Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.9.4
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <byteswap.h>
   5#include <endian.h>
   6#include <stdio.h>
   7#include <stdlib.h>
   8#include <string.h>
   9#include <fcntl.h>
  10#include <unistd.h>
  11#include <errno.h>
  12#include <sys/utsname.h>
  13#include <sys/param.h>
  14#include <sys/stat.h>
  15#include <linux/kernel.h>
  16#include <linux/err.h>
  17#include <linux/btf.h>
  18#include <gelf.h>
  19#include "btf.h"
  20#include "bpf.h"
  21#include "libbpf.h"
  22#include "libbpf_internal.h"
  23#include "hashmap.h"
  24#include "strset.h"
  25
  26#define BTF_MAX_NR_TYPES 0x7fffffffU
  27#define BTF_MAX_STR_OFFSET 0x7fffffffU
  28
  29static struct btf_type btf_void;
  30
  31struct btf {
  32	/* raw BTF data in native endianness */
  33	void *raw_data;
  34	/* raw BTF data in non-native endianness */
  35	void *raw_data_swapped;
  36	__u32 raw_size;
  37	/* whether target endianness differs from the native one */
  38	bool swapped_endian;
  39
  40	/*
  41	 * When BTF is loaded from an ELF or raw memory it is stored
  42	 * in a contiguous memory block. The hdr, type_data, and, strs_data
  43	 * point inside that memory region to their respective parts of BTF
  44	 * representation:
  45	 *
  46	 * +--------------------------------+
  47	 * |  Header  |  Types  |  Strings  |
  48	 * +--------------------------------+
  49	 * ^          ^         ^
  50	 * |          |         |
  51	 * hdr        |         |
  52	 * types_data-+         |
  53	 * strs_data------------+
  54	 *
  55	 * If BTF data is later modified, e.g., due to types added or
  56	 * removed, BTF deduplication performed, etc, this contiguous
  57	 * representation is broken up into three independently allocated
  58	 * memory regions to be able to modify them independently.
  59	 * raw_data is nulled out at that point, but can be later allocated
  60	 * and cached again if user calls btf__raw_data(), at which point
  61	 * raw_data will contain a contiguous copy of header, types, and
  62	 * strings:
  63	 *
  64	 * +----------+  +---------+  +-----------+
  65	 * |  Header  |  |  Types  |  |  Strings  |
  66	 * +----------+  +---------+  +-----------+
  67	 * ^             ^            ^
  68	 * |             |            |
  69	 * hdr           |            |
  70	 * types_data----+            |
  71	 * strset__data(strs_set)-----+
  72	 *
  73	 *               +----------+---------+-----------+
  74	 *               |  Header  |  Types  |  Strings  |
  75	 * raw_data----->+----------+---------+-----------+
  76	 */
  77	struct btf_header *hdr;
  78
  79	void *types_data;
  80	size_t types_data_cap; /* used size stored in hdr->type_len */
  81
  82	/* type ID to `struct btf_type *` lookup index
  83	 * type_offs[0] corresponds to the first non-VOID type:
  84	 *   - for base BTF it's type [1];
  85	 *   - for split BTF it's the first non-base BTF type.
  86	 */
  87	__u32 *type_offs;
  88	size_t type_offs_cap;
  89	/* number of types in this BTF instance:
  90	 *   - doesn't include special [0] void type;
  91	 *   - for split BTF counts number of types added on top of base BTF.
  92	 */
  93	__u32 nr_types;
  94	/* if not NULL, points to the base BTF on top of which the current
  95	 * split BTF is based
  96	 */
  97	struct btf *base_btf;
  98	/* BTF type ID of the first type in this BTF instance:
  99	 *   - for base BTF it's equal to 1;
 100	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
 101	 */
 102	int start_id;
 103	/* logical string offset of this BTF instance:
 104	 *   - for base BTF it's equal to 0;
 105	 *   - for split BTF it's equal to total size of base BTF's string section size.
 106	 */
 107	int start_str_off;
 108
 109	/* only one of strs_data or strs_set can be non-NULL, depending on
 110	 * whether BTF is in a modifiable state (strs_set is used) or not
 111	 * (strs_data points inside raw_data)
 112	 */
 113	void *strs_data;
 114	/* a set of unique strings */
 115	struct strset *strs_set;
 116	/* whether strings are already deduplicated */
 117	bool strs_deduped;
 118
 119	/* BTF object FD, if loaded into kernel */
 120	int fd;
 121
 122	/* Pointer size (in bytes) for a target architecture of this BTF */
 123	int ptr_sz;
 124};
 125
 126static inline __u64 ptr_to_u64(const void *ptr)
 127{
 128	return (__u64) (unsigned long) ptr;
 129}
 130
 131/* Ensure given dynamically allocated memory region pointed to by *data* with
 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
 133 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
 134 * are already used. At most *max_cnt* elements can be ever allocated.
 135 * If necessary, memory is reallocated and all existing data is copied over,
 136 * new pointer to the memory region is stored at *data, new memory region
 137 * capacity (in number of elements) is stored in *cap.
 138 * On success, memory pointer to the beginning of unused memory is returned.
 139 * On error, NULL is returned.
 140 */
 141void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
 142		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
 143{
 144	size_t new_cnt;
 145	void *new_data;
 146
 147	if (cur_cnt + add_cnt <= *cap_cnt)
 148		return *data + cur_cnt * elem_sz;
 149
 150	/* requested more than the set limit */
 151	if (cur_cnt + add_cnt > max_cnt)
 152		return NULL;
 153
 154	new_cnt = *cap_cnt;
 155	new_cnt += new_cnt / 4;		  /* expand by 25% */
 156	if (new_cnt < 16)		  /* but at least 16 elements */
 157		new_cnt = 16;
 158	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
 159		new_cnt = max_cnt;
 160	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
 161		new_cnt = cur_cnt + add_cnt;
 162
 163	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
 164	if (!new_data)
 165		return NULL;
 166
 167	/* zero out newly allocated portion of memory */
 168	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
 169
 170	*data = new_data;
 171	*cap_cnt = new_cnt;
 172	return new_data + cur_cnt * elem_sz;
 173}
 174
 175/* Ensure given dynamically allocated memory region has enough allocated space
 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
 177 */
 178int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
 179{
 180	void *p;
 181
 182	if (need_cnt <= *cap_cnt)
 183		return 0;
 184
 185	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
 186	if (!p)
 187		return -ENOMEM;
 188
 189	return 0;
 190}
 191
 192static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
 193{
 194	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
 195			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
 196}
 197
 198static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
 199{
 200	__u32 *p;
 201
 202	p = btf_add_type_offs_mem(btf, 1);
 203	if (!p)
 204		return -ENOMEM;
 205
 206	*p = type_off;
 207	return 0;
 208}
 209
 210static void btf_bswap_hdr(struct btf_header *h)
 211{
 212	h->magic = bswap_16(h->magic);
 213	h->hdr_len = bswap_32(h->hdr_len);
 214	h->type_off = bswap_32(h->type_off);
 215	h->type_len = bswap_32(h->type_len);
 216	h->str_off = bswap_32(h->str_off);
 217	h->str_len = bswap_32(h->str_len);
 218}
 219
 220static int btf_parse_hdr(struct btf *btf)
 221{
 222	struct btf_header *hdr = btf->hdr;
 223	__u32 meta_left;
 224
 225	if (btf->raw_size < sizeof(struct btf_header)) {
 226		pr_debug("BTF header not found\n");
 227		return -EINVAL;
 228	}
 229
 230	if (hdr->magic == bswap_16(BTF_MAGIC)) {
 231		btf->swapped_endian = true;
 232		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
 233			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
 234				bswap_32(hdr->hdr_len));
 235			return -ENOTSUP;
 236		}
 237		btf_bswap_hdr(hdr);
 238	} else if (hdr->magic != BTF_MAGIC) {
 239		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
 240		return -EINVAL;
 241	}
 242
 243	if (btf->raw_size < hdr->hdr_len) {
 244		pr_debug("BTF header len %u larger than data size %u\n",
 245			 hdr->hdr_len, btf->raw_size);
 246		return -EINVAL;
 247	}
 248
 249	meta_left = btf->raw_size - hdr->hdr_len;
 250	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
 251		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
 252		return -EINVAL;
 253	}
 254
 255	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
 256		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
 257			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
 258		return -EINVAL;
 259	}
 260
 261	if (hdr->type_off % 4) {
 262		pr_debug("BTF type section is not aligned to 4 bytes\n");
 263		return -EINVAL;
 264	}
 265
 266	return 0;
 267}
 268
 269static int btf_parse_str_sec(struct btf *btf)
 270{
 271	const struct btf_header *hdr = btf->hdr;
 272	const char *start = btf->strs_data;
 273	const char *end = start + btf->hdr->str_len;
 274
 275	if (btf->base_btf && hdr->str_len == 0)
 276		return 0;
 277	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
 278		pr_debug("Invalid BTF string section\n");
 279		return -EINVAL;
 280	}
 281	if (!btf->base_btf && start[0]) {
 282		pr_debug("Invalid BTF string section\n");
 283		return -EINVAL;
 284	}
 285	return 0;
 286}
 287
 288static int btf_type_size(const struct btf_type *t)
 289{
 290	const int base_size = sizeof(struct btf_type);
 291	__u16 vlen = btf_vlen(t);
 292
 293	switch (btf_kind(t)) {
 294	case BTF_KIND_FWD:
 295	case BTF_KIND_CONST:
 296	case BTF_KIND_VOLATILE:
 297	case BTF_KIND_RESTRICT:
 298	case BTF_KIND_PTR:
 299	case BTF_KIND_TYPEDEF:
 300	case BTF_KIND_FUNC:
 301	case BTF_KIND_FLOAT:
 302	case BTF_KIND_TYPE_TAG:
 303		return base_size;
 304	case BTF_KIND_INT:
 305		return base_size + sizeof(__u32);
 306	case BTF_KIND_ENUM:
 307		return base_size + vlen * sizeof(struct btf_enum);
 308	case BTF_KIND_ENUM64:
 309		return base_size + vlen * sizeof(struct btf_enum64);
 310	case BTF_KIND_ARRAY:
 311		return base_size + sizeof(struct btf_array);
 312	case BTF_KIND_STRUCT:
 313	case BTF_KIND_UNION:
 314		return base_size + vlen * sizeof(struct btf_member);
 315	case BTF_KIND_FUNC_PROTO:
 316		return base_size + vlen * sizeof(struct btf_param);
 317	case BTF_KIND_VAR:
 318		return base_size + sizeof(struct btf_var);
 319	case BTF_KIND_DATASEC:
 320		return base_size + vlen * sizeof(struct btf_var_secinfo);
 321	case BTF_KIND_DECL_TAG:
 322		return base_size + sizeof(struct btf_decl_tag);
 323	default:
 324		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 325		return -EINVAL;
 326	}
 327}
 328
 329static void btf_bswap_type_base(struct btf_type *t)
 330{
 331	t->name_off = bswap_32(t->name_off);
 332	t->info = bswap_32(t->info);
 333	t->type = bswap_32(t->type);
 334}
 335
 336static int btf_bswap_type_rest(struct btf_type *t)
 337{
 338	struct btf_var_secinfo *v;
 339	struct btf_enum64 *e64;
 340	struct btf_member *m;
 341	struct btf_array *a;
 342	struct btf_param *p;
 343	struct btf_enum *e;
 344	__u16 vlen = btf_vlen(t);
 345	int i;
 346
 347	switch (btf_kind(t)) {
 348	case BTF_KIND_FWD:
 349	case BTF_KIND_CONST:
 350	case BTF_KIND_VOLATILE:
 351	case BTF_KIND_RESTRICT:
 352	case BTF_KIND_PTR:
 353	case BTF_KIND_TYPEDEF:
 354	case BTF_KIND_FUNC:
 355	case BTF_KIND_FLOAT:
 356	case BTF_KIND_TYPE_TAG:
 357		return 0;
 358	case BTF_KIND_INT:
 359		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
 360		return 0;
 361	case BTF_KIND_ENUM:
 362		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
 363			e->name_off = bswap_32(e->name_off);
 364			e->val = bswap_32(e->val);
 365		}
 366		return 0;
 367	case BTF_KIND_ENUM64:
 368		for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
 369			e64->name_off = bswap_32(e64->name_off);
 370			e64->val_lo32 = bswap_32(e64->val_lo32);
 371			e64->val_hi32 = bswap_32(e64->val_hi32);
 372		}
 373		return 0;
 374	case BTF_KIND_ARRAY:
 375		a = btf_array(t);
 376		a->type = bswap_32(a->type);
 377		a->index_type = bswap_32(a->index_type);
 378		a->nelems = bswap_32(a->nelems);
 379		return 0;
 380	case BTF_KIND_STRUCT:
 381	case BTF_KIND_UNION:
 382		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
 383			m->name_off = bswap_32(m->name_off);
 384			m->type = bswap_32(m->type);
 385			m->offset = bswap_32(m->offset);
 386		}
 387		return 0;
 388	case BTF_KIND_FUNC_PROTO:
 389		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
 390			p->name_off = bswap_32(p->name_off);
 391			p->type = bswap_32(p->type);
 392		}
 393		return 0;
 394	case BTF_KIND_VAR:
 395		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
 396		return 0;
 397	case BTF_KIND_DATASEC:
 398		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
 399			v->type = bswap_32(v->type);
 400			v->offset = bswap_32(v->offset);
 401			v->size = bswap_32(v->size);
 402		}
 403		return 0;
 404	case BTF_KIND_DECL_TAG:
 405		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
 406		return 0;
 407	default:
 408		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 409		return -EINVAL;
 410	}
 411}
 412
 413static int btf_parse_type_sec(struct btf *btf)
 414{
 415	struct btf_header *hdr = btf->hdr;
 416	void *next_type = btf->types_data;
 417	void *end_type = next_type + hdr->type_len;
 418	int err, type_size;
 419
 420	while (next_type + sizeof(struct btf_type) <= end_type) {
 421		if (btf->swapped_endian)
 422			btf_bswap_type_base(next_type);
 423
 424		type_size = btf_type_size(next_type);
 425		if (type_size < 0)
 426			return type_size;
 427		if (next_type + type_size > end_type) {
 428			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
 429			return -EINVAL;
 430		}
 431
 432		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
 433			return -EINVAL;
 434
 435		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
 436		if (err)
 437			return err;
 438
 439		next_type += type_size;
 440		btf->nr_types++;
 441	}
 442
 443	if (next_type != end_type) {
 444		pr_warn("BTF types data is malformed\n");
 445		return -EINVAL;
 446	}
 447
 448	return 0;
 449}
 450
 451static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id)
 452{
 453	const char *s;
 454
 455	s = btf__str_by_offset(btf, str_off);
 456	if (!s) {
 457		pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off);
 458		return -EINVAL;
 459	}
 460
 461	return 0;
 462}
 463
 464static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id)
 465{
 466	const struct btf_type *t;
 467
 468	t = btf__type_by_id(btf, id);
 469	if (!t) {
 470		pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id);
 471		return -EINVAL;
 472	}
 473
 474	return 0;
 475}
 476
 477static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id)
 478{
 479	__u32 kind = btf_kind(t);
 480	int err, i, n;
 481
 482	err = btf_validate_str(btf, t->name_off, "type name", id);
 483	if (err)
 484		return err;
 485
 486	switch (kind) {
 487	case BTF_KIND_UNKN:
 488	case BTF_KIND_INT:
 489	case BTF_KIND_FWD:
 490	case BTF_KIND_FLOAT:
 491		break;
 492	case BTF_KIND_PTR:
 493	case BTF_KIND_TYPEDEF:
 494	case BTF_KIND_VOLATILE:
 495	case BTF_KIND_CONST:
 496	case BTF_KIND_RESTRICT:
 497	case BTF_KIND_VAR:
 498	case BTF_KIND_DECL_TAG:
 499	case BTF_KIND_TYPE_TAG:
 500		err = btf_validate_id(btf, t->type, id);
 501		if (err)
 502			return err;
 503		break;
 504	case BTF_KIND_ARRAY: {
 505		const struct btf_array *a = btf_array(t);
 506
 507		err = btf_validate_id(btf, a->type, id);
 508		err = err ?: btf_validate_id(btf, a->index_type, id);
 509		if (err)
 510			return err;
 511		break;
 512	}
 513	case BTF_KIND_STRUCT:
 514	case BTF_KIND_UNION: {
 515		const struct btf_member *m = btf_members(t);
 516
 517		n = btf_vlen(t);
 518		for (i = 0; i < n; i++, m++) {
 519			err = btf_validate_str(btf, m->name_off, "field name", id);
 520			err = err ?: btf_validate_id(btf, m->type, id);
 521			if (err)
 522				return err;
 523		}
 524		break;
 525	}
 526	case BTF_KIND_ENUM: {
 527		const struct btf_enum *m = btf_enum(t);
 528
 529		n = btf_vlen(t);
 530		for (i = 0; i < n; i++, m++) {
 531			err = btf_validate_str(btf, m->name_off, "enum name", id);
 532			if (err)
 533				return err;
 534		}
 535		break;
 536	}
 537	case BTF_KIND_ENUM64: {
 538		const struct btf_enum64 *m = btf_enum64(t);
 539
 540		n = btf_vlen(t);
 541		for (i = 0; i < n; i++, m++) {
 542			err = btf_validate_str(btf, m->name_off, "enum name", id);
 543			if (err)
 544				return err;
 545		}
 546		break;
 547	}
 548	case BTF_KIND_FUNC: {
 549		const struct btf_type *ft;
 550
 551		err = btf_validate_id(btf, t->type, id);
 552		if (err)
 553			return err;
 554		ft = btf__type_by_id(btf, t->type);
 555		if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) {
 556			pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type);
 557			return -EINVAL;
 558		}
 559		break;
 560	}
 561	case BTF_KIND_FUNC_PROTO: {
 562		const struct btf_param *m = btf_params(t);
 563
 564		n = btf_vlen(t);
 565		for (i = 0; i < n; i++, m++) {
 566			err = btf_validate_str(btf, m->name_off, "param name", id);
 567			err = err ?: btf_validate_id(btf, m->type, id);
 568			if (err)
 569				return err;
 570		}
 571		break;
 572	}
 573	case BTF_KIND_DATASEC: {
 574		const struct btf_var_secinfo *m = btf_var_secinfos(t);
 575
 576		n = btf_vlen(t);
 577		for (i = 0; i < n; i++, m++) {
 578			err = btf_validate_id(btf, m->type, id);
 579			if (err)
 580				return err;
 581		}
 582		break;
 583	}
 584	default:
 585		pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind);
 586		return -EINVAL;
 587	}
 588	return 0;
 589}
 590
 591/* Validate basic sanity of BTF. It's intentionally less thorough than
 592 * kernel's validation and validates only properties of BTF that libbpf relies
 593 * on to be correct (e.g., valid type IDs, valid string offsets, etc)
 594 */
 595static int btf_sanity_check(const struct btf *btf)
 596{
 597	const struct btf_type *t;
 598	__u32 i, n = btf__type_cnt(btf);
 599	int err;
 600
 601	for (i = 1; i < n; i++) {
 602		t = btf_type_by_id(btf, i);
 603		err = btf_validate_type(btf, t, i);
 604		if (err)
 605			return err;
 606	}
 607	return 0;
 608}
 609
 610__u32 btf__type_cnt(const struct btf *btf)
 611{
 612	return btf->start_id + btf->nr_types;
 613}
 614
 615const struct btf *btf__base_btf(const struct btf *btf)
 616{
 617	return btf->base_btf;
 618}
 619
 620/* internal helper returning non-const pointer to a type */
 621struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
 622{
 623	if (type_id == 0)
 624		return &btf_void;
 625	if (type_id < btf->start_id)
 626		return btf_type_by_id(btf->base_btf, type_id);
 627	return btf->types_data + btf->type_offs[type_id - btf->start_id];
 628}
 629
 630const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 631{
 632	if (type_id >= btf->start_id + btf->nr_types)
 633		return errno = EINVAL, NULL;
 634	return btf_type_by_id((struct btf *)btf, type_id);
 635}
 636
 637static int determine_ptr_size(const struct btf *btf)
 638{
 639	static const char * const long_aliases[] = {
 640		"long",
 641		"long int",
 642		"int long",
 643		"unsigned long",
 644		"long unsigned",
 645		"unsigned long int",
 646		"unsigned int long",
 647		"long unsigned int",
 648		"long int unsigned",
 649		"int unsigned long",
 650		"int long unsigned",
 651	};
 652	const struct btf_type *t;
 653	const char *name;
 654	int i, j, n;
 655
 656	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
 657		return btf->base_btf->ptr_sz;
 658
 659	n = btf__type_cnt(btf);
 660	for (i = 1; i < n; i++) {
 661		t = btf__type_by_id(btf, i);
 662		if (!btf_is_int(t))
 663			continue;
 664
 665		if (t->size != 4 && t->size != 8)
 666			continue;
 667
 668		name = btf__name_by_offset(btf, t->name_off);
 669		if (!name)
 670			continue;
 671
 672		for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
 673			if (strcmp(name, long_aliases[j]) == 0)
 674				return t->size;
 675		}
 676	}
 677
 678	return -1;
 679}
 680
 681static size_t btf_ptr_sz(const struct btf *btf)
 682{
 683	if (!btf->ptr_sz)
 684		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 685	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 686}
 687
 688/* Return pointer size this BTF instance assumes. The size is heuristically
 689 * determined by looking for 'long' or 'unsigned long' integer type and
 690 * recording its size in bytes. If BTF type information doesn't have any such
 691 * type, this function returns 0. In the latter case, native architecture's
 692 * pointer size is assumed, so will be either 4 or 8, depending on
 693 * architecture that libbpf was compiled for. It's possible to override
 694 * guessed value by using btf__set_pointer_size() API.
 695 */
 696size_t btf__pointer_size(const struct btf *btf)
 697{
 698	if (!btf->ptr_sz)
 699		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 700
 701	if (btf->ptr_sz < 0)
 702		/* not enough BTF type info to guess */
 703		return 0;
 704
 705	return btf->ptr_sz;
 706}
 707
 708/* Override or set pointer size in bytes. Only values of 4 and 8 are
 709 * supported.
 710 */
 711int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 712{
 713	if (ptr_sz != 4 && ptr_sz != 8)
 714		return libbpf_err(-EINVAL);
 715	btf->ptr_sz = ptr_sz;
 716	return 0;
 717}
 718
 719static bool is_host_big_endian(void)
 720{
 721#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 722	return false;
 723#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 724	return true;
 725#else
 726# error "Unrecognized __BYTE_ORDER__"
 727#endif
 728}
 729
 730enum btf_endianness btf__endianness(const struct btf *btf)
 731{
 732	if (is_host_big_endian())
 733		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
 734	else
 735		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
 736}
 737
 738int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
 739{
 740	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
 741		return libbpf_err(-EINVAL);
 742
 743	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
 744	if (!btf->swapped_endian) {
 745		free(btf->raw_data_swapped);
 746		btf->raw_data_swapped = NULL;
 747	}
 748	return 0;
 749}
 750
 751static bool btf_type_is_void(const struct btf_type *t)
 752{
 753	return t == &btf_void || btf_is_fwd(t);
 754}
 755
 756static bool btf_type_is_void_or_null(const struct btf_type *t)
 757{
 758	return !t || btf_type_is_void(t);
 759}
 760
 761#define MAX_RESOLVE_DEPTH 32
 762
 763__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 764{
 765	const struct btf_array *array;
 766	const struct btf_type *t;
 767	__u32 nelems = 1;
 768	__s64 size = -1;
 769	int i;
 770
 771	t = btf__type_by_id(btf, type_id);
 772	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
 773		switch (btf_kind(t)) {
 774		case BTF_KIND_INT:
 775		case BTF_KIND_STRUCT:
 776		case BTF_KIND_UNION:
 777		case BTF_KIND_ENUM:
 778		case BTF_KIND_ENUM64:
 779		case BTF_KIND_DATASEC:
 780		case BTF_KIND_FLOAT:
 781			size = t->size;
 782			goto done;
 783		case BTF_KIND_PTR:
 784			size = btf_ptr_sz(btf);
 785			goto done;
 786		case BTF_KIND_TYPEDEF:
 787		case BTF_KIND_VOLATILE:
 788		case BTF_KIND_CONST:
 789		case BTF_KIND_RESTRICT:
 790		case BTF_KIND_VAR:
 791		case BTF_KIND_DECL_TAG:
 792		case BTF_KIND_TYPE_TAG:
 793			type_id = t->type;
 794			break;
 795		case BTF_KIND_ARRAY:
 796			array = btf_array(t);
 797			if (nelems && array->nelems > UINT32_MAX / nelems)
 798				return libbpf_err(-E2BIG);
 799			nelems *= array->nelems;
 800			type_id = array->type;
 801			break;
 802		default:
 803			return libbpf_err(-EINVAL);
 804		}
 805
 806		t = btf__type_by_id(btf, type_id);
 807	}
 808
 809done:
 810	if (size < 0)
 811		return libbpf_err(-EINVAL);
 812	if (nelems && size > UINT32_MAX / nelems)
 813		return libbpf_err(-E2BIG);
 814
 815	return nelems * size;
 816}
 817
 818int btf__align_of(const struct btf *btf, __u32 id)
 819{
 820	const struct btf_type *t = btf__type_by_id(btf, id);
 821	__u16 kind = btf_kind(t);
 822
 823	switch (kind) {
 824	case BTF_KIND_INT:
 825	case BTF_KIND_ENUM:
 826	case BTF_KIND_ENUM64:
 827	case BTF_KIND_FLOAT:
 828		return min(btf_ptr_sz(btf), (size_t)t->size);
 829	case BTF_KIND_PTR:
 830		return btf_ptr_sz(btf);
 831	case BTF_KIND_TYPEDEF:
 832	case BTF_KIND_VOLATILE:
 833	case BTF_KIND_CONST:
 834	case BTF_KIND_RESTRICT:
 835	case BTF_KIND_TYPE_TAG:
 836		return btf__align_of(btf, t->type);
 837	case BTF_KIND_ARRAY:
 838		return btf__align_of(btf, btf_array(t)->type);
 839	case BTF_KIND_STRUCT:
 840	case BTF_KIND_UNION: {
 841		const struct btf_member *m = btf_members(t);
 842		__u16 vlen = btf_vlen(t);
 843		int i, max_align = 1, align;
 844
 845		for (i = 0; i < vlen; i++, m++) {
 846			align = btf__align_of(btf, m->type);
 847			if (align <= 0)
 848				return libbpf_err(align);
 849			max_align = max(max_align, align);
 850
 851			/* if field offset isn't aligned according to field
 852			 * type's alignment, then struct must be packed
 853			 */
 854			if (btf_member_bitfield_size(t, i) == 0 &&
 855			    (m->offset % (8 * align)) != 0)
 856				return 1;
 857		}
 858
 859		/* if struct/union size isn't a multiple of its alignment,
 860		 * then struct must be packed
 861		 */
 862		if ((t->size % max_align) != 0)
 863			return 1;
 864
 865		return max_align;
 866	}
 867	default:
 868		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 869		return errno = EINVAL, 0;
 870	}
 871}
 872
 873int btf__resolve_type(const struct btf *btf, __u32 type_id)
 874{
 875	const struct btf_type *t;
 876	int depth = 0;
 877
 878	t = btf__type_by_id(btf, type_id);
 879	while (depth < MAX_RESOLVE_DEPTH &&
 880	       !btf_type_is_void_or_null(t) &&
 881	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 882		type_id = t->type;
 883		t = btf__type_by_id(btf, type_id);
 884		depth++;
 885	}
 886
 887	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 888		return libbpf_err(-EINVAL);
 889
 890	return type_id;
 891}
 892
 893__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 894{
 895	__u32 i, nr_types = btf__type_cnt(btf);
 896
 897	if (!strcmp(type_name, "void"))
 898		return 0;
 899
 900	for (i = 1; i < nr_types; i++) {
 901		const struct btf_type *t = btf__type_by_id(btf, i);
 902		const char *name = btf__name_by_offset(btf, t->name_off);
 903
 904		if (name && !strcmp(type_name, name))
 905			return i;
 906	}
 907
 908	return libbpf_err(-ENOENT);
 909}
 910
 911static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
 912				   const char *type_name, __u32 kind)
 913{
 914	__u32 i, nr_types = btf__type_cnt(btf);
 915
 916	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 917		return 0;
 918
 919	for (i = start_id; i < nr_types; i++) {
 920		const struct btf_type *t = btf__type_by_id(btf, i);
 921		const char *name;
 922
 923		if (btf_kind(t) != kind)
 924			continue;
 925		name = btf__name_by_offset(btf, t->name_off);
 926		if (name && !strcmp(type_name, name))
 927			return i;
 928	}
 929
 930	return libbpf_err(-ENOENT);
 931}
 932
 933__s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
 934				 __u32 kind)
 935{
 936	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
 937}
 938
 939__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 940			     __u32 kind)
 941{
 942	return btf_find_by_name_kind(btf, 1, type_name, kind);
 943}
 944
 945static bool btf_is_modifiable(const struct btf *btf)
 946{
 947	return (void *)btf->hdr != btf->raw_data;
 948}
 949
 950void btf__free(struct btf *btf)
 951{
 952	if (IS_ERR_OR_NULL(btf))
 953		return;
 954
 955	if (btf->fd >= 0)
 956		close(btf->fd);
 957
 958	if (btf_is_modifiable(btf)) {
 959		/* if BTF was modified after loading, it will have a split
 960		 * in-memory representation for header, types, and strings
 961		 * sections, so we need to free all of them individually. It
 962		 * might still have a cached contiguous raw data present,
 963		 * which will be unconditionally freed below.
 964		 */
 965		free(btf->hdr);
 966		free(btf->types_data);
 967		strset__free(btf->strs_set);
 968	}
 969	free(btf->raw_data);
 970	free(btf->raw_data_swapped);
 971	free(btf->type_offs);
 972	free(btf);
 973}
 974
 975static struct btf *btf_new_empty(struct btf *base_btf)
 976{
 977	struct btf *btf;
 978
 979	btf = calloc(1, sizeof(*btf));
 980	if (!btf)
 981		return ERR_PTR(-ENOMEM);
 982
 983	btf->nr_types = 0;
 984	btf->start_id = 1;
 985	btf->start_str_off = 0;
 986	btf->fd = -1;
 987	btf->ptr_sz = sizeof(void *);
 988	btf->swapped_endian = false;
 989
 990	if (base_btf) {
 991		btf->base_btf = base_btf;
 992		btf->start_id = btf__type_cnt(base_btf);
 993		btf->start_str_off = base_btf->hdr->str_len;
 994	}
 995
 996	/* +1 for empty string at offset 0 */
 997	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
 998	btf->raw_data = calloc(1, btf->raw_size);
 999	if (!btf->raw_data) {
1000		free(btf);
1001		return ERR_PTR(-ENOMEM);
1002	}
1003
1004	btf->hdr = btf->raw_data;
1005	btf->hdr->hdr_len = sizeof(struct btf_header);
1006	btf->hdr->magic = BTF_MAGIC;
1007	btf->hdr->version = BTF_VERSION;
1008
1009	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
1010	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
1011	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
1012
1013	return btf;
1014}
1015
1016struct btf *btf__new_empty(void)
1017{
1018	return libbpf_ptr(btf_new_empty(NULL));
1019}
1020
1021struct btf *btf__new_empty_split(struct btf *base_btf)
1022{
1023	return libbpf_ptr(btf_new_empty(base_btf));
1024}
1025
1026static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
1027{
1028	struct btf *btf;
1029	int err;
1030
1031	btf = calloc(1, sizeof(struct btf));
1032	if (!btf)
1033		return ERR_PTR(-ENOMEM);
1034
1035	btf->nr_types = 0;
1036	btf->start_id = 1;
1037	btf->start_str_off = 0;
1038	btf->fd = -1;
1039
1040	if (base_btf) {
1041		btf->base_btf = base_btf;
1042		btf->start_id = btf__type_cnt(base_btf);
1043		btf->start_str_off = base_btf->hdr->str_len;
1044	}
1045
1046	btf->raw_data = malloc(size);
1047	if (!btf->raw_data) {
1048		err = -ENOMEM;
1049		goto done;
1050	}
1051	memcpy(btf->raw_data, data, size);
1052	btf->raw_size = size;
1053
1054	btf->hdr = btf->raw_data;
1055	err = btf_parse_hdr(btf);
1056	if (err)
1057		goto done;
1058
1059	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
1060	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
1061
1062	err = btf_parse_str_sec(btf);
1063	err = err ?: btf_parse_type_sec(btf);
1064	err = err ?: btf_sanity_check(btf);
1065	if (err)
1066		goto done;
1067
1068done:
1069	if (err) {
1070		btf__free(btf);
1071		return ERR_PTR(err);
1072	}
1073
1074	return btf;
1075}
1076
1077struct btf *btf__new(const void *data, __u32 size)
1078{
1079	return libbpf_ptr(btf_new(data, size, NULL));
1080}
1081
1082struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf)
1083{
1084	return libbpf_ptr(btf_new(data, size, base_btf));
1085}
1086
1087static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
1088				 struct btf_ext **btf_ext)
1089{
1090	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
1091	int err = 0, fd = -1, idx = 0;
1092	struct btf *btf = NULL;
1093	Elf_Scn *scn = NULL;
1094	Elf *elf = NULL;
1095	GElf_Ehdr ehdr;
1096	size_t shstrndx;
1097
1098	if (elf_version(EV_CURRENT) == EV_NONE) {
1099		pr_warn("failed to init libelf for %s\n", path);
1100		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
1101	}
1102
1103	fd = open(path, O_RDONLY | O_CLOEXEC);
1104	if (fd < 0) {
1105		err = -errno;
1106		pr_warn("failed to open %s: %s\n", path, strerror(errno));
1107		return ERR_PTR(err);
1108	}
1109
1110	err = -LIBBPF_ERRNO__FORMAT;
1111
1112	elf = elf_begin(fd, ELF_C_READ, NULL);
1113	if (!elf) {
1114		pr_warn("failed to open %s as ELF file\n", path);
1115		goto done;
1116	}
1117	if (!gelf_getehdr(elf, &ehdr)) {
1118		pr_warn("failed to get EHDR from %s\n", path);
1119		goto done;
1120	}
1121
1122	if (elf_getshdrstrndx(elf, &shstrndx)) {
1123		pr_warn("failed to get section names section index for %s\n",
1124			path);
1125		goto done;
1126	}
1127
1128	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
1129		pr_warn("failed to get e_shstrndx from %s\n", path);
1130		goto done;
1131	}
1132
1133	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1134		GElf_Shdr sh;
1135		char *name;
1136
1137		idx++;
1138		if (gelf_getshdr(scn, &sh) != &sh) {
1139			pr_warn("failed to get section(%d) header from %s\n",
1140				idx, path);
1141			goto done;
1142		}
1143		name = elf_strptr(elf, shstrndx, sh.sh_name);
1144		if (!name) {
1145			pr_warn("failed to get section(%d) name from %s\n",
1146				idx, path);
1147			goto done;
1148		}
1149		if (strcmp(name, BTF_ELF_SEC) == 0) {
1150			btf_data = elf_getdata(scn, 0);
1151			if (!btf_data) {
1152				pr_warn("failed to get section(%d, %s) data from %s\n",
1153					idx, name, path);
1154				goto done;
1155			}
1156			continue;
1157		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
1158			btf_ext_data = elf_getdata(scn, 0);
1159			if (!btf_ext_data) {
1160				pr_warn("failed to get section(%d, %s) data from %s\n",
1161					idx, name, path);
1162				goto done;
1163			}
1164			continue;
1165		}
1166	}
1167
 
