Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <byteswap.h>
   5#include <endian.h>
   6#include <stdio.h>
   7#include <stdlib.h>
   8#include <string.h>
   9#include <fcntl.h>
  10#include <unistd.h>
  11#include <errno.h>
  12#include <sys/utsname.h>
  13#include <sys/param.h>
  14#include <sys/stat.h>
  15#include <linux/kernel.h>
  16#include <linux/err.h>
  17#include <linux/btf.h>
  18#include <gelf.h>
  19#include "btf.h"
  20#include "bpf.h"
  21#include "libbpf.h"
  22#include "libbpf_internal.h"
  23#include "hashmap.h"
  24#include "strset.h"
 
 
  25
  26#define BTF_MAX_NR_TYPES 0x7fffffffU
  27#define BTF_MAX_STR_OFFSET 0x7fffffffU
  28
  29static struct btf_type btf_void;
  30
  31struct btf {
  32	/* raw BTF data in native endianness */
  33	void *raw_data;
  34	/* raw BTF data in non-native endianness */
  35	void *raw_data_swapped;
  36	__u32 raw_size;
  37	/* whether target endianness differs from the native one */
  38	bool swapped_endian;
  39
  40	/*
  41	 * When BTF is loaded from an ELF or raw memory it is stored
  42	 * in a contiguous memory block. The hdr, type_data, and, strs_data
  43	 * point inside that memory region to their respective parts of BTF
  44	 * representation:
  45	 *
  46	 * +--------------------------------+
  47	 * |  Header  |  Types  |  Strings  |
  48	 * +--------------------------------+
  49	 * ^          ^         ^
  50	 * |          |         |
  51	 * hdr        |         |
  52	 * types_data-+         |
  53	 * strs_data------------+
  54	 *
  55	 * If BTF data is later modified, e.g., due to types added or
  56	 * removed, BTF deduplication performed, etc, this contiguous
  57	 * representation is broken up into three independently allocated
  58	 * memory regions to be able to modify them independently.
  59	 * raw_data is nulled out at that point, but can be later allocated
  60	 * and cached again if user calls btf__raw_data(), at which point
  61	 * raw_data will contain a contiguous copy of header, types, and
  62	 * strings:
  63	 *
  64	 * +----------+  +---------+  +-----------+
  65	 * |  Header  |  |  Types  |  |  Strings  |
  66	 * +----------+  +---------+  +-----------+
  67	 * ^             ^            ^
  68	 * |             |            |
  69	 * hdr           |            |
  70	 * types_data----+            |
  71	 * strset__data(strs_set)-----+
  72	 *
  73	 *               +----------+---------+-----------+
  74	 *               |  Header  |  Types  |  Strings  |
  75	 * raw_data----->+----------+---------+-----------+
  76	 */
  77	struct btf_header *hdr;
  78
  79	void *types_data;
  80	size_t types_data_cap; /* used size stored in hdr->type_len */
  81
  82	/* type ID to `struct btf_type *` lookup index
  83	 * type_offs[0] corresponds to the first non-VOID type:
  84	 *   - for base BTF it's type [1];
  85	 *   - for split BTF it's the first non-base BTF type.
  86	 */
  87	__u32 *type_offs;
  88	size_t type_offs_cap;
  89	/* number of types in this BTF instance:
  90	 *   - doesn't include special [0] void type;
  91	 *   - for split BTF counts number of types added on top of base BTF.
  92	 */
  93	__u32 nr_types;
  94	/* if not NULL, points to the base BTF on top of which the current
  95	 * split BTF is based
  96	 */
  97	struct btf *base_btf;
  98	/* BTF type ID of the first type in this BTF instance:
  99	 *   - for base BTF it's equal to 1;
 100	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
 101	 */
 102	int start_id;
 103	/* logical string offset of this BTF instance:
 104	 *   - for base BTF it's equal to 0;
 105	 *   - for split BTF it's equal to total size of base BTF's string section size.
 106	 */
 107	int start_str_off;
 108
 109	/* only one of strs_data or strs_set can be non-NULL, depending on
 110	 * whether BTF is in a modifiable state (strs_set is used) or not
 111	 * (strs_data points inside raw_data)
 112	 */
 113	void *strs_data;
 114	/* a set of unique strings */
 115	struct strset *strs_set;
 116	/* whether strings are already deduplicated */
 117	bool strs_deduped;
 118
 119	/* BTF object FD, if loaded into kernel */
 120	int fd;
 121
 122	/* Pointer size (in bytes) for a target architecture of this BTF */
 123	int ptr_sz;
 124};
 125
 126static inline __u64 ptr_to_u64(const void *ptr)
 127{
 128	return (__u64) (unsigned long) ptr;
 129}
 130
 131/* Ensure given dynamically allocated memory region pointed to by *data* with
 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
 133 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
 134 * are already used. At most *max_cnt* elements can be ever allocated.
 135 * If necessary, memory is reallocated and all existing data is copied over,
 136 * new pointer to the memory region is stored at *data, new memory region
 137 * capacity (in number of elements) is stored in *cap.
 138 * On success, memory pointer to the beginning of unused memory is returned.
 139 * On error, NULL is returned.
 140 */
 141void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
 142		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
 143{
 144	size_t new_cnt;
 145	void *new_data;
 146
 147	if (cur_cnt + add_cnt <= *cap_cnt)
 148		return *data + cur_cnt * elem_sz;
 149
 150	/* requested more than the set limit */
 151	if (cur_cnt + add_cnt > max_cnt)
 152		return NULL;
 153
 154	new_cnt = *cap_cnt;
 155	new_cnt += new_cnt / 4;		  /* expand by 25% */
 156	if (new_cnt < 16)		  /* but at least 16 elements */
 157		new_cnt = 16;
 158	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
 159		new_cnt = max_cnt;
 160	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
 161		new_cnt = cur_cnt + add_cnt;
 162
 163	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
 164	if (!new_data)
 165		return NULL;
 166
 167	/* zero out newly allocated portion of memory */
 168	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
 169
 170	*data = new_data;
 171	*cap_cnt = new_cnt;
 172	return new_data + cur_cnt * elem_sz;
 173}
 174
 175/* Ensure given dynamically allocated memory region has enough allocated space
 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
 177 */
 178int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
 179{
 180	void *p;
 181
 182	if (need_cnt <= *cap_cnt)
 183		return 0;
 184
 185	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
 186	if (!p)
 187		return -ENOMEM;
 188
 189	return 0;
 190}
 191
 192static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
 193{
 194	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
 195			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
 196}
 197
 198static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
 199{
 200	__u32 *p;
 201
 202	p = btf_add_type_offs_mem(btf, 1);
 203	if (!p)
 204		return -ENOMEM;
 205
 206	*p = type_off;
 207	return 0;
 208}
 209
 210static void btf_bswap_hdr(struct btf_header *h)
 211{
 212	h->magic = bswap_16(h->magic);
 213	h->hdr_len = bswap_32(h->hdr_len);
 214	h->type_off = bswap_32(h->type_off);
 215	h->type_len = bswap_32(h->type_len);
 216	h->str_off = bswap_32(h->str_off);
 217	h->str_len = bswap_32(h->str_len);
 218}
 219
 220static int btf_parse_hdr(struct btf *btf)
 221{
 222	struct btf_header *hdr = btf->hdr;
 223	__u32 meta_left;
 224
 225	if (btf->raw_size < sizeof(struct btf_header)) {
 226		pr_debug("BTF header not found\n");
 227		return -EINVAL;
 228	}
 229
 230	if (hdr->magic == bswap_16(BTF_MAGIC)) {
 231		btf->swapped_endian = true;
 232		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
 233			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
 234				bswap_32(hdr->hdr_len));
 235			return -ENOTSUP;
 236		}
 237		btf_bswap_hdr(hdr);
 238	} else if (hdr->magic != BTF_MAGIC) {
 239		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
 
 
 
 
 
 
 
 
 240		return -EINVAL;
 241	}
 242
 243	if (btf->raw_size < hdr->hdr_len) {
 244		pr_debug("BTF header len %u larger than data size %u\n",
 245			 hdr->hdr_len, btf->raw_size);
 246		return -EINVAL;
 247	}
 248
 249	meta_left = btf->raw_size - hdr->hdr_len;
 250	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
 251		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
 252		return -EINVAL;
 253	}
 254
 255	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
 256		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
 257			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
 258		return -EINVAL;
 259	}
 260
 261	if (hdr->type_off % 4) {
 262		pr_debug("BTF type section is not aligned to 4 bytes\n");
 263		return -EINVAL;
 264	}
 265
 
 
 266	return 0;
 267}
 268
 269static int btf_parse_str_sec(struct btf *btf)
 270{
 271	const struct btf_header *hdr = btf->hdr;
 272	const char *start = btf->strs_data;
 273	const char *end = start + btf->hdr->str_len;
 274
 275	if (btf->base_btf && hdr->str_len == 0)
 276		return 0;
 277	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
 278		pr_debug("Invalid BTF string section\n");
 279		return -EINVAL;
 280	}
 281	if (!btf->base_btf && start[0]) {
 282		pr_debug("Invalid BTF string section\n");
 283		return -EINVAL;
 284	}
 
 
 
 285	return 0;
 286}
 287
 288static int btf_type_size(const struct btf_type *t)
 289{
 290	const int base_size = sizeof(struct btf_type);
 291	__u16 vlen = btf_vlen(t);
 292
 293	switch (btf_kind(t)) {
 294	case BTF_KIND_FWD:
 295	case BTF_KIND_CONST:
 296	case BTF_KIND_VOLATILE:
 297	case BTF_KIND_RESTRICT:
 298	case BTF_KIND_PTR:
 299	case BTF_KIND_TYPEDEF:
 300	case BTF_KIND_FUNC:
 301	case BTF_KIND_FLOAT:
 302	case BTF_KIND_TYPE_TAG:
 303		return base_size;
 304	case BTF_KIND_INT:
 305		return base_size + sizeof(__u32);
 306	case BTF_KIND_ENUM:
 307		return base_size + vlen * sizeof(struct btf_enum);
 308	case BTF_KIND_ENUM64:
 309		return base_size + vlen * sizeof(struct btf_enum64);
 310	case BTF_KIND_ARRAY:
 311		return base_size + sizeof(struct btf_array);
 312	case BTF_KIND_STRUCT:
 313	case BTF_KIND_UNION:
 314		return base_size + vlen * sizeof(struct btf_member);
 315	case BTF_KIND_FUNC_PROTO:
 316		return base_size + vlen * sizeof(struct btf_param);
 317	case BTF_KIND_VAR:
 318		return base_size + sizeof(struct btf_var);
 319	case BTF_KIND_DATASEC:
 320		return base_size + vlen * sizeof(struct btf_var_secinfo);
 321	case BTF_KIND_DECL_TAG:
 322		return base_size + sizeof(struct btf_decl_tag);
 323	default:
 324		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 325		return -EINVAL;
 326	}
 327}
 328
 329static void btf_bswap_type_base(struct btf_type *t)
 330{
 331	t->name_off = bswap_32(t->name_off);
 332	t->info = bswap_32(t->info);
 333	t->type = bswap_32(t->type);
 334}
 335
 336static int btf_bswap_type_rest(struct btf_type *t)
 337{
 338	struct btf_var_secinfo *v;
 339	struct btf_enum64 *e64;
 340	struct btf_member *m;
 341	struct btf_array *a;
 342	struct btf_param *p;
 343	struct btf_enum *e;
 344	__u16 vlen = btf_vlen(t);
 345	int i;
 346
 347	switch (btf_kind(t)) {
 348	case BTF_KIND_FWD:
 349	case BTF_KIND_CONST:
 350	case BTF_KIND_VOLATILE:
 351	case BTF_KIND_RESTRICT:
 352	case BTF_KIND_PTR:
 353	case BTF_KIND_TYPEDEF:
 354	case BTF_KIND_FUNC:
 355	case BTF_KIND_FLOAT:
 356	case BTF_KIND_TYPE_TAG:
 357		return 0;
 358	case BTF_KIND_INT:
 359		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
 360		return 0;
 361	case BTF_KIND_ENUM:
 362		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
 363			e->name_off = bswap_32(e->name_off);
 364			e->val = bswap_32(e->val);
 365		}
 366		return 0;
 367	case BTF_KIND_ENUM64:
 368		for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
 369			e64->name_off = bswap_32(e64->name_off);
 370			e64->val_lo32 = bswap_32(e64->val_lo32);
 371			e64->val_hi32 = bswap_32(e64->val_hi32);
 372		}
 373		return 0;
 374	case BTF_KIND_ARRAY:
 375		a = btf_array(t);
 376		a->type = bswap_32(a->type);
 377		a->index_type = bswap_32(a->index_type);
 378		a->nelems = bswap_32(a->nelems);
 379		return 0;
 380	case BTF_KIND_STRUCT:
 381	case BTF_KIND_UNION:
 382		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
 383			m->name_off = bswap_32(m->name_off);
 384			m->type = bswap_32(m->type);
 385			m->offset = bswap_32(m->offset);
 386		}
 387		return 0;
 388	case BTF_KIND_FUNC_PROTO:
 389		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
 390			p->name_off = bswap_32(p->name_off);
 391			p->type = bswap_32(p->type);
 392		}
 393		return 0;
 394	case BTF_KIND_VAR:
 395		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
 396		return 0;
 397	case BTF_KIND_DATASEC:
 398		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
 399			v->type = bswap_32(v->type);
 400			v->offset = bswap_32(v->offset);
 401			v->size = bswap_32(v->size);
 402		}
 403		return 0;
 404	case BTF_KIND_DECL_TAG:
 405		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
 406		return 0;
 407	default:
 408		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 409		return -EINVAL;
 410	}
 411}
 412
 413static int btf_parse_type_sec(struct btf *btf)
 414{
 415	struct btf_header *hdr = btf->hdr;
 416	void *next_type = btf->types_data;
 417	void *end_type = next_type + hdr->type_len;
 418	int err, type_size;
 419
 420	while (next_type + sizeof(struct btf_type) <= end_type) {
 421		if (btf->swapped_endian)
 422			btf_bswap_type_base(next_type);
 
 423
 424		type_size = btf_type_size(next_type);
 425		if (type_size < 0)
 426			return type_size;
 427		if (next_type + type_size > end_type) {
 428			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
 429			return -EINVAL;
 430		}
 431
 432		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
 433			return -EINVAL;
 434
 435		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
 436		if (err)
 437			return err;
 438
 439		next_type += type_size;
 440		btf->nr_types++;
 441	}
 442
 443	if (next_type != end_type) {
 444		pr_warn("BTF types data is malformed\n");
 445		return -EINVAL;
 446	}
 447
 448	return 0;
 449}
 450
 451static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id)
 452{
 453	const char *s;
 454
 455	s = btf__str_by_offset(btf, str_off);
 456	if (!s) {
 457		pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off);
 458		return -EINVAL;
 459	}
 460
 461	return 0;
 462}
 463
 464static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id)
 465{
 466	const struct btf_type *t;
 467
 468	t = btf__type_by_id(btf, id);
 469	if (!t) {
 470		pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id);
 471		return -EINVAL;
 472	}
 473
 474	return 0;
 475}
 476
 477static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id)
 478{
 479	__u32 kind = btf_kind(t);
 480	int err, i, n;
 481
 482	err = btf_validate_str(btf, t->name_off, "type name", id);
 483	if (err)
 484		return err;
 485
 486	switch (kind) {
 487	case BTF_KIND_UNKN:
 488	case BTF_KIND_INT:
 489	case BTF_KIND_FWD:
 490	case BTF_KIND_FLOAT:
 491		break;
 492	case BTF_KIND_PTR:
 493	case BTF_KIND_TYPEDEF:
 494	case BTF_KIND_VOLATILE:
 495	case BTF_KIND_CONST:
 496	case BTF_KIND_RESTRICT:
 497	case BTF_KIND_VAR:
 498	case BTF_KIND_DECL_TAG:
 499	case BTF_KIND_TYPE_TAG:
 500		err = btf_validate_id(btf, t->type, id);
 501		if (err)
 502			return err;
 503		break;
 504	case BTF_KIND_ARRAY: {
 505		const struct btf_array *a = btf_array(t);
 506
 507		err = btf_validate_id(btf, a->type, id);
 508		err = err ?: btf_validate_id(btf, a->index_type, id);
 509		if (err)
 510			return err;
 511		break;
 512	}
 513	case BTF_KIND_STRUCT:
 514	case BTF_KIND_UNION: {
 515		const struct btf_member *m = btf_members(t);
 516
 517		n = btf_vlen(t);
 518		for (i = 0; i < n; i++, m++) {
 519			err = btf_validate_str(btf, m->name_off, "field name", id);
 520			err = err ?: btf_validate_id(btf, m->type, id);
 521			if (err)
 522				return err;
 523		}
 524		break;
 525	}
 526	case BTF_KIND_ENUM: {
 527		const struct btf_enum *m = btf_enum(t);
 528
 529		n = btf_vlen(t);
 530		for (i = 0; i < n; i++, m++) {
 531			err = btf_validate_str(btf, m->name_off, "enum name", id);
 532			if (err)
 533				return err;
 534		}
 535		break;
 536	}
 537	case BTF_KIND_ENUM64: {
 538		const struct btf_enum64 *m = btf_enum64(t);
 539
 540		n = btf_vlen(t);
 541		for (i = 0; i < n; i++, m++) {
 542			err = btf_validate_str(btf, m->name_off, "enum name", id);
 543			if (err)
 544				return err;
 545		}
 546		break;
 547	}
 548	case BTF_KIND_FUNC: {
 549		const struct btf_type *ft;
 550
 551		err = btf_validate_id(btf, t->type, id);
 552		if (err)
 553			return err;
 554		ft = btf__type_by_id(btf, t->type);
 555		if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) {
 556			pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type);
 557			return -EINVAL;
 558		}
 559		break;
 560	}
 561	case BTF_KIND_FUNC_PROTO: {
 562		const struct btf_param *m = btf_params(t);
 563
 564		n = btf_vlen(t);
 565		for (i = 0; i < n; i++, m++) {
 566			err = btf_validate_str(btf, m->name_off, "param name", id);
 567			err = err ?: btf_validate_id(btf, m->type, id);
 568			if (err)
 569				return err;
 570		}
 571		break;
 572	}
 573	case BTF_KIND_DATASEC: {
 574		const struct btf_var_secinfo *m = btf_var_secinfos(t);
 575
 576		n = btf_vlen(t);
 577		for (i = 0; i < n; i++, m++) {
 578			err = btf_validate_id(btf, m->type, id);
 579			if (err)
 580				return err;
 581		}
 582		break;
 583	}
 584	default:
 585		pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind);
 586		return -EINVAL;
 587	}
 588	return 0;
 589}
 590
 591/* Validate basic sanity of BTF. It's intentionally less thorough than
 592 * kernel's validation and validates only properties of BTF that libbpf relies
 593 * on to be correct (e.g., valid type IDs, valid string offsets, etc)
 594 */
 595static int btf_sanity_check(const struct btf *btf)
 596{
 597	const struct btf_type *t;
 598	__u32 i, n = btf__type_cnt(btf);
 599	int err;
 600
 601	for (i = 1; i < n; i++) {
 602		t = btf_type_by_id(btf, i);
 603		err = btf_validate_type(btf, t, i);
 604		if (err)
 605			return err;
 606	}
 607	return 0;
 608}
 609
 610__u32 btf__type_cnt(const struct btf *btf)
 611{
 612	return btf->start_id + btf->nr_types;
 613}
 614
 615const struct btf *btf__base_btf(const struct btf *btf)
 616{
 617	return btf->base_btf;
 618}
 619
 620/* internal helper returning non-const pointer to a type */
 621struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
 622{
 623	if (type_id == 0)
 624		return &btf_void;
 625	if (type_id < btf->start_id)
 626		return btf_type_by_id(btf->base_btf, type_id);
 627	return btf->types_data + btf->type_offs[type_id - btf->start_id];
 628}
 629
 630const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 631{
 632	if (type_id >= btf->start_id + btf->nr_types)
 633		return errno = EINVAL, NULL;
 634	return btf_type_by_id((struct btf *)btf, type_id);
 
 635}
 636
 637static int determine_ptr_size(const struct btf *btf)
 638{
 639	static const char * const long_aliases[] = {
 640		"long",
 641		"long int",
 642		"int long",
 643		"unsigned long",
 644		"long unsigned",
 645		"unsigned long int",
 646		"unsigned int long",
 647		"long unsigned int",
 648		"long int unsigned",
 649		"int unsigned long",
 650		"int long unsigned",
 651	};
 652	const struct btf_type *t;
 653	const char *name;
 654	int i, j, n;
 655
 656	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
 657		return btf->base_btf->ptr_sz;
 658
 659	n = btf__type_cnt(btf);
 660	for (i = 1; i < n; i++) {
 661		t = btf__type_by_id(btf, i);
 662		if (!btf_is_int(t))
 663			continue;
 664
 665		if (t->size != 4 && t->size != 8)
 666			continue;
 667
 668		name = btf__name_by_offset(btf, t->name_off);
 669		if (!name)
 670			continue;
 671
 672		for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
 673			if (strcmp(name, long_aliases[j]) == 0)
 674				return t->size;
 
 
 675		}
 676	}
 677
 678	return -1;
 679}
 680
 681static size_t btf_ptr_sz(const struct btf *btf)
 682{
 683	if (!btf->ptr_sz)
 684		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 685	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 686}
 687
 688/* Return pointer size this BTF instance assumes. The size is heuristically
 689 * determined by looking for 'long' or 'unsigned long' integer type and
 690 * recording its size in bytes. If BTF type information doesn't have any such
 691 * type, this function returns 0. In the latter case, native architecture's
 692 * pointer size is assumed, so will be either 4 or 8, depending on
 693 * architecture that libbpf was compiled for. It's possible to override
 694 * guessed value by using btf__set_pointer_size() API.
 695 */
 696size_t btf__pointer_size(const struct btf *btf)
 697{
 698	if (!btf->ptr_sz)
 699		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 700
 701	if (btf->ptr_sz < 0)
 702		/* not enough BTF type info to guess */
 703		return 0;
 704
 705	return btf->ptr_sz;
 706}
 707
 708/* Override or set pointer size in bytes. Only values of 4 and 8 are
 709 * supported.
 710 */
 711int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 712{
 713	if (ptr_sz != 4 && ptr_sz != 8)
 714		return libbpf_err(-EINVAL);
 715	btf->ptr_sz = ptr_sz;
 716	return 0;
 717}
 718
 719static bool is_host_big_endian(void)
 720{
 721#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 722	return false;
 723#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 724	return true;
 725#else
 726# error "Unrecognized __BYTE_ORDER__"
 727#endif
 728}
 729
 730enum btf_endianness btf__endianness(const struct btf *btf)
 731{
 732	if (is_host_big_endian())
 733		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
 734	else
 735		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
 736}
 737
 738int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
 739{
 740	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
 741		return libbpf_err(-EINVAL);
 742
 743	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
 744	if (!btf->swapped_endian) {
 745		free(btf->raw_data_swapped);
 746		btf->raw_data_swapped = NULL;
 747	}
 748	return 0;
 749}
 750
 751static bool btf_type_is_void(const struct btf_type *t)
 752{
 753	return t == &btf_void || btf_is_fwd(t);
 754}
 755
 756static bool btf_type_is_void_or_null(const struct btf_type *t)
 757{
 758	return !t || btf_type_is_void(t);
 759}
 760
 761#define MAX_RESOLVE_DEPTH 32
 762
 763__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 764{
 765	const struct btf_array *array;
 766	const struct btf_type *t;
 767	__u32 nelems = 1;
 768	__s64 size = -1;
 769	int i;
 770
 771	t = btf__type_by_id(btf, type_id);
 772	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
 
 773		switch (btf_kind(t)) {
 774		case BTF_KIND_INT:
 775		case BTF_KIND_STRUCT:
 776		case BTF_KIND_UNION:
 777		case BTF_KIND_ENUM:
 778		case BTF_KIND_ENUM64:
 779		case BTF_KIND_DATASEC:
 780		case BTF_KIND_FLOAT:
 781			size = t->size;
 782			goto done;
 783		case BTF_KIND_PTR:
 784			size = btf_ptr_sz(btf);
 785			goto done;
 786		case BTF_KIND_TYPEDEF:
 787		case BTF_KIND_VOLATILE:
 788		case BTF_KIND_CONST:
 789		case BTF_KIND_RESTRICT:
 790		case BTF_KIND_VAR:
 791		case BTF_KIND_DECL_TAG:
 792		case BTF_KIND_TYPE_TAG:
 793			type_id = t->type;
 794			break;
 795		case BTF_KIND_ARRAY:
 796			array = btf_array(t);
 797			if (nelems && array->nelems > UINT32_MAX / nelems)
 798				return libbpf_err(-E2BIG);
 799			nelems *= array->nelems;
 800			type_id = array->type;
 801			break;
 802		default:
 803			return libbpf_err(-EINVAL);
 804		}
 805
 806		t = btf__type_by_id(btf, type_id);
 807	}
 808
 809done:
 810	if (size < 0)
 811		return libbpf_err(-EINVAL);
 812	if (nelems && size > UINT32_MAX / nelems)
 813		return libbpf_err(-E2BIG);
 814
 815	return nelems * size;
 816}
 817
 818int btf__align_of(const struct btf *btf, __u32 id)
 819{
 820	const struct btf_type *t = btf__type_by_id(btf, id);
 821	__u16 kind = btf_kind(t);
 822
 823	switch (kind) {
 824	case BTF_KIND_INT:
 825	case BTF_KIND_ENUM:
 826	case BTF_KIND_ENUM64:
 827	case BTF_KIND_FLOAT:
 828		return min(btf_ptr_sz(btf), (size_t)t->size);
 829	case BTF_KIND_PTR:
 830		return btf_ptr_sz(btf);
 831	case BTF_KIND_TYPEDEF:
 832	case BTF_KIND_VOLATILE:
 833	case BTF_KIND_CONST:
 834	case BTF_KIND_RESTRICT:
 835	case BTF_KIND_TYPE_TAG:
 836		return btf__align_of(btf, t->type);
 837	case BTF_KIND_ARRAY:
 838		return btf__align_of(btf, btf_array(t)->type);
 839	case BTF_KIND_STRUCT:
 840	case BTF_KIND_UNION: {
 841		const struct btf_member *m = btf_members(t);
 842		__u16 vlen = btf_vlen(t);
 843		int i, max_align = 1, align;
 844
 845		for (i = 0; i < vlen; i++, m++) {
 846			align = btf__align_of(btf, m->type);
 847			if (align <= 0)
 848				return libbpf_err(align);
 849			max_align = max(max_align, align);
 850
 851			/* if field offset isn't aligned according to field
 852			 * type's alignment, then struct must be packed
 853			 */
 854			if (btf_member_bitfield_size(t, i) == 0 &&
 855			    (m->offset % (8 * align)) != 0)
 856				return 1;
 857		}
 858
 859		/* if struct/union size isn't a multiple of its alignment,
 860		 * then struct must be packed
 861		 */
 862		if ((t->size % max_align) != 0)
 863			return 1;
 864
 865		return max_align;
 866	}
 867	default:
 868		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 869		return errno = EINVAL, 0;
 870	}
 871}
 872
 873int btf__resolve_type(const struct btf *btf, __u32 type_id)
 874{
 875	const struct btf_type *t;
 876	int depth = 0;
 877
 878	t = btf__type_by_id(btf, type_id);
 879	while (depth < MAX_RESOLVE_DEPTH &&
 880	       !btf_type_is_void_or_null(t) &&
 881	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 882		type_id = t->type;
 883		t = btf__type_by_id(btf, type_id);
 884		depth++;
 885	}
 886
 887	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 888		return libbpf_err(-EINVAL);
 889
 890	return type_id;
 891}
 892
 893__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 894{
 895	__u32 i, nr_types = btf__type_cnt(btf);
 896
 897	if (!strcmp(type_name, "void"))
 898		return 0;
 899
 900	for (i = 1; i < nr_types; i++) {
 901		const struct btf_type *t = btf__type_by_id(btf, i);
 902		const char *name = btf__name_by_offset(btf, t->name_off);
 903
 904		if (name && !strcmp(type_name, name))
 905			return i;
 906	}
 907
 908	return libbpf_err(-ENOENT);
 909}
 910
 911static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
 912				   const char *type_name, __u32 kind)
 913{
 914	__u32 i, nr_types = btf__type_cnt(btf);
 915
 916	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 917		return 0;
 918
 919	for (i = start_id; i < nr_types; i++) {
 920		const struct btf_type *t = btf__type_by_id(btf, i);
 921		const char *name;
 922
 923		if (btf_kind(t) != kind)
 924			continue;
 925		name = btf__name_by_offset(btf, t->name_off);
 926		if (name && !strcmp(type_name, name))
 927			return i;
 928	}
 929
 930	return libbpf_err(-ENOENT);
 931}
 932
 933__s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
 934				 __u32 kind)
 935{
 936	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
 937}
 938
 939__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 940			     __u32 kind)
 941{
 942	return btf_find_by_name_kind(btf, 1, type_name, kind);
 943}
 944
 945static bool btf_is_modifiable(const struct btf *btf)
 946{
 947	return (void *)btf->hdr != btf->raw_data;
 948}
 949
 950void btf__free(struct btf *btf)
 951{
 952	if (IS_ERR_OR_NULL(btf))
 953		return;
 954
 955	if (btf->fd >= 0)
 956		close(btf->fd);
 957
 958	if (btf_is_modifiable(btf)) {
 959		/* if BTF was modified after loading, it will have a split
 960		 * in-memory representation for header, types, and strings
 961		 * sections, so we need to free all of them individually. It
 962		 * might still have a cached contiguous raw data present,
 963		 * which will be unconditionally freed below.
 964		 */
 965		free(btf->hdr);
 966		free(btf->types_data);
 967		strset__free(btf->strs_set);
 968	}
 969	free(btf->raw_data);
 970	free(btf->raw_data_swapped);
 971	free(btf->type_offs);
 972	free(btf);
 973}
 974
 975static struct btf *btf_new_empty(struct btf *base_btf)
 976{
 977	struct btf *btf;
 978
 979	btf = calloc(1, sizeof(*btf));
 980	if (!btf)
 981		return ERR_PTR(-ENOMEM);
 982
 983	btf->nr_types = 0;
 984	btf->start_id = 1;
 985	btf->start_str_off = 0;
 986	btf->fd = -1;
 987	btf->ptr_sz = sizeof(void *);
 988	btf->swapped_endian = false;
 989
 990	if (base_btf) {
 991		btf->base_btf = base_btf;
 992		btf->start_id = btf__type_cnt(base_btf);
 993		btf->start_str_off = base_btf->hdr->str_len;
 994	}
 995
 996	/* +1 for empty string at offset 0 */
 997	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
 998	btf->raw_data = calloc(1, btf->raw_size);
 999	if (!btf->raw_data) {
1000		free(btf);
1001		return ERR_PTR(-ENOMEM);
1002	}
1003
1004	btf->hdr = btf->raw_data;
1005	btf->hdr->hdr_len = sizeof(struct btf_header);
1006	btf->hdr->magic = BTF_MAGIC;
1007	btf->hdr->version = BTF_VERSION;
1008
1009	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
1010	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
1011	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
1012
1013	return btf;
1014}
1015
1016struct btf *btf__new_empty(void)
1017{
1018	return libbpf_ptr(btf_new_empty(NULL));
1019}
1020
1021struct btf *btf__new_empty_split(struct btf *base_btf)
1022{
1023	return libbpf_ptr(btf_new_empty(base_btf));
1024}
1025
1026static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
1027{
1028	struct btf *btf;
1029	int err;
1030
1031	btf = calloc(1, sizeof(struct btf));
1032	if (!btf)
1033		return ERR_PTR(-ENOMEM);
1034
1035	btf->nr_types = 0;
1036	btf->start_id = 1;
1037	btf->start_str_off = 0;
1038	btf->fd = -1;
1039
1040	if (base_btf) {
1041		btf->base_btf = base_btf;
1042		btf->start_id = btf__type_cnt(base_btf);
1043		btf->start_str_off = base_btf->hdr->str_len;
1044	}
1045
1046	btf->raw_data = malloc(size);
1047	if (!btf->raw_data) {
1048		err = -ENOMEM;
1049		goto done;
1050	}
1051	memcpy(btf->raw_data, data, size);
1052	btf->raw_size = size;
1053
1054	btf->hdr = btf->raw_data;
 
