Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <byteswap.h>
   5#include <endian.h>
   6#include <stdio.h>
   7#include <stdlib.h>
   8#include <string.h>
   9#include <fcntl.h>
  10#include <unistd.h>
  11#include <errno.h>
  12#include <sys/utsname.h>
  13#include <sys/param.h>
  14#include <sys/stat.h>
  15#include <linux/kernel.h>
  16#include <linux/err.h>
  17#include <linux/btf.h>
  18#include <gelf.h>
  19#include "btf.h"
  20#include "bpf.h"
  21#include "libbpf.h"
  22#include "libbpf_internal.h"
  23#include "hashmap.h"
  24#include "strset.h"
 
  25
  26#define BTF_MAX_NR_TYPES 0x7fffffffU
  27#define BTF_MAX_STR_OFFSET 0x7fffffffU
  28
  29static struct btf_type btf_void;
  30
  31struct btf {
  32	/* raw BTF data in native endianness */
  33	void *raw_data;
  34	/* raw BTF data in non-native endianness */
  35	void *raw_data_swapped;
  36	__u32 raw_size;
  37	/* whether target endianness differs from the native one */
  38	bool swapped_endian;
  39
  40	/*
  41	 * When BTF is loaded from an ELF or raw memory it is stored
  42	 * in a contiguous memory block. The hdr, type_data, and, strs_data
  43	 * point inside that memory region to their respective parts of BTF
  44	 * representation:
  45	 *
  46	 * +--------------------------------+
  47	 * |  Header  |  Types  |  Strings  |
  48	 * +--------------------------------+
  49	 * ^          ^         ^
  50	 * |          |         |
  51	 * hdr        |         |
  52	 * types_data-+         |
  53	 * strs_data------------+
  54	 *
  55	 * If BTF data is later modified, e.g., due to types added or
  56	 * removed, BTF deduplication performed, etc, this contiguous
  57	 * representation is broken up into three independently allocated
  58	 * memory regions to be able to modify them independently.
  59	 * raw_data is nulled out at that point, but can be later allocated
  60	 * and cached again if user calls btf__raw_data(), at which point
  61	 * raw_data will contain a contiguous copy of header, types, and
  62	 * strings:
  63	 *
  64	 * +----------+  +---------+  +-----------+
  65	 * |  Header  |  |  Types  |  |  Strings  |
  66	 * +----------+  +---------+  +-----------+
  67	 * ^             ^            ^
  68	 * |             |            |
  69	 * hdr           |            |
  70	 * types_data----+            |
  71	 * strset__data(strs_set)-----+
  72	 *
  73	 *               +----------+---------+-----------+
  74	 *               |  Header  |  Types  |  Strings  |
  75	 * raw_data----->+----------+---------+-----------+
  76	 */
  77	struct btf_header *hdr;
  78
  79	void *types_data;
  80	size_t types_data_cap; /* used size stored in hdr->type_len */
  81
  82	/* type ID to `struct btf_type *` lookup index
  83	 * type_offs[0] corresponds to the first non-VOID type:
  84	 *   - for base BTF it's type [1];
  85	 *   - for split BTF it's the first non-base BTF type.
  86	 */
  87	__u32 *type_offs;
  88	size_t type_offs_cap;
  89	/* number of types in this BTF instance:
  90	 *   - doesn't include special [0] void type;
  91	 *   - for split BTF counts number of types added on top of base BTF.
  92	 */
  93	__u32 nr_types;
  94	/* if not NULL, points to the base BTF on top of which the current
  95	 * split BTF is based
  96	 */
  97	struct btf *base_btf;
  98	/* BTF type ID of the first type in this BTF instance:
  99	 *   - for base BTF it's equal to 1;
 100	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
 101	 */
 102	int start_id;
 103	/* logical string offset of this BTF instance:
 104	 *   - for base BTF it's equal to 0;
 105	 *   - for split BTF it's equal to total size of base BTF's string section size.
 106	 */
 107	int start_str_off;
 108
 109	/* only one of strs_data or strs_set can be non-NULL, depending on
 110	 * whether BTF is in a modifiable state (strs_set is used) or not
 111	 * (strs_data points inside raw_data)
 112	 */
 113	void *strs_data;
 114	/* a set of unique strings */
 115	struct strset *strs_set;
 116	/* whether strings are already deduplicated */
 117	bool strs_deduped;
 118
 
 
 
 119	/* BTF object FD, if loaded into kernel */
 120	int fd;
 121
 122	/* Pointer size (in bytes) for a target architecture of this BTF */
 123	int ptr_sz;
 124};
 125
 126static inline __u64 ptr_to_u64(const void *ptr)
 127{
 128	return (__u64) (unsigned long) ptr;
 129}
 130
 131/* Ensure given dynamically allocated memory region pointed to by *data* with
 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
 133 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
 134 * are already used. At most *max_cnt* elements can be ever allocated.
 135 * If necessary, memory is reallocated and all existing data is copied over,
 136 * new pointer to the memory region is stored at *data, new memory region
 137 * capacity (in number of elements) is stored in *cap.
 138 * On success, memory pointer to the beginning of unused memory is returned.
 139 * On error, NULL is returned.
 140 */
 141void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
 142		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
 143{
 144	size_t new_cnt;
 145	void *new_data;
 146
 147	if (cur_cnt + add_cnt <= *cap_cnt)
 148		return *data + cur_cnt * elem_sz;
 149
 150	/* requested more than the set limit */
 151	if (cur_cnt + add_cnt > max_cnt)
 152		return NULL;
 153
 154	new_cnt = *cap_cnt;
 155	new_cnt += new_cnt / 4;		  /* expand by 25% */
 156	if (new_cnt < 16)		  /* but at least 16 elements */
 157		new_cnt = 16;
 158	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
 159		new_cnt = max_cnt;
 160	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
 161		new_cnt = cur_cnt + add_cnt;
 162
 163	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
 164	if (!new_data)
 165		return NULL;
 166
 167	/* zero out newly allocated portion of memory */
 168	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
 169
 170	*data = new_data;
 171	*cap_cnt = new_cnt;
 172	return new_data + cur_cnt * elem_sz;
 173}
 174
 175/* Ensure given dynamically allocated memory region has enough allocated space
 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
 177 */
 178int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
 179{
 180	void *p;
 181
 182	if (need_cnt <= *cap_cnt)
 183		return 0;
 184
 185	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
 186	if (!p)
 187		return -ENOMEM;
 188
 189	return 0;
 190}
 191
 192static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
 193{
 194	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
 195			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
 196}
 197
 198static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
 199{
 200	__u32 *p;
 201
 202	p = btf_add_type_offs_mem(btf, 1);
 203	if (!p)
 204		return -ENOMEM;
 205
 206	*p = type_off;
 207	return 0;
 208}
 209
 210static void btf_bswap_hdr(struct btf_header *h)
 211{
 212	h->magic = bswap_16(h->magic);
 213	h->hdr_len = bswap_32(h->hdr_len);
 214	h->type_off = bswap_32(h->type_off);
 215	h->type_len = bswap_32(h->type_len);
 216	h->str_off = bswap_32(h->str_off);
 217	h->str_len = bswap_32(h->str_len);
 218}
 219
 220static int btf_parse_hdr(struct btf *btf)
 221{
 222	struct btf_header *hdr = btf->hdr;
 223	__u32 meta_left;
 224
 225	if (btf->raw_size < sizeof(struct btf_header)) {
 226		pr_debug("BTF header not found\n");
 227		return -EINVAL;
 228	}
 229
 230	if (hdr->magic == bswap_16(BTF_MAGIC)) {
 231		btf->swapped_endian = true;
 232		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
 233			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
 234				bswap_32(hdr->hdr_len));
 235			return -ENOTSUP;
 236		}
 237		btf_bswap_hdr(hdr);
 238	} else if (hdr->magic != BTF_MAGIC) {
 239		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
 240		return -EINVAL;
 241	}
 242
 243	if (btf->raw_size < hdr->hdr_len) {
 244		pr_debug("BTF header len %u larger than data size %u\n",
 245			 hdr->hdr_len, btf->raw_size);
 246		return -EINVAL;
 247	}
 248
 249	meta_left = btf->raw_size - hdr->hdr_len;
 250	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
 251		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
 252		return -EINVAL;
 253	}
 254
 255	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
 256		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
 257			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
 258		return -EINVAL;
 259	}
 260
 261	if (hdr->type_off % 4) {
 262		pr_debug("BTF type section is not aligned to 4 bytes\n");
 263		return -EINVAL;
 264	}
 265
 266	return 0;
 267}
 268
 269static int btf_parse_str_sec(struct btf *btf)
 270{
 271	const struct btf_header *hdr = btf->hdr;
 272	const char *start = btf->strs_data;
 273	const char *end = start + btf->hdr->str_len;
 274
 275	if (btf->base_btf && hdr->str_len == 0)
 276		return 0;
 277	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
 278		pr_debug("Invalid BTF string section\n");
 279		return -EINVAL;
 280	}
 281	if (!btf->base_btf && start[0]) {
 282		pr_debug("Invalid BTF string section\n");
 283		return -EINVAL;
 284	}
 285	return 0;
 286}
 287
 288static int btf_type_size(const struct btf_type *t)
 289{
 290	const int base_size = sizeof(struct btf_type);
 291	__u16 vlen = btf_vlen(t);
 292
 293	switch (btf_kind(t)) {
 294	case BTF_KIND_FWD:
 295	case BTF_KIND_CONST:
 296	case BTF_KIND_VOLATILE:
 297	case BTF_KIND_RESTRICT:
 298	case BTF_KIND_PTR:
 299	case BTF_KIND_TYPEDEF:
 300	case BTF_KIND_FUNC:
 301	case BTF_KIND_FLOAT:
 302	case BTF_KIND_TYPE_TAG:
 303		return base_size;
 304	case BTF_KIND_INT:
 305		return base_size + sizeof(__u32);
 306	case BTF_KIND_ENUM:
 307		return base_size + vlen * sizeof(struct btf_enum);
 308	case BTF_KIND_ENUM64:
 309		return base_size + vlen * sizeof(struct btf_enum64);
 310	case BTF_KIND_ARRAY:
 311		return base_size + sizeof(struct btf_array);
 312	case BTF_KIND_STRUCT:
 313	case BTF_KIND_UNION:
 314		return base_size + vlen * sizeof(struct btf_member);
 315	case BTF_KIND_FUNC_PROTO:
 316		return base_size + vlen * sizeof(struct btf_param);
 317	case BTF_KIND_VAR:
 318		return base_size + sizeof(struct btf_var);
 319	case BTF_KIND_DATASEC:
 320		return base_size + vlen * sizeof(struct btf_var_secinfo);
 321	case BTF_KIND_DECL_TAG:
 322		return base_size + sizeof(struct btf_decl_tag);
 323	default:
 324		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 325		return -EINVAL;
 326	}
 327}
 328
 329static void btf_bswap_type_base(struct btf_type *t)
 330{
 331	t->name_off = bswap_32(t->name_off);
 332	t->info = bswap_32(t->info);
 333	t->type = bswap_32(t->type);
 334}
 335
 336static int btf_bswap_type_rest(struct btf_type *t)
 337{
 338	struct btf_var_secinfo *v;
 339	struct btf_enum64 *e64;
 340	struct btf_member *m;
 341	struct btf_array *a;
 342	struct btf_param *p;
 343	struct btf_enum *e;
 344	__u16 vlen = btf_vlen(t);
 345	int i;
 346
 347	switch (btf_kind(t)) {
 348	case BTF_KIND_FWD:
 349	case BTF_KIND_CONST:
 350	case BTF_KIND_VOLATILE:
 351	case BTF_KIND_RESTRICT:
 352	case BTF_KIND_PTR:
 353	case BTF_KIND_TYPEDEF:
 354	case BTF_KIND_FUNC:
 355	case BTF_KIND_FLOAT:
 356	case BTF_KIND_TYPE_TAG:
 357		return 0;
 358	case BTF_KIND_INT:
 359		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
 360		return 0;
 361	case BTF_KIND_ENUM:
 362		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
 363			e->name_off = bswap_32(e->name_off);
 364			e->val = bswap_32(e->val);
 365		}
 366		return 0;
 367	case BTF_KIND_ENUM64:
 368		for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
 369			e64->name_off = bswap_32(e64->name_off);
 370			e64->val_lo32 = bswap_32(e64->val_lo32);
 371			e64->val_hi32 = bswap_32(e64->val_hi32);
 372		}
 373		return 0;
 374	case BTF_KIND_ARRAY:
 375		a = btf_array(t);
 376		a->type = bswap_32(a->type);
 377		a->index_type = bswap_32(a->index_type);
 378		a->nelems = bswap_32(a->nelems);
 379		return 0;
 380	case BTF_KIND_STRUCT:
 381	case BTF_KIND_UNION:
 382		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
 383			m->name_off = bswap_32(m->name_off);
 384			m->type = bswap_32(m->type);
 385			m->offset = bswap_32(m->offset);
 386		}
 387		return 0;
 388	case BTF_KIND_FUNC_PROTO:
 389		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
 390			p->name_off = bswap_32(p->name_off);
 391			p->type = bswap_32(p->type);
 392		}
 393		return 0;
 394	case BTF_KIND_VAR:
 395		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
 396		return 0;
 397	case BTF_KIND_DATASEC:
 398		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
 399			v->type = bswap_32(v->type);
 400			v->offset = bswap_32(v->offset);
 401			v->size = bswap_32(v->size);
 402		}
 403		return 0;
 404	case BTF_KIND_DECL_TAG:
 405		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
 406		return 0;
 407	default:
 408		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 409		return -EINVAL;
 410	}
 411}
 412
 413static int btf_parse_type_sec(struct btf *btf)
 414{
 415	struct btf_header *hdr = btf->hdr;
 416	void *next_type = btf->types_data;
 417	void *end_type = next_type + hdr->type_len;
 418	int err, type_size;
 419
 420	while (next_type + sizeof(struct btf_type) <= end_type) {
 421		if (btf->swapped_endian)
 422			btf_bswap_type_base(next_type);
 423
 424		type_size = btf_type_size(next_type);
 425		if (type_size < 0)
 426			return type_size;
 427		if (next_type + type_size > end_type) {
 428			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
 429			return -EINVAL;
 430		}
 431
 432		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
 433			return -EINVAL;
 434
 435		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
 436		if (err)
 437			return err;
 438
 439		next_type += type_size;
 440		btf->nr_types++;
 441	}
 442
 443	if (next_type != end_type) {
 444		pr_warn("BTF types data is malformed\n");
 445		return -EINVAL;
 446	}
 447
 448	return 0;
 449}
 450
 451static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id)
 452{
 453	const char *s;
 454
 455	s = btf__str_by_offset(btf, str_off);
 456	if (!s) {
 457		pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off);
 458		return -EINVAL;
 459	}
 460
 461	return 0;
 462}
 463
 464static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id)
 465{
 466	const struct btf_type *t;
 467
 468	t = btf__type_by_id(btf, id);
 469	if (!t) {
 470		pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id);
 471		return -EINVAL;
 472	}
 473
 474	return 0;
 475}
 476
 477static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id)
 478{
 479	__u32 kind = btf_kind(t);
 480	int err, i, n;
 481
 482	err = btf_validate_str(btf, t->name_off, "type name", id);
 483	if (err)
 484		return err;
 485
 486	switch (kind) {
 487	case BTF_KIND_UNKN:
 488	case BTF_KIND_INT:
 489	case BTF_KIND_FWD:
 490	case BTF_KIND_FLOAT:
 491		break;
 492	case BTF_KIND_PTR:
 493	case BTF_KIND_TYPEDEF:
 494	case BTF_KIND_VOLATILE:
 495	case BTF_KIND_CONST:
 496	case BTF_KIND_RESTRICT:
 497	case BTF_KIND_VAR:
 498	case BTF_KIND_DECL_TAG:
 499	case BTF_KIND_TYPE_TAG:
 500		err = btf_validate_id(btf, t->type, id);
 501		if (err)
 502			return err;
 503		break;
 504	case BTF_KIND_ARRAY: {
 505		const struct btf_array *a = btf_array(t);
 506
 507		err = btf_validate_id(btf, a->type, id);
 508		err = err ?: btf_validate_id(btf, a->index_type, id);
 509		if (err)
 510			return err;
 511		break;
 512	}
 513	case BTF_KIND_STRUCT:
 514	case BTF_KIND_UNION: {
 515		const struct btf_member *m = btf_members(t);
 516
 517		n = btf_vlen(t);
 518		for (i = 0; i < n; i++, m++) {
 519			err = btf_validate_str(btf, m->name_off, "field name", id);
 520			err = err ?: btf_validate_id(btf, m->type, id);
 521			if (err)
 522				return err;
 523		}
 524		break;
 525	}
 526	case BTF_KIND_ENUM: {
 527		const struct btf_enum *m = btf_enum(t);
 528
 529		n = btf_vlen(t);
 530		for (i = 0; i < n; i++, m++) {
 531			err = btf_validate_str(btf, m->name_off, "enum name", id);
 532			if (err)
 533				return err;
 534		}
 535		break;
 536	}
 537	case BTF_KIND_ENUM64: {
 538		const struct btf_enum64 *m = btf_enum64(t);
 539
 540		n = btf_vlen(t);
 541		for (i = 0; i < n; i++, m++) {
 542			err = btf_validate_str(btf, m->name_off, "enum name", id);
 543			if (err)
 544				return err;
 545		}
 546		break;
 547	}
 548	case BTF_KIND_FUNC: {
 549		const struct btf_type *ft;
 550
 551		err = btf_validate_id(btf, t->type, id);
 552		if (err)
 553			return err;
 554		ft = btf__type_by_id(btf, t->type);
 555		if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) {
 556			pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type);
 557			return -EINVAL;
 558		}
 559		break;
 560	}
 561	case BTF_KIND_FUNC_PROTO: {
 562		const struct btf_param *m = btf_params(t);
 563
 564		n = btf_vlen(t);
 565		for (i = 0; i < n; i++, m++) {
 566			err = btf_validate_str(btf, m->name_off, "param name", id);
 567			err = err ?: btf_validate_id(btf, m->type, id);
 568			if (err)
 569				return err;
 570		}
 571		break;
 572	}
 573	case BTF_KIND_DATASEC: {
 574		const struct btf_var_secinfo *m = btf_var_secinfos(t);
 575
 576		n = btf_vlen(t);
 577		for (i = 0; i < n; i++, m++) {
 578			err = btf_validate_id(btf, m->type, id);
 579			if (err)
 580				return err;
 581		}
 582		break;
 583	}
 584	default:
 585		pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind);
 586		return -EINVAL;
 587	}
 588	return 0;
 589}
 590
 591/* Validate basic sanity of BTF. It's intentionally less thorough than
 592 * kernel's validation and validates only properties of BTF that libbpf relies
 593 * on to be correct (e.g., valid type IDs, valid string offsets, etc)
 594 */
 595static int btf_sanity_check(const struct btf *btf)
 596{
 597	const struct btf_type *t;
 598	__u32 i, n = btf__type_cnt(btf);
 599	int err;
 600
 601	for (i = 1; i < n; i++) {
 602		t = btf_type_by_id(btf, i);
 603		err = btf_validate_type(btf, t, i);
 604		if (err)
 605			return err;
 606	}
 607	return 0;
 608}
 609
 610__u32 btf__type_cnt(const struct btf *btf)
 611{
 612	return btf->start_id + btf->nr_types;
 613}
 614
 615const struct btf *btf__base_btf(const struct btf *btf)
 616{
 617	return btf->base_btf;
 618}
 619
 620/* internal helper returning non-const pointer to a type */
 621struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
 622{
 623	if (type_id == 0)
 624		return &btf_void;
 625	if (type_id < btf->start_id)
 626		return btf_type_by_id(btf->base_btf, type_id);
 627	return btf->types_data + btf->type_offs[type_id - btf->start_id];
 628}
 629
 630const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 631{
 632	if (type_id >= btf->start_id + btf->nr_types)
 633		return errno = EINVAL, NULL;
 634	return btf_type_by_id((struct btf *)btf, type_id);
 635}
 636
 637static int determine_ptr_size(const struct btf *btf)
 638{
 639	static const char * const long_aliases[] = {
 640		"long",
 641		"long int",
 642		"int long",
 643		"unsigned long",
 644		"long unsigned",
 645		"unsigned long int",
 646		"unsigned int long",
 647		"long unsigned int",
 648		"long int unsigned",
 649		"int unsigned long",
 650		"int long unsigned",
 651	};
 652	const struct btf_type *t;
 653	const char *name;
 654	int i, j, n;
 655
 656	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
 657		return btf->base_btf->ptr_sz;
 658
 659	n = btf__type_cnt(btf);
 660	for (i = 1; i < n; i++) {
 661		t = btf__type_by_id(btf, i);
 662		if (!btf_is_int(t))
 663			continue;
 664
 665		if (t->size != 4 && t->size != 8)
 666			continue;
 667
 668		name = btf__name_by_offset(btf, t->name_off);
 669		if (!name)
 670			continue;
 671
 672		for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
 673			if (strcmp(name, long_aliases[j]) == 0)
 674				return t->size;
 675		}
 676	}
 677
 678	return -1;
 679}
 680
 681static size_t btf_ptr_sz(const struct btf *btf)
 682{
 683	if (!btf->ptr_sz)
 684		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 685	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 686}
 687
 688/* Return pointer size this BTF instance assumes. The size is heuristically
 689 * determined by looking for 'long' or 'unsigned long' integer type and
 690 * recording its size in bytes. If BTF type information doesn't have any such
 691 * type, this function returns 0. In the latter case, native architecture's
 692 * pointer size is assumed, so will be either 4 or 8, depending on
 693 * architecture that libbpf was compiled for. It's possible to override
 694 * guessed value by using btf__set_pointer_size() API.
 695 */
 696size_t btf__pointer_size(const struct btf *btf)
 697{
 698	if (!btf->ptr_sz)
 699		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 700
 701	if (btf->ptr_sz < 0)
 702		/* not enough BTF type info to guess */
 703		return 0;
 704
 705	return btf->ptr_sz;
 706}
 707
 708/* Override or set pointer size in bytes. Only values of 4 and 8 are
 709 * supported.
 710 */
 711int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 712{
 713	if (ptr_sz != 4 && ptr_sz != 8)
 714		return libbpf_err(-EINVAL);
 715	btf->ptr_sz = ptr_sz;
 716	return 0;
 717}
 718
 719static bool is_host_big_endian(void)
 720{
 721#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 722	return false;
 723#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 724	return true;
 725#else
 726# error "Unrecognized __BYTE_ORDER__"
 727#endif
 728}
 729
 730enum btf_endianness btf__endianness(const struct btf *btf)
 731{
 732	if (is_host_big_endian())
 733		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
 734	else
 735		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
 736}
 737
 738int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
 739{
 740	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
 741		return libbpf_err(-EINVAL);
 742
 743	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
 744	if (!btf->swapped_endian) {
 745		free(btf->raw_data_swapped);
 746		btf->raw_data_swapped = NULL;
 747	}
 748	return 0;
 749}
 750
 751static bool btf_type_is_void(const struct btf_type *t)
 752{
 753	return t == &btf_void || btf_is_fwd(t);
 754}
 755
 756static bool btf_type_is_void_or_null(const struct btf_type *t)
 757{
 758	return !t || btf_type_is_void(t);
 759}
 760
 761#define MAX_RESOLVE_DEPTH 32
 762
 763__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 764{
 765	const struct btf_array *array;
 766	const struct btf_type *t;
 767	__u32 nelems = 1;
 768	__s64 size = -1;
 769	int i;
 770
 771	t = btf__type_by_id(btf, type_id);
 772	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
 773		switch (btf_kind(t)) {
 774		case BTF_KIND_INT:
 775		case BTF_KIND_STRUCT:
 776		case BTF_KIND_UNION:
 777		case BTF_KIND_ENUM:
 778		case BTF_KIND_ENUM64:
 779		case BTF_KIND_DATASEC:
 780		case BTF_KIND_FLOAT:
 781			size = t->size;
 782			goto done;
 783		case BTF_KIND_PTR:
 784			size = btf_ptr_sz(btf);
 785			goto done;
 786		case BTF_KIND_TYPEDEF:
 787		case BTF_KIND_VOLATILE:
 788		case BTF_KIND_CONST:
 789		case BTF_KIND_RESTRICT:
 790		case BTF_KIND_VAR:
 791		case BTF_KIND_DECL_TAG:
 792		case BTF_KIND_TYPE_TAG:
 793			type_id = t->type;
 794			break;
 795		case BTF_KIND_ARRAY:
 796			array = btf_array(t);
 797			if (nelems && array->nelems > UINT32_MAX / nelems)
 798				return libbpf_err(-E2BIG);
 799			nelems *= array->nelems;
 800			type_id = array->type;
 801			break;
 802		default:
 803			return libbpf_err(-EINVAL);
 804		}
 805
 806		t = btf__type_by_id(btf, type_id);
 807	}
 808
 809done:
 810	if (size < 0)
 811		return libbpf_err(-EINVAL);
 812	if (nelems && size > UINT32_MAX / nelems)
 813		return libbpf_err(-E2BIG);
 814
 815	return nelems * size;
 816}
 817
 818int btf__align_of(const struct btf *btf, __u32 id)
 819{
 820	const struct btf_type *t = btf__type_by_id(btf, id);
 821	__u16 kind = btf_kind(t);
 822
 823	switch (kind) {
 824	case BTF_KIND_INT:
 825	case BTF_KIND_ENUM:
 826	case BTF_KIND_ENUM64:
 827	case BTF_KIND_FLOAT:
 828		return min(btf_ptr_sz(btf), (size_t)t->size);
 829	case BTF_KIND_PTR:
 830		return btf_ptr_sz(btf);
 831	case BTF_KIND_TYPEDEF:
 832	case BTF_KIND_VOLATILE:
 833	case BTF_KIND_CONST:
 834	case BTF_KIND_RESTRICT:
 835	case BTF_KIND_TYPE_TAG:
 836		return btf__align_of(btf, t->type);
 837	case BTF_KIND_ARRAY:
 838		return btf__align_of(btf, btf_array(t)->type);
 839	case BTF_KIND_STRUCT:
 840	case BTF_KIND_UNION: {
 841		const struct btf_member *m = btf_members(t);
 842		__u16 vlen = btf_vlen(t);
 843		int i, max_align = 1, align;
 844
 845		for (i = 0; i < vlen; i++, m++) {
 846			align = btf__align_of(btf, m->type);
 847			if (align <= 0)
 848				return libbpf_err(align);
 849			max_align = max(max_align, align);
 850
 851			/* if field offset isn't aligned according to field
 852			 * type's alignment, then struct must be packed
 853			 */
 854			if (btf_member_bitfield_size(t, i) == 0 &&
 855			    (m->offset % (8 * align)) != 0)
 856				return 1;
 857		}
 858
 859		/* if struct/union size isn't a multiple of its alignment,
 860		 * then struct must be packed
 861		 */
 862		if ((t->size % max_align) != 0)
 863			return 1;
 864
 865		return max_align;
 866	}
 867	default:
 868		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 869		return errno = EINVAL, 0;
 870	}
 871}
 872
 873int btf__resolve_type(const struct btf *btf, __u32 type_id)
 874{
 875	const struct btf_type *t;
 876	int depth = 0;
 877
 878	t = btf__type_by_id(btf, type_id);
 879	while (depth < MAX_RESOLVE_DEPTH &&
 880	       !btf_type_is_void_or_null(t) &&
 881	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 882		type_id = t->type;
 883		t = btf__type_by_id(btf, type_id);
 884		depth++;
 885	}
 886
 887	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 888		return libbpf_err(-EINVAL);
 889
 890	return type_id;
 891}
 892
 893__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 894{
 895	__u32 i, nr_types = btf__type_cnt(btf);
 896
 897	if (!strcmp(type_name, "void"))
 898		return 0;
 899
 900	for (i = 1; i < nr_types; i++) {
 901		const struct btf_type *t = btf__type_by_id(btf, i);
 902		const char *name = btf__name_by_offset(btf, t->name_off);
 903
 904		if (name && !strcmp(type_name, name))
 905			return i;
 906	}
 907
 908	return libbpf_err(-ENOENT);
 909}
 910
 911static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
 912				   const char *type_name, __u32 kind)
 913{
 914	__u32 i, nr_types = btf__type_cnt(btf);
 915
 916	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 917		return 0;
 918
 919	for (i = start_id; i < nr_types; i++) {
 920		const struct btf_type *t = btf__type_by_id(btf, i);
 921		const char *name;
 922
 923		if (btf_kind(t) != kind)
 924			continue;
 925		name = btf__name_by_offset(btf, t->name_off);
 926		if (name && !strcmp(type_name, name))
 927			return i;
 928	}
 929
 930	return libbpf_err(-ENOENT);
 931}
 932
 933__s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
 934				 __u32 kind)
 935{
 936	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
 937}
 938
 939__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 940			     __u32 kind)
 941{
 942	return btf_find_by_name_kind(btf, 1, type_name, kind);
 943}
 944
 945static bool btf_is_modifiable(const struct btf *btf)
 946{
 947	return (void *)btf->hdr != btf->raw_data;
 948}
 949
 950void btf__free(struct btf *btf)
 951{
 952	if (IS_ERR_OR_NULL(btf))
 953		return;
 954
 955	if (btf->fd >= 0)
 956		close(btf->fd);
 957
 958	if (btf_is_modifiable(btf)) {
 959		/* if BTF was modified after loading, it will have a split
 960		 * in-memory representation for header, types, and strings
 961		 * sections, so we need to free all of them individually. It
 962		 * might still have a cached contiguous raw data present,
 963		 * which will be unconditionally freed below.
 964		 */
 965		free(btf->hdr);
 966		free(btf->types_data);
 967		strset__free(btf->strs_set);
 968	}
 969	free(btf->raw_data);
 970	free(btf->raw_data_swapped);
 971	free(btf->type_offs);
 
 
 972	free(btf);
 973}
 974
 975static struct btf *btf_new_empty(struct btf *base_btf)
 976{
 977	struct btf *btf;
 978
 979	btf = calloc(1, sizeof(*btf));
 980	if (!btf)
 981		return ERR_PTR(-ENOMEM);
 982
 983	btf->nr_types = 0;
 984	btf->start_id = 1;
 985	btf->start_str_off = 0;
 986	btf->fd = -1;
 987	btf->ptr_sz = sizeof(void *);
 988	btf->swapped_endian = false;
 989
 990	if (base_btf) {
 991		btf->base_btf = base_btf;
 992		btf->start_id = btf__type_cnt(base_btf);
 993		btf->start_str_off = base_btf->hdr->str_len;
 
 994	}
 995
 996	/* +1 for empty string at offset 0 */
 997	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
 998	btf->raw_data = calloc(1, btf->raw_size);
 999	if (!btf->raw_data) {
1000		free(btf);
1001		return ERR_PTR(-ENOMEM);
1002	}
1003
1004	btf->hdr = btf->raw_data;
1005	btf->hdr->hdr_len = sizeof(struct btf_header);
1006	btf->hdr->magic = BTF_MAGIC;
1007	btf->hdr->version = BTF_VERSION;
1008
1009	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
1010	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
1011	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
1012
1013	return btf;
1014}
1015
1016struct btf *btf__new_empty(void)
1017{
1018	return libbpf_ptr(btf_new_empty(NULL));
1019}
1020
1021struct btf *btf__new_empty_split(struct btf *base_btf)
1022{
1023	return libbpf_ptr(btf_new_empty(base_btf));
1024}
1025
1026static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
1027{
1028	struct btf *btf;
1029	int err;
1030
1031	btf = calloc(1, sizeof(struct btf));
1032	if (!btf)
1033		return ERR_PTR(-ENOMEM);
1034
1035	btf->nr_types = 0;
1036	btf->start_id = 1;
1037	btf->start_str_off = 0;
1038	btf->fd = -1;
1039
1040	if (base_btf) {
1041		btf->base_btf = base_btf;
1042		btf->start_id = btf__type_cnt(base_btf);
1043		btf->start_str_off = base_btf->hdr->str_len;
1044	}
1045
1046	btf->raw_data = malloc(size);
1047	if (!btf->raw_data) {
1048		err = -ENOMEM;
1049		goto done;
1050	}
1051	memcpy(btf->raw_data, data, size);
1052	btf->raw_size = size;
1053
1054	btf->hdr = btf->raw_data;
1055	err = btf_parse_hdr(btf);
1056	if (err)
1057		goto done;
1058
1059	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
1060	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
1061
1062	err = btf_parse_str_sec(btf);
1063	err = err ?: btf_parse_type_sec(btf);
1064	err = err ?: btf_sanity_check(btf);
1065	if (err)
1066		goto done;
1067
1068done:
1069	if (err) {
1070		btf__free(btf);
1071		return ERR_PTR(err);
1072	}
1073
1074	return btf;
1075}
1076
1077struct btf *btf__new(const void *data, __u32 size)
1078{
1079	return libbpf_ptr(btf_new(data, size, NULL));
1080}
1081
1082struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf)
1083{
1084	return libbpf_ptr(btf_new(data, size, base_btf));
1085}
1086
1087static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
1088				 struct btf_ext **btf_ext)
 
 
 
 
 
1089{
1090	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
1091	int err = 0, fd = -1, idx = 0;
1092	struct btf *btf = NULL;
1093	Elf_Scn *scn = NULL;
1094	Elf *elf = NULL;
1095	GElf_Ehdr ehdr;
1096	size_t shstrndx;
 
1097
1098	if (elf_version(EV_CURRENT) == EV_NONE) {
1099		pr_warn("failed to init libelf for %s\n", path);
1100		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
1101	}
1102
1103	fd = open(path, O_RDONLY | O_CLOEXEC);
1104	if (fd < 0) {
1105		err = -errno;
1106		pr_warn("failed to open %s: %s\n", path, strerror(errno));
1107		return ERR_PTR(err);
1108	}
1109
1110	err = -LIBBPF_ERRNO__FORMAT;
1111
1112	elf = elf_begin(fd, ELF_C_READ, NULL);
1113	if (!elf) {
1114		pr_warn("failed to open %s as ELF file\n", path);
1115		goto done;
1116	}
1117	if (!gelf_getehdr(elf, &ehdr)) {
1118		pr_warn("failed to get EHDR from %s\n", path);
1119		goto done;
1120	}
1121
1122	if (elf_getshdrstrndx(elf, &shstrndx)) {
1123		pr_warn("failed to get section names section index for %s\n",
1124			path);
1125		goto done;
1126	}
1127
1128	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
1129		pr_warn("failed to get e_shstrndx from %s\n", path);
1130		goto done;
1131	}
1132
1133	while ((scn = elf_nextscn(elf, scn)) != NULL) {
 
1134		GElf_Shdr sh;
1135		char *name;
1136
1137		idx++;
1138		if (gelf_getshdr(scn, &sh) != &sh) {
1139			pr_warn("failed to get section(%d) header from %s\n",
1140				idx, path);
1141			goto done;
1142		}
1143		name = elf_strptr(elf, shstrndx, sh.sh_name);
1144		if (!name) {
1145			pr_warn("failed to get section(%d) name from %s\n",
1146				idx, path);
1147			goto done;
1148		}
1149		if (strcmp(name, BTF_ELF_SEC) == 0) {
1150			btf_data = elf_getdata(scn, 0);
1151			if (!btf_data) {
1152				pr_warn("failed to get section(%d, %s) data from %s\n",
1153					idx, name, path);
1154				goto done;
1155			}
1156			continue;
1157		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
1158			btf_ext_data = elf_getdata(scn, 0);
1159			if (!btf_ext_data) {
1160				pr_warn("failed to get section(%d, %s) data from %s\n",
1161					idx, name, path);
1162				goto done;
1163			}
1164			continue;
 
 
 
 
 
 
1165		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1166	}
1167
1168	if (!btf_data) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1169		pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path);
1170		err = -ENODATA;
1171		goto done;
1172	}
1173	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
1174	err = libbpf_get_error(btf);
1175	if (err)
 
 
 
 
 
 
 
 
 
 
 
 
1176		goto done;
 
 
 
 
 
 
 
 
 
 
 
1177
1178	switch (gelf_getclass(elf)) {
1179	case ELFCLASS32:
1180		btf__set_pointer_size(btf, 4);
1181		break;
1182	case ELFCLASS64:
1183		btf__set_pointer_size(btf, 8);
1184		break;
1185	default:
1186		pr_warn("failed to get ELF class (bitness) for %s\n", path);
1187		break;
1188	}
1189
1190	if (btf_ext && btf_ext_data) {
1191		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
1192		err = libbpf_get_error(*btf_ext);
1193		if (err)
1194			goto done;
 
1195	} else if (btf_ext) {
1196		*btf_ext = NULL;
1197	}
1198done:
1199	if (elf)
1200		elf_end(elf);
1201	close(fd);
1202
1203	if (!err)
1204		return btf;
1205
1206	if (btf_ext)
1207		btf_ext__free(*btf_ext);
 
