Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_buf_item.h"
17#include "xfs_btree.h"
18#include "xfs_errortag.h"
19#include "xfs_error.h"
20#include "xfs_trace.h"
21#include "xfs_alloc.h"
22#include "xfs_log.h"
23#include "xfs_btree_staging.h"
24#include "xfs_ag.h"
25#include "xfs_alloc_btree.h"
26#include "xfs_ialloc_btree.h"
27#include "xfs_bmap_btree.h"
28#include "xfs_rmap_btree.h"
29#include "xfs_refcount_btree.h"
30#include "xfs_health.h"
31#include "xfs_buf_mem.h"
32#include "xfs_btree_mem.h"
33
34/*
35 * Btree magic numbers.
36 */
37uint32_t
38xfs_btree_magic(
39 struct xfs_mount *mp,
40 const struct xfs_btree_ops *ops)
41{
42 int idx = xfs_has_crc(mp) ? 1 : 0;
43 __be32 magic = ops->buf_ops->magic[idx];
44
45 /* Ensure we asked for crc for crc-only magics. */
46 ASSERT(magic != 0);
47 return be32_to_cpu(magic);
48}
49
50/*
51 * These sibling pointer checks are optimised for null sibling pointers. This
52 * happens a lot, and we don't need to byte swap at runtime if the sibling
53 * pointer is NULL.
54 *
55 * These are explicitly marked at inline because the cost of calling them as
56 * functions instead of inlining them is about 36 bytes extra code per call site
57 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
58 * two sibling check functions reduces the compiled code size by over 300
59 * bytes.
60 */
61static inline xfs_failaddr_t
62xfs_btree_check_fsblock_siblings(
63 struct xfs_mount *mp,
64 xfs_fsblock_t fsb,
65 __be64 dsibling)
66{
67 xfs_fsblock_t sibling;
68
69 if (dsibling == cpu_to_be64(NULLFSBLOCK))
70 return NULL;
71
72 sibling = be64_to_cpu(dsibling);
73 if (sibling == fsb)
74 return __this_address;
75 if (!xfs_verify_fsbno(mp, sibling))
76 return __this_address;
77 return NULL;
78}
79
80static inline xfs_failaddr_t
81xfs_btree_check_memblock_siblings(
82 struct xfs_buftarg *btp,
83 xfbno_t bno,
84 __be64 dsibling)
85{
86 xfbno_t sibling;
87
88 if (dsibling == cpu_to_be64(NULLFSBLOCK))
89 return NULL;
90
91 sibling = be64_to_cpu(dsibling);
92 if (sibling == bno)
93 return __this_address;
94 if (!xmbuf_verify_daddr(btp, xfbno_to_daddr(sibling)))
95 return __this_address;
96 return NULL;
97}
98
99static inline xfs_failaddr_t
100xfs_btree_check_agblock_siblings(
101 struct xfs_perag *pag,
102 xfs_agblock_t agbno,
103 __be32 dsibling)
104{
105 xfs_agblock_t sibling;
106
107 if (dsibling == cpu_to_be32(NULLAGBLOCK))
108 return NULL;
109
110 sibling = be32_to_cpu(dsibling);
111 if (sibling == agbno)
112 return __this_address;
113 if (!xfs_verify_agbno(pag, sibling))
114 return __this_address;
115 return NULL;
116}
117
118static xfs_failaddr_t
119__xfs_btree_check_lblock_hdr(
120 struct xfs_btree_cur *cur,
121 struct xfs_btree_block *block,
122 int level,
123 struct xfs_buf *bp)
124{
125 struct xfs_mount *mp = cur->bc_mp;
126
127 if (xfs_has_crc(mp)) {
128 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
129 return __this_address;
130 if (block->bb_u.l.bb_blkno !=
131 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
132 return __this_address;
133 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
134 return __this_address;
135 }
136
137 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
138 return __this_address;
139 if (be16_to_cpu(block->bb_level) != level)
140 return __this_address;
141 if (be16_to_cpu(block->bb_numrecs) >
142 cur->bc_ops->get_maxrecs(cur, level))
143 return __this_address;
144
145 return NULL;
146}
147
148/*
149 * Check a long btree block header. Return the address of the failing check,
150 * or NULL if everything is ok.
151 */
152static xfs_failaddr_t
153__xfs_btree_check_fsblock(
154 struct xfs_btree_cur *cur,
155 struct xfs_btree_block *block,
156 int level,
157 struct xfs_buf *bp)
158{
159 struct xfs_mount *mp = cur->bc_mp;
160 xfs_failaddr_t fa;
161 xfs_fsblock_t fsb;
162
163 fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
164 if (fa)
165 return fa;
166
167 /*
168 * For inode-rooted btrees, the root block sits in the inode fork. In
169 * that case bp is NULL, and the block must not have any siblings.
170 */
171 if (!bp) {
172 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK))
173 return __this_address;
174 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK))
175 return __this_address;
176 return NULL;
177 }
178
179 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
180 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
181 block->bb_u.l.bb_leftsib);
182 if (!fa)
183 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
184 block->bb_u.l.bb_rightsib);
185 return fa;
186}
187
188/*
189 * Check an in-memory btree block header. Return the address of the failing
190 * check, or NULL if everything is ok.
191 */
192static xfs_failaddr_t
193__xfs_btree_check_memblock(
194 struct xfs_btree_cur *cur,
195 struct xfs_btree_block *block,
196 int level,
197 struct xfs_buf *bp)
198{
199 struct xfs_buftarg *btp = cur->bc_mem.xfbtree->target;
200 xfs_failaddr_t fa;
201 xfbno_t bno;
202
203 fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
204 if (fa)
205 return fa;
206
207 bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
208 fa = xfs_btree_check_memblock_siblings(btp, bno,
209 block->bb_u.l.bb_leftsib);
210 if (!fa)
211 fa = xfs_btree_check_memblock_siblings(btp, bno,
212 block->bb_u.l.bb_rightsib);
213 return fa;
214}
215
216/*
217 * Check a short btree block header. Return the address of the failing check,
218 * or NULL if everything is ok.
219 */
220static xfs_failaddr_t
221__xfs_btree_check_agblock(
222 struct xfs_btree_cur *cur,
223 struct xfs_btree_block *block,
224 int level,
225 struct xfs_buf *bp)
226{
227 struct xfs_mount *mp = cur->bc_mp;
228 struct xfs_perag *pag = cur->bc_ag.pag;
229 xfs_failaddr_t fa;
230 xfs_agblock_t agbno;
231
232 if (xfs_has_crc(mp)) {
233 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
234 return __this_address;
235 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
236 return __this_address;
237 }
238
239 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
240 return __this_address;
241 if (be16_to_cpu(block->bb_level) != level)
242 return __this_address;
243 if (be16_to_cpu(block->bb_numrecs) >
244 cur->bc_ops->get_maxrecs(cur, level))
245 return __this_address;
246
247 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
248 fa = xfs_btree_check_agblock_siblings(pag, agbno,
249 block->bb_u.s.bb_leftsib);
250 if (!fa)
251 fa = xfs_btree_check_agblock_siblings(pag, agbno,
252 block->bb_u.s.bb_rightsib);
253 return fa;
254}
255
256/*
257 * Internal btree block check.
258 *
259 * Return NULL if the block is ok or the address of the failed check otherwise.
260 */
261xfs_failaddr_t
262__xfs_btree_check_block(
263 struct xfs_btree_cur *cur,
264 struct xfs_btree_block *block,
265 int level,
266 struct xfs_buf *bp)
267{
268 switch (cur->bc_ops->type) {
269 case XFS_BTREE_TYPE_MEM:
270 return __xfs_btree_check_memblock(cur, block, level, bp);
271 case XFS_BTREE_TYPE_AG:
272 return __xfs_btree_check_agblock(cur, block, level, bp);
273 case XFS_BTREE_TYPE_INODE:
274 return __xfs_btree_check_fsblock(cur, block, level, bp);
275 default:
276 ASSERT(0);
277 return __this_address;
278 }
279}
280
281static inline unsigned int xfs_btree_block_errtag(struct xfs_btree_cur *cur)
282{
283 if (cur->bc_ops->ptr_len == XFS_BTREE_SHORT_PTR_LEN)
284 return XFS_ERRTAG_BTREE_CHECK_SBLOCK;
285 return XFS_ERRTAG_BTREE_CHECK_LBLOCK;
286}
287
288/*
289 * Debug routine: check that block header is ok.
290 */
291int
292xfs_btree_check_block(
293 struct xfs_btree_cur *cur, /* btree cursor */
294 struct xfs_btree_block *block, /* generic btree block pointer */
295 int level, /* level of the btree block */
296 struct xfs_buf *bp) /* buffer containing block, if any */
297{
298 struct xfs_mount *mp = cur->bc_mp;
299 xfs_failaddr_t fa;
300
301 fa = __xfs_btree_check_block(cur, block, level, bp);
302 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
303 XFS_TEST_ERROR(false, mp, xfs_btree_block_errtag(cur))) {
304 if (bp)
305 trace_xfs_btree_corrupt(bp, _RET_IP_);
306 xfs_btree_mark_sick(cur);
307 return -EFSCORRUPTED;
308 }
309 return 0;
310}
311
312int
313__xfs_btree_check_ptr(
314 struct xfs_btree_cur *cur,
315 const union xfs_btree_ptr *ptr,
316 int index,
317 int level)
318{
319 if (level <= 0)
320 return -EFSCORRUPTED;
321
322 switch (cur->bc_ops->type) {
323 case XFS_BTREE_TYPE_MEM:
324 if (!xfbtree_verify_bno(cur->bc_mem.xfbtree,
325 be64_to_cpu((&ptr->l)[index])))
326 return -EFSCORRUPTED;
327 break;
328 case XFS_BTREE_TYPE_INODE:
329 if (!xfs_verify_fsbno(cur->bc_mp,
330 be64_to_cpu((&ptr->l)[index])))
331 return -EFSCORRUPTED;
332 break;
333 case XFS_BTREE_TYPE_AG:
334 if (!xfs_verify_agbno(cur->bc_ag.pag,
335 be32_to_cpu((&ptr->s)[index])))
336 return -EFSCORRUPTED;
337 break;
338 }
339
340 return 0;
341}
342
343/*
344 * Check that a given (indexed) btree pointer at a certain level of a
345 * btree is valid and doesn't point past where it should.
346 */
347static int
348xfs_btree_check_ptr(
349 struct xfs_btree_cur *cur,
350 const union xfs_btree_ptr *ptr,
351 int index,
352 int level)
353{
354 int error;
355
356 error = __xfs_btree_check_ptr(cur, ptr, index, level);
357 if (error) {
358 switch (cur->bc_ops->type) {
359 case XFS_BTREE_TYPE_MEM:
360 xfs_err(cur->bc_mp,
361"In-memory: Corrupt %sbt flags 0x%x pointer at level %d index %d fa %pS.",
362 cur->bc_ops->name, cur->bc_flags, level, index,
363 __this_address);
364 break;
365 case XFS_BTREE_TYPE_INODE:
366 xfs_err(cur->bc_mp,
367"Inode %llu fork %d: Corrupt %sbt pointer at level %d index %d.",
368 cur->bc_ino.ip->i_ino,
369 cur->bc_ino.whichfork, cur->bc_ops->name,
370 level, index);
371 break;
372 case XFS_BTREE_TYPE_AG:
373 xfs_err(cur->bc_mp,
374"AG %u: Corrupt %sbt pointer at level %d index %d.",
375 cur->bc_ag.pag->pag_agno, cur->bc_ops->name,
376 level, index);
377 break;
378 }
379 xfs_btree_mark_sick(cur);
380 }
381
382 return error;
383}
384
385#ifdef DEBUG
386# define xfs_btree_debug_check_ptr xfs_btree_check_ptr
387#else
388# define xfs_btree_debug_check_ptr(...) (0)
389#endif
390
391/*
392 * Calculate CRC on the whole btree block and stuff it into the
393 * long-form btree header.
394 *
395 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
396 * it into the buffer so recovery knows what the last modification was that made
397 * it to disk.
398 */
399void
400xfs_btree_fsblock_calc_crc(
401 struct xfs_buf *bp)
402{
403 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
404 struct xfs_buf_log_item *bip = bp->b_log_item;
405
406 if (!xfs_has_crc(bp->b_mount))
407 return;
408 if (bip)
409 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
410 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
411}
412
413bool
414xfs_btree_fsblock_verify_crc(
415 struct xfs_buf *bp)
416{
417 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
418 struct xfs_mount *mp = bp->b_mount;
419
420 if (xfs_has_crc(mp)) {
421 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
422 return false;
423 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
424 }
425
426 return true;
427}
428
429/*
430 * Calculate CRC on the whole btree block and stuff it into the
431 * short-form btree header.