 
1055	err = btf_parse_hdr(btf);
1056	if (err)
1057		goto done;
1058
1059	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
1060	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
1061
1062	err = btf_parse_str_sec(btf);
1063	err = err ?: btf_parse_type_sec(btf);
1064	err = err ?: btf_sanity_check(btf);
1065	if (err)
1066		goto done;
1067
 
 
1068done:
1069	if (err) {
1070		btf__free(btf);
1071		return ERR_PTR(err);
1072	}
1073
1074	return btf;
1075}
1076
1077struct btf *btf__new(const void *data, __u32 size)
1078{
1079	return libbpf_ptr(btf_new(data, size, NULL));
1080}
1081
1082struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf)
1083{
1084	return libbpf_ptr(btf_new(data, size, base_btf));
 
 
 
 
 
 
1085}
1086
1087static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
1088				 struct btf_ext **btf_ext)
1089{
1090	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
1091	int err = 0, fd = -1, idx = 0;
1092	struct btf *btf = NULL;
1093	Elf_Scn *scn = NULL;
1094	Elf *elf = NULL;
1095	GElf_Ehdr ehdr;
1096	size_t shstrndx;
1097
1098	if (elf_version(EV_CURRENT) == EV_NONE) {
1099		pr_warn("failed to init libelf for %s\n", path);
1100		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
1101	}
1102
1103	fd = open(path, O_RDONLY | O_CLOEXEC);
1104	if (fd < 0) {
1105		err = -errno;
1106		pr_warn("failed to open %s: %s\n", path, strerror(errno));
1107		return ERR_PTR(err);
1108	}
1109
1110	err = -LIBBPF_ERRNO__FORMAT;
1111
1112	elf = elf_begin(fd, ELF_C_READ, NULL);
1113	if (!elf) {
1114		pr_warn("failed to open %s as ELF file\n", path);
1115		goto done;
1116	}
1117	if (!gelf_getehdr(elf, &ehdr)) {
1118		pr_warn("failed to get EHDR from %s\n", path);
1119		goto done;
1120	}
1121
1122	if (elf_getshdrstrndx(elf, &shstrndx)) {
1123		pr_warn("failed to get section names section index for %s\n",
1124			path);
1125		goto done;
1126	}
1127
1128	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
1129		pr_warn("failed to get e_shstrndx from %s\n", path);
1130		goto done;
1131	}
1132
1133	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1134		GElf_Shdr sh;
1135		char *name;
1136
1137		idx++;
1138		if (gelf_getshdr(scn, &sh) != &sh) {
1139			pr_warn("failed to get section(%d) header from %s\n",
1140				idx, path);
1141			goto done;
1142		}
1143		name = elf_strptr(elf, shstrndx, sh.sh_name);
1144		if (!name) {
1145			pr_warn("failed to get section(%d) name from %s\n",
1146				idx, path);
1147			goto done;
1148		}
1149		if (strcmp(name, BTF_ELF_SEC) == 0) {
1150			btf_data = elf_getdata(scn, 0);
1151			if (!btf_data) {
1152				pr_warn("failed to get section(%d, %s) data from %s\n",
1153					idx, name, path);
1154				goto done;
1155			}
1156			continue;
1157		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
1158			btf_ext_data = elf_getdata(scn, 0);
1159			if (!btf_ext_data) {
1160				pr_warn("failed to get section(%d, %s) data from %s\n",
1161					idx, name, path);
1162				goto done;
1163			}
1164			continue;
1165		}
1166	}
1167
 
 
1168	if (!btf_data) {
1169		pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path);
1170		err = -ENODATA;
1171		goto done;
1172	}
1173	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
1174	err = libbpf_get_error(btf);
1175	if (err)
1176		goto done;
1177
1178	switch (gelf_getclass(elf)) {
1179	case ELFCLASS32:
1180		btf__set_pointer_size(btf, 4);
1181		break;
1182	case ELFCLASS64:
1183		btf__set_pointer_size(btf, 8);
1184		break;
1185	default:
1186		pr_warn("failed to get ELF class (bitness) for %s\n", path);
1187		break;
1188	}
1189
1190	if (btf_ext && btf_ext_data) {
1191		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
1192		err = libbpf_get_error(*btf_ext);
1193		if (err)
1194			goto done;
1195	} else if (btf_ext) {
1196		*btf_ext = NULL;
1197	}
1198done:
1199	if (elf)
1200		elf_end(elf);
1201	close(fd);
1202
1203	if (!err)
 
 
 
 
 
 
1204		return btf;
1205
1206	if (btf_ext)
1207		btf_ext__free(*btf_ext);
1208	btf__free(btf);
1209
1210	return ERR_PTR(err);
1211}
1212
1213struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1214{
1215	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1216}
1217
1218struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1219{
1220	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1221}
1222
1223static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1224{
1225	struct btf *btf = NULL;
1226	void *data = NULL;
1227	FILE *f = NULL;
1228	__u16 magic;
1229	int err = 0;
1230	long sz;
1231
1232	f = fopen(path, "rbe");
1233	if (!f) {
1234		err = -errno;
1235		goto err_out;
1236	}
1237
1238	/* check BTF magic */
1239	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1240		err = -EIO;
1241		goto err_out;
1242	}
1243	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
 
 
 
 
 
 
1244		/* definitely not a raw BTF */
1245		err = -EPROTO;
1246		goto err_out;
1247	}
1248
1249	/* get file size */
1250	if (fseek(f, 0, SEEK_END)) {
1251		err = -errno;
1252		goto err_out;
1253	}
1254	sz = ftell(f);
1255	if (sz < 0) {
1256		err = -errno;
1257		goto err_out;
1258	}
1259	/* rewind to the start */
1260	if (fseek(f, 0, SEEK_SET)) {
1261		err = -errno;
1262		goto err_out;
1263	}
1264
1265	/* pre-alloc memory and read all of BTF data */
1266	data = malloc(sz);
1267	if (!data) {
1268		err = -ENOMEM;
1269		goto err_out;
1270	}
1271	if (fread(data, 1, sz, f) < sz) {
1272		err = -EIO;
1273		goto err_out;
1274	}
1275
1276	/* finally parse BTF data */
1277	btf = btf_new(data, sz, base_btf);
1278
1279err_out:
1280	free(data);
1281	if (f)
1282		fclose(f);
1283	return err ? ERR_PTR(err) : btf;
1284}
1285
1286struct btf *btf__parse_raw(const char *path)
1287{
1288	return libbpf_ptr(btf_parse_raw(path, NULL));
1289}
1290
1291struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1292{
1293	return libbpf_ptr(btf_parse_raw(path, base_btf));
1294}
1295
1296static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1297{
1298	struct btf *btf;
1299	int err;
1300
1301	if (btf_ext)
1302		*btf_ext = NULL;
1303
1304	btf = btf_parse_raw(path, base_btf);
1305	err = libbpf_get_error(btf);
1306	if (!err)
1307		return btf;
1308	if (err != -EPROTO)
1309		return ERR_PTR(err);
1310	return btf_parse_elf(path, base_btf, btf_ext);
1311}
1312
1313struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1314{
1315	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1316}
1317
1318struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1319{
1320	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1321}
1322
1323static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
 
1324
1325int btf_load_into_kernel(struct btf *btf,
1326			 char *log_buf, size_t log_sz, __u32 log_level,
1327			 int token_fd)
1328{
1329	LIBBPF_OPTS(bpf_btf_load_opts, opts);
1330	__u32 buf_sz = 0, raw_size;
1331	char *buf = NULL, *tmp;
1332	void *raw_data;
1333	int err = 0;
 
1334
1335	if (btf->fd >= 0)
1336		return libbpf_err(-EEXIST);
1337	if (log_sz && !log_buf)
1338		return libbpf_err(-EINVAL);
1339
1340	/* cache native raw data representation */
1341	raw_data = btf_get_raw_data(btf, &raw_size, false);
1342	if (!raw_data) {
1343		err = -ENOMEM;
1344		goto done;
1345	}
1346	btf->raw_size = raw_size;
1347	btf->raw_data = raw_data;
1348
1349retry_load:
1350	/* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1351	 * initially. Only if BTF loading fails, we bump log_level to 1 and
1352	 * retry, using either auto-allocated or custom log_buf. This way
1353	 * non-NULL custom log_buf provides a buffer just in case, but hopes
1354	 * for successful load and no need for log_buf.
1355	 */
1356	if (log_level) {
1357		/* if caller didn't provide custom log_buf, we'll keep
1358		 * allocating our own progressively bigger buffers for BTF
1359		 * verification log
1360		 */
1361		if (!log_buf) {
1362			buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1363			tmp = realloc(buf, buf_sz);
1364			if (!tmp) {
1365				err = -ENOMEM;
1366				goto done;
1367			}
1368			buf = tmp;
1369			buf[0] = '\0';
1370		}
1371
1372		opts.log_buf = log_buf ? log_buf : buf;
1373		opts.log_size = log_buf ? log_sz : buf_sz;
1374		opts.log_level = log_level;
 
1375	}
1376
1377	opts.token_fd = token_fd;
1378	if (token_fd)
1379		opts.btf_flags |= BPF_F_TOKEN_FD;
1380
1381	btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1382	if (btf->fd < 0) {
1383		/* time to turn on verbose mode and try again */
1384		if (log_level == 0) {
1385			log_level = 1;
1386			goto retry_load;
 
1387		}
1388		/* only retry if caller didn't provide custom log_buf, but
1389		 * make sure we can never overflow buf_sz
1390		 */
1391		if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1392			goto retry_load;
1393
1394		err = -errno;
1395		pr_warn("BTF loading error: %d\n", err);
1396		/* don't print out contents of custom log_buf */
1397		if (!log_buf && buf[0])
1398			pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
 
 
 
 
 
 
 
 
 
 
 
 
1399	}
1400
1401done:
1402	free(buf);
1403	return libbpf_err(err);
1404}
1405
1406int btf__load_into_kernel(struct btf *btf)
1407{
1408	return btf_load_into_kernel(btf, NULL, 0, 0, 0);
1409}
1410
1411int btf__fd(const struct btf *btf)
1412{
1413	return btf->fd;
1414}
1415
1416void btf__set_fd(struct btf *btf, int fd)
1417{
1418	btf->fd = fd;
1419}
 
 
 
 
 
 
 
1420
1421static const void *btf_strs_data(const struct btf *btf)
1422{
1423	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1424}
1425
1426static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1427{
1428	struct btf_header *hdr = btf->hdr;
1429	struct btf_type *t;
1430	void *data, *p;
1431	__u32 data_sz;
1432	int i;
1433
1434	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1435	if (data) {
1436		*size = btf->raw_size;
1437		return data;
1438	}
1439
1440	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1441	data = calloc(1, data_sz);
1442	if (!data)
1443		return NULL;
1444	p = data;
1445
1446	memcpy(p, hdr, hdr->hdr_len);
1447	if (swap_endian)
1448		btf_bswap_hdr(p);
1449	p += hdr->hdr_len;
1450
1451	memcpy(p, btf->types_data, hdr->type_len);
1452	if (swap_endian) {
1453		for (i = 0; i < btf->nr_types; i++) {
1454			t = p + btf->type_offs[i];
1455			/* btf_bswap_type_rest() relies on native t->info, so
1456			 * we swap base type info after we swapped all the
1457			 * additional information
1458			 */
1459			if (btf_bswap_type_rest(t))
1460				goto err_out;
1461			btf_bswap_type_base(t);
1462		}
1463	}
1464	p += hdr->type_len;
1465
1466	memcpy(p, btf_strs_data(btf), hdr->str_len);
1467	p += hdr->str_len;
 
 
 
 
 
 
 
1468
1469	*size = data_sz;
1470	return data;
1471err_out:
1472	free(data);
1473	return NULL;
 
 
 
 
 
1474}
1475
1476const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1477{
1478	struct btf *btf = (struct btf *)btf_ro;
1479	__u32 data_sz;
1480	void *data;
1481
1482	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1483	if (!data)
1484		return errno = ENOMEM, NULL;
1485
1486	btf->raw_size = data_sz;
1487	if (btf->swapped_endian)
1488		btf->raw_data_swapped = data;
1489	else
1490		btf->raw_data = data;
1491	*size = data_sz;
1492	return data;
1493}
1494
1495__attribute__((alias("btf__raw_data")))
1496const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
 
 
1497
1498const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1499{
1500	if (offset < btf->start_str_off)
1501		return btf__str_by_offset(btf->base_btf, offset);
1502	else if (offset - btf->start_str_off < btf->hdr->str_len)
1503		return btf_strs_data(btf) + (offset - btf->start_str_off);
1504	else
1505		return errno = EINVAL, NULL;
1506}
1507
1508const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1509{
1510	return btf__str_by_offset(btf, offset);
 
 
 
1511}
1512
1513struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1514{
1515	struct bpf_btf_info btf_info;
1516	__u32 len = sizeof(btf_info);
1517	__u32 last_size;
1518	struct btf *btf;
1519	void *ptr;
1520	int err;
1521
1522	/* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so
 
 
 
 
 
 
1523	 * let's start with a sane default - 4KiB here - and resize it only if
1524	 * bpf_btf_get_info_by_fd() needs a bigger buffer.
1525	 */
1526	last_size = 4096;
 
1527	ptr = malloc(last_size);
1528	if (!ptr)
1529		return ERR_PTR(-ENOMEM);
 
 
1530
1531	memset(&btf_info, 0, sizeof(btf_info));
1532	btf_info.btf = ptr_to_u64(ptr);
1533	btf_info.btf_size = last_size;
1534	err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1535
1536	if (!err && btf_info.btf_size > last_size) {
1537		void *temp_ptr;
1538
1539		last_size = btf_info.btf_size;
1540		temp_ptr = realloc(ptr, last_size);
1541		if (!temp_ptr) {
1542			btf = ERR_PTR(-ENOMEM);
1543			goto exit_free;
1544		}
1545		ptr = temp_ptr;
1546
1547		len = sizeof(btf_info);
1548		memset(&btf_info, 0, sizeof(btf_info));
1549		btf_info.btf = ptr_to_u64(ptr);
1550		btf_info.btf_size = last_size;
1551
1552		err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1553	}
1554
1555	if (err || btf_info.btf_size > last_size) {
1556		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1557		goto exit_free;
1558	}
1559
1560	btf = btf_new(ptr, btf_info.btf_size, base_btf);
 
 
 
 
1561
1562exit_free:
1563	free(ptr);
1564	return btf;
1565}
1566
1567struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1568{
1569	struct btf *btf;
1570	int btf_fd;
1571
1572	btf_fd = bpf_btf_get_fd_by_id(id);
1573	if (btf_fd < 0)
1574		return libbpf_err_ptr(-errno);
1575
1576	btf = btf_get_from_fd(btf_fd, base_btf);
1577	close(btf_fd);
 