 
1168	if (!btf_data) {
1169		pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path);
1170		err = -ENODATA;
1171		goto done;
1172	}
1173	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
1174	err = libbpf_get_error(btf);
1175	if (err)
1176		goto done;
1177
1178	switch (gelf_getclass(elf)) {
1179	case ELFCLASS32:
1180		btf__set_pointer_size(btf, 4);
1181		break;
1182	case ELFCLASS64:
1183		btf__set_pointer_size(btf, 8);
1184		break;
1185	default:
1186		pr_warn("failed to get ELF class (bitness) for %s\n", path);
1187		break;
1188	}
1189
1190	if (btf_ext && btf_ext_data) {
1191		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
1192		err = libbpf_get_error(*btf_ext);
1193		if (err)
1194			goto done;
1195	} else if (btf_ext) {
1196		*btf_ext = NULL;
1197	}
1198done:
1199	if (elf)
1200		elf_end(elf);
1201	close(fd);
1202
1203	if (!err)
1204		return btf;
1205
1206	if (btf_ext)
1207		btf_ext__free(*btf_ext);
1208	btf__free(btf);
1209
1210	return ERR_PTR(err);
1211}
1212
1213struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1214{
1215	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1216}
1217
1218struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1219{
1220	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1221}
1222
1223static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1224{
1225	struct btf *btf = NULL;
1226	void *data = NULL;
1227	FILE *f = NULL;
1228	__u16 magic;
1229	int err = 0;
1230	long sz;
1231
1232	f = fopen(path, "rbe");
1233	if (!f) {
1234		err = -errno;
1235		goto err_out;
1236	}
1237
1238	/* check BTF magic */
1239	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1240		err = -EIO;
1241		goto err_out;
1242	}
1243	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1244		/* definitely not a raw BTF */
1245		err = -EPROTO;
1246		goto err_out;
1247	}
1248
1249	/* get file size */
1250	if (fseek(f, 0, SEEK_END)) {
1251		err = -errno;
1252		goto err_out;
1253	}
1254	sz = ftell(f);
1255	if (sz < 0) {
1256		err = -errno;
1257		goto err_out;
1258	}
1259	/* rewind to the start */
1260	if (fseek(f, 0, SEEK_SET)) {
1261		err = -errno;
1262		goto err_out;
1263	}
1264
1265	/* pre-alloc memory and read all of BTF data */
1266	data = malloc(sz);
1267	if (!data) {
1268		err = -ENOMEM;
1269		goto err_out;
1270	}
1271	if (fread(data, 1, sz, f) < sz) {
1272		err = -EIO;
1273		goto err_out;
1274	}
1275
1276	/* finally parse BTF data */
1277	btf = btf_new(data, sz, base_btf);
1278
1279err_out:
1280	free(data);
1281	if (f)
1282		fclose(f);
1283	return err ? ERR_PTR(err) : btf;
1284}
1285
1286struct btf *btf__parse_raw(const char *path)
1287{
1288	return libbpf_ptr(btf_parse_raw(path, NULL));
1289}
1290
1291struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1292{
1293	return libbpf_ptr(btf_parse_raw(path, base_btf));
1294}
1295
1296static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1297{
1298	struct btf *btf;
1299	int err;
1300
1301	if (btf_ext)
1302		*btf_ext = NULL;
1303
1304	btf = btf_parse_raw(path, base_btf);
1305	err = libbpf_get_error(btf);
1306	if (!err)
1307		return btf;
1308	if (err != -EPROTO)
1309		return ERR_PTR(err);
1310	return btf_parse_elf(path, base_btf, btf_ext);
1311}
1312
1313struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1314{
1315	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1316}
1317
1318struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1319{
1320	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1321}
1322
1323static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1324
1325int btf_load_into_kernel(struct btf *btf,
1326			 char *log_buf, size_t log_sz, __u32 log_level,
1327			 int token_fd)
1328{
1329	LIBBPF_OPTS(bpf_btf_load_opts, opts);
1330	__u32 buf_sz = 0, raw_size;
1331	char *buf = NULL, *tmp;
1332	void *raw_data;
1333	int err = 0;
1334
1335	if (btf->fd >= 0)
1336		return libbpf_err(-EEXIST);
1337	if (log_sz && !log_buf)
1338		return libbpf_err(-EINVAL);
1339
1340	/* cache native raw data representation */
1341	raw_data = btf_get_raw_data(btf, &raw_size, false);
1342	if (!raw_data) {
1343		err = -ENOMEM;
1344		goto done;
1345	}
1346	btf->raw_size = raw_size;
1347	btf->raw_data = raw_data;
1348
1349retry_load:
1350	/* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1351	 * initially. Only if BTF loading fails, we bump log_level to 1 and
1352	 * retry, using either auto-allocated or custom log_buf. This way
1353	 * non-NULL custom log_buf provides a buffer just in case, but hopes
1354	 * for successful load and no need for log_buf.
1355	 */
1356	if (log_level) {
1357		/* if caller didn't provide custom log_buf, we'll keep
1358		 * allocating our own progressively bigger buffers for BTF
1359		 * verification log
1360		 */
1361		if (!log_buf) {
1362			buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1363			tmp = realloc(buf, buf_sz);
1364			if (!tmp) {
1365				err = -ENOMEM;
1366				goto done;
1367			}
1368			buf = tmp;
1369			buf[0] = '\0';
1370		}
1371
1372		opts.log_buf = log_buf ? log_buf : buf;
1373		opts.log_size = log_buf ? log_sz : buf_sz;
1374		opts.log_level = log_level;
1375	}
1376
1377	opts.token_fd = token_fd;
1378	if (token_fd)
1379		opts.btf_flags |= BPF_F_TOKEN_FD;
1380
1381	btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1382	if (btf->fd < 0) {
1383		/* time to turn on verbose mode and try again */
1384		if (log_level == 0) {
1385			log_level = 1;
1386			goto retry_load;
1387		}
1388		/* only retry if caller didn't provide custom log_buf, but
1389		 * make sure we can never overflow buf_sz
1390		 */
1391		if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1392			goto retry_load;
1393
1394		err = -errno;
1395		pr_warn("BTF loading error: %d\n", err);
1396		/* don't print out contents of custom log_buf */
1397		if (!log_buf && buf[0])
1398			pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1399	}
1400
1401done:
1402	free(buf);
1403	return libbpf_err(err);
1404}
1405
1406int btf__load_into_kernel(struct btf *btf)
1407{
1408	return btf_load_into_kernel(btf, NULL, 0, 0, 0);
1409}
1410
1411int btf__fd(const struct btf *btf)
1412{
1413	return btf->fd;
1414}
1415
1416void btf__set_fd(struct btf *btf, int fd)
1417{
1418	btf->fd = fd;
1419}
1420
1421static const void *btf_strs_data(const struct btf *btf)
1422{
1423	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1424}
1425
1426static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1427{
1428	struct btf_header *hdr = btf->hdr;
1429	struct btf_type *t;
1430	void *data, *p;
1431	__u32 data_sz;
1432	int i;
1433
1434	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1435	if (data) {
1436		*size = btf->raw_size;
1437		return data;
1438	}
1439
1440	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1441	data = calloc(1, data_sz);
1442	if (!data)
1443		return NULL;
1444	p = data;
1445
1446	memcpy(p, hdr, hdr->hdr_len);
1447	if (swap_endian)
1448		btf_bswap_hdr(p);
1449	p += hdr->hdr_len;
1450
1451	memcpy(p, btf->types_data, hdr->type_len);
1452	if (swap_endian) {
1453		for (i = 0; i < btf->nr_types; i++) {
1454			t = p + btf->type_offs[i];
1455			/* btf_bswap_type_rest() relies on native t->info, so
1456			 * we swap base type info after we swapped all the
1457			 * additional information
1458			 */
1459			if (btf_bswap_type_rest(t))
1460				goto err_out;
1461			btf_bswap_type_base(t);
1462		}
1463	}
1464	p += hdr->type_len;
1465
1466	memcpy(p, btf_strs_data(btf), hdr->str_len);
1467	p += hdr->str_len;
1468
1469	*size = data_sz;
1470	return data;
1471err_out:
1472	free(data);
1473	return NULL;
1474}
1475
1476const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1477{
1478	struct btf *btf = (struct btf *)btf_ro;
1479	__u32 data_sz;
1480	void *data;
1481
1482	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1483	if (!data)
1484		return errno = ENOMEM, NULL;
1485
1486	btf->raw_size = data_sz;
1487	if (btf->swapped_endian)
1488		btf->raw_data_swapped = data;
1489	else
1490		btf->raw_data = data;
1491	*size = data_sz;
1492	return data;
1493}
1494
1495__attribute__((alias("btf__raw_data")))
1496const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1497
1498const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1499{
1500	if (offset < btf->start_str_off)
1501		return btf__str_by_offset(btf->base_btf, offset);
1502	else if (offset - btf->start_str_off < btf->hdr->str_len)
1503		return btf_strs_data(btf) + (offset - btf->start_str_off);
1504	else
1505		return errno = EINVAL, NULL;
1506}
1507
1508const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1509{
1510	return btf__str_by_offset(btf, offset);
1511}
1512
1513struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1514{
1515	struct bpf_btf_info btf_info;
1516	__u32 len = sizeof(btf_info);
1517	__u32 last_size;
1518	struct btf *btf;
1519	void *ptr;
1520	int err;
1521
1522	/* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so
1523	 * let's start with a sane default - 4KiB here - and resize it only if
1524	 * bpf_btf_get_info_by_fd() needs a bigger buffer.
1525	 */
1526	last_size = 4096;
1527	ptr = malloc(last_size);
1528	if (!ptr)
1529		return ERR_PTR(-ENOMEM);
1530
1531	memset(&btf_info, 0, sizeof(btf_info));
1532	btf_info.btf = ptr_to_u64(ptr);
1533	btf_info.btf_size = last_size;
1534	err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1535
1536	if (!err && btf_info.btf_size > last_size) {
1537		void *temp_ptr;
1538
1539		last_size = btf_info.btf_size;
1540		temp_ptr = realloc(ptr, last_size);
1541		if (!temp_ptr) {
1542			btf = ERR_PTR(-ENOMEM);
1543			goto exit_free;
1544		}
1545		ptr = temp_ptr;
1546
1547		len = sizeof(btf_info);
1548		memset(&btf_info, 0, sizeof(btf_info));
1549		btf_info.btf = ptr_to_u64(ptr);
1550		btf_info.btf_size = last_size;
1551
1552		err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1553	}
1554
1555	if (err || btf_info.btf_size > last_size) {
1556		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1557		goto exit_free;
1558	}
1559
1560	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1561
1562exit_free:
1563	free(ptr);
1564	return btf;
1565}
1566
1567struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1568{
1569	struct btf *btf;
1570	int btf_fd;
1571
1572	btf_fd = bpf_btf_get_fd_by_id(id);
1573	if (btf_fd < 0)
1574		return libbpf_err_ptr(-errno);
1575
1576	btf = btf_get_from_fd(btf_fd, base_btf);
1577	close(btf_fd);
1578
1579	return libbpf_ptr(btf);
1580}
1581
1582struct btf *btf__load_from_kernel_by_id(__u32 id)
1583{
1584	return btf__load_from_kernel_by_id_split(id, NULL);
1585}
1586
1587static void btf_invalidate_raw_data(struct btf *btf)
1588{
1589	if (btf->raw_data) {
1590		free(btf->raw_data);
1591		btf->raw_data = NULL;
1592	}
1593	if (btf->raw_data_swapped) {
1594		free(btf->raw_data_swapped);
1595		btf->raw_data_swapped = NULL;
1596	}
1597}
1598
1599/* Ensure BTF is ready to be modified (by splitting into a three memory
1600 * regions for header, types, and strings). Also invalidate cached
1601 * raw_data, if any.
1602 */
1603static int btf_ensure_modifiable(struct btf *btf)
1604{
1605	void *hdr, *types;
1606	struct strset *set = NULL;
1607	int err = -ENOMEM;
1608
1609	if (btf_is_modifiable(btf)) {
1610		/* any BTF modification invalidates raw_data */
1611		btf_invalidate_raw_data(btf);
1612		return 0;
1613	}
1614
1615	/* split raw data into three memory regions */
1616	hdr = malloc(btf->hdr->hdr_len);
1617	types = malloc(btf->hdr->type_len);
1618	if (!hdr || !types)
1619		goto err_out;
1620
1621	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1622	memcpy(types, btf->types_data, btf->hdr->type_len);
1623
1624	/* build lookup index for all strings */
1625	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1626	if (IS_ERR(set)) {
1627		err = PTR_ERR(set);
1628		goto err_out;
1629	}
1630
1631	/* only when everything was successful, update internal state */
1632	btf->hdr = hdr;
1633	btf->types_data = types;
1634	btf->types_data_cap = btf->hdr->type_len;
1635	btf->strs_data = NULL;
1636	btf->strs_set = set;
1637	/* if BTF was created from scratch, all strings are guaranteed to be
1638	 * unique and deduplicated
1639	 */
1640	if (btf->hdr->str_len == 0)
1641		btf->strs_deduped = true;
1642	if (!btf->base_btf && btf->hdr->str_len == 1)
1643		btf->strs_deduped = true;
1644
1645	/* invalidate raw_data representation */
1646	btf_invalidate_raw_data(btf);
1647
1648	return 0;
1649
1650err_out:
1651	strset__free(set);
1652	free(hdr);
1653	free(types);
1654	return err;
1655}
1656
1657/* Find an offset in BTF string section that corresponds to a given string *s*.
1658 * Returns:
1659 *   - >0 offset into string section, if string is found;
1660 *   - -ENOENT, if string is not in the string section;
1661 *   - <0, on any other error.
1662 */
1663int btf__find_str(struct btf *btf, const char *s)
1664{
1665	int off;
1666
1667	if (btf->base_btf) {
1668		off = btf__find_str(btf->base_btf, s);
1669		if (off != -ENOENT)
1670			return off;
1671	}
1672
1673	/* BTF needs to be in a modifiable state to build string lookup index */
1674	if (btf_ensure_modifiable(btf))
1675		return libbpf_err(-ENOMEM);
1676
1677	off = strset__find_str(btf->strs_set, s);
1678	if (off < 0)
1679		return libbpf_err(off);
1680
1681	return btf->start_str_off + off;
1682}
1683
1684/* Add a string s to the BTF string section.
1685 * Returns:
1686 *   - > 0 offset into string section, on success;
1687 *   - < 0, on error.
1688 */
1689int btf__add_str(struct btf *btf, const char *s)
1690{
1691	int off;
1692
1693	if (btf->base_btf) {
1694		off = btf__find_str(btf->base_btf, s);
1695		if (off != -ENOENT)
1696			return off;
1697	}
1698
1699	if (btf_ensure_modifiable(btf))
1700		return libbpf_err(-ENOMEM);
1701
1702	off = strset__add_str(btf->strs_set, s);
1703	if (off < 0)
1704		return libbpf_err(off);
1705
1706	btf->hdr->str_len = strset__data_size(btf->strs_set);
1707
1708	return btf->start_str_off + off;
1709}
1710
1711static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1712{
1713	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1714			      btf->hdr->type_len, UINT_MAX, add_sz);
1715}
1716
1717static void btf_type_inc_vlen(struct btf_type *t)
1718{
1719	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1720}
1721
1722static int btf_commit_type(struct btf *btf, int data_sz)
1723{
1724	int err;
1725
1726	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1727	if (err)
1728		return libbpf_err(err);
1729
1730	btf->hdr->type_len += data_sz;
1731	btf->hdr->str_off += data_sz;
1732	btf->nr_types++;
1733	return btf->start_id + btf->nr_types - 1;
1734}
1735
1736struct btf_pipe {
1737	const struct btf *src;
1738	struct btf *dst;
1739	struct hashmap *str_off_map; /* map string offsets from src to dst */
1740};
1741
1742static int btf_rewrite_str(__u32 *str_off, void *ctx)
1743{
1744	struct btf_pipe *p = ctx;
1745	long mapped_off;
1746	int off, err;
1747
1748	if (!*str_off) /* nothing to do for empty strings */
1749		return 0;
1750
1751	if (p->str_off_map &&
1752	    hashmap__find(p->str_off_map, *str_off, &mapped_off)) {
1753		*str_off = mapped_off;
1754		return 0;
1755	}
1756
1757	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1758	if (off < 0)
1759		return off;
1760
1761	/* Remember string mapping from src to dst.  It avoids
1762	 * performing expensive string comparisons.
1763	 */
1764	if (p->str_off_map) {
1765		err = hashmap__append(p->str_off_map, *str_off, off);
1766		if (err)
1767			return err;
1768	}
1769
1770	*str_off = off;
1771	return 0;
1772}
1773
1774int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1775{
1776	struct btf_pipe p = { .src = src_btf, .dst = btf };
1777	struct btf_type *t;
1778	int sz, err;
1779
1780	sz = btf_type_size(src_type);
1781	if (sz < 0)
1782		return libbpf_err(sz);
1783
1784	/* deconstruct BTF, if necessary, and invalidate raw_data */
1785	if (btf_ensure_modifiable(btf))
1786		return libbpf_err(-ENOMEM);
1787
1788	t = btf_add_type_mem(btf, sz);
1789	if (!t)
1790		return libbpf_err(-ENOMEM);
1791
1792	memcpy(t, src_type, sz);
1793
1794	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1795	if (err)
1796		return libbpf_err(err);
1797
1798	return btf_commit_type(btf, sz);
1799}
1800
1801static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1802{
1803	struct btf *btf = ctx;
1804
1805	if (!*type_id) /* nothing to do for VOID references */
1806		return 0;
1807
1808	/* we haven't updated btf's type count yet, so
1809	 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1810	 * add to all newly added BTF types
1811	 */
1812	*type_id += btf->start_id + btf->nr_types - 1;
1813	return 0;
1814}
1815
1816static size_t btf_dedup_identity_hash_fn(long key, void *ctx);
1817static bool btf_dedup_equal_fn(long k1, long k2, void *ctx);
1818
1819int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1820{
1821	struct btf_pipe p = { .src = src_btf, .dst = btf };
1822	int data_sz, sz, cnt, i, err, old_strs_len;
1823	__u32 *off;
1824	void *t;
1825
1826	/* appending split BTF isn't supported yet */
1827	if (src_btf->base_btf)
1828		return libbpf_err(-ENOTSUP);
1829
1830	/* deconstruct BTF, if necessary, and invalidate raw_data */
1831	if (btf_ensure_modifiable(btf))
1832		return libbpf_err(-ENOMEM);
1833
1834	/* remember original strings section size if we have to roll back
1835	 * partial strings section changes
1836	 */
1837	old_strs_len = btf->hdr->str_len;
1838
1839	data_sz = src_btf->hdr->type_len;
1840	cnt = btf__type_cnt(src_btf) - 1;
1841
1842	/* pre-allocate enough memory for new types */
1843	t = btf_add_type_mem(btf, data_sz);
1844	if (!t)
1845		return libbpf_err(-ENOMEM);
1846
1847	/* pre-allocate enough memory for type offset index for new types */
1848	off = btf_add_type_offs_mem(btf, cnt);
1849	if (!off)
1850		return libbpf_err(-ENOMEM);
1851
1852	/* Map the string offsets from src_btf to the offsets from btf to improve performance */
1853	p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1854	if (IS_ERR(p.str_off_map))
1855		return libbpf_err(-ENOMEM);
1856
1857	/* bulk copy types data for all types from src_btf */
1858	memcpy(t, src_btf->types_data, data_sz);
1859
1860	for (i = 0; i < cnt; i++) {
1861		sz = btf_type_size(t);
1862		if (sz < 0) {
1863			/* unlikely, has to be corrupted src_btf */
1864			err = sz;
1865			goto err_out;
1866		}
1867
1868		/* fill out type ID to type offset mapping for lookups by type ID */
1869		*off = t - btf->types_data;
1870
1871		/* add, dedup, and remap strings referenced by this BTF type */
1872		err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1873		if (err)
1874			goto err_out;
1875
1876		/* remap all type IDs referenced from this BTF type */
1877		err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1878		if (err)
1879			goto err_out;
1880
1881		/* go to next type data and type offset index entry */
1882		t += sz;
1883		off++;
1884	}
1885
1886	/* Up until now any of the copied type data was effectively invisible,
1887	 * so if we exited early before this point due to error, BTF would be
1888	 * effectively unmodified. There would be extra internal memory
1889	 * pre-allocated, but it would not be available for querying.  But now
1890	 * that we've copied and rewritten all the data successfully, we can
1891	 * update type count and various internal offsets and sizes to
1892	 * "commit" the changes and made them visible to the outside world.
1893	 */
1894	btf->hdr->type_len += data_sz;
1895	btf->hdr->str_off += data_sz;
1896	btf->nr_types += cnt;
1897
1898	hashmap__free(p.str_off_map);
1899
1900	/* return type ID of the first added BTF type */
1901	return btf->start_id + btf->nr_types - cnt;
1902err_out:
1903	/* zero out preallocated memory as if it was just allocated with
1904	 * libbpf_add_mem()
1905	 */
1906	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1907	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1908
1909	/* and now restore original strings section size; types data size
1910	 * wasn't modified, so doesn't need restoring, see big comment above
1911	 */
1912	btf->hdr->str_len = old_strs_len;
1913
1914	hashmap__free(p.str_off_map);
1915
1916	return libbpf_err(err);
1917}
1918
1919/*
1920 * Append new BTF_KIND_INT type with:
1921 *   - *name* - non-empty, non-NULL type name;
1922 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1923 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1924 * Returns:
1925 *   - >0, type ID of newly added BTF type;
1926 *   - <0, on error.
1927 */
1928int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1929{
1930	struct btf_type *t;
1931	int sz, name_off;
1932
1933	/* non-empty name */
1934	if (!name || !name[0])
1935		return libbpf_err(-EINVAL);
1936	/* byte_sz must be power of 2 */
1937	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1938		return libbpf_err(-EINVAL);
1939	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1940		return libbpf_err(-EINVAL);
1941
1942	/* deconstruct BTF, if necessary, and invalidate raw_data */
1943	if (btf_ensure_modifiable(btf))
1944		return libbpf_err(-ENOMEM);
1945
1946	sz = sizeof(struct btf_type) + sizeof(int);
1947	t = btf_add_type_mem(btf, sz);
1948	if (!t)
1949		return libbpf_err(-ENOMEM);
1950
1951	/* if something goes wrong later, we might end up with an extra string,
1952	 * but that shouldn't be a problem, because BTF can't be constructed
1953	 * completely anyway and will most probably be just discarded
1954	 */
1955	name_off = btf__add_str(btf, name);
1956	if (name_off < 0)
1957		return name_off;
1958
1959	t->name_off = name_off;
1960	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1961	t->size = byte_sz;
1962	/* set INT info, we don't allow setting legacy bit offset/size */
1963	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1964
1965	return btf_commit_type(btf, sz);
1966}
1967
1968/*
1969 * Append new BTF_KIND_FLOAT type with:
1970 *   - *name* - non-empty, non-NULL type name;
1971 *   - *sz* - size of the type, in bytes;
1972 * Returns:
1973 *   - >0, type ID of newly added BTF type;
1974 *   - <0, on error.
1975 */
1976int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1977{
1978	struct btf_type *t;
1979	int sz, name_off;
1980
1981	/* non-empty name */
1982	if (!name || !name[0])
1983		return libbpf_err(-EINVAL);
1984
1985	/* byte_sz must be one of the explicitly allowed values */
1986	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1987	    byte_sz != 16)
1988		return libbpf_err(-EINVAL);
1989
1990	if (btf_ensure_modifiable(btf))
1991		return libbpf_err(-ENOMEM);
1992
1993	sz = sizeof(struct btf_type);
1994	t = btf_add_type_mem(btf, sz);
1995	if (!t)
1996		return libbpf_err(-ENOMEM);
1997
1998	name_off = btf__add_str(btf, name);
1999	if (name_off < 0)
2000		return name_off;
2001
2002	t->name_off = name_off;
2003	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
2004	t->size = byte_sz;
2005
2006	return btf_commit_type(btf, sz);
2007}
2008
2009/* it's completely legal to append BTF types with type IDs pointing forward to
2010 * types that haven't been appended yet, so we only make sure that id looks
2011 * sane, we can't guarantee that ID will always be valid
2012 */
2013static int validate_type_id(int id)
2014{
2015	if (id < 0 || id > BTF_MAX_NR_TYPES)
2016		return -EINVAL;
2017	return 0;
2018}
2019
2020/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
2021static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
2022{
2023	struct btf_type *t;
2024	int sz, name_off = 0;
2025
2026	if (validate_type_id(ref_type_id))
2027		return libbpf_err(-EINVAL);
2028
2029	if (btf_ensure_modifiable(btf))
2030		return libbpf_err(-ENOMEM);
2031
2032	sz = sizeof(struct btf_type);
2033	t = btf_add_type_mem(btf, sz);
2034	if (!t)
2035		return libbpf_err(-ENOMEM);
2036
2037	if (name && name[0]) {
2038		name_off = btf__add_str(btf, name);
2039		if (name_off < 0)
2040			return name_off;
2041	}
2042
2043	t->name_off = name_off;
2044	t->info = btf_type_info(kind, 0, 0);
2045	t->type = ref_type_id;
2046
2047	return btf_commit_type(btf, sz);
2048}
2049
2050/*
2051 * Append new BTF_KIND_PTR type with:
2052 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2053 * Returns:
2054 *   - >0, type ID of newly added BTF type;
2055 *   - <0, on error.
2056 */
2057int btf__add_ptr(struct btf *btf, int ref_type_id)
2058{
2059	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
2060}
2061
2062/*
2063 * Append new BTF_KIND_ARRAY type with:
2064 *   - *index_type_id* - type ID of the type describing array index;
2065 *   - *elem_type_id* - type ID of the type describing array element;
2066 *   - *nr_elems* - the size of the array;
2067 * Returns:
2068 *   - >0, type ID of newly added BTF type;
2069 *   - <0, on error.
2070 */
2071int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
2072{
2073	struct btf_type *t;
2074	struct btf_array *a;
2075	int sz;
2076
2077	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
2078		return libbpf_err(-EINVAL);
2079
2080	if (btf_ensure_modifiable(btf))
2081		return libbpf_err(-ENOMEM);
2082
2083	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
2084	t = btf_add_type_mem(btf, sz);
2085	if (!t)
2086		return libbpf_err(-ENOMEM);
2087
2088	t->name_off = 0;
2089	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
2090	t->size = 0;
2091
2092	a = btf_array(t);
2093	a->type = elem_type_id;
2094	a->index_type = index_type_id;
2095	a->nelems = nr_elems;
2096
2097	return btf_commit_type(btf, sz);
2098}
2099
2100/* generic STRUCT/UNION append function */
2101static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
2102{
2103	struct btf_type *t;
2104	int sz, name_off = 0;
2105
2106	if (btf_ensure_modifiable(btf))
2107		return libbpf_err(-ENOMEM);
2108
2109	sz = sizeof(struct btf_type);
2110	t = btf_add_type_mem(btf, sz);
2111	if (!t)
2112		return libbpf_err(-ENOMEM);
2113
2114	if (name && name[0]) {
2115		name_off = btf__add_str(btf, name);
2116		if (name_off < 0)
2117			return name_off;
2118	}
2119
2120	/* start out with vlen=0 and no kflag; this will be adjusted when
2121	 * adding each member
2122	 */
2123	t->name_off = name_off;
2124	t->info = btf_type_info(kind, 0, 0);
2125	t->size = bytes_sz;
2126
2127	return btf_commit_type(btf, sz);
2128}
2129
2130/*
2131 * Append new BTF_KIND_STRUCT type with:
2132 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
2133 *   - *byte_sz* - size of the struct, in bytes;
2134 *
2135 * Struct initially has no fields in it. Fields can be added by
2136 * btf__add_field() right after btf__add_struct() succeeds.
2137 *
2138 * Returns:
2139 *   - >0, type ID of newly added BTF type;
2140 *   - <0, on error.
2141 */
2142int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
2143{
2144	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
2145}
2146
2147/*
2148 * Append new BTF_KIND_UNION type with:
2149 *   - *name* - name of the union, can be NULL or empty for anonymous union;
2150 *   - *byte_sz* - size of the union, in bytes;
2151 *
2152 * Union initially has no fields in it. Fields can be added by
2153 * btf__add_field() right after btf__add_union() succeeds. All fields
2154 * should have *bit_offset* of 0.
2155 *
2156 * Returns:
2157 *   - >0, type ID of newly added BTF type;
2158 *   - <0, on error.
2159 */
2160int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
2161{
2162	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
2163}
2164
2165static struct btf_type *btf_last_type(struct btf *btf)
2166{
2167	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
2168}
2169
2170/*
2171 * Append new field for the current STRUCT/UNION type with:
2172 *   - *name* - name of the field, can be NULL or empty for anonymous field;
2173 *   - *type_id* - type ID for the type describing field type;
2174 *   - *bit_offset* - bit offset of the start of the field within struct/union;
2175 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2176 * Returns:
2177 *   -  0, on success;
2178 *   - <0, on error.
2179 */
2180int btf__add_field(struct btf *btf, const char *name, int type_id,
2181		   __u32 bit_offset, __u32 bit_size)
2182{
2183	struct btf_type *t;
2184	struct btf_member *m;
2185	bool is_bitfield;
2186	int sz, name_off = 0;
2187
2188	/* last type should be union/struct */
2189	if (btf->nr_types == 0)
2190		return libbpf_err(-EINVAL);
2191	t = btf_last_type(btf);
2192	if (!btf_is_composite(t))
2193		return libbpf_err(-EINVAL);
2194
2195	if (validate_type_id(type_id))
2196		return libbpf_err(-EINVAL);
2197	/* best-effort bit field offset/size enforcement */
2198	is_bitfield = bit_size || (bit_offset % 8 != 0);
2199	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2200		return libbpf_err(-EINVAL);
2201
2202	/* only offset 0 is allowed for unions */
2203	if (btf_is_union(t) && bit_offset)
2204		return libbpf_err(-EINVAL);
2205
2206	/* decompose and invalidate raw data */
2207	if (btf_ensure_modifiable(btf))
2208		return libbpf_err(-ENOMEM);
2209
2210	sz = sizeof(struct btf_member);
2211	m = btf_add_type_mem(btf, sz);
2212	if (!m)
2213		return libbpf_err(-ENOMEM);
2214
2215	if (name && name[0]) {
2216		name_off = btf__add_str(btf, name);
2217		if (name_off < 0)
2218			return name_off;
2219	}
2220
2221	m->name_off = name_off;
2222	m->type = type_id;
2223	m->offset = bit_offset | (bit_size << 24);
2224
2225	/* btf_add_type_mem can invalidate t pointer */
2226	t = btf_last_type(btf);
2227	/* update parent type's vlen and kflag */
2228	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2229
2230	btf->hdr->type_len += sz;
2231	btf->hdr->str_off += sz;
2232	return 0;
2233}
2234
2235static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2236			       bool is_signed, __u8 kind)
2237{
2238	struct btf_type *t;
2239	int sz, name_off = 0;
2240
2241	/* byte_sz must be power of 2 */
2242	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2243		return libbpf_err(-EINVAL);
2244
2245	if (btf_ensure_modifiable(btf))
2246		return libbpf_err(-ENOMEM);
2247
2248	sz = sizeof(struct btf_type);
2249	t = btf_add_type_mem(btf, sz);
2250	if (!t)
2251		return libbpf_err(-ENOMEM);
2252
2253	if (name && name[0]) {
2254		name_off = btf__add_str(btf, name);
2255		if (name_off < 0)
2256			return name_off;
2257	}
2258
2259	/* start out with vlen=0; it will be adjusted when adding enum values */
2260	t->name_off = name_off;
2261	t->info = btf_type_info(kind, 0, is_signed);
2262	t->size = byte_sz;
2263
2264	return btf_commit_type(btf, sz);
2265}
2266
2267/*
2268 * Append new BTF_KIND_ENUM type with:
2269 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2270 *   - *byte_sz* - size of the enum, in bytes.
2271 *
2272 * Enum initially has no enum values in it (and corresponds to enum forward
2273 * declaration). Enumerator values can be added by btf__add_enum_value()
2274 * immediately after btf__add_enum() succeeds.
2275 *
2276 * Returns:
2277 *   - >0, type ID of newly added BTF type;
2278 *   - <0, on error.
2279 */
2280int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2281{
2282	/*
2283	 * set the signedness to be unsigned, it will change to signed
2284	 * if any later enumerator is negative.
2285	 */
2286	return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2287}
2288
2289/*
2290 * Append new enum value for the current ENUM type with:
2291 *   - *name* - name of the enumerator value, can't be NULL or empty;
2292 *   - *value* - integer value corresponding to enum value *name*;
2293 * Returns:
2294 *   -  0, on success;
2295 *   - <0, on error.
2296 */
2297int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2298{
2299	struct btf_type *t;
2300	struct btf_enum *v;
2301	int sz, name_off;
2302
2303	/* last type should be BTF_KIND_ENUM */
2304	if (btf->nr_types == 0)
2305		return libbpf_err(-EINVAL);
2306	t = btf_last_type(btf);
2307	if (!btf_is_enum(t))
2308		return libbpf_err(-EINVAL);
2309
2310	/* non-empty name */
2311	if (!name || !name[0])
2312		return libbpf_err(-EINVAL);
2313	if (value < INT_MIN || value > UINT_MAX)
2314		return libbpf_err(-E2BIG);
2315
2316	/* decompose and invalidate raw data */
2317	if (btf_ensure_modifiable(btf))
2318		return libbpf_err(-ENOMEM);
2319
2320	sz = sizeof(struct btf_enum);
2321	v = btf_add_type_mem(btf, sz);
2322	if (!v)
2323		return libbpf_err(-ENOMEM);
2324
2325	name_off = btf__add_str(btf, name);
2326	if (name_off < 0)
2327		return name_off;
2328
2329	v->name_off = name_off;
2330	v->val = value;
2331
2332	/* update parent type's vlen */
2333	t = btf_last_type(btf);
2334	btf_type_inc_vlen(t);
2335
2336	/* if negative value, set signedness to signed */
2337	if (value < 0)
2338		t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2339
2340	btf->hdr->type_len += sz;
2341	btf->hdr->str_off += sz;
2342	return 0;
2343}
2344
2345/*
2346 * Append new BTF_KIND_ENUM64 type with:
2347 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2348 *   - *byte_sz* - size of the enum, in bytes.
2349 *   - *is_signed* - whether the enum values are signed or not;
2350 *
2351 * Enum initially has no enum values in it (and corresponds to enum forward
2352 * declaration). Enumerator values can be added by btf__add_enum64_value()
2353 * immediately after btf__add_enum64() succeeds.
2354 *
2355 * Returns:
2356 *   - >0, type ID of newly added BTF type;
2357 *   - <0, on error.
2358 */
2359int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2360		    bool is_signed)
2361{
2362	return btf_add_enum_common(btf, name, byte_sz, is_signed,
2363				   BTF_KIND_ENUM64);
2364}
2365
2366/*
2367 * Append new enum value for the current ENUM64 type with:
2368 *   - *name* - name of the enumerator value, can't be NULL or empty;
2369 *   - *value* - integer value corresponding to enum value *name*;
2370 * Returns:
2371 *   -  0, on success;
2372 *   - <0, on error.
2373 */
2374int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2375{
2376	struct btf_enum64 *v;
2377	struct btf_type *t;
2378	int sz, name_off;
2379
2380	/* last type should be BTF_KIND_ENUM64 */
2381	if (btf->nr_types == 0)
2382		return libbpf_err(-EINVAL);
2383	t = btf_last_type(btf);
2384	if (!btf_is_enum64(t))
2385		return libbpf_err(-EINVAL);
2386
2387	/* non-empty name */
2388	if (!name || !name[0])
2389		return libbpf_err(-EINVAL);
2390
2391	/* decompose and invalidate raw data */
2392	if (btf_ensure_modifiable(btf))
2393		return libbpf_err(-ENOMEM);
2394
2395	sz = sizeof(struct btf_enum64);
2396	v = btf_add_type_mem(btf, sz);
2397	if (!v)
2398		return libbpf_err(-ENOMEM);
2399
2400	name_off = btf__add_str(btf, name);
2401	if (name_off < 0)
2402		return name_off;
2403
2404	v->name_off = name_off;
2405	v->val_lo32 = (__u32)value;
2406	v->val_hi32 = value >> 32;
2407
2408	/* update parent type's vlen */
2409	t = btf_last_type(btf);
2410	btf_type_inc_vlen(t);
2411
2412	btf->hdr->type_len += sz;
2413	btf->hdr->str_off += sz;
2414	return 0;
2415}
2416
2417/*
2418 * Append new BTF_KIND_FWD type with:
2419 *   - *name*, non-empty/non-NULL name;
2420 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2421 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2422 * Returns:
2423 *   - >0, type ID of newly added BTF type;
2424 *   - <0, on error.
2425 */
2426int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2427{
2428	if (!name || !name[0])
2429		return libbpf_err(-EINVAL);
2430
2431	switch (fwd_kind) {
2432	case BTF_FWD_STRUCT:
2433	case BTF_FWD_UNION: {
2434		struct btf_type *t;
2435		int id;
2436
2437		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2438		if (id <= 0)
2439			return id;
2440		t = btf_type_by_id(btf, id);
2441		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2442		return id;
2443	}
2444	case BTF_FWD_ENUM:
2445		/* enum forward in BTF currently is just an enum with no enum
2446		 * values; we also assume a standard 4-byte size for it
2447		 */
2448		return btf__add_enum(btf, name, sizeof(int));
2449	default:
2450		return libbpf_err(-EINVAL);
2451	}
2452}
2453
2454/*
2455 * Append new BTF_KING_TYPEDEF type with:
2456 *   - *name*, non-empty/non-NULL name;
2457 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2458 * Returns:
2459 *   - >0, type ID of newly added BTF type;
2460 *   - <0, on error.
2461 */
2462int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2463{
2464	if (!name || !name[0])
2465		return libbpf_err(-EINVAL);
2466
2467	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2468}
2469
2470/*
2471 * Append new BTF_KIND_VOLATILE type with:
2472 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2473 * Returns:
2474 *   - >0, type ID of newly added BTF type;
2475 *   - <0, on error.
2476 */
2477int btf__add_volatile(struct btf *btf, int ref_type_id)
2478{
2479	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2480}
2481
2482/*
2483 * Append new BTF_KIND_CONST type with:
2484 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2485 * Returns:
2486 *   - >0, type ID of newly added BTF type;
2487 *   - <0, on error.
2488 */
2489int btf__add_const(struct btf *btf, int ref_type_id)
2490{
2491	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2492}
2493
2494/*
2495 * Append new BTF_KIND_RESTRICT type with:
2496 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2497 * Returns:
2498 *   - >0, type ID of newly added BTF type;
2499 *   - <0, on error.
2500 */
2501int btf__add_restrict(struct btf *btf, int ref_type_id)
2502{
2503	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2504}
2505
2506/*
2507 * Append new BTF_KIND_TYPE_TAG type with:
2508 *   - *value*, non-empty/non-NULL tag value;
2509 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2510 * Returns:
2511 *   - >0, type ID of newly added BTF type;
2512 *   - <0, on error.
2513 */
2514int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2515{
2516	if (!value || !value[0])
2517		return libbpf_err(-EINVAL);
2518
2519	return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2520}
2521
2522/*
2523 * Append new BTF_KIND_FUNC type with:
2524 *   - *name*, non-empty/non-NULL name;
2525 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2526 * Returns:
2527 *   - >0, type ID of newly added BTF type;
2528 *   - <0, on error.
2529 */
2530int btf__add_func(struct btf *btf, const char *name,
2531		  enum btf_func_linkage linkage, int proto_type_id)
2532{
2533	int id;
2534
2535	if (!name || !name[0])
2536		return libbpf_err(-EINVAL);
2537	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2538	    linkage != BTF_FUNC_EXTERN)