1208	btf__free(btf);
1209
1210	return ERR_PTR(err);
1211}
1212
1213struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1214{
1215	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1216}
1217
1218struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1219{
1220	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1221}
1222
1223static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1224{
1225	struct btf *btf = NULL;
1226	void *data = NULL;
1227	FILE *f = NULL;
1228	__u16 magic;
1229	int err = 0;
1230	long sz;
1231
1232	f = fopen(path, "rbe");
1233	if (!f) {
1234		err = -errno;
1235		goto err_out;
1236	}
1237
1238	/* check BTF magic */
1239	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1240		err = -EIO;
1241		goto err_out;
1242	}
1243	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1244		/* definitely not a raw BTF */
1245		err = -EPROTO;
1246		goto err_out;
1247	}
1248
1249	/* get file size */
1250	if (fseek(f, 0, SEEK_END)) {
1251		err = -errno;
1252		goto err_out;
1253	}
1254	sz = ftell(f);
1255	if (sz < 0) {
1256		err = -errno;
1257		goto err_out;
1258	}
1259	/* rewind to the start */
1260	if (fseek(f, 0, SEEK_SET)) {
1261		err = -errno;
1262		goto err_out;
1263	}
1264
1265	/* pre-alloc memory and read all of BTF data */
1266	data = malloc(sz);
1267	if (!data) {
1268		err = -ENOMEM;
1269		goto err_out;
1270	}
1271	if (fread(data, 1, sz, f) < sz) {
1272		err = -EIO;
1273		goto err_out;
1274	}
1275
1276	/* finally parse BTF data */
1277	btf = btf_new(data, sz, base_btf);
1278
1279err_out:
1280	free(data);
1281	if (f)
1282		fclose(f);
1283	return err ? ERR_PTR(err) : btf;
1284}
1285
1286struct btf *btf__parse_raw(const char *path)
1287{
1288	return libbpf_ptr(btf_parse_raw(path, NULL));
1289}
1290
1291struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1292{
1293	return libbpf_ptr(btf_parse_raw(path, base_btf));
1294}
1295
1296static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1297{
1298	struct btf *btf;
1299	int err;
1300
1301	if (btf_ext)
1302		*btf_ext = NULL;
1303
1304	btf = btf_parse_raw(path, base_btf);
1305	err = libbpf_get_error(btf);
1306	if (!err)
1307		return btf;
1308	if (err != -EPROTO)
1309		return ERR_PTR(err);
1310	return btf_parse_elf(path, base_btf, btf_ext);
1311}
1312
1313struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1314{
1315	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1316}
1317
1318struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1319{
1320	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1321}
1322
1323static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1324
1325int btf_load_into_kernel(struct btf *btf,
1326			 char *log_buf, size_t log_sz, __u32 log_level,
1327			 int token_fd)
1328{
1329	LIBBPF_OPTS(bpf_btf_load_opts, opts);
1330	__u32 buf_sz = 0, raw_size;
1331	char *buf = NULL, *tmp;
1332	void *raw_data;
1333	int err = 0;
1334
1335	if (btf->fd >= 0)
1336		return libbpf_err(-EEXIST);
1337	if (log_sz && !log_buf)
1338		return libbpf_err(-EINVAL);
1339
1340	/* cache native raw data representation */
1341	raw_data = btf_get_raw_data(btf, &raw_size, false);
1342	if (!raw_data) {
1343		err = -ENOMEM;
1344		goto done;
1345	}
1346	btf->raw_size = raw_size;
1347	btf->raw_data = raw_data;
1348
1349retry_load:
1350	/* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1351	 * initially. Only if BTF loading fails, we bump log_level to 1 and
1352	 * retry, using either auto-allocated or custom log_buf. This way
1353	 * non-NULL custom log_buf provides a buffer just in case, but hopes
1354	 * for successful load and no need for log_buf.
1355	 */
1356	if (log_level) {
1357		/* if caller didn't provide custom log_buf, we'll keep
1358		 * allocating our own progressively bigger buffers for BTF
1359		 * verification log
1360		 */
1361		if (!log_buf) {
1362			buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1363			tmp = realloc(buf, buf_sz);
1364			if (!tmp) {
1365				err = -ENOMEM;
1366				goto done;
1367			}
1368			buf = tmp;
1369			buf[0] = '\0';
1370		}
1371
1372		opts.log_buf = log_buf ? log_buf : buf;
1373		opts.log_size = log_buf ? log_sz : buf_sz;
1374		opts.log_level = log_level;
1375	}
1376
1377	opts.token_fd = token_fd;
1378	if (token_fd)
1379		opts.btf_flags |= BPF_F_TOKEN_FD;
1380
1381	btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1382	if (btf->fd < 0) {
1383		/* time to turn on verbose mode and try again */
1384		if (log_level == 0) {
1385			log_level = 1;
1386			goto retry_load;
1387		}
1388		/* only retry if caller didn't provide custom log_buf, but
1389		 * make sure we can never overflow buf_sz
1390		 */
1391		if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1392			goto retry_load;
1393
1394		err = -errno;
1395		pr_warn("BTF loading error: %d\n", err);
1396		/* don't print out contents of custom log_buf */
1397		if (!log_buf && buf[0])
1398			pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1399	}
1400
1401done:
1402	free(buf);
1403	return libbpf_err(err);
1404}
1405
1406int btf__load_into_kernel(struct btf *btf)
1407{
1408	return btf_load_into_kernel(btf, NULL, 0, 0, 0);
1409}
1410
1411int btf__fd(const struct btf *btf)
1412{
1413	return btf->fd;
1414}
1415
1416void btf__set_fd(struct btf *btf, int fd)
1417{
1418	btf->fd = fd;
1419}
1420
1421static const void *btf_strs_data(const struct btf *btf)
1422{
1423	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1424}
1425
1426static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1427{
1428	struct btf_header *hdr = btf->hdr;
1429	struct btf_type *t;
1430	void *data, *p;
1431	__u32 data_sz;
1432	int i;
1433
1434	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1435	if (data) {
1436		*size = btf->raw_size;
1437		return data;
1438	}
1439
1440	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1441	data = calloc(1, data_sz);
1442	if (!data)
1443		return NULL;
1444	p = data;
1445
1446	memcpy(p, hdr, hdr->hdr_len);
1447	if (swap_endian)
1448		btf_bswap_hdr(p);
1449	p += hdr->hdr_len;
1450
1451	memcpy(p, btf->types_data, hdr->type_len);
1452	if (swap_endian) {
1453		for (i = 0; i < btf->nr_types; i++) {
1454			t = p + btf->type_offs[i];
1455			/* btf_bswap_type_rest() relies on native t->info, so
1456			 * we swap base type info after we swapped all the
1457			 * additional information
1458			 */
1459			if (btf_bswap_type_rest(t))
1460				goto err_out;
1461			btf_bswap_type_base(t);
1462		}
1463	}
1464	p += hdr->type_len;
1465
1466	memcpy(p, btf_strs_data(btf), hdr->str_len);
1467	p += hdr->str_len;
1468
1469	*size = data_sz;
1470	return data;
1471err_out:
1472	free(data);
1473	return NULL;
1474}
1475
1476const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1477{
1478	struct btf *btf = (struct btf *)btf_ro;
1479	__u32 data_sz;
1480	void *data;
1481
1482	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1483	if (!data)
1484		return errno = ENOMEM, NULL;
1485
1486	btf->raw_size = data_sz;
1487	if (btf->swapped_endian)
1488		btf->raw_data_swapped = data;
1489	else
1490		btf->raw_data = data;
1491	*size = data_sz;
1492	return data;
1493}
1494
1495__attribute__((alias("btf__raw_data")))
1496const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1497
1498const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1499{
1500	if (offset < btf->start_str_off)
1501		return btf__str_by_offset(btf->base_btf, offset);
1502	else if (offset - btf->start_str_off < btf->hdr->str_len)
1503		return btf_strs_data(btf) + (offset - btf->start_str_off);
1504	else
1505		return errno = EINVAL, NULL;
1506}
1507
1508const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1509{
1510	return btf__str_by_offset(btf, offset);
1511}
1512
1513struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1514{
1515	struct bpf_btf_info btf_info;
1516	__u32 len = sizeof(btf_info);
1517	__u32 last_size;
1518	struct btf *btf;
1519	void *ptr;
1520	int err;
1521
1522	/* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so
1523	 * let's start with a sane default - 4KiB here - and resize it only if
1524	 * bpf_btf_get_info_by_fd() needs a bigger buffer.
1525	 */
1526	last_size = 4096;
1527	ptr = malloc(last_size);
1528	if (!ptr)
1529		return ERR_PTR(-ENOMEM);
1530
1531	memset(&btf_info, 0, sizeof(btf_info));
1532	btf_info.btf = ptr_to_u64(ptr);
1533	btf_info.btf_size = last_size;
1534	err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1535
1536	if (!err && btf_info.btf_size > last_size) {
1537		void *temp_ptr;
1538
1539		last_size = btf_info.btf_size;
1540		temp_ptr = realloc(ptr, last_size);
1541		if (!temp_ptr) {
1542			btf = ERR_PTR(-ENOMEM);
1543			goto exit_free;
1544		}
1545		ptr = temp_ptr;
1546
1547		len = sizeof(btf_info);
1548		memset(&btf_info, 0, sizeof(btf_info));
1549		btf_info.btf = ptr_to_u64(ptr);
1550		btf_info.btf_size = last_size;
1551
1552		err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1553	}
1554
1555	if (err || btf_info.btf_size > last_size) {
1556		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1557		goto exit_free;
1558	}
1559
1560	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1561
1562exit_free:
1563	free(ptr);
1564	return btf;
1565}
1566
1567struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1568{
1569	struct btf *btf;
1570	int btf_fd;
1571
1572	btf_fd = bpf_btf_get_fd_by_id(id);
1573	if (btf_fd < 0)
1574		return libbpf_err_ptr(-errno);
1575
1576	btf = btf_get_from_fd(btf_fd, base_btf);
1577	close(btf_fd);
1578
1579	return libbpf_ptr(btf);
1580}
1581
1582struct btf *btf__load_from_kernel_by_id(__u32 id)
1583{
1584	return btf__load_from_kernel_by_id_split(id, NULL);
1585}
1586
1587static void btf_invalidate_raw_data(struct btf *btf)
1588{
1589	if (btf->raw_data) {
1590		free(btf->raw_data);
1591		btf->raw_data = NULL;
1592	}
1593	if (btf->raw_data_swapped) {
1594		free(btf->raw_data_swapped);
1595		btf->raw_data_swapped = NULL;
1596	}
1597}
1598
1599/* Ensure BTF is ready to be modified (by splitting into a three memory
1600 * regions for header, types, and strings). Also invalidate cached
1601 * raw_data, if any.
1602 */
1603static int btf_ensure_modifiable(struct btf *btf)
1604{
1605	void *hdr, *types;
1606	struct strset *set = NULL;
1607	int err = -ENOMEM;
1608
1609	if (btf_is_modifiable(btf)) {
1610		/* any BTF modification invalidates raw_data */
1611		btf_invalidate_raw_data(btf);
1612		return 0;
1613	}
1614
1615	/* split raw data into three memory regions */
1616	hdr = malloc(btf->hdr->hdr_len);
1617	types = malloc(btf->hdr->type_len);
1618	if (!hdr || !types)
1619		goto err_out;
1620
1621	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1622	memcpy(types, btf->types_data, btf->hdr->type_len);
1623
1624	/* build lookup index for all strings */
1625	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1626	if (IS_ERR(set)) {
1627		err = PTR_ERR(set);
1628		goto err_out;
1629	}
1630
1631	/* only when everything was successful, update internal state */
1632	btf->hdr = hdr;
1633	btf->types_data = types;
1634	btf->types_data_cap = btf->hdr->type_len;
1635	btf->strs_data = NULL;
1636	btf->strs_set = set;
1637	/* if BTF was created from scratch, all strings are guaranteed to be
1638	 * unique and deduplicated
1639	 */
1640	if (btf->hdr->str_len == 0)
1641		btf->strs_deduped = true;
1642	if (!btf->base_btf && btf->hdr->str_len == 1)
1643		btf->strs_deduped = true;
1644
1645	/* invalidate raw_data representation */
1646	btf_invalidate_raw_data(btf);
1647
1648	return 0;
1649
1650err_out:
1651	strset__free(set);
1652	free(hdr);
1653	free(types);
1654	return err;
1655}
1656
1657/* Find an offset in BTF string section that corresponds to a given string *s*.
1658 * Returns:
1659 *   - >0 offset into string section, if string is found;
1660 *   - -ENOENT, if string is not in the string section;
1661 *   - <0, on any other error.
1662 */
1663int btf__find_str(struct btf *btf, const char *s)
1664{
1665	int off;
1666
1667	if (btf->base_btf) {
1668		off = btf__find_str(btf->base_btf, s);
1669		if (off != -ENOENT)
1670			return off;
1671	}
1672
1673	/* BTF needs to be in a modifiable state to build string lookup index */
1674	if (btf_ensure_modifiable(btf))
1675		return libbpf_err(-ENOMEM);
1676
1677	off = strset__find_str(btf->strs_set, s);
1678	if (off < 0)
1679		return libbpf_err(off);
1680
1681	return btf->start_str_off + off;
1682}
1683
1684/* Add a string s to the BTF string section.
1685 * Returns:
1686 *   - > 0 offset into string section, on success;
1687 *   - < 0, on error.
1688 */
1689int btf__add_str(struct btf *btf, const char *s)
1690{
1691	int off;
1692
1693	if (btf->base_btf) {
1694		off = btf__find_str(btf->base_btf, s);
1695		if (off != -ENOENT)
1696			return off;
1697	}
1698
1699	if (btf_ensure_modifiable(btf))
1700		return libbpf_err(-ENOMEM);
1701
1702	off = strset__add_str(btf->strs_set, s);
1703	if (off < 0)
1704		return libbpf_err(off);
1705
1706	btf->hdr->str_len = strset__data_size(btf->strs_set);
1707
1708	return btf->start_str_off + off;
1709}
1710
1711static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1712{
1713	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1714			      btf->hdr->type_len, UINT_MAX, add_sz);
1715}
1716
1717static void btf_type_inc_vlen(struct btf_type *t)
1718{
1719	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1720}
1721
1722static int btf_commit_type(struct btf *btf, int data_sz)
1723{
1724	int err;
1725
1726	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1727	if (err)
1728		return libbpf_err(err);
1729
1730	btf->hdr->type_len += data_sz;
1731	btf->hdr->str_off += data_sz;
1732	btf->nr_types++;
1733	return btf->start_id + btf->nr_types - 1;
1734}
1735
1736struct btf_pipe {
1737	const struct btf *src;
1738	struct btf *dst;
1739	struct hashmap *str_off_map; /* map string offsets from src to dst */
1740};
1741
1742static int btf_rewrite_str(__u32 *str_off, void *ctx)
1743{
1744	struct btf_pipe *p = ctx;
1745	long mapped_off;
1746	int off, err;
1747
1748	if (!*str_off) /* nothing to do for empty strings */
1749		return 0;
1750
1751	if (p->str_off_map &&
1752	    hashmap__find(p->str_off_map, *str_off, &mapped_off)) {
1753		*str_off = mapped_off;
1754		return 0;
1755	}
1756
1757	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1758	if (off < 0)
1759		return off;
1760
1761	/* Remember string mapping from src to dst.  It avoids
1762	 * performing expensive string comparisons.
1763	 */
1764	if (p->str_off_map) {
1765		err = hashmap__append(p->str_off_map, *str_off, off);
1766		if (err)
1767			return err;
1768	}
1769
1770	*str_off = off;
1771	return 0;
1772}
1773
1774int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1775{
1776	struct btf_pipe p = { .src = src_btf, .dst = btf };
1777	struct btf_type *t;
 
1778	int sz, err;
1779
1780	sz = btf_type_size(src_type);
1781	if (sz < 0)
1782		return libbpf_err(sz);
1783
1784	/* deconstruct BTF, if necessary, and invalidate raw_data */
1785	if (btf_ensure_modifiable(btf))
1786		return libbpf_err(-ENOMEM);
1787
1788	t = btf_add_type_mem(btf, sz);
1789	if (!t)
1790		return libbpf_err(-ENOMEM);
1791
1792	memcpy(t, src_type, sz);
1793
1794	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1795	if (err)
1796		return libbpf_err(err);
1797
1798	return btf_commit_type(btf, sz);
 
 
 
 
 
 
1799}
1800
1801static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1802{
1803	struct btf *btf = ctx;
1804
1805	if (!*type_id) /* nothing to do for VOID references */
1806		return 0;
1807
1808	/* we haven't updated btf's type count yet, so
1809	 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1810	 * add to all newly added BTF types
1811	 */
1812	*type_id += btf->start_id + btf->nr_types - 1;
1813	return 0;
1814}
1815
1816static size_t btf_dedup_identity_hash_fn(long key, void *ctx);
1817static bool btf_dedup_equal_fn(long k1, long k2, void *ctx);
1818
1819int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1820{
1821	struct btf_pipe p = { .src = src_btf, .dst = btf };
1822	int data_sz, sz, cnt, i, err, old_strs_len;
1823	__u32 *off;
1824	void *t;
1825
1826	/* appending split BTF isn't supported yet */
1827	if (src_btf->base_btf)
1828		return libbpf_err(-ENOTSUP);
1829
1830	/* deconstruct BTF, if necessary, and invalidate raw_data */
1831	if (btf_ensure_modifiable(btf))
1832		return libbpf_err(-ENOMEM);
1833
1834	/* remember original strings section size if we have to roll back
1835	 * partial strings section changes
1836	 */
1837	old_strs_len = btf->hdr->str_len;
1838
1839	data_sz = src_btf->hdr->type_len;
1840	cnt = btf__type_cnt(src_btf) - 1;
1841
1842	/* pre-allocate enough memory for new types */
1843	t = btf_add_type_mem(btf, data_sz);
1844	if (!t)
1845		return libbpf_err(-ENOMEM);
1846
1847	/* pre-allocate enough memory for type offset index for new types */
1848	off = btf_add_type_offs_mem(btf, cnt);
1849	if (!off)
1850		return libbpf_err(-ENOMEM);
1851
1852	/* Map the string offsets from src_btf to the offsets from btf to improve performance */
1853	p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1854	if (IS_ERR(p.str_off_map))
1855		return libbpf_err(-ENOMEM);
1856
1857	/* bulk copy types data for all types from src_btf */
1858	memcpy(t, src_btf->types_data, data_sz);
1859
1860	for (i = 0; i < cnt; i++) {
 
 
 
1861		sz = btf_type_size(t);
1862		if (sz < 0) {
1863			/* unlikely, has to be corrupted src_btf */
1864			err = sz;
1865			goto err_out;
1866		}
1867
1868		/* fill out type ID to type offset mapping for lookups by type ID */
1869		*off = t - btf->types_data;
1870
1871		/* add, dedup, and remap strings referenced by this BTF type */
1872		err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1873		if (err)
1874			goto err_out;
 
 
 
 
 
1875
1876		/* remap all type IDs referenced from this BTF type */
1877		err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1878		if (err)
1879			goto err_out;
1880
 
 
 
 
 
 
 
 
 
 
 
1881		/* go to next type data and type offset index entry */
1882		t += sz;
1883		off++;
1884	}
1885
1886	/* Up until now any of the copied type data was effectively invisible,
1887	 * so if we exited early before this point due to error, BTF would be
1888	 * effectively unmodified. There would be extra internal memory
1889	 * pre-allocated, but it would not be available for querying.  But now
1890	 * that we've copied and rewritten all the data successfully, we can
1891	 * update type count and various internal offsets and sizes to
1892	 * "commit" the changes and made them visible to the outside world.
1893	 */
1894	btf->hdr->type_len += data_sz;
1895	btf->hdr->str_off += data_sz;
1896	btf->nr_types += cnt;
1897
1898	hashmap__free(p.str_off_map);
1899
1900	/* return type ID of the first added BTF type */
1901	return btf->start_id + btf->nr_types - cnt;
1902err_out:
1903	/* zero out preallocated memory as if it was just allocated with
1904	 * libbpf_add_mem()
1905	 */
1906	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1907	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1908
1909	/* and now restore original strings section size; types data size
1910	 * wasn't modified, so doesn't need restoring, see big comment above
1911	 */
1912	btf->hdr->str_len = old_strs_len;
1913
1914	hashmap__free(p.str_off_map);
1915
1916	return libbpf_err(err);
1917}
1918
1919/*
1920 * Append new BTF_KIND_INT type with:
1921 *   - *name* - non-empty, non-NULL type name;
1922 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1923 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1924 * Returns:
1925 *   - >0, type ID of newly added BTF type;
1926 *   - <0, on error.
1927 */
1928int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1929{
1930	struct btf_type *t;
1931	int sz, name_off;
1932
1933	/* non-empty name */
1934	if (!name || !name[0])
1935		return libbpf_err(-EINVAL);
1936	/* byte_sz must be power of 2 */
1937	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1938		return libbpf_err(-EINVAL);
1939	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1940		return libbpf_err(-EINVAL);
1941
1942	/* deconstruct BTF, if necessary, and invalidate raw_data */
1943	if (btf_ensure_modifiable(btf))
1944		return libbpf_err(-ENOMEM);
1945
1946	sz = sizeof(struct btf_type) + sizeof(int);
1947	t = btf_add_type_mem(btf, sz);
1948	if (!t)
1949		return libbpf_err(-ENOMEM);
1950
1951	/* if something goes wrong later, we might end up with an extra string,
1952	 * but that shouldn't be a problem, because BTF can't be constructed
1953	 * completely anyway and will most probably be just discarded
1954	 */
1955	name_off = btf__add_str(btf, name);
1956	if (name_off < 0)
1957		return name_off;
1958
1959	t->name_off = name_off;
1960	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1961	t->size = byte_sz;
1962	/* set INT info, we don't allow setting legacy bit offset/size */
1963	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1964
1965	return btf_commit_type(btf, sz);
1966}
1967
1968/*
1969 * Append new BTF_KIND_FLOAT type with:
1970 *   - *name* - non-empty, non-NULL type name;
1971 *   - *sz* - size of the type, in bytes;
1972 * Returns:
1973 *   - >0, type ID of newly added BTF type;
1974 *   - <0, on error.
1975 */
1976int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1977{
1978	struct btf_type *t;
1979	int sz, name_off;
1980
1981	/* non-empty name */
1982	if (!name || !name[0])
1983		return libbpf_err(-EINVAL);
1984
1985	/* byte_sz must be one of the explicitly allowed values */
1986	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1987	    byte_sz != 16)
1988		return libbpf_err(-EINVAL);
1989
1990	if (btf_ensure_modifiable(btf))
1991		return libbpf_err(-ENOMEM);
1992
1993	sz = sizeof(struct btf_type);
1994	t = btf_add_type_mem(btf, sz);
1995	if (!t)
1996		return libbpf_err(-ENOMEM);
1997
1998	name_off = btf__add_str(btf, name);
1999	if (name_off < 0)
2000		return name_off;
2001
2002	t->name_off = name_off;
2003	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
2004	t->size = byte_sz;
2005
2006	return btf_commit_type(btf, sz);
2007}
2008
2009/* it's completely legal to append BTF types with type IDs pointing forward to
2010 * types that haven't been appended yet, so we only make sure that id looks
2011 * sane, we can't guarantee that ID will always be valid
2012 */
2013static int validate_type_id(int id)
2014{
2015	if (id < 0 || id > BTF_MAX_NR_TYPES)
2016		return -EINVAL;
2017	return 0;
2018}
2019
2020/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
2021static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
2022{
2023	struct btf_type *t;
2024	int sz, name_off = 0;
2025
2026	if (validate_type_id(ref_type_id))
2027		return libbpf_err(-EINVAL);
2028
2029	if (btf_ensure_modifiable(btf))
2030		return libbpf_err(-ENOMEM);
2031
2032	sz = sizeof(struct btf_type);
2033	t = btf_add_type_mem(btf, sz);
2034	if (!t)
2035		return libbpf_err(-ENOMEM);
2036
2037	if (name && name[0]) {
2038		name_off = btf__add_str(btf, name);
2039		if (name_off < 0)
2040			return name_off;
2041	}
2042
2043	t->name_off = name_off;
2044	t->info = btf_type_info(kind, 0, 0);
2045	t->type = ref_type_id;
2046
2047	return btf_commit_type(btf, sz);
2048}
2049
2050/*
2051 * Append new BTF_KIND_PTR type with:
2052 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2053 * Returns:
2054 *   - >0, type ID of newly added BTF type;
2055 *   - <0, on error.
2056 */
2057int btf__add_ptr(struct btf *btf, int ref_type_id)
2058{
2059	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
2060}
2061
2062/*
2063 * Append new BTF_KIND_ARRAY type with:
2064 *   - *index_type_id* - type ID of the type describing array index;
2065 *   - *elem_type_id* - type ID of the type describing array element;
2066 *   - *nr_elems* - the size of the array;
2067 * Returns:
2068 *   - >0, type ID of newly added BTF type;
2069 *   - <0, on error.
2070 */
2071int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
2072{
2073	struct btf_type *t;
2074	struct btf_array *a;
2075	int sz;
2076
2077	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
2078		return libbpf_err(-EINVAL);
2079
2080	if (btf_ensure_modifiable(btf))
2081		return libbpf_err(-ENOMEM);
2082
2083	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
2084	t = btf_add_type_mem(btf, sz);
2085	if (!t)
2086		return libbpf_err(-ENOMEM);
2087
2088	t->name_off = 0;
2089	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
2090	t->size = 0;
2091
2092	a = btf_array(t);
2093	a->type = elem_type_id;
2094	a->index_type = index_type_id;
2095	a->nelems = nr_elems;
2096
2097	return btf_commit_type(btf, sz);
2098}
2099
2100/* generic STRUCT/UNION append function */
2101static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
2102{
2103	struct btf_type *t;
2104	int sz, name_off = 0;
2105
2106	if (btf_ensure_modifiable(btf))
2107		return libbpf_err(-ENOMEM);
2108
2109	sz = sizeof(struct btf_type);
2110	t = btf_add_type_mem(btf, sz);
2111	if (!t)
2112		return libbpf_err(-ENOMEM);
2113
2114	if (name && name[0]) {
2115		name_off = btf__add_str(btf, name);
2116		if (name_off < 0)
2117			return name_off;
2118	}
2119
2120	/* start out with vlen=0 and no kflag; this will be adjusted when
2121	 * adding each member
2122	 */
2123	t->name_off = name_off;
2124	t->info = btf_type_info(kind, 0, 0);
2125	t->size = bytes_sz;
2126
2127	return btf_commit_type(btf, sz);
2128}
2129
2130/*
2131 * Append new BTF_KIND_STRUCT type with:
2132 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
2133 *   - *byte_sz* - size of the struct, in bytes;
2134 *
2135 * Struct initially has no fields in it. Fields can be added by
2136 * btf__add_field() right after btf__add_struct() succeeds.
2137 *
2138 * Returns:
2139 *   - >0, type ID of newly added BTF type;
2140 *   - <0, on error.
2141 */
2142int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
2143{
2144	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
2145}
2146
2147/*
2148 * Append new BTF_KIND_UNION type with:
2149 *   - *name* - name of the union, can be NULL or empty for anonymous union;
2150 *   - *byte_sz* - size of the union, in bytes;
2151 *
2152 * Union initially has no fields in it. Fields can be added by
2153 * btf__add_field() right after btf__add_union() succeeds. All fields
2154 * should have *bit_offset* of 0.
2155 *
2156 * Returns:
2157 *   - >0, type ID of newly added BTF type;
2158 *   - <0, on error.
2159 */
2160int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
2161{
2162	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
2163}
2164
2165static struct btf_type *btf_last_type(struct btf *btf)
2166{
2167	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
2168}
2169
2170/*
2171 * Append new field for the current STRUCT/UNION type with:
2172 *   - *name* - name of the field, can be NULL or empty for anonymous field;
2173 *   - *type_id* - type ID for the type describing field type;
2174 *   - *bit_offset* - bit offset of the start of the field within struct/union;
2175 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2176 * Returns:
2177 *   -  0, on success;
2178 *   - <0, on error.
2179 */
2180int btf__add_field(struct btf *btf, const char *name, int type_id,
2181		   __u32 bit_offset, __u32 bit_size)
2182{
2183	struct btf_type *t;
2184	struct btf_member *m;
2185	bool is_bitfield;
2186	int sz, name_off = 0;
2187
2188	/* last type should be union/struct */
2189	if (btf->nr_types == 0)
2190		return libbpf_err(-EINVAL);
2191	t = btf_last_type(btf);
2192	if (!btf_is_composite(t))
2193		return libbpf_err(-EINVAL);
2194
2195	if (validate_type_id(type_id))
2196		return libbpf_err(-EINVAL);
2197	/* best-effort bit field offset/size enforcement */
2198	is_bitfield = bit_size || (bit_offset % 8 != 0);
2199	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2200		return libbpf_err(-EINVAL);
2201
2202	/* only offset 0 is allowed for unions */
2203	if (btf_is_union(t) && bit_offset)
2204		return libbpf_err(-EINVAL);
2205
2206	/* decompose and invalidate raw data */
2207	if (btf_ensure_modifiable(btf))
2208		return libbpf_err(-ENOMEM);
2209
2210	sz = sizeof(struct btf_member);
2211	m = btf_add_type_mem(btf, sz);
2212	if (!m)
2213		return libbpf_err(-ENOMEM);
2214
2215	if (name && name[0]) {
2216		name_off = btf__add_str(btf, name);
2217		if (name_off < 0)
2218			return name_off;
2219	}
2220
2221	m->name_off = name_off;
2222	m->type = type_id;
2223	m->offset = bit_offset | (bit_size << 24);
2224
2225	/* btf_add_type_mem can invalidate t pointer */
2226	t = btf_last_type(btf);
2227	/* update parent type's vlen and kflag */
2228	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2229
2230	btf->hdr->type_len += sz;
2231	btf->hdr->str_off += sz;
2232	return 0;
2233}
2234
2235static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2236			       bool is_signed, __u8 kind)
2237{
2238	struct btf_type *t;
2239	int sz, name_off = 0;
2240
2241	/* byte_sz must be power of 2 */
2242	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2243		return libbpf_err(-EINVAL);
2244
2245	if (btf_ensure_modifiable(btf))
2246		return libbpf_err(-ENOMEM);
2247
2248	sz = sizeof(struct btf_type);
2249	t = btf_add_type_mem(btf, sz);
2250	if (!t)
2251		return libbpf_err(-ENOMEM);
2252
2253	if (name && name[0]) {
2254		name_off = btf__add_str(btf, name);
2255		if (name_off < 0)
2256			return name_off;
2257	}
2258
2259	/* start out with vlen=0; it will be adjusted when adding enum values */
2260	t->name_off = name_off;
2261	t->info = btf_type_info(kind, 0, is_signed);
2262	t->size = byte_sz;
2263
2264	return btf_commit_type(btf, sz);
2265}
2266
2267/*
2268 * Append new BTF_KIND_ENUM type with:
2269 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2270 *   - *byte_sz* - size of the enum, in bytes.
2271 *
2272 * Enum initially has no enum values in it (and corresponds to enum forward
2273 * declaration). Enumerator values can be added by btf__add_enum_value()
2274 * immediately after btf__add_enum() succeeds.
2275 *
2276 * Returns:
2277 *   - >0, type ID of newly added BTF type;
2278 *   - <0, on error.
2279 */
2280int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2281{
2282	/*
2283	 * set the signedness to be unsigned, it will change to signed
2284	 * if any later enumerator is negative.
2285	 */
2286	return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2287}
2288
2289/*
2290 * Append new enum value for the current ENUM type with:
2291 *   - *name* - name of the enumerator value, can't be NULL or empty;
2292 *   - *value* - integer value corresponding to enum value *name*;
2293 * Returns:
2294 *   -  0, on success;
2295 *   - <0, on error.
2296 */
2297int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2298{
2299	struct btf_type *t;
2300	struct btf_enum *v;
2301	int sz, name_off;
2302
2303	/* last type should be BTF_KIND_ENUM */
2304	if (btf->nr_types == 0)
2305		return libbpf_err(-EINVAL);
2306	t = btf_last_type(btf);
2307	if (!btf_is_enum(t))
2308		return libbpf_err(-EINVAL);
2309
2310	/* non-empty name */
2311	if (!name || !name[0])
2312		return libbpf_err(-EINVAL);
2313	if (value < INT_MIN || value > UINT_MAX)
2314		return libbpf_err(-E2BIG);
2315
2316	/* decompose and invalidate raw data */
2317	if (btf_ensure_modifiable(btf))
2318		return libbpf_err(-ENOMEM);
2319
2320	sz = sizeof(struct btf_enum);
2321	v = btf_add_type_mem(btf, sz);
2322	if (!v)
2323		return libbpf_err(-ENOMEM);
2324
2325	name_off = btf__add_str(btf, name);
2326	if (name_off < 0)
2327		return name_off;
2328
2329	v->name_off = name_off;
2330	v->val = value;
2331
2332	/* update parent type's vlen */
2333	t = btf_last_type(btf);
2334	btf_type_inc_vlen(t);
2335
2336	/* if negative value, set signedness to signed */
2337	if (value < 0)
2338		t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2339
2340	btf->hdr->type_len += sz;
2341	btf->hdr->str_off += sz;
2342	return 0;
2343}
2344
2345/*
2346 * Append new BTF_KIND_ENUM64 type with:
2347 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2348 *   - *byte_sz* - size of the enum, in bytes.
2349 *   - *is_signed* - whether the enum values are signed or not;
2350 *
2351 * Enum initially has no enum values in it (and corresponds to enum forward
2352 * declaration). Enumerator values can be added by btf__add_enum64_value()
2353 * immediately after btf__add_enum64() succeeds.
2354 *
2355 * Returns:
2356 *   - >0, type ID of newly added BTF type;
2357 *   - <0, on error.
2358 */
2359int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2360		    bool is_signed)
2361{
2362	return btf_add_enum_common(btf, name, byte_sz, is_signed,
2363				   BTF_KIND_ENUM64);
2364}
2365
2366/*
2367 * Append new enum value for the current ENUM64 type with:
2368 *   - *name* - name of the enumerator value, can't be NULL or empty;
2369 *   - *value* - integer value corresponding to enum value *name*;
2370 * Returns:
2371 *   -  0, on success;
2372 *   - <0, on error.
2373 */
2374int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2375{
2376	struct btf_enum64 *v;
2377	struct btf_type *t;
2378	int sz, name_off;
2379
2380	/* last type should be BTF_KIND_ENUM64 */
2381	if (btf->nr_types == 0)
2382		return libbpf_err(-EINVAL);
2383	t = btf_last_type(btf);
2384	if (!btf_is_enum64(t))
2385		return libbpf_err(-EINVAL);
2386
2387	/* non-empty name */
2388	if (!name || !name[0])
2389		return libbpf_err(-EINVAL);
2390
2391	/* decompose and invalidate raw data */
2392	if (btf_ensure_modifiable(btf))
2393		return libbpf_err(-ENOMEM);
2394
2395	sz = sizeof(struct btf_enum64);
2396	v = btf_add_type_mem(btf, sz);
2397	if (!v)
2398		return libbpf_err(-ENOMEM);
2399
2400	name_off = btf__add_str(btf, name);
2401	if (name_off < 0)
2402		return name_off;
2403
2404	v->name_off = name_off;
2405	v->val_lo32 = (__u32)value;
2406	v->val_hi32 = value >> 32;
2407
2408	/* update parent type's vlen */
2409	t = btf_last_type(btf);
2410	btf_type_inc_vlen(t);
2411
2412	btf->hdr->type_len += sz;
2413	btf->hdr->str_off += sz;
2414	return 0;
2415}
2416
2417/*
2418 * Append new BTF_KIND_FWD type with:
2419 *   - *name*, non-empty/non-NULL name;
2420 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2421 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2422 * Returns:
2423 *   - >0, type ID of newly added BTF type;
2424 *   - <0, on error.
2425 */
2426int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2427{
2428	if (!name || !name[0])
2429		return libbpf_err(-EINVAL);
2430
2431	switch (fwd_kind) {
2432	case BTF_FWD_STRUCT:
2433	case BTF_FWD_UNION: {
2434		struct btf_type *t;
2435		int id;
2436
2437		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2438		if (id <= 0)
2439			return id;
2440		t = btf_type_by_id(btf, id);
2441		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2442		return id;
2443	}
2444	case BTF_FWD_ENUM:
2445		/* enum forward in BTF currently is just an enum with no enum
2446		 * values; we also assume a standard 4-byte size for it
2447		 */
2448		return btf__add_enum(btf, name, sizeof(int));
2449	default:
2450		return libbpf_err(-EINVAL);
2451	}
2452}
2453
2454/*
2455 * Append new BTF_KING_TYPEDEF type with:
2456 *   - *name*, non-empty/non-NULL name;
2457 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2458 * Returns:
2459 *   - >0, type ID of newly added BTF type;
2460 *   - <0, on error.
2461 */
2462int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2463{
2464	if (!name || !name[0])
2465		return libbpf_err(-EINVAL);
2466
2467	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2468}
2469
2470/*
2471 * Append new BTF_KIND_VOLATILE type with:
2472 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2473 * Returns:
2474 *   - >0, type ID of newly added BTF type;
2475 *   - <0, on error.
2476 */
2477int btf__add_volatile(struct btf *btf, int ref_type_id)
2478{
2479	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2480}
2481
2482/*
2483 * Append new BTF_KIND_CONST type with:
2484 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2485 * Returns:
2486 *   - >0, type ID of newly added BTF type;
2487 *   - <0, on error.
2488 */
2489int btf__add_const(struct btf *btf, int ref_type_id)
2490{
2491	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2492}
2493
2494/*
2495 * Append new BTF_KIND_RESTRICT type with:
2496 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2497 * Returns:
2498 *   - >0, type ID of newly added BTF type;
2499 *   - <0, on error.
2500 */
2501int btf__add_restrict(struct btf *btf, int ref_type_id)
2502{
2503	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2504}
2505
2506/*
2507 * Append new BTF_KIND_TYPE_TAG type with:
2508 *   - *value*, non-empty/non-NULL tag value;
2509 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2510 * Returns:
2511 *   - >0, type ID of newly added BTF type;
2512 *   - <0, on error.
2513 */
2514int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2515{
2516	if (!value || !value[0])
2517		return libbpf_err(-EINVAL);
2518
2519	return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2520}
2521
2522/*
2523 * Append new BTF_KIND_FUNC type with:
2524 *   - *name*, non-empty/non-NULL name;
2525 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2526 * Returns:
2527 *   - >0, type ID of newly added BTF type;
2528 *   - <0, on error.
2529 */
2530int btf__add_func(struct btf *btf, const char *name,
2531		  enum btf_func_linkage linkage, int proto_type_id)
2532{
2533	int id;
2534
2535	if (!name || !name[0])
2536		return libbpf_err(-EINVAL);
2537	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2538	    linkage != BTF_FUNC_EXTERN)
2539		return libbpf_err(-EINVAL);
2540
2541	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2542	if (id > 0) {
2543		struct btf_type *t = btf_type_by_id(btf, id);
2544
2545		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2546	}
2547	return libbpf_err(id);
2548}
2549
2550/*
2551 * Append new BTF_KIND_FUNC_PROTO with:
2552 *   - *ret_type_id* - type ID for return result of a function.
2553 *
2554 * Function prototype initially has no arguments, but they can be added by
2555 * btf__add_func_param() one by one, immediately after
2556 * btf__add_func_proto() succeeded.
2557 *
2558 * Returns:
2559 *   - >0, type ID of newly added BTF type;
2560 *   - <0, on error.
2561 */
2562int btf__add_func_proto(struct btf *btf, int ret_type_id)
2563{
2564	struct btf_type *t;
2565	int sz;
2566
2567	if (validate_type_id(ret_type_id))
2568		return libbpf_err(-EINVAL);
2569
2570	if (btf_ensure_modifiable(btf))
2571		return libbpf_err(-ENOMEM);
2572
2573	sz = sizeof(struct btf_type);
2574	t = btf_add_type_mem(btf, sz);
2575	if (!t)
2576		return libbpf_err(-ENOMEM);
2577
2578	/* start out with vlen=0; this will be adjusted when adding enum
2579	 * values, if necessary
2580	 */
2581	t->name_off = 0;
2582	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2583	t->type = ret_type_id;
2584
2585	return btf_commit_type(btf, sz);
2586}
2587
2588/*
2589 * Append new function parameter for current FUNC_PROTO type with:
2590 *   - *name* - parameter name, can be NULL or empty;
2591 *   - *type_id* - type ID describing the type of the parameter.
2592 * Returns:
2593 *   -  0, on success;
2594 *   - <0, on error.
2595 */
2596int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2597{
2598	struct btf_type *t;
2599	struct btf_param *p;
2600	int sz, name_off = 0;
2601
2602	if (validate_type_id(type_id))
2603		return libbpf_err(-EINVAL);
2604
2605	/* last type should be BTF_KIND_FUNC_PROTO */
2606	if (btf->nr_types == 0)
2607		return libbpf_err(-EINVAL);
2608	t = btf_last_type(btf);
2609	if (!btf_is_func_proto(t))
2610		return libbpf_err(-EINVAL);
2611
2612	/* decompose and invalidate raw data */
2613	if (btf_ensure_modifiable(btf))
2614		return libbpf_err(-ENOMEM);
2615
2616	sz = sizeof(struct btf_param);
2617	p = btf_add_type_mem(btf, sz);
2618	if (!p)
2619		return libbpf_err(-ENOMEM);
2620
2621	if (name && name[0]) {
2622		name_off = btf__add_str(btf, name);
2623		if (name_off < 0)
2624			return name_off;
2625	}
2626
2627	p->name_off = name_off;
2628	p->type = type_id;
2629
2630	/* update parent type's vlen */
2631	t = btf_last_type(btf);
2632	btf_type_inc_vlen(t);
2633
2634	btf->hdr->type_len += sz;
2635	btf->hdr->str_off += sz;
2636	return 0;
2637}
2638
2639/*
2640 * Append new BTF_KIND_VAR type with:
2641 *   - *name* - non-empty/non-NULL name;
2642 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2643 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2644 *   - *type_id* - type ID of the type describing the type of the variable.
2645 * Returns:
2646 *   - >0, type ID of newly added BTF type;
2647 *   - <0, on error.
2648 */
2649int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2650{
2651	struct btf_type *t;
2652	struct btf_var *v;
2653	int sz, name_off;
2654
2655	/* non-empty name */
2656	if (!name || !name[0])
2657		return libbpf_err(-EINVAL);
2658	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2659	    linkage != BTF_VAR_GLOBAL_EXTERN)
2660		return libbpf_err(-EINVAL);
2661	if (validate_type_id(type_id))
2662		return libbpf_err(-EINVAL);
2663
2664	/* deconstruct BTF, if necessary, and invalidate raw_data */
2665	if (btf_ensure_modifiable(btf))
2666		return libbpf_err(-ENOMEM);
2667
2668	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2669	t = btf_add_type_mem(btf, sz);
2670	if (!t)
2671		return libbpf_err(-ENOMEM);
2672
2673	name_off = btf__add_str(btf, name);
2674	if (name_off < 0)
2675		return name_off;
2676
2677	t->name_off = name_off;
2678	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2679	t->type = type_id;
2680
2681	v = btf_var(t);
2682	v->linkage = linkage;
2683
2684	return btf_commit_type(btf, sz);
2685}
2686
2687/*
2688 * Append new BTF_KIND_DATASEC type with:
2689 *   - *name* - non-empty/non-NULL name;
2690 *   - *byte_sz* - data section size, in bytes.
2691 *
2692 * Data section is initially empty. Variables info can be added with
2693 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2694 *
2695 * Returns:
2696 *   - >0, type ID of newly added BTF type;
2697 *   - <0, on error.
2698 */
2699int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2700{
2701	struct btf_type *t;
2702	int sz, name_off;
2703
2704	/* non-empty name */
2705	if (!name || !name[0])
2706		return libbpf_err(-EINVAL);
2707
2708	if (btf_ensure_modifiable(btf))
2709		return libbpf_err(-ENOMEM);
2710
2711	sz = sizeof(struct btf_type);
2712	t = btf_add_type_mem(btf, sz);
2713	if (!t)
2714		return libbpf_err(-ENOMEM);
2715
2716	name_off = btf__add_str(btf, name);
2717	if (name_off < 0)
2718		return name_off;
2719
2720	/* start with vlen=0, which will be update as var_secinfos are added */
2721	t->name_off = name_off;
2722	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2723	t->size = byte_sz;
2724
2725	return btf_commit_type(btf, sz);
2726}
2727
2728/*
2729 * Append new data section variable information entry for current DATASEC type:
2730 *   - *var_type_id* - type ID, describing type of the variable;
2731 *   - *offset* - variable offset within data section, in bytes;
2732 *   - *byte_sz* - variable size, in bytes.
2733 *
2734 * Returns:
2735 *   -  0, on success;
2736 *   - <0, on error.
2737 */
2738int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2739{
2740	struct btf_type *t;
2741	struct btf_var_secinfo *v;
2742	int sz;
2743
2744	/* last type should be BTF_KIND_DATASEC */
2745	if (btf->nr_types == 0)
2746		return libbpf_err(-EINVAL);
2747	t = btf_last_type(btf);
2748	if (!btf_is_datasec(t))
2749		return libbpf_err(-EINVAL);
2750
2751	if (validate_type_id(var_type_id))
2752		return libbpf_err(-EINVAL);
2753
2754	/* decompose and invalidate raw data */
2755	if (btf_ensure_modifiable(btf))
2756		return libbpf_err(-ENOMEM);
2757
2758	sz = sizeof(struct btf_var_secinfo);
2759	v = btf_add_type_mem(btf, sz);
2760	if (!v)
2761		return libbpf_err(-ENOMEM);
2762
2763	v->type = var_type_id;
2764	v->offset = offset;
2765	v->size = byte_sz;
2766
2767	/* update parent type's vlen */
2768	t = btf_last_type(btf);
2769	btf_type_inc_vlen(t);
2770
2771	btf->hdr->type_len += sz;
2772	btf->hdr->str_off += sz;
2773	return 0;
2774}
2775
2776/*
2777 * Append new BTF_KIND_DECL_TAG type with:
2778 *   - *value* - non-empty/non-NULL string;
2779 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2780 *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2781 *     member or function argument index;
2782 * Returns:
2783 *   - >0, type ID of newly added BTF type;
2784 *   - <0, on error.
2785 */
2786int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2787		 int component_idx)
2788{
2789	struct btf_type *t;
2790	int sz, value_off;
2791
2792	if (!value || !value[0] || component_idx < -1)
2793		return libbpf_err(-EINVAL);
2794
2795	if (validate_type_id(ref_type_id))
2796		return libbpf_err(-EINVAL);
2797
2798	if (btf_ensure_modifiable(btf))
2799		return libbpf_err(-ENOMEM);
2800
2801	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2802	t = btf_add_type_mem(btf, sz);
2803	if (!t)
2804		return libbpf_err(-ENOMEM);
2805
2806	value_off = btf__add_str(btf, value);
2807	if (value_off < 0)
2808		return value_off;
2809
2810	t->name_off = value_off;
2811	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2812	t->type = ref_type_id;
2813	btf_decl_tag(t)->component_idx = component_idx;
2814
2815	return btf_commit_type(btf, sz);
2816}
2817
2818struct btf_ext_sec_setup_param {
2819	__u32 off;
2820	__u32 len;
2821	__u32 min_rec_size;
2822	struct btf_ext_info *ext_info;
2823	const char *desc;
2824};
2825
2826static int btf_ext_setup_info(struct btf_ext *btf_ext,
2827			      struct btf_ext_sec_setup_param *ext_sec)
 