1578
1579	return libbpf_ptr(btf);
1580}
1581
1582struct btf *btf__load_from_kernel_by_id(__u32 id)
1583{
1584	return btf__load_from_kernel_by_id_split(id, NULL);
1585}
1586
1587static void btf_invalidate_raw_data(struct btf *btf)
1588{
1589	if (btf->raw_data) {
1590		free(btf->raw_data);
1591		btf->raw_data = NULL;
1592	}
1593	if (btf->raw_data_swapped) {
1594		free(btf->raw_data_swapped);
1595		btf->raw_data_swapped = NULL;
1596	}
1597}
1598
1599/* Ensure BTF is ready to be modified (by splitting into a three memory
1600 * regions for header, types, and strings). Also invalidate cached
1601 * raw_data, if any.
1602 */
1603static int btf_ensure_modifiable(struct btf *btf)
1604{
1605	void *hdr, *types;
1606	struct strset *set = NULL;
1607	int err = -ENOMEM;
1608
1609	if (btf_is_modifiable(btf)) {
1610		/* any BTF modification invalidates raw_data */
1611		btf_invalidate_raw_data(btf);
1612		return 0;
1613	}
1614
1615	/* split raw data into three memory regions */
1616	hdr = malloc(btf->hdr->hdr_len);
1617	types = malloc(btf->hdr->type_len);
1618	if (!hdr || !types)
1619		goto err_out;
1620
1621	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1622	memcpy(types, btf->types_data, btf->hdr->type_len);
1623
1624	/* build lookup index for all strings */
1625	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1626	if (IS_ERR(set)) {
1627		err = PTR_ERR(set);
1628		goto err_out;
1629	}
1630
1631	/* only when everything was successful, update internal state */
1632	btf->hdr = hdr;
1633	btf->types_data = types;
1634	btf->types_data_cap = btf->hdr->type_len;
1635	btf->strs_data = NULL;
1636	btf->strs_set = set;
1637	/* if BTF was created from scratch, all strings are guaranteed to be
1638	 * unique and deduplicated
1639	 */
1640	if (btf->hdr->str_len == 0)
1641		btf->strs_deduped = true;
1642	if (!btf->base_btf && btf->hdr->str_len == 1)
1643		btf->strs_deduped = true;
1644
1645	/* invalidate raw_data representation */
1646	btf_invalidate_raw_data(btf);
1647
1648	return 0;
1649
1650err_out:
1651	strset__free(set);
1652	free(hdr);
1653	free(types);
1654	return err;
1655}
1656
1657/* Find an offset in BTF string section that corresponds to a given string *s*.
1658 * Returns:
1659 *   - >0 offset into string section, if string is found;
1660 *   - -ENOENT, if string is not in the string section;
1661 *   - <0, on any other error.
1662 */
1663int btf__find_str(struct btf *btf, const char *s)
1664{
1665	int off;
1666
1667	if (btf->base_btf) {
1668		off = btf__find_str(btf->base_btf, s);
1669		if (off != -ENOENT)
1670			return off;
1671	}
1672
1673	/* BTF needs to be in a modifiable state to build string lookup index */
1674	if (btf_ensure_modifiable(btf))
1675		return libbpf_err(-ENOMEM);
1676
1677	off = strset__find_str(btf->strs_set, s);
1678	if (off < 0)
1679		return libbpf_err(off);
1680
1681	return btf->start_str_off + off;
1682}
1683
1684/* Add a string s to the BTF string section.
1685 * Returns:
1686 *   - > 0 offset into string section, on success;
1687 *   - < 0, on error.
1688 */
1689int btf__add_str(struct btf *btf, const char *s)
1690{
1691	int off;
1692
1693	if (btf->base_btf) {
1694		off = btf__find_str(btf->base_btf, s);
1695		if (off != -ENOENT)
1696			return off;
1697	}
1698
1699	if (btf_ensure_modifiable(btf))
1700		return libbpf_err(-ENOMEM);
1701
1702	off = strset__add_str(btf->strs_set, s);
1703	if (off < 0)
1704		return libbpf_err(off);
1705
1706	btf->hdr->str_len = strset__data_size(btf->strs_set);
1707
1708	return btf->start_str_off + off;
1709}
1710
1711static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1712{
1713	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1714			      btf->hdr->type_len, UINT_MAX, add_sz);
1715}
1716
1717static void btf_type_inc_vlen(struct btf_type *t)
1718{
1719	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1720}
1721
1722static int btf_commit_type(struct btf *btf, int data_sz)
1723{
1724	int err;
1725
1726	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1727	if (err)
1728		return libbpf_err(err);
1729
1730	btf->hdr->type_len += data_sz;
1731	btf->hdr->str_off += data_sz;
1732	btf->nr_types++;
1733	return btf->start_id + btf->nr_types - 1;
1734}
1735
1736struct btf_pipe {
1737	const struct btf *src;
1738	struct btf *dst;
1739	struct hashmap *str_off_map; /* map string offsets from src to dst */
1740};
1741
1742static int btf_rewrite_str(__u32 *str_off, void *ctx)
1743{
1744	struct btf_pipe *p = ctx;
1745	long mapped_off;
1746	int off, err;
1747
1748	if (!*str_off) /* nothing to do for empty strings */
1749		return 0;
1750
1751	if (p->str_off_map &&
1752	    hashmap__find(p->str_off_map, *str_off, &mapped_off)) {
1753		*str_off = mapped_off;
1754		return 0;
1755	}
1756
1757	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1758	if (off < 0)
1759		return off;
1760
1761	/* Remember string mapping from src to dst.  It avoids
1762	 * performing expensive string comparisons.
1763	 */
1764	if (p->str_off_map) {
1765		err = hashmap__append(p->str_off_map, *str_off, off);
1766		if (err)
1767			return err;
1768	}
1769
1770	*str_off = off;
1771	return 0;
1772}
1773
1774int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1775{
1776	struct btf_pipe p = { .src = src_btf, .dst = btf };
1777	struct btf_type *t;
1778	int sz, err;
1779
1780	sz = btf_type_size(src_type);
1781	if (sz < 0)
1782		return libbpf_err(sz);
1783
1784	/* deconstruct BTF, if necessary, and invalidate raw_data */
1785	if (btf_ensure_modifiable(btf))
1786		return libbpf_err(-ENOMEM);
1787
1788	t = btf_add_type_mem(btf, sz);
1789	if (!t)
1790		return libbpf_err(-ENOMEM);
1791
1792	memcpy(t, src_type, sz);
1793
1794	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1795	if (err)
1796		return libbpf_err(err);
1797
1798	return btf_commit_type(btf, sz);
1799}
1800
1801static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1802{
1803	struct btf *btf = ctx;
1804
1805	if (!*type_id) /* nothing to do for VOID references */
1806		return 0;
1807
1808	/* we haven't updated btf's type count yet, so
1809	 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1810	 * add to all newly added BTF types
1811	 */
1812	*type_id += btf->start_id + btf->nr_types - 1;
1813	return 0;
1814}
1815
1816static size_t btf_dedup_identity_hash_fn(long key, void *ctx);
1817static bool btf_dedup_equal_fn(long k1, long k2, void *ctx);
1818
1819int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1820{
1821	struct btf_pipe p = { .src = src_btf, .dst = btf };
1822	int data_sz, sz, cnt, i, err, old_strs_len;
1823	__u32 *off;
1824	void *t;
1825
1826	/* appending split BTF isn't supported yet */
1827	if (src_btf->base_btf)
1828		return libbpf_err(-ENOTSUP);
1829
1830	/* deconstruct BTF, if necessary, and invalidate raw_data */
1831	if (btf_ensure_modifiable(btf))
1832		return libbpf_err(-ENOMEM);
1833
1834	/* remember original strings section size if we have to roll back
1835	 * partial strings section changes
1836	 */
1837	old_strs_len = btf->hdr->str_len;
1838
1839	data_sz = src_btf->hdr->type_len;
1840	cnt = btf__type_cnt(src_btf) - 1;
1841
1842	/* pre-allocate enough memory for new types */
1843	t = btf_add_type_mem(btf, data_sz);
1844	if (!t)
1845		return libbpf_err(-ENOMEM);
1846
1847	/* pre-allocate enough memory for type offset index for new types */
1848	off = btf_add_type_offs_mem(btf, cnt);
1849	if (!off)
1850		return libbpf_err(-ENOMEM);
1851
1852	/* Map the string offsets from src_btf to the offsets from btf to improve performance */
1853	p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1854	if (IS_ERR(p.str_off_map))
1855		return libbpf_err(-ENOMEM);
1856
1857	/* bulk copy types data for all types from src_btf */
1858	memcpy(t, src_btf->types_data, data_sz);
1859
1860	for (i = 0; i < cnt; i++) {
1861		sz = btf_type_size(t);
1862		if (sz < 0) {
1863			/* unlikely, has to be corrupted src_btf */
1864			err = sz;
1865			goto err_out;
1866		}
1867
1868		/* fill out type ID to type offset mapping for lookups by type ID */
1869		*off = t - btf->types_data;
1870
1871		/* add, dedup, and remap strings referenced by this BTF type */
1872		err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1873		if (err)
1874			goto err_out;
1875
1876		/* remap all type IDs referenced from this BTF type */
1877		err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1878		if (err)
1879			goto err_out;
1880
1881		/* go to next type data and type offset index entry */
1882		t += sz;
1883		off++;
1884	}
1885
1886	/* Up until now any of the copied type data was effectively invisible,
1887	 * so if we exited early before this point due to error, BTF would be
1888	 * effectively unmodified. There would be extra internal memory
1889	 * pre-allocated, but it would not be available for querying.  But now
1890	 * that we've copied and rewritten all the data successfully, we can
1891	 * update type count and various internal offsets and sizes to
1892	 * "commit" the changes and made them visible to the outside world.
1893	 */
1894	btf->hdr->type_len += data_sz;
1895	btf->hdr->str_off += data_sz;
1896	btf->nr_types += cnt;
1897
1898	hashmap__free(p.str_off_map);
1899
1900	/* return type ID of the first added BTF type */
1901	return btf->start_id + btf->nr_types - cnt;
1902err_out:
1903	/* zero out preallocated memory as if it was just allocated with
1904	 * libbpf_add_mem()
1905	 */
1906	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1907	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1908
1909	/* and now restore original strings section size; types data size
1910	 * wasn't modified, so doesn't need restoring, see big comment above
1911	 */
1912	btf->hdr->str_len = old_strs_len;
1913
1914	hashmap__free(p.str_off_map);
1915
1916	return libbpf_err(err);
1917}
1918
1919/*
1920 * Append new BTF_KIND_INT type with:
1921 *   - *name* - non-empty, non-NULL type name;
1922 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1923 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1924 * Returns:
1925 *   - >0, type ID of newly added BTF type;
1926 *   - <0, on error.
1927 */
1928int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1929{
1930	struct btf_type *t;
1931	int sz, name_off;
1932
1933	/* non-empty name */
1934	if (!name || !name[0])
1935		return libbpf_err(-EINVAL);
1936	/* byte_sz must be power of 2 */
1937	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1938		return libbpf_err(-EINVAL);
1939	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1940		return libbpf_err(-EINVAL);
1941
1942	/* deconstruct BTF, if necessary, and invalidate raw_data */
1943	if (btf_ensure_modifiable(btf))
1944		return libbpf_err(-ENOMEM);
1945
1946	sz = sizeof(struct btf_type) + sizeof(int);
1947	t = btf_add_type_mem(btf, sz);
1948	if (!t)
1949		return libbpf_err(-ENOMEM);
1950
1951	/* if something goes wrong later, we might end up with an extra string,
1952	 * but that shouldn't be a problem, because BTF can't be constructed
1953	 * completely anyway and will most probably be just discarded
1954	 */
1955	name_off = btf__add_str(btf, name);
1956	if (name_off < 0)
1957		return name_off;
1958
1959	t->name_off = name_off;
1960	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1961	t->size = byte_sz;
1962	/* set INT info, we don't allow setting legacy bit offset/size */
1963	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1964
1965	return btf_commit_type(btf, sz);
1966}
1967
1968/*
1969 * Append new BTF_KIND_FLOAT type with:
1970 *   - *name* - non-empty, non-NULL type name;
1971 *   - *sz* - size of the type, in bytes;
1972 * Returns:
1973 *   - >0, type ID of newly added BTF type;
1974 *   - <0, on error.
1975 */
1976int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1977{
1978	struct btf_type *t;
1979	int sz, name_off;
1980
1981	/* non-empty name */
1982	if (!name || !name[0])
1983		return libbpf_err(-EINVAL);
1984
1985	/* byte_sz must be one of the explicitly allowed values */
1986	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1987	    byte_sz != 16)
1988		return libbpf_err(-EINVAL);
1989
1990	if (btf_ensure_modifiable(btf))
1991		return libbpf_err(-ENOMEM);
1992
1993	sz = sizeof(struct btf_type);
1994	t = btf_add_type_mem(btf, sz);
1995	if (!t)
1996		return libbpf_err(-ENOMEM);
1997
1998	name_off = btf__add_str(btf, name);
1999	if (name_off < 0)
2000		return name_off;
2001
2002	t->name_off = name_off;
2003	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
2004	t->size = byte_sz;
2005
2006	return btf_commit_type(btf, sz);
2007}
2008
2009/* it's completely legal to append BTF types with type IDs pointing forward to
2010 * types that haven't been appended yet, so we only make sure that id looks
2011 * sane, we can't guarantee that ID will always be valid
2012 */
2013static int validate_type_id(int id)
2014{
2015	if (id < 0 || id > BTF_MAX_NR_TYPES)
2016		return -EINVAL;
2017	return 0;
2018}
2019
2020/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
2021static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
2022{
2023	struct btf_type *t;
2024	int sz, name_off = 0;
2025
2026	if (validate_type_id(ref_type_id))
2027		return libbpf_err(-EINVAL);
2028
2029	if (btf_ensure_modifiable(btf))
2030		return libbpf_err(-ENOMEM);
2031
2032	sz = sizeof(struct btf_type);
2033	t = btf_add_type_mem(btf, sz);
2034	if (!t)
2035		return libbpf_err(-ENOMEM);
2036
2037	if (name && name[0]) {
2038		name_off = btf__add_str(btf, name);
2039		if (name_off < 0)
2040			return name_off;
2041	}
2042
2043	t->name_off = name_off;
2044	t->info = btf_type_info(kind, 0, 0);
2045	t->type = ref_type_id;
2046
2047	return btf_commit_type(btf, sz);
2048}
2049
2050/*
2051 * Append new BTF_KIND_PTR type with:
2052 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2053 * Returns:
2054 *   - >0, type ID of newly added BTF type;
2055 *   - <0, on error.
2056 */
2057int btf__add_ptr(struct btf *btf, int ref_type_id)
2058{
2059	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
2060}
2061
2062/*
2063 * Append new BTF_KIND_ARRAY type with:
2064 *   - *index_type_id* - type ID of the type describing array index;
2065 *   - *elem_type_id* - type ID of the type describing array element;
2066 *   - *nr_elems* - the size of the array;
2067 * Returns:
2068 *   - >0, type ID of newly added BTF type;
2069 *   - <0, on error.
2070 */
2071int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
2072{
2073	struct btf_type *t;
2074	struct btf_array *a;
2075	int sz;
2076
2077	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
2078		return libbpf_err(-EINVAL);
2079
2080	if (btf_ensure_modifiable(btf))
2081		return libbpf_err(-ENOMEM);
2082
2083	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
2084	t = btf_add_type_mem(btf, sz);
2085	if (!t)
2086		return libbpf_err(-ENOMEM);
2087
2088	t->name_off = 0;
2089	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
2090	t->size = 0;
2091
2092	a = btf_array(t);
2093	a->type = elem_type_id;
2094	a->index_type = index_type_id;
2095	a->nelems = nr_elems;
2096
2097	return btf_commit_type(btf, sz);
2098}
2099
2100/* generic STRUCT/UNION append function */
2101static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
2102{
2103	struct btf_type *t;
2104	int sz, name_off = 0;
2105
2106	if (btf_ensure_modifiable(btf))
2107		return libbpf_err(-ENOMEM);
2108
2109	sz = sizeof(struct btf_type);
2110	t = btf_add_type_mem(btf, sz);
2111	if (!t)
2112		return libbpf_err(-ENOMEM);
2113
2114	if (name && name[0]) {
2115		name_off = btf__add_str(btf, name);
2116		if (name_off < 0)
2117			return name_off;
2118	}
2119
2120	/* start out with vlen=0 and no kflag; this will be adjusted when
2121	 * adding each member
2122	 */
2123	t->name_off = name_off;
2124	t->info = btf_type_info(kind, 0, 0);
2125	t->size = bytes_sz;
2126
2127	return btf_commit_type(btf, sz);
2128}
2129
2130/*
2131 * Append new BTF_KIND_STRUCT type with:
2132 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
2133 *   - *byte_sz* - size of the struct, in bytes;
2134 *
2135 * Struct initially has no fields in it. Fields can be added by
2136 * btf__add_field() right after btf__add_struct() succeeds.
2137 *
2138 * Returns:
2139 *   - >0, type ID of newly added BTF type;
2140 *   - <0, on error.
2141 */
2142int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
2143{
2144	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
2145}
2146
2147/*
2148 * Append new BTF_KIND_UNION type with:
2149 *   - *name* - name of the union, can be NULL or empty for anonymous union;
2150 *   - *byte_sz* - size of the union, in bytes;
2151 *
2152 * Union initially has no fields in it. Fields can be added by
2153 * btf__add_field() right after btf__add_union() succeeds. All fields
2154 * should have *bit_offset* of 0.
2155 *
2156 * Returns:
2157 *   - >0, type ID of newly added BTF type;
2158 *   - <0, on error.
2159 */
2160int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
2161{
2162	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
2163}
2164
2165static struct btf_type *btf_last_type(struct btf *btf)
2166{
2167	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
2168}
2169
2170/*
2171 * Append new field for the current STRUCT/UNION type with:
2172 *   - *name* - name of the field, can be NULL or empty for anonymous field;
2173 *   - *type_id* - type ID for the type describing field type;
2174 *   - *bit_offset* - bit offset of the start of the field within struct/union;
2175 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2176 * Returns:
2177 *   -  0, on success;
2178 *   - <0, on error.
2179 */
2180int btf__add_field(struct btf *btf, const char *name, int type_id,
2181		   __u32 bit_offset, __u32 bit_size)
2182{
2183	struct btf_type *t;
2184	struct btf_member *m;
2185	bool is_bitfield;
2186	int sz, name_off = 0;
2187
2188	/* last type should be union/struct */
2189	if (btf->nr_types == 0)
2190		return libbpf_err(-EINVAL);
2191	t = btf_last_type(btf);
2192	if (!btf_is_composite(t))
2193		return libbpf_err(-EINVAL);
2194
2195	if (validate_type_id(type_id))
2196		return libbpf_err(-EINVAL);
2197	/* best-effort bit field offset/size enforcement */
2198	is_bitfield = bit_size || (bit_offset % 8 != 0);
2199	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2200		return libbpf_err(-EINVAL);
2201
2202	/* only offset 0 is allowed for unions */
2203	if (btf_is_union(t) && bit_offset)
2204		return libbpf_err(-EINVAL);
2205
2206	/* decompose and invalidate raw data */
2207	if (btf_ensure_modifiable(btf))
2208		return libbpf_err(-ENOMEM);
2209
2210	sz = sizeof(struct btf_member);
2211	m = btf_add_type_mem(btf, sz);
2212	if (!m)
2213		return libbpf_err(-ENOMEM);
2214
2215	if (name && name[0]) {
2216		name_off = btf__add_str(btf, name);
2217		if (name_off < 0)
2218			return name_off;
2219	}
2220
2221	m->name_off = name_off;
2222	m->type = type_id;
2223	m->offset = bit_offset | (bit_size << 24);
2224
2225	/* btf_add_type_mem can invalidate t pointer */
2226	t = btf_last_type(btf);
2227	/* update parent type's vlen and kflag */
2228	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2229
2230	btf->hdr->type_len += sz;
2231	btf->hdr->str_off += sz;
2232	return 0;
2233}
2234
2235static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2236			       bool is_signed, __u8 kind)
2237{
2238	struct btf_type *t;
2239	int sz, name_off = 0;
2240
2241	/* byte_sz must be power of 2 */
2242	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2243		return libbpf_err(-EINVAL);
2244
2245	if (btf_ensure_modifiable(btf))
2246		return libbpf_err(-ENOMEM);
2247
2248	sz = sizeof(struct btf_type);
2249	t = btf_add_type_mem(btf, sz);
2250	if (!t)
2251		return libbpf_err(-ENOMEM);
2252
2253	if (name && name[0]) {
2254		name_off = btf__add_str(btf, name);
2255		if (name_off < 0)
2256			return name_off;
2257	}
2258
2259	/* start out with vlen=0; it will be adjusted when adding enum values */
2260	t->name_off = name_off;
2261	t->info = btf_type_info(kind, 0, is_signed);
2262	t->size = byte_sz;
2263
2264	return btf_commit_type(btf, sz);
2265}
2266
2267/*
2268 * Append new BTF_KIND_ENUM type with:
2269 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2270 *   - *byte_sz* - size of the enum, in bytes.
2271 *
2272 * Enum initially has no enum values in it (and corresponds to enum forward
2273 * declaration). Enumerator values can be added by btf__add_enum_value()
2274 * immediately after btf__add_enum() succeeds.
2275 *
2276 * Returns:
2277 *   - >0, type ID of newly added BTF type;
2278 *   - <0, on error.
2279 */
2280int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2281{
2282	/*
2283	 * set the signedness to be unsigned, it will change to signed
2284	 * if any later enumerator is negative.
2285	 */
2286	return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2287}
2288
2289/*
2290 * Append new enum value for the current ENUM type with:
2291 *   - *name* - name of the enumerator value, can't be NULL or empty;
2292 *   - *value* - integer value corresponding to enum value *name*;
2293 * Returns:
2294 *   -  0, on success;
2295 *   - <0, on error.
2296 */
2297int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2298{
2299	struct btf_type *t;
2300	struct btf_enum *v;
2301	int sz, name_off;
2302
2303	/* last type should be BTF_KIND_ENUM */
2304	if (btf->nr_types == 0)
2305		return libbpf_err(-EINVAL);
2306	t = btf_last_type(btf);
2307	if (!btf_is_enum(t))
2308		return libbpf_err(-EINVAL);
2309
2310	/* non-empty name */
2311	if (!name || !name[0])
2312		return libbpf_err(-EINVAL);
2313	if (value < INT_MIN || value > UINT_MAX)
2314		return libbpf_err(-E2BIG);
2315
2316	/* decompose and invalidate raw data */
2317	if (btf_ensure_modifiable(btf))
2318		return libbpf_err(-ENOMEM);
2319
2320	sz = sizeof(struct btf_enum);
2321	v = btf_add_type_mem(btf, sz);
2322	if (!v)
2323		return libbpf_err(-ENOMEM);
2324
2325	name_off = btf__add_str(btf, name);
2326	if (name_off < 0)
2327		return name_off;
2328
2329	v->name_off = name_off;
2330	v->val = value;
2331
2332	/* update parent type's vlen */
2333	t = btf_last_type(btf);
2334	btf_type_inc_vlen(t);
2335
2336	/* if negative value, set signedness to signed */
2337	if (value < 0)
2338		t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2339
2340	btf->hdr->type_len += sz;
2341	btf->hdr->str_off += sz;
2342	return 0;
2343}
2344
2345/*
2346 * Append new BTF_KIND_ENUM64 type with:
2347 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2348 *   - *byte_sz* - size of the enum, in bytes.
2349 *   - *is_signed* - whether the enum values are signed or not;
2350 *
2351 * Enum initially has no enum values in it (and corresponds to enum forward
2352 * declaration). Enumerator values can be added by btf__add_enum64_value()
2353 * immediately after btf__add_enum64() succeeds.
2354 *
2355 * Returns:
2356 *   - >0, type ID of newly added BTF type;
2357 *   - <0, on error.
2358 */
2359int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2360		    bool is_signed)
2361{
2362	return btf_add_enum_common(btf, name, byte_sz, is_signed,
2363				   BTF_KIND_ENUM64);
2364}
2365
2366/*
2367 * Append new enum value for the current ENUM64 type with:
2368 *   - *name* - name of the enumerator value, can't be NULL or empty;
2369 *   - *value* - integer value corresponding to enum value *name*;
2370 * Returns:
2371 *   -  0, on success;
2372 *   - <0, on error.
2373 */
2374int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2375{
2376	struct btf_enum64 *v;
2377	struct btf_type *t;
2378	int sz, name_off;
2379
2380	/* last type should be BTF_KIND_ENUM64 */
2381	if (btf->nr_types == 0)
2382		return libbpf_err(-EINVAL);
2383	t = btf_last_type(btf);
2384	if (!btf_is_enum64(t))
2385		return libbpf_err(-EINVAL);
2386
2387	/* non-empty name */
2388	if (!name || !name[0])
2389		return libbpf_err(-EINVAL);
2390
2391	/* decompose and invalidate raw data */
2392	if (btf_ensure_modifiable(btf))
2393		return libbpf_err(-ENOMEM);
2394
2395	sz = sizeof(struct btf_enum64);
2396	v = btf_add_type_mem(btf, sz);
2397	if (!v)
2398		return libbpf_err(-ENOMEM);
2399
2400	name_off = btf__add_str(btf, name);
2401	if (name_off < 0)
2402		return name_off;
2403
2404	v->name_off = name_off;
2405	v->val_lo32 = (__u32)value;
2406	v->val_hi32 = value >> 32;
2407
2408	/* update parent type's vlen */
2409	t = btf_last_type(btf);
2410	btf_type_inc_vlen(t);
2411
2412	btf->hdr->type_len += sz;
2413	btf->hdr->str_off += sz;
2414	return 0;
2415}
2416
2417/*
2418 * Append new BTF_KIND_FWD type with:
2419 *   - *name*, non-empty/non-NULL name;
2420 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2421 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2422 * Returns:
2423 *   - >0, type ID of newly added BTF type;
2424 *   - <0, on error.
2425 */
2426int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2427{
2428	if (!name || !name[0])
2429		return libbpf_err(-EINVAL);
2430
2431	switch (fwd_kind) {
2432	case BTF_FWD_STRUCT:
2433	case BTF_FWD_UNION: {
2434		struct btf_type *t;
2435		int id;
2436
2437		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2438		if (id <= 0)
2439			return id;
2440		t = btf_type_by_id(btf, id);
2441		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2442		return id;
2443	}
2444	case BTF_FWD_ENUM:
2445		/* enum forward in BTF currently is just an enum with no enum
2446		 * values; we also assume a standard 4-byte size for it
2447		 */
2448		return btf__add_enum(btf, name, sizeof(int));
2449	default:
2450		return libbpf_err(-EINVAL);
2451	}
2452}
2453
2454/*
2455 * Append new BTF_KING_TYPEDEF type with:
2456 *   - *name*, non-empty/non-NULL name;
2457 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2458 * Returns:
2459 *   - >0, type ID of newly added BTF type;
2460 *   - <0, on error.
2461 */
2462int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2463{
2464	if (!name || !name[0])
2465		return libbpf_err(-EINVAL);
2466
2467	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2468}
2469
2470/*
2471 * Append new BTF_KIND_VOLATILE type with:
2472 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2473 * Returns:
2474 *   - >0, type ID of newly added BTF type;
2475 *   - <0, on error.
2476 */
2477int btf__add_volatile(struct btf *btf, int ref_type_id)
2478{
2479	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2480}
2481
2482/*
2483 * Append new BTF_KIND_CONST type with:
2484 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2485 * Returns:
2486 *   - >0, type ID of newly added BTF type;
2487 *   - <0, on error.
2488 */
2489int btf__add_const(struct btf *btf, int ref_type_id)
2490{
2491	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2492}
2493
2494/*
2495 * Append new BTF_KIND_RESTRICT type with:
2496 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2497 * Returns:
2498 *   - >0, type ID of newly added BTF type;
2499 *   - <0, on error.
2500 */
2501int btf__add_restrict(struct btf *btf, int ref_type_id)
2502{
2503	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2504}
2505
2506/*
2507 * Append new BTF_KIND_TYPE_TAG type with:
2508 *   - *value*, non-empty/non-NULL tag value;
2509 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2510 * Returns:
2511 *   - >0, type ID of newly added BTF type;
2512 *   - <0, on error.
2513 */
2514int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2515{
2516	if (!value || !value[0])
2517		return libbpf_err(-EINVAL);
2518
2519	return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2520}
2521
2522/*
2523 * Append new BTF_KIND_FUNC type with:
2524 *   - *name*, non-empty/non-NULL name;
2525 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2526 * Returns:
2527 *   - >0, type ID of newly added BTF type;
2528 *   - <0, on error.
2529 */
2530int btf__add_func(struct btf *btf, const char *name,
2531		  enum btf_func_linkage linkage, int proto_type_id)
2532{
2533	int id;
2534
2535	if (!name || !name[0])
2536		return libbpf_err(-EINVAL);
2537	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2538	    linkage != BTF_FUNC_EXTERN)
2539		return libbpf_err(-EINVAL);
2540
2541	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2542	if (id > 0) {
2543		struct btf_type *t = btf_type_by_id(btf, id);
2544
2545		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2546	}
2547	return libbpf_err(id);
2548}
2549
2550/*
2551 * Append new BTF_KIND_FUNC_PROTO with:
2552 *   - *ret_type_id* - type ID for return result of a function.
2553 *
2554 * Function prototype initially has no arguments, but they can be added by
2555 * btf__add_func_param() one by one, immediately after
2556 * btf__add_func_proto() succeeded.
2557 *
2558 * Returns:
2559 *   - >0, type ID of newly added BTF type;
2560 *   - <0, on error.
2561 */
2562int btf__add_func_proto(struct btf *btf, int ret_type_id)
2563{
2564	struct btf_type *t;
2565	int sz;
2566
2567	if (validate_type_id(ret_type_id))
2568		return libbpf_err(-EINVAL);
2569
2570	if (btf_ensure_modifiable(btf))
2571		return libbpf_err(-ENOMEM);
2572
2573	sz = sizeof(struct btf_type);
2574	t = btf_add_type_mem(btf, sz);
2575	if (!t)
2576		return libbpf_err(-ENOMEM);
2577
2578	/* start out with vlen=0; this will be adjusted when adding enum
2579	 * values, if necessary
2580	 */
2581	t->name_off = 0;
2582	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2583	t->type = ret_type_id;
2584
2585	return btf_commit_type(btf, sz);
2586}
2587
2588/*
2589 * Append new function parameter for current FUNC_PROTO type with:
2590 *   - *name* - parameter name, can be NULL or empty;
2591 *   - *type_id* - type ID describing the type of the parameter.
2592 * Returns:
2593 *   -  0, on success;
2594 *   - <0, on error.
2595 */
2596int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2597{
2598	struct btf_type *t;
2599	struct btf_param *p;
2600	int sz, name_off = 0;
2601
2602	if (validate_type_id(type_id))
2603		return libbpf_err(-EINVAL);
2604
2605	/* last type should be BTF_KIND_FUNC_PROTO */
2606	if (btf->nr_types == 0)
2607		return libbpf_err(-EINVAL);
2608	t = btf_last_type(btf);
2609	if (!btf_is_func_proto(t))
2610		return libbpf_err(-EINVAL);
2611
2612	/* decompose and invalidate raw data */
2613	if (btf_ensure_modifiable(btf))
2614		return libbpf_err(-ENOMEM);
2615
2616	sz = sizeof(struct btf_param);
2617	p = btf_add_type_mem(btf, sz);
2618	if (!p)
2619		return libbpf_err(-ENOMEM);
2620
2621	if (name && name[0]) {
2622		name_off = btf__add_str(btf, name);
2623		if (name_off < 0)
2624			return name_off;
2625	}
2626
2627	p->name_off = name_off;
2628	p->type = type_id;
2629
2630	/* update parent type's vlen */
2631	t = btf_last_type(btf);
2632	btf_type_inc_vlen(t);
2633
2634	btf->hdr->type_len += sz;
2635	btf->hdr->str_off += sz;
2636	return 0;
2637}
2638
2639/*
2640 * Append new BTF_KIND_VAR type with:
2641 *   - *name* - non-empty/non-NULL name;
2642 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2643 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2644 *   - *type_id* - type ID of the type describing the type of the variable.
2645 * Returns:
2646 *   - >0, type ID of newly added BTF type;
2647 *   - <0, on error.
2648 */
2649int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2650{
2651	struct btf_type *t;
2652	struct btf_var *v;
2653	int sz, name_off;
2654
2655	/* non-empty name */
2656	if (!name || !name[0])
2657		return libbpf_err(-EINVAL);
2658	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2659	    linkage != BTF_VAR_GLOBAL_EXTERN)
2660		return libbpf_err(-EINVAL);
2661	if (validate_type_id(type_id))
2662		return libbpf_err(-EINVAL);
2663
2664	/* deconstruct BTF, if necessary, and invalidate raw_data */
2665	if (btf_ensure_modifiable(btf))
2666		return libbpf_err(-ENOMEM);
2667
2668	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2669	t = btf_add_type_mem(btf, sz);
2670	if (!t)
2671		return libbpf_err(-ENOMEM);
2672
2673	name_off = btf__add_str(btf, name);
2674	if (name_off < 0)
2675		return name_off;
2676
2677	t->name_off = name_off;
2678	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2679	t->type = type_id;
2680
2681	v = btf_var(t);
2682	v->linkage = linkage;
2683
2684	return btf_commit_type(btf, sz);
2685}
2686
2687/*
2688 * Append new BTF_KIND_DATASEC type with:
2689 *   - *name* - non-empty/non-NULL name;
2690 *   - *byte_sz* - data section size, in bytes.
2691 *
2692 * Data section is initially empty. Variables info can be added with
2693 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2694 *
2695 * Returns:
2696 *   - >0, type ID of newly added BTF type;
2697 *   - <0, on error.
2698 */
2699int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2700{
2701	struct btf_type *t;
2702	int sz, name_off;
2703
2704	/* non-empty name */
2705	if (!name || !name[0])
2706		return libbpf_err(-EINVAL);
2707
2708	if (btf_ensure_modifiable(btf))
2709		return libbpf_err(-ENOMEM);
2710
2711	sz = sizeof(struct btf_type);
2712	t = btf_add_type_mem(btf, sz);
2713	if (!t)
2714		return libbpf_err(-ENOMEM);
2715
2716	name_off = btf__add_str(btf, name);
2717	if (name_off < 0)
2718		return name_off;
2719
2720	/* start with vlen=0, which will be update as var_secinfos are added */
2721	t->name_off = name_off;
2722	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2723	t->size = byte_sz;
2724
2725	return btf_commit_type(btf, sz);
2726}
2727
2728/*
2729 * Append new data section variable information entry for current DATASEC type:
2730 *   - *var_type_id* - type ID, describing type of the variable;
2731 *   - *offset* - variable offset within data section, in bytes;
2732 *   - *byte_sz* - variable size, in bytes.
2733 *
2734 * Returns:
2735 *   -  0, on success;
2736 *   - <0, on error.
2737 */
2738int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2739{
2740	struct btf_type *t;
2741	struct btf_var_secinfo *v;
2742	int sz;
2743
2744	/* last type should be BTF_KIND_DATASEC */
2745	if (btf->nr_types == 0)
2746		return libbpf_err(-EINVAL);
2747	t = btf_last_type(btf);
2748	if (!btf_is_datasec(t))
2749		return libbpf_err(-EINVAL);
2750
2751	if (validate_type_id(var_type_id))
2752		return libbpf_err(-EINVAL);
2753
2754	/* decompose and invalidate raw data */
2755	if (btf_ensure_modifiable(btf))
2756		return libbpf_err(-ENOMEM);
2757
2758	sz = sizeof(struct btf_var_secinfo);
2759	v = btf_add_type_mem(btf, sz);
2760	if (!v)
2761		return libbpf_err(-ENOMEM);
2762
2763	v->type = var_type_id;
2764	v->offset = offset;
2765	v->size = byte_sz;
2766
2767	/* update parent type's vlen */
2768	t = btf_last_type(btf);
2769	btf_type_inc_vlen(t);
2770
2771	btf->hdr->type_len += sz;
2772	btf->hdr->str_off += sz;
2773	return 0;
2774}
2775
2776/*
2777 * Append new BTF_KIND_DECL_TAG type with:
2778 *   - *value* - non-empty/non-NULL string;
2779 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2780 *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2781 *     member or function argument index;
2782 * Returns:
2783 *   - >0, type ID of newly added BTF type;
2784 *   - <0, on error.
2785 */
2786int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2787		 int component_idx)
2788{
2789	struct btf_type *t;
2790	int sz, value_off;
2791
2792	if (!value || !value[0] || component_idx < -1)
2793		return libbpf_err(-EINVAL);
2794
2795	if (validate_type_id(ref_type_id))
2796		return libbpf_err(-EINVAL);
2797
2798	if (btf_ensure_modifiable(btf))
2799		return libbpf_err(-ENOMEM);
2800
2801	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2802	t = btf_add_type_mem(btf, sz);
2803	if (!t)
2804		return libbpf_err(-ENOMEM);
2805
2806	value_off = btf__add_str(btf, value);
2807	if (value_off < 0)
2808		return value_off;
2809
2810	t->name_off = value_off;
2811	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2812	t->type = ref_type_id;
2813	btf_decl_tag(t)->component_idx = component_idx;
2814
2815	return btf_commit_type(btf, sz);
2816}
2817
2818struct btf_ext_sec_setup_param {
2819	__u32 off;
2820	__u32 len;
2821	__u32 min_rec_size;
2822	struct btf_ext_info *ext_info;
2823	const char *desc;
2824};
2825
2826static int btf_ext_setup_info(struct btf_ext *btf_ext,
2827			      struct btf_ext_sec_setup_param *ext_sec)
2828{
2829	const struct btf_ext_info_sec *sinfo;
2830	struct btf_ext_info *ext_info;
2831	__u32 info_left, record_size;
2832	size_t sec_cnt = 0;
2833	/* The start of the info sec (including the __u32 record_size). */
2834	void *info;
2835
2836	if (ext_sec->len == 0)
2837		return 0;
2838
2839	if (ext_sec->off & 0x03) {
2840		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2841		     ext_sec->desc);
2842		return -EINVAL;
2843	}
2844
2845	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2846	info_left = ext_sec->len;
2847
2848	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2849		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2850			 ext_sec->desc, ext_sec->off, ext_sec->len);
2851		return -EINVAL;
2852	}
2853
2854	/* At least a record size */
2855	if (info_left < sizeof(__u32)) {
2856		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2857		return -EINVAL;
2858	}
2859
2860	/* The record size needs to meet the minimum standard */
2861	record_size = *(__u32 *)info;
2862	if (record_size < ext_sec->min_rec_size ||
2863	    record_size & 0x03) {
2864		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2865			 ext_sec->desc, record_size);
2866		return -EINVAL;
2867	}
2868
2869	sinfo = info + sizeof(__u32);
2870	info_left -= sizeof(__u32);
2871
2872	/* If no records, return failure now so .BTF.ext won't be used. */
2873	if (!info_left) {
2874		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2875		return -EINVAL;
2876	}
2877
2878	while (info_left) {
2879		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2880		__u64 total_record_size;
2881		__u32 num_records;
2882
2883		if (info_left < sec_hdrlen) {
2884			pr_debug("%s section header is not found in .BTF.ext\n",
2885			     ext_sec->desc);
2886			return -EINVAL;
2887		}
2888
2889		num_records = sinfo->num_info;
2890		if (num_records == 0) {
2891			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2892			     ext_sec->desc);
2893			return -EINVAL;
2894		}
2895
2896		total_record_size = sec_hdrlen + (__u64)num_records * record_size;
 
2897		if (info_left < total_record_size) {
2898			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2899			     ext_sec->desc);
2900			return -EINVAL;
2901		}
2902
2903		info_left -= total_record_size;
2904		sinfo = (void *)sinfo + total_record_size;
2905		sec_cnt++;
2906	}
2907
2908	ext_info = ext_sec->ext_info;
2909	ext_info->len = ext_sec->len - sizeof(__u32);
2910	ext_info->rec_size = record_size;
2911	ext_info->info = info + sizeof(__u32);
2912	ext_info->sec_cnt = sec_cnt;
2913
2914	return 0;
2915}
2916
2917static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2918{
2919	struct btf_ext_sec_setup_param param = {
2920		.off = btf_ext->hdr->func_info_off,
2921		.len = btf_ext->hdr->func_info_len,
2922		.min_rec_size = sizeof(struct bpf_func_info_min),
2923		.ext_info = &btf_ext->func_info,
2924		.desc = "func_info"
2925	};
2926
2927	return btf_ext_setup_info(btf_ext, &param);
2928}
2929
2930static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2931{
2932	struct btf_ext_sec_setup_param param = {
2933		.off = btf_ext->hdr->line_info_off,
2934		.len = btf_ext->hdr->line_info_len,
2935		.min_rec_size = sizeof(struct bpf_line_info_min),
2936		.ext_info = &btf_ext->line_info,
2937		.desc = "line_info",
2938	};
2939
2940	return btf_ext_setup_info(btf_ext, &param);
2941}
2942
2943static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2944{
2945	struct btf_ext_sec_setup_param param = {
2946		.off = btf_ext->hdr->core_relo_off,
2947		.len = btf_ext->hdr->core_relo_len,
2948		.min_rec_size = sizeof(struct bpf_core_relo),
2949		.ext_info = &btf_ext->core_relo_info,
2950		.desc = "core_relo",
2951	};
2952
2953	return btf_ext_setup_info(btf_ext, &param);
2954}
2955
2956static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2957{
2958	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2959
2960	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2961	    data_size < hdr->hdr_len) {
2962		pr_debug("BTF.ext header not found");
2963		return -EINVAL;
2964	}
2965
2966	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2967		pr_warn("BTF.ext in non-native endianness is not supported\n");
2968		return -ENOTSUP;
2969	} else if (hdr->magic != BTF_MAGIC) {
2970		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2971		return -EINVAL;
2972	}
2973
2974	if (hdr->version != BTF_VERSION) {
2975		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2976		return -ENOTSUP;
2977	}
2978
2979	if (hdr->flags) {
2980		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2981		return -ENOTSUP;
2982	}
2983
2984	if (data_size == hdr->hdr_len) {
2985		pr_debug("BTF.ext has no data\n");
2986		return -EINVAL;
2987	}
2988
2989	return 0;
2990}
2991
2992void btf_ext__free(struct btf_ext *btf_ext)
2993{
2994	if (IS_ERR_OR_NULL(btf_ext))
2995		return;
2996	free(btf_ext->func_info.sec_idxs);
2997	free(btf_ext->line_info.sec_idxs);
2998	free(btf_ext->core_relo_info.sec_idxs);
2999	free(btf_ext->data);
3000	free(btf_ext);
3001}
3002
3003struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
3004{
3005	struct btf_ext *btf_ext;
3006	int err;
3007
 
 
 
 
3008	btf_ext = calloc(1, sizeof(struct btf_ext));
3009	if (!btf_ext)
3010		return libbpf_err_ptr(-ENOMEM);
3011
3012	btf_ext->data_size = size;
3013	btf_ext->data = malloc(size);
3014	if (!btf_ext->data) {
3015		err = -ENOMEM;
3016		goto done;
3017	}
3018	memcpy(btf_ext->data, data, size);
3019
3020	err = btf_ext_parse_hdr(btf_ext->data, size);
3021	if (err)
3022		goto done;
3023
3024	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
3025		err = -EINVAL;
3026		goto done;
3027	}
3028
3029	err = btf_ext_setup_func_info(btf_ext);
3030	if (err)
3031		goto done;
3032
3033	err = btf_ext_setup_line_info(btf_ext);
3034	if (err)
3035		goto done;
3036
3037	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3038		goto done; /* skip core relos parsing */
3039
3040	err = btf_ext_setup_core_relos(btf_ext);
3041	if (err)
3042		goto done;
3043
3044done:
3045	if (err) {
3046		btf_ext__free(btf_ext);
3047		return libbpf_err_ptr(err);
3048	}
3049
3050	return btf_ext;
3051}
3052
3053const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size)
3054{
3055	*size = btf_ext->data_size;
3056	return btf_ext->data;
3057}
3058
3059__attribute__((alias("btf_ext__raw_data")))
3060const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3062
3063struct btf_dedup;
3064
3065static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
 
3066static void btf_dedup_free(struct btf_dedup *d);
3067static int btf_dedup_prep(struct btf_dedup *d);
3068static int btf_dedup_strings(struct btf_dedup *d);
3069static int btf_dedup_prim_types(struct btf_dedup *d);
3070static int btf_dedup_struct_types(struct btf_dedup *d);
3071static int btf_dedup_ref_types(struct btf_dedup *d);
3072static int btf_dedup_resolve_fwds(struct btf_dedup *d);
3073static int btf_dedup_compact_types(struct btf_dedup *d);
3074static int btf_dedup_remap_types(struct btf_dedup *d);
3075
3076/*
3077 * Deduplicate BTF types and strings.
3078 *
3079 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
3080 * section with all BTF type descriptors and string data. It overwrites that
3081 * memory in-place with deduplicated types and strings without any loss of
3082 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
3083 * is provided, all the strings referenced from .BTF.ext section are honored
3084 * and updated to point to the right offsets after deduplication.
3085 *
3086 * If function returns with error, type/string data might be garbled and should
3087 * be discarded.
3088 *
3089 * More verbose and detailed description of both problem btf_dedup is solving,
3090 * as well as solution could be found at:
3091 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
3092 *
3093 * Problem description and justification
3094 * =====================================
3095 *
3096 * BTF type information is typically emitted either as a result of conversion
3097 * from DWARF to BTF or directly by compiler. In both cases, each compilation
3098 * unit contains information about a subset of all the types that are used
3099 * in an application. These subsets are frequently overlapping and contain a lot
3100 * of duplicated information when later concatenated together into a single
3101 * binary. This algorithm ensures that each unique type is represented by single
3102 * BTF type descriptor, greatly reducing resulting size of BTF data.
3103 *
3104 * Compilation unit isolation and subsequent duplication of data is not the only
3105 * problem. The same type hierarchy (e.g., struct and all the type that struct
3106 * references) in different compilation units can be represented in BTF to
3107 * various degrees of completeness (or, rather, incompleteness) due to
3108 * struct/union forward declarations.
3109 *
3110 * Let's take a look at an example, that we'll use to better understand the
3111 * problem (and solution). Suppose we have two compilation units, each using
3112 * same `struct S`, but each of them having incomplete type information about
3113 * struct's fields:
3114 *
3115 * // CU #1:
3116 * struct S;
3117 * struct A {
3118 *	int a;
3119 *	struct A* self;
3120 *	struct S* parent;
3121 * };
3122 * struct B;
3123 * struct S {
3124 *	struct A* a_ptr;
3125 *	struct B* b_ptr;
3126 * };
3127 *
3128 * // CU #2:
3129 * struct S;
3130 * struct A;
3131 * struct B {
3132 *	int b;
3133 *	struct B* self;
3134 *	struct S* parent;
3135 * };
3136 * struct S {
3137 *	struct A* a_ptr;
3138 *	struct B* b_ptr;
3139 * };
3140 *
3141 * In case of CU #1, BTF data will know only that `struct B` exist (but no
3142 * more), but will know the complete type information about `struct A`. While
3143 * for CU #2, it will know full type information about `struct B`, but will
3144 * only know about forward declaration of `struct A` (in BTF terms, it will
3145 * have `BTF_KIND_FWD` type descriptor with name `B`).
3146 *
3147 * This compilation unit isolation means that it's possible that there is no
3148 * single CU with complete type information describing structs `S`, `A`, and
3149 * `B`. Also, we might get tons of duplicated and redundant type information.
3150 *
3151 * Additional complication we need to keep in mind comes from the fact that
3152 * types, in general, can form graphs containing cycles, not just DAGs.
3153 *
3154 * While algorithm does deduplication, it also merges and resolves type
3155 * information (unless disabled throught `struct btf_opts`), whenever possible.
3156 * E.g., in the example above with two compilation units having partial type
3157 * information for structs `A` and `B`, the output of algorithm will emit
3158 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
3159 * (as well as type information for `int` and pointers), as if they were defined
3160 * in a single compilation unit as:
3161 *
3162 * struct A {
3163 *	int a;
3164 *	struct A* self;
3165 *	struct S* parent;
3166 * };
3167 * struct B {
3168 *	int b;
3169 *	struct B* self;
3170 *	struct S* parent;
3171 * };
3172 * struct S {
3173 *	struct A* a_ptr;
3174 *	struct B* b_ptr;
3175 * };
3176 *
3177 * Algorithm summary
3178 * =================
3179 *
3180 * Algorithm completes its work in 7 separate passes:
3181 *
3182 * 1. Strings deduplication.
3183 * 2. Primitive types deduplication (int, enum, fwd).
3184 * 3. Struct/union types deduplication.
3185 * 4. Resolve unambiguous forward declarations.
3186 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3187 *    protos, and const/volatile/restrict modifiers).
3188 * 6. Types compaction.
3189 * 7. Types remapping.
3190 *
3191 * Algorithm determines canonical type descriptor, which is a single
3192 * representative type for each truly unique type. This canonical type is the
3193 * one that will go into final deduplicated BTF type information. For
3194 * struct/unions, it is also the type that algorithm will merge additional type
3195 * information into (while resolving FWDs), as it discovers it from data in
3196 * other CUs. Each input BTF type eventually gets either mapped to itself, if
3197 * that type is canonical, or to some other type, if that type is equivalent
3198 * and was chosen as canonical representative. This mapping is stored in
3199 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3200 * FWD type got resolved to.
3201 *
3202 * To facilitate fast discovery of canonical types, we also maintain canonical
3203 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3204 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3205 * that match that signature. With sufficiently good choice of type signature
3206 * hashing function, we can limit number of canonical types for each unique type
3207 * signature to a very small number, allowing to find canonical type for any
3208 * duplicated type very quickly.
3209 *
3210 * Struct/union deduplication is the most critical part and algorithm for
3211 * deduplicating structs/unions is described in greater details in comments for
3212 * `btf_dedup_is_equiv` function.
3213 */
3214int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
 
