
261 }
262
263 bp->b_rhash_key = map[0].bm_bn;
264 bp->b_length = 0;
265 for (i = 0; i < nmaps; i++) {
266 bp->b_maps[i].bm_bn = map[i].bm_bn;
267 bp->b_maps[i].bm_len = map[i].bm_len;
268 bp->b_length += map[i].bm_len;
269 }
270
271 atomic_set(&bp->b_pin_count, 0);
272 init_waitqueue_head(&bp->b_waiters);
273
274 XFS_STATS_INC(bp->b_mount, xb_create);
275 trace_xfs_buf_init(bp, _RET_IP_);
276
277 *bpp = bp;
278 return 0;
279}
280
281static void
282xfs_buf_free_pages(
283 struct xfs_buf *bp)
284{
285 uint i;
286
287 ASSERT(bp->b_flags & _XBF_PAGES);
288
289 if (xfs_buf_is_vmapped(bp))
290 vm_unmap_ram(bp->b_addr, bp->b_page_count);
291
292 for (i = 0; i < bp->b_page_count; i++) {
293 if (bp->b_pages[i])
294 __free_page(bp->b_pages[i]);
295 }
296 mm_account_reclaimed_pages(bp->b_page_count);
297
298 if (bp->b_pages != bp->b_page_array)
299 kfree(bp->b_pages);
300 bp->b_pages = NULL;
301 bp->b_flags &= ~_XBF_PAGES;
302}
303
304static void
305xfs_buf_free_callback(
306 struct callback_head *cb)
307{
308 struct xfs_buf *bp = container_of(cb, struct xfs_buf, b_rcu);
309
310 xfs_buf_free_maps(bp);
311 kmem_cache_free(xfs_buf_cache, bp);
312}
313
314static void
315xfs_buf_free(
316 struct xfs_buf *bp)
317{
318 trace_xfs_buf_free(bp, _RET_IP_);
319
320 ASSERT(list_empty(&bp->b_lru));
321
322 if (xfs_buftarg_is_mem(bp->b_target))
323 xmbuf_unmap_page(bp);
324 else if (bp->b_flags & _XBF_PAGES)
325 xfs_buf_free_pages(bp);
326 else if (bp->b_flags & _XBF_KMEM)
327 kfree(bp->b_addr);
328
329 call_rcu(&bp->b_rcu, xfs_buf_free_callback);
330}
331
332static int
333xfs_buf_alloc_kmem(
334 struct xfs_buf *bp,
335 xfs_buf_flags_t flags)
336{
337 gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL;
338 size_t size = BBTOB(bp->b_length);
339
340 /* Assure zeroed buffer for non-read cases. */
341 if (!(flags & XBF_READ))
342 gfp_mask |= __GFP_ZERO;
343
344 bp->b_addr = kmalloc(size, gfp_mask);
345 if (!bp->b_addr)
346 return -ENOMEM;
347
348 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
349 ((unsigned long)bp->b_addr & PAGE_MASK)) {
350 /* b_addr spans two pages - use alloc_page instead */
351 kfree(bp->b_addr);
352 bp->b_addr = NULL;
353 return -ENOMEM;
354 }
355 bp->b_offset = offset_in_page(bp->b_addr);
356 bp->b_pages = bp->b_page_array;
357 bp->b_pages[0] = kmem_to_page(bp->b_addr);
358 bp->b_page_count = 1;
359 bp->b_flags |= _XBF_KMEM;
360 return 0;
361}
362
363static int
364xfs_buf_alloc_pages(
365 struct xfs_buf *bp,
366 xfs_buf_flags_t flags)
367{
368 gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN;
369 long filled = 0;
370
371 if (flags & XBF_READ_AHEAD)
372 gfp_mask |= __GFP_NORETRY;
373
374 /* Make sure that we have a page list */
375 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
376 if (bp->b_page_count <= XB_PAGES) {
377 bp->b_pages = bp->b_page_array;
378 } else {
379 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
380 gfp_mask);
381 if (!bp->b_pages)
382 return -ENOMEM;
383 }
384 bp->b_flags |= _XBF_PAGES;
385
386 /* Assure zeroed buffer for non-read cases. */
387 if (!(flags & XBF_READ))
388 gfp_mask |= __GFP_ZERO;
389
390 /*
391 * Bulk filling of pages can take multiple calls. Not filling the entire
392 * array is not an allocation failure, so don't back off if we get at
393 * least one extra page.
394 */
395 for (;;) {
396 long last = filled;
397
398 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
399 bp->b_pages);
400 if (filled == bp->b_page_count) {
401 XFS_STATS_INC(bp->b_mount, xb_page_found);
402 break;
403 }
404
405 if (filled != last)
406 continue;
407
408 if (flags & XBF_READ_AHEAD) {
409 xfs_buf_free_pages(bp);
410 return -ENOMEM;
411 }
412
413 XFS_STATS_INC(bp->b_mount, xb_page_retries);
414 memalloc_retry_wait(gfp_mask);
415 }
416 return 0;
417}
418
419/*
420 * Map buffer into kernel address-space if necessary.
421 */
422STATIC int
423_xfs_buf_map_pages(
424 struct xfs_buf *bp,
425 xfs_buf_flags_t flags)
426{
427 ASSERT(bp->b_flags & _XBF_PAGES);
428 if (bp->b_page_count == 1) {
429 /* A single page buffer is always mappable */
430 bp->b_addr = page_address(bp->b_pages[0]);
431 } else if (flags & XBF_UNMAPPED) {
432 bp->b_addr = NULL;
433 } else {
434 int retried = 0;
435 unsigned nofs_flag;
436
437 /*
438 * vm_map_ram() will allocate auxiliary structures (e.g.
439 * pagetables) with GFP_KERNEL, yet we often under a scoped nofs
440 * context here. Mixing GFP_KERNEL with GFP_NOFS allocations
441 * from the same call site that can be run from both above and
442 * below memory reclaim causes lockdep false positives. Hence we
443 * always need to force this allocation to nofs context because
444 * we can't pass __GFP_NOLOCKDEP down to auxillary structures to
445 * prevent false positive lockdep reports.
446 *
447 * XXX(dgc): I think dquot reclaim is the only place we can get
448 * to this function from memory reclaim context now. If we fix
449 * that like we've fixed inode reclaim to avoid writeback from
450 * reclaim, this nofs wrapping can go away.
451 */
452 nofs_flag = memalloc_nofs_save();
453 do {
454 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
455 -1);
456 if (bp->b_addr)
457 break;
458 vm_unmap_aliases();
459 } while (retried++ <= 1);
460 memalloc_nofs_restore(nofs_flag);
461
462 if (!bp->b_addr)
463 return -ENOMEM;
464 }
465
466 return 0;
467}
468
469/*
470 * Finding and Reading Buffers
471 */
472static int
473_xfs_buf_obj_cmp(
474 struct rhashtable_compare_arg *arg,
475 const void *obj)
476{
477 const struct xfs_buf_map *map = arg->key;
478 const struct xfs_buf *bp = obj;
479
480 /*
481 * The key hashing in the lookup path depends on the key being the
482 * first element of the compare_arg, make sure to assert this.
483 */
484 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
485
486 if (bp->b_rhash_key != map->bm_bn)
487 return 1;
488
489 if (unlikely(bp->b_length != map->bm_len)) {
490 /*
491 * found a block number match. If the range doesn't
492 * match, the only way this is allowed is if the buffer
493 * in the cache is stale and the transaction that made
494 * it stale has not yet committed. i.e. we are
495 * reallocating a busy extent. Skip this buffer and
496 * continue searching for an exact match.
497 */
498 if (!(map->bm_flags & XBM_LIVESCAN))
499 ASSERT(bp->b_flags & XBF_STALE);
500 return 1;
501 }
502 return 0;
503}
504
505static const struct rhashtable_params xfs_buf_hash_params = {
506 .min_size = 32, /* empty AGs have minimal footprint */
507 .nelem_hint = 16,
508 .key_len = sizeof(xfs_daddr_t),
509 .key_offset = offsetof(struct xfs_buf, b_rhash_key),
510 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
511 .automatic_shrinking = true,
512 .obj_cmpfn = _xfs_buf_obj_cmp,
513};
514
515int
516xfs_buf_cache_init(
517 struct xfs_buf_cache *bch)
518{
519 spin_lock_init(&bch->bc_lock);
520 return rhashtable_init(&bch->bc_hash, &xfs_buf_hash_params);
521}
522
523void
524xfs_buf_cache_destroy(
525 struct xfs_buf_cache *bch)
526{
527 rhashtable_destroy(&bch->bc_hash);
528}
529
530static int
531xfs_buf_map_verify(
532 struct xfs_buftarg *btp,
533 struct xfs_buf_map *map)
534{
535 xfs_daddr_t eofs;
536
537 /* Check for IOs smaller than the sector size / not sector aligned */
538 ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
539 ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
540
541 /*
542 * Corrupted block numbers can get through to here, unfortunately, so we
543 * have to check that the buffer falls within the filesystem bounds.
544 */
545 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
546 if (map->bm_bn < 0 || map->bm_bn >= eofs) {
547 xfs_alert(btp->bt_mount,
548 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
549 __func__, map->bm_bn, eofs);
550 WARN_ON(1);
551 return -EFSCORRUPTED;
552 }
553 return 0;
554}
555
556static int
557xfs_buf_find_lock(
558 struct xfs_buf *bp,
559 xfs_buf_flags_t flags)
560{
561 if (flags & XBF_TRYLOCK) {
562 if (!xfs_buf_trylock(bp)) {
563 XFS_STATS_INC(bp->b_mount, xb_busy_locked);
564 return -EAGAIN;
565 }
566 } else {
567 xfs_buf_lock(bp);
568 XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
569 }
570
571 /*
572 * if the buffer is stale, clear all the external state associated with
573 * it. We need to keep flags such as how we allocated the buffer memory
574 * intact here.
575 */
576 if (bp->b_flags & XBF_STALE) {
577 if (flags & XBF_LIVESCAN) {
578 xfs_buf_unlock(bp);
579 return -ENOENT;
580 }
581 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
582 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
583 bp->b_ops = NULL;
584 }
585 return 0;
586}
587
588static inline int
589xfs_buf_lookup(
590 struct xfs_buf_cache *bch,
591 struct xfs_buf_map *map,
592 xfs_buf_flags_t flags,
593 struct xfs_buf **bpp)
594{
595 struct xfs_buf *bp;
596 int error;
597
598 rcu_read_lock();
599 bp = rhashtable_lookup(&bch->bc_hash, map, xfs_buf_hash_params);
600 if (!bp || !atomic_inc_not_zero(&bp->b_hold)) {
601 rcu_read_unlock();
602 return -ENOENT;
603 }
604 rcu_read_unlock();
605
606 error = xfs_buf_find_lock(bp, flags);
607 if (error) {
608 xfs_buf_rele(bp);
609 return error;
610 }
611
612 trace_xfs_buf_find(bp, flags, _RET_IP_);
613 *bpp = bp;
614 return 0;
615}
616
617/*
618 * Insert the new_bp into the hash table. This consumes the perag reference
619 * taken for the lookup regardless of the result of the insert.
620 */
621static int
622xfs_buf_find_insert(
623 struct xfs_buftarg *btp,
624 struct xfs_buf_cache *bch,
625 struct xfs_perag *pag,
626 struct xfs_buf_map *cmap,
627 struct xfs_buf_map *map,
628 int nmaps,
629 xfs_buf_flags_t flags,
630 struct xfs_buf **bpp)
631{
632 struct xfs_buf *new_bp;
633 struct xfs_buf *bp;
634 int error;
635
636 error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
637 if (error)
638 goto out_drop_pag;
639
640 if (xfs_buftarg_is_mem(new_bp->b_target)) {
641 error = xmbuf_map_page(new_bp);
642 } else if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
643 xfs_buf_alloc_kmem(new_bp, flags) < 0) {
644 /*
645 * For buffers that fit entirely within a single page, first
646 * attempt to allocate the memory from the heap to minimise
647 * memory usage. If we can't get heap memory for these small
648 * buffers, we fall back to using the page allocator.
649 */
650 error = xfs_buf_alloc_pages(new_bp, flags);
651 }
652 if (error)
653 goto out_free_buf;
654
655 spin_lock(&bch->bc_lock);
656 bp = rhashtable_lookup_get_insert_fast(&bch->bc_hash,
657 &new_bp->b_rhash_head, xfs_buf_hash_params);
658 if (IS_ERR(bp)) {
659 error = PTR_ERR(bp);
660 spin_unlock(&bch->bc_lock);
661 goto out_free_buf;
662 }
663 if (bp) {
664 /* found an existing buffer */
665 atomic_inc(&bp->b_hold);
666 spin_unlock(&bch->bc_lock);
667 error = xfs_buf_find_lock(bp, flags);
668 if (error)
669 xfs_buf_rele(bp);
670 else
671 *bpp = bp;
672 goto out_free_buf;
673 }
674
675 /* The new buffer keeps the perag reference until it is freed. */
676 new_bp->b_pag = pag;
677 spin_unlock(&bch->bc_lock);
678 *bpp = new_bp;
679 return 0;
680
681out_free_buf:
682 xfs_buf_free(new_bp);
683out_drop_pag:
684 if (pag)
685 xfs_perag_put(pag);
686 return error;
687}
688
689static inline struct xfs_perag *
690xfs_buftarg_get_pag(
691 struct xfs_buftarg *btp,
692 const struct xfs_buf_map *map)
693{
694 struct xfs_mount *mp = btp->bt_mount;
695
696 if (xfs_buftarg_is_mem(btp))
697 return NULL;
698 return xfs_perag_get(mp, xfs_daddr_to_agno(mp, map->bm_bn));
699}
700
701static inline struct xfs_buf_cache *
702xfs_buftarg_buf_cache(
703 struct xfs_buftarg *btp,
704 struct xfs_perag *pag)
705{
706 if (pag)
707 return &pag->pag_bcache;
708 return btp->bt_cache;
709}
710
711/*
712 * Assembles a buffer covering the specified range. The code is optimised for
713 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
714 * more hits than misses.
715 */
716int
717xfs_buf_get_map(
718 struct xfs_buftarg *btp,
719 struct xfs_buf_map *map,
720 int nmaps,
721 xfs_buf_flags_t flags,
722 struct xfs_buf **bpp)
723{
724 struct xfs_buf_cache *bch;
725 struct xfs_perag *pag;
726 struct xfs_buf *bp = NULL;
727 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
728 int error;
729 int i;
730
731 if (flags & XBF_LIVESCAN)
732 cmap.bm_flags |= XBM_LIVESCAN;
733 for (i = 0; i < nmaps; i++)
734 cmap.bm_len += map[i].bm_len;
735
736 error = xfs_buf_map_verify(btp, &cmap);
737 if (error)
738 return error;
739
740 pag = xfs_buftarg_get_pag(btp, &cmap);
741 bch = xfs_buftarg_buf_cache(btp, pag);
742
743 error = xfs_buf_lookup(bch, &cmap, flags, &bp);
744 if (error && error != -ENOENT)
745 goto out_put_perag;
746
747 /* cache hits always outnumber misses by at least 10:1 */
748 if (unlikely(!bp)) {
749 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
750
751 if (flags & XBF_INCORE)
752 goto out_put_perag;
753
754 /* xfs_buf_find_insert() consumes the perag reference. */
755 error = xfs_buf_find_insert(btp, bch, pag, &cmap, map, nmaps,
756 flags, &bp);
757 if (error)
758 return error;
759 } else {
760 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
761 if (pag)
762 xfs_perag_put(pag);
763 }
764
765 /* We do not hold a perag reference anymore. */
766 if (!bp->b_addr) {
767 error = _xfs_buf_map_pages(bp, flags);
768 if (unlikely(error)) {
769 xfs_warn_ratelimited(btp->bt_mount,
770 "%s: failed to map %u pages", __func__,
771 bp->b_page_count);
772 xfs_buf_relse(bp);
773 return error;
774 }
775 }
776
777 /*
778 * Clear b_error if this is a lookup from a caller that doesn't expect
779 * valid data to be found in the buffer.
780 */
781 if (!(flags & XBF_READ))
782 xfs_buf_ioerror(bp, 0);
783
784 XFS_STATS_INC(btp->bt_mount, xb_get);
785 trace_xfs_buf_get(bp, flags, _RET_IP_);
786 *bpp = bp;
787 return 0;
788
789out_put_perag:
790 if (pag)
791 xfs_perag_put(pag);
792 return error;
793}
794
795int
796_xfs_buf_read(
797 struct xfs_buf *bp,
798 xfs_buf_flags_t flags)
799{
800 ASSERT(!(flags & XBF_WRITE));
801 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
802
803 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
804 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
805
806 return xfs_buf_submit(bp);
807}
808
809/*
810 * Reverify a buffer found in cache without an attached ->b_ops.
811 *
812 * If the caller passed an ops structure and the buffer doesn't have ops
813 * assigned, set the ops and use it to verify the contents. If verification
814 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
815 * already in XBF_DONE state on entry.
816 *
817 * Under normal operations, every in-core buffer is verified on read I/O
818 * completion. There are two scenarios that can lead to in-core buffers without
819 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
820 * filesystem, though these buffers are purged at the end of recovery. The
821 * other is online repair, which intentionally reads with a NULL buffer ops to
822 * run several verifiers across an in-core buffer in order to establish buffer
823 * type. If repair can't establish that, the buffer will be left in memory
824 * with NULL buffer ops.
