Loading...
1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33#include <linux/dma-mapping.h>
34#include <linux/iommu.h>
35#include <linux/pagemap.h>
36#include <linux/sched/task.h>
37#include <linux/sched/mm.h>
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/dma-buf.h>
42#include <linux/sizes.h>
43#include <linux/module.h>
44
45#include <drm/drm_drv.h>
46#include <drm/ttm/ttm_bo.h>
47#include <drm/ttm/ttm_placement.h>
48#include <drm/ttm/ttm_range_manager.h>
49#include <drm/ttm/ttm_tt.h>
50
51#include <drm/amdgpu_drm.h>
52
53#include "amdgpu.h"
54#include "amdgpu_object.h"
55#include "amdgpu_trace.h"
56#include "amdgpu_amdkfd.h"
57#include "amdgpu_sdma.h"
58#include "amdgpu_ras.h"
59#include "amdgpu_hmm.h"
60#include "amdgpu_atomfirmware.h"
61#include "amdgpu_res_cursor.h"
62#include "bif/bif_4_1_d.h"
63
64MODULE_IMPORT_NS(DMA_BUF);
65
66#define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77{
78 return ttm_range_man_init(&adev->mman.bdev, type,
79 false, size_in_page);
80}
81
82/**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92{
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 return;
106 }
107
108 /* Object isn't an AMDGPU object so ignore */
109 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 placement->placement = &placements;
111 placement->num_placement = 1;
112 return;
113 }
114
115 abo = ttm_to_amdgpu_bo(bo);
116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 placement->num_placement = 0;
118 return;
119 }
120
121 switch (bo->resource->mem_type) {
122 case AMDGPU_PL_GDS:
123 case AMDGPU_PL_GWS:
124 case AMDGPU_PL_OA:
125 case AMDGPU_PL_DOORBELL:
126 placement->num_placement = 0;
127 return;
128
129 case TTM_PL_VRAM:
130 if (!adev->mman.buffer_funcs_enabled) {
131 /* Move to system memory */
132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133
134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 amdgpu_res_cpu_visible(adev, bo->resource)) {
137
138 /* Try evicting to the CPU inaccessible part of VRAM
139 * first, but only set GTT as busy placement, so this
140 * BO will be evicted to GTT rather than causing other
141 * BOs to be evicted from VRAM
142 */
143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 AMDGPU_GEM_DOMAIN_GTT |
145 AMDGPU_GEM_DOMAIN_CPU);
146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 abo->placements[0].lpfn = 0;
148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 } else {
150 /* Move to GTT memory */
151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 AMDGPU_GEM_DOMAIN_CPU);
153 }
154 break;
155 case TTM_PL_TT:
156 case AMDGPU_PL_PREEMPT:
157 default:
158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 break;
160 }
161 *placement = abo->placement;
162}
163
164/**
165 * amdgpu_ttm_map_buffer - Map memory into the GART windows
166 * @bo: buffer object to map
167 * @mem: memory object to map
168 * @mm_cur: range to map
169 * @window: which GART window to use
170 * @ring: DMA ring to use for the copy
171 * @tmz: if we should setup a TMZ enabled mapping
172 * @size: in number of bytes to map, out number of bytes mapped
173 * @addr: resulting address inside the MC address space
174 *
175 * Setup one of the GART windows to access a specific piece of memory or return
176 * the physical address for local memory.
177 */
178static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 struct ttm_resource *mem,
180 struct amdgpu_res_cursor *mm_cur,
181 unsigned int window, struct amdgpu_ring *ring,
182 bool tmz, uint64_t *size, uint64_t *addr)
183{
184 struct amdgpu_device *adev = ring->adev;
185 unsigned int offset, num_pages, num_dw, num_bytes;
186 uint64_t src_addr, dst_addr;
187 struct amdgpu_job *job;
188 void *cpu_addr;
189 uint64_t flags;
190 unsigned int i;
191 int r;
192
193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195
196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 return -EINVAL;
198
199 /* Map only what can't be accessed directly */
200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 mm_cur->start;
203 return 0;
204 }
205
206
207 /*
208 * If start begins at an offset inside the page, then adjust the size
209 * and addr accordingly
210 */
211 offset = mm_cur->start & ~PAGE_MASK;
212
213 num_pages = PFN_UP(*size + offset);
214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215
216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217
218 *addr = adev->gmc.gart_start;
219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 AMDGPU_GPU_PAGE_SIZE;
221 *addr += offset;
222
223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225
226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 AMDGPU_FENCE_OWNER_UNDEFINED,
228 num_dw * 4 + num_bytes,
229 AMDGPU_IB_POOL_DELAYED, &job);
230 if (r)
231 return r;
232
233 src_addr = num_dw * 4;
234 src_addr += job->ibs[0].gpu_addr;
235
236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 dst_addr, num_bytes, false);
240
241 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 WARN_ON(job->ibs[0].length_dw > num_dw);
243
244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 if (tmz)
246 flags |= AMDGPU_PTE_TMZ;
247
248 cpu_addr = &job->ibs[0].ptr[num_dw];
249
250 if (mem->mem_type == TTM_PL_TT) {
251 dma_addr_t *dma_addr;
252
253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 } else {
256 dma_addr_t dma_address;
257
258 dma_address = mm_cur->start;
259 dma_address += adev->vm_manager.vram_base_offset;
260
261 for (i = 0; i < num_pages; ++i) {
262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 flags, cpu_addr);
264 dma_address += PAGE_SIZE;
265 }
266 }
267
268 dma_fence_put(amdgpu_job_submit(job));
269 return 0;
270}
271
272/**
273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274 * @adev: amdgpu device
275 * @src: buffer/address where to read from
276 * @dst: buffer/address where to write to
277 * @size: number of bytes to copy
278 * @tmz: if a secure copy should be used
279 * @resv: resv object to sync to
280 * @f: Returns the last fence if multiple jobs are submitted.
281 *
282 * The function copies @size bytes from {src->mem + src->offset} to
283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284 * move and different for a BO to BO copy.
285 *
286 */
287int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 const struct amdgpu_copy_mem *src,
289 const struct amdgpu_copy_mem *dst,
290 uint64_t size, bool tmz,
291 struct dma_resv *resv,
292 struct dma_fence **f)
293{
294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 struct amdgpu_res_cursor src_mm, dst_mm;
296 struct dma_fence *fence = NULL;
297 int r = 0;
298
299 if (!adev->mman.buffer_funcs_enabled) {
300 DRM_ERROR("Trying to move memory with ring turned off.\n");
301 return -EINVAL;
302 }
303
304 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
305 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
306
307 mutex_lock(&adev->mman.gtt_window_lock);
308 while (src_mm.remaining) {
309 uint64_t from, to, cur_size;
310 struct dma_fence *next;
311
312 /* Never copy more than 256MiB at once to avoid a timeout */
313 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
314
315 /* Map src to window 0 and dst to window 1. */
316 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
317 0, ring, tmz, &cur_size, &from);
318 if (r)
319 goto error;
320
321 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
322 1, ring, tmz, &cur_size, &to);
323 if (r)
324 goto error;
325
326 r = amdgpu_copy_buffer(ring, from, to, cur_size,
327 resv, &next, false, true, tmz);
328 if (r)
329 goto error;
330
331 dma_fence_put(fence);
332 fence = next;
333
334 amdgpu_res_next(&src_mm, cur_size);
335 amdgpu_res_next(&dst_mm, cur_size);
336 }
337error:
338 mutex_unlock(&adev->mman.gtt_window_lock);
339 if (f)
340 *f = dma_fence_get(fence);
341 dma_fence_put(fence);
342 return r;
343}
344
345/*
346 * amdgpu_move_blit - Copy an entire buffer to another buffer
347 *
348 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
349 * help move buffers to and from VRAM.
350 */
351static int amdgpu_move_blit(struct ttm_buffer_object *bo,
352 bool evict,
353 struct ttm_resource *new_mem,
354 struct ttm_resource *old_mem)
355{
356 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
357 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
358 struct amdgpu_copy_mem src, dst;
359 struct dma_fence *fence = NULL;
360 int r;
361
362 src.bo = bo;
363 dst.bo = bo;
364 src.mem = old_mem;
365 dst.mem = new_mem;
366 src.offset = 0;
367 dst.offset = 0;
368
369 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
370 new_mem->size,
371 amdgpu_bo_encrypted(abo),
372 bo->base.resv, &fence);
373 if (r)
374 goto error;
375
376 /* clear the space being freed */
377 if (old_mem->mem_type == TTM_PL_VRAM &&
378 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
379 struct dma_fence *wipe_fence = NULL;
380
381 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
382 false);
383 if (r) {
384 goto error;
385 } else if (wipe_fence) {
386 dma_fence_put(fence);
387 fence = wipe_fence;
388 }
389 }
390
391 /* Always block for VM page tables before committing the new location */
392 if (bo->type == ttm_bo_type_kernel)
393 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
394 else
395 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
396 dma_fence_put(fence);
397 return r;
398
399error:
400 if (fence)
401 dma_fence_wait(fence, false);
402 dma_fence_put(fence);
403 return r;
404}
405
406/**
407 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
408 * @adev: amdgpu device
409 * @res: the resource to check
410 *
411 * Returns: true if the full resource is CPU visible, false otherwise.
412 */
413bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
414 struct ttm_resource *res)
415{
416 struct amdgpu_res_cursor cursor;
417
418 if (!res)
419 return false;
420
421 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
422 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
423 return true;
424
425 if (res->mem_type != TTM_PL_VRAM)
426 return false;
427
428 amdgpu_res_first(res, 0, res->size, &cursor);
429 while (cursor.remaining) {
430 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
431 return false;
432 amdgpu_res_next(&cursor, cursor.size);
433 }
434
435 return true;
436}
437
438/*
439 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
440 *
441 * Called by amdgpu_bo_move()
442 */
443static bool amdgpu_res_copyable(struct amdgpu_device *adev,
444 struct ttm_resource *mem)
445{
446 if (!amdgpu_res_cpu_visible(adev, mem))
447 return false;
448
449 /* ttm_resource_ioremap only supports contiguous memory */
450 if (mem->mem_type == TTM_PL_VRAM &&
451 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
452 return false;
453
454 return true;
455}
456
457/*
458 * amdgpu_bo_move - Move a buffer object to a new memory location
459 *
460 * Called by ttm_bo_handle_move_mem()
461 */
462static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
463 struct ttm_operation_ctx *ctx,
464 struct ttm_resource *new_mem,
465 struct ttm_place *hop)
466{
467 struct amdgpu_device *adev;
468 struct amdgpu_bo *abo;
469 struct ttm_resource *old_mem = bo->resource;
470 int r;
471
472 if (new_mem->mem_type == TTM_PL_TT ||
473 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
474 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
475 if (r)
476 return r;
477 }
478
479 abo = ttm_to_amdgpu_bo(bo);
480 adev = amdgpu_ttm_adev(bo->bdev);
481
482 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
483 bo->ttm == NULL)) {
484 amdgpu_bo_move_notify(bo, evict, new_mem);
485 ttm_bo_move_null(bo, new_mem);
486 return 0;
487 }
488 if (old_mem->mem_type == TTM_PL_SYSTEM &&
489 (new_mem->mem_type == TTM_PL_TT ||
490 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
491 amdgpu_bo_move_notify(bo, evict, new_mem);
492 ttm_bo_move_null(bo, new_mem);
493 return 0;
494 }
495 if ((old_mem->mem_type == TTM_PL_TT ||
496 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
497 new_mem->mem_type == TTM_PL_SYSTEM) {
498 r = ttm_bo_wait_ctx(bo, ctx);
499 if (r)
500 return r;
501
502 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
503 amdgpu_bo_move_notify(bo, evict, new_mem);
504 ttm_resource_free(bo, &bo->resource);
505 ttm_bo_assign_mem(bo, new_mem);
506 return 0;
507 }
508
509 if (old_mem->mem_type == AMDGPU_PL_GDS ||
510 old_mem->mem_type == AMDGPU_PL_GWS ||
511 old_mem->mem_type == AMDGPU_PL_OA ||
512 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
513 new_mem->mem_type == AMDGPU_PL_GDS ||
514 new_mem->mem_type == AMDGPU_PL_GWS ||
515 new_mem->mem_type == AMDGPU_PL_OA ||
516 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
517 /* Nothing to save here */
518 amdgpu_bo_move_notify(bo, evict, new_mem);
519 ttm_bo_move_null(bo, new_mem);
520 return 0;
521 }
522
523 if (bo->type == ttm_bo_type_device &&
524 new_mem->mem_type == TTM_PL_VRAM &&
525 old_mem->mem_type != TTM_PL_VRAM) {
526 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
527 * accesses the BO after it's moved.
528 */
529 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
530 }
531
532 if (adev->mman.buffer_funcs_enabled &&
533 ((old_mem->mem_type == TTM_PL_SYSTEM &&
534 new_mem->mem_type == TTM_PL_VRAM) ||
535 (old_mem->mem_type == TTM_PL_VRAM &&
536 new_mem->mem_type == TTM_PL_SYSTEM))) {
537 hop->fpfn = 0;
538 hop->lpfn = 0;
539 hop->mem_type = TTM_PL_TT;
540 hop->flags = TTM_PL_FLAG_TEMPORARY;
541 return -EMULTIHOP;
542 }
543
544 amdgpu_bo_move_notify(bo, evict, new_mem);
545 if (adev->mman.buffer_funcs_enabled)
546 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
547 else
548 r = -ENODEV;
549
550 if (r) {
551 /* Check that all memory is CPU accessible */
552 if (!amdgpu_res_copyable(adev, old_mem) ||
553 !amdgpu_res_copyable(adev, new_mem)) {
554 pr_err("Move buffer fallback to memcpy unavailable\n");
555 return r;
556 }
557
558 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
559 if (r)
560 return r;
561 }
562
563 /* update statistics after the move */
564 if (evict)
565 atomic64_inc(&adev->num_evictions);
566 atomic64_add(bo->base.size, &adev->num_bytes_moved);
567 return 0;
568}
569
570/*
571 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
572 *
573 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
574 */
575static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
576 struct ttm_resource *mem)
577{
578 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
579
580 switch (mem->mem_type) {
581 case TTM_PL_SYSTEM:
582 /* system memory */
583 return 0;
584 case TTM_PL_TT:
585 case AMDGPU_PL_PREEMPT:
586 break;
587 case TTM_PL_VRAM:
588 mem->bus.offset = mem->start << PAGE_SHIFT;
589
590 if (adev->mman.aper_base_kaddr &&
591 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
592 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
593 mem->bus.offset;
594
595 mem->bus.offset += adev->gmc.aper_base;
596 mem->bus.is_iomem = true;
597 break;
598 case AMDGPU_PL_DOORBELL:
599 mem->bus.offset = mem->start << PAGE_SHIFT;
600 mem->bus.offset += adev->doorbell.base;
601 mem->bus.is_iomem = true;
602 mem->bus.caching = ttm_uncached;
603 break;
604 default:
605 return -EINVAL;
606 }
607 return 0;
608}
609
610static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
611 unsigned long page_offset)
612{
613 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
614 struct amdgpu_res_cursor cursor;
615
616 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
617 &cursor);
618
619 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
620 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
621
622 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
623}
624
625/**
626 * amdgpu_ttm_domain_start - Returns GPU start address
627 * @adev: amdgpu device object
628 * @type: type of the memory
629 *
630 * Returns:
631 * GPU start address of a memory domain
632 */
633
634uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
635{
636 switch (type) {
637 case TTM_PL_TT:
638 return adev->gmc.gart_start;
639 case TTM_PL_VRAM:
640 return adev->gmc.vram_start;
641 }
642
643 return 0;
644}
645
646/*
647 * TTM backend functions.