432 *
433 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
434 * it into the buffer so recovery knows what the last modification was that made
435 * it to disk.
436 */
437void
438xfs_btree_agblock_calc_crc(
439 struct xfs_buf *bp)
440{
441 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
442 struct xfs_buf_log_item *bip = bp->b_log_item;
443
444 if (!xfs_has_crc(bp->b_mount))
445 return;
446 if (bip)
447 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
448 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
449}
450
451bool
452xfs_btree_agblock_verify_crc(
453 struct xfs_buf *bp)
454{
455 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
456 struct xfs_mount *mp = bp->b_mount;
457
458 if (xfs_has_crc(mp)) {
459 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
460 return false;
461 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
462 }
463
464 return true;
465}
466
467static int
468xfs_btree_free_block(
469 struct xfs_btree_cur *cur,
470 struct xfs_buf *bp)
471{
472 int error;
473
474 trace_xfs_btree_free_block(cur, bp);
475
476 /*
477 * Don't allow block freeing for a staging cursor, because staging
478 * cursors do not support regular btree modifications.
479 */
480 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
481 ASSERT(0);
482 return -EFSCORRUPTED;
483 }
484
485 error = cur->bc_ops->free_block(cur, bp);
486 if (!error) {
487 xfs_trans_binval(cur->bc_tp, bp);
488 XFS_BTREE_STATS_INC(cur, free);
489 }
490 return error;
491}
492
493/*
494 * Delete the btree cursor.
495 */
496void
497xfs_btree_del_cursor(
498 struct xfs_btree_cur *cur, /* btree cursor */
499 int error) /* del because of error */
500{
501 int i; /* btree level */
502
503 /*
504 * Clear the buffer pointers and release the buffers. If we're doing
505 * this because of an error, inspect all of the entries in the bc_bufs
506 * array for buffers to be unlocked. This is because some of the btree
507 * code works from level n down to 0, and if we get an error along the
508 * way we won't have initialized all the entries down to 0.
509 */
510 for (i = 0; i < cur->bc_nlevels; i++) {
511 if (cur->bc_levels[i].bp)
512 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
513 else if (!error)
514 break;
515 }
516
517 /*
518 * If we are doing a BMBT update, the number of unaccounted blocks
519 * allocated during this cursor life time should be zero. If it's not
520 * zero, then we should be shut down or on our way to shutdown due to
521 * cancelling a dirty transaction on error.
522 */
523 ASSERT(!xfs_btree_is_bmap(cur->bc_ops) || cur->bc_bmap.allocated == 0 ||
524 xfs_is_shutdown(cur->bc_mp) || error != 0);
525
526 switch (cur->bc_ops->type) {
527 case XFS_BTREE_TYPE_AG:
528 if (cur->bc_ag.pag)
529 xfs_perag_put(cur->bc_ag.pag);
530 break;
531 case XFS_BTREE_TYPE_INODE:
532 /* nothing to do */
533 break;
534 case XFS_BTREE_TYPE_MEM:
535 if (cur->bc_mem.pag)
536 xfs_perag_put(cur->bc_mem.pag);
537 break;
538 }
539
540 kmem_cache_free(cur->bc_cache, cur);
541}
542
543/* Return the buffer target for this btree's buffer. */
544static inline struct xfs_buftarg *
545xfs_btree_buftarg(
546 struct xfs_btree_cur *cur)
547{
548 if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
549 return cur->bc_mem.xfbtree->target;
550 return cur->bc_mp->m_ddev_targp;
551}
552
553/* Return the block size (in units of 512b sectors) for this btree. */
554static inline unsigned int
555xfs_btree_bbsize(
556 struct xfs_btree_cur *cur)
557{
558 if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
559 return XFBNO_BBSIZE;
560 return cur->bc_mp->m_bsize;
561}
562
563/*
564 * Duplicate the btree cursor.
565 * Allocate a new one, copy the record, re-get the buffers.
566 */
567int /* error */
568xfs_btree_dup_cursor(
569 struct xfs_btree_cur *cur, /* input cursor */
570 struct xfs_btree_cur **ncur) /* output cursor */
571{
572 struct xfs_mount *mp = cur->bc_mp;
573 struct xfs_trans *tp = cur->bc_tp;
574 struct xfs_buf *bp;
575 struct xfs_btree_cur *new;
576 int error;
577 int i;
578
579 /*
580 * Don't allow staging cursors to be duplicated because they're supposed
581 * to be kept private to a single thread.
582 */
583 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
584 ASSERT(0);
585 return -EFSCORRUPTED;
586 }
587
588 /*
589 * Allocate a new cursor like the old one.
590 */
591 new = cur->bc_ops->dup_cursor(cur);
592
593 /*
594 * Copy the record currently in the cursor.
595 */
596 new->bc_rec = cur->bc_rec;
597
598 /*
599 * For each level current, re-get the buffer and copy the ptr value.
600 */
601 for (i = 0; i < new->bc_nlevels; i++) {
602 new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
603 new->bc_levels[i].ra = cur->bc_levels[i].ra;
604 bp = cur->bc_levels[i].bp;
605 if (bp) {
606 error = xfs_trans_read_buf(mp, tp,
607 xfs_btree_buftarg(cur),
608 xfs_buf_daddr(bp),
609 xfs_btree_bbsize(cur), 0, &bp,
610 cur->bc_ops->buf_ops);
611 if (xfs_metadata_is_sick(error))
612 xfs_btree_mark_sick(new);
613 if (error) {
614 xfs_btree_del_cursor(new, error);
615 *ncur = NULL;
616 return error;
617 }
618 }
619 new->bc_levels[i].bp = bp;
620 }
621 *ncur = new;
622 return 0;
623}
624
625/*
626 * XFS btree block layout and addressing:
627 *
628 * There are two types of blocks in the btree: leaf and non-leaf blocks.
629 *
630 * The leaf record start with a header then followed by records containing
631 * the values. A non-leaf block also starts with the same header, and
632 * then first contains lookup keys followed by an equal number of pointers
633 * to the btree blocks at the previous level.
634 *
635 * +--------+-------+-------+-------+-------+-------+-------+
636 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
637 * +--------+-------+-------+-------+-------+-------+-------+
638 *
639 * +--------+-------+-------+-------+-------+-------+-------+
640 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
641 * +--------+-------+-------+-------+-------+-------+-------+
642 *
643 * The header is called struct xfs_btree_block for reasons better left unknown
644 * and comes in different versions for short (32bit) and long (64bit) block
645 * pointers. The record and key structures are defined by the btree instances
646 * and opaque to the btree core. The block pointers are simple disk endian
647 * integers, available in a short (32bit) and long (64bit) variant.
648 *
649 * The helpers below calculate the offset of a given record, key or pointer
650 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
651 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
652 * inside the btree block is done using indices starting at one, not zero!
653 *
654 * If XFS_BTGEO_OVERLAPPING is set, then this btree supports keys containing
655 * overlapping intervals. In such a tree, records are still sorted lowest to
656 * highest and indexed by the smallest key value that refers to the record.
657 * However, nodes are different: each pointer has two associated keys -- one
658 * indexing the lowest key available in the block(s) below (the same behavior
659 * as the key in a regular btree) and another indexing the highest key
660 * available in the block(s) below. Because records are /not/ sorted by the
661 * highest key, all leaf block updates require us to compute the highest key
662 * that matches any record in the leaf and to recursively update the high keys
663 * in the nodes going further up in the tree, if necessary. Nodes look like
664 * this:
665 *
666 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
667 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
668 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
669 *
670 * To perform an interval query on an overlapped tree, perform the usual
671 * depth-first search and use the low and high keys to decide if we can skip
672 * that particular node. If a leaf node is reached, return the records that
673 * intersect the interval. Note that an interval query may return numerous
674 * entries. For a non-overlapped tree, simply search for the record associated
675 * with the lowest key and iterate forward until a non-matching record is
676 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
677 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
678 * more detail.
679 *
680 * Why do we care about overlapping intervals? Let's say you have a bunch of
681 * reverse mapping records on a reflink filesystem:
682 *
683 * 1: +- file A startblock B offset C length D -----------+
684 * 2: +- file E startblock F offset G length H --------------+
685 * 3: +- file I startblock F offset J length K --+
686 * 4: +- file L... --+
687 *
688 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
689 * we'd simply increment the length of record 1. But how do we find the record
690 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
691 * record 3 because the keys are ordered first by startblock. An interval
692 * query would return records 1 and 2 because they both overlap (B+D-1), and
693 * from that we can pick out record 1 as the appropriate left neighbor.
694 *
695 * In the non-overlapped case you can do a LE lookup and decrement the cursor
696 * because a record's interval must end before the next record.
697 */
698
699/*
700 * Return size of the btree block header for this btree instance.
701 */
702static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
703{
704 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
705 if (xfs_has_crc(cur->bc_mp))
706 return XFS_BTREE_LBLOCK_CRC_LEN;
707 return XFS_BTREE_LBLOCK_LEN;
708 }
709 if (xfs_has_crc(cur->bc_mp))
710 return XFS_BTREE_SBLOCK_CRC_LEN;
711 return XFS_BTREE_SBLOCK_LEN;
712}
713
714/*
715 * Calculate offset of the n-th record in a btree block.
716 */
717STATIC size_t
718xfs_btree_rec_offset(
719 struct xfs_btree_cur *cur,
720 int n)
721{
722 return xfs_btree_block_len(cur) +
723 (n - 1) * cur->bc_ops->rec_len;
724}
725
726/*
727 * Calculate offset of the n-th key in a btree block.
728 */
729STATIC size_t
730xfs_btree_key_offset(
731 struct xfs_btree_cur *cur,
732 int n)
733{
734 return xfs_btree_block_len(cur) +
735 (n - 1) * cur->bc_ops->key_len;
736}
737
738/*
739 * Calculate offset of the n-th high key in a btree block.
740 */
741STATIC size_t
742xfs_btree_high_key_offset(
743 struct xfs_btree_cur *cur,
744 int n)
745{
746 return xfs_btree_block_len(cur) +
747 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
748}
749
750/*
751 * Calculate offset of the n-th block pointer in a btree block.
752 */
753STATIC size_t
754xfs_btree_ptr_offset(
755 struct xfs_btree_cur *cur,
756 int n,
757 int level)
758{
759 return xfs_btree_block_len(cur) +
760 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
761 (n - 1) * cur->bc_ops->ptr_len;
762}
763
764/*
765 * Return a pointer to the n-th record in the btree block.
766 */
767union xfs_btree_rec *
768xfs_btree_rec_addr(
769 struct xfs_btree_cur *cur,
770 int n,
771 struct xfs_btree_block *block)
772{
773 return (union xfs_btree_rec *)
774 ((char *)block + xfs_btree_rec_offset(cur, n));
775}
776
777/*
778 * Return a pointer to the n-th key in the btree block.
779 */
780union xfs_btree_key *
781xfs_btree_key_addr(
782 struct xfs_btree_cur *cur,
783 int n,
784 struct xfs_btree_block *block)
785{
786 return (union xfs_btree_key *)
787 ((char *)block + xfs_btree_key_offset(cur, n));
788}
789
790/*
791 * Return a pointer to the n-th high key in the btree block.
792 */
793union xfs_btree_key *
794xfs_btree_high_key_addr(
795 struct xfs_btree_cur *cur,
796 int n,
797 struct xfs_btree_block *block)
798{
799 return (union xfs_btree_key *)
800 ((char *)block + xfs_btree_high_key_offset(cur, n));
801}
802
803/*
804 * Return a pointer to the n-th block pointer in the btree block.
805 */
806union xfs_btree_ptr *
807xfs_btree_ptr_addr(
808 struct xfs_btree_cur *cur,
809 int n,
810 struct xfs_btree_block *block)
811{
812 int level = xfs_btree_get_level(block);
813
814 ASSERT(block->bb_level != 0);
815
816 return (union xfs_btree_ptr *)
817 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
818}
819
820struct xfs_ifork *
821xfs_btree_ifork_ptr(
822 struct xfs_btree_cur *cur)
823{
824 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
825
826 if (cur->bc_flags & XFS_BTREE_STAGING)
827 return cur->bc_ino.ifake->if_fork;
828 return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
829}
830
831/*
832 * Get the root block which is stored in the inode.