825 */
826int
827xfs_buf_reverify(
828 struct xfs_buf *bp,
829 const struct xfs_buf_ops *ops)
830{
831 ASSERT(bp->b_flags & XBF_DONE);
832 ASSERT(bp->b_error == 0);
833
834 if (!ops || bp->b_ops)
835 return 0;
836
837 bp->b_ops = ops;
838 bp->b_ops->verify_read(bp);
839 if (bp->b_error)
840 bp->b_flags &= ~XBF_DONE;
841 return bp->b_error;
842}
843
844int
845xfs_buf_read_map(
846 struct xfs_buftarg *target,
847 struct xfs_buf_map *map,
848 int nmaps,
849 xfs_buf_flags_t flags,
850 struct xfs_buf **bpp,
851 const struct xfs_buf_ops *ops,
852 xfs_failaddr_t fa)
853{
854 struct xfs_buf *bp;
855 int error;
856
857 flags |= XBF_READ;
858 *bpp = NULL;
859
860 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
861 if (error)
862 return error;
863
864 trace_xfs_buf_read(bp, flags, _RET_IP_);
865
866 if (!(bp->b_flags & XBF_DONE)) {
867 /* Initiate the buffer read and wait. */
868 XFS_STATS_INC(target->bt_mount, xb_get_read);
869 bp->b_ops = ops;
870 error = _xfs_buf_read(bp, flags);
871
872 /* Readahead iodone already dropped the buffer, so exit. */
873 if (flags & XBF_ASYNC)
874 return 0;
875 } else {
876 /* Buffer already read; all we need to do is check it. */
877 error = xfs_buf_reverify(bp, ops);
878
879 /* Readahead already finished; drop the buffer and exit. */
880 if (flags & XBF_ASYNC) {
881 xfs_buf_relse(bp);
882 return 0;
883 }
884
885 /* We do not want read in the flags */
886 bp->b_flags &= ~XBF_READ;
887 ASSERT(bp->b_ops != NULL || ops == NULL);
888 }
889
890 /*
891 * If we've had a read error, then the contents of the buffer are
892 * invalid and should not be used. To ensure that a followup read tries
893 * to pull the buffer from disk again, we clear the XBF_DONE flag and
894 * mark the buffer stale. This ensures that anyone who has a current
895 * reference to the buffer will interpret it's contents correctly and
896 * future cache lookups will also treat it as an empty, uninitialised
897 * buffer.
898 */
899 if (error) {
900 /*
901 * Check against log shutdown for error reporting because
902 * metadata writeback may require a read first and we need to
903 * report errors in metadata writeback until the log is shut
904 * down. High level transaction read functions already check
905 * against mount shutdown, anyway, so we only need to be
906 * concerned about low level IO interactions here.
907 */
908 if (!xlog_is_shutdown(target->bt_mount->m_log))
909 xfs_buf_ioerror_alert(bp, fa);
910
911 bp->b_flags &= ~XBF_DONE;
912 xfs_buf_stale(bp);
913 xfs_buf_relse(bp);
914
915 /* bad CRC means corrupted metadata */
916 if (error == -EFSBADCRC)
917 error = -EFSCORRUPTED;
918 return error;
919 }
920
921 *bpp = bp;
922 return 0;
923}
924
925/*
926 * If we are not low on memory then do the readahead in a deadlock
927 * safe manner.
928 */
929void
930xfs_buf_readahead_map(
931 struct xfs_buftarg *target,
932 struct xfs_buf_map *map,
933 int nmaps,
934 const struct xfs_buf_ops *ops)
935{
936 struct xfs_buf *bp;
937
938 /*
939 * Currently we don't have a good means or justification for performing
940 * xmbuf_map_page asynchronously, so we don't do readahead.
941 */
942 if (xfs_buftarg_is_mem(target))
943 return;
944
945 xfs_buf_read_map(target, map, nmaps,
946 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
947 __this_address);
948}
949
950/*
951 * Read an uncached buffer from disk. Allocates and returns a locked
952 * buffer containing the disk contents or nothing. Uncached buffers always have
953 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
954 * is cached or uncached during fault diagnosis.
955 */
956int
957xfs_buf_read_uncached(
958 struct xfs_buftarg *target,
959 xfs_daddr_t daddr,
960 size_t numblks,
961 xfs_buf_flags_t flags,
962 struct xfs_buf **bpp,
963 const struct xfs_buf_ops *ops)
964{
965 struct xfs_buf *bp;
966 int error;
967
968 *bpp = NULL;
969
970 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
971 if (error)
972 return error;
973
974 /* set up the buffer for a read IO */
975 ASSERT(bp->b_map_count == 1);
976 bp->b_rhash_key = XFS_BUF_DADDR_NULL;
977 bp->b_maps[0].bm_bn = daddr;
978 bp->b_flags |= XBF_READ;
979 bp->b_ops = ops;
980
981 xfs_buf_submit(bp);
982 if (bp->b_error) {
983 error = bp->b_error;
984 xfs_buf_relse(bp);
985 return error;
986 }
987
988 *bpp = bp;
989 return 0;
990}
991
992int
993xfs_buf_get_uncached(
994 struct xfs_buftarg *target,
995 size_t numblks,
996 xfs_buf_flags_t flags,
997 struct xfs_buf **bpp)
998{
999 int error;
1000 struct xfs_buf *bp;
1001 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1002
1003 *bpp = NULL;
1004
1005 /* flags might contain irrelevant bits, pass only what we care about */
1006 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
1007 if (error)
1008 return error;
1009
1010 if (xfs_buftarg_is_mem(bp->b_target))
1011 error = xmbuf_map_page(bp);
1012 else
1013 error = xfs_buf_alloc_pages(bp, flags);
1014 if (error)
1015 goto fail_free_buf;
1016
1017 error = _xfs_buf_map_pages(bp, 0);
1018 if (unlikely(error)) {
1019 xfs_warn(target->bt_mount,
1020 "%s: failed to map pages", __func__);
1021 goto fail_free_buf;
1022 }
1023
1024 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1025 *bpp = bp;
1026 return 0;
1027
1028fail_free_buf:
1029 xfs_buf_free(bp);
1030 return error;
1031}
1032
1033/*
1034 * Increment reference count on buffer, to hold the buffer concurrently
1035 * with another thread which may release (free) the buffer asynchronously.
1036 * Must hold the buffer already to call this function.
1037 */
1038void
1039xfs_buf_hold(
1040 struct xfs_buf *bp)
1041{
1042 trace_xfs_buf_hold(bp, _RET_IP_);
1043 atomic_inc(&bp->b_hold);
1044}
1045
1046static void
1047xfs_buf_rele_uncached(
1048 struct xfs_buf *bp)
1049{
1050 ASSERT(list_empty(&bp->b_lru));
1051 if (atomic_dec_and_test(&bp->b_hold)) {
1052 xfs_buf_ioacct_dec(bp);
1053 xfs_buf_free(bp);
1054 }
1055}
1056
1057static void
1058xfs_buf_rele_cached(
1059 struct xfs_buf *bp)
1060{
1061 struct xfs_buftarg *btp = bp->b_target;
1062 struct xfs_perag *pag = bp->b_pag;
1063 struct xfs_buf_cache *bch = xfs_buftarg_buf_cache(btp, pag);
1064 bool release;
1065 bool freebuf = false;
1066
1067 trace_xfs_buf_rele(bp, _RET_IP_);
1068
1069 ASSERT(atomic_read(&bp->b_hold) > 0);
1070
1071 /*
1072 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1073 * calls. The pag_buf_lock being taken on the last reference only
1074 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1075 * to last reference we drop here is not serialised against the last
1076 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1077 * first, the last "release" reference can win the race to the lock and
1078 * free the buffer before the second-to-last reference is processed,
1079 * leading to a use-after-free scenario.
1080 */
1081 spin_lock(&bp->b_lock);
1082 release = atomic_dec_and_lock(&bp->b_hold, &bch->bc_lock);
1083 if (!release) {
1084 /*
1085 * Drop the in-flight state if the buffer is already on the LRU
1086 * and it holds the only reference. This is racy because we
1087 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1088 * ensures the decrement occurs only once per-buf.
1089 */
1090 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1091 __xfs_buf_ioacct_dec(bp);
1092 goto out_unlock;
1093 }
1094
1095 /* the last reference has been dropped ... */
1096 __xfs_buf_ioacct_dec(bp);
1097 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1098 /*
1099 * If the buffer is added to the LRU take a new reference to the
1100 * buffer for the LRU and clear the (now stale) dispose list
1101 * state flag
1102 */
1103 if (list_lru_add_obj(&btp->bt_lru, &bp->b_lru)) {
1104 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1105 atomic_inc(&bp->b_hold);
1106 }
1107 spin_unlock(&bch->bc_lock);
1108 } else {
1109 /*
1110 * most of the time buffers will already be removed from the
1111 * LRU, so optimise that case by checking for the
1112 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1113 * was on was the disposal list
1114 */
1115 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1116 list_lru_del_obj(&btp->bt_lru, &bp->b_lru);
1117 } else {
1118 ASSERT(list_empty(&bp->b_lru));
1119 }
1120
1121 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1122 rhashtable_remove_fast(&bch->bc_hash, &bp->b_rhash_head,
1123 xfs_buf_hash_params);
1124 spin_unlock(&bch->bc_lock);
1125 if (pag)
1126 xfs_perag_put(pag);
1127 freebuf = true;
1128 }
1129
1130out_unlock:
1131 spin_unlock(&bp->b_lock);
1132
1133 if (freebuf)
1134 xfs_buf_free(bp);
1135}
1136
1137/*
1138 * Release a hold on the specified buffer.
1139 */
1140void
1141xfs_buf_rele(
1142 struct xfs_buf *bp)
1143{
1144 trace_xfs_buf_rele(bp, _RET_IP_);
1145 if (xfs_buf_is_uncached(bp))
1146 xfs_buf_rele_uncached(bp);
1147 else
1148 xfs_buf_rele_cached(bp);
1149}
1150
1151/*
1152 * Lock a buffer object, if it is not already locked.
1153 *
1154 * If we come across a stale, pinned, locked buffer, we know that we are
1155 * being asked to lock a buffer that has been reallocated. Because it is
1156 * pinned, we know that the log has not been pushed to disk and hence it
1157 * will still be locked. Rather than continuing to have trylock attempts
1158 * fail until someone else pushes the log, push it ourselves before
1159 * returning. This means that the xfsaild will not get stuck trying
1160 * to push on stale inode buffers.
1161 */
1162int
1163xfs_buf_trylock(
1164 struct xfs_buf *bp)
1165{
1166 int locked;
1167
1168 locked = down_trylock(&bp->b_sema) == 0;
1169 if (locked)
1170 trace_xfs_buf_trylock(bp, _RET_IP_);
1171 else
1172 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1173 return locked;
1174}
1175
1176/*
1177 * Lock a buffer object.
1178 *
1179 * If we come across a stale, pinned, locked buffer, we know that we
1180 * are being asked to lock a buffer that has been reallocated. Because
1181 * it is pinned, we know that the log has not been pushed to disk and
1182 * hence it will still be locked. Rather than sleeping until someone
1183 * else pushes the log, push it ourselves before trying to get the lock.
1184 */
1185void
1186xfs_buf_lock(
1187 struct xfs_buf *bp)
1188{
1189 trace_xfs_buf_lock(bp, _RET_IP_);
1190
1191 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1192 xfs_log_force(bp->b_mount, 0);
1193 down(&bp->b_sema);
1194
1195 trace_xfs_buf_lock_done(bp, _RET_IP_);
1196}
1197
1198void
1199xfs_buf_unlock(
1200 struct xfs_buf *bp)
1201{
1202 ASSERT(xfs_buf_islocked(bp));
1203
1204 up(&bp->b_sema);
1205 trace_xfs_buf_unlock(bp, _RET_IP_);
1206}
1207
1208STATIC void
1209xfs_buf_wait_unpin(
1210 struct xfs_buf *bp)
1211{
1212 DECLARE_WAITQUEUE (wait, current);
1213
1214 if (atomic_read(&bp->b_pin_count) == 0)
1215 return;
1216
1217 add_wait_queue(&bp->b_waiters, &wait);
1218 for (;;) {
1219 set_current_state(TASK_UNINTERRUPTIBLE);
1220 if (atomic_read(&bp->b_pin_count) == 0)
1221 break;
1222 io_schedule();
1223 }
1224 remove_wait_queue(&bp->b_waiters, &wait);
1225 set_current_state(TASK_RUNNING);
1226}
1227
1228static void
1229xfs_buf_ioerror_alert_ratelimited(
1230 struct xfs_buf *bp)
1231{
1232 static unsigned long lasttime;
1233 static struct xfs_buftarg *lasttarg;
1234
1235 if (bp->b_target != lasttarg ||
1236 time_after(jiffies, (lasttime + 5*HZ))) {
1237 lasttime = jiffies;
1238 xfs_buf_ioerror_alert(bp, __this_address);
1239 }
1240 lasttarg = bp->b_target;
1241}
1242
1243/*
1244 * Account for this latest trip around the retry handler, and decide if
1245 * we've failed enough times to constitute a permanent failure.
1246 */
1247static bool
1248xfs_buf_ioerror_permanent(
1249 struct xfs_buf *bp,
1250 struct xfs_error_cfg *cfg)
1251{
1252 struct xfs_mount *mp = bp->b_mount;
1253
1254 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1255 ++bp->b_retries > cfg->max_retries)
1256 return true;
1257 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1258 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1259 return true;
1260
1261 /* At unmount we may treat errors differently */
1262 if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1263 return true;
1264
1265 return false;
1266}
1267
1268/*
1269 * On a sync write or shutdown we just want to stale the buffer and let the
1270 * caller handle the error in bp->b_error appropriately.
1271 *
1272 * If the write was asynchronous then no one will be looking for the error. If
1273 * this is the first failure of this type, clear the error state and write the
1274 * buffer out again. This means we always retry an async write failure at least
1275 * once, but we also need to set the buffer up to behave correctly now for
1276 * repeated failures.
1277 *
1278 * If we get repeated async write failures, then we take action according to the
1279 * error configuration we have been set up to use.
1280 *
1281 * Returns true if this function took care of error handling and the caller must
1282 * not touch the buffer again. Return false if the caller should proceed with
1283 * normal I/O completion handling.
1284 */
1285static bool
1286xfs_buf_ioend_handle_error(
1287 struct xfs_buf *bp)
1288{
1289 struct xfs_mount *mp = bp->b_mount;
1290 struct xfs_error_cfg *cfg;
1291
1292 /*
1293 * If we've already shutdown the journal because of I/O errors, there's
1294 * no point in giving this a retry.
1295 */
1296 if (xlog_is_shutdown(mp->m_log))
1297 goto out_stale;
1298
1299 xfs_buf_ioerror_alert_ratelimited(bp);
1300
1301 /*
1302 * We're not going to bother about retrying this during recovery.
1303 * One strike!
1304 */
1305 if (bp->b_flags & _XBF_LOGRECOVERY) {
1306 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1307 return false;
1308 }
1309
1310 /*
1311 * Synchronous writes will have callers process the error.
1312 */
1313 if (!(bp->b_flags & XBF_ASYNC))
1314 goto out_stale;
1315
1316 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1317
1318 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1319 if (bp->b_last_error != bp->b_error ||
1320 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1321 bp->b_last_error = bp->b_error;
1322 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1323 !bp->b_first_retry_time)
1324 bp->b_first_retry_time = jiffies;
1325 goto resubmit;
1326 }
1327
1328 /*
1329 * Permanent error - we need to trigger a shutdown if we haven't already
1330 * to indicate that inconsistency will result from this action.
1331 */
1332 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1333 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1334 goto out_stale;
1335 }
1336
1337 /* Still considered a transient error. Caller will schedule retries. */
1338 if (bp->b_flags & _XBF_INODES)
1339 xfs_buf_inode_io_fail(bp);
1340 else if (bp->b_flags & _XBF_DQUOTS)
1341 xfs_buf_dquot_io_fail(bp);
1342 else
1343 ASSERT(list_empty(&bp->b_li_list));
1344 xfs_buf_ioerror(bp, 0);
1345 xfs_buf_relse(bp);
1346 return true;
1347
1348resubmit:
1349 xfs_buf_ioerror(bp, 0);
1350 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1351 xfs_buf_submit(bp);
1352 return true;
1353out_stale:
1354 xfs_buf_stale(bp);
1355 bp->b_flags |= XBF_DONE;
1356 bp->b_flags &= ~XBF_WRITE;
1357 trace_xfs_buf_error_relse(bp, _RET_IP_);
1358 return false;
1359}
1360
1361static void
1362xfs_buf_ioend(
1363 struct xfs_buf *bp)
1364{
1365 trace_xfs_buf_iodone(bp, _RET_IP_);
1366
1367 /*
1368 * Pull in IO completion errors now. We are guaranteed to be running
1369 * single threaded, so we don't need the lock to read b_io_error.
1370 */
1371 if (!bp->b_error && bp->b_io_error)
1372 xfs_buf_ioerror(bp, bp->b_io_error);
1373
1374 if (bp->b_flags & XBF_READ) {
1375 if (!bp->b_error && bp->b_ops)
1376 bp->b_ops->verify_read(bp);
1377 if (!bp->b_error)
1378 bp->b_flags |= XBF_DONE;
1379 } else {
1380 if (!bp->b_error) {
1381 bp->b_flags &= ~XBF_WRITE_FAIL;
1382 bp->b_flags |= XBF_DONE;
1383 }
1384
1385 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1386 return;
1387
1388 /* clear the retry state */
1389 bp->b_last_error = 0;
1390 bp->b_retries = 0;
1391 bp->b_first_retry_time = 0;
1392
1393 /*
1394 * Note that for things like remote attribute buffers, there may
1395 * not be a buffer log item here, so processing the buffer log
1396 * item must remain optional.