648 */
649struct amdgpu_ttm_tt {
650 struct ttm_tt ttm;
651 struct drm_gem_object *gobj;
652 u64 offset;
653 uint64_t userptr;
654 struct task_struct *usertask;
655 uint32_t userflags;
656 bool bound;
657 int32_t pool_id;
658};
659
660#define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
661
662#ifdef CONFIG_DRM_AMDGPU_USERPTR
663/*
664 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
665 * memory and start HMM tracking CPU page table update
666 *
667 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
668 * once afterwards to stop HMM tracking
669 */
670int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
671 struct hmm_range **range)
672{
673 struct ttm_tt *ttm = bo->tbo.ttm;
674 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
675 unsigned long start = gtt->userptr;
676 struct vm_area_struct *vma;
677 struct mm_struct *mm;
678 bool readonly;
679 int r = 0;
680
681 /* Make sure get_user_pages_done() can cleanup gracefully */
682 *range = NULL;
683
684 mm = bo->notifier.mm;
685 if (unlikely(!mm)) {
686 DRM_DEBUG_DRIVER("BO is not registered?\n");
687 return -EFAULT;
688 }
689
690 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
691 return -ESRCH;
692
693 mmap_read_lock(mm);
694 vma = vma_lookup(mm, start);
695 if (unlikely(!vma)) {
696 r = -EFAULT;
697 goto out_unlock;
698 }
699 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
700 vma->vm_file)) {
701 r = -EPERM;
702 goto out_unlock;
703 }
704
705 readonly = amdgpu_ttm_tt_is_readonly(ttm);
706 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
707 readonly, NULL, pages, range);
708out_unlock:
709 mmap_read_unlock(mm);
710 if (r)
711 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
712
713 mmput(mm);
714
715 return r;
716}
717
718/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
719 */
720void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
721 struct hmm_range *range)
722{
723 struct amdgpu_ttm_tt *gtt = (void *)ttm;
724
725 if (gtt && gtt->userptr && range)
726 amdgpu_hmm_range_get_pages_done(range);
727}
728
729/*
730 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
731 * Check if the pages backing this ttm range have been invalidated
732 *
733 * Returns: true if pages are still valid
734 */
735bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
736 struct hmm_range *range)
737{
738 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
739
740 if (!gtt || !gtt->userptr || !range)
741 return false;
742
743 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
744 gtt->userptr, ttm->num_pages);
745
746 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
747
748 return !amdgpu_hmm_range_get_pages_done(range);
749}
750#endif
751
752/*
753 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
754 *
755 * Called by amdgpu_cs_list_validate(). This creates the page list
756 * that backs user memory and will ultimately be mapped into the device
757 * address space.
758 */
759void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
760{
761 unsigned long i;
762
763 for (i = 0; i < ttm->num_pages; ++i)
764 ttm->pages[i] = pages ? pages[i] : NULL;
765}
766
767/*
768 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
769 *
770 * Called by amdgpu_ttm_backend_bind()
771 **/
772static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
773 struct ttm_tt *ttm)
774{
775 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
776 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
777 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
778 enum dma_data_direction direction = write ?
779 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
780 int r;
781
782 /* Allocate an SG array and squash pages into it */
783 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
784 (u64)ttm->num_pages << PAGE_SHIFT,
785 GFP_KERNEL);
786 if (r)
787 goto release_sg;
788
789 /* Map SG to device */
790 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
791 if (r)
792 goto release_sg;
793
794 /* convert SG to linear array of pages and dma addresses */
795 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
796 ttm->num_pages);
797
798 return 0;
799
800release_sg:
801 kfree(ttm->sg);
802 ttm->sg = NULL;
803 return r;
804}
805
806/*
807 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
808 */
809static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
810 struct ttm_tt *ttm)
811{
812 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
813 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
814 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
815 enum dma_data_direction direction = write ?
816 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
817
818 /* double check that we don't free the table twice */
819 if (!ttm->sg || !ttm->sg->sgl)
820 return;
821
822 /* unmap the pages mapped to the device */
823 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
824 sg_free_table(ttm->sg);
825}
826
827/*
828 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
829 * MQDn+CtrlStackn where n is the number of XCCs per partition.
830 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
831 * and uses memory type default, UC. The rest of pages_per_xcc are
832 * Ctrl stack and modify their memory type to NC.
833 */
834static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
835 struct ttm_tt *ttm, uint64_t flags)
836{
837 struct amdgpu_ttm_tt *gtt = (void *)ttm;
838 uint64_t total_pages = ttm->num_pages;
839 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
840 uint64_t page_idx, pages_per_xcc;
841 int i;
842 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
843 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
844
845 pages_per_xcc = total_pages;
846 do_div(pages_per_xcc, num_xcc);
847
848 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
849 /* MQD page: use default flags */
850 amdgpu_gart_bind(adev,
851 gtt->offset + (page_idx << PAGE_SHIFT),
852 1, >t->ttm.dma_address[page_idx], flags);
853 /*
854 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
855 * the second page of the BO onward.
856 */
857 amdgpu_gart_bind(adev,
858 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
859 pages_per_xcc - 1,
860 >t->ttm.dma_address[page_idx + 1],
861 ctrl_flags);
862 }
863}
864
865static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
866 struct ttm_buffer_object *tbo,
867 uint64_t flags)
868{
869 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
870 struct ttm_tt *ttm = tbo->ttm;
871 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
872
873 if (amdgpu_bo_encrypted(abo))
874 flags |= AMDGPU_PTE_TMZ;
875
876 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
877 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
878 } else {
879 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
880 gtt->ttm.dma_address, flags);
881 }
882 gtt->bound = true;
883}
884
885/*
886 * amdgpu_ttm_backend_bind - Bind GTT memory
887 *
888 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
889 * This handles binding GTT memory to the device address space.
890 */
891static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
892 struct ttm_tt *ttm,
893 struct ttm_resource *bo_mem)
894{
895 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
896 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
897 uint64_t flags;
898 int r;
899
900 if (!bo_mem)
901 return -EINVAL;
902
903 if (gtt->bound)
904 return 0;
905
906 if (gtt->userptr) {
907 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
908 if (r) {
909 DRM_ERROR("failed to pin userptr\n");
910 return r;
911 }
912 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
913 if (!ttm->sg) {
914 struct dma_buf_attachment *attach;
915 struct sg_table *sgt;
916
917 attach = gtt->gobj->import_attach;
918 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
919 if (IS_ERR(sgt))
920 return PTR_ERR(sgt);
921
922 ttm->sg = sgt;
923 }
924
925 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
926 ttm->num_pages);
927 }
928
929 if (!ttm->num_pages) {
930 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
931 ttm->num_pages, bo_mem, ttm);
932 }
933
934 if (bo_mem->mem_type != TTM_PL_TT ||
935 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
936 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
937 return 0;
938 }
939
940 /* compute PTE flags relevant to this BO memory */
941 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
942
943 /* bind pages into GART page tables */
944 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
945 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
946 gtt->ttm.dma_address, flags);
947 gtt->bound = true;
948 return 0;
949}
950
951/*
952 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
953 * through AGP or GART aperture.
954 *
955 * If bo is accessible through AGP aperture, then use AGP aperture
956 * to access bo; otherwise allocate logical space in GART aperture
957 * and map bo to GART aperture.
958 */
959int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
960{
961 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
962 struct ttm_operation_ctx ctx = { false, false };
963 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
964 struct ttm_placement placement;
965 struct ttm_place placements;
966 struct ttm_resource *tmp;
967 uint64_t addr, flags;
968 int r;
969
970 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
971 return 0;
972
973 addr = amdgpu_gmc_agp_addr(bo);
974 if (addr != AMDGPU_BO_INVALID_OFFSET)
975 return 0;
976
977 /* allocate GART space */
978 placement.num_placement = 1;
979 placement.placement = &placements;
980 placements.fpfn = 0;
981 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
982 placements.mem_type = TTM_PL_TT;
983 placements.flags = bo->resource->placement;
984
985 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
986 if (unlikely(r))
987 return r;
988
989 /* compute PTE flags for this buffer object */
990 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
991
992 /* Bind pages */
993 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
994 amdgpu_ttm_gart_bind(adev, bo, flags);
995 amdgpu_gart_invalidate_tlb(adev);
996 ttm_resource_free(bo, &bo->resource);
997 ttm_bo_assign_mem(bo, tmp);
998
999 return 0;
1000}
1001
1002/*
1003 * amdgpu_ttm_recover_gart - Rebind GTT pages
1004 *
1005 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1006 * rebind GTT pages during a GPU reset.
1007 */
1008void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1009{
1010 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1011 uint64_t flags;
1012
1013 if (!tbo->ttm)
1014 return;
1015
1016 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1017 amdgpu_ttm_gart_bind(adev, tbo, flags);
1018}
1019
1020/*
1021 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1022 *
1023 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1024 * ttm_tt_destroy().
1025 */
1026static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1027 struct ttm_tt *ttm)
1028{
1029 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1030 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1031
1032 /* if the pages have userptr pinning then clear that first */
1033 if (gtt->userptr) {
1034 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1035 } else if (ttm->sg && gtt->gobj->import_attach) {
1036 struct dma_buf_attachment *attach;
1037
1038 attach = gtt->gobj->import_attach;
1039 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1040 ttm->sg = NULL;
1041 }
1042
1043 if (!gtt->bound)
1044 return;
1045
1046 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1047 return;
1048
1049 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1050 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1051 gtt->bound = false;
1052}
1053
1054static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1055 struct ttm_tt *ttm)
1056{
1057 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1058
1059 if (gtt->usertask)
1060 put_task_struct(gtt->usertask);
1061
1062 ttm_tt_fini(>t->ttm);
1063 kfree(gtt);
1064}
1065
1066/**
1067 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1068 *
1069 * @bo: The buffer object to create a GTT ttm_tt object around
1070 * @page_flags: Page flags to be added to the ttm_tt object
1071 *
1072 * Called by ttm_tt_create().
1073 */
1074static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1075 uint32_t page_flags)
1076{
1077 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1078 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1079 struct amdgpu_ttm_tt *gtt;
1080 enum ttm_caching caching;
1081
1082 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1083 if (!gtt)
1084 return NULL;
1085
1086 gtt->gobj = &bo->base;
1087 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1088 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1089 else
1090 gtt->pool_id = abo->xcp_id;
1091
1092 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1093 caching = ttm_write_combined;
1094 else
1095 caching = ttm_cached;
1096
1097 /* allocate space for the uninitialized page entries */
1098 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1099 kfree(gtt);
1100 return NULL;
1101 }
1102 return >t->ttm;
1103}
1104
1105/*
1106 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1107 *
1108 * Map the pages of a ttm_tt object to an address space visible
1109 * to the underlying device.
1110 */
1111static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1112 struct ttm_tt *ttm,
1113 struct ttm_operation_ctx *ctx)
1114{
1115 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1116 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1117 struct ttm_pool *pool;
1118 pgoff_t i;
1119 int ret;
1120
1121 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1122 if (gtt->userptr) {
1123 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1124 if (!ttm->sg)
1125 return -ENOMEM;
1126 return 0;
1127 }
1128
1129 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1130 return 0;
1131
1132 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1133 pool = &adev->mman.ttm_pools[gtt->pool_id];
1134 else
1135 pool = &adev->mman.bdev.pool;
1136 ret = ttm_pool_alloc(pool, ttm, ctx);
1137 if (ret)
1138 return ret;
1139
1140 for (i = 0; i < ttm->num_pages; ++i)
1141 ttm->pages[i]->mapping = bdev->dev_mapping;
1142
1143 return 0;
1144}
1145
1146/*
1147 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1148 *
1149 * Unmaps pages of a ttm_tt object from the device address space and
1150 * unpopulates the page array backing it.
1151 */
1152static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1153 struct ttm_tt *ttm)
1154{
1155 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1156 struct amdgpu_device *adev;
1157 struct ttm_pool *pool;
1158 pgoff_t i;
1159
1160 amdgpu_ttm_backend_unbind(bdev, ttm);
1161
1162 if (gtt->userptr) {
1163 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1164 kfree(ttm->sg);
1165 ttm->sg = NULL;
1166 return;
1167 }
1168
1169 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1170 return;
1171
1172 for (i = 0; i < ttm->num_pages; ++i)
1173 ttm->pages[i]->mapping = NULL;
1174
1175 adev = amdgpu_ttm_adev(bdev);
1176
1177 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1178 pool = &adev->mman.ttm_pools[gtt->pool_id];
1179 else
1180 pool = &adev->mman.bdev.pool;
1181
1182 return ttm_pool_free(pool, ttm);
1183}
1184
1185/**
1186 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1187 * task
1188 *
1189 * @tbo: The ttm_buffer_object that contains the userptr
1190 * @user_addr: The returned value
1191 */
1192int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1193 uint64_t *user_addr)
1194{
1195 struct amdgpu_ttm_tt *gtt;
1196
1197 if (!tbo->ttm)
1198 return -EINVAL;
1199
1200 gtt = (void *)tbo->ttm;
1201 *user_addr = gtt->userptr;
1202 return 0;
1203}
1204
1205/**
1206 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1207 * task
1208 *
1209 * @bo: The ttm_buffer_object to bind this userptr to
1210 * @addr: The address in the current tasks VM space to use
1211 * @flags: Requirements of userptr object.
1212 *
1213 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1214 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1215 * initialize GPU VM for a KFD process.
1216 */
1217int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1218 uint64_t addr, uint32_t flags)
1219{
1220 struct amdgpu_ttm_tt *gtt;
1221
1222 if (!bo->ttm) {
1223 /* TODO: We want a separate TTM object type for userptrs */
1224 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1225 if (bo->ttm == NULL)
1226 return -ENOMEM;
1227 }
1228
1229 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1230 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1231
1232 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1233 gtt->userptr = addr;
1234 gtt->userflags = flags;
1235
1236 if (gtt->usertask)
1237 put_task_struct(gtt->usertask);
1238 gtt->usertask = current->group_leader;
1239 get_task_struct(gtt->usertask);
1240
1241 return 0;
1242}
1243
1244/*
1245 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1246 */
1247struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1248{
1249 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1250
1251 if (gtt == NULL)
1252 return NULL;
1253
1254 if (gtt->usertask == NULL)
1255 return NULL;
1256
1257 return gtt->usertask->mm;
1258}
1259
1260/*
1261 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1262 * address range for the current task.
1263 *
1264 */
1265bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1266 unsigned long end, unsigned long *userptr)
1267{
1268 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1269 unsigned long size;
1270
1271 if (gtt == NULL || !gtt->userptr)
1272 return false;
1273
1274 /* Return false if no part of the ttm_tt object lies within
1275 * the range
1276 */
1277 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1278 if (gtt->userptr > end || gtt->userptr + size <= start)
1279 return false;
1280
1281 if (userptr)
1282 *userptr = gtt->userptr;
1283 return true;
1284}
1285
1286/*
1287 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1288 */
1289bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1290{
1291 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1292
1293 if (gtt == NULL || !gtt->userptr)
1294 return false;
1295
1296 return true;
1297}
1298
1299/*
1300 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1301 */
1302bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1303{
1304 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1305
1306 if (gtt == NULL)
1307 return false;
1308
1309 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1310}
1311
1312/**
1313 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1314 *
1315 * @ttm: The ttm_tt object to compute the flags for
1316 * @mem: The memory registry backing this ttm_tt object
1317 *
1318 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1319 */
1320uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1321{
1322 uint64_t flags = 0;
1323
1324 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1325 flags |= AMDGPU_PTE_VALID;
1326
1327 if (mem && (mem->mem_type == TTM_PL_TT ||
1328 mem->mem_type == AMDGPU_PL_DOORBELL ||
1329 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1330 flags |= AMDGPU_PTE_SYSTEM;
1331
1332 if (ttm->caching == ttm_cached)
1333 flags |= AMDGPU_PTE_SNOOPED;
1334 }
1335
1336 if (mem && mem->mem_type == TTM_PL_VRAM &&
1337 mem->bus.caching == ttm_cached)
1338 flags |= AMDGPU_PTE_SNOOPED;
1339
1340 return flags;
1341}
1342
1343/**
1344 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1345 *
1346 * @adev: amdgpu_device pointer
1347 * @ttm: The ttm_tt object to compute the flags for
1348 * @mem: The memory registry backing this ttm_tt object
1349 *
1350 * Figure out the flags to use for a VM PTE (Page Table Entry).