 
 
 
 
 
 
2828{
2829	const struct btf_ext_info_sec *sinfo;
2830	struct btf_ext_info *ext_info;
2831	__u32 info_left, record_size;
2832	size_t sec_cnt = 0;
2833	/* The start of the info sec (including the __u32 record_size). */
2834	void *info;
2835
2836	if (ext_sec->len == 0)
2837		return 0;
2838
2839	if (ext_sec->off & 0x03) {
2840		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2841		     ext_sec->desc);
2842		return -EINVAL;
2843	}
2844
 
2845	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2846	info_left = ext_sec->len;
2847
2848	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2849		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2850			 ext_sec->desc, ext_sec->off, ext_sec->len);
2851		return -EINVAL;
2852	}
2853
2854	/* At least a record size */
2855	if (info_left < sizeof(__u32)) {
2856		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2857		return -EINVAL;
2858	}
2859
2860	/* The record size needs to meet the minimum standard */
2861	record_size = *(__u32 *)info;
 
 
 
2862	if (record_size < ext_sec->min_rec_size ||
 
2863	    record_size & 0x03) {
2864		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2865			 ext_sec->desc, record_size);
2866		return -EINVAL;
2867	}
2868
2869	sinfo = info + sizeof(__u32);
2870	info_left -= sizeof(__u32);
2871
2872	/* If no records, return failure now so .BTF.ext won't be used. */
2873	if (!info_left) {
2874		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2875		return -EINVAL;
2876	}
2877
2878	while (info_left) {
2879		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2880		__u64 total_record_size;
2881		__u32 num_records;
2882
2883		if (info_left < sec_hdrlen) {
2884			pr_debug("%s section header is not found in .BTF.ext\n",
2885			     ext_sec->desc);
2886			return -EINVAL;
2887		}
2888
2889		num_records = sinfo->num_info;
2890		if (num_records == 0) {
2891			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2892			     ext_sec->desc);
2893			return -EINVAL;
2894		}
2895
2896		total_record_size = sec_hdrlen + (__u64)num_records * record_size;
2897		if (info_left < total_record_size) {
2898			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2899			     ext_sec->desc);
2900			return -EINVAL;
2901		}
2902
2903		info_left -= total_record_size;
2904		sinfo = (void *)sinfo + total_record_size;
2905		sec_cnt++;
2906	}
2907
2908	ext_info = ext_sec->ext_info;
2909	ext_info->len = ext_sec->len - sizeof(__u32);
2910	ext_info->rec_size = record_size;
2911	ext_info->info = info + sizeof(__u32);
2912	ext_info->sec_cnt = sec_cnt;
2913
2914	return 0;
2915}
2916
2917static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
 
2918{
2919	struct btf_ext_sec_setup_param param = {
2920		.off = btf_ext->hdr->func_info_off,
2921		.len = btf_ext->hdr->func_info_len,
2922		.min_rec_size = sizeof(struct bpf_func_info_min),
2923		.ext_info = &btf_ext->func_info,
2924		.desc = "func_info"
2925	};
2926
2927	return btf_ext_setup_info(btf_ext, &param);
2928}
2929
2930static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2931{
2932	struct btf_ext_sec_setup_param param = {
2933		.off = btf_ext->hdr->line_info_off,
2934		.len = btf_ext->hdr->line_info_len,
2935		.min_rec_size = sizeof(struct bpf_line_info_min),
2936		.ext_info = &btf_ext->line_info,
2937		.desc = "line_info",
2938	};
2939
2940	return btf_ext_setup_info(btf_ext, &param);
2941}
2942
2943static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2944{
2945	struct btf_ext_sec_setup_param param = {
2946		.off = btf_ext->hdr->core_relo_off,
2947		.len = btf_ext->hdr->core_relo_len,
2948		.min_rec_size = sizeof(struct bpf_core_relo),
2949		.ext_info = &btf_ext->core_relo_info,
2950		.desc = "core_relo",
2951	};
 
 
 
 
 
2952
2953	return btf_ext_setup_info(btf_ext, &param);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2954}
2955
2956static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
 
 
2957{
2958	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
 
 
 
 
 
 
 
 
2959
2960	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2961	    data_size < hdr->hdr_len) {
2962		pr_debug("BTF.ext header not found");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2963		return -EINVAL;
2964	}
2965
 
2966	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2967		pr_warn("BTF.ext in non-native endianness is not supported\n");
2968		return -ENOTSUP;
2969	} else if (hdr->magic != BTF_MAGIC) {
2970		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2971		return -EINVAL;
2972	}
2973
2974	if (hdr->version != BTF_VERSION) {
 
2975		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2976		return -ENOTSUP;
2977	}
2978
2979	if (hdr->flags) {
2980		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2981		return -ENOTSUP;
2982	}
2983
2984	if (data_size == hdr->hdr_len) {
 
 
 
2985		pr_debug("BTF.ext has no data\n");
2986		return -EINVAL;
2987	}
2988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2989	return 0;
2990}
2991
2992void btf_ext__free(struct btf_ext *btf_ext)
2993{
2994	if (IS_ERR_OR_NULL(btf_ext))
2995		return;
2996	free(btf_ext->func_info.sec_idxs);
2997	free(btf_ext->line_info.sec_idxs);
2998	free(btf_ext->core_relo_info.sec_idxs);
2999	free(btf_ext->data);
 
3000	free(btf_ext);
3001}
3002
3003struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
3004{
3005	struct btf_ext *btf_ext;
3006	int err;
3007
3008	btf_ext = calloc(1, sizeof(struct btf_ext));
3009	if (!btf_ext)
3010		return libbpf_err_ptr(-ENOMEM);
3011
3012	btf_ext->data_size = size;
3013	btf_ext->data = malloc(size);
3014	if (!btf_ext->data) {
3015		err = -ENOMEM;
3016		goto done;
3017	}
3018	memcpy(btf_ext->data, data, size);
3019
3020	err = btf_ext_parse_hdr(btf_ext->data, size);
3021	if (err)
3022		goto done;
3023
3024	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
3025		err = -EINVAL;
3026		goto done;
3027	}
3028
3029	err = btf_ext_setup_func_info(btf_ext);
3030	if (err)
3031		goto done;
3032
3033	err = btf_ext_setup_line_info(btf_ext);
3034	if (err)
3035		goto done;
3036
3037	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3038		goto done; /* skip core relos parsing */
3039
3040	err = btf_ext_setup_core_relos(btf_ext);
3041	if (err)
3042		goto done;
3043
3044done:
3045	if (err) {
3046		btf_ext__free(btf_ext);
3047		return libbpf_err_ptr(err);
3048	}
3049
3050	return btf_ext;
3051}
3052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3053const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size)
3054{
 
 
 
 
 
 
3055	*size = btf_ext->data_size;
3056	return btf_ext->data;
3057}
3058
3059__attribute__((alias("btf_ext__raw_data")))
3060const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size);
3061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3062
3063struct btf_dedup;
3064
3065static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
3066static void btf_dedup_free(struct btf_dedup *d);
3067static int btf_dedup_prep(struct btf_dedup *d);
3068static int btf_dedup_strings(struct btf_dedup *d);
3069static int btf_dedup_prim_types(struct btf_dedup *d);
3070static int btf_dedup_struct_types(struct btf_dedup *d);
3071static int btf_dedup_ref_types(struct btf_dedup *d);
3072static int btf_dedup_resolve_fwds(struct btf_dedup *d);
3073static int btf_dedup_compact_types(struct btf_dedup *d);
3074static int btf_dedup_remap_types(struct btf_dedup *d);
3075
3076/*
3077 * Deduplicate BTF types and strings.
3078 *
3079 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
3080 * section with all BTF type descriptors and string data. It overwrites that
3081 * memory in-place with deduplicated types and strings without any loss of
3082 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
3083 * is provided, all the strings referenced from .BTF.ext section are honored
3084 * and updated to point to the right offsets after deduplication.
3085 *
3086 * If function returns with error, type/string data might be garbled and should
3087 * be discarded.
3088 *
3089 * More verbose and detailed description of both problem btf_dedup is solving,
3090 * as well as solution could be found at:
3091 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
3092 *
3093 * Problem description and justification
3094 * =====================================
3095 *
3096 * BTF type information is typically emitted either as a result of conversion
3097 * from DWARF to BTF or directly by compiler. In both cases, each compilation
3098 * unit contains information about a subset of all the types that are used
3099 * in an application. These subsets are frequently overlapping and contain a lot
3100 * of duplicated information when later concatenated together into a single
3101 * binary. This algorithm ensures that each unique type is represented by single
3102 * BTF type descriptor, greatly reducing resulting size of BTF data.
3103 *
3104 * Compilation unit isolation and subsequent duplication of data is not the only
3105 * problem. The same type hierarchy (e.g., struct and all the type that struct
3106 * references) in different compilation units can be represented in BTF to
3107 * various degrees of completeness (or, rather, incompleteness) due to
3108 * struct/union forward declarations.
3109 *
3110 * Let's take a look at an example, that we'll use to better understand the
3111 * problem (and solution). Suppose we have two compilation units, each using
3112 * same `struct S`, but each of them having incomplete type information about
3113 * struct's fields:
3114 *
3115 * // CU #1:
3116 * struct S;
3117 * struct A {
3118 *	int a;
3119 *	struct A* self;
3120 *	struct S* parent;
3121 * };
3122 * struct B;
3123 * struct S {
3124 *	struct A* a_ptr;
3125 *	struct B* b_ptr;
3126 * };
3127 *
3128 * // CU #2:
3129 * struct S;
3130 * struct A;
3131 * struct B {
3132 *	int b;
3133 *	struct B* self;
3134 *	struct S* parent;
3135 * };
3136 * struct S {
3137 *	struct A* a_ptr;
3138 *	struct B* b_ptr;
3139 * };
3140 *
3141 * In case of CU #1, BTF data will know only that `struct B` exist (but no
3142 * more), but will know the complete type information about `struct A`. While
3143 * for CU #2, it will know full type information about `struct B`, but will
3144 * only know about forward declaration of `struct A` (in BTF terms, it will
3145 * have `BTF_KIND_FWD` type descriptor with name `B`).
3146 *
3147 * This compilation unit isolation means that it's possible that there is no
3148 * single CU with complete type information describing structs `S`, `A`, and
3149 * `B`. Also, we might get tons of duplicated and redundant type information.
3150 *
3151 * Additional complication we need to keep in mind comes from the fact that
3152 * types, in general, can form graphs containing cycles, not just DAGs.
3153 *
3154 * While algorithm does deduplication, it also merges and resolves type
3155 * information (unless disabled throught `struct btf_opts`), whenever possible.
3156 * E.g., in the example above with two compilation units having partial type
3157 * information for structs `A` and `B`, the output of algorithm will emit
3158 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
3159 * (as well as type information for `int` and pointers), as if they were defined
3160 * in a single compilation unit as:
3161 *
3162 * struct A {
3163 *	int a;
3164 *	struct A* self;
3165 *	struct S* parent;
3166 * };
3167 * struct B {
3168 *	int b;
3169 *	struct B* self;
3170 *	struct S* parent;
3171 * };
3172 * struct S {
3173 *	struct A* a_ptr;
3174 *	struct B* b_ptr;
3175 * };
3176 *
3177 * Algorithm summary
3178 * =================
3179 *
3180 * Algorithm completes its work in 7 separate passes:
3181 *
3182 * 1. Strings deduplication.
3183 * 2. Primitive types deduplication (int, enum, fwd).
3184 * 3. Struct/union types deduplication.
3185 * 4. Resolve unambiguous forward declarations.
3186 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3187 *    protos, and const/volatile/restrict modifiers).
3188 * 6. Types compaction.
3189 * 7. Types remapping.
3190 *
3191 * Algorithm determines canonical type descriptor, which is a single
3192 * representative type for each truly unique type. This canonical type is the
3193 * one that will go into final deduplicated BTF type information. For
3194 * struct/unions, it is also the type that algorithm will merge additional type
3195 * information into (while resolving FWDs), as it discovers it from data in
3196 * other CUs. Each input BTF type eventually gets either mapped to itself, if
3197 * that type is canonical, or to some other type, if that type is equivalent
3198 * and was chosen as canonical representative. This mapping is stored in
3199 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3200 * FWD type got resolved to.
3201 *
3202 * To facilitate fast discovery of canonical types, we also maintain canonical
3203 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3204 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3205 * that match that signature. With sufficiently good choice of type signature
3206 * hashing function, we can limit number of canonical types for each unique type
3207 * signature to a very small number, allowing to find canonical type for any
3208 * duplicated type very quickly.
3209 *
3210 * Struct/union deduplication is the most critical part and algorithm for
3211 * deduplicating structs/unions is described in greater details in comments for
3212 * `btf_dedup_is_equiv` function.
3213 */
3214int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
3215{
3216	struct btf_dedup *d;
3217	int err;
3218
3219	if (!OPTS_VALID(opts, btf_dedup_opts))
3220		return libbpf_err(-EINVAL);
3221
3222	d = btf_dedup_new(btf, opts);
3223	if (IS_ERR(d)) {
3224		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3225		return libbpf_err(-EINVAL);
3226	}
3227
3228	if (btf_ensure_modifiable(btf)) {
3229		err = -ENOMEM;
3230		goto done;
3231	}
3232
3233	err = btf_dedup_prep(d);
3234	if (err) {
3235		pr_debug("btf_dedup_prep failed:%d\n", err);
3236		goto done;
3237	}
3238	err = btf_dedup_strings(d);
3239	if (err < 0) {
3240		pr_debug("btf_dedup_strings failed:%d\n", err);
3241		goto done;
3242	}
3243	err = btf_dedup_prim_types(d);
3244	if (err < 0) {
3245		pr_debug("btf_dedup_prim_types failed:%d\n", err);
3246		goto done;
3247	}
3248	err = btf_dedup_struct_types(d);
3249	if (err < 0) {
3250		pr_debug("btf_dedup_struct_types failed:%d\n", err);
3251		goto done;
3252	}
3253	err = btf_dedup_resolve_fwds(d);
3254	if (err < 0) {
3255		pr_debug("btf_dedup_resolve_fwds failed:%d\n", err);
3256		goto done;
3257	}
3258	err = btf_dedup_ref_types(d);
3259	if (err < 0) {
3260		pr_debug("btf_dedup_ref_types failed:%d\n", err);
3261		goto done;
3262	}
3263	err = btf_dedup_compact_types(d);
3264	if (err < 0) {
3265		pr_debug("btf_dedup_compact_types failed:%d\n", err);
3266		goto done;
3267	}
3268	err = btf_dedup_remap_types(d);
3269	if (err < 0) {
3270		pr_debug("btf_dedup_remap_types failed:%d\n", err);
3271		goto done;
3272	}
3273
3274done:
3275	btf_dedup_free(d);
3276	return libbpf_err(err);
3277}
3278
3279#define BTF_UNPROCESSED_ID ((__u32)-1)
3280#define BTF_IN_PROGRESS_ID ((__u32)-2)
3281
3282struct btf_dedup {
3283	/* .BTF section to be deduped in-place */
3284	struct btf *btf;
3285	/*
3286	 * Optional .BTF.ext section. When provided, any strings referenced
3287	 * from it will be taken into account when deduping strings
3288	 */
3289	struct btf_ext *btf_ext;
3290	/*
3291	 * This is a map from any type's signature hash to a list of possible
3292	 * canonical representative type candidates. Hash collisions are
3293	 * ignored, so even types of various kinds can share same list of
3294	 * candidates, which is fine because we rely on subsequent
3295	 * btf_xxx_equal() checks to authoritatively verify type equality.
3296	 */
3297	struct hashmap *dedup_table;
3298	/* Canonical types map */
3299	__u32 *map;
3300	/* Hypothetical mapping, used during type graph equivalence checks */
3301	__u32 *hypot_map;
3302	__u32 *hypot_list;
3303	size_t hypot_cnt;
3304	size_t hypot_cap;
3305	/* Whether hypothetical mapping, if successful, would need to adjust
3306	 * already canonicalized types (due to a new forward declaration to
3307	 * concrete type resolution). In such case, during split BTF dedup
3308	 * candidate type would still be considered as different, because base
3309	 * BTF is considered to be immutable.
3310	 */
3311	bool hypot_adjust_canon;
3312	/* Various option modifying behavior of algorithm */
3313	struct btf_dedup_opts opts;
3314	/* temporary strings deduplication state */
3315	struct strset *strs_set;
3316};
3317
3318static long hash_combine(long h, long value)
3319{
3320	return h * 31 + value;
3321}
3322
3323#define for_each_dedup_cand(d, node, hash) \
3324	hashmap__for_each_key_entry(d->dedup_table, node, hash)
3325
3326static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3327{
3328	return hashmap__append(d->dedup_table, hash, type_id);
3329}
3330
3331static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3332				   __u32 from_id, __u32 to_id)
3333{
3334	if (d->hypot_cnt == d->hypot_cap) {
3335		__u32 *new_list;
3336
3337		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3338		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3339		if (!new_list)
3340			return -ENOMEM;
3341		d->hypot_list = new_list;
3342	}
3343	d->hypot_list[d->hypot_cnt++] = from_id;
3344	d->hypot_map[from_id] = to_id;
3345	return 0;
3346}
3347
3348static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3349{
3350	int i;
3351
3352	for (i = 0; i < d->hypot_cnt; i++)
3353		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3354	d->hypot_cnt = 0;
3355	d->hypot_adjust_canon = false;
3356}
3357
3358static void btf_dedup_free(struct btf_dedup *d)
3359{
3360	hashmap__free(d->dedup_table);
3361	d->dedup_table = NULL;
3362
3363	free(d->map);
3364	d->map = NULL;
3365
3366	free(d->hypot_map);
3367	d->hypot_map = NULL;
3368
3369	free(d->hypot_list);
3370	d->hypot_list = NULL;
3371
3372	free(d);
3373}
3374
3375static size_t btf_dedup_identity_hash_fn(long key, void *ctx)
3376{
3377	return key;
3378}
3379
3380static size_t btf_dedup_collision_hash_fn(long key, void *ctx)
3381{
3382	return 0;
3383}
3384
3385static bool btf_dedup_equal_fn(long k1, long k2, void *ctx)
3386{
3387	return k1 == k2;
3388}
3389
3390static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3391{
3392	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3393	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3394	int i, err = 0, type_cnt;
3395
3396	if (!d)
3397		return ERR_PTR(-ENOMEM);
3398
3399	if (OPTS_GET(opts, force_collisions, false))
3400		hash_fn = btf_dedup_collision_hash_fn;
3401
3402	d->btf = btf;
3403	d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3404
3405	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3406	if (IS_ERR(d->dedup_table)) {
3407		err = PTR_ERR(d->dedup_table);
3408		d->dedup_table = NULL;
3409		goto done;
3410	}
3411
3412	type_cnt = btf__type_cnt(btf);
3413	d->map = malloc(sizeof(__u32) * type_cnt);
3414	if (!d->map) {
3415		err = -ENOMEM;
3416		goto done;
3417	}
3418	/* special BTF "void" type is made canonical immediately */
3419	d->map[0] = 0;
3420	for (i = 1; i < type_cnt; i++) {
3421		struct btf_type *t = btf_type_by_id(d->btf, i);
3422
3423		/* VAR and DATASEC are never deduped and are self-canonical */
3424		if (btf_is_var(t) || btf_is_datasec(t))
3425			d->map[i] = i;
3426		else
3427			d->map[i] = BTF_UNPROCESSED_ID;
3428	}
3429
3430	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3431	if (!d->hypot_map) {
3432		err = -ENOMEM;
3433		goto done;
3434	}
3435	for (i = 0; i < type_cnt; i++)
3436		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3437
3438done:
3439	if (err) {
3440		btf_dedup_free(d);
3441		return ERR_PTR(err);
3442	}
3443
3444	return d;
3445}
3446
3447/*
3448 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3449 * string and pass pointer to it to a provided callback `fn`.
3450 */
3451static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3452{
3453	int i, r;
3454
3455	for (i = 0; i < d->btf->nr_types; i++) {
 
3456		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
 
3457
3458		r = btf_type_visit_str_offs(t, fn, ctx);
3459		if (r)
3460			return r;
 
 
 
 
 