2539		return libbpf_err(-EINVAL);
2540
2541	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2542	if (id > 0) {
2543		struct btf_type *t = btf_type_by_id(btf, id);
2544
2545		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2546	}
2547	return libbpf_err(id);
2548}
2549
2550/*
2551 * Append new BTF_KIND_FUNC_PROTO with:
2552 *   - *ret_type_id* - type ID for return result of a function.
2553 *
2554 * Function prototype initially has no arguments, but they can be added by
2555 * btf__add_func_param() one by one, immediately after
2556 * btf__add_func_proto() succeeded.
2557 *
2558 * Returns:
2559 *   - >0, type ID of newly added BTF type;
2560 *   - <0, on error.
2561 */
2562int btf__add_func_proto(struct btf *btf, int ret_type_id)
2563{
2564	struct btf_type *t;
2565	int sz;
2566
2567	if (validate_type_id(ret_type_id))
2568		return libbpf_err(-EINVAL);
2569
2570	if (btf_ensure_modifiable(btf))
2571		return libbpf_err(-ENOMEM);
2572
2573	sz = sizeof(struct btf_type);
2574	t = btf_add_type_mem(btf, sz);
2575	if (!t)
2576		return libbpf_err(-ENOMEM);
2577
2578	/* start out with vlen=0; this will be adjusted when adding enum
2579	 * values, if necessary
2580	 */
2581	t->name_off = 0;
2582	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2583	t->type = ret_type_id;
2584
2585	return btf_commit_type(btf, sz);
2586}
2587
2588/*
2589 * Append new function parameter for current FUNC_PROTO type with:
2590 *   - *name* - parameter name, can be NULL or empty;
2591 *   - *type_id* - type ID describing the type of the parameter.
2592 * Returns:
2593 *   -  0, on success;
2594 *   - <0, on error.
2595 */
2596int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2597{
2598	struct btf_type *t;
2599	struct btf_param *p;
2600	int sz, name_off = 0;
2601
2602	if (validate_type_id(type_id))
2603		return libbpf_err(-EINVAL);
2604
2605	/* last type should be BTF_KIND_FUNC_PROTO */
2606	if (btf->nr_types == 0)
2607		return libbpf_err(-EINVAL);
2608	t = btf_last_type(btf);
2609	if (!btf_is_func_proto(t))
2610		return libbpf_err(-EINVAL);
2611
2612	/* decompose and invalidate raw data */
2613	if (btf_ensure_modifiable(btf))
2614		return libbpf_err(-ENOMEM);
2615
2616	sz = sizeof(struct btf_param);
2617	p = btf_add_type_mem(btf, sz);
2618	if (!p)
2619		return libbpf_err(-ENOMEM);
2620
2621	if (name && name[0]) {
2622		name_off = btf__add_str(btf, name);
2623		if (name_off < 0)
2624			return name_off;
2625	}
2626
2627	p->name_off = name_off;
2628	p->type = type_id;
2629
2630	/* update parent type's vlen */
2631	t = btf_last_type(btf);
2632	btf_type_inc_vlen(t);
2633
2634	btf->hdr->type_len += sz;
2635	btf->hdr->str_off += sz;
2636	return 0;
2637}
2638
2639/*
2640 * Append new BTF_KIND_VAR type with:
2641 *   - *name* - non-empty/non-NULL name;
2642 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2643 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2644 *   - *type_id* - type ID of the type describing the type of the variable.
2645 * Returns:
2646 *   - >0, type ID of newly added BTF type;
2647 *   - <0, on error.
2648 */
2649int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2650{
2651	struct btf_type *t;
2652	struct btf_var *v;
2653	int sz, name_off;
2654
2655	/* non-empty name */
2656	if (!name || !name[0])
2657		return libbpf_err(-EINVAL);
2658	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2659	    linkage != BTF_VAR_GLOBAL_EXTERN)
2660		return libbpf_err(-EINVAL);
2661	if (validate_type_id(type_id))
2662		return libbpf_err(-EINVAL);
2663
2664	/* deconstruct BTF, if necessary, and invalidate raw_data */
2665	if (btf_ensure_modifiable(btf))
2666		return libbpf_err(-ENOMEM);
2667
2668	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2669	t = btf_add_type_mem(btf, sz);
2670	if (!t)
2671		return libbpf_err(-ENOMEM);
2672
2673	name_off = btf__add_str(btf, name);
2674	if (name_off < 0)
2675		return name_off;
2676
2677	t->name_off = name_off;
2678	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2679	t->type = type_id;
2680
2681	v = btf_var(t);
2682	v->linkage = linkage;
2683
2684	return btf_commit_type(btf, sz);
2685}
2686
2687/*
2688 * Append new BTF_KIND_DATASEC type with:
2689 *   - *name* - non-empty/non-NULL name;
2690 *   - *byte_sz* - data section size, in bytes.
2691 *
2692 * Data section is initially empty. Variables info can be added with
2693 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2694 *
2695 * Returns:
2696 *   - >0, type ID of newly added BTF type;
2697 *   - <0, on error.
2698 */
2699int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2700{
2701	struct btf_type *t;
2702	int sz, name_off;
2703
2704	/* non-empty name */
2705	if (!name || !name[0])
2706		return libbpf_err(-EINVAL);
2707
2708	if (btf_ensure_modifiable(btf))
2709		return libbpf_err(-ENOMEM);
2710
2711	sz = sizeof(struct btf_type);
2712	t = btf_add_type_mem(btf, sz);
2713	if (!t)
2714		return libbpf_err(-ENOMEM);
2715
2716	name_off = btf__add_str(btf, name);
2717	if (name_off < 0)
2718		return name_off;
2719
2720	/* start with vlen=0, which will be update as var_secinfos are added */
2721	t->name_off = name_off;
2722	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2723	t->size = byte_sz;
2724
2725	return btf_commit_type(btf, sz);
2726}
2727
2728/*
2729 * Append new data section variable information entry for current DATASEC type:
2730 *   - *var_type_id* - type ID, describing type of the variable;
2731 *   - *offset* - variable offset within data section, in bytes;
2732 *   - *byte_sz* - variable size, in bytes.
2733 *
2734 * Returns:
2735 *   -  0, on success;
2736 *   - <0, on error.
2737 */
2738int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2739{
2740	struct btf_type *t;
2741	struct btf_var_secinfo *v;
2742	int sz;
2743
2744	/* last type should be BTF_KIND_DATASEC */
2745	if (btf->nr_types == 0)
2746		return libbpf_err(-EINVAL);
2747	t = btf_last_type(btf);
2748	if (!btf_is_datasec(t))
2749		return libbpf_err(-EINVAL);
2750
2751	if (validate_type_id(var_type_id))
2752		return libbpf_err(-EINVAL);
2753
2754	/* decompose and invalidate raw data */
2755	if (btf_ensure_modifiable(btf))
2756		return libbpf_err(-ENOMEM);
2757
2758	sz = sizeof(struct btf_var_secinfo);
2759	v = btf_add_type_mem(btf, sz);
2760	if (!v)
2761		return libbpf_err(-ENOMEM);
2762
2763	v->type = var_type_id;
2764	v->offset = offset;
2765	v->size = byte_sz;
2766
2767	/* update parent type's vlen */
2768	t = btf_last_type(btf);
2769	btf_type_inc_vlen(t);
2770
2771	btf->hdr->type_len += sz;
2772	btf->hdr->str_off += sz;
2773	return 0;
2774}
2775
2776/*
2777 * Append new BTF_KIND_DECL_TAG type with:
2778 *   - *value* - non-empty/non-NULL string;
2779 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2780 *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2781 *     member or function argument index;
2782 * Returns:
2783 *   - >0, type ID of newly added BTF type;
2784 *   - <0, on error.
2785 */
2786int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2787		 int component_idx)
2788{
2789	struct btf_type *t;
2790	int sz, value_off;
2791
2792	if (!value || !value[0] || component_idx < -1)
2793		return libbpf_err(-EINVAL);
2794
2795	if (validate_type_id(ref_type_id))
2796		return libbpf_err(-EINVAL);
2797
2798	if (btf_ensure_modifiable(btf))
2799		return libbpf_err(-ENOMEM);
2800
2801	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2802	t = btf_add_type_mem(btf, sz);
2803	if (!t)
2804		return libbpf_err(-ENOMEM);
2805
2806	value_off = btf__add_str(btf, value);
2807	if (value_off < 0)
2808		return value_off;
2809
2810	t->name_off = value_off;
2811	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2812	t->type = ref_type_id;
2813	btf_decl_tag(t)->component_idx = component_idx;
2814
2815	return btf_commit_type(btf, sz);
2816}
2817
2818struct btf_ext_sec_setup_param {
2819	__u32 off;
2820	__u32 len;
2821	__u32 min_rec_size;
2822	struct btf_ext_info *ext_info;
2823	const char *desc;
2824};
2825
2826static int btf_ext_setup_info(struct btf_ext *btf_ext,
2827			      struct btf_ext_sec_setup_param *ext_sec)
2828{
2829	const struct btf_ext_info_sec *sinfo;
2830	struct btf_ext_info *ext_info;
2831	__u32 info_left, record_size;
2832	size_t sec_cnt = 0;
2833	/* The start of the info sec (including the __u32 record_size). */
2834	void *info;
2835
2836	if (ext_sec->len == 0)
2837		return 0;
2838
2839	if (ext_sec->off & 0x03) {
2840		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2841		     ext_sec->desc);
2842		return -EINVAL;
2843	}
2844
2845	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2846	info_left = ext_sec->len;
2847
2848	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2849		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2850			 ext_sec->desc, ext_sec->off, ext_sec->len);
2851		return -EINVAL;
2852	}
2853
2854	/* At least a record size */
2855	if (info_left < sizeof(__u32)) {
2856		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2857		return -EINVAL;
2858	}
2859
2860	/* The record size needs to meet the minimum standard */
2861	record_size = *(__u32 *)info;
2862	if (record_size < ext_sec->min_rec_size ||
2863	    record_size & 0x03) {
2864		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2865			 ext_sec->desc, record_size);
2866		return -EINVAL;
2867	}
2868
2869	sinfo = info + sizeof(__u32);
2870	info_left -= sizeof(__u32);
2871
2872	/* If no records, return failure now so .BTF.ext won't be used. */
2873	if (!info_left) {
2874		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2875		return -EINVAL;
2876	}
2877
2878	while (info_left) {
2879		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2880		__u64 total_record_size;
2881		__u32 num_records;
2882
2883		if (info_left < sec_hdrlen) {
2884			pr_debug("%s section header is not found in .BTF.ext\n",
2885			     ext_sec->desc);
2886			return -EINVAL;
2887		}
2888
2889		num_records = sinfo->num_info;
2890		if (num_records == 0) {
2891			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2892			     ext_sec->desc);
2893			return -EINVAL;
2894		}
2895
2896		total_record_size = sec_hdrlen + (__u64)num_records * record_size;
2897		if (info_left < total_record_size) {
2898			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2899			     ext_sec->desc);
2900			return -EINVAL;
2901		}
2902
2903		info_left -= total_record_size;
2904		sinfo = (void *)sinfo + total_record_size;
2905		sec_cnt++;
2906	}
2907
2908	ext_info = ext_sec->ext_info;
2909	ext_info->len = ext_sec->len - sizeof(__u32);
2910	ext_info->rec_size = record_size;
2911	ext_info->info = info + sizeof(__u32);
2912	ext_info->sec_cnt = sec_cnt;
2913
2914	return 0;
2915}
2916
2917static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2918{
2919	struct btf_ext_sec_setup_param param = {
2920		.off = btf_ext->hdr->func_info_off,
2921		.len = btf_ext->hdr->func_info_len,
2922		.min_rec_size = sizeof(struct bpf_func_info_min),
2923		.ext_info = &btf_ext->func_info,
2924		.desc = "func_info"
2925	};
2926
2927	return btf_ext_setup_info(btf_ext, &param);
2928}
2929
2930static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2931{
2932	struct btf_ext_sec_setup_param param = {
2933		.off = btf_ext->hdr->line_info_off,
2934		.len = btf_ext->hdr->line_info_len,
2935		.min_rec_size = sizeof(struct bpf_line_info_min),
2936		.ext_info = &btf_ext->line_info,
2937		.desc = "line_info",
2938	};
2939
2940	return btf_ext_setup_info(btf_ext, &param);
2941}
2942
2943static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2944{
2945	struct btf_ext_sec_setup_param param = {
2946		.off = btf_ext->hdr->core_relo_off,
2947		.len = btf_ext->hdr->core_relo_len,
2948		.min_rec_size = sizeof(struct bpf_core_relo),
2949		.ext_info = &btf_ext->core_relo_info,
2950		.desc = "core_relo",
2951	};
2952
2953	return btf_ext_setup_info(btf_ext, &param);
2954}
2955
2956static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2957{
2958	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2959
2960	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2961	    data_size < hdr->hdr_len) {
2962		pr_debug("BTF.ext header not found");
2963		return -EINVAL;
2964	}
2965
2966	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2967		pr_warn("BTF.ext in non-native endianness is not supported\n");
2968		return -ENOTSUP;
2969	} else if (hdr->magic != BTF_MAGIC) {
2970		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2971		return -EINVAL;
2972	}
2973
2974	if (hdr->version != BTF_VERSION) {
2975		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2976		return -ENOTSUP;
2977	}
2978
2979	if (hdr->flags) {
2980		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2981		return -ENOTSUP;
2982	}
2983
2984	if (data_size == hdr->hdr_len) {
2985		pr_debug("BTF.ext has no data\n");
2986		return -EINVAL;
2987	}
2988
2989	return 0;
2990}
2991
2992void btf_ext__free(struct btf_ext *btf_ext)
2993{
2994	if (IS_ERR_OR_NULL(btf_ext))
2995		return;
2996	free(btf_ext->func_info.sec_idxs);
2997	free(btf_ext->line_info.sec_idxs);
2998	free(btf_ext->core_relo_info.sec_idxs);
2999	free(btf_ext->data);
3000	free(btf_ext);
3001}
3002
3003struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
3004{
3005	struct btf_ext *btf_ext;
3006	int err;
3007
3008	btf_ext = calloc(1, sizeof(struct btf_ext));
3009	if (!btf_ext)
3010		return libbpf_err_ptr(-ENOMEM);
3011
3012	btf_ext->data_size = size;
3013	btf_ext->data = malloc(size);
3014	if (!btf_ext->data) {
3015		err = -ENOMEM;
3016		goto done;
3017	}
3018	memcpy(btf_ext->data, data, size);
3019
3020	err = btf_ext_parse_hdr(btf_ext->data, size);
3021	if (err)
3022		goto done;
3023
3024	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
3025		err = -EINVAL;
3026		goto done;
3027	}
3028
3029	err = btf_ext_setup_func_info(btf_ext);
3030	if (err)
3031		goto done;
3032
3033	err = btf_ext_setup_line_info(btf_ext);
3034	if (err)
3035		goto done;
3036
3037	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3038		goto done; /* skip core relos parsing */
3039
3040	err = btf_ext_setup_core_relos(btf_ext);
3041	if (err)
3042		goto done;
3043
3044done:
3045	if (err) {
3046		btf_ext__free(btf_ext);
3047		return libbpf_err_ptr(err);
3048	}
3049
3050	return btf_ext;
3051}
3052
3053const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size)
3054{
3055	*size = btf_ext->data_size;
3056	return btf_ext->data;
3057}
3058
3059__attribute__((alias("btf_ext__raw_data")))
3060const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size);
3061
3062
3063struct btf_dedup;
3064
3065static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
3066static void btf_dedup_free(struct btf_dedup *d);
3067static int btf_dedup_prep(struct btf_dedup *d);
3068static int btf_dedup_strings(struct btf_dedup *d);
3069static int btf_dedup_prim_types(struct btf_dedup *d);
3070static int btf_dedup_struct_types(struct btf_dedup *d);
3071static int btf_dedup_ref_types(struct btf_dedup *d);
3072static int btf_dedup_resolve_fwds(struct btf_dedup *d);
3073static int btf_dedup_compact_types(struct btf_dedup *d);
3074static int btf_dedup_remap_types(struct btf_dedup *d);
3075
3076/*
3077 * Deduplicate BTF types and strings.
3078 *
3079 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
3080 * section with all BTF type descriptors and string data. It overwrites that
3081 * memory in-place with deduplicated types and strings without any loss of
3082 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
3083 * is provided, all the strings referenced from .BTF.ext section are honored
3084 * and updated to point to the right offsets after deduplication.
3085 *
3086 * If function returns with error, type/string data might be garbled and should
3087 * be discarded.
3088 *
3089 * More verbose and detailed description of both problem btf_dedup is solving,
3090 * as well as solution could be found at:
3091 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
3092 *
3093 * Problem description and justification
3094 * =====================================
3095 *
3096 * BTF type information is typically emitted either as a result of conversion
3097 * from DWARF to BTF or directly by compiler. In both cases, each compilation
3098 * unit contains information about a subset of all the types that are used
3099 * in an application. These subsets are frequently overlapping and contain a lot
3100 * of duplicated information when later concatenated together into a single
3101 * binary. This algorithm ensures that each unique type is represented by single
3102 * BTF type descriptor, greatly reducing resulting size of BTF data.
3103 *
3104 * Compilation unit isolation and subsequent duplication of data is not the only
3105 * problem. The same type hierarchy (e.g., struct and all the type that struct
3106 * references) in different compilation units can be represented in BTF to
3107 * various degrees of completeness (or, rather, incompleteness) due to
3108 * struct/union forward declarations.
3109 *
3110 * Let's take a look at an example, that we'll use to better understand the
3111 * problem (and solution). Suppose we have two compilation units, each using
3112 * same `struct S`, but each of them having incomplete type information about
3113 * struct's fields:
3114 *
3115 * // CU #1:
3116 * struct S;
3117 * struct A {
3118 *	int a;
3119 *	struct A* self;
3120 *	struct S* parent;
3121 * };
3122 * struct B;
3123 * struct S {
3124 *	struct A* a_ptr;
3125 *	struct B* b_ptr;
3126 * };
3127 *
3128 * // CU #2:
3129 * struct S;
3130 * struct A;
3131 * struct B {
3132 *	int b;
3133 *	struct B* self;
3134 *	struct S* parent;
3135 * };
3136 * struct S {
3137 *	struct A* a_ptr;
3138 *	struct B* b_ptr;
3139 * };
3140 *
3141 * In case of CU #1, BTF data will know only that `struct B` exist (but no
3142 * more), but will know the complete type information about `struct A`. While
3143 * for CU #2, it will know full type information about `struct B`, but will
3144 * only know about forward declaration of `struct A` (in BTF terms, it will
3145 * have `BTF_KIND_FWD` type descriptor with name `B`).
3146 *
3147 * This compilation unit isolation means that it's possible that there is no
3148 * single CU with complete type information describing structs `S`, `A`, and
3149 * `B`. Also, we might get tons of duplicated and redundant type information.
3150 *
3151 * Additional complication we need to keep in mind comes from the fact that
3152 * types, in general, can form graphs containing cycles, not just DAGs.
3153 *
3154 * While algorithm does deduplication, it also merges and resolves type
3155 * information (unless disabled throught `struct btf_opts`), whenever possible.
3156 * E.g., in the example above with two compilation units having partial type
3157 * information for structs `A` and `B`, the output of algorithm will emit
3158 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
3159 * (as well as type information for `int` and pointers), as if they were defined
3160 * in a single compilation unit as:
3161 *
3162 * struct A {
3163 *	int a;
3164 *	struct A* self;
3165 *	struct S* parent;
3166 * };
3167 * struct B {
3168 *	int b;
3169 *	struct B* self;
3170 *	struct S* parent;
3171 * };
3172 * struct S {
3173 *	struct A* a_ptr;
3174 *	struct B* b_ptr;
3175 * };
3176 *
3177 * Algorithm summary
3178 * =================
3179 *
3180 * Algorithm completes its work in 7 separate passes:
3181 *
3182 * 1. Strings deduplication.
3183 * 2. Primitive types deduplication (int, enum, fwd).
3184 * 3. Struct/union types deduplication.
3185 * 4. Resolve unambiguous forward declarations.
3186 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3187 *    protos, and const/volatile/restrict modifiers).
3188 * 6. Types compaction.
3189 * 7. Types remapping.
3190 *
3191 * Algorithm determines canonical type descriptor, which is a single
3192 * representative type for each truly unique type. This canonical type is the
3193 * one that will go into final deduplicated BTF type information. For
3194 * struct/unions, it is also the type that algorithm will merge additional type
3195 * information into (while resolving FWDs), as it discovers it from data in
3196 * other CUs. Each input BTF type eventually gets either mapped to itself, if
3197 * that type is canonical, or to some other type, if that type is equivalent
3198 * and was chosen as canonical representative. This mapping is stored in
3199 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3200 * FWD type got resolved to.
3201 *
3202 * To facilitate fast discovery of canonical types, we also maintain canonical
3203 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3204 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3205 * that match that signature. With sufficiently good choice of type signature
3206 * hashing function, we can limit number of canonical types for each unique type
3207 * signature to a very small number, allowing to find canonical type for any
3208 * duplicated type very quickly.
3209 *
3210 * Struct/union deduplication is the most critical part and algorithm for
3211 * deduplicating structs/unions is described in greater details in comments for
3212 * `btf_dedup_is_equiv` function.
3213 */
3214int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
3215{
3216	struct btf_dedup *d;
3217	int err;
3218
3219	if (!OPTS_VALID(opts, btf_dedup_opts))
3220		return libbpf_err(-EINVAL);
3221
3222	d = btf_dedup_new(btf, opts);
3223	if (IS_ERR(d)) {
3224		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3225		return libbpf_err(-EINVAL);
3226	}
3227
3228	if (btf_ensure_modifiable(btf)) {
3229		err = -ENOMEM;
3230		goto done;
3231	}
3232
3233	err = btf_dedup_prep(d);
3234	if (err) {
3235		pr_debug("btf_dedup_prep failed:%d\n", err);
3236		goto done;
3237	}
3238	err = btf_dedup_strings(d);
3239	if (err < 0) {
3240		pr_debug("btf_dedup_strings failed:%d\n", err);
3241		goto done;
3242	}
3243	err = btf_dedup_prim_types(d);
3244	if (err < 0) {
3245		pr_debug("btf_dedup_prim_types failed:%d\n", err);
3246		goto done;
3247	}
3248	err = btf_dedup_struct_types(d);
3249	if (err < 0) {
3250		pr_debug("btf_dedup_struct_types failed:%d\n", err);
3251		goto done;
3252	}
3253	err = btf_dedup_resolve_fwds(d);
3254	if (err < 0) {
3255		pr_debug("btf_dedup_resolve_fwds failed:%d\n", err);
3256		goto done;
3257	}
3258	err = btf_dedup_ref_types(d);
3259	if (err < 0) {
3260		pr_debug("btf_dedup_ref_types failed:%d\n", err);
3261		goto done;
3262	}
3263	err = btf_dedup_compact_types(d);
3264	if (err < 0) {
3265		pr_debug("btf_dedup_compact_types failed:%d\n", err);
3266		goto done;
3267	}
3268	err = btf_dedup_remap_types(d);
3269	if (err < 0) {
3270		pr_debug("btf_dedup_remap_types failed:%d\n", err);
3271		goto done;
3272	}
3273
3274done:
3275	btf_dedup_free(d);
3276	return libbpf_err(err);
3277}
3278
3279#define BTF_UNPROCESSED_ID ((__u32)-1)
3280#define BTF_IN_PROGRESS_ID ((__u32)-2)
3281
3282struct btf_dedup {
3283	/* .BTF section to be deduped in-place */
3284	struct btf *btf;
3285	/*
3286	 * Optional .BTF.ext section. When provided, any strings referenced
3287	 * from it will be taken into account when deduping strings
3288	 */
3289	struct btf_ext *btf_ext;
3290	/*
3291	 * This is a map from any type's signature hash to a list of possible
3292	 * canonical representative type candidates. Hash collisions are
3293	 * ignored, so even types of various kinds can share same list of
3294	 * candidates, which is fine because we rely on subsequent
3295	 * btf_xxx_equal() checks to authoritatively verify type equality.
3296	 */
3297	struct hashmap *dedup_table;
3298	/* Canonical types map */
3299	__u32 *map;
3300	/* Hypothetical mapping, used during type graph equivalence checks */
3301	__u32 *hypot_map;
3302	__u32 *hypot_list;
3303	size_t hypot_cnt;
3304	size_t hypot_cap;
3305	/* Whether hypothetical mapping, if successful, would need to adjust
3306	 * already canonicalized types (due to a new forward declaration to
3307	 * concrete type resolution). In such case, during split BTF dedup
3308	 * candidate type would still be considered as different, because base
3309	 * BTF is considered to be immutable.
3310	 */
3311	bool hypot_adjust_canon;
3312	/* Various option modifying behavior of algorithm */
3313	struct btf_dedup_opts opts;
3314	/* temporary strings deduplication state */
3315	struct strset *strs_set;
3316};
3317
3318static long hash_combine(long h, long value)
3319{
3320	return h * 31 + value;
3321}
3322
3323#define for_each_dedup_cand(d, node, hash) \
3324	hashmap__for_each_key_entry(d->dedup_table, node, hash)
3325
3326static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3327{
3328	return hashmap__append(d->dedup_table, hash, type_id);
3329}
3330
3331static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3332				   __u32 from_id, __u32 to_id)
3333{
3334	if (d->hypot_cnt == d->hypot_cap) {
3335		__u32 *new_list;
3336
3337		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3338		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3339		if (!new_list)
3340			return -ENOMEM;
3341		d->hypot_list = new_list;
3342	}
3343	d->hypot_list[d->hypot_cnt++] = from_id;
3344	d->hypot_map[from_id] = to_id;
3345	return 0;
3346}
3347
3348static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3349{
3350	int i;
3351
3352	for (i = 0; i < d->hypot_cnt; i++)
3353		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3354	d->hypot_cnt = 0;
3355	d->hypot_adjust_canon = false;
3356}
3357
3358static void btf_dedup_free(struct btf_dedup *d)
3359{
3360	hashmap__free(d->dedup_table);
3361	d->dedup_table = NULL;
3362
3363	free(d->map);
3364	d->map = NULL;
3365
3366	free(d->hypot_map);
3367	d->hypot_map = NULL;
3368
3369	free(d->hypot_list);
3370	d->hypot_list = NULL;
3371
3372	free(d);
3373}
3374
3375static size_t btf_dedup_identity_hash_fn(long key, void *ctx)
3376{
3377	return key;
3378}
3379
3380static size_t btf_dedup_collision_hash_fn(long key, void *ctx)
3381{
3382	return 0;
3383}
3384
3385static bool btf_dedup_equal_fn(long k1, long k2, void *ctx)
3386{
3387	return k1 == k2;
3388}
3389
3390static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3391{
3392	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3393	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3394	int i, err = 0, type_cnt;
3395
3396	if (!d)
3397		return ERR_PTR(-ENOMEM);
3398
3399	if (OPTS_GET(opts, force_collisions, false))
3400		hash_fn = btf_dedup_collision_hash_fn;
3401
3402	d->btf = btf;
3403	d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3404
3405	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3406	if (IS_ERR(d->dedup_table)) {
3407		err = PTR_ERR(d->dedup_table);
3408		d->dedup_table = NULL;
3409		goto done;
3410	}
3411
3412	type_cnt = btf__type_cnt(btf);
3413	d->map = malloc(sizeof(__u32) * type_cnt);
3414	if (!d->map) {
3415		err = -ENOMEM;
3416		goto done;
3417	}
3418	/* special BTF "void" type is made canonical immediately */
3419	d->map[0] = 0;
3420	for (i = 1; i < type_cnt; i++) {
3421		struct btf_type *t = btf_type_by_id(d->btf, i);
3422
3423		/* VAR and DATASEC are never deduped and are self-canonical */
3424		if (btf_is_var(t) || btf_is_datasec(t))
3425			d->map[i] = i;
3426		else
3427			d->map[i] = BTF_UNPROCESSED_ID;
3428	}
3429
3430	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3431	if (!d->hypot_map) {
3432		err = -ENOMEM;
3433		goto done;
3434	}
3435	for (i = 0; i < type_cnt; i++)
3436		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3437
3438done:
3439	if (err) {
3440		btf_dedup_free(d);
3441		return ERR_PTR(err);
3442	}
3443
3444	return d;
3445}
3446
3447/*
3448 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3449 * string and pass pointer to it to a provided callback `fn`.
3450 */
3451static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3452{
3453	int i, r;
3454
3455	for (i = 0; i < d->btf->nr_types; i++) {
3456		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3457
3458		r = btf_type_visit_str_offs(t, fn, ctx);
3459		if (r)
3460			return r;
3461	}
3462
3463	if (!d->btf_ext)
3464		return 0;
3465
3466	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3467	if (r)
3468		return r;
3469
3470	return 0;
3471}
3472
3473static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3474{
3475	struct btf_dedup *d = ctx;
3476	__u32 str_off = *str_off_ptr;
3477	const char *s;
3478	int off, err;
3479
3480	/* don't touch empty string or string in main BTF */
3481	if (str_off == 0 || str_off < d->btf->start_str_off)
3482		return 0;
3483
3484	s = btf__str_by_offset(d->btf, str_off);
3485	if (d->btf->base_btf) {
3486		err = btf__find_str(d->btf->base_btf, s);
3487		if (err >= 0) {
3488			*str_off_ptr = err;
3489			return 0;
3490		}
3491		if (err != -ENOENT)
3492			return err;
3493	}
3494
3495	off = strset__add_str(d->strs_set, s);
3496	if (off < 0)
3497		return off;
3498
3499	*str_off_ptr = d->btf->start_str_off + off;
3500	return 0;
3501}
3502
3503/*
3504 * Dedup string and filter out those that are not referenced from either .BTF
3505 * or .BTF.ext (if provided) sections.
3506 *
3507 * This is done by building index of all strings in BTF's string section,
3508 * then iterating over all entities that can reference strings (e.g., type
3509 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3510 * strings as used. After that all used strings are deduped and compacted into
3511 * sequential blob of memory and new offsets are calculated. Then all the string
3512 * references are iterated again and rewritten using new offsets.
3513 */
3514static int btf_dedup_strings(struct btf_dedup *d)
3515{
3516	int err;
3517
3518	if (d->btf->strs_deduped)
3519		return 0;
3520
3521	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3522	if (IS_ERR(d->strs_set)) {
3523		err = PTR_ERR(d->strs_set);
3524		goto err_out;
3525	}
3526
3527	if (!d->btf->base_btf) {
3528		/* insert empty string; we won't be looking it up during strings
3529		 * dedup, but it's good to have it for generic BTF string lookups
3530		 */
3531		err = strset__add_str(d->strs_set, "");
3532		if (err < 0)
3533			goto err_out;
3534	}
3535
3536	/* remap string offsets */
3537	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3538	if (err)
3539		goto err_out;
3540
3541	/* replace BTF string data and hash with deduped ones */
3542	strset__free(d->btf->strs_set);
3543	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3544	d->btf->strs_set = d->strs_set;
3545	d->strs_set = NULL;
3546	d->btf->strs_deduped = true;
3547	return 0;
3548
3549err_out:
3550	strset__free(d->strs_set);
3551	d->strs_set = NULL;
3552
3553	return err;
3554}
3555
3556static long btf_hash_common(struct btf_type *t)
3557{
3558	long h;
3559
3560	h = hash_combine(0, t->name_off);
3561	h = hash_combine(h, t->info);
3562	h = hash_combine(h, t->size);
3563	return h;
3564}
3565
3566static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3567{
3568	return t1->name_off == t2->name_off &&
3569	       t1->info == t2->info &&
3570	       t1->size == t2->size;
3571}
3572
3573/* Calculate type signature hash of INT or TAG. */
3574static long btf_hash_int_decl_tag(struct btf_type *t)
3575{
3576	__u32 info = *(__u32 *)(t + 1);
3577	long h;
3578
3579	h = btf_hash_common(t);
3580	h = hash_combine(h, info);
3581	return h;
3582}
3583
3584/* Check structural equality of two INTs or TAGs. */
3585static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3586{
3587	__u32 info1, info2;
3588
3589	if (!btf_equal_common(t1, t2))
3590		return false;
3591	info1 = *(__u32 *)(t1 + 1);
3592	info2 = *(__u32 *)(t2 + 1);
3593	return info1 == info2;
3594}
3595
3596/* Calculate type signature hash of ENUM/ENUM64. */
3597static long btf_hash_enum(struct btf_type *t)
3598{
3599	long h;
3600
3601	/* don't hash vlen, enum members and size to support enum fwd resolving */
3602	h = hash_combine(0, t->name_off);
3603	return h;
3604}
3605
3606static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2)
3607{
3608	const struct btf_enum *m1, *m2;
3609	__u16 vlen;
3610	int i;
3611
3612	vlen = btf_vlen(t1);
3613	m1 = btf_enum(t1);
3614	m2 = btf_enum(t2);
3615	for (i = 0; i < vlen; i++) {
3616		if (m1->name_off != m2->name_off || m1->val != m2->val)
3617			return false;
3618		m1++;
3619		m2++;
3620	}
3621	return true;
3622}
3623
3624static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2)
3625{
3626	const struct btf_enum64 *m1, *m2;
3627	__u16 vlen;
3628	int i;
3629
3630	vlen = btf_vlen(t1);
3631	m1 = btf_enum64(t1);
3632	m2 = btf_enum64(t2);
3633	for (i = 0; i < vlen; i++) {
3634		if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3635		    m1->val_hi32 != m2->val_hi32)
3636			return false;
3637		m1++;
3638		m2++;
3639	}
3640	return true;
3641}
3642
3643/* Check structural equality of two ENUMs or ENUM64s. */
3644static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3645{
3646	if (!btf_equal_common(t1, t2))
3647		return false;
3648
3649	/* t1 & t2 kinds are identical because of btf_equal_common */
3650	if (btf_kind(t1) == BTF_KIND_ENUM)
3651		return btf_equal_enum_members(t1, t2);
3652	else
3653		return btf_equal_enum64_members(t1, t2);
3654}
3655
3656static inline bool btf_is_enum_fwd(struct btf_type *t)
3657{
3658	return btf_is_any_enum(t) && btf_vlen(t) == 0;
3659}
3660
3661static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3662{
3663	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3664		return btf_equal_enum(t1, t2);
3665	/* At this point either t1 or t2 or both are forward declarations, thus:
3666	 * - skip comparing vlen because it is zero for forward declarations;
3667	 * - skip comparing size to allow enum forward declarations
3668	 *   to be compatible with enum64 full declarations;
3669	 * - skip comparing kind for the same reason.
3670	 */
3671	return t1->name_off == t2->name_off &&
3672	       btf_is_any_enum(t1) && btf_is_any_enum(t2);
3673}
3674
3675/*
3676 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3677 * as referenced type IDs equivalence is established separately during type
3678 * graph equivalence check algorithm.
3679 */
3680static long btf_hash_struct(struct btf_type *t)
3681{
3682	const struct btf_member *member = btf_members(t);
3683	__u32 vlen = btf_vlen(t);
3684	long h = btf_hash_common(t);
3685	int i;
3686
3687	for (i = 0; i < vlen; i++) {
3688		h = hash_combine(h, member->name_off);
3689		h = hash_combine(h, member->offset);
3690		/* no hashing of referenced type ID, it can be unresolved yet */
3691		member++;
3692	}
3693	return h;
3694}
3695
3696/*
3697 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3698 * type IDs. This check is performed during type graph equivalence check and
3699 * referenced types equivalence is checked separately.
3700 */
3701static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3702{
3703	const struct btf_member *m1, *m2;
3704	__u16 vlen;
3705	int i;
3706
3707	if (!btf_equal_common(t1, t2))
3708		return false;
3709
3710	vlen = btf_vlen(t1);
3711	m1 = btf_members(t1);
3712	m2 = btf_members(t2);
3713	for (i = 0; i < vlen; i++) {
3714		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3715			return false;
3716		m1++;
3717		m2++;
3718	}
3719	return true;
3720}
3721
3722/*
3723 * Calculate type signature hash of ARRAY, including referenced type IDs,
3724 * under assumption that they were already resolved to canonical type IDs and
3725 * are not going to change.
3726 */
3727static long btf_hash_array(struct btf_type *t)
3728{
3729	const struct btf_array *info = btf_array(t);
3730	long h = btf_hash_common(t);
3731
3732	h = hash_combine(h, info->type);
3733	h = hash_combine(h, info->index_type);
3734	h = hash_combine(h, info->nelems);
3735	return h;
3736}
3737
3738/*
3739 * Check exact equality of two ARRAYs, taking into account referenced
3740 * type IDs, under assumption that they were already resolved to canonical
3741 * type IDs and are not going to change.
3742 * This function is called during reference types deduplication to compare
3743 * ARRAY to potential canonical representative.
3744 */
3745static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3746{
3747	const struct btf_array *info1, *info2;
3748
3749	if (!btf_equal_common(t1, t2))
3750		return false;
3751
3752	info1 = btf_array(t1);
3753	info2 = btf_array(t2);
3754	return info1->type == info2->type &&
3755	       info1->index_type == info2->index_type &&
3756	       info1->nelems == info2->nelems;
3757}
3758
3759/*
3760 * Check structural compatibility of two ARRAYs, ignoring referenced type
3761 * IDs. This check is performed during type graph equivalence check and
3762 * referenced types equivalence is checked separately.
3763 */
3764static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3765{
3766	if (!btf_equal_common(t1, t2))
3767		return false;
3768
3769	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3770}
3771
3772/*
3773 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3774 * under assumption that they were already resolved to canonical type IDs and
3775 * are not going to change.
3776 */
3777static long btf_hash_fnproto(struct btf_type *t)
3778{
3779	const struct btf_param *member = btf_params(t);
3780	__u16 vlen = btf_vlen(t);
3781	long h = btf_hash_common(t);
3782	int i;
3783
3784	for (i = 0; i < vlen; i++) {
3785		h = hash_combine(h, member->name_off);
3786		h = hash_combine(h, member->type);
3787		member++;
3788	}
3789	return h;
3790}
3791
3792/*
3793 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3794 * type IDs, under assumption that they were already resolved to canonical
3795 * type IDs and are not going to change.
3796 * This function is called during reference types deduplication to compare
3797 * FUNC_PROTO to potential canonical representative.
3798 */
3799static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3800{
3801	const struct btf_param *m1, *m2;
3802	__u16 vlen;
3803	int i;
3804
3805	if (!btf_equal_common(t1, t2))
3806		return false;
3807
3808	vlen = btf_vlen(t1);
3809	m1 = btf_params(t1);
3810	m2 = btf_params(t2);
3811	for (i = 0; i < vlen; i++) {
3812		if (m1->name_off != m2->name_off || m1->type != m2->type)
3813			return false;
3814		m1++;
3815		m2++;
3816	}
3817	return true;
3818}
3819
3820/*
3821 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3822 * IDs. This check is performed during type graph equivalence check and
3823 * referenced types equivalence is checked separately.