1351 */
1352uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1353 struct ttm_resource *mem)
1354{
1355 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1356
1357 flags |= adev->gart.gart_pte_flags;
1358 flags |= AMDGPU_PTE_READABLE;
1359
1360 if (!amdgpu_ttm_tt_is_readonly(ttm))
1361 flags |= AMDGPU_PTE_WRITEABLE;
1362
1363 return flags;
1364}
1365
1366/*
1367 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1368 * object.
1369 *
1370 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1371 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1372 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1373 * used to clean out a memory space.
1374 */
1375static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1376 const struct ttm_place *place)
1377{
1378 struct dma_resv_iter resv_cursor;
1379 struct dma_fence *f;
1380
1381 if (!amdgpu_bo_is_amdgpu_bo(bo))
1382 return ttm_bo_eviction_valuable(bo, place);
1383
1384 /* Swapout? */
1385 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1386 return true;
1387
1388 if (bo->type == ttm_bo_type_kernel &&
1389 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1390 return false;
1391
1392 /* If bo is a KFD BO, check if the bo belongs to the current process.
1393 * If true, then return false as any KFD process needs all its BOs to
1394 * be resident to run successfully
1395 */
1396 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1397 DMA_RESV_USAGE_BOOKKEEP, f) {
1398 if (amdkfd_fence_check_mm(f, current->mm))
1399 return false;
1400 }
1401
1402 /* Preemptible BOs don't own system resources managed by the
1403 * driver (pages, VRAM, GART space). They point to resources
1404 * owned by someone else (e.g. pageable memory in user mode
1405 * or a DMABuf). They are used in a preemptible context so we
1406 * can guarantee no deadlocks and good QoS in case of MMU
1407 * notifiers or DMABuf move notifiers from the resource owner.
1408 */
1409 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1410 return false;
1411
1412 if (bo->resource->mem_type == TTM_PL_TT &&
1413 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1414 return false;
1415
1416 return ttm_bo_eviction_valuable(bo, place);
1417}
1418
1419static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1420 void *buf, size_t size, bool write)
1421{
1422 while (size) {
1423 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1424 uint64_t bytes = 4 - (pos & 0x3);
1425 uint32_t shift = (pos & 0x3) * 8;
1426 uint32_t mask = 0xffffffff << shift;
1427 uint32_t value = 0;
1428
1429 if (size < bytes) {
1430 mask &= 0xffffffff >> (bytes - size) * 8;
1431 bytes = size;
1432 }
1433
1434 if (mask != 0xffffffff) {
1435 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1436 if (write) {
1437 value &= ~mask;
1438 value |= (*(uint32_t *)buf << shift) & mask;
1439 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1440 } else {
1441 value = (value & mask) >> shift;
1442 memcpy(buf, &value, bytes);
1443 }
1444 } else {
1445 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1446 }
1447
1448 pos += bytes;
1449 buf += bytes;
1450 size -= bytes;
1451 }
1452}
1453
1454static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1455 unsigned long offset, void *buf,
1456 int len, int write)
1457{
1458 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1459 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1460 struct amdgpu_res_cursor src_mm;
1461 struct amdgpu_job *job;
1462 struct dma_fence *fence;
1463 uint64_t src_addr, dst_addr;
1464 unsigned int num_dw;
1465 int r, idx;
1466
1467 if (len != PAGE_SIZE)
1468 return -EINVAL;
1469
1470 if (!adev->mman.sdma_access_ptr)
1471 return -EACCES;
1472
1473 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1474 return -ENODEV;
1475
1476 if (write)
1477 memcpy(adev->mman.sdma_access_ptr, buf, len);
1478
1479 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1480 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1481 AMDGPU_FENCE_OWNER_UNDEFINED,
1482 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1483 &job);
1484 if (r)
1485 goto out;
1486
1487 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1488 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1489 src_mm.start;
1490 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1491 if (write)
1492 swap(src_addr, dst_addr);
1493
1494 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1495 PAGE_SIZE, false);
1496
1497 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1498 WARN_ON(job->ibs[0].length_dw > num_dw);
1499
1500 fence = amdgpu_job_submit(job);
1501
1502 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1503 r = -ETIMEDOUT;
1504 dma_fence_put(fence);
1505
1506 if (!(r || write))
1507 memcpy(buf, adev->mman.sdma_access_ptr, len);
1508out:
1509 drm_dev_exit(idx);
1510 return r;
1511}
1512
1513/**
1514 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1515 *
1516 * @bo: The buffer object to read/write
1517 * @offset: Offset into buffer object
1518 * @buf: Secondary buffer to write/read from
1519 * @len: Length in bytes of access
1520 * @write: true if writing
1521 *
1522 * This is used to access VRAM that backs a buffer object via MMIO
1523 * access for debugging purposes.
1524 */
1525static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1526 unsigned long offset, void *buf, int len,
1527 int write)
1528{
1529 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1530 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1531 struct amdgpu_res_cursor cursor;
1532 int ret = 0;
1533
1534 if (bo->resource->mem_type != TTM_PL_VRAM)
1535 return -EIO;
1536
1537 if (amdgpu_device_has_timeouts_enabled(adev) &&
1538 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1539 return len;
1540
1541 amdgpu_res_first(bo->resource, offset, len, &cursor);
1542 while (cursor.remaining) {
1543 size_t count, size = cursor.size;
1544 loff_t pos = cursor.start;
1545
1546 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1547 size -= count;
1548 if (size) {
1549 /* using MM to access rest vram and handle un-aligned address */
1550 pos += count;
1551 buf += count;
1552 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1553 }
1554
1555 ret += cursor.size;
1556 buf += cursor.size;
1557 amdgpu_res_next(&cursor, cursor.size);
1558 }
1559
1560 return ret;
1561}
1562
1563static void
1564amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1565{
1566 amdgpu_bo_move_notify(bo, false, NULL);
1567}
1568
1569static struct ttm_device_funcs amdgpu_bo_driver = {
1570 .ttm_tt_create = &amdgpu_ttm_tt_create,
1571 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1572 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1573 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1574 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1575 .evict_flags = &amdgpu_evict_flags,
1576 .move = &amdgpu_bo_move,
1577 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1578 .release_notify = &amdgpu_bo_release_notify,
1579 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1580 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1581 .access_memory = &amdgpu_ttm_access_memory,
1582};
1583
1584/*
1585 * Firmware Reservation functions
1586 */
1587/**
1588 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1589 *
1590 * @adev: amdgpu_device pointer
1591 *
1592 * free fw reserved vram if it has been reserved.
1593 */
1594static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1595{
1596 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1597 NULL, &adev->mman.fw_vram_usage_va);
1598}
1599
1600/*
1601 * Driver Reservation functions
1602 */
1603/**
1604 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1605 *
1606 * @adev: amdgpu_device pointer
1607 *
1608 * free drv reserved vram if it has been reserved.
1609 */
1610static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1611{
1612 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1613 NULL,
1614 &adev->mman.drv_vram_usage_va);
1615}
1616
1617/**
1618 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1619 *
1620 * @adev: amdgpu_device pointer
1621 *
1622 * create bo vram reservation from fw.
1623 */
1624static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1625{
1626 uint64_t vram_size = adev->gmc.visible_vram_size;
1627
1628 adev->mman.fw_vram_usage_va = NULL;
1629 adev->mman.fw_vram_usage_reserved_bo = NULL;
1630
1631 if (adev->mman.fw_vram_usage_size == 0 ||
1632 adev->mman.fw_vram_usage_size > vram_size)
1633 return 0;
1634
1635 return amdgpu_bo_create_kernel_at(adev,
1636 adev->mman.fw_vram_usage_start_offset,
1637 adev->mman.fw_vram_usage_size,
1638 &adev->mman.fw_vram_usage_reserved_bo,
1639 &adev->mman.fw_vram_usage_va);
1640}
1641
1642/**
1643 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1644 *
1645 * @adev: amdgpu_device pointer
1646 *
1647 * create bo vram reservation from drv.
1648 */
1649static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1650{
1651 u64 vram_size = adev->gmc.visible_vram_size;
1652
1653 adev->mman.drv_vram_usage_va = NULL;
1654 adev->mman.drv_vram_usage_reserved_bo = NULL;
1655
1656 if (adev->mman.drv_vram_usage_size == 0 ||
1657 adev->mman.drv_vram_usage_size > vram_size)
1658 return 0;
1659
1660 return amdgpu_bo_create_kernel_at(adev,
1661 adev->mman.drv_vram_usage_start_offset,
1662 adev->mman.drv_vram_usage_size,
1663 &adev->mman.drv_vram_usage_reserved_bo,
1664 &adev->mman.drv_vram_usage_va);
1665}
1666
1667/*
1668 * Memoy training reservation functions
1669 */
1670
1671/**
1672 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1673 *
1674 * @adev: amdgpu_device pointer
1675 *
1676 * free memory training reserved vram if it has been reserved.
1677 */
1678static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1679{
1680 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1681
1682 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1683 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1684 ctx->c2p_bo = NULL;
1685
1686 return 0;
1687}
1688
1689static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1690 uint32_t reserve_size)
1691{
1692 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1693
1694 memset(ctx, 0, sizeof(*ctx));
1695
1696 ctx->c2p_train_data_offset =
1697 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1698 ctx->p2c_train_data_offset =
1699 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1700 ctx->train_data_size =
1701 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1702
1703 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1704 ctx->train_data_size,
1705 ctx->p2c_train_data_offset,
1706 ctx->c2p_train_data_offset);
1707}
1708
1709/*
1710 * reserve TMR memory at the top of VRAM which holds
1711 * IP Discovery data and is protected by PSP.
1712 */
1713static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1714{
1715 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1716 bool mem_train_support = false;
1717 uint32_t reserve_size = 0;
1718 int ret;
1719
1720 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1721 if (amdgpu_atomfirmware_mem_training_supported(adev))
1722 mem_train_support = true;
1723 else
1724 DRM_DEBUG("memory training does not support!\n");
1725 }
1726
1727 /*
1728 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1729 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1730 *
1731 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1732 * discovery data and G6 memory training data respectively
1733 */
1734 if (adev->bios)
1735 reserve_size =
1736 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1737
1738 if (!adev->bios &&
1739 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1740 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1741 else if (!reserve_size)
1742 reserve_size = DISCOVERY_TMR_OFFSET;
1743
1744 if (mem_train_support) {
1745 /* reserve vram for mem train according to TMR location */
1746 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1747 ret = amdgpu_bo_create_kernel_at(adev,
1748 ctx->c2p_train_data_offset,
1749 ctx->train_data_size,
1750 &ctx->c2p_bo,
1751 NULL);
1752 if (ret) {
1753 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1754 amdgpu_ttm_training_reserve_vram_fini(adev);
1755 return ret;
1756 }
1757 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1758 }
1759
1760 if (!adev->gmc.is_app_apu) {
1761 ret = amdgpu_bo_create_kernel_at(
1762 adev, adev->gmc.real_vram_size - reserve_size,
1763 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1764 if (ret) {
1765 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1766 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1767 NULL, NULL);
1768 return ret;
1769 }
1770 } else {
1771 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1772 }
1773
1774 return 0;
1775}
1776
1777static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1778{
1779 int i;
1780
1781 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1782 return 0;
1783
1784 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1785 sizeof(*adev->mman.ttm_pools),
1786 GFP_KERNEL);
1787 if (!adev->mman.ttm_pools)
1788 return -ENOMEM;
1789
1790 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1791 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1792 adev->gmc.mem_partitions[i].numa.node,
1793 false, false);
1794 }
1795 return 0;
1796}
1797
1798static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1799{
1800 int i;
1801
1802 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1803 return;
1804
1805 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1806 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1807
1808 kfree(adev->mman.ttm_pools);
1809 adev->mman.ttm_pools = NULL;
1810}
1811
1812/*
1813 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1814 * gtt/vram related fields.
1815 *
1816 * This initializes all of the memory space pools that the TTM layer
1817 * will need such as the GTT space (system memory mapped to the device),
1818 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1819 * can be mapped per VMID.
1820 */
1821int amdgpu_ttm_init(struct amdgpu_device *adev)
1822{
1823 uint64_t gtt_size;
1824 int r;
1825
1826 mutex_init(&adev->mman.gtt_window_lock);
1827
1828 /* No others user of address space so set it to 0 */
1829 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1830 adev_to_drm(adev)->anon_inode->i_mapping,
1831 adev_to_drm(adev)->vma_offset_manager,
1832 adev->need_swiotlb,
1833 dma_addressing_limited(adev->dev));
1834 if (r) {
1835 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1836 return r;
1837 }
1838
1839 r = amdgpu_ttm_pools_init(adev);
1840 if (r) {
1841 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1842 return r;
1843 }
1844 adev->mman.initialized = true;
1845
1846 /* Initialize VRAM pool with all of VRAM divided into pages */
1847 r = amdgpu_vram_mgr_init(adev);
1848 if (r) {
1849 DRM_ERROR("Failed initializing VRAM heap.\n");
1850 return r;
1851 }
1852
1853 /* Change the size here instead of the init above so only lpfn is affected */
1854 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1855#ifdef CONFIG_64BIT
1856#ifdef CONFIG_X86
1857 if (adev->gmc.xgmi.connected_to_cpu)
1858 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1859 adev->gmc.visible_vram_size);
1860
1861 else if (adev->gmc.is_app_apu)
1862 DRM_DEBUG_DRIVER(
1863 "No need to ioremap when real vram size is 0\n");
1864 else
1865#endif
1866 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1867 adev->gmc.visible_vram_size);
1868#endif
1869
1870 /*
1871 *The reserved vram for firmware must be pinned to the specified
1872 *place on the VRAM, so reserve it early.
1873 */
1874 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1875 if (r)
1876 return r;
1877
1878 /*
1879 *The reserved vram for driver must be pinned to the specified
1880 *place on the VRAM, so reserve it early.
1881 */
1882 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1883 if (r)
1884 return r;
1885
1886 /*
1887 * only NAVI10 and onwards ASIC support for IP discovery.
1888 * If IP discovery enabled, a block of memory should be
1889 * reserved for IP discovey.
1890 */
1891 if (adev->mman.discovery_bin) {
1892 r = amdgpu_ttm_reserve_tmr(adev);
1893 if (r)
1894 return r;
1895 }
1896
1897 /* allocate memory as required for VGA
1898 * This is used for VGA emulation and pre-OS scanout buffers to
1899 * avoid display artifacts while transitioning between pre-OS
1900 * and driver.
1901 */
1902 if (!adev->gmc.is_app_apu) {
1903 r = amdgpu_bo_create_kernel_at(adev, 0,
1904 adev->mman.stolen_vga_size,
1905 &adev->mman.stolen_vga_memory,
1906 NULL);
1907 if (r)
1908 return r;
1909
1910 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1911 adev->mman.stolen_extended_size,
1912 &adev->mman.stolen_extended_memory,
1913 NULL);
1914
1915 if (r)
1916 return r;
1917
1918 r = amdgpu_bo_create_kernel_at(adev,
1919 adev->mman.stolen_reserved_offset,
1920 adev->mman.stolen_reserved_size,
1921 &adev->mman.stolen_reserved_memory,
1922 NULL);
1923 if (r)
1924 return r;
1925 } else {
1926 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1927 }
1928
1929 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1930 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1931
1932 /* Compute GTT size, either based on TTM limit
1933 * or whatever the user passed on module init.