1397 */
1398 if (bp->b_log_item)
1399 xfs_buf_item_done(bp);
1400
1401 if (bp->b_flags & _XBF_INODES)
1402 xfs_buf_inode_iodone(bp);
1403 else if (bp->b_flags & _XBF_DQUOTS)
1404 xfs_buf_dquot_iodone(bp);
1405
1406 }
1407
1408 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1409 _XBF_LOGRECOVERY);
1410
1411 if (bp->b_flags & XBF_ASYNC)
1412 xfs_buf_relse(bp);
1413 else
1414 complete(&bp->b_iowait);
1415}
1416
1417static void
1418xfs_buf_ioend_work(
1419 struct work_struct *work)
1420{
1421 struct xfs_buf *bp =
1422 container_of(work, struct xfs_buf, b_ioend_work);
1423
1424 xfs_buf_ioend(bp);
1425}
1426
1427static void
1428xfs_buf_ioend_async(
1429 struct xfs_buf *bp)
1430{
1431 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1432 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1433}
1434
1435void
1436__xfs_buf_ioerror(
1437 struct xfs_buf *bp,
1438 int error,
1439 xfs_failaddr_t failaddr)
1440{
1441 ASSERT(error <= 0 && error >= -1000);
1442 bp->b_error = error;
1443 trace_xfs_buf_ioerror(bp, error, failaddr);
1444}
1445
1446void
1447xfs_buf_ioerror_alert(
1448 struct xfs_buf *bp,
1449 xfs_failaddr_t func)
1450{
1451 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1452 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1453 func, (uint64_t)xfs_buf_daddr(bp),
1454 bp->b_length, -bp->b_error);
1455}
1456
1457/*
1458 * To simulate an I/O failure, the buffer must be locked and held with at least
1459 * three references. The LRU reference is dropped by the stale call. The buf
1460 * item reference is dropped via ioend processing. The third reference is owned
1461 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1462 */
1463void
1464xfs_buf_ioend_fail(
1465 struct xfs_buf *bp)
1466{
1467 bp->b_flags &= ~XBF_DONE;
1468 xfs_buf_stale(bp);
1469 xfs_buf_ioerror(bp, -EIO);
1470 xfs_buf_ioend(bp);
1471}
1472
1473int
1474xfs_bwrite(
1475 struct xfs_buf *bp)
1476{
1477 int error;
1478
1479 ASSERT(xfs_buf_islocked(bp));
1480
1481 bp->b_flags |= XBF_WRITE;
1482 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1483 XBF_DONE);
1484
1485 error = xfs_buf_submit(bp);
1486 if (error)
1487 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1488 return error;
1489}
1490
1491static void
1492xfs_buf_bio_end_io(
1493 struct bio *bio)
1494{
1495 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1496
1497 if (!bio->bi_status &&
1498 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1499 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1500 bio->bi_status = BLK_STS_IOERR;
1501
1502 /*
1503 * don't overwrite existing errors - otherwise we can lose errors on
1504 * buffers that require multiple bios to complete.
1505 */
1506 if (bio->bi_status) {
1507 int error = blk_status_to_errno(bio->bi_status);
1508
1509 cmpxchg(&bp->b_io_error, 0, error);
1510 }
1511
1512 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1513 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1514
1515 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1516 xfs_buf_ioend_async(bp);
1517 bio_put(bio);
1518}
1519
1520static void
1521xfs_buf_ioapply_map(
1522 struct xfs_buf *bp,
1523 int map,
1524 int *buf_offset,
1525 int *count,
1526 blk_opf_t op)
1527{
1528 int page_index;
1529 unsigned int total_nr_pages = bp->b_page_count;
1530 int nr_pages;
1531 struct bio *bio;
1532 sector_t sector = bp->b_maps[map].bm_bn;
1533 int size;
1534 int offset;
1535
1536 /* skip the pages in the buffer before the start offset */
1537 page_index = 0;
1538 offset = *buf_offset;
1539 while (offset >= PAGE_SIZE) {
1540 page_index++;
1541 offset -= PAGE_SIZE;
1542 }
1543
1544 /*
1545 * Limit the IO size to the length of the current vector, and update the
1546 * remaining IO count for the next time around.
1547 */
1548 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1549 *count -= size;
1550 *buf_offset += size;
1551
1552next_chunk:
1553 atomic_inc(&bp->b_io_remaining);
1554 nr_pages = bio_max_segs(total_nr_pages);
1555
1556 bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
1557 bio->bi_iter.bi_sector = sector;
1558 bio->bi_end_io = xfs_buf_bio_end_io;
1559 bio->bi_private = bp;
1560
1561 for (; size && nr_pages; nr_pages--, page_index++) {
1562 int rbytes, nbytes = PAGE_SIZE - offset;
1563
1564 if (nbytes > size)
1565 nbytes = size;
1566
1567 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1568 offset);
1569 if (rbytes < nbytes)
1570 break;
1571
1572 offset = 0;
1573 sector += BTOBB(nbytes);
1574 size -= nbytes;
1575 total_nr_pages--;
1576 }
1577
1578 if (likely(bio->bi_iter.bi_size)) {
1579 if (xfs_buf_is_vmapped(bp)) {
1580 flush_kernel_vmap_range(bp->b_addr,
1581 xfs_buf_vmap_len(bp));
1582 }
1583 submit_bio(bio);
1584 if (size)
1585 goto next_chunk;
1586 } else {
1587 /*
1588 * This is guaranteed not to be the last io reference count
1589 * because the caller (xfs_buf_submit) holds a count itself.
1590 */
1591 atomic_dec(&bp->b_io_remaining);
1592 xfs_buf_ioerror(bp, -EIO);
1593 bio_put(bio);
1594 }
1595
1596}
1597
1598STATIC void
1599_xfs_buf_ioapply(
1600 struct xfs_buf *bp)
1601{
1602 struct blk_plug plug;
1603 blk_opf_t op;
1604 int offset;
1605 int size;
1606 int i;
1607
1608 /*
1609 * Make sure we capture only current IO errors rather than stale errors
1610 * left over from previous use of the buffer (e.g. failed readahead).
1611 */
1612 bp->b_error = 0;
1613
1614 if (bp->b_flags & XBF_WRITE) {
1615 op = REQ_OP_WRITE;
1616
1617 /*
1618 * Run the write verifier callback function if it exists. If
1619 * this function fails it will mark the buffer with an error and
1620 * the IO should not be dispatched.
1621 */
1622 if (bp->b_ops) {
1623 bp->b_ops->verify_write(bp);
1624 if (bp->b_error) {
1625 xfs_force_shutdown(bp->b_mount,
1626 SHUTDOWN_CORRUPT_INCORE);
1627 return;
1628 }
1629 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1630 struct xfs_mount *mp = bp->b_mount;
1631
1632 /*
1633 * non-crc filesystems don't attach verifiers during
1634 * log recovery, so don't warn for such filesystems.
1635 */
1636 if (xfs_has_crc(mp)) {
1637 xfs_warn(mp,
1638 "%s: no buf ops on daddr 0x%llx len %d",
1639 __func__, xfs_buf_daddr(bp),
1640 bp->b_length);
1641 xfs_hex_dump(bp->b_addr,
1642 XFS_CORRUPTION_DUMP_LEN);
1643 dump_stack();
1644 }
1645 }
1646 } else {
1647 op = REQ_OP_READ;
1648 if (bp->b_flags & XBF_READ_AHEAD)
1649 op |= REQ_RAHEAD;
1650 }
1651
1652 /* we only use the buffer cache for meta-data */
1653 op |= REQ_META;
1654
1655 /* in-memory targets are directly mapped, no IO required. */
1656 if (xfs_buftarg_is_mem(bp->b_target)) {
1657 xfs_buf_ioend(bp);
1658 return;
1659 }
1660
1661 /*
1662 * Walk all the vectors issuing IO on them. Set up the initial offset
1663 * into the buffer and the desired IO size before we start -
1664 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1665 * subsequent call.
1666 */
1667 offset = bp->b_offset;
1668 size = BBTOB(bp->b_length);
1669 blk_start_plug(&plug);
1670 for (i = 0; i < bp->b_map_count; i++) {
1671 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1672 if (bp->b_error)
1673 break;
1674 if (size <= 0)
1675 break; /* all done */
1676 }
1677 blk_finish_plug(&plug);
1678}
1679
1680/*
1681 * Wait for I/O completion of a sync buffer and return the I/O error code.
1682 */
1683static int
1684xfs_buf_iowait(
1685 struct xfs_buf *bp)
1686{
1687 ASSERT(!(bp->b_flags & XBF_ASYNC));
1688
1689 trace_xfs_buf_iowait(bp, _RET_IP_);
1690 wait_for_completion(&bp->b_iowait);
1691 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1692
1693 return bp->b_error;
1694}
1695
1696/*
1697 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1698 * the buffer lock ownership and the current reference to the IO. It is not
1699 * safe to reference the buffer after a call to this function unless the caller
1700 * holds an additional reference itself.
1701 */
1702static int
1703__xfs_buf_submit(
1704 struct xfs_buf *bp,
1705 bool wait)
1706{
1707 int error = 0;
1708
1709 trace_xfs_buf_submit(bp, _RET_IP_);
1710
1711 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1712
1713 /*
1714 * On log shutdown we stale and complete the buffer immediately. We can
1715 * be called to read the superblock before the log has been set up, so
1716 * be careful checking the log state.
1717 *
1718 * Checking the mount shutdown state here can result in the log tail
1719 * moving inappropriately on disk as the log may not yet be shut down.
1720 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1721 * and move the tail of the log forwards without having written this
1722 * buffer to disk. This corrupts the log tail state in memory, and
1723 * because the log may not be shut down yet, it can then be propagated
1724 * to disk before the log is shutdown. Hence we check log shutdown
1725 * state here rather than mount state to avoid corrupting the log tail
1726 * on shutdown.
1727 */
1728 if (bp->b_mount->m_log &&
1729 xlog_is_shutdown(bp->b_mount->m_log)) {
1730 xfs_buf_ioend_fail(bp);
1731 return -EIO;
1732 }
1733
1734 /*
1735 * Grab a reference so the buffer does not go away underneath us. For
1736 * async buffers, I/O completion drops the callers reference, which
1737 * could occur before submission returns.
1738 */
1739 xfs_buf_hold(bp);
1740
1741 if (bp->b_flags & XBF_WRITE)
1742 xfs_buf_wait_unpin(bp);
1743
1744 /* clear the internal error state to avoid spurious errors */
1745 bp->b_io_error = 0;
1746
1747 /*
1748 * Set the count to 1 initially, this will stop an I/O completion
1749 * callout which happens before we have started all the I/O from calling
1750 * xfs_buf_ioend too early.
1751 */
1752 atomic_set(&bp->b_io_remaining, 1);
1753 if (bp->b_flags & XBF_ASYNC)
1754 xfs_buf_ioacct_inc(bp);
1755 _xfs_buf_ioapply(bp);
1756
1757 /*
1758 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1759 * reference we took above. If we drop it to zero, run completion so
1760 * that we don't return to the caller with completion still pending.
1761 */
1762 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1763 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1764 xfs_buf_ioend(bp);
1765 else
1766 xfs_buf_ioend_async(bp);
1767 }
1768
1769 if (wait)
1770 error = xfs_buf_iowait(bp);
1771
1772 /*
1773 * Release the hold that keeps the buffer referenced for the entire
1774 * I/O. Note that if the buffer is async, it is not safe to reference
1775 * after this release.
1776 */
1777 xfs_buf_rele(bp);
1778 return error;
1779}
1780
1781void *
1782xfs_buf_offset(
1783 struct xfs_buf *bp,
1784 size_t offset)
1785{
1786 struct page *page;
1787
1788 if (bp->b_addr)
1789 return bp->b_addr + offset;
1790
1791 page = bp->b_pages[offset >> PAGE_SHIFT];
1792 return page_address(page) + (offset & (PAGE_SIZE-1));
1793}
1794
1795void
1796xfs_buf_zero(
1797 struct xfs_buf *bp,
1798 size_t boff,
1799 size_t bsize)
1800{
1801 size_t bend;
1802
1803 bend = boff + bsize;
1804 while (boff < bend) {
1805 struct page *page;
1806 int page_index, page_offset, csize;
1807
1808 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1809 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1810 page = bp->b_pages[page_index];
1811 csize = min_t(size_t, PAGE_SIZE - page_offset,
1812 BBTOB(bp->b_length) - boff);
1813
1814 ASSERT((csize + page_offset) <= PAGE_SIZE);
1815
1816 memset(page_address(page) + page_offset, 0, csize);
1817
1818 boff += csize;
1819 }
1820}
1821
1822/*
1823 * Log a message about and stale a buffer that a caller has decided is corrupt.
1824 *
1825 * This function should be called for the kinds of metadata corruption that
1826 * cannot be detect from a verifier, such as incorrect inter-block relationship
1827 * data. Do /not/ call this function from a verifier function.
1828 *
1829 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1830 * be marked stale, but b_error will not be set. The caller is responsible for
1831 * releasing the buffer or fixing it.
1832 */
1833void
1834__xfs_buf_mark_corrupt(
1835 struct xfs_buf *bp,
1836 xfs_failaddr_t fa)
1837{
1838 ASSERT(bp->b_flags & XBF_DONE);
1839
1840 xfs_buf_corruption_error(bp, fa);
1841 xfs_buf_stale(bp);
1842}
1843
1844/*
1845 * Handling of buffer targets (buftargs).
1846 */
1847
1848/*
1849 * Wait for any bufs with callbacks that have been submitted but have not yet
1850 * returned. These buffers will have an elevated hold count, so wait on those
1851 * while freeing all the buffers only held by the LRU.
1852 */
1853static enum lru_status
1854xfs_buftarg_drain_rele(
1855 struct list_head *item,
1856 struct list_lru_one *lru,
1857 spinlock_t *lru_lock,
1858 void *arg)
1859
1860{
1861 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1862 struct list_head *dispose = arg;
1863
1864 if (atomic_read(&bp->b_hold) > 1) {
1865 /* need to wait, so skip it this pass */
1866 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1867 return LRU_SKIP;
1868 }
1869 if (!spin_trylock(&bp->b_lock))
1870 return LRU_SKIP;
1871
1872 /*
1873 * clear the LRU reference count so the buffer doesn't get
1874 * ignored in xfs_buf_rele().
1875 */
1876 atomic_set(&bp->b_lru_ref, 0);
1877 bp->b_state |= XFS_BSTATE_DISPOSE;
1878 list_lru_isolate_move(lru, item, dispose);
1879 spin_unlock(&bp->b_lock);
1880 return LRU_REMOVED;
1881}
1882
1883/*
1884 * Wait for outstanding I/O on the buftarg to complete.
1885 */
1886void
1887xfs_buftarg_wait(
1888 struct xfs_buftarg *btp)
1889{
1890 /*
1891 * First wait on the buftarg I/O count for all in-flight buffers to be
1892 * released. This is critical as new buffers do not make the LRU until
1893 * they are released.
1894 *
1895 * Next, flush the buffer workqueue to ensure all completion processing
1896 * has finished. Just waiting on buffer locks is not sufficient for
1897 * async IO as the reference count held over IO is not released until
1898 * after the buffer lock is dropped. Hence we need to ensure here that
1899 * all reference counts have been dropped before we start walking the
1900 * LRU list.
1901 */
1902 while (percpu_counter_sum(&btp->bt_io_count))
1903 delay(100);
1904 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1905}
1906
1907void
1908xfs_buftarg_drain(
1909 struct xfs_buftarg *btp)
1910{
1911 LIST_HEAD(dispose);
1912 int loop = 0;
1913 bool write_fail = false;
1914
1915 xfs_buftarg_wait(btp);
1916
1917 /* loop until there is nothing left on the lru list. */
1918 while (list_lru_count(&btp->bt_lru)) {
1919 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1920 &dispose, LONG_MAX);
1921
1922 while (!list_empty(&dispose)) {
1923 struct xfs_buf *bp;
1924 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1925 list_del_init(&bp->b_lru);
1926 if (bp->b_flags & XBF_WRITE_FAIL) {
1927 write_fail = true;
1928 xfs_buf_alert_ratelimited(bp,
1929 "XFS: Corruption Alert",
1930"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1931 (long long)xfs_buf_daddr(bp));
1932 }
1933 xfs_buf_rele(bp);
1934 }
1935 if (loop++ != 0)
1936 delay(100);
1937 }
1938
1939 /*
1940 * If one or more failed buffers were freed, that means dirty metadata
1941 * was thrown away. This should only ever happen after I/O completion
1942 * handling has elevated I/O error(s) to permanent failures and shuts
1943 * down the journal.
1944 */
1945 if (write_fail) {
1946 ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1947 xfs_alert(btp->bt_mount,
1948 "Please run xfs_repair to determine the extent of the problem.");
1949 }
1950}
1951
1952static enum lru_status
1953xfs_buftarg_isolate(
1954 struct list_head *item,
1955 struct list_lru_one *lru,
1956 spinlock_t *lru_lock,
1957 void *arg)
1958{
1959 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1960 struct list_head *dispose = arg;
1961
1962 /*
1963 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1964 * If we fail to get the lock, just skip it.
1965 */
1966 if (!spin_trylock(&bp->b_lock))
1967 return LRU_SKIP;
1968 /*
1969 * Decrement the b_lru_ref count unless the value is already
1970 * zero. If the value is already zero, we need to reclaim the
1971 * buffer, otherwise it gets another trip through the LRU.