3824 */
3825static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3826{
3827	const struct btf_param *m1, *m2;
3828	__u16 vlen;
3829	int i;
3830
3831	/* skip return type ID */
3832	if (t1->name_off != t2->name_off || t1->info != t2->info)
3833		return false;
3834
3835	vlen = btf_vlen(t1);
3836	m1 = btf_params(t1);
3837	m2 = btf_params(t2);
3838	for (i = 0; i < vlen; i++) {
3839		if (m1->name_off != m2->name_off)
3840			return false;
3841		m1++;
3842		m2++;
3843	}
3844	return true;
3845}
3846
3847/* Prepare split BTF for deduplication by calculating hashes of base BTF's
3848 * types and initializing the rest of the state (canonical type mapping) for
3849 * the fixed base BTF part.
3850 */
3851static int btf_dedup_prep(struct btf_dedup *d)
3852{
3853	struct btf_type *t;
3854	int type_id;
3855	long h;
3856
3857	if (!d->btf->base_btf)
3858		return 0;
3859
3860	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3861		t = btf_type_by_id(d->btf, type_id);
3862
3863		/* all base BTF types are self-canonical by definition */
3864		d->map[type_id] = type_id;
3865
3866		switch (btf_kind(t)) {
3867		case BTF_KIND_VAR:
3868		case BTF_KIND_DATASEC:
3869			/* VAR and DATASEC are never hash/deduplicated */
3870			continue;
3871		case BTF_KIND_CONST:
3872		case BTF_KIND_VOLATILE:
3873		case BTF_KIND_RESTRICT:
3874		case BTF_KIND_PTR:
3875		case BTF_KIND_FWD:
3876		case BTF_KIND_TYPEDEF:
3877		case BTF_KIND_FUNC:
3878		case BTF_KIND_FLOAT:
3879		case BTF_KIND_TYPE_TAG:
3880			h = btf_hash_common(t);
3881			break;
3882		case BTF_KIND_INT:
3883		case BTF_KIND_DECL_TAG:
3884			h = btf_hash_int_decl_tag(t);
3885			break;
3886		case BTF_KIND_ENUM:
3887		case BTF_KIND_ENUM64:
3888			h = btf_hash_enum(t);
3889			break;
3890		case BTF_KIND_STRUCT:
3891		case BTF_KIND_UNION:
3892			h = btf_hash_struct(t);
3893			break;
3894		case BTF_KIND_ARRAY:
3895			h = btf_hash_array(t);
3896			break;
3897		case BTF_KIND_FUNC_PROTO:
3898			h = btf_hash_fnproto(t);
3899			break;
3900		default:
3901			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3902			return -EINVAL;
3903		}
3904		if (btf_dedup_table_add(d, h, type_id))
3905			return -ENOMEM;
3906	}
3907
3908	return 0;
3909}
3910
3911/*
3912 * Deduplicate primitive types, that can't reference other types, by calculating
3913 * their type signature hash and comparing them with any possible canonical
3914 * candidate. If no canonical candidate matches, type itself is marked as
3915 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3916 */
3917static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3918{
3919	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3920	struct hashmap_entry *hash_entry;
3921	struct btf_type *cand;
3922	/* if we don't find equivalent type, then we are canonical */
3923	__u32 new_id = type_id;
3924	__u32 cand_id;
3925	long h;
3926
3927	switch (btf_kind(t)) {
3928	case BTF_KIND_CONST:
3929	case BTF_KIND_VOLATILE:
3930	case BTF_KIND_RESTRICT:
3931	case BTF_KIND_PTR:
3932	case BTF_KIND_TYPEDEF:
3933	case BTF_KIND_ARRAY:
3934	case BTF_KIND_STRUCT:
3935	case BTF_KIND_UNION:
3936	case BTF_KIND_FUNC:
3937	case BTF_KIND_FUNC_PROTO:
3938	case BTF_KIND_VAR:
3939	case BTF_KIND_DATASEC:
3940	case BTF_KIND_DECL_TAG:
3941	case BTF_KIND_TYPE_TAG:
3942		return 0;
3943
3944	case BTF_KIND_INT:
3945		h = btf_hash_int_decl_tag(t);
3946		for_each_dedup_cand(d, hash_entry, h) {
3947			cand_id = hash_entry->value;
3948			cand = btf_type_by_id(d->btf, cand_id);
3949			if (btf_equal_int_tag(t, cand)) {
3950				new_id = cand_id;
3951				break;
3952			}
3953		}
3954		break;
3955
3956	case BTF_KIND_ENUM:
3957	case BTF_KIND_ENUM64:
3958		h = btf_hash_enum(t);
3959		for_each_dedup_cand(d, hash_entry, h) {
3960			cand_id = hash_entry->value;
3961			cand = btf_type_by_id(d->btf, cand_id);
3962			if (btf_equal_enum(t, cand)) {
3963				new_id = cand_id;
3964				break;
3965			}
3966			if (btf_compat_enum(t, cand)) {
3967				if (btf_is_enum_fwd(t)) {
3968					/* resolve fwd to full enum */
3969					new_id = cand_id;
3970					break;
3971				}
3972				/* resolve canonical enum fwd to full enum */
3973				d->map[cand_id] = type_id;
3974			}
3975		}
3976		break;
3977
3978	case BTF_KIND_FWD:
3979	case BTF_KIND_FLOAT:
3980		h = btf_hash_common(t);
3981		for_each_dedup_cand(d, hash_entry, h) {
3982			cand_id = hash_entry->value;
3983			cand = btf_type_by_id(d->btf, cand_id);
3984			if (btf_equal_common(t, cand)) {
3985				new_id = cand_id;
3986				break;
3987			}
3988		}
3989		break;
3990
3991	default:
3992		return -EINVAL;
3993	}
3994
3995	d->map[type_id] = new_id;
3996	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3997		return -ENOMEM;
3998
3999	return 0;
4000}
4001
4002static int btf_dedup_prim_types(struct btf_dedup *d)
4003{
4004	int i, err;
4005
4006	for (i = 0; i < d->btf->nr_types; i++) {
4007		err = btf_dedup_prim_type(d, d->btf->start_id + i);
4008		if (err)
4009			return err;
4010	}
4011	return 0;
4012}
4013
4014/*
4015 * Check whether type is already mapped into canonical one (could be to itself).
4016 */
4017static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
4018{
4019	return d->map[type_id] <= BTF_MAX_NR_TYPES;
4020}
4021
4022/*
4023 * Resolve type ID into its canonical type ID, if any; otherwise return original
4024 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
4025 * STRUCT/UNION link and resolve it into canonical type ID as well.
4026 */
4027static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
4028{
4029	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4030		type_id = d->map[type_id];
4031	return type_id;
4032}
4033
4034/*
4035 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
4036 * type ID.
4037 */
4038static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
4039{
4040	__u32 orig_type_id = type_id;
4041
4042	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4043		return type_id;
4044
4045	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4046		type_id = d->map[type_id];
4047
4048	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4049		return type_id;
4050
4051	return orig_type_id;
4052}
4053
4054
4055static inline __u16 btf_fwd_kind(struct btf_type *t)
4056{
4057	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
4058}
4059
4060/* Check if given two types are identical ARRAY definitions */
4061static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
4062{
4063	struct btf_type *t1, *t2;
4064
4065	t1 = btf_type_by_id(d->btf, id1);
4066	t2 = btf_type_by_id(d->btf, id2);
4067	if (!btf_is_array(t1) || !btf_is_array(t2))
4068		return false;
4069
4070	return btf_equal_array(t1, t2);
4071}
4072
4073/* Check if given two types are identical STRUCT/UNION definitions */
4074static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
4075{
4076	const struct btf_member *m1, *m2;
4077	struct btf_type *t1, *t2;
4078	int n, i;
4079
4080	t1 = btf_type_by_id(d->btf, id1);
4081	t2 = btf_type_by_id(d->btf, id2);
4082
4083	if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
4084		return false;
4085
4086	if (!btf_shallow_equal_struct(t1, t2))
4087		return false;
4088
4089	m1 = btf_members(t1);
4090	m2 = btf_members(t2);
4091	for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
4092		if (m1->type != m2->type &&
4093		    !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
4094		    !btf_dedup_identical_structs(d, m1->type, m2->type))
4095			return false;
4096	}
4097	return true;
4098}
4099
4100/*
4101 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
4102 * call it "candidate graph" in this description for brevity) to a type graph
4103 * formed by (potential) canonical struct/union ("canonical graph" for brevity
4104 * here, though keep in mind that not all types in canonical graph are
4105 * necessarily canonical representatives themselves, some of them might be
4106 * duplicates or its uniqueness might not have been established yet).
4107 * Returns:
4108 *  - >0, if type graphs are equivalent;
4109 *  -  0, if not equivalent;
4110 *  - <0, on error.
4111 *
4112 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
4113 * equivalence of BTF types at each step. If at any point BTF types in candidate
4114 * and canonical graphs are not compatible structurally, whole graphs are
4115 * incompatible. If types are structurally equivalent (i.e., all information
4116 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
4117 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
4118 * If a type references other types, then those referenced types are checked
4119 * for equivalence recursively.
4120 *
4121 * During DFS traversal, if we find that for current `canon_id` type we
4122 * already have some mapping in hypothetical map, we check for two possible
4123 * situations:
4124 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
4125 *     happen when type graphs have cycles. In this case we assume those two
4126 *     types are equivalent.
4127 *   - `canon_id` is mapped to different type. This is contradiction in our
4128 *     hypothetical mapping, because same graph in canonical graph corresponds
4129 *     to two different types in candidate graph, which for equivalent type
4130 *     graphs shouldn't happen. This condition terminates equivalence check
4131 *     with negative result.
4132 *
4133 * If type graphs traversal exhausts types to check and find no contradiction,
4134 * then type graphs are equivalent.
4135 *
4136 * When checking types for equivalence, there is one special case: FWD types.
4137 * If FWD type resolution is allowed and one of the types (either from canonical
4138 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
4139 * flag) and their names match, hypothetical mapping is updated to point from
4140 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
4141 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
4142 *
4143 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
4144 * if there are two exactly named (or anonymous) structs/unions that are
4145 * compatible structurally, one of which has FWD field, while other is concrete
4146 * STRUCT/UNION, but according to C sources they are different structs/unions
4147 * that are referencing different types with the same name. This is extremely
4148 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
4149 * this logic is causing problems.
4150 *
4151 * Doing FWD resolution means that both candidate and/or canonical graphs can
4152 * consists of portions of the graph that come from multiple compilation units.
4153 * This is due to the fact that types within single compilation unit are always
4154 * deduplicated and FWDs are already resolved, if referenced struct/union
4155 * definiton is available. So, if we had unresolved FWD and found corresponding
4156 * STRUCT/UNION, they will be from different compilation units. This
4157 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
4158 * type graph will likely have at least two different BTF types that describe
4159 * same type (e.g., most probably there will be two different BTF types for the
4160 * same 'int' primitive type) and could even have "overlapping" parts of type
4161 * graph that describe same subset of types.
4162 *
4163 * This in turn means that our assumption that each type in canonical graph
4164 * must correspond to exactly one type in candidate graph might not hold
4165 * anymore and will make it harder to detect contradictions using hypothetical
4166 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
4167 * resolution only in canonical graph. FWDs in candidate graphs are never
4168 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
4169 * that can occur:
4170 *   - Both types in canonical and candidate graphs are FWDs. If they are
4171 *     structurally equivalent, then they can either be both resolved to the
4172 *     same STRUCT/UNION or not resolved at all. In both cases they are
4173 *     equivalent and there is no need to resolve FWD on candidate side.
4174 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4175 *     so nothing to resolve as well, algorithm will check equivalence anyway.
4176 *   - Type in canonical graph is FWD, while type in candidate is concrete
4177 *     STRUCT/UNION. In this case candidate graph comes from single compilation
4178 *     unit, so there is exactly one BTF type for each unique C type. After
4179 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
4180 *     in canonical graph mapping to single BTF type in candidate graph, but
4181 *     because hypothetical mapping maps from canonical to candidate types, it's
4182 *     alright, and we still maintain the property of having single `canon_id`
4183 *     mapping to single `cand_id` (there could be two different `canon_id`
4184 *     mapped to the same `cand_id`, but it's not contradictory).
4185 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4186 *     graph is FWD. In this case we are just going to check compatibility of
4187 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4188 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4189 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4190 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4191 *     canonical graph.
4192 */
4193static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4194			      __u32 canon_id)
4195{
4196	struct btf_type *cand_type;
4197	struct btf_type *canon_type;
4198	__u32 hypot_type_id;
4199	__u16 cand_kind;
4200	__u16 canon_kind;
4201	int i, eq;
4202
4203	/* if both resolve to the same canonical, they must be equivalent */
4204	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4205		return 1;
4206
4207	canon_id = resolve_fwd_id(d, canon_id);
4208
4209	hypot_type_id = d->hypot_map[canon_id];
4210	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4211		if (hypot_type_id == cand_id)
4212			return 1;
4213		/* In some cases compiler will generate different DWARF types
4214		 * for *identical* array type definitions and use them for
4215		 * different fields within the *same* struct. This breaks type
4216		 * equivalence check, which makes an assumption that candidate
4217		 * types sub-graph has a consistent and deduped-by-compiler
4218		 * types within a single CU. So work around that by explicitly
4219		 * allowing identical array types here.
4220		 */
4221		if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4222			return 1;
4223		/* It turns out that similar situation can happen with
4224		 * struct/union sometimes, sigh... Handle the case where
4225		 * structs/unions are exactly the same, down to the referenced
4226		 * type IDs. Anything more complicated (e.g., if referenced
4227		 * types are different, but equivalent) is *way more*
4228		 * complicated and requires a many-to-many equivalence mapping.
4229		 */
4230		if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4231			return 1;
4232		return 0;
4233	}
4234
4235	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4236		return -ENOMEM;
4237
4238	cand_type = btf_type_by_id(d->btf, cand_id);
4239	canon_type = btf_type_by_id(d->btf, canon_id);
4240	cand_kind = btf_kind(cand_type);
4241	canon_kind = btf_kind(canon_type);
4242
4243	if (cand_type->name_off != canon_type->name_off)
4244		return 0;
4245
4246	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4247	if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4248	    && cand_kind != canon_kind) {
4249		__u16 real_kind;
4250		__u16 fwd_kind;
4251
4252		if (cand_kind == BTF_KIND_FWD) {
4253			real_kind = canon_kind;
4254			fwd_kind = btf_fwd_kind(cand_type);
4255		} else {
4256			real_kind = cand_kind;
4257			fwd_kind = btf_fwd_kind(canon_type);
4258			/* we'd need to resolve base FWD to STRUCT/UNION */
4259			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4260				d->hypot_adjust_canon = true;
4261		}
4262		return fwd_kind == real_kind;
4263	}
4264
4265	if (cand_kind != canon_kind)
4266		return 0;
4267
4268	switch (cand_kind) {
4269	case BTF_KIND_INT:
4270		return btf_equal_int_tag(cand_type, canon_type);
4271
4272	case BTF_KIND_ENUM:
4273	case BTF_KIND_ENUM64:
4274		return btf_compat_enum(cand_type, canon_type);
4275
4276	case BTF_KIND_FWD:
4277	case BTF_KIND_FLOAT:
4278		return btf_equal_common(cand_type, canon_type);
4279
4280	case BTF_KIND_CONST:
4281	case BTF_KIND_VOLATILE:
4282	case BTF_KIND_RESTRICT:
4283	case BTF_KIND_PTR:
4284	case BTF_KIND_TYPEDEF:
4285	case BTF_KIND_FUNC:
4286	case BTF_KIND_TYPE_TAG:
4287		if (cand_type->info != canon_type->info)
4288			return 0;
4289		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4290
4291	case BTF_KIND_ARRAY: {
4292		const struct btf_array *cand_arr, *canon_arr;
4293
4294		if (!btf_compat_array(cand_type, canon_type))
4295			return 0;
4296		cand_arr = btf_array(cand_type);
4297		canon_arr = btf_array(canon_type);
4298		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4299		if (eq <= 0)
4300			return eq;
4301		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4302	}
4303
4304	case BTF_KIND_STRUCT:
4305	case BTF_KIND_UNION: {
4306		const struct btf_member *cand_m, *canon_m;
4307		__u16 vlen;
4308
4309		if (!btf_shallow_equal_struct(cand_type, canon_type))
4310			return 0;
4311		vlen = btf_vlen(cand_type);
4312		cand_m = btf_members(cand_type);
4313		canon_m = btf_members(canon_type);
4314		for (i = 0; i < vlen; i++) {
4315			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4316			if (eq <= 0)
4317				return eq;
4318			cand_m++;
4319			canon_m++;
4320		}
4321
4322		return 1;
4323	}
4324
4325	case BTF_KIND_FUNC_PROTO: {
4326		const struct btf_param *cand_p, *canon_p;
4327		__u16 vlen;
4328
4329		if (!btf_compat_fnproto(cand_type, canon_type))
4330			return 0;
4331		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4332		if (eq <= 0)
4333			return eq;
4334		vlen = btf_vlen(cand_type);
4335		cand_p = btf_params(cand_type);
4336		canon_p = btf_params(canon_type);
4337		for (i = 0; i < vlen; i++) {
4338			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4339			if (eq <= 0)
4340				return eq;
4341			cand_p++;
4342			canon_p++;
4343		}
4344		return 1;
4345	}
4346
4347	default:
4348		return -EINVAL;
4349	}
4350	return 0;
4351}
4352
4353/*
4354 * Use hypothetical mapping, produced by successful type graph equivalence
4355 * check, to augment existing struct/union canonical mapping, where possible.
4356 *
4357 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4358 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4359 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4360 * we are recording the mapping anyway. As opposed to carefulness required
4361 * for struct/union correspondence mapping (described below), for FWD resolution
4362 * it's not important, as by the time that FWD type (reference type) will be
4363 * deduplicated all structs/unions will be deduped already anyway.
4364 *
4365 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4366 * not required for correctness. It needs to be done carefully to ensure that
4367 * struct/union from candidate's type graph is not mapped into corresponding
4368 * struct/union from canonical type graph that itself hasn't been resolved into
4369 * canonical representative. The only guarantee we have is that canonical
4370 * struct/union was determined as canonical and that won't change. But any
4371 * types referenced through that struct/union fields could have been not yet
4372 * resolved, so in case like that it's too early to establish any kind of
4373 * correspondence between structs/unions.
4374 *
4375 * No canonical correspondence is derived for primitive types (they are already
4376 * deduplicated completely already anyway) or reference types (they rely on
4377 * stability of struct/union canonical relationship for equivalence checks).
4378 */
4379static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4380{
4381	__u32 canon_type_id, targ_type_id;
4382	__u16 t_kind, c_kind;
4383	__u32 t_id, c_id;
4384	int i;
4385
4386	for (i = 0; i < d->hypot_cnt; i++) {
4387		canon_type_id = d->hypot_list[i];
4388		targ_type_id = d->hypot_map[canon_type_id];
4389		t_id = resolve_type_id(d, targ_type_id);
4390		c_id = resolve_type_id(d, canon_type_id);
4391		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4392		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4393		/*
4394		 * Resolve FWD into STRUCT/UNION.
4395		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4396		 * mapped to canonical representative (as opposed to
4397		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4398		 * eventually that struct is going to be mapped and all resolved
4399		 * FWDs will automatically resolve to correct canonical
4400		 * representative. This will happen before ref type deduping,
4401		 * which critically depends on stability of these mapping. This
4402		 * stability is not a requirement for STRUCT/UNION equivalence
4403		 * checks, though.
4404		 */
4405
4406		/* if it's the split BTF case, we still need to point base FWD
4407		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4408		 * will be resolved against base FWD. If we don't point base
4409		 * canonical FWD to the resolved STRUCT/UNION, then all the
4410		 * FWDs in split BTF won't be correctly resolved to a proper
4411		 * STRUCT/UNION.
4412		 */
4413		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4414			d->map[c_id] = t_id;
4415
4416		/* if graph equivalence determined that we'd need to adjust
4417		 * base canonical types, then we need to only point base FWDs
4418		 * to STRUCTs/UNIONs and do no more modifications. For all
4419		 * other purposes the type graphs were not equivalent.
4420		 */
4421		if (d->hypot_adjust_canon)
4422			continue;
4423
4424		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4425			d->map[t_id] = c_id;
4426
4427		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4428		    c_kind != BTF_KIND_FWD &&
4429		    is_type_mapped(d, c_id) &&
4430		    !is_type_mapped(d, t_id)) {
4431			/*
4432			 * as a perf optimization, we can map struct/union
4433			 * that's part of type graph we just verified for
4434			 * equivalence. We can do that for struct/union that has
4435			 * canonical representative only, though.
4436			 */
4437			d->map[t_id] = c_id;
4438		}
4439	}
4440}
4441
4442/*
4443 * Deduplicate struct/union types.
4444 *
4445 * For each struct/union type its type signature hash is calculated, taking
4446 * into account type's name, size, number, order and names of fields, but
4447 * ignoring type ID's referenced from fields, because they might not be deduped
4448 * completely until after reference types deduplication phase. This type hash
4449 * is used to iterate over all potential canonical types, sharing same hash.
4450 * For each canonical candidate we check whether type graphs that they form
4451 * (through referenced types in fields and so on) are equivalent using algorithm
4452 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4453 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4454 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4455 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4456 * potentially map other structs/unions to their canonical representatives,
4457 * if such relationship hasn't yet been established. This speeds up algorithm
4458 * by eliminating some of the duplicate work.
4459 *
4460 * If no matching canonical representative was found, struct/union is marked
4461 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4462 * for further look ups.
4463 */
4464static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4465{
4466	struct btf_type *cand_type, *t;
4467	struct hashmap_entry *hash_entry;
4468	/* if we don't find equivalent type, then we are canonical */
4469	__u32 new_id = type_id;
4470	__u16 kind;
4471	long h;
4472
4473	/* already deduped or is in process of deduping (loop detected) */
4474	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4475		return 0;
4476
4477	t = btf_type_by_id(d->btf, type_id);
4478	kind = btf_kind(t);
4479
4480	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4481		return 0;
4482
4483	h = btf_hash_struct(t);
4484	for_each_dedup_cand(d, hash_entry, h) {
4485		__u32 cand_id = hash_entry->value;
4486		int eq;
4487
4488		/*
4489		 * Even though btf_dedup_is_equiv() checks for
4490		 * btf_shallow_equal_struct() internally when checking two
4491		 * structs (unions) for equivalence, we need to guard here
4492		 * from picking matching FWD type as a dedup candidate.
4493		 * This can happen due to hash collision. In such case just
4494		 * relying on btf_dedup_is_equiv() would lead to potentially
4495		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4496		 * FWD and compatible STRUCT/UNION are considered equivalent.
4497		 */
4498		cand_type = btf_type_by_id(d->btf, cand_id);
4499		if (!btf_shallow_equal_struct(t, cand_type))
4500			continue;
4501
4502		btf_dedup_clear_hypot_map(d);
4503		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4504		if (eq < 0)
4505			return eq;
4506		if (!eq)
4507			continue;
4508		btf_dedup_merge_hypot_map(d);
4509		if (d->hypot_adjust_canon) /* not really equivalent */
4510			continue;
4511		new_id = cand_id;
4512		break;
4513	}
4514
4515	d->map[type_id] = new_id;
4516	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4517		return -ENOMEM;
4518
4519	return 0;
4520}
4521
4522static int btf_dedup_struct_types(struct btf_dedup *d)
4523{
4524	int i, err;
4525
4526	for (i = 0; i < d->btf->nr_types; i++) {
4527		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4528		if (err)
4529			return err;
4530	}
4531	return 0;
4532}
4533
4534/*
4535 * Deduplicate reference type.
4536 *
4537 * Once all primitive and struct/union types got deduplicated, we can easily
4538 * deduplicate all other (reference) BTF types. This is done in two steps:
4539 *
4540 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4541 * resolution can be done either immediately for primitive or struct/union types
4542 * (because they were deduped in previous two phases) or recursively for
4543 * reference types. Recursion will always terminate at either primitive or
4544 * struct/union type, at which point we can "unwind" chain of reference types
4545 * one by one. There is no danger of encountering cycles because in C type
4546 * system the only way to form type cycle is through struct/union, so any chain
4547 * of reference types, even those taking part in a type cycle, will inevitably
4548 * reach struct/union at some point.
4549 *
4550 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4551 * becomes "stable", in the sense that no further deduplication will cause
4552 * any changes to it. With that, it's now possible to calculate type's signature
4553 * hash (this time taking into account referenced type IDs) and loop over all
4554 * potential canonical representatives. If no match was found, current type
4555 * will become canonical representative of itself and will be added into
4556 * btf_dedup->dedup_table as another possible canonical representative.
4557 */
4558static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4559{
4560	struct hashmap_entry *hash_entry;
4561	__u32 new_id = type_id, cand_id;
4562	struct btf_type *t, *cand;
4563	/* if we don't find equivalent type, then we are representative type */
4564	int ref_type_id;
4565	long h;
4566
4567	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4568		return -ELOOP;
4569	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4570		return resolve_type_id(d, type_id);
4571
4572	t = btf_type_by_id(d->btf, type_id);
4573	d->map[type_id] = BTF_IN_PROGRESS_ID;
4574
4575	switch (btf_kind(t)) {
4576	case BTF_KIND_CONST:
4577	case BTF_KIND_VOLATILE:
4578	case BTF_KIND_RESTRICT:
4579	case BTF_KIND_PTR:
4580	case BTF_KIND_TYPEDEF:
4581	case BTF_KIND_FUNC:
4582	case BTF_KIND_TYPE_TAG:
4583		ref_type_id = btf_dedup_ref_type(d, t->type);
4584		if (ref_type_id < 0)
4585			return ref_type_id;
4586		t->type = ref_type_id;
4587
4588		h = btf_hash_common(t);
4589		for_each_dedup_cand(d, hash_entry, h) {
4590			cand_id = hash_entry->value;
4591			cand = btf_type_by_id(d->btf, cand_id);
4592			if (btf_equal_common(t, cand)) {
4593				new_id = cand_id;
4594				break;
4595			}
4596		}
4597		break;
4598
4599	case BTF_KIND_DECL_TAG:
4600		ref_type_id = btf_dedup_ref_type(d, t->type);
4601		if (ref_type_id < 0)
4602			return ref_type_id;
4603		t->type = ref_type_id;
4604
4605		h = btf_hash_int_decl_tag(t);
4606		for_each_dedup_cand(d, hash_entry, h) {
4607			cand_id = hash_entry->value;
4608			cand = btf_type_by_id(d->btf, cand_id);
4609			if (btf_equal_int_tag(t, cand)) {
4610				new_id = cand_id;
4611				break;
4612			}
4613		}
4614		break;
4615
4616	case BTF_KIND_ARRAY: {
4617		struct btf_array *info = btf_array(t);
4618
4619		ref_type_id = btf_dedup_ref_type(d, info->type);
4620		if (ref_type_id < 0)
4621			return ref_type_id;
4622		info->type = ref_type_id;
4623
4624		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4625		if (ref_type_id < 0)
4626			return ref_type_id;
4627		info->index_type = ref_type_id;
4628
4629		h = btf_hash_array(t);
4630		for_each_dedup_cand(d, hash_entry, h) {
4631			cand_id = hash_entry->value;
4632			cand = btf_type_by_id(d->btf, cand_id);
4633			if (btf_equal_array(t, cand)) {
4634				new_id = cand_id;
4635				break;
4636			}
4637		}
4638		break;
4639	}
4640
4641	case BTF_KIND_FUNC_PROTO: {
4642		struct btf_param *param;
4643		__u16 vlen;
4644		int i;
4645
4646		ref_type_id = btf_dedup_ref_type(d, t->type);
4647		if (ref_type_id < 0)
4648			return ref_type_id;
4649		t->type = ref_type_id;
4650
4651		vlen = btf_vlen(t);
4652		param = btf_params(t);
4653		for (i = 0; i < vlen; i++) {
4654			ref_type_id = btf_dedup_ref_type(d, param->type);
4655			if (ref_type_id < 0)
4656				return ref_type_id;
4657			param->type = ref_type_id;
4658			param++;
4659		}
4660
4661		h = btf_hash_fnproto(t);
4662		for_each_dedup_cand(d, hash_entry, h) {
4663			cand_id = hash_entry->value;
4664			cand = btf_type_by_id(d->btf, cand_id);
4665			if (btf_equal_fnproto(t, cand)) {
4666				new_id = cand_id;
4667				break;
4668			}
4669		}
4670		break;
4671	}
4672
4673	default:
4674		return -EINVAL;
4675	}
4676
4677	d->map[type_id] = new_id;
4678	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4679		return -ENOMEM;
4680
4681	return new_id;
4682}
4683
4684static int btf_dedup_ref_types(struct btf_dedup *d)
4685{
4686	int i, err;
4687
4688	for (i = 0; i < d->btf->nr_types; i++) {
4689		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4690		if (err < 0)
4691			return err;
4692	}
4693	/* we won't need d->dedup_table anymore */
4694	hashmap__free(d->dedup_table);
4695	d->dedup_table = NULL;
4696	return 0;
4697}
4698
4699/*
4700 * Collect a map from type names to type ids for all canonical structs
4701 * and unions. If the same name is shared by several canonical types
4702 * use a special value 0 to indicate this fact.
4703 */
4704static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map)
4705{
4706	__u32 nr_types = btf__type_cnt(d->btf);
4707	struct btf_type *t;
4708	__u32 type_id;
4709	__u16 kind;
4710	int err;
4711
4712	/*
4713	 * Iterate over base and split module ids in order to get all
4714	 * available structs in the map.
4715	 */
4716	for (type_id = 1; type_id < nr_types; ++type_id) {
4717		t = btf_type_by_id(d->btf, type_id);
4718		kind = btf_kind(t);
4719
4720		if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4721			continue;
4722
4723		/* Skip non-canonical types */
4724		if (type_id != d->map[type_id])
4725			continue;
4726
4727		err = hashmap__add(names_map, t->name_off, type_id);
4728		if (err == -EEXIST)
4729			err = hashmap__set(names_map, t->name_off, 0, NULL, NULL);
4730
4731		if (err)
4732			return err;
4733	}
4734
4735	return 0;
4736}
4737
4738static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id)
4739{
4740	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4741	enum btf_fwd_kind fwd_kind = btf_kflag(t);
4742	__u16 cand_kind, kind = btf_kind(t);
4743	struct btf_type *cand_t;
4744	uintptr_t cand_id;
4745
4746	if (kind != BTF_KIND_FWD)
4747		return 0;
4748
4749	/* Skip if this FWD already has a mapping */
4750	if (type_id != d->map[type_id])
4751		return 0;
4752
4753	if (!hashmap__find(names_map, t->name_off, &cand_id))
4754		return 0;
4755
4756	/* Zero is a special value indicating that name is not unique */
4757	if (!cand_id)
4758		return 0;
4759
4760	cand_t = btf_type_by_id(d->btf, cand_id);
4761	cand_kind = btf_kind(cand_t);
4762	if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) ||
4763	    (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION))
4764		return 0;
4765
4766	d->map[type_id] = cand_id;
4767
4768	return 0;
4769}
4770
4771/*
4772 * Resolve unambiguous forward declarations.
4773 *
4774 * The lion's share of all FWD declarations is resolved during
4775 * `btf_dedup_struct_types` phase when different type graphs are
4776 * compared against each other. However, if in some compilation unit a
4777 * FWD declaration is not a part of a type graph compared against
4778 * another type graph that declaration's canonical type would not be
4779 * changed. Example:
4780 *
4781 * CU #1:
4782 *
4783 * struct foo;
4784 * struct foo *some_global;
4785 *
4786 * CU #2:
4787 *
4788 * struct foo { int u; };
4789 * struct foo *another_global;
4790 *
4791 * After `btf_dedup_struct_types` the BTF looks as follows:
4792 *
4793 * [1] STRUCT 'foo' size=4 vlen=1 ...
4794 * [2] INT 'int' size=4 ...
4795 * [3] PTR '(anon)' type_id=1
4796 * [4] FWD 'foo' fwd_kind=struct
4797 * [5] PTR '(anon)' type_id=4
4798 *
4799 * This pass assumes that such FWD declarations should be mapped to
4800 * structs or unions with identical name in case if the name is not
4801 * ambiguous.
4802 */
4803static int btf_dedup_resolve_fwds(struct btf_dedup *d)
4804{
4805	int i, err;
4806	struct hashmap *names_map;
4807
4808	names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
4809	if (IS_ERR(names_map))
4810		return PTR_ERR(names_map);
4811
4812	err = btf_dedup_fill_unique_names_map(d, names_map);
4813	if (err < 0)
4814		goto exit;
4815
4816	for (i = 0; i < d->btf->nr_types; i++) {
4817		err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i);
4818		if (err < 0)
4819			break;
4820	}
4821
4822exit:
4823	hashmap__free(names_map);
4824	return err;
4825}
4826
4827/*
4828 * Compact types.
4829 *
4830 * After we established for each type its corresponding canonical representative
4831 * type, we now can eliminate types that are not canonical and leave only
4832 * canonical ones layed out sequentially in memory by copying them over
4833 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4834 * a map from original type ID to a new compacted type ID, which will be used
4835 * during next phase to "fix up" type IDs, referenced from struct/union and
4836 * reference types.
4837 */
4838static int btf_dedup_compact_types(struct btf_dedup *d)
4839{
4840	__u32 *new_offs;
4841	__u32 next_type_id = d->btf->start_id;
4842	const struct btf_type *t;
4843	void *p;
4844	int i, id, len;
4845
4846	/* we are going to reuse hypot_map to store compaction remapping */
4847	d->hypot_map[0] = 0;
4848	/* base BTF types are not renumbered */
4849	for (id = 1; id < d->btf->start_id; id++)
4850		d->hypot_map[id] = id;
4851	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4852		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4853
4854	p = d->btf->types_data;
4855
4856	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4857		if (d->map[id] != id)
4858			continue;
4859
4860		t = btf__type_by_id(d->btf, id);
4861		len = btf_type_size(t);
4862		if (len < 0)
4863			return len;
4864
4865		memmove(p, t, len);
4866		d->hypot_map[id] = next_type_id;
4867		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4868		p += len;
4869		next_type_id++;
4870	}
4871
4872	/* shrink struct btf's internal types index and update btf_header */
4873	d->btf->nr_types = next_type_id - d->btf->start_id;
4874	d->btf->type_offs_cap = d->btf->nr_types;
4875	d->btf->hdr->type_len = p - d->btf->types_data;
4876	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4877				       sizeof(*new_offs));
4878	if (d->btf->type_offs_cap && !new_offs)
4879		return -ENOMEM;
4880	d->btf->type_offs = new_offs;
4881	d->btf->hdr->str_off = d->btf->hdr->type_len;
4882	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4883	return 0;
4884}
4885
4886/*
4887 * Figure out final (deduplicated and compacted) type ID for provided original
4888 * `type_id` by first resolving it into corresponding canonical type ID and
4889 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4890 * which is populated during compaction phase.
4891 */
4892static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4893{
4894	struct btf_dedup *d = ctx;
4895	__u32 resolved_type_id, new_type_id;
4896
4897	resolved_type_id = resolve_type_id(d, *type_id);
4898	new_type_id = d->hypot_map[resolved_type_id];
4899	if (new_type_id > BTF_MAX_NR_TYPES)
4900		return -EINVAL;
4901
4902	*type_id = new_type_id;
4903	return 0;
4904}
4905
4906/*
4907 * Remap referenced type IDs into deduped type IDs.
4908 *
4909 * After BTF types are deduplicated and compacted, their final type IDs may
4910 * differ from original ones. The map from original to a corresponding
4911 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4912 * compaction phase. During remapping phase we are rewriting all type IDs
4913 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4914 * their final deduped type IDs.
4915 */
4916static int btf_dedup_remap_types(struct btf_dedup *d)
4917{
4918	int i, r;
4919
4920	for (i = 0; i < d->btf->nr_types; i++) {
4921		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4922
4923		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4924		if (r)
4925			return r;
4926	}
4927
4928	if (!d->btf_ext)
4929		return 0;
4930
4931	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4932	if (r)
4933		return r;
4934
4935	return 0;
4936}
4937
4938/*
4939 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4940 * data out of it to use for target BTF.
4941 */
4942struct btf *btf__load_vmlinux_btf(void)
4943{
4944	const char *sysfs_btf_path = "/sys/kernel/btf/vmlinux";
4945	/* fall back locations, trying to find vmlinux on disk */
4946	const char *locations[] = {
 