1934 */
1935 if (amdgpu_gtt_size == -1)
1936 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1937 else
1938 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1939
1940 /* Initialize GTT memory pool */
1941 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1942 if (r) {
1943 DRM_ERROR("Failed initializing GTT heap.\n");
1944 return r;
1945 }
1946 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1947 (unsigned int)(gtt_size / (1024 * 1024)));
1948
1949 /* Initiailize doorbell pool on PCI BAR */
1950 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1951 if (r) {
1952 DRM_ERROR("Failed initializing doorbell heap.\n");
1953 return r;
1954 }
1955
1956 /* Create a boorbell page for kernel usages */
1957 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1958 if (r) {
1959 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1960 return r;
1961 }
1962
1963 /* Initialize preemptible memory pool */
1964 r = amdgpu_preempt_mgr_init(adev);
1965 if (r) {
1966 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1967 return r;
1968 }
1969
1970 /* Initialize various on-chip memory pools */
1971 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1972 if (r) {
1973 DRM_ERROR("Failed initializing GDS heap.\n");
1974 return r;
1975 }
1976
1977 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1978 if (r) {
1979 DRM_ERROR("Failed initializing gws heap.\n");
1980 return r;
1981 }
1982
1983 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1984 if (r) {
1985 DRM_ERROR("Failed initializing oa heap.\n");
1986 return r;
1987 }
1988 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1989 AMDGPU_GEM_DOMAIN_GTT,
1990 &adev->mman.sdma_access_bo, NULL,
1991 &adev->mman.sdma_access_ptr))
1992 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1993
1994 return 0;
1995}
1996
1997/*
1998 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1999 */
2000void amdgpu_ttm_fini(struct amdgpu_device *adev)
2001{
2002 int idx;
2003
2004 if (!adev->mman.initialized)
2005 return;
2006
2007 amdgpu_ttm_pools_fini(adev);
2008
2009 amdgpu_ttm_training_reserve_vram_fini(adev);
2010 /* return the stolen vga memory back to VRAM */
2011 if (!adev->gmc.is_app_apu) {
2012 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2013 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2014 /* return the FW reserved memory back to VRAM */
2015 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2016 NULL);
2017 if (adev->mman.stolen_reserved_size)
2018 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2019 NULL, NULL);
2020 }
2021 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2022 &adev->mman.sdma_access_ptr);
2023 amdgpu_ttm_fw_reserve_vram_fini(adev);
2024 amdgpu_ttm_drv_reserve_vram_fini(adev);
2025
2026 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2027
2028 if (adev->mman.aper_base_kaddr)
2029 iounmap(adev->mman.aper_base_kaddr);
2030 adev->mman.aper_base_kaddr = NULL;
2031
2032 drm_dev_exit(idx);
2033 }
2034
2035 amdgpu_vram_mgr_fini(adev);
2036 amdgpu_gtt_mgr_fini(adev);
2037 amdgpu_preempt_mgr_fini(adev);
2038 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2039 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2040 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2041 ttm_device_fini(&adev->mman.bdev);
2042 adev->mman.initialized = false;
2043 DRM_INFO("amdgpu: ttm finalized\n");
2044}
2045
2046/**
2047 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2048 *
2049 * @adev: amdgpu_device pointer
2050 * @enable: true when we can use buffer functions.
2051 *
2052 * Enable/disable use of buffer functions during suspend/resume. This should
2053 * only be called at bootup or when userspace isn't running.
2054 */
2055void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2056{
2057 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2058 uint64_t size;
2059 int r;
2060
2061 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2062 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2063 return;
2064
2065 if (enable) {
2066 struct amdgpu_ring *ring;
2067 struct drm_gpu_scheduler *sched;
2068
2069 ring = adev->mman.buffer_funcs_ring;
2070 sched = &ring->sched;
2071 r = drm_sched_entity_init(&adev->mman.high_pr,
2072 DRM_SCHED_PRIORITY_KERNEL, &sched,
2073 1, NULL);
2074 if (r) {
2075 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2076 r);
2077 return;
2078 }
2079
2080 r = drm_sched_entity_init(&adev->mman.low_pr,
2081 DRM_SCHED_PRIORITY_NORMAL, &sched,
2082 1, NULL);
2083 if (r) {
2084 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2085 r);
2086 goto error_free_entity;
2087 }
2088 } else {
2089 drm_sched_entity_destroy(&adev->mman.high_pr);
2090 drm_sched_entity_destroy(&adev->mman.low_pr);
2091 dma_fence_put(man->move);
2092 man->move = NULL;
2093 }
2094
2095 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2096 if (enable)
2097 size = adev->gmc.real_vram_size;
2098 else
2099 size = adev->gmc.visible_vram_size;
2100 man->size = size;
2101 adev->mman.buffer_funcs_enabled = enable;
2102
2103 return;
2104
2105error_free_entity:
2106 drm_sched_entity_destroy(&adev->mman.high_pr);
2107}
2108
2109static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2110 bool direct_submit,
2111 unsigned int num_dw,
2112 struct dma_resv *resv,
2113 bool vm_needs_flush,
2114 struct amdgpu_job **job,
2115 bool delayed)
2116{
2117 enum amdgpu_ib_pool_type pool = direct_submit ?
2118 AMDGPU_IB_POOL_DIRECT :
2119 AMDGPU_IB_POOL_DELAYED;
2120 int r;
2121 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2122 &adev->mman.high_pr;
2123 r = amdgpu_job_alloc_with_ib(adev, entity,
2124 AMDGPU_FENCE_OWNER_UNDEFINED,
2125 num_dw * 4, pool, job);
2126 if (r)
2127 return r;
2128
2129 if (vm_needs_flush) {
2130 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2131 adev->gmc.pdb0_bo :
2132 adev->gart.bo);
2133 (*job)->vm_needs_flush = true;
2134 }
2135 if (!resv)
2136 return 0;
2137
2138 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2139 DMA_RESV_USAGE_BOOKKEEP);
2140}
2141
2142int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2143 uint64_t dst_offset, uint32_t byte_count,
2144 struct dma_resv *resv,
2145 struct dma_fence **fence, bool direct_submit,
2146 bool vm_needs_flush, bool tmz)
2147{
2148 struct amdgpu_device *adev = ring->adev;
2149 unsigned int num_loops, num_dw;
2150 struct amdgpu_job *job;
2151 uint32_t max_bytes;
2152 unsigned int i;
2153 int r;
2154
2155 if (!direct_submit && !ring->sched.ready) {
2156 DRM_ERROR("Trying to move memory with ring turned off.\n");
2157 return -EINVAL;
2158 }
2159
2160 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2161 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2162 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2163 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2164 resv, vm_needs_flush, &job, false);
2165 if (r)
2166 return r;
2167
2168 for (i = 0; i < num_loops; i++) {
2169 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2170
2171 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2172 dst_offset, cur_size_in_bytes, tmz);
2173
2174 src_offset += cur_size_in_bytes;
2175 dst_offset += cur_size_in_bytes;
2176 byte_count -= cur_size_in_bytes;
2177 }
2178
2179 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2180 WARN_ON(job->ibs[0].length_dw > num_dw);
2181 if (direct_submit)
2182 r = amdgpu_job_submit_direct(job, ring, fence);
2183 else
2184 *fence = amdgpu_job_submit(job);
2185 if (r)
2186 goto error_free;
2187
2188 return r;
2189
2190error_free:
2191 amdgpu_job_free(job);
2192 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2193 return r;
2194}
2195
2196static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2197 uint64_t dst_addr, uint32_t byte_count,
2198 struct dma_resv *resv,
2199 struct dma_fence **fence,
2200 bool vm_needs_flush, bool delayed)
2201{
2202 struct amdgpu_device *adev = ring->adev;
2203 unsigned int num_loops, num_dw;
2204 struct amdgpu_job *job;
2205 uint32_t max_bytes;
2206 unsigned int i;
2207 int r;
2208
2209 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2210 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2211 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2212 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2213 &job, delayed);
2214 if (r)
2215 return r;
2216
2217 for (i = 0; i < num_loops; i++) {
2218 uint32_t cur_size = min(byte_count, max_bytes);
2219
2220 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2221 cur_size);
2222
2223 dst_addr += cur_size;
2224 byte_count -= cur_size;
2225 }
2226
2227 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2228 WARN_ON(job->ibs[0].length_dw > num_dw);
2229 *fence = amdgpu_job_submit(job);
2230 return 0;
2231}
2232
2233int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2234 uint32_t src_data,
2235 struct dma_resv *resv,
2236 struct dma_fence **f,
2237 bool delayed)
2238{
2239 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2240 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2241 struct dma_fence *fence = NULL;
2242 struct amdgpu_res_cursor dst;
2243 int r;
2244
2245 if (!adev->mman.buffer_funcs_enabled) {
2246 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2247 return -EINVAL;
2248 }
2249
2250 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2251
2252 mutex_lock(&adev->mman.gtt_window_lock);
2253 while (dst.remaining) {
2254 struct dma_fence *next;
2255 uint64_t cur_size, to;
2256
2257 /* Never fill more than 256MiB at once to avoid timeouts */
2258 cur_size = min(dst.size, 256ULL << 20);
2259
2260 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2261 1, ring, false, &cur_size, &to);
2262 if (r)
2263 goto error;
2264
2265 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2266 &next, true, delayed);
2267 if (r)
2268 goto error;
2269
2270 dma_fence_put(fence);
2271 fence = next;
2272
2273 amdgpu_res_next(&dst, cur_size);
2274 }
2275error:
2276 mutex_unlock(&adev->mman.gtt_window_lock);
2277 if (f)
2278 *f = dma_fence_get(fence);
2279 dma_fence_put(fence);
2280 return r;
2281}
2282
2283/**
2284 * amdgpu_ttm_evict_resources - evict memory buffers
2285 * @adev: amdgpu device object
2286 * @mem_type: evicted BO's memory type
2287 *
2288 * Evicts all @mem_type buffers on the lru list of the memory type.
2289 *
2290 * Returns:
2291 * 0 for success or a negative error code on failure.
2292 */
2293int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2294{
2295 struct ttm_resource_manager *man;
2296
2297 switch (mem_type) {
2298 case TTM_PL_VRAM:
2299 case TTM_PL_TT:
2300 case AMDGPU_PL_GWS:
2301 case AMDGPU_PL_GDS:
2302 case AMDGPU_PL_OA:
2303 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2304 break;
2305 default:
2306 DRM_ERROR("Trying to evict invalid memory type\n");
2307 return -EINVAL;
2308 }
2309
2310 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2311}
2312
2313#if defined(CONFIG_DEBUG_FS)
2314
2315static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2316{
2317 struct amdgpu_device *adev = m->private;
2318
2319 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2320}
2321
2322DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2323
2324/*
2325 * amdgpu_ttm_vram_read - Linear read access to VRAM
2326 *
2327 * Accesses VRAM via MMIO for debugging purposes.
2328 */
2329static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2330 size_t size, loff_t *pos)
2331{
2332 struct amdgpu_device *adev = file_inode(f)->i_private;
2333 ssize_t result = 0;
2334
2335 if (size & 0x3 || *pos & 0x3)
2336 return -EINVAL;
2337
2338 if (*pos >= adev->gmc.mc_vram_size)
2339 return -ENXIO;
2340
2341 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2342 while (size) {
2343 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2344 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2345
2346 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2347 if (copy_to_user(buf, value, bytes))
2348 return -EFAULT;
2349
2350 result += bytes;
2351 buf += bytes;
2352 *pos += bytes;
2353 size -= bytes;
2354 }
2355
2356 return result;
2357}
2358
2359/*
2360 * amdgpu_ttm_vram_write - Linear write access to VRAM
2361 *
2362 * Accesses VRAM via MMIO for debugging purposes.