1972 */
1973 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1974 spin_unlock(&bp->b_lock);
1975 return LRU_ROTATE;
1976 }
1977
1978 bp->b_state |= XFS_BSTATE_DISPOSE;
1979 list_lru_isolate_move(lru, item, dispose);
1980 spin_unlock(&bp->b_lock);
1981 return LRU_REMOVED;
1982}
1983
1984static unsigned long
1985xfs_buftarg_shrink_scan(
1986 struct shrinker *shrink,
1987 struct shrink_control *sc)
1988{
1989 struct xfs_buftarg *btp = shrink->private_data;
1990 LIST_HEAD(dispose);
1991 unsigned long freed;
1992
1993 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1994 xfs_buftarg_isolate, &dispose);
1995
1996 while (!list_empty(&dispose)) {
1997 struct xfs_buf *bp;
1998 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1999 list_del_init(&bp->b_lru);
2000 xfs_buf_rele(bp);
2001 }
2002
2003 return freed;
2004}
2005
2006static unsigned long
2007xfs_buftarg_shrink_count(
2008 struct shrinker *shrink,
2009 struct shrink_control *sc)
2010{
2011 struct xfs_buftarg *btp = shrink->private_data;
2012 return list_lru_shrink_count(&btp->bt_lru, sc);
2013}
2014
2015void
2016xfs_destroy_buftarg(
2017 struct xfs_buftarg *btp)
2018{
2019 shrinker_free(btp->bt_shrinker);
2020 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
2021 percpu_counter_destroy(&btp->bt_io_count);
2022 list_lru_destroy(&btp->bt_lru);
2023}
2024
2025void
2026xfs_free_buftarg(
2027 struct xfs_buftarg *btp)
2028{
2029 xfs_destroy_buftarg(btp);
2030 fs_put_dax(btp->bt_daxdev, btp->bt_mount);
2031 /* the main block device is closed by kill_block_super */
2032 if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev)
2033 bdev_fput(btp->bt_bdev_file);
2034 kfree(btp);
2035}
2036
2037int
2038xfs_setsize_buftarg(
2039 struct xfs_buftarg *btp,
2040 unsigned int sectorsize)
2041{
2042 /* Set up metadata sector size info */
2043 btp->bt_meta_sectorsize = sectorsize;
2044 btp->bt_meta_sectormask = sectorsize - 1;
2045
2046 if (set_blocksize(btp->bt_bdev, sectorsize)) {
2047 xfs_warn(btp->bt_mount,
2048 "Cannot set_blocksize to %u on device %pg",
2049 sectorsize, btp->bt_bdev);
2050 return -EINVAL;
2051 }
2052
2053 return 0;
2054}
2055
2056int
2057xfs_init_buftarg(
2058 struct xfs_buftarg *btp,
2059 size_t logical_sectorsize,
2060 const char *descr)
2061{
2062 /* Set up device logical sector size mask */
2063 btp->bt_logical_sectorsize = logical_sectorsize;
2064 btp->bt_logical_sectormask = logical_sectorsize - 1;
2065
2066 /*
2067 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2068 * per 30 seconds so as to not spam logs too much on repeated errors.
2069 */
2070 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2071 DEFAULT_RATELIMIT_BURST);
2072
2073 if (list_lru_init(&btp->bt_lru))
2074 return -ENOMEM;
2075 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
2076 goto out_destroy_lru;
2077
2078 btp->bt_shrinker =
2079 shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s", descr);
2080 if (!btp->bt_shrinker)
2081 goto out_destroy_io_count;
2082 btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count;
2083 btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan;
2084 btp->bt_shrinker->private_data = btp;
2085 shrinker_register(btp->bt_shrinker);
2086 return 0;
2087
2088out_destroy_io_count:
2089 percpu_counter_destroy(&btp->bt_io_count);
2090out_destroy_lru:
2091 list_lru_destroy(&btp->bt_lru);
2092 return -ENOMEM;
2093}
2094
2095struct xfs_buftarg *
2096xfs_alloc_buftarg(
2097 struct xfs_mount *mp,
2098 struct file *bdev_file)
2099{
2100 struct xfs_buftarg *btp;
2101 const struct dax_holder_operations *ops = NULL;
2102
2103#if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
2104 ops = &xfs_dax_holder_operations;
2105#endif
2106 btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL);
2107
2108 btp->bt_mount = mp;
2109 btp->bt_bdev_file = bdev_file;
2110 btp->bt_bdev = file_bdev(bdev_file);
2111 btp->bt_dev = btp->bt_bdev->bd_dev;
2112 btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off,
2113 mp, ops);
2114
2115 /*
2116 * When allocating the buftargs we have not yet read the super block and
2117 * thus don't know the file system sector size yet.
2118 */
2119 if (xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev)))
2120 goto error_free;
2121 if (xfs_init_buftarg(btp, bdev_logical_block_size(btp->bt_bdev),
2122 mp->m_super->s_id))
2123 goto error_free;
2124
2125 return btp;
2126
2127error_free:
2128 kfree(btp);
2129 return NULL;
2130}
2131
2132static inline void
2133xfs_buf_list_del(
2134 struct xfs_buf *bp)
2135{
2136 list_del_init(&bp->b_list);
2137 wake_up_var(&bp->b_list);
2138}
2139
2140/*
2141 * Cancel a delayed write list.
2142 *
2143 * Remove each buffer from the list, clear the delwri queue flag and drop the
2144 * associated buffer reference.
2145 */
2146void
2147xfs_buf_delwri_cancel(
2148 struct list_head *list)
2149{
2150 struct xfs_buf *bp;
2151
2152 while (!list_empty(list)) {
2153 bp = list_first_entry(list, struct xfs_buf, b_list);
2154
2155 xfs_buf_lock(bp);
2156 bp->b_flags &= ~_XBF_DELWRI_Q;
2157 xfs_buf_list_del(bp);
2158 xfs_buf_relse(bp);
2159 }
2160}
2161
2162/*
2163 * Add a buffer to the delayed write list.
2164 *
2165 * This queues a buffer for writeout if it hasn't already been. Note that
2166 * neither this routine nor the buffer list submission functions perform
2167 * any internal synchronization. It is expected that the lists are thread-local
2168 * to the callers.
2169 *
2170 * Returns true if we queued up the buffer, or false if it already had
2171 * been on the buffer list.
2172 */
2173bool
2174xfs_buf_delwri_queue(
2175 struct xfs_buf *bp,
2176 struct list_head *list)
2177{
2178 ASSERT(xfs_buf_islocked(bp));
2179 ASSERT(!(bp->b_flags & XBF_READ));
2180
2181 /*
2182 * If the buffer is already marked delwri it already is queued up
2183 * by someone else for imediate writeout. Just ignore it in that
2184 * case.
2185 */
2186 if (bp->b_flags & _XBF_DELWRI_Q) {
2187 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2188 return false;
2189 }
2190
2191 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2192
2193 /*
2194 * If a buffer gets written out synchronously or marked stale while it
2195 * is on a delwri list we lazily remove it. To do this, the other party
2196 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2197 * It remains referenced and on the list. In a rare corner case it
2198 * might get readded to a delwri list after the synchronous writeout, in
2199 * which case we need just need to re-add the flag here.
2200 */
2201 bp->b_flags |= _XBF_DELWRI_Q;
2202 if (list_empty(&bp->b_list)) {
2203 atomic_inc(&bp->b_hold);
2204 list_add_tail(&bp->b_list, list);
2205 }
2206
2207 return true;
2208}
2209
2210/*
2211 * Queue a buffer to this delwri list as part of a data integrity operation.
2212 * If the buffer is on any other delwri list, we'll wait for that to clear
2213 * so that the caller can submit the buffer for IO and wait for the result.
2214 * Callers must ensure the buffer is not already on the list.
2215 */
2216void
2217xfs_buf_delwri_queue_here(
2218 struct xfs_buf *bp,
2219 struct list_head *buffer_list)
2220{
2221 /*
2222 * We need this buffer to end up on the /caller's/ delwri list, not any
2223 * old list. This can happen if the buffer is marked stale (which
2224 * clears DELWRI_Q) after the AIL queues the buffer to its list but
2225 * before the AIL has a chance to submit the list.
2226 */
2227 while (!list_empty(&bp->b_list)) {
2228 xfs_buf_unlock(bp);
2229 wait_var_event(&bp->b_list, list_empty(&bp->b_list));
2230 xfs_buf_lock(bp);
2231 }
2232
2233 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
2234
2235 xfs_buf_delwri_queue(bp, buffer_list);
2236}
2237
2238/*
2239 * Compare function is more complex than it needs to be because
2240 * the return value is only 32 bits and we are doing comparisons
2241 * on 64 bit values
2242 */
2243static int
2244xfs_buf_cmp(
2245 void *priv,
2246 const struct list_head *a,
2247 const struct list_head *b)
2248{
2249 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2250 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2251 xfs_daddr_t diff;
2252
2253 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2254 if (diff < 0)
2255 return -1;
2256 if (diff > 0)
2257 return 1;
2258 return 0;
2259}
2260
2261/*
2262 * Submit buffers for write. If wait_list is specified, the buffers are
2263 * submitted using sync I/O and placed on the wait list such that the caller can
2264 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2265 * at I/O completion time. In either case, buffers remain locked until I/O
2266 * completes and the buffer is released from the queue.
2267 */
2268static int
2269xfs_buf_delwri_submit_buffers(
2270 struct list_head *buffer_list,
2271 struct list_head *wait_list)
2272{
2273 struct xfs_buf *bp, *n;
2274 int pinned = 0;
2275 struct blk_plug plug;
2276
2277 list_sort(NULL, buffer_list, xfs_buf_cmp);
2278
2279 blk_start_plug(&plug);
2280 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2281 if (!wait_list) {
2282 if (!xfs_buf_trylock(bp))
2283 continue;
2284 if (xfs_buf_ispinned(bp)) {
2285 xfs_buf_unlock(bp);
2286 pinned++;
2287 continue;
2288 }
2289 } else {
2290 xfs_buf_lock(bp);
2291 }
2292
2293 /*
2294 * Someone else might have written the buffer synchronously or
2295 * marked it stale in the meantime. In that case only the
2296 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2297 * reference and remove it from the list here.
2298 */
2299 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2300 xfs_buf_list_del(bp);
2301 xfs_buf_relse(bp);
2302 continue;
2303 }
2304
2305 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2306
2307 /*
2308 * If we have a wait list, each buffer (and associated delwri
2309 * queue reference) transfers to it and is submitted
2310 * synchronously. Otherwise, drop the buffer from the delwri
2311 * queue and submit async.
2312 */
2313 bp->b_flags &= ~_XBF_DELWRI_Q;
2314 bp->b_flags |= XBF_WRITE;
2315 if (wait_list) {
2316 bp->b_flags &= ~XBF_ASYNC;
2317 list_move_tail(&bp->b_list, wait_list);
2318 } else {
2319 bp->b_flags |= XBF_ASYNC;
2320 xfs_buf_list_del(bp);
2321 }
2322 __xfs_buf_submit(bp, false);
2323 }
2324 blk_finish_plug(&plug);
2325
2326 return pinned;
2327}
2328
2329/*
2330 * Write out a buffer list asynchronously.
2331 *
2332 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2333 * out and not wait for I/O completion on any of the buffers. This interface
2334 * is only safely useable for callers that can track I/O completion by higher
2335 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2336 * function.
2337 *
2338 * Note: this function will skip buffers it would block on, and in doing so
2339 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2340 * it is up to the caller to ensure that the buffer list is fully submitted or
2341 * cancelled appropriately when they are finished with the list. Failure to
2342 * cancel or resubmit the list until it is empty will result in leaked buffers
2343 * at unmount time.
2344 */
2345int
2346xfs_buf_delwri_submit_nowait(
2347 struct list_head *buffer_list)
2348{
2349 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2350}
2351
2352/*
2353 * Write out a buffer list synchronously.
2354 *
2355 * This will take the @buffer_list, write all buffers out and wait for I/O
2356 * completion on all of the buffers. @buffer_list is consumed by the function,
2357 * so callers must have some other way of tracking buffers if they require such
2358 * functionality.
2359 */
2360int
2361xfs_buf_delwri_submit(
2362 struct list_head *buffer_list)
2363{
2364 LIST_HEAD (wait_list);
2365 int error = 0, error2;
2366 struct xfs_buf *bp;
2367
2368 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2369
2370 /* Wait for IO to complete. */
2371 while (!list_empty(&wait_list)) {
2372 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2373
2374 xfs_buf_list_del(bp);
2375
2376 /*
2377 * Wait on the locked buffer, check for errors and unlock and
2378 * release the delwri queue reference.
2379 */
2380 error2 = xfs_buf_iowait(bp);
2381 xfs_buf_relse(bp);
2382 if (!error)
2383 error = error2;
2384 }
2385
2386 return error;
2387}
2388
2389/*
2390 * Push a single buffer on a delwri queue.
2391 *
2392 * The purpose of this function is to submit a single buffer of a delwri queue
2393 * and return with the buffer still on the original queue. The waiting delwri
2394 * buffer submission infrastructure guarantees transfer of the delwri queue
2395 * buffer reference to a temporary wait list. We reuse this infrastructure to
2396 * transfer the buffer back to the original queue.
2397 *
2398 * Note the buffer transitions from the queued state, to the submitted and wait
2399 * listed state and back to the queued state during this call. The buffer
2400 * locking and queue management logic between _delwri_pushbuf() and
2401 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2402 * before returning.
2403 */
2404int
2405xfs_buf_delwri_pushbuf(
2406 struct xfs_buf *bp,
2407 struct list_head *buffer_list)
2408{
2409 LIST_HEAD (submit_list);
2410 int error;
2411
2412 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2413
2414 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2415
2416 /*
2417 * Isolate the buffer to a new local list so we can submit it for I/O
2418 * independently from the rest of the original list.
2419 */
2420 xfs_buf_lock(bp);
2421 list_move(&bp->b_list, &submit_list);
2422 xfs_buf_unlock(bp);
2423
2424 /*
2425 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2426 * the buffer on the wait list with the original reference. Rather than
2427 * bounce the buffer from a local wait list back to the original list
2428 * after I/O completion, reuse the original list as the wait list.
2429 */
2430 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2431
2432 /*
2433 * The buffer is now locked, under I/O and wait listed on the original
2434 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2435 * return with the buffer unlocked and on the original queue.
2436 */
2437 error = xfs_buf_iowait(bp);
2438 bp->b_flags |= _XBF_DELWRI_Q;
2439 xfs_buf_unlock(bp);
2440
2441 return error;
2442}
2443
2444void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2445{
2446 /*
2447 * Set the lru reference count to 0 based on the error injection tag.
2448 * This allows userspace to disrupt buffer caching for debug/testing
2449 * purposes.
2450 */
2451 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2452 lru_ref = 0;
2453
2454 atomic_set(&bp->b_lru_ref, lru_ref);
2455}
2456
2457/*
2458 * Verify an on-disk magic value against the magic value specified in the
2459 * verifier structure. The verifier magic is in disk byte order so the caller is
2460 * expected to pass the value directly from disk.
2461 */
2462bool
2463xfs_verify_magic(
2464 struct xfs_buf *bp,
2465 __be32 dmagic)
2466{
2467 struct xfs_mount *mp = bp->b_mount;
2468 int idx;
2469
2470 idx = xfs_has_crc(mp);
2471 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2472 return false;
2473 return dmagic == bp->b_ops->magic[idx];
2474}
2475/*
2476 * Verify an on-disk magic value against the magic value specified in the
2477 * verifier structure. The verifier magic is in disk byte order so the caller is
2478 * expected to pass the value directly from disk.
2479 */
2480bool
2481xfs_verify_magic16(
2482 struct xfs_buf *bp,
2483 __be16 dmagic)
2484{
2485 struct xfs_mount *mp = bp->b_mount;
2486 int idx;
2487
2488 idx = xfs_has_crc(mp);
2489 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2490 return false;
2491 return dmagic == bp->b_ops->magic16[idx];
2492}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include <linux/backing-dev.h>
8#include <linux/dax.h>
9
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
14#include "xfs_mount.h"
15#include "xfs_trace.h"
16#include "xfs_log.h"
17#include "xfs_log_recover.h"
18#include "xfs_log_priv.h"
19#include "xfs_trans.h"
20#include "xfs_buf_item.h"
21#include "xfs_errortag.h"
22#include "xfs_error.h"
23#include "xfs_ag.h"
24
25struct kmem_cache *xfs_buf_cache;
26
27/*
28 * Locking orders
29 *
30 * xfs_buf_ioacct_inc:
31 * xfs_buf_ioacct_dec:
32 * b_sema (caller holds)
33 * b_lock
34 *
35 * xfs_buf_stale:
36 * b_sema (caller holds)
37 * b_lock
38 * lru_lock
39 *
40 * xfs_buf_rele:
41 * b_lock
42 * pag_buf_lock
43 * lru_lock
44 *
45 * xfs_buftarg_drain_rele
46 * lru_lock
47 * b_lock (trylock due to inversion)
48 *
49 * xfs_buftarg_isolate
50 * lru_lock
51 * b_lock (trylock due to inversion)
52 */
53
54static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
55
56static inline int
57xfs_buf_submit(
58 struct xfs_buf *bp)
59{
60 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
61}
62
63static inline int
64xfs_buf_is_vmapped(
65 struct xfs_buf *bp)
66{
67 /*
68 * Return true if the buffer is vmapped.
69 *
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
73 */
74 return bp->b_addr && bp->b_page_count > 1;
75}
76
77static inline int
78xfs_buf_vmap_len(
79 struct xfs_buf *bp)
80{
81 return (bp->b_page_count * PAGE_SIZE);
82}
83
84/*
85 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
86 * this buffer. The count is incremented once per buffer (per hold cycle)
87 * because the corresponding decrement is deferred to buffer release. Buffers
88 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
89 * tracking adds unnecessary overhead. This is used for sychronization purposes
90 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
91 * in-flight buffers.