 
 
4947		"/boot/vmlinux-%1$s",
4948		"/lib/modules/%1$s/vmlinux-%1$s",
4949		"/lib/modules/%1$s/build/vmlinux",
4950		"/usr/lib/modules/%1$s/kernel/vmlinux",
4951		"/usr/lib/debug/boot/vmlinux-%1$s",
4952		"/usr/lib/debug/boot/vmlinux-%1$s.debug",
4953		"/usr/lib/debug/lib/modules/%1$s/vmlinux",
4954	};
4955	char path[PATH_MAX + 1];
4956	struct utsname buf;
4957	struct btf *btf;
4958	int i, err;
4959
4960	/* is canonical sysfs location accessible? */
4961	if (faccessat(AT_FDCWD, sysfs_btf_path, F_OK, AT_EACCESS) < 0) {
4962		pr_warn("kernel BTF is missing at '%s', was CONFIG_DEBUG_INFO_BTF enabled?\n",
4963			sysfs_btf_path);
4964	} else {
4965		btf = btf__parse(sysfs_btf_path, NULL);
4966		if (!btf) {
4967			err = -errno;
4968			pr_warn("failed to read kernel BTF from '%s': %d\n", sysfs_btf_path, err);
4969			return libbpf_err_ptr(err);
4970		}
4971		pr_debug("loaded kernel BTF from '%s'\n", sysfs_btf_path);
4972		return btf;
4973	}
4974
4975	/* try fallback locations */
4976	uname(&buf);
 