3215{
3216	struct btf_dedup *d;
3217	int err;
3218
3219	if (!OPTS_VALID(opts, btf_dedup_opts))
3220		return libbpf_err(-EINVAL);
3221
3222	d = btf_dedup_new(btf, opts);
3223	if (IS_ERR(d)) {
3224		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3225		return libbpf_err(-EINVAL);
3226	}
3227
3228	if (btf_ensure_modifiable(btf)) {
3229		err = -ENOMEM;
3230		goto done;
3231	}
3232
3233	err = btf_dedup_prep(d);
3234	if (err) {
3235		pr_debug("btf_dedup_prep failed:%d\n", err);
3236		goto done;
3237	}
3238	err = btf_dedup_strings(d);
3239	if (err < 0) {
3240		pr_debug("btf_dedup_strings failed:%d\n", err);
3241		goto done;
3242	}
3243	err = btf_dedup_prim_types(d);
3244	if (err < 0) {
3245		pr_debug("btf_dedup_prim_types failed:%d\n", err);
3246		goto done;
3247	}
3248	err = btf_dedup_struct_types(d);
3249	if (err < 0) {
3250		pr_debug("btf_dedup_struct_types failed:%d\n", err);
3251		goto done;
3252	}
3253	err = btf_dedup_resolve_fwds(d);
3254	if (err < 0) {
3255		pr_debug("btf_dedup_resolve_fwds failed:%d\n", err);
3256		goto done;
3257	}
3258	err = btf_dedup_ref_types(d);
3259	if (err < 0) {
3260		pr_debug("btf_dedup_ref_types failed:%d\n", err);
3261		goto done;
3262	}
3263	err = btf_dedup_compact_types(d);
3264	if (err < 0) {
3265		pr_debug("btf_dedup_compact_types failed:%d\n", err);
3266		goto done;
3267	}
3268	err = btf_dedup_remap_types(d);
3269	if (err < 0) {
3270		pr_debug("btf_dedup_remap_types failed:%d\n", err);
3271		goto done;
3272	}
3273
3274done:
3275	btf_dedup_free(d);
3276	return libbpf_err(err);
3277}
3278
3279#define BTF_UNPROCESSED_ID ((__u32)-1)
3280#define BTF_IN_PROGRESS_ID ((__u32)-2)
3281
3282struct btf_dedup {
3283	/* .BTF section to be deduped in-place */
3284	struct btf *btf;
3285	/*
3286	 * Optional .BTF.ext section. When provided, any strings referenced
3287	 * from it will be taken into account when deduping strings
3288	 */
3289	struct btf_ext *btf_ext;
3290	/*
3291	 * This is a map from any type's signature hash to a list of possible
3292	 * canonical representative type candidates. Hash collisions are
3293	 * ignored, so even types of various kinds can share same list of
3294	 * candidates, which is fine because we rely on subsequent
3295	 * btf_xxx_equal() checks to authoritatively verify type equality.
3296	 */
3297	struct hashmap *dedup_table;
3298	/* Canonical types map */
3299	__u32 *map;
3300	/* Hypothetical mapping, used during type graph equivalence checks */
3301	__u32 *hypot_map;
3302	__u32 *hypot_list;
3303	size_t hypot_cnt;
3304	size_t hypot_cap;
3305	/* Whether hypothetical mapping, if successful, would need to adjust
3306	 * already canonicalized types (due to a new forward declaration to
3307	 * concrete type resolution). In such case, during split BTF dedup
3308	 * candidate type would still be considered as different, because base
3309	 * BTF is considered to be immutable.
3310	 */
3311	bool hypot_adjust_canon;
3312	/* Various option modifying behavior of algorithm */
3313	struct btf_dedup_opts opts;
3314	/* temporary strings deduplication state */
3315	struct strset *strs_set;
 
 
 
 
 
 
 
 
 
 
 
3316};
3317
3318static long hash_combine(long h, long value)
3319{
3320	return h * 31 + value;
3321}
3322
3323#define for_each_dedup_cand(d, node, hash) \
3324	hashmap__for_each_key_entry(d->dedup_table, node, hash)
3325
3326static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3327{
3328	return hashmap__append(d->dedup_table, hash, type_id);
 
3329}
3330
3331static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3332				   __u32 from_id, __u32 to_id)
3333{
3334	if (d->hypot_cnt == d->hypot_cap) {
3335		__u32 *new_list;
3336
3337		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3338		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3339		if (!new_list)
3340			return -ENOMEM;
3341		d->hypot_list = new_list;
3342	}
3343	d->hypot_list[d->hypot_cnt++] = from_id;
3344	d->hypot_map[from_id] = to_id;
3345	return 0;
3346}
3347
3348static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3349{
3350	int i;
3351
3352	for (i = 0; i < d->hypot_cnt; i++)
3353		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3354	d->hypot_cnt = 0;
3355	d->hypot_adjust_canon = false;
3356}
3357
3358static void btf_dedup_free(struct btf_dedup *d)
3359{
3360	hashmap__free(d->dedup_table);
3361	d->dedup_table = NULL;
3362
3363	free(d->map);
3364	d->map = NULL;
3365
3366	free(d->hypot_map);
3367	d->hypot_map = NULL;
3368
3369	free(d->hypot_list);
3370	d->hypot_list = NULL;
3371
3372	free(d);
3373}
3374
3375static size_t btf_dedup_identity_hash_fn(long key, void *ctx)
3376{
3377	return key;
3378}
3379
3380static size_t btf_dedup_collision_hash_fn(long key, void *ctx)
3381{
3382	return 0;
3383}
3384
3385static bool btf_dedup_equal_fn(long k1, long k2, void *ctx)
3386{
3387	return k1 == k2;
3388}
3389
3390static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
 
3391{
3392	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3393	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3394	int i, err = 0, type_cnt;
3395
3396	if (!d)
3397		return ERR_PTR(-ENOMEM);
3398
3399	if (OPTS_GET(opts, force_collisions, false))
 
 
3400		hash_fn = btf_dedup_collision_hash_fn;
3401
3402	d->btf = btf;
3403	d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3404
3405	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3406	if (IS_ERR(d->dedup_table)) {
3407		err = PTR_ERR(d->dedup_table);
3408		d->dedup_table = NULL;
3409		goto done;
3410	}
3411
3412	type_cnt = btf__type_cnt(btf);
3413	d->map = malloc(sizeof(__u32) * type_cnt);
3414	if (!d->map) {
3415		err = -ENOMEM;
3416		goto done;
3417	}
3418	/* special BTF "void" type is made canonical immediately */
3419	d->map[0] = 0;
3420	for (i = 1; i < type_cnt; i++) {
3421		struct btf_type *t = btf_type_by_id(d->btf, i);
3422
3423		/* VAR and DATASEC are never deduped and are self-canonical */
3424		if (btf_is_var(t) || btf_is_datasec(t))
3425			d->map[i] = i;
3426		else
3427			d->map[i] = BTF_UNPROCESSED_ID;
3428	}
3429
3430	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3431	if (!d->hypot_map) {
3432		err = -ENOMEM;
3433		goto done;
3434	}
3435	for (i = 0; i < type_cnt; i++)
3436		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3437
3438done:
3439	if (err) {
3440		btf_dedup_free(d);
3441		return ERR_PTR(err);
3442	}
3443
3444	return d;
3445}
3446
 
 
3447/*
3448 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3449 * string and pass pointer to it to a provided callback `fn`.
3450 */
3451static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3452{
3453	int i, r;
3454
3455	for (i = 0; i < d->btf->nr_types; i++) {
3456		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3457
3458		r = btf_type_visit_str_offs(t, fn, ctx);
 
 
3459		if (r)
3460			return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3461	}
3462
3463	if (!d->btf_ext)
3464		return 0;
3465
3466	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3467	if (r)
3468		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3469
 
 
3470	return 0;
3471}
3472
3473static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3474{
3475	struct btf_dedup *d = ctx;
3476	__u32 str_off = *str_off_ptr;
3477	const char *s;
3478	int off, err;
3479
3480	/* don't touch empty string or string in main BTF */
3481	if (str_off == 0 || str_off < d->btf->start_str_off)
3482		return 0;
3483
3484	s = btf__str_by_offset(d->btf, str_off);
3485	if (d->btf->base_btf) {
3486		err = btf__find_str(d->btf->base_btf, s);
3487		if (err >= 0) {
3488			*str_off_ptr = err;
3489			return 0;
3490		}
3491		if (err != -ENOENT)
3492			return err;
3493	}
3494
3495	off = strset__add_str(d->strs_set, s);
3496	if (off < 0)
3497		return off;
 
 
 
 
3498
3499	*str_off_ptr = d->btf->start_str_off + off;
 
 
 
 
 
3500	return 0;
3501}
3502
3503/*
3504 * Dedup string and filter out those that are not referenced from either .BTF
3505 * or .BTF.ext (if provided) sections.
3506 *
3507 * This is done by building index of all strings in BTF's string section,
3508 * then iterating over all entities that can reference strings (e.g., type
3509 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3510 * strings as used. After that all used strings are deduped and compacted into
3511 * sequential blob of memory and new offsets are calculated. Then all the string
3512 * references are iterated again and rewritten using new offsets.
3513 */
3514static int btf_dedup_strings(struct btf_dedup *d)
3515{
3516	int err;
 
 
 
 
 
 
 
 
 
 
 
3517
3518	if (d->btf->strs_deduped)
3519		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
3520
3521	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3522	if (IS_ERR(d->strs_set)) {
3523		err = PTR_ERR(d->strs_set);
3524		goto err_out;
 
3525	}
3526
3527	if (!d->btf->base_btf) {
3528		/* insert empty string; we won't be looking it up during strings
3529		 * dedup, but it's good to have it for generic BTF string lookups
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3530		 */
3531		err = strset__add_str(d->strs_set, "");
3532		if (err < 0)
3533			goto err_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3534	}
3535
 
 
 
 
 
 
 
 
3536	/* remap string offsets */
3537	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3538	if (err)
3539		goto err_out;
3540
3541	/* replace BTF string data and hash with deduped ones */
3542	strset__free(d->btf->strs_set);
3543	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3544	d->btf->strs_set = d->strs_set;
3545	d->strs_set = NULL;
3546	d->btf->strs_deduped = true;
3547	return 0;
3548
3549err_out:
3550	strset__free(d->strs_set);
3551	d->strs_set = NULL;
3552
 
 
 
3553	return err;
3554}
3555
3556static long btf_hash_common(struct btf_type *t)
3557{
3558	long h;
3559
3560	h = hash_combine(0, t->name_off);
3561	h = hash_combine(h, t->info);
3562	h = hash_combine(h, t->size);
3563	return h;
3564}
3565
3566static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3567{
3568	return t1->name_off == t2->name_off &&
3569	       t1->info == t2->info &&
3570	       t1->size == t2->size;
3571}
3572
3573/* Calculate type signature hash of INT or TAG. */
3574static long btf_hash_int_decl_tag(struct btf_type *t)
3575{
3576	__u32 info = *(__u32 *)(t + 1);
3577	long h;
3578
3579	h = btf_hash_common(t);
3580	h = hash_combine(h, info);
3581	return h;
3582}
3583
3584/* Check structural equality of two INTs or TAGs. */
3585static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3586{
3587	__u32 info1, info2;
3588
3589	if (!btf_equal_common(t1, t2))
3590		return false;
3591	info1 = *(__u32 *)(t1 + 1);
3592	info2 = *(__u32 *)(t2 + 1);
3593	return info1 == info2;
3594}
3595
3596/* Calculate type signature hash of ENUM/ENUM64. */
3597static long btf_hash_enum(struct btf_type *t)
3598{
3599	long h;
3600
3601	/* don't hash vlen, enum members and size to support enum fwd resolving */
3602	h = hash_combine(0, t->name_off);
 
 
3603	return h;
3604}
3605
3606static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2)
 
3607{
3608	const struct btf_enum *m1, *m2;
3609	__u16 vlen;
3610	int i;
3611
 
 
 
3612	vlen = btf_vlen(t1);
3613	m1 = btf_enum(t1);
3614	m2 = btf_enum(t2);
3615	for (i = 0; i < vlen; i++) {
3616		if (m1->name_off != m2->name_off || m1->val != m2->val)
3617			return false;
3618		m1++;
3619		m2++;
3620	}
3621	return true;
3622}
3623
3624static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2)
3625{
3626	const struct btf_enum64 *m1, *m2;
3627	__u16 vlen;
3628	int i;
3629
3630	vlen = btf_vlen(t1);
3631	m1 = btf_enum64(t1);
3632	m2 = btf_enum64(t2);
3633	for (i = 0; i < vlen; i++) {
3634		if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3635		    m1->val_hi32 != m2->val_hi32)
3636			return false;
3637		m1++;
3638		m2++;
3639	}
3640	return true;
3641}
3642
3643/* Check structural equality of two ENUMs or ENUM64s. */
3644static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3645{
3646	if (!btf_equal_common(t1, t2))
3647		return false;
3648
3649	/* t1 & t2 kinds are identical because of btf_equal_common */
3650	if (btf_kind(t1) == BTF_KIND_ENUM)
3651		return btf_equal_enum_members(t1, t2);
3652	else
3653		return btf_equal_enum64_members(t1, t2);
3654}
3655
3656static inline bool btf_is_enum_fwd(struct btf_type *t)
3657{
3658	return btf_is_any_enum(t) && btf_vlen(t) == 0;
3659}
3660
3661static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3662{
3663	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3664		return btf_equal_enum(t1, t2);
3665	/* At this point either t1 or t2 or both are forward declarations, thus:
3666	 * - skip comparing vlen because it is zero for forward declarations;
3667	 * - skip comparing size to allow enum forward declarations
3668	 *   to be compatible with enum64 full declarations;
3669	 * - skip comparing kind for the same reason.
3670	 */
3671	return t1->name_off == t2->name_off &&
3672	       btf_is_any_enum(t1) && btf_is_any_enum(t2);
 
3673}
3674
3675/*
3676 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3677 * as referenced type IDs equivalence is established separately during type
3678 * graph equivalence check algorithm.
3679 */
3680static long btf_hash_struct(struct btf_type *t)
3681{
3682	const struct btf_member *member = btf_members(t);
3683	__u32 vlen = btf_vlen(t);
3684	long h = btf_hash_common(t);
3685	int i;
3686
3687	for (i = 0; i < vlen; i++) {
3688		h = hash_combine(h, member->name_off);
3689		h = hash_combine(h, member->offset);
3690		/* no hashing of referenced type ID, it can be unresolved yet */
3691		member++;
3692	}
3693	return h;
3694}
3695
3696/*
3697 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3698 * type IDs. This check is performed during type graph equivalence check and
3699 * referenced types equivalence is checked separately.
3700 */
3701static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3702{
3703	const struct btf_member *m1, *m2;
3704	__u16 vlen;
3705	int i;
3706
3707	if (!btf_equal_common(t1, t2))
3708		return false;
3709
3710	vlen = btf_vlen(t1);
3711	m1 = btf_members(t1);
3712	m2 = btf_members(t2);
3713	for (i = 0; i < vlen; i++) {
3714		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3715			return false;
3716		m1++;
3717		m2++;
3718	}
3719	return true;
3720}
3721
3722/*
3723 * Calculate type signature hash of ARRAY, including referenced type IDs,
3724 * under assumption that they were already resolved to canonical type IDs and
3725 * are not going to change.
3726 */
3727static long btf_hash_array(struct btf_type *t)
3728{
3729	const struct btf_array *info = btf_array(t);
3730	long h = btf_hash_common(t);
3731
3732	h = hash_combine(h, info->type);
3733	h = hash_combine(h, info->index_type);
3734	h = hash_combine(h, info->nelems);
3735	return h;
3736}
3737
3738/*
3739 * Check exact equality of two ARRAYs, taking into account referenced
3740 * type IDs, under assumption that they were already resolved to canonical
3741 * type IDs and are not going to change.
3742 * This function is called during reference types deduplication to compare
3743 * ARRAY to potential canonical representative.
3744 */
3745static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3746{
3747	const struct btf_array *info1, *info2;
3748
3749	if (!btf_equal_common(t1, t2))
3750		return false;
3751
3752	info1 = btf_array(t1);
3753	info2 = btf_array(t2);
3754	return info1->type == info2->type &&
3755	       info1->index_type == info2->index_type &&
3756	       info1->nelems == info2->nelems;
3757}
3758
3759/*
3760 * Check structural compatibility of two ARRAYs, ignoring referenced type
3761 * IDs. This check is performed during type graph equivalence check and
3762 * referenced types equivalence is checked separately.
3763 */
3764static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3765{
3766	if (!btf_equal_common(t1, t2))
3767		return false;
3768
3769	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3770}
3771
3772/*
3773 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3774 * under assumption that they were already resolved to canonical type IDs and
3775 * are not going to change.
3776 */
3777static long btf_hash_fnproto(struct btf_type *t)
3778{
3779	const struct btf_param *member = btf_params(t);
3780	__u16 vlen = btf_vlen(t);
3781	long h = btf_hash_common(t);
3782	int i;
3783
3784	for (i = 0; i < vlen; i++) {
3785		h = hash_combine(h, member->name_off);
3786		h = hash_combine(h, member->type);
3787		member++;
3788	}
3789	return h;
3790}
3791
3792/*
3793 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3794 * type IDs, under assumption that they were already resolved to canonical
3795 * type IDs and are not going to change.
3796 * This function is called during reference types deduplication to compare
3797 * FUNC_PROTO to potential canonical representative.
3798 */
3799static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3800{
3801	const struct btf_param *m1, *m2;
3802	__u16 vlen;
3803	int i;
3804
3805	if (!btf_equal_common(t1, t2))
3806		return false;
3807
3808	vlen = btf_vlen(t1);
3809	m1 = btf_params(t1);
3810	m2 = btf_params(t2);
3811	for (i = 0; i < vlen; i++) {
3812		if (m1->name_off != m2->name_off || m1->type != m2->type)
3813			return false;
3814		m1++;
3815		m2++;
3816	}
3817	return true;
3818}
3819
3820/*
3821 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3822 * IDs. This check is performed during type graph equivalence check and
3823 * referenced types equivalence is checked separately.
3824 */
3825static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3826{
3827	const struct btf_param *m1, *m2;
3828	__u16 vlen;
3829	int i;
3830
3831	/* skip return type ID */
3832	if (t1->name_off != t2->name_off || t1->info != t2->info)
3833		return false;
3834
3835	vlen = btf_vlen(t1);
3836	m1 = btf_params(t1);
3837	m2 = btf_params(t2);
3838	for (i = 0; i < vlen; i++) {
3839		if (m1->name_off != m2->name_off)
3840			return false;
3841		m1++;
3842		m2++;
3843	}
3844	return true;
3845}
3846
3847/* Prepare split BTF for deduplication by calculating hashes of base BTF's
3848 * types and initializing the rest of the state (canonical type mapping) for
3849 * the fixed base BTF part.
3850 */
3851static int btf_dedup_prep(struct btf_dedup *d)
3852{
3853	struct btf_type *t;
3854	int type_id;
3855	long h;
3856
3857	if (!d->btf->base_btf)
3858		return 0;
3859
3860	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3861		t = btf_type_by_id(d->btf, type_id);
3862
3863		/* all base BTF types are self-canonical by definition */
3864		d->map[type_id] = type_id;
3865
3866		switch (btf_kind(t)) {
3867		case BTF_KIND_VAR:
3868		case BTF_KIND_DATASEC:
3869			/* VAR and DATASEC are never hash/deduplicated */
3870			continue;
3871		case BTF_KIND_CONST:
3872		case BTF_KIND_VOLATILE:
3873		case BTF_KIND_RESTRICT:
3874		case BTF_KIND_PTR:
3875		case BTF_KIND_FWD:
3876		case BTF_KIND_TYPEDEF:
3877		case BTF_KIND_FUNC:
3878		case BTF_KIND_FLOAT:
3879		case BTF_KIND_TYPE_TAG:
3880			h = btf_hash_common(t);
3881			break;
3882		case BTF_KIND_INT:
3883		case BTF_KIND_DECL_TAG:
3884			h = btf_hash_int_decl_tag(t);
3885			break;
3886		case BTF_KIND_ENUM:
3887		case BTF_KIND_ENUM64:
3888			h = btf_hash_enum(t);
3889			break;
3890		case BTF_KIND_STRUCT:
3891		case BTF_KIND_UNION:
3892			h = btf_hash_struct(t);
3893			break;
3894		case BTF_KIND_ARRAY:
3895			h = btf_hash_array(t);
3896			break;
3897		case BTF_KIND_FUNC_PROTO:
3898			h = btf_hash_fnproto(t);
3899			break;
3900		default:
3901			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3902			return -EINVAL;
3903		}
3904		if (btf_dedup_table_add(d, h, type_id))
3905			return -ENOMEM;
3906	}
3907
3908	return 0;
3909}
3910
3911/*
3912 * Deduplicate primitive types, that can't reference other types, by calculating
3913 * their type signature hash and comparing them with any possible canonical
3914 * candidate. If no canonical candidate matches, type itself is marked as
3915 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3916 */
3917static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3918{
3919	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3920	struct hashmap_entry *hash_entry;
3921	struct btf_type *cand;
3922	/* if we don't find equivalent type, then we are canonical */
3923	__u32 new_id = type_id;
3924	__u32 cand_id;
3925	long h;
3926
3927	switch (btf_kind(t)) {
3928	case BTF_KIND_CONST:
3929	case BTF_KIND_VOLATILE:
3930	case BTF_KIND_RESTRICT:
3931	case BTF_KIND_PTR:
3932	case BTF_KIND_TYPEDEF:
3933	case BTF_KIND_ARRAY:
3934	case BTF_KIND_STRUCT:
3935	case BTF_KIND_UNION:
3936	case BTF_KIND_FUNC:
3937	case BTF_KIND_FUNC_PROTO:
3938	case BTF_KIND_VAR:
3939	case BTF_KIND_DATASEC:
3940	case BTF_KIND_DECL_TAG:
3941	case BTF_KIND_TYPE_TAG:
3942		return 0;
3943
3944	case BTF_KIND_INT:
3945		h = btf_hash_int_decl_tag(t);
3946		for_each_dedup_cand(d, hash_entry, h) {
3947			cand_id = hash_entry->value;
3948			cand = btf_type_by_id(d->btf, cand_id);
3949			if (btf_equal_int_tag(t, cand)) {
3950				new_id = cand_id;
3951				break;
3952			}
3953		}
3954		break;
3955
3956	case BTF_KIND_ENUM:
3957	case BTF_KIND_ENUM64:
3958		h = btf_hash_enum(t);
3959		for_each_dedup_cand(d, hash_entry, h) {
3960			cand_id = hash_entry->value;
3961			cand = btf_type_by_id(d->btf, cand_id);
3962			if (btf_equal_enum(t, cand)) {
3963				new_id = cand_id;
3964				break;
3965			}
 
 
3966			if (btf_compat_enum(t, cand)) {
3967				if (btf_is_enum_fwd(t)) {
3968					/* resolve fwd to full enum */
3969					new_id = cand_id;
3970					break;
3971				}
3972				/* resolve canonical enum fwd to full enum */
3973				d->map[cand_id] = type_id;
3974			}
3975		}
3976		break;
3977
3978	case BTF_KIND_FWD:
3979	case BTF_KIND_FLOAT:
3980		h = btf_hash_common(t);
3981		for_each_dedup_cand(d, hash_entry, h) {
3982			cand_id = hash_entry->value;
3983			cand = btf_type_by_id(d->btf, cand_id);
3984			if (btf_equal_common(t, cand)) {
3985				new_id = cand_id;
3986				break;
3987			}
3988		}
3989		break;
3990
3991	default:
3992		return -EINVAL;
3993	}
3994
3995	d->map[type_id] = new_id;
3996	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3997		return -ENOMEM;
3998
3999	return 0;
4000}
4001
4002static int btf_dedup_prim_types(struct btf_dedup *d)
4003{
4004	int i, err;
4005
4006	for (i = 0; i < d->btf->nr_types; i++) {
4007		err = btf_dedup_prim_type(d, d->btf->start_id + i);
4008		if (err)
4009			return err;
4010	}
4011	return 0;
4012}
4013
4014/*
4015 * Check whether type is already mapped into canonical one (could be to itself).
4016 */
4017static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
4018{
4019	return d->map[type_id] <= BTF_MAX_NR_TYPES;
4020}
4021
4022/*
4023 * Resolve type ID into its canonical type ID, if any; otherwise return original
4024 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
4025 * STRUCT/UNION link and resolve it into canonical type ID as well.
4026 */
4027static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
4028{
4029	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4030		type_id = d->map[type_id];
4031	return type_id;
4032}
4033
4034/*
4035 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
4036 * type ID.
4037 */
4038static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
4039{
4040	__u32 orig_type_id = type_id;
4041
4042	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4043		return type_id;
4044
4045	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4046		type_id = d->map[type_id];
4047
4048	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4049		return type_id;
4050
4051	return orig_type_id;
4052}
4053
4054
4055static inline __u16 btf_fwd_kind(struct btf_type *t)
4056{
4057	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
4058}
4059
4060/* Check if given two types are identical ARRAY definitions */
4061static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
4062{
4063	struct btf_type *t1, *t2;
4064
4065	t1 = btf_type_by_id(d->btf, id1);
4066	t2 = btf_type_by_id(d->btf, id2);
4067	if (!btf_is_array(t1) || !btf_is_array(t2))
4068		return false;
4069
4070	return btf_equal_array(t1, t2);
4071}
4072
4073/* Check if given two types are identical STRUCT/UNION definitions */
4074static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
4075{
4076	const struct btf_member *m1, *m2;
4077	struct btf_type *t1, *t2;
4078	int n, i;
4079
4080	t1 = btf_type_by_id(d->btf, id1);
4081	t2 = btf_type_by_id(d->btf, id2);
4082
4083	if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
4084		return false;
4085
4086	if (!btf_shallow_equal_struct(t1, t2))
4087		return false;
4088
4089	m1 = btf_members(t1);
4090	m2 = btf_members(t2);
4091	for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
4092		if (m1->type != m2->type &&
4093		    !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
4094		    !btf_dedup_identical_structs(d, m1->type, m2->type))
4095			return false;
4096	}
4097	return true;
4098}
4099
4100/*
4101 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
4102 * call it "candidate graph" in this description for brevity) to a type graph
4103 * formed by (potential) canonical struct/union ("canonical graph" for brevity
4104 * here, though keep in mind that not all types in canonical graph are
4105 * necessarily canonical representatives themselves, some of them might be
4106 * duplicates or its uniqueness might not have been established yet).
4107 * Returns:
4108 *  - >0, if type graphs are equivalent;
4109 *  -  0, if not equivalent;
4110 *  - <0, on error.
4111 *
4112 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
4113 * equivalence of BTF types at each step. If at any point BTF types in candidate
4114 * and canonical graphs are not compatible structurally, whole graphs are
4115 * incompatible. If types are structurally equivalent (i.e., all information
4116 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
4117 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
4118 * If a type references other types, then those referenced types are checked
4119 * for equivalence recursively.
4120 *
4121 * During DFS traversal, if we find that for current `canon_id` type we
4122 * already have some mapping in hypothetical map, we check for two possible
4123 * situations:
4124 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
4125 *     happen when type graphs have cycles. In this case we assume those two
4126 *     types are equivalent.
4127 *   - `canon_id` is mapped to different type. This is contradiction in our
4128 *     hypothetical mapping, because same graph in canonical graph corresponds
4129 *     to two different types in candidate graph, which for equivalent type
4130 *     graphs shouldn't happen. This condition terminates equivalence check
4131 *     with negative result.
4132 *
4133 * If type graphs traversal exhausts types to check and find no contradiction,
4134 * then type graphs are equivalent.
4135 *
4136 * When checking types for equivalence, there is one special case: FWD types.
4137 * If FWD type resolution is allowed and one of the types (either from canonical
4138 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
4139 * flag) and their names match, hypothetical mapping is updated to point from
4140 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
4141 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
4142 *
4143 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
4144 * if there are two exactly named (or anonymous) structs/unions that are
4145 * compatible structurally, one of which has FWD field, while other is concrete
4146 * STRUCT/UNION, but according to C sources they are different structs/unions
4147 * that are referencing different types with the same name. This is extremely
4148 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
4149 * this logic is causing problems.
4150 *
4151 * Doing FWD resolution means that both candidate and/or canonical graphs can
4152 * consists of portions of the graph that come from multiple compilation units.
4153 * This is due to the fact that types within single compilation unit are always
4154 * deduplicated and FWDs are already resolved, if referenced struct/union
4155 * definiton is available. So, if we had unresolved FWD and found corresponding
4156 * STRUCT/UNION, they will be from different compilation units. This
4157 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
4158 * type graph will likely have at least two different BTF types that describe
4159 * same type (e.g., most probably there will be two different BTF types for the
4160 * same 'int' primitive type) and could even have "overlapping" parts of type
4161 * graph that describe same subset of types.
4162 *
4163 * This in turn means that our assumption that each type in canonical graph
4164 * must correspond to exactly one type in candidate graph might not hold
4165 * anymore and will make it harder to detect contradictions using hypothetical
4166 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
4167 * resolution only in canonical graph. FWDs in candidate graphs are never
4168 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
4169 * that can occur:
4170 *   - Both types in canonical and candidate graphs are FWDs. If they are
4171 *     structurally equivalent, then they can either be both resolved to the
4172 *     same STRUCT/UNION or not resolved at all. In both cases they are
4173 *     equivalent and there is no need to resolve FWD on candidate side.
4174 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4175 *     so nothing to resolve as well, algorithm will check equivalence anyway.
4176 *   - Type in canonical graph is FWD, while type in candidate is concrete
4177 *     STRUCT/UNION. In this case candidate graph comes from single compilation
4178 *     unit, so there is exactly one BTF type for each unique C type. After
4179 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
4180 *     in canonical graph mapping to single BTF type in candidate graph, but
4181 *     because hypothetical mapping maps from canonical to candidate types, it's
4182 *     alright, and we still maintain the property of having single `canon_id`
4183 *     mapping to single `cand_id` (there could be two different `canon_id`
4184 *     mapped to the same `cand_id`, but it's not contradictory).
4185 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4186 *     graph is FWD. In this case we are just going to check compatibility of
4187 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4188 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4189 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4190 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4191 *     canonical graph.
4192 */
4193static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4194			      __u32 canon_id)
4195{
4196	struct btf_type *cand_type;
4197	struct btf_type *canon_type;
4198	__u32 hypot_type_id;
4199	__u16 cand_kind;
4200	__u16 canon_kind;
4201	int i, eq;
4202
4203	/* if both resolve to the same canonical, they must be equivalent */
4204	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4205		return 1;
4206
4207	canon_id = resolve_fwd_id(d, canon_id);
4208
4209	hypot_type_id = d->hypot_map[canon_id];
4210	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4211		if (hypot_type_id == cand_id)
4212			return 1;
4213		/* In some cases compiler will generate different DWARF types
4214		 * for *identical* array type definitions and use them for
4215		 * different fields within the *same* struct. This breaks type
4216		 * equivalence check, which makes an assumption that candidate
4217		 * types sub-graph has a consistent and deduped-by-compiler
4218		 * types within a single CU. So work around that by explicitly
4219		 * allowing identical array types here.
4220		 */
4221		if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4222			return 1;
4223		/* It turns out that similar situation can happen with
4224		 * struct/union sometimes, sigh... Handle the case where
4225		 * structs/unions are exactly the same, down to the referenced
4226		 * type IDs. Anything more complicated (e.g., if referenced
4227		 * types are different, but equivalent) is *way more*
4228		 * complicated and requires a many-to-many equivalence mapping.
4229		 */
4230		if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4231			return 1;
4232		return 0;
4233	}
4234
4235	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4236		return -ENOMEM;
4237
4238	cand_type = btf_type_by_id(d->btf, cand_id);
4239	canon_type = btf_type_by_id(d->btf, canon_id);
4240	cand_kind = btf_kind(cand_type);
4241	canon_kind = btf_kind(canon_type);
4242
4243	if (cand_type->name_off != canon_type->name_off)
4244		return 0;
4245
4246	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4247	if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
 