833 *
834 * For now this btree implementation assumes the btree root is always
835 * stored in the if_broot field of an inode fork.
836 */
837STATIC struct xfs_btree_block *
838xfs_btree_get_iroot(
839 struct xfs_btree_cur *cur)
840{
841 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
842
843 return (struct xfs_btree_block *)ifp->if_broot;
844}
845
846/*
847 * Retrieve the block pointer from the cursor at the given level.
848 * This may be an inode btree root or from a buffer.
849 */
850struct xfs_btree_block * /* generic btree block pointer */
851xfs_btree_get_block(
852 struct xfs_btree_cur *cur, /* btree cursor */
853 int level, /* level in btree */
854 struct xfs_buf **bpp) /* buffer containing the block */
855{
856 if (xfs_btree_at_iroot(cur, level)) {
857 *bpp = NULL;
858 return xfs_btree_get_iroot(cur);
859 }
860
861 *bpp = cur->bc_levels[level].bp;
862 return XFS_BUF_TO_BLOCK(*bpp);
863}
864
865/*
866 * Change the cursor to point to the first record at the given level.
867 * Other levels are unaffected.
868 */
869STATIC int /* success=1, failure=0 */
870xfs_btree_firstrec(
871 struct xfs_btree_cur *cur, /* btree cursor */
872 int level) /* level to change */
873{
874 struct xfs_btree_block *block; /* generic btree block pointer */
875 struct xfs_buf *bp; /* buffer containing block */
876
877 /*
878 * Get the block pointer for this level.
879 */
880 block = xfs_btree_get_block(cur, level, &bp);
881 if (xfs_btree_check_block(cur, block, level, bp))
882 return 0;
883 /*
884 * It's empty, there is no such record.
885 */
886 if (!block->bb_numrecs)
887 return 0;
888 /*
889 * Set the ptr value to 1, that's the first record/key.
890 */
891 cur->bc_levels[level].ptr = 1;
892 return 1;
893}
894
895/*
896 * Change the cursor to point to the last record in the current block
897 * at the given level. Other levels are unaffected.
898 */
899STATIC int /* success=1, failure=0 */
900xfs_btree_lastrec(
901 struct xfs_btree_cur *cur, /* btree cursor */
902 int level) /* level to change */
903{
904 struct xfs_btree_block *block; /* generic btree block pointer */
905 struct xfs_buf *bp; /* buffer containing block */
906
907 /*
908 * Get the block pointer for this level.
909 */
910 block = xfs_btree_get_block(cur, level, &bp);
911 if (xfs_btree_check_block(cur, block, level, bp))
912 return 0;
913 /*
914 * It's empty, there is no such record.
915 */
916 if (!block->bb_numrecs)
917 return 0;
918 /*
919 * Set the ptr value to numrecs, that's the last record/key.
920 */
921 cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
922 return 1;
923}
924
925/*
926 * Compute first and last byte offsets for the fields given.
927 * Interprets the offsets table, which contains struct field offsets.
928 */
929void
930xfs_btree_offsets(
931 uint32_t fields, /* bitmask of fields */
932 const short *offsets, /* table of field offsets */
933 int nbits, /* number of bits to inspect */
934 int *first, /* output: first byte offset */
935 int *last) /* output: last byte offset */
936{
937 int i; /* current bit number */
938 uint32_t imask; /* mask for current bit number */
939
940 ASSERT(fields != 0);
941 /*
942 * Find the lowest bit, so the first byte offset.
943 */
944 for (i = 0, imask = 1u; ; i++, imask <<= 1) {
945 if (imask & fields) {
946 *first = offsets[i];
947 break;
948 }
949 }
950 /*
951 * Find the highest bit, so the last byte offset.
952 */
953 for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
954 if (imask & fields) {
955 *last = offsets[i + 1] - 1;
956 break;
957 }
958 }
959}
960
961STATIC int
962xfs_btree_readahead_fsblock(
963 struct xfs_btree_cur *cur,
964 int lr,
965 struct xfs_btree_block *block)
966{
967 struct xfs_mount *mp = cur->bc_mp;
968 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
969 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
970 int rval = 0;
971
972 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
973 xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, left),
974 mp->m_bsize, cur->bc_ops->buf_ops);
975 rval++;
976 }
977
978 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
979 xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, right),
980 mp->m_bsize, cur->bc_ops->buf_ops);
981 rval++;
982 }
983
984 return rval;
985}
986
987STATIC int
988xfs_btree_readahead_memblock(
989 struct xfs_btree_cur *cur,
990 int lr,
991 struct xfs_btree_block *block)
992{
993 struct xfs_buftarg *btp = cur->bc_mem.xfbtree->target;
994 xfbno_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
995 xfbno_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
996 int rval = 0;
997
998 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
999 xfs_buf_readahead(btp, xfbno_to_daddr(left), XFBNO_BBSIZE,
1000 cur->bc_ops->buf_ops);
1001 rval++;
1002 }
1003
1004 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
1005 xfs_buf_readahead(btp, xfbno_to_daddr(right), XFBNO_BBSIZE,
1006 cur->bc_ops->buf_ops);
1007 rval++;
1008 }
1009
1010 return rval;
1011}
1012
1013STATIC int
1014xfs_btree_readahead_agblock(
1015 struct xfs_btree_cur *cur,
1016 int lr,
1017 struct xfs_btree_block *block)
1018{
1019 struct xfs_mount *mp = cur->bc_mp;
1020 xfs_agnumber_t agno = cur->bc_ag.pag->pag_agno;
1021 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
1022 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
1023 int rval = 0;
1024
1025 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
1026 xfs_buf_readahead(mp->m_ddev_targp,
1027 XFS_AGB_TO_DADDR(mp, agno, left),
1028 mp->m_bsize, cur->bc_ops->buf_ops);
1029 rval++;
1030 }
1031
1032 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
1033 xfs_buf_readahead(mp->m_ddev_targp,
1034 XFS_AGB_TO_DADDR(mp, agno, right),
1035 mp->m_bsize, cur->bc_ops->buf_ops);
1036 rval++;
1037 }
1038
1039 return rval;
1040}
1041
1042/*
1043 * Read-ahead btree blocks, at the given level.
1044 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
1045 */
1046STATIC int
1047xfs_btree_readahead(
1048 struct xfs_btree_cur *cur, /* btree cursor */
1049 int lev, /* level in btree */
1050 int lr) /* left/right bits */
1051{
1052 struct xfs_btree_block *block;
1053
1054 /*
1055 * No readahead needed if we are at the root level and the
1056 * btree root is stored in the inode.
1057 */
1058 if (xfs_btree_at_iroot(cur, lev))
1059 return 0;
1060
1061 if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1062 return 0;
1063
1064 cur->bc_levels[lev].ra |= lr;
1065 block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1066
1067 switch (cur->bc_ops->type) {
1068 case XFS_BTREE_TYPE_AG:
1069 return xfs_btree_readahead_agblock(cur, lr, block);
1070 case XFS_BTREE_TYPE_INODE:
1071 return xfs_btree_readahead_fsblock(cur, lr, block);
1072 case XFS_BTREE_TYPE_MEM:
1073 return xfs_btree_readahead_memblock(cur, lr, block);
1074 default:
1075 ASSERT(0);
1076 return 0;
1077 }
1078}
1079
1080STATIC int
1081xfs_btree_ptr_to_daddr(
1082 struct xfs_btree_cur *cur,
1083 const union xfs_btree_ptr *ptr,
1084 xfs_daddr_t *daddr)
1085{
1086 int error;
1087
1088 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1089 if (error)
1090 return error;
1091
1092 switch (cur->bc_ops->type) {
1093 case XFS_BTREE_TYPE_AG:
1094 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1095 be32_to_cpu(ptr->s));
1096 break;
1097 case XFS_BTREE_TYPE_INODE:
1098 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1099 break;
1100 case XFS_BTREE_TYPE_MEM:
1101 *daddr = xfbno_to_daddr(be64_to_cpu(ptr->l));
1102 break;
1103 }
1104 return 0;
1105}
1106
1107/*
1108 * Readahead @count btree blocks at the given @ptr location.
1109 *
1110 * We don't need to care about long or short form btrees here as we have a
1111 * method of converting the ptr directly to a daddr available to us.
1112 */
1113STATIC void
1114xfs_btree_readahead_ptr(
1115 struct xfs_btree_cur *cur,
1116 union xfs_btree_ptr *ptr,
1117 xfs_extlen_t count)
1118{
1119 xfs_daddr_t daddr;
1120
1121 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1122 return;
1123 xfs_buf_readahead(xfs_btree_buftarg(cur), daddr,
1124 xfs_btree_bbsize(cur) * count,
1125 cur->bc_ops->buf_ops);
1126}
1127
1128/*
1129 * Set the buffer for level "lev" in the cursor to bp, releasing
1130 * any previous buffer.
1131 */
1132STATIC void
1133xfs_btree_setbuf(
1134 struct xfs_btree_cur *cur, /* btree cursor */
1135 int lev, /* level in btree */
1136 struct xfs_buf *bp) /* new buffer to set */
1137{
1138 struct xfs_btree_block *b; /* btree block */
1139
1140 if (cur->bc_levels[lev].bp)
1141 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1142 cur->bc_levels[lev].bp = bp;
1143 cur->bc_levels[lev].ra = 0;
1144
1145 b = XFS_BUF_TO_BLOCK(bp);
1146 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1147 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1148 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1149 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1150 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1151 } else {
1152 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1153 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1154 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1155 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1156 }
1157}
1158
1159bool
1160xfs_btree_ptr_is_null(
1161 struct xfs_btree_cur *cur,
1162 const union xfs_btree_ptr *ptr)
1163{
1164 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1165 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1166 else
1167 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1168}
1169
1170void
1171xfs_btree_set_ptr_null(
1172 struct xfs_btree_cur *cur,
1173 union xfs_btree_ptr *ptr)
1174{
1175 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1176 ptr->l = cpu_to_be64(NULLFSBLOCK);
1177 else
1178 ptr->s = cpu_to_be32(NULLAGBLOCK);
1179}
1180
1181static inline bool
1182xfs_btree_ptrs_equal(
1183 struct xfs_btree_cur *cur,
1184 union xfs_btree_ptr *ptr1,
1185 union xfs_btree_ptr *ptr2)
1186{
1187 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1188 return ptr1->l == ptr2->l;
1189 return ptr1->s == ptr2->s;
1190}
1191
1192/*
1193 * Get/set/init sibling pointers
1194 */
1195void
1196xfs_btree_get_sibling(
1197 struct xfs_btree_cur *cur,
1198 struct xfs_btree_block *block,
1199 union xfs_btree_ptr *ptr,
1200 int lr)
1201{
1202 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1203
1204 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1205 if (lr == XFS_BB_RIGHTSIB)
1206 ptr->l = block->bb_u.l.bb_rightsib;
1207 else
1208 ptr->l = block->bb_u.l.bb_leftsib;
1209 } else {
1210 if (lr == XFS_BB_RIGHTSIB)
1211 ptr->s = block->bb_u.s.bb_rightsib;
1212 else
1213 ptr->s = block->bb_u.s.bb_leftsib;
1214 }
1215}
1216
1217void
1218xfs_btree_set_sibling(
1219 struct xfs_btree_cur *cur,
1220 struct xfs_btree_block *block,
1221 const union xfs_btree_ptr *ptr,
1222 int lr)
1223{
1224 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1225
1226 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1227 if (lr == XFS_BB_RIGHTSIB)
1228 block->bb_u.l.bb_rightsib = ptr->l;
1229 else
1230 block->bb_u.l.bb_leftsib = ptr->l;
1231 } else {
1232 if (lr == XFS_BB_RIGHTSIB)
1233 block->bb_u.s.bb_rightsib = ptr->s;
1234 else
1235 block->bb_u.s.bb_leftsib = ptr->s;
1236 }
1237}
1238
1239static void
1240__xfs_btree_init_block(
1241 struct xfs_mount *mp,
1242 struct xfs_btree_block *buf,
1243 const struct xfs_btree_ops *ops,
1244 xfs_daddr_t blkno,
1245 __u16 level,
1246 __u16 numrecs,
1247 __u64 owner)
1248{
1249 bool crc = xfs_has_crc(mp);
1250 __u32 magic = xfs_btree_magic(mp, ops);
1251
1252 buf->bb_magic = cpu_to_be32(magic);
1253 buf->bb_level = cpu_to_be16(level);
1254 buf->bb_numrecs = cpu_to_be16(numrecs);
1255
1256 if (ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1257 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1258 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1259 if (crc) {
1260 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1261 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1262 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1263 buf->bb_u.l.bb_pad = 0;
1264 buf->bb_u.l.bb_lsn = 0;
1265 }
1266 } else {
1267 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1268 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1269 if (crc) {
1270 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1271 /* owner is a 32 bit value on short blocks */
1272 buf->bb_u.s.bb_owner = cpu_to_be32((__u32)owner);
1273 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1274 buf->bb_u.s.bb_lsn = 0;
1275 }
1276 }
1277}
1278
1279void
1280xfs_btree_init_block(
1281 struct xfs_mount *mp,
1282 struct xfs_btree_block *block,
1283 const struct xfs_btree_ops *ops,
1284 __u16 level,
1285 __u16 numrecs,
1286 __u64 owner)
1287{
1288 __xfs_btree_init_block(mp, block, ops, XFS_BUF_DADDR_NULL, level,
1289 numrecs, owner);
1290}
1291
1292void
1293xfs_btree_init_buf(
1294 struct xfs_mount *mp,
1295 struct xfs_buf *bp,
1296 const struct xfs_btree_ops *ops,
1297 __u16 level,
1298 __u16 numrecs,
1299 __u64 owner)
1300{
1301 __xfs_btree_init_block(mp, XFS_BUF_TO_BLOCK(bp), ops,
1302 xfs_buf_daddr(bp), level, numrecs, owner);
1303 bp->b_ops = ops->buf_ops;
1304}
1305
1306static inline __u64
1307xfs_btree_owner(
1308 struct xfs_btree_cur *cur)
1309{
1310 switch (cur->bc_ops->type) {
1311 case XFS_BTREE_TYPE_MEM:
1312 return cur->bc_mem.xfbtree->owner;
1313 case XFS_BTREE_TYPE_INODE:
1314 return cur->bc_ino.ip->i_ino;
1315 case XFS_BTREE_TYPE_AG:
1316 return cur->bc_ag.pag->pag_agno;
1317 default:
1318 ASSERT(0);
1319 return 0;
1320 }
1321}
1322
1323void
1324xfs_btree_init_block_cur(
1325 struct xfs_btree_cur *cur,
1326 struct xfs_buf *bp,
1327 int level,
1328 int numrecs)
1329{
1330 xfs_btree_init_buf(cur->bc_mp, bp, cur->bc_ops, level, numrecs,
1331 xfs_btree_owner(cur));
1332}
1333
1334/*
1335 * Return true if ptr is the last record in the btree and
1336 * we need to track updates to this record. The decision
1337 * will be further refined in the update_lastrec method.