92 *
93 * Buffers that are never released (e.g., superblock, iclog buffers) must set
94 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
95 * never reaches zero and unmount hangs indefinitely.
96 */
97static inline void
98xfs_buf_ioacct_inc(
99 struct xfs_buf *bp)
100{
101 if (bp->b_flags & XBF_NO_IOACCT)
102 return;
103
104 ASSERT(bp->b_flags & XBF_ASYNC);
105 spin_lock(&bp->b_lock);
106 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
107 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
108 percpu_counter_inc(&bp->b_target->bt_io_count);
109 }
110 spin_unlock(&bp->b_lock);
111}
112
113/*
114 * Clear the in-flight state on a buffer about to be released to the LRU or
115 * freed and unaccount from the buftarg.
116 */
117static inline void
118__xfs_buf_ioacct_dec(
119 struct xfs_buf *bp)
120{
121 lockdep_assert_held(&bp->b_lock);
122
123 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
124 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
125 percpu_counter_dec(&bp->b_target->bt_io_count);
126 }
127}
128
129static inline void
130xfs_buf_ioacct_dec(
131 struct xfs_buf *bp)
132{
133 spin_lock(&bp->b_lock);
134 __xfs_buf_ioacct_dec(bp);
135 spin_unlock(&bp->b_lock);
136}
137
138/*
139 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
140 * b_lru_ref count so that the buffer is freed immediately when the buffer
141 * reference count falls to zero. If the buffer is already on the LRU, we need
142 * to remove the reference that LRU holds on the buffer.
143 *
144 * This prevents build-up of stale buffers on the LRU.
145 */
146void
147xfs_buf_stale(
148 struct xfs_buf *bp)
149{
150 ASSERT(xfs_buf_islocked(bp));
151
152 bp->b_flags |= XBF_STALE;
153
154 /*
155 * Clear the delwri status so that a delwri queue walker will not
156 * flush this buffer to disk now that it is stale. The delwri queue has
157 * a reference to the buffer, so this is safe to do.
158 */
159 bp->b_flags &= ~_XBF_DELWRI_Q;
160
161 /*
162 * Once the buffer is marked stale and unlocked, a subsequent lookup
163 * could reset b_flags. There is no guarantee that the buffer is
164 * unaccounted (released to LRU) before that occurs. Drop in-flight
165 * status now to preserve accounting consistency.
166 */
167 spin_lock(&bp->b_lock);
168 __xfs_buf_ioacct_dec(bp);
169
170 atomic_set(&bp->b_lru_ref, 0);
171 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
172 (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru)))
173 atomic_dec(&bp->b_hold);
174
175 ASSERT(atomic_read(&bp->b_hold) >= 1);
176 spin_unlock(&bp->b_lock);
177}
178
179static int
180xfs_buf_get_maps(
181 struct xfs_buf *bp,
182 int map_count)
183{
184 ASSERT(bp->b_maps == NULL);
185 bp->b_map_count = map_count;
186
187 if (map_count == 1) {
188 bp->b_maps = &bp->__b_map;
189 return 0;
190 }
191
192 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
193 KM_NOFS);
194 if (!bp->b_maps)
195 return -ENOMEM;
196 return 0;
197}
198
199/*
200 * Frees b_pages if it was allocated.
201 */
202static void
203xfs_buf_free_maps(
204 struct xfs_buf *bp)
205{
206 if (bp->b_maps != &bp->__b_map) {
207 kmem_free(bp->b_maps);
208 bp->b_maps = NULL;
209 }
210}
211
212static int
213_xfs_buf_alloc(
214 struct xfs_buftarg *target,
215 struct xfs_buf_map *map,
216 int nmaps,
217 xfs_buf_flags_t flags,
218 struct xfs_buf **bpp)
219{
220 struct xfs_buf *bp;
221 int error;
222 int i;
223
224 *bpp = NULL;
225 bp = kmem_cache_zalloc(xfs_buf_cache, GFP_NOFS | __GFP_NOFAIL);
226
227 /*
228 * We don't want certain flags to appear in b_flags unless they are
229 * specifically set by later operations on the buffer.
230 */
231 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
232
233 atomic_set(&bp->b_hold, 1);
234 atomic_set(&bp->b_lru_ref, 1);
235 init_completion(&bp->b_iowait);
236 INIT_LIST_HEAD(&bp->b_lru);
237 INIT_LIST_HEAD(&bp->b_list);
238 INIT_LIST_HEAD(&bp->b_li_list);
239 sema_init(&bp->b_sema, 0); /* held, no waiters */
240 spin_lock_init(&bp->b_lock);
241 bp->b_target = target;
242 bp->b_mount = target->bt_mount;
243 bp->b_flags = flags;
244
245 /*
246 * Set length and io_length to the same value initially.
247 * I/O routines should use io_length, which will be the same in
248 * most cases but may be reset (e.g. XFS recovery).
249 */
250 error = xfs_buf_get_maps(bp, nmaps);
251 if (error) {
252 kmem_cache_free(xfs_buf_cache, bp);
253 return error;
254 }
255
256 bp->b_rhash_key = map[0].bm_bn;
257 bp->b_length = 0;
258 for (i = 0; i < nmaps; i++) {
259 bp->b_maps[i].bm_bn = map[i].bm_bn;
260 bp->b_maps[i].bm_len = map[i].bm_len;
261 bp->b_length += map[i].bm_len;
262 }
263
264 atomic_set(&bp->b_pin_count, 0);
265 init_waitqueue_head(&bp->b_waiters);
266
267 XFS_STATS_INC(bp->b_mount, xb_create);
268 trace_xfs_buf_init(bp, _RET_IP_);
269
270 *bpp = bp;
271 return 0;
272}
273
274static void
275xfs_buf_free_pages(
276 struct xfs_buf *bp)
277{
278 uint i;
279
280 ASSERT(bp->b_flags & _XBF_PAGES);
281
282 if (xfs_buf_is_vmapped(bp))
283 vm_unmap_ram(bp->b_addr, bp->b_page_count);
284
285 for (i = 0; i < bp->b_page_count; i++) {
286 if (bp->b_pages[i])
287 __free_page(bp->b_pages[i]);
288 }
289 mm_account_reclaimed_pages(bp->b_page_count);
290
291 if (bp->b_pages != bp->b_page_array)
292 kmem_free(bp->b_pages);
293 bp->b_pages = NULL;
294 bp->b_flags &= ~_XBF_PAGES;
295}
296
297static void
298xfs_buf_free_callback(
299 struct callback_head *cb)
300{
301 struct xfs_buf *bp = container_of(cb, struct xfs_buf, b_rcu);
302
303 xfs_buf_free_maps(bp);
304 kmem_cache_free(xfs_buf_cache, bp);
305}
306
307static void
308xfs_buf_free(
309 struct xfs_buf *bp)
310{
311 trace_xfs_buf_free(bp, _RET_IP_);
312
313 ASSERT(list_empty(&bp->b_lru));
314
315 if (bp->b_flags & _XBF_PAGES)
316 xfs_buf_free_pages(bp);
317 else if (bp->b_flags & _XBF_KMEM)
318 kmem_free(bp->b_addr);
319
320 call_rcu(&bp->b_rcu, xfs_buf_free_callback);
321}
322
323static int
324xfs_buf_alloc_kmem(
325 struct xfs_buf *bp,
326 xfs_buf_flags_t flags)
327{
328 xfs_km_flags_t kmflag_mask = KM_NOFS;
329 size_t size = BBTOB(bp->b_length);
330
331 /* Assure zeroed buffer for non-read cases. */
332 if (!(flags & XBF_READ))
333 kmflag_mask |= KM_ZERO;
334
335 bp->b_addr = kmem_alloc(size, kmflag_mask);
336 if (!bp->b_addr)
337 return -ENOMEM;
338
339 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
340 ((unsigned long)bp->b_addr & PAGE_MASK)) {
341 /* b_addr spans two pages - use alloc_page instead */
342 kmem_free(bp->b_addr);
343 bp->b_addr = NULL;
344 return -ENOMEM;
345 }
346 bp->b_offset = offset_in_page(bp->b_addr);
347 bp->b_pages = bp->b_page_array;
348 bp->b_pages[0] = kmem_to_page(bp->b_addr);
349 bp->b_page_count = 1;
350 bp->b_flags |= _XBF_KMEM;
351 return 0;
352}
353
354static int
355xfs_buf_alloc_pages(
356 struct xfs_buf *bp,
357 xfs_buf_flags_t flags)
358{
359 gfp_t gfp_mask = __GFP_NOWARN;
360 long filled = 0;
361
362 if (flags & XBF_READ_AHEAD)
363 gfp_mask |= __GFP_NORETRY;
364 else
365 gfp_mask |= GFP_NOFS;
366
367 /* Make sure that we have a page list */
368 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
369 if (bp->b_page_count <= XB_PAGES) {
370 bp->b_pages = bp->b_page_array;
371 } else {
372 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
373 gfp_mask);
374 if (!bp->b_pages)
375 return -ENOMEM;
376 }
377 bp->b_flags |= _XBF_PAGES;
378
379 /* Assure zeroed buffer for non-read cases. */
380 if (!(flags & XBF_READ))
381 gfp_mask |= __GFP_ZERO;
382
383 /*
384 * Bulk filling of pages can take multiple calls. Not filling the entire
385 * array is not an allocation failure, so don't back off if we get at
386 * least one extra page.
387 */
388 for (;;) {
389 long last = filled;
390
391 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
392 bp->b_pages);
393 if (filled == bp->b_page_count) {
394 XFS_STATS_INC(bp->b_mount, xb_page_found);
395 break;
396 }
397
398 if (filled != last)
399 continue;
400
401 if (flags & XBF_READ_AHEAD) {
402 xfs_buf_free_pages(bp);
403 return -ENOMEM;
404 }
405
406 XFS_STATS_INC(bp->b_mount, xb_page_retries);
407 memalloc_retry_wait(gfp_mask);
408 }
409 return 0;
410}
411
412/*
413 * Map buffer into kernel address-space if necessary.
414 */
415STATIC int
416_xfs_buf_map_pages(
417 struct xfs_buf *bp,
418 xfs_buf_flags_t flags)
419{
420 ASSERT(bp->b_flags & _XBF_PAGES);
421 if (bp->b_page_count == 1) {
422 /* A single page buffer is always mappable */
423 bp->b_addr = page_address(bp->b_pages[0]);
424 } else if (flags & XBF_UNMAPPED) {
425 bp->b_addr = NULL;
426 } else {
427 int retried = 0;
428 unsigned nofs_flag;
429
430 /*
431 * vm_map_ram() will allocate auxiliary structures (e.g.
432 * pagetables) with GFP_KERNEL, yet we are likely to be under
433 * GFP_NOFS context here. Hence we need to tell memory reclaim
434 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
435 * memory reclaim re-entering the filesystem here and
436 * potentially deadlocking.
437 */
438 nofs_flag = memalloc_nofs_save();
439 do {
440 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
441 -1);
442 if (bp->b_addr)
443 break;
444 vm_unmap_aliases();
445 } while (retried++ <= 1);
446 memalloc_nofs_restore(nofs_flag);
447
448 if (!bp->b_addr)
449 return -ENOMEM;
450 }
451
452 return 0;
453}
454
455/*
456 * Finding and Reading Buffers
457 */
458static int
459_xfs_buf_obj_cmp(
460 struct rhashtable_compare_arg *arg,
461 const void *obj)
462{
463 const struct xfs_buf_map *map = arg->key;
464 const struct xfs_buf *bp = obj;
465
466 /*
467 * The key hashing in the lookup path depends on the key being the
468 * first element of the compare_arg, make sure to assert this.
469 */
470 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
471
472 if (bp->b_rhash_key != map->bm_bn)
473 return 1;
474
475 if (unlikely(bp->b_length != map->bm_len)) {
476 /*
477 * found a block number match. If the range doesn't
478 * match, the only way this is allowed is if the buffer
479 * in the cache is stale and the transaction that made
480 * it stale has not yet committed. i.e. we are
481 * reallocating a busy extent. Skip this buffer and
482 * continue searching for an exact match.
483 */
484 if (!(map->bm_flags & XBM_LIVESCAN))
485 ASSERT(bp->b_flags & XBF_STALE);
486 return 1;
487 }
488 return 0;
489}
490
491static const struct rhashtable_params xfs_buf_hash_params = {
492 .min_size = 32, /* empty AGs have minimal footprint */
493 .nelem_hint = 16,
494 .key_len = sizeof(xfs_daddr_t),
495 .key_offset = offsetof(struct xfs_buf, b_rhash_key),
496 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
497 .automatic_shrinking = true,
498 .obj_cmpfn = _xfs_buf_obj_cmp,
499};
500
501int
502xfs_buf_hash_init(
503 struct xfs_perag *pag)
504{
505 spin_lock_init(&pag->pag_buf_lock);
506 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
507}
508
509void
510xfs_buf_hash_destroy(
511 struct xfs_perag *pag)
512{
513 rhashtable_destroy(&pag->pag_buf_hash);
514}
515
516static int
517xfs_buf_map_verify(
518 struct xfs_buftarg *btp,
519 struct xfs_buf_map *map)
520{
521 xfs_daddr_t eofs;
522
523 /* Check for IOs smaller than the sector size / not sector aligned */
524 ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
525 ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
526
527 /*
528 * Corrupted block numbers can get through to here, unfortunately, so we
529 * have to check that the buffer falls within the filesystem bounds.
530 */
531 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
532 if (map->bm_bn < 0 || map->bm_bn >= eofs) {
533 xfs_alert(btp->bt_mount,
534 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
535 __func__, map->bm_bn, eofs);
536 WARN_ON(1);
537 return -EFSCORRUPTED;
538 }
539 return 0;
540}
541
542static int
543xfs_buf_find_lock(
544 struct xfs_buf *bp,
545 xfs_buf_flags_t flags)
546{
547 if (flags & XBF_TRYLOCK) {
548 if (!xfs_buf_trylock(bp)) {
549 XFS_STATS_INC(bp->b_mount, xb_busy_locked);
550 return -EAGAIN;
551 }
552 } else {
553 xfs_buf_lock(bp);
554 XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
555 }
556
557 /*
558 * if the buffer is stale, clear all the external state associated with
559 * it. We need to keep flags such as how we allocated the buffer memory
560 * intact here.
561 */
562 if (bp->b_flags & XBF_STALE) {
563 if (flags & XBF_LIVESCAN) {
564 xfs_buf_unlock(bp);
565 return -ENOENT;
566 }
567 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
568 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
569 bp->b_ops = NULL;
570 }
571 return 0;
572}
573
574static inline int
575xfs_buf_lookup(
576 struct xfs_perag *pag,
577 struct xfs_buf_map *map,
578 xfs_buf_flags_t flags,
579 struct xfs_buf **bpp)
580{
581 struct xfs_buf *bp;
582 int error;
583
584 rcu_read_lock();
585 bp = rhashtable_lookup(&pag->pag_buf_hash, map, xfs_buf_hash_params);
586 if (!bp || !atomic_inc_not_zero(&bp->b_hold)) {
587 rcu_read_unlock();
588 return -ENOENT;
589 }
590 rcu_read_unlock();
591
592 error = xfs_buf_find_lock(bp, flags);
593 if (error) {
594 xfs_buf_rele(bp);
595 return error;
596 }
597
598 trace_xfs_buf_find(bp, flags, _RET_IP_);
599 *bpp = bp;
600 return 0;
601}
602
603/*
604 * Insert the new_bp into the hash table. This consumes the perag reference
605 * taken for the lookup regardless of the result of the insert.
606 */
607static int
608xfs_buf_find_insert(
609 struct xfs_buftarg *btp,
610 struct xfs_perag *pag,
611 struct xfs_buf_map *cmap,
612 struct xfs_buf_map *map,
613 int nmaps,
614 xfs_buf_flags_t flags,
615 struct xfs_buf **bpp)
616{
617 struct xfs_buf *new_bp;
618 struct xfs_buf *bp;
619 int error;
620
621 error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
622 if (error)
623 goto out_drop_pag;
624
625 /*
626 * For buffers that fit entirely within a single page, first attempt to
627 * allocate the memory from the heap to minimise memory usage. If we
628 * can't get heap memory for these small buffers, we fall back to using
629 * the page allocator.
630 */
631 if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
632 xfs_buf_alloc_kmem(new_bp, flags) < 0) {
633 error = xfs_buf_alloc_pages(new_bp, flags);
634 if (error)
635 goto out_free_buf;
636 }
637
638 spin_lock(&pag->pag_buf_lock);
639 bp = rhashtable_lookup_get_insert_fast(&pag->pag_buf_hash,
640 &new_bp->b_rhash_head, xfs_buf_hash_params);
641 if (IS_ERR(bp)) {
642 error = PTR_ERR(bp);
643 spin_unlock(&pag->pag_buf_lock);
644 goto out_free_buf;
645 }
646 if (bp) {
647 /* found an existing buffer */
648 atomic_inc(&bp->b_hold);
649 spin_unlock(&pag->pag_buf_lock);
650 error = xfs_buf_find_lock(bp, flags);
651 if (error)
652 xfs_buf_rele(bp);
653 else
654 *bpp = bp;
655 goto out_free_buf;
656 }
657
658 /* The new buffer keeps the perag reference until it is freed. */
659 new_bp->b_pag = pag;
660 spin_unlock(&pag->pag_buf_lock);
661 *bpp = new_bp;
662 return 0;
663
664out_free_buf:
665 xfs_buf_free(new_bp);
666out_drop_pag:
667 xfs_perag_put(pag);
668 return error;
669}
670
671/*
672 * Assembles a buffer covering the specified range. The code is optimised for
673 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
674 * more hits than misses.