2363 */
2364static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2365 size_t size, loff_t *pos)
2366{
2367 struct amdgpu_device *adev = file_inode(f)->i_private;
2368 ssize_t result = 0;
2369 int r;
2370
2371 if (size & 0x3 || *pos & 0x3)
2372 return -EINVAL;
2373
2374 if (*pos >= adev->gmc.mc_vram_size)
2375 return -ENXIO;
2376
2377 while (size) {
2378 uint32_t value;
2379
2380 if (*pos >= adev->gmc.mc_vram_size)
2381 return result;
2382
2383 r = get_user(value, (uint32_t *)buf);
2384 if (r)
2385 return r;
2386
2387 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2388
2389 result += 4;
2390 buf += 4;
2391 *pos += 4;
2392 size -= 4;
2393 }
2394
2395 return result;
2396}
2397
2398static const struct file_operations amdgpu_ttm_vram_fops = {
2399 .owner = THIS_MODULE,
2400 .read = amdgpu_ttm_vram_read,
2401 .write = amdgpu_ttm_vram_write,
2402 .llseek = default_llseek,
2403};
2404
2405/*
2406 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2407 *
2408 * This function is used to read memory that has been mapped to the
2409 * GPU and the known addresses are not physical addresses but instead
2410 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2411 */
2412static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2413 size_t size, loff_t *pos)
2414{
2415 struct amdgpu_device *adev = file_inode(f)->i_private;
2416 struct iommu_domain *dom;
2417 ssize_t result = 0;
2418 int r;
2419
2420 /* retrieve the IOMMU domain if any for this device */
2421 dom = iommu_get_domain_for_dev(adev->dev);
2422
2423 while (size) {
2424 phys_addr_t addr = *pos & PAGE_MASK;
2425 loff_t off = *pos & ~PAGE_MASK;
2426 size_t bytes = PAGE_SIZE - off;
2427 unsigned long pfn;
2428 struct page *p;
2429 void *ptr;
2430
2431 bytes = min(bytes, size);
2432
2433 /* Translate the bus address to a physical address. If
2434 * the domain is NULL it means there is no IOMMU active
2435 * and the address translation is the identity
2436 */
2437 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2438
2439 pfn = addr >> PAGE_SHIFT;
2440 if (!pfn_valid(pfn))
2441 return -EPERM;
2442
2443 p = pfn_to_page(pfn);
2444 if (p->mapping != adev->mman.bdev.dev_mapping)
2445 return -EPERM;
2446
2447 ptr = kmap_local_page(p);
2448 r = copy_to_user(buf, ptr + off, bytes);
2449 kunmap_local(ptr);
2450 if (r)
2451 return -EFAULT;
2452
2453 size -= bytes;
2454 *pos += bytes;
2455 result += bytes;
2456 }
2457
2458 return result;
2459}
2460
2461/*
2462 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2463 *
2464 * This function is used to write memory that has been mapped to the
2465 * GPU and the known addresses are not physical addresses but instead
2466 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2467 */
2468static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2469 size_t size, loff_t *pos)
2470{
2471 struct amdgpu_device *adev = file_inode(f)->i_private;
2472 struct iommu_domain *dom;
2473 ssize_t result = 0;
2474 int r;
2475
2476 dom = iommu_get_domain_for_dev(adev->dev);
2477
2478 while (size) {
2479 phys_addr_t addr = *pos & PAGE_MASK;
2480 loff_t off = *pos & ~PAGE_MASK;
2481 size_t bytes = PAGE_SIZE - off;
2482 unsigned long pfn;
2483 struct page *p;
2484 void *ptr;
2485
2486 bytes = min(bytes, size);
2487
2488 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2489
2490 pfn = addr >> PAGE_SHIFT;
2491 if (!pfn_valid(pfn))
2492 return -EPERM;
2493
2494 p = pfn_to_page(pfn);
2495 if (p->mapping != adev->mman.bdev.dev_mapping)
2496 return -EPERM;
2497
2498 ptr = kmap_local_page(p);
2499 r = copy_from_user(ptr + off, buf, bytes);
2500 kunmap_local(ptr);
2501 if (r)
2502 return -EFAULT;
2503
2504 size -= bytes;
2505 *pos += bytes;
2506 result += bytes;
2507 }
2508
2509 return result;
2510}
2511
2512static const struct file_operations amdgpu_ttm_iomem_fops = {
2513 .owner = THIS_MODULE,
2514 .read = amdgpu_iomem_read,
2515 .write = amdgpu_iomem_write,
2516 .llseek = default_llseek
2517};
2518
2519#endif
2520
2521void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2522{
2523#if defined(CONFIG_DEBUG_FS)
2524 struct drm_minor *minor = adev_to_drm(adev)->primary;
2525 struct dentry *root = minor->debugfs_root;
2526
2527 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2528 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2529 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2530 &amdgpu_ttm_iomem_fops);
2531 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2532 &amdgpu_ttm_page_pool_fops);
2533 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2534 TTM_PL_VRAM),
2535 root, "amdgpu_vram_mm");
2536 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2537 TTM_PL_TT),
2538 root, "amdgpu_gtt_mm");
2539 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2540 AMDGPU_PL_GDS),
2541 root, "amdgpu_gds_mm");
2542 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2543 AMDGPU_PL_GWS),
2544 root, "amdgpu_gws_mm");
2545 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2546 AMDGPU_PL_OA),
2547 root, "amdgpu_oa_mm");
2548
2549#endif
2550}
1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33#include <linux/dma-mapping.h>
34#include <linux/iommu.h>
35#include <linux/pagemap.h>
36#include <linux/sched/task.h>
37#include <linux/sched/mm.h>
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/swiotlb.h>
42#include <linux/dma-buf.h>
43#include <linux/sizes.h>
44#include <linux/module.h>
45
46#include <drm/drm_drv.h>
47#include <drm/ttm/ttm_bo_api.h>
48#include <drm/ttm/ttm_bo_driver.h>
49#include <drm/ttm/ttm_placement.h>
50#include <drm/ttm/ttm_range_manager.h>
51
52#include <drm/amdgpu_drm.h>
53#include <drm/drm_drv.h>
54
55#include "amdgpu.h"
56#include "amdgpu_object.h"
57#include "amdgpu_trace.h"
58#include "amdgpu_amdkfd.h"
59#include "amdgpu_sdma.h"
60#include "amdgpu_ras.h"
61#include "amdgpu_hmm.h"
62#include "amdgpu_atomfirmware.h"
63#include "amdgpu_res_cursor.h"
64#include "bif/bif_4_1_d.h"
65
66MODULE_IMPORT_NS(DMA_BUF);
67
68#define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128
69
70static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
71 struct ttm_tt *ttm,
72 struct ttm_resource *bo_mem);
73static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
74 struct ttm_tt *ttm);
75
76static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
77 unsigned int type,
78 uint64_t size_in_page)
79{
80 return ttm_range_man_init(&adev->mman.bdev, type,
81 false, size_in_page);
82}
83
84/**
85 * amdgpu_evict_flags - Compute placement flags
86 *
87 * @bo: The buffer object to evict
88 * @placement: Possible destination(s) for evicted BO
89 *
90 * Fill in placement data when ttm_bo_evict() is called
91 */
92static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
93 struct ttm_placement *placement)
94{
95 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
96 struct amdgpu_bo *abo;
97 static const struct ttm_place placements = {
98 .fpfn = 0,
99 .lpfn = 0,
100 .mem_type = TTM_PL_SYSTEM,
101 .flags = 0
102 };
103
104 /* Don't handle scatter gather BOs */
105 if (bo->type == ttm_bo_type_sg) {
106 placement->num_placement = 0;
107 placement->num_busy_placement = 0;
108 return;
109 }
110
111 /* Object isn't an AMDGPU object so ignore */
112 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
113 placement->placement = &placements;
114 placement->busy_placement = &placements;
115 placement->num_placement = 1;
116 placement->num_busy_placement = 1;
117 return;
118 }
119
120 abo = ttm_to_amdgpu_bo(bo);
121 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
122 placement->num_placement = 0;
123 placement->num_busy_placement = 0;
124 return;
125 }
126
127 switch (bo->resource->mem_type) {
128 case AMDGPU_PL_GDS:
129 case AMDGPU_PL_GWS:
130 case AMDGPU_PL_OA:
131 placement->num_placement = 0;
132 placement->num_busy_placement = 0;
133 return;
134
135 case TTM_PL_VRAM:
136 if (!adev->mman.buffer_funcs_enabled) {
137 /* Move to system memory */
138 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
139 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
140 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
141 amdgpu_bo_in_cpu_visible_vram(abo)) {
142
143 /* Try evicting to the CPU inaccessible part of VRAM
144 * first, but only set GTT as busy placement, so this
145 * BO will be evicted to GTT rather than causing other
146 * BOs to be evicted from VRAM
147 */
148 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
149 AMDGPU_GEM_DOMAIN_GTT |
150 AMDGPU_GEM_DOMAIN_CPU);
151 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
152 abo->placements[0].lpfn = 0;
153 abo->placement.busy_placement = &abo->placements[1];
154 abo->placement.num_busy_placement = 1;
155 } else {
156 /* Move to GTT memory */
157 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
158 AMDGPU_GEM_DOMAIN_CPU);
159 }
160 break;
161 case TTM_PL_TT:
162 case AMDGPU_PL_PREEMPT:
163 default:
164 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
165 break;
166 }
167 *placement = abo->placement;
168}
169
170/**
171 * amdgpu_ttm_map_buffer - Map memory into the GART windows
172 * @bo: buffer object to map
173 * @mem: memory object to map
174 * @mm_cur: range to map
175 * @window: which GART window to use
176 * @ring: DMA ring to use for the copy
177 * @tmz: if we should setup a TMZ enabled mapping
178 * @size: in number of bytes to map, out number of bytes mapped
179 * @addr: resulting address inside the MC address space
180 *
181 * Setup one of the GART windows to access a specific piece of memory or return
182 * the physical address for local memory.
183 */
184static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
185 struct ttm_resource *mem,
186 struct amdgpu_res_cursor *mm_cur,
187 unsigned window, struct amdgpu_ring *ring,
188 bool tmz, uint64_t *size, uint64_t *addr)
189{
190 struct amdgpu_device *adev = ring->adev;
191 unsigned offset, num_pages, num_dw, num_bytes;
192 uint64_t src_addr, dst_addr;
193 struct amdgpu_job *job;
194 void *cpu_addr;
195 uint64_t flags;
196 unsigned int i;
197 int r;
198
199 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201
202 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
203 return -EINVAL;
204
205 /* Map only what can't be accessed directly */
206 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208 mm_cur->start;
209 return 0;
210 }
211
212
213 /*
214 * If start begins at an offset inside the page, then adjust the size
215 * and addr accordingly
216 */
217 offset = mm_cur->start & ~PAGE_MASK;
218
219 num_pages = PFN_UP(*size + offset);
220 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221
222 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223
224 *addr = adev->gmc.gart_start;
225 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226 AMDGPU_GPU_PAGE_SIZE;
227 *addr += offset;
228
229 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
230 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231
232 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
233 AMDGPU_FENCE_OWNER_UNDEFINED,
234 num_dw * 4 + num_bytes,
235 AMDGPU_IB_POOL_DELAYED, &job);
236 if (r)
237 return r;
238
239 src_addr = num_dw * 4;
240 src_addr += job->ibs[0].gpu_addr;
241
242 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
243 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
244 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
245 dst_addr, num_bytes, false);
246
247 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
248 WARN_ON(job->ibs[0].length_dw > num_dw);
249
250 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
251 if (tmz)
252 flags |= AMDGPU_PTE_TMZ;
253
254 cpu_addr = &job->ibs[0].ptr[num_dw];
255
256 if (mem->mem_type == TTM_PL_TT) {
257 dma_addr_t *dma_addr;
258
259 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
260 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
261 } else {
262 dma_addr_t dma_address;
263
264 dma_address = mm_cur->start;
265 dma_address += adev->vm_manager.vram_base_offset;
266
267 for (i = 0; i < num_pages; ++i) {
268 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
269 flags, cpu_addr);
270 dma_address += PAGE_SIZE;
271 }
272 }
273
274 dma_fence_put(amdgpu_job_submit(job));
275 return 0;
276}
277
278/**
279 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
280 * @adev: amdgpu device
281 * @src: buffer/address where to read from
282 * @dst: buffer/address where to write to
283 * @size: number of bytes to copy
284 * @tmz: if a secure copy should be used
285 * @resv: resv object to sync to
286 * @f: Returns the last fence if multiple jobs are submitted.
287 *
288 * The function copies @size bytes from {src->mem + src->offset} to
289 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
290 * move and different for a BO to BO copy.
291 *
292 */
293int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
294 const struct amdgpu_copy_mem *src,
295 const struct amdgpu_copy_mem *dst,
296 uint64_t size, bool tmz,
297 struct dma_resv *resv,
298 struct dma_fence **f)
299{
300 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
301 struct amdgpu_res_cursor src_mm, dst_mm;
302 struct dma_fence *fence = NULL;
303 int r = 0;
304
305 if (!adev->mman.buffer_funcs_enabled) {
306 DRM_ERROR("Trying to move memory with ring turned off.\n");
307 return -EINVAL;
308 }
309
310 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
311 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
312
313 mutex_lock(&adev->mman.gtt_window_lock);
314 while (src_mm.remaining) {
315 uint64_t from, to, cur_size;
316 struct dma_fence *next;
317
318 /* Never copy more than 256MiB at once to avoid a timeout */
319 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
320
321 /* Map src to window 0 and dst to window 1. */
322 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
323 0, ring, tmz, &cur_size, &from);
324 if (r)
325 goto error;
326
327 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
328 1, ring, tmz, &cur_size, &to);
329 if (r)
330 goto error;
331
332 r = amdgpu_copy_buffer(ring, from, to, cur_size,
333 resv, &next, false, true, tmz);
334 if (r)
335 goto error;
336
337 dma_fence_put(fence);
338 fence = next;
339
340 amdgpu_res_next(&src_mm, cur_size);
341 amdgpu_res_next(&dst_mm, cur_size);
342 }
343error:
344 mutex_unlock(&adev->mman.gtt_window_lock);
345 if (f)
346 *f = dma_fence_get(fence);
347 dma_fence_put(fence);
348 return r;
349}
350
351/*
352 * amdgpu_move_blit - Copy an entire buffer to another buffer
353 *
354 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
355 * help move buffers to and from VRAM.
356 */
357static int amdgpu_move_blit(struct ttm_buffer_object *bo,
358 bool evict,
359 struct ttm_resource *new_mem,
360 struct ttm_resource *old_mem)
361{
362 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
363 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
364 struct amdgpu_copy_mem src, dst;
365 struct dma_fence *fence = NULL;
366 int r;
367
368 src.bo = bo;
369 dst.bo = bo;
370 src.mem = old_mem;
371 dst.mem = new_mem;
372 src.offset = 0;
373 dst.offset = 0;
374
375 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
376 new_mem->size,
377 amdgpu_bo_encrypted(abo),
378 bo->base.resv, &fence);
379 if (r)
380 goto error;
381
382 /* clear the space being freed */
383 if (old_mem->mem_type == TTM_PL_VRAM &&
384 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
385 struct dma_fence *wipe_fence = NULL;
386
387 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
388 if (r) {
389 goto error;
390 } else if (wipe_fence) {
391 dma_fence_put(fence);
392 fence = wipe_fence;
393 }
394 }
395
396 /* Always block for VM page tables before committing the new location */
397 if (bo->type == ttm_bo_type_kernel)
398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 else
400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 dma_fence_put(fence);
402 return r;
403
404error:
405 if (fence)
406 dma_fence_wait(fence, false);
407 dma_fence_put(fence);
408 return r;
409}
410
411/*
412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
413 *
414 * Called by amdgpu_bo_move()
415 */
416static bool amdgpu_mem_visible(struct amdgpu_device *adev,
417 struct ttm_resource *mem)
418{
419 u64 mem_size = (u64)mem->size;
420 struct amdgpu_res_cursor cursor;
421 u64 end;
422
423 if (mem->mem_type == TTM_PL_SYSTEM ||
424 mem->mem_type == TTM_PL_TT)
425 return true;
426 if (mem->mem_type != TTM_PL_VRAM)
427 return false;
428
429 amdgpu_res_first(mem, 0, mem_size, &cursor);
430 end = cursor.start + cursor.size;
431 while (cursor.remaining) {
432 amdgpu_res_next(&cursor, cursor.size);
433
434 if (!cursor.remaining)
435 break;
436
437 /* ttm_resource_ioremap only supports contiguous memory */
438 if (end != cursor.start)
439 return false;
440
441 end = cursor.start + cursor.size;
442 }
443
444 return end <= adev->gmc.visible_vram_size;
445}
446
447/*
448 * amdgpu_bo_move - Move a buffer object to a new memory location
449 *
450 * Called by ttm_bo_handle_move_mem()
451 */
452static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
453 struct ttm_operation_ctx *ctx,
454 struct ttm_resource *new_mem,
455 struct ttm_place *hop)
456{
457 struct amdgpu_device *adev;
458 struct amdgpu_bo *abo;
459 struct ttm_resource *old_mem = bo->resource;
460 int r;
461
462 if (new_mem->mem_type == TTM_PL_TT ||
463 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
464 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
465 if (r)
466 return r;
467 }
468
469 /* Can't move a pinned BO */
470 abo = ttm_to_amdgpu_bo(bo);
471 if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
472 return -EINVAL;
473
474 adev = amdgpu_ttm_adev(bo->bdev);
475
476 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
477 bo->ttm == NULL)) {
478 ttm_bo_move_null(bo, new_mem);
479 goto out;
480 }
481 if (old_mem->mem_type == TTM_PL_SYSTEM &&
482 (new_mem->mem_type == TTM_PL_TT ||
483 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
484 ttm_bo_move_null(bo, new_mem);
485 goto out;
486 }
487 if ((old_mem->mem_type == TTM_PL_TT ||
488 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
489 new_mem->mem_type == TTM_PL_SYSTEM) {
490 r = ttm_bo_wait_ctx(bo, ctx);
491 if (r)
492 return r;
493
494 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
495 ttm_resource_free(bo, &bo->resource);
496 ttm_bo_assign_mem(bo, new_mem);
497 goto out;
498 }
499
500 if (old_mem->mem_type == AMDGPU_PL_GDS ||
501 old_mem->mem_type == AMDGPU_PL_GWS ||
502 old_mem->mem_type == AMDGPU_PL_OA ||
503 new_mem->mem_type == AMDGPU_PL_GDS ||
504 new_mem->mem_type == AMDGPU_PL_GWS ||
505 new_mem->mem_type == AMDGPU_PL_OA) {
506 /* Nothing to save here */
507 ttm_bo_move_null(bo, new_mem);
508 goto out;
509 }
510
511 if (bo->type == ttm_bo_type_device &&
512 new_mem->mem_type == TTM_PL_VRAM &&
513 old_mem->mem_type != TTM_PL_VRAM) {
514 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
515 * accesses the BO after it's moved.