4248	    && cand_kind != canon_kind) {
4249		__u16 real_kind;
4250		__u16 fwd_kind;
4251
4252		if (cand_kind == BTF_KIND_FWD) {
4253			real_kind = canon_kind;
4254			fwd_kind = btf_fwd_kind(cand_type);
4255		} else {
4256			real_kind = cand_kind;
4257			fwd_kind = btf_fwd_kind(canon_type);
4258			/* we'd need to resolve base FWD to STRUCT/UNION */
4259			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4260				d->hypot_adjust_canon = true;
4261		}
4262		return fwd_kind == real_kind;
4263	}
4264
4265	if (cand_kind != canon_kind)
4266		return 0;
4267
4268	switch (cand_kind) {
4269	case BTF_KIND_INT:
4270		return btf_equal_int_tag(cand_type, canon_type);
4271
4272	case BTF_KIND_ENUM:
4273	case BTF_KIND_ENUM64:
4274		return btf_compat_enum(cand_type, canon_type);
 
 
4275
4276	case BTF_KIND_FWD:
4277	case BTF_KIND_FLOAT:
4278		return btf_equal_common(cand_type, canon_type);
4279
4280	case BTF_KIND_CONST:
4281	case BTF_KIND_VOLATILE:
4282	case BTF_KIND_RESTRICT:
4283	case BTF_KIND_PTR:
4284	case BTF_KIND_TYPEDEF:
4285	case BTF_KIND_FUNC:
4286	case BTF_KIND_TYPE_TAG:
4287		if (cand_type->info != canon_type->info)
4288			return 0;
4289		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4290
4291	case BTF_KIND_ARRAY: {
4292		const struct btf_array *cand_arr, *canon_arr;
4293
4294		if (!btf_compat_array(cand_type, canon_type))
4295			return 0;
4296		cand_arr = btf_array(cand_type);
4297		canon_arr = btf_array(canon_type);
4298		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
 
4299		if (eq <= 0)
4300			return eq;
4301		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4302	}
4303
4304	case BTF_KIND_STRUCT:
4305	case BTF_KIND_UNION: {
4306		const struct btf_member *cand_m, *canon_m;
4307		__u16 vlen;
4308
4309		if (!btf_shallow_equal_struct(cand_type, canon_type))
4310			return 0;
4311		vlen = btf_vlen(cand_type);
4312		cand_m = btf_members(cand_type);
4313		canon_m = btf_members(canon_type);
4314		for (i = 0; i < vlen; i++) {
4315			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4316			if (eq <= 0)
4317				return eq;
4318			cand_m++;
4319			canon_m++;
4320		}
4321
4322		return 1;
4323	}
4324
4325	case BTF_KIND_FUNC_PROTO: {
4326		const struct btf_param *cand_p, *canon_p;
4327		__u16 vlen;
4328
4329		if (!btf_compat_fnproto(cand_type, canon_type))
4330			return 0;
4331		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4332		if (eq <= 0)
4333			return eq;
4334		vlen = btf_vlen(cand_type);
4335		cand_p = btf_params(cand_type);
4336		canon_p = btf_params(canon_type);
4337		for (i = 0; i < vlen; i++) {
4338			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4339			if (eq <= 0)
4340				return eq;
4341			cand_p++;
4342			canon_p++;
4343		}
4344		return 1;
4345	}
4346
4347	default:
4348		return -EINVAL;
4349	}
4350	return 0;
4351}
4352
4353/*
4354 * Use hypothetical mapping, produced by successful type graph equivalence
4355 * check, to augment existing struct/union canonical mapping, where possible.
4356 *
4357 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4358 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4359 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4360 * we are recording the mapping anyway. As opposed to carefulness required
4361 * for struct/union correspondence mapping (described below), for FWD resolution
4362 * it's not important, as by the time that FWD type (reference type) will be
4363 * deduplicated all structs/unions will be deduped already anyway.
4364 *
4365 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4366 * not required for correctness. It needs to be done carefully to ensure that
4367 * struct/union from candidate's type graph is not mapped into corresponding
4368 * struct/union from canonical type graph that itself hasn't been resolved into
4369 * canonical representative. The only guarantee we have is that canonical
4370 * struct/union was determined as canonical and that won't change. But any
4371 * types referenced through that struct/union fields could have been not yet
4372 * resolved, so in case like that it's too early to establish any kind of
4373 * correspondence between structs/unions.
4374 *
4375 * No canonical correspondence is derived for primitive types (they are already
4376 * deduplicated completely already anyway) or reference types (they rely on
4377 * stability of struct/union canonical relationship for equivalence checks).
4378 */
4379static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4380{
4381	__u32 canon_type_id, targ_type_id;
4382	__u16 t_kind, c_kind;
4383	__u32 t_id, c_id;
4384	int i;
4385
4386	for (i = 0; i < d->hypot_cnt; i++) {
4387		canon_type_id = d->hypot_list[i];
4388		targ_type_id = d->hypot_map[canon_type_id];
4389		t_id = resolve_type_id(d, targ_type_id);
4390		c_id = resolve_type_id(d, canon_type_id);
4391		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4392		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4393		/*
4394		 * Resolve FWD into STRUCT/UNION.
4395		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4396		 * mapped to canonical representative (as opposed to
4397		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4398		 * eventually that struct is going to be mapped and all resolved
4399		 * FWDs will automatically resolve to correct canonical
4400		 * representative. This will happen before ref type deduping,
4401		 * which critically depends on stability of these mapping. This
4402		 * stability is not a requirement for STRUCT/UNION equivalence
4403		 * checks, though.
4404		 */
4405
4406		/* if it's the split BTF case, we still need to point base FWD
4407		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4408		 * will be resolved against base FWD. If we don't point base
4409		 * canonical FWD to the resolved STRUCT/UNION, then all the
4410		 * FWDs in split BTF won't be correctly resolved to a proper
4411		 * STRUCT/UNION.
4412		 */
4413		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4414			d->map[c_id] = t_id;
4415
4416		/* if graph equivalence determined that we'd need to adjust
4417		 * base canonical types, then we need to only point base FWDs
4418		 * to STRUCTs/UNIONs and do no more modifications. For all
4419		 * other purposes the type graphs were not equivalent.
4420		 */
4421		if (d->hypot_adjust_canon)
4422			continue;
4423
4424		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4425			d->map[t_id] = c_id;
4426
4427		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4428		    c_kind != BTF_KIND_FWD &&
4429		    is_type_mapped(d, c_id) &&
4430		    !is_type_mapped(d, t_id)) {
4431			/*
4432			 * as a perf optimization, we can map struct/union
4433			 * that's part of type graph we just verified for
4434			 * equivalence. We can do that for struct/union that has
4435			 * canonical representative only, though.
4436			 */
4437			d->map[t_id] = c_id;
4438		}
4439	}
4440}
4441
4442/*
4443 * Deduplicate struct/union types.
4444 *
4445 * For each struct/union type its type signature hash is calculated, taking
4446 * into account type's name, size, number, order and names of fields, but
4447 * ignoring type ID's referenced from fields, because they might not be deduped
4448 * completely until after reference types deduplication phase. This type hash
4449 * is used to iterate over all potential canonical types, sharing same hash.
4450 * For each canonical candidate we check whether type graphs that they form
4451 * (through referenced types in fields and so on) are equivalent using algorithm
4452 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4453 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4454 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4455 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4456 * potentially map other structs/unions to their canonical representatives,
4457 * if such relationship hasn't yet been established. This speeds up algorithm
4458 * by eliminating some of the duplicate work.
4459 *
4460 * If no matching canonical representative was found, struct/union is marked
4461 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4462 * for further look ups.
4463 */
4464static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4465{
4466	struct btf_type *cand_type, *t;
4467	struct hashmap_entry *hash_entry;
4468	/* if we don't find equivalent type, then we are canonical */
4469	__u32 new_id = type_id;
4470	__u16 kind;
4471	long h;
4472
4473	/* already deduped or is in process of deduping (loop detected) */
4474	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4475		return 0;
4476
4477	t = btf_type_by_id(d->btf, type_id);
4478	kind = btf_kind(t);
4479
4480	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4481		return 0;
4482
4483	h = btf_hash_struct(t);
4484	for_each_dedup_cand(d, hash_entry, h) {
4485		__u32 cand_id = hash_entry->value;
4486		int eq;
4487
4488		/*
4489		 * Even though btf_dedup_is_equiv() checks for
4490		 * btf_shallow_equal_struct() internally when checking two
4491		 * structs (unions) for equivalence, we need to guard here
4492		 * from picking matching FWD type as a dedup candidate.
4493		 * This can happen due to hash collision. In such case just
4494		 * relying on btf_dedup_is_equiv() would lead to potentially
4495		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4496		 * FWD and compatible STRUCT/UNION are considered equivalent.
4497		 */
4498		cand_type = btf_type_by_id(d->btf, cand_id);
4499		if (!btf_shallow_equal_struct(t, cand_type))
4500			continue;
4501
4502		btf_dedup_clear_hypot_map(d);
4503		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4504		if (eq < 0)
4505			return eq;
4506		if (!eq)
4507			continue;
4508		btf_dedup_merge_hypot_map(d);
4509		if (d->hypot_adjust_canon) /* not really equivalent */
4510			continue;
4511		new_id = cand_id;
 
4512		break;
4513	}
4514
4515	d->map[type_id] = new_id;
4516	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4517		return -ENOMEM;
4518
4519	return 0;
4520}
4521
4522static int btf_dedup_struct_types(struct btf_dedup *d)
4523{
4524	int i, err;
4525
4526	for (i = 0; i < d->btf->nr_types; i++) {
4527		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4528		if (err)
4529			return err;
4530	}
4531	return 0;
4532}
4533
4534/*
4535 * Deduplicate reference type.
4536 *
4537 * Once all primitive and struct/union types got deduplicated, we can easily
4538 * deduplicate all other (reference) BTF types. This is done in two steps:
4539 *
4540 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4541 * resolution can be done either immediately for primitive or struct/union types
4542 * (because they were deduped in previous two phases) or recursively for
4543 * reference types. Recursion will always terminate at either primitive or
4544 * struct/union type, at which point we can "unwind" chain of reference types
4545 * one by one. There is no danger of encountering cycles because in C type
4546 * system the only way to form type cycle is through struct/union, so any chain
4547 * of reference types, even those taking part in a type cycle, will inevitably
4548 * reach struct/union at some point.
4549 *
4550 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4551 * becomes "stable", in the sense that no further deduplication will cause
4552 * any changes to it. With that, it's now possible to calculate type's signature
4553 * hash (this time taking into account referenced type IDs) and loop over all
4554 * potential canonical representatives. If no match was found, current type
4555 * will become canonical representative of itself and will be added into
4556 * btf_dedup->dedup_table as another possible canonical representative.
4557 */
4558static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4559{
4560	struct hashmap_entry *hash_entry;
4561	__u32 new_id = type_id, cand_id;
4562	struct btf_type *t, *cand;
4563	/* if we don't find equivalent type, then we are representative type */
4564	int ref_type_id;
4565	long h;
4566
4567	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4568		return -ELOOP;
4569	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4570		return resolve_type_id(d, type_id);
4571
4572	t = btf_type_by_id(d->btf, type_id);
4573	d->map[type_id] = BTF_IN_PROGRESS_ID;
4574
4575	switch (btf_kind(t)) {
4576	case BTF_KIND_CONST:
4577	case BTF_KIND_VOLATILE:
4578	case BTF_KIND_RESTRICT:
4579	case BTF_KIND_PTR:
4580	case BTF_KIND_TYPEDEF:
4581	case BTF_KIND_FUNC:
4582	case BTF_KIND_TYPE_TAG:
4583		ref_type_id = btf_dedup_ref_type(d, t->type);
4584		if (ref_type_id < 0)
4585			return ref_type_id;
4586		t->type = ref_type_id;
4587
4588		h = btf_hash_common(t);
4589		for_each_dedup_cand(d, hash_entry, h) {
4590			cand_id = hash_entry->value;
4591			cand = btf_type_by_id(d->btf, cand_id);
4592			if (btf_equal_common(t, cand)) {
4593				new_id = cand_id;
4594				break;
4595			}
4596		}
4597		break;
4598
4599	case BTF_KIND_DECL_TAG:
4600		ref_type_id = btf_dedup_ref_type(d, t->type);
4601		if (ref_type_id < 0)
4602			return ref_type_id;
4603		t->type = ref_type_id;
4604
4605		h = btf_hash_int_decl_tag(t);
4606		for_each_dedup_cand(d, hash_entry, h) {
4607			cand_id = hash_entry->value;
4608			cand = btf_type_by_id(d->btf, cand_id);
4609			if (btf_equal_int_tag(t, cand)) {
4610				new_id = cand_id;
4611				break;
4612			}
4613		}
4614		break;
4615
4616	case BTF_KIND_ARRAY: {
4617		struct btf_array *info = btf_array(t);
4618
4619		ref_type_id = btf_dedup_ref_type(d, info->type);
4620		if (ref_type_id < 0)
4621			return ref_type_id;
4622		info->type = ref_type_id;
4623
4624		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4625		if (ref_type_id < 0)
4626			return ref_type_id;
4627		info->index_type = ref_type_id;
4628
4629		h = btf_hash_array(t);
4630		for_each_dedup_cand(d, hash_entry, h) {
4631			cand_id = hash_entry->value;
4632			cand = btf_type_by_id(d->btf, cand_id);
4633			if (btf_equal_array(t, cand)) {
4634				new_id = cand_id;
4635				break;
4636			}
4637		}
4638		break;
4639	}
4640
4641	case BTF_KIND_FUNC_PROTO: {
4642		struct btf_param *param;
4643		__u16 vlen;
4644		int i;
4645
4646		ref_type_id = btf_dedup_ref_type(d, t->type);
4647		if (ref_type_id < 0)
4648			return ref_type_id;
4649		t->type = ref_type_id;
4650
4651		vlen = btf_vlen(t);
4652		param = btf_params(t);
4653		for (i = 0; i < vlen; i++) {
4654			ref_type_id = btf_dedup_ref_type(d, param->type);
4655			if (ref_type_id < 0)
4656				return ref_type_id;
4657			param->type = ref_type_id;
4658			param++;
4659		}
4660
4661		h = btf_hash_fnproto(t);
4662		for_each_dedup_cand(d, hash_entry, h) {
4663			cand_id = hash_entry->value;
4664			cand = btf_type_by_id(d->btf, cand_id);
4665			if (btf_equal_fnproto(t, cand)) {
4666				new_id = cand_id;
4667				break;
4668			}
4669		}
4670		break;
4671	}
4672
4673	default:
4674		return -EINVAL;
4675	}
4676
4677	d->map[type_id] = new_id;
4678	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4679		return -ENOMEM;
4680
4681	return new_id;
4682}
4683
4684static int btf_dedup_ref_types(struct btf_dedup *d)
4685{
4686	int i, err;
4687
4688	for (i = 0; i < d->btf->nr_types; i++) {
4689		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4690		if (err < 0)
4691			return err;
4692	}
4693	/* we won't need d->dedup_table anymore */
4694	hashmap__free(d->dedup_table);
4695	d->dedup_table = NULL;
4696	return 0;
4697}
4698
4699/*
4700 * Collect a map from type names to type ids for all canonical structs
4701 * and unions. If the same name is shared by several canonical types
4702 * use a special value 0 to indicate this fact.
4703 */
4704static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map)
4705{
4706	__u32 nr_types = btf__type_cnt(d->btf);
4707	struct btf_type *t;
4708	__u32 type_id;
4709	__u16 kind;
4710	int err;
4711
4712	/*
4713	 * Iterate over base and split module ids in order to get all
4714	 * available structs in the map.
4715	 */
4716	for (type_id = 1; type_id < nr_types; ++type_id) {
4717		t = btf_type_by_id(d->btf, type_id);
4718		kind = btf_kind(t);
4719
4720		if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4721			continue;
4722
4723		/* Skip non-canonical types */
4724		if (type_id != d->map[type_id])
4725			continue;
4726
4727		err = hashmap__add(names_map, t->name_off, type_id);
4728		if (err == -EEXIST)
4729			err = hashmap__set(names_map, t->name_off, 0, NULL, NULL);
4730
4731		if (err)
4732			return err;
4733	}
4734
4735	return 0;
4736}
4737
4738static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id)
4739{
4740	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4741	enum btf_fwd_kind fwd_kind = btf_kflag(t);
4742	__u16 cand_kind, kind = btf_kind(t);
4743	struct btf_type *cand_t;
4744	uintptr_t cand_id;
4745
4746	if (kind != BTF_KIND_FWD)
4747		return 0;
4748
4749	/* Skip if this FWD already has a mapping */
4750	if (type_id != d->map[type_id])
4751		return 0;
4752
4753	if (!hashmap__find(names_map, t->name_off, &cand_id))
4754		return 0;
4755
4756	/* Zero is a special value indicating that name is not unique */
4757	if (!cand_id)
4758		return 0;
4759
4760	cand_t = btf_type_by_id(d->btf, cand_id);
4761	cand_kind = btf_kind(cand_t);
4762	if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) ||
4763	    (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION))
4764		return 0;
4765
4766	d->map[type_id] = cand_id;
4767
4768	return 0;
4769}
4770
4771/*
4772 * Resolve unambiguous forward declarations.
4773 *
4774 * The lion's share of all FWD declarations is resolved during
4775 * `btf_dedup_struct_types` phase when different type graphs are
4776 * compared against each other. However, if in some compilation unit a
4777 * FWD declaration is not a part of a type graph compared against
4778 * another type graph that declaration's canonical type would not be
4779 * changed. Example:
4780 *
4781 * CU #1:
4782 *
4783 * struct foo;
4784 * struct foo *some_global;
4785 *
4786 * CU #2:
4787 *
4788 * struct foo { int u; };
4789 * struct foo *another_global;
4790 *
4791 * After `btf_dedup_struct_types` the BTF looks as follows:
4792 *
4793 * [1] STRUCT 'foo' size=4 vlen=1 ...
4794 * [2] INT 'int' size=4 ...
4795 * [3] PTR '(anon)' type_id=1
4796 * [4] FWD 'foo' fwd_kind=struct
4797 * [5] PTR '(anon)' type_id=4
4798 *
4799 * This pass assumes that such FWD declarations should be mapped to
4800 * structs or unions with identical name in case if the name is not
4801 * ambiguous.
4802 */
4803static int btf_dedup_resolve_fwds(struct btf_dedup *d)
4804{
4805	int i, err;
4806	struct hashmap *names_map;
4807
4808	names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
4809	if (IS_ERR(names_map))
4810		return PTR_ERR(names_map);
4811
4812	err = btf_dedup_fill_unique_names_map(d, names_map);
4813	if (err < 0)
4814		goto exit;
4815
4816	for (i = 0; i < d->btf->nr_types; i++) {
4817		err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i);
4818		if (err < 0)
4819			break;
4820	}
4821
4822exit:
4823	hashmap__free(names_map);
4824	return err;
4825}
4826
4827/*
4828 * Compact types.
4829 *
4830 * After we established for each type its corresponding canonical representative
4831 * type, we now can eliminate types that are not canonical and leave only
4832 * canonical ones layed out sequentially in memory by copying them over
4833 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4834 * a map from original type ID to a new compacted type ID, which will be used
4835 * during next phase to "fix up" type IDs, referenced from struct/union and
4836 * reference types.
4837 */
4838static int btf_dedup_compact_types(struct btf_dedup *d)
4839{
4840	__u32 *new_offs;
4841	__u32 next_type_id = d->btf->start_id;
4842	const struct btf_type *t;
4843	void *p;
4844	int i, id, len;
4845
4846	/* we are going to reuse hypot_map to store compaction remapping */
4847	d->hypot_map[0] = 0;
4848	/* base BTF types are not renumbered */
4849	for (id = 1; id < d->btf->start_id; id++)
4850		d->hypot_map[id] = id;
4851	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4852		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4853
4854	p = d->btf->types_data;
 
4855
4856	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4857		if (d->map[id] != id)
4858			continue;
4859
4860		t = btf__type_by_id(d->btf, id);
4861		len = btf_type_size(t);
4862		if (len < 0)
4863			return len;
4864
4865		memmove(p, t, len);
4866		d->hypot_map[id] = next_type_id;
4867		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4868		p += len;
4869		next_type_id++;
4870	}
4871
4872	/* shrink struct btf's internal types index and update btf_header */
4873	d->btf->nr_types = next_type_id - d->btf->start_id;
4874	d->btf->type_offs_cap = d->btf->nr_types;
4875	d->btf->hdr->type_len = p - d->btf->types_data;
4876	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4877				       sizeof(*new_offs));
4878	if (d->btf->type_offs_cap && !new_offs)
4879		return -ENOMEM;
4880	d->btf->type_offs = new_offs;
4881	d->btf->hdr->str_off = d->btf->hdr->type_len;
4882	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
 
 
 
 
 
 
4883	return 0;
4884}
4885
4886/*
4887 * Figure out final (deduplicated and compacted) type ID for provided original
4888 * `type_id` by first resolving it into corresponding canonical type ID and
4889 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4890 * which is populated during compaction phase.
4891 */
4892static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4893{
4894	struct btf_dedup *d = ctx;
4895	__u32 resolved_type_id, new_type_id;
4896
4897	resolved_type_id = resolve_type_id(d, *type_id);
4898	new_type_id = d->hypot_map[resolved_type_id];
4899	if (new_type_id > BTF_MAX_NR_TYPES)
4900		return -EINVAL;
4901
4902	*type_id = new_type_id;
4903	return 0;
4904}
4905
4906/*
4907 * Remap referenced type IDs into deduped type IDs.
4908 *
4909 * After BTF types are deduplicated and compacted, their final type IDs may
4910 * differ from original ones. The map from original to a corresponding
4911 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4912 * compaction phase. During remapping phase we are rewriting all type IDs
4913 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4914 * their final deduped type IDs.
4915 */
4916static int btf_dedup_remap_types(struct btf_dedup *d)
4917{
 
4918	int i, r;
4919
4920	for (i = 0; i < d->btf->nr_types; i++) {
4921		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4922
4923		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4924		if (r)
4925			return r;
4926	}
4927
4928	if (!d->btf_ext)
4929		return 0;
4930
4931	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4932	if (r)
4933		return r;
4934
4935	return 0;
4936}
4937
4938/*
4939 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4940 * data out of it to use for target BTF.
4941 */
4942struct btf *btf__load_vmlinux_btf(void)
4943{
4944	const char *sysfs_btf_path = "/sys/kernel/btf/vmlinux";
4945	/* fall back locations, trying to find vmlinux on disk */
4946	const char *locations[] = {
4947		"/boot/vmlinux-%1$s",
4948		"/lib/modules/%1$s/vmlinux-%1$s",
4949		"/lib/modules/%1$s/build/vmlinux",
4950		"/usr/lib/modules/%1$s/kernel/vmlinux",
4951		"/usr/lib/debug/boot/vmlinux-%1$s",
4952		"/usr/lib/debug/boot/vmlinux-%1$s.debug",
4953		"/usr/lib/debug/lib/modules/%1$s/vmlinux",
4954	};
4955	char path[PATH_MAX + 1];
4956	struct utsname buf;
4957	struct btf *btf;
4958	int i, err;
4959
4960	/* is canonical sysfs location accessible? */
4961	if (faccessat(AT_FDCWD, sysfs_btf_path, F_OK, AT_EACCESS) < 0) {
4962		pr_warn("kernel BTF is missing at '%s', was CONFIG_DEBUG_INFO_BTF enabled?\n",
4963			sysfs_btf_path);
4964	} else {
4965		btf = btf__parse(sysfs_btf_path, NULL);
4966		if (!btf) {
4967			err = -errno;
4968			pr_warn("failed to read kernel BTF from '%s': %d\n", sysfs_btf_path, err);
4969			return libbpf_err_ptr(err);
4970		}
4971		pr_debug("loaded kernel BTF from '%s'\n", sysfs_btf_path);
4972		return btf;
4973	}
4974
4975	/* try fallback locations */
4976	uname(&buf);
4977	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4978		snprintf(path, PATH_MAX, locations[i], buf.release);
4979
4980		if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
4981			continue;
4982
4983		btf = btf__parse(path, NULL);
4984		err = libbpf_get_error(btf);
4985		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4986		if (err)
4987			continue;
4988
4989		return btf;
4990	}
4991
4992	pr_warn("failed to find valid kernel BTF\n");
4993	return libbpf_err_ptr(-ESRCH);
4994}
4995
4996struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4997
4998struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4999{
5000	char path[80];
5001
5002	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
5003	return btf__parse_split(path, vmlinux_btf);
5004}
5005
5006int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
5007{
5008	int i, n, err;
5009
5010	switch (btf_kind(t)) {
5011	case BTF_KIND_INT:
5012	case BTF_KIND_FLOAT:
5013	case BTF_KIND_ENUM:
5014	case BTF_KIND_ENUM64:
5015		return 0;
5016
5017	case BTF_KIND_FWD:
5018	case BTF_KIND_CONST:
5019	case BTF_KIND_VOLATILE:
5020	case BTF_KIND_RESTRICT:
5021	case BTF_KIND_PTR:
5022	case BTF_KIND_TYPEDEF:
5023	case BTF_KIND_FUNC:
5024	case BTF_KIND_VAR:
5025	case BTF_KIND_DECL_TAG:
5026	case BTF_KIND_TYPE_TAG:
5027		return visit(&t->type, ctx);
 
 
5028
5029	case BTF_KIND_ARRAY: {
5030		struct btf_array *a = btf_array(t);
5031
5032		err = visit(&a->type, ctx);
5033		err = err ?: visit(&a->index_type, ctx);
5034		return err;
 
 
 
 
 
 
5035	}
5036
5037	case BTF_KIND_STRUCT:
5038	case BTF_KIND_UNION: {
5039		struct btf_member *m = btf_members(t);
 
5040
5041		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5042			err = visit(&m->type, ctx);
5043			if (err)
5044				return err;
 
 
5045		}
5046		return 0;
5047	}
5048
5049	case BTF_KIND_FUNC_PROTO: {
5050		struct btf_param *m = btf_params(t);
5051
5052		err = visit(&t->type, ctx);
5053		if (err)
5054			return err;
5055		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5056			err = visit(&m->type, ctx);
5057			if (err)
5058				return err;
5059		}
5060		return 0;
5061	}
5062
5063	case BTF_KIND_DATASEC: {
5064		struct btf_var_secinfo *m = btf_var_secinfos(t);
5065
5066		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5067			err = visit(&m->type, ctx);
5068			if (err)
5069				return err;
5070		}
5071		return 0;
5072	}
5073
5074	default:
5075		return -EINVAL;
5076	}
5077}
5078
5079int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
5080{
5081	int i, n, err;
5082
5083	err = visit(&t->name_off, ctx);
5084	if (err)
5085		return err;
5086
5087	switch (btf_kind(t)) {
5088	case BTF_KIND_STRUCT:
5089	case BTF_KIND_UNION: {
5090		struct btf_member *m = btf_members(t);
5091
5092		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5093			err = visit(&m->name_off, ctx);
5094			if (err)
5095				return err;
 
 
5096		}
5097		break;
5098	}
5099	case BTF_KIND_ENUM: {
5100		struct btf_enum *m = btf_enum(t);
5101
5102		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5103			err = visit(&m->name_off, ctx);
5104			if (err)
5105				return err;
5106		}
5107		break;
5108	}
5109	case BTF_KIND_ENUM64: {
5110		struct btf_enum64 *m = btf_enum64(t);
5111
5112		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5113			err = visit(&m->name_off, ctx);
5114			if (err)
5115				return err;
 
 
5116		}
5117		break;
5118	}
5119	case BTF_KIND_FUNC_PROTO: {
5120		struct btf_param *m = btf_params(t);
5121
5122		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
5123			err = visit(&m->name_off, ctx);
5124			if (err)
5125				return err;
5126		}
5127		break;
5128	}
5129	default:
5130		break;
5131	}
5132
5133	return 0;
5134}
5135
5136int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
5137{
5138	const struct btf_ext_info *seg;
5139	struct btf_ext_info_sec *sec;
5140	int i, err;
5141
5142	seg = &btf_ext->func_info;
5143	for_each_btf_ext_sec(seg, sec) {
5144		struct bpf_func_info_min *rec;
5145
5146		for_each_btf_ext_rec(seg, sec, i, rec) {
5147			err = visit(&rec->type_id, ctx);
5148			if (err < 0)
5149				return err;
5150		}
5151	}
5152
5153	seg = &btf_ext->core_relo_info;
5154	for_each_btf_ext_sec(seg, sec) {
5155		struct bpf_core_relo *rec;
5156
5157		for_each_btf_ext_rec(seg, sec, i, rec) {
5158			err = visit(&rec->type_id, ctx);
5159			if (err < 0)
5160				return err;
5161		}
5162	}
5163
5164	return 0;
5165}
5166
5167int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
 
 
 
 
5168{
5169	const struct btf_ext_info *seg;
5170	struct btf_ext_info_sec *sec;
5171	int i, err;
5172
5173	seg = &btf_ext->func_info;
5174	for_each_btf_ext_sec(seg, sec) {
5175		err = visit(&sec->sec_name_off, ctx);
5176		if (err)
5177			return err;
5178	}
 
 
 
 
 
 
 
 
 
5179
5180	seg = &btf_ext->line_info;
5181	for_each_btf_ext_sec(seg, sec) {
5182		struct bpf_line_info_min *rec;
5183
5184		err = visit(&sec->sec_name_off, ctx);
5185		if (err)
5186			return err;
5187
5188		for_each_btf_ext_rec(seg, sec, i, rec) {
5189			err = visit(&rec->file_name_off, ctx);
5190			if (err)
5191				return err;
5192			err = visit(&rec->line_off, ctx);
5193			if (err)
5194				return err;
5195		}
5196	}
5197
5198	seg = &btf_ext->core_relo_info;
5199	for_each_btf_ext_sec(seg, sec) {
5200		struct bpf_core_relo *rec;
 
5201
5202		err = visit(&sec->sec_name_off, ctx);
5203		if (err)
5204			return err;
 
5205
5206		for_each_btf_ext_rec(seg, sec, i, rec) {
5207			err = visit(&rec->access_str_off, ctx);
5208			if (err)
5209				return err;
5210		}
5211	}
5212
5213	return 0;
 
5214}
v5.9
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
 
   4#include <endian.h>
   5#include <stdio.h>
   6#include <stdlib.h>
   7#include <string.h>
   8#include <fcntl.h>
   9#include <unistd.h>
  10#include <errno.h>
  11#include <sys/utsname.h>
  12#include <sys/param.h>
  13#include <sys/stat.h>
  14#include <linux/kernel.h>
  15#include <linux/err.h>
  16#include <linux/btf.h>
  17#include <gelf.h>
  18#include "btf.h"
  19#include "bpf.h"
  20#include "libbpf.h"
  21#include "libbpf_internal.h"
  22#include "hashmap.h"
  23
  24/* make sure libbpf doesn't use kernel-only integer typedefs */
  25#pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64
  26
  27#define BTF_MAX_NR_TYPES 0x7fffffffU
  28#define BTF_MAX_STR_OFFSET 0x7fffffffU
  29
  30static struct btf_type btf_void;
  31
  32struct btf {
  33	union {
  34		struct btf_header *hdr;
  35		void *data;
  36	};
  37	struct btf_type **types;
  38	const char *strings;
  39	void *nohdr_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40	__u32 nr_types;
  41	__u32 types_size;
  42	__u32 data_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43	int fd;
 
 
  44	int ptr_sz;
  45};
  46
  47static inline __u64 ptr_to_u64(const void *ptr)
  48{
  49	return (__u64) (unsigned long) ptr;
  50}
  51
  52static int btf_add_type(struct btf *btf, struct btf_type *t)
 
 
 
 
 
 
 
 
 
 
 
  53{
  54	if (btf->types_size - btf->nr_types < 2) {
  55		struct btf_type **new_types;
  56		__u32 expand_by, new_size;
 
 
  57
  58		if (btf->types_size == BTF_MAX_NR_TYPES)
  59			return -E2BIG;
 
  60
  61		expand_by = max(btf->types_size >> 2, 16U);
  62		new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by);
 
 
 
 
 