 
3461	}
3462
3463	if (!d->btf_ext)
3464		return 0;
3465
3466	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3467	if (r)
3468		return r;
3469
3470	return 0;
3471}
3472
3473static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3474{
3475	struct btf_dedup *d = ctx;
3476	__u32 str_off = *str_off_ptr;
3477	const char *s;
3478	int off, err;
3479
3480	/* don't touch empty string or string in main BTF */
3481	if (str_off == 0 || str_off < d->btf->start_str_off)
3482		return 0;
3483
3484	s = btf__str_by_offset(d->btf, str_off);
3485	if (d->btf->base_btf) {
3486		err = btf__find_str(d->btf->base_btf, s);
3487		if (err >= 0) {
3488			*str_off_ptr = err;
3489			return 0;
3490		}
3491		if (err != -ENOENT)
3492			return err;
3493	}
3494
3495	off = strset__add_str(d->strs_set, s);
3496	if (off < 0)
3497		return off;
3498
3499	*str_off_ptr = d->btf->start_str_off + off;
3500	return 0;
3501}
3502
3503/*
3504 * Dedup string and filter out those that are not referenced from either .BTF
3505 * or .BTF.ext (if provided) sections.
3506 *
3507 * This is done by building index of all strings in BTF's string section,
3508 * then iterating over all entities that can reference strings (e.g., type
3509 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3510 * strings as used. After that all used strings are deduped and compacted into
3511 * sequential blob of memory and new offsets are calculated. Then all the string
3512 * references are iterated again and rewritten using new offsets.
3513 */
3514static int btf_dedup_strings(struct btf_dedup *d)
3515{
3516	int err;
3517
3518	if (d->btf->strs_deduped)
3519		return 0;
3520
3521	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3522	if (IS_ERR(d->strs_set)) {
3523		err = PTR_ERR(d->strs_set);
3524		goto err_out;
3525	}
3526
3527	if (!d->btf->base_btf) {
3528		/* insert empty string; we won't be looking it up during strings
3529		 * dedup, but it's good to have it for generic BTF string lookups
3530		 */
3531		err = strset__add_str(d->strs_set, "");
3532		if (err < 0)
3533			goto err_out;
3534	}
3535
3536	/* remap string offsets */
3537	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3538	if (err)
3539		goto err_out;
3540
3541	/* replace BTF string data and hash with deduped ones */
3542	strset__free(d->btf->strs_set);
3543	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3544	d->btf->strs_set = d->strs_set;
3545	d->strs_set = NULL;
3546	d->btf->strs_deduped = true;
3547	return 0;
3548
3549err_out:
3550	strset__free(d->strs_set);
3551	d->strs_set = NULL;
3552
3553	return err;
3554}
3555
3556static long btf_hash_common(struct btf_type *t)
3557{
3558	long h;
3559
3560	h = hash_combine(0, t->name_off);
3561	h = hash_combine(h, t->info);
3562	h = hash_combine(h, t->size);
3563	return h;
3564}
3565
3566static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3567{
3568	return t1->name_off == t2->name_off &&
3569	       t1->info == t2->info &&
3570	       t1->size == t2->size;
3571}
3572
3573/* Calculate type signature hash of INT or TAG. */
3574static long btf_hash_int_decl_tag(struct btf_type *t)
3575{
3576	__u32 info = *(__u32 *)(t + 1);
3577	long h;
3578
3579	h = btf_hash_common(t);
3580	h = hash_combine(h, info);
3581	return h;
3582}
3583
3584/* Check structural equality of two INTs or TAGs. */
3585static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3586{
3587	__u32 info1, info2;
3588
3589	if (!btf_equal_common(t1, t2))
3590		return false;
3591	info1 = *(__u32 *)(t1 + 1);
3592	info2 = *(__u32 *)(t2 + 1);
3593	return info1 == info2;
3594}
3595
3596/* Calculate type signature hash of ENUM/ENUM64. */
3597static long btf_hash_enum(struct btf_type *t)
3598{
3599	long h;
3600
3601	/* don't hash vlen, enum members and size to support enum fwd resolving */
3602	h = hash_combine(0, t->name_off);
3603	return h;
3604}
3605
3606static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2)
3607{
3608	const struct btf_enum *m1, *m2;
3609	__u16 vlen;
3610	int i;
3611
3612	vlen = btf_vlen(t1);
3613	m1 = btf_enum(t1);
3614	m2 = btf_enum(t2);
3615	for (i = 0; i < vlen; i++) {
3616		if (m1->name_off != m2->name_off || m1->val != m2->val)
3617			return false;
3618		m1++;
3619		m2++;
3620	}
3621	return true;
3622}
3623
3624static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2)
3625{
3626	const struct btf_enum64 *m1, *m2;
3627	__u16 vlen;
3628	int i;
3629
3630	vlen = btf_vlen(t1);
3631	m1 = btf_enum64(t1);
3632	m2 = btf_enum64(t2);
3633	for (i = 0; i < vlen; i++) {
3634		if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3635		    m1->val_hi32 != m2->val_hi32)
3636			return false;
3637		m1++;
3638		m2++;
3639	}
3640	return true;
3641}
3642
3643/* Check structural equality of two ENUMs or ENUM64s. */
3644static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3645{
3646	if (!btf_equal_common(t1, t2))
3647		return false;
3648
3649	/* t1 & t2 kinds are identical because of btf_equal_common */
3650	if (btf_kind(t1) == BTF_KIND_ENUM)
3651		return btf_equal_enum_members(t1, t2);
3652	else
3653		return btf_equal_enum64_members(t1, t2);
3654}
3655
3656static inline bool btf_is_enum_fwd(struct btf_type *t)
3657{
3658	return btf_is_any_enum(t) && btf_vlen(t) == 0;
3659}
3660
3661static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3662{
3663	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3664		return btf_equal_enum(t1, t2);
3665	/* At this point either t1 or t2 or both are forward declarations, thus:
3666	 * - skip comparing vlen because it is zero for forward declarations;
3667	 * - skip comparing size to allow enum forward declarations
3668	 *   to be compatible with enum64 full declarations;
3669	 * - skip comparing kind for the same reason.
3670	 */
3671	return t1->name_off == t2->name_off &&
3672	       btf_is_any_enum(t1) && btf_is_any_enum(t2);
3673}
3674
3675/*
3676 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3677 * as referenced type IDs equivalence is established separately during type
3678 * graph equivalence check algorithm.
3679 */
3680static long btf_hash_struct(struct btf_type *t)
3681{
3682	const struct btf_member *member = btf_members(t);
3683	__u32 vlen = btf_vlen(t);
3684	long h = btf_hash_common(t);
3685	int i;
3686
3687	for (i = 0; i < vlen; i++) {
3688		h = hash_combine(h, member->name_off);
3689		h = hash_combine(h, member->offset);
3690		/* no hashing of referenced type ID, it can be unresolved yet */
3691		member++;
3692	}
3693	return h;
3694}
3695
3696/*
3697 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3698 * type IDs. This check is performed during type graph equivalence check and
3699 * referenced types equivalence is checked separately.
3700 */
3701static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3702{
3703	const struct btf_member *m1, *m2;
3704	__u16 vlen;
3705	int i;
3706
3707	if (!btf_equal_common(t1, t2))
3708		return false;
3709
3710	vlen = btf_vlen(t1);
3711	m1 = btf_members(t1);
3712	m2 = btf_members(t2);
3713	for (i = 0; i < vlen; i++) {
3714		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3715			return false;
3716		m1++;
3717		m2++;
3718	}
3719	return true;
3720}
3721
3722/*
3723 * Calculate type signature hash of ARRAY, including referenced type IDs,
3724 * under assumption that they were already resolved to canonical type IDs and
3725 * are not going to change.
3726 */
3727static long btf_hash_array(struct btf_type *t)
3728{
3729	const struct btf_array *info = btf_array(t);
3730	long h = btf_hash_common(t);
3731
3732	h = hash_combine(h, info->type);
3733	h = hash_combine(h, info->index_type);
3734	h = hash_combine(h, info->nelems);
3735	return h;
3736}
3737
3738/*
3739 * Check exact equality of two ARRAYs, taking into account referenced
3740 * type IDs, under assumption that they were already resolved to canonical
3741 * type IDs and are not going to change.
3742 * This function is called during reference types deduplication to compare
3743 * ARRAY to potential canonical representative.
3744 */
3745static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3746{
3747	const struct btf_array *info1, *info2;
3748
3749	if (!btf_equal_common(t1, t2))
3750		return false;
3751
3752	info1 = btf_array(t1);
3753	info2 = btf_array(t2);
3754	return info1->type == info2->type &&
3755	       info1->index_type == info2->index_type &&
3756	       info1->nelems == info2->nelems;
3757}
3758
3759/*
3760 * Check structural compatibility of two ARRAYs, ignoring referenced type
3761 * IDs. This check is performed during type graph equivalence check and
3762 * referenced types equivalence is checked separately.
3763 */
3764static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3765{
3766	if (!btf_equal_common(t1, t2))
3767		return false;
3768
3769	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3770}
3771
3772/*
3773 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3774 * under assumption that they were already resolved to canonical type IDs and
3775 * are not going to change.
3776 */
3777static long btf_hash_fnproto(struct btf_type *t)
3778{
3779	const struct btf_param *member = btf_params(t);
3780	__u16 vlen = btf_vlen(t);
3781	long h = btf_hash_common(t);
3782	int i;
3783
3784	for (i = 0; i < vlen; i++) {
3785		h = hash_combine(h, member->name_off);
3786		h = hash_combine(h, member->type);
3787		member++;
3788	}
3789	return h;
3790}
3791
3792/*
3793 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3794 * type IDs, under assumption that they were already resolved to canonical
3795 * type IDs and are not going to change.
3796 * This function is called during reference types deduplication to compare
3797 * FUNC_PROTO to potential canonical representative.
3798 */
3799static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3800{
3801	const struct btf_param *m1, *m2;
3802	__u16 vlen;
3803	int i;
3804
3805	if (!btf_equal_common(t1, t2))
3806		return false;
3807
3808	vlen = btf_vlen(t1);
3809	m1 = btf_params(t1);
3810	m2 = btf_params(t2);
3811	for (i = 0; i < vlen; i++) {
3812		if (m1->name_off != m2->name_off || m1->type != m2->type)
3813			return false;
3814		m1++;
3815		m2++;
3816	}
3817	return true;
3818}
3819
3820/*
3821 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3822 * IDs. This check is performed during type graph equivalence check and
3823 * referenced types equivalence is checked separately.
3824 */
3825static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3826{
3827	const struct btf_param *m1, *m2;
3828	__u16 vlen;
3829	int i;
3830
3831	/* skip return type ID */
3832	if (t1->name_off != t2->name_off || t1->info != t2->info)
3833		return false;
3834
3835	vlen = btf_vlen(t1);
3836	m1 = btf_params(t1);
3837	m2 = btf_params(t2);
3838	for (i = 0; i < vlen; i++) {
3839		if (m1->name_off != m2->name_off)
3840			return false;
3841		m1++;
3842		m2++;
3843	}
3844	return true;
3845}
3846
3847/* Prepare split BTF for deduplication by calculating hashes of base BTF's
3848 * types and initializing the rest of the state (canonical type mapping) for
3849 * the fixed base BTF part.
3850 */
3851static int btf_dedup_prep(struct btf_dedup *d)
3852{
3853	struct btf_type *t;
3854	int type_id;
3855	long h;
3856
3857	if (!d->btf->base_btf)
3858		return 0;
3859
3860	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3861		t = btf_type_by_id(d->btf, type_id);
3862
3863		/* all base BTF types are self-canonical by definition */
3864		d->map[type_id] = type_id;
3865
3866		switch (btf_kind(t)) {
3867		case BTF_KIND_VAR:
3868		case BTF_KIND_DATASEC:
3869			/* VAR and DATASEC are never hash/deduplicated */
3870			continue;
3871		case BTF_KIND_CONST:
3872		case BTF_KIND_VOLATILE:
3873		case BTF_KIND_RESTRICT:
3874		case BTF_KIND_PTR:
3875		case BTF_KIND_FWD:
3876		case BTF_KIND_TYPEDEF:
3877		case BTF_KIND_FUNC:
3878		case BTF_KIND_FLOAT:
3879		case BTF_KIND_TYPE_TAG:
3880			h = btf_hash_common(t);
3881			break;
3882		case BTF_KIND_INT:
3883		case BTF_KIND_DECL_TAG:
3884			h = btf_hash_int_decl_tag(t);
3885			break;
3886		case BTF_KIND_ENUM:
3887		case BTF_KIND_ENUM64:
3888			h = btf_hash_enum(t);
3889			break;
3890		case BTF_KIND_STRUCT:
3891		case BTF_KIND_UNION:
3892			h = btf_hash_struct(t);
3893			break;
3894		case BTF_KIND_ARRAY:
3895			h = btf_hash_array(t);
3896			break;
3897		case BTF_KIND_FUNC_PROTO:
3898			h = btf_hash_fnproto(t);
3899			break;
3900		default:
3901			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3902			return -EINVAL;
3903		}
3904		if (btf_dedup_table_add(d, h, type_id))
3905			return -ENOMEM;
3906	}
3907
3908	return 0;
3909}
3910
3911/*
3912 * Deduplicate primitive types, that can't reference other types, by calculating
3913 * their type signature hash and comparing them with any possible canonical
3914 * candidate. If no canonical candidate matches, type itself is marked as
3915 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3916 */
3917static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3918{
3919	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3920	struct hashmap_entry *hash_entry;
3921	struct btf_type *cand;
3922	/* if we don't find equivalent type, then we are canonical */
3923	__u32 new_id = type_id;
3924	__u32 cand_id;
3925	long h;
3926
3927	switch (btf_kind(t)) {
3928	case BTF_KIND_CONST:
3929	case BTF_KIND_VOLATILE:
3930	case BTF_KIND_RESTRICT:
3931	case BTF_KIND_PTR:
3932	case BTF_KIND_TYPEDEF:
3933	case BTF_KIND_ARRAY:
3934	case BTF_KIND_STRUCT:
3935	case BTF_KIND_UNION:
3936	case BTF_KIND_FUNC:
3937	case BTF_KIND_FUNC_PROTO:
3938	case BTF_KIND_VAR:
3939	case BTF_KIND_DATASEC:
3940	case BTF_KIND_DECL_TAG:
3941	case BTF_KIND_TYPE_TAG:
3942		return 0;
3943
3944	case BTF_KIND_INT:
3945		h = btf_hash_int_decl_tag(t);
3946		for_each_dedup_cand(d, hash_entry, h) {
3947			cand_id = hash_entry->value;
3948			cand = btf_type_by_id(d->btf, cand_id);
3949			if (btf_equal_int_tag(t, cand)) {
3950				new_id = cand_id;
3951				break;
3952			}
3953		}
3954		break;
3955
3956	case BTF_KIND_ENUM:
3957	case BTF_KIND_ENUM64:
3958		h = btf_hash_enum(t);
3959		for_each_dedup_cand(d, hash_entry, h) {
3960			cand_id = hash_entry->value;
3961			cand = btf_type_by_id(d->btf, cand_id);
3962			if (btf_equal_enum(t, cand)) {
3963				new_id = cand_id;
3964				break;
3965			}
3966			if (btf_compat_enum(t, cand)) {
3967				if (btf_is_enum_fwd(t)) {
3968					/* resolve fwd to full enum */
3969					new_id = cand_id;
3970					break;
3971				}
3972				/* resolve canonical enum fwd to full enum */
3973				d->map[cand_id] = type_id;
3974			}
3975		}
3976		break;
3977
3978	case BTF_KIND_FWD:
3979	case BTF_KIND_FLOAT:
3980		h = btf_hash_common(t);
3981		for_each_dedup_cand(d, hash_entry, h) {
3982			cand_id = hash_entry->value;
3983			cand = btf_type_by_id(d->btf, cand_id);
3984			if (btf_equal_common(t, cand)) {
3985				new_id = cand_id;
3986				break;
3987			}
3988		}
3989		break;
3990
3991	default:
3992		return -EINVAL;
3993	}
3994
3995	d->map[type_id] = new_id;
3996	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3997		return -ENOMEM;
3998
3999	return 0;
4000}
4001
4002static int btf_dedup_prim_types(struct btf_dedup *d)
4003{
4004	int i, err;
4005
4006	for (i = 0; i < d->btf->nr_types; i++) {
4007		err = btf_dedup_prim_type(d, d->btf->start_id + i);
4008		if (err)
4009			return err;
4010	}
4011	return 0;
4012}
4013
4014/*
4015 * Check whether type is already mapped into canonical one (could be to itself).
4016 */
4017static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
4018{
4019	return d->map[type_id] <= BTF_MAX_NR_TYPES;
4020}
4021
4022/*
4023 * Resolve type ID into its canonical type ID, if any; otherwise return original
4024 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
4025 * STRUCT/UNION link and resolve it into canonical type ID as well.
4026 */
4027static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
4028{
4029	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4030		type_id = d->map[type_id];
4031	return type_id;
4032}
4033
4034/*
4035 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
4036 * type ID.
4037 */
4038static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
4039{
4040	__u32 orig_type_id = type_id;
4041
4042	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4043		return type_id;
4044
4045	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4046		type_id = d->map[type_id];
4047
4048	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4049		return type_id;
4050
4051	return orig_type_id;
4052}
4053
4054
4055static inline __u16 btf_fwd_kind(struct btf_type *t)
4056{
4057	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
4058}
4059
4060/* Check if given two types are identical ARRAY definitions */
4061static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
4062{
4063	struct btf_type *t1, *t2;
4064
4065	t1 = btf_type_by_id(d->btf, id1);
4066	t2 = btf_type_by_id(d->btf, id2);
4067	if (!btf_is_array(t1) || !btf_is_array(t2))
4068		return false;
4069
4070	return btf_equal_array(t1, t2);
4071}
4072
4073/* Check if given two types are identical STRUCT/UNION definitions */
4074static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
4075{
4076	const struct btf_member *m1, *m2;
4077	struct btf_type *t1, *t2;
4078	int n, i;
4079
4080	t1 = btf_type_by_id(d->btf, id1);
4081	t2 = btf_type_by_id(d->btf, id2);
4082
4083	if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
4084		return false;
4085
4086	if (!btf_shallow_equal_struct(t1, t2))
4087		return false;
4088
4089	m1 = btf_members(t1);
4090	m2 = btf_members(t2);
4091	for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
4092		if (m1->type != m2->type &&
4093		    !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
4094		    !btf_dedup_identical_structs(d, m1->type, m2->type))
4095			return false;
4096	}
4097	return true;
4098}
4099
4100/*
4101 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
4102 * call it "candidate graph" in this description for brevity) to a type graph
4103 * formed by (potential) canonical struct/union ("canonical graph" for brevity
4104 * here, though keep in mind that not all types in canonical graph are
4105 * necessarily canonical representatives themselves, some of them might be
4106 * duplicates or its uniqueness might not have been established yet).
4107 * Returns:
4108 *  - >0, if type graphs are equivalent;
4109 *  -  0, if not equivalent;
4110 *  - <0, on error.
4111 *
4112 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
4113 * equivalence of BTF types at each step. If at any point BTF types in candidate
4114 * and canonical graphs are not compatible structurally, whole graphs are
4115 * incompatible. If types are structurally equivalent (i.e., all information
4116 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
4117 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
4118 * If a type references other types, then those referenced types are checked
4119 * for equivalence recursively.
4120 *
4121 * During DFS traversal, if we find that for current `canon_id` type we
4122 * already have some mapping in hypothetical map, we check for two possible
4123 * situations:
4124 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
4125 *     happen when type graphs have cycles. In this case we assume those two
4126 *     types are equivalent.
4127 *   - `canon_id` is mapped to different type. This is contradiction in our
4128 *     hypothetical mapping, because same graph in canonical graph corresponds
4129 *     to two different types in candidate graph, which for equivalent type
4130 *     graphs shouldn't happen. This condition terminates equivalence check
4131 *     with negative result.
4132 *
4133 * If type graphs traversal exhausts types to check and find no contradiction,
4134 * then type graphs are equivalent.
4135 *
4136 * When checking types for equivalence, there is one special case: FWD types.
4137 * If FWD type resolution is allowed and one of the types (either from canonical
4138 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
4139 * flag) and their names match, hypothetical mapping is updated to point from
4140 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
4141 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
4142 *
4143 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
4144 * if there are two exactly named (or anonymous) structs/unions that are
4145 * compatible structurally, one of which has FWD field, while other is concrete
4146 * STRUCT/UNION, but according to C sources they are different structs/unions
4147 * that are referencing different types with the same name. This is extremely
4148 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
4149 * this logic is causing problems.
4150 *
4151 * Doing FWD resolution means that both candidate and/or canonical graphs can
4152 * consists of portions of the graph that come from multiple compilation units.
4153 * This is due to the fact that types within single compilation unit are always
4154 * deduplicated and FWDs are already resolved, if referenced struct/union
4155 * definiton is available. So, if we had unresolved FWD and found corresponding
4156 * STRUCT/UNION, they will be from different compilation units. This
4157 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
4158 * type graph will likely have at least two different BTF types that describe
4159 * same type (e.g., most probably there will be two different BTF types for the
4160 * same 'int' primitive type) and could even have "overlapping" parts of type
4161 * graph that describe same subset of types.
4162 *
4163 * This in turn means that our assumption that each type in canonical graph
4164 * must correspond to exactly one type in candidate graph might not hold
4165 * anymore and will make it harder to detect contradictions using hypothetical
4166 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
4167 * resolution only in canonical graph. FWDs in candidate graphs are never
4168 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
4169 * that can occur:
4170 *   - Both types in canonical and candidate graphs are FWDs. If they are
4171 *     structurally equivalent, then they can either be both resolved to the
4172 *     same STRUCT/UNION or not resolved at all. In both cases they are
4173 *     equivalent and there is no need to resolve FWD on candidate side.
4174 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4175 *     so nothing to resolve as well, algorithm will check equivalence anyway.
4176 *   - Type in canonical graph is FWD, while type in candidate is concrete
4177 *     STRUCT/UNION. In this case candidate graph comes from single compilation
4178 *     unit, so there is exactly one BTF type for each unique C type. After
4179 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
4180 *     in canonical graph mapping to single BTF type in candidate graph, but
4181 *     because hypothetical mapping maps from canonical to candidate types, it's
4182 *     alright, and we still maintain the property of having single `canon_id`
4183 *     mapping to single `cand_id` (there could be two different `canon_id`
4184 *     mapped to the same `cand_id`, but it's not contradictory).
4185 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4186 *     graph is FWD. In this case we are just going to check compatibility of
4187 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4188 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4189 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4190 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4191 *     canonical graph.
4192 */
4193static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4194			      __u32 canon_id)
4195{
4196	struct btf_type *cand_type;
4197	struct btf_type *canon_type;
4198	__u32 hypot_type_id;
4199	__u16 cand_kind;
4200	__u16 canon_kind;
4201	int i, eq;
4202
4203	/* if both resolve to the same canonical, they must be equivalent */
4204	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4205		return 1;
4206
4207	canon_id = resolve_fwd_id(d, canon_id);
4208
4209	hypot_type_id = d->hypot_map[canon_id];
4210	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4211		if (hypot_type_id == cand_id)
4212			return 1;
4213		/* In some cases compiler will generate different DWARF types
4214		 * for *identical* array type definitions and use them for
4215		 * different fields within the *same* struct. This breaks type
4216		 * equivalence check, which makes an assumption that candidate
4217		 * types sub-graph has a consistent and deduped-by-compiler
4218		 * types within a single CU. So work around that by explicitly
4219		 * allowing identical array types here.
4220		 */
4221		if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4222			return 1;
4223		/* It turns out that similar situation can happen with
4224		 * struct/union sometimes, sigh... Handle the case where
4225		 * structs/unions are exactly the same, down to the referenced
4226		 * type IDs. Anything more complicated (e.g., if referenced
4227		 * types are different, but equivalent) is *way more*
4228		 * complicated and requires a many-to-many equivalence mapping.
4229		 */
4230		if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4231			return 1;
4232		return 0;
4233	}
4234
4235	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4236		return -ENOMEM;
4237
4238	cand_type = btf_type_by_id(d->btf, cand_id);
4239	canon_type = btf_type_by_id(d->btf, canon_id);
4240	cand_kind = btf_kind(cand_type);
4241	canon_kind = btf_kind(canon_type);
4242
4243	if (cand_type->name_off != canon_type->name_off)
4244		return 0;
4245
4246	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4247	if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4248	    && cand_kind != canon_kind) {
4249		__u16 real_kind;
4250		__u16 fwd_kind;
4251
4252		if (cand_kind == BTF_KIND_FWD) {
4253			real_kind = canon_kind;
4254			fwd_kind = btf_fwd_kind(cand_type);
4255		} else {
4256			real_kind = cand_kind;
4257			fwd_kind = btf_fwd_kind(canon_type);
4258			/* we'd need to resolve base FWD to STRUCT/UNION */
4259			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4260				d->hypot_adjust_canon = true;
4261		}
4262		return fwd_kind == real_kind;
4263	}
4264
4265	if (cand_kind != canon_kind)
4266		return 0;
4267
4268	switch (cand_kind) {
4269	case BTF_KIND_INT:
4270		return btf_equal_int_tag(cand_type, canon_type);
4271
4272	case BTF_KIND_ENUM:
4273	case BTF_KIND_ENUM64:
4274		return btf_compat_enum(cand_type, canon_type);
4275
4276	case BTF_KIND_FWD:
4277	case BTF_KIND_FLOAT:
4278		return btf_equal_common(cand_type, canon_type);
4279
4280	case BTF_KIND_CONST:
4281	case BTF_KIND_VOLATILE:
4282	case BTF_KIND_RESTRICT:
4283	case BTF_KIND_PTR:
4284	case BTF_KIND_TYPEDEF:
4285	case BTF_KIND_FUNC:
4286	case BTF_KIND_TYPE_TAG:
4287		if (cand_type->info != canon_type->info)
4288			return 0;
4289		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4290
4291	case BTF_KIND_ARRAY: {
4292		const struct btf_array *cand_arr, *canon_arr;
4293
4294		if (!btf_compat_array(cand_type, canon_type))
4295			return 0;
4296		cand_arr = btf_array(cand_type);
4297		canon_arr = btf_array(canon_type);
4298		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4299		if (eq <= 0)
4300			return eq;
4301		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4302	}
4303
4304	case BTF_KIND_STRUCT:
4305	case BTF_KIND_UNION: {
4306		const struct btf_member *cand_m, *canon_m;
4307		__u16 vlen;
4308
4309		if (!btf_shallow_equal_struct(cand_type, canon_type))
4310			return 0;
4311		vlen = btf_vlen(cand_type);
4312		cand_m = btf_members(cand_type);
4313		canon_m = btf_members(canon_type);
4314		for (i = 0; i < vlen; i++) {
4315			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4316			if (eq <= 0)
4317				return eq;
4318			cand_m++;
4319			canon_m++;
4320		}
4321
4322		return 1;
4323	}
4324
4325	case BTF_KIND_FUNC_PROTO: {
4326		const struct btf_param *cand_p, *canon_p;
4327		__u16 vlen;
4328
4329		if (!btf_compat_fnproto(cand_type, canon_type))
4330			return 0;
4331		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4332		if (eq <= 0)
4333			return eq;
4334		vlen = btf_vlen(cand_type);
4335		cand_p = btf_params(cand_type);
4336		canon_p = btf_params(canon_type);
4337		for (i = 0; i < vlen; i++) {
4338			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4339			if (eq <= 0)
4340				return eq;
4341			cand_p++;
4342			canon_p++;
4343		}
4344		return 1;
4345	}
4346
4347	default:
4348		return -EINVAL;
4349	}
4350	return 0;
4351}
4352
4353/*
4354 * Use hypothetical mapping, produced by successful type graph equivalence
4355 * check, to augment existing struct/union canonical mapping, where possible.
4356 *
4357 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4358 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4359 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4360 * we are recording the mapping anyway. As opposed to carefulness required
4361 * for struct/union correspondence mapping (described below), for FWD resolution
4362 * it's not important, as by the time that FWD type (reference type) will be
4363 * deduplicated all structs/unions will be deduped already anyway.
4364 *
4365 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4366 * not required for correctness. It needs to be done carefully to ensure that
4367 * struct/union from candidate's type graph is not mapped into corresponding
4368 * struct/union from canonical type graph that itself hasn't been resolved into
4369 * canonical representative. The only guarantee we have is that canonical
4370 * struct/union was determined as canonical and that won't change. But any
4371 * types referenced through that struct/union fields could have been not yet
4372 * resolved, so in case like that it's too early to establish any kind of
4373 * correspondence between structs/unions.
4374 *
4375 * No canonical correspondence is derived for primitive types (they are already
4376 * deduplicated completely already anyway) or reference types (they rely on
4377 * stability of struct/union canonical relationship for equivalence checks).
4378 */
4379static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4380{
4381	__u32 canon_type_id, targ_type_id;
4382	__u16 t_kind, c_kind;
4383	__u32 t_id, c_id;
4384	int i;
4385
4386	for (i = 0; i < d->hypot_cnt; i++) {
4387		canon_type_id = d->hypot_list[i];
4388		targ_type_id = d->hypot_map[canon_type_id];
4389		t_id = resolve_type_id(d, targ_type_id);
4390		c_id = resolve_type_id(d, canon_type_id);
4391		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4392		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4393		/*
4394		 * Resolve FWD into STRUCT/UNION.
4395		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4396		 * mapped to canonical representative (as opposed to
4397		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4398		 * eventually that struct is going to be mapped and all resolved
4399		 * FWDs will automatically resolve to correct canonical
4400		 * representative. This will happen before ref type deduping,
4401		 * which critically depends on stability of these mapping. This
4402		 * stability is not a requirement for STRUCT/UNION equivalence
4403		 * checks, though.
4404		 */
4405
4406		/* if it's the split BTF case, we still need to point base FWD
4407		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4408		 * will be resolved against base FWD. If we don't point base
4409		 * canonical FWD to the resolved STRUCT/UNION, then all the
4410		 * FWDs in split BTF won't be correctly resolved to a proper
4411		 * STRUCT/UNION.
4412		 */
4413		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4414			d->map[c_id] = t_id;
4415
4416		/* if graph equivalence determined that we'd need to adjust
4417		 * base canonical types, then we need to only point base FWDs
4418		 * to STRUCTs/UNIONs and do no more modifications. For all
4419		 * other purposes the type graphs were not equivalent.
4420		 */
4421		if (d->hypot_adjust_canon)
4422			continue;
4423
4424		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4425			d->map[t_id] = c_id;
4426
4427		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4428		    c_kind != BTF_KIND_FWD &&
4429		    is_type_mapped(d, c_id) &&
4430		    !is_type_mapped(d, t_id)) {
4431			/*
4432			 * as a perf optimization, we can map struct/union
4433			 * that's part of type graph we just verified for
4434			 * equivalence. We can do that for struct/union that has
4435			 * canonical representative only, though.
4436			 */
4437			d->map[t_id] = c_id;
4438		}
4439	}
4440}
4441
4442/*
4443 * Deduplicate struct/union types.
4444 *
4445 * For each struct/union type its type signature hash is calculated, taking
4446 * into account type's name, size, number, order and names of fields, but
4447 * ignoring type ID's referenced from fields, because they might not be deduped
4448 * completely until after reference types deduplication phase. This type hash
4449 * is used to iterate over all potential canonical types, sharing same hash.
4450 * For each canonical candidate we check whether type graphs that they form
4451 * (through referenced types in fields and so on) are equivalent using algorithm
4452 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4453 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4454 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4455 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4456 * potentially map other structs/unions to their canonical representatives,
4457 * if such relationship hasn't yet been established. This speeds up algorithm
4458 * by eliminating some of the duplicate work.
4459 *
4460 * If no matching canonical representative was found, struct/union is marked
4461 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4462 * for further look ups.
4463 */
4464static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4465{
4466	struct btf_type *cand_type, *t;
4467	struct hashmap_entry *hash_entry;
4468	/* if we don't find equivalent type, then we are canonical */
4469	__u32 new_id = type_id;
4470	__u16 kind;
4471	long h;
4472
4473	/* already deduped or is in process of deduping (loop detected) */
4474	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4475		return 0;
4476
4477	t = btf_type_by_id(d->btf, type_id);
4478	kind = btf_kind(t);
4479
4480	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4481		return 0;
4482
4483	h = btf_hash_struct(t);
4484	for_each_dedup_cand(d, hash_entry, h) {
4485		__u32 cand_id = hash_entry->value;
4486		int eq;
4487
4488		/*
4489		 * Even though btf_dedup_is_equiv() checks for
4490		 * btf_shallow_equal_struct() internally when checking two
4491		 * structs (unions) for equivalence, we need to guard here
4492		 * from picking matching FWD type as a dedup candidate.
4493		 * This can happen due to hash collision. In such case just
4494		 * relying on btf_dedup_is_equiv() would lead to potentially
4495		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4496		 * FWD and compatible STRUCT/UNION are considered equivalent.
4497		 */
4498		cand_type = btf_type_by_id(d->btf, cand_id);
4499		if (!btf_shallow_equal_struct(t, cand_type))
4500			continue;
4501
4502		btf_dedup_clear_hypot_map(d);
4503		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4504		if (eq < 0)
4505			return eq;
4506		if (!eq)
4507			continue;
4508		btf_dedup_merge_hypot_map(d);
4509		if (d->hypot_adjust_canon) /* not really equivalent */
4510			continue;
4511		new_id = cand_id;
4512		break;
4513	}
4514
4515	d->map[type_id] = new_id;
4516	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4517		return -ENOMEM;
4518
4519	return 0;
4520}
4521
4522static int btf_dedup_struct_types(struct btf_dedup *d)
4523{
4524	int i, err;
4525
4526	for (i = 0; i < d->btf->nr_types; i++) {
4527		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4528		if (err)
4529			return err;
4530	}
4531	return 0;
4532}
4533
4534/*
4535 * Deduplicate reference type.
4536 *
4537 * Once all primitive and struct/union types got deduplicated, we can easily
4538 * deduplicate all other (reference) BTF types. This is done in two steps:
4539 *
4540 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4541 * resolution can be done either immediately for primitive or struct/union types
4542 * (because they were deduped in previous two phases) or recursively for
4543 * reference types. Recursion will always terminate at either primitive or
4544 * struct/union type, at which point we can "unwind" chain of reference types
4545 * one by one. There is no danger of encountering cycles because in C type
4546 * system the only way to form type cycle is through struct/union, so any chain
4547 * of reference types, even those taking part in a type cycle, will inevitably
4548 * reach struct/union at some point.
4549 *
4550 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4551 * becomes "stable", in the sense that no further deduplication will cause
4552 * any changes to it. With that, it's now possible to calculate type's signature
4553 * hash (this time taking into account referenced type IDs) and loop over all
4554 * potential canonical representatives. If no match was found, current type
4555 * will become canonical representative of itself and will be added into
4556 * btf_dedup->dedup_table as another possible canonical representative.
4557 */
4558static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4559{
4560	struct hashmap_entry *hash_entry;
4561	__u32 new_id = type_id, cand_id;
4562	struct btf_type *t, *cand;
4563	/* if we don't find equivalent type, then we are representative type */
4564	int ref_type_id;
4565	long h;
4566
4567	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4568		return -ELOOP;
4569	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4570		return resolve_type_id(d, type_id);
4571
4572	t = btf_type_by_id(d->btf, type_id);
4573	d->map[type_id] = BTF_IN_PROGRESS_ID;
4574
4575	switch (btf_kind(t)) {
4576	case BTF_KIND_CONST:
4577	case BTF_KIND_VOLATILE:
4578	case BTF_KIND_RESTRICT:
4579	case BTF_KIND_PTR:
4580	case BTF_KIND_TYPEDEF:
4581	case BTF_KIND_FUNC:
4582	case BTF_KIND_TYPE_TAG:
4583		ref_type_id = btf_dedup_ref_type(d, t->type);
4584		if (ref_type_id < 0)
4585			return ref_type_id;
4586		t->type = ref_type_id;
4587
4588		h = btf_hash_common(t);
4589		for_each_dedup_cand(d, hash_entry, h) {
4590			cand_id = hash_entry->value;
4591			cand = btf_type_by_id(d->btf, cand_id);
4592			if (btf_equal_common(t, cand)) {
4593				new_id = cand_id;
4594				break;
4595			}
4596		}
4597		break;
4598
4599	case BTF_KIND_DECL_TAG:
4600		ref_type_id = btf_dedup_ref_type(d, t->type);
4601		if (ref_type_id < 0)
4602			return ref_type_id;
4603		t->type = ref_type_id;
4604
4605		h = btf_hash_int_decl_tag(t);
4606		for_each_dedup_cand(d, hash_entry, h) {
4607			cand_id = hash_entry->value;
4608			cand = btf_type_by_id(d->btf, cand_id);
4609			if (btf_equal_int_tag(t, cand)) {
4610				new_id = cand_id;
4611				break;
4612			}
4613		}
4614		break;
4615
4616	case BTF_KIND_ARRAY: {
4617		struct btf_array *info = btf_array(t);
4618
4619		ref_type_id = btf_dedup_ref_type(d, info->type);
4620		if (ref_type_id < 0)
4621			return ref_type_id;
4622		info->type = ref_type_id;
4623
4624		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4625		if (ref_type_id < 0)
4626			return ref_type_id;
4627		info->index_type = ref_type_id;
4628
4629		h = btf_hash_array(t);
4630		for_each_dedup_cand(d, hash_entry, h) {
4631			cand_id = hash_entry->value;
4632			cand = btf_type_by_id(d->btf, cand_id);
4633			if (btf_equal_array(t, cand)) {
4634				new_id = cand_id;
4635				break;
4636			}
4637		}
4638		break;
4639	}
4640
4641	case BTF_KIND_FUNC_PROTO: {
4642		struct btf_param *param;
4643		__u16 vlen;
4644		int i;
4645
4646		ref_type_id = btf_dedup_ref_type(d, t->type);
4647		if (ref_type_id < 0)
4648			return ref_type_id;
4649		t->type = ref_type_id;
4650
4651		vlen = btf_vlen(t);
4652		param = btf_params(t);
4653		for (i = 0; i < vlen; i++) {
4654			ref_type_id = btf_dedup_ref_type(d, param->type);
4655			if (ref_type_id < 0)
4656				return ref_type_id;
4657			param->type = ref_type_id;
4658			param++;
4659		}
4660
4661		h = btf_hash_fnproto(t);
4662		for_each_dedup_cand(d, hash_entry, h) {
4663			cand_id = hash_entry->value;
4664			cand = btf_type_by_id(d->btf, cand_id);
4665			if (btf_equal_fnproto(t, cand)) {
4666				new_id = cand_id;
4667				break;
4668			}
4669		}
4670		break;
4671	}
4672
4673	default:
4674		return -EINVAL;
4675	}
4676
4677	d->map[type_id] = new_id;
4678	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4679		return -ENOMEM;
4680
4681	return new_id;
4682}
4683
4684static int btf_dedup_ref_types(struct btf_dedup *d)
4685{
4686	int i, err;
4687
4688	for (i = 0; i < d->btf->nr_types; i++) {
4689		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4690		if (err < 0)
4691			return err;
4692	}
4693	/* we won't need d->dedup_table anymore */
4694	hashmap__free(d->dedup_table);
4695	d->dedup_table = NULL;
4696	return 0;
4697}
4698
4699/*
4700 * Collect a map from type names to type ids for all canonical structs
4701 * and unions. If the same name is shared by several canonical types
4702 * use a special value 0 to indicate this fact.
4703 */
4704static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map)
4705{
4706	__u32 nr_types = btf__type_cnt(d->btf);
4707	struct btf_type *t;
4708	__u32 type_id;
4709	__u16 kind;
4710	int err;
4711
4712	/*
4713	 * Iterate over base and split module ids in order to get all
4714	 * available structs in the map.
4715	 */
4716	for (type_id = 1; type_id < nr_types; ++type_id) {
4717		t = btf_type_by_id(d->btf, type_id);
4718		kind = btf_kind(t);
4719
4720		if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4721			continue;
4722
4723		/* Skip non-canonical types */
4724		if (type_id != d->map[type_id])
4725			continue;
4726
4727		err = hashmap__add(names_map, t->name_off, type_id);
4728		if (err == -EEXIST)
4729			err = hashmap__set(names_map, t->name_off, 0, NULL, NULL);
4730
4731		if (err)
4732			return err;
4733	}
4734
4735	return 0;
4736}
4737
4738static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id)
4739{
4740	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4741	enum btf_fwd_kind fwd_kind = btf_kflag(t);
4742	__u16 cand_kind, kind = btf_kind(t);
4743	struct btf_type *cand_t;
4744	uintptr_t cand_id;
4745
4746	if (kind != BTF_KIND_FWD)
4747		return 0;
4748
4749	/* Skip if this FWD already has a mapping */
4750	if (type_id != d->map[type_id])
4751		return 0;
4752
4753	if (!hashmap__find(names_map, t->name_off, &cand_id))
4754		return 0;
4755
4756	/* Zero is a special value indicating that name is not unique */
4757	if (!cand_id)
4758		return 0;
4759
4760	cand_t = btf_type_by_id(d->btf, cand_id);
4761	cand_kind = btf_kind(cand_t);
4762	if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) ||
4763	    (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION))
4764		return 0;
4765
4766	d->map[type_id] = cand_id;
4767
4768	return 0;
4769}
4770
4771/*
4772 * Resolve unambiguous forward declarations.
4773 *
4774 * The lion's share of all FWD declarations is resolved during
4775 * `btf_dedup_struct_types` phase when different type graphs are
4776 * compared against each other. However, if in some compilation unit a
4777 * FWD declaration is not a part of a type graph compared against
4778 * another type graph that declaration's canonical type would not be
4779 * changed. Example:
4780 *
4781 * CU #1:
4782 *
4783 * struct foo;
4784 * struct foo *some_global;
4785 *
4786 * CU #2:
4787 *
4788 * struct foo { int u; };
4789 * struct foo *another_global;
4790 *
4791 * After `btf_dedup_struct_types` the BTF looks as follows:
4792 *
4793 * [1] STRUCT 'foo' size=4 vlen=1 ...
4794 * [2] INT 'int' size=4 ...
4795 * [3] PTR '(anon)' type_id=1
4796 * [4] FWD 'foo' fwd_kind=struct
4797 * [5] PTR '(anon)' type_id=4
4798 *
4799 * This pass assumes that such FWD declarations should be mapped to
4800 * structs or unions with identical name in case if the name is not
4801 * ambiguous.
4802 */
4803static int btf_dedup_resolve_fwds(struct btf_dedup *d)
4804{
4805	int i, err;
4806	struct hashmap *names_map;
4807
4808	names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
4809	if (IS_ERR(names_map))
4810		return PTR_ERR(names_map);
4811
4812	err = btf_dedup_fill_unique_names_map(d, names_map);
4813	if (err < 0)
4814		goto exit;
4815
4816	for (i = 0; i < d->btf->nr_types; i++) {
4817		err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i);
4818		if (err < 0)
4819			break;
4820	}
4821
4822exit:
4823	hashmap__free(names_map);
4824	return err;
4825}
4826
4827/*
4828 * Compact types.
4829 *
4830 * After we established for each type its corresponding canonical representative
4831 * type, we now can eliminate types that are not canonical and leave only
4832 * canonical ones layed out sequentially in memory by copying them over
4833 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4834 * a map from original type ID to a new compacted type ID, which will be used
4835 * during next phase to "fix up" type IDs, referenced from struct/union and
4836 * reference types.
4837 */
4838static int btf_dedup_compact_types(struct btf_dedup *d)
4839{
4840	__u32 *new_offs;
4841	__u32 next_type_id = d->btf->start_id;
4842	const struct btf_type *t;
4843	void *p;
4844	int i, id, len;
4845
4846	/* we are going to reuse hypot_map to store compaction remapping */
4847	d->hypot_map[0] = 0;
4848	/* base BTF types are not renumbered */
4849	for (id = 1; id < d->btf->start_id; id++)
4850		d->hypot_map[id] = id;
4851	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4852		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4853
4854	p = d->btf->types_data;
4855
4856	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4857		if (d->map[id] != id)
4858			continue;
4859
4860		t = btf__type_by_id(d->btf, id);
4861		len = btf_type_size(t);
4862		if (len < 0)
4863			return len;
4864
4865		memmove(p, t, len);
4866		d->hypot_map[id] = next_type_id;
4867		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4868		p += len;
4869		next_type_id++;
4870	}
4871
4872	/* shrink struct btf's internal types index and update btf_header */
4873	d->btf->nr_types = next_type_id - d->btf->start_id;
4874	d->btf->type_offs_cap = d->btf->nr_types;
4875	d->btf->hdr->type_len = p - d->btf->types_data;
4876	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4877				       sizeof(*new_offs));
4878	if (d->btf->type_offs_cap && !new_offs)
4879		return -ENOMEM;
4880	d->btf->type_offs = new_offs;
4881	d->btf->hdr->str_off = d->btf->hdr->type_len;
4882	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4883	return 0;
4884}
4885
4886/*
4887 * Figure out final (deduplicated and compacted) type ID for provided original
4888 * `type_id` by first resolving it into corresponding canonical type ID and
4889 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4890 * which is populated during compaction phase.
4891 */
4892static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4893{
4894	struct btf_dedup *d = ctx;
4895	__u32 resolved_type_id, new_type_id;
4896
4897	resolved_type_id = resolve_type_id(d, *type_id);
4898	new_type_id = d->hypot_map[resolved_type_id];
4899	if (new_type_id > BTF_MAX_NR_TYPES)
4900		return -EINVAL;
4901
4902	*type_id = new_type_id;
4903	return 0;
4904}
4905
4906/*
4907 * Remap referenced type IDs into deduped type IDs.
4908 *
4909 * After BTF types are deduplicated and compacted, their final type IDs may
4910 * differ from original ones. The map from original to a corresponding
4911 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4912 * compaction phase. During remapping phase we are rewriting all type IDs
4913 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4914 * their final deduped type IDs.
4915 */
4916static int btf_dedup_remap_types(struct btf_dedup *d)
4917{
4918	int i, r;
4919
4920	for (i = 0; i < d->btf->nr_types; i++) {
4921		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
 
 
4922
4923		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4924		if (r)
4925			return r;
 
 
 
 
 
 
 
 
 
 
 
4926	}
4927
4928	if (!d->btf_ext)
4929		return 0;
4930
4931	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4932	if (r)
4933		return r;
4934
4935	return 0;
4936}
4937
4938/*
4939 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4940 * data out of it to use for target BTF.
4941 */
4942struct btf *btf__load_vmlinux_btf(void)
4943{
4944	const char *sysfs_btf_path = "/sys/kernel/btf/vmlinux";
4945	/* fall back locations, trying to find vmlinux on disk */
4946	const char *locations[] = {
4947		"/boot/vmlinux-%1$s",
4948		"/lib/modules/%1$s/vmlinux-%1$s",
4949		"/lib/modules/%1$s/build/vmlinux",
4950		"/usr/lib/modules/%1$s/kernel/vmlinux",
4951		"/usr/lib/debug/boot/vmlinux-%1$s",
4952		"/usr/lib/debug/boot/vmlinux-%1$s.debug",
4953		"/usr/lib/debug/lib/modules/%1$s/vmlinux",
4954	};
4955	char path[PATH_MAX + 1];
4956	struct utsname buf;
4957	struct btf *btf;
4958	int i, err;
4959
4960	/* is canonical sysfs location accessible? */
4961	if (faccessat(AT_FDCWD, sysfs_btf_path, F_OK, AT_EACCESS) < 0) {
4962		pr_warn("kernel BTF is missing at '%s', was CONFIG_DEBUG_INFO_BTF enabled?\n",
4963			sysfs_btf_path);
4964	} else {
4965		btf = btf__parse(sysfs_btf_path, NULL);
4966		if (!btf) {
4967			err = -errno;
4968			pr_warn("failed to read kernel BTF from '%s': %d\n", sysfs_btf_path, err);
 