4977	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4978		snprintf(path, PATH_MAX, locations[i], buf.release);
4979
4980		if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
4981			continue;
4982
4983		btf = btf__parse(path, NULL);
4984		err = libbpf_get_error(btf);
4985		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4986		if (err)
4987			continue;
4988
4989		return btf;
4990	}
4991
4992	pr_warn("failed to find valid kernel BTF\n");
4993	return libbpf_err_ptr(-ESRCH);
4994}
4995
4996struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4997
4998struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4999{
5000	char path[80];
5001
5002	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
5003	return btf__parse_split(path, vmlinux_btf);
5004}
5005
5006int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
5007{
5008	int i, n, err;
5009
5010	switch (btf_kind(t)) {
5011	case BTF_KIND_INT:
5012	case BTF_KIND_FLOAT:
5013	case BTF_KIND_ENUM:
5014	case BTF_KIND_ENUM64:
5015		return 0;
5016
5017	case BTF_KIND_FWD:
5018	case BTF_KIND_CONST:
5019	case BTF_KIND_VOLATILE:
5020	case BTF_KIND_RESTRICT:
5021	case BTF_KIND_PTR:
5022	case BTF_KIND_TYPEDEF:
5023	case BTF_KIND_FUNC:
5024	case BTF_KIND_VAR:
5025	case BTF_KIND_DECL_TAG:
5026	case BTF_KIND_TYPE_TAG:
5027		return visit(&t->type, ctx);
5028
5029	case BTF_KIND_ARRAY: {
5030		struct btf_array *a = btf_array(t);
5031
5032		err = visit(&a->type, ctx);
5033		err = err ?: visit(&a->index_type, ctx);
5034		return err;
5035	}
5036
5037	case BTF_KIND_STRUCT:
5038	case BTF_KIND_UNION: {
5039		struct btf_member *m = btf_members(t);
5040
5041		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5042			err = visit(&m->type, ctx);
5043			if (err)
5044				return err;
5045		}
5046		return 0;
5047	}
5048
5049	case BTF_KIND_FUNC_PROTO: {
5050		struct btf_param *m = btf_params(t);
5051
5052		err = visit(&t->type, ctx);
5053		if (err)
5054			return err;
5055		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5056			err = visit(&m->type, ctx);
5057			if (err)
5058				return err;
5059		}
5060		return 0;
5061	}
5062
5063	case BTF_KIND_DATASEC: {
5064		struct btf_var_secinfo *m = btf_var_secinfos(t);
5065
5066		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5067			err = visit(&m->type, ctx);
5068			if (err)
5069				return err;
5070		}
5071		return 0;
5072	}
5073
5074	default:
5075		return -EINVAL;
5076	}
5077}
5078
5079int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
5080{
5081	int i, n, err;
5082
5083	err = visit(&t->name_off, ctx);
5084	if (err)
5085		return err;
5086
5087	switch (btf_kind(t)) {
5088	case BTF_KIND_STRUCT:
5089	case BTF_KIND_UNION: {
5090		struct btf_member *m = btf_members(t);
5091
5092		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5093			err = visit(&m->name_off, ctx);
5094			if (err)
5095				return err;
5096		}
5097		break;
5098	}
5099	case BTF_KIND_ENUM: {
5100		struct btf_enum *m = btf_enum(t);
5101
5102		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5103			err = visit(&m->name_off, ctx);
5104			if (err)
5105				return err;
5106		}
5107		break;
5108	}
5109	case BTF_KIND_ENUM64: {
5110		struct btf_enum64 *m = btf_enum64(t);
5111
5112		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5113			err = visit(&m->name_off, ctx);
5114			if (err)
5115				return err;
5116		}
5117		break;
5118	}
5119	case BTF_KIND_FUNC_PROTO: {
5120		struct btf_param *m = btf_params(t);
5121
5122		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5123			err = visit(&m->name_off, ctx);
5124			if (err)
5125				return err;
5126		}
5127		break;
5128	}
5129	default:
5130		break;
5131	}
5132
5133	return 0;
5134}
5135
5136int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
5137{
5138	const struct btf_ext_info *seg;
5139	struct btf_ext_info_sec *sec;
5140	int i, err;
5141
5142	seg = &btf_ext->func_info;
5143	for_each_btf_ext_sec(seg, sec) {
5144		struct bpf_func_info_min *rec;
5145
5146		for_each_btf_ext_rec(seg, sec, i, rec) {
5147			err = visit(&rec->type_id, ctx);
5148			if (err < 0)
5149				return err;
5150		}
5151	}
5152
5153	seg = &btf_ext->core_relo_info;
5154	for_each_btf_ext_sec(seg, sec) {
5155		struct bpf_core_relo *rec;
5156
5157		for_each_btf_ext_rec(seg, sec, i, rec) {
5158			err = visit(&rec->type_id, ctx);
5159			if (err < 0)
5160				return err;
5161		}
5162	}
5163
5164	return 0;
5165}
5166
5167int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
5168{
5169	const struct btf_ext_info *seg;
5170	struct btf_ext_info_sec *sec;
5171	int i, err;
5172
5173	seg = &btf_ext->func_info;
5174	for_each_btf_ext_sec(seg, sec) {
5175		err = visit(&sec->sec_name_off, ctx);
5176		if (err)
5177			return err;
5178	}
5179
5180	seg = &btf_ext->line_info;
5181	for_each_btf_ext_sec(seg, sec) {
5182		struct bpf_line_info_min *rec;
5183
5184		err = visit(&sec->sec_name_off, ctx);
5185		if (err)
5186			return err;
5187
5188		for_each_btf_ext_rec(seg, sec, i, rec) {
5189			err = visit(&rec->file_name_off, ctx);
5190			if (err)
5191				return err;
5192			err = visit(&rec->line_off, ctx);
5193			if (err)
5194				return err;
5195		}
5196	}
5197
5198	seg = &btf_ext->core_relo_info;
5199	for_each_btf_ext_sec(seg, sec) {
5200		struct bpf_core_relo *rec;
5201
5202		err = visit(&sec->sec_name_off, ctx);
5203		if (err)
5204			return err;
5205
5206		for_each_btf_ext_rec(seg, sec, i, rec) {
5207			err = visit(&rec->access_str_off, ctx);
5208			if (err)
5209				return err;
5210		}
5211	}
5212
5213	return 0;
5214}
v6.2
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <byteswap.h>
   5#include <endian.h>
   6#include <stdio.h>
   7#include <stdlib.h>
   8#include <string.h>
   9#include <fcntl.h>
  10#include <unistd.h>
  11#include <errno.h>
  12#include <sys/utsname.h>
  13#include <sys/param.h>
  14#include <sys/stat.h>
  15#include <linux/kernel.h>
  16#include <linux/err.h>
  17#include <linux/btf.h>
  18#include <gelf.h>
  19#include "btf.h"
  20#include "bpf.h"
  21#include "libbpf.h"
  22#include "libbpf_internal.h"
  23#include "hashmap.h"
  24#include "strset.h"
  25
  26#define BTF_MAX_NR_TYPES 0x7fffffffU
  27#define BTF_MAX_STR_OFFSET 0x7fffffffU
  28
  29static struct btf_type btf_void;
  30
  31struct btf {
  32	/* raw BTF data in native endianness */
  33	void *raw_data;
  34	/* raw BTF data in non-native endianness */
  35	void *raw_data_swapped;
  36	__u32 raw_size;
  37	/* whether target endianness differs from the native one */
  38	bool swapped_endian;
  39
  40	/*
  41	 * When BTF is loaded from an ELF or raw memory it is stored
  42	 * in a contiguous memory block. The hdr, type_data, and, strs_data
  43	 * point inside that memory region to their respective parts of BTF
  44	 * representation:
  45	 *
  46	 * +--------------------------------+
  47	 * |  Header  |  Types  |  Strings  |
  48	 * +--------------------------------+
  49	 * ^          ^         ^
  50	 * |          |         |
  51	 * hdr        |         |
  52	 * types_data-+         |
  53	 * strs_data------------+
  54	 *
  55	 * If BTF data is later modified, e.g., due to types added or
  56	 * removed, BTF deduplication performed, etc, this contiguous
  57	 * representation is broken up into three independently allocated
  58	 * memory regions to be able to modify them independently.
  59	 * raw_data is nulled out at that point, but can be later allocated
  60	 * and cached again if user calls btf__raw_data(), at which point
  61	 * raw_data will contain a contiguous copy of header, types, and
  62	 * strings:
  63	 *
  64	 * +----------+  +---------+  +-----------+
  65	 * |  Header  |  |  Types  |  |  Strings  |
  66	 * +----------+  +---------+  +-----------+
  67	 * ^             ^            ^
  68	 * |             |            |
  69	 * hdr           |            |
  70	 * types_data----+            |
  71	 * strset__data(strs_set)-----+
  72	 *
  73	 *               +----------+---------+-----------+
  74	 *               |  Header  |  Types  |  Strings  |
  75	 * raw_data----->+----------+---------+-----------+
  76	 */
  77	struct btf_header *hdr;
  78
  79	void *types_data;
  80	size_t types_data_cap; /* used size stored in hdr->type_len */
  81
  82	/* type ID to `struct btf_type *` lookup index
  83	 * type_offs[0] corresponds to the first non-VOID type:
  84	 *   - for base BTF it's type [1];
  85	 *   - for split BTF it's the first non-base BTF type.
  86	 */
  87	__u32 *type_offs;
  88	size_t type_offs_cap;
  89	/* number of types in this BTF instance:
  90	 *   - doesn't include special [0] void type;
  91	 *   - for split BTF counts number of types added on top of base BTF.
  92	 */
  93	__u32 nr_types;
  94	/* if not NULL, points to the base BTF on top of which the current
  95	 * split BTF is based
  96	 */
  97	struct btf *base_btf;
  98	/* BTF type ID of the first type in this BTF instance:
  99	 *   - for base BTF it's equal to 1;
 100	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
 101	 */
 102	int start_id;
 103	/* logical string offset of this BTF instance:
 104	 *   - for base BTF it's equal to 0;
 105	 *   - for split BTF it's equal to total size of base BTF's string section size.
 106	 */
 107	int start_str_off;
 108
 109	/* only one of strs_data or strs_set can be non-NULL, depending on
 110	 * whether BTF is in a modifiable state (strs_set is used) or not
 111	 * (strs_data points inside raw_data)
 112	 */
 113	void *strs_data;
 114	/* a set of unique strings */
 115	struct strset *strs_set;
 116	/* whether strings are already deduplicated */
 117	bool strs_deduped;
 118
 119	/* BTF object FD, if loaded into kernel */
 120	int fd;
 121
 122	/* Pointer size (in bytes) for a target architecture of this BTF */
 123	int ptr_sz;
 124};
 125
 126static inline __u64 ptr_to_u64(const void *ptr)
 127{
 128	return (__u64) (unsigned long) ptr;
 129}
 130
 131/* Ensure given dynamically allocated memory region pointed to by *data* with
 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
 133 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
 134 * are already used. At most *max_cnt* elements can be ever allocated.
 135 * If necessary, memory is reallocated and all existing data is copied over,
 136 * new pointer to the memory region is stored at *data, new memory region
 137 * capacity (in number of elements) is stored in *cap.
 138 * On success, memory pointer to the beginning of unused memory is returned.
 139 * On error, NULL is returned.
 140 */
 141void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
 142		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
 143{
 144	size_t new_cnt;
 145	void *new_data;
 146
 147	if (cur_cnt + add_cnt <= *cap_cnt)
 148		return *data + cur_cnt * elem_sz;
 149
 150	/* requested more than the set limit */
 151	if (cur_cnt + add_cnt > max_cnt)
 152		return NULL;
 153
 154	new_cnt = *cap_cnt;
 155	new_cnt += new_cnt / 4;		  /* expand by 25% */
 156	if (new_cnt < 16)		  /* but at least 16 elements */
 157		new_cnt = 16;
 158	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
 159		new_cnt = max_cnt;
 160	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
 161		new_cnt = cur_cnt + add_cnt;
 162
 163	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
 164	if (!new_data)
 165		return NULL;
 166
 167	/* zero out newly allocated portion of memory */
 168	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
 169
 170	*data = new_data;
 171	*cap_cnt = new_cnt;
 172	return new_data + cur_cnt * elem_sz;
 173}
 174
 175/* Ensure given dynamically allocated memory region has enough allocated space
 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
 177 */
 178int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
 179{
 180	void *p;
 181
 182	if (need_cnt <= *cap_cnt)
 183		return 0;
 184
 185	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
 186	if (!p)
 187		return -ENOMEM;
 188
 189	return 0;
 190}
 191
 192static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
 193{
 194	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
 195			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
 196}
 197
 198static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
 199{
 200	__u32 *p;
 201
 202	p = btf_add_type_offs_mem(btf, 1);
 203	if (!p)
 204		return -ENOMEM;
 205
 206	*p = type_off;
 207	return 0;
 208}
 209
 210static void btf_bswap_hdr(struct btf_header *h)
 211{
 212	h->magic = bswap_16(h->magic);
 213	h->hdr_len = bswap_32(h->hdr_len);
 214	h->type_off = bswap_32(h->type_off);
 215	h->type_len = bswap_32(h->type_len);
 216	h->str_off = bswap_32(h->str_off);
 217	h->str_len = bswap_32(h->str_len);
 218}
 219
 220static int btf_parse_hdr(struct btf *btf)
 221{
 222	struct btf_header *hdr = btf->hdr;
 223	__u32 meta_left;
 224
 225	if (btf->raw_size < sizeof(struct btf_header)) {
 226		pr_debug("BTF header not found\n");
 227		return -EINVAL;
 228	}
 229
 230	if (hdr->magic == bswap_16(BTF_MAGIC)) {
 231		btf->swapped_endian = true;
 232		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
 233			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
 234				bswap_32(hdr->hdr_len));
 235			return -ENOTSUP;
 236		}
 237		btf_bswap_hdr(hdr);
 238	} else if (hdr->magic != BTF_MAGIC) {
 239		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
 240		return -EINVAL;
 241	}
 242
 243	if (btf->raw_size < hdr->hdr_len) {
 244		pr_debug("BTF header len %u larger than data size %u\n",
 245			 hdr->hdr_len, btf->raw_size);
 246		return -EINVAL;
 247	}
 248
 249	meta_left = btf->raw_size - hdr->hdr_len;
 250	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
 251		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
 252		return -EINVAL;
 253	}
 254
 255	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
 256		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
 257			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
 258		return -EINVAL;
 259	}
 260
 261	if (hdr->type_off % 4) {
 262		pr_debug("BTF type section is not aligned to 4 bytes\n");
 263		return -EINVAL;
 264	}
 265
 266	return 0;
 267}
 268
 269static int btf_parse_str_sec(struct btf *btf)
 270{
 271	const struct btf_header *hdr = btf->hdr;
 272	const char *start = btf->strs_data;
 273	const char *end = start + btf->hdr->str_len;
 274
 275	if (btf->base_btf && hdr->str_len == 0)
 276		return 0;
 277	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
 278		pr_debug("Invalid BTF string section\n");
 279		return -EINVAL;
 280	}
 281	if (!btf->base_btf && start[0]) {
 282		pr_debug("Invalid BTF string section\n");
 283		return -EINVAL;
 284	}
 285	return 0;
 286}
 287
 288static int btf_type_size(const struct btf_type *t)
 289{
 290	const int base_size = sizeof(struct btf_type);
 291	__u16 vlen = btf_vlen(t);
 292
 293	switch (btf_kind(t)) {
 294	case BTF_KIND_FWD:
 295	case BTF_KIND_CONST:
 296	case BTF_KIND_VOLATILE:
 297	case BTF_KIND_RESTRICT:
 298	case BTF_KIND_PTR:
 299	case BTF_KIND_TYPEDEF:
 300	case BTF_KIND_FUNC:
 301	case BTF_KIND_FLOAT:
 302	case BTF_KIND_TYPE_TAG:
 303		return base_size;
 304	case BTF_KIND_INT:
 305		return base_size + sizeof(__u32);
 306	case BTF_KIND_ENUM:
 307		return base_size + vlen * sizeof(struct btf_enum);
 308	case BTF_KIND_ENUM64:
 309		return base_size + vlen * sizeof(struct btf_enum64);
 310	case BTF_KIND_ARRAY:
 311		return base_size + sizeof(struct btf_array);
 312	case BTF_KIND_STRUCT:
 313	case BTF_KIND_UNION:
 314		return base_size + vlen * sizeof(struct btf_member);
 315	case BTF_KIND_FUNC_PROTO:
 316		return base_size + vlen * sizeof(struct btf_param);
 317	case BTF_KIND_VAR:
 318		return base_size + sizeof(struct btf_var);
 319	case BTF_KIND_DATASEC:
 320		return base_size + vlen * sizeof(struct btf_var_secinfo);
 321	case BTF_KIND_DECL_TAG:
 322		return base_size + sizeof(struct btf_decl_tag);
 323	default:
 324		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 325		return -EINVAL;
 326	}
 327}
 328
 329static void btf_bswap_type_base(struct btf_type *t)
 330{
 331	t->name_off = bswap_32(t->name_off);
 332	t->info = bswap_32(t->info);
 333	t->type = bswap_32(t->type);
 334}
 335
 336static int btf_bswap_type_rest(struct btf_type *t)
 337{
 338	struct btf_var_secinfo *v;
 339	struct btf_enum64 *e64;
 340	struct btf_member *m;
 341	struct btf_array *a;
 342	struct btf_param *p;
 343	struct btf_enum *e;
 344	__u16 vlen = btf_vlen(t);
 345	int i;
 346
 347	switch (btf_kind(t)) {
 348	case BTF_KIND_FWD:
 349	case BTF_KIND_CONST:
 350	case BTF_KIND_VOLATILE:
 351	case BTF_KIND_RESTRICT:
 352	case BTF_KIND_PTR:
 353	case BTF_KIND_TYPEDEF:
 354	case BTF_KIND_FUNC:
 355	case BTF_KIND_FLOAT:
 356	case BTF_KIND_TYPE_TAG:
 357		return 0;
 358	case BTF_KIND_INT:
 359		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
 360		return 0;
 361	case BTF_KIND_ENUM:
 362		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
 363			e->name_off = bswap_32(e->name_off);
 364			e->val = bswap_32(e->val);
 365		}
 366		return 0;
 367	case BTF_KIND_ENUM64:
 368		for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
 369			e64->name_off = bswap_32(e64->name_off);
 370			e64->val_lo32 = bswap_32(e64->val_lo32);
 371			e64->val_hi32 = bswap_32(e64->val_hi32);
 372		}
 373		return 0;
 374	case BTF_KIND_ARRAY:
 375		a = btf_array(t);
 376		a->type = bswap_32(a->type);
 377		a->index_type = bswap_32(a->index_type);
 378		a->nelems = bswap_32(a->nelems);
 379		return 0;
 380	case BTF_KIND_STRUCT:
 381	case BTF_KIND_UNION:
 382		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
 383			m->name_off = bswap_32(m->name_off);
 384			m->type = bswap_32(m->type);
 385			m->offset = bswap_32(m->offset);
 386		}
 387		return 0;
 388	case BTF_KIND_FUNC_PROTO:
 389		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
 390			p->name_off = bswap_32(p->name_off);
 391			p->type = bswap_32(p->type);
 392		}
 393		return 0;
 394	case BTF_KIND_VAR:
 395		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
 396		return 0;
 397	case BTF_KIND_DATASEC:
 398		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
 399			v->type = bswap_32(v->type);
 400			v->offset = bswap_32(v->offset);
 401			v->size = bswap_32(v->size);
 402		}
 403		return 0;
 404	case BTF_KIND_DECL_TAG:
 405		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
 406		return 0;
 407	default:
 408		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 409		return -EINVAL;
 410	}
 411}
 412
 413static int btf_parse_type_sec(struct btf *btf)
 414{
 415	struct btf_header *hdr = btf->hdr;
 416	void *next_type = btf->types_data;
 417	void *end_type = next_type + hdr->type_len;
 418	int err, type_size;
 419
 420	while (next_type + sizeof(struct btf_type) <= end_type) {
 421		if (btf->swapped_endian)
 422			btf_bswap_type_base(next_type);
 423
 424		type_size = btf_type_size(next_type);
 425		if (type_size < 0)
 426			return type_size;
 427		if (next_type + type_size > end_type) {
 428			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
 429			return -EINVAL;
 430		}
 431
 432		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
 433			return -EINVAL;
 434
 435		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
 436		if (err)
 437			return err;
 438
 439		next_type += type_size;
 440		btf->nr_types++;
 441	}
 442
 443	if (next_type != end_type) {
 444		pr_warn("BTF types data is malformed\n");
 445		return -EINVAL;
 446	}
 447
 448	return 0;
 449}
 450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451__u32 btf__type_cnt(const struct btf *btf)
 452{
 453	return btf->start_id + btf->nr_types;
 454}
 455
 456const struct btf *btf__base_btf(const struct btf *btf)
 457{
 458	return btf->base_btf;
 459}
 460
 461/* internal helper returning non-const pointer to a type */
 462struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
 463{
 464	if (type_id == 0)
 465		return &btf_void;
 466	if (type_id < btf->start_id)
 467		return btf_type_by_id(btf->base_btf, type_id);
 468	return btf->types_data + btf->type_offs[type_id - btf->start_id];
 469}
 470
 471const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 472{
 473	if (type_id >= btf->start_id + btf->nr_types)
 474		return errno = EINVAL, NULL;
 475	return btf_type_by_id((struct btf *)btf, type_id);
 476}
 477
 478static int determine_ptr_size(const struct btf *btf)
 479{
 480	static const char * const long_aliases[] = {
 481		"long",
 482		"long int",
 483		"int long",
 484		"unsigned long",
 485		"long unsigned",
 486		"unsigned long int",
 487		"unsigned int long",
 488		"long unsigned int",
 489		"long int unsigned",
 490		"int unsigned long",
 491		"int long unsigned",
 492	};
 493	const struct btf_type *t;
 494	const char *name;
 495	int i, j, n;
 496
 497	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
 498		return btf->base_btf->ptr_sz;
 499
 500	n = btf__type_cnt(btf);
 501	for (i = 1; i < n; i++) {
 502		t = btf__type_by_id(btf, i);
 503		if (!btf_is_int(t))
 504			continue;
 505
 506		if (t->size != 4 && t->size != 8)
 507			continue;
 508
 509		name = btf__name_by_offset(btf, t->name_off);
 510		if (!name)
 511			continue;
 512
 513		for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
 514			if (strcmp(name, long_aliases[j]) == 0)
 515				return t->size;
 516		}
 517	}
 518
 519	return -1;
 520}
 521
 522static size_t btf_ptr_sz(const struct btf *btf)
 523{
 524	if (!btf->ptr_sz)
 525		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 526	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 527}
 528
 529/* Return pointer size this BTF instance assumes. The size is heuristically
 530 * determined by looking for 'long' or 'unsigned long' integer type and
 531 * recording its size in bytes. If BTF type information doesn't have any such
 532 * type, this function returns 0. In the latter case, native architecture's
 533 * pointer size is assumed, so will be either 4 or 8, depending on
 534 * architecture that libbpf was compiled for. It's possible to override
 535 * guessed value by using btf__set_pointer_size() API.
 536 */
 537size_t btf__pointer_size(const struct btf *btf)
 538{
 539	if (!btf->ptr_sz)
 540		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 541
 542	if (btf->ptr_sz < 0)
 543		/* not enough BTF type info to guess */
 544		return 0;
 545
 546	return btf->ptr_sz;
 547}
 548
 549/* Override or set pointer size in bytes. Only values of 4 and 8 are
 550 * supported.
 551 */
 552int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 553{
 554	if (ptr_sz != 4 && ptr_sz != 8)
 555		return libbpf_err(-EINVAL);
 556	btf->ptr_sz = ptr_sz;
 557	return 0;
 558}
 559
 560static bool is_host_big_endian(void)
 561{
 562#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 563	return false;
 564#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 565	return true;
 566#else
 567# error "Unrecognized __BYTE_ORDER__"
 568#endif
 569}
 570
 571enum btf_endianness btf__endianness(const struct btf *btf)
 572{
 573	if (is_host_big_endian())
 574		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
 575	else
 576		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
 577}
 578
 579int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
 580{
 581	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
 582		return libbpf_err(-EINVAL);
 583
 584	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
 585	if (!btf->swapped_endian) {
 586		free(btf->raw_data_swapped);
 587		btf->raw_data_swapped = NULL;
 588	}
 589	return 0;
 590}
 591
 592static bool btf_type_is_void(const struct btf_type *t)
 593{
 594	return t == &btf_void || btf_is_fwd(t);
 595}
 596
 597static bool btf_type_is_void_or_null(const struct btf_type *t)
 598{
 599	return !t || btf_type_is_void(t);
 600}
 601
 602#define MAX_RESOLVE_DEPTH 32
 603
 604__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 605{
 606	const struct btf_array *array;
 607	const struct btf_type *t;
 608	__u32 nelems = 1;
 609	__s64 size = -1;
 610	int i;
 611
 612	t = btf__type_by_id(btf, type_id);
 613	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
 614		switch (btf_kind(t)) {
 615		case BTF_KIND_INT:
 616		case BTF_KIND_STRUCT:
 617		case BTF_KIND_UNION:
 618		case BTF_KIND_ENUM:
 619		case BTF_KIND_ENUM64:
 620		case BTF_KIND_DATASEC:
 621		case BTF_KIND_FLOAT:
 622			size = t->size;
 623			goto done;
 624		case BTF_KIND_PTR:
 625			size = btf_ptr_sz(btf);
 626			goto done;
 627		case BTF_KIND_TYPEDEF:
 628		case BTF_KIND_VOLATILE:
 629		case BTF_KIND_CONST:
 630		case BTF_KIND_RESTRICT:
 631		case BTF_KIND_VAR:
 632		case BTF_KIND_DECL_TAG:
 633		case BTF_KIND_TYPE_TAG:
 634			type_id = t->type;
 635			break;
 636		case BTF_KIND_ARRAY:
 637			array = btf_array(t);
 638			if (nelems && array->nelems > UINT32_MAX / nelems)
 639				return libbpf_err(-E2BIG);
 640			nelems *= array->nelems;
 641			type_id = array->type;
 642			break;
 643		default:
 644			return libbpf_err(-EINVAL);
 645		}
 646
 647		t = btf__type_by_id(btf, type_id);
 648	}
 649
 650done:
 651	if (size < 0)
 652		return libbpf_err(-EINVAL);
 653	if (nelems && size > UINT32_MAX / nelems)
 654		return libbpf_err(-E2BIG);
 655
 656	return nelems * size;
 657}
 658
 659int btf__align_of(const struct btf *btf, __u32 id)
 660{
 661	const struct btf_type *t = btf__type_by_id(btf, id);
 662	__u16 kind = btf_kind(t);
 663
 664	switch (kind) {
 665	case BTF_KIND_INT:
 666	case BTF_KIND_ENUM:
 667	case BTF_KIND_ENUM64:
 668	case BTF_KIND_FLOAT:
 669		return min(btf_ptr_sz(btf), (size_t)t->size);
 670	case BTF_KIND_PTR:
 671		return btf_ptr_sz(btf);
 672	case BTF_KIND_TYPEDEF:
 673	case BTF_KIND_VOLATILE:
 674	case BTF_KIND_CONST:
 675	case BTF_KIND_RESTRICT:
 676	case BTF_KIND_TYPE_TAG:
 677		return btf__align_of(btf, t->type);
 678	case BTF_KIND_ARRAY:
 679		return btf__align_of(btf, btf_array(t)->type);
 680	case BTF_KIND_STRUCT:
 681	case BTF_KIND_UNION: {
 682		const struct btf_member *m = btf_members(t);
 683		__u16 vlen = btf_vlen(t);
 684		int i, max_align = 1, align;
 685
 686		for (i = 0; i < vlen; i++, m++) {
 687			align = btf__align_of(btf, m->type);
 688			if (align <= 0)
 689				return libbpf_err(align);
 690			max_align = max(max_align, align);
 
 
 
 
 
 
 
 691		}
 692
 
 
 
 
 
 
 693		return max_align;
 694	}
 695	default:
 696		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 697		return errno = EINVAL, 0;
 698	}
 699}
 700
 701int btf__resolve_type(const struct btf *btf, __u32 type_id)
 702{
 703	const struct btf_type *t;
 704	int depth = 0;
 705
 706	t = btf__type_by_id(btf, type_id);
 707	while (depth < MAX_RESOLVE_DEPTH &&
 708	       !btf_type_is_void_or_null(t) &&
 709	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 710		type_id = t->type;
 711		t = btf__type_by_id(btf, type_id);
 712		depth++;
 713	}
 714
 715	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 716		return libbpf_err(-EINVAL);
 717
 718	return type_id;
 719}
 720
 721__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 722{
 723	__u32 i, nr_types = btf__type_cnt(btf);
 724
 725	if (!strcmp(type_name, "void"))
 726		return 0;
 727
 728	for (i = 1; i < nr_types; i++) {
 729		const struct btf_type *t = btf__type_by_id(btf, i);
 730		const char *name = btf__name_by_offset(btf, t->name_off);
 731
 732		if (name && !strcmp(type_name, name))
 733			return i;
 734	}
 735
 736	return libbpf_err(-ENOENT);
 737}
 738
 739static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
 740				   const char *type_name, __u32 kind)
 741{
 742	__u32 i, nr_types = btf__type_cnt(btf);
 743
 744	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 745		return 0;
 746
 747	for (i = start_id; i < nr_types; i++) {
 748		const struct btf_type *t = btf__type_by_id(btf, i);
 749		const char *name;
 750
 751		if (btf_kind(t) != kind)
 752			continue;
 753		name = btf__name_by_offset(btf, t->name_off);
 754		if (name && !strcmp(type_name, name))
 755			return i;
 756	}
 757
 758	return libbpf_err(-ENOENT);
 759}
 760
 761__s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
 762				 __u32 kind)
 763{
 764	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
 765}
 766
 767__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 768			     __u32 kind)
 769{
 770	return btf_find_by_name_kind(btf, 1, type_name, kind);
 771}
 772
 773static bool btf_is_modifiable(const struct btf *btf)
 774{
 775	return (void *)btf->hdr != btf->raw_data;
 776}
 777
 778void btf__free(struct btf *btf)
 779{
 780	if (IS_ERR_OR_NULL(btf))
 781		return;
 782
 783	if (btf->fd >= 0)
 784		close(btf->fd);
 785
 786	if (btf_is_modifiable(btf)) {
 787		/* if BTF was modified after loading, it will have a split
 788		 * in-memory representation for header, types, and strings
 789		 * sections, so we need to free all of them individually. It
 790		 * might still have a cached contiguous raw data present,
 791		 * which will be unconditionally freed below.
 792		 */
 793		free(btf->hdr);
 794		free(btf->types_data);
 795		strset__free(btf->strs_set);
 796	}
 797	free(btf->raw_data);
 798	free(btf->raw_data_swapped);
 799	free(btf->type_offs);
 800	free(btf);
 801}
 802
 803static struct btf *btf_new_empty(struct btf *base_btf)
 804{
 805	struct btf *btf;
 806
 807	btf = calloc(1, sizeof(*btf));
 808	if (!btf)
 809		return ERR_PTR(-ENOMEM);
 810
 811	btf->nr_types = 0;
 812	btf->start_id = 1;
 813	btf->start_str_off = 0;
 814	btf->fd = -1;
 815	btf->ptr_sz = sizeof(void *);
 816	btf->swapped_endian = false;
 817
 818	if (base_btf) {
 819		btf->base_btf = base_btf;
 820		btf->start_id = btf__type_cnt(base_btf);
 821		btf->start_str_off = base_btf->hdr->str_len;
 822	}
 823
 824	/* +1 for empty string at offset 0 */
 825	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
 826	btf->raw_data = calloc(1, btf->raw_size);
 827	if (!btf->raw_data) {
 828		free(btf);
 829		return ERR_PTR(-ENOMEM);
 830	}
 831
 832	btf->hdr = btf->raw_data;
 833	btf->hdr->hdr_len = sizeof(struct btf_header);
 834	btf->hdr->magic = BTF_MAGIC;
 835	btf->hdr->version = BTF_VERSION;
 836
 837	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
 838	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
 839	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
 840
 841	return btf;
 842}
 843
 844struct btf *btf__new_empty(void)
 845{
 846	return libbpf_ptr(btf_new_empty(NULL));
 847}
 848
 849struct btf *btf__new_empty_split(struct btf *base_btf)
 850{
 851	return libbpf_ptr(btf_new_empty(base_btf));
 852}
 853
 854static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
 855{
 856	struct btf *btf;
 857	int err;
 858
 859	btf = calloc(1, sizeof(struct btf));
 860	if (!btf)
 861		return ERR_PTR(-ENOMEM);
 862
 863	btf->nr_types = 0;
 864	btf->start_id = 1;
 865	btf->start_str_off = 0;
 866	btf->fd = -1;
 867
 868	if (base_btf) {
 869		btf->base_btf = base_btf;
 870		btf->start_id = btf__type_cnt(base_btf);
 871		btf->start_str_off = base_btf->hdr->str_len;
 872	}
 873
 874	btf->raw_data = malloc(size);
 875	if (!btf->raw_data) {
 876		err = -ENOMEM;
 877		goto done;
 878	}
 879	memcpy(btf->raw_data, data, size);
 880	btf->raw_size = size;
 881
 882	btf->hdr = btf->raw_data;
 883	err = btf_parse_hdr(btf);
 884	if (err)
 885		goto done;
 886
 887	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
 888	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
 889
 890	err = btf_parse_str_sec(btf);
 891	err = err ?: btf_parse_type_sec(btf);
 
 892	if (err)
 893		goto done;
 894
 895done:
 896	if (err) {
 897		btf__free(btf);
 898		return ERR_PTR(err);
 899	}
 900
 901	return btf;
 902}
 903
 904struct btf *btf__new(const void *data, __u32 size)
 905{
 906	return libbpf_ptr(btf_new(data, size, NULL));
 907}
 908
 
 
 
 
 
 909static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
 910				 struct btf_ext **btf_ext)
 911{
 912	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
 913	int err = 0, fd = -1, idx = 0;
 914	struct btf *btf = NULL;
 915	Elf_Scn *scn = NULL;
 916	Elf *elf = NULL;
 917	GElf_Ehdr ehdr;
 918	size_t shstrndx;
 919
 920	if (elf_version(EV_CURRENT) == EV_NONE) {
 921		pr_warn("failed to init libelf for %s\n", path);
 922		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
 923	}
 924
 925	fd = open(path, O_RDONLY | O_CLOEXEC);
 926	if (fd < 0) {
 927		err = -errno;
 928		pr_warn("failed to open %s: %s\n", path, strerror(errno));
 929		return ERR_PTR(err);
 930	}
 931
 932	err = -LIBBPF_ERRNO__FORMAT;
 933
 934	elf = elf_begin(fd, ELF_C_READ, NULL);
 935	if (!elf) {
 936		pr_warn("failed to open %s as ELF file\n", path);
 937		goto done;
 938	}
 939	if (!gelf_getehdr(elf, &ehdr)) {
 940		pr_warn("failed to get EHDR from %s\n", path);
 941		goto done;
 942	}
 943
 944	if (elf_getshdrstrndx(elf, &shstrndx)) {
 945		pr_warn("failed to get section names section index for %s\n",
 946			path);
 947		goto done;
 948	}
 949
 950	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
 951		pr_warn("failed to get e_shstrndx from %s\n", path);
 952		goto done;
 953	}
 954
 955	while ((scn = elf_nextscn(elf, scn)) != NULL) {
 956		GElf_Shdr sh;
 957		char *name;
 958
 959		idx++;
 960		if (gelf_getshdr(scn, &sh) != &sh) {
 961			pr_warn("failed to get section(%d) header from %s\n",
 962				idx, path);
 963			goto done;
 964		}
 965		name = elf_strptr(elf, shstrndx, sh.sh_name);
 966		if (!name) {
 967			pr_warn("failed to get section(%d) name from %s\n",
 968				idx, path);
 969			goto done;
 970		}
 971		if (strcmp(name, BTF_ELF_SEC) == 0) {
 972			btf_data = elf_getdata(scn, 0);
 973			if (!btf_data) {
 974				pr_warn("failed to get section(%d, %s) data from %s\n",
 975					idx, name, path);
 976				goto done;
 977			}
 978			continue;
 979		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
 980			btf_ext_data = elf_getdata(scn, 0);
 981			if (!btf_ext_data) {
 982				pr_warn("failed to get section(%d, %s) data from %s\n",
 983					idx, name, path);
 984				goto done;
 985			}
 986			continue;
 987		}
 988	}
 989
 990	err = 0;
 991
 992	if (!btf_data) {
 993		err = -ENOENT;
 
 994		goto done;
 995	}
 996	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
 997	err = libbpf_get_error(btf);
 998	if (err)
 999		goto done;
1000
1001	switch (gelf_getclass(elf)) {
1002	case ELFCLASS32:
1003		btf__set_pointer_size(btf, 4);
1004		break;
1005	case ELFCLASS64:
1006		btf__set_pointer_size(btf, 8);
1007		break;
1008	default:
1009		pr_warn("failed to get ELF class (bitness) for %s\n", path);
1010		break;
1011	}
1012
1013	if (btf_ext && btf_ext_data) {
1014		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
1015		err = libbpf_get_error(*btf_ext);
1016		if (err)
1017			goto done;
1018	} else if (btf_ext) {
1019		*btf_ext = NULL;
1020	}
1021done:
1022	if (elf)
1023		elf_end(elf);
1024	close(fd);
1025
1026	if (!err)
1027		return btf;
1028
1029	if (btf_ext)
1030		btf_ext__free(*btf_ext);
1031	btf__free(btf);
1032
1033	return ERR_PTR(err);
1034}
1035
1036struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1037{
1038	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1039}
1040
1041struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1042{
1043	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1044}
1045
1046static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1047{
1048	struct btf *btf = NULL;
1049	void *data = NULL;
1050	FILE *f = NULL;
1051	__u16 magic;
1052	int err = 0;
1053	long sz;
1054
1055	f = fopen(path, "rb");
1056	if (!f) {
1057		err = -errno;
1058		goto err_out;
1059	}
1060
1061	/* check BTF magic */
1062	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1063		err = -EIO;
1064		goto err_out;
1065	}
1066	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1067		/* definitely not a raw BTF */
1068		err = -EPROTO;
1069		goto err_out;
1070	}
1071
1072	/* get file size */
1073	if (fseek(f, 0, SEEK_END)) {
1074		err = -errno;
1075		goto err_out;
1076	}
1077	sz = ftell(f);
1078	if (sz < 0) {
1079		err = -errno;
1080		goto err_out;
1081	}
1082	/* rewind to the start */
1083	if (fseek(f, 0, SEEK_SET)) {
1084		err = -errno;
1085		goto err_out;
1086	}
1087
1088	/* pre-alloc memory and read all of BTF data */
1089	data = malloc(sz);
1090	if (!data) {
1091		err = -ENOMEM;
1092		goto err_out;
1093	}
1094	if (fread(data, 1, sz, f) < sz) {
1095		err = -EIO;
1096		goto err_out;
1097	}
1098
1099	/* finally parse BTF data */
1100	btf = btf_new(data, sz, base_btf);
1101
1102err_out:
1103	free(data);
1104	if (f)
1105		fclose(f);
1106	return err ? ERR_PTR(err) : btf;
1107}
1108
1109struct btf *btf__parse_raw(const char *path)
1110{
1111	return libbpf_ptr(btf_parse_raw(path, NULL));
1112}
1113
1114struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1115{
1116	return libbpf_ptr(btf_parse_raw(path, base_btf));
1117}
1118
1119static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1120{
1121	struct btf *btf;
1122	int err;
1123
1124	if (btf_ext)
1125		*btf_ext = NULL;
1126
1127	btf = btf_parse_raw(path, base_btf);
1128	err = libbpf_get_error(btf);
1129	if (!err)
1130		return btf;
1131	if (err != -EPROTO)
1132		return ERR_PTR(err);
1133	return btf_parse_elf(path, base_btf, btf_ext);
1134}
1135
1136struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1137{
1138	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1139}
1140
1141struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1142{
1143	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1144}
1145
1146static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1147
1148int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level)
 
 
1149{
1150	LIBBPF_OPTS(bpf_btf_load_opts, opts);
1151	__u32 buf_sz = 0, raw_size;
1152	char *buf = NULL, *tmp;
1153	void *raw_data;
1154	int err = 0;
1155
1156	if (btf->fd >= 0)
1157		return libbpf_err(-EEXIST);
1158	if (log_sz && !log_buf)
1159		return libbpf_err(-EINVAL);
1160
1161	/* cache native raw data representation */
1162	raw_data = btf_get_raw_data(btf, &raw_size, false);
1163	if (!raw_data) {
1164		err = -ENOMEM;
1165		goto done;
1166	}
1167	btf->raw_size = raw_size;
1168	btf->raw_data = raw_data;
1169
1170retry_load:
1171	/* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1172	 * initially. Only if BTF loading fails, we bump log_level to 1 and
1173	 * retry, using either auto-allocated or custom log_buf. This way
1174	 * non-NULL custom log_buf provides a buffer just in case, but hopes
1175	 * for successful load and no need for log_buf.
1176	 */
1177	if (log_level) {
1178		/* if caller didn't provide custom log_buf, we'll keep
1179		 * allocating our own progressively bigger buffers for BTF
1180		 * verification log
1181		 */
1182		if (!log_buf) {
1183			buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1184			tmp = realloc(buf, buf_sz);
1185			if (!tmp) {
1186				err = -ENOMEM;
1187				goto done;
1188			}
1189			buf = tmp;
1190			buf[0] = '\0';
1191		}
1192
1193		opts.log_buf = log_buf ? log_buf : buf;
1194		opts.log_size = log_buf ? log_sz : buf_sz;
1195		opts.log_level = log_level;
1196	}
1197
 