 
 
 
 
 
  63
  64		new_types = realloc(btf->types, sizeof(*new_types) * new_size);
  65		if (!new_types)
  66			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67
  68		if (btf->nr_types == 0)
  69			new_types[0] = &btf_void;
 
 
 
  70
  71		btf->types = new_types;
  72		btf->types_size = new_size;
  73	}
  74
  75	btf->types[++(btf->nr_types)] = t;
 
 
  76
 
  77	return 0;
  78}
  79
 
 
 
 
 
 
 
 
 
 
  80static int btf_parse_hdr(struct btf *btf)
  81{
  82	const struct btf_header *hdr = btf->hdr;
  83	__u32 meta_left;
  84
  85	if (btf->data_size < sizeof(struct btf_header)) {
  86		pr_debug("BTF header not found\n");
  87		return -EINVAL;
  88	}
  89
  90	if (hdr->magic != BTF_MAGIC) {
  91		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
  92		return -EINVAL;
  93	}
  94
  95	if (hdr->version != BTF_VERSION) {
  96		pr_debug("Unsupported BTF version:%u\n", hdr->version);
  97		return -ENOTSUP;
  98	}
  99
 100	if (hdr->flags) {
 101		pr_debug("Unsupported BTF flags:%x\n", hdr->flags);
 102		return -ENOTSUP;
 103	}
 104
 105	meta_left = btf->data_size - sizeof(*hdr);
 106	if (!meta_left) {
 107		pr_debug("BTF has no data\n");
 108		return -EINVAL;
 109	}
 110
 111	if (meta_left < hdr->type_off) {
 112		pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
 
 113		return -EINVAL;
 114	}
 115
 116	if (meta_left < hdr->str_off) {
 117		pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
 
 118		return -EINVAL;
 119	}
 120
 121	if (hdr->type_off >= hdr->str_off) {
 122		pr_debug("BTF type section offset >= string section offset. No type?\n");
 
 123		return -EINVAL;
 124	}
 125
 126	if (hdr->type_off & 0x02) {
 127		pr_debug("BTF type section is not aligned to 4 bytes\n");
 128		return -EINVAL;
 129	}
 130
 131	btf->nohdr_data = btf->hdr + 1;
 132
 133	return 0;
 134}
 135
 136static int btf_parse_str_sec(struct btf *btf)
 137{
 138	const struct btf_header *hdr = btf->hdr;
 139	const char *start = btf->nohdr_data + hdr->str_off;
 140	const char *end = start + btf->hdr->str_len;
 141
 142	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
 143	    start[0] || end[-1]) {
 
 
 
 
 
 144		pr_debug("Invalid BTF string section\n");
 145		return -EINVAL;
 146	}
 147
 148	btf->strings = start;
 149
 150	return 0;
 151}
 152
 153static int btf_type_size(struct btf_type *t)
 154{
 155	int base_size = sizeof(struct btf_type);
 156	__u16 vlen = btf_vlen(t);
 157
 158	switch (btf_kind(t)) {
 159	case BTF_KIND_FWD:
 160	case BTF_KIND_CONST:
 161	case BTF_KIND_VOLATILE:
 162	case BTF_KIND_RESTRICT:
 163	case BTF_KIND_PTR:
 164	case BTF_KIND_TYPEDEF:
 165	case BTF_KIND_FUNC:
 
 
 166		return base_size;
 167	case BTF_KIND_INT:
 168		return base_size + sizeof(__u32);
 169	case BTF_KIND_ENUM:
 170		return base_size + vlen * sizeof(struct btf_enum);
 
 
 171	case BTF_KIND_ARRAY:
 172		return base_size + sizeof(struct btf_array);
 173	case BTF_KIND_STRUCT:
 174	case BTF_KIND_UNION:
 175		return base_size + vlen * sizeof(struct btf_member);
 176	case BTF_KIND_FUNC_PROTO:
 177		return base_size + vlen * sizeof(struct btf_param);
 178	case BTF_KIND_VAR:
 179		return base_size + sizeof(struct btf_var);
 180	case BTF_KIND_DATASEC:
 181		return base_size + vlen * sizeof(struct btf_var_secinfo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182	default:
 183		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 184		return -EINVAL;
 185	}
 186}
 187
 188static int btf_parse_type_sec(struct btf *btf)
 189{
 190	struct btf_header *hdr = btf->hdr;
 191	void *nohdr_data = btf->nohdr_data;
 192	void *next_type = nohdr_data + hdr->type_off;
 193	void *end_type = nohdr_data + hdr->str_off;
 194
 195	while (next_type < end_type) {
 196		struct btf_type *t = next_type;
 197		int type_size;
 198		int err;
 199
 200		type_size = btf_type_size(t);
 201		if (type_size < 0)
 202			return type_size;
 
 
 
 
 
 
 
 
 
 
 
 
 203		next_type += type_size;
 204		err = btf_add_type(btf, t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205		if (err)
 206			return err;
 
 207	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 209	return 0;
 210}
 211
 212__u32 btf__get_nr_types(const struct btf *btf)
 
 
 
 
 213{
 214	return btf->nr_types;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215}
 216
 217const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 218{
 219	if (type_id > btf->nr_types)
 220		return NULL;
 221
 222	return btf->types[type_id];
 223}
 224
 225static int determine_ptr_size(const struct btf *btf)
 226{
 
 
 
 
 
 
 
 
 
 
 
 
 
 227	const struct btf_type *t;
 228	const char *name;
 229	int i;
 
 
 
 230
 231	for (i = 1; i <= btf->nr_types; i++) {
 
 232		t = btf__type_by_id(btf, i);
 233		if (!btf_is_int(t))
 234			continue;
 235
 
 
 
 236		name = btf__name_by_offset(btf, t->name_off);
 237		if (!name)
 238			continue;
 239
 240		if (strcmp(name, "long int") == 0 ||
 241		    strcmp(name, "long unsigned int") == 0) {
 242			if (t->size != 4 && t->size != 8)
 243				continue;
 244			return t->size;
 245		}
 246	}
 247
 248	return -1;
 249}
 250
 251static size_t btf_ptr_sz(const struct btf *btf)
 252{
 253	if (!btf->ptr_sz)
 254		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 255	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 256}
 257
 258/* Return pointer size this BTF instance assumes. The size is heuristically
 259 * determined by looking for 'long' or 'unsigned long' integer type and
 260 * recording its size in bytes. If BTF type information doesn't have any such
 261 * type, this function returns 0. In the latter case, native architecture's
 262 * pointer size is assumed, so will be either 4 or 8, depending on
 263 * architecture that libbpf was compiled for. It's possible to override
 264 * guessed value by using btf__set_pointer_size() API.
 265 */
 266size_t btf__pointer_size(const struct btf *btf)
 267{
 268	if (!btf->ptr_sz)
 269		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 270
 271	if (btf->ptr_sz < 0)
 272		/* not enough BTF type info to guess */
 273		return 0;
 274
 275	return btf->ptr_sz;
 276}
 277
 278/* Override or set pointer size in bytes. Only values of 4 and 8 are
 279 * supported.
 280 */
 281int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 282{
 283	if (ptr_sz != 4 && ptr_sz != 8)
 284		return -EINVAL;
 285	btf->ptr_sz = ptr_sz;
 286	return 0;
 287}
 288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289static bool btf_type_is_void(const struct btf_type *t)
 290{
 291	return t == &btf_void || btf_is_fwd(t);
 292}
 293
 294static bool btf_type_is_void_or_null(const struct btf_type *t)
 295{
 296	return !t || btf_type_is_void(t);
 297}
 298
 299#define MAX_RESOLVE_DEPTH 32
 300
 301__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 302{
 303	const struct btf_array *array;
 304	const struct btf_type *t;
 305	__u32 nelems = 1;
 306	__s64 size = -1;
 307	int i;
 308
 309	t = btf__type_by_id(btf, type_id);
 310	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
 311	     i++) {
 312		switch (btf_kind(t)) {
 313		case BTF_KIND_INT:
 314		case BTF_KIND_STRUCT:
 315		case BTF_KIND_UNION:
 316		case BTF_KIND_ENUM:
 
 317		case BTF_KIND_DATASEC:
 
 318			size = t->size;
 319			goto done;
 320		case BTF_KIND_PTR:
 321			size = btf_ptr_sz(btf);
 322			goto done;
 323		case BTF_KIND_TYPEDEF:
 324		case BTF_KIND_VOLATILE:
 325		case BTF_KIND_CONST:
 326		case BTF_KIND_RESTRICT:
 327		case BTF_KIND_VAR:
 
 
 328			type_id = t->type;
 329			break;
 330		case BTF_KIND_ARRAY:
 331			array = btf_array(t);
 332			if (nelems && array->nelems > UINT32_MAX / nelems)
 333				return -E2BIG;
 334			nelems *= array->nelems;
 335			type_id = array->type;
 336			break;
 337		default:
 338			return -EINVAL;
 339		}
 340
 341		t = btf__type_by_id(btf, type_id);
 342	}
 343
 344done:
 345	if (size < 0)
 346		return -EINVAL;
 347	if (nelems && size > UINT32_MAX / nelems)
 348		return -E2BIG;
 349
 350	return nelems * size;
 351}
 352
 353int btf__align_of(const struct btf *btf, __u32 id)
 354{
 355	const struct btf_type *t = btf__type_by_id(btf, id);
 356	__u16 kind = btf_kind(t);
 357
 358	switch (kind) {
 359	case BTF_KIND_INT:
 360	case BTF_KIND_ENUM:
 
 
 361		return min(btf_ptr_sz(btf), (size_t)t->size);
 362	case BTF_KIND_PTR:
 363		return btf_ptr_sz(btf);
 364	case BTF_KIND_TYPEDEF:
 365	case BTF_KIND_VOLATILE:
 366	case BTF_KIND_CONST:
 367	case BTF_KIND_RESTRICT:
 
 368		return btf__align_of(btf, t->type);
 369	case BTF_KIND_ARRAY:
 370		return btf__align_of(btf, btf_array(t)->type);
 371	case BTF_KIND_STRUCT:
 372	case BTF_KIND_UNION: {
 373		const struct btf_member *m = btf_members(t);
 374		__u16 vlen = btf_vlen(t);
 375		int i, max_align = 1, align;
 376
 377		for (i = 0; i < vlen; i++, m++) {
 378			align = btf__align_of(btf, m->type);
 379			if (align <= 0)
 380				return align;
 381			max_align = max(max_align, align);
 
 
 
 
 
 
 
 382		}
 383
 
 
 
 
 
 
 384		return max_align;
 385	}
 386	default:
 387		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 388		return 0;
 389	}
 390}
 391
 392int btf__resolve_type(const struct btf *btf, __u32 type_id)
 393{
 394	const struct btf_type *t;
 395	int depth = 0;
 396
 397	t = btf__type_by_id(btf, type_id);
 398	while (depth < MAX_RESOLVE_DEPTH &&
 399	       !btf_type_is_void_or_null(t) &&
 400	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 401		type_id = t->type;
 402		t = btf__type_by_id(btf, type_id);
 403		depth++;
 404	}
 405
 406	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 407		return -EINVAL;
 408
 409	return type_id;
 410}
 411
 412__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 413{
 414	__u32 i;
 415
 416	if (!strcmp(type_name, "void"))
 417		return 0;
 418
 419	for (i = 1; i <= btf->nr_types; i++) {
 420		const struct btf_type *t = btf->types[i];
 421		const char *name = btf__name_by_offset(btf, t->name_off);
 422
 423		if (name && !strcmp(type_name, name))
 424			return i;
 425	}
 426
 427	return -ENOENT;
 428}
 429
 430__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 431			     __u32 kind)
 432{
 433	__u32 i;
 434
 435	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 436		return 0;
 437
 438	for (i = 1; i <= btf->nr_types; i++) {
 439		const struct btf_type *t = btf->types[i];
 440		const char *name;
 441
 442		if (btf_kind(t) != kind)
 443			continue;
 444		name = btf__name_by_offset(btf, t->name_off);
 445		if (name && !strcmp(type_name, name))
 446			return i;
 447	}
 448
 449	return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450}
 451
 452void btf__free(struct btf *btf)
 453{
 454	if (IS_ERR_OR_NULL(btf))
 455		return;
 456
 457	if (btf->fd >= 0)
 458		close(btf->fd);
 459
 460	free(btf->data);
 461	free(btf->types);
 
 
 
 
 
 
 
 
 
 
 
 
 462	free(btf);
 463}
 464
 465struct btf *btf__new(const void *data, __u32 size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466{
 467	struct btf *btf;
 468	int err;
 469
 470	btf = calloc(1, sizeof(struct btf));
 471	if (!btf)
 472		return ERR_PTR(-ENOMEM);
 473
 
 
 
 474	btf->fd = -1;
 475
 476	btf->data = malloc(size);
 477	if (!btf->data) {
 
 
 
 
 
 
 478		err = -ENOMEM;
 479		goto done;
 480	}
 
 
 481
 482	memcpy(btf->data, data, size);
 483	btf->data_size = size;
 484
 485	err = btf_parse_hdr(btf);
 486	if (err)
 487		goto done;
 488
 
 
 
 489	err = btf_parse_str_sec(btf);
 
 
 490	if (err)
 491		goto done;
 492
 493	err = btf_parse_type_sec(btf);
 494
 495done:
 496	if (err) {
 497		btf__free(btf);
 498		return ERR_PTR(err);
 499	}
 500
 501	return btf;
 502}
 503
 504static bool btf_check_endianness(const GElf_Ehdr *ehdr)
 
 
 
 
 
 505{
 506#if __BYTE_ORDER == __LITTLE_ENDIAN
 507	return ehdr->e_ident[EI_DATA] == ELFDATA2LSB;
 508#elif __BYTE_ORDER == __BIG_ENDIAN
 509	return ehdr->e_ident[EI_DATA] == ELFDATA2MSB;
 510#else
 511# error "Unrecognized __BYTE_ORDER__"
 512#endif
 513}
 514
 515struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
 
 516{
 517	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
 518	int err = 0, fd = -1, idx = 0;
 519	struct btf *btf = NULL;
 520	Elf_Scn *scn = NULL;
 521	Elf *elf = NULL;
 522	GElf_Ehdr ehdr;
 
 523
 524	if (elf_version(EV_CURRENT) == EV_NONE) {
 525		pr_warn("failed to init libelf for %s\n", path);
 526		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
 527	}
 528
 529	fd = open(path, O_RDONLY);
 530	if (fd < 0) {
 531		err = -errno;
 532		pr_warn("failed to open %s: %s\n", path, strerror(errno));
 533		return ERR_PTR(err);
 534	}
 535
 536	err = -LIBBPF_ERRNO__FORMAT;
 537
 538	elf = elf_begin(fd, ELF_C_READ, NULL);
 539	if (!elf) {
 540		pr_warn("failed to open %s as ELF file\n", path);
 541		goto done;
 542	}
 543	if (!gelf_getehdr(elf, &ehdr)) {
 544		pr_warn("failed to get EHDR from %s\n", path);
 545		goto done;
 546	}
 547	if (!btf_check_endianness(&ehdr)) {
 548		pr_warn("non-native ELF endianness is not supported\n");
 
 
 549		goto done;
 550	}
 551	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
 
 552		pr_warn("failed to get e_shstrndx from %s\n", path);
 553		goto done;
 554	}
 555
 556	while ((scn = elf_nextscn(elf, scn)) != NULL) {
 557		GElf_Shdr sh;
 558		char *name;
 559
 560		idx++;
 561		if (gelf_getshdr(scn, &sh) != &sh) {
 562			pr_warn("failed to get section(%d) header from %s\n",
 563				idx, path);
 564			goto done;
 565		}
 566		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
 567		if (!name) {
 568			pr_warn("failed to get section(%d) name from %s\n",
 569				idx, path);
 570			goto done;
 571		}
 572		if (strcmp(name, BTF_ELF_SEC) == 0) {
 573			btf_data = elf_getdata(scn, 0);
 574			if (!btf_data) {
 575				pr_warn("failed to get section(%d, %s) data from %s\n",
 576					idx, name, path);
 577				goto done;
 578			}
 579			continue;
 580		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
 581			btf_ext_data = elf_getdata(scn, 0);
 582			if (!btf_ext_data) {
 583				pr_warn("failed to get section(%d, %s) data from %s\n",
 584					idx, name, path);
 585				goto done;
 586			}
 587			continue;
 588		}
 589	}
 590
 591	err = 0;
 592
 593	if (!btf_data) {
 594		err = -ENOENT;
 
 595		goto done;
 596	}
 597	btf = btf__new(btf_data->d_buf, btf_data->d_size);
 598	if (IS_ERR(btf))
 
 599		goto done;
 600
 601	switch (gelf_getclass(elf)) {
 602	case ELFCLASS32:
 603		btf__set_pointer_size(btf, 4);
 604		break;
 605	case ELFCLASS64:
 606		btf__set_pointer_size(btf, 8);
 607		break;
 608	default:
 609		pr_warn("failed to get ELF class (bitness) for %s\n", path);
 610		break;
 611	}
 612
 613	if (btf_ext && btf_ext_data) {
 614		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
 615					btf_ext_data->d_size);
 616		if (IS_ERR(*btf_ext))
 617			goto done;
 618	} else if (btf_ext) {
 619		*btf_ext = NULL;
 620	}
 621done:
 622	if (elf)
 623		elf_end(elf);
 624	close(fd);
 625
 626	if (err)
 627		return ERR_PTR(err);
 628	/*
 629	 * btf is always parsed before btf_ext, so no need to clean up
 630	 * btf_ext, if btf loading failed
 631	 */
 632	if (IS_ERR(btf))
 633		return btf;
 634	if (btf_ext && IS_ERR(*btf_ext)) {
 635		btf__free(btf);
 636		err = PTR_ERR(*btf_ext);
 637		return ERR_PTR(err);
 638	}
 639	return btf;
 
 
 
 
 
 
 
 
 
 
 640}
 641
 642struct btf *btf__parse_raw(const char *path)
 643{
 644	struct btf *btf = NULL;
 645	void *data = NULL;
 646	FILE *f = NULL;
 647	__u16 magic;
 648	int err = 0;
 649	long sz;
 650
 651	f = fopen(path, "rb");
 652	if (!f) {
 653		err = -errno;
 654		goto err_out;
 655	}
 656
 657	/* check BTF magic */
 658	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
 659		err = -EIO;
 660		goto err_out;
 661	}
 662	if (magic == __bswap_16(BTF_MAGIC)) {
 663		/* non-native endian raw BTF */
 664		pr_warn("non-native BTF endianness is not supported\n");
 665		err = -LIBBPF_ERRNO__ENDIAN;
 666		goto err_out;
 667	}
 668	if (magic != BTF_MAGIC) {
 669		/* definitely not a raw BTF */
 670		err = -EPROTO;
 671		goto err_out;
 672	}
 673
 674	/* get file size */
 675	if (fseek(f, 0, SEEK_END)) {
 676		err = -errno;
 677		goto err_out;
 678	}
 679	sz = ftell(f);
 680	if (sz < 0) {
 681		err = -errno;
 682		goto err_out;
 683	}
 684	/* rewind to the start */
 685	if (fseek(f, 0, SEEK_SET)) {
 686		err = -errno;
 687		goto err_out;
 688	}
 689
 690	/* pre-alloc memory and read all of BTF data */
 691	data = malloc(sz);
 692	if (!data) {
 693		err = -ENOMEM;
 694		goto err_out;
 695	}
 696	if (fread(data, 1, sz, f) < sz) {
 697		err = -EIO;
 698		goto err_out;
 699	}
 700
 701	/* finally parse BTF data */
 702	btf = btf__new(data, sz);
 703
 704err_out:
 705	free(data);
 706	if (f)
 707		fclose(f);
 708	return err ? ERR_PTR(err) : btf;
 709}
 710
 711struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
 
 
 
 
 
 
 
 
 
 
 712{
 713	struct btf *btf;
 
 714
 715	if (btf_ext)
 716		*btf_ext = NULL;
 717
 718	btf = btf__parse_raw(path);
 719	if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO)
 
 720		return btf;
 
 
 
 
 721
 722	return btf__parse_elf(path, btf_ext);
 
 
 723}
 724
 725static int compare_vsi_off(const void *_a, const void *_b)
 726{
 727	const struct btf_var_secinfo *a = _a;
 728	const struct btf_var_secinfo *b = _b;
 729
 730	return a->offset - b->offset;
 731}
 732
 733static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
 734			     struct btf_type *t)
 
 735{
 736	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
 737	const char *name = btf__name_by_offset(btf, t->name_off);
 738	const struct btf_type *t_var;
 739	struct btf_var_secinfo *vsi;
 740	const struct btf_var *var;
 741	int ret;
 742
 743	if (!name) {
 744		pr_debug("No name found in string section for DATASEC kind.\n");
 745		return -ENOENT;
 
 
 
 
 
 
 
 746	}
 
 
 747
 748	/* .extern datasec size and var offsets were set correctly during
 749	 * extern collection step, so just skip straight to sorting variables
 
 
 
 
 750	 */
 751	if (t->size)
 752		goto sort_vars;
 
 
 
 
 
 
 
 
 
 
 
 
 
 753
 754	ret = bpf_object__section_size(obj, name, &size);
 755	if (ret || !size || (t->size && t->size != size)) {
 756		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
 757		return -ENOENT;
 758	}
 759
 760	t->size = size;
 
 
 761
 762	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
 763		t_var = btf__type_by_id(btf, vsi->type);
 764		var = btf_var(t_var);
 765
 766		if (!btf_is_var(t_var)) {
 767			pr_debug("Non-VAR type seen in section %s\n", name);
 768			return -EINVAL;
 769		}
 
 
 
 
 
 770
 771		if (var->linkage == BTF_VAR_STATIC)
 772			continue;
 773
 774		name = btf__name_by_offset(btf, t_var->name_off);
 775		if (!name) {
 776			pr_debug("No name found in string section for VAR kind\n");
 777			return -ENOENT;
 778		}
 779
 780		ret = bpf_object__variable_offset(obj, name, &off);
 781		if (ret) {
 782			pr_debug("No offset found in symbol table for VAR %s\n",
 783				 name);
 784			return -ENOENT;
 785		}
 786
 787		vsi->offset = off;
 788	}
 789
 790sort_vars:
 791	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
 792	return 0;
 793}
 794
 795int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
 796{
 797	int err = 0;
 798	__u32 i;
 799
 800	for (i = 1; i <= btf->nr_types; i++) {
 801		struct btf_type *t = btf->types[i];
 
 
 802
 803		/* Loader needs to fix up some of the things compiler
 804		 * couldn't get its hands on while emitting BTF. This
 805		 * is section size and global variable offset. We use
 806		 * the info from the ELF itself for this purpose.
 807		 */
 808		if (btf_is_datasec(t)) {
 809			err = btf_fixup_datasec(obj, btf, t);
 810			if (err)
 811				break;
 812		}
 813	}
 814
 815	return err;
 
 
 816}
 817
 818int btf__load(struct btf *btf)
 819{
 820	__u32 log_buf_size = 0;
 821	char *log_buf = NULL;
 822	int err = 0;
 
 
 823
 824	if (btf->fd >= 0)
 825		return -EEXIST;
 
 
 
 826
 827retry_load:
 828	if (log_buf_size) {
 829		log_buf = malloc(log_buf_size);
 830		if (!log_buf)
 831			return -ENOMEM;
 832
 833		*log_buf = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834	}
 
 835
 836	btf->fd = bpf_load_btf(btf->data, btf->data_size,
 837			       log_buf, log_buf_size, false);
 838	if (btf->fd < 0) {
 839		if (!log_buf || errno == ENOSPC) {
 840			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
 841					   log_buf_size << 1);
 842			free(log_buf);
 843			goto retry_load;
 844		}
 845
 846		err = -errno;
 847		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
 848		if (*log_buf)
 849			pr_warn("%s\n", log_buf);
 850		goto done;
 851	}
 852
 853done:
 854	free(log_buf);
 855	return err;
 856}
 857
 858int btf__fd(const struct btf *btf)
 859{
 860	return btf->fd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861}
 862
 863void btf__set_fd(struct btf *btf, int fd)
 864{
 865	btf->fd = fd;
 866}
 867
 868const void *btf__get_raw_data(const struct btf *btf, __u32 *size)
 869{
 870	*size = btf->data_size;
 871	return btf->data;
 
 
 
 
 872}
 873
 874const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
 875{
 876	if (offset < btf->hdr->str_len)
 877		return &btf->strings[offset];
 878	else
 879		return NULL;
 880}
 881
 882int btf__get_from_id(__u32 id, struct btf **btf)
 883{
 884	struct bpf_btf_info btf_info = { 0 };
 885	__u32 len = sizeof(btf_info);
 886	__u32 last_size;
 887	int btf_fd;
 888	void *ptr;
 889	int err;
 890
 891	err = 0;
 892	*btf = NULL;
 893	btf_fd = bpf_btf_get_fd_by_id(id);
 894	if (btf_fd < 0)
 895		return 0;
 896
 897	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
 898	 * let's start with a sane default - 4KiB here - and resize it only if
 899	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
 900	 */
 901	btf_info.btf_size = 4096;
 902	last_size = btf_info.btf_size;
 903	ptr = malloc(last_size);
 904	if (!ptr) {
 905		err = -ENOMEM;
 906		goto exit_free;
 907	}
 908
 909	memset(ptr, 0, last_size);
 910	btf_info.btf = ptr_to_u64(ptr);
 911	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
 
 912
 913	if (!err && btf_info.btf_size > last_size) {
 914		void *temp_ptr;
 915
 916		last_size = btf_info.btf_size;
 917		temp_ptr = realloc(ptr, last_size);
 918		if (!temp_ptr) {
 919			err = -ENOMEM;
 920			goto exit_free;
 921		}
 922		ptr = temp_ptr;
 923		memset(ptr, 0, last_size);
 
 
 924		btf_info.btf = ptr_to_u64(ptr);
 925		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
 
 
 926	}
 927
 928	if (err || btf_info.btf_size > last_size) {
 929		err = errno;
 930		goto exit_free;
 931	}
 932
 933	*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
 934	if (IS_ERR(*btf)) {
 935		err = PTR_ERR(*btf);
 936		*btf = NULL;
 937	}
 938
 939exit_free:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940	close(btf_fd);
 941	free(ptr);
 942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943	return err;
 944}
 945
 946int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
 947			 __u32 expected_key_size, __u32 expected_value_size,
 948			 __u32 *key_type_id, __u32 *value_type_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949{
 950	const struct btf_type *container_type;
 951	const struct btf_member *key, *value;
 952	const size_t max_name = 256;
 953	char container_name[max_name];
 954	__s64 key_size, value_size;
 955	__s32 container_id;
 
 
 
 
 956
 957	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
 958	    max_name) {
 959		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
 960			map_name, map_name);
 961		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962	}
 963
 964	container_id = btf__find_by_name(btf, container_name);
 965	if (container_id < 0) {
 966		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
 967			 map_name, container_name);
 968		return container_id;
 
 
 
 
 
 
 969	}
 970
 971	container_type = btf__type_by_id(btf, container_id);
 972	if (!container_type) {
 973		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
 974			map_name, container_id);
 975		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976	}
 977
 978	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
 979		pr_warn("map:%s container_name:%s is an invalid container struct\n",
 980			map_name, container_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 981		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982	}
 983
 984	key = btf_members(container_type);
 985	value = key + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986
 987	key_size = btf__resolve_size(btf, key->type);
 988	if (key_size < 0) {
 989		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
 990		return key_size;
 
 
 
 
 
 991	}
 992
 993	if (expected_key_size != key_size) {
 994		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
 995			map_name, (__u32)key_size, expected_key_size);
 996		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 997	}
 998
 999	value_size = btf__resolve_size(btf, value->type);
1000	if (value_size < 0) {
1001		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1002		return value_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004
1005	if (expected_value_size != value_size) {
1006		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1007			map_name, (__u32)value_size, expected_value_size);
1008		return -EINVAL;
 
1009	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010
1011	*key_type_id = key->type;
1012	*value_type_id = value->type;
1013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1014	return 0;
1015}
1016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017struct btf_ext_sec_setup_param {
1018	__u32 off;
1019	__u32 len;
1020	__u32 min_rec_size;
1021	struct btf_ext_info *ext_info;
1022	const char *desc;
1023};
1024
1025static int btf_ext_setup_info(struct btf_ext *btf_ext,
1026			      struct btf_ext_sec_setup_param *ext_sec)
1027{
1028	const struct btf_ext_info_sec *sinfo;
1029	struct btf_ext_info *ext_info;
1030	__u32 info_left, record_size;
 
1031	/* The start of the info sec (including the __u32 record_size). */
1032	void *info;
1033
1034	if (ext_sec->len == 0)
1035		return 0;
1036
1037	if (ext_sec->off & 0x03) {
1038		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
1039		     ext_sec->desc);
1040		return -EINVAL;
1041	}
1042
1043	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
1044	info_left = ext_sec->len;
1045
1046	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
1047		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
1048			 ext_sec->desc, ext_sec->off, ext_sec->len);
1049		return -EINVAL;
1050	}
1051
1052	/* At least a record size */
1053	if (info_left < sizeof(__u32)) {
1054		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
1055		return -EINVAL;
1056	}
1057
1058	/* The record size needs to meet the minimum standard */
1059	record_size = *(__u32 *)info;
1060	if (record_size < ext_sec->min_rec_size ||
1061	    record_size & 0x03) {
1062		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
1063			 ext_sec->desc, record_size);
1064		return -EINVAL;
1065	}
1066
1067	sinfo = info + sizeof(__u32);
1068	info_left -= sizeof(__u32);
1069
1070	/* If no records, return failure now so .BTF.ext won't be used. */
1071	if (!info_left) {
1072		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
1073		return -EINVAL;
1074	}
1075
1076	while (info_left) {
1077		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
1078		__u64 total_record_size;
1079		__u32 num_records;
1080
1081		if (info_left < sec_hdrlen) {
1082			pr_debug("%s section header is not found in .BTF.ext\n",
1083			     ext_sec->desc);
1084			return -EINVAL;
1085		}
1086
1087		num_records = sinfo->num_info;
1088		if (num_records == 0) {
1089			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
1090			     ext_sec->desc);
1091			return -EINVAL;
1092		}
1093
1094		total_record_size = sec_hdrlen +
1095				    (__u64)num_records * record_size;
1096		if (info_left < total_record_size) {
1097			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
1098			     ext_sec->desc);
1099			return -EINVAL;
1100		}
1101
1102		info_left -= total_record_size;
1103		sinfo = (void *)sinfo + total_record_size;
 
1104	}
1105
1106	ext_info = ext_sec->ext_info;
1107	ext_info->len = ext_sec->len - sizeof(__u32);
1108	ext_info->rec_size = record_size;
1109	ext_info->info = info + sizeof(__u32);
 
1110
1111	return 0;
1112}
1113
1114static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
1115{
1116	struct btf_ext_sec_setup_param param = {
1117		.off = btf_ext->hdr->func_info_off,
1118		.len = btf_ext->hdr->func_info_len,
1119		.min_rec_size = sizeof(struct bpf_func_info_min),
1120		.ext_info = &btf_ext->func_info,
1121		.desc = "func_info"
1122	};
1123
1124	return btf_ext_setup_info(btf_ext, &param);
1125}
1126
1127static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
1128{
1129	struct btf_ext_sec_setup_param param = {
1130		.off = btf_ext->hdr->line_info_off,
1131		.len = btf_ext->hdr->line_info_len,
1132		.min_rec_size = sizeof(struct bpf_line_info_min),
1133		.ext_info = &btf_ext->line_info,
1134		.desc = "line_info",
1135	};
1136
1137	return btf_ext_setup_info(btf_ext, &param);
1138}
1139
1140static int btf_ext_setup_field_reloc(struct btf_ext *btf_ext)
1141{
1142	struct btf_ext_sec_setup_param param = {
1143		.off = btf_ext->hdr->field_reloc_off,
1144		.len = btf_ext->hdr->field_reloc_len,
1145		.min_rec_size = sizeof(struct bpf_field_reloc),
1146		.ext_info = &btf_ext->field_reloc_info,
1147		.desc = "field_reloc",
1148	};
1149
1150	return btf_ext_setup_info(btf_ext, &param);
1151}
1152
1153static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
1154{
1155	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
1156
1157	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
1158	    data_size < hdr->hdr_len) {
1159		pr_debug("BTF.ext header not found");
1160		return -EINVAL;
1161	}
1162
1163	if (hdr->magic != BTF_MAGIC) {
 