675 */
676int
677xfs_buf_get_map(
678 struct xfs_buftarg *btp,
679 struct xfs_buf_map *map,
680 int nmaps,
681 xfs_buf_flags_t flags,
682 struct xfs_buf **bpp)
683{
684 struct xfs_perag *pag;
685 struct xfs_buf *bp = NULL;
686 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
687 int error;
688 int i;
689
690 if (flags & XBF_LIVESCAN)
691 cmap.bm_flags |= XBM_LIVESCAN;
692 for (i = 0; i < nmaps; i++)
693 cmap.bm_len += map[i].bm_len;
694
695 error = xfs_buf_map_verify(btp, &cmap);
696 if (error)
697 return error;
698
699 pag = xfs_perag_get(btp->bt_mount,
700 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
701
702 error = xfs_buf_lookup(pag, &cmap, flags, &bp);
703 if (error && error != -ENOENT)
704 goto out_put_perag;
705
706 /* cache hits always outnumber misses by at least 10:1 */
707 if (unlikely(!bp)) {
708 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
709
710 if (flags & XBF_INCORE)
711 goto out_put_perag;
712
713 /* xfs_buf_find_insert() consumes the perag reference. */
714 error = xfs_buf_find_insert(btp, pag, &cmap, map, nmaps,
715 flags, &bp);
716 if (error)
717 return error;
718 } else {
719 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
720 xfs_perag_put(pag);
721 }
722
723 /* We do not hold a perag reference anymore. */
724 if (!bp->b_addr) {
725 error = _xfs_buf_map_pages(bp, flags);
726 if (unlikely(error)) {
727 xfs_warn_ratelimited(btp->bt_mount,
728 "%s: failed to map %u pages", __func__,
729 bp->b_page_count);
730 xfs_buf_relse(bp);
731 return error;
732 }
733 }
734
735 /*
736 * Clear b_error if this is a lookup from a caller that doesn't expect
737 * valid data to be found in the buffer.
738 */
739 if (!(flags & XBF_READ))
740 xfs_buf_ioerror(bp, 0);
741
742 XFS_STATS_INC(btp->bt_mount, xb_get);
743 trace_xfs_buf_get(bp, flags, _RET_IP_);
744 *bpp = bp;
745 return 0;
746
747out_put_perag:
748 xfs_perag_put(pag);
749 return error;
750}
751
752int
753_xfs_buf_read(
754 struct xfs_buf *bp,
755 xfs_buf_flags_t flags)
756{
757 ASSERT(!(flags & XBF_WRITE));
758 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
759
760 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
761 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
762
763 return xfs_buf_submit(bp);
764}
765
766/*
767 * Reverify a buffer found in cache without an attached ->b_ops.
768 *
769 * If the caller passed an ops structure and the buffer doesn't have ops
770 * assigned, set the ops and use it to verify the contents. If verification
771 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
772 * already in XBF_DONE state on entry.
773 *
774 * Under normal operations, every in-core buffer is verified on read I/O
775 * completion. There are two scenarios that can lead to in-core buffers without
776 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
777 * filesystem, though these buffers are purged at the end of recovery. The
778 * other is online repair, which intentionally reads with a NULL buffer ops to
779 * run several verifiers across an in-core buffer in order to establish buffer
780 * type. If repair can't establish that, the buffer will be left in memory
781 * with NULL buffer ops.
782 */
783int
784xfs_buf_reverify(
785 struct xfs_buf *bp,
786 const struct xfs_buf_ops *ops)
787{
788 ASSERT(bp->b_flags & XBF_DONE);
789 ASSERT(bp->b_error == 0);
790
791 if (!ops || bp->b_ops)
792 return 0;
793
794 bp->b_ops = ops;
795 bp->b_ops->verify_read(bp);
796 if (bp->b_error)
797 bp->b_flags &= ~XBF_DONE;
798 return bp->b_error;
799}
800
801int
802xfs_buf_read_map(
803 struct xfs_buftarg *target,
804 struct xfs_buf_map *map,
805 int nmaps,
806 xfs_buf_flags_t flags,
807 struct xfs_buf **bpp,
808 const struct xfs_buf_ops *ops,
809 xfs_failaddr_t fa)
810{
811 struct xfs_buf *bp;
812 int error;
813
814 flags |= XBF_READ;
815 *bpp = NULL;
816
817 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
818 if (error)
819 return error;
820
821 trace_xfs_buf_read(bp, flags, _RET_IP_);
822
823 if (!(bp->b_flags & XBF_DONE)) {
824 /* Initiate the buffer read and wait. */
825 XFS_STATS_INC(target->bt_mount, xb_get_read);
826 bp->b_ops = ops;
827 error = _xfs_buf_read(bp, flags);
828
829 /* Readahead iodone already dropped the buffer, so exit. */
830 if (flags & XBF_ASYNC)
831 return 0;
832 } else {
833 /* Buffer already read; all we need to do is check it. */
834 error = xfs_buf_reverify(bp, ops);
835
836 /* Readahead already finished; drop the buffer and exit. */
837 if (flags & XBF_ASYNC) {
838 xfs_buf_relse(bp);
839 return 0;
840 }
841
842 /* We do not want read in the flags */
843 bp->b_flags &= ~XBF_READ;
844 ASSERT(bp->b_ops != NULL || ops == NULL);
845 }
846
847 /*
848 * If we've had a read error, then the contents of the buffer are
849 * invalid and should not be used. To ensure that a followup read tries
850 * to pull the buffer from disk again, we clear the XBF_DONE flag and
851 * mark the buffer stale. This ensures that anyone who has a current
852 * reference to the buffer will interpret it's contents correctly and
853 * future cache lookups will also treat it as an empty, uninitialised
854 * buffer.
855 */
856 if (error) {
857 /*
858 * Check against log shutdown for error reporting because
859 * metadata writeback may require a read first and we need to
860 * report errors in metadata writeback until the log is shut
861 * down. High level transaction read functions already check
862 * against mount shutdown, anyway, so we only need to be
863 * concerned about low level IO interactions here.
864 */
865 if (!xlog_is_shutdown(target->bt_mount->m_log))
866 xfs_buf_ioerror_alert(bp, fa);
867
868 bp->b_flags &= ~XBF_DONE;
869 xfs_buf_stale(bp);
870 xfs_buf_relse(bp);
871
872 /* bad CRC means corrupted metadata */
873 if (error == -EFSBADCRC)
874 error = -EFSCORRUPTED;
875 return error;
876 }
877
878 *bpp = bp;
879 return 0;
880}
881
882/*
883 * If we are not low on memory then do the readahead in a deadlock
884 * safe manner.
885 */
886void
887xfs_buf_readahead_map(
888 struct xfs_buftarg *target,
889 struct xfs_buf_map *map,
890 int nmaps,
891 const struct xfs_buf_ops *ops)
892{
893 struct xfs_buf *bp;
894
895 xfs_buf_read_map(target, map, nmaps,
896 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
897 __this_address);
898}
899
900/*
901 * Read an uncached buffer from disk. Allocates and returns a locked
902 * buffer containing the disk contents or nothing. Uncached buffers always have
903 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
904 * is cached or uncached during fault diagnosis.
905 */
906int
907xfs_buf_read_uncached(
908 struct xfs_buftarg *target,
909 xfs_daddr_t daddr,
910 size_t numblks,
911 xfs_buf_flags_t flags,
912 struct xfs_buf **bpp,
913 const struct xfs_buf_ops *ops)
914{
915 struct xfs_buf *bp;
916 int error;
917
918 *bpp = NULL;
919
920 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
921 if (error)
922 return error;
923
924 /* set up the buffer for a read IO */
925 ASSERT(bp->b_map_count == 1);
926 bp->b_rhash_key = XFS_BUF_DADDR_NULL;
927 bp->b_maps[0].bm_bn = daddr;
928 bp->b_flags |= XBF_READ;
929 bp->b_ops = ops;
930
931 xfs_buf_submit(bp);
932 if (bp->b_error) {
933 error = bp->b_error;
934 xfs_buf_relse(bp);
935 return error;
936 }
937
938 *bpp = bp;
939 return 0;
940}
941
942int
943xfs_buf_get_uncached(
944 struct xfs_buftarg *target,
945 size_t numblks,
946 xfs_buf_flags_t flags,
947 struct xfs_buf **bpp)
948{
949 int error;
950 struct xfs_buf *bp;
951 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
952
953 *bpp = NULL;
954
955 /* flags might contain irrelevant bits, pass only what we care about */
956 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
957 if (error)
958 return error;
959
960 error = xfs_buf_alloc_pages(bp, flags);
961 if (error)
962 goto fail_free_buf;
963
964 error = _xfs_buf_map_pages(bp, 0);
965 if (unlikely(error)) {
966 xfs_warn(target->bt_mount,
967 "%s: failed to map pages", __func__);
968 goto fail_free_buf;
969 }
970
971 trace_xfs_buf_get_uncached(bp, _RET_IP_);
972 *bpp = bp;
973 return 0;
974
975fail_free_buf:
976 xfs_buf_free(bp);
977 return error;
978}
979
980/*
981 * Increment reference count on buffer, to hold the buffer concurrently
982 * with another thread which may release (free) the buffer asynchronously.
983 * Must hold the buffer already to call this function.
984 */
985void
986xfs_buf_hold(
987 struct xfs_buf *bp)
988{
989 trace_xfs_buf_hold(bp, _RET_IP_);
990 atomic_inc(&bp->b_hold);
991}
992
993/*
994 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
995 * placed on LRU or freed (depending on b_lru_ref).
996 */
997void
998xfs_buf_rele(
999 struct xfs_buf *bp)
1000{
1001 struct xfs_perag *pag = bp->b_pag;
1002 bool release;
1003 bool freebuf = false;
1004
1005 trace_xfs_buf_rele(bp, _RET_IP_);
1006
1007 if (!pag) {
1008 ASSERT(list_empty(&bp->b_lru));
1009 if (atomic_dec_and_test(&bp->b_hold)) {
1010 xfs_buf_ioacct_dec(bp);
1011 xfs_buf_free(bp);
1012 }
1013 return;
1014 }
1015
1016 ASSERT(atomic_read(&bp->b_hold) > 0);
1017
1018 /*
1019 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1020 * calls. The pag_buf_lock being taken on the last reference only
1021 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1022 * to last reference we drop here is not serialised against the last
1023 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1024 * first, the last "release" reference can win the race to the lock and
1025 * free the buffer before the second-to-last reference is processed,
1026 * leading to a use-after-free scenario.
1027 */
1028 spin_lock(&bp->b_lock);
1029 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1030 if (!release) {
1031 /*
1032 * Drop the in-flight state if the buffer is already on the LRU
1033 * and it holds the only reference. This is racy because we
1034 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1035 * ensures the decrement occurs only once per-buf.
1036 */
1037 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1038 __xfs_buf_ioacct_dec(bp);
1039 goto out_unlock;
1040 }
1041
1042 /* the last reference has been dropped ... */
1043 __xfs_buf_ioacct_dec(bp);
1044 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1045 /*
1046 * If the buffer is added to the LRU take a new reference to the
1047 * buffer for the LRU and clear the (now stale) dispose list
1048 * state flag
1049 */
1050 if (list_lru_add_obj(&bp->b_target->bt_lru, &bp->b_lru)) {
1051 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1052 atomic_inc(&bp->b_hold);
1053 }
1054 spin_unlock(&pag->pag_buf_lock);
1055 } else {
1056 /*
1057 * most of the time buffers will already be removed from the
1058 * LRU, so optimise that case by checking for the
1059 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1060 * was on was the disposal list
1061 */
1062 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1063 list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru);
1064 } else {
1065 ASSERT(list_empty(&bp->b_lru));
1066 }
1067
1068 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1069 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1070 xfs_buf_hash_params);
1071 spin_unlock(&pag->pag_buf_lock);
1072 xfs_perag_put(pag);
1073 freebuf = true;
1074 }
1075
1076out_unlock:
1077 spin_unlock(&bp->b_lock);
1078
1079 if (freebuf)
1080 xfs_buf_free(bp);
1081}
1082
1083
1084/*
1085 * Lock a buffer object, if it is not already locked.
1086 *
1087 * If we come across a stale, pinned, locked buffer, we know that we are
1088 * being asked to lock a buffer that has been reallocated. Because it is
1089 * pinned, we know that the log has not been pushed to disk and hence it
1090 * will still be locked. Rather than continuing to have trylock attempts
1091 * fail until someone else pushes the log, push it ourselves before
1092 * returning. This means that the xfsaild will not get stuck trying
1093 * to push on stale inode buffers.
1094 */
1095int
1096xfs_buf_trylock(
1097 struct xfs_buf *bp)
1098{
1099 int locked;
1100
1101 locked = down_trylock(&bp->b_sema) == 0;
1102 if (locked)
1103 trace_xfs_buf_trylock(bp, _RET_IP_);
1104 else
1105 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1106 return locked;
1107}
1108
1109/*
1110 * Lock a buffer object.
1111 *
1112 * If we come across a stale, pinned, locked buffer, we know that we
1113 * are being asked to lock a buffer that has been reallocated. Because
1114 * it is pinned, we know that the log has not been pushed to disk and
1115 * hence it will still be locked. Rather than sleeping until someone
1116 * else pushes the log, push it ourselves before trying to get the lock.
1117 */
1118void
1119xfs_buf_lock(
1120 struct xfs_buf *bp)
1121{
1122 trace_xfs_buf_lock(bp, _RET_IP_);
1123
1124 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1125 xfs_log_force(bp->b_mount, 0);
1126 down(&bp->b_sema);
1127
1128 trace_xfs_buf_lock_done(bp, _RET_IP_);
1129}
1130
1131void
1132xfs_buf_unlock(
1133 struct xfs_buf *bp)
1134{
1135 ASSERT(xfs_buf_islocked(bp));
1136
1137 up(&bp->b_sema);
1138 trace_xfs_buf_unlock(bp, _RET_IP_);
1139}
1140
1141STATIC void
1142xfs_buf_wait_unpin(
1143 struct xfs_buf *bp)
1144{
1145 DECLARE_WAITQUEUE (wait, current);
1146
1147 if (atomic_read(&bp->b_pin_count) == 0)
1148 return;
1149
1150 add_wait_queue(&bp->b_waiters, &wait);
1151 for (;;) {
1152 set_current_state(TASK_UNINTERRUPTIBLE);
1153 if (atomic_read(&bp->b_pin_count) == 0)
1154 break;
1155 io_schedule();
1156 }
1157 remove_wait_queue(&bp->b_waiters, &wait);
1158 set_current_state(TASK_RUNNING);
1159}
1160
1161static void
1162xfs_buf_ioerror_alert_ratelimited(
1163 struct xfs_buf *bp)
1164{
1165 static unsigned long lasttime;
1166 static struct xfs_buftarg *lasttarg;
1167
1168 if (bp->b_target != lasttarg ||
1169 time_after(jiffies, (lasttime + 5*HZ))) {
1170 lasttime = jiffies;
1171 xfs_buf_ioerror_alert(bp, __this_address);
1172 }
1173 lasttarg = bp->b_target;
1174}
1175
1176/*
1177 * Account for this latest trip around the retry handler, and decide if
1178 * we've failed enough times to constitute a permanent failure.
1179 */
1180static bool
1181xfs_buf_ioerror_permanent(
1182 struct xfs_buf *bp,
1183 struct xfs_error_cfg *cfg)
1184{
1185 struct xfs_mount *mp = bp->b_mount;
1186
1187 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1188 ++bp->b_retries > cfg->max_retries)
1189 return true;
1190 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1191 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1192 return true;
1193
1194 /* At unmount we may treat errors differently */
1195 if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1196 return true;
1197
1198 return false;
1199}
1200
1201/*
1202 * On a sync write or shutdown we just want to stale the buffer and let the
1203 * caller handle the error in bp->b_error appropriately.
1204 *
1205 * If the write was asynchronous then no one will be looking for the error. If
1206 * this is the first failure of this type, clear the error state and write the
1207 * buffer out again. This means we always retry an async write failure at least
1208 * once, but we also need to set the buffer up to behave correctly now for
1209 * repeated failures.
1210 *
1211 * If we get repeated async write failures, then we take action according to the
1212 * error configuration we have been set up to use.
1213 *
1214 * Returns true if this function took care of error handling and the caller must
1215 * not touch the buffer again. Return false if the caller should proceed with
1216 * normal I/O completion handling.
1217 */
1218static bool
1219xfs_buf_ioend_handle_error(
1220 struct xfs_buf *bp)
1221{
1222 struct xfs_mount *mp = bp->b_mount;
1223 struct xfs_error_cfg *cfg;
1224
1225 /*
1226 * If we've already shutdown the journal because of I/O errors, there's
1227 * no point in giving this a retry.
1228 */
1229 if (xlog_is_shutdown(mp->m_log))
1230 goto out_stale;
1231
1232 xfs_buf_ioerror_alert_ratelimited(bp);
1233
1234 /*
1235 * We're not going to bother about retrying this during recovery.
1236 * One strike!
1237 */
1238 if (bp->b_flags & _XBF_LOGRECOVERY) {
1239 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1240 return false;
1241 }
1242
1243 /*
1244 * Synchronous writes will have callers process the error.