1338 */
1339STATIC int
1340xfs_btree_is_lastrec(
1341 struct xfs_btree_cur *cur,
1342 struct xfs_btree_block *block,
1343 int level)
1344{
1345 union xfs_btree_ptr ptr;
1346
1347 if (level > 0)
1348 return 0;
1349 if (!(cur->bc_ops->geom_flags & XFS_BTGEO_LASTREC_UPDATE))
1350 return 0;
1351
1352 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1353 if (!xfs_btree_ptr_is_null(cur, &ptr))
1354 return 0;
1355 return 1;
1356}
1357
1358STATIC void
1359xfs_btree_buf_to_ptr(
1360 struct xfs_btree_cur *cur,
1361 struct xfs_buf *bp,
1362 union xfs_btree_ptr *ptr)
1363{
1364 switch (cur->bc_ops->type) {
1365 case XFS_BTREE_TYPE_AG:
1366 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1367 xfs_buf_daddr(bp)));
1368 break;
1369 case XFS_BTREE_TYPE_INODE:
1370 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1371 xfs_buf_daddr(bp)));
1372 break;
1373 case XFS_BTREE_TYPE_MEM:
1374 ptr->l = cpu_to_be64(xfs_daddr_to_xfbno(xfs_buf_daddr(bp)));
1375 break;
1376 }
1377}
1378
1379static inline void
1380xfs_btree_set_refs(
1381 struct xfs_btree_cur *cur,
1382 struct xfs_buf *bp)
1383{
1384 xfs_buf_set_ref(bp, cur->bc_ops->lru_refs);
1385}
1386
1387int
1388xfs_btree_get_buf_block(
1389 struct xfs_btree_cur *cur,
1390 const union xfs_btree_ptr *ptr,
1391 struct xfs_btree_block **block,
1392 struct xfs_buf **bpp)
1393{
1394 xfs_daddr_t d;
1395 int error;
1396
1397 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1398 if (error)
1399 return error;
1400 error = xfs_trans_get_buf(cur->bc_tp, xfs_btree_buftarg(cur), d,
1401 xfs_btree_bbsize(cur), 0, bpp);
1402 if (error)
1403 return error;
1404
1405 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1406 *block = XFS_BUF_TO_BLOCK(*bpp);
1407 return 0;
1408}
1409
1410/*
1411 * Read in the buffer at the given ptr and return the buffer and
1412 * the block pointer within the buffer.
1413 */
1414int
1415xfs_btree_read_buf_block(
1416 struct xfs_btree_cur *cur,
1417 const union xfs_btree_ptr *ptr,
1418 int flags,
1419 struct xfs_btree_block **block,
1420 struct xfs_buf **bpp)
1421{
1422 struct xfs_mount *mp = cur->bc_mp;
1423 xfs_daddr_t d;
1424 int error;
1425
1426 /* need to sort out how callers deal with failures first */
1427 ASSERT(!(flags & XBF_TRYLOCK));
1428
1429 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1430 if (error)
1431 return error;
1432 error = xfs_trans_read_buf(mp, cur->bc_tp, xfs_btree_buftarg(cur), d,
1433 xfs_btree_bbsize(cur), flags, bpp,
1434 cur->bc_ops->buf_ops);
1435 if (xfs_metadata_is_sick(error))
1436 xfs_btree_mark_sick(cur);
1437 if (error)
1438 return error;
1439
1440 xfs_btree_set_refs(cur, *bpp);
1441 *block = XFS_BUF_TO_BLOCK(*bpp);
1442 return 0;
1443}
1444
1445/*
1446 * Copy keys from one btree block to another.
1447 */
1448void
1449xfs_btree_copy_keys(
1450 struct xfs_btree_cur *cur,
1451 union xfs_btree_key *dst_key,
1452 const union xfs_btree_key *src_key,
1453 int numkeys)
1454{
1455 ASSERT(numkeys >= 0);
1456 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1457}
1458
1459/*
1460 * Copy records from one btree block to another.
1461 */
1462STATIC void
1463xfs_btree_copy_recs(
1464 struct xfs_btree_cur *cur,
1465 union xfs_btree_rec *dst_rec,
1466 union xfs_btree_rec *src_rec,
1467 int numrecs)
1468{
1469 ASSERT(numrecs >= 0);
1470 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1471}
1472
1473/*
1474 * Copy block pointers from one btree block to another.
1475 */
1476void
1477xfs_btree_copy_ptrs(
1478 struct xfs_btree_cur *cur,
1479 union xfs_btree_ptr *dst_ptr,
1480 const union xfs_btree_ptr *src_ptr,
1481 int numptrs)
1482{
1483 ASSERT(numptrs >= 0);
1484 memcpy(dst_ptr, src_ptr, numptrs * cur->bc_ops->ptr_len);
1485}
1486
1487/*
1488 * Shift keys one index left/right inside a single btree block.
1489 */
1490STATIC void
1491xfs_btree_shift_keys(
1492 struct xfs_btree_cur *cur,
1493 union xfs_btree_key *key,
1494 int dir,
1495 int numkeys)
1496{
1497 char *dst_key;
1498
1499 ASSERT(numkeys >= 0);
1500 ASSERT(dir == 1 || dir == -1);
1501
1502 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1503 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1504}
1505
1506/*
1507 * Shift records one index left/right inside a single btree block.
1508 */
1509STATIC void
1510xfs_btree_shift_recs(
1511 struct xfs_btree_cur *cur,
1512 union xfs_btree_rec *rec,
1513 int dir,
1514 int numrecs)
1515{
1516 char *dst_rec;
1517
1518 ASSERT(numrecs >= 0);
1519 ASSERT(dir == 1 || dir == -1);
1520
1521 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1522 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1523}
1524
1525/*
1526 * Shift block pointers one index left/right inside a single btree block.
1527 */
1528STATIC void
1529xfs_btree_shift_ptrs(
1530 struct xfs_btree_cur *cur,
1531 union xfs_btree_ptr *ptr,
1532 int dir,
1533 int numptrs)
1534{
1535 char *dst_ptr;
1536
1537 ASSERT(numptrs >= 0);
1538 ASSERT(dir == 1 || dir == -1);
1539
1540 dst_ptr = (char *)ptr + (dir * cur->bc_ops->ptr_len);
1541 memmove(dst_ptr, ptr, numptrs * cur->bc_ops->ptr_len);
1542}
1543
1544/*
1545 * Log key values from the btree block.
1546 */
1547STATIC void
1548xfs_btree_log_keys(
1549 struct xfs_btree_cur *cur,
1550 struct xfs_buf *bp,
1551 int first,
1552 int last)
1553{
1554
1555 if (bp) {
1556 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1557 xfs_trans_log_buf(cur->bc_tp, bp,
1558 xfs_btree_key_offset(cur, first),
1559 xfs_btree_key_offset(cur, last + 1) - 1);
1560 } else {
1561 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1562 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1563 }
1564}
1565
1566/*
1567 * Log record values from the btree block.
1568 */
1569void
1570xfs_btree_log_recs(
1571 struct xfs_btree_cur *cur,
1572 struct xfs_buf *bp,
1573 int first,
1574 int last)
1575{
1576
1577 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1578 xfs_trans_log_buf(cur->bc_tp, bp,
1579 xfs_btree_rec_offset(cur, first),
1580 xfs_btree_rec_offset(cur, last + 1) - 1);
1581
1582}
1583
1584/*
1585 * Log block pointer fields from a btree block (nonleaf).
1586 */
1587STATIC void
1588xfs_btree_log_ptrs(
1589 struct xfs_btree_cur *cur, /* btree cursor */
1590 struct xfs_buf *bp, /* buffer containing btree block */
1591 int first, /* index of first pointer to log */
1592 int last) /* index of last pointer to log */
1593{
1594
1595 if (bp) {
1596 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1597 int level = xfs_btree_get_level(block);
1598
1599 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1600 xfs_trans_log_buf(cur->bc_tp, bp,
1601 xfs_btree_ptr_offset(cur, first, level),
1602 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1603 } else {
1604 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1605 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1606 }
1607
1608}
1609
1610/*
1611 * Log fields from a btree block header.
1612 */
1613void
1614xfs_btree_log_block(
1615 struct xfs_btree_cur *cur, /* btree cursor */
1616 struct xfs_buf *bp, /* buffer containing btree block */
1617 uint32_t fields) /* mask of fields: XFS_BB_... */
1618{
1619 int first; /* first byte offset logged */
1620 int last; /* last byte offset logged */
1621 static const short soffsets[] = { /* table of offsets (short) */
1622 offsetof(struct xfs_btree_block, bb_magic),
1623 offsetof(struct xfs_btree_block, bb_level),
1624 offsetof(struct xfs_btree_block, bb_numrecs),
1625 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1626 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1627 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1628 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1629 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1630 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1631 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1632 XFS_BTREE_SBLOCK_CRC_LEN
1633 };
1634 static const short loffsets[] = { /* table of offsets (long) */
1635 offsetof(struct xfs_btree_block, bb_magic),
1636 offsetof(struct xfs_btree_block, bb_level),
1637 offsetof(struct xfs_btree_block, bb_numrecs),
1638 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1639 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1640 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1641 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1642 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1643 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1644 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1645 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1646 XFS_BTREE_LBLOCK_CRC_LEN
1647 };
1648
1649 if (bp) {
1650 int nbits;
1651
1652 if (xfs_has_crc(cur->bc_mp)) {
1653 /*
1654 * We don't log the CRC when updating a btree
1655 * block but instead recreate it during log
1656 * recovery. As the log buffers have checksums
1657 * of their own this is safe and avoids logging a crc
1658 * update in a lot of places.