4969			return libbpf_err_ptr(err);
4970		}
4971		pr_debug("loaded kernel BTF from '%s'\n", sysfs_btf_path);
4972		return btf;
4973	}
4974
4975	/* try fallback locations */
4976	uname(&buf);
4977	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4978		snprintf(path, PATH_MAX, locations[i], buf.release);
4979
4980		if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
4981			continue;
4982
4983		btf = btf__parse(path, NULL);
4984		err = libbpf_get_error(btf);
4985		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4986		if (err)
4987			continue;
4988
4989		return btf;
4990	}
4991
4992	pr_warn("failed to find valid kernel BTF\n");
4993	return libbpf_err_ptr(-ESRCH);
4994}
4995
4996struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4997
4998struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4999{
5000	char path[80];
5001
5002	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
5003	return btf__parse_split(path, vmlinux_btf);
5004}
5005
5006int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
5007{
5008	int i, n, err;
5009
5010	switch (btf_kind(t)) {
5011	case BTF_KIND_INT:
5012	case BTF_KIND_FLOAT:
5013	case BTF_KIND_ENUM:
5014	case BTF_KIND_ENUM64:
5015		return 0;
5016
5017	case BTF_KIND_FWD:
5018	case BTF_KIND_CONST:
5019	case BTF_KIND_VOLATILE:
5020	case BTF_KIND_RESTRICT:
5021	case BTF_KIND_PTR:
5022	case BTF_KIND_TYPEDEF:
5023	case BTF_KIND_FUNC:
5024	case BTF_KIND_VAR:
5025	case BTF_KIND_DECL_TAG:
5026	case BTF_KIND_TYPE_TAG:
5027		return visit(&t->type, ctx);
5028
5029	case BTF_KIND_ARRAY: {
5030		struct btf_array *a = btf_array(t);
5031
5032		err = visit(&a->type, ctx);
5033		err = err ?: visit(&a->index_type, ctx);
5034		return err;
5035	}
5036
5037	case BTF_KIND_STRUCT:
5038	case BTF_KIND_UNION: {
5039		struct btf_member *m = btf_members(t);
5040
5041		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5042			err = visit(&m->type, ctx);
5043			if (err)
5044				return err;
5045		}
5046		return 0;
5047	}
5048
5049	case BTF_KIND_FUNC_PROTO: {
5050		struct btf_param *m = btf_params(t);
5051
5052		err = visit(&t->type, ctx);
5053		if (err)
5054			return err;
5055		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5056			err = visit(&m->type, ctx);
5057			if (err)
5058				return err;
5059		}
5060		return 0;
5061	}
5062
5063	case BTF_KIND_DATASEC: {
5064		struct btf_var_secinfo *m = btf_var_secinfos(t);
5065
5066		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5067			err = visit(&m->type, ctx);
5068			if (err)
5069				return err;
5070		}
5071		return 0;
5072	}
5073
5074	default:
5075		return -EINVAL;
5076	}
5077}
5078
5079int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
5080{
5081	int i, n, err;
5082
5083	err = visit(&t->name_off, ctx);
5084	if (err)
5085		return err;
5086
5087	switch (btf_kind(t)) {
5088	case BTF_KIND_STRUCT:
5089	case BTF_KIND_UNION: {
5090		struct btf_member *m = btf_members(t);
5091
5092		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5093			err = visit(&m->name_off, ctx);
5094			if (err)
5095				return err;
5096		}
5097		break;
5098	}
5099	case BTF_KIND_ENUM: {
5100		struct btf_enum *m = btf_enum(t);
5101
5102		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5103			err = visit(&m->name_off, ctx);
5104			if (err)
5105				return err;
5106		}
5107		break;
5108	}
5109	case BTF_KIND_ENUM64: {
5110		struct btf_enum64 *m = btf_enum64(t);
5111
5112		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5113			err = visit(&m->name_off, ctx);
5114			if (err)
5115				return err;
5116		}
5117		break;
5118	}
5119	case BTF_KIND_FUNC_PROTO: {
5120		struct btf_param *m = btf_params(t);
5121
5122		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5123			err = visit(&m->name_off, ctx);
5124			if (err)
5125				return err;
5126		}
5127		break;
5128	}
5129	default:
5130		break;
5131	}
5132
5133	return 0;
5134}
5135
5136int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
5137{
5138	const struct btf_ext_info *seg;
5139	struct btf_ext_info_sec *sec;
5140	int i, err;
5141
5142	seg = &btf_ext->func_info;
5143	for_each_btf_ext_sec(seg, sec) {
5144		struct bpf_func_info_min *rec;
5145
5146		for_each_btf_ext_rec(seg, sec, i, rec) {
5147			err = visit(&rec->type_id, ctx);
5148			if (err < 0)
5149				return err;
5150		}
5151	}
5152
5153	seg = &btf_ext->core_relo_info;
5154	for_each_btf_ext_sec(seg, sec) {
5155		struct bpf_core_relo *rec;
5156
5157		for_each_btf_ext_rec(seg, sec, i, rec) {
5158			err = visit(&rec->type_id, ctx);
5159			if (err < 0)
5160				return err;
5161		}
5162	}
5163
5164	return 0;
5165}
5166
5167int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
5168{
5169	const struct btf_ext_info *seg;
5170	struct btf_ext_info_sec *sec;
5171	int i, err;
5172
5173	seg = &btf_ext->func_info;
5174	for_each_btf_ext_sec(seg, sec) {
5175		err = visit(&sec->sec_name_off, ctx);
5176		if (err)
5177			return err;
5178	}
5179
5180	seg = &btf_ext->line_info;
5181	for_each_btf_ext_sec(seg, sec) {
5182		struct bpf_line_info_min *rec;
5183
5184		err = visit(&sec->sec_name_off, ctx);
5185		if (err)
5186			return err;
5187
5188		for_each_btf_ext_rec(seg, sec, i, rec) {
5189			err = visit(&rec->file_name_off, ctx);
5190			if (err)
5191				return err;
5192			err = visit(&rec->line_off, ctx);
5193			if (err)
5194				return err;
5195		}
5196	}
5197
5198	seg = &btf_ext->core_relo_info;
5199	for_each_btf_ext_sec(seg, sec) {
5200		struct bpf_core_relo *rec;
5201
5202		err = visit(&sec->sec_name_off, ctx);
5203		if (err)
5204			return err;
5205
5206		for_each_btf_ext_rec(seg, sec, i, rec) {
5207			err = visit(&rec->access_str_off, ctx);
5208			if (err)
5209				return err;
5210		}
5211	}
5212
5213	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5214}
v6.13.7
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <byteswap.h>
   5#include <endian.h>
   6#include <stdio.h>
   7#include <stdlib.h>
   8#include <string.h>
   9#include <fcntl.h>
  10#include <unistd.h>
  11#include <errno.h>
  12#include <sys/utsname.h>
  13#include <sys/param.h>
  14#include <sys/stat.h>
  15#include <linux/kernel.h>
  16#include <linux/err.h>
  17#include <linux/btf.h>
  18#include <gelf.h>
  19#include "btf.h"
  20#include "bpf.h"
  21#include "libbpf.h"
  22#include "libbpf_internal.h"
  23#include "hashmap.h"
  24#include "strset.h"
  25#include "str_error.h"
  26
  27#define BTF_MAX_NR_TYPES 0x7fffffffU
  28#define BTF_MAX_STR_OFFSET 0x7fffffffU
  29
  30static struct btf_type btf_void;
  31
  32struct btf {
  33	/* raw BTF data in native endianness */
  34	void *raw_data;
  35	/* raw BTF data in non-native endianness */
  36	void *raw_data_swapped;
  37	__u32 raw_size;
  38	/* whether target endianness differs from the native one */
  39	bool swapped_endian;
  40
  41	/*
  42	 * When BTF is loaded from an ELF or raw memory it is stored
  43	 * in a contiguous memory block. The hdr, type_data, and, strs_data
  44	 * point inside that memory region to their respective parts of BTF
  45	 * representation:
  46	 *
  47	 * +--------------------------------+
  48	 * |  Header  |  Types  |  Strings  |
  49	 * +--------------------------------+
  50	 * ^          ^         ^
  51	 * |          |         |
  52	 * hdr        |         |
  53	 * types_data-+         |
  54	 * strs_data------------+
  55	 *
  56	 * If BTF data is later modified, e.g., due to types added or
  57	 * removed, BTF deduplication performed, etc, this contiguous
  58	 * representation is broken up into three independently allocated
  59	 * memory regions to be able to modify them independently.
  60	 * raw_data is nulled out at that point, but can be later allocated
  61	 * and cached again if user calls btf__raw_data(), at which point
  62	 * raw_data will contain a contiguous copy of header, types, and
  63	 * strings:
  64	 *
  65	 * +----------+  +---------+  +-----------+
  66	 * |  Header  |  |  Types  |  |  Strings  |
  67	 * +----------+  +---------+  +-----------+
  68	 * ^             ^            ^
  69	 * |             |            |
  70	 * hdr           |            |
  71	 * types_data----+            |
  72	 * strset__data(strs_set)-----+
  73	 *
  74	 *               +----------+---------+-----------+
  75	 *               |  Header  |  Types  |  Strings  |
  76	 * raw_data----->+----------+---------+-----------+
  77	 */
  78	struct btf_header *hdr;
  79
  80	void *types_data;
  81	size_t types_data_cap; /* used size stored in hdr->type_len */
  82
  83	/* type ID to `struct btf_type *` lookup index
  84	 * type_offs[0] corresponds to the first non-VOID type:
  85	 *   - for base BTF it's type [1];
  86	 *   - for split BTF it's the first non-base BTF type.
  87	 */
  88	__u32 *type_offs;
  89	size_t type_offs_cap;
  90	/* number of types in this BTF instance:
  91	 *   - doesn't include special [0] void type;
  92	 *   - for split BTF counts number of types added on top of base BTF.
  93	 */
  94	__u32 nr_types;
  95	/* if not NULL, points to the base BTF on top of which the current
  96	 * split BTF is based
  97	 */
  98	struct btf *base_btf;
  99	/* BTF type ID of the first type in this BTF instance:
 100	 *   - for base BTF it's equal to 1;
 101	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
 102	 */
 103	int start_id;
 104	/* logical string offset of this BTF instance:
 105	 *   - for base BTF it's equal to 0;
 106	 *   - for split BTF it's equal to total size of base BTF's string section size.
 107	 */
 108	int start_str_off;
 109
 110	/* only one of strs_data or strs_set can be non-NULL, depending on
 111	 * whether BTF is in a modifiable state (strs_set is used) or not
 112	 * (strs_data points inside raw_data)
 113	 */
 114	void *strs_data;
 115	/* a set of unique strings */
 116	struct strset *strs_set;
 117	/* whether strings are already deduplicated */
 118	bool strs_deduped;
 119
 120	/* whether base_btf should be freed in btf_free for this instance */
 121	bool owns_base;
 122
 123	/* BTF object FD, if loaded into kernel */
 124	int fd;
 125
 126	/* Pointer size (in bytes) for a target architecture of this BTF */
 127	int ptr_sz;
 128};
 129
 130static inline __u64 ptr_to_u64(const void *ptr)
 131{
 132	return (__u64) (unsigned long) ptr;
 133}
 134
 135/* Ensure given dynamically allocated memory region pointed to by *data* with
 136 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
 137 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
 138 * are already used. At most *max_cnt* elements can be ever allocated.
 139 * If necessary, memory is reallocated and all existing data is copied over,
 140 * new pointer to the memory region is stored at *data, new memory region
 141 * capacity (in number of elements) is stored in *cap.
 142 * On success, memory pointer to the beginning of unused memory is returned.
 143 * On error, NULL is returned.
 144 */
 145void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
 146		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
 147{
 148	size_t new_cnt;
 149	void *new_data;
 150
 151	if (cur_cnt + add_cnt <= *cap_cnt)
 152		return *data + cur_cnt * elem_sz;
 153
 154	/* requested more than the set limit */
 155	if (cur_cnt + add_cnt > max_cnt)
 156		return NULL;
 157
 158	new_cnt = *cap_cnt;
 159	new_cnt += new_cnt / 4;		  /* expand by 25% */
 160	if (new_cnt < 16)		  /* but at least 16 elements */
 161		new_cnt = 16;
 162	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
 163		new_cnt = max_cnt;
 164	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
 165		new_cnt = cur_cnt + add_cnt;
 166
 167	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
 168	if (!new_data)
 169		return NULL;
 170
 171	/* zero out newly allocated portion of memory */
 172	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
 173
 174	*data = new_data;
 175	*cap_cnt = new_cnt;
 176	return new_data + cur_cnt * elem_sz;
 177}
 178
 179/* Ensure given dynamically allocated memory region has enough allocated space
 180 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
 181 */
 182int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
 183{
 184	void *p;
 185
 186	if (need_cnt <= *cap_cnt)
 187		return 0;
 188
 189	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
 190	if (!p)
 191		return -ENOMEM;
 192
 193	return 0;
 194}
 195
 196static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
 197{
 198	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
 199			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
 200}
 201
 202static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
 203{
 204	__u32 *p;
 205
 206	p = btf_add_type_offs_mem(btf, 1);
 207	if (!p)
 208		return -ENOMEM;
 209
 210	*p = type_off;
 211	return 0;
 212}
 213
 214static void btf_bswap_hdr(struct btf_header *h)
 215{
 216	h->magic = bswap_16(h->magic);
 217	h->hdr_len = bswap_32(h->hdr_len);
 218	h->type_off = bswap_32(h->type_off);
 219	h->type_len = bswap_32(h->type_len);
 220	h->str_off = bswap_32(h->str_off);
 221	h->str_len = bswap_32(h->str_len);
 222}
 223
 224static int btf_parse_hdr(struct btf *btf)
 225{
 226	struct btf_header *hdr = btf->hdr;
 227	__u32 meta_left;
 228
 229	if (btf->raw_size < sizeof(struct btf_header)) {
 230		pr_debug("BTF header not found\n");
 231		return -EINVAL;
 232	}
 233
 234	if (hdr->magic == bswap_16(BTF_MAGIC)) {
 235		btf->swapped_endian = true;
 236		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
 237			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
 238				bswap_32(hdr->hdr_len));
 239			return -ENOTSUP;
 240		}
 241		btf_bswap_hdr(hdr);
 242	} else if (hdr->magic != BTF_MAGIC) {
 243		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
 244		return -EINVAL;
 245	}
 246
 247	if (btf->raw_size < hdr->hdr_len) {
 248		pr_debug("BTF header len %u larger than data size %u\n",
 249			 hdr->hdr_len, btf->raw_size);
 250		return -EINVAL;
 251	}
 252
 253	meta_left = btf->raw_size - hdr->hdr_len;
 254	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
 255		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
 256		return -EINVAL;
 257	}
 258
 259	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
 260		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
 261			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
 262		return -EINVAL;
 263	}
 264
 265	if (hdr->type_off % 4) {
 266		pr_debug("BTF type section is not aligned to 4 bytes\n");
 267		return -EINVAL;
 268	}
 269
 270	return 0;
 271}
 272
 273static int btf_parse_str_sec(struct btf *btf)
 274{
 275	const struct btf_header *hdr = btf->hdr;
 276	const char *start = btf->strs_data;
 277	const char *end = start + btf->hdr->str_len;
 278
 279	if (btf->base_btf && hdr->str_len == 0)
 280		return 0;
 281	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
 282		pr_debug("Invalid BTF string section\n");
 283		return -EINVAL;
 284	}
 285	if (!btf->base_btf && start[0]) {
 286		pr_debug("Invalid BTF string section\n");
 287		return -EINVAL;
 288	}
 289	return 0;
 290}
 291
 292static int btf_type_size(const struct btf_type *t)
 293{
 294	const int base_size = sizeof(struct btf_type);
 295	__u16 vlen = btf_vlen(t);
 296
 297	switch (btf_kind(t)) {
 298	case BTF_KIND_FWD:
 299	case BTF_KIND_CONST:
 300	case BTF_KIND_VOLATILE:
 301	case BTF_KIND_RESTRICT:
 302	case BTF_KIND_PTR:
 303	case BTF_KIND_TYPEDEF:
 304	case BTF_KIND_FUNC:
 305	case BTF_KIND_FLOAT:
 306	case BTF_KIND_TYPE_TAG:
 307		return base_size;
 308	case BTF_KIND_INT:
 309		return base_size + sizeof(__u32);
 310	case BTF_KIND_ENUM:
 311		return base_size + vlen * sizeof(struct btf_enum);
 312	case BTF_KIND_ENUM64:
 313		return base_size + vlen * sizeof(struct btf_enum64);
 314	case BTF_KIND_ARRAY:
 315		return base_size + sizeof(struct btf_array);
 316	case BTF_KIND_STRUCT:
 317	case BTF_KIND_UNION:
 318		return base_size + vlen * sizeof(struct btf_member);
 319	case BTF_KIND_FUNC_PROTO:
 320		return base_size + vlen * sizeof(struct btf_param);
 321	case BTF_KIND_VAR:
 322		return base_size + sizeof(struct btf_var);
 323	case BTF_KIND_DATASEC:
 324		return base_size + vlen * sizeof(struct btf_var_secinfo);
 325	case BTF_KIND_DECL_TAG:
 326		return base_size + sizeof(struct btf_decl_tag);
 327	default:
 328		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 329		return -EINVAL;
 330	}
 331}
 332
 333static void btf_bswap_type_base(struct btf_type *t)
 334{
 335	t->name_off = bswap_32(t->name_off);
 336	t->info = bswap_32(t->info);
 337	t->type = bswap_32(t->type);
 338}
 339
 340static int btf_bswap_type_rest(struct btf_type *t)
 341{
 342	struct btf_var_secinfo *v;
 343	struct btf_enum64 *e64;
 344	struct btf_member *m;
 345	struct btf_array *a;
 346	struct btf_param *p;
 347	struct btf_enum *e;
 348	__u16 vlen = btf_vlen(t);
 349	int i;
 350
 351	switch (btf_kind(t)) {
 352	case BTF_KIND_FWD:
 353	case BTF_KIND_CONST:
 354	case BTF_KIND_VOLATILE:
 355	case BTF_KIND_RESTRICT:
 356	case BTF_KIND_PTR:
 357	case BTF_KIND_TYPEDEF:
 358	case BTF_KIND_FUNC:
 359	case BTF_KIND_FLOAT:
 360	case BTF_KIND_TYPE_TAG:
 361		return 0;
 362	case BTF_KIND_INT:
 363		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
 364		return 0;
 365	case BTF_KIND_ENUM:
 366		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
 367			e->name_off = bswap_32(e->name_off);
 368			e->val = bswap_32(e->val);
 369		}
 370		return 0;
 371	case BTF_KIND_ENUM64:
 372		for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
 373			e64->name_off = bswap_32(e64->name_off);
 374			e64->val_lo32 = bswap_32(e64->val_lo32);
 375			e64->val_hi32 = bswap_32(e64->val_hi32);
 376		}
 377		return 0;
 378	case BTF_KIND_ARRAY:
 379		a = btf_array(t);
 380		a->type = bswap_32(a->type);
 381		a->index_type = bswap_32(a->index_type);
 382		a->nelems = bswap_32(a->nelems);
 383		return 0;
 384	case BTF_KIND_STRUCT:
 385	case BTF_KIND_UNION:
 386		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
 387			m->name_off = bswap_32(m->name_off);
 388			m->type = bswap_32(m->type);
 389			m->offset = bswap_32(m->offset);
 390		}
 391		return 0;
 392	case BTF_KIND_FUNC_PROTO:
 393		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
 394			p->name_off = bswap_32(p->name_off);
 395			p->type = bswap_32(p->type);
 396		}
 397		return 0;
 398	case BTF_KIND_VAR:
 399		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
 400		return 0;
 401	case BTF_KIND_DATASEC:
 402		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
 403			v->type = bswap_32(v->type);
 404			v->offset = bswap_32(v->offset);
 405			v->size = bswap_32(v->size);
 406		}
 407		return 0;
 408	case BTF_KIND_DECL_TAG:
 409		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
 410		return 0;
 411	default:
 412		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 413		return -EINVAL;
 414	}
 415}
 416
 417static int btf_parse_type_sec(struct btf *btf)
 418{
 419	struct btf_header *hdr = btf->hdr;
 420	void *next_type = btf->types_data;
 421	void *end_type = next_type + hdr->type_len;
 422	int err, type_size;
 423
 424	while (next_type + sizeof(struct btf_type) <= end_type) {
 425		if (btf->swapped_endian)
 426			btf_bswap_type_base(next_type);
 427
 428		type_size = btf_type_size(next_type);
 429		if (type_size < 0)
 430			return type_size;
 431		if (next_type + type_size > end_type) {
 432			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
 433			return -EINVAL;
 434		}
 435
 436		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
 437			return -EINVAL;
 438
 439		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
 440		if (err)
 441			return err;
 442
 443		next_type += type_size;
 444		btf->nr_types++;
 445	}
 446
 447	if (next_type != end_type) {
 448		pr_warn("BTF types data is malformed\n");
 449		return -EINVAL;
 450	}
 451
 452	return 0;
 453}
 454
 455static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id)
 456{
 457	const char *s;
 458
 459	s = btf__str_by_offset(btf, str_off);
 460	if (!s) {
 461		pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off);
 462		return -EINVAL;
 463	}
 464
 465	return 0;
 466}
 467
 468static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id)
 469{
 470	const struct btf_type *t;
 471
 472	t = btf__type_by_id(btf, id);
 473	if (!t) {
 474		pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id);
 475		return -EINVAL;
 476	}
 477
 478	return 0;
 479}
 480
 481static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id)
 482{
 483	__u32 kind = btf_kind(t);
 484	int err, i, n;
 485
 486	err = btf_validate_str(btf, t->name_off, "type name", id);
 487	if (err)
 488		return err;
 489
 490	switch (kind) {
 491	case BTF_KIND_UNKN:
 492	case BTF_KIND_INT:
 493	case BTF_KIND_FWD:
 494	case BTF_KIND_FLOAT:
 495		break;
 496	case BTF_KIND_PTR:
 497	case BTF_KIND_TYPEDEF:
 498	case BTF_KIND_VOLATILE:
 499	case BTF_KIND_CONST:
 500	case BTF_KIND_RESTRICT:
 501	case BTF_KIND_VAR:
 502	case BTF_KIND_DECL_TAG:
 503	case BTF_KIND_TYPE_TAG:
 504		err = btf_validate_id(btf, t->type, id);
 505		if (err)
 506			return err;
 507		break;
 508	case BTF_KIND_ARRAY: {
 509		const struct btf_array *a = btf_array(t);
 510
 511		err = btf_validate_id(btf, a->type, id);
 512		err = err ?: btf_validate_id(btf, a->index_type, id);
 513		if (err)
 514			return err;
 515		break;
 516	}
 517	case BTF_KIND_STRUCT:
 518	case BTF_KIND_UNION: {
 519		const struct btf_member *m = btf_members(t);
 520
 521		n = btf_vlen(t);
 522		for (i = 0; i < n; i++, m++) {
 523			err = btf_validate_str(btf, m->name_off, "field name", id);
 524			err = err ?: btf_validate_id(btf, m->type, id);
 525			if (err)
 526				return err;
 527		}
 528		break;
 529	}
 530	case BTF_KIND_ENUM: {
 531		const struct btf_enum *m = btf_enum(t);
 532
 533		n = btf_vlen(t);
 534		for (i = 0; i < n; i++, m++) {
 535			err = btf_validate_str(btf, m->name_off, "enum name", id);
 536			if (err)
 537				return err;
 538		}
 539		break;
 540	}
 541	case BTF_KIND_ENUM64: {
 542		const struct btf_enum64 *m = btf_enum64(t);
 543
 544		n = btf_vlen(t);
 545		for (i = 0; i < n; i++, m++) {
 546			err = btf_validate_str(btf, m->name_off, "enum name", id);
 547			if (err)
 548				return err;
 549		}
 550		break;
 551	}
 552	case BTF_KIND_FUNC: {
 553		const struct btf_type *ft;
 554
 555		err = btf_validate_id(btf, t->type, id);
 556		if (err)
 557			return err;
 558		ft = btf__type_by_id(btf, t->type);
 559		if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) {
 560			pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type);
 561			return -EINVAL;
 562		}
 563		break;
 564	}
 565	case BTF_KIND_FUNC_PROTO: {
 566		const struct btf_param *m = btf_params(t);
 567
 568		n = btf_vlen(t);
 569		for (i = 0; i < n; i++, m++) {
 570			err = btf_validate_str(btf, m->name_off, "param name", id);
 571			err = err ?: btf_validate_id(btf, m->type, id);
 572			if (err)
 573				return err;
 574		}
 575		break;
 576	}
 577	case BTF_KIND_DATASEC: {
 578		const struct btf_var_secinfo *m = btf_var_secinfos(t);
 579
 580		n = btf_vlen(t);
 581		for (i = 0; i < n; i++, m++) {
 582			err = btf_validate_id(btf, m->type, id);
 583			if (err)
 584				return err;
 585		}
 586		break;
 587	}
 588	default:
 589		pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind);
 590		return -EINVAL;
 591	}
 592	return 0;
 593}
 594
 595/* Validate basic sanity of BTF. It's intentionally less thorough than
 596 * kernel's validation and validates only properties of BTF that libbpf relies
 597 * on to be correct (e.g., valid type IDs, valid string offsets, etc)
 598 */
 599static int btf_sanity_check(const struct btf *btf)
 600{
 601	const struct btf_type *t;
 602	__u32 i, n = btf__type_cnt(btf);
 603	int err;
 604
 605	for (i = btf->start_id; i < n; i++) {
 606		t = btf_type_by_id(btf, i);
 607		err = btf_validate_type(btf, t, i);
 608		if (err)
 609			return err;
 610	}
 611	return 0;
 612}
 613
 614__u32 btf__type_cnt(const struct btf *btf)
 615{
 616	return btf->start_id + btf->nr_types;
 617}
 618
 619const struct btf *btf__base_btf(const struct btf *btf)
 620{
 621	return btf->base_btf;
 622}
 623
 624/* internal helper returning non-const pointer to a type */
 625struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
 626{
 627	if (type_id == 0)
 628		return &btf_void;
 629	if (type_id < btf->start_id)
 630		return btf_type_by_id(btf->base_btf, type_id);
 631	return btf->types_data + btf->type_offs[type_id - btf->start_id];
 632}
 633
 634const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 635{
 636	if (type_id >= btf->start_id + btf->nr_types)
 637		return errno = EINVAL, NULL;
 638	return btf_type_by_id((struct btf *)btf, type_id);
 639}
 640
 641static int determine_ptr_size(const struct btf *btf)
 642{
 643	static const char * const long_aliases[] = {
 644		"long",
 645		"long int",
 646		"int long",
 647		"unsigned long",
 648		"long unsigned",
 649		"unsigned long int",
 650		"unsigned int long",
 651		"long unsigned int",
 652		"long int unsigned",
 653		"int unsigned long",
 654		"int long unsigned",
 655	};
 656	const struct btf_type *t;
 657	const char *name;
 658	int i, j, n;
 659
 660	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
 661		return btf->base_btf->ptr_sz;
 662
 663	n = btf__type_cnt(btf);
 664	for (i = 1; i < n; i++) {
 665		t = btf__type_by_id(btf, i);
 666		if (!btf_is_int(t))
 667			continue;
 668
 669		if (t->size != 4 && t->size != 8)
 670			continue;
 671
 672		name = btf__name_by_offset(btf, t->name_off);
 673		if (!name)
 674			continue;
 675
 676		for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
 677			if (strcmp(name, long_aliases[j]) == 0)
 678				return t->size;
 679		}
 680	}
 681
 682	return -1;
 683}
 684
 685static size_t btf_ptr_sz(const struct btf *btf)
 686{
 687	if (!btf->ptr_sz)
 688		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 689	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 690}
 691
 692/* Return pointer size this BTF instance assumes. The size is heuristically
 693 * determined by looking for 'long' or 'unsigned long' integer type and
 694 * recording its size in bytes. If BTF type information doesn't have any such
 695 * type, this function returns 0. In the latter case, native architecture's
 696 * pointer size is assumed, so will be either 4 or 8, depending on
 697 * architecture that libbpf was compiled for. It's possible to override
 698 * guessed value by using btf__set_pointer_size() API.
 699 */
 700size_t btf__pointer_size(const struct btf *btf)
 701{
 702	if (!btf->ptr_sz)
 703		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 704
 705	if (btf->ptr_sz < 0)
 706		/* not enough BTF type info to guess */
 707		return 0;
 708
 709	return btf->ptr_sz;
 710}
 711
 712/* Override or set pointer size in bytes. Only values of 4 and 8 are
 713 * supported.
 714 */
 715int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 716{
 717	if (ptr_sz != 4 && ptr_sz != 8)
 718		return libbpf_err(-EINVAL);
 719	btf->ptr_sz = ptr_sz;
 720	return 0;
 721}
 722
 723static bool is_host_big_endian(void)
 724{
 725#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 726	return false;
 727#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 728	return true;
 729#else
 730# error "Unrecognized __BYTE_ORDER__"
 731#endif
 732}
 733
 734enum btf_endianness btf__endianness(const struct btf *btf)
 735{
 736	if (is_host_big_endian())
 737		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
 738	else
 739		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
 740}
 741
 742int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
 743{
 744	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
 745		return libbpf_err(-EINVAL);
 746
 747	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
 748	if (!btf->swapped_endian) {
 749		free(btf->raw_data_swapped);
 750		btf->raw_data_swapped = NULL;
 751	}
 752	return 0;
 753}
 754
 755static bool btf_type_is_void(const struct btf_type *t)
 756{
 757	return t == &btf_void || btf_is_fwd(t);
 758}
 759
 760static bool btf_type_is_void_or_null(const struct btf_type *t)
 761{
 762	return !t || btf_type_is_void(t);
 763}
 764
 765#define MAX_RESOLVE_DEPTH 32
 766
 767__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 768{
 769	const struct btf_array *array;
 770	const struct btf_type *t;
 771	__u32 nelems = 1;
 772	__s64 size = -1;
 773	int i;
 774
 775	t = btf__type_by_id(btf, type_id);
 776	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
 777		switch (btf_kind(t)) {
 778		case BTF_KIND_INT:
 779		case BTF_KIND_STRUCT:
 780		case BTF_KIND_UNION:
 781		case BTF_KIND_ENUM:
 782		case BTF_KIND_ENUM64:
 783		case BTF_KIND_DATASEC:
 784		case BTF_KIND_FLOAT:
 785			size = t->size;
 786			goto done;
 787		case BTF_KIND_PTR:
 788			size = btf_ptr_sz(btf);
 789			goto done;
 790		case BTF_KIND_TYPEDEF:
 791		case BTF_KIND_VOLATILE:
 792		case BTF_KIND_CONST:
 793		case BTF_KIND_RESTRICT:
 794		case BTF_KIND_VAR:
 795		case BTF_KIND_DECL_TAG:
 796		case BTF_KIND_TYPE_TAG:
 797			type_id = t->type;
 798			break;
 799		case BTF_KIND_ARRAY:
 800			array = btf_array(t);
 801			if (nelems && array->nelems > UINT32_MAX / nelems)
 802				return libbpf_err(-E2BIG);
 803			nelems *= array->nelems;
 804			type_id = array->type;
 805			break;
 806		default:
 807			return libbpf_err(-EINVAL);
 808		}
 809
 810		t = btf__type_by_id(btf, type_id);
 811	}
 812
 813done:
 814	if (size < 0)
 815		return libbpf_err(-EINVAL);
 816	if (nelems && size > UINT32_MAX / nelems)
 817		return libbpf_err(-E2BIG);
 818
 819	return nelems * size;
 820}
 821
 822int btf__align_of(const struct btf *btf, __u32 id)
 823{
 824	const struct btf_type *t = btf__type_by_id(btf, id);
 825	__u16 kind = btf_kind(t);
 826
 827	switch (kind) {
 828	case BTF_KIND_INT:
 829	case BTF_KIND_ENUM:
 830	case BTF_KIND_ENUM64:
 831	case BTF_KIND_FLOAT:
 832		return min(btf_ptr_sz(btf), (size_t)t->size);
 833	case BTF_KIND_PTR:
 834		return btf_ptr_sz(btf);
 835	case BTF_KIND_TYPEDEF:
 836	case BTF_KIND_VOLATILE:
 837	case BTF_KIND_CONST:
 838	case BTF_KIND_RESTRICT:
 839	case BTF_KIND_TYPE_TAG:
 840		return btf__align_of(btf, t->type);
 841	case BTF_KIND_ARRAY:
 842		return btf__align_of(btf, btf_array(t)->type);
 843	case BTF_KIND_STRUCT:
 844	case BTF_KIND_UNION: {
 845		const struct btf_member *m = btf_members(t);
 846		__u16 vlen = btf_vlen(t);
 847		int i, max_align = 1, align;
 848
 849		for (i = 0; i < vlen; i++, m++) {
 850			align = btf__align_of(btf, m->type);
 851			if (align <= 0)
 852				return libbpf_err(align);
 853			max_align = max(max_align, align);
 854
 855			/* if field offset isn't aligned according to field
 856			 * type's alignment, then struct must be packed
 857			 */
 858			if (btf_member_bitfield_size(t, i) == 0 &&
 859			    (m->offset % (8 * align)) != 0)
 860				return 1;
 861		}
 862
 863		/* if struct/union size isn't a multiple of its alignment,
 864		 * then struct must be packed
 865		 */
 866		if ((t->size % max_align) != 0)
 867			return 1;
 868
 869		return max_align;
 870	}
 871	default:
 872		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 873		return errno = EINVAL, 0;
 874	}
 875}
 876
 877int btf__resolve_type(const struct btf *btf, __u32 type_id)
 878{
 879	const struct btf_type *t;
 880	int depth = 0;
 881
 882	t = btf__type_by_id(btf, type_id);
 883	while (depth < MAX_RESOLVE_DEPTH &&
 884	       !btf_type_is_void_or_null(t) &&
 885	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 886		type_id = t->type;
 887		t = btf__type_by_id(btf, type_id);
 888		depth++;
 889	}
 890
 891	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 892		return libbpf_err(-EINVAL);
 893
 894	return type_id;
 895}
 896
 897__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 898{
 899	__u32 i, nr_types = btf__type_cnt(btf);
 900
 901	if (!strcmp(type_name, "void"))
 902		return 0;
 903
 904	for (i = 1; i < nr_types; i++) {
 905		const struct btf_type *t = btf__type_by_id(btf, i);
 906		const char *name = btf__name_by_offset(btf, t->name_off);
 907
 908		if (name && !strcmp(type_name, name))
 909			return i;
 910	}
 911
 912	return libbpf_err(-ENOENT);
 913}
 914
 915static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
 916				   const char *type_name, __u32 kind)
 917{
 918	__u32 i, nr_types = btf__type_cnt(btf);
 919
 920	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 921		return 0;
 922
 923	for (i = start_id; i < nr_types; i++) {
 924		const struct btf_type *t = btf__type_by_id(btf, i);
 925		const char *name;
 926
 927		if (btf_kind(t) != kind)
 928			continue;
 929		name = btf__name_by_offset(btf, t->name_off);
 930		if (name && !strcmp(type_name, name))
 931			return i;
 932	}
 933
 934	return libbpf_err(-ENOENT);
 935}
 936
 937__s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
 938				 __u32 kind)
 939{
 940	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
 941}
 942
 943__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 944			     __u32 kind)
 945{
 946	return btf_find_by_name_kind(btf, 1, type_name, kind);
 947}
 948
 949static bool btf_is_modifiable(const struct btf *btf)
 950{
 951	return (void *)btf->hdr != btf->raw_data;
 952}
 953
 954void btf__free(struct btf *btf)
 955{
 956	if (IS_ERR_OR_NULL(btf))
 957		return;
 958
 959	if (btf->fd >= 0)
 960		close(btf->fd);
 961
 962	if (btf_is_modifiable(btf)) {
 963		/* if BTF was modified after loading, it will have a split
 964		 * in-memory representation for header, types, and strings
 965		 * sections, so we need to free all of them individually. It
 966		 * might still have a cached contiguous raw data present,
 967		 * which will be unconditionally freed below.
 968		 */
 969		free(btf->hdr);
 970		free(btf->types_data);
 971		strset__free(btf->strs_set);
 972	}
 973	free(btf->raw_data);
 974	free(btf->raw_data_swapped);
 975	free(btf->type_offs);
 976	if (btf->owns_base)
 977		btf__free(btf->base_btf);
 978	free(btf);
 979}
 980
 981static struct btf *btf_new_empty(struct btf *base_btf)
 982{
 983	struct btf *btf;
 984
 985	btf = calloc(1, sizeof(*btf));
 986	if (!btf)
 987		return ERR_PTR(-ENOMEM);
 988
 989	btf->nr_types = 0;
 990	btf->start_id = 1;
 991	btf->start_str_off = 0;
 992	btf->fd = -1;
 993	btf->ptr_sz = sizeof(void *);
 994	btf->swapped_endian = false;
 995
 996	if (base_btf) {
 997		btf->base_btf = base_btf;
 998		btf->start_id = btf__type_cnt(base_btf);
 999		btf->start_str_off = base_btf->hdr->str_len;
1000		btf->swapped_endian = base_btf->swapped_endian;
1001	}
1002
1003	/* +1 for empty string at offset 0 */
1004	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
1005	btf->raw_data = calloc(1, btf->raw_size);
1006	if (!btf->raw_data) {
1007		free(btf);
1008		return ERR_PTR(-ENOMEM);
1009	}
1010
1011	btf->hdr = btf->raw_data;
1012	btf->hdr->hdr_len = sizeof(struct btf_header);
1013	btf->hdr->magic = BTF_MAGIC;
1014	btf->hdr->version = BTF_VERSION;
1015
1016	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
1017	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
1018	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
1019
1020	return btf;
1021}
1022
1023struct btf *btf__new_empty(void)
1024{
1025	return libbpf_ptr(btf_new_empty(NULL));
1026}
1027
1028struct btf *btf__new_empty_split(struct btf *base_btf)
1029{
1030	return libbpf_ptr(btf_new_empty(base_btf));
1031}
1032
1033static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
1034{
1035	struct btf *btf;
1036	int err;
1037
1038	btf = calloc(1, sizeof(struct btf));
1039	if (!btf)
1040		return ERR_PTR(-ENOMEM);
1041
1042	btf->nr_types = 0;
1043	btf->start_id = 1;
1044	btf->start_str_off = 0;
1045	btf->fd = -1;
1046
1047	if (base_btf) {
1048		btf->base_btf = base_btf;
1049		btf->start_id = btf__type_cnt(base_btf);
1050		btf->start_str_off = base_btf->hdr->str_len;
1051	}
1052
1053	btf->raw_data = malloc(size);
1054	if (!btf->raw_data) {
1055		err = -ENOMEM;
1056		goto done;
1057	}
1058	memcpy(btf->raw_data, data, size);
1059	btf->raw_size = size;
1060
1061	btf->hdr = btf->raw_data;
1062	err = btf_parse_hdr(btf);
1063	if (err)
1064		goto done;
1065
1066	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
1067	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
1068
1069	err = btf_parse_str_sec(btf);
1070	err = err ?: btf_parse_type_sec(btf);
1071	err = err ?: btf_sanity_check(btf);
1072	if (err)
1073		goto done;
1074
1075done:
1076	if (err) {
1077		btf__free(btf);
1078		return ERR_PTR(err);
1079	}
1080
1081	return btf;
1082}
1083
1084struct btf *btf__new(const void *data, __u32 size)
1085{
1086	return libbpf_ptr(btf_new(data, size, NULL));
1087}
1088
1089struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf)
1090{
1091	return libbpf_ptr(btf_new(data, size, base_btf));
1092}
1093
1094struct btf_elf_secs {
1095	Elf_Data *btf_data;
1096	Elf_Data *btf_ext_data;
1097	Elf_Data *btf_base_data;
1098};
1099
1100static int btf_find_elf_sections(Elf *elf, const char *path, struct btf_elf_secs *secs)
1101{
 
 
 
1102	Elf_Scn *scn = NULL;
1103	Elf_Data *data;
1104	GElf_Ehdr ehdr;
1105	size_t shstrndx;
1106	int idx = 0;
1107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108	if (!gelf_getehdr(elf, &ehdr)) {
1109		pr_warn("failed to get EHDR from %s\n", path);
1110		goto err;
1111	}
1112
1113	if (elf_getshdrstrndx(elf, &shstrndx)) {
1114		pr_warn("failed to get section names section index for %s\n",
1115			path);
1116		goto err;
1117	}
1118
1119	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
1120		pr_warn("failed to get e_shstrndx from %s\n", path);
1121		goto err;
1122	}
1123
1124	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1125		Elf_Data **field;
1126		GElf_Shdr sh;
1127		char *name;
1128
1129		idx++;
1130		if (gelf_getshdr(scn, &sh) != &sh) {
1131			pr_warn("failed to get section(%d) header from %s\n",
1132				idx, path);
1133			goto err;
1134		}
1135		name = elf_strptr(elf, shstrndx, sh.sh_name);
1136		if (!name) {
1137			pr_warn("failed to get section(%d) name from %s\n",
1138				idx, path);
1139			goto err;
1140		}
1141
1142		if (strcmp(name, BTF_ELF_SEC) == 0)
1143			field = &secs->btf_data;
1144		else if (strcmp(name, BTF_EXT_ELF_SEC) == 0)
1145			field = &secs->btf_ext_data;
1146		else if (strcmp(name, BTF_BASE_ELF_SEC) == 0)
1147			field = &secs->btf_base_data;
1148		else
 
 
 
 
 
 
 
1149			continue;
1150
1151		data = elf_getdata(scn, 0);
1152		if (!data) {
1153			pr_warn("failed to get section(%d, %s) data from %s\n",
1154				idx, name, path);
1155			goto err;
1156		}
1157		*field = data;
1158	}
1159
1160	return 0;
1161
1162err:
1163	return -LIBBPF_ERRNO__FORMAT;
1164}
1165
1166static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
1167				 struct btf_ext **btf_ext)
1168{
1169	struct btf_elf_secs secs = {};
1170	struct btf *dist_base_btf = NULL;
1171	struct btf *btf = NULL;
1172	int err = 0, fd = -1;
1173	Elf *elf = NULL;
1174
1175	if (elf_version(EV_CURRENT) == EV_NONE) {
1176		pr_warn("failed to init libelf for %s\n", path);
1177		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
1178	}
1179
1180	fd = open(path, O_RDONLY | O_CLOEXEC);
1181	if (fd < 0) {
1182		err = -errno;
1183		pr_warn("failed to open %s: %s\n", path, errstr(err));
1184		return ERR_PTR(err);
1185	}
1186
1187	elf = elf_begin(fd, ELF_C_READ, NULL);
1188	if (!elf) {
1189		err = -LIBBPF_ERRNO__FORMAT;
1190		pr_warn("failed to open %s as ELF file\n", path);
1191		goto done;
1192	}
1193
1194	err = btf_find_elf_sections(elf, path, &secs);
1195	if (err)
1196		goto done;
1197
1198	if (!secs.btf_data) {
1199		pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path);
1200		err = -ENODATA;
1201		goto done;
1202	}
1203
1204	if (secs.btf_base_data) {
1205		dist_base_btf = btf_new(secs.btf_base_data->d_buf, secs.btf_base_data->d_size,
1206					NULL);
1207		if (IS_ERR(dist_base_btf)) {
1208			err = PTR_ERR(dist_base_btf);
1209			dist_base_btf = NULL;
1210			goto done;
1211		}
1212	}
1213
1214	btf = btf_new(secs.btf_data->d_buf, secs.btf_data->d_size,
1215		      dist_base_btf ?: base_btf);
1216	if (IS_ERR(btf)) {
1217		err = PTR_ERR(btf);
1218		goto done;
1219	}
1220	if (dist_base_btf && base_btf) {
1221		err = btf__relocate(btf, base_btf);
1222		if (err)
1223			goto done;
1224		btf__free(dist_base_btf);
1225		dist_base_btf = NULL;
1226	}
1227
1228	if (dist_base_btf)
1229		btf->owns_base = true;
1230
1231	switch (gelf_getclass(elf)) {
1232	case ELFCLASS32:
1233		btf__set_pointer_size(btf, 4);
1234		break;
1235	case ELFCLASS64:
1236		btf__set_pointer_size(btf, 8);
1237		break;
1238	default:
1239		pr_warn("failed to get ELF class (bitness) for %s\n", path);
1240		break;
1241	}
1242
1243	if (btf_ext && secs.btf_ext_data) {
1244		*btf_ext = btf_ext__new(secs.btf_ext_data->d_buf, secs.btf_ext_data->d_size);
1245		if (IS_ERR(*btf_ext)) {
1246			err = PTR_ERR(*btf_ext);
1247			goto done;
1248		}
1249	} else if (btf_ext) {
1250		*btf_ext = NULL;
1251	}
1252done:
1253	if (elf)
1254		elf_end(elf);
1255	close(fd);
1256
1257	if (!err)
1258		return btf;
1259
1260	if (btf_ext)
1261		btf_ext__free(*btf_ext);
1262	btf__free(dist_base_btf);
1263	btf__free(btf);
1264
1265	return ERR_PTR(err);
1266}
1267
1268struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1269{
1270	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1271}
1272
1273struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1274{
1275	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1276}
1277
1278static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1279{
1280	struct btf *btf = NULL;
1281	void *data = NULL;
1282	FILE *f = NULL;
1283	__u16 magic;
1284	int err = 0;
1285	long sz;
1286
1287	f = fopen(path, "rbe");
1288	if (!f) {
1289		err = -errno;
1290		goto err_out;
1291	}
1292
1293	/* check BTF magic */
1294	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1295		err = -EIO;
1296		goto err_out;
1297	}
1298	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1299		/* definitely not a raw BTF */
1300		err = -EPROTO;
1301		goto err_out;
1302	}
1303
1304	/* get file size */
1305	if (fseek(f, 0, SEEK_END)) {
1306		err = -errno;
1307		goto err_out;
1308	}
1309	sz = ftell(f);
1310	if (sz < 0) {
1311		err = -errno;
1312		goto err_out;
1313	}
1314	/* rewind to the start */
1315	if (fseek(f, 0, SEEK_SET)) {
1316		err = -errno;
1317		goto err_out;
1318	}
1319
1320	/* pre-alloc memory and read all of BTF data */
1321	data = malloc(sz);
1322	if (!data) {
1323		err = -ENOMEM;
1324		goto err_out;
1325	}
1326	if (fread(data, 1, sz, f) < sz) {
1327		err = -EIO;
1328		goto err_out;
1329	}
1330
1331	/* finally parse BTF data */
1332	btf = btf_new(data, sz, base_btf);
1333
1334err_out:
1335	free(data);
1336	if (f)
1337		fclose(f);
1338	return err ? ERR_PTR(err) : btf;
1339}
1340
1341struct btf *btf__parse_raw(const char *path)
1342{
1343	return libbpf_ptr(btf_parse_raw(path, NULL));
1344}
1345
1346struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1347{
1348	return libbpf_ptr(btf_parse_raw(path, base_btf));
1349}
1350
1351static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1352{
1353	struct btf *btf;
1354	int err;
1355
1356	if (btf_ext)
1357		*btf_ext = NULL;
1358
1359	btf = btf_parse_raw(path, base_btf);
1360	err = libbpf_get_error(btf);
1361	if (!err)
1362		return btf;
1363	if (err != -EPROTO)
1364		return ERR_PTR(err);
1365	return btf_parse_elf(path, base_btf, btf_ext);
1366}
1367
1368struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1369{
1370	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1371}
1372
1373struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1374{
1375	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1376}
1377
1378static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1379
1380int btf_load_into_kernel(struct btf *btf,
1381			 char *log_buf, size_t log_sz, __u32 log_level,
1382			 int token_fd)
1383{
1384	LIBBPF_OPTS(bpf_btf_load_opts, opts);
1385	__u32 buf_sz = 0, raw_size;
1386	char *buf = NULL, *tmp;
1387	void *raw_data;
1388	int err = 0;
1389
1390	if (btf->fd >= 0)
1391		return libbpf_err(-EEXIST);
1392	if (log_sz && !log_buf)
1393		return libbpf_err(-EINVAL);
1394
1395	/* cache native raw data representation */
1396	raw_data = btf_get_raw_data(btf, &raw_size, false);
1397	if (!raw_data) {
1398		err = -ENOMEM;
1399		goto done;
1400	}
1401	btf->raw_size = raw_size;
1402	btf->raw_data = raw_data;
1403
1404retry_load:
1405	/* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1406	 * initially. Only if BTF loading fails, we bump log_level to 1 and
1407	 * retry, using either auto-allocated or custom log_buf. This way
1408	 * non-NULL custom log_buf provides a buffer just in case, but hopes
1409	 * for successful load and no need for log_buf.
1410	 */
1411	if (log_level) {
1412		/* if caller didn't provide custom log_buf, we'll keep
1413		 * allocating our own progressively bigger buffers for BTF
1414		 * verification log
1415		 */
1416		if (!log_buf) {
1417			buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1418			tmp = realloc(buf, buf_sz);
1419			if (!tmp) {
1420				err = -ENOMEM;
1421				goto done;
1422			}
1423			buf = tmp;
1424			buf[0] = '\0';
1425		}
1426
1427		opts.log_buf = log_buf ? log_buf : buf;
1428		opts.log_size = log_buf ? log_sz : buf_sz;
1429		opts.log_level = log_level;
1430	}
1431
1432	opts.token_fd = token_fd;
1433	if (token_fd)
1434		opts.btf_flags |= BPF_F_TOKEN_FD;
1435
1436	btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1437	if (btf->fd < 0) {
1438		/* time to turn on verbose mode and try again */
1439		if (log_level == 0) {
1440			log_level = 1;
1441			goto retry_load;
1442		}
1443		/* only retry if caller didn't provide custom log_buf, but
1444		 * make sure we can never overflow buf_sz
1445		 */
1446		if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1447			goto retry_load;
1448
1449		err = -errno;
1450		pr_warn("BTF loading error: %s\n", errstr(err));
1451		/* don't print out contents of custom log_buf */
1452		if (!log_buf && buf[0])
1453			pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1454	}
1455
1456done:
1457	free(buf);
1458	return libbpf_err(err);
1459}
1460
1461int btf__load_into_kernel(struct btf *btf)
1462{
1463	return btf_load_into_kernel(btf, NULL, 0, 0, 0);
1464}
1465
1466int btf__fd(const struct btf *btf)
1467{
1468	return btf->fd;
1469}
1470
1471void btf__set_fd(struct btf *btf, int fd)
1472{
1473	btf->fd = fd;
1474}
1475
1476static const void *btf_strs_data(const struct btf *btf)
1477{
1478	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1479}
1480
1481static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1482{
1483	struct btf_header *hdr = btf->hdr;
1484	struct btf_type *t;
1485	void *data, *p;
1486	__u32 data_sz;
1487	int i;
1488
1489	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1490	if (data) {
1491		*size = btf->raw_size;
1492		return data;
1493	}
1494
1495	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1496	data = calloc(1, data_sz);
1497	if (!data)
1498		return NULL;
1499	p = data;
1500
1501	memcpy(p, hdr, hdr->hdr_len);
1502	if (swap_endian)
1503		btf_bswap_hdr(p);
1504	p += hdr->hdr_len;
1505
1506	memcpy(p, btf->types_data, hdr->type_len);
1507	if (swap_endian) {
1508		for (i = 0; i < btf->nr_types; i++) {
1509			t = p + btf->type_offs[i];
1510			/* btf_bswap_type_rest() relies on native t->info, so
1511			 * we swap base type info after we swapped all the
1512			 * additional information
1513			 */
1514			if (btf_bswap_type_rest(t))
1515				goto err_out;
1516			btf_bswap_type_base(t);
1517		}
1518	}
1519	p += hdr->type_len;
1520
1521	memcpy(p, btf_strs_data(btf), hdr->str_len);
1522	p += hdr->str_len;
1523
1524	*size = data_sz;
1525	return data;
1526err_out:
1527	free(data);
1528	return NULL;
1529}
1530
1531const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1532{
1533	struct btf *btf = (struct btf *)btf_ro;
1534	__u32 data_sz;
1535	void *data;
1536
1537	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1538	if (!data)
1539		return errno = ENOMEM, NULL;
1540
1541	btf->raw_size = data_sz;
1542	if (btf->swapped_endian)
1543		btf->raw_data_swapped = data;
1544	else
1545		btf->raw_data = data;
1546	*size = data_sz;
1547	return data;
1548}
1549
1550__attribute__((alias("btf__raw_data")))
1551const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1552
1553const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1554{
1555	if (offset < btf->start_str_off)
1556		return btf__str_by_offset(btf->base_btf, offset);
1557	else if (offset - btf->start_str_off < btf->hdr->str_len)
1558		return btf_strs_data(btf) + (offset - btf->start_str_off);
1559	else
1560		return errno = EINVAL, NULL;
1561}
1562
1563const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1564{
1565	return btf__str_by_offset(btf, offset);
1566}
1567
1568struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1569{
1570	struct bpf_btf_info btf_info;
1571	__u32 len = sizeof(btf_info);
1572	__u32 last_size;
1573	struct btf *btf;
1574	void *ptr;
1575	int err;
1576
1577	/* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so
1578	 * let's start with a sane default - 4KiB here - and resize it only if
1579	 * bpf_btf_get_info_by_fd() needs a bigger buffer.
1580	 */
1581	last_size = 4096;
1582	ptr = malloc(last_size);
1583	if (!ptr)
1584		return ERR_PTR(-ENOMEM);
1585
1586	memset(&btf_info, 0, sizeof(btf_info));
1587	btf_info.btf = ptr_to_u64(ptr);
1588	btf_info.btf_size = last_size;
1589	err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1590
1591	if (!err && btf_info.btf_size > last_size) {
1592		void *temp_ptr;
1593
1594		last_size = btf_info.btf_size;
1595		temp_ptr = realloc(ptr, last_size);
1596		if (!temp_ptr) {
1597			btf = ERR_PTR(-ENOMEM);
1598			goto exit_free;
1599		}
1600		ptr = temp_ptr;
1601
1602		len = sizeof(btf_info);
1603		memset(&btf_info, 0, sizeof(btf_info));
1604		btf_info.btf = ptr_to_u64(ptr);
1605		btf_info.btf_size = last_size;
1606
1607		err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1608	}
1609
1610	if (err || btf_info.btf_size > last_size) {
1611		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1612		goto exit_free;
1613	}
1614
1615	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1616
1617exit_free:
1618	free(ptr);
1619	return btf;
1620}
1621
1622struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1623{
1624	struct btf *btf;
1625	int btf_fd;
1626
1627	btf_fd = bpf_btf_get_fd_by_id(id);
1628	if (btf_fd < 0)
1629		return libbpf_err_ptr(-errno);
1630
1631	btf = btf_get_from_fd(btf_fd, base_btf);
1632	close(btf_fd);
1633
1634	return libbpf_ptr(btf);
1635}
1636
1637struct btf *btf__load_from_kernel_by_id(__u32 id)
1638{
1639	return btf__load_from_kernel_by_id_split(id, NULL);
1640}
1641
1642static void btf_invalidate_raw_data(struct btf *btf)
1643{
1644	if (btf->raw_data) {
1645		free(btf->raw_data);
1646		btf->raw_data = NULL;
1647	}
1648	if (btf->raw_data_swapped) {
1649		free(btf->raw_data_swapped);
1650		btf->raw_data_swapped = NULL;
1651	}
1652}
1653
1654/* Ensure BTF is ready to be modified (by splitting into a three memory
1655 * regions for header, types, and strings). Also invalidate cached
1656 * raw_data, if any.
1657 */
1658static int btf_ensure_modifiable(struct btf *btf)
1659{
1660	void *hdr, *types;
1661	struct strset *set = NULL;
1662	int err = -ENOMEM;
1663
1664	if (btf_is_modifiable(btf)) {
1665		/* any BTF modification invalidates raw_data */
1666		btf_invalidate_raw_data(btf);
1667		return 0;
1668	}
1669
1670	/* split raw data into three memory regions */
1671	hdr = malloc(btf->hdr->hdr_len);
1672	types = malloc(btf->hdr->type_len);
1673	if (!hdr || !types)
1674		goto err_out;
1675
1676	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1677	memcpy(types, btf->types_data, btf->hdr->type_len);
1678
1679	/* build lookup index for all strings */
1680	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1681	if (IS_ERR(set)) {
1682		err = PTR_ERR(set);
1683		goto err_out;
1684	}
1685
1686	/* only when everything was successful, update internal state */
1687	btf->hdr = hdr;
1688	btf->types_data = types;
1689	btf->types_data_cap = btf->hdr->type_len;
1690	btf->strs_data = NULL;
1691	btf->strs_set = set;
1692	/* if BTF was created from scratch, all strings are guaranteed to be
1693	 * unique and deduplicated
1694	 */
1695	if (btf->hdr->str_len == 0)
1696		btf->strs_deduped = true;
1697	if (!btf->base_btf && btf->hdr->str_len == 1)
1698		btf->strs_deduped = true;
1699
1700	/* invalidate raw_data representation */
1701	btf_invalidate_raw_data(btf);
1702
1703	return 0;
1704
1705err_out:
1706	strset__free(set);
1707	free(hdr);
1708	free(types);
1709	return err;
1710}
1711
1712/* Find an offset in BTF string section that corresponds to a given string *s*.
1713 * Returns:
1714 *   - >0 offset into string section, if string is found;
1715 *   - -ENOENT, if string is not in the string section;
1716 *   - <0, on any other error.
1717 */
1718int btf__find_str(struct btf *btf, const char *s)
1719{
1720	int off;
1721
1722	if (btf->base_btf) {
1723		off = btf__find_str(btf->base_btf, s);
1724		if (off != -ENOENT)
1725			return off;
1726	}
1727
1728	/* BTF needs to be in a modifiable state to build string lookup index */
1729	if (btf_ensure_modifiable(btf))
1730		return libbpf_err(-ENOMEM);
1731
1732	off = strset__find_str(btf->strs_set, s);
1733	if (off < 0)
1734		return libbpf_err(off);
1735
1736	return btf->start_str_off + off;
1737}
1738
1739/* Add a string s to the BTF string section.
1740 * Returns:
1741 *   - > 0 offset into string section, on success;
1742 *   - < 0, on error.
1743 */
1744int btf__add_str(struct btf *btf, const char *s)
1745{
1746	int off;
1747
1748	if (btf->base_btf) {
1749		off = btf__find_str(btf->base_btf, s);
1750		if (off != -ENOENT)
1751			return off;
1752	}
1753
1754	if (btf_ensure_modifiable(btf))
1755		return libbpf_err(-ENOMEM);
1756
1757	off = strset__add_str(btf->strs_set, s);
1758	if (off < 0)
1759		return libbpf_err(off);
1760
1761	btf->hdr->str_len = strset__data_size(btf->strs_set);
1762
1763	return btf->start_str_off + off;
1764}
1765
1766static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1767{
1768	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1769			      btf->hdr->type_len, UINT_MAX, add_sz);
1770}
1771
1772static void btf_type_inc_vlen(struct btf_type *t)
1773{
1774	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1775}
1776
1777static int btf_commit_type(struct btf *btf, int data_sz)
1778{
1779	int err;
1780
1781	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1782	if (err)
1783		return libbpf_err(err);
1784
1785	btf->hdr->type_len += data_sz;
1786	btf->hdr->str_off += data_sz;
1787	btf->nr_types++;
1788	return btf->start_id + btf->nr_types - 1;
1789}
1790
1791struct btf_pipe {
1792	const struct btf *src;
1793	struct btf *dst;
1794	struct hashmap *str_off_map; /* map string offsets from src to dst */
1795};
1796
1797static int btf_rewrite_str(struct btf_pipe *p, __u32 *str_off)
1798{
 