1245 */
1246 if (!(bp->b_flags & XBF_ASYNC))
1247 goto out_stale;
1248
1249 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1250
1251 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1252 if (bp->b_last_error != bp->b_error ||
1253 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1254 bp->b_last_error = bp->b_error;
1255 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1256 !bp->b_first_retry_time)
1257 bp->b_first_retry_time = jiffies;
1258 goto resubmit;
1259 }
1260
1261 /*
1262 * Permanent error - we need to trigger a shutdown if we haven't already
1263 * to indicate that inconsistency will result from this action.
1264 */
1265 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1266 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1267 goto out_stale;
1268 }
1269
1270 /* Still considered a transient error. Caller will schedule retries. */
1271 if (bp->b_flags & _XBF_INODES)
1272 xfs_buf_inode_io_fail(bp);
1273 else if (bp->b_flags & _XBF_DQUOTS)
1274 xfs_buf_dquot_io_fail(bp);
1275 else
1276 ASSERT(list_empty(&bp->b_li_list));
1277 xfs_buf_ioerror(bp, 0);
1278 xfs_buf_relse(bp);
1279 return true;
1280
1281resubmit:
1282 xfs_buf_ioerror(bp, 0);
1283 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1284 xfs_buf_submit(bp);
1285 return true;
1286out_stale:
1287 xfs_buf_stale(bp);
1288 bp->b_flags |= XBF_DONE;
1289 bp->b_flags &= ~XBF_WRITE;
1290 trace_xfs_buf_error_relse(bp, _RET_IP_);
1291 return false;
1292}
1293
1294static void
1295xfs_buf_ioend(
1296 struct xfs_buf *bp)
1297{
1298 trace_xfs_buf_iodone(bp, _RET_IP_);
1299
1300 /*
1301 * Pull in IO completion errors now. We are guaranteed to be running
1302 * single threaded, so we don't need the lock to read b_io_error.
1303 */
1304 if (!bp->b_error && bp->b_io_error)
1305 xfs_buf_ioerror(bp, bp->b_io_error);
1306
1307 if (bp->b_flags & XBF_READ) {
1308 if (!bp->b_error && bp->b_ops)
1309 bp->b_ops->verify_read(bp);
1310 if (!bp->b_error)
1311 bp->b_flags |= XBF_DONE;
1312 } else {
1313 if (!bp->b_error) {
1314 bp->b_flags &= ~XBF_WRITE_FAIL;
1315 bp->b_flags |= XBF_DONE;
1316 }
1317
1318 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1319 return;
1320
1321 /* clear the retry state */
1322 bp->b_last_error = 0;
1323 bp->b_retries = 0;
1324 bp->b_first_retry_time = 0;
1325
1326 /*
1327 * Note that for things like remote attribute buffers, there may
1328 * not be a buffer log item here, so processing the buffer log
1329 * item must remain optional.
1330 */
1331 if (bp->b_log_item)
1332 xfs_buf_item_done(bp);
1333
1334 if (bp->b_flags & _XBF_INODES)
1335 xfs_buf_inode_iodone(bp);
1336 else if (bp->b_flags & _XBF_DQUOTS)
1337 xfs_buf_dquot_iodone(bp);
1338
1339 }
1340
1341 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1342 _XBF_LOGRECOVERY);
1343
1344 if (bp->b_flags & XBF_ASYNC)
1345 xfs_buf_relse(bp);
1346 else
1347 complete(&bp->b_iowait);
1348}
1349
1350static void
1351xfs_buf_ioend_work(
1352 struct work_struct *work)
1353{
1354 struct xfs_buf *bp =
1355 container_of(work, struct xfs_buf, b_ioend_work);
1356
1357 xfs_buf_ioend(bp);
1358}
1359
1360static void
1361xfs_buf_ioend_async(
1362 struct xfs_buf *bp)
1363{
1364 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1365 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1366}
1367
1368void
1369__xfs_buf_ioerror(
1370 struct xfs_buf *bp,
1371 int error,
1372 xfs_failaddr_t failaddr)
1373{
1374 ASSERT(error <= 0 && error >= -1000);
1375 bp->b_error = error;
1376 trace_xfs_buf_ioerror(bp, error, failaddr);
1377}
1378
1379void
1380xfs_buf_ioerror_alert(
1381 struct xfs_buf *bp,
1382 xfs_failaddr_t func)
1383{
1384 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1385 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1386 func, (uint64_t)xfs_buf_daddr(bp),
1387 bp->b_length, -bp->b_error);
1388}
1389
1390/*
1391 * To simulate an I/O failure, the buffer must be locked and held with at least
1392 * three references. The LRU reference is dropped by the stale call. The buf
1393 * item reference is dropped via ioend processing. The third reference is owned
1394 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1395 */
1396void
1397xfs_buf_ioend_fail(
1398 struct xfs_buf *bp)
1399{
1400 bp->b_flags &= ~XBF_DONE;
1401 xfs_buf_stale(bp);
1402 xfs_buf_ioerror(bp, -EIO);
1403 xfs_buf_ioend(bp);
1404}
1405
1406int
1407xfs_bwrite(
1408 struct xfs_buf *bp)
1409{
1410 int error;
1411
1412 ASSERT(xfs_buf_islocked(bp));
1413
1414 bp->b_flags |= XBF_WRITE;
1415 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1416 XBF_DONE);
1417
1418 error = xfs_buf_submit(bp);
1419 if (error)
1420 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1421 return error;
1422}
1423
1424static void
1425xfs_buf_bio_end_io(
1426 struct bio *bio)
1427{
1428 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1429
1430 if (!bio->bi_status &&
1431 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1432 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1433 bio->bi_status = BLK_STS_IOERR;
1434
1435 /*
1436 * don't overwrite existing errors - otherwise we can lose errors on
1437 * buffers that require multiple bios to complete.
1438 */
1439 if (bio->bi_status) {
1440 int error = blk_status_to_errno(bio->bi_status);
1441
1442 cmpxchg(&bp->b_io_error, 0, error);
1443 }
1444
1445 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1446 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1447
1448 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1449 xfs_buf_ioend_async(bp);
1450 bio_put(bio);
1451}
1452
1453static void
1454xfs_buf_ioapply_map(
1455 struct xfs_buf *bp,
1456 int map,
1457 int *buf_offset,
1458 int *count,
1459 blk_opf_t op)
1460{
1461 int page_index;
1462 unsigned int total_nr_pages = bp->b_page_count;
1463 int nr_pages;
1464 struct bio *bio;
1465 sector_t sector = bp->b_maps[map].bm_bn;
1466 int size;
1467 int offset;
1468
1469 /* skip the pages in the buffer before the start offset */
1470 page_index = 0;
1471 offset = *buf_offset;
1472 while (offset >= PAGE_SIZE) {
1473 page_index++;
1474 offset -= PAGE_SIZE;
1475 }
1476
1477 /*
1478 * Limit the IO size to the length of the current vector, and update the
1479 * remaining IO count for the next time around.
1480 */
1481 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1482 *count -= size;
1483 *buf_offset += size;
1484
1485next_chunk:
1486 atomic_inc(&bp->b_io_remaining);
1487 nr_pages = bio_max_segs(total_nr_pages);
1488
1489 bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
1490 bio->bi_iter.bi_sector = sector;
1491 bio->bi_end_io = xfs_buf_bio_end_io;
1492 bio->bi_private = bp;
1493
1494 for (; size && nr_pages; nr_pages--, page_index++) {
1495 int rbytes, nbytes = PAGE_SIZE - offset;
1496
1497 if (nbytes > size)
1498 nbytes = size;
1499
1500 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1501 offset);
1502 if (rbytes < nbytes)
1503 break;
1504
1505 offset = 0;
1506 sector += BTOBB(nbytes);
1507 size -= nbytes;
1508 total_nr_pages--;
1509 }
1510
1511 if (likely(bio->bi_iter.bi_size)) {
1512 if (xfs_buf_is_vmapped(bp)) {
1513 flush_kernel_vmap_range(bp->b_addr,
1514 xfs_buf_vmap_len(bp));
1515 }
1516 submit_bio(bio);
1517 if (size)
1518 goto next_chunk;
1519 } else {
1520 /*
1521 * This is guaranteed not to be the last io reference count
1522 * because the caller (xfs_buf_submit) holds a count itself.
1523 */
1524 atomic_dec(&bp->b_io_remaining);
1525 xfs_buf_ioerror(bp, -EIO);
1526 bio_put(bio);
1527 }
1528
1529}
1530
1531STATIC void
1532_xfs_buf_ioapply(
1533 struct xfs_buf *bp)
1534{
1535 struct blk_plug plug;
1536 blk_opf_t op;
1537 int offset;
1538 int size;
1539 int i;
1540
1541 /*
1542 * Make sure we capture only current IO errors rather than stale errors
1543 * left over from previous use of the buffer (e.g. failed readahead).
1544 */
1545 bp->b_error = 0;
1546
1547 if (bp->b_flags & XBF_WRITE) {
1548 op = REQ_OP_WRITE;
1549
1550 /*
1551 * Run the write verifier callback function if it exists. If
1552 * this function fails it will mark the buffer with an error and
1553 * the IO should not be dispatched.
1554 */
1555 if (bp->b_ops) {
1556 bp->b_ops->verify_write(bp);
1557 if (bp->b_error) {
1558 xfs_force_shutdown(bp->b_mount,
1559 SHUTDOWN_CORRUPT_INCORE);
1560 return;
1561 }
1562 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1563 struct xfs_mount *mp = bp->b_mount;
1564
1565 /*
1566 * non-crc filesystems don't attach verifiers during
1567 * log recovery, so don't warn for such filesystems.
1568 */
1569 if (xfs_has_crc(mp)) {
1570 xfs_warn(mp,
1571 "%s: no buf ops on daddr 0x%llx len %d",
1572 __func__, xfs_buf_daddr(bp),
1573 bp->b_length);
1574 xfs_hex_dump(bp->b_addr,
1575 XFS_CORRUPTION_DUMP_LEN);
1576 dump_stack();
1577 }
1578 }
1579 } else {
1580 op = REQ_OP_READ;
1581 if (bp->b_flags & XBF_READ_AHEAD)
1582 op |= REQ_RAHEAD;
1583 }
1584
1585 /* we only use the buffer cache for meta-data */
1586 op |= REQ_META;
1587
1588 /*
1589 * Walk all the vectors issuing IO on them. Set up the initial offset
1590 * into the buffer and the desired IO size before we start -
1591 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1592 * subsequent call.
1593 */
1594 offset = bp->b_offset;
1595 size = BBTOB(bp->b_length);
1596 blk_start_plug(&plug);
1597 for (i = 0; i < bp->b_map_count; i++) {
1598 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1599 if (bp->b_error)
1600 break;
1601 if (size <= 0)
1602 break; /* all done */
1603 }
1604 blk_finish_plug(&plug);
1605}
1606
1607/*
1608 * Wait for I/O completion of a sync buffer and return the I/O error code.
1609 */
1610static int
1611xfs_buf_iowait(
1612 struct xfs_buf *bp)
1613{
1614 ASSERT(!(bp->b_flags & XBF_ASYNC));
1615
1616 trace_xfs_buf_iowait(bp, _RET_IP_);
1617 wait_for_completion(&bp->b_iowait);
1618 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1619
1620 return bp->b_error;
1621}
1622
1623/*
1624 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1625 * the buffer lock ownership and the current reference to the IO. It is not
1626 * safe to reference the buffer after a call to this function unless the caller
1627 * holds an additional reference itself.
1628 */
1629static int
1630__xfs_buf_submit(
1631 struct xfs_buf *bp,
1632 bool wait)
1633{
1634 int error = 0;
1635
1636 trace_xfs_buf_submit(bp, _RET_IP_);
1637
1638 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1639
1640 /*
1641 * On log shutdown we stale and complete the buffer immediately. We can
1642 * be called to read the superblock before the log has been set up, so
1643 * be careful checking the log state.
1644 *
1645 * Checking the mount shutdown state here can result in the log tail
1646 * moving inappropriately on disk as the log may not yet be shut down.
1647 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1648 * and move the tail of the log forwards without having written this
1649 * buffer to disk. This corrupts the log tail state in memory, and
1650 * because the log may not be shut down yet, it can then be propagated
1651 * to disk before the log is shutdown. Hence we check log shutdown
1652 * state here rather than mount state to avoid corrupting the log tail
1653 * on shutdown.
1654 */
1655 if (bp->b_mount->m_log &&
1656 xlog_is_shutdown(bp->b_mount->m_log)) {
1657 xfs_buf_ioend_fail(bp);
1658 return -EIO;
1659 }
1660
1661 /*
1662 * Grab a reference so the buffer does not go away underneath us. For
1663 * async buffers, I/O completion drops the callers reference, which
1664 * could occur before submission returns.
1665 */
1666 xfs_buf_hold(bp);
1667
1668 if (bp->b_flags & XBF_WRITE)
1669 xfs_buf_wait_unpin(bp);
1670
1671 /* clear the internal error state to avoid spurious errors */
1672 bp->b_io_error = 0;
1673
1674 /*
1675 * Set the count to 1 initially, this will stop an I/O completion
1676 * callout which happens before we have started all the I/O from calling
1677 * xfs_buf_ioend too early.
1678 */
1679 atomic_set(&bp->b_io_remaining, 1);
1680 if (bp->b_flags & XBF_ASYNC)
1681 xfs_buf_ioacct_inc(bp);
1682 _xfs_buf_ioapply(bp);
1683
1684 /*
1685 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1686 * reference we took above. If we drop it to zero, run completion so
1687 * that we don't return to the caller with completion still pending.
1688 */
1689 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1690 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1691 xfs_buf_ioend(bp);
1692 else
1693 xfs_buf_ioend_async(bp);
1694 }
1695
1696 if (wait)
1697 error = xfs_buf_iowait(bp);
1698
1699 /*
1700 * Release the hold that keeps the buffer referenced for the entire
1701 * I/O. Note that if the buffer is async, it is not safe to reference
1702 * after this release.
1703 */
1704 xfs_buf_rele(bp);
1705 return error;
1706}
1707
1708void *
1709xfs_buf_offset(
1710 struct xfs_buf *bp,
1711 size_t offset)
1712{
1713 struct page *page;
1714
1715 if (bp->b_addr)
1716 return bp->b_addr + offset;
1717
1718 page = bp->b_pages[offset >> PAGE_SHIFT];
1719 return page_address(page) + (offset & (PAGE_SIZE-1));
1720}
1721
1722void
1723xfs_buf_zero(
1724 struct xfs_buf *bp,
1725 size_t boff,
1726 size_t bsize)
1727{
1728 size_t bend;
1729
1730 bend = boff + bsize;
1731 while (boff < bend) {
1732 struct page *page;
1733 int page_index, page_offset, csize;
1734
1735 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1736 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1737 page = bp->b_pages[page_index];
1738 csize = min_t(size_t, PAGE_SIZE - page_offset,
1739 BBTOB(bp->b_length) - boff);
1740
1741 ASSERT((csize + page_offset) <= PAGE_SIZE);
1742
1743 memset(page_address(page) + page_offset, 0, csize);
1744
1745 boff += csize;
1746 }
1747}
1748
1749/*
1750 * Log a message about and stale a buffer that a caller has decided is corrupt.
1751 *
1752 * This function should be called for the kinds of metadata corruption that
1753 * cannot be detect from a verifier, such as incorrect inter-block relationship
1754 * data. Do /not/ call this function from a verifier function.
1755 *
1756 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1757 * be marked stale, but b_error will not be set. The caller is responsible for
1758 * releasing the buffer or fixing it.
1759 */
1760void
1761__xfs_buf_mark_corrupt(
1762 struct xfs_buf *bp,
1763 xfs_failaddr_t fa)
1764{
1765 ASSERT(bp->b_flags & XBF_DONE);
1766
1767 xfs_buf_corruption_error(bp, fa);
1768 xfs_buf_stale(bp);
1769}
1770
1771/*
1772 * Handling of buffer targets (buftargs).
1773 */
1774
1775/*
1776 * Wait for any bufs with callbacks that have been submitted but have not yet
1777 * returned. These buffers will have an elevated hold count, so wait on those
1778 * while freeing all the buffers only held by the LRU.
1779 */
1780static enum lru_status
1781xfs_buftarg_drain_rele(
1782 struct list_head *item,
1783 struct list_lru_one *lru,
1784 spinlock_t *lru_lock,
1785 void *arg)
1786
1787{
1788 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1789 struct list_head *dispose = arg;
1790
1791 if (atomic_read(&bp->b_hold) > 1) {
1792 /* need to wait, so skip it this pass */
1793 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1794 return LRU_SKIP;
1795 }
1796 if (!spin_trylock(&bp->b_lock))
1797 return LRU_SKIP;
1798
1799 /*
1800 * clear the LRU reference count so the buffer doesn't get
1801 * ignored in xfs_buf_rele().
1802 */
1803 atomic_set(&bp->b_lru_ref, 0);
1804 bp->b_state |= XFS_BSTATE_DISPOSE;
1805 list_lru_isolate_move(lru, item, dispose);
1806 spin_unlock(&bp->b_lock);
1807 return LRU_REMOVED;
1808}
1809
1810/*
1811 * Wait for outstanding I/O on the buftarg to complete.
1812 */
1813void
1814xfs_buftarg_wait(
1815 struct xfs_buftarg *btp)
1816{
1817 /*
1818 * First wait on the buftarg I/O count for all in-flight buffers to be
1819 * released. This is critical as new buffers do not make the LRU until
1820 * they are released.
1821 *
1822 * Next, flush the buffer workqueue to ensure all completion processing
1823 * has finished. Just waiting on buffer locks is not sufficient for
1824 * async IO as the reference count held over IO is not released until
1825 * after the buffer lock is dropped. Hence we need to ensure here that
1826 * all reference counts have been dropped before we start walking the
1827 * LRU list.