 
 
1164		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
1165		return -EINVAL;
1166	}
1167
1168	if (hdr->version != BTF_VERSION) {
1169		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
1170		return -ENOTSUP;
1171	}
1172
1173	if (hdr->flags) {
1174		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
1175		return -ENOTSUP;
1176	}
1177
1178	if (data_size == hdr->hdr_len) {
1179		pr_debug("BTF.ext has no data\n");
1180		return -EINVAL;
1181	}
1182
1183	return 0;
1184}
1185
1186void btf_ext__free(struct btf_ext *btf_ext)
1187{
1188	if (IS_ERR_OR_NULL(btf_ext))
1189		return;
 
 
 
1190	free(btf_ext->data);
1191	free(btf_ext);
1192}
1193
1194struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
1195{
1196	struct btf_ext *btf_ext;
1197	int err;
1198
1199	err = btf_ext_parse_hdr(data, size);
1200	if (err)
1201		return ERR_PTR(err);
1202
1203	btf_ext = calloc(1, sizeof(struct btf_ext));
1204	if (!btf_ext)
1205		return ERR_PTR(-ENOMEM);
1206
1207	btf_ext->data_size = size;
1208	btf_ext->data = malloc(size);
1209	if (!btf_ext->data) {
1210		err = -ENOMEM;
1211		goto done;
1212	}
1213	memcpy(btf_ext->data, data, size);
1214
1215	if (btf_ext->hdr->hdr_len <
1216	    offsetofend(struct btf_ext_header, line_info_len))
 
 
 
 
1217		goto done;
 
 
1218	err = btf_ext_setup_func_info(btf_ext);
1219	if (err)
1220		goto done;
1221
1222	err = btf_ext_setup_line_info(btf_ext);
1223	if (err)
1224		goto done;
1225
1226	if (btf_ext->hdr->hdr_len <
1227	    offsetofend(struct btf_ext_header, field_reloc_len))
1228		goto done;
1229	err = btf_ext_setup_field_reloc(btf_ext);
1230	if (err)
1231		goto done;
1232
1233done:
1234	if (err) {
1235		btf_ext__free(btf_ext);
1236		return ERR_PTR(err);
1237	}
1238
1239	return btf_ext;
1240}
1241
1242const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
1243{
1244	*size = btf_ext->data_size;
1245	return btf_ext->data;
1246}
1247
1248static int btf_ext_reloc_info(const struct btf *btf,
1249			      const struct btf_ext_info *ext_info,
1250			      const char *sec_name, __u32 insns_cnt,
1251			      void **info, __u32 *cnt)
1252{
1253	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
1254	__u32 i, record_size, existing_len, records_len;
1255	struct btf_ext_info_sec *sinfo;
1256	const char *info_sec_name;
1257	__u64 remain_len;
1258	void *data;
1259
1260	record_size = ext_info->rec_size;
1261	sinfo = ext_info->info;
1262	remain_len = ext_info->len;
1263	while (remain_len > 0) {
1264		records_len = sinfo->num_info * record_size;
1265		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
1266		if (strcmp(info_sec_name, sec_name)) {
1267			remain_len -= sec_hdrlen + records_len;
1268			sinfo = (void *)sinfo + sec_hdrlen + records_len;
1269			continue;
1270		}
1271
1272		existing_len = (*cnt) * record_size;
1273		data = realloc(*info, existing_len + records_len);
1274		if (!data)
1275			return -ENOMEM;
1276
1277		memcpy(data + existing_len, sinfo->data, records_len);
1278		/* adjust insn_off only, the rest data will be passed
1279		 * to the kernel.
1280		 */
1281		for (i = 0; i < sinfo->num_info; i++) {
1282			__u32 *insn_off;
1283
1284			insn_off = data + existing_len + (i * record_size);
1285			*insn_off = *insn_off / sizeof(struct bpf_insn) +
1286				insns_cnt;
1287		}
1288		*info = data;
1289		*cnt += sinfo->num_info;
1290		return 0;
1291	}
1292
1293	return -ENOENT;
1294}
1295
1296int btf_ext__reloc_func_info(const struct btf *btf,
1297			     const struct btf_ext *btf_ext,
1298			     const char *sec_name, __u32 insns_cnt,
1299			     void **func_info, __u32 *cnt)
1300{
1301	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
1302				  insns_cnt, func_info, cnt);
1303}
1304
1305int btf_ext__reloc_line_info(const struct btf *btf,
1306			     const struct btf_ext *btf_ext,
1307			     const char *sec_name, __u32 insns_cnt,
1308			     void **line_info, __u32 *cnt)
1309{
1310	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
1311				  insns_cnt, line_info, cnt);
1312}
1313
1314__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
1315{
1316	return btf_ext->func_info.rec_size;
1317}
1318
1319__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
1320{
1321	return btf_ext->line_info.rec_size;
1322}
1323
1324struct btf_dedup;
1325
1326static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1327				       const struct btf_dedup_opts *opts);
1328static void btf_dedup_free(struct btf_dedup *d);
 
1329static int btf_dedup_strings(struct btf_dedup *d);
1330static int btf_dedup_prim_types(struct btf_dedup *d);
1331static int btf_dedup_struct_types(struct btf_dedup *d);
1332static int btf_dedup_ref_types(struct btf_dedup *d);
 
1333static int btf_dedup_compact_types(struct btf_dedup *d);
1334static int btf_dedup_remap_types(struct btf_dedup *d);
1335
1336/*
1337 * Deduplicate BTF types and strings.
1338 *
1339 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
1340 * section with all BTF type descriptors and string data. It overwrites that
1341 * memory in-place with deduplicated types and strings without any loss of
1342 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
1343 * is provided, all the strings referenced from .BTF.ext section are honored
1344 * and updated to point to the right offsets after deduplication.
1345 *
1346 * If function returns with error, type/string data might be garbled and should
1347 * be discarded.
1348 *
1349 * More verbose and detailed description of both problem btf_dedup is solving,
1350 * as well as solution could be found at:
1351 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
1352 *
1353 * Problem description and justification
1354 * =====================================
1355 *
1356 * BTF type information is typically emitted either as a result of conversion
1357 * from DWARF to BTF or directly by compiler. In both cases, each compilation
1358 * unit contains information about a subset of all the types that are used
1359 * in an application. These subsets are frequently overlapping and contain a lot
1360 * of duplicated information when later concatenated together into a single
1361 * binary. This algorithm ensures that each unique type is represented by single
1362 * BTF type descriptor, greatly reducing resulting size of BTF data.
1363 *
1364 * Compilation unit isolation and subsequent duplication of data is not the only
1365 * problem. The same type hierarchy (e.g., struct and all the type that struct
1366 * references) in different compilation units can be represented in BTF to
1367 * various degrees of completeness (or, rather, incompleteness) due to
1368 * struct/union forward declarations.
1369 *
1370 * Let's take a look at an example, that we'll use to better understand the
1371 * problem (and solution). Suppose we have two compilation units, each using
1372 * same `struct S`, but each of them having incomplete type information about
1373 * struct's fields:
1374 *
1375 * // CU #1:
1376 * struct S;
1377 * struct A {
1378 *	int a;
1379 *	struct A* self;
1380 *	struct S* parent;
1381 * };
1382 * struct B;
1383 * struct S {
1384 *	struct A* a_ptr;
1385 *	struct B* b_ptr;
1386 * };
1387 *
1388 * // CU #2:
1389 * struct S;
1390 * struct A;
1391 * struct B {
1392 *	int b;
1393 *	struct B* self;
1394 *	struct S* parent;
1395 * };
1396 * struct S {
1397 *	struct A* a_ptr;
1398 *	struct B* b_ptr;
1399 * };
1400 *
1401 * In case of CU #1, BTF data will know only that `struct B` exist (but no
1402 * more), but will know the complete type information about `struct A`. While
1403 * for CU #2, it will know full type information about `struct B`, but will
1404 * only know about forward declaration of `struct A` (in BTF terms, it will
1405 * have `BTF_KIND_FWD` type descriptor with name `B`).
1406 *
1407 * This compilation unit isolation means that it's possible that there is no
1408 * single CU with complete type information describing structs `S`, `A`, and
1409 * `B`. Also, we might get tons of duplicated and redundant type information.
1410 *
1411 * Additional complication we need to keep in mind comes from the fact that
1412 * types, in general, can form graphs containing cycles, not just DAGs.
1413 *
1414 * While algorithm does deduplication, it also merges and resolves type
1415 * information (unless disabled throught `struct btf_opts`), whenever possible.
1416 * E.g., in the example above with two compilation units having partial type
1417 * information for structs `A` and `B`, the output of algorithm will emit
1418 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
1419 * (as well as type information for `int` and pointers), as if they were defined
1420 * in a single compilation unit as:
1421 *
1422 * struct A {
1423 *	int a;
1424 *	struct A* self;
1425 *	struct S* parent;
1426 * };
1427 * struct B {
1428 *	int b;
1429 *	struct B* self;
1430 *	struct S* parent;
1431 * };
1432 * struct S {
1433 *	struct A* a_ptr;
1434 *	struct B* b_ptr;
1435 * };
1436 *
1437 * Algorithm summary
1438 * =================
1439 *
1440 * Algorithm completes its work in 6 separate passes:
1441 *
1442 * 1. Strings deduplication.
1443 * 2. Primitive types deduplication (int, enum, fwd).
1444 * 3. Struct/union types deduplication.
1445 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
 
1446 *    protos, and const/volatile/restrict modifiers).
1447 * 5. Types compaction.
1448 * 6. Types remapping.
1449 *
1450 * Algorithm determines canonical type descriptor, which is a single
1451 * representative type for each truly unique type. This canonical type is the
1452 * one that will go into final deduplicated BTF type information. For
1453 * struct/unions, it is also the type that algorithm will merge additional type
1454 * information into (while resolving FWDs), as it discovers it from data in
1455 * other CUs. Each input BTF type eventually gets either mapped to itself, if
1456 * that type is canonical, or to some other type, if that type is equivalent
1457 * and was chosen as canonical representative. This mapping is stored in
1458 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
1459 * FWD type got resolved to.
1460 *
1461 * To facilitate fast discovery of canonical types, we also maintain canonical
1462 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
1463 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
1464 * that match that signature. With sufficiently good choice of type signature
1465 * hashing function, we can limit number of canonical types for each unique type
1466 * signature to a very small number, allowing to find canonical type for any
1467 * duplicated type very quickly.
1468 *
1469 * Struct/union deduplication is the most critical part and algorithm for
1470 * deduplicating structs/unions is described in greater details in comments for
1471 * `btf_dedup_is_equiv` function.
1472 */
1473int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
1474	       const struct btf_dedup_opts *opts)
1475{
1476	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
1477	int err;
1478
 
 
 
 
1479	if (IS_ERR(d)) {
1480		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
1481		return -EINVAL;
 
 
 
 
 
1482	}
1483
 
 
 
 
 
1484	err = btf_dedup_strings(d);
1485	if (err < 0) {
1486		pr_debug("btf_dedup_strings failed:%d\n", err);
1487		goto done;
1488	}
1489	err = btf_dedup_prim_types(d);
1490	if (err < 0) {
1491		pr_debug("btf_dedup_prim_types failed:%d\n", err);
1492		goto done;
1493	}
1494	err = btf_dedup_struct_types(d);
1495	if (err < 0) {
1496		pr_debug("btf_dedup_struct_types failed:%d\n", err);
1497		goto done;
1498	}
 
 
 
 
 
1499	err = btf_dedup_ref_types(d);
1500	if (err < 0) {
1501		pr_debug("btf_dedup_ref_types failed:%d\n", err);
1502		goto done;
1503	}
1504	err = btf_dedup_compact_types(d);
1505	if (err < 0) {
1506		pr_debug("btf_dedup_compact_types failed:%d\n", err);
1507		goto done;
1508	}
1509	err = btf_dedup_remap_types(d);
1510	if (err < 0) {
1511		pr_debug("btf_dedup_remap_types failed:%d\n", err);
1512		goto done;
1513	}
1514
1515done:
1516	btf_dedup_free(d);
1517	return err;
1518}
1519
1520#define BTF_UNPROCESSED_ID ((__u32)-1)
1521#define BTF_IN_PROGRESS_ID ((__u32)-2)
1522
1523struct btf_dedup {
1524	/* .BTF section to be deduped in-place */
1525	struct btf *btf;
1526	/*
1527	 * Optional .BTF.ext section. When provided, any strings referenced
1528	 * from it will be taken into account when deduping strings
1529	 */
1530	struct btf_ext *btf_ext;
1531	/*
1532	 * This is a map from any type's signature hash to a list of possible
1533	 * canonical representative type candidates. Hash collisions are
1534	 * ignored, so even types of various kinds can share same list of
1535	 * candidates, which is fine because we rely on subsequent
1536	 * btf_xxx_equal() checks to authoritatively verify type equality.
1537	 */
1538	struct hashmap *dedup_table;
1539	/* Canonical types map */
1540	__u32 *map;
1541	/* Hypothetical mapping, used during type graph equivalence checks */
1542	__u32 *hypot_map;
1543	__u32 *hypot_list;
1544	size_t hypot_cnt;
1545	size_t hypot_cap;
 
 
 
 
 
 
 
1546	/* Various option modifying behavior of algorithm */
1547	struct btf_dedup_opts opts;
1548};
1549
1550struct btf_str_ptr {
1551	const char *str;
1552	__u32 new_off;
1553	bool used;
1554};
1555
1556struct btf_str_ptrs {
1557	struct btf_str_ptr *ptrs;
1558	const char *data;
1559	__u32 cnt;
1560	__u32 cap;
1561};
1562
1563static long hash_combine(long h, long value)
1564{
1565	return h * 31 + value;
1566}
1567
1568#define for_each_dedup_cand(d, node, hash) \
1569	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
1570
1571static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
1572{
1573	return hashmap__append(d->dedup_table,
1574			       (void *)hash, (void *)(long)type_id);
1575}
1576
1577static int btf_dedup_hypot_map_add(struct btf_dedup *d,
1578				   __u32 from_id, __u32 to_id)
1579{
1580	if (d->hypot_cnt == d->hypot_cap) {
1581		__u32 *new_list;
1582
1583		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
1584		new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap);
1585		if (!new_list)
1586			return -ENOMEM;
1587		d->hypot_list = new_list;
1588	}
1589	d->hypot_list[d->hypot_cnt++] = from_id;
1590	d->hypot_map[from_id] = to_id;
1591	return 0;
1592}
1593
1594static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
1595{
1596	int i;
1597
1598	for (i = 0; i < d->hypot_cnt; i++)
1599		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
1600	d->hypot_cnt = 0;
 
1601}
1602
1603static void btf_dedup_free(struct btf_dedup *d)
1604{
1605	hashmap__free(d->dedup_table);
1606	d->dedup_table = NULL;
1607
1608	free(d->map);
1609	d->map = NULL;
1610
1611	free(d->hypot_map);
1612	d->hypot_map = NULL;
1613
1614	free(d->hypot_list);
1615	d->hypot_list = NULL;
1616
1617	free(d);
1618}
1619
1620static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
1621{
1622	return (size_t)key;
1623}
1624
1625static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
1626{
1627	return 0;
1628}
1629
1630static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
1631{
1632	return k1 == k2;
1633}
1634
1635static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1636				       const struct btf_dedup_opts *opts)
1637{
1638	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
1639	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
1640	int i, err = 0;
1641
1642	if (!d)
1643		return ERR_PTR(-ENOMEM);
1644
1645	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
1646	/* dedup_table_size is now used only to force collisions in tests */
1647	if (opts && opts->dedup_table_size == 1)
1648		hash_fn = btf_dedup_collision_hash_fn;
1649
1650	d->btf = btf;
1651	d->btf_ext = btf_ext;
1652
1653	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
1654	if (IS_ERR(d->dedup_table)) {
1655		err = PTR_ERR(d->dedup_table);
1656		d->dedup_table = NULL;
1657		goto done;
1658	}
1659
1660	d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
 
1661	if (!d->map) {
1662		err = -ENOMEM;
1663		goto done;
1664	}
1665	/* special BTF "void" type is made canonical immediately */
1666	d->map[0] = 0;
1667	for (i = 1; i <= btf->nr_types; i++) {
1668		struct btf_type *t = d->btf->types[i];
1669
1670		/* VAR and DATASEC are never deduped and are self-canonical */
1671		if (btf_is_var(t) || btf_is_datasec(t))
1672			d->map[i] = i;
1673		else
1674			d->map[i] = BTF_UNPROCESSED_ID;
1675	}
1676
1677	d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1678	if (!d->hypot_map) {
1679		err = -ENOMEM;
1680		goto done;
1681	}
1682	for (i = 0; i <= btf->nr_types; i++)
1683		d->hypot_map[i] = BTF_UNPROCESSED_ID;
1684
1685done:
1686	if (err) {
1687		btf_dedup_free(d);
1688		return ERR_PTR(err);
1689	}
1690
1691	return d;
1692}
1693
1694typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
1695
1696/*
1697 * Iterate over all possible places in .BTF and .BTF.ext that can reference
1698 * string and pass pointer to it to a provided callback `fn`.
1699 */
1700static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
1701{
1702	void *line_data_cur, *line_data_end;
1703	int i, j, r, rec_size;
1704	struct btf_type *t;
 
1705
1706	for (i = 1; i <= d->btf->nr_types; i++) {
1707		t = d->btf->types[i];
1708		r = fn(&t->name_off, ctx);
1709		if (r)
1710			return r;
1711
1712		switch (btf_kind(t)) {
1713		case BTF_KIND_STRUCT:
1714		case BTF_KIND_UNION: {
1715			struct btf_member *m = btf_members(t);
1716			__u16 vlen = btf_vlen(t);
1717
1718			for (j = 0; j < vlen; j++) {
1719				r = fn(&m->name_off, ctx);
1720				if (r)
1721					return r;
1722				m++;
1723			}
1724			break;
1725		}
1726		case BTF_KIND_ENUM: {
1727			struct btf_enum *m = btf_enum(t);
1728			__u16 vlen = btf_vlen(t);
1729
1730			for (j = 0; j < vlen; j++) {
1731				r = fn(&m->name_off, ctx);
1732				if (r)
1733					return r;
1734				m++;
1735			}
1736			break;
1737		}
1738		case BTF_KIND_FUNC_PROTO: {
1739			struct btf_param *m = btf_params(t);
1740			__u16 vlen = btf_vlen(t);
1741
1742			for (j = 0; j < vlen; j++) {
1743				r = fn(&m->name_off, ctx);
1744				if (r)
1745					return r;
1746				m++;
1747			}
1748			break;
1749		}
1750		default:
1751			break;
1752		}
1753	}
1754
1755	if (!d->btf_ext)
1756		return 0;
1757
1758	line_data_cur = d->btf_ext->line_info.info;
1759	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
1760	rec_size = d->btf_ext->line_info.rec_size;
1761
1762	while (line_data_cur < line_data_end) {
1763		struct btf_ext_info_sec *sec = line_data_cur;
1764		struct bpf_line_info_min *line_info;
1765		__u32 num_info = sec->num_info;
1766
1767		r = fn(&sec->sec_name_off, ctx);
1768		if (r)
1769			return r;
1770
1771		line_data_cur += sizeof(struct btf_ext_info_sec);
1772		for (i = 0; i < num_info; i++) {
1773			line_info = line_data_cur;
1774			r = fn(&line_info->file_name_off, ctx);
1775			if (r)
1776				return r;
1777			r = fn(&line_info->line_off, ctx);
1778			if (r)
1779				return r;
1780			line_data_cur += rec_size;
1781		}
1782	}
1783
1784	return 0;
1785}
1786
1787static int str_sort_by_content(const void *a1, const void *a2)
1788{
1789	const struct btf_str_ptr *p1 = a1;
1790	const struct btf_str_ptr *p2 = a2;
1791
1792	return strcmp(p1->str, p2->str);
1793}
1794
1795static int str_sort_by_offset(const void *a1, const void *a2)
1796{
1797	const struct btf_str_ptr *p1 = a1;
1798	const struct btf_str_ptr *p2 = a2;
1799
1800	if (p1->str != p2->str)
1801		return p1->str < p2->str ? -1 : 1;
1802	return 0;
1803}
1804
1805static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
1806{
1807	const struct btf_str_ptr *p = pelem;
1808
1809	if (str_ptr != p->str)
1810		return (const char *)str_ptr < p->str ? -1 : 1;
1811	return 0;
1812}
1813
1814static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
1815{
1816	struct btf_str_ptrs *strs;
1817	struct btf_str_ptr *s;
 
 
1818
1819	if (*str_off_ptr == 0)
 
1820		return 0;
1821
1822	strs = ctx;
1823	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1824		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1825	if (!s)
1826		return -EINVAL;
1827	s->used = true;
1828	return 0;
1829}
 
 
1830
1831static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
1832{
1833	struct btf_str_ptrs *strs;
1834	struct btf_str_ptr *s;
1835
1836	if (*str_off_ptr == 0)
1837		return 0;
1838
1839	strs = ctx;
1840	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1841		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1842	if (!s)
1843		return -EINVAL;
1844	*str_off_ptr = s->new_off;
1845	return 0;
1846}
1847
1848/*
1849 * Dedup string and filter out those that are not referenced from either .BTF
1850 * or .BTF.ext (if provided) sections.
1851 *
1852 * This is done by building index of all strings in BTF's string section,
1853 * then iterating over all entities that can reference strings (e.g., type
1854 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
1855 * strings as used. After that all used strings are deduped and compacted into
1856 * sequential blob of memory and new offsets are calculated. Then all the string
1857 * references are iterated again and rewritten using new offsets.
1858 */
1859static int btf_dedup_strings(struct btf_dedup *d)
1860{
1861	const struct btf_header *hdr = d->btf->hdr;
1862	char *start = (char *)d->btf->nohdr_data + hdr->str_off;
1863	char *end = start + d->btf->hdr->str_len;
1864	char *p = start, *tmp_strs = NULL;
1865	struct btf_str_ptrs strs = {
1866		.cnt = 0,
1867		.cap = 0,
1868		.ptrs = NULL,
1869		.data = start,
1870	};
1871	int i, j, err = 0, grp_idx;
1872	bool grp_used;
1873
1874	/* build index of all strings */
1875	while (p < end) {
1876		if (strs.cnt + 1 > strs.cap) {
1877			struct btf_str_ptr *new_ptrs;
1878
1879			strs.cap += max(strs.cnt / 2, 16U);
1880			new_ptrs = realloc(strs.ptrs,
1881					   sizeof(strs.ptrs[0]) * strs.cap);
1882			if (!new_ptrs) {
1883				err = -ENOMEM;
1884				goto done;
1885			}
1886			strs.ptrs = new_ptrs;
1887		}
1888
1889		strs.ptrs[strs.cnt].str = p;
1890		strs.ptrs[strs.cnt].used = false;
1891
1892		p += strlen(p) + 1;
1893		strs.cnt++;
1894	}
1895
1896	/* temporary storage for deduplicated strings */
1897	tmp_strs = malloc(d->btf->hdr->str_len);
1898	if (!tmp_strs) {
1899		err = -ENOMEM;
1900		goto done;
1901	}
1902
1903	/* mark all used strings */
1904	strs.ptrs[0].used = true;
1905	err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
1906	if (err)
1907		goto done;
1908
1909	/* sort strings by context, so that we can identify duplicates */
1910	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
1911
1912	/*
1913	 * iterate groups of equal strings and if any instance in a group was
1914	 * referenced, emit single instance and remember new offset
1915	 */
1916	p = tmp_strs;
1917	grp_idx = 0;
1918	grp_used = strs.ptrs[0].used;
1919	/* iterate past end to avoid code duplication after loop */
1920	for (i = 1; i <= strs.cnt; i++) {
1921		/*
1922		 * when i == strs.cnt, we want to skip string comparison and go
1923		 * straight to handling last group of strings (otherwise we'd
1924		 * need to handle last group after the loop w/ duplicated code)
1925		 */
1926		if (i < strs.cnt &&
1927		    !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
1928			grp_used = grp_used || strs.ptrs[i].used;
1929			continue;
1930		}
1931
1932		/*
1933		 * this check would have been required after the loop to handle
1934		 * last group of strings, but due to <= condition in a loop
1935		 * we avoid that duplication
1936		 */
1937		if (grp_used) {
1938			int new_off = p - tmp_strs;
1939			__u32 len = strlen(strs.ptrs[grp_idx].str);
1940
1941			memmove(p, strs.ptrs[grp_idx].str, len + 1);
1942			for (j = grp_idx; j < i; j++)
1943				strs.ptrs[j].new_off = new_off;
1944			p += len + 1;
1945		}
1946
1947		if (i < strs.cnt) {
1948			grp_idx = i;
1949			grp_used = strs.ptrs[i].used;
1950		}
1951	}
1952
1953	/* replace original strings with deduped ones */
1954	d->btf->hdr->str_len = p - tmp_strs;
1955	memmove(start, tmp_strs, d->btf->hdr->str_len);
1956	end = start + d->btf->hdr->str_len;
1957
1958	/* restore original order for further binary search lookups */
1959	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
1960
1961	/* remap string offsets */
1962	err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
1963	if (err)
1964		goto done;
 
 
 
 
 
 
 
 
1965
1966	d->btf->hdr->str_len = end - start;
 
 
1967
1968done:
1969	free(tmp_strs);
1970	free(strs.ptrs);
1971	return err;
1972}
1973
1974static long btf_hash_common(struct btf_type *t)
1975{
1976	long h;
1977
1978	h = hash_combine(0, t->name_off);
1979	h = hash_combine(h, t->info);
1980	h = hash_combine(h, t->size);
1981	return h;
1982}
1983
1984static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
1985{
1986	return t1->name_off == t2->name_off &&
1987	       t1->info == t2->info &&
1988	       t1->size == t2->size;
1989}
1990
1991/* Calculate type signature hash of INT. */
1992static long btf_hash_int(struct btf_type *t)
1993{
1994	__u32 info = *(__u32 *)(t + 1);
1995	long h;
1996
1997	h = btf_hash_common(t);
1998	h = hash_combine(h, info);
1999	return h;
2000}
2001
2002/* Check structural equality of two INTs. */
2003static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
2004{
2005	__u32 info1, info2;
2006
2007	if (!btf_equal_common(t1, t2))
2008		return false;
2009	info1 = *(__u32 *)(t1 + 1);
2010	info2 = *(__u32 *)(t2 + 1);
2011	return info1 == info2;
2012}
2013
2014/* Calculate type signature hash of ENUM. */
2015static long btf_hash_enum(struct btf_type *t)
2016{
2017	long h;
2018
2019	/* don't hash vlen and enum members to support enum fwd resolving */
2020	h = hash_combine(0, t->name_off);
2021	h = hash_combine(h, t->info & ~0xffff);
2022	h = hash_combine(h, t->size);
2023	return h;
2024}
2025
2026/* Check structural equality of two ENUMs. */
2027static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
2028{
2029	const struct btf_enum *m1, *m2;
2030	__u16 vlen;
2031	int i;
2032
2033	if (!btf_equal_common(t1, t2))
2034		return false;
2035
2036	vlen = btf_vlen(t1);
2037	m1 = btf_enum(t1);
2038	m2 = btf_enum(t2);
2039	for (i = 0; i < vlen; i++) {
2040		if (m1->name_off != m2->name_off || m1->val != m2->val)
2041			return false;
2042		m1++;
2043		m2++;
2044	}
2045	return true;
2046}
2047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2048static inline bool btf_is_enum_fwd(struct btf_type *t)
2049{
2050	return btf_is_enum(t) && btf_vlen(t) == 0;
2051}
2052
2053static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
2054{
2055	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
2056		return btf_equal_enum(t1, t2);
2057	/* ignore vlen when comparing */
 
 
 
 
 
2058	return t1->name_off == t2->name_off &&
2059	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
2060	       t1->size == t2->size;
2061}
2062
2063/*
2064 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
2065 * as referenced type IDs equivalence is established separately during type
2066 * graph equivalence check algorithm.
2067 */
2068static long btf_hash_struct(struct btf_type *t)
2069{
2070	const struct btf_member *member = btf_members(t);
2071	__u32 vlen = btf_vlen(t);
2072	long h = btf_hash_common(t);
2073	int i;
2074
2075	for (i = 0; i < vlen; i++) {
2076		h = hash_combine(h, member->name_off);
2077		h = hash_combine(h, member->offset);
2078		/* no hashing of referenced type ID, it can be unresolved yet */
2079		member++;
2080	}
2081	return h;
2082}
2083
2084/*
2085 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
2086 * IDs. This check is performed during type graph equivalence check and
2087 * referenced types equivalence is checked separately.
2088 */
2089static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
2090{
2091	const struct btf_member *m1, *m2;
2092	__u16 vlen;
2093	int i;
2094
2095	if (!btf_equal_common(t1, t2))
2096		return false;
2097
2098	vlen = btf_vlen(t1);
2099	m1 = btf_members(t1);
2100	m2 = btf_members(t2);
2101	for (i = 0; i < vlen; i++) {
2102		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
2103			return false;
2104		m1++;
2105		m2++;
2106	}
2107	return true;
2108}
2109
2110/*
2111 * Calculate type signature hash of ARRAY, including referenced type IDs,
2112 * under assumption that they were already resolved to canonical type IDs and
2113 * are not going to change.
2114 */
2115static long btf_hash_array(struct btf_type *t)
2116{
2117	const struct btf_array *info = btf_array(t);
2118	long h = btf_hash_common(t);
2119
2120	h = hash_combine(h, info->type);
2121	h = hash_combine(h, info->index_type);
2122	h = hash_combine(h, info->nelems);
2123	return h;
2124}
2125
2126/*
2127 * Check exact equality of two ARRAYs, taking into account referenced
2128 * type IDs, under assumption that they were already resolved to canonical
2129 * type IDs and are not going to change.
2130 * This function is called during reference types deduplication to compare
2131 * ARRAY to potential canonical representative.
2132 */
2133static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
2134{
2135	const struct btf_array *info1, *info2;
2136
2137	if (!btf_equal_common(t1, t2))
2138		return false;
2139
2140	info1 = btf_array(t1);
2141	info2 = btf_array(t2);
2142	return info1->type == info2->type &&
2143	       info1->index_type == info2->index_type &&
2144	       info1->nelems == info2->nelems;
2145}
2146
2147/*
2148 * Check structural compatibility of two ARRAYs, ignoring referenced type
2149 * IDs. This check is performed during type graph equivalence check and
2150 * referenced types equivalence is checked separately.
2151 */
2152static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
2153{
2154	if (!btf_equal_common(t1, t2))
2155		return false;
2156
2157	return btf_array(t1)->nelems == btf_array(t2)->nelems;
2158}
2159
2160/*
2161 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
2162 * under assumption that they were already resolved to canonical type IDs and
2163 * are not going to change.
2164 */
2165static long btf_hash_fnproto(struct btf_type *t)
2166{
2167	const struct btf_param *member = btf_params(t);
2168	__u16 vlen = btf_vlen(t);
2169	long h = btf_hash_common(t);
2170	int i;
2171
2172	for (i = 0; i < vlen; i++) {
2173		h = hash_combine(h, member->name_off);
2174		h = hash_combine(h, member->type);
2175		member++;
2176	}
2177	return h;
2178}
2179
2180/*
2181 * Check exact equality of two FUNC_PROTOs, taking into account referenced
2182 * type IDs, under assumption that they were already resolved to canonical
2183 * type IDs and are not going to change.
2184 * This function is called during reference types deduplication to compare
2185 * FUNC_PROTO to potential canonical representative.
2186 */
2187static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
2188{
2189	const struct btf_param *m1, *m2;
2190	__u16 vlen;
2191	int i;
2192
2193	if (!btf_equal_common(t1, t2))
2194		return false;
2195
2196	vlen = btf_vlen(t1);
2197	m1 = btf_params(t1);
2198	m2 = btf_params(t2);
2199	for (i = 0; i < vlen; i++) {
2200		if (m1->name_off != m2->name_off || m1->type != m2->type)
2201			return false;
2202		m1++;
2203		m2++;
2204	}
2205	return true;
2206}
2207
2208/*
2209 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
2210 * IDs. This check is performed during type graph equivalence check and
2211 * referenced types equivalence is checked separately.
2212 */
2213static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
2214{
2215	const struct btf_param *m1, *m2;
2216	__u16 vlen;
2217	int i;
2218
2219	/* skip return type ID */
2220	if (t1->name_off != t2->name_off || t1->info != t2->info)
2221		return false;
2222
2223	vlen = btf_vlen(t1);
2224	m1 = btf_params(t1);
2225	m2 = btf_params(t2);
2226	for (i = 0; i < vlen; i++) {
2227		if (m1->name_off != m2->name_off)
2228			return false;
2229		m1++;
2230		m2++;
2231	}
2232	return true;
2233}
2234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2235/*
2236 * Deduplicate primitive types, that can't reference other types, by calculating
2237 * their type signature hash and comparing them with any possible canonical
2238 * candidate. If no canonical candidate matches, type itself is marked as
2239 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
2240 */
2241static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
2242{
2243	struct btf_type *t = d->btf->types[type_id];
2244	struct hashmap_entry *hash_entry;
2245	struct btf_type *cand;
2246	/* if we don't find equivalent type, then we are canonical */
2247	__u32 new_id = type_id;
2248	__u32 cand_id;
2249	long h;
2250
2251	switch (btf_kind(t)) {
2252	case BTF_KIND_CONST:
2253	case BTF_KIND_VOLATILE:
2254	case BTF_KIND_RESTRICT:
2255	case BTF_KIND_PTR:
2256	case BTF_KIND_TYPEDEF:
2257	case BTF_KIND_ARRAY:
2258	case BTF_KIND_STRUCT:
2259	case BTF_KIND_UNION:
2260	case BTF_KIND_FUNC:
2261	case BTF_KIND_FUNC_PROTO:
2262	case BTF_KIND_VAR:
2263	case BTF_KIND_DATASEC:
 