1799	long mapped_off;
1800	int off, err;
1801
1802	if (!*str_off) /* nothing to do for empty strings */
1803		return 0;
1804
1805	if (p->str_off_map &&
1806	    hashmap__find(p->str_off_map, *str_off, &mapped_off)) {
1807		*str_off = mapped_off;
1808		return 0;
1809	}
1810
1811	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1812	if (off < 0)
1813		return off;
1814
1815	/* Remember string mapping from src to dst.  It avoids
1816	 * performing expensive string comparisons.
1817	 */
1818	if (p->str_off_map) {
1819		err = hashmap__append(p->str_off_map, *str_off, off);
1820		if (err)
1821			return err;
1822	}
1823
1824	*str_off = off;
1825	return 0;
1826}
1827
1828static int btf_add_type(struct btf_pipe *p, const struct btf_type *src_type)
1829{
1830	struct btf_field_iter it;
1831	struct btf_type *t;
1832	__u32 *str_off;
1833	int sz, err;
1834
1835	sz = btf_type_size(src_type);
1836	if (sz < 0)
1837		return libbpf_err(sz);
1838
1839	/* deconstruct BTF, if necessary, and invalidate raw_data */
1840	if (btf_ensure_modifiable(p->dst))
1841		return libbpf_err(-ENOMEM);
1842
1843	t = btf_add_type_mem(p->dst, sz);
1844	if (!t)
1845		return libbpf_err(-ENOMEM);
1846
1847	memcpy(t, src_type, sz);
1848
1849	err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
1850	if (err)
1851		return libbpf_err(err);
1852
1853	while ((str_off = btf_field_iter_next(&it))) {
1854		err = btf_rewrite_str(p, str_off);
1855		if (err)
1856			return libbpf_err(err);
1857	}
1858
1859	return btf_commit_type(p->dst, sz);
1860}
1861
1862int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1863{
1864	struct btf_pipe p = { .src = src_btf, .dst = btf };
 
 
 
1865
1866	return btf_add_type(&p, src_type);
 
 
 
 
 
1867}
1868
1869static size_t btf_dedup_identity_hash_fn(long key, void *ctx);
1870static bool btf_dedup_equal_fn(long k1, long k2, void *ctx);
1871
1872int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1873{
1874	struct btf_pipe p = { .src = src_btf, .dst = btf };
1875	int data_sz, sz, cnt, i, err, old_strs_len;
1876	__u32 *off;
1877	void *t;
1878
1879	/* appending split BTF isn't supported yet */
1880	if (src_btf->base_btf)
1881		return libbpf_err(-ENOTSUP);
1882
1883	/* deconstruct BTF, if necessary, and invalidate raw_data */
1884	if (btf_ensure_modifiable(btf))
1885		return libbpf_err(-ENOMEM);
1886
1887	/* remember original strings section size if we have to roll back
1888	 * partial strings section changes
1889	 */
1890	old_strs_len = btf->hdr->str_len;
1891
1892	data_sz = src_btf->hdr->type_len;
1893	cnt = btf__type_cnt(src_btf) - 1;
1894
1895	/* pre-allocate enough memory for new types */
1896	t = btf_add_type_mem(btf, data_sz);
1897	if (!t)
1898		return libbpf_err(-ENOMEM);
1899
1900	/* pre-allocate enough memory for type offset index for new types */
1901	off = btf_add_type_offs_mem(btf, cnt);
1902	if (!off)
1903		return libbpf_err(-ENOMEM);
1904
1905	/* Map the string offsets from src_btf to the offsets from btf to improve performance */
1906	p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1907	if (IS_ERR(p.str_off_map))
1908		return libbpf_err(-ENOMEM);
1909
1910	/* bulk copy types data for all types from src_btf */
1911	memcpy(t, src_btf->types_data, data_sz);
1912
1913	for (i = 0; i < cnt; i++) {
1914		struct btf_field_iter it;
1915		__u32 *type_id, *str_off;
1916
1917		sz = btf_type_size(t);
1918		if (sz < 0) {
1919			/* unlikely, has to be corrupted src_btf */
1920			err = sz;
1921			goto err_out;
1922		}
1923
1924		/* fill out type ID to type offset mapping for lookups by type ID */
1925		*off = t - btf->types_data;
1926
1927		/* add, dedup, and remap strings referenced by this BTF type */
1928		err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
1929		if (err)
1930			goto err_out;
1931		while ((str_off = btf_field_iter_next(&it))) {
1932			err = btf_rewrite_str(&p, str_off);
1933			if (err)
1934				goto err_out;
1935		}
1936
1937		/* remap all type IDs referenced from this BTF type */
1938		err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
1939		if (err)
1940			goto err_out;
1941
1942		while ((type_id = btf_field_iter_next(&it))) {
1943			if (!*type_id) /* nothing to do for VOID references */
1944				continue;
1945
1946			/* we haven't updated btf's type count yet, so
1947			 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1948			 * add to all newly added BTF types
1949			 */
1950			*type_id += btf->start_id + btf->nr_types - 1;
1951		}
1952
1953		/* go to next type data and type offset index entry */
1954		t += sz;
1955		off++;
1956	}
1957
1958	/* Up until now any of the copied type data was effectively invisible,
1959	 * so if we exited early before this point due to error, BTF would be
1960	 * effectively unmodified. There would be extra internal memory
1961	 * pre-allocated, but it would not be available for querying.  But now
1962	 * that we've copied and rewritten all the data successfully, we can
1963	 * update type count and various internal offsets and sizes to
1964	 * "commit" the changes and made them visible to the outside world.
1965	 */
1966	btf->hdr->type_len += data_sz;
1967	btf->hdr->str_off += data_sz;
1968	btf->nr_types += cnt;
1969
1970	hashmap__free(p.str_off_map);
1971
1972	/* return type ID of the first added BTF type */
1973	return btf->start_id + btf->nr_types - cnt;
1974err_out:
1975	/* zero out preallocated memory as if it was just allocated with
1976	 * libbpf_add_mem()
1977	 */
1978	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1979	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1980
1981	/* and now restore original strings section size; types data size
1982	 * wasn't modified, so doesn't need restoring, see big comment above
1983	 */
1984	btf->hdr->str_len = old_strs_len;
1985
1986	hashmap__free(p.str_off_map);
1987
1988	return libbpf_err(err);
1989}
1990
1991/*
1992 * Append new BTF_KIND_INT type with:
1993 *   - *name* - non-empty, non-NULL type name;
1994 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1995 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1996 * Returns:
1997 *   - >0, type ID of newly added BTF type;
1998 *   - <0, on error.
1999 */
2000int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
2001{
2002	struct btf_type *t;
2003	int sz, name_off;
2004
2005	/* non-empty name */
2006	if (!name || !name[0])
2007		return libbpf_err(-EINVAL);
2008	/* byte_sz must be power of 2 */
2009	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
2010		return libbpf_err(-EINVAL);
2011	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
2012		return libbpf_err(-EINVAL);
2013
2014	/* deconstruct BTF, if necessary, and invalidate raw_data */
2015	if (btf_ensure_modifiable(btf))
2016		return libbpf_err(-ENOMEM);
2017
2018	sz = sizeof(struct btf_type) + sizeof(int);
2019	t = btf_add_type_mem(btf, sz);
2020	if (!t)
2021		return libbpf_err(-ENOMEM);
2022
2023	/* if something goes wrong later, we might end up with an extra string,
2024	 * but that shouldn't be a problem, because BTF can't be constructed
2025	 * completely anyway and will most probably be just discarded
2026	 */
2027	name_off = btf__add_str(btf, name);
2028	if (name_off < 0)
2029		return name_off;
2030
2031	t->name_off = name_off;
2032	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
2033	t->size = byte_sz;
2034	/* set INT info, we don't allow setting legacy bit offset/size */
2035	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
2036
2037	return btf_commit_type(btf, sz);
2038}
2039
2040/*
2041 * Append new BTF_KIND_FLOAT type with:
2042 *   - *name* - non-empty, non-NULL type name;
2043 *   - *sz* - size of the type, in bytes;
2044 * Returns:
2045 *   - >0, type ID of newly added BTF type;
2046 *   - <0, on error.
2047 */
2048int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
2049{
2050	struct btf_type *t;
2051	int sz, name_off;
2052
2053	/* non-empty name */
2054	if (!name || !name[0])
2055		return libbpf_err(-EINVAL);
2056
2057	/* byte_sz must be one of the explicitly allowed values */
2058	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
2059	    byte_sz != 16)
2060		return libbpf_err(-EINVAL);
2061
2062	if (btf_ensure_modifiable(btf))
2063		return libbpf_err(-ENOMEM);
2064
2065	sz = sizeof(struct btf_type);
2066	t = btf_add_type_mem(btf, sz);
2067	if (!t)
2068		return libbpf_err(-ENOMEM);
2069
2070	name_off = btf__add_str(btf, name);
2071	if (name_off < 0)
2072		return name_off;
2073
2074	t->name_off = name_off;
2075	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
2076	t->size = byte_sz;
2077
2078	return btf_commit_type(btf, sz);
2079}
2080
2081/* it's completely legal to append BTF types with type IDs pointing forward to
2082 * types that haven't been appended yet, so we only make sure that id looks
2083 * sane, we can't guarantee that ID will always be valid
2084 */
2085static int validate_type_id(int id)
2086{
2087	if (id < 0 || id > BTF_MAX_NR_TYPES)
2088		return -EINVAL;
2089	return 0;
2090}
2091
2092/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
2093static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
2094{
2095	struct btf_type *t;
2096	int sz, name_off = 0;
2097
2098	if (validate_type_id(ref_type_id))
2099		return libbpf_err(-EINVAL);
2100
2101	if (btf_ensure_modifiable(btf))
2102		return libbpf_err(-ENOMEM);
2103
2104	sz = sizeof(struct btf_type);
2105	t = btf_add_type_mem(btf, sz);
2106	if (!t)
2107		return libbpf_err(-ENOMEM);
2108
2109	if (name && name[0]) {
2110		name_off = btf__add_str(btf, name);
2111		if (name_off < 0)
2112			return name_off;
2113	}
2114
2115	t->name_off = name_off;
2116	t->info = btf_type_info(kind, 0, 0);
2117	t->type = ref_type_id;
2118
2119	return btf_commit_type(btf, sz);
2120}
2121
2122/*
2123 * Append new BTF_KIND_PTR type with:
2124 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2125 * Returns:
2126 *   - >0, type ID of newly added BTF type;
2127 *   - <0, on error.
2128 */
2129int btf__add_ptr(struct btf *btf, int ref_type_id)
2130{
2131	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
2132}
2133
2134/*
2135 * Append new BTF_KIND_ARRAY type with:
2136 *   - *index_type_id* - type ID of the type describing array index;
2137 *   - *elem_type_id* - type ID of the type describing array element;
2138 *   - *nr_elems* - the size of the array;
2139 * Returns:
2140 *   - >0, type ID of newly added BTF type;
2141 *   - <0, on error.
2142 */
2143int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
2144{
2145	struct btf_type *t;
2146	struct btf_array *a;
2147	int sz;
2148
2149	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
2150		return libbpf_err(-EINVAL);
2151
2152	if (btf_ensure_modifiable(btf))
2153		return libbpf_err(-ENOMEM);
2154
2155	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
2156	t = btf_add_type_mem(btf, sz);
2157	if (!t)
2158		return libbpf_err(-ENOMEM);
2159
2160	t->name_off = 0;
2161	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
2162	t->size = 0;
2163
2164	a = btf_array(t);
2165	a->type = elem_type_id;
2166	a->index_type = index_type_id;
2167	a->nelems = nr_elems;
2168
2169	return btf_commit_type(btf, sz);
2170}
2171
2172/* generic STRUCT/UNION append function */
2173static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
2174{
2175	struct btf_type *t;
2176	int sz, name_off = 0;
2177
2178	if (btf_ensure_modifiable(btf))
2179		return libbpf_err(-ENOMEM);
2180
2181	sz = sizeof(struct btf_type);
2182	t = btf_add_type_mem(btf, sz);
2183	if (!t)
2184		return libbpf_err(-ENOMEM);
2185
2186	if (name && name[0]) {
2187		name_off = btf__add_str(btf, name);
2188		if (name_off < 0)
2189			return name_off;
2190	}
2191
2192	/* start out with vlen=0 and no kflag; this will be adjusted when
2193	 * adding each member
2194	 */
2195	t->name_off = name_off;
2196	t->info = btf_type_info(kind, 0, 0);
2197	t->size = bytes_sz;
2198
2199	return btf_commit_type(btf, sz);
2200}
2201
2202/*
2203 * Append new BTF_KIND_STRUCT type with:
2204 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
2205 *   - *byte_sz* - size of the struct, in bytes;
2206 *
2207 * Struct initially has no fields in it. Fields can be added by
2208 * btf__add_field() right after btf__add_struct() succeeds.
2209 *
2210 * Returns:
2211 *   - >0, type ID of newly added BTF type;
2212 *   - <0, on error.
2213 */
2214int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
2215{
2216	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
2217}
2218
2219/*
2220 * Append new BTF_KIND_UNION type with:
2221 *   - *name* - name of the union, can be NULL or empty for anonymous union;
2222 *   - *byte_sz* - size of the union, in bytes;
2223 *
2224 * Union initially has no fields in it. Fields can be added by
2225 * btf__add_field() right after btf__add_union() succeeds. All fields
2226 * should have *bit_offset* of 0.
2227 *
2228 * Returns:
2229 *   - >0, type ID of newly added BTF type;
2230 *   - <0, on error.
2231 */
2232int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
2233{
2234	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
2235}
2236
2237static struct btf_type *btf_last_type(struct btf *btf)
2238{
2239	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
2240}
2241
2242/*
2243 * Append new field for the current STRUCT/UNION type with:
2244 *   - *name* - name of the field, can be NULL or empty for anonymous field;
2245 *   - *type_id* - type ID for the type describing field type;
2246 *   - *bit_offset* - bit offset of the start of the field within struct/union;
2247 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2248 * Returns:
2249 *   -  0, on success;
2250 *   - <0, on error.
2251 */
2252int btf__add_field(struct btf *btf, const char *name, int type_id,
2253		   __u32 bit_offset, __u32 bit_size)
2254{
2255	struct btf_type *t;
2256	struct btf_member *m;
2257	bool is_bitfield;
2258	int sz, name_off = 0;
2259
2260	/* last type should be union/struct */
2261	if (btf->nr_types == 0)
2262		return libbpf_err(-EINVAL);
2263	t = btf_last_type(btf);
2264	if (!btf_is_composite(t))
2265		return libbpf_err(-EINVAL);
2266
2267	if (validate_type_id(type_id))
2268		return libbpf_err(-EINVAL);
2269	/* best-effort bit field offset/size enforcement */
2270	is_bitfield = bit_size || (bit_offset % 8 != 0);
2271	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2272		return libbpf_err(-EINVAL);
2273
2274	/* only offset 0 is allowed for unions */
2275	if (btf_is_union(t) && bit_offset)
2276		return libbpf_err(-EINVAL);
2277
2278	/* decompose and invalidate raw data */
2279	if (btf_ensure_modifiable(btf))
2280		return libbpf_err(-ENOMEM);
2281
2282	sz = sizeof(struct btf_member);
2283	m = btf_add_type_mem(btf, sz);
2284	if (!m)
2285		return libbpf_err(-ENOMEM);
2286
2287	if (name && name[0]) {
2288		name_off = btf__add_str(btf, name);
2289		if (name_off < 0)
2290			return name_off;
2291	}
2292
2293	m->name_off = name_off;
2294	m->type = type_id;
2295	m->offset = bit_offset | (bit_size << 24);
2296
2297	/* btf_add_type_mem can invalidate t pointer */
2298	t = btf_last_type(btf);
2299	/* update parent type's vlen and kflag */
2300	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2301
2302	btf->hdr->type_len += sz;
2303	btf->hdr->str_off += sz;
2304	return 0;
2305}
2306
2307static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2308			       bool is_signed, __u8 kind)
2309{
2310	struct btf_type *t;
2311	int sz, name_off = 0;
2312
2313	/* byte_sz must be power of 2 */
2314	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2315		return libbpf_err(-EINVAL);
2316
2317	if (btf_ensure_modifiable(btf))
2318		return libbpf_err(-ENOMEM);
2319
2320	sz = sizeof(struct btf_type);
2321	t = btf_add_type_mem(btf, sz);
2322	if (!t)
2323		return libbpf_err(-ENOMEM);
2324
2325	if (name && name[0]) {
2326		name_off = btf__add_str(btf, name);
2327		if (name_off < 0)
2328			return name_off;
2329	}
2330
2331	/* start out with vlen=0; it will be adjusted when adding enum values */
2332	t->name_off = name_off;
2333	t->info = btf_type_info(kind, 0, is_signed);
2334	t->size = byte_sz;
2335
2336	return btf_commit_type(btf, sz);
2337}
2338
2339/*
2340 * Append new BTF_KIND_ENUM type with:
2341 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2342 *   - *byte_sz* - size of the enum, in bytes.
2343 *
2344 * Enum initially has no enum values in it (and corresponds to enum forward
2345 * declaration). Enumerator values can be added by btf__add_enum_value()
2346 * immediately after btf__add_enum() succeeds.
2347 *
2348 * Returns:
2349 *   - >0, type ID of newly added BTF type;
2350 *   - <0, on error.
2351 */
2352int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2353{
2354	/*
2355	 * set the signedness to be unsigned, it will change to signed
2356	 * if any later enumerator is negative.
2357	 */
2358	return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2359}
2360
2361/*
2362 * Append new enum value for the current ENUM type with:
2363 *   - *name* - name of the enumerator value, can't be NULL or empty;
2364 *   - *value* - integer value corresponding to enum value *name*;
2365 * Returns:
2366 *   -  0, on success;
2367 *   - <0, on error.
2368 */
2369int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2370{
2371	struct btf_type *t;
2372	struct btf_enum *v;
2373	int sz, name_off;
2374
2375	/* last type should be BTF_KIND_ENUM */
2376	if (btf->nr_types == 0)
2377		return libbpf_err(-EINVAL);
2378	t = btf_last_type(btf);
2379	if (!btf_is_enum(t))
2380		return libbpf_err(-EINVAL);
2381
2382	/* non-empty name */
2383	if (!name || !name[0])
2384		return libbpf_err(-EINVAL);
2385	if (value < INT_MIN || value > UINT_MAX)
2386		return libbpf_err(-E2BIG);
2387
2388	/* decompose and invalidate raw data */
2389	if (btf_ensure_modifiable(btf))
2390		return libbpf_err(-ENOMEM);
2391
2392	sz = sizeof(struct btf_enum);
2393	v = btf_add_type_mem(btf, sz);
2394	if (!v)
2395		return libbpf_err(-ENOMEM);
2396
2397	name_off = btf__add_str(btf, name);
2398	if (name_off < 0)
2399		return name_off;
2400
2401	v->name_off = name_off;
2402	v->val = value;
2403
2404	/* update parent type's vlen */
2405	t = btf_last_type(btf);
2406	btf_type_inc_vlen(t);
2407
2408	/* if negative value, set signedness to signed */
2409	if (value < 0)
2410		t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2411
2412	btf->hdr->type_len += sz;
2413	btf->hdr->str_off += sz;
2414	return 0;
2415}
2416
2417/*
2418 * Append new BTF_KIND_ENUM64 type with:
2419 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2420 *   - *byte_sz* - size of the enum, in bytes.
2421 *   - *is_signed* - whether the enum values are signed or not;
2422 *
2423 * Enum initially has no enum values in it (and corresponds to enum forward
2424 * declaration). Enumerator values can be added by btf__add_enum64_value()
2425 * immediately after btf__add_enum64() succeeds.
2426 *
2427 * Returns:
2428 *   - >0, type ID of newly added BTF type;
2429 *   - <0, on error.
2430 */
2431int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2432		    bool is_signed)
2433{
2434	return btf_add_enum_common(btf, name, byte_sz, is_signed,
2435				   BTF_KIND_ENUM64);
2436}
2437
2438/*
2439 * Append new enum value for the current ENUM64 type with:
2440 *   - *name* - name of the enumerator value, can't be NULL or empty;
2441 *   - *value* - integer value corresponding to enum value *name*;
2442 * Returns:
2443 *   -  0, on success;
2444 *   - <0, on error.
2445 */
2446int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2447{
2448	struct btf_enum64 *v;
2449	struct btf_type *t;
2450	int sz, name_off;
2451
2452	/* last type should be BTF_KIND_ENUM64 */
2453	if (btf->nr_types == 0)
2454		return libbpf_err(-EINVAL);
2455	t = btf_last_type(btf);
2456	if (!btf_is_enum64(t))
2457		return libbpf_err(-EINVAL);
2458
2459	/* non-empty name */
2460	if (!name || !name[0])
2461		return libbpf_err(-EINVAL);
2462
2463	/* decompose and invalidate raw data */
2464	if (btf_ensure_modifiable(btf))
2465		return libbpf_err(-ENOMEM);
2466
2467	sz = sizeof(struct btf_enum64);
2468	v = btf_add_type_mem(btf, sz);
2469	if (!v)
2470		return libbpf_err(-ENOMEM);
2471
2472	name_off = btf__add_str(btf, name);
2473	if (name_off < 0)
2474		return name_off;
2475
2476	v->name_off = name_off;
2477	v->val_lo32 = (__u32)value;
2478	v->val_hi32 = value >> 32;
2479
2480	/* update parent type's vlen */
2481	t = btf_last_type(btf);
2482	btf_type_inc_vlen(t);
2483
2484	btf->hdr->type_len += sz;
2485	btf->hdr->str_off += sz;
2486	return 0;
2487}
2488
2489/*
2490 * Append new BTF_KIND_FWD type with:
2491 *   - *name*, non-empty/non-NULL name;
2492 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2493 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2494 * Returns:
2495 *   - >0, type ID of newly added BTF type;
2496 *   - <0, on error.
2497 */
2498int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2499{
2500	if (!name || !name[0])
2501		return libbpf_err(-EINVAL);
2502
2503	switch (fwd_kind) {
2504	case BTF_FWD_STRUCT:
2505	case BTF_FWD_UNION: {
2506		struct btf_type *t;
2507		int id;
2508
2509		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2510		if (id <= 0)
2511			return id;
2512		t = btf_type_by_id(btf, id);
2513		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2514		return id;
2515	}
2516	case BTF_FWD_ENUM:
2517		/* enum forward in BTF currently is just an enum with no enum
2518		 * values; we also assume a standard 4-byte size for it
2519		 */
2520		return btf__add_enum(btf, name, sizeof(int));
2521	default:
2522		return libbpf_err(-EINVAL);
2523	}
2524}
2525
2526/*
2527 * Append new BTF_KING_TYPEDEF type with:
2528 *   - *name*, non-empty/non-NULL name;
2529 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2530 * Returns:
2531 *   - >0, type ID of newly added BTF type;
2532 *   - <0, on error.
2533 */
2534int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2535{
2536	if (!name || !name[0])
2537		return libbpf_err(-EINVAL);
2538
2539	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2540}
2541
2542/*
2543 * Append new BTF_KIND_VOLATILE type with:
2544 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2545 * Returns:
2546 *   - >0, type ID of newly added BTF type;
2547 *   - <0, on error.
2548 */
2549int btf__add_volatile(struct btf *btf, int ref_type_id)
2550{
2551	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2552}
2553
2554/*
2555 * Append new BTF_KIND_CONST type with:
2556 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2557 * Returns:
2558 *   - >0, type ID of newly added BTF type;
2559 *   - <0, on error.
2560 */
2561int btf__add_const(struct btf *btf, int ref_type_id)
2562{
2563	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2564}
2565
2566/*
2567 * Append new BTF_KIND_RESTRICT type with:
2568 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2569 * Returns:
2570 *   - >0, type ID of newly added BTF type;
2571 *   - <0, on error.
2572 */
2573int btf__add_restrict(struct btf *btf, int ref_type_id)
2574{
2575	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2576}
2577
2578/*
2579 * Append new BTF_KIND_TYPE_TAG type with:
2580 *   - *value*, non-empty/non-NULL tag value;
2581 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2582 * Returns:
2583 *   - >0, type ID of newly added BTF type;
2584 *   - <0, on error.
2585 */
2586int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2587{
2588	if (!value || !value[0])
2589		return libbpf_err(-EINVAL);
2590
2591	return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2592}
2593
2594/*
2595 * Append new BTF_KIND_FUNC type with:
2596 *   - *name*, non-empty/non-NULL name;
2597 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2598 * Returns:
2599 *   - >0, type ID of newly added BTF type;
2600 *   - <0, on error.
2601 */
2602int btf__add_func(struct btf *btf, const char *name,
2603		  enum btf_func_linkage linkage, int proto_type_id)
2604{
2605	int id;
2606
2607	if (!name || !name[0])
2608		return libbpf_err(-EINVAL);
2609	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2610	    linkage != BTF_FUNC_EXTERN)
2611		return libbpf_err(-EINVAL);
2612
2613	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2614	if (id > 0) {
2615		struct btf_type *t = btf_type_by_id(btf, id);
2616
2617		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2618	}
2619	return libbpf_err(id);
2620}
2621
2622/*
2623 * Append new BTF_KIND_FUNC_PROTO with:
2624 *   - *ret_type_id* - type ID for return result of a function.
2625 *
2626 * Function prototype initially has no arguments, but they can be added by
2627 * btf__add_func_param() one by one, immediately after
2628 * btf__add_func_proto() succeeded.
2629 *
2630 * Returns:
2631 *   - >0, type ID of newly added BTF type;
2632 *   - <0, on error.
2633 */
2634int btf__add_func_proto(struct btf *btf, int ret_type_id)
2635{
2636	struct btf_type *t;
2637	int sz;
2638
2639	if (validate_type_id(ret_type_id))
2640		return libbpf_err(-EINVAL);
2641
2642	if (btf_ensure_modifiable(btf))
2643		return libbpf_err(-ENOMEM);
2644
2645	sz = sizeof(struct btf_type);
2646	t = btf_add_type_mem(btf, sz);
2647	if (!t)
2648		return libbpf_err(-ENOMEM);
2649
2650	/* start out with vlen=0; this will be adjusted when adding enum
2651	 * values, if necessary
2652	 */
2653	t->name_off = 0;
2654	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2655	t->type = ret_type_id;
2656
2657	return btf_commit_type(btf, sz);
2658}
2659
2660/*
2661 * Append new function parameter for current FUNC_PROTO type with:
2662 *   - *name* - parameter name, can be NULL or empty;
2663 *   - *type_id* - type ID describing the type of the parameter.
2664 * Returns:
2665 *   -  0, on success;
2666 *   - <0, on error.
2667 */
2668int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2669{
2670	struct btf_type *t;
2671	struct btf_param *p;
2672	int sz, name_off = 0;
2673
2674	if (validate_type_id(type_id))
2675		return libbpf_err(-EINVAL);
2676
2677	/* last type should be BTF_KIND_FUNC_PROTO */
2678	if (btf->nr_types == 0)
2679		return libbpf_err(-EINVAL);
2680	t = btf_last_type(btf);
2681	if (!btf_is_func_proto(t))
2682		return libbpf_err(-EINVAL);
2683
2684	/* decompose and invalidate raw data */
2685	if (btf_ensure_modifiable(btf))
2686		return libbpf_err(-ENOMEM);
2687
2688	sz = sizeof(struct btf_param);
2689	p = btf_add_type_mem(btf, sz);
2690	if (!p)
2691		return libbpf_err(-ENOMEM);
2692
2693	if (name && name[0]) {
2694		name_off = btf__add_str(btf, name);
2695		if (name_off < 0)
2696			return name_off;
2697	}
2698
2699	p->name_off = name_off;
2700	p->type = type_id;
2701
2702	/* update parent type's vlen */
2703	t = btf_last_type(btf);
2704	btf_type_inc_vlen(t);
2705
2706	btf->hdr->type_len += sz;
2707	btf->hdr->str_off += sz;
2708	return 0;
2709}
2710
2711/*
2712 * Append new BTF_KIND_VAR type with:
2713 *   - *name* - non-empty/non-NULL name;
2714 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2715 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2716 *   - *type_id* - type ID of the type describing the type of the variable.
2717 * Returns:
2718 *   - >0, type ID of newly added BTF type;
2719 *   - <0, on error.
2720 */
2721int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2722{
2723	struct btf_type *t;
2724	struct btf_var *v;
2725	int sz, name_off;
2726
2727	/* non-empty name */
2728	if (!name || !name[0])
2729		return libbpf_err(-EINVAL);
2730	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2731	    linkage != BTF_VAR_GLOBAL_EXTERN)
2732		return libbpf_err(-EINVAL);
2733	if (validate_type_id(type_id))
2734		return libbpf_err(-EINVAL);
2735
2736	/* deconstruct BTF, if necessary, and invalidate raw_data */
2737	if (btf_ensure_modifiable(btf))
2738		return libbpf_err(-ENOMEM);
2739
2740	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2741	t = btf_add_type_mem(btf, sz);
2742	if (!t)
2743		return libbpf_err(-ENOMEM);
2744
2745	name_off = btf__add_str(btf, name);
2746	if (name_off < 0)
2747		return name_off;
2748
2749	t->name_off = name_off;
2750	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2751	t->type = type_id;
2752
2753	v = btf_var(t);
2754	v->linkage = linkage;
2755
2756	return btf_commit_type(btf, sz);
2757}
2758
2759/*
2760 * Append new BTF_KIND_DATASEC type with:
2761 *   - *name* - non-empty/non-NULL name;
2762 *   - *byte_sz* - data section size, in bytes.
2763 *
2764 * Data section is initially empty. Variables info can be added with
2765 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2766 *
2767 * Returns:
2768 *   - >0, type ID of newly added BTF type;
2769 *   - <0, on error.
2770 */
2771int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2772{
2773	struct btf_type *t;
2774	int sz, name_off;
2775
2776	/* non-empty name */
2777	if (!name || !name[0])
2778		return libbpf_err(-EINVAL);
2779
2780	if (btf_ensure_modifiable(btf))
2781		return libbpf_err(-ENOMEM);
2782
2783	sz = sizeof(struct btf_type);
2784	t = btf_add_type_mem(btf, sz);
2785	if (!t)
2786		return libbpf_err(-ENOMEM);
2787
2788	name_off = btf__add_str(btf, name);
2789	if (name_off < 0)
2790		return name_off;
2791
2792	/* start with vlen=0, which will be update as var_secinfos are added */
2793	t->name_off = name_off;
2794	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2795	t->size = byte_sz;
2796
2797	return btf_commit_type(btf, sz);
2798}
2799
2800/*
2801 * Append new data section variable information entry for current DATASEC type:
2802 *   - *var_type_id* - type ID, describing type of the variable;
2803 *   - *offset* - variable offset within data section, in bytes;
2804 *   - *byte_sz* - variable size, in bytes.
2805 *
2806 * Returns:
2807 *   -  0, on success;
2808 *   - <0, on error.
2809 */
2810int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2811{
2812	struct btf_type *t;
2813	struct btf_var_secinfo *v;
2814	int sz;
2815
2816	/* last type should be BTF_KIND_DATASEC */
2817	if (btf->nr_types == 0)
2818		return libbpf_err(-EINVAL);
2819	t = btf_last_type(btf);
2820	if (!btf_is_datasec(t))
2821		return libbpf_err(-EINVAL);
2822
2823	if (validate_type_id(var_type_id))
2824		return libbpf_err(-EINVAL);
2825
2826	/* decompose and invalidate raw data */
2827	if (btf_ensure_modifiable(btf))
2828		return libbpf_err(-ENOMEM);
2829
2830	sz = sizeof(struct btf_var_secinfo);
2831	v = btf_add_type_mem(btf, sz);
2832	if (!v)
2833		return libbpf_err(-ENOMEM);
2834
2835	v->type = var_type_id;
2836	v->offset = offset;
2837	v->size = byte_sz;
2838
2839	/* update parent type's vlen */
2840	t = btf_last_type(btf);
2841	btf_type_inc_vlen(t);
2842
2843	btf->hdr->type_len += sz;
2844	btf->hdr->str_off += sz;
2845	return 0;
2846}
2847
2848/*
2849 * Append new BTF_KIND_DECL_TAG type with:
2850 *   - *value* - non-empty/non-NULL string;
2851 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2852 *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2853 *     member or function argument index;
2854 * Returns:
2855 *   - >0, type ID of newly added BTF type;
2856 *   - <0, on error.
2857 */
2858int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2859		 int component_idx)
2860{
2861	struct btf_type *t;
2862	int sz, value_off;
2863
2864	if (!value || !value[0] || component_idx < -1)
2865		return libbpf_err(-EINVAL);
2866
2867	if (validate_type_id(ref_type_id))
2868		return libbpf_err(-EINVAL);
2869
2870	if (btf_ensure_modifiable(btf))
2871		return libbpf_err(-ENOMEM);
2872
2873	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2874	t = btf_add_type_mem(btf, sz);
2875	if (!t)
2876		return libbpf_err(-ENOMEM);
2877
2878	value_off = btf__add_str(btf, value);
2879	if (value_off < 0)
2880		return value_off;
2881
2882	t->name_off = value_off;
2883	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2884	t->type = ref_type_id;
2885	btf_decl_tag(t)->component_idx = component_idx;
2886
2887	return btf_commit_type(btf, sz);
2888}
2889
2890struct btf_ext_sec_info_param {
2891	__u32 off;
2892	__u32 len;
2893	__u32 min_rec_size;
2894	struct btf_ext_info *ext_info;
2895	const char *desc;
2896};
2897
2898/*
2899 * Parse a single info subsection of the BTF.ext info data:
2900 *  - validate subsection structure and elements
2901 *  - save info subsection start and sizing details in struct btf_ext
2902 *  - endian-independent operation, for calling before byte-swapping
2903 */
2904static int btf_ext_parse_sec_info(struct btf_ext *btf_ext,
2905				  struct btf_ext_sec_info_param *ext_sec,
2906				  bool is_native)
2907{
2908	const struct btf_ext_info_sec *sinfo;
2909	struct btf_ext_info *ext_info;
2910	__u32 info_left, record_size;
2911	size_t sec_cnt = 0;
 
2912	void *info;
2913
2914	if (ext_sec->len == 0)
2915		return 0;
2916
2917	if (ext_sec->off & 0x03) {
2918		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2919		     ext_sec->desc);
2920		return -EINVAL;
2921	}
2922
2923	/* The start of the info sec (including the __u32 record_size). */
2924	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2925	info_left = ext_sec->len;
2926
2927	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2928		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2929			 ext_sec->desc, ext_sec->off, ext_sec->len);
2930		return -EINVAL;
2931	}
2932
2933	/* At least a record size */
2934	if (info_left < sizeof(__u32)) {
2935		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2936		return -EINVAL;
2937	}
2938
2939	/* The record size needs to meet either the minimum standard or, when
2940	 * handling non-native endianness data, the exact standard so as
2941	 * to allow safe byte-swapping.
2942	 */
2943	record_size = is_native ? *(__u32 *)info : bswap_32(*(__u32 *)info);
2944	if (record_size < ext_sec->min_rec_size ||
2945	    (!is_native && record_size != ext_sec->min_rec_size) ||
2946	    record_size & 0x03) {
2947		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2948			 ext_sec->desc, record_size);
2949		return -EINVAL;
2950	}
2951
2952	sinfo = info + sizeof(__u32);
2953	info_left -= sizeof(__u32);
2954
2955	/* If no records, return failure now so .BTF.ext won't be used. */
2956	if (!info_left) {
2957		pr_debug("%s section in .BTF.ext has no records\n", ext_sec->desc);
2958		return -EINVAL;
2959	}
2960
2961	while (info_left) {
2962		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2963		__u64 total_record_size;
2964		__u32 num_records;
2965
2966		if (info_left < sec_hdrlen) {
2967			pr_debug("%s section header is not found in .BTF.ext\n",
2968			     ext_sec->desc);
2969			return -EINVAL;
2970		}
2971
2972		num_records = is_native ? sinfo->num_info : bswap_32(sinfo->num_info);
2973		if (num_records == 0) {
2974			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2975			     ext_sec->desc);
2976			return -EINVAL;
2977		}
2978
2979		total_record_size = sec_hdrlen + (__u64)num_records * record_size;
2980		if (info_left < total_record_size) {
2981			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2982			     ext_sec->desc);
2983			return -EINVAL;
2984		}
2985
2986		info_left -= total_record_size;
2987		sinfo = (void *)sinfo + total_record_size;
2988		sec_cnt++;
2989	}
2990
2991	ext_info = ext_sec->ext_info;
2992	ext_info->len = ext_sec->len - sizeof(__u32);
2993	ext_info->rec_size = record_size;
2994	ext_info->info = info + sizeof(__u32);
2995	ext_info->sec_cnt = sec_cnt;
2996
2997	return 0;
2998}
2999
3000/* Parse all info secs in the BTF.ext info data */
3001static int btf_ext_parse_info(struct btf_ext *btf_ext, bool is_native)
3002{
3003	struct btf_ext_sec_info_param func_info = {
3004		.off = btf_ext->hdr->func_info_off,
3005		.len = btf_ext->hdr->func_info_len,
3006		.min_rec_size = sizeof(struct bpf_func_info_min),
3007		.ext_info = &btf_ext->func_info,
3008		.desc = "func_info"
3009	};
3010	struct btf_ext_sec_info_param line_info = {
 
 
 
 
 
 
3011		.off = btf_ext->hdr->line_info_off,
3012		.len = btf_ext->hdr->line_info_len,
3013		.min_rec_size = sizeof(struct bpf_line_info_min),
3014		.ext_info = &btf_ext->line_info,
3015		.desc = "line_info",
3016	};
3017	struct btf_ext_sec_info_param core_relo = {
 
 
 
 
 