1659 */
1660 if (fields == XFS_BB_ALL_BITS)
1661 fields = XFS_BB_ALL_BITS_CRC;
1662 nbits = XFS_BB_NUM_BITS_CRC;
1663 } else {
1664 nbits = XFS_BB_NUM_BITS;
1665 }
1666 xfs_btree_offsets(fields,
1667 (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) ?
1668 loffsets : soffsets,
1669 nbits, &first, &last);
1670 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1671 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1672 } else {
1673 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1674 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1675 }
1676}
1677
1678/*
1679 * Increment cursor by one record at the level.
1680 * For nonzero levels the leaf-ward information is untouched.
1681 */
1682int /* error */
1683xfs_btree_increment(
1684 struct xfs_btree_cur *cur,
1685 int level,
1686 int *stat) /* success/failure */
1687{
1688 struct xfs_btree_block *block;
1689 union xfs_btree_ptr ptr;
1690 struct xfs_buf *bp;
1691 int error; /* error return value */
1692 int lev;
1693
1694 ASSERT(level < cur->bc_nlevels);
1695
1696 /* Read-ahead to the right at this level. */
1697 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1698
1699 /* Get a pointer to the btree block. */
1700 block = xfs_btree_get_block(cur, level, &bp);
1701
1702#ifdef DEBUG
1703 error = xfs_btree_check_block(cur, block, level, bp);
1704 if (error)
1705 goto error0;
1706#endif
1707
1708 /* We're done if we remain in the block after the increment. */
1709 if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1710 goto out1;
1711
1712 /* Fail if we just went off the right edge of the tree. */
1713 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1714 if (xfs_btree_ptr_is_null(cur, &ptr))
1715 goto out0;
1716
1717 XFS_BTREE_STATS_INC(cur, increment);
1718
1719 /*
1720 * March up the tree incrementing pointers.
1721 * Stop when we don't go off the right edge of a block.
1722 */
1723 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1724 block = xfs_btree_get_block(cur, lev, &bp);
1725
1726#ifdef DEBUG
1727 error = xfs_btree_check_block(cur, block, lev, bp);
1728 if (error)
1729 goto error0;
1730#endif
1731
1732 if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1733 break;
1734
1735 /* Read-ahead the right block for the next loop. */
1736 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1737 }
1738
1739 /*
1740 * If we went off the root then we are either seriously
1741 * confused or have the tree root in an inode.
1742 */
1743 if (lev == cur->bc_nlevels) {
1744 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1745 goto out0;
1746 ASSERT(0);
1747 xfs_btree_mark_sick(cur);
1748 error = -EFSCORRUPTED;
1749 goto error0;
1750 }
1751 ASSERT(lev < cur->bc_nlevels);
1752
1753 /*
1754 * Now walk back down the tree, fixing up the cursor's buffer
1755 * pointers and key numbers.
1756 */
1757 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1758 union xfs_btree_ptr *ptrp;
1759
1760 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1761 --lev;
1762 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1763 if (error)
1764 goto error0;
1765
1766 xfs_btree_setbuf(cur, lev, bp);
1767 cur->bc_levels[lev].ptr = 1;
1768 }
1769out1:
1770 *stat = 1;
1771 return 0;
1772
1773out0:
1774 *stat = 0;
1775 return 0;
1776
1777error0:
1778 return error;
1779}
1780
1781/*
1782 * Decrement cursor by one record at the level.
1783 * For nonzero levels the leaf-ward information is untouched.
1784 */
1785int /* error */
1786xfs_btree_decrement(
1787 struct xfs_btree_cur *cur,
1788 int level,
1789 int *stat) /* success/failure */
1790{
1791 struct xfs_btree_block *block;
1792 struct xfs_buf *bp;
1793 int error; /* error return value */
1794 int lev;
1795 union xfs_btree_ptr ptr;
1796
1797 ASSERT(level < cur->bc_nlevels);
1798
1799 /* Read-ahead to the left at this level. */
1800 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1801
1802 /* We're done if we remain in the block after the decrement. */
1803 if (--cur->bc_levels[level].ptr > 0)
1804 goto out1;
1805
1806 /* Get a pointer to the btree block. */
1807 block = xfs_btree_get_block(cur, level, &bp);
1808
1809#ifdef DEBUG
1810 error = xfs_btree_check_block(cur, block, level, bp);
1811 if (error)
1812 goto error0;
1813#endif
1814
1815 /* Fail if we just went off the left edge of the tree. */
1816 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1817 if (xfs_btree_ptr_is_null(cur, &ptr))
1818 goto out0;
1819
1820 XFS_BTREE_STATS_INC(cur, decrement);
1821
1822 /*
1823 * March up the tree decrementing pointers.
1824 * Stop when we don't go off the left edge of a block.
1825 */
1826 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1827 if (--cur->bc_levels[lev].ptr > 0)
1828 break;
1829 /* Read-ahead the left block for the next loop. */
1830 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1831 }
1832
1833 /*
1834 * If we went off the root then we are seriously confused.
1835 * or the root of the tree is in an inode.
1836 */
1837 if (lev == cur->bc_nlevels) {
1838 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1839 goto out0;
1840 ASSERT(0);
1841 xfs_btree_mark_sick(cur);
1842 error = -EFSCORRUPTED;
1843 goto error0;
1844 }
1845 ASSERT(lev < cur->bc_nlevels);
1846
1847 /*
1848 * Now walk back down the tree, fixing up the cursor's buffer
1849 * pointers and key numbers.
1850 */
1851 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1852 union xfs_btree_ptr *ptrp;
1853
1854 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1855 --lev;
1856 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1857 if (error)
1858 goto error0;
1859 xfs_btree_setbuf(cur, lev, bp);
1860 cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1861 }
1862out1:
1863 *stat = 1;
1864 return 0;
1865
1866out0:
1867 *stat = 0;
1868 return 0;
1869
1870error0:
1871 return error;
1872}
1873
1874/*
1875 * Check the btree block owner now that we have the context to know who the
1876 * real owner is.
1877 */
1878static inline xfs_failaddr_t
1879xfs_btree_check_block_owner(
1880 struct xfs_btree_cur *cur,
1881 struct xfs_btree_block *block)
1882{
1883 __u64 owner;
1884
1885 if (!xfs_has_crc(cur->bc_mp) ||
1886 (cur->bc_flags & XFS_BTREE_BMBT_INVALID_OWNER))
1887 return NULL;
1888
1889 owner = xfs_btree_owner(cur);
1890 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1891 if (be64_to_cpu(block->bb_u.l.bb_owner) != owner)
1892 return __this_address;
1893 } else {
1894 if (be32_to_cpu(block->bb_u.s.bb_owner) != owner)
1895 return __this_address;
1896 }
1897
1898 return NULL;
1899}
1900
1901int
1902xfs_btree_lookup_get_block(
1903 struct xfs_btree_cur *cur, /* btree cursor */
1904 int level, /* level in the btree */
1905 const union xfs_btree_ptr *pp, /* ptr to btree block */
1906 struct xfs_btree_block **blkp) /* return btree block */
1907{
1908 struct xfs_buf *bp; /* buffer pointer for btree block */
1909 xfs_daddr_t daddr;
1910 int error = 0;
1911
1912 /* special case the root block if in an inode */
1913 if (xfs_btree_at_iroot(cur, level)) {
1914 *blkp = xfs_btree_get_iroot(cur);
1915 return 0;
1916 }
1917
1918 /*
1919 * If the old buffer at this level for the disk address we are
1920 * looking for re-use it.
1921 *
1922 * Otherwise throw it away and get a new one.
1923 */
1924 bp = cur->bc_levels[level].bp;
1925 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1926 if (error)
1927 return error;
1928 if (bp && xfs_buf_daddr(bp) == daddr) {
1929 *blkp = XFS_BUF_TO_BLOCK(bp);
1930 return 0;
1931 }
1932
1933 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1934 if (error)
1935 return error;
1936
1937 /* Check the inode owner since the verifiers don't. */
1938 if (xfs_btree_check_block_owner(cur, *blkp) != NULL)
1939 goto out_bad;
1940
1941 /* Did we get the level we were looking for? */
1942 if (be16_to_cpu((*blkp)->bb_level) != level)
1943 goto out_bad;
1944
1945 /* Check that internal nodes have at least one record. */
1946 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1947 goto out_bad;
1948
1949 xfs_btree_setbuf(cur, level, bp);
1950 return 0;
1951
1952out_bad:
1953 *blkp = NULL;
1954 xfs_buf_mark_corrupt(bp);
1955 xfs_trans_brelse(cur->bc_tp, bp);
1956 xfs_btree_mark_sick(cur);
1957 return -EFSCORRUPTED;
1958}
1959
1960/*
1961 * Get current search key. For level 0 we don't actually have a key
1962 * structure so we make one up from the record. For all other levels
1963 * we just return the right key.
1964 */
1965STATIC union xfs_btree_key *
1966xfs_lookup_get_search_key(
1967 struct xfs_btree_cur *cur,
1968 int level,
1969 int keyno,
1970 struct xfs_btree_block *block,
1971 union xfs_btree_key *kp)
1972{
1973 if (level == 0) {
1974 cur->bc_ops->init_key_from_rec(kp,
1975 xfs_btree_rec_addr(cur, keyno, block));
1976 return kp;
1977 }
1978
1979 return xfs_btree_key_addr(cur, keyno, block);
1980}
1981
1982/*
1983 * Initialize a pointer to the root block.
1984 */
1985void
1986xfs_btree_init_ptr_from_cur(
1987 struct xfs_btree_cur *cur,
1988 union xfs_btree_ptr *ptr)
1989{
1990 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
1991 /*
1992 * Inode-rooted btrees call xfs_btree_get_iroot to find the root
1993 * in xfs_btree_lookup_get_block and don't need a pointer here.
1994 */
1995 ptr->l = 0;
1996 } else if (cur->bc_flags & XFS_BTREE_STAGING) {
1997 ptr->s = cpu_to_be32(cur->bc_ag.afake->af_root);
1998 } else {
1999 cur->bc_ops->init_ptr_from_cur(cur, ptr);
2000 }
2001}
2002
2003/*
2004 * Lookup the record. The cursor is made to point to it, based on dir.
2005 * stat is set to 0 if can't find any such record, 1 for success.
2006 */
2007int /* error */
2008xfs_btree_lookup(
2009 struct xfs_btree_cur *cur, /* btree cursor */
2010 xfs_lookup_t dir, /* <=, ==, or >= */
2011 int *stat) /* success/failure */
2012{
2013 struct xfs_btree_block *block; /* current btree block */
2014 int64_t diff; /* difference for the current key */
2015 int error; /* error return value */
2016 int keyno; /* current key number */
2017 int level; /* level in the btree */
2018 union xfs_btree_ptr *pp; /* ptr to btree block */
2019 union xfs_btree_ptr ptr; /* ptr to btree block */
2020
2021 XFS_BTREE_STATS_INC(cur, lookup);
2022
2023 /* No such thing as a zero-level tree. */
2024 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) {
2025 xfs_btree_mark_sick(cur);
2026 return -EFSCORRUPTED;
2027 }
2028
2029 block = NULL;
2030 keyno = 0;
2031
2032 /* initialise start pointer from cursor */
2033 xfs_btree_init_ptr_from_cur(cur, &ptr);
2034 pp = &ptr;
2035
2036 /*
2037 * Iterate over each level in the btree, starting at the root.
2038 * For each level above the leaves, find the key we need, based
2039 * on the lookup record, then follow the corresponding block
2040 * pointer down to the next level.
2041 */
2042 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
2043 /* Get the block we need to do the lookup on. */
2044 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
2045 if (error)
2046 goto error0;
2047
2048 if (diff == 0) {
2049 /*
2050 * If we already had a key match at a higher level, we
2051 * know we need to use the first entry in this block.