 
2264		return 0;
2265
2266	case BTF_KIND_INT:
2267		h = btf_hash_int(t);
2268		for_each_dedup_cand(d, hash_entry, h) {
2269			cand_id = (__u32)(long)hash_entry->value;
2270			cand = d->btf->types[cand_id];
2271			if (btf_equal_int(t, cand)) {
2272				new_id = cand_id;
2273				break;
2274			}
2275		}
2276		break;
2277
2278	case BTF_KIND_ENUM:
 
2279		h = btf_hash_enum(t);
2280		for_each_dedup_cand(d, hash_entry, h) {
2281			cand_id = (__u32)(long)hash_entry->value;
2282			cand = d->btf->types[cand_id];
2283			if (btf_equal_enum(t, cand)) {
2284				new_id = cand_id;
2285				break;
2286			}
2287			if (d->opts.dont_resolve_fwds)
2288				continue;
2289			if (btf_compat_enum(t, cand)) {
2290				if (btf_is_enum_fwd(t)) {
2291					/* resolve fwd to full enum */
2292					new_id = cand_id;
2293					break;
2294				}
2295				/* resolve canonical enum fwd to full enum */
2296				d->map[cand_id] = type_id;
2297			}
2298		}
2299		break;
2300
2301	case BTF_KIND_FWD:
 
2302		h = btf_hash_common(t);
2303		for_each_dedup_cand(d, hash_entry, h) {
2304			cand_id = (__u32)(long)hash_entry->value;
2305			cand = d->btf->types[cand_id];
2306			if (btf_equal_common(t, cand)) {
2307				new_id = cand_id;
2308				break;
2309			}
2310		}
2311		break;
2312
2313	default:
2314		return -EINVAL;
2315	}
2316
2317	d->map[type_id] = new_id;
2318	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2319		return -ENOMEM;
2320
2321	return 0;
2322}
2323
2324static int btf_dedup_prim_types(struct btf_dedup *d)
2325{
2326	int i, err;
2327
2328	for (i = 1; i <= d->btf->nr_types; i++) {
2329		err = btf_dedup_prim_type(d, i);
2330		if (err)
2331			return err;
2332	}
2333	return 0;
2334}
2335
2336/*
2337 * Check whether type is already mapped into canonical one (could be to itself).
2338 */
2339static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
2340{
2341	return d->map[type_id] <= BTF_MAX_NR_TYPES;
2342}
2343
2344/*
2345 * Resolve type ID into its canonical type ID, if any; otherwise return original
2346 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
2347 * STRUCT/UNION link and resolve it into canonical type ID as well.
2348 */
2349static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
2350{
2351	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2352		type_id = d->map[type_id];
2353	return type_id;
2354}
2355
2356/*
2357 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
2358 * type ID.
2359 */
2360static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
2361{
2362	__u32 orig_type_id = type_id;
2363
2364	if (!btf_is_fwd(d->btf->types[type_id]))
2365		return type_id;
2366
2367	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2368		type_id = d->map[type_id];
2369
2370	if (!btf_is_fwd(d->btf->types[type_id]))
2371		return type_id;
2372
2373	return orig_type_id;
2374}
2375
2376
2377static inline __u16 btf_fwd_kind(struct btf_type *t)
2378{
2379	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
2380}
2381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2382/*
2383 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
2384 * call it "candidate graph" in this description for brevity) to a type graph
2385 * formed by (potential) canonical struct/union ("canonical graph" for brevity
2386 * here, though keep in mind that not all types in canonical graph are
2387 * necessarily canonical representatives themselves, some of them might be
2388 * duplicates or its uniqueness might not have been established yet).
2389 * Returns:
2390 *  - >0, if type graphs are equivalent;
2391 *  -  0, if not equivalent;
2392 *  - <0, on error.
2393 *
2394 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
2395 * equivalence of BTF types at each step. If at any point BTF types in candidate
2396 * and canonical graphs are not compatible structurally, whole graphs are
2397 * incompatible. If types are structurally equivalent (i.e., all information
2398 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
2399 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
2400 * If a type references other types, then those referenced types are checked
2401 * for equivalence recursively.
2402 *
2403 * During DFS traversal, if we find that for current `canon_id` type we
2404 * already have some mapping in hypothetical map, we check for two possible
2405 * situations:
2406 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
2407 *     happen when type graphs have cycles. In this case we assume those two
2408 *     types are equivalent.
2409 *   - `canon_id` is mapped to different type. This is contradiction in our
2410 *     hypothetical mapping, because same graph in canonical graph corresponds
2411 *     to two different types in candidate graph, which for equivalent type
2412 *     graphs shouldn't happen. This condition terminates equivalence check
2413 *     with negative result.
2414 *
2415 * If type graphs traversal exhausts types to check and find no contradiction,
2416 * then type graphs are equivalent.
2417 *
2418 * When checking types for equivalence, there is one special case: FWD types.
2419 * If FWD type resolution is allowed and one of the types (either from canonical
2420 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
2421 * flag) and their names match, hypothetical mapping is updated to point from
2422 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
2423 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
2424 *
2425 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
2426 * if there are two exactly named (or anonymous) structs/unions that are
2427 * compatible structurally, one of which has FWD field, while other is concrete
2428 * STRUCT/UNION, but according to C sources they are different structs/unions
2429 * that are referencing different types with the same name. This is extremely
2430 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
2431 * this logic is causing problems.
2432 *
2433 * Doing FWD resolution means that both candidate and/or canonical graphs can
2434 * consists of portions of the graph that come from multiple compilation units.
2435 * This is due to the fact that types within single compilation unit are always
2436 * deduplicated and FWDs are already resolved, if referenced struct/union
2437 * definiton is available. So, if we had unresolved FWD and found corresponding
2438 * STRUCT/UNION, they will be from different compilation units. This
2439 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
2440 * type graph will likely have at least two different BTF types that describe
2441 * same type (e.g., most probably there will be two different BTF types for the
2442 * same 'int' primitive type) and could even have "overlapping" parts of type
2443 * graph that describe same subset of types.
2444 *
2445 * This in turn means that our assumption that each type in canonical graph
2446 * must correspond to exactly one type in candidate graph might not hold
2447 * anymore and will make it harder to detect contradictions using hypothetical
2448 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
2449 * resolution only in canonical graph. FWDs in candidate graphs are never
2450 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
2451 * that can occur:
2452 *   - Both types in canonical and candidate graphs are FWDs. If they are
2453 *     structurally equivalent, then they can either be both resolved to the
2454 *     same STRUCT/UNION or not resolved at all. In both cases they are
2455 *     equivalent and there is no need to resolve FWD on candidate side.
2456 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
2457 *     so nothing to resolve as well, algorithm will check equivalence anyway.
2458 *   - Type in canonical graph is FWD, while type in candidate is concrete
2459 *     STRUCT/UNION. In this case candidate graph comes from single compilation
2460 *     unit, so there is exactly one BTF type for each unique C type. After
2461 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
2462 *     in canonical graph mapping to single BTF type in candidate graph, but
2463 *     because hypothetical mapping maps from canonical to candidate types, it's
2464 *     alright, and we still maintain the property of having single `canon_id`
2465 *     mapping to single `cand_id` (there could be two different `canon_id`
2466 *     mapped to the same `cand_id`, but it's not contradictory).
2467 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
2468 *     graph is FWD. In this case we are just going to check compatibility of
2469 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
2470 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
2471 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
2472 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
2473 *     canonical graph.
2474 */
2475static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
2476			      __u32 canon_id)
2477{
2478	struct btf_type *cand_type;
2479	struct btf_type *canon_type;
2480	__u32 hypot_type_id;
2481	__u16 cand_kind;
2482	__u16 canon_kind;
2483	int i, eq;
2484
2485	/* if both resolve to the same canonical, they must be equivalent */
2486	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
2487		return 1;
2488
2489	canon_id = resolve_fwd_id(d, canon_id);
2490
2491	hypot_type_id = d->hypot_map[canon_id];
2492	if (hypot_type_id <= BTF_MAX_NR_TYPES)
2493		return hypot_type_id == cand_id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2494
2495	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
2496		return -ENOMEM;
2497
2498	cand_type = d->btf->types[cand_id];
2499	canon_type = d->btf->types[canon_id];
2500	cand_kind = btf_kind(cand_type);
2501	canon_kind = btf_kind(canon_type);
2502
2503	if (cand_type->name_off != canon_type->name_off)
2504		return 0;
2505
2506	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
2507	if (!d->opts.dont_resolve_fwds
2508	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
2509	    && cand_kind != canon_kind) {
2510		__u16 real_kind;
2511		__u16 fwd_kind;
2512
2513		if (cand_kind == BTF_KIND_FWD) {
2514			real_kind = canon_kind;
2515			fwd_kind = btf_fwd_kind(cand_type);
2516		} else {
2517			real_kind = cand_kind;
2518			fwd_kind = btf_fwd_kind(canon_type);
 
 
 
2519		}
2520		return fwd_kind == real_kind;
2521	}
2522
2523	if (cand_kind != canon_kind)
2524		return 0;
2525
2526	switch (cand_kind) {
2527	case BTF_KIND_INT:
2528		return btf_equal_int(cand_type, canon_type);
2529
2530	case BTF_KIND_ENUM:
2531		if (d->opts.dont_resolve_fwds)
2532			return btf_equal_enum(cand_type, canon_type);
2533		else
2534			return btf_compat_enum(cand_type, canon_type);
2535
2536	case BTF_KIND_FWD:
 
2537		return btf_equal_common(cand_type, canon_type);
2538
2539	case BTF_KIND_CONST:
2540	case BTF_KIND_VOLATILE:
2541	case BTF_KIND_RESTRICT:
2542	case BTF_KIND_PTR:
2543	case BTF_KIND_TYPEDEF:
2544	case BTF_KIND_FUNC:
 
2545		if (cand_type->info != canon_type->info)
2546			return 0;
2547		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2548
2549	case BTF_KIND_ARRAY: {
2550		const struct btf_array *cand_arr, *canon_arr;
2551
2552		if (!btf_compat_array(cand_type, canon_type))
2553			return 0;
2554		cand_arr = btf_array(cand_type);
2555		canon_arr = btf_array(canon_type);
2556		eq = btf_dedup_is_equiv(d,
2557			cand_arr->index_type, canon_arr->index_type);
2558		if (eq <= 0)
2559			return eq;
2560		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
2561	}
2562
2563	case BTF_KIND_STRUCT:
2564	case BTF_KIND_UNION: {
2565		const struct btf_member *cand_m, *canon_m;
2566		__u16 vlen;
2567
2568		if (!btf_shallow_equal_struct(cand_type, canon_type))
2569			return 0;
2570		vlen = btf_vlen(cand_type);
2571		cand_m = btf_members(cand_type);
2572		canon_m = btf_members(canon_type);
2573		for (i = 0; i < vlen; i++) {
2574			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
2575			if (eq <= 0)
2576				return eq;
2577			cand_m++;
2578			canon_m++;
2579		}
2580
2581		return 1;
2582	}
2583
2584	case BTF_KIND_FUNC_PROTO: {
2585		const struct btf_param *cand_p, *canon_p;
2586		__u16 vlen;
2587
2588		if (!btf_compat_fnproto(cand_type, canon_type))
2589			return 0;
2590		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2591		if (eq <= 0)
2592			return eq;
2593		vlen = btf_vlen(cand_type);
2594		cand_p = btf_params(cand_type);
2595		canon_p = btf_params(canon_type);
2596		for (i = 0; i < vlen; i++) {
2597			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
2598			if (eq <= 0)
2599				return eq;
2600			cand_p++;
2601			canon_p++;
2602		}
2603		return 1;
2604	}
2605
2606	default:
2607		return -EINVAL;
2608	}
2609	return 0;
2610}
2611
2612/*
2613 * Use hypothetical mapping, produced by successful type graph equivalence
2614 * check, to augment existing struct/union canonical mapping, where possible.
2615 *
2616 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
2617 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
2618 * it doesn't matter if FWD type was part of canonical graph or candidate one,
2619 * we are recording the mapping anyway. As opposed to carefulness required
2620 * for struct/union correspondence mapping (described below), for FWD resolution
2621 * it's not important, as by the time that FWD type (reference type) will be
2622 * deduplicated all structs/unions will be deduped already anyway.
2623 *
2624 * Recording STRUCT/UNION mapping is purely a performance optimization and is
2625 * not required for correctness. It needs to be done carefully to ensure that
2626 * struct/union from candidate's type graph is not mapped into corresponding
2627 * struct/union from canonical type graph that itself hasn't been resolved into
2628 * canonical representative. The only guarantee we have is that canonical
2629 * struct/union was determined as canonical and that won't change. But any
2630 * types referenced through that struct/union fields could have been not yet
2631 * resolved, so in case like that it's too early to establish any kind of
2632 * correspondence between structs/unions.
2633 *
2634 * No canonical correspondence is derived for primitive types (they are already
2635 * deduplicated completely already anyway) or reference types (they rely on
2636 * stability of struct/union canonical relationship for equivalence checks).
2637 */
2638static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
2639{
2640	__u32 cand_type_id, targ_type_id;
2641	__u16 t_kind, c_kind;
2642	__u32 t_id, c_id;
2643	int i;
2644
2645	for (i = 0; i < d->hypot_cnt; i++) {
2646		cand_type_id = d->hypot_list[i];
2647		targ_type_id = d->hypot_map[cand_type_id];
2648		t_id = resolve_type_id(d, targ_type_id);
2649		c_id = resolve_type_id(d, cand_type_id);
2650		t_kind = btf_kind(d->btf->types[t_id]);
2651		c_kind = btf_kind(d->btf->types[c_id]);
2652		/*
2653		 * Resolve FWD into STRUCT/UNION.
2654		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
2655		 * mapped to canonical representative (as opposed to
2656		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
2657		 * eventually that struct is going to be mapped and all resolved
2658		 * FWDs will automatically resolve to correct canonical
2659		 * representative. This will happen before ref type deduping,
2660		 * which critically depends on stability of these mapping. This
2661		 * stability is not a requirement for STRUCT/UNION equivalence
2662		 * checks, though.
2663		 */
 
 
 
 
 
 
 
 
2664		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
2665			d->map[c_id] = t_id;
2666		else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
 
 
 
 
 
 
 
 
 
2667			d->map[t_id] = c_id;
2668
2669		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
2670		    c_kind != BTF_KIND_FWD &&
2671		    is_type_mapped(d, c_id) &&
2672		    !is_type_mapped(d, t_id)) {
2673			/*
2674			 * as a perf optimization, we can map struct/union
2675			 * that's part of type graph we just verified for
2676			 * equivalence. We can do that for struct/union that has
2677			 * canonical representative only, though.
2678			 */
2679			d->map[t_id] = c_id;
2680		}
2681	}
2682}
2683
2684/*
2685 * Deduplicate struct/union types.
2686 *
2687 * For each struct/union type its type signature hash is calculated, taking
2688 * into account type's name, size, number, order and names of fields, but
2689 * ignoring type ID's referenced from fields, because they might not be deduped
2690 * completely until after reference types deduplication phase. This type hash
2691 * is used to iterate over all potential canonical types, sharing same hash.
2692 * For each canonical candidate we check whether type graphs that they form
2693 * (through referenced types in fields and so on) are equivalent using algorithm
2694 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
2695 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
2696 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
2697 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
2698 * potentially map other structs/unions to their canonical representatives,
2699 * if such relationship hasn't yet been established. This speeds up algorithm
2700 * by eliminating some of the duplicate work.
2701 *
2702 * If no matching canonical representative was found, struct/union is marked
2703 * as canonical for itself and is added into btf_dedup->dedup_table hash map
2704 * for further look ups.
2705 */
2706static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
2707{
2708	struct btf_type *cand_type, *t;
2709	struct hashmap_entry *hash_entry;
2710	/* if we don't find equivalent type, then we are canonical */
2711	__u32 new_id = type_id;
2712	__u16 kind;
2713	long h;
2714
2715	/* already deduped or is in process of deduping (loop detected) */
2716	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2717		return 0;
2718
2719	t = d->btf->types[type_id];
2720	kind = btf_kind(t);
2721
2722	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
2723		return 0;
2724
2725	h = btf_hash_struct(t);
2726	for_each_dedup_cand(d, hash_entry, h) {
2727		__u32 cand_id = (__u32)(long)hash_entry->value;
2728		int eq;
2729
2730		/*
2731		 * Even though btf_dedup_is_equiv() checks for
2732		 * btf_shallow_equal_struct() internally when checking two
2733		 * structs (unions) for equivalence, we need to guard here
2734		 * from picking matching FWD type as a dedup candidate.
2735		 * This can happen due to hash collision. In such case just
2736		 * relying on btf_dedup_is_equiv() would lead to potentially
2737		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
2738		 * FWD and compatible STRUCT/UNION are considered equivalent.
2739		 */
2740		cand_type = d->btf->types[cand_id];
2741		if (!btf_shallow_equal_struct(t, cand_type))
2742			continue;
2743
2744		btf_dedup_clear_hypot_map(d);
2745		eq = btf_dedup_is_equiv(d, type_id, cand_id);
2746		if (eq < 0)
2747			return eq;
2748		if (!eq)
2749			continue;
 
 
 
2750		new_id = cand_id;
2751		btf_dedup_merge_hypot_map(d);
2752		break;
2753	}
2754
2755	d->map[type_id] = new_id;
2756	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2757		return -ENOMEM;
2758
2759	return 0;
2760}
2761
2762static int btf_dedup_struct_types(struct btf_dedup *d)
2763{
2764	int i, err;
2765
2766	for (i = 1; i <= d->btf->nr_types; i++) {
2767		err = btf_dedup_struct_type(d, i);
2768		if (err)
2769			return err;
2770	}
2771	return 0;
2772}
2773
2774/*
2775 * Deduplicate reference type.
2776 *
2777 * Once all primitive and struct/union types got deduplicated, we can easily
2778 * deduplicate all other (reference) BTF types. This is done in two steps:
2779 *
2780 * 1. Resolve all referenced type IDs into their canonical type IDs. This
2781 * resolution can be done either immediately for primitive or struct/union types
2782 * (because they were deduped in previous two phases) or recursively for
2783 * reference types. Recursion will always terminate at either primitive or
2784 * struct/union type, at which point we can "unwind" chain of reference types
2785 * one by one. There is no danger of encountering cycles because in C type
2786 * system the only way to form type cycle is through struct/union, so any chain
2787 * of reference types, even those taking part in a type cycle, will inevitably
2788 * reach struct/union at some point.
2789 *
2790 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
2791 * becomes "stable", in the sense that no further deduplication will cause
2792 * any changes to it. With that, it's now possible to calculate type's signature
2793 * hash (this time taking into account referenced type IDs) and loop over all
2794 * potential canonical representatives. If no match was found, current type
2795 * will become canonical representative of itself and will be added into
2796 * btf_dedup->dedup_table as another possible canonical representative.
2797 */
2798static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
2799{
2800	struct hashmap_entry *hash_entry;
2801	__u32 new_id = type_id, cand_id;
2802	struct btf_type *t, *cand;
2803	/* if we don't find equivalent type, then we are representative type */
2804	int ref_type_id;
2805	long h;
2806
2807	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
2808		return -ELOOP;
2809	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2810		return resolve_type_id(d, type_id);
2811
2812	t = d->btf->types[type_id];
2813	d->map[type_id] = BTF_IN_PROGRESS_ID;
2814
2815	switch (btf_kind(t)) {
2816	case BTF_KIND_CONST:
2817	case BTF_KIND_VOLATILE:
2818	case BTF_KIND_RESTRICT:
2819	case BTF_KIND_PTR:
2820	case BTF_KIND_TYPEDEF:
2821	case BTF_KIND_FUNC:
 
2822		ref_type_id = btf_dedup_ref_type(d, t->type);
2823		if (ref_type_id < 0)
2824			return ref_type_id;
2825		t->type = ref_type_id;
2826
2827		h = btf_hash_common(t);
2828		for_each_dedup_cand(d, hash_entry, h) {
2829			cand_id = (__u32)(long)hash_entry->value;
2830			cand = d->btf->types[cand_id];
2831			if (btf_equal_common(t, cand)) {
2832				new_id = cand_id;
2833				break;
2834			}
2835		}
2836		break;
2837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2838	case BTF_KIND_ARRAY: {
2839		struct btf_array *info = btf_array(t);
2840
2841		ref_type_id = btf_dedup_ref_type(d, info->type);
2842		if (ref_type_id < 0)
2843			return ref_type_id;
2844		info->type = ref_type_id;
2845
2846		ref_type_id = btf_dedup_ref_type(d, info->index_type);
2847		if (ref_type_id < 0)
2848			return ref_type_id;
2849		info->index_type = ref_type_id;
2850
2851		h = btf_hash_array(t);
2852		for_each_dedup_cand(d, hash_entry, h) {
2853			cand_id = (__u32)(long)hash_entry->value;
2854			cand = d->btf->types[cand_id];
2855			if (btf_equal_array(t, cand)) {
2856				new_id = cand_id;
2857				break;
2858			}
2859		}
2860		break;
2861	}
2862
2863	case BTF_KIND_FUNC_PROTO: {
2864		struct btf_param *param;
2865		__u16 vlen;
2866		int i;
2867
2868		ref_type_id = btf_dedup_ref_type(d, t->type);
2869		if (ref_type_id < 0)
2870			return ref_type_id;
2871		t->type = ref_type_id;
2872
2873		vlen = btf_vlen(t);
2874		param = btf_params(t);
2875		for (i = 0; i < vlen; i++) {
2876			ref_type_id = btf_dedup_ref_type(d, param->type);
2877			if (ref_type_id < 0)
2878				return ref_type_id;
2879			param->type = ref_type_id;
2880			param++;
2881		}
2882
2883		h = btf_hash_fnproto(t);
2884		for_each_dedup_cand(d, hash_entry, h) {
2885			cand_id = (__u32)(long)hash_entry->value;
2886			cand = d->btf->types[cand_id];
2887			if (btf_equal_fnproto(t, cand)) {
2888				new_id = cand_id;
2889				break;
2890			}
2891		}
2892		break;
2893	}
2894
2895	default:
2896		return -EINVAL;
2897	}
2898
2899	d->map[type_id] = new_id;
2900	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2901		return -ENOMEM;
2902
2903	return new_id;
2904}
2905
2906static int btf_dedup_ref_types(struct btf_dedup *d)
2907{
2908	int i, err;
2909
2910	for (i = 1; i <= d->btf->nr_types; i++) {
2911		err = btf_dedup_ref_type(d, i);
2912		if (err < 0)
2913			return err;
2914	}
2915	/* we won't need d->dedup_table anymore */
2916	hashmap__free(d->dedup_table);
2917	d->dedup_table = NULL;
2918	return 0;
2919}
2920
2921/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2922 * Compact types.
2923 *
2924 * After we established for each type its corresponding canonical representative
2925 * type, we now can eliminate types that are not canonical and leave only
2926 * canonical ones layed out sequentially in memory by copying them over
2927 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
2928 * a map from original type ID to a new compacted type ID, which will be used
2929 * during next phase to "fix up" type IDs, referenced from struct/union and
2930 * reference types.
2931 */
2932static int btf_dedup_compact_types(struct btf_dedup *d)
2933{
2934	struct btf_type **new_types;
2935	__u32 next_type_id = 1;
2936	char *types_start, *p;
2937	int i, len;
 
2938
2939	/* we are going to reuse hypot_map to store compaction remapping */
2940	d->hypot_map[0] = 0;
2941	for (i = 1; i <= d->btf->nr_types; i++)
2942		d->hypot_map[i] = BTF_UNPROCESSED_ID;
 
 
 
2943
2944	types_start = d->btf->nohdr_data + d->btf->hdr->type_off;
2945	p = types_start;
2946
2947	for (i = 1; i <= d->btf->nr_types; i++) {
2948		if (d->map[i] != i)
2949			continue;
2950
2951		len = btf_type_size(d->btf->types[i]);
 
2952		if (len < 0)
2953			return len;
2954
2955		memmove(p, d->btf->types[i], len);
2956		d->hypot_map[i] = next_type_id;
2957		d->btf->types[next_type_id] = (struct btf_type *)p;
2958		p += len;
2959		next_type_id++;
2960	}
2961
2962	/* shrink struct btf's internal types index and update btf_header */
2963	d->btf->nr_types = next_type_id - 1;
2964	d->btf->types_size = d->btf->nr_types;
2965	d->btf->hdr->type_len = p - types_start;
2966	new_types = realloc(d->btf->types,
2967			    (1 + d->btf->nr_types) * sizeof(struct btf_type *));
2968	if (!new_types)
2969		return -ENOMEM;
2970	d->btf->types = new_types;
2971
2972	/* make sure string section follows type information without gaps */
2973	d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data;
2974	memmove(p, d->btf->strings, d->btf->hdr->str_len);
2975	d->btf->strings = p;
2976	p += d->btf->hdr->str_len;
2977
2978	d->btf->data_size = p - (char *)d->btf->data;
2979	return 0;
2980}
2981
2982/*
2983 * Figure out final (deduplicated and compacted) type ID for provided original
2984 * `type_id` by first resolving it into corresponding canonical type ID and
2985 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
2986 * which is populated during compaction phase.
2987 */
2988static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
2989{
 
2990	__u32 resolved_type_id, new_type_id;
2991
2992	resolved_type_id = resolve_type_id(d, type_id);
2993	new_type_id = d->hypot_map[resolved_type_id];
2994	if (new_type_id > BTF_MAX_NR_TYPES)
2995		return -EINVAL;
2996	return new_type_id;
 
 
2997}
2998
2999/*
3000 * Remap referenced type IDs into deduped type IDs.
3001 *
3002 * After BTF types are deduplicated and compacted, their final type IDs may
3003 * differ from original ones. The map from original to a corresponding
3004 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
3005 * compaction phase. During remapping phase we are rewriting all type IDs
3006 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
3007 * their final deduped type IDs.
3008 */
3009static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
3010{
3011	struct btf_type *t = d->btf->types[type_id];
3012	int i, r;
3013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3014	switch (btf_kind(t)) {
3015	case BTF_KIND_INT:
 
3016	case BTF_KIND_ENUM:
3017		break;
 
3018
3019	case BTF_KIND_FWD:
3020	case BTF_KIND_CONST:
3021	case BTF_KIND_VOLATILE:
3022	case BTF_KIND_RESTRICT:
3023	case BTF_KIND_PTR:
3024	case BTF_KIND_TYPEDEF:
3025	case BTF_KIND_FUNC:
3026	case BTF_KIND_VAR:
3027		r = btf_dedup_remap_type_id(d, t->type);
3028		if (r < 0)
3029			return r;
3030		t->type = r;
3031		break;
3032
3033	case BTF_KIND_ARRAY: {
3034		struct btf_array *arr_info = btf_array(t);
3035
3036		r = btf_dedup_remap_type_id(d, arr_info->type);
3037		if (r < 0)
3038			return r;
3039		arr_info->type = r;
3040		r = btf_dedup_remap_type_id(d, arr_info->index_type);
3041		if (r < 0)
3042			return r;
3043		arr_info->index_type = r;
3044		break;
3045	}
3046
3047	case BTF_KIND_STRUCT:
3048	case BTF_KIND_UNION: {
3049		struct btf_member *member = btf_members(t);
3050		__u16 vlen = btf_vlen(t);
3051
3052		for (i = 0; i < vlen; i++) {
3053			r = btf_dedup_remap_type_id(d, member->type);
3054			if (r < 0)
3055				return r;
3056			member->type = r;
3057			member++;
3058		}
3059		break;
3060	}
3061
3062	case BTF_KIND_FUNC_PROTO: {
3063		struct btf_param *param = btf_params(t);
3064		__u16 vlen = btf_vlen(t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3065
3066		r = btf_dedup_remap_type_id(d, t->type);
3067		if (r < 0)
3068			return r;
3069		t->type = r;
3070
3071		for (i = 0; i < vlen; i++) {
3072			r = btf_dedup_remap_type_id(d, param->type);
3073			if (r < 0)
3074				return r;
3075			param->type = r;
3076			param++;
3077		}
3078		break;
3079	}
 
 
3080
3081	case BTF_KIND_DATASEC: {
3082		struct btf_var_secinfo *var = btf_var_secinfos(t);
3083		__u16 vlen = btf_vlen(t);
 
 
 
 
 
 
3084
3085		for (i = 0; i < vlen; i++) {
3086			r = btf_dedup_remap_type_id(d, var->type);
3087			if (r < 0)
3088				return r;
3089			var->type = r;
3090			var++;
3091		}
3092		break;
3093	}
 
 
3094
 
 
 
 
 
 
 
3095	default:
3096		return -EINVAL;
3097	}
3098
3099	return 0;
3100}
3101
3102static int btf_dedup_remap_types(struct btf_dedup *d)
3103{
3104	int i, r;
 
 
 
 
 
 
 
 
 
 
 
 
 
3105
3106	for (i = 1; i <= d->btf->nr_types; i++) {
3107		r = btf_dedup_remap_type(d, i);
3108		if (r < 0)
3109			return r;
 
 
 
 
 
3110	}
 
3111	return 0;
3112}
3113
3114/*
3115 * Probe few well-known locations for vmlinux kernel image and try to load BTF
3116 * data out of it to use for target BTF.
3117 */
3118struct btf *libbpf_find_kernel_btf(void)
3119{
3120	struct {
3121		const char *path_fmt;
3122		bool raw_btf;
3123	} locations[] = {
3124		/* try canonical vmlinux BTF through sysfs first */
3125		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
3126		/* fall back to trying to find vmlinux ELF on disk otherwise */
3127		{ "/boot/vmlinux-%1$s" },
3128		{ "/lib/modules/%1$s/vmlinux-%1$s" },
3129		{ "/lib/modules/%1$s/build/vmlinux" },
3130		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
3131		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
3132		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
3133		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
3134	};
3135	char path[PATH_MAX + 1];
3136	struct utsname buf;
3137	struct btf *btf;
3138	int i;
3139
3140	uname(&buf);
 
 
3141
3142	for (i = 0; i < ARRAY_SIZE(locations); i++) {
3143		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
 
3144
3145		if (access(path, R_OK))
3146			continue;
 
 
 
 
 
 
 
3147
3148		if (locations[i].raw_btf)
3149			btf = btf__parse_raw(path);
3150		else
3151			btf = btf__parse_elf(path, NULL);
3152
3153		pr_debug("loading kernel BTF '%s': %ld\n",
3154			 path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
3155		if (IS_ERR(btf))
3156			continue;
3157
3158		return btf;
 
 
 
 
3159	}
3160
3161	pr_warn("failed to find valid kernel BTF\n");
3162	return ERR_PTR(-ESRCH);
3163}