 
3018		.off = btf_ext->hdr->core_relo_off,
3019		.len = btf_ext->hdr->core_relo_len,
3020		.min_rec_size = sizeof(struct bpf_core_relo),
3021		.ext_info = &btf_ext->core_relo_info,
3022		.desc = "core_relo",
3023	};
3024	int err;
3025
3026	err = btf_ext_parse_sec_info(btf_ext, &func_info, is_native);
3027	if (err)
3028		return err;
3029
3030	err = btf_ext_parse_sec_info(btf_ext, &line_info, is_native);
3031	if (err)
3032		return err;
3033
3034	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3035		return 0; /* skip core relos parsing */
3036
3037	err = btf_ext_parse_sec_info(btf_ext, &core_relo, is_native);
3038	if (err)
3039		return err;
3040
3041	return 0;
3042}
3043
3044/* Swap byte-order of BTF.ext header with any endianness */
3045static void btf_ext_bswap_hdr(struct btf_ext_header *h)
3046{
3047	bool is_native = h->magic == BTF_MAGIC;
3048	__u32 hdr_len;
3049
3050	hdr_len = is_native ? h->hdr_len : bswap_32(h->hdr_len);
3051
3052	h->magic = bswap_16(h->magic);
3053	h->hdr_len = bswap_32(h->hdr_len);
3054	h->func_info_off = bswap_32(h->func_info_off);
3055	h->func_info_len = bswap_32(h->func_info_len);
3056	h->line_info_off = bswap_32(h->line_info_off);
3057	h->line_info_len = bswap_32(h->line_info_len);
3058
3059	if (hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3060		return;
3061
3062	h->core_relo_off = bswap_32(h->core_relo_off);
3063	h->core_relo_len = bswap_32(h->core_relo_len);
3064}
3065
3066/* Swap byte-order of generic info subsection */
3067static void btf_ext_bswap_info_sec(void *info, __u32 len, bool is_native,
3068				   info_rec_bswap_fn bswap_fn)
3069{
3070	struct btf_ext_info_sec *sec;
3071	__u32 info_left, rec_size, *rs;
3072
3073	if (len == 0)
3074		return;
3075
3076	rs = info;				/* info record size */
3077	rec_size = is_native ? *rs : bswap_32(*rs);
3078	*rs = bswap_32(*rs);
3079
3080	sec = info + sizeof(__u32);		/* info sec #1 */
3081	info_left = len - sizeof(__u32);
3082	while (info_left) {
3083		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
3084		__u32 i, num_recs;
3085		void *p;
3086
3087		num_recs = is_native ? sec->num_info : bswap_32(sec->num_info);
3088		sec->sec_name_off = bswap_32(sec->sec_name_off);
3089		sec->num_info = bswap_32(sec->num_info);
3090		p = sec->data;			/* info rec #1 */
3091		for (i = 0; i < num_recs; i++, p += rec_size)
3092			bswap_fn(p);
3093		sec = p;
3094		info_left -= sec_hdrlen + (__u64)rec_size * num_recs;
3095	}
3096}
3097
3098/*
3099 * Swap byte-order of all info data in a BTF.ext section
3100 *  - requires BTF.ext hdr in native endianness
3101 */
3102static void btf_ext_bswap_info(struct btf_ext *btf_ext, void *data)
3103{
3104	const bool is_native = btf_ext->swapped_endian;
3105	const struct btf_ext_header *h = data;
3106	void *info;
3107
3108	/* Swap func_info subsection byte-order */
3109	info = data + h->hdr_len + h->func_info_off;
3110	btf_ext_bswap_info_sec(info, h->func_info_len, is_native,
3111			       (info_rec_bswap_fn)bpf_func_info_bswap);
3112
3113	/* Swap line_info subsection byte-order */
3114	info = data + h->hdr_len + h->line_info_off;
3115	btf_ext_bswap_info_sec(info, h->line_info_len, is_native,
3116			       (info_rec_bswap_fn)bpf_line_info_bswap);
3117
3118	/* Swap core_relo subsection byte-order (if present) */
3119	if (h->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3120		return;
3121
3122	info = data + h->hdr_len + h->core_relo_off;
3123	btf_ext_bswap_info_sec(info, h->core_relo_len, is_native,
3124			       (info_rec_bswap_fn)bpf_core_relo_bswap);
3125}
3126
3127/* Parse hdr data and info sections: check and convert to native endianness */
3128static int btf_ext_parse(struct btf_ext *btf_ext)
3129{
3130	__u32 hdr_len, data_size = btf_ext->data_size;
3131	struct btf_ext_header *hdr = btf_ext->hdr;
3132	bool swapped_endian = false;
3133	int err;
3134
3135	if (data_size < offsetofend(struct btf_ext_header, hdr_len)) {
3136		pr_debug("BTF.ext header too short\n");
3137		return -EINVAL;
3138	}
3139
3140	hdr_len = hdr->hdr_len;
3141	if (hdr->magic == bswap_16(BTF_MAGIC)) {
3142		swapped_endian = true;
3143		hdr_len = bswap_32(hdr_len);
3144	} else if (hdr->magic != BTF_MAGIC) {
3145		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
3146		return -EINVAL;
3147	}
3148
3149	/* Ensure known version of structs, current BTF_VERSION == 1 */
3150	if (hdr->version != 1) {
3151		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
3152		return -ENOTSUP;
3153	}
3154
3155	if (hdr->flags) {
3156		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
3157		return -ENOTSUP;
3158	}
3159
3160	if (data_size < hdr_len) {
3161		pr_debug("BTF.ext header not found\n");
3162		return -EINVAL;
3163	} else if (data_size == hdr_len) {
3164		pr_debug("BTF.ext has no data\n");
3165		return -EINVAL;
3166	}
3167
3168	/* Verify mandatory hdr info details present */
3169	if (hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
3170		pr_warn("BTF.ext header missing func_info, line_info\n");
3171		return -EINVAL;
3172	}
3173
3174	/* Keep hdr native byte-order in memory for introspection */
3175	if (swapped_endian)
3176		btf_ext_bswap_hdr(btf_ext->hdr);
3177
3178	/* Validate info subsections and cache key metadata */
3179	err = btf_ext_parse_info(btf_ext, !swapped_endian);
3180	if (err)
3181		return err;
3182
3183	/* Keep infos native byte-order in memory for introspection */
3184	if (swapped_endian)
3185		btf_ext_bswap_info(btf_ext, btf_ext->data);
3186
3187	/*
3188	 * Set btf_ext->swapped_endian only after all header and info data has
3189	 * been swapped, helping bswap functions determine if their data are
3190	 * in native byte-order when called.
3191	 */
3192	btf_ext->swapped_endian = swapped_endian;
3193	return 0;
3194}
3195
3196void btf_ext__free(struct btf_ext *btf_ext)
3197{
3198	if (IS_ERR_OR_NULL(btf_ext))
3199		return;
3200	free(btf_ext->func_info.sec_idxs);
3201	free(btf_ext->line_info.sec_idxs);
3202	free(btf_ext->core_relo_info.sec_idxs);
3203	free(btf_ext->data);
3204	free(btf_ext->data_swapped);
3205	free(btf_ext);
3206}
3207
3208struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
3209{
3210	struct btf_ext *btf_ext;
3211	int err;
3212
3213	btf_ext = calloc(1, sizeof(struct btf_ext));
3214	if (!btf_ext)
3215		return libbpf_err_ptr(-ENOMEM);
3216
3217	btf_ext->data_size = size;
3218	btf_ext->data = malloc(size);
3219	if (!btf_ext->data) {
3220		err = -ENOMEM;
3221		goto done;
3222	}
3223	memcpy(btf_ext->data, data, size);
3224
3225	err = btf_ext_parse(btf_ext);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3226
3227done:
3228	if (err) {
3229		btf_ext__free(btf_ext);
3230		return libbpf_err_ptr(err);
3231	}
3232
3233	return btf_ext;
3234}
3235
3236static void *btf_ext_raw_data(const struct btf_ext *btf_ext_ro, bool swap_endian)
3237{
3238	struct btf_ext *btf_ext = (struct btf_ext *)btf_ext_ro;
3239	const __u32 data_sz = btf_ext->data_size;
3240	void *data;
3241
3242	/* Return native data (always present) or swapped data if present */
3243	if (!swap_endian)
3244		return btf_ext->data;
3245	else if (btf_ext->data_swapped)
3246		return btf_ext->data_swapped;
3247
3248	/* Recreate missing swapped data, then cache and return */
3249	data = calloc(1, data_sz);
3250	if (!data)
3251		return NULL;
3252	memcpy(data, btf_ext->data, data_sz);
3253
3254	btf_ext_bswap_info(btf_ext, data);
3255	btf_ext_bswap_hdr(data);
3256	btf_ext->data_swapped = data;
3257	return data;
3258}
3259
3260const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size)
3261{
3262	void *data;
3263
3264	data = btf_ext_raw_data(btf_ext, btf_ext->swapped_endian);
3265	if (!data)
3266		return errno = ENOMEM, NULL;
3267
3268	*size = btf_ext->data_size;
3269	return data;
3270}
3271
3272__attribute__((alias("btf_ext__raw_data")))
3273const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size);
3274
3275enum btf_endianness btf_ext__endianness(const struct btf_ext *btf_ext)
3276{
3277	if (is_host_big_endian())
3278		return btf_ext->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
3279	else
3280		return btf_ext->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
3281}
3282
3283int btf_ext__set_endianness(struct btf_ext *btf_ext, enum btf_endianness endian)
3284{
3285	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
3286		return libbpf_err(-EINVAL);
3287
3288	btf_ext->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
3289
3290	if (!btf_ext->swapped_endian) {
3291		free(btf_ext->data_swapped);
3292		btf_ext->data_swapped = NULL;
3293	}
3294	return 0;
3295}
3296
3297struct btf_dedup;
3298
3299static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
3300static void btf_dedup_free(struct btf_dedup *d);
3301static int btf_dedup_prep(struct btf_dedup *d);
3302static int btf_dedup_strings(struct btf_dedup *d);
3303static int btf_dedup_prim_types(struct btf_dedup *d);
3304static int btf_dedup_struct_types(struct btf_dedup *d);
3305static int btf_dedup_ref_types(struct btf_dedup *d);
3306static int btf_dedup_resolve_fwds(struct btf_dedup *d);
3307static int btf_dedup_compact_types(struct btf_dedup *d);
3308static int btf_dedup_remap_types(struct btf_dedup *d);
3309
3310/*
3311 * Deduplicate BTF types and strings.
3312 *
3313 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
3314 * section with all BTF type descriptors and string data. It overwrites that
3315 * memory in-place with deduplicated types and strings without any loss of
3316 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
3317 * is provided, all the strings referenced from .BTF.ext section are honored
3318 * and updated to point to the right offsets after deduplication.
3319 *
3320 * If function returns with error, type/string data might be garbled and should
3321 * be discarded.
3322 *
3323 * More verbose and detailed description of both problem btf_dedup is solving,
3324 * as well as solution could be found at:
3325 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
3326 *
3327 * Problem description and justification
3328 * =====================================
3329 *
3330 * BTF type information is typically emitted either as a result of conversion
3331 * from DWARF to BTF or directly by compiler. In both cases, each compilation
3332 * unit contains information about a subset of all the types that are used
3333 * in an application. These subsets are frequently overlapping and contain a lot
3334 * of duplicated information when later concatenated together into a single
3335 * binary. This algorithm ensures that each unique type is represented by single
3336 * BTF type descriptor, greatly reducing resulting size of BTF data.
3337 *
3338 * Compilation unit isolation and subsequent duplication of data is not the only
3339 * problem. The same type hierarchy (e.g., struct and all the type that struct
3340 * references) in different compilation units can be represented in BTF to
3341 * various degrees of completeness (or, rather, incompleteness) due to
3342 * struct/union forward declarations.
3343 *
3344 * Let's take a look at an example, that we'll use to better understand the
3345 * problem (and solution). Suppose we have two compilation units, each using
3346 * same `struct S`, but each of them having incomplete type information about
3347 * struct's fields:
3348 *
3349 * // CU #1:
3350 * struct S;
3351 * struct A {
3352 *	int a;
3353 *	struct A* self;
3354 *	struct S* parent;
3355 * };
3356 * struct B;
3357 * struct S {
3358 *	struct A* a_ptr;
3359 *	struct B* b_ptr;
3360 * };
3361 *
3362 * // CU #2:
3363 * struct S;
3364 * struct A;
3365 * struct B {
3366 *	int b;
3367 *	struct B* self;
3368 *	struct S* parent;
3369 * };
3370 * struct S {
3371 *	struct A* a_ptr;
3372 *	struct B* b_ptr;
3373 * };
3374 *
3375 * In case of CU #1, BTF data will know only that `struct B` exist (but no
3376 * more), but will know the complete type information about `struct A`. While
3377 * for CU #2, it will know full type information about `struct B`, but will
3378 * only know about forward declaration of `struct A` (in BTF terms, it will
3379 * have `BTF_KIND_FWD` type descriptor with name `B`).
3380 *
3381 * This compilation unit isolation means that it's possible that there is no
3382 * single CU with complete type information describing structs `S`, `A`, and
3383 * `B`. Also, we might get tons of duplicated and redundant type information.
3384 *
3385 * Additional complication we need to keep in mind comes from the fact that
3386 * types, in general, can form graphs containing cycles, not just DAGs.
3387 *
3388 * While algorithm does deduplication, it also merges and resolves type
3389 * information (unless disabled throught `struct btf_opts`), whenever possible.
3390 * E.g., in the example above with two compilation units having partial type
3391 * information for structs `A` and `B`, the output of algorithm will emit
3392 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
3393 * (as well as type information for `int` and pointers), as if they were defined
3394 * in a single compilation unit as:
3395 *
3396 * struct A {
3397 *	int a;
3398 *	struct A* self;
3399 *	struct S* parent;
3400 * };
3401 * struct B {
3402 *	int b;
3403 *	struct B* self;
3404 *	struct S* parent;
3405 * };
3406 * struct S {
3407 *	struct A* a_ptr;
3408 *	struct B* b_ptr;
3409 * };
3410 *
3411 * Algorithm summary
3412 * =================
3413 *
3414 * Algorithm completes its work in 7 separate passes:
3415 *
3416 * 1. Strings deduplication.
3417 * 2. Primitive types deduplication (int, enum, fwd).
3418 * 3. Struct/union types deduplication.
3419 * 4. Resolve unambiguous forward declarations.
3420 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3421 *    protos, and const/volatile/restrict modifiers).
3422 * 6. Types compaction.
3423 * 7. Types remapping.
3424 *
3425 * Algorithm determines canonical type descriptor, which is a single
3426 * representative type for each truly unique type. This canonical type is the
3427 * one that will go into final deduplicated BTF type information. For
3428 * struct/unions, it is also the type that algorithm will merge additional type
3429 * information into (while resolving FWDs), as it discovers it from data in
3430 * other CUs. Each input BTF type eventually gets either mapped to itself, if
3431 * that type is canonical, or to some other type, if that type is equivalent
3432 * and was chosen as canonical representative. This mapping is stored in
3433 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3434 * FWD type got resolved to.
3435 *
3436 * To facilitate fast discovery of canonical types, we also maintain canonical
3437 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3438 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3439 * that match that signature. With sufficiently good choice of type signature
3440 * hashing function, we can limit number of canonical types for each unique type
3441 * signature to a very small number, allowing to find canonical type for any
3442 * duplicated type very quickly.
3443 *
3444 * Struct/union deduplication is the most critical part and algorithm for
3445 * deduplicating structs/unions is described in greater details in comments for
3446 * `btf_dedup_is_equiv` function.
3447 */
3448int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
3449{
3450	struct btf_dedup *d;
3451	int err;
3452
3453	if (!OPTS_VALID(opts, btf_dedup_opts))
3454		return libbpf_err(-EINVAL);
3455
3456	d = btf_dedup_new(btf, opts);
3457	if (IS_ERR(d)) {
3458		pr_debug("btf_dedup_new failed: %ld\n", PTR_ERR(d));
3459		return libbpf_err(-EINVAL);
3460	}
3461
3462	if (btf_ensure_modifiable(btf)) {
3463		err = -ENOMEM;
3464		goto done;
3465	}
3466
3467	err = btf_dedup_prep(d);
3468	if (err) {
3469		pr_debug("btf_dedup_prep failed: %s\n", errstr(err));
3470		goto done;
3471	}
3472	err = btf_dedup_strings(d);
3473	if (err < 0) {
3474		pr_debug("btf_dedup_strings failed: %s\n", errstr(err));
3475		goto done;
3476	}
3477	err = btf_dedup_prim_types(d);
3478	if (err < 0) {
3479		pr_debug("btf_dedup_prim_types failed: %s\n", errstr(err));
3480		goto done;
3481	}
3482	err = btf_dedup_struct_types(d);
3483	if (err < 0) {
3484		pr_debug("btf_dedup_struct_types failed: %s\n", errstr(err));
3485		goto done;
3486	}
3487	err = btf_dedup_resolve_fwds(d);
3488	if (err < 0) {
3489		pr_debug("btf_dedup_resolve_fwds failed: %s\n", errstr(err));
3490		goto done;
3491	}
3492	err = btf_dedup_ref_types(d);
3493	if (err < 0) {
3494		pr_debug("btf_dedup_ref_types failed: %s\n", errstr(err));
3495		goto done;
3496	}
3497	err = btf_dedup_compact_types(d);
3498	if (err < 0) {
3499		pr_debug("btf_dedup_compact_types failed: %s\n", errstr(err));
3500		goto done;
3501	}
3502	err = btf_dedup_remap_types(d);
3503	if (err < 0) {
3504		pr_debug("btf_dedup_remap_types failed: %s\n", errstr(err));
3505		goto done;
3506	}
3507
3508done:
3509	btf_dedup_free(d);
3510	return libbpf_err(err);
3511}
3512
3513#define BTF_UNPROCESSED_ID ((__u32)-1)
3514#define BTF_IN_PROGRESS_ID ((__u32)-2)
3515
3516struct btf_dedup {
3517	/* .BTF section to be deduped in-place */
3518	struct btf *btf;
3519	/*
3520	 * Optional .BTF.ext section. When provided, any strings referenced
3521	 * from it will be taken into account when deduping strings
3522	 */
3523	struct btf_ext *btf_ext;
3524	/*
3525	 * This is a map from any type's signature hash to a list of possible
3526	 * canonical representative type candidates. Hash collisions are
3527	 * ignored, so even types of various kinds can share same list of
3528	 * candidates, which is fine because we rely on subsequent
3529	 * btf_xxx_equal() checks to authoritatively verify type equality.
3530	 */
3531	struct hashmap *dedup_table;
3532	/* Canonical types map */
3533	__u32 *map;
3534	/* Hypothetical mapping, used during type graph equivalence checks */
3535	__u32 *hypot_map;
3536	__u32 *hypot_list;
3537	size_t hypot_cnt;
3538	size_t hypot_cap;
3539	/* Whether hypothetical mapping, if successful, would need to adjust
3540	 * already canonicalized types (due to a new forward declaration to
3541	 * concrete type resolution). In such case, during split BTF dedup
3542	 * candidate type would still be considered as different, because base
3543	 * BTF is considered to be immutable.
3544	 */
3545	bool hypot_adjust_canon;
3546	/* Various option modifying behavior of algorithm */
3547	struct btf_dedup_opts opts;
3548	/* temporary strings deduplication state */
3549	struct strset *strs_set;
3550};
3551
3552static unsigned long hash_combine(unsigned long h, unsigned long value)
3553{
3554	return h * 31 + value;
3555}
3556
3557#define for_each_dedup_cand(d, node, hash) \
3558	hashmap__for_each_key_entry(d->dedup_table, node, hash)
3559
3560static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3561{
3562	return hashmap__append(d->dedup_table, hash, type_id);
3563}
3564
3565static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3566				   __u32 from_id, __u32 to_id)
3567{
3568	if (d->hypot_cnt == d->hypot_cap) {
3569		__u32 *new_list;
3570
3571		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3572		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3573		if (!new_list)
3574			return -ENOMEM;
3575		d->hypot_list = new_list;
3576	}
3577	d->hypot_list[d->hypot_cnt++] = from_id;
3578	d->hypot_map[from_id] = to_id;
3579	return 0;
3580}
3581
3582static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3583{
3584	int i;
3585
3586	for (i = 0; i < d->hypot_cnt; i++)
3587		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3588	d->hypot_cnt = 0;
3589	d->hypot_adjust_canon = false;
3590}
3591
3592static void btf_dedup_free(struct btf_dedup *d)
3593{
3594	hashmap__free(d->dedup_table);
3595	d->dedup_table = NULL;
3596
3597	free(d->map);
3598	d->map = NULL;
3599
3600	free(d->hypot_map);
3601	d->hypot_map = NULL;
3602
3603	free(d->hypot_list);
3604	d->hypot_list = NULL;
3605
3606	free(d);
3607}
3608
3609static size_t btf_dedup_identity_hash_fn(long key, void *ctx)
3610{
3611	return key;
3612}
3613
3614static size_t btf_dedup_collision_hash_fn(long key, void *ctx)
3615{
3616	return 0;
3617}
3618
3619static bool btf_dedup_equal_fn(long k1, long k2, void *ctx)
3620{
3621	return k1 == k2;
3622}
3623
3624static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3625{
3626	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3627	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3628	int i, err = 0, type_cnt;
3629
3630	if (!d)
3631		return ERR_PTR(-ENOMEM);
3632
3633	if (OPTS_GET(opts, force_collisions, false))
3634		hash_fn = btf_dedup_collision_hash_fn;
3635
3636	d->btf = btf;
3637	d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3638
3639	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3640	if (IS_ERR(d->dedup_table)) {
3641		err = PTR_ERR(d->dedup_table);
3642		d->dedup_table = NULL;
3643		goto done;
3644	}
3645
3646	type_cnt = btf__type_cnt(btf);
3647	d->map = malloc(sizeof(__u32) * type_cnt);
3648	if (!d->map) {
3649		err = -ENOMEM;
3650		goto done;
3651	}
3652	/* special BTF "void" type is made canonical immediately */
3653	d->map[0] = 0;
3654	for (i = 1; i < type_cnt; i++) {
3655		struct btf_type *t = btf_type_by_id(d->btf, i);
3656
3657		/* VAR and DATASEC are never deduped and are self-canonical */
3658		if (btf_is_var(t) || btf_is_datasec(t))
3659			d->map[i] = i;
3660		else
3661			d->map[i] = BTF_UNPROCESSED_ID;
3662	}
3663
3664	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3665	if (!d->hypot_map) {
3666		err = -ENOMEM;
3667		goto done;
3668	}
3669	for (i = 0; i < type_cnt; i++)
3670		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3671
3672done:
3673	if (err) {
3674		btf_dedup_free(d);
3675		return ERR_PTR(err);
3676	}
3677
3678	return d;
3679}
3680
3681/*
3682 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3683 * string and pass pointer to it to a provided callback `fn`.
3684 */
3685static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3686{
3687	int i, r;
3688
3689	for (i = 0; i < d->btf->nr_types; i++) {
3690		struct btf_field_iter it;
3691		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3692		__u32 *str_off;
3693
3694		r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
3695		if (r)
3696			return r;
3697
3698		while ((str_off = btf_field_iter_next(&it))) {
3699			r = fn(str_off, ctx);
3700			if (r)
3701				return r;
3702		}
3703	}
3704
3705	if (!d->btf_ext)
3706		return 0;
3707
3708	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3709	if (r)
3710		return r;
3711
3712	return 0;
3713}
3714
3715static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3716{
3717	struct btf_dedup *d = ctx;
3718	__u32 str_off = *str_off_ptr;
3719	const char *s;
3720	int off, err;
3721
3722	/* don't touch empty string or string in main BTF */
3723	if (str_off == 0 || str_off < d->btf->start_str_off)
3724		return 0;
3725
3726	s = btf__str_by_offset(d->btf, str_off);
3727	if (d->btf->base_btf) {
3728		err = btf__find_str(d->btf->base_btf, s);
3729		if (err >= 0) {
3730			*str_off_ptr = err;
3731			return 0;
3732		}
3733		if (err != -ENOENT)
3734			return err;
3735	}
3736
3737	off = strset__add_str(d->strs_set, s);
3738	if (off < 0)
3739		return off;
3740
3741	*str_off_ptr = d->btf->start_str_off + off;
3742	return 0;
3743}
3744
3745/*
3746 * Dedup string and filter out those that are not referenced from either .BTF
3747 * or .BTF.ext (if provided) sections.
3748 *
3749 * This is done by building index of all strings in BTF's string section,
3750 * then iterating over all entities that can reference strings (e.g., type
3751 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3752 * strings as used. After that all used strings are deduped and compacted into
3753 * sequential blob of memory and new offsets are calculated. Then all the string
3754 * references are iterated again and rewritten using new offsets.
3755 */
3756static int btf_dedup_strings(struct btf_dedup *d)
3757{
3758	int err;
3759
3760	if (d->btf->strs_deduped)
3761		return 0;
3762
3763	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3764	if (IS_ERR(d->strs_set)) {
3765		err = PTR_ERR(d->strs_set);
3766		goto err_out;
3767	}
3768
3769	if (!d->btf->base_btf) {
3770		/* insert empty string; we won't be looking it up during strings
3771		 * dedup, but it's good to have it for generic BTF string lookups
3772		 */
3773		err = strset__add_str(d->strs_set, "");
3774		if (err < 0)
3775			goto err_out;
3776	}
3777
3778	/* remap string offsets */
3779	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3780	if (err)
3781		goto err_out;
3782
3783	/* replace BTF string data and hash with deduped ones */
3784	strset__free(d->btf->strs_set);
3785	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3786	d->btf->strs_set = d->strs_set;
3787	d->strs_set = NULL;
3788	d->btf->strs_deduped = true;
3789	return 0;
3790
3791err_out:
3792	strset__free(d->strs_set);
3793	d->strs_set = NULL;
3794
3795	return err;
3796}
3797
3798static long btf_hash_common(struct btf_type *t)
3799{
3800	long h;
3801
3802	h = hash_combine(0, t->name_off);
3803	h = hash_combine(h, t->info);
3804	h = hash_combine(h, t->size);
3805	return h;
3806}
3807
3808static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3809{
3810	return t1->name_off == t2->name_off &&
3811	       t1->info == t2->info &&
3812	       t1->size == t2->size;
3813}
3814
3815/* Calculate type signature hash of INT or TAG. */
3816static long btf_hash_int_decl_tag(struct btf_type *t)
3817{
3818	__u32 info = *(__u32 *)(t + 1);
3819	long h;
3820
3821	h = btf_hash_common(t);
3822	h = hash_combine(h, info);
3823	return h;
3824}
3825
3826/* Check structural equality of two INTs or TAGs. */
3827static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3828{
3829	__u32 info1, info2;
3830
3831	if (!btf_equal_common(t1, t2))
3832		return false;
3833	info1 = *(__u32 *)(t1 + 1);
3834	info2 = *(__u32 *)(t2 + 1);
3835	return info1 == info2;
3836}
3837
3838/* Calculate type signature hash of ENUM/ENUM64. */
3839static long btf_hash_enum(struct btf_type *t)
3840{
3841	long h;
3842
3843	/* don't hash vlen, enum members and size to support enum fwd resolving */
3844	h = hash_combine(0, t->name_off);
3845	return h;
3846}
3847
3848static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2)
3849{
3850	const struct btf_enum *m1, *m2;
3851	__u16 vlen;
3852	int i;
3853
3854	vlen = btf_vlen(t1);
3855	m1 = btf_enum(t1);
3856	m2 = btf_enum(t2);
3857	for (i = 0; i < vlen; i++) {
3858		if (m1->name_off != m2->name_off || m1->val != m2->val)
3859			return false;
3860		m1++;
3861		m2++;
3862	}
3863	return true;
3864}
3865
3866static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2)
3867{
3868	const struct btf_enum64 *m1, *m2;
3869	__u16 vlen;
3870	int i;
3871
3872	vlen = btf_vlen(t1);
3873	m1 = btf_enum64(t1);
3874	m2 = btf_enum64(t2);
3875	for (i = 0; i < vlen; i++) {
3876		if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3877		    m1->val_hi32 != m2->val_hi32)
3878			return false;
3879		m1++;
3880		m2++;
3881	}
3882	return true;
3883}
3884
3885/* Check structural equality of two ENUMs or ENUM64s. */
3886static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3887{
3888	if (!btf_equal_common(t1, t2))
3889		return false;
3890
3891	/* t1 & t2 kinds are identical because of btf_equal_common */
3892	if (btf_kind(t1) == BTF_KIND_ENUM)
3893		return btf_equal_enum_members(t1, t2);
3894	else
3895		return btf_equal_enum64_members(t1, t2);
3896}
3897
3898static inline bool btf_is_enum_fwd(struct btf_type *t)
3899{
3900	return btf_is_any_enum(t) && btf_vlen(t) == 0;
3901}
3902
3903static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3904{
3905	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3906		return btf_equal_enum(t1, t2);
3907	/* At this point either t1 or t2 or both are forward declarations, thus:
3908	 * - skip comparing vlen because it is zero for forward declarations;
3909	 * - skip comparing size to allow enum forward declarations
3910	 *   to be compatible with enum64 full declarations;
3911	 * - skip comparing kind for the same reason.
3912	 */
3913	return t1->name_off == t2->name_off &&
3914	       btf_is_any_enum(t1) && btf_is_any_enum(t2);
3915}
3916
3917/*
3918 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3919 * as referenced type IDs equivalence is established separately during type
3920 * graph equivalence check algorithm.
3921 */
3922static long btf_hash_struct(struct btf_type *t)
3923{
3924	const struct btf_member *member = btf_members(t);
3925	__u32 vlen = btf_vlen(t);
3926	long h = btf_hash_common(t);
3927	int i;
3928
3929	for (i = 0; i < vlen; i++) {
3930		h = hash_combine(h, member->name_off);
3931		h = hash_combine(h, member->offset);
3932		/* no hashing of referenced type ID, it can be unresolved yet */
3933		member++;
3934	}
3935	return h;
3936}
3937
3938/*
3939 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3940 * type IDs. This check is performed during type graph equivalence check and
3941 * referenced types equivalence is checked separately.
3942 */
3943static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3944{
3945	const struct btf_member *m1, *m2;
3946	__u16 vlen;
3947	int i;
3948
3949	if (!btf_equal_common(t1, t2))
3950		return false;
3951
3952	vlen = btf_vlen(t1);
3953	m1 = btf_members(t1);
3954	m2 = btf_members(t2);
3955	for (i = 0; i < vlen; i++) {
3956		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3957			return false;
3958		m1++;
3959		m2++;
3960	}
3961	return true;
3962}
3963
3964/*
3965 * Calculate type signature hash of ARRAY, including referenced type IDs,
3966 * under assumption that they were already resolved to canonical type IDs and
3967 * are not going to change.
3968 */
3969static long btf_hash_array(struct btf_type *t)
3970{
3971	const struct btf_array *info = btf_array(t);
3972	long h = btf_hash_common(t);
3973
3974	h = hash_combine(h, info->type);
3975	h = hash_combine(h, info->index_type);
3976	h = hash_combine(h, info->nelems);
3977	return h;
3978}
3979
3980/*
3981 * Check exact equality of two ARRAYs, taking into account referenced
3982 * type IDs, under assumption that they were already resolved to canonical
3983 * type IDs and are not going to change.
3984 * This function is called during reference types deduplication to compare
3985 * ARRAY to potential canonical representative.
3986 */
3987static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3988{
3989	const struct btf_array *info1, *info2;
3990
3991	if (!btf_equal_common(t1, t2))
3992		return false;
3993
3994	info1 = btf_array(t1);
3995	info2 = btf_array(t2);
3996	return info1->type == info2->type &&
3997	       info1->index_type == info2->index_type &&
3998	       info1->nelems == info2->nelems;
3999}
4000
4001/*
4002 * Check structural compatibility of two ARRAYs, ignoring referenced type
4003 * IDs. This check is performed during type graph equivalence check and
4004 * referenced types equivalence is checked separately.
4005 */
4006static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
4007{
4008	if (!btf_equal_common(t1, t2))
4009		return false;
4010
4011	return btf_array(t1)->nelems == btf_array(t2)->nelems;
4012}
4013
4014/*
4015 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
4016 * under assumption that they were already resolved to canonical type IDs and
4017 * are not going to change.
4018 */
4019static long btf_hash_fnproto(struct btf_type *t)
4020{
4021	const struct btf_param *member = btf_params(t);
4022	__u16 vlen = btf_vlen(t);
4023	long h = btf_hash_common(t);
4024	int i;
4025
4026	for (i = 0; i < vlen; i++) {
4027		h = hash_combine(h, member->name_off);
4028		h = hash_combine(h, member->type);
4029		member++;
4030	}
4031	return h;
4032}
4033
4034/*
4035 * Check exact equality of two FUNC_PROTOs, taking into account referenced
4036 * type IDs, under assumption that they were already resolved to canonical
4037 * type IDs and are not going to change.
4038 * This function is called during reference types deduplication to compare
4039 * FUNC_PROTO to potential canonical representative.
4040 */
4041static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
4042{
4043	const struct btf_param *m1, *m2;
4044	__u16 vlen;
4045	int i;
4046
4047	if (!btf_equal_common(t1, t2))
4048		return false;
4049
4050	vlen = btf_vlen(t1);
4051	m1 = btf_params(t1);
4052	m2 = btf_params(t2);
4053	for (i = 0; i < vlen; i++) {
4054		if (m1->name_off != m2->name_off || m1->type != m2->type)
4055			return false;
4056		m1++;
4057		m2++;
4058	}
4059	return true;
4060}
4061
4062/*
4063 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
4064 * IDs. This check is performed during type graph equivalence check and
4065 * referenced types equivalence is checked separately.
4066 */
4067static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
4068{
4069	const struct btf_param *m1, *m2;
4070	__u16 vlen;
4071	int i;
4072
4073	/* skip return type ID */
4074	if (t1->name_off != t2->name_off || t1->info != t2->info)
4075		return false;
4076
4077	vlen = btf_vlen(t1);
4078	m1 = btf_params(t1);
4079	m2 = btf_params(t2);
4080	for (i = 0; i < vlen; i++) {
4081		if (m1->name_off != m2->name_off)
4082			return false;
4083		m1++;
4084		m2++;
4085	}
4086	return true;
4087}
4088
4089/* Prepare split BTF for deduplication by calculating hashes of base BTF's
4090 * types and initializing the rest of the state (canonical type mapping) for
4091 * the fixed base BTF part.
4092 */
4093static int btf_dedup_prep(struct btf_dedup *d)
4094{
4095	struct btf_type *t;
4096	int type_id;
4097	long h;
4098
4099	if (!d->btf->base_btf)
4100		return 0;
4101
4102	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
4103		t = btf_type_by_id(d->btf, type_id);
4104
4105		/* all base BTF types are self-canonical by definition */
4106		d->map[type_id] = type_id;
4107
4108		switch (btf_kind(t)) {
4109		case BTF_KIND_VAR:
4110		case BTF_KIND_DATASEC:
4111			/* VAR and DATASEC are never hash/deduplicated */
4112			continue;
4113		case BTF_KIND_CONST:
4114		case BTF_KIND_VOLATILE:
4115		case BTF_KIND_RESTRICT:
4116		case BTF_KIND_PTR:
4117		case BTF_KIND_FWD:
4118		case BTF_KIND_TYPEDEF:
4119		case BTF_KIND_FUNC:
4120		case BTF_KIND_FLOAT:
4121		case BTF_KIND_TYPE_TAG:
4122			h = btf_hash_common(t);
4123			break;
4124		case BTF_KIND_INT:
4125		case BTF_KIND_DECL_TAG:
4126			h = btf_hash_int_decl_tag(t);
4127			break;
4128		case BTF_KIND_ENUM:
4129		case BTF_KIND_ENUM64:
4130			h = btf_hash_enum(t);
4131			break;
4132		case BTF_KIND_STRUCT:
4133		case BTF_KIND_UNION:
4134			h = btf_hash_struct(t);
4135			break;
4136		case BTF_KIND_ARRAY:
4137			h = btf_hash_array(t);
4138			break;
4139		case BTF_KIND_FUNC_PROTO:
4140			h = btf_hash_fnproto(t);
4141			break;
4142		default:
4143			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
4144			return -EINVAL;
4145		}
4146		if (btf_dedup_table_add(d, h, type_id))
4147			return -ENOMEM;
4148	}
4149
4150	return 0;
4151}
4152
4153/*
4154 * Deduplicate primitive types, that can't reference other types, by calculating
4155 * their type signature hash and comparing them with any possible canonical
4156 * candidate. If no canonical candidate matches, type itself is marked as
4157 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
4158 */
4159static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
4160{
4161	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4162	struct hashmap_entry *hash_entry;
4163	struct btf_type *cand;
4164	/* if we don't find equivalent type, then we are canonical */
4165	__u32 new_id = type_id;
4166	__u32 cand_id;
4167	long h;
4168
4169	switch (btf_kind(t)) {
4170	case BTF_KIND_CONST:
4171	case BTF_KIND_VOLATILE:
4172	case BTF_KIND_RESTRICT:
4173	case BTF_KIND_PTR:
4174	case BTF_KIND_TYPEDEF:
4175	case BTF_KIND_ARRAY:
4176	case BTF_KIND_STRUCT:
4177	case BTF_KIND_UNION:
4178	case BTF_KIND_FUNC:
4179	case BTF_KIND_FUNC_PROTO:
4180	case BTF_KIND_VAR:
4181	case BTF_KIND_DATASEC:
4182	case BTF_KIND_DECL_TAG:
4183	case BTF_KIND_TYPE_TAG:
4184		return 0;
4185
4186	case BTF_KIND_INT:
4187		h = btf_hash_int_decl_tag(t);
4188		for_each_dedup_cand(d, hash_entry, h) {
4189			cand_id = hash_entry->value;
4190			cand = btf_type_by_id(d->btf, cand_id);
4191			if (btf_equal_int_tag(t, cand)) {
4192				new_id = cand_id;
4193				break;
4194			}
4195		}
4196		break;
4197
4198	case BTF_KIND_ENUM:
4199	case BTF_KIND_ENUM64:
4200		h = btf_hash_enum(t);
4201		for_each_dedup_cand(d, hash_entry, h) {
4202			cand_id = hash_entry->value;
4203			cand = btf_type_by_id(d->btf, cand_id);
4204			if (btf_equal_enum(t, cand)) {
4205				new_id = cand_id;
4206				break;
4207			}
4208			if (btf_compat_enum(t, cand)) {
4209				if (btf_is_enum_fwd(t)) {
4210					/* resolve fwd to full enum */
4211					new_id = cand_id;
4212					break;
4213				}
4214				/* resolve canonical enum fwd to full enum */
4215				d->map[cand_id] = type_id;
4216			}
4217		}
4218		break;
4219
4220	case BTF_KIND_FWD:
4221	case BTF_KIND_FLOAT:
4222		h = btf_hash_common(t);
4223		for_each_dedup_cand(d, hash_entry, h) {
4224			cand_id = hash_entry->value;
4225			cand = btf_type_by_id(d->btf, cand_id);
4226			if (btf_equal_common(t, cand)) {
4227				new_id = cand_id;
4228				break;
4229			}
4230		}
4231		break;
4232
4233	default:
4234		return -EINVAL;
4235	}
4236
4237	d->map[type_id] = new_id;
4238	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4239		return -ENOMEM;
4240
4241	return 0;
4242}
4243
4244static int btf_dedup_prim_types(struct btf_dedup *d)
4245{
4246	int i, err;
4247
4248	for (i = 0; i < d->btf->nr_types; i++) {
4249		err = btf_dedup_prim_type(d, d->btf->start_id + i);
4250		if (err)
4251			return err;
4252	}
4253	return 0;
4254}
4255
4256/*
4257 * Check whether type is already mapped into canonical one (could be to itself).
4258 */
4259static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
4260{
4261	return d->map[type_id] <= BTF_MAX_NR_TYPES;
4262}
4263
4264/*
4265 * Resolve type ID into its canonical type ID, if any; otherwise return original
4266 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
4267 * STRUCT/UNION link and resolve it into canonical type ID as well.
4268 */
4269static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
4270{
4271	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4272		type_id = d->map[type_id];
4273	return type_id;
4274}
4275
4276/*
4277 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
4278 * type ID.
4279 */
4280static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
4281{
4282	__u32 orig_type_id = type_id;
4283
4284	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4285		return type_id;
4286
4287	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4288		type_id = d->map[type_id];
4289
4290	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4291		return type_id;
4292
4293	return orig_type_id;
4294}
4295
4296
4297static inline __u16 btf_fwd_kind(struct btf_type *t)
4298{
4299	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
4300}
4301
4302/* Check if given two types are identical ARRAY definitions */
4303static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
4304{
4305	struct btf_type *t1, *t2;
4306
4307	t1 = btf_type_by_id(d->btf, id1);
4308	t2 = btf_type_by_id(d->btf, id2);
4309	if (!btf_is_array(t1) || !btf_is_array(t2))
4310		return false;
4311
4312	return btf_equal_array(t1, t2);
4313}
4314
4315/* Check if given two types are identical STRUCT/UNION definitions */
4316static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
4317{
4318	const struct btf_member *m1, *m2;
4319	struct btf_type *t1, *t2;
4320	int n, i;
4321
4322	t1 = btf_type_by_id(d->btf, id1);
4323	t2 = btf_type_by_id(d->btf, id2);
4324
4325	if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
4326		return false;
4327
4328	if (!btf_shallow_equal_struct(t1, t2))
4329		return false;
4330
4331	m1 = btf_members(t1);
4332	m2 = btf_members(t2);
4333	for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
4334		if (m1->type != m2->type &&
4335		    !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
4336		    !btf_dedup_identical_structs(d, m1->type, m2->type))
4337			return false;
4338	}
4339	return true;
4340}
4341
4342/*
4343 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
4344 * call it "candidate graph" in this description for brevity) to a type graph
4345 * formed by (potential) canonical struct/union ("canonical graph" for brevity
4346 * here, though keep in mind that not all types in canonical graph are
4347 * necessarily canonical representatives themselves, some of them might be
4348 * duplicates or its uniqueness might not have been established yet).
4349 * Returns:
4350 *  - >0, if type graphs are equivalent;
4351 *  -  0, if not equivalent;
4352 *  - <0, on error.
4353 *
4354 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
4355 * equivalence of BTF types at each step. If at any point BTF types in candidate
4356 * and canonical graphs are not compatible structurally, whole graphs are
4357 * incompatible. If types are structurally equivalent (i.e., all information
4358 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
4359 * a `cand_id` is recoded in hypothetical mapping (`btf_dedup->hypot_map`).
4360 * If a type references other types, then those referenced types are checked
4361 * for equivalence recursively.
4362 *
4363 * During DFS traversal, if we find that for current `canon_id` type we
4364 * already have some mapping in hypothetical map, we check for two possible
4365 * situations:
4366 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
4367 *     happen when type graphs have cycles. In this case we assume those two
4368 *     types are equivalent.
4369 *   - `canon_id` is mapped to different type. This is contradiction in our
4370 *     hypothetical mapping, because same graph in canonical graph corresponds
4371 *     to two different types in candidate graph, which for equivalent type
4372 *     graphs shouldn't happen. This condition terminates equivalence check
4373 *     with negative result.
4374 *
4375 * If type graphs traversal exhausts types to check and find no contradiction,
4376 * then type graphs are equivalent.
4377 *
4378 * When checking types for equivalence, there is one special case: FWD types.
4379 * If FWD type resolution is allowed and one of the types (either from canonical
4380 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
4381 * flag) and their names match, hypothetical mapping is updated to point from
4382 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
4383 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
4384 *
4385 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