516 */
517 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
518 }
519
520 if (adev->mman.buffer_funcs_enabled) {
521 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
522 new_mem->mem_type == TTM_PL_VRAM) ||
523 (old_mem->mem_type == TTM_PL_VRAM &&
524 new_mem->mem_type == TTM_PL_SYSTEM))) {
525 hop->fpfn = 0;
526 hop->lpfn = 0;
527 hop->mem_type = TTM_PL_TT;
528 hop->flags = TTM_PL_FLAG_TEMPORARY;
529 return -EMULTIHOP;
530 }
531
532 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
533 } else {
534 r = -ENODEV;
535 }
536
537 if (r) {
538 /* Check that all memory is CPU accessible */
539 if (!amdgpu_mem_visible(adev, old_mem) ||
540 !amdgpu_mem_visible(adev, new_mem)) {
541 pr_err("Move buffer fallback to memcpy unavailable\n");
542 return r;
543 }
544
545 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
546 if (r)
547 return r;
548 }
549
550out:
551 /* update statistics */
552 atomic64_add(bo->base.size, &adev->num_bytes_moved);
553 amdgpu_bo_move_notify(bo, evict, new_mem);
554 return 0;
555}
556
557/*
558 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
559 *
560 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
561 */
562static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
563 struct ttm_resource *mem)
564{
565 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
566 size_t bus_size = (size_t)mem->size;
567
568 switch (mem->mem_type) {
569 case TTM_PL_SYSTEM:
570 /* system memory */
571 return 0;
572 case TTM_PL_TT:
573 case AMDGPU_PL_PREEMPT:
574 break;
575 case TTM_PL_VRAM:
576 mem->bus.offset = mem->start << PAGE_SHIFT;
577 /* check if it's visible */
578 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
579 return -EINVAL;
580
581 if (adev->mman.aper_base_kaddr &&
582 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
583 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
584 mem->bus.offset;
585
586 mem->bus.offset += adev->gmc.aper_base;
587 mem->bus.is_iomem = true;
588 break;
589 default:
590 return -EINVAL;
591 }
592 return 0;
593}
594
595static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
596 unsigned long page_offset)
597{
598 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
599 struct amdgpu_res_cursor cursor;
600
601 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
602 &cursor);
603 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
604}
605
606/**
607 * amdgpu_ttm_domain_start - Returns GPU start address
608 * @adev: amdgpu device object
609 * @type: type of the memory
610 *
611 * Returns:
612 * GPU start address of a memory domain
613 */
614
615uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
616{
617 switch (type) {
618 case TTM_PL_TT:
619 return adev->gmc.gart_start;
620 case TTM_PL_VRAM:
621 return adev->gmc.vram_start;
622 }
623
624 return 0;
625}
626
627/*
628 * TTM backend functions.
629 */
630struct amdgpu_ttm_tt {
631 struct ttm_tt ttm;
632 struct drm_gem_object *gobj;
633 u64 offset;
634 uint64_t userptr;
635 struct task_struct *usertask;
636 uint32_t userflags;
637 bool bound;
638};
639
640#define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
641
642#ifdef CONFIG_DRM_AMDGPU_USERPTR
643/*
644 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
645 * memory and start HMM tracking CPU page table update
646 *
647 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
648 * once afterwards to stop HMM tracking
649 */
650int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
651 struct hmm_range **range)
652{
653 struct ttm_tt *ttm = bo->tbo.ttm;
654 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
655 unsigned long start = gtt->userptr;
656 struct vm_area_struct *vma;
657 struct mm_struct *mm;
658 bool readonly;
659 int r = 0;
660
661 /* Make sure get_user_pages_done() can cleanup gracefully */
662 *range = NULL;
663
664 mm = bo->notifier.mm;
665 if (unlikely(!mm)) {
666 DRM_DEBUG_DRIVER("BO is not registered?\n");
667 return -EFAULT;
668 }
669
670 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
671 return -ESRCH;
672
673 mmap_read_lock(mm);
674 vma = vma_lookup(mm, start);
675 if (unlikely(!vma)) {
676 r = -EFAULT;
677 goto out_unlock;
678 }
679 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
680 vma->vm_file)) {
681 r = -EPERM;
682 goto out_unlock;
683 }
684
685 readonly = amdgpu_ttm_tt_is_readonly(ttm);
686 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
687 readonly, NULL, pages, range);
688out_unlock:
689 mmap_read_unlock(mm);
690 if (r)
691 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
692
693 mmput(mm);
694
695 return r;
696}
697
698/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
699 */
700void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
701 struct hmm_range *range)
702{
703 struct amdgpu_ttm_tt *gtt = (void *)ttm;
704
705 if (gtt && gtt->userptr && range)
706 amdgpu_hmm_range_get_pages_done(range);
707}
708
709/*
710 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
711 * Check if the pages backing this ttm range have been invalidated
712 *
713 * Returns: true if pages are still valid
714 */
715bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
716 struct hmm_range *range)
717{
718 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
719
720 if (!gtt || !gtt->userptr || !range)
721 return false;
722
723 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
724 gtt->userptr, ttm->num_pages);
725
726 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
727
728 return !amdgpu_hmm_range_get_pages_done(range);
729}
730#endif
731
732/*
733 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
734 *
735 * Called by amdgpu_cs_list_validate(). This creates the page list
736 * that backs user memory and will ultimately be mapped into the device
737 * address space.
738 */
739void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
740{
741 unsigned long i;
742
743 for (i = 0; i < ttm->num_pages; ++i)
744 ttm->pages[i] = pages ? pages[i] : NULL;
745}
746
747/*
748 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
749 *
750 * Called by amdgpu_ttm_backend_bind()
751 **/
752static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
753 struct ttm_tt *ttm)
754{
755 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
756 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
757 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
758 enum dma_data_direction direction = write ?
759 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
760 int r;
761
762 /* Allocate an SG array and squash pages into it */
763 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
764 (u64)ttm->num_pages << PAGE_SHIFT,
765 GFP_KERNEL);
766 if (r)
767 goto release_sg;
768
769 /* Map SG to device */
770 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
771 if (r)
772 goto release_sg;
773
774 /* convert SG to linear array of pages and dma addresses */
775 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
776 ttm->num_pages);
777
778 return 0;
779
780release_sg:
781 kfree(ttm->sg);
782 ttm->sg = NULL;
783 return r;
784}
785
786/*
787 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
788 */
789static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
790 struct ttm_tt *ttm)
791{
792 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
793 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
794 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
795 enum dma_data_direction direction = write ?
796 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
797
798 /* double check that we don't free the table twice */
799 if (!ttm->sg || !ttm->sg->sgl)
800 return;
801
802 /* unmap the pages mapped to the device */
803 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
804 sg_free_table(ttm->sg);
805}
806
807static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
808 struct ttm_buffer_object *tbo,
809 uint64_t flags)
810{
811 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
812 struct ttm_tt *ttm = tbo->ttm;
813 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
814
815 if (amdgpu_bo_encrypted(abo))
816 flags |= AMDGPU_PTE_TMZ;
817
818 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
819 uint64_t page_idx = 1;
820
821 amdgpu_gart_bind(adev, gtt->offset, page_idx,
822 gtt->ttm.dma_address, flags);
823
824 /* The memory type of the first page defaults to UC. Now
825 * modify the memory type to NC from the second page of
826 * the BO onward.
827 */
828 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
829 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
830
831 amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT),
832 ttm->num_pages - page_idx,
833 &(gtt->ttm.dma_address[page_idx]), flags);
834 } else {
835 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
836 gtt->ttm.dma_address, flags);
837 }
838}
839
840/*
841 * amdgpu_ttm_backend_bind - Bind GTT memory
842 *
843 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
844 * This handles binding GTT memory to the device address space.
845 */
846static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
847 struct ttm_tt *ttm,
848 struct ttm_resource *bo_mem)
849{
850 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
851 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
852 uint64_t flags;
853 int r;
854
855 if (!bo_mem)
856 return -EINVAL;
857
858 if (gtt->bound)
859 return 0;
860
861 if (gtt->userptr) {
862 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
863 if (r) {
864 DRM_ERROR("failed to pin userptr\n");
865 return r;
866 }
867 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
868 if (!ttm->sg) {
869 struct dma_buf_attachment *attach;
870 struct sg_table *sgt;
871
872 attach = gtt->gobj->import_attach;
873 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
874 if (IS_ERR(sgt))
875 return PTR_ERR(sgt);
876
877 ttm->sg = sgt;
878 }
879
880 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
881 ttm->num_pages);
882 }
883
884 if (!ttm->num_pages) {
885 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
886 ttm->num_pages, bo_mem, ttm);
887 }
888
889 if (bo_mem->mem_type != TTM_PL_TT ||
890 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
891 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
892 return 0;
893 }
894
895 /* compute PTE flags relevant to this BO memory */
896 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
897
898 /* bind pages into GART page tables */
899 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
900 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
901 gtt->ttm.dma_address, flags);
902 gtt->bound = true;
903 return 0;
904}
905
906/*
907 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
908 * through AGP or GART aperture.
909 *
910 * If bo is accessible through AGP aperture, then use AGP aperture
911 * to access bo; otherwise allocate logical space in GART aperture
912 * and map bo to GART aperture.
913 */
914int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
915{
916 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
917 struct ttm_operation_ctx ctx = { false, false };
918 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
919 struct ttm_placement placement;
920 struct ttm_place placements;
921 struct ttm_resource *tmp;
922 uint64_t addr, flags;
923 int r;
924
925 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
926 return 0;
927
928 addr = amdgpu_gmc_agp_addr(bo);
929 if (addr != AMDGPU_BO_INVALID_OFFSET) {
930 bo->resource->start = addr >> PAGE_SHIFT;
931 return 0;
932 }
933
934 /* allocate GART space */
935 placement.num_placement = 1;
936 placement.placement = &placements;
937 placement.num_busy_placement = 1;
938 placement.busy_placement = &placements;
939 placements.fpfn = 0;
940 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
941 placements.mem_type = TTM_PL_TT;
942 placements.flags = bo->resource->placement;
943
944 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
945 if (unlikely(r))
946 return r;
947
948 /* compute PTE flags for this buffer object */
949 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
950
951 /* Bind pages */
952 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
953 amdgpu_ttm_gart_bind(adev, bo, flags);
954 amdgpu_gart_invalidate_tlb(adev);
955 ttm_resource_free(bo, &bo->resource);
956 ttm_bo_assign_mem(bo, tmp);
957
958 return 0;
959}
960
961/*
962 * amdgpu_ttm_recover_gart - Rebind GTT pages
963 *
964 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
965 * rebind GTT pages during a GPU reset.
966 */
967void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
968{
969 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
970 uint64_t flags;
971
972 if (!tbo->ttm)
973 return;
974
975 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
976 amdgpu_ttm_gart_bind(adev, tbo, flags);
977}
978
979/*
980 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
981 *
982 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
983 * ttm_tt_destroy().
984 */
985static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
986 struct ttm_tt *ttm)
987{
988 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
989 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
990
991 /* if the pages have userptr pinning then clear that first */
992 if (gtt->userptr) {
993 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
994 } else if (ttm->sg && gtt->gobj->import_attach) {
995 struct dma_buf_attachment *attach;
996
997 attach = gtt->gobj->import_attach;
998 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
999 ttm->sg = NULL;
1000 }
1001
1002 if (!gtt->bound)
1003 return;
1004
1005 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1006 return;
1007
1008 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1009 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1010 gtt->bound = false;
1011}
1012
1013static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1014 struct ttm_tt *ttm)
1015{
1016 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1017
1018 if (gtt->usertask)
1019 put_task_struct(gtt->usertask);
1020
1021 ttm_tt_fini(>t->ttm);
1022 kfree(gtt);
1023}
1024
1025/**
1026 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1027 *
1028 * @bo: The buffer object to create a GTT ttm_tt object around
1029 * @page_flags: Page flags to be added to the ttm_tt object
1030 *
1031 * Called by ttm_tt_create().
1032 */
1033static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1034 uint32_t page_flags)
1035{
1036 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1037 struct amdgpu_ttm_tt *gtt;
1038 enum ttm_caching caching;
1039
1040 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1041 if (gtt == NULL) {
1042 return NULL;
1043 }
1044 gtt->gobj = &bo->base;
1045
1046 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1047 caching = ttm_write_combined;
1048 else
1049 caching = ttm_cached;
1050
1051 /* allocate space for the uninitialized page entries */
1052 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1053 kfree(gtt);
1054 return NULL;
1055 }
1056 return >t->ttm;
1057}
1058
1059/*
1060 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1061 *
1062 * Map the pages of a ttm_tt object to an address space visible
1063 * to the underlying device.
1064 */
1065static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1066 struct ttm_tt *ttm,
1067 struct ttm_operation_ctx *ctx)
1068{
1069 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1070 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1071 pgoff_t i;
1072 int ret;
1073
1074 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1075 if (gtt->userptr) {
1076 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1077 if (!ttm->sg)
1078 return -ENOMEM;
1079 return 0;
1080 }
1081
1082 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1083 return 0;
1084
1085 ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1086 if (ret)
1087 return ret;
1088
1089 for (i = 0; i < ttm->num_pages; ++i)
1090 ttm->pages[i]->mapping = bdev->dev_mapping;
1091
1092 return 0;
1093}
1094
1095/*
1096 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1097 *
1098 * Unmaps pages of a ttm_tt object from the device address space and
1099 * unpopulates the page array backing it.
1100 */
1101static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1102 struct ttm_tt *ttm)
1103{
1104 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1105 struct amdgpu_device *adev;
1106 pgoff_t i;
1107
1108 amdgpu_ttm_backend_unbind(bdev, ttm);
1109
1110 if (gtt->userptr) {
1111 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1112 kfree(ttm->sg);
1113 ttm->sg = NULL;
1114 return;
1115 }
1116
1117 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1118 return;
1119
1120 for (i = 0; i < ttm->num_pages; ++i)
1121 ttm->pages[i]->mapping = NULL;
1122
1123 adev = amdgpu_ttm_adev(bdev);
1124 return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1125}
1126
1127/**
1128 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1129 * task
1130 *
1131 * @tbo: The ttm_buffer_object that contains the userptr
1132 * @user_addr: The returned value
1133 */
1134int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1135 uint64_t *user_addr)
1136{
1137 struct amdgpu_ttm_tt *gtt;
1138
1139 if (!tbo->ttm)
1140 return -EINVAL;
1141
1142 gtt = (void *)tbo->ttm;
1143 *user_addr = gtt->userptr;
1144 return 0;
1145}
1146
1147/**
1148 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1149 * task
1150 *
1151 * @bo: The ttm_buffer_object to bind this userptr to
1152 * @addr: The address in the current tasks VM space to use
1153 * @flags: Requirements of userptr object.
1154 *
1155 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1156 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1157 * initialize GPU VM for a KFD process.
1158 */
1159int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1160 uint64_t addr, uint32_t flags)
1161{
1162 struct amdgpu_ttm_tt *gtt;
1163
1164 if (!bo->ttm) {
1165 /* TODO: We want a separate TTM object type for userptrs */
1166 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1167 if (bo->ttm == NULL)
1168 return -ENOMEM;
1169 }
1170
1171 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1172 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1173
1174 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1175 gtt->userptr = addr;
1176 gtt->userflags = flags;
1177
1178 if (gtt->usertask)
1179 put_task_struct(gtt->usertask);
1180 gtt->usertask = current->group_leader;
1181 get_task_struct(gtt->usertask);
1182
1183 return 0;
1184}
1185
1186/*
1187 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1188 */
1189struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1190{
1191 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1192
1193 if (gtt == NULL)
1194 return NULL;
1195
1196 if (gtt->usertask == NULL)
1197 return NULL;
1198
1199 return gtt->usertask->mm;
1200}
1201
1202/*
1203 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1204 * address range for the current task.
1205 *
1206 */
1207bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1208 unsigned long end, unsigned long *userptr)
1209{
1210 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1211 unsigned long size;
1212
1213 if (gtt == NULL || !gtt->userptr)
1214 return false;
1215
1216 /* Return false if no part of the ttm_tt object lies within
1217 * the range
1218 */
1219 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1220 if (gtt->userptr > end || gtt->userptr + size <= start)
1221 return false;
1222
1223 if (userptr)
1224 *userptr = gtt->userptr;
1225 return true;
1226}
1227
1228/*
1229 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1230 */
1231bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1232{
1233 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1234
1235 if (gtt == NULL || !gtt->userptr)
1236 return false;
1237
1238 return true;
1239}
1240
1241/*
1242 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1243 */
1244bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1245{
1246 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1247
1248 if (gtt == NULL)
1249 return false;
1250
1251 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1252}
1253
1254/**
1255 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1256 *
1257 * @ttm: The ttm_tt object to compute the flags for
1258 * @mem: The memory registry backing this ttm_tt object
1259 *
1260 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1261 */
1262uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1263{
1264 uint64_t flags = 0;
1265
1266 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1267 flags |= AMDGPU_PTE_VALID;
1268
1269 if (mem && (mem->mem_type == TTM_PL_TT ||
1270 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1271 flags |= AMDGPU_PTE_SYSTEM;
1272
1273 if (ttm->caching == ttm_cached)
1274 flags |= AMDGPU_PTE_SNOOPED;
1275 }
1276
1277 if (mem && mem->mem_type == TTM_PL_VRAM &&
1278 mem->bus.caching == ttm_cached)
1279 flags |= AMDGPU_PTE_SNOOPED;
1280
1281 return flags;
1282}
1283
1284/**
1285 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1286 *
1287 * @adev: amdgpu_device pointer
1288 * @ttm: The ttm_tt object to compute the flags for
1289 * @mem: The memory registry backing this ttm_tt object
1290 *
1291 * Figure out the flags to use for a VM PTE (Page Table Entry).