 
 
 
1198	btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1199	if (btf->fd < 0) {
1200		/* time to turn on verbose mode and try again */
1201		if (log_level == 0) {
1202			log_level = 1;
1203			goto retry_load;
1204		}
1205		/* only retry if caller didn't provide custom log_buf, but
1206		 * make sure we can never overflow buf_sz
1207		 */
1208		if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1209			goto retry_load;
1210
1211		err = -errno;
1212		pr_warn("BTF loading error: %d\n", err);
1213		/* don't print out contents of custom log_buf */
1214		if (!log_buf && buf[0])
1215			pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1216	}
1217
1218done:
1219	free(buf);
1220	return libbpf_err(err);
1221}
1222
1223int btf__load_into_kernel(struct btf *btf)
1224{
1225	return btf_load_into_kernel(btf, NULL, 0, 0);
1226}
1227
1228int btf__fd(const struct btf *btf)
1229{
1230	return btf->fd;
1231}
1232
1233void btf__set_fd(struct btf *btf, int fd)
1234{
1235	btf->fd = fd;
1236}
1237
1238static const void *btf_strs_data(const struct btf *btf)
1239{
1240	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1241}
1242
1243static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1244{
1245	struct btf_header *hdr = btf->hdr;
1246	struct btf_type *t;
1247	void *data, *p;
1248	__u32 data_sz;
1249	int i;
1250
1251	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1252	if (data) {
1253		*size = btf->raw_size;
1254		return data;
1255	}
1256
1257	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1258	data = calloc(1, data_sz);
1259	if (!data)
1260		return NULL;
1261	p = data;
1262
1263	memcpy(p, hdr, hdr->hdr_len);
1264	if (swap_endian)
1265		btf_bswap_hdr(p);
1266	p += hdr->hdr_len;
1267
1268	memcpy(p, btf->types_data, hdr->type_len);
1269	if (swap_endian) {
1270		for (i = 0; i < btf->nr_types; i++) {
1271			t = p + btf->type_offs[i];
1272			/* btf_bswap_type_rest() relies on native t->info, so
1273			 * we swap base type info after we swapped all the
1274			 * additional information
1275			 */
1276			if (btf_bswap_type_rest(t))
1277				goto err_out;
1278			btf_bswap_type_base(t);
1279		}
1280	}
1281	p += hdr->type_len;
1282
1283	memcpy(p, btf_strs_data(btf), hdr->str_len);
1284	p += hdr->str_len;
1285
1286	*size = data_sz;
1287	return data;
1288err_out:
1289	free(data);
1290	return NULL;
1291}
1292
1293const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1294{
1295	struct btf *btf = (struct btf *)btf_ro;
1296	__u32 data_sz;
1297	void *data;
1298
1299	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1300	if (!data)
1301		return errno = ENOMEM, NULL;
1302
1303	btf->raw_size = data_sz;
1304	if (btf->swapped_endian)
1305		btf->raw_data_swapped = data;
1306	else
1307		btf->raw_data = data;
1308	*size = data_sz;
1309	return data;
1310}
1311
1312__attribute__((alias("btf__raw_data")))
1313const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1314
1315const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1316{
1317	if (offset < btf->start_str_off)
1318		return btf__str_by_offset(btf->base_btf, offset);
1319	else if (offset - btf->start_str_off < btf->hdr->str_len)
1320		return btf_strs_data(btf) + (offset - btf->start_str_off);
1321	else
1322		return errno = EINVAL, NULL;
1323}
1324
1325const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1326{
1327	return btf__str_by_offset(btf, offset);
1328}
1329
1330struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1331{
1332	struct bpf_btf_info btf_info;
1333	__u32 len = sizeof(btf_info);
1334	__u32 last_size;
1335	struct btf *btf;
1336	void *ptr;
1337	int err;
1338
1339	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1340	 * let's start with a sane default - 4KiB here - and resize it only if
1341	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1342	 */
1343	last_size = 4096;
1344	ptr = malloc(last_size);
1345	if (!ptr)
1346		return ERR_PTR(-ENOMEM);
1347
1348	memset(&btf_info, 0, sizeof(btf_info));
1349	btf_info.btf = ptr_to_u64(ptr);
1350	btf_info.btf_size = last_size;
1351	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1352
1353	if (!err && btf_info.btf_size > last_size) {
1354		void *temp_ptr;
1355
1356		last_size = btf_info.btf_size;
1357		temp_ptr = realloc(ptr, last_size);
1358		if (!temp_ptr) {
1359			btf = ERR_PTR(-ENOMEM);
1360			goto exit_free;
1361		}
1362		ptr = temp_ptr;
1363
1364		len = sizeof(btf_info);
1365		memset(&btf_info, 0, sizeof(btf_info));
1366		btf_info.btf = ptr_to_u64(ptr);
1367		btf_info.btf_size = last_size;
1368
1369		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1370	}
1371
1372	if (err || btf_info.btf_size > last_size) {
1373		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1374		goto exit_free;
1375	}
1376
1377	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1378
1379exit_free:
1380	free(ptr);
1381	return btf;
1382}
1383
1384struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1385{
1386	struct btf *btf;
1387	int btf_fd;
1388
1389	btf_fd = bpf_btf_get_fd_by_id(id);
1390	if (btf_fd < 0)
1391		return libbpf_err_ptr(-errno);
1392
1393	btf = btf_get_from_fd(btf_fd, base_btf);
1394	close(btf_fd);
1395
1396	return libbpf_ptr(btf);
1397}
1398
1399struct btf *btf__load_from_kernel_by_id(__u32 id)
1400{
1401	return btf__load_from_kernel_by_id_split(id, NULL);
1402}
1403
1404static void btf_invalidate_raw_data(struct btf *btf)
1405{
1406	if (btf->raw_data) {
1407		free(btf->raw_data);
1408		btf->raw_data = NULL;
1409	}
1410	if (btf->raw_data_swapped) {
1411		free(btf->raw_data_swapped);
1412		btf->raw_data_swapped = NULL;
1413	}
1414}
1415
1416/* Ensure BTF is ready to be modified (by splitting into a three memory
1417 * regions for header, types, and strings). Also invalidate cached
1418 * raw_data, if any.
1419 */
1420static int btf_ensure_modifiable(struct btf *btf)
1421{
1422	void *hdr, *types;
1423	struct strset *set = NULL;
1424	int err = -ENOMEM;
1425
1426	if (btf_is_modifiable(btf)) {
1427		/* any BTF modification invalidates raw_data */
1428		btf_invalidate_raw_data(btf);
1429		return 0;
1430	}
1431
1432	/* split raw data into three memory regions */
1433	hdr = malloc(btf->hdr->hdr_len);
1434	types = malloc(btf->hdr->type_len);
1435	if (!hdr || !types)
1436		goto err_out;
1437
1438	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1439	memcpy(types, btf->types_data, btf->hdr->type_len);
1440
1441	/* build lookup index for all strings */
1442	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1443	if (IS_ERR(set)) {
1444		err = PTR_ERR(set);
1445		goto err_out;
1446	}
1447
1448	/* only when everything was successful, update internal state */
1449	btf->hdr = hdr;
1450	btf->types_data = types;
1451	btf->types_data_cap = btf->hdr->type_len;
1452	btf->strs_data = NULL;
1453	btf->strs_set = set;
1454	/* if BTF was created from scratch, all strings are guaranteed to be
1455	 * unique and deduplicated
1456	 */
1457	if (btf->hdr->str_len == 0)
1458		btf->strs_deduped = true;
1459	if (!btf->base_btf && btf->hdr->str_len == 1)
1460		btf->strs_deduped = true;
1461
1462	/* invalidate raw_data representation */
1463	btf_invalidate_raw_data(btf);
1464
1465	return 0;
1466
1467err_out:
1468	strset__free(set);
1469	free(hdr);
1470	free(types);
1471	return err;
1472}
1473
1474/* Find an offset in BTF string section that corresponds to a given string *s*.
1475 * Returns:
1476 *   - >0 offset into string section, if string is found;
1477 *   - -ENOENT, if string is not in the string section;
1478 *   - <0, on any other error.
1479 */
1480int btf__find_str(struct btf *btf, const char *s)
1481{
1482	int off;
1483
1484	if (btf->base_btf) {
1485		off = btf__find_str(btf->base_btf, s);
1486		if (off != -ENOENT)
1487			return off;
1488	}
1489
1490	/* BTF needs to be in a modifiable state to build string lookup index */
1491	if (btf_ensure_modifiable(btf))
1492		return libbpf_err(-ENOMEM);
1493
1494	off = strset__find_str(btf->strs_set, s);
1495	if (off < 0)
1496		return libbpf_err(off);
1497
1498	return btf->start_str_off + off;
1499}
1500
1501/* Add a string s to the BTF string section.
1502 * Returns:
1503 *   - > 0 offset into string section, on success;
1504 *   - < 0, on error.
1505 */
1506int btf__add_str(struct btf *btf, const char *s)
1507{
1508	int off;
1509
1510	if (btf->base_btf) {
1511		off = btf__find_str(btf->base_btf, s);
1512		if (off != -ENOENT)
1513			return off;
1514	}
1515
1516	if (btf_ensure_modifiable(btf))
1517		return libbpf_err(-ENOMEM);
1518
1519	off = strset__add_str(btf->strs_set, s);
1520	if (off < 0)
1521		return libbpf_err(off);
1522
1523	btf->hdr->str_len = strset__data_size(btf->strs_set);
1524
1525	return btf->start_str_off + off;
1526}
1527
1528static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1529{
1530	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1531			      btf->hdr->type_len, UINT_MAX, add_sz);
1532}
1533
1534static void btf_type_inc_vlen(struct btf_type *t)
1535{
1536	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1537}
1538
1539static int btf_commit_type(struct btf *btf, int data_sz)
1540{
1541	int err;
1542
1543	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1544	if (err)
1545		return libbpf_err(err);
1546
1547	btf->hdr->type_len += data_sz;
1548	btf->hdr->str_off += data_sz;
1549	btf->nr_types++;
1550	return btf->start_id + btf->nr_types - 1;
1551}
1552
1553struct btf_pipe {
1554	const struct btf *src;
1555	struct btf *dst;
1556	struct hashmap *str_off_map; /* map string offsets from src to dst */
1557};
1558
1559static int btf_rewrite_str(__u32 *str_off, void *ctx)
1560{
1561	struct btf_pipe *p = ctx;
1562	long mapped_off;
1563	int off, err;
1564
1565	if (!*str_off) /* nothing to do for empty strings */
1566		return 0;
1567
1568	if (p->str_off_map &&
1569	    hashmap__find(p->str_off_map, *str_off, &mapped_off)) {
1570		*str_off = mapped_off;
1571		return 0;
1572	}
1573
1574	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1575	if (off < 0)
1576		return off;
1577
1578	/* Remember string mapping from src to dst.  It avoids
1579	 * performing expensive string comparisons.
1580	 */
1581	if (p->str_off_map) {
1582		err = hashmap__append(p->str_off_map, *str_off, off);
1583		if (err)
1584			return err;
1585	}
1586
1587	*str_off = off;
1588	return 0;
1589}
1590
1591int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1592{
1593	struct btf_pipe p = { .src = src_btf, .dst = btf };
1594	struct btf_type *t;
1595	int sz, err;
1596
1597	sz = btf_type_size(src_type);
1598	if (sz < 0)
1599		return libbpf_err(sz);
1600
1601	/* deconstruct BTF, if necessary, and invalidate raw_data */
1602	if (btf_ensure_modifiable(btf))
1603		return libbpf_err(-ENOMEM);
1604
1605	t = btf_add_type_mem(btf, sz);
1606	if (!t)
1607		return libbpf_err(-ENOMEM);
1608
1609	memcpy(t, src_type, sz);
1610
1611	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1612	if (err)
1613		return libbpf_err(err);
1614
1615	return btf_commit_type(btf, sz);
1616}
1617
1618static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1619{
1620	struct btf *btf = ctx;
1621
1622	if (!*type_id) /* nothing to do for VOID references */
1623		return 0;
1624
1625	/* we haven't updated btf's type count yet, so
1626	 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1627	 * add to all newly added BTF types
1628	 */
1629	*type_id += btf->start_id + btf->nr_types - 1;
1630	return 0;
1631}
1632
1633static size_t btf_dedup_identity_hash_fn(long key, void *ctx);
1634static bool btf_dedup_equal_fn(long k1, long k2, void *ctx);
1635
1636int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1637{
1638	struct btf_pipe p = { .src = src_btf, .dst = btf };
1639	int data_sz, sz, cnt, i, err, old_strs_len;
1640	__u32 *off;
1641	void *t;
1642
1643	/* appending split BTF isn't supported yet */
1644	if (src_btf->base_btf)
1645		return libbpf_err(-ENOTSUP);
1646
1647	/* deconstruct BTF, if necessary, and invalidate raw_data */
1648	if (btf_ensure_modifiable(btf))
1649		return libbpf_err(-ENOMEM);
1650
1651	/* remember original strings section size if we have to roll back
1652	 * partial strings section changes
1653	 */
1654	old_strs_len = btf->hdr->str_len;
1655
1656	data_sz = src_btf->hdr->type_len;
1657	cnt = btf__type_cnt(src_btf) - 1;
1658
1659	/* pre-allocate enough memory for new types */
1660	t = btf_add_type_mem(btf, data_sz);
1661	if (!t)
1662		return libbpf_err(-ENOMEM);
1663
1664	/* pre-allocate enough memory for type offset index for new types */
1665	off = btf_add_type_offs_mem(btf, cnt);
1666	if (!off)
1667		return libbpf_err(-ENOMEM);
1668
1669	/* Map the string offsets from src_btf to the offsets from btf to improve performance */
1670	p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1671	if (IS_ERR(p.str_off_map))
1672		return libbpf_err(-ENOMEM);
1673
1674	/* bulk copy types data for all types from src_btf */
1675	memcpy(t, src_btf->types_data, data_sz);
1676
1677	for (i = 0; i < cnt; i++) {
1678		sz = btf_type_size(t);
1679		if (sz < 0) {
1680			/* unlikely, has to be corrupted src_btf */
1681			err = sz;
1682			goto err_out;
1683		}
1684
1685		/* fill out type ID to type offset mapping for lookups by type ID */
1686		*off = t - btf->types_data;
1687
1688		/* add, dedup, and remap strings referenced by this BTF type */
1689		err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1690		if (err)
1691			goto err_out;
1692
1693		/* remap all type IDs referenced from this BTF type */
1694		err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1695		if (err)
1696			goto err_out;
1697
1698		/* go to next type data and type offset index entry */
1699		t += sz;
1700		off++;
1701	}
1702
1703	/* Up until now any of the copied type data was effectively invisible,
1704	 * so if we exited early before this point due to error, BTF would be
1705	 * effectively unmodified. There would be extra internal memory
1706	 * pre-allocated, but it would not be available for querying.  But now
1707	 * that we've copied and rewritten all the data successfully, we can
1708	 * update type count and various internal offsets and sizes to
1709	 * "commit" the changes and made them visible to the outside world.
1710	 */
1711	btf->hdr->type_len += data_sz;
1712	btf->hdr->str_off += data_sz;
1713	btf->nr_types += cnt;
1714
1715	hashmap__free(p.str_off_map);
1716
1717	/* return type ID of the first added BTF type */
1718	return btf->start_id + btf->nr_types - cnt;
1719err_out:
1720	/* zero out preallocated memory as if it was just allocated with
1721	 * libbpf_add_mem()
1722	 */
1723	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1724	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1725
1726	/* and now restore original strings section size; types data size
1727	 * wasn't modified, so doesn't need restoring, see big comment above
1728	 */
1729	btf->hdr->str_len = old_strs_len;
1730
1731	hashmap__free(p.str_off_map);
1732
1733	return libbpf_err(err);
1734}
1735
1736/*
1737 * Append new BTF_KIND_INT type with:
1738 *   - *name* - non-empty, non-NULL type name;
1739 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1740 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1741 * Returns:
1742 *   - >0, type ID of newly added BTF type;
1743 *   - <0, on error.
1744 */
1745int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1746{
1747	struct btf_type *t;
1748	int sz, name_off;
1749
1750	/* non-empty name */
1751	if (!name || !name[0])
1752		return libbpf_err(-EINVAL);
1753	/* byte_sz must be power of 2 */
1754	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1755		return libbpf_err(-EINVAL);
1756	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1757		return libbpf_err(-EINVAL);
1758
1759	/* deconstruct BTF, if necessary, and invalidate raw_data */
1760	if (btf_ensure_modifiable(btf))
1761		return libbpf_err(-ENOMEM);
1762
1763	sz = sizeof(struct btf_type) + sizeof(int);
1764	t = btf_add_type_mem(btf, sz);
1765	if (!t)
1766		return libbpf_err(-ENOMEM);
1767
1768	/* if something goes wrong later, we might end up with an extra string,
1769	 * but that shouldn't be a problem, because BTF can't be constructed
1770	 * completely anyway and will most probably be just discarded
1771	 */
1772	name_off = btf__add_str(btf, name);
1773	if (name_off < 0)
1774		return name_off;
1775
1776	t->name_off = name_off;
1777	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1778	t->size = byte_sz;
1779	/* set INT info, we don't allow setting legacy bit offset/size */
1780	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1781
1782	return btf_commit_type(btf, sz);
1783}
1784
1785/*
1786 * Append new BTF_KIND_FLOAT type with:
1787 *   - *name* - non-empty, non-NULL type name;
1788 *   - *sz* - size of the type, in bytes;
1789 * Returns:
1790 *   - >0, type ID of newly added BTF type;
1791 *   - <0, on error.
1792 */
1793int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1794{
1795	struct btf_type *t;
1796	int sz, name_off;
1797
1798	/* non-empty name */
1799	if (!name || !name[0])
1800		return libbpf_err(-EINVAL);
1801
1802	/* byte_sz must be one of the explicitly allowed values */
1803	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1804	    byte_sz != 16)
1805		return libbpf_err(-EINVAL);
1806
1807	if (btf_ensure_modifiable(btf))
1808		return libbpf_err(-ENOMEM);
1809
1810	sz = sizeof(struct btf_type);
1811	t = btf_add_type_mem(btf, sz);
1812	if (!t)
1813		return libbpf_err(-ENOMEM);
1814
1815	name_off = btf__add_str(btf, name);
1816	if (name_off < 0)
1817		return name_off;
1818
1819	t->name_off = name_off;
1820	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1821	t->size = byte_sz;
1822
1823	return btf_commit_type(btf, sz);
1824}
1825
1826/* it's completely legal to append BTF types with type IDs pointing forward to
1827 * types that haven't been appended yet, so we only make sure that id looks
1828 * sane, we can't guarantee that ID will always be valid
1829 */
1830static int validate_type_id(int id)
1831{
1832	if (id < 0 || id > BTF_MAX_NR_TYPES)
1833		return -EINVAL;
1834	return 0;
1835}
1836
1837/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1838static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1839{
1840	struct btf_type *t;
1841	int sz, name_off = 0;
1842
1843	if (validate_type_id(ref_type_id))
1844		return libbpf_err(-EINVAL);
1845
1846	if (btf_ensure_modifiable(btf))
1847		return libbpf_err(-ENOMEM);
1848
1849	sz = sizeof(struct btf_type);
1850	t = btf_add_type_mem(btf, sz);
1851	if (!t)
1852		return libbpf_err(-ENOMEM);
1853
1854	if (name && name[0]) {
1855		name_off = btf__add_str(btf, name);
1856		if (name_off < 0)
1857			return name_off;
1858	}
1859
1860	t->name_off = name_off;
1861	t->info = btf_type_info(kind, 0, 0);
1862	t->type = ref_type_id;
1863
1864	return btf_commit_type(btf, sz);
1865}
1866
1867/*
1868 * Append new BTF_KIND_PTR type with:
1869 *   - *ref_type_id* - referenced type ID, it might not exist yet;
1870 * Returns:
1871 *   - >0, type ID of newly added BTF type;
1872 *   - <0, on error.
1873 */
1874int btf__add_ptr(struct btf *btf, int ref_type_id)
1875{
1876	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1877}
1878
1879/*
1880 * Append new BTF_KIND_ARRAY type with:
1881 *   - *index_type_id* - type ID of the type describing array index;
1882 *   - *elem_type_id* - type ID of the type describing array element;
1883 *   - *nr_elems* - the size of the array;
1884 * Returns:
1885 *   - >0, type ID of newly added BTF type;
1886 *   - <0, on error.
1887 */
1888int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1889{
1890	struct btf_type *t;
1891	struct btf_array *a;
1892	int sz;
1893
1894	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1895		return libbpf_err(-EINVAL);
1896
1897	if (btf_ensure_modifiable(btf))
1898		return libbpf_err(-ENOMEM);
1899
1900	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1901	t = btf_add_type_mem(btf, sz);
1902	if (!t)
1903		return libbpf_err(-ENOMEM);
1904
1905	t->name_off = 0;
1906	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1907	t->size = 0;
1908
1909	a = btf_array(t);
1910	a->type = elem_type_id;
1911	a->index_type = index_type_id;
1912	a->nelems = nr_elems;
1913
1914	return btf_commit_type(btf, sz);
1915}
1916
1917/* generic STRUCT/UNION append function */
1918static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1919{
1920	struct btf_type *t;
1921	int sz, name_off = 0;
1922
1923	if (btf_ensure_modifiable(btf))
1924		return libbpf_err(-ENOMEM);
1925
1926	sz = sizeof(struct btf_type);
1927	t = btf_add_type_mem(btf, sz);
1928	if (!t)
1929		return libbpf_err(-ENOMEM);
1930
1931	if (name && name[0]) {
1932		name_off = btf__add_str(btf, name);
1933		if (name_off < 0)
1934			return name_off;
1935	}
1936
1937	/* start out with vlen=0 and no kflag; this will be adjusted when
1938	 * adding each member
1939	 */
1940	t->name_off = name_off;
1941	t->info = btf_type_info(kind, 0, 0);
1942	t->size = bytes_sz;
1943
1944	return btf_commit_type(btf, sz);
1945}
1946
1947/*
1948 * Append new BTF_KIND_STRUCT type with:
1949 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1950 *   - *byte_sz* - size of the struct, in bytes;
1951 *
1952 * Struct initially has no fields in it. Fields can be added by
1953 * btf__add_field() right after btf__add_struct() succeeds.
1954 *
1955 * Returns:
1956 *   - >0, type ID of newly added BTF type;
1957 *   - <0, on error.
1958 */
1959int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1960{
1961	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1962}
1963
1964/*
1965 * Append new BTF_KIND_UNION type with:
1966 *   - *name* - name of the union, can be NULL or empty for anonymous union;
1967 *   - *byte_sz* - size of the union, in bytes;
1968 *
1969 * Union initially has no fields in it. Fields can be added by
1970 * btf__add_field() right after btf__add_union() succeeds. All fields
1971 * should have *bit_offset* of 0.
1972 *
1973 * Returns:
1974 *   - >0, type ID of newly added BTF type;
1975 *   - <0, on error.
1976 */
1977int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1978{
1979	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1980}
1981
1982static struct btf_type *btf_last_type(struct btf *btf)
1983{
1984	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
1985}
1986
1987/*
1988 * Append new field for the current STRUCT/UNION type with:
1989 *   - *name* - name of the field, can be NULL or empty for anonymous field;
1990 *   - *type_id* - type ID for the type describing field type;
1991 *   - *bit_offset* - bit offset of the start of the field within struct/union;
1992 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1993 * Returns:
1994 *   -  0, on success;
1995 *   - <0, on error.
1996 */
1997int btf__add_field(struct btf *btf, const char *name, int type_id,
1998		   __u32 bit_offset, __u32 bit_size)
1999{
2000	struct btf_type *t;
2001	struct btf_member *m;
2002	bool is_bitfield;
2003	int sz, name_off = 0;
2004
2005	/* last type should be union/struct */
2006	if (btf->nr_types == 0)
2007		return libbpf_err(-EINVAL);
2008	t = btf_last_type(btf);
2009	if (!btf_is_composite(t))
2010		return libbpf_err(-EINVAL);
2011
2012	if (validate_type_id(type_id))
2013		return libbpf_err(-EINVAL);
2014	/* best-effort bit field offset/size enforcement */
2015	is_bitfield = bit_size || (bit_offset % 8 != 0);
2016	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2017		return libbpf_err(-EINVAL);
2018
2019	/* only offset 0 is allowed for unions */
2020	if (btf_is_union(t) && bit_offset)
2021		return libbpf_err(-EINVAL);
2022
2023	/* decompose and invalidate raw data */
2024	if (btf_ensure_modifiable(btf))
2025		return libbpf_err(-ENOMEM);
2026
2027	sz = sizeof(struct btf_member);
2028	m = btf_add_type_mem(btf, sz);
2029	if (!m)
2030		return libbpf_err(-ENOMEM);
2031
2032	if (name && name[0]) {
2033		name_off = btf__add_str(btf, name);
2034		if (name_off < 0)
2035			return name_off;
2036	}
2037
2038	m->name_off = name_off;
2039	m->type = type_id;
2040	m->offset = bit_offset | (bit_size << 24);
2041
2042	/* btf_add_type_mem can invalidate t pointer */
2043	t = btf_last_type(btf);
2044	/* update parent type's vlen and kflag */
2045	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2046
2047	btf->hdr->type_len += sz;
2048	btf->hdr->str_off += sz;
2049	return 0;
2050}
2051
2052static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2053			       bool is_signed, __u8 kind)
2054{
2055	struct btf_type *t;
2056	int sz, name_off = 0;
2057
2058	/* byte_sz must be power of 2 */
2059	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2060		return libbpf_err(-EINVAL);
2061
2062	if (btf_ensure_modifiable(btf))
2063		return libbpf_err(-ENOMEM);
2064
2065	sz = sizeof(struct btf_type);
2066	t = btf_add_type_mem(btf, sz);
2067	if (!t)
2068		return libbpf_err(-ENOMEM);
2069
2070	if (name && name[0]) {
2071		name_off = btf__add_str(btf, name);
2072		if (name_off < 0)
2073			return name_off;
2074	}
2075
2076	/* start out with vlen=0; it will be adjusted when adding enum values */
2077	t->name_off = name_off;
2078	t->info = btf_type_info(kind, 0, is_signed);
2079	t->size = byte_sz;
2080
2081	return btf_commit_type(btf, sz);
2082}
2083
2084/*
2085 * Append new BTF_KIND_ENUM type with:
2086 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2087 *   - *byte_sz* - size of the enum, in bytes.
2088 *
2089 * Enum initially has no enum values in it (and corresponds to enum forward
2090 * declaration). Enumerator values can be added by btf__add_enum_value()
2091 * immediately after btf__add_enum() succeeds.
2092 *
2093 * Returns:
2094 *   - >0, type ID of newly added BTF type;
2095 *   - <0, on error.
2096 */
2097int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2098{
2099	/*
2100	 * set the signedness to be unsigned, it will change to signed
2101	 * if any later enumerator is negative.
2102	 */
2103	return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2104}
2105
2106/*
2107 * Append new enum value for the current ENUM type with:
2108 *   - *name* - name of the enumerator value, can't be NULL or empty;
2109 *   - *value* - integer value corresponding to enum value *name*;
2110 * Returns:
2111 *   -  0, on success;
2112 *   - <0, on error.
2113 */
2114int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2115{
2116	struct btf_type *t;
2117	struct btf_enum *v;
2118	int sz, name_off;
2119
2120	/* last type should be BTF_KIND_ENUM */
2121	if (btf->nr_types == 0)
2122		return libbpf_err(-EINVAL);
2123	t = btf_last_type(btf);
2124	if (!btf_is_enum(t))
2125		return libbpf_err(-EINVAL);
2126
2127	/* non-empty name */
2128	if (!name || !name[0])
2129		return libbpf_err(-EINVAL);
2130	if (value < INT_MIN || value > UINT_MAX)
2131		return libbpf_err(-E2BIG);
2132
2133	/* decompose and invalidate raw data */
2134	if (btf_ensure_modifiable(btf))
2135		return libbpf_err(-ENOMEM);
2136
2137	sz = sizeof(struct btf_enum);
2138	v = btf_add_type_mem(btf, sz);
2139	if (!v)
2140		return libbpf_err(-ENOMEM);
2141
2142	name_off = btf__add_str(btf, name);
2143	if (name_off < 0)
2144		return name_off;
2145
2146	v->name_off = name_off;
2147	v->val = value;
2148
2149	/* update parent type's vlen */
2150	t = btf_last_type(btf);
2151	btf_type_inc_vlen(t);
2152
2153	/* if negative value, set signedness to signed */
2154	if (value < 0)
2155		t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2156
2157	btf->hdr->type_len += sz;
2158	btf->hdr->str_off += sz;
2159	return 0;
2160}
2161
2162/*
2163 * Append new BTF_KIND_ENUM64 type with:
2164 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2165 *   - *byte_sz* - size of the enum, in bytes.
2166 *   - *is_signed* - whether the enum values are signed or not;
2167 *
2168 * Enum initially has no enum values in it (and corresponds to enum forward
2169 * declaration). Enumerator values can be added by btf__add_enum64_value()
2170 * immediately after btf__add_enum64() succeeds.
2171 *
2172 * Returns:
2173 *   - >0, type ID of newly added BTF type;
2174 *   - <0, on error.
2175 */
2176int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2177		    bool is_signed)
2178{
2179	return btf_add_enum_common(btf, name, byte_sz, is_signed,
2180				   BTF_KIND_ENUM64);
2181}
2182
2183/*
2184 * Append new enum value for the current ENUM64 type with:
2185 *   - *name* - name of the enumerator value, can't be NULL or empty;
2186 *   - *value* - integer value corresponding to enum value *name*;
2187 * Returns:
2188 *   -  0, on success;
2189 *   - <0, on error.
2190 */
2191int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2192{
2193	struct btf_enum64 *v;
2194	struct btf_type *t;
2195	int sz, name_off;
2196
2197	/* last type should be BTF_KIND_ENUM64 */
2198	if (btf->nr_types == 0)
2199		return libbpf_err(-EINVAL);
2200	t = btf_last_type(btf);
2201	if (!btf_is_enum64(t))
2202		return libbpf_err(-EINVAL);
2203
2204	/* non-empty name */
2205	if (!name || !name[0])
2206		return libbpf_err(-EINVAL);
2207
2208	/* decompose and invalidate raw data */
2209	if (btf_ensure_modifiable(btf))
2210		return libbpf_err(-ENOMEM);
2211
2212	sz = sizeof(struct btf_enum64);
2213	v = btf_add_type_mem(btf, sz);
2214	if (!v)
2215		return libbpf_err(-ENOMEM);
2216
2217	name_off = btf__add_str(btf, name);
2218	if (name_off < 0)
2219		return name_off;
2220
2221	v->name_off = name_off;
2222	v->val_lo32 = (__u32)value;
2223	v->val_hi32 = value >> 32;
2224
2225	/* update parent type's vlen */
2226	t = btf_last_type(btf);
2227	btf_type_inc_vlen(t);
2228
2229	btf->hdr->type_len += sz;
2230	btf->hdr->str_off += sz;
2231	return 0;
2232}
2233
2234/*
2235 * Append new BTF_KIND_FWD type with:
2236 *   - *name*, non-empty/non-NULL name;
2237 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2238 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2239 * Returns:
2240 *   - >0, type ID of newly added BTF type;
2241 *   - <0, on error.
2242 */
2243int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2244{
2245	if (!name || !name[0])
2246		return libbpf_err(-EINVAL);
2247
2248	switch (fwd_kind) {
2249	case BTF_FWD_STRUCT:
2250	case BTF_FWD_UNION: {
2251		struct btf_type *t;
2252		int id;
2253
2254		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2255		if (id <= 0)
2256			return id;
2257		t = btf_type_by_id(btf, id);
2258		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2259		return id;
2260	}
2261	case BTF_FWD_ENUM:
2262		/* enum forward in BTF currently is just an enum with no enum
2263		 * values; we also assume a standard 4-byte size for it
2264		 */
2265		return btf__add_enum(btf, name, sizeof(int));
2266	default:
2267		return libbpf_err(-EINVAL);
2268	}
2269}
2270
2271/*
2272 * Append new BTF_KING_TYPEDEF type with:
2273 *   - *name*, non-empty/non-NULL name;
2274 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2275 * Returns:
2276 *   - >0, type ID of newly added BTF type;
2277 *   - <0, on error.
2278 */
2279int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2280{
2281	if (!name || !name[0])
2282		return libbpf_err(-EINVAL);
2283
2284	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2285}
2286
2287/*
2288 * Append new BTF_KIND_VOLATILE type with:
2289 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2290 * Returns:
2291 *   - >0, type ID of newly added BTF type;
2292 *   - <0, on error.
2293 */
2294int btf__add_volatile(struct btf *btf, int ref_type_id)
2295{
2296	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2297}
2298
2299/*
2300 * Append new BTF_KIND_CONST type with:
2301 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2302 * Returns:
2303 *   - >0, type ID of newly added BTF type;
2304 *   - <0, on error.
2305 */
2306int btf__add_const(struct btf *btf, int ref_type_id)
2307{
2308	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2309}
2310
2311/*
2312 * Append new BTF_KIND_RESTRICT type with:
2313 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2314 * Returns:
2315 *   - >0, type ID of newly added BTF type;
2316 *   - <0, on error.
2317 */
2318int btf__add_restrict(struct btf *btf, int ref_type_id)
2319{
2320	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2321}
2322
2323/*
2324 * Append new BTF_KIND_TYPE_TAG type with:
2325 *   - *value*, non-empty/non-NULL tag value;
2326 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2327 * Returns:
2328 *   - >0, type ID of newly added BTF type;
2329 *   - <0, on error.
2330 */
2331int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2332{
2333	if (!value || !value[0])
2334		return libbpf_err(-EINVAL);
2335
2336	return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2337}
2338
2339/*
2340 * Append new BTF_KIND_FUNC type with:
2341 *   - *name*, non-empty/non-NULL name;
2342 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2343 * Returns:
2344 *   - >0, type ID of newly added BTF type;
2345 *   - <0, on error.
2346 */
2347int btf__add_func(struct btf *btf, const char *name,
2348		  enum btf_func_linkage linkage, int proto_type_id)
2349{
2350	int id;
2351
2352	if (!name || !name[0])
2353		return libbpf_err(-EINVAL);
2354	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2355	    linkage != BTF_FUNC_EXTERN)
2356		return libbpf_err(-EINVAL);
2357
2358	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2359	if (id > 0) {
2360		struct btf_type *t = btf_type_by_id(btf, id);
2361
2362		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2363	}
2364	return libbpf_err(id);
2365}
2366
2367/*
2368 * Append new BTF_KIND_FUNC_PROTO with:
2369 *   - *ret_type_id* - type ID for return result of a function.
2370 *
2371 * Function prototype initially has no arguments, but they can be added by
2372 * btf__add_func_param() one by one, immediately after
2373 * btf__add_func_proto() succeeded.
2374 *
2375 * Returns:
2376 *   - >0, type ID of newly added BTF type;
2377 *   - <0, on error.
2378 */
2379int btf__add_func_proto(struct btf *btf, int ret_type_id)
2380{
2381	struct btf_type *t;
2382	int sz;
2383
2384	if (validate_type_id(ret_type_id))
2385		return libbpf_err(-EINVAL);
2386
2387	if (btf_ensure_modifiable(btf))
2388		return libbpf_err(-ENOMEM);
2389
2390	sz = sizeof(struct btf_type);
2391	t = btf_add_type_mem(btf, sz);
2392	if (!t)
2393		return libbpf_err(-ENOMEM);
2394
2395	/* start out with vlen=0; this will be adjusted when adding enum
2396	 * values, if necessary
2397	 */
2398	t->name_off = 0;
2399	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2400	t->type = ret_type_id;
2401
2402	return btf_commit_type(btf, sz);
2403}
2404
2405/*
2406 * Append new function parameter for current FUNC_PROTO type with:
2407 *   - *name* - parameter name, can be NULL or empty;
2408 *   - *type_id* - type ID describing the type of the parameter.
2409 * Returns:
2410 *   -  0, on success;
2411 *   - <0, on error.
2412 */
2413int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2414{
2415	struct btf_type *t;
2416	struct btf_param *p;
2417	int sz, name_off = 0;
2418
2419	if (validate_type_id(type_id))
2420		return libbpf_err(-EINVAL);
2421
2422	/* last type should be BTF_KIND_FUNC_PROTO */
2423	if (btf->nr_types == 0)
2424		return libbpf_err(-EINVAL);
2425	t = btf_last_type(btf);
2426	if (!btf_is_func_proto(t))
2427		return libbpf_err(-EINVAL);
2428
2429	/* decompose and invalidate raw data */
2430	if (btf_ensure_modifiable(btf))
2431		return libbpf_err(-ENOMEM);
2432
2433	sz = sizeof(struct btf_param);
2434	p = btf_add_type_mem(btf, sz);
2435	if (!p)
2436		return libbpf_err(-ENOMEM);
2437
2438	if (name && name[0]) {
2439		name_off = btf__add_str(btf, name);
2440		if (name_off < 0)
2441			return name_off;
2442	}
2443
2444	p->name_off = name_off;
2445	p->type = type_id;
2446
2447	/* update parent type's vlen */
2448	t = btf_last_type(btf);
2449	btf_type_inc_vlen(t);
2450
2451	btf->hdr->type_len += sz;
2452	btf->hdr->str_off += sz;
2453	return 0;
2454}
2455
2456/*
2457 * Append new BTF_KIND_VAR type with:
2458 *   - *name* - non-empty/non-NULL name;
2459 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2460 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2461 *   - *type_id* - type ID of the type describing the type of the variable.
2462 * Returns:
2463 *   - >0, type ID of newly added BTF type;
2464 *   - <0, on error.
2465 */
2466int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2467{
2468	struct btf_type *t;
2469	struct btf_var *v;
2470	int sz, name_off;
2471
2472	/* non-empty name */
2473	if (!name || !name[0])
2474		return libbpf_err(-EINVAL);
2475	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2476	    linkage != BTF_VAR_GLOBAL_EXTERN)
2477		return libbpf_err(-EINVAL);
2478	if (validate_type_id(type_id))
2479		return libbpf_err(-EINVAL);
2480
2481	/* deconstruct BTF, if necessary, and invalidate raw_data */
2482	if (btf_ensure_modifiable(btf))
2483		return libbpf_err(-ENOMEM);
2484
2485	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2486	t = btf_add_type_mem(btf, sz);
2487	if (!t)
2488		return libbpf_err(-ENOMEM);
2489
2490	name_off = btf__add_str(btf, name);
2491	if (name_off < 0)
2492		return name_off;
2493
2494	t->name_off = name_off;
2495	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2496	t->type = type_id;
2497
2498	v = btf_var(t);
2499	v->linkage = linkage;
2500
2501	return btf_commit_type(btf, sz);
2502}
2503
2504/*
2505 * Append new BTF_KIND_DATASEC type with:
2506 *   - *name* - non-empty/non-NULL name;
2507 *   - *byte_sz* - data section size, in bytes.
2508 *
2509 * Data section is initially empty. Variables info can be added with
2510 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2511 *
2512 * Returns:
2513 *   - >0, type ID of newly added BTF type;
2514 *   - <0, on error.
2515 */
2516int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2517{
2518	struct btf_type *t;
2519	int sz, name_off;
2520
2521	/* non-empty name */
2522	if (!name || !name[0])
2523		return libbpf_err(-EINVAL);
2524
2525	if (btf_ensure_modifiable(btf))
2526		return libbpf_err(-ENOMEM);
2527
2528	sz = sizeof(struct btf_type);
2529	t = btf_add_type_mem(btf, sz);
2530	if (!t)
2531		return libbpf_err(-ENOMEM);
2532
2533	name_off = btf__add_str(btf, name);
2534	if (name_off < 0)
2535		return name_off;
2536
2537	/* start with vlen=0, which will be update as var_secinfos are added */
2538	t->name_off = name_off;
2539	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2540	t->size = byte_sz;
2541
2542	return btf_commit_type(btf, sz);
2543}
2544
2545/*
2546 * Append new data section variable information entry for current DATASEC type:
2547 *   - *var_type_id* - type ID, describing type of the variable;
2548 *   - *offset* - variable offset within data section, in bytes;
2549 *   - *byte_sz* - variable size, in bytes.
2550 *
2551 * Returns:
2552 *   -  0, on success;
2553 *   - <0, on error.
2554 */
2555int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2556{
2557	struct btf_type *t;
2558	struct btf_var_secinfo *v;
2559	int sz;
2560
2561	/* last type should be BTF_KIND_DATASEC */
2562	if (btf->nr_types == 0)
2563		return libbpf_err(-EINVAL);
2564	t = btf_last_type(btf);
2565	if (!btf_is_datasec(t))
2566		return libbpf_err(-EINVAL);
2567
2568	if (validate_type_id(var_type_id))
2569		return libbpf_err(-EINVAL);
2570
2571	/* decompose and invalidate raw data */
2572	if (btf_ensure_modifiable(btf))
2573		return libbpf_err(-ENOMEM);
2574
2575	sz = sizeof(struct btf_var_secinfo);
2576	v = btf_add_type_mem(btf, sz);
2577	if (!v)
2578		return libbpf_err(-ENOMEM);
2579
2580	v->type = var_type_id;
2581	v->offset = offset;
2582	v->size = byte_sz;
2583
2584	/* update parent type's vlen */
2585	t = btf_last_type(btf);
2586	btf_type_inc_vlen(t);
2587
2588	btf->hdr->type_len += sz;
2589	btf->hdr->str_off += sz;
2590	return 0;
2591}
2592
2593/*
2594 * Append new BTF_KIND_DECL_TAG type with:
2595 *   - *value* - non-empty/non-NULL string;
2596 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2597 *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2598 *     member or function argument index;
2599 * Returns:
2600 *   - >0, type ID of newly added BTF type;
2601 *   - <0, on error.
2602 */
2603int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2604		 int component_idx)
2605{
2606	struct btf_type *t;
2607	int sz, value_off;
2608
2609	if (!value || !value[0] || component_idx < -1)
2610		return libbpf_err(-EINVAL);
2611
2612	if (validate_type_id(ref_type_id))
2613		return libbpf_err(-EINVAL);
2614
2615	if (btf_ensure_modifiable(btf))
2616		return libbpf_err(-ENOMEM);
2617
2618	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2619	t = btf_add_type_mem(btf, sz);
2620	if (!t)
2621		return libbpf_err(-ENOMEM);
2622
2623	value_off = btf__add_str(btf, value);
2624	if (value_off < 0)
2625		return value_off;
2626
2627	t->name_off = value_off;
2628	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2629	t->type = ref_type_id;
2630	btf_decl_tag(t)->component_idx = component_idx;
2631
2632	return btf_commit_type(btf, sz);
2633}
2634
2635struct btf_ext_sec_setup_param {
2636	__u32 off;
2637	__u32 len;
2638	__u32 min_rec_size;
2639	struct btf_ext_info *ext_info;
2640	const char *desc;
2641};
2642
2643static int btf_ext_setup_info(struct btf_ext *btf_ext,
2644			      struct btf_ext_sec_setup_param *ext_sec)
2645{
2646	const struct btf_ext_info_sec *sinfo;
2647	struct btf_ext_info *ext_info;
2648	__u32 info_left, record_size;
2649	size_t sec_cnt = 0;
2650	/* The start of the info sec (including the __u32 record_size). */
2651	void *info;
2652
2653	if (ext_sec->len == 0)
2654		return 0;
2655
2656	if (ext_sec->off & 0x03) {
2657		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2658		     ext_sec->desc);
2659		return -EINVAL;
2660	}
2661
2662	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2663	info_left = ext_sec->len;
2664
2665	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2666		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2667			 ext_sec->desc, ext_sec->off, ext_sec->len);
2668		return -EINVAL;
2669	}
2670
2671	/* At least a record size */
2672	if (info_left < sizeof(__u32)) {
2673		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2674		return -EINVAL;
2675	}
2676
2677	/* The record size needs to meet the minimum standard */
2678	record_size = *(__u32 *)info;
2679	if (record_size < ext_sec->min_rec_size ||
2680	    record_size & 0x03) {
2681		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2682			 ext_sec->desc, record_size);
2683		return -EINVAL;
2684	}
2685
2686	sinfo = info + sizeof(__u32);
2687	info_left -= sizeof(__u32);
2688
2689	/* If no records, return failure now so .BTF.ext won't be used. */
2690	if (!info_left) {
2691		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2692		return -EINVAL;
2693	}
2694
2695	while (info_left) {
2696		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2697		__u64 total_record_size;
2698		__u32 num_records;
2699
2700		if (info_left < sec_hdrlen) {
2701			pr_debug("%s section header is not found in .BTF.ext\n",
2702			     ext_sec->desc);
2703			return -EINVAL;
2704		}
2705
2706		num_records = sinfo->num_info;
2707		if (num_records == 0) {
2708			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2709			     ext_sec->desc);
2710			return -EINVAL;
2711		}
2712
2713		total_record_size = sec_hdrlen + (__u64)num_records * record_size;
2714		if (info_left < total_record_size) {
2715			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2716			     ext_sec->desc);
2717			return -EINVAL;
2718		}
2719
2720		info_left -= total_record_size;
2721		sinfo = (void *)sinfo + total_record_size;
2722		sec_cnt++;
2723	}
2724
2725	ext_info = ext_sec->ext_info;
2726	ext_info->len = ext_sec->len - sizeof(__u32);
2727	ext_info->rec_size = record_size;
2728	ext_info->info = info + sizeof(__u32);
2729	ext_info->sec_cnt = sec_cnt;
2730
2731	return 0;
2732}
2733
2734static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2735{
2736	struct btf_ext_sec_setup_param param = {
2737		.off = btf_ext->hdr->func_info_off,
2738		.len = btf_ext->hdr->func_info_len,
2739		.min_rec_size = sizeof(struct bpf_func_info_min),
2740		.ext_info = &btf_ext->func_info,
2741		.desc = "func_info"
2742	};
2743
2744	return btf_ext_setup_info(btf_ext, &param);
2745}
2746
2747static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2748{
2749	struct btf_ext_sec_setup_param param = {
2750		.off = btf_ext->hdr->line_info_off,
2751		.len = btf_ext->hdr->line_info_len,
2752		.min_rec_size = sizeof(struct bpf_line_info_min),
2753		.ext_info = &btf_ext->line_info,
2754		.desc = "line_info",
2755	};
2756
2757	return btf_ext_setup_info(btf_ext, &param);
2758}
2759
2760static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2761{
2762	struct btf_ext_sec_setup_param param = {
2763		.off = btf_ext->hdr->core_relo_off,
2764		.len = btf_ext->hdr->core_relo_len,
2765		.min_rec_size = sizeof(struct bpf_core_relo),
2766		.ext_info = &btf_ext->core_relo_info,
2767		.desc = "core_relo",
2768	};
2769
2770	return btf_ext_setup_info(btf_ext, &param);
2771}
2772
2773static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2774{
2775	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2776
2777	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2778	    data_size < hdr->hdr_len) {
2779		pr_debug("BTF.ext header not found");
2780		return -EINVAL;
2781	}
2782
2783	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2784		pr_warn("BTF.ext in non-native endianness is not supported\n");
2785		return -ENOTSUP;
2786	} else if (hdr->magic != BTF_MAGIC) {
2787		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2788		return -EINVAL;
2789	}
2790
2791	if (hdr->version != BTF_VERSION) {
2792		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2793		return -ENOTSUP;
2794	}
2795
2796	if (hdr->flags) {
2797		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2798		return -ENOTSUP;
2799	}
2800
2801	if (data_size == hdr->hdr_len) {
2802		pr_debug("BTF.ext has no data\n");
2803		return -EINVAL;
2804	}
2805
2806	return 0;
2807}
2808
2809void btf_ext__free(struct btf_ext *btf_ext)
2810{
2811	if (IS_ERR_OR_NULL(btf_ext))
2812		return;
2813	free(btf_ext->func_info.sec_idxs);
2814	free(btf_ext->line_info.sec_idxs);
2815	free(btf_ext->core_relo_info.sec_idxs);
2816	free(btf_ext->data);
2817	free(btf_ext);
2818}
2819
2820struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
2821{
2822	struct btf_ext *btf_ext;
2823	int err;
2824
2825	btf_ext = calloc(1, sizeof(struct btf_ext));
2826	if (!btf_ext)
2827		return libbpf_err_ptr(-ENOMEM);
2828
2829	btf_ext->data_size = size;
2830	btf_ext->data = malloc(size);
2831	if (!btf_ext->data) {
2832		err = -ENOMEM;
2833		goto done;
2834	}
2835	memcpy(btf_ext->data, data, size);
2836
2837	err = btf_ext_parse_hdr(btf_ext->data, size);
2838	if (err)
2839		goto done;
2840
2841	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2842		err = -EINVAL;
2843		goto done;
2844	}
2845
2846	err = btf_ext_setup_func_info(btf_ext);
2847	if (err)
2848		goto done;
2849
2850	err = btf_ext_setup_line_info(btf_ext);
2851	if (err)
2852		goto done;
2853
2854	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2855		goto done; /* skip core relos parsing */
2856
2857	err = btf_ext_setup_core_relos(btf_ext);
2858	if (err)
2859		goto done;
2860
2861done:
2862	if (err) {
2863		btf_ext__free(btf_ext);
2864		return libbpf_err_ptr(err);
2865	}
2866
2867	return btf_ext;
2868}
2869
2870const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2871{
2872	*size = btf_ext->data_size;
2873	return btf_ext->data;
2874}
2875
 