2052 */
2053 keyno = 1;
2054 } else {
2055 /* Otherwise search this block. Do a binary search. */
2056
2057 int high; /* high entry number */
2058 int low; /* low entry number */
2059
2060 /* Set low and high entry numbers, 1-based. */
2061 low = 1;
2062 high = xfs_btree_get_numrecs(block);
2063 if (!high) {
2064 /* Block is empty, must be an empty leaf. */
2065 if (level != 0 || cur->bc_nlevels != 1) {
2066 XFS_CORRUPTION_ERROR(__func__,
2067 XFS_ERRLEVEL_LOW,
2068 cur->bc_mp, block,
2069 sizeof(*block));
2070 xfs_btree_mark_sick(cur);
2071 return -EFSCORRUPTED;
2072 }
2073
2074 cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
2075 *stat = 0;
2076 return 0;
2077 }
2078
2079 /* Binary search the block. */
2080 while (low <= high) {
2081 union xfs_btree_key key;
2082 union xfs_btree_key *kp;
2083
2084 XFS_BTREE_STATS_INC(cur, compare);
2085
2086 /* keyno is average of low and high. */
2087 keyno = (low + high) >> 1;
2088
2089 /* Get current search key */
2090 kp = xfs_lookup_get_search_key(cur, level,
2091 keyno, block, &key);
2092
2093 /*
2094 * Compute difference to get next direction:
2095 * - less than, move right
2096 * - greater than, move left
2097 * - equal, we're done
2098 */
2099 diff = cur->bc_ops->key_diff(cur, kp);
2100 if (diff < 0)
2101 low = keyno + 1;
2102 else if (diff > 0)
2103 high = keyno - 1;
2104 else
2105 break;
2106 }
2107 }
2108
2109 /*
2110 * If there are more levels, set up for the next level
2111 * by getting the block number and filling in the cursor.
2112 */
2113 if (level > 0) {
2114 /*
2115 * If we moved left, need the previous key number,
2116 * unless there isn't one.
2117 */
2118 if (diff > 0 && --keyno < 1)
2119 keyno = 1;
2120 pp = xfs_btree_ptr_addr(cur, keyno, block);
2121
2122 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
2123 if (error)
2124 goto error0;
2125
2126 cur->bc_levels[level].ptr = keyno;
2127 }
2128 }
2129
2130 /* Done with the search. See if we need to adjust the results. */
2131 if (dir != XFS_LOOKUP_LE && diff < 0) {
2132 keyno++;
2133 /*
2134 * If ge search and we went off the end of the block, but it's
2135 * not the last block, we're in the wrong block.
2136 */
2137 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2138 if (dir == XFS_LOOKUP_GE &&
2139 keyno > xfs_btree_get_numrecs(block) &&
2140 !xfs_btree_ptr_is_null(cur, &ptr)) {
2141 int i;
2142
2143 cur->bc_levels[0].ptr = keyno;
2144 error = xfs_btree_increment(cur, 0, &i);
2145 if (error)
2146 goto error0;
2147 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
2148 xfs_btree_mark_sick(cur);
2149 return -EFSCORRUPTED;
2150 }
2151 *stat = 1;
2152 return 0;
2153 }
2154 } else if (dir == XFS_LOOKUP_LE && diff > 0)
2155 keyno--;
2156 cur->bc_levels[0].ptr = keyno;
2157
2158 /* Return if we succeeded or not. */
2159 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2160 *stat = 0;
2161 else if (dir != XFS_LOOKUP_EQ || diff == 0)
2162 *stat = 1;
2163 else
2164 *stat = 0;
2165 return 0;
2166
2167error0:
2168 return error;
2169}
2170
2171/* Find the high key storage area from a regular key. */
2172union xfs_btree_key *
2173xfs_btree_high_key_from_key(
2174 struct xfs_btree_cur *cur,
2175 union xfs_btree_key *key)
2176{
2177 ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2178 return (union xfs_btree_key *)((char *)key +
2179 (cur->bc_ops->key_len / 2));
2180}
2181
2182/* Determine the low (and high if overlapped) keys of a leaf block */
2183STATIC void
2184xfs_btree_get_leaf_keys(
2185 struct xfs_btree_cur *cur,
2186 struct xfs_btree_block *block,
2187 union xfs_btree_key *key)
2188{
2189 union xfs_btree_key max_hkey;
2190 union xfs_btree_key hkey;
2191 union xfs_btree_rec *rec;
2192 union xfs_btree_key *high;
2193 int n;
2194
2195 rec = xfs_btree_rec_addr(cur, 1, block);
2196 cur->bc_ops->init_key_from_rec(key, rec);
2197
2198 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2199
2200 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2201 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2202 rec = xfs_btree_rec_addr(cur, n, block);
2203 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2204 if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey))
2205 max_hkey = hkey;
2206 }
2207
2208 high = xfs_btree_high_key_from_key(cur, key);
2209 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2210 }
2211}
2212
2213/* Determine the low (and high if overlapped) keys of a node block */
2214STATIC void
2215xfs_btree_get_node_keys(
2216 struct xfs_btree_cur *cur,
2217 struct xfs_btree_block *block,
2218 union xfs_btree_key *key)
2219{
2220 union xfs_btree_key *hkey;
2221 union xfs_btree_key *max_hkey;
2222 union xfs_btree_key *high;
2223 int n;
2224
2225 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2226 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2227 cur->bc_ops->key_len / 2);
2228
2229 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2230 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2231 hkey = xfs_btree_high_key_addr(cur, n, block);
2232 if (xfs_btree_keycmp_gt(cur, hkey, max_hkey))
2233 max_hkey = hkey;
2234 }
2235
2236 high = xfs_btree_high_key_from_key(cur, key);
2237 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2238 } else {
2239 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2240 cur->bc_ops->key_len);
2241 }
2242}
2243
2244/* Derive the keys for any btree block. */
2245void
2246xfs_btree_get_keys(
2247 struct xfs_btree_cur *cur,
2248 struct xfs_btree_block *block,
2249 union xfs_btree_key *key)
2250{
2251 if (be16_to_cpu(block->bb_level) == 0)
2252 xfs_btree_get_leaf_keys(cur, block, key);
2253 else
2254 xfs_btree_get_node_keys(cur, block, key);
2255}
2256
2257/*
2258 * Decide if we need to update the parent keys of a btree block. For
2259 * a standard btree this is only necessary if we're updating the first
2260 * record/key. For an overlapping btree, we must always update the
2261 * keys because the highest key can be in any of the records or keys
2262 * in the block.
2263 */
2264static inline bool
2265xfs_btree_needs_key_update(
2266 struct xfs_btree_cur *cur,
2267 int ptr)
2268{
2269 return (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) || ptr == 1;
2270}
2271
2272/*
2273 * Update the low and high parent keys of the given level, progressing
2274 * towards the root. If force_all is false, stop if the keys for a given
2275 * level do not need updating.
2276 */
2277STATIC int
2278__xfs_btree_updkeys(
2279 struct xfs_btree_cur *cur,
2280 int level,
2281 struct xfs_btree_block *block,
2282 struct xfs_buf *bp0,
2283 bool force_all)
2284{
2285 union xfs_btree_key key; /* keys from current level */
2286 union xfs_btree_key *lkey; /* keys from the next level up */
2287 union xfs_btree_key *hkey;
2288 union xfs_btree_key *nlkey; /* keys from the next level up */
2289 union xfs_btree_key *nhkey;
2290 struct xfs_buf *bp;
2291 int ptr;
2292
2293 ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2294
2295 /* Exit if there aren't any parent levels to update. */
2296 if (level + 1 >= cur->bc_nlevels)
2297 return 0;
2298
2299 trace_xfs_btree_updkeys(cur, level, bp0);
2300
2301 lkey = &key;
2302 hkey = xfs_btree_high_key_from_key(cur, lkey);
2303 xfs_btree_get_keys(cur, block, lkey);
2304 for (level++; level < cur->bc_nlevels; level++) {
2305#ifdef DEBUG
2306 int error;
2307#endif
2308 block = xfs_btree_get_block(cur, level, &bp);
2309 trace_xfs_btree_updkeys(cur, level, bp);
2310#ifdef DEBUG
2311 error = xfs_btree_check_block(cur, block, level, bp);
2312 if (error)
2313 return error;
2314#endif
2315 ptr = cur->bc_levels[level].ptr;
2316 nlkey = xfs_btree_key_addr(cur, ptr, block);
2317 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2318 if (!force_all &&
2319 xfs_btree_keycmp_eq(cur, nlkey, lkey) &&
2320 xfs_btree_keycmp_eq(cur, nhkey, hkey))
2321 break;
2322 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2323 xfs_btree_log_keys(cur, bp, ptr, ptr);
2324 if (level + 1 >= cur->bc_nlevels)
2325 break;
2326 xfs_btree_get_node_keys(cur, block, lkey);
2327 }
2328
2329 return 0;
2330}
2331
2332/* Update all the keys from some level in cursor back to the root. */
2333STATIC int
2334xfs_btree_updkeys_force(
2335 struct xfs_btree_cur *cur,
2336 int level)
2337{
2338 struct xfs_buf *bp;
2339 struct xfs_btree_block *block;
2340
2341 block = xfs_btree_get_block(cur, level, &bp);
2342 return __xfs_btree_updkeys(cur, level, block, bp, true);
2343}
2344
2345/*
2346 * Update the parent keys of the given level, progressing towards the root.
2347 */
2348STATIC int
2349xfs_btree_update_keys(
2350 struct xfs_btree_cur *cur,
2351 int level)
2352{
2353 struct xfs_btree_block *block;
2354 struct xfs_buf *bp;
2355 union xfs_btree_key *kp;
2356 union xfs_btree_key key;
2357 int ptr;
2358
2359 ASSERT(level >= 0);
2360
2361 block = xfs_btree_get_block(cur, level, &bp);
2362 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)
2363 return __xfs_btree_updkeys(cur, level, block, bp, false);
2364
2365 /*
2366 * Go up the tree from this level toward the root.
2367 * At each level, update the key value to the value input.
2368 * Stop when we reach a level where the cursor isn't pointing
2369 * at the first entry in the block.
2370 */
2371 xfs_btree_get_keys(cur, block, &key);
2372 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2373#ifdef DEBUG
2374 int error;
2375#endif
2376 block = xfs_btree_get_block(cur, level, &bp);
2377#ifdef DEBUG
2378 error = xfs_btree_check_block(cur, block, level, bp);
2379 if (error)
2380 return error;
2381#endif
2382 ptr = cur->bc_levels[level].ptr;
2383 kp = xfs_btree_key_addr(cur, ptr, block);
2384 xfs_btree_copy_keys(cur, kp, &key, 1);
2385 xfs_btree_log_keys(cur, bp, ptr, ptr);
2386 }
2387
2388 return 0;
2389}
2390
2391/*
2392 * Update the record referred to by cur to the value in the
2393 * given record. This either works (return 0) or gets an
2394 * EFSCORRUPTED error.
2395 */
2396int
2397xfs_btree_update(
2398 struct xfs_btree_cur *cur,
2399 union xfs_btree_rec *rec)
2400{
2401 struct xfs_btree_block *block;
2402 struct xfs_buf *bp;
2403 int error;
2404 int ptr;
2405 union xfs_btree_rec *rp;
2406
2407 /* Pick up the current block. */
2408 block = xfs_btree_get_block(cur, 0, &bp);
2409
2410#ifdef DEBUG
2411 error = xfs_btree_check_block(cur, block, 0, bp);
2412 if (error)
2413 goto error0;
2414#endif
2415 /* Get the address of the rec to be updated. */
2416 ptr = cur->bc_levels[0].ptr;
2417 rp = xfs_btree_rec_addr(cur, ptr, block);
2418
2419 /* Fill in the new contents and log them. */
2420 xfs_btree_copy_recs(cur, rp, rec, 1);
2421 xfs_btree_log_recs(cur, bp, ptr, ptr);
2422
2423 /*
2424 * If we are tracking the last record in the tree and
2425 * we are at the far right edge of the tree, update it.
2426 */
2427 if (xfs_btree_is_lastrec(cur, block, 0)) {
2428 cur->bc_ops->update_lastrec(cur, block, rec,
2429 ptr, LASTREC_UPDATE);
2430 }
2431
2432 /* Pass new key value up to our parent. */
2433 if (xfs_btree_needs_key_update(cur, ptr)) {
2434 error = xfs_btree_update_keys(cur, 0);
2435 if (error)
2436 goto error0;
2437 }
2438
2439 return 0;
2440
2441error0:
2442 return error;
2443}
2444
2445/*
2446 * Move 1 record left from cur/level if possible.
2447 * Update cur to reflect the new path.