1292 */
1293uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1294 struct ttm_resource *mem)
1295{
1296 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1297
1298 flags |= adev->gart.gart_pte_flags;
1299 flags |= AMDGPU_PTE_READABLE;
1300
1301 if (!amdgpu_ttm_tt_is_readonly(ttm))
1302 flags |= AMDGPU_PTE_WRITEABLE;
1303
1304 return flags;
1305}
1306
1307/*
1308 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1309 * object.
1310 *
1311 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1312 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1313 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1314 * used to clean out a memory space.
1315 */
1316static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1317 const struct ttm_place *place)
1318{
1319 struct dma_resv_iter resv_cursor;
1320 struct dma_fence *f;
1321
1322 if (!amdgpu_bo_is_amdgpu_bo(bo))
1323 return ttm_bo_eviction_valuable(bo, place);
1324
1325 /* Swapout? */
1326 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1327 return true;
1328
1329 if (bo->type == ttm_bo_type_kernel &&
1330 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1331 return false;
1332
1333 /* If bo is a KFD BO, check if the bo belongs to the current process.
1334 * If true, then return false as any KFD process needs all its BOs to
1335 * be resident to run successfully
1336 */
1337 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1338 DMA_RESV_USAGE_BOOKKEEP, f) {
1339 if (amdkfd_fence_check_mm(f, current->mm))
1340 return false;
1341 }
1342
1343 /* Preemptible BOs don't own system resources managed by the
1344 * driver (pages, VRAM, GART space). They point to resources
1345 * owned by someone else (e.g. pageable memory in user mode
1346 * or a DMABuf). They are used in a preemptible context so we
1347 * can guarantee no deadlocks and good QoS in case of MMU
1348 * notifiers or DMABuf move notifiers from the resource owner.
1349 */
1350 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1351 return false;
1352
1353 if (bo->resource->mem_type == TTM_PL_TT &&
1354 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1355 return false;
1356
1357 return ttm_bo_eviction_valuable(bo, place);
1358}
1359
1360static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1361 void *buf, size_t size, bool write)
1362{
1363 while (size) {
1364 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1365 uint64_t bytes = 4 - (pos & 0x3);
1366 uint32_t shift = (pos & 0x3) * 8;
1367 uint32_t mask = 0xffffffff << shift;
1368 uint32_t value = 0;
1369
1370 if (size < bytes) {
1371 mask &= 0xffffffff >> (bytes - size) * 8;
1372 bytes = size;
1373 }
1374
1375 if (mask != 0xffffffff) {
1376 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1377 if (write) {
1378 value &= ~mask;
1379 value |= (*(uint32_t *)buf << shift) & mask;
1380 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1381 } else {
1382 value = (value & mask) >> shift;
1383 memcpy(buf, &value, bytes);
1384 }
1385 } else {
1386 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1387 }
1388
1389 pos += bytes;
1390 buf += bytes;
1391 size -= bytes;
1392 }
1393}
1394
1395static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1396 unsigned long offset, void *buf,
1397 int len, int write)
1398{
1399 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1400 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1401 struct amdgpu_res_cursor src_mm;
1402 struct amdgpu_job *job;
1403 struct dma_fence *fence;
1404 uint64_t src_addr, dst_addr;
1405 unsigned int num_dw;
1406 int r, idx;
1407
1408 if (len != PAGE_SIZE)
1409 return -EINVAL;
1410
1411 if (!adev->mman.sdma_access_ptr)
1412 return -EACCES;
1413
1414 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1415 return -ENODEV;
1416
1417 if (write)
1418 memcpy(adev->mman.sdma_access_ptr, buf, len);
1419
1420 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1421 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
1422 AMDGPU_FENCE_OWNER_UNDEFINED,
1423 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1424 &job);
1425 if (r)
1426 goto out;
1427
1428 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1429 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1430 src_mm.start;
1431 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1432 if (write)
1433 swap(src_addr, dst_addr);
1434
1435 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1436 PAGE_SIZE, false);
1437
1438 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1439 WARN_ON(job->ibs[0].length_dw > num_dw);
1440
1441 fence = amdgpu_job_submit(job);
1442
1443 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1444 r = -ETIMEDOUT;
1445 dma_fence_put(fence);
1446
1447 if (!(r || write))
1448 memcpy(buf, adev->mman.sdma_access_ptr, len);
1449out:
1450 drm_dev_exit(idx);
1451 return r;
1452}
1453
1454/**
1455 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1456 *
1457 * @bo: The buffer object to read/write
1458 * @offset: Offset into buffer object
1459 * @buf: Secondary buffer to write/read from
1460 * @len: Length in bytes of access
1461 * @write: true if writing
1462 *
1463 * This is used to access VRAM that backs a buffer object via MMIO
1464 * access for debugging purposes.
1465 */
1466static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1467 unsigned long offset, void *buf, int len,
1468 int write)
1469{
1470 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1471 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1472 struct amdgpu_res_cursor cursor;
1473 int ret = 0;
1474
1475 if (bo->resource->mem_type != TTM_PL_VRAM)
1476 return -EIO;
1477
1478 if (amdgpu_device_has_timeouts_enabled(adev) &&
1479 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1480 return len;
1481
1482 amdgpu_res_first(bo->resource, offset, len, &cursor);
1483 while (cursor.remaining) {
1484 size_t count, size = cursor.size;
1485 loff_t pos = cursor.start;
1486
1487 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1488 size -= count;
1489 if (size) {
1490 /* using MM to access rest vram and handle un-aligned address */
1491 pos += count;
1492 buf += count;
1493 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1494 }
1495
1496 ret += cursor.size;
1497 buf += cursor.size;
1498 amdgpu_res_next(&cursor, cursor.size);
1499 }
1500
1501 return ret;
1502}
1503
1504static void
1505amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1506{
1507 amdgpu_bo_move_notify(bo, false, NULL);
1508}
1509
1510static struct ttm_device_funcs amdgpu_bo_driver = {
1511 .ttm_tt_create = &amdgpu_ttm_tt_create,
1512 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1513 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1514 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1515 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1516 .evict_flags = &amdgpu_evict_flags,
1517 .move = &amdgpu_bo_move,
1518 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1519 .release_notify = &amdgpu_bo_release_notify,
1520 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1521 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1522 .access_memory = &amdgpu_ttm_access_memory,
1523};
1524
1525/*
1526 * Firmware Reservation functions
1527 */
1528/**
1529 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1530 *
1531 * @adev: amdgpu_device pointer
1532 *
1533 * free fw reserved vram if it has been reserved.
1534 */
1535static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1536{
1537 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1538 NULL, &adev->mman.fw_vram_usage_va);
1539}
1540
1541/*
1542 * Driver Reservation functions
1543 */
1544/**
1545 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1546 *
1547 * @adev: amdgpu_device pointer
1548 *
1549 * free drv reserved vram if it has been reserved.
1550 */
1551static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1552{
1553 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1554 NULL,
1555 &adev->mman.drv_vram_usage_va);
1556}
1557
1558/**
1559 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1560 *
1561 * @adev: amdgpu_device pointer
1562 *
1563 * create bo vram reservation from fw.
1564 */
1565static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1566{
1567 uint64_t vram_size = adev->gmc.visible_vram_size;
1568
1569 adev->mman.fw_vram_usage_va = NULL;
1570 adev->mman.fw_vram_usage_reserved_bo = NULL;
1571
1572 if (adev->mman.fw_vram_usage_size == 0 ||
1573 adev->mman.fw_vram_usage_size > vram_size)
1574 return 0;
1575
1576 return amdgpu_bo_create_kernel_at(adev,
1577 adev->mman.fw_vram_usage_start_offset,
1578 adev->mman.fw_vram_usage_size,
1579 &adev->mman.fw_vram_usage_reserved_bo,
1580 &adev->mman.fw_vram_usage_va);
1581}
1582
1583/**
1584 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1585 *
1586 * @adev: amdgpu_device pointer
1587 *
1588 * create bo vram reservation from drv.
1589 */
1590static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1591{
1592 u64 vram_size = adev->gmc.visible_vram_size;
1593
1594 adev->mman.drv_vram_usage_va = NULL;
1595 adev->mman.drv_vram_usage_reserved_bo = NULL;
1596
1597 if (adev->mman.drv_vram_usage_size == 0 ||
1598 adev->mman.drv_vram_usage_size > vram_size)
1599 return 0;
1600
1601 return amdgpu_bo_create_kernel_at(adev,
1602 adev->mman.drv_vram_usage_start_offset,
1603 adev->mman.drv_vram_usage_size,
1604 &adev->mman.drv_vram_usage_reserved_bo,
1605 &adev->mman.drv_vram_usage_va);
1606}
1607
1608/*
1609 * Memoy training reservation functions
1610 */
1611
1612/**
1613 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1614 *
1615 * @adev: amdgpu_device pointer
1616 *
1617 * free memory training reserved vram if it has been reserved.
1618 */
1619static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1620{
1621 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1622
1623 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1624 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1625 ctx->c2p_bo = NULL;
1626
1627 return 0;
1628}
1629
1630static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1631{
1632 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1633
1634 memset(ctx, 0, sizeof(*ctx));
1635
1636 ctx->c2p_train_data_offset =
1637 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1638 ctx->p2c_train_data_offset =
1639 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1640 ctx->train_data_size =
1641 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1642
1643 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1644 ctx->train_data_size,
1645 ctx->p2c_train_data_offset,
1646 ctx->c2p_train_data_offset);
1647}
1648
1649/*
1650 * reserve TMR memory at the top of VRAM which holds
1651 * IP Discovery data and is protected by PSP.
1652 */
1653static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1654{
1655 int ret;
1656 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1657 bool mem_train_support = false;
1658
1659 if (!amdgpu_sriov_vf(adev)) {
1660 if (amdgpu_atomfirmware_mem_training_supported(adev))
1661 mem_train_support = true;
1662 else
1663 DRM_DEBUG("memory training does not support!\n");
1664 }
1665
1666 /*
1667 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1668 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1669 *
1670 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1671 * discovery data and G6 memory training data respectively
1672 */
1673 adev->mman.discovery_tmr_size =
1674 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1675 if (!adev->mman.discovery_tmr_size)
1676 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1677
1678 if (mem_train_support) {
1679 /* reserve vram for mem train according to TMR location */
1680 amdgpu_ttm_training_data_block_init(adev);
1681 ret = amdgpu_bo_create_kernel_at(adev,
1682 ctx->c2p_train_data_offset,
1683 ctx->train_data_size,
1684 &ctx->c2p_bo,
1685 NULL);
1686 if (ret) {
1687 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1688 amdgpu_ttm_training_reserve_vram_fini(adev);
1689 return ret;
1690 }
1691 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1692 }
1693
1694 ret = amdgpu_bo_create_kernel_at(adev,
1695 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1696 adev->mman.discovery_tmr_size,
1697 &adev->mman.discovery_memory,
1698 NULL);
1699 if (ret) {
1700 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1701 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1702 return ret;
1703 }
1704
1705 return 0;
1706}
1707
1708/*
1709 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1710 * gtt/vram related fields.
1711 *
1712 * This initializes all of the memory space pools that the TTM layer
1713 * will need such as the GTT space (system memory mapped to the device),
1714 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1715 * can be mapped per VMID.
1716 */
1717int amdgpu_ttm_init(struct amdgpu_device *adev)
1718{
1719 uint64_t gtt_size;
1720 int r;
1721 u64 vis_vram_limit;
1722
1723 mutex_init(&adev->mman.gtt_window_lock);
1724
1725 /* No others user of address space so set it to 0 */
1726 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1727 adev_to_drm(adev)->anon_inode->i_mapping,
1728 adev_to_drm(adev)->vma_offset_manager,
1729 adev->need_swiotlb,
1730 dma_addressing_limited(adev->dev));
1731 if (r) {
1732 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1733 return r;
1734 }
1735 adev->mman.initialized = true;
1736
1737 /* Initialize VRAM pool with all of VRAM divided into pages */
1738 r = amdgpu_vram_mgr_init(adev);
1739 if (r) {
1740 DRM_ERROR("Failed initializing VRAM heap.\n");
1741 return r;
1742 }
1743
1744 /* Reduce size of CPU-visible VRAM if requested */
1745 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1746 if (amdgpu_vis_vram_limit > 0 &&
1747 vis_vram_limit <= adev->gmc.visible_vram_size)
1748 adev->gmc.visible_vram_size = vis_vram_limit;
1749
1750 /* Change the size here instead of the init above so only lpfn is affected */
1751 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1752#ifdef CONFIG_64BIT
1753#ifdef CONFIG_X86
1754 if (adev->gmc.xgmi.connected_to_cpu)
1755 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1756 adev->gmc.visible_vram_size);
1757
1758 else
1759#endif
1760 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1761 adev->gmc.visible_vram_size);
1762#endif
1763
1764 /*
1765 *The reserved vram for firmware must be pinned to the specified
1766 *place on the VRAM, so reserve it early.
1767 */
1768 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1769 if (r) {
1770 return r;
1771 }
1772
1773 /*
1774 *The reserved vram for driver must be pinned to the specified
1775 *place on the VRAM, so reserve it early.
1776 */
1777 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1778 if (r)
1779 return r;
1780
1781 /*
1782 * only NAVI10 and onwards ASIC support for IP discovery.
1783 * If IP discovery enabled, a block of memory should be
1784 * reserved for IP discovey.
1785 */
1786 if (adev->mman.discovery_bin) {
1787 r = amdgpu_ttm_reserve_tmr(adev);
1788 if (r)
1789 return r;
1790 }
1791
1792 /* allocate memory as required for VGA
1793 * This is used for VGA emulation and pre-OS scanout buffers to
1794 * avoid display artifacts while transitioning between pre-OS
1795 * and driver. */
1796 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1797 &adev->mman.stolen_vga_memory,
1798 NULL);
1799 if (r)
1800 return r;
1801 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1802 adev->mman.stolen_extended_size,
1803 &adev->mman.stolen_extended_memory,
1804 NULL);
1805 if (r)
1806 return r;
1807 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1808 adev->mman.stolen_reserved_size,
1809 &adev->mman.stolen_reserved_memory,
1810 NULL);
1811 if (r)
1812 return r;
1813
1814 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1815 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1816
1817 /* Compute GTT size, either based on 1/2 the size of RAM size
1818 * or whatever the user passed on module init */
1819 if (amdgpu_gtt_size == -1) {
1820 struct sysinfo si;
1821
1822 si_meminfo(&si);
1823 /* Certain GL unit tests for large textures can cause problems
1824 * with the OOM killer since there is no way to link this memory
1825 * to a process. This was originally mitigated (but not necessarily
1826 * eliminated) by limiting the GTT size. The problem is this limit
1827 * is often too low for many modern games so just make the limit 1/2
1828 * of system memory which aligns with TTM. The OOM accounting needs
1829 * to be addressed, but we shouldn't prevent common 3D applications
1830 * from being usable just to potentially mitigate that corner case.