 
 
 
2876struct btf_dedup;
2877
2878static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
2879static void btf_dedup_free(struct btf_dedup *d);
2880static int btf_dedup_prep(struct btf_dedup *d);
2881static int btf_dedup_strings(struct btf_dedup *d);
2882static int btf_dedup_prim_types(struct btf_dedup *d);
2883static int btf_dedup_struct_types(struct btf_dedup *d);
2884static int btf_dedup_ref_types(struct btf_dedup *d);
2885static int btf_dedup_resolve_fwds(struct btf_dedup *d);
2886static int btf_dedup_compact_types(struct btf_dedup *d);
2887static int btf_dedup_remap_types(struct btf_dedup *d);
2888
2889/*
2890 * Deduplicate BTF types and strings.
2891 *
2892 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2893 * section with all BTF type descriptors and string data. It overwrites that
2894 * memory in-place with deduplicated types and strings without any loss of
2895 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2896 * is provided, all the strings referenced from .BTF.ext section are honored
2897 * and updated to point to the right offsets after deduplication.
2898 *
2899 * If function returns with error, type/string data might be garbled and should
2900 * be discarded.
2901 *
2902 * More verbose and detailed description of both problem btf_dedup is solving,
2903 * as well as solution could be found at:
2904 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2905 *
2906 * Problem description and justification
2907 * =====================================
2908 *
2909 * BTF type information is typically emitted either as a result of conversion
2910 * from DWARF to BTF or directly by compiler. In both cases, each compilation
2911 * unit contains information about a subset of all the types that are used
2912 * in an application. These subsets are frequently overlapping and contain a lot
2913 * of duplicated information when later concatenated together into a single
2914 * binary. This algorithm ensures that each unique type is represented by single
2915 * BTF type descriptor, greatly reducing resulting size of BTF data.
2916 *
2917 * Compilation unit isolation and subsequent duplication of data is not the only
2918 * problem. The same type hierarchy (e.g., struct and all the type that struct
2919 * references) in different compilation units can be represented in BTF to
2920 * various degrees of completeness (or, rather, incompleteness) due to
2921 * struct/union forward declarations.
2922 *
2923 * Let's take a look at an example, that we'll use to better understand the
2924 * problem (and solution). Suppose we have two compilation units, each using
2925 * same `struct S`, but each of them having incomplete type information about
2926 * struct's fields:
2927 *
2928 * // CU #1:
2929 * struct S;
2930 * struct A {
2931 *	int a;
2932 *	struct A* self;
2933 *	struct S* parent;
2934 * };
2935 * struct B;
2936 * struct S {
2937 *	struct A* a_ptr;
2938 *	struct B* b_ptr;
2939 * };
2940 *
2941 * // CU #2:
2942 * struct S;
2943 * struct A;
2944 * struct B {
2945 *	int b;
2946 *	struct B* self;
2947 *	struct S* parent;
2948 * };
2949 * struct S {
2950 *	struct A* a_ptr;
2951 *	struct B* b_ptr;
2952 * };
2953 *
2954 * In case of CU #1, BTF data will know only that `struct B` exist (but no
2955 * more), but will know the complete type information about `struct A`. While
2956 * for CU #2, it will know full type information about `struct B`, but will
2957 * only know about forward declaration of `struct A` (in BTF terms, it will
2958 * have `BTF_KIND_FWD` type descriptor with name `B`).
2959 *
2960 * This compilation unit isolation means that it's possible that there is no
2961 * single CU with complete type information describing structs `S`, `A`, and
2962 * `B`. Also, we might get tons of duplicated and redundant type information.
2963 *
2964 * Additional complication we need to keep in mind comes from the fact that
2965 * types, in general, can form graphs containing cycles, not just DAGs.
2966 *
2967 * While algorithm does deduplication, it also merges and resolves type
2968 * information (unless disabled throught `struct btf_opts`), whenever possible.
2969 * E.g., in the example above with two compilation units having partial type
2970 * information for structs `A` and `B`, the output of algorithm will emit
2971 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2972 * (as well as type information for `int` and pointers), as if they were defined
2973 * in a single compilation unit as:
2974 *
2975 * struct A {
2976 *	int a;
2977 *	struct A* self;
2978 *	struct S* parent;
2979 * };
2980 * struct B {
2981 *	int b;
2982 *	struct B* self;
2983 *	struct S* parent;
2984 * };
2985 * struct S {
2986 *	struct A* a_ptr;
2987 *	struct B* b_ptr;
2988 * };
2989 *
2990 * Algorithm summary
2991 * =================
2992 *
2993 * Algorithm completes its work in 7 separate passes:
2994 *
2995 * 1. Strings deduplication.
2996 * 2. Primitive types deduplication (int, enum, fwd).
2997 * 3. Struct/union types deduplication.
2998 * 4. Resolve unambiguous forward declarations.
2999 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3000 *    protos, and const/volatile/restrict modifiers).
3001 * 6. Types compaction.
3002 * 7. Types remapping.
3003 *
3004 * Algorithm determines canonical type descriptor, which is a single
3005 * representative type for each truly unique type. This canonical type is the
3006 * one that will go into final deduplicated BTF type information. For
3007 * struct/unions, it is also the type that algorithm will merge additional type
3008 * information into (while resolving FWDs), as it discovers it from data in
3009 * other CUs. Each input BTF type eventually gets either mapped to itself, if
3010 * that type is canonical, or to some other type, if that type is equivalent
3011 * and was chosen as canonical representative. This mapping is stored in
3012 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3013 * FWD type got resolved to.
3014 *
3015 * To facilitate fast discovery of canonical types, we also maintain canonical
3016 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3017 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3018 * that match that signature. With sufficiently good choice of type signature
3019 * hashing function, we can limit number of canonical types for each unique type
3020 * signature to a very small number, allowing to find canonical type for any
3021 * duplicated type very quickly.
3022 *
3023 * Struct/union deduplication is the most critical part and algorithm for
3024 * deduplicating structs/unions is described in greater details in comments for
3025 * `btf_dedup_is_equiv` function.
3026 */
3027int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
3028{
3029	struct btf_dedup *d;
3030	int err;
3031
3032	if (!OPTS_VALID(opts, btf_dedup_opts))
3033		return libbpf_err(-EINVAL);
3034
3035	d = btf_dedup_new(btf, opts);
3036	if (IS_ERR(d)) {
3037		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3038		return libbpf_err(-EINVAL);
3039	}
3040
3041	if (btf_ensure_modifiable(btf)) {
3042		err = -ENOMEM;
3043		goto done;
3044	}
3045
3046	err = btf_dedup_prep(d);
3047	if (err) {
3048		pr_debug("btf_dedup_prep failed:%d\n", err);
3049		goto done;
3050	}
3051	err = btf_dedup_strings(d);
3052	if (err < 0) {
3053		pr_debug("btf_dedup_strings failed:%d\n", err);
3054		goto done;
3055	}
3056	err = btf_dedup_prim_types(d);
3057	if (err < 0) {
3058		pr_debug("btf_dedup_prim_types failed:%d\n", err);
3059		goto done;
3060	}
3061	err = btf_dedup_struct_types(d);
3062	if (err < 0) {
3063		pr_debug("btf_dedup_struct_types failed:%d\n", err);
3064		goto done;
3065	}
3066	err = btf_dedup_resolve_fwds(d);
3067	if (err < 0) {
3068		pr_debug("btf_dedup_resolve_fwds failed:%d\n", err);
3069		goto done;
3070	}
3071	err = btf_dedup_ref_types(d);
3072	if (err < 0) {
3073		pr_debug("btf_dedup_ref_types failed:%d\n", err);
3074		goto done;
3075	}
3076	err = btf_dedup_compact_types(d);
3077	if (err < 0) {
3078		pr_debug("btf_dedup_compact_types failed:%d\n", err);
3079		goto done;
3080	}
3081	err = btf_dedup_remap_types(d);
3082	if (err < 0) {
3083		pr_debug("btf_dedup_remap_types failed:%d\n", err);
3084		goto done;
3085	}
3086
3087done:
3088	btf_dedup_free(d);
3089	return libbpf_err(err);
3090}
3091
3092#define BTF_UNPROCESSED_ID ((__u32)-1)
3093#define BTF_IN_PROGRESS_ID ((__u32)-2)
3094
3095struct btf_dedup {
3096	/* .BTF section to be deduped in-place */
3097	struct btf *btf;
3098	/*
3099	 * Optional .BTF.ext section. When provided, any strings referenced
3100	 * from it will be taken into account when deduping strings
3101	 */
3102	struct btf_ext *btf_ext;
3103	/*
3104	 * This is a map from any type's signature hash to a list of possible
3105	 * canonical representative type candidates. Hash collisions are
3106	 * ignored, so even types of various kinds can share same list of
3107	 * candidates, which is fine because we rely on subsequent
3108	 * btf_xxx_equal() checks to authoritatively verify type equality.
3109	 */
3110	struct hashmap *dedup_table;
3111	/* Canonical types map */
3112	__u32 *map;
3113	/* Hypothetical mapping, used during type graph equivalence checks */
3114	__u32 *hypot_map;
3115	__u32 *hypot_list;
3116	size_t hypot_cnt;
3117	size_t hypot_cap;
3118	/* Whether hypothetical mapping, if successful, would need to adjust
3119	 * already canonicalized types (due to a new forward declaration to
3120	 * concrete type resolution). In such case, during split BTF dedup
3121	 * candidate type would still be considered as different, because base
3122	 * BTF is considered to be immutable.
3123	 */
3124	bool hypot_adjust_canon;
3125	/* Various option modifying behavior of algorithm */
3126	struct btf_dedup_opts opts;
3127	/* temporary strings deduplication state */
3128	struct strset *strs_set;
3129};
3130
3131static long hash_combine(long h, long value)
3132{
3133	return h * 31 + value;
3134}
3135
3136#define for_each_dedup_cand(d, node, hash) \
3137	hashmap__for_each_key_entry(d->dedup_table, node, hash)
3138
3139static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3140{
3141	return hashmap__append(d->dedup_table, hash, type_id);
3142}
3143
3144static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3145				   __u32 from_id, __u32 to_id)
3146{
3147	if (d->hypot_cnt == d->hypot_cap) {
3148		__u32 *new_list;
3149
3150		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3151		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3152		if (!new_list)
3153			return -ENOMEM;
3154		d->hypot_list = new_list;
3155	}
3156	d->hypot_list[d->hypot_cnt++] = from_id;
3157	d->hypot_map[from_id] = to_id;
3158	return 0;
3159}
3160
3161static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3162{
3163	int i;
3164
3165	for (i = 0; i < d->hypot_cnt; i++)
3166		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3167	d->hypot_cnt = 0;
3168	d->hypot_adjust_canon = false;
3169}
3170
3171static void btf_dedup_free(struct btf_dedup *d)
3172{
3173	hashmap__free(d->dedup_table);
3174	d->dedup_table = NULL;
3175
3176	free(d->map);
3177	d->map = NULL;
3178
3179	free(d->hypot_map);
3180	d->hypot_map = NULL;
3181
3182	free(d->hypot_list);
3183	d->hypot_list = NULL;
3184
3185	free(d);
3186}
3187
3188static size_t btf_dedup_identity_hash_fn(long key, void *ctx)
3189{
3190	return key;
3191}
3192
3193static size_t btf_dedup_collision_hash_fn(long key, void *ctx)
3194{
3195	return 0;
3196}
3197
3198static bool btf_dedup_equal_fn(long k1, long k2, void *ctx)
3199{
3200	return k1 == k2;
3201}
3202
3203static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3204{
3205	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3206	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3207	int i, err = 0, type_cnt;
3208
3209	if (!d)
3210		return ERR_PTR(-ENOMEM);
3211
3212	if (OPTS_GET(opts, force_collisions, false))
3213		hash_fn = btf_dedup_collision_hash_fn;
3214
3215	d->btf = btf;
3216	d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3217
3218	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3219	if (IS_ERR(d->dedup_table)) {
3220		err = PTR_ERR(d->dedup_table);
3221		d->dedup_table = NULL;
3222		goto done;
3223	}
3224
3225	type_cnt = btf__type_cnt(btf);
3226	d->map = malloc(sizeof(__u32) * type_cnt);
3227	if (!d->map) {
3228		err = -ENOMEM;
3229		goto done;
3230	}
3231	/* special BTF "void" type is made canonical immediately */
3232	d->map[0] = 0;
3233	for (i = 1; i < type_cnt; i++) {
3234		struct btf_type *t = btf_type_by_id(d->btf, i);
3235
3236		/* VAR and DATASEC are never deduped and are self-canonical */
3237		if (btf_is_var(t) || btf_is_datasec(t))
3238			d->map[i] = i;
3239		else
3240			d->map[i] = BTF_UNPROCESSED_ID;
3241	}
3242
3243	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3244	if (!d->hypot_map) {
3245		err = -ENOMEM;
3246		goto done;
3247	}
3248	for (i = 0; i < type_cnt; i++)
3249		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3250
3251done:
3252	if (err) {
3253		btf_dedup_free(d);
3254		return ERR_PTR(err);
3255	}
3256
3257	return d;
3258}
3259
3260/*
3261 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3262 * string and pass pointer to it to a provided callback `fn`.
3263 */
3264static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3265{
3266	int i, r;
3267
3268	for (i = 0; i < d->btf->nr_types; i++) {
3269		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3270
3271		r = btf_type_visit_str_offs(t, fn, ctx);
3272		if (r)
3273			return r;
3274	}
3275
3276	if (!d->btf_ext)
3277		return 0;
3278
3279	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3280	if (r)
3281		return r;
3282
3283	return 0;
3284}
3285
3286static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3287{
3288	struct btf_dedup *d = ctx;
3289	__u32 str_off = *str_off_ptr;
3290	const char *s;
3291	int off, err;
3292
3293	/* don't touch empty string or string in main BTF */
3294	if (str_off == 0 || str_off < d->btf->start_str_off)
3295		return 0;
3296
3297	s = btf__str_by_offset(d->btf, str_off);
3298	if (d->btf->base_btf) {
3299		err = btf__find_str(d->btf->base_btf, s);
3300		if (err >= 0) {
3301			*str_off_ptr = err;
3302			return 0;
3303		}
3304		if (err != -ENOENT)
3305			return err;
3306	}
3307
3308	off = strset__add_str(d->strs_set, s);
3309	if (off < 0)
3310		return off;
3311
3312	*str_off_ptr = d->btf->start_str_off + off;
3313	return 0;
3314}
3315
3316/*
3317 * Dedup string and filter out those that are not referenced from either .BTF
3318 * or .BTF.ext (if provided) sections.
3319 *
3320 * This is done by building index of all strings in BTF's string section,
3321 * then iterating over all entities that can reference strings (e.g., type
3322 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3323 * strings as used. After that all used strings are deduped and compacted into
3324 * sequential blob of memory and new offsets are calculated. Then all the string
3325 * references are iterated again and rewritten using new offsets.
3326 */
3327static int btf_dedup_strings(struct btf_dedup *d)
3328{
3329	int err;
3330
3331	if (d->btf->strs_deduped)
3332		return 0;
3333
3334	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3335	if (IS_ERR(d->strs_set)) {
3336		err = PTR_ERR(d->strs_set);
3337		goto err_out;
3338	}
3339
3340	if (!d->btf->base_btf) {
3341		/* insert empty string; we won't be looking it up during strings
3342		 * dedup, but it's good to have it for generic BTF string lookups
3343		 */
3344		err = strset__add_str(d->strs_set, "");
3345		if (err < 0)
3346			goto err_out;
3347	}
3348
3349	/* remap string offsets */
3350	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3351	if (err)
3352		goto err_out;
3353
3354	/* replace BTF string data and hash with deduped ones */
3355	strset__free(d->btf->strs_set);
3356	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3357	d->btf->strs_set = d->strs_set;
3358	d->strs_set = NULL;
3359	d->btf->strs_deduped = true;
3360	return 0;
3361
3362err_out:
3363	strset__free(d->strs_set);
3364	d->strs_set = NULL;
3365
3366	return err;
3367}
3368
3369static long btf_hash_common(struct btf_type *t)
3370{
3371	long h;
3372
3373	h = hash_combine(0, t->name_off);
3374	h = hash_combine(h, t->info);
3375	h = hash_combine(h, t->size);
3376	return h;
3377}
3378
3379static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3380{
3381	return t1->name_off == t2->name_off &&
3382	       t1->info == t2->info &&
3383	       t1->size == t2->size;
3384}
3385
3386/* Calculate type signature hash of INT or TAG. */
3387static long btf_hash_int_decl_tag(struct btf_type *t)
3388{
3389	__u32 info = *(__u32 *)(t + 1);
3390	long h;
3391
3392	h = btf_hash_common(t);
3393	h = hash_combine(h, info);
3394	return h;
3395}
3396
3397/* Check structural equality of two INTs or TAGs. */
3398static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3399{
3400	__u32 info1, info2;
3401
3402	if (!btf_equal_common(t1, t2))
3403		return false;
3404	info1 = *(__u32 *)(t1 + 1);
3405	info2 = *(__u32 *)(t2 + 1);
3406	return info1 == info2;
3407}
3408
3409/* Calculate type signature hash of ENUM/ENUM64. */
3410static long btf_hash_enum(struct btf_type *t)
3411{
3412	long h;
3413
3414	/* don't hash vlen, enum members and size to support enum fwd resolving */
3415	h = hash_combine(0, t->name_off);
3416	return h;
3417}
3418
3419static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2)
3420{
3421	const struct btf_enum *m1, *m2;
3422	__u16 vlen;
3423	int i;
3424
3425	vlen = btf_vlen(t1);
3426	m1 = btf_enum(t1);
3427	m2 = btf_enum(t2);
3428	for (i = 0; i < vlen; i++) {
3429		if (m1->name_off != m2->name_off || m1->val != m2->val)
3430			return false;
3431		m1++;
3432		m2++;
3433	}
3434	return true;
3435}
3436
3437static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2)
3438{
3439	const struct btf_enum64 *m1, *m2;
3440	__u16 vlen;
3441	int i;
3442
3443	vlen = btf_vlen(t1);
3444	m1 = btf_enum64(t1);
3445	m2 = btf_enum64(t2);
3446	for (i = 0; i < vlen; i++) {
3447		if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3448		    m1->val_hi32 != m2->val_hi32)
3449			return false;
3450		m1++;
3451		m2++;
3452	}
3453	return true;
3454}
3455
3456/* Check structural equality of two ENUMs or ENUM64s. */
3457static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3458{
3459	if (!btf_equal_common(t1, t2))
3460		return false;
3461
3462	/* t1 & t2 kinds are identical because of btf_equal_common */
3463	if (btf_kind(t1) == BTF_KIND_ENUM)
3464		return btf_equal_enum_members(t1, t2);
3465	else
3466		return btf_equal_enum64_members(t1, t2);
3467}
3468
3469static inline bool btf_is_enum_fwd(struct btf_type *t)
3470{
3471	return btf_is_any_enum(t) && btf_vlen(t) == 0;
3472}
3473
3474static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3475{
3476	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3477		return btf_equal_enum(t1, t2);
3478	/* At this point either t1 or t2 or both are forward declarations, thus:
3479	 * - skip comparing vlen because it is zero for forward declarations;
3480	 * - skip comparing size to allow enum forward declarations
3481	 *   to be compatible with enum64 full declarations;
3482	 * - skip comparing kind for the same reason.
3483	 */
3484	return t1->name_off == t2->name_off &&
3485	       btf_is_any_enum(t1) && btf_is_any_enum(t2);
3486}
3487
3488/*
3489 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3490 * as referenced type IDs equivalence is established separately during type
3491 * graph equivalence check algorithm.
3492 */
3493static long btf_hash_struct(struct btf_type *t)
3494{
3495	const struct btf_member *member = btf_members(t);
3496	__u32 vlen = btf_vlen(t);
3497	long h = btf_hash_common(t);
3498	int i;
3499
3500	for (i = 0; i < vlen; i++) {
3501		h = hash_combine(h, member->name_off);
3502		h = hash_combine(h, member->offset);
3503		/* no hashing of referenced type ID, it can be unresolved yet */
3504		member++;
3505	}
3506	return h;
3507}
3508
3509/*
3510 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3511 * type IDs. This check is performed during type graph equivalence check and
3512 * referenced types equivalence is checked separately.
3513 */
3514static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3515{
3516	const struct btf_member *m1, *m2;
3517	__u16 vlen;
3518	int i;
3519
3520	if (!btf_equal_common(t1, t2))
3521		return false;
3522
3523	vlen = btf_vlen(t1);
3524	m1 = btf_members(t1);
3525	m2 = btf_members(t2);
3526	for (i = 0; i < vlen; i++) {
3527		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3528			return false;
3529		m1++;
3530		m2++;
3531	}
3532	return true;
3533}
3534
3535/*
3536 * Calculate type signature hash of ARRAY, including referenced type IDs,
3537 * under assumption that they were already resolved to canonical type IDs and
3538 * are not going to change.
3539 */
3540static long btf_hash_array(struct btf_type *t)
3541{
3542	const struct btf_array *info = btf_array(t);
3543	long h = btf_hash_common(t);
3544
3545	h = hash_combine(h, info->type);
3546	h = hash_combine(h, info->index_type);
3547	h = hash_combine(h, info->nelems);
3548	return h;
3549}
3550
3551/*
3552 * Check exact equality of two ARRAYs, taking into account referenced
3553 * type IDs, under assumption that they were already resolved to canonical
3554 * type IDs and are not going to change.
3555 * This function is called during reference types deduplication to compare
3556 * ARRAY to potential canonical representative.
3557 */
3558static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3559{
3560	const struct btf_array *info1, *info2;
3561
3562	if (!btf_equal_common(t1, t2))
3563		return false;
3564
3565	info1 = btf_array(t1);
3566	info2 = btf_array(t2);
3567	return info1->type == info2->type &&
3568	       info1->index_type == info2->index_type &&
3569	       info1->nelems == info2->nelems;
3570}
3571
3572/*
3573 * Check structural compatibility of two ARRAYs, ignoring referenced type
3574 * IDs. This check is performed during type graph equivalence check and
3575 * referenced types equivalence is checked separately.
3576 */
3577static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3578{
3579	if (!btf_equal_common(t1, t2))
3580		return false;
3581
3582	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3583}
3584
3585/*
3586 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3587 * under assumption that they were already resolved to canonical type IDs and
3588 * are not going to change.
3589 */
3590static long btf_hash_fnproto(struct btf_type *t)
3591{
3592	const struct btf_param *member = btf_params(t);
3593	__u16 vlen = btf_vlen(t);
3594	long h = btf_hash_common(t);
3595	int i;
3596
3597	for (i = 0; i < vlen; i++) {
3598		h = hash_combine(h, member->name_off);
3599		h = hash_combine(h, member->type);
3600		member++;
3601	}
3602	return h;
3603}
3604
3605/*
3606 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3607 * type IDs, under assumption that they were already resolved to canonical
3608 * type IDs and are not going to change.
3609 * This function is called during reference types deduplication to compare
3610 * FUNC_PROTO to potential canonical representative.
3611 */
3612static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3613{
3614	const struct btf_param *m1, *m2;
3615	__u16 vlen;
3616	int i;
3617
3618	if (!btf_equal_common(t1, t2))
3619		return false;
3620
3621	vlen = btf_vlen(t1);
3622	m1 = btf_params(t1);
3623	m2 = btf_params(t2);
3624	for (i = 0; i < vlen; i++) {
3625		if (m1->name_off != m2->name_off || m1->type != m2->type)
3626			return false;
3627		m1++;
3628		m2++;
3629	}
3630	return true;
3631}
3632
3633/*
3634 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3635 * IDs. This check is performed during type graph equivalence check and
3636 * referenced types equivalence is checked separately.
3637 */
3638static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3639{
3640	const struct btf_param *m1, *m2;
3641	__u16 vlen;
3642	int i;
3643
3644	/* skip return type ID */
3645	if (t1->name_off != t2->name_off || t1->info != t2->info)
3646		return false;
3647
3648	vlen = btf_vlen(t1);
3649	m1 = btf_params(t1);
3650	m2 = btf_params(t2);
3651	for (i = 0; i < vlen; i++) {
3652		if (m1->name_off != m2->name_off)
3653			return false;
3654		m1++;
3655		m2++;
3656	}
3657	return true;
3658}
3659
3660/* Prepare split BTF for deduplication by calculating hashes of base BTF's
3661 * types and initializing the rest of the state (canonical type mapping) for
3662 * the fixed base BTF part.
3663 */
3664static int btf_dedup_prep(struct btf_dedup *d)
3665{
3666	struct btf_type *t;
3667	int type_id;
3668	long h;
3669
3670	if (!d->btf->base_btf)
3671		return 0;
3672
3673	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3674		t = btf_type_by_id(d->btf, type_id);
3675
3676		/* all base BTF types are self-canonical by definition */
3677		d->map[type_id] = type_id;
3678
3679		switch (btf_kind(t)) {
3680		case BTF_KIND_VAR:
3681		case BTF_KIND_DATASEC:
3682			/* VAR and DATASEC are never hash/deduplicated */
3683			continue;
3684		case BTF_KIND_CONST:
3685		case BTF_KIND_VOLATILE:
3686		case BTF_KIND_RESTRICT:
3687		case BTF_KIND_PTR:
3688		case BTF_KIND_FWD:
3689		case BTF_KIND_TYPEDEF:
3690		case BTF_KIND_FUNC:
3691		case BTF_KIND_FLOAT:
3692		case BTF_KIND_TYPE_TAG:
3693			h = btf_hash_common(t);
3694			break;
3695		case BTF_KIND_INT:
3696		case BTF_KIND_DECL_TAG:
3697			h = btf_hash_int_decl_tag(t);
3698			break;
3699		case BTF_KIND_ENUM:
3700		case BTF_KIND_ENUM64:
3701			h = btf_hash_enum(t);
3702			break;
3703		case BTF_KIND_STRUCT:
3704		case BTF_KIND_UNION:
3705			h = btf_hash_struct(t);
3706			break;
3707		case BTF_KIND_ARRAY:
3708			h = btf_hash_array(t);
3709			break;
3710		case BTF_KIND_FUNC_PROTO:
3711			h = btf_hash_fnproto(t);
3712			break;
3713		default:
3714			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3715			return -EINVAL;
3716		}
3717		if (btf_dedup_table_add(d, h, type_id))
3718			return -ENOMEM;
3719	}
3720
3721	return 0;
3722}
3723
3724/*
3725 * Deduplicate primitive types, that can't reference other types, by calculating
3726 * their type signature hash and comparing them with any possible canonical
3727 * candidate. If no canonical candidate matches, type itself is marked as
3728 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3729 */
3730static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3731{
3732	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3733	struct hashmap_entry *hash_entry;
3734	struct btf_type *cand;
3735	/* if we don't find equivalent type, then we are canonical */
3736	__u32 new_id = type_id;
3737	__u32 cand_id;
3738	long h;
3739
3740	switch (btf_kind(t)) {
3741	case BTF_KIND_CONST:
3742	case BTF_KIND_VOLATILE:
3743	case BTF_KIND_RESTRICT:
3744	case BTF_KIND_PTR:
3745	case BTF_KIND_TYPEDEF:
3746	case BTF_KIND_ARRAY:
3747	case BTF_KIND_STRUCT:
3748	case BTF_KIND_UNION:
3749	case BTF_KIND_FUNC:
3750	case BTF_KIND_FUNC_PROTO:
3751	case BTF_KIND_VAR:
3752	case BTF_KIND_DATASEC:
3753	case BTF_KIND_DECL_TAG:
3754	case BTF_KIND_TYPE_TAG:
3755		return 0;
3756
3757	case BTF_KIND_INT:
3758		h = btf_hash_int_decl_tag(t);
3759		for_each_dedup_cand(d, hash_entry, h) {
3760			cand_id = hash_entry->value;
3761			cand = btf_type_by_id(d->btf, cand_id);
3762			if (btf_equal_int_tag(t, cand)) {
3763				new_id = cand_id;
3764				break;
3765			}
3766		}
3767		break;
3768
3769	case BTF_KIND_ENUM:
3770	case BTF_KIND_ENUM64:
3771		h = btf_hash_enum(t);
3772		for_each_dedup_cand(d, hash_entry, h) {
3773			cand_id = hash_entry->value;
3774			cand = btf_type_by_id(d->btf, cand_id);
3775			if (btf_equal_enum(t, cand)) {
3776				new_id = cand_id;
3777				break;
3778			}
3779			if (btf_compat_enum(t, cand)) {
3780				if (btf_is_enum_fwd(t)) {
3781					/* resolve fwd to full enum */
3782					new_id = cand_id;
3783					break;
3784				}
3785				/* resolve canonical enum fwd to full enum */
3786				d->map[cand_id] = type_id;
3787			}
3788		}
3789		break;
3790
3791	case BTF_KIND_FWD:
3792	case BTF_KIND_FLOAT:
3793		h = btf_hash_common(t);
3794		for_each_dedup_cand(d, hash_entry, h) {
3795			cand_id = hash_entry->value;
3796			cand = btf_type_by_id(d->btf, cand_id);
3797			if (btf_equal_common(t, cand)) {
3798				new_id = cand_id;
3799				break;
3800			}
3801		}
3802		break;
3803
3804	default:
3805		return -EINVAL;
3806	}
3807
3808	d->map[type_id] = new_id;
3809	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3810		return -ENOMEM;
3811
3812	return 0;
3813}
3814
3815static int btf_dedup_prim_types(struct btf_dedup *d)
3816{
3817	int i, err;
3818
3819	for (i = 0; i < d->btf->nr_types; i++) {
3820		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3821		if (err)
3822			return err;
3823	}
3824	return 0;
3825}
3826
3827/*
3828 * Check whether type is already mapped into canonical one (could be to itself).
3829 */
3830static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3831{
3832	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3833}
3834
3835/*
3836 * Resolve type ID into its canonical type ID, if any; otherwise return original
3837 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3838 * STRUCT/UNION link and resolve it into canonical type ID as well.
3839 */
3840static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3841{
3842	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3843		type_id = d->map[type_id];
3844	return type_id;
3845}
3846
3847/*
3848 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3849 * type ID.
3850 */
3851static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3852{
3853	__u32 orig_type_id = type_id;
3854
3855	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3856		return type_id;
3857
3858	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3859		type_id = d->map[type_id];
3860
3861	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3862		return type_id;
3863
3864	return orig_type_id;
3865}
3866
3867
3868static inline __u16 btf_fwd_kind(struct btf_type *t)
3869{
3870	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3871}
3872
3873/* Check if given two types are identical ARRAY definitions */
3874static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3875{
3876	struct btf_type *t1, *t2;
3877
3878	t1 = btf_type_by_id(d->btf, id1);
3879	t2 = btf_type_by_id(d->btf, id2);
3880	if (!btf_is_array(t1) || !btf_is_array(t2))
3881		return false;
3882
3883	return btf_equal_array(t1, t2);
3884}
3885
3886/* Check if given two types are identical STRUCT/UNION definitions */
3887static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
3888{
3889	const struct btf_member *m1, *m2;
3890	struct btf_type *t1, *t2;
3891	int n, i;
3892
3893	t1 = btf_type_by_id(d->btf, id1);
3894	t2 = btf_type_by_id(d->btf, id2);
3895
3896	if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
3897		return false;
3898
3899	if (!btf_shallow_equal_struct(t1, t2))
3900		return false;
3901
3902	m1 = btf_members(t1);
3903	m2 = btf_members(t2);
3904	for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
3905		if (m1->type != m2->type &&
3906		    !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
3907		    !btf_dedup_identical_structs(d, m1->type, m2->type))
3908			return false;
3909	}
3910	return true;
3911}
3912
3913/*
3914 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3915 * call it "candidate graph" in this description for brevity) to a type graph
3916 * formed by (potential) canonical struct/union ("canonical graph" for brevity
3917 * here, though keep in mind that not all types in canonical graph are
3918 * necessarily canonical representatives themselves, some of them might be
3919 * duplicates or its uniqueness might not have been established yet).
3920 * Returns:
3921 *  - >0, if type graphs are equivalent;
3922 *  -  0, if not equivalent;
3923 *  - <0, on error.
3924 *
3925 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3926 * equivalence of BTF types at each step. If at any point BTF types in candidate
3927 * and canonical graphs are not compatible structurally, whole graphs are
3928 * incompatible. If types are structurally equivalent (i.e., all information
3929 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3930 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3931 * If a type references other types, then those referenced types are checked
3932 * for equivalence recursively.
3933 *
3934 * During DFS traversal, if we find that for current `canon_id` type we
3935 * already have some mapping in hypothetical map, we check for two possible
3936 * situations:
3937 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3938 *     happen when type graphs have cycles. In this case we assume those two
3939 *     types are equivalent.
3940 *   - `canon_id` is mapped to different type. This is contradiction in our
3941 *     hypothetical mapping, because same graph in canonical graph corresponds
3942 *     to two different types in candidate graph, which for equivalent type
3943 *     graphs shouldn't happen. This condition terminates equivalence check
3944 *     with negative result.
3945 *
3946 * If type graphs traversal exhausts types to check and find no contradiction,
3947 * then type graphs are equivalent.
3948 *
3949 * When checking types for equivalence, there is one special case: FWD types.
3950 * If FWD type resolution is allowed and one of the types (either from canonical
3951 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3952 * flag) and their names match, hypothetical mapping is updated to point from
3953 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3954 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3955 *
3956 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3957 * if there are two exactly named (or anonymous) structs/unions that are
3958 * compatible structurally, one of which has FWD field, while other is concrete
3959 * STRUCT/UNION, but according to C sources they are different structs/unions
3960 * that are referencing different types with the same name. This is extremely
3961 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3962 * this logic is causing problems.
3963 *
3964 * Doing FWD resolution means that both candidate and/or canonical graphs can
3965 * consists of portions of the graph that come from multiple compilation units.
3966 * This is due to the fact that types within single compilation unit are always
3967 * deduplicated and FWDs are already resolved, if referenced struct/union
3968 * definiton is available. So, if we had unresolved FWD and found corresponding
3969 * STRUCT/UNION, they will be from different compilation units. This
3970 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3971 * type graph will likely have at least two different BTF types that describe
3972 * same type (e.g., most probably there will be two different BTF types for the
3973 * same 'int' primitive type) and could even have "overlapping" parts of type
3974 * graph that describe same subset of types.
3975 *
3976 * This in turn means that our assumption that each type in canonical graph
3977 * must correspond to exactly one type in candidate graph might not hold
3978 * anymore and will make it harder to detect contradictions using hypothetical
3979 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3980 * resolution only in canonical graph. FWDs in candidate graphs are never
3981 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3982 * that can occur:
3983 *   - Both types in canonical and candidate graphs are FWDs. If they are
3984 *     structurally equivalent, then they can either be both resolved to the
3985 *     same STRUCT/UNION or not resolved at all. In both cases they are
3986 *     equivalent and there is no need to resolve FWD on candidate side.
3987 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3988 *     so nothing to resolve as well, algorithm will check equivalence anyway.
3989 *   - Type in canonical graph is FWD, while type in candidate is concrete
3990 *     STRUCT/UNION. In this case candidate graph comes from single compilation
3991 *     unit, so there is exactly one BTF type for each unique C type. After
3992 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3993 *     in canonical graph mapping to single BTF type in candidate graph, but
3994 *     because hypothetical mapping maps from canonical to candidate types, it's
3995 *     alright, and we still maintain the property of having single `canon_id`
3996 *     mapping to single `cand_id` (there could be two different `canon_id`
3997 *     mapped to the same `cand_id`, but it's not contradictory).
3998 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3999 *     graph is FWD. In this case we are just going to check compatibility of
4000 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4001 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4002 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4003 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4004 *     canonical graph.
4005 */
4006static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4007			      __u32 canon_id)
4008{
4009	struct btf_type *cand_type;
4010	struct btf_type *canon_type;
4011	__u32 hypot_type_id;
4012	__u16 cand_kind;
4013	__u16 canon_kind;
4014	int i, eq;
4015
4016	/* if both resolve to the same canonical, they must be equivalent */
4017	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4018		return 1;
4019
4020	canon_id = resolve_fwd_id(d, canon_id);
4021
4022	hypot_type_id = d->hypot_map[canon_id];
4023	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4024		if (hypot_type_id == cand_id)
4025			return 1;
4026		/* In some cases compiler will generate different DWARF types
4027		 * for *identical* array type definitions and use them for
4028		 * different fields within the *same* struct. This breaks type
4029		 * equivalence check, which makes an assumption that candidate
4030		 * types sub-graph has a consistent and deduped-by-compiler
4031		 * types within a single CU. So work around that by explicitly
4032		 * allowing identical array types here.
4033		 */
4034		if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4035			return 1;
4036		/* It turns out that similar situation can happen with
4037		 * struct/union sometimes, sigh... Handle the case where
4038		 * structs/unions are exactly the same, down to the referenced
4039		 * type IDs. Anything more complicated (e.g., if referenced
4040		 * types are different, but equivalent) is *way more*
4041		 * complicated and requires a many-to-many equivalence mapping.
4042		 */
4043		if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4044			return 1;
4045		return 0;
4046	}
4047
4048	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4049		return -ENOMEM;
4050
4051	cand_type = btf_type_by_id(d->btf, cand_id);
4052	canon_type = btf_type_by_id(d->btf, canon_id);
4053	cand_kind = btf_kind(cand_type);
4054	canon_kind = btf_kind(canon_type);
4055
4056	if (cand_type->name_off != canon_type->name_off)
4057		return 0;
4058
4059	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4060	if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4061	    && cand_kind != canon_kind) {
4062		__u16 real_kind;
4063		__u16 fwd_kind;
4064
4065		if (cand_kind == BTF_KIND_FWD) {
4066			real_kind = canon_kind;
4067			fwd_kind = btf_fwd_kind(cand_type);
4068		} else {
4069			real_kind = cand_kind;
4070			fwd_kind = btf_fwd_kind(canon_type);
4071			/* we'd need to resolve base FWD to STRUCT/UNION */
4072			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4073				d->hypot_adjust_canon = true;
4074		}
4075		return fwd_kind == real_kind;
4076	}
4077
4078	if (cand_kind != canon_kind)
4079		return 0;
4080
4081	switch (cand_kind) {
4082	case BTF_KIND_INT:
4083		return btf_equal_int_tag(cand_type, canon_type);
4084
4085	case BTF_KIND_ENUM:
4086	case BTF_KIND_ENUM64:
4087		return btf_compat_enum(cand_type, canon_type);
4088
4089	case BTF_KIND_FWD:
4090	case BTF_KIND_FLOAT:
4091		return btf_equal_common(cand_type, canon_type);
4092
4093	case BTF_KIND_CONST:
4094	case BTF_KIND_VOLATILE:
4095	case BTF_KIND_RESTRICT:
4096	case BTF_KIND_PTR:
4097	case BTF_KIND_TYPEDEF:
4098	case BTF_KIND_FUNC:
4099	case BTF_KIND_TYPE_TAG:
4100		if (cand_type->info != canon_type->info)
4101			return 0;
4102		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4103
4104	case BTF_KIND_ARRAY: {
4105		const struct btf_array *cand_arr, *canon_arr;
4106
4107		if (!btf_compat_array(cand_type, canon_type))
4108			return 0;
4109		cand_arr = btf_array(cand_type);
4110		canon_arr = btf_array(canon_type);
4111		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4112		if (eq <= 0)
4113			return eq;
4114		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4115	}
4116
4117	case BTF_KIND_STRUCT:
4118	case BTF_KIND_UNION: {
4119		const struct btf_member *cand_m, *canon_m;
4120		__u16 vlen;
4121
4122		if (!btf_shallow_equal_struct(cand_type, canon_type))
4123			return 0;
4124		vlen = btf_vlen(cand_type);
4125		cand_m = btf_members(cand_type);
4126		canon_m = btf_members(canon_type);
4127		for (i = 0; i < vlen; i++) {
4128			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4129			if (eq <= 0)
4130				return eq;
4131			cand_m++;
4132			canon_m++;
4133		}
4134
4135		return 1;
4136	}
4137
4138	case BTF_KIND_FUNC_PROTO: {
4139		const struct btf_param *cand_p, *canon_p;
4140		__u16 vlen;
4141
4142		if (!btf_compat_fnproto(cand_type, canon_type))
4143			return 0;
4144		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4145		if (eq <= 0)
4146			return eq;
4147		vlen = btf_vlen(cand_type);
4148		cand_p = btf_params(cand_type);
4149		canon_p = btf_params(canon_type);
4150		for (i = 0; i < vlen; i++) {
4151			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4152			if (eq <= 0)
4153				return eq;
4154			cand_p++;
4155			canon_p++;
4156		}
4157		return 1;
4158	}
4159
4160	default:
4161		return -EINVAL;
4162	}
4163	return 0;
4164}
4165
4166/*
4167 * Use hypothetical mapping, produced by successful type graph equivalence
4168 * check, to augment existing struct/union canonical mapping, where possible.
4169 *
4170 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4171 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4172 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4173 * we are recording the mapping anyway. As opposed to carefulness required
4174 * for struct/union correspondence mapping (described below), for FWD resolution
4175 * it's not important, as by the time that FWD type (reference type) will be
4176 * deduplicated all structs/unions will be deduped already anyway.
4177 *
4178 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4179 * not required for correctness. It needs to be done carefully to ensure that
4180 * struct/union from candidate's type graph is not mapped into corresponding
4181 * struct/union from canonical type graph that itself hasn't been resolved into
4182 * canonical representative. The only guarantee we have is that canonical
4183 * struct/union was determined as canonical and that won't change. But any
4184 * types referenced through that struct/union fields could have been not yet
4185 * resolved, so in case like that it's too early to establish any kind of
4186 * correspondence between structs/unions.
4187 *
4188 * No canonical correspondence is derived for primitive types (they are already
4189 * deduplicated completely already anyway) or reference types (they rely on
4190 * stability of struct/union canonical relationship for equivalence checks).
4191 */
4192static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4193{
4194	__u32 canon_type_id, targ_type_id;
4195	__u16 t_kind, c_kind;
4196	__u32 t_id, c_id;
4197	int i;
4198
4199	for (i = 0; i < d->hypot_cnt; i++) {
4200		canon_type_id = d->hypot_list[i];
4201		targ_type_id = d->hypot_map[canon_type_id];
4202		t_id = resolve_type_id(d, targ_type_id);
4203		c_id = resolve_type_id(d, canon_type_id);
4204		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4205		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4206		/*
4207		 * Resolve FWD into STRUCT/UNION.
4208		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4209		 * mapped to canonical representative (as opposed to
4210		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4211		 * eventually that struct is going to be mapped and all resolved
4212		 * FWDs will automatically resolve to correct canonical
4213		 * representative. This will happen before ref type deduping,
4214		 * which critically depends on stability of these mapping. This
4215		 * stability is not a requirement for STRUCT/UNION equivalence
4216		 * checks, though.
4217		 */
4218
4219		/* if it's the split BTF case, we still need to point base FWD
4220		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4221		 * will be resolved against base FWD. If we don't point base
4222		 * canonical FWD to the resolved STRUCT/UNION, then all the
4223		 * FWDs in split BTF won't be correctly resolved to a proper
4224		 * STRUCT/UNION.
4225		 */
4226		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4227			d->map[c_id] = t_id;
4228
4229		/* if graph equivalence determined that we'd need to adjust
4230		 * base canonical types, then we need to only point base FWDs
4231		 * to STRUCTs/UNIONs and do no more modifications. For all
4232		 * other purposes the type graphs were not equivalent.
4233		 */
4234		if (d->hypot_adjust_canon)
4235			continue;
4236
4237		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4238			d->map[t_id] = c_id;
4239
4240		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4241		    c_kind != BTF_KIND_FWD &&
4242		    is_type_mapped(d, c_id) &&
4243		    !is_type_mapped(d, t_id)) {
4244			/*
4245			 * as a perf optimization, we can map struct/union
4246			 * that's part of type graph we just verified for
4247			 * equivalence. We can do that for struct/union that has
4248			 * canonical representative only, though.
4249			 */
4250			d->map[t_id] = c_id;
4251		}
4252	}
4253}
4254
4255/*
4256 * Deduplicate struct/union types.
4257 *
4258 * For each struct/union type its type signature hash is calculated, taking
4259 * into account type's name, size, number, order and names of fields, but
4260 * ignoring type ID's referenced from fields, because they might not be deduped
4261 * completely until after reference types deduplication phase. This type hash
4262 * is used to iterate over all potential canonical types, sharing same hash.
4263 * For each canonical candidate we check whether type graphs that they form
4264 * (through referenced types in fields and so on) are equivalent using algorithm
4265 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4266 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4267 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4268 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4269 * potentially map other structs/unions to their canonical representatives,
4270 * if such relationship hasn't yet been established. This speeds up algorithm
4271 * by eliminating some of the duplicate work.
4272 *
4273 * If no matching canonical representative was found, struct/union is marked
4274 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4275 * for further look ups.
4276 */
4277static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4278{
4279	struct btf_type *cand_type, *t;
4280	struct hashmap_entry *hash_entry;
4281	/* if we don't find equivalent type, then we are canonical */
4282	__u32 new_id = type_id;
4283	__u16 kind;
4284	long h;
4285
4286	/* already deduped or is in process of deduping (loop detected) */
4287	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4288		return 0;
4289
4290	t = btf_type_by_id(d->btf, type_id);
4291	kind = btf_kind(t);
4292
4293	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4294		return 0;
4295
4296	h = btf_hash_struct(t);
4297	for_each_dedup_cand(d, hash_entry, h) {
4298		__u32 cand_id = hash_entry->value;
4299		int eq;
4300
4301		/*
4302		 * Even though btf_dedup_is_equiv() checks for
4303		 * btf_shallow_equal_struct() internally when checking two
4304		 * structs (unions) for equivalence, we need to guard here
4305		 * from picking matching FWD type as a dedup candidate.
4306		 * This can happen due to hash collision. In such case just
4307		 * relying on btf_dedup_is_equiv() would lead to potentially
4308		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4309		 * FWD and compatible STRUCT/UNION are considered equivalent.
4310		 */
4311		cand_type = btf_type_by_id(d->btf, cand_id);
4312		if (!btf_shallow_equal_struct(t, cand_type))
4313			continue;
4314
4315		btf_dedup_clear_hypot_map(d);
4316		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4317		if (eq < 0)
4318			return eq;
4319		if (!eq)
4320			continue;
4321		btf_dedup_merge_hypot_map(d);
4322		if (d->hypot_adjust_canon) /* not really equivalent */
4323			continue;
4324		new_id = cand_id;
4325		break;
4326	}
4327
4328	d->map[type_id] = new_id;
4329	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4330		return -ENOMEM;
4331
4332	return 0;
4333}
4334
4335static int btf_dedup_struct_types(struct btf_dedup *d)
4336{
4337	int i, err;
4338
4339	for (i = 0; i < d->btf->nr_types; i++) {
4340		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4341		if (err)
4342			return err;
4343	}
4344	return 0;
4345}
4346
4347/*
4348 * Deduplicate reference type.
4349 *
4350 * Once all primitive and struct/union types got deduplicated, we can easily
4351 * deduplicate all other (reference) BTF types. This is done in two steps:
4352 *
4353 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4354 * resolution can be done either immediately for primitive or struct/union types
4355 * (because they were deduped in previous two phases) or recursively for
4356 * reference types. Recursion will always terminate at either primitive or
4357 * struct/union type, at which point we can "unwind" chain of reference types
4358 * one by one. There is no danger of encountering cycles because in C type
4359 * system the only way to form type cycle is through struct/union, so any chain
4360 * of reference types, even those taking part in a type cycle, will inevitably
4361 * reach struct/union at some point.
4362 *
4363 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4364 * becomes "stable", in the sense that no further deduplication will cause
4365 * any changes to it. With that, it's now possible to calculate type's signature
4366 * hash (this time taking into account referenced type IDs) and loop over all
4367 * potential canonical representatives. If no match was found, current type
4368 * will become canonical representative of itself and will be added into
4369 * btf_dedup->dedup_table as another possible canonical representative.
4370 */
4371static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4372{
4373	struct hashmap_entry *hash_entry;
4374	__u32 new_id = type_id, cand_id;
4375	struct btf_type *t, *cand;
4376	/* if we don't find equivalent type, then we are representative type */
4377	int ref_type_id;
4378	long h;
4379
4380	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4381		return -ELOOP;
4382	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4383		return resolve_type_id(d, type_id);
4384
4385	t = btf_type_by_id(d->btf, type_id);
4386	d->map[type_id] = BTF_IN_PROGRESS_ID;
4387
4388	switch (btf_kind(t)) {
4389	case BTF_KIND_CONST:
4390	case BTF_KIND_VOLATILE:
4391	case BTF_KIND_RESTRICT:
4392	case BTF_KIND_PTR:
4393	case BTF_KIND_TYPEDEF:
4394	case BTF_KIND_FUNC:
4395	case BTF_KIND_TYPE_TAG:
4396		ref_type_id = btf_dedup_ref_type(d, t->type);
4397		if (ref_type_id < 0)
4398			return ref_type_id;
4399		t->type = ref_type_id;
4400
4401		h = btf_hash_common(t);
4402		for_each_dedup_cand(d, hash_entry, h) {
4403			cand_id = hash_entry->value;
4404			cand = btf_type_by_id(d->btf, cand_id);
4405			if (btf_equal_common(t, cand)) {
4406				new_id = cand_id;
4407				break;
4408			}
4409		}
4410		break;
4411
4412	case BTF_KIND_DECL_TAG:
4413		ref_type_id = btf_dedup_ref_type(d, t->type);
4414		if (ref_type_id < 0)
4415			return ref_type_id;
4416		t->type = ref_type_id;
4417
4418		h = btf_hash_int_decl_tag(t);
4419		for_each_dedup_cand(d, hash_entry, h) {
4420			cand_id = hash_entry->value;
4421			cand = btf_type_by_id(d->btf, cand_id);
4422			if (btf_equal_int_tag(t, cand)) {
4423				new_id = cand_id;
4424				break;
4425			}
4426		}
4427		break;
4428
4429	case BTF_KIND_ARRAY: {
4430		struct btf_array *info = btf_array(t);
4431
4432		ref_type_id = btf_dedup_ref_type(d, info->type);
4433		if (ref_type_id < 0)
4434			return ref_type_id;
4435		info->type = ref_type_id;
4436
4437		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4438		if (ref_type_id < 0)
4439			return ref_type_id;
4440		info->index_type = ref_type_id;
4441
4442		h = btf_hash_array(t);
4443		for_each_dedup_cand(d, hash_entry, h) {
4444			cand_id = hash_entry->value;
4445			cand = btf_type_by_id(d->btf, cand_id);
4446			if (btf_equal_array(t, cand)) {
4447				new_id = cand_id;
4448				break;
4449			}
4450		}
4451		break;
4452	}
4453
4454	case BTF_KIND_FUNC_PROTO: {
4455		struct btf_param *param;
4456		__u16 vlen;
4457		int i;
4458
4459		ref_type_id = btf_dedup_ref_type(d, t->type);
4460		if (ref_type_id < 0)
4461			return ref_type_id;
4462		t->type = ref_type_id;
4463
4464		vlen = btf_vlen(t);
4465		param = btf_params(t);
4466		for (i = 0; i < vlen; i++) {
4467			ref_type_id = btf_dedup_ref_type(d, param->type);
4468			if (ref_type_id < 0)
4469				return ref_type_id;
4470			param->type = ref_type_id;
4471			param++;
4472		}
4473
4474		h = btf_hash_fnproto(t);
4475		for_each_dedup_cand(d, hash_entry, h) {
4476			cand_id = hash_entry->value;
4477			cand = btf_type_by_id(d->btf, cand_id);
4478			if (btf_equal_fnproto(t, cand)) {
4479				new_id = cand_id;
4480				break;
4481			}
4482		}
4483		break;
4484	}
4485
4486	default:
4487		return -EINVAL;
4488	}
4489
4490	d->map[type_id] = new_id;
4491	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4492		return -ENOMEM;
4493
4494	return new_id;
4495}
4496
4497static int btf_dedup_ref_types(struct btf_dedup *d)
4498{
4499	int i, err;
4500
4501	for (i = 0; i < d->btf->nr_types; i++) {
4502		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4503		if (err < 0)
4504			return err;
4505	}
4506	/* we won't need d->dedup_table anymore */
4507	hashmap__free(d->dedup_table);
4508	d->dedup_table = NULL;
4509	return 0;
4510}
4511
4512/*
4513 * Collect a map from type names to type ids for all canonical structs
4514 * and unions. If the same name is shared by several canonical types
4515 * use a special value 0 to indicate this fact.
4516 */
4517static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map)
4518{
4519	__u32 nr_types = btf__type_cnt(d->btf);
4520	struct btf_type *t;
4521	__u32 type_id;
4522	__u16 kind;
4523	int err;
4524
4525	/*
4526	 * Iterate over base and split module ids in order to get all
4527	 * available structs in the map.
4528	 */
4529	for (type_id = 1; type_id < nr_types; ++type_id) {
4530		t = btf_type_by_id(d->btf, type_id);
4531		kind = btf_kind(t);
4532
4533		if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4534			continue;
4535
4536		/* Skip non-canonical types */
4537		if (type_id != d->map[type_id])
4538			continue;
4539
4540		err = hashmap__add(names_map, t->name_off, type_id);
4541		if (err == -EEXIST)
4542			err = hashmap__set(names_map, t->name_off, 0, NULL, NULL);
4543
4544		if (err)
4545			return err;
4546	}
4547
4548	return 0;
4549}
4550
4551static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id)
4552{
4553	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4554	enum btf_fwd_kind fwd_kind = btf_kflag(t);
4555	__u16 cand_kind, kind = btf_kind(t);
4556	struct btf_type *cand_t;
4557	uintptr_t cand_id;
4558
4559	if (kind != BTF_KIND_FWD)
4560		return 0;
4561
4562	/* Skip if this FWD already has a mapping */
4563	if (type_id != d->map[type_id])
4564		return 0;
4565
4566	if (!hashmap__find(names_map, t->name_off, &cand_id))
4567		return 0;
4568
4569	/* Zero is a special value indicating that name is not unique */
4570	if (!cand_id)
4571		return 0;
4572
4573	cand_t = btf_type_by_id(d->btf, cand_id);
4574	cand_kind = btf_kind(cand_t);
4575	if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) ||
4576	    (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION))
4577		return 0;
4578
4579	d->map[type_id] = cand_id;
4580
4581	return 0;
4582}
4583
4584/*
4585 * Resolve unambiguous forward declarations.
4586 *
4587 * The lion's share of all FWD declarations is resolved during
4588 * `btf_dedup_struct_types` phase when different type graphs are
4589 * compared against each other. However, if in some compilation unit a
4590 * FWD declaration is not a part of a type graph compared against
4591 * another type graph that declaration's canonical type would not be
4592 * changed. Example:
4593 *
4594 * CU #1:
4595 *
4596 * struct foo;
4597 * struct foo *some_global;
4598 *
4599 * CU #2:
4600 *
4601 * struct foo { int u; };
4602 * struct foo *another_global;
4603 *
4604 * After `btf_dedup_struct_types` the BTF looks as follows:
4605 *
4606 * [1] STRUCT 'foo' size=4 vlen=1 ...
4607 * [2] INT 'int' size=4 ...
4608 * [3] PTR '(anon)' type_id=1
4609 * [4] FWD 'foo' fwd_kind=struct
4610 * [5] PTR '(anon)' type_id=4
4611 *
4612 * This pass assumes that such FWD declarations should be mapped to
4613 * structs or unions with identical name in case if the name is not
4614 * ambiguous.
4615 */
4616static int btf_dedup_resolve_fwds(struct btf_dedup *d)
4617{
4618	int i, err;
4619	struct hashmap *names_map;
4620
4621	names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
4622	if (IS_ERR(names_map))
4623		return PTR_ERR(names_map);
4624
4625	err = btf_dedup_fill_unique_names_map(d, names_map);
4626	if (err < 0)
4627		goto exit;
4628
4629	for (i = 0; i < d->btf->nr_types; i++) {
4630		err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i);
4631		if (err < 0)
4632			break;
4633	}
4634
4635exit:
4636	hashmap__free(names_map);
4637	return err;
4638}
4639
4640/*
4641 * Compact types.
4642 *
4643 * After we established for each type its corresponding canonical representative
4644 * type, we now can eliminate types that are not canonical and leave only
4645 * canonical ones layed out sequentially in memory by copying them over
4646 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4647 * a map from original type ID to a new compacted type ID, which will be used
4648 * during next phase to "fix up" type IDs, referenced from struct/union and
4649 * reference types.
4650 */
4651static int btf_dedup_compact_types(struct btf_dedup *d)
4652{
4653	__u32 *new_offs;
4654	__u32 next_type_id = d->btf->start_id;
4655	const struct btf_type *t;
4656	void *p;
4657	int i, id, len;
4658
4659	/* we are going to reuse hypot_map to store compaction remapping */
4660	d->hypot_map[0] = 0;
4661	/* base BTF types are not renumbered */
4662	for (id = 1; id < d->btf->start_id; id++)
4663		d->hypot_map[id] = id;
4664	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4665		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4666
4667	p = d->btf->types_data;
4668
4669	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4670		if (d->map[id] != id)
4671			continue;
4672
4673		t = btf__type_by_id(d->btf, id);
4674		len = btf_type_size(t);
4675		if (len < 0)
4676			return len;
4677
4678		memmove(p, t, len);
4679		d->hypot_map[id] = next_type_id;
4680		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4681		p += len;
4682		next_type_id++;
4683	}
4684
4685	/* shrink struct btf's internal types index and update btf_header */
4686	d->btf->nr_types = next_type_id - d->btf->start_id;
4687	d->btf->type_offs_cap = d->btf->nr_types;
4688	d->btf->hdr->type_len = p - d->btf->types_data;
4689	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4690				       sizeof(*new_offs));
4691	if (d->btf->type_offs_cap && !new_offs)
4692		return -ENOMEM;
4693	d->btf->type_offs = new_offs;
4694	d->btf->hdr->str_off = d->btf->hdr->type_len;
4695	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4696	return 0;
4697}
4698
4699/*
4700 * Figure out final (deduplicated and compacted) type ID for provided original
4701 * `type_id` by first resolving it into corresponding canonical type ID and
4702 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4703 * which is populated during compaction phase.
4704 */
4705static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4706{
4707	struct btf_dedup *d = ctx;
4708	__u32 resolved_type_id, new_type_id;
4709
4710	resolved_type_id = resolve_type_id(d, *type_id);
4711	new_type_id = d->hypot_map[resolved_type_id];
4712	if (new_type_id > BTF_MAX_NR_TYPES)
4713		return -EINVAL;
4714
4715	*type_id = new_type_id;
4716	return 0;
4717}
4718
4719/*
4720 * Remap referenced type IDs into deduped type IDs.
4721 *
4722 * After BTF types are deduplicated and compacted, their final type IDs may
4723 * differ from original ones. The map from original to a corresponding
4724 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4725 * compaction phase. During remapping phase we are rewriting all type IDs
4726 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4727 * their final deduped type IDs.
4728 */
4729static int btf_dedup_remap_types(struct btf_dedup *d)
4730{
4731	int i, r;
4732
4733	for (i = 0; i < d->btf->nr_types; i++) {
4734		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4735
4736		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4737		if (r)
4738			return r;
4739	}
4740
4741	if (!d->btf_ext)
4742		return 0;
4743
4744	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4745	if (r)
4746		return r;
4747
4748	return 0;
4749}
4750
4751/*
4752 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4753 * data out of it to use for target BTF.
4754 */
4755struct btf *btf__load_vmlinux_btf(void)
4756{
 
 
4757	const char *locations[] = {
4758		/* try canonical vmlinux BTF through sysfs first */
4759		"/sys/kernel/btf/vmlinux",
4760		/* fall back to trying to find vmlinux on disk otherwise */
4761		"/boot/vmlinux-%1$s",
4762		"/lib/modules/%1$s/vmlinux-%1$s",
4763		"/lib/modules/%1$s/build/vmlinux",
4764		"/usr/lib/modules/%1$s/kernel/vmlinux",
4765		"/usr/lib/debug/boot/vmlinux-%1$s",
4766		"/usr/lib/debug/boot/vmlinux-%1$s.debug",
4767		"/usr/lib/debug/lib/modules/%1$s/vmlinux",
4768	};
4769	char path[PATH_MAX + 1];
4770	struct utsname buf;
4771	struct btf *btf;
4772	int i, err;
4773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4774	uname(&buf);
4775
4776	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4777		snprintf(path, PATH_MAX, locations[i], buf.release);
4778
4779		if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
4780			continue;
4781
4782		btf = btf__parse(path, NULL);
4783		err = libbpf_get_error(btf);
4784		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4785		if (err)
4786			continue;
4787
4788		return btf;
4789	}
4790
4791	pr_warn("failed to find valid kernel BTF\n");
4792	return libbpf_err_ptr(-ESRCH);
4793}
4794
4795struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4796
4797struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4798{
4799	char path[80];
4800
4801	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4802	return btf__parse_split(path, vmlinux_btf);
4803}
4804
4805int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4806{
4807	int i, n, err;
4808
4809	switch (btf_kind(t)) {
4810	case BTF_KIND_INT:
4811	case BTF_KIND_FLOAT:
4812	case BTF_KIND_ENUM:
4813	case BTF_KIND_ENUM64:
4814		return 0;
4815
4816	case BTF_KIND_FWD:
4817	case BTF_KIND_CONST:
4818	case BTF_KIND_VOLATILE:
4819	case BTF_KIND_RESTRICT:
4820	case BTF_KIND_PTR:
4821	case BTF_KIND_TYPEDEF:
4822	case BTF_KIND_FUNC:
4823	case BTF_KIND_VAR:
4824	case BTF_KIND_DECL_TAG:
4825	case BTF_KIND_TYPE_TAG:
4826		return visit(&t->type, ctx);
4827
4828	case BTF_KIND_ARRAY: {
4829		struct btf_array *a = btf_array(t);
4830
4831		err = visit(&a->type, ctx);
4832		err = err ?: visit(&a->index_type, ctx);
4833		return err;
4834	}
4835
4836	case BTF_KIND_STRUCT:
4837	case BTF_KIND_UNION: {
4838		struct btf_member *m = btf_members(t);
4839
4840		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4841			err = visit(&m->type, ctx);
4842			if (err)
4843				return err;
4844		}
4845		return 0;
4846	}
4847
4848	case BTF_KIND_FUNC_PROTO: {
4849		struct btf_param *m = btf_params(t);
4850
4851		err = visit(&t->type, ctx);
4852		if (err)
4853			return err;
4854		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4855			err = visit(&m->type, ctx);
4856			if (err)
4857				return err;
4858		}
4859		return 0;
4860	}
4861
4862	case BTF_KIND_DATASEC: {
4863		struct btf_var_secinfo *m = btf_var_secinfos(t);
4864
4865		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4866			err = visit(&m->type, ctx);
4867			if (err)
4868				return err;
4869		}
4870		return 0;
4871	}
4872
4873	default:
4874		return -EINVAL;
4875	}
4876}
4877
4878int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4879{
4880	int i, n, err;
4881
4882	err = visit(&t->name_off, ctx);
4883	if (err)
4884		return err;
4885
4886	switch (btf_kind(t)) {
4887	case BTF_KIND_STRUCT:
4888	case BTF_KIND_UNION: {
4889		struct btf_member *m = btf_members(t);
4890
4891		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4892			err = visit(&m->name_off, ctx);
4893			if (err)
4894				return err;
4895		}
4896		break;
4897	}
4898	case BTF_KIND_ENUM: {
4899		struct btf_enum *m = btf_enum(t);
4900
4901		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4902			err = visit(&m->name_off, ctx);
4903			if (err)
4904				return err;
4905		}
4906		break;
4907	}
4908	case BTF_KIND_ENUM64: {
4909		struct btf_enum64 *m = btf_enum64(t);
4910
4911		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4912			err = visit(&m->name_off, ctx);
4913			if (err)
4914				return err;
4915		}
4916		break;
4917	}
4918	case BTF_KIND_FUNC_PROTO: {
4919		struct btf_param *m = btf_params(t);
4920
4921		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4922			err = visit(&m->name_off, ctx);
4923			if (err)
4924				return err;
4925		}
4926		break;
4927	}
4928	default:
4929		break;
4930	}
4931
4932	return 0;
4933}
4934
4935int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4936{
4937	const struct btf_ext_info *seg;
4938	struct btf_ext_info_sec *sec;
4939	int i, err;
4940
4941	seg = &btf_ext->func_info;
4942	for_each_btf_ext_sec(seg, sec) {
4943		struct bpf_func_info_min *rec;
4944
4945		for_each_btf_ext_rec(seg, sec, i, rec) {
4946			err = visit(&rec->type_id, ctx);
4947			if (err < 0)
4948				return err;
4949		}
4950	}
4951
4952	seg = &btf_ext->core_relo_info;
4953	for_each_btf_ext_sec(seg, sec) {
4954		struct bpf_core_relo *rec;
4955
4956		for_each_btf_ext_rec(seg, sec, i, rec) {
4957			err = visit(&rec->type_id, ctx);
4958			if (err < 0)
4959				return err;
4960		}
4961	}
4962
4963	return 0;
4964}
4965
4966int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4967{
4968	const struct btf_ext_info *seg;
4969	struct btf_ext_info_sec *sec;
4970	int i, err;
4971
4972	seg = &btf_ext->func_info;
4973	for_each_btf_ext_sec(seg, sec) {
4974		err = visit(&sec->sec_name_off, ctx);
4975		if (err)
4976			return err;
4977	}
4978
4979	seg = &btf_ext->line_info;
4980	for_each_btf_ext_sec(seg, sec) {
4981		struct bpf_line_info_min *rec;
4982
4983		err = visit(&sec->sec_name_off, ctx);
4984		if (err)
4985			return err;
4986
4987		for_each_btf_ext_rec(seg, sec, i, rec) {
4988			err = visit(&rec->file_name_off, ctx);
4989			if (err)
4990				return err;
4991			err = visit(&rec->line_off, ctx);
4992			if (err)
4993				return err;
4994		}
4995	}
4996
4997	seg = &btf_ext->core_relo_info;
4998	for_each_btf_ext_sec(seg, sec) {
4999		struct bpf_core_relo *rec;
5000
5001		err = visit(&sec->sec_name_off, ctx);
5002		if (err)
5003			return err;
5004
5005		for_each_btf_ext_rec(seg, sec, i, rec) {
5006			err = visit(&rec->access_str_off, ctx);
5007			if (err)
5008				return err;
5009		}
5010	}
5011
5012	return 0;
5013}