4386 * if there are two exactly named (or anonymous) structs/unions that are
4387 * compatible structurally, one of which has FWD field, while other is concrete
4388 * STRUCT/UNION, but according to C sources they are different structs/unions
4389 * that are referencing different types with the same name. This is extremely
4390 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
4391 * this logic is causing problems.
4392 *
4393 * Doing FWD resolution means that both candidate and/or canonical graphs can
4394 * consists of portions of the graph that come from multiple compilation units.
4395 * This is due to the fact that types within single compilation unit are always
4396 * deduplicated and FWDs are already resolved, if referenced struct/union
4397 * definition is available. So, if we had unresolved FWD and found corresponding
4398 * STRUCT/UNION, they will be from different compilation units. This
4399 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
4400 * type graph will likely have at least two different BTF types that describe
4401 * same type (e.g., most probably there will be two different BTF types for the
4402 * same 'int' primitive type) and could even have "overlapping" parts of type
4403 * graph that describe same subset of types.
4404 *
4405 * This in turn means that our assumption that each type in canonical graph
4406 * must correspond to exactly one type in candidate graph might not hold
4407 * anymore and will make it harder to detect contradictions using hypothetical
4408 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
4409 * resolution only in canonical graph. FWDs in candidate graphs are never
4410 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
4411 * that can occur:
4412 *   - Both types in canonical and candidate graphs are FWDs. If they are
4413 *     structurally equivalent, then they can either be both resolved to the
4414 *     same STRUCT/UNION or not resolved at all. In both cases they are
4415 *     equivalent and there is no need to resolve FWD on candidate side.
4416 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4417 *     so nothing to resolve as well, algorithm will check equivalence anyway.
4418 *   - Type in canonical graph is FWD, while type in candidate is concrete
4419 *     STRUCT/UNION. In this case candidate graph comes from single compilation
4420 *     unit, so there is exactly one BTF type for each unique C type. After
4421 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
4422 *     in canonical graph mapping to single BTF type in candidate graph, but
4423 *     because hypothetical mapping maps from canonical to candidate types, it's
4424 *     alright, and we still maintain the property of having single `canon_id`
4425 *     mapping to single `cand_id` (there could be two different `canon_id`
4426 *     mapped to the same `cand_id`, but it's not contradictory).
4427 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4428 *     graph is FWD. In this case we are just going to check compatibility of
4429 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4430 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4431 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4432 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4433 *     canonical graph.
4434 */
4435static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4436			      __u32 canon_id)
4437{
4438	struct btf_type *cand_type;
4439	struct btf_type *canon_type;
4440	__u32 hypot_type_id;
4441	__u16 cand_kind;
4442	__u16 canon_kind;
4443	int i, eq;
4444
4445	/* if both resolve to the same canonical, they must be equivalent */
4446	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4447		return 1;
4448
4449	canon_id = resolve_fwd_id(d, canon_id);
4450
4451	hypot_type_id = d->hypot_map[canon_id];
4452	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4453		if (hypot_type_id == cand_id)
4454			return 1;
4455		/* In some cases compiler will generate different DWARF types
4456		 * for *identical* array type definitions and use them for
4457		 * different fields within the *same* struct. This breaks type
4458		 * equivalence check, which makes an assumption that candidate
4459		 * types sub-graph has a consistent and deduped-by-compiler
4460		 * types within a single CU. So work around that by explicitly
4461		 * allowing identical array types here.
4462		 */
4463		if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4464			return 1;
4465		/* It turns out that similar situation can happen with
4466		 * struct/union sometimes, sigh... Handle the case where
4467		 * structs/unions are exactly the same, down to the referenced
4468		 * type IDs. Anything more complicated (e.g., if referenced
4469		 * types are different, but equivalent) is *way more*
4470		 * complicated and requires a many-to-many equivalence mapping.
4471		 */
4472		if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4473			return 1;
4474		return 0;
4475	}
4476
4477	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4478		return -ENOMEM;
4479
4480	cand_type = btf_type_by_id(d->btf, cand_id);
4481	canon_type = btf_type_by_id(d->btf, canon_id);
4482	cand_kind = btf_kind(cand_type);
4483	canon_kind = btf_kind(canon_type);
4484
4485	if (cand_type->name_off != canon_type->name_off)
4486		return 0;
4487
4488	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4489	if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4490	    && cand_kind != canon_kind) {
4491		__u16 real_kind;
4492		__u16 fwd_kind;
4493
4494		if (cand_kind == BTF_KIND_FWD) {
4495			real_kind = canon_kind;
4496			fwd_kind = btf_fwd_kind(cand_type);
4497		} else {
4498			real_kind = cand_kind;
4499			fwd_kind = btf_fwd_kind(canon_type);
4500			/* we'd need to resolve base FWD to STRUCT/UNION */
4501			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4502				d->hypot_adjust_canon = true;
4503		}
4504		return fwd_kind == real_kind;
4505	}
4506
4507	if (cand_kind != canon_kind)
4508		return 0;
4509
4510	switch (cand_kind) {
4511	case BTF_KIND_INT:
4512		return btf_equal_int_tag(cand_type, canon_type);
4513
4514	case BTF_KIND_ENUM:
4515	case BTF_KIND_ENUM64:
4516		return btf_compat_enum(cand_type, canon_type);
4517
4518	case BTF_KIND_FWD:
4519	case BTF_KIND_FLOAT:
4520		return btf_equal_common(cand_type, canon_type);
4521
4522	case BTF_KIND_CONST:
4523	case BTF_KIND_VOLATILE:
4524	case BTF_KIND_RESTRICT:
4525	case BTF_KIND_PTR:
4526	case BTF_KIND_TYPEDEF:
4527	case BTF_KIND_FUNC:
4528	case BTF_KIND_TYPE_TAG:
4529		if (cand_type->info != canon_type->info)
4530			return 0;
4531		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4532
4533	case BTF_KIND_ARRAY: {
4534		const struct btf_array *cand_arr, *canon_arr;
4535
4536		if (!btf_compat_array(cand_type, canon_type))
4537			return 0;
4538		cand_arr = btf_array(cand_type);
4539		canon_arr = btf_array(canon_type);
4540		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4541		if (eq <= 0)
4542			return eq;
4543		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4544	}
4545
4546	case BTF_KIND_STRUCT:
4547	case BTF_KIND_UNION: {
4548		const struct btf_member *cand_m, *canon_m;
4549		__u16 vlen;
4550
4551		if (!btf_shallow_equal_struct(cand_type, canon_type))
4552			return 0;
4553		vlen = btf_vlen(cand_type);
4554		cand_m = btf_members(cand_type);
4555		canon_m = btf_members(canon_type);
4556		for (i = 0; i < vlen; i++) {
4557			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4558			if (eq <= 0)
4559				return eq;
4560			cand_m++;
4561			canon_m++;
4562		}
4563
4564		return 1;
4565	}
4566
4567	case BTF_KIND_FUNC_PROTO: {
4568		const struct btf_param *cand_p, *canon_p;
4569		__u16 vlen;
4570
4571		if (!btf_compat_fnproto(cand_type, canon_type))
4572			return 0;
4573		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4574		if (eq <= 0)
4575			return eq;
4576		vlen = btf_vlen(cand_type);
4577		cand_p = btf_params(cand_type);
4578		canon_p = btf_params(canon_type);
4579		for (i = 0; i < vlen; i++) {
4580			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4581			if (eq <= 0)
4582				return eq;
4583			cand_p++;
4584			canon_p++;
4585		}
4586		return 1;
4587	}
4588
4589	default:
4590		return -EINVAL;
4591	}
4592	return 0;
4593}
4594
4595/*
4596 * Use hypothetical mapping, produced by successful type graph equivalence
4597 * check, to augment existing struct/union canonical mapping, where possible.
4598 *
4599 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4600 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4601 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4602 * we are recording the mapping anyway. As opposed to carefulness required
4603 * for struct/union correspondence mapping (described below), for FWD resolution
4604 * it's not important, as by the time that FWD type (reference type) will be
4605 * deduplicated all structs/unions will be deduped already anyway.
4606 *
4607 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4608 * not required for correctness. It needs to be done carefully to ensure that
4609 * struct/union from candidate's type graph is not mapped into corresponding
4610 * struct/union from canonical type graph that itself hasn't been resolved into
4611 * canonical representative. The only guarantee we have is that canonical
4612 * struct/union was determined as canonical and that won't change. But any
4613 * types referenced through that struct/union fields could have been not yet
4614 * resolved, so in case like that it's too early to establish any kind of
4615 * correspondence between structs/unions.
4616 *
4617 * No canonical correspondence is derived for primitive types (they are already
4618 * deduplicated completely already anyway) or reference types (they rely on
4619 * stability of struct/union canonical relationship for equivalence checks).
4620 */
4621static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4622{
4623	__u32 canon_type_id, targ_type_id;
4624	__u16 t_kind, c_kind;
4625	__u32 t_id, c_id;
4626	int i;
4627
4628	for (i = 0; i < d->hypot_cnt; i++) {
4629		canon_type_id = d->hypot_list[i];
4630		targ_type_id = d->hypot_map[canon_type_id];
4631		t_id = resolve_type_id(d, targ_type_id);
4632		c_id = resolve_type_id(d, canon_type_id);
4633		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4634		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4635		/*
4636		 * Resolve FWD into STRUCT/UNION.
4637		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4638		 * mapped to canonical representative (as opposed to
4639		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4640		 * eventually that struct is going to be mapped and all resolved
4641		 * FWDs will automatically resolve to correct canonical
4642		 * representative. This will happen before ref type deduping,
4643		 * which critically depends on stability of these mapping. This
4644		 * stability is not a requirement for STRUCT/UNION equivalence
4645		 * checks, though.
4646		 */
4647
4648		/* if it's the split BTF case, we still need to point base FWD
4649		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4650		 * will be resolved against base FWD. If we don't point base
4651		 * canonical FWD to the resolved STRUCT/UNION, then all the
4652		 * FWDs in split BTF won't be correctly resolved to a proper
4653		 * STRUCT/UNION.
4654		 */
4655		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4656			d->map[c_id] = t_id;
4657
4658		/* if graph equivalence determined that we'd need to adjust
4659		 * base canonical types, then we need to only point base FWDs
4660		 * to STRUCTs/UNIONs and do no more modifications. For all
4661		 * other purposes the type graphs were not equivalent.
4662		 */
4663		if (d->hypot_adjust_canon)
4664			continue;
4665
4666		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4667			d->map[t_id] = c_id;
4668
4669		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4670		    c_kind != BTF_KIND_FWD &&
4671		    is_type_mapped(d, c_id) &&
4672		    !is_type_mapped(d, t_id)) {
4673			/*
4674			 * as a perf optimization, we can map struct/union
4675			 * that's part of type graph we just verified for
4676			 * equivalence. We can do that for struct/union that has
4677			 * canonical representative only, though.
4678			 */
4679			d->map[t_id] = c_id;
4680		}
4681	}
4682}
4683
4684/*
4685 * Deduplicate struct/union types.
4686 *
4687 * For each struct/union type its type signature hash is calculated, taking
4688 * into account type's name, size, number, order and names of fields, but
4689 * ignoring type ID's referenced from fields, because they might not be deduped
4690 * completely until after reference types deduplication phase. This type hash
4691 * is used to iterate over all potential canonical types, sharing same hash.
4692 * For each canonical candidate we check whether type graphs that they form
4693 * (through referenced types in fields and so on) are equivalent using algorithm
4694 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4695 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4696 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4697 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4698 * potentially map other structs/unions to their canonical representatives,
4699 * if such relationship hasn't yet been established. This speeds up algorithm
4700 * by eliminating some of the duplicate work.
4701 *
4702 * If no matching canonical representative was found, struct/union is marked
4703 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4704 * for further look ups.
4705 */
4706static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4707{
4708	struct btf_type *cand_type, *t;
4709	struct hashmap_entry *hash_entry;
4710	/* if we don't find equivalent type, then we are canonical */
4711	__u32 new_id = type_id;
4712	__u16 kind;
4713	long h;
4714
4715	/* already deduped or is in process of deduping (loop detected) */
4716	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4717		return 0;
4718
4719	t = btf_type_by_id(d->btf, type_id);
4720	kind = btf_kind(t);
4721
4722	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4723		return 0;
4724
4725	h = btf_hash_struct(t);
4726	for_each_dedup_cand(d, hash_entry, h) {
4727		__u32 cand_id = hash_entry->value;
4728		int eq;
4729
4730		/*
4731		 * Even though btf_dedup_is_equiv() checks for
4732		 * btf_shallow_equal_struct() internally when checking two
4733		 * structs (unions) for equivalence, we need to guard here
4734		 * from picking matching FWD type as a dedup candidate.
4735		 * This can happen due to hash collision. In such case just
4736		 * relying on btf_dedup_is_equiv() would lead to potentially
4737		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4738		 * FWD and compatible STRUCT/UNION are considered equivalent.
4739		 */
4740		cand_type = btf_type_by_id(d->btf, cand_id);
4741		if (!btf_shallow_equal_struct(t, cand_type))
4742			continue;
4743
4744		btf_dedup_clear_hypot_map(d);
4745		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4746		if (eq < 0)
4747			return eq;
4748		if (!eq)
4749			continue;
4750		btf_dedup_merge_hypot_map(d);
4751		if (d->hypot_adjust_canon) /* not really equivalent */
4752			continue;
4753		new_id = cand_id;
4754		break;
4755	}
4756
4757	d->map[type_id] = new_id;
4758	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4759		return -ENOMEM;
4760
4761	return 0;
4762}
4763
4764static int btf_dedup_struct_types(struct btf_dedup *d)
4765{
4766	int i, err;
4767
4768	for (i = 0; i < d->btf->nr_types; i++) {
4769		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4770		if (err)
4771			return err;
4772	}
4773	return 0;
4774}
4775
4776/*
4777 * Deduplicate reference type.
4778 *
4779 * Once all primitive and struct/union types got deduplicated, we can easily
4780 * deduplicate all other (reference) BTF types. This is done in two steps:
4781 *
4782 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4783 * resolution can be done either immediately for primitive or struct/union types
4784 * (because they were deduped in previous two phases) or recursively for
4785 * reference types. Recursion will always terminate at either primitive or
4786 * struct/union type, at which point we can "unwind" chain of reference types
4787 * one by one. There is no danger of encountering cycles because in C type
4788 * system the only way to form type cycle is through struct/union, so any chain
4789 * of reference types, even those taking part in a type cycle, will inevitably
4790 * reach struct/union at some point.
4791 *
4792 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4793 * becomes "stable", in the sense that no further deduplication will cause
4794 * any changes to it. With that, it's now possible to calculate type's signature
4795 * hash (this time taking into account referenced type IDs) and loop over all
4796 * potential canonical representatives. If no match was found, current type
4797 * will become canonical representative of itself and will be added into
4798 * btf_dedup->dedup_table as another possible canonical representative.
4799 */
4800static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4801{
4802	struct hashmap_entry *hash_entry;
4803	__u32 new_id = type_id, cand_id;
4804	struct btf_type *t, *cand;
4805	/* if we don't find equivalent type, then we are representative type */
4806	int ref_type_id;
4807	long h;
4808
4809	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4810		return -ELOOP;
4811	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4812		return resolve_type_id(d, type_id);
4813
4814	t = btf_type_by_id(d->btf, type_id);
4815	d->map[type_id] = BTF_IN_PROGRESS_ID;
4816
4817	switch (btf_kind(t)) {
4818	case BTF_KIND_CONST:
4819	case BTF_KIND_VOLATILE:
4820	case BTF_KIND_RESTRICT:
4821	case BTF_KIND_PTR:
4822	case BTF_KIND_TYPEDEF:
4823	case BTF_KIND_FUNC:
4824	case BTF_KIND_TYPE_TAG:
4825		ref_type_id = btf_dedup_ref_type(d, t->type);
4826		if (ref_type_id < 0)
4827			return ref_type_id;
4828		t->type = ref_type_id;
4829
4830		h = btf_hash_common(t);
4831		for_each_dedup_cand(d, hash_entry, h) {
4832			cand_id = hash_entry->value;
4833			cand = btf_type_by_id(d->btf, cand_id);
4834			if (btf_equal_common(t, cand)) {
4835				new_id = cand_id;
4836				break;
4837			}
4838		}
4839		break;
4840
4841	case BTF_KIND_DECL_TAG:
4842		ref_type_id = btf_dedup_ref_type(d, t->type);
4843		if (ref_type_id < 0)
4844			return ref_type_id;
4845		t->type = ref_type_id;
4846
4847		h = btf_hash_int_decl_tag(t);
4848		for_each_dedup_cand(d, hash_entry, h) {
4849			cand_id = hash_entry->value;
4850			cand = btf_type_by_id(d->btf, cand_id);
4851			if (btf_equal_int_tag(t, cand)) {
4852				new_id = cand_id;
4853				break;
4854			}
4855		}
4856		break;
4857
4858	case BTF_KIND_ARRAY: {
4859		struct btf_array *info = btf_array(t);
4860
4861		ref_type_id = btf_dedup_ref_type(d, info->type);
4862		if (ref_type_id < 0)
4863			return ref_type_id;
4864		info->type = ref_type_id;
4865
4866		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4867		if (ref_type_id < 0)
4868			return ref_type_id;
4869		info->index_type = ref_type_id;
4870
4871		h = btf_hash_array(t);
4872		for_each_dedup_cand(d, hash_entry, h) {
4873			cand_id = hash_entry->value;
4874			cand = btf_type_by_id(d->btf, cand_id);
4875			if (btf_equal_array(t, cand)) {
4876				new_id = cand_id;
4877				break;
4878			}
4879		}
4880		break;
4881	}
4882
4883	case BTF_KIND_FUNC_PROTO: {
4884		struct btf_param *param;
4885		__u16 vlen;
4886		int i;
4887
4888		ref_type_id = btf_dedup_ref_type(d, t->type);
4889		if (ref_type_id < 0)
4890			return ref_type_id;
4891		t->type = ref_type_id;
4892
4893		vlen = btf_vlen(t);
4894		param = btf_params(t);
4895		for (i = 0; i < vlen; i++) {
4896			ref_type_id = btf_dedup_ref_type(d, param->type);
4897			if (ref_type_id < 0)
4898				return ref_type_id;
4899			param->type = ref_type_id;
4900			param++;
4901		}
4902
4903		h = btf_hash_fnproto(t);
4904		for_each_dedup_cand(d, hash_entry, h) {
4905			cand_id = hash_entry->value;
4906			cand = btf_type_by_id(d->btf, cand_id);
4907			if (btf_equal_fnproto(t, cand)) {
4908				new_id = cand_id;
4909				break;
4910			}
4911		}
4912		break;
4913	}
4914
4915	default:
4916		return -EINVAL;
4917	}
4918
4919	d->map[type_id] = new_id;
4920	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4921		return -ENOMEM;
4922
4923	return new_id;
4924}
4925
4926static int btf_dedup_ref_types(struct btf_dedup *d)
4927{
4928	int i, err;
4929
4930	for (i = 0; i < d->btf->nr_types; i++) {
4931		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4932		if (err < 0)
4933			return err;
4934	}
4935	/* we won't need d->dedup_table anymore */
4936	hashmap__free(d->dedup_table);
4937	d->dedup_table = NULL;
4938	return 0;
4939}
4940
4941/*
4942 * Collect a map from type names to type ids for all canonical structs
4943 * and unions. If the same name is shared by several canonical types
4944 * use a special value 0 to indicate this fact.
4945 */
4946static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map)
4947{
4948	__u32 nr_types = btf__type_cnt(d->btf);
4949	struct btf_type *t;
4950	__u32 type_id;
4951	__u16 kind;
4952	int err;
4953
4954	/*
4955	 * Iterate over base and split module ids in order to get all
4956	 * available structs in the map.
4957	 */
4958	for (type_id = 1; type_id < nr_types; ++type_id) {
4959		t = btf_type_by_id(d->btf, type_id);
4960		kind = btf_kind(t);
4961
4962		if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4963			continue;
4964
4965		/* Skip non-canonical types */
4966		if (type_id != d->map[type_id])
4967			continue;
4968
4969		err = hashmap__add(names_map, t->name_off, type_id);
4970		if (err == -EEXIST)
4971			err = hashmap__set(names_map, t->name_off, 0, NULL, NULL);
4972
4973		if (err)
4974			return err;
4975	}
4976
4977	return 0;
4978}
4979
4980static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id)
4981{
4982	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4983	enum btf_fwd_kind fwd_kind = btf_kflag(t);
4984	__u16 cand_kind, kind = btf_kind(t);
4985	struct btf_type *cand_t;
4986	uintptr_t cand_id;
4987
4988	if (kind != BTF_KIND_FWD)
4989		return 0;
4990
4991	/* Skip if this FWD already has a mapping */
4992	if (type_id != d->map[type_id])
4993		return 0;
4994
4995	if (!hashmap__find(names_map, t->name_off, &cand_id))
4996		return 0;
4997
4998	/* Zero is a special value indicating that name is not unique */
4999	if (!cand_id)
5000		return 0;
5001
5002	cand_t = btf_type_by_id(d->btf, cand_id);
5003	cand_kind = btf_kind(cand_t);
5004	if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) ||
5005	    (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION))
5006		return 0;
5007
5008	d->map[type_id] = cand_id;
5009
5010	return 0;
5011}
5012
5013/*
5014 * Resolve unambiguous forward declarations.
5015 *
5016 * The lion's share of all FWD declarations is resolved during
5017 * `btf_dedup_struct_types` phase when different type graphs are
5018 * compared against each other. However, if in some compilation unit a
5019 * FWD declaration is not a part of a type graph compared against
5020 * another type graph that declaration's canonical type would not be
5021 * changed. Example:
5022 *
5023 * CU #1:
5024 *
5025 * struct foo;
5026 * struct foo *some_global;
5027 *
5028 * CU #2:
5029 *
5030 * struct foo { int u; };
5031 * struct foo *another_global;
5032 *
5033 * After `btf_dedup_struct_types` the BTF looks as follows:
5034 *
5035 * [1] STRUCT 'foo' size=4 vlen=1 ...
5036 * [2] INT 'int' size=4 ...
5037 * [3] PTR '(anon)' type_id=1
5038 * [4] FWD 'foo' fwd_kind=struct
5039 * [5] PTR '(anon)' type_id=4
5040 *
5041 * This pass assumes that such FWD declarations should be mapped to
5042 * structs or unions with identical name in case if the name is not
5043 * ambiguous.
5044 */
5045static int btf_dedup_resolve_fwds(struct btf_dedup *d)
5046{
5047	int i, err;
5048	struct hashmap *names_map;
5049
5050	names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
5051	if (IS_ERR(names_map))
5052		return PTR_ERR(names_map);
5053
5054	err = btf_dedup_fill_unique_names_map(d, names_map);
5055	if (err < 0)
5056		goto exit;
5057
5058	for (i = 0; i < d->btf->nr_types; i++) {
5059		err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i);
5060		if (err < 0)
5061			break;
5062	}
5063
5064exit:
5065	hashmap__free(names_map);
5066	return err;
5067}
5068
5069/*
5070 * Compact types.
5071 *
5072 * After we established for each type its corresponding canonical representative
5073 * type, we now can eliminate types that are not canonical and leave only
5074 * canonical ones layed out sequentially in memory by copying them over
5075 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
5076 * a map from original type ID to a new compacted type ID, which will be used
5077 * during next phase to "fix up" type IDs, referenced from struct/union and
5078 * reference types.
5079 */
5080static int btf_dedup_compact_types(struct btf_dedup *d)
5081{
5082	__u32 *new_offs;
5083	__u32 next_type_id = d->btf->start_id;
5084	const struct btf_type *t;
5085	void *p;
5086	int i, id, len;
5087
5088	/* we are going to reuse hypot_map to store compaction remapping */
5089	d->hypot_map[0] = 0;
5090	/* base BTF types are not renumbered */
5091	for (id = 1; id < d->btf->start_id; id++)
5092		d->hypot_map[id] = id;
5093	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
5094		d->hypot_map[id] = BTF_UNPROCESSED_ID;
5095
5096	p = d->btf->types_data;
5097
5098	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
5099		if (d->map[id] != id)
5100			continue;
5101
5102		t = btf__type_by_id(d->btf, id);
5103		len = btf_type_size(t);
5104		if (len < 0)
5105			return len;
5106
5107		memmove(p, t, len);
5108		d->hypot_map[id] = next_type_id;
5109		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
5110		p += len;
5111		next_type_id++;
5112	}
5113
5114	/* shrink struct btf's internal types index and update btf_header */
5115	d->btf->nr_types = next_type_id - d->btf->start_id;
5116	d->btf->type_offs_cap = d->btf->nr_types;
5117	d->btf->hdr->type_len = p - d->btf->types_data;
5118	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
5119				       sizeof(*new_offs));
5120	if (d->btf->type_offs_cap && !new_offs)
5121		return -ENOMEM;
5122	d->btf->type_offs = new_offs;
5123	d->btf->hdr->str_off = d->btf->hdr->type_len;
5124	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
5125	return 0;
5126}
5127
5128/*
5129 * Figure out final (deduplicated and compacted) type ID for provided original
5130 * `type_id` by first resolving it into corresponding canonical type ID and
5131 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
5132 * which is populated during compaction phase.
5133 */
5134static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
5135{
5136	struct btf_dedup *d = ctx;
5137	__u32 resolved_type_id, new_type_id;
5138
5139	resolved_type_id = resolve_type_id(d, *type_id);
5140	new_type_id = d->hypot_map[resolved_type_id];
5141	if (new_type_id > BTF_MAX_NR_TYPES)
5142		return -EINVAL;
5143
5144	*type_id = new_type_id;
5145	return 0;
5146}
5147
5148/*
5149 * Remap referenced type IDs into deduped type IDs.
5150 *
5151 * After BTF types are deduplicated and compacted, their final type IDs may
5152 * differ from original ones. The map from original to a corresponding
5153 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
5154 * compaction phase. During remapping phase we are rewriting all type IDs
5155 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
5156 * their final deduped type IDs.
5157 */
5158static int btf_dedup_remap_types(struct btf_dedup *d)
5159{
5160	int i, r;
5161
5162	for (i = 0; i < d->btf->nr_types; i++) {
5163		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
5164		struct btf_field_iter it;
5165		__u32 *type_id;
5166
5167		r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
5168		if (r)
5169			return r;
5170
5171		while ((type_id = btf_field_iter_next(&it))) {
5172			__u32 resolved_id, new_id;
5173
5174			resolved_id = resolve_type_id(d, *type_id);
5175			new_id = d->hypot_map[resolved_id];
5176			if (new_id > BTF_MAX_NR_TYPES)
5177				return -EINVAL;
5178
5179			*type_id = new_id;
5180		}
5181	}
5182
5183	if (!d->btf_ext)
5184		return 0;
5185
5186	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
5187	if (r)
5188		return r;
5189
5190	return 0;
5191}
5192
5193/*
5194 * Probe few well-known locations for vmlinux kernel image and try to load BTF
5195 * data out of it to use for target BTF.
5196 */
5197struct btf *btf__load_vmlinux_btf(void)
5198{
5199	const char *sysfs_btf_path = "/sys/kernel/btf/vmlinux";
5200	/* fall back locations, trying to find vmlinux on disk */
5201	const char *locations[] = {
5202		"/boot/vmlinux-%1$s",
5203		"/lib/modules/%1$s/vmlinux-%1$s",
5204		"/lib/modules/%1$s/build/vmlinux",
5205		"/usr/lib/modules/%1$s/kernel/vmlinux",
5206		"/usr/lib/debug/boot/vmlinux-%1$s",
5207		"/usr/lib/debug/boot/vmlinux-%1$s.debug",
5208		"/usr/lib/debug/lib/modules/%1$s/vmlinux",
5209	};
5210	char path[PATH_MAX + 1];
5211	struct utsname buf;
5212	struct btf *btf;
5213	int i, err;
5214
5215	/* is canonical sysfs location accessible? */
5216	if (faccessat(AT_FDCWD, sysfs_btf_path, F_OK, AT_EACCESS) < 0) {
5217		pr_warn("kernel BTF is missing at '%s', was CONFIG_DEBUG_INFO_BTF enabled?\n",
5218			sysfs_btf_path);
5219	} else {
5220		btf = btf__parse(sysfs_btf_path, NULL);
5221		if (!btf) {
5222			err = -errno;
5223			pr_warn("failed to read kernel BTF from '%s': %s\n",
5224				sysfs_btf_path, errstr(err));
5225			return libbpf_err_ptr(err);
5226		}
5227		pr_debug("loaded kernel BTF from '%s'\n", sysfs_btf_path);
5228		return btf;
5229	}
5230
5231	/* try fallback locations */
5232	uname(&buf);
5233	for (i = 0; i < ARRAY_SIZE(locations); i++) {
5234		snprintf(path, PATH_MAX, locations[i], buf.release);
5235
5236		if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
5237			continue;
5238
5239		btf = btf__parse(path, NULL);
5240		err = libbpf_get_error(btf);
5241		pr_debug("loading kernel BTF '%s': %s\n", path, errstr(err));
5242		if (err)
5243			continue;
5244
5245		return btf;
5246	}
5247
5248	pr_warn("failed to find valid kernel BTF\n");
5249	return libbpf_err_ptr(-ESRCH);
5250}
5251
5252struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
5253
5254struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
5255{
5256	char path[80];
5257
5258	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
5259	return btf__parse_split(path, vmlinux_btf);
5260}
5261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5262int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
5263{
5264	const struct btf_ext_info *seg;
5265	struct btf_ext_info_sec *sec;
5266	int i, err;
5267
5268	seg = &btf_ext->func_info;
5269	for_each_btf_ext_sec(seg, sec) {
5270		struct bpf_func_info_min *rec;
5271
5272		for_each_btf_ext_rec(seg, sec, i, rec) {
5273			err = visit(&rec->type_id, ctx);
5274			if (err < 0)
5275				return err;
5276		}
5277	}
5278
5279	seg = &btf_ext->core_relo_info;
5280	for_each_btf_ext_sec(seg, sec) {
5281		struct bpf_core_relo *rec;
5282
5283		for_each_btf_ext_rec(seg, sec, i, rec) {
5284			err = visit(&rec->type_id, ctx);
5285			if (err < 0)
5286				return err;
5287		}
5288	}
5289
5290	return 0;
5291}
5292
5293int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
5294{
5295	const struct btf_ext_info *seg;
5296	struct btf_ext_info_sec *sec;
5297	int i, err;
5298
5299	seg = &btf_ext->func_info;
5300	for_each_btf_ext_sec(seg, sec) {
5301		err = visit(&sec->sec_name_off, ctx);
5302		if (err)
5303			return err;
5304	}
5305
5306	seg = &btf_ext->line_info;
5307	for_each_btf_ext_sec(seg, sec) {
5308		struct bpf_line_info_min *rec;
5309
5310		err = visit(&sec->sec_name_off, ctx);
5311		if (err)
5312			return err;
5313
5314		for_each_btf_ext_rec(seg, sec, i, rec) {
5315			err = visit(&rec->file_name_off, ctx);
5316			if (err)
5317				return err;
5318			err = visit(&rec->line_off, ctx);
5319			if (err)
5320				return err;
5321		}
5322	}
5323
5324	seg = &btf_ext->core_relo_info;
5325	for_each_btf_ext_sec(seg, sec) {
5326		struct bpf_core_relo *rec;
5327
5328		err = visit(&sec->sec_name_off, ctx);
5329		if (err)
5330			return err;
5331
5332		for_each_btf_ext_rec(seg, sec, i, rec) {
5333			err = visit(&rec->access_str_off, ctx);
5334			if (err)
5335				return err;
5336		}
5337	}
5338
5339	return 0;
5340}
5341
5342struct btf_distill {
5343	struct btf_pipe pipe;
5344	int *id_map;
5345	unsigned int split_start_id;
5346	unsigned int split_start_str;
5347	int diff_id;
5348};
5349
5350static int btf_add_distilled_type_ids(struct btf_distill *dist, __u32 i)
5351{
5352	struct btf_type *split_t = btf_type_by_id(dist->pipe.src, i);
5353	struct btf_field_iter it;
5354	__u32 *id;
5355	int err;
5356
5357	err = btf_field_iter_init(&it, split_t, BTF_FIELD_ITER_IDS);
5358	if (err)
5359		return err;
5360	while ((id = btf_field_iter_next(&it))) {
5361		struct btf_type *base_t;
5362
5363		if (!*id)
5364			continue;
5365		/* split BTF id, not needed */
5366		if (*id >= dist->split_start_id)
5367			continue;
5368		/* already added ? */
5369		if (dist->id_map[*id] > 0)
5370			continue;
5371
5372		/* only a subset of base BTF types should be referenced from
5373		 * split BTF; ensure nothing unexpected is referenced.
5374		 */
5375		base_t = btf_type_by_id(dist->pipe.src, *id);
5376		switch (btf_kind(base_t)) {
5377		case BTF_KIND_INT:
5378		case BTF_KIND_FLOAT:
5379		case BTF_KIND_FWD:
5380		case BTF_KIND_ARRAY:
5381		case BTF_KIND_STRUCT:
5382		case BTF_KIND_UNION:
5383		case BTF_KIND_TYPEDEF:
5384		case BTF_KIND_ENUM:
5385		case BTF_KIND_ENUM64:
5386		case BTF_KIND_PTR:
5387		case BTF_KIND_CONST:
5388		case BTF_KIND_RESTRICT:
5389		case BTF_KIND_VOLATILE:
5390		case BTF_KIND_FUNC_PROTO:
5391		case BTF_KIND_TYPE_TAG:
5392			dist->id_map[*id] = *id;
5393			break;
5394		default:
5395			pr_warn("unexpected reference to base type[%u] of kind [%u] when creating distilled base BTF.\n",
5396				*id, btf_kind(base_t));
5397			return -EINVAL;
5398		}
5399		/* If a base type is used, ensure types it refers to are
5400		 * marked as used also; so for example if we find a PTR to INT
5401		 * we need both the PTR and INT.
5402		 *
5403		 * The only exception is named struct/unions, since distilled
5404		 * base BTF composite types have no members.
5405		 */
5406		if (btf_is_composite(base_t) && base_t->name_off)
5407			continue;
5408		err = btf_add_distilled_type_ids(dist, *id);
5409		if (err)
5410			return err;
5411	}
5412	return 0;
5413}
5414
5415static int btf_add_distilled_types(struct btf_distill *dist)
5416{
5417	bool adding_to_base = dist->pipe.dst->start_id == 1;
5418	int id = btf__type_cnt(dist->pipe.dst);
5419	struct btf_type *t;
5420	int i, err = 0;
5421
5422
5423	/* Add types for each of the required references to either distilled
5424	 * base or split BTF, depending on type characteristics.
5425	 */
5426	for (i = 1; i < dist->split_start_id; i++) {
5427		const char *name;
5428		int kind;
5429
5430		if (!dist->id_map[i])
5431			continue;
5432		t = btf_type_by_id(dist->pipe.src, i);
5433		kind = btf_kind(t);
5434		name = btf__name_by_offset(dist->pipe.src, t->name_off);
5435
5436		switch (kind) {
5437		case BTF_KIND_INT:
5438		case BTF_KIND_FLOAT:
5439		case BTF_KIND_FWD:
5440			/* Named int, float, fwd are added to base. */
5441			if (!adding_to_base)
5442				continue;
5443			err = btf_add_type(&dist->pipe, t);
5444			break;
5445		case BTF_KIND_STRUCT:
5446		case BTF_KIND_UNION:
5447			/* Named struct/union are added to base as 0-vlen
5448			 * struct/union of same size.  Anonymous struct/unions
5449			 * are added to split BTF as-is.
5450			 */
5451			if (adding_to_base) {
5452				if (!t->name_off)
5453					continue;
5454				err = btf_add_composite(dist->pipe.dst, kind, name, t->size);
5455			} else {
5456				if (t->name_off)
5457					continue;
5458				err = btf_add_type(&dist->pipe, t);
5459			}
5460			break;
5461		case BTF_KIND_ENUM:
5462		case BTF_KIND_ENUM64:
5463			/* Named enum[64]s are added to base as a sized
5464			 * enum; relocation will match with appropriately-named
5465			 * and sized enum or enum64.
5466			 *
5467			 * Anonymous enums are added to split BTF as-is.
5468			 */
5469			if (adding_to_base) {
5470				if (!t->name_off)
5471					continue;
5472				err = btf__add_enum(dist->pipe.dst, name, t->size);
5473			} else {
5474				if (t->name_off)
5475					continue;
5476				err = btf_add_type(&dist->pipe, t);
5477			}
5478			break;
5479		case BTF_KIND_ARRAY:
5480		case BTF_KIND_TYPEDEF:
5481		case BTF_KIND_PTR:
5482		case BTF_KIND_CONST:
5483		case BTF_KIND_RESTRICT:
5484		case BTF_KIND_VOLATILE:
5485		case BTF_KIND_FUNC_PROTO:
5486		case BTF_KIND_TYPE_TAG:
5487			/* All other types are added to split BTF. */
5488			if (adding_to_base)
5489				continue;
5490			err = btf_add_type(&dist->pipe, t);
5491			break;
5492		default:
5493			pr_warn("unexpected kind when adding base type '%s'[%u] of kind [%u] to distilled base BTF.\n",
5494				name, i, kind);
5495			return -EINVAL;
5496
5497		}
5498		if (err < 0)
5499			break;
5500		dist->id_map[i] = id++;
5501	}
5502	return err;
5503}
5504
5505/* Split BTF ids without a mapping will be shifted downwards since distilled
5506 * base BTF is smaller than the original base BTF.  For those that have a
5507 * mapping (either to base or updated split BTF), update the id based on
5508 * that mapping.
5509 */
5510static int btf_update_distilled_type_ids(struct btf_distill *dist, __u32 i)
5511{
5512	struct btf_type *t = btf_type_by_id(dist->pipe.dst, i);
5513	struct btf_field_iter it;
5514	__u32 *id;
5515	int err;
5516
5517	err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
5518	if (err)
5519		return err;
5520	while ((id = btf_field_iter_next(&it))) {
5521		if (dist->id_map[*id])
5522			*id = dist->id_map[*id];
5523		else if (*id >= dist->split_start_id)
5524			*id -= dist->diff_id;
5525	}
5526	return 0;
5527}
5528
5529/* Create updated split BTF with distilled base BTF; distilled base BTF
5530 * consists of BTF information required to clarify the types that split
5531 * BTF refers to, omitting unneeded details.  Specifically it will contain
5532 * base types and memberless definitions of named structs, unions and enumerated
5533 * types. Associated reference types like pointers, arrays and anonymous
5534 * structs, unions and enumerated types will be added to split BTF.
5535 * Size is recorded for named struct/unions to help guide matching to the
5536 * target base BTF during later relocation.
5537 *
5538 * The only case where structs, unions or enumerated types are fully represented
5539 * is when they are anonymous; in such cases, the anonymous type is added to
5540 * split BTF in full.
5541 *
5542 * We return newly-created split BTF where the split BTF refers to a newly-created
5543 * distilled base BTF. Both must be freed separately by the caller.
5544 */
5545int btf__distill_base(const struct btf *src_btf, struct btf **new_base_btf,
5546		      struct btf **new_split_btf)
5547{
5548	struct btf *new_base = NULL, *new_split = NULL;
5549	const struct btf *old_base;
5550	unsigned int n = btf__type_cnt(src_btf);
5551	struct btf_distill dist = {};
5552	struct btf_type *t;
5553	int i, err = 0;
5554
5555	/* src BTF must be split BTF. */
5556	old_base = btf__base_btf(src_btf);
5557	if (!new_base_btf || !new_split_btf || !old_base)
5558		return libbpf_err(-EINVAL);
5559
5560	new_base = btf__new_empty();
5561	if (!new_base)
5562		return libbpf_err(-ENOMEM);
5563
5564	btf__set_endianness(new_base, btf__endianness(src_btf));
5565
5566	dist.id_map = calloc(n, sizeof(*dist.id_map));
5567	if (!dist.id_map) {
5568		err = -ENOMEM;
5569		goto done;
5570	}
5571	dist.pipe.src = src_btf;
5572	dist.pipe.dst = new_base;
5573	dist.pipe.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
5574	if (IS_ERR(dist.pipe.str_off_map)) {
5575		err = -ENOMEM;
5576		goto done;
5577	}
5578	dist.split_start_id = btf__type_cnt(old_base);
5579	dist.split_start_str = old_base->hdr->str_len;
5580
5581	/* Pass over src split BTF; generate the list of base BTF type ids it
5582	 * references; these will constitute our distilled BTF set to be
5583	 * distributed over base and split BTF as appropriate.
5584	 */
5585	for (i = src_btf->start_id; i < n; i++) {
5586		err = btf_add_distilled_type_ids(&dist, i);
5587		if (err < 0)
5588			goto done;
5589	}
5590	/* Next add types for each of the required references to base BTF and split BTF
5591	 * in turn.
5592	 */
5593	err = btf_add_distilled_types(&dist);
5594	if (err < 0)
5595		goto done;
5596
5597	/* Create new split BTF with distilled base BTF as its base; the final
5598	 * state is split BTF with distilled base BTF that represents enough
5599	 * about its base references to allow it to be relocated with the base
5600	 * BTF available.
5601	 */
5602	new_split = btf__new_empty_split(new_base);
5603	if (!new_split) {
5604		err = -errno;
5605		goto done;
5606	}
5607	dist.pipe.dst = new_split;
5608	/* First add all split types */
5609	for (i = src_btf->start_id; i < n; i++) {
5610		t = btf_type_by_id(src_btf, i);
5611		err = btf_add_type(&dist.pipe, t);
5612		if (err < 0)
5613			goto done;
5614	}
5615	/* Now add distilled types to split BTF that are not added to base. */
5616	err = btf_add_distilled_types(&dist);
5617	if (err < 0)
5618		goto done;
5619
5620	/* All split BTF ids will be shifted downwards since there are less base
5621	 * BTF ids in distilled base BTF.
5622	 */
5623	dist.diff_id = dist.split_start_id - btf__type_cnt(new_base);
5624
5625	n = btf__type_cnt(new_split);
5626	/* Now update base/split BTF ids. */
5627	for (i = 1; i < n; i++) {
5628		err = btf_update_distilled_type_ids(&dist, i);
5629		if (err < 0)
5630			break;
5631	}
5632done:
5633	free(dist.id_map);
5634	hashmap__free(dist.pipe.str_off_map);
5635	if (err) {
5636		btf__free(new_split);
5637		btf__free(new_base);
5638		return libbpf_err(err);
5639	}
5640	*new_base_btf = new_base;
5641	*new_split_btf = new_split;
5642
5643	return 0;
5644}
5645
5646const struct btf_header *btf_header(const struct btf *btf)
5647{
5648	return btf->hdr;
5649}
5650
5651void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
5652{
5653	btf->base_btf = (struct btf *)base_btf;
5654	btf->start_id = btf__type_cnt(base_btf);
5655	btf->start_str_off = base_btf->hdr->str_len;
5656}
5657
5658int btf__relocate(struct btf *btf, const struct btf *base_btf)
5659{
5660	int err = btf_relocate(btf, base_btf, NULL);
5661
5662	if (!err)
5663		btf->owns_base = false;
5664	return libbpf_err(err);
5665}