1831 */
1832 gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1833 (u64)si.totalram * si.mem_unit / 2);
1834 } else {
1835 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1836 }
1837
1838 /* Initialize GTT memory pool */
1839 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1840 if (r) {
1841 DRM_ERROR("Failed initializing GTT heap.\n");
1842 return r;
1843 }
1844 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1845 (unsigned)(gtt_size / (1024 * 1024)));
1846
1847 /* Initialize preemptible memory pool */
1848 r = amdgpu_preempt_mgr_init(adev);
1849 if (r) {
1850 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1851 return r;
1852 }
1853
1854 /* Initialize various on-chip memory pools */
1855 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1856 if (r) {
1857 DRM_ERROR("Failed initializing GDS heap.\n");
1858 return r;
1859 }
1860
1861 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1862 if (r) {
1863 DRM_ERROR("Failed initializing gws heap.\n");
1864 return r;
1865 }
1866
1867 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1868 if (r) {
1869 DRM_ERROR("Failed initializing oa heap.\n");
1870 return r;
1871 }
1872
1873 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1874 AMDGPU_GEM_DOMAIN_GTT,
1875 &adev->mman.sdma_access_bo, NULL,
1876 &adev->mman.sdma_access_ptr))
1877 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1878
1879 return 0;
1880}
1881
1882/*
1883 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1884 */
1885void amdgpu_ttm_fini(struct amdgpu_device *adev)
1886{
1887 int idx;
1888 if (!adev->mman.initialized)
1889 return;
1890
1891 amdgpu_ttm_training_reserve_vram_fini(adev);
1892 /* return the stolen vga memory back to VRAM */
1893 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1894 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1895 /* return the IP Discovery TMR memory back to VRAM */
1896 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1897 if (adev->mman.stolen_reserved_size)
1898 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1899 NULL, NULL);
1900 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1901 &adev->mman.sdma_access_ptr);
1902 amdgpu_ttm_fw_reserve_vram_fini(adev);
1903 amdgpu_ttm_drv_reserve_vram_fini(adev);
1904
1905 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1906
1907 if (adev->mman.aper_base_kaddr)
1908 iounmap(adev->mman.aper_base_kaddr);
1909 adev->mman.aper_base_kaddr = NULL;
1910
1911 drm_dev_exit(idx);
1912 }
1913
1914 amdgpu_vram_mgr_fini(adev);
1915 amdgpu_gtt_mgr_fini(adev);
1916 amdgpu_preempt_mgr_fini(adev);
1917 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1918 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1919 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1920 ttm_device_fini(&adev->mman.bdev);
1921 adev->mman.initialized = false;
1922 DRM_INFO("amdgpu: ttm finalized\n");
1923}
1924
1925/**
1926 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1927 *
1928 * @adev: amdgpu_device pointer
1929 * @enable: true when we can use buffer functions.
1930 *
1931 * Enable/disable use of buffer functions during suspend/resume. This should
1932 * only be called at bootup or when userspace isn't running.
1933 */
1934void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1935{
1936 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1937 uint64_t size;
1938 int r;
1939
1940 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1941 adev->mman.buffer_funcs_enabled == enable)
1942 return;
1943
1944 if (enable) {
1945 struct amdgpu_ring *ring;
1946 struct drm_gpu_scheduler *sched;
1947
1948 ring = adev->mman.buffer_funcs_ring;
1949 sched = &ring->sched;
1950 r = drm_sched_entity_init(&adev->mman.entity,
1951 DRM_SCHED_PRIORITY_KERNEL, &sched,
1952 1, NULL);
1953 if (r) {
1954 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1955 r);
1956 return;
1957 }
1958 } else {
1959 drm_sched_entity_destroy(&adev->mman.entity);
1960 dma_fence_put(man->move);
1961 man->move = NULL;
1962 }
1963
1964 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1965 if (enable)
1966 size = adev->gmc.real_vram_size;
1967 else
1968 size = adev->gmc.visible_vram_size;
1969 man->size = size;
1970 adev->mman.buffer_funcs_enabled = enable;
1971}
1972
1973static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
1974 bool direct_submit,
1975 unsigned int num_dw,
1976 struct dma_resv *resv,
1977 bool vm_needs_flush,
1978 struct amdgpu_job **job)
1979{
1980 enum amdgpu_ib_pool_type pool = direct_submit ?
1981 AMDGPU_IB_POOL_DIRECT :
1982 AMDGPU_IB_POOL_DELAYED;
1983 int r;
1984
1985 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
1986 AMDGPU_FENCE_OWNER_UNDEFINED,
1987 num_dw * 4, pool, job);
1988 if (r)
1989 return r;
1990
1991 if (vm_needs_flush) {
1992 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1993 adev->gmc.pdb0_bo :
1994 adev->gart.bo);
1995 (*job)->vm_needs_flush = true;
1996 }
1997 if (!resv)
1998 return 0;
1999
2000 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2001 DMA_RESV_USAGE_BOOKKEEP);
2002}
2003
2004int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2005 uint64_t dst_offset, uint32_t byte_count,
2006 struct dma_resv *resv,
2007 struct dma_fence **fence, bool direct_submit,
2008 bool vm_needs_flush, bool tmz)
2009{
2010 struct amdgpu_device *adev = ring->adev;
2011 unsigned num_loops, num_dw;
2012 struct amdgpu_job *job;
2013 uint32_t max_bytes;
2014 unsigned i;
2015 int r;
2016
2017 if (!direct_submit && !ring->sched.ready) {
2018 DRM_ERROR("Trying to move memory with ring turned off.\n");
2019 return -EINVAL;
2020 }
2021
2022 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2023 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2024 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2025 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2026 resv, vm_needs_flush, &job);
2027 if (r)
2028 return r;
2029
2030 for (i = 0; i < num_loops; i++) {
2031 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2032
2033 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2034 dst_offset, cur_size_in_bytes, tmz);
2035
2036 src_offset += cur_size_in_bytes;
2037 dst_offset += cur_size_in_bytes;
2038 byte_count -= cur_size_in_bytes;
2039 }
2040
2041 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2042 WARN_ON(job->ibs[0].length_dw > num_dw);
2043 if (direct_submit)
2044 r = amdgpu_job_submit_direct(job, ring, fence);
2045 else
2046 *fence = amdgpu_job_submit(job);
2047 if (r)
2048 goto error_free;
2049
2050 return r;
2051
2052error_free:
2053 amdgpu_job_free(job);
2054 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2055 return r;
2056}
2057
2058static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2059 uint64_t dst_addr, uint32_t byte_count,
2060 struct dma_resv *resv,
2061 struct dma_fence **fence,
2062 bool vm_needs_flush)
2063{
2064 struct amdgpu_device *adev = ring->adev;
2065 unsigned int num_loops, num_dw;
2066 struct amdgpu_job *job;
2067 uint32_t max_bytes;
2068 unsigned int i;
2069 int r;
2070
2071 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2072 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2073 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2074 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2075 &job);
2076 if (r)
2077 return r;
2078
2079 for (i = 0; i < num_loops; i++) {
2080 uint32_t cur_size = min(byte_count, max_bytes);
2081
2082 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2083 cur_size);
2084
2085 dst_addr += cur_size;
2086 byte_count -= cur_size;
2087 }
2088
2089 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2090 WARN_ON(job->ibs[0].length_dw > num_dw);
2091 *fence = amdgpu_job_submit(job);
2092 return 0;
2093}
2094
2095int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2096 uint32_t src_data,
2097 struct dma_resv *resv,
2098 struct dma_fence **f)
2099{
2100 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2101 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2102 struct dma_fence *fence = NULL;
2103 struct amdgpu_res_cursor dst;
2104 int r;
2105
2106 if (!adev->mman.buffer_funcs_enabled) {
2107 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2108 return -EINVAL;
2109 }
2110
2111 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2112
2113 mutex_lock(&adev->mman.gtt_window_lock);
2114 while (dst.remaining) {
2115 struct dma_fence *next;
2116 uint64_t cur_size, to;
2117
2118 /* Never fill more than 256MiB at once to avoid timeouts */
2119 cur_size = min(dst.size, 256ULL << 20);
2120
2121 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2122 1, ring, false, &cur_size, &to);
2123 if (r)
2124 goto error;
2125
2126 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2127 &next, true);
2128 if (r)
2129 goto error;
2130
2131 dma_fence_put(fence);
2132 fence = next;
2133
2134 amdgpu_res_next(&dst, cur_size);
2135 }
2136error:
2137 mutex_unlock(&adev->mman.gtt_window_lock);
2138 if (f)
2139 *f = dma_fence_get(fence);
2140 dma_fence_put(fence);
2141 return r;
2142}
2143
2144/**
2145 * amdgpu_ttm_evict_resources - evict memory buffers
2146 * @adev: amdgpu device object
2147 * @mem_type: evicted BO's memory type
2148 *
2149 * Evicts all @mem_type buffers on the lru list of the memory type.
2150 *
2151 * Returns:
2152 * 0 for success or a negative error code on failure.
2153 */
2154int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2155{
2156 struct ttm_resource_manager *man;
2157
2158 switch (mem_type) {
2159 case TTM_PL_VRAM:
2160 case TTM_PL_TT:
2161 case AMDGPU_PL_GWS:
2162 case AMDGPU_PL_GDS:
2163 case AMDGPU_PL_OA:
2164 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2165 break;
2166 default:
2167 DRM_ERROR("Trying to evict invalid memory type\n");
2168 return -EINVAL;
2169 }
2170
2171 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2172}
2173
2174#if defined(CONFIG_DEBUG_FS)
2175
2176static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2177{
2178 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2179
2180 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2181}
2182
2183DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2184
2185/*
2186 * amdgpu_ttm_vram_read - Linear read access to VRAM
2187 *
2188 * Accesses VRAM via MMIO for debugging purposes.
2189 */
2190static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2191 size_t size, loff_t *pos)
2192{
2193 struct amdgpu_device *adev = file_inode(f)->i_private;
2194 ssize_t result = 0;
2195
2196 if (size & 0x3 || *pos & 0x3)
2197 return -EINVAL;
2198
2199 if (*pos >= adev->gmc.mc_vram_size)
2200 return -ENXIO;
2201
2202 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2203 while (size) {
2204 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2205 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2206
2207 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2208 if (copy_to_user(buf, value, bytes))
2209 return -EFAULT;
2210
2211 result += bytes;
2212 buf += bytes;
2213 *pos += bytes;
2214 size -= bytes;
2215 }
2216
2217 return result;
2218}
2219
2220/*
2221 * amdgpu_ttm_vram_write - Linear write access to VRAM
2222 *
2223 * Accesses VRAM via MMIO for debugging purposes.
2224 */
2225static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2226 size_t size, loff_t *pos)
2227{
2228 struct amdgpu_device *adev = file_inode(f)->i_private;
2229 ssize_t result = 0;
2230 int r;
2231
2232 if (size & 0x3 || *pos & 0x3)
2233 return -EINVAL;
2234
2235 if (*pos >= adev->gmc.mc_vram_size)
2236 return -ENXIO;
2237
2238 while (size) {
2239 uint32_t value;
2240
2241 if (*pos >= adev->gmc.mc_vram_size)
2242 return result;
2243
2244 r = get_user(value, (uint32_t *)buf);
2245 if (r)
2246 return r;
2247
2248 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2249
2250 result += 4;
2251 buf += 4;
2252 *pos += 4;
2253 size -= 4;
2254 }
2255
2256 return result;
2257}
2258
2259static const struct file_operations amdgpu_ttm_vram_fops = {
2260 .owner = THIS_MODULE,
2261 .read = amdgpu_ttm_vram_read,
2262 .write = amdgpu_ttm_vram_write,
2263 .llseek = default_llseek,
2264};
2265
2266/*
2267 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2268 *
2269 * This function is used to read memory that has been mapped to the
2270 * GPU and the known addresses are not physical addresses but instead
2271 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2272 */
2273static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2274 size_t size, loff_t *pos)
2275{
2276 struct amdgpu_device *adev = file_inode(f)->i_private;
2277 struct iommu_domain *dom;
2278 ssize_t result = 0;
2279 int r;
2280
2281 /* retrieve the IOMMU domain if any for this device */
2282 dom = iommu_get_domain_for_dev(adev->dev);
2283
2284 while (size) {
2285 phys_addr_t addr = *pos & PAGE_MASK;
2286 loff_t off = *pos & ~PAGE_MASK;
2287 size_t bytes = PAGE_SIZE - off;
2288 unsigned long pfn;
2289 struct page *p;
2290 void *ptr;
2291
2292 bytes = bytes < size ? bytes : size;
2293
2294 /* Translate the bus address to a physical address. If
2295 * the domain is NULL it means there is no IOMMU active
2296 * and the address translation is the identity
2297 */
2298 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2299
2300 pfn = addr >> PAGE_SHIFT;
2301 if (!pfn_valid(pfn))
2302 return -EPERM;
2303
2304 p = pfn_to_page(pfn);
2305 if (p->mapping != adev->mman.bdev.dev_mapping)
2306 return -EPERM;
2307
2308 ptr = kmap_local_page(p);
2309 r = copy_to_user(buf, ptr + off, bytes);
2310 kunmap_local(ptr);
2311 if (r)
2312 return -EFAULT;
2313
2314 size -= bytes;
2315 *pos += bytes;
2316 result += bytes;
2317 }
2318
2319 return result;
2320}
2321
2322/*
2323 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2324 *
2325 * This function is used to write memory that has been mapped to the
2326 * GPU and the known addresses are not physical addresses but instead
2327 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2328 */
2329static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2330 size_t size, loff_t *pos)
2331{
2332 struct amdgpu_device *adev = file_inode(f)->i_private;
2333 struct iommu_domain *dom;
2334 ssize_t result = 0;
2335 int r;
2336
2337 dom = iommu_get_domain_for_dev(adev->dev);
2338
2339 while (size) {
2340 phys_addr_t addr = *pos & PAGE_MASK;
2341 loff_t off = *pos & ~PAGE_MASK;
2342 size_t bytes = PAGE_SIZE - off;
2343 unsigned long pfn;
2344 struct page *p;
2345 void *ptr;
2346
2347 bytes = bytes < size ? bytes : size;
2348
2349 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2350
2351 pfn = addr >> PAGE_SHIFT;
2352 if (!pfn_valid(pfn))
2353 return -EPERM;
2354
2355 p = pfn_to_page(pfn);
2356 if (p->mapping != adev->mman.bdev.dev_mapping)
2357 return -EPERM;
2358
2359 ptr = kmap_local_page(p);
2360 r = copy_from_user(ptr + off, buf, bytes);
2361 kunmap_local(ptr);
2362 if (r)
2363 return -EFAULT;
2364
2365 size -= bytes;
2366 *pos += bytes;
2367 result += bytes;
2368 }
2369
2370 return result;
2371}
2372
2373static const struct file_operations amdgpu_ttm_iomem_fops = {
2374 .owner = THIS_MODULE,
2375 .read = amdgpu_iomem_read,
2376 .write = amdgpu_iomem_write,
2377 .llseek = default_llseek
2378};
2379
2380#endif
2381
2382void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2383{
2384#if defined(CONFIG_DEBUG_FS)
2385 struct drm_minor *minor = adev_to_drm(adev)->primary;
2386 struct dentry *root = minor->debugfs_root;
2387
2388 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2389 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2390 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2391 &amdgpu_ttm_iomem_fops);
2392 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2393 &amdgpu_ttm_page_pool_fops);
2394 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2395 TTM_PL_VRAM),
2396 root, "amdgpu_vram_mm");
2397 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2398 TTM_PL_TT),
2399 root, "amdgpu_gtt_mm");
2400 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2401 AMDGPU_PL_GDS),
2402 root, "amdgpu_gds_mm");
2403 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2404 AMDGPU_PL_GWS),
2405 root, "amdgpu_gws_mm");
2406 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2407 AMDGPU_PL_OA),
2408 root, "amdgpu_oa_mm");
2409
2410#endif
2411}