1828 */
1829 while (percpu_counter_sum(&btp->bt_io_count))
1830 delay(100);
1831 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1832}
1833
1834void
1835xfs_buftarg_drain(
1836 struct xfs_buftarg *btp)
1837{
1838 LIST_HEAD(dispose);
1839 int loop = 0;
1840 bool write_fail = false;
1841
1842 xfs_buftarg_wait(btp);
1843
1844 /* loop until there is nothing left on the lru list. */
1845 while (list_lru_count(&btp->bt_lru)) {
1846 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1847 &dispose, LONG_MAX);
1848
1849 while (!list_empty(&dispose)) {
1850 struct xfs_buf *bp;
1851 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1852 list_del_init(&bp->b_lru);
1853 if (bp->b_flags & XBF_WRITE_FAIL) {
1854 write_fail = true;
1855 xfs_buf_alert_ratelimited(bp,
1856 "XFS: Corruption Alert",
1857"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1858 (long long)xfs_buf_daddr(bp));
1859 }
1860 xfs_buf_rele(bp);
1861 }
1862 if (loop++ != 0)
1863 delay(100);
1864 }
1865
1866 /*
1867 * If one or more failed buffers were freed, that means dirty metadata
1868 * was thrown away. This should only ever happen after I/O completion
1869 * handling has elevated I/O error(s) to permanent failures and shuts
1870 * down the journal.
1871 */
1872 if (write_fail) {
1873 ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1874 xfs_alert(btp->bt_mount,
1875 "Please run xfs_repair to determine the extent of the problem.");
1876 }
1877}
1878
1879static enum lru_status
1880xfs_buftarg_isolate(
1881 struct list_head *item,
1882 struct list_lru_one *lru,
1883 spinlock_t *lru_lock,
1884 void *arg)
1885{
1886 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1887 struct list_head *dispose = arg;
1888
1889 /*
1890 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1891 * If we fail to get the lock, just skip it.
1892 */
1893 if (!spin_trylock(&bp->b_lock))
1894 return LRU_SKIP;
1895 /*
1896 * Decrement the b_lru_ref count unless the value is already
1897 * zero. If the value is already zero, we need to reclaim the
1898 * buffer, otherwise it gets another trip through the LRU.
1899 */
1900 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1901 spin_unlock(&bp->b_lock);
1902 return LRU_ROTATE;
1903 }
1904
1905 bp->b_state |= XFS_BSTATE_DISPOSE;
1906 list_lru_isolate_move(lru, item, dispose);
1907 spin_unlock(&bp->b_lock);
1908 return LRU_REMOVED;
1909}
1910
1911static unsigned long
1912xfs_buftarg_shrink_scan(
1913 struct shrinker *shrink,
1914 struct shrink_control *sc)
1915{
1916 struct xfs_buftarg *btp = shrink->private_data;
1917 LIST_HEAD(dispose);
1918 unsigned long freed;
1919
1920 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1921 xfs_buftarg_isolate, &dispose);
1922
1923 while (!list_empty(&dispose)) {
1924 struct xfs_buf *bp;
1925 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1926 list_del_init(&bp->b_lru);
1927 xfs_buf_rele(bp);
1928 }
1929
1930 return freed;
1931}
1932
1933static unsigned long
1934xfs_buftarg_shrink_count(
1935 struct shrinker *shrink,
1936 struct shrink_control *sc)
1937{
1938 struct xfs_buftarg *btp = shrink->private_data;
1939 return list_lru_shrink_count(&btp->bt_lru, sc);
1940}
1941
1942void
1943xfs_free_buftarg(
1944 struct xfs_buftarg *btp)
1945{
1946 shrinker_free(btp->bt_shrinker);
1947 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1948 percpu_counter_destroy(&btp->bt_io_count);
1949 list_lru_destroy(&btp->bt_lru);
1950
1951 fs_put_dax(btp->bt_daxdev, btp->bt_mount);
1952 /* the main block device is closed by kill_block_super */
1953 if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev)
1954 bdev_release(btp->bt_bdev_handle);
1955
1956 kmem_free(btp);
1957}
1958
1959int
1960xfs_setsize_buftarg(
1961 xfs_buftarg_t *btp,
1962 unsigned int sectorsize)
1963{
1964 /* Set up metadata sector size info */
1965 btp->bt_meta_sectorsize = sectorsize;
1966 btp->bt_meta_sectormask = sectorsize - 1;
1967
1968 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1969 xfs_warn(btp->bt_mount,
1970 "Cannot set_blocksize to %u on device %pg",
1971 sectorsize, btp->bt_bdev);
1972 return -EINVAL;
1973 }
1974
1975 /* Set up device logical sector size mask */
1976 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1977 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1978
1979 return 0;
1980}
1981
1982/*
1983 * When allocating the initial buffer target we have not yet
1984 * read in the superblock, so don't know what sized sectors
1985 * are being used at this early stage. Play safe.
1986 */
1987STATIC int
1988xfs_setsize_buftarg_early(
1989 xfs_buftarg_t *btp)
1990{
1991 return xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev));
1992}
1993
1994struct xfs_buftarg *
1995xfs_alloc_buftarg(
1996 struct xfs_mount *mp,
1997 struct bdev_handle *bdev_handle)
1998{
1999 xfs_buftarg_t *btp;
2000 const struct dax_holder_operations *ops = NULL;
2001
2002#if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
2003 ops = &xfs_dax_holder_operations;
2004#endif
2005 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
2006
2007 btp->bt_mount = mp;
2008 btp->bt_bdev_handle = bdev_handle;
2009 btp->bt_dev = bdev_handle->bdev->bd_dev;
2010 btp->bt_bdev = bdev_handle->bdev;
2011 btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off,
2012 mp, ops);
2013
2014 /*
2015 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2016 * per 30 seconds so as to not spam logs too much on repeated errors.
2017 */
2018 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2019 DEFAULT_RATELIMIT_BURST);
2020
2021 if (xfs_setsize_buftarg_early(btp))
2022 goto error_free;
2023
2024 if (list_lru_init(&btp->bt_lru))
2025 goto error_free;
2026
2027 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
2028 goto error_lru;
2029
2030 btp->bt_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s",
2031 mp->m_super->s_id);
2032 if (!btp->bt_shrinker)
2033 goto error_pcpu;
2034
2035 btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count;
2036 btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan;
2037 btp->bt_shrinker->private_data = btp;
2038
2039 shrinker_register(btp->bt_shrinker);
2040
2041 return btp;
2042
2043error_pcpu:
2044 percpu_counter_destroy(&btp->bt_io_count);
2045error_lru:
2046 list_lru_destroy(&btp->bt_lru);
2047error_free:
2048 kmem_free(btp);
2049 return NULL;
2050}
2051
2052static inline void
2053xfs_buf_list_del(
2054 struct xfs_buf *bp)
2055{
2056 list_del_init(&bp->b_list);
2057 wake_up_var(&bp->b_list);
2058}
2059
2060/*
2061 * Cancel a delayed write list.
2062 *
2063 * Remove each buffer from the list, clear the delwri queue flag and drop the
2064 * associated buffer reference.
2065 */
2066void
2067xfs_buf_delwri_cancel(
2068 struct list_head *list)
2069{
2070 struct xfs_buf *bp;
2071
2072 while (!list_empty(list)) {
2073 bp = list_first_entry(list, struct xfs_buf, b_list);
2074
2075 xfs_buf_lock(bp);
2076 bp->b_flags &= ~_XBF_DELWRI_Q;
2077 xfs_buf_list_del(bp);
2078 xfs_buf_relse(bp);
2079 }
2080}
2081
2082/*
2083 * Add a buffer to the delayed write list.
2084 *
2085 * This queues a buffer for writeout if it hasn't already been. Note that
2086 * neither this routine nor the buffer list submission functions perform
2087 * any internal synchronization. It is expected that the lists are thread-local
2088 * to the callers.
2089 *
2090 * Returns true if we queued up the buffer, or false if it already had
2091 * been on the buffer list.
2092 */
2093bool
2094xfs_buf_delwri_queue(
2095 struct xfs_buf *bp,
2096 struct list_head *list)
2097{
2098 ASSERT(xfs_buf_islocked(bp));
2099 ASSERT(!(bp->b_flags & XBF_READ));
2100
2101 /*
2102 * If the buffer is already marked delwri it already is queued up
2103 * by someone else for imediate writeout. Just ignore it in that
2104 * case.
2105 */
2106 if (bp->b_flags & _XBF_DELWRI_Q) {
2107 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2108 return false;
2109 }
2110
2111 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2112
2113 /*
2114 * If a buffer gets written out synchronously or marked stale while it
2115 * is on a delwri list we lazily remove it. To do this, the other party
2116 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2117 * It remains referenced and on the list. In a rare corner case it
2118 * might get readded to a delwri list after the synchronous writeout, in
2119 * which case we need just need to re-add the flag here.
2120 */
2121 bp->b_flags |= _XBF_DELWRI_Q;
2122 if (list_empty(&bp->b_list)) {
2123 atomic_inc(&bp->b_hold);
2124 list_add_tail(&bp->b_list, list);
2125 }
2126
2127 return true;
2128}
2129
2130/*
2131 * Queue a buffer to this delwri list as part of a data integrity operation.
2132 * If the buffer is on any other delwri list, we'll wait for that to clear
2133 * so that the caller can submit the buffer for IO and wait for the result.
2134 * Callers must ensure the buffer is not already on the list.
2135 */
2136void
2137xfs_buf_delwri_queue_here(
2138 struct xfs_buf *bp,
2139 struct list_head *buffer_list)
2140{
2141 /*
2142 * We need this buffer to end up on the /caller's/ delwri list, not any
2143 * old list. This can happen if the buffer is marked stale (which
2144 * clears DELWRI_Q) after the AIL queues the buffer to its list but
2145 * before the AIL has a chance to submit the list.
2146 */
2147 while (!list_empty(&bp->b_list)) {
2148 xfs_buf_unlock(bp);
2149 wait_var_event(&bp->b_list, list_empty(&bp->b_list));
2150 xfs_buf_lock(bp);
2151 }
2152
2153 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
2154
2155 xfs_buf_delwri_queue(bp, buffer_list);
2156}
2157
2158/*
2159 * Compare function is more complex than it needs to be because
2160 * the return value is only 32 bits and we are doing comparisons
2161 * on 64 bit values
2162 */
2163static int
2164xfs_buf_cmp(
2165 void *priv,
2166 const struct list_head *a,
2167 const struct list_head *b)
2168{
2169 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2170 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2171 xfs_daddr_t diff;
2172
2173 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2174 if (diff < 0)
2175 return -1;
2176 if (diff > 0)
2177 return 1;
2178 return 0;
2179}
2180
2181/*
2182 * Submit buffers for write. If wait_list is specified, the buffers are
2183 * submitted using sync I/O and placed on the wait list such that the caller can
2184 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2185 * at I/O completion time. In either case, buffers remain locked until I/O
2186 * completes and the buffer is released from the queue.
2187 */
2188static int
2189xfs_buf_delwri_submit_buffers(
2190 struct list_head *buffer_list,
2191 struct list_head *wait_list)
2192{
2193 struct xfs_buf *bp, *n;
2194 int pinned = 0;
2195 struct blk_plug plug;
2196
2197 list_sort(NULL, buffer_list, xfs_buf_cmp);
2198
2199 blk_start_plug(&plug);
2200 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2201 if (!wait_list) {
2202 if (!xfs_buf_trylock(bp))
2203 continue;
2204 if (xfs_buf_ispinned(bp)) {
2205 xfs_buf_unlock(bp);
2206 pinned++;
2207 continue;
2208 }
2209 } else {
2210 xfs_buf_lock(bp);
2211 }
2212
2213 /*
2214 * Someone else might have written the buffer synchronously or
2215 * marked it stale in the meantime. In that case only the
2216 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2217 * reference and remove it from the list here.
2218 */
2219 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2220 xfs_buf_list_del(bp);
2221 xfs_buf_relse(bp);
2222 continue;
2223 }
2224
2225 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2226
2227 /*
2228 * If we have a wait list, each buffer (and associated delwri
2229 * queue reference) transfers to it and is submitted
2230 * synchronously. Otherwise, drop the buffer from the delwri
2231 * queue and submit async.
2232 */
2233 bp->b_flags &= ~_XBF_DELWRI_Q;
2234 bp->b_flags |= XBF_WRITE;
2235 if (wait_list) {
2236 bp->b_flags &= ~XBF_ASYNC;
2237 list_move_tail(&bp->b_list, wait_list);
2238 } else {
2239 bp->b_flags |= XBF_ASYNC;
2240 xfs_buf_list_del(bp);
2241 }
2242 __xfs_buf_submit(bp, false);
2243 }
2244 blk_finish_plug(&plug);
2245
2246 return pinned;
2247}
2248
2249/*
2250 * Write out a buffer list asynchronously.
2251 *
2252 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2253 * out and not wait for I/O completion on any of the buffers. This interface
2254 * is only safely useable for callers that can track I/O completion by higher
2255 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2256 * function.
2257 *
2258 * Note: this function will skip buffers it would block on, and in doing so
2259 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2260 * it is up to the caller to ensure that the buffer list is fully submitted or
2261 * cancelled appropriately when they are finished with the list. Failure to
2262 * cancel or resubmit the list until it is empty will result in leaked buffers
2263 * at unmount time.
2264 */
2265int
2266xfs_buf_delwri_submit_nowait(
2267 struct list_head *buffer_list)
2268{
2269 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2270}
2271
2272/*
2273 * Write out a buffer list synchronously.
2274 *
2275 * This will take the @buffer_list, write all buffers out and wait for I/O
2276 * completion on all of the buffers. @buffer_list is consumed by the function,
2277 * so callers must have some other way of tracking buffers if they require such
2278 * functionality.
2279 */
2280int
2281xfs_buf_delwri_submit(
2282 struct list_head *buffer_list)
2283{
2284 LIST_HEAD (wait_list);
2285 int error = 0, error2;
2286 struct xfs_buf *bp;
2287
2288 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2289
2290 /* Wait for IO to complete. */
2291 while (!list_empty(&wait_list)) {
2292 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2293
2294 xfs_buf_list_del(bp);
2295
2296 /*
2297 * Wait on the locked buffer, check for errors and unlock and
2298 * release the delwri queue reference.
2299 */
2300 error2 = xfs_buf_iowait(bp);
2301 xfs_buf_relse(bp);
2302 if (!error)
2303 error = error2;
2304 }
2305
2306 return error;
2307}
2308
2309/*
2310 * Push a single buffer on a delwri queue.
2311 *
2312 * The purpose of this function is to submit a single buffer of a delwri queue
2313 * and return with the buffer still on the original queue. The waiting delwri
2314 * buffer submission infrastructure guarantees transfer of the delwri queue
2315 * buffer reference to a temporary wait list. We reuse this infrastructure to
2316 * transfer the buffer back to the original queue.
2317 *
2318 * Note the buffer transitions from the queued state, to the submitted and wait
2319 * listed state and back to the queued state during this call. The buffer
2320 * locking and queue management logic between _delwri_pushbuf() and
2321 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2322 * before returning.
2323 */
2324int
2325xfs_buf_delwri_pushbuf(
2326 struct xfs_buf *bp,
2327 struct list_head *buffer_list)
2328{
2329 LIST_HEAD (submit_list);
2330 int error;
2331
2332 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2333
2334 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2335
2336 /*
2337 * Isolate the buffer to a new local list so we can submit it for I/O
2338 * independently from the rest of the original list.
2339 */
2340 xfs_buf_lock(bp);
2341 list_move(&bp->b_list, &submit_list);
2342 xfs_buf_unlock(bp);
2343
2344 /*
2345 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2346 * the buffer on the wait list with the original reference. Rather than
2347 * bounce the buffer from a local wait list back to the original list
2348 * after I/O completion, reuse the original list as the wait list.
2349 */
2350 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2351
2352 /*
2353 * The buffer is now locked, under I/O and wait listed on the original
2354 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2355 * return with the buffer unlocked and on the original queue.
2356 */
2357 error = xfs_buf_iowait(bp);
2358 bp->b_flags |= _XBF_DELWRI_Q;
2359 xfs_buf_unlock(bp);
2360
2361 return error;
2362}
2363
2364void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2365{
2366 /*
2367 * Set the lru reference count to 0 based on the error injection tag.
2368 * This allows userspace to disrupt buffer caching for debug/testing
2369 * purposes.
2370 */
2371 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2372 lru_ref = 0;
2373
2374 atomic_set(&bp->b_lru_ref, lru_ref);
2375}
2376
2377/*
2378 * Verify an on-disk magic value against the magic value specified in the
2379 * verifier structure. The verifier magic is in disk byte order so the caller is
2380 * expected to pass the value directly from disk.
2381 */
2382bool
2383xfs_verify_magic(
2384 struct xfs_buf *bp,
2385 __be32 dmagic)
2386{
2387 struct xfs_mount *mp = bp->b_mount;
2388 int idx;
2389
2390 idx = xfs_has_crc(mp);
2391 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2392 return false;
2393 return dmagic == bp->b_ops->magic[idx];
2394}
2395/*
2396 * Verify an on-disk magic value against the magic value specified in the
2397 * verifier structure. The verifier magic is in disk byte order so the caller is
2398 * expected to pass the value directly from disk.
2399 */
2400bool
2401xfs_verify_magic16(
2402 struct xfs_buf *bp,
2403 __be16 dmagic)
2404{
2405 struct xfs_mount *mp = bp->b_mount;
2406 int idx;
2407
2408 idx = xfs_has_crc(mp);
2409 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2410 return false;
2411 return dmagic == bp->b_ops->magic16[idx];
2412}