2448 */
2449STATIC int /* error */
2450xfs_btree_lshift(
2451 struct xfs_btree_cur *cur,
2452 int level,
2453 int *stat) /* success/failure */
2454{
2455 struct xfs_buf *lbp; /* left buffer pointer */
2456 struct xfs_btree_block *left; /* left btree block */
2457 int lrecs; /* left record count */
2458 struct xfs_buf *rbp; /* right buffer pointer */
2459 struct xfs_btree_block *right; /* right btree block */
2460 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2461 int rrecs; /* right record count */
2462 union xfs_btree_ptr lptr; /* left btree pointer */
2463 union xfs_btree_key *rkp = NULL; /* right btree key */
2464 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2465 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2466 int error; /* error return value */
2467 int i;
2468
2469 if (xfs_btree_at_iroot(cur, level))
2470 goto out0;
2471
2472 /* Set up variables for this block as "right". */
2473 right = xfs_btree_get_block(cur, level, &rbp);
2474
2475#ifdef DEBUG
2476 error = xfs_btree_check_block(cur, right, level, rbp);
2477 if (error)
2478 goto error0;
2479#endif
2480
2481 /* If we've got no left sibling then we can't shift an entry left. */
2482 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2483 if (xfs_btree_ptr_is_null(cur, &lptr))
2484 goto out0;
2485
2486 /*
2487 * If the cursor entry is the one that would be moved, don't
2488 * do it... it's too complicated.
2489 */
2490 if (cur->bc_levels[level].ptr <= 1)
2491 goto out0;
2492
2493 /* Set up the left neighbor as "left". */
2494 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2495 if (error)
2496 goto error0;
2497
2498 /* If it's full, it can't take another entry. */
2499 lrecs = xfs_btree_get_numrecs(left);
2500 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2501 goto out0;
2502
2503 rrecs = xfs_btree_get_numrecs(right);
2504
2505 /*
2506 * We add one entry to the left side and remove one for the right side.
2507 * Account for it here, the changes will be updated on disk and logged
2508 * later.
2509 */
2510 lrecs++;
2511 rrecs--;
2512
2513 XFS_BTREE_STATS_INC(cur, lshift);
2514 XFS_BTREE_STATS_ADD(cur, moves, 1);
2515
2516 /*
2517 * If non-leaf, copy a key and a ptr to the left block.
2518 * Log the changes to the left block.
2519 */
2520 if (level > 0) {
2521 /* It's a non-leaf. Move keys and pointers. */
2522 union xfs_btree_key *lkp; /* left btree key */
2523 union xfs_btree_ptr *lpp; /* left address pointer */
2524
2525 lkp = xfs_btree_key_addr(cur, lrecs, left);
2526 rkp = xfs_btree_key_addr(cur, 1, right);
2527
2528 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2529 rpp = xfs_btree_ptr_addr(cur, 1, right);
2530
2531 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2532 if (error)
2533 goto error0;
2534
2535 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2536 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2537
2538 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2539 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2540
2541 ASSERT(cur->bc_ops->keys_inorder(cur,
2542 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2543 } else {
2544 /* It's a leaf. Move records. */
2545 union xfs_btree_rec *lrp; /* left record pointer */
2546
2547 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2548 rrp = xfs_btree_rec_addr(cur, 1, right);
2549
2550 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2551 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2552
2553 ASSERT(cur->bc_ops->recs_inorder(cur,
2554 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2555 }
2556
2557 xfs_btree_set_numrecs(left, lrecs);
2558 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2559
2560 xfs_btree_set_numrecs(right, rrecs);
2561 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2562
2563 /*
2564 * Slide the contents of right down one entry.
2565 */
2566 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2567 if (level > 0) {
2568 /* It's a nonleaf. operate on keys and ptrs */
2569 for (i = 0; i < rrecs; i++) {
2570 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2571 if (error)
2572 goto error0;
2573 }
2574
2575 xfs_btree_shift_keys(cur,
2576 xfs_btree_key_addr(cur, 2, right),
2577 -1, rrecs);
2578 xfs_btree_shift_ptrs(cur,
2579 xfs_btree_ptr_addr(cur, 2, right),
2580 -1, rrecs);
2581
2582 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2583 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2584 } else {
2585 /* It's a leaf. operate on records */
2586 xfs_btree_shift_recs(cur,
2587 xfs_btree_rec_addr(cur, 2, right),
2588 -1, rrecs);
2589 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2590 }
2591
2592 /*
2593 * Using a temporary cursor, update the parent key values of the
2594 * block on the left.
2595 */
2596 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2597 error = xfs_btree_dup_cursor(cur, &tcur);
2598 if (error)
2599 goto error0;
2600 i = xfs_btree_firstrec(tcur, level);
2601 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2602 xfs_btree_mark_sick(cur);
2603 error = -EFSCORRUPTED;
2604 goto error0;
2605 }
2606
2607 error = xfs_btree_decrement(tcur, level, &i);
2608 if (error)
2609 goto error1;
2610
2611 /* Update the parent high keys of the left block, if needed. */
2612 error = xfs_btree_update_keys(tcur, level);
2613 if (error)
2614 goto error1;
2615
2616 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2617 }
2618
2619 /* Update the parent keys of the right block. */
2620 error = xfs_btree_update_keys(cur, level);
2621 if (error)
2622 goto error0;
2623
2624 /* Slide the cursor value left one. */
2625 cur->bc_levels[level].ptr--;
2626
2627 *stat = 1;
2628 return 0;
2629
2630out0:
2631 *stat = 0;
2632 return 0;
2633
2634error0:
2635 return error;
2636
2637error1:
2638 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2639 return error;
2640}
2641
2642/*
2643 * Move 1 record right from cur/level if possible.
2644 * Update cur to reflect the new path.
2645 */
2646STATIC int /* error */
2647xfs_btree_rshift(
2648 struct xfs_btree_cur *cur,
2649 int level,
2650 int *stat) /* success/failure */
2651{
2652 struct xfs_buf *lbp; /* left buffer pointer */
2653 struct xfs_btree_block *left; /* left btree block */
2654 struct xfs_buf *rbp; /* right buffer pointer */
2655 struct xfs_btree_block *right; /* right btree block */
2656 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2657 union xfs_btree_ptr rptr; /* right block pointer */
2658 union xfs_btree_key *rkp; /* right btree key */
2659 int rrecs; /* right record count */
2660 int lrecs; /* left record count */
2661 int error; /* error return value */
2662 int i; /* loop counter */
2663
2664 if (xfs_btree_at_iroot(cur, level))
2665 goto out0;
2666
2667 /* Set up variables for this block as "left". */
2668 left = xfs_btree_get_block(cur, level, &lbp);
2669
2670#ifdef DEBUG
2671 error = xfs_btree_check_block(cur, left, level, lbp);
2672 if (error)
2673 goto error0;
2674#endif
2675
2676 /* If we've got no right sibling then we can't shift an entry right. */
2677 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2678 if (xfs_btree_ptr_is_null(cur, &rptr))
2679 goto out0;
2680
2681 /*
2682 * If the cursor entry is the one that would be moved, don't
2683 * do it... it's too complicated.
2684 */
2685 lrecs = xfs_btree_get_numrecs(left);
2686 if (cur->bc_levels[level].ptr >= lrecs)
2687 goto out0;
2688
2689 /* Set up the right neighbor as "right". */
2690 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2691 if (error)
2692 goto error0;
2693
2694 /* If it's full, it can't take another entry. */
2695 rrecs = xfs_btree_get_numrecs(right);
2696 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2697 goto out0;
2698
2699 XFS_BTREE_STATS_INC(cur, rshift);
2700 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2701
2702 /*
2703 * Make a hole at the start of the right neighbor block, then
2704 * copy the last left block entry to the hole.
2705 */
2706 if (level > 0) {
2707 /* It's a nonleaf. make a hole in the keys and ptrs */
2708 union xfs_btree_key *lkp;
2709 union xfs_btree_ptr *lpp;
2710 union xfs_btree_ptr *rpp;
2711
2712 lkp = xfs_btree_key_addr(cur, lrecs, left);
2713 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2714 rkp = xfs_btree_key_addr(cur, 1, right);
2715 rpp = xfs_btree_ptr_addr(cur, 1, right);
2716
2717 for (i = rrecs - 1; i >= 0; i--) {
2718 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2719 if (error)
2720 goto error0;
2721 }
2722
2723 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2724 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2725
2726 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2727 if (error)
2728 goto error0;
2729
2730 /* Now put the new data in, and log it. */
2731 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2732 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2733
2734 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2735 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2736
2737 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2738 xfs_btree_key_addr(cur, 2, right)));
2739 } else {
2740 /* It's a leaf. make a hole in the records */
2741 union xfs_btree_rec *lrp;
2742 union xfs_btree_rec *rrp;
2743
2744 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2745 rrp = xfs_btree_rec_addr(cur, 1, right);
2746
2747 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2748
2749 /* Now put the new data in, and log it. */
2750 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2751 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2752 }
2753
2754 /*
2755 * Decrement and log left's numrecs, bump and log right's numrecs.
2756 */
2757 xfs_btree_set_numrecs(left, --lrecs);
2758 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2759
2760 xfs_btree_set_numrecs(right, ++rrecs);
2761 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2762
2763 /*
2764 * Using a temporary cursor, update the parent key values of the
2765 * block on the right.
2766 */
2767 error = xfs_btree_dup_cursor(cur, &tcur);
2768 if (error)
2769 goto error0;
2770 i = xfs_btree_lastrec(tcur, level);
2771 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2772 xfs_btree_mark_sick(cur);
2773 error = -EFSCORRUPTED;
2774 goto error0;
2775 }
2776
2777 error = xfs_btree_increment(tcur, level, &i);
2778 if (error)
2779 goto error1;
2780
2781 /* Update the parent high keys of the left block, if needed. */
2782 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2783 error = xfs_btree_update_keys(cur, level);
2784 if (error)
2785 goto error1;
2786 }
2787
2788 /* Update the parent keys of the right block. */
2789 error = xfs_btree_update_keys(tcur, level);
2790 if (error)
2791 goto error1;
2792
2793 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2794
2795 *stat = 1;
2796 return 0;
2797
2798out0:
2799 *stat = 0;
2800 return 0;
2801
2802error0:
2803 return error;
2804
2805error1:
2806 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2807 return error;
2808}
2809
2810static inline int
2811xfs_btree_alloc_block(
2812 struct xfs_btree_cur *cur,
2813 const union xfs_btree_ptr *hint_block,
2814 union xfs_btree_ptr *new_block,
2815 int *stat)
2816{
2817 int error;
2818
2819 /*
2820 * Don't allow block allocation for a staging cursor, because staging
2821 * cursors do not support regular btree modifications.
2822 *
2823 * Bulk loading uses a separate callback to obtain new blocks from a
2824 * preallocated list, which prevents ENOSPC failures during loading.
2825 */
2826 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
2827 ASSERT(0);
2828 return -EFSCORRUPTED;
2829 }
2830
2831 error = cur->bc_ops->alloc_block(cur, hint_block, new_block, stat);
2832 trace_xfs_btree_alloc_block(cur, new_block, *stat, error);
2833 return error;
2834}
2835
2836/*
2837 * Split cur/level block in half.
2838 * Return new block number and the key to its first
2839 * record (to be inserted into parent).
2840 */
2841STATIC int /* error */
2842__xfs_btree_split(
2843 struct xfs_btree_cur *cur,
2844 int level,
2845 union xfs_btree_ptr *ptrp,
2846 union xfs_btree_key *key,
2847 struct xfs_btree_cur **curp,
2848 int *stat) /* success/failure */
2849{
2850 union xfs_btree_ptr lptr; /* left sibling block ptr */
2851 struct xfs_buf *lbp; /* left buffer pointer */
2852 struct xfs_btree_block *left; /* left btree block */
2853 union xfs_btree_ptr rptr; /* right sibling block ptr */
2854 struct xfs_buf *rbp; /* right buffer pointer */
2855 struct xfs_btree_block *right; /* right btree block */
2856 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2857 struct xfs_buf *rrbp; /* right-right buffer pointer */
2858 struct xfs_btree_block *rrblock; /* right-right btree block */
2859 int lrecs;
2860 int rrecs;
2861 int src_index;
2862 int error; /* error return value */
2863 int i;
2864
2865 XFS_BTREE_STATS_INC(cur, split);
2866
2867 /* Set up left block (current one). */
2868 left = xfs_btree_get_block(cur, level, &lbp);
2869
2870#ifdef DEBUG
2871 error = xfs_btree_check_block(cur, left, level, lbp);
2872 if (error)
2873 goto error0;
2874#endif
2875
2876 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2877
2878 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2879 error = xfs_btree_alloc_block(cur, &lptr, &rptr, stat);
2880 if (error)
2881 goto error0;
2882 if (*stat == 0)
2883 goto out0;
2884 XFS_BTREE_STATS_INC(cur, alloc);
2885
2886 /* Set up the new block as "right". */
2887 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2888 if (error)
2889 goto error0;
2890
2891 /* Fill in the btree header for the new right block. */
2892 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2893
2894 /*
2895 * Split the entries between the old and the new block evenly.
2896 * Make sure that if there's an odd number of entries now, that
2897 * each new block will have the same number of entries.
2898 */
2899 lrecs = xfs_btree_get_numrecs(left);
2900 rrecs = lrecs / 2;
2901 if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2902 rrecs++;
2903 src_index = (lrecs - rrecs + 1);
2904
2905 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2906
2907 /* Adjust numrecs for the later get_*_keys() calls. */
2908 lrecs -= rrecs;
2909 xfs_btree_set_numrecs(left, lrecs);
2910 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2911
2912 /*
2913 * Copy btree block entries from the left block over to the
2914 * new block, the right. Update the right block and log the
2915 * changes.
2916 */
2917 if (level > 0) {
2918 /* It's a non-leaf. Move keys and pointers. */
2919 union xfs_btree_key *lkp; /* left btree key */
2920 union xfs_btree_ptr *lpp; /* left address pointer */
2921 union xfs_btree_key *rkp; /* right btree key */
2922 union xfs_btree_ptr *rpp; /* right address pointer */
2923
2924 lkp = xfs_btree_key_addr(cur, src_index, left);
2925 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2926 rkp = xfs_btree_key_addr(cur, 1, right);
2927 rpp = xfs_btree_ptr_addr(cur, 1, right);
2928
2929 for (i = src_index; i < rrecs; i++) {
2930 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2931 if (error)
2932 goto error0;
2933 }
2934
2935 /* Copy the keys & pointers to the new block. */
2936 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2937 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2938
2939 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2940 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2941
2942 /* Stash the keys of the new block for later insertion. */
2943 xfs_btree_get_node_keys(cur, right, key);
2944 } else {
2945 /* It's a leaf. Move records. */
2946 union xfs_btree_rec *lrp; /* left record pointer */
2947 union xfs_btree_rec *rrp; /* right record pointer */
2948
2949 lrp = xfs_btree_rec_addr(cur, src_index, left);
2950 rrp = xfs_btree_rec_addr(cur, 1, right);
2951
2952 /* Copy records to the new block. */
2953 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2954 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2955
2956 /* Stash the keys of the new block for later insertion. */
2957 xfs_btree_get_leaf_keys(cur, right, key);
2958 }
2959
2960 /*
2961 * Find the left block number by looking in the buffer.
2962 * Adjust sibling pointers.
2963 */
2964 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2965 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2966 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2967 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2968
2969 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2970 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2971
2972 /*
2973 * If there's a block to the new block's right, make that block
2974 * point back to right instead of to left.
2975 */
2976 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2977 error = xfs_btree_read_buf_block(cur, &rrptr,
2978 0, &rrblock, &rrbp);
2979 if (error)
2980 goto error0;
2981 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2982 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2983 }
2984
2985 /* Update the parent high keys of the left block, if needed. */
2986 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2987 error = xfs_btree_update_keys(cur, level);
2988 if (error)
2989 goto error0;
2990 }
2991
2992 /*
2993 * If the cursor is really in the right block, move it there.
2994 * If it's just pointing past the last entry in left, then we'll
2995 * insert there, so don't change anything in that case.
2996 */
2997 if (cur->bc_levels[level].ptr > lrecs + 1) {
2998 xfs_btree_setbuf(cur, level, rbp);
2999 cur->bc_levels[level].ptr -= lrecs;
3000 }
3001 /*
3002 * If there are more levels, we'll need another cursor which refers
3003 * the right block, no matter where this cursor was.
3004 */
3005 if (level + 1 < cur->bc_nlevels) {
3006 error = xfs_btree_dup_cursor(cur, curp);
3007 if (error)
3008 goto error0;
3009 (*curp)->bc_levels[level + 1].ptr++;
3010 }
3011 *ptrp = rptr;
3012 *stat = 1;
3013 return 0;
3014out0:
3015 *stat = 0;
3016 return 0;
3017
3018error0:
3019 return error;
3020}
3021
3022#ifdef __KERNEL__
3023struct xfs_btree_split_args {
3024 struct xfs_btree_cur *cur;
3025 int level;
3026 union xfs_btree_ptr *ptrp;
3027 union xfs_btree_key *key;
3028 struct xfs_btree_cur **curp;
3029 int *stat; /* success/failure */
3030 int result;
3031 bool kswapd; /* allocation in kswapd context */
3032 struct completion *done;
3033 struct work_struct work;
3034};
3035
3036/*
3037 * Stack switching interfaces for allocation
3038 */
3039static void
3040xfs_btree_split_worker(
3041 struct work_struct *work)
3042{
3043 struct xfs_btree_split_args *args = container_of(work,
3044 struct xfs_btree_split_args, work);
3045 unsigned long pflags;
3046 unsigned long new_pflags = 0;
3047
3048 /*
3049 * we are in a transaction context here, but may also be doing work
3050 * in kswapd context, and hence we may need to inherit that state
3051 * temporarily to ensure that we don't block waiting for memory reclaim
3052 * in any way.
3053 */
3054 if (args->kswapd)
3055 new_pflags |= PF_MEMALLOC | PF_KSWAPD;
3056
3057 current_set_flags_nested(&pflags, new_pflags);
3058 xfs_trans_set_context(args->cur->bc_tp);
3059
3060 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
3061 args->key, args->curp, args->stat);
3062
3063 xfs_trans_clear_context(args->cur->bc_tp);
3064 current_restore_flags_nested(&pflags, new_pflags);
3065
3066 /*
3067 * Do not access args after complete() has run here. We don't own args
3068 * and the owner may run and free args before we return here.
3069 */
3070 complete(args->done);
3071
3072}
3073
3074/*
3075 * BMBT split requests often come in with little stack to work on so we push
3076 * them off to a worker thread so there is lots of stack to use. For the other
3077 * btree types, just call directly to avoid the context switch overhead here.
3078 *
3079 * Care must be taken here - the work queue rescuer thread introduces potential
3080 * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
3081 * AGFs to allocate blocks. A task being run by the rescuer could attempt to
3082 * lock an AGF that is already locked by a task queued to run by the rescuer,
3083 * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
3084 * release it until the current thread it is running gains the lock.
3085 *
3086 * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
3087 * already locked to allocate from. The only place that doesn't hold an AGF
3088 * locked is unwritten extent conversion at IO completion, but that has already
3089 * been offloaded to a worker thread and hence has no stack consumption issues
3090 * we have to worry about.
3091 */
3092STATIC int /* error */
3093xfs_btree_split(
3094 struct xfs_btree_cur *cur,
3095 int level,
3096 union xfs_btree_ptr *ptrp,
3097 union xfs_btree_key *key,
3098 struct xfs_btree_cur **curp,
3099 int *stat) /* success/failure */
3100{
3101 struct xfs_btree_split_args args;
3102 DECLARE_COMPLETION_ONSTACK(done);
3103
3104 if (!xfs_btree_is_bmap(cur->bc_ops) ||
3105 cur->bc_tp->t_highest_agno == NULLAGNUMBER)
3106 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
3107
3108 args.cur = cur;
3109 args.level = level;
3110 args.ptrp = ptrp;
3111 args.key = key;
3112 args.curp = curp;
3113 args.stat = stat;
3114 args.done = &done;
3115 args.kswapd = current_is_kswapd();
3116 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
3117 queue_work(xfs_alloc_wq, &args.work);
3118 wait_for_completion(&done);
3119 destroy_work_on_stack(&args.work);
3120 return args.result;
3121}
3122#else
3123#define xfs_btree_split __xfs_btree_split
3124#endif /* __KERNEL__ */
3125
3126/*
3127 * Copy the old inode root contents into a real block and make the
3128 * broot point to it.
3129 */
3130int /* error */
3131xfs_btree_new_iroot(
3132 struct xfs_btree_cur *cur, /* btree cursor */
3133 int *logflags, /* logging flags for inode */
3134 int *stat) /* return status - 0 fail */
3135{
3136 struct xfs_buf *cbp; /* buffer for cblock */
3137 struct xfs_btree_block *block; /* btree block */
3138 struct xfs_btree_block *cblock; /* child btree block */
3139 union xfs_btree_key *ckp; /* child key pointer */
3140 union xfs_btree_ptr *cpp; /* child ptr pointer */
3141 union xfs_btree_key *kp; /* pointer to btree key */
3142 union xfs_btree_ptr *pp; /* pointer to block addr */
3143 union xfs_btree_ptr nptr; /* new block addr */
3144 int level; /* btree level */
3145 int error; /* error return code */
3146 int i; /* loop counter */
3147
3148 XFS_BTREE_STATS_INC(cur, newroot);
3149
3150 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3151
3152 level = cur->bc_nlevels - 1;
3153
3154 block = xfs_btree_get_iroot(cur);
3155 pp = xfs_btree_ptr_addr(cur, 1, block);
3156
3157 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3158 error = xfs_btree_alloc_block(cur, pp, &nptr, stat);
3159 if (error)
3160 goto error0;
3161 if (*stat == 0)
3162 return 0;
3163
3164 XFS_BTREE_STATS_INC(cur, alloc);
3165
3166 /* Copy the root into a real block. */
3167 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3168 if (error)
3169 goto error0;
3170
3171 /*
3172 * we can't just memcpy() the root in for CRC enabled btree blocks.
3173 * In that case have to also ensure the blkno remains correct
3174 */
3175 memcpy(cblock, block, xfs_btree_block_len(cur));
3176 if (xfs_has_crc(cur->bc_mp)) {
3177 __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3178 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
3179 cblock->bb_u.l.bb_blkno = bno;
3180 else
3181 cblock->bb_u.s.bb_blkno = bno;
3182 }
3183
3184 be16_add_cpu(&block->bb_level, 1);
3185 xfs_btree_set_numrecs(block, 1);
3186 cur->bc_nlevels++;
3187 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3188 cur->bc_levels[level + 1].ptr = 1;
3189
3190 kp = xfs_btree_key_addr(cur, 1, block);
3191 ckp = xfs_btree_key_addr(cur, 1, cblock);
3192 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3193
3194 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3195 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3196 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3197 if (error)
3198 goto error0;
3199 }
3200
3201 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3202
3203 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3204 if (error)
3205 goto error0;
3206
3207 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3208
3209 xfs_iroot_realloc(cur->bc_ino.ip,
3210 1 - xfs_btree_get_numrecs(cblock),
3211 cur->bc_ino.whichfork);
3212
3213 xfs_btree_setbuf(cur, level, cbp);
3214
3215 /*
3216 * Do all this logging at the end so that
3217 * the root is at the right level.
3218 */
3219 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3220 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3221 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3222
3223 *logflags |=
3224 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3225 *stat = 1;
3226 return 0;
3227error0:
3228 return error;
3229}
3230
3231static void
3232xfs_btree_set_root(
3233 struct xfs_btree_cur *cur,
3234 const union xfs_btree_ptr *ptr,
3235 int inc)
3236{
3237 if (cur->bc_flags & XFS_BTREE_STAGING) {
3238 /* Update the btree root information for a per-AG fake root. */
3239 cur->bc_ag.afake->af_root = be32_to_cpu(ptr->s);
3240 cur->bc_ag.afake->af_levels += inc;
3241 } else {
3242 cur->bc_ops->set_root(cur, ptr, inc);
3243 }
3244}
3245
3246/*
3247 * Allocate a new root block, fill it in.
3248 */
3249STATIC int /* error */
3250xfs_btree_new_root(
3251 struct xfs_btree_cur *cur, /* btree cursor */
3252 int *stat) /* success/failure */
3253{
3254 struct xfs_btree_block *block; /* one half of the old root block */
3255 struct xfs_buf *bp; /* buffer containing block */
3256 int error; /* error return value */
3257 struct xfs_buf *lbp; /* left buffer pointer */
3258 struct xfs_btree_block *left; /* left btree block */
3259 struct xfs_buf *nbp; /* new (root) buffer */
3260 struct xfs_btree_block *new; /* new (root) btree block */
3261 int nptr; /* new value for key index, 1 or 2 */
3262 struct xfs_buf *rbp; /* right buffer pointer */
3263 struct xfs_btree_block *right; /* right btree block */
3264 union xfs_btree_ptr rptr;
3265 union xfs_btree_ptr lptr;
3266
3267 XFS_BTREE_STATS_INC(cur, newroot);
3268
3269 /* initialise our start point from the cursor */
3270 xfs_btree_init_ptr_from_cur(cur, &rptr);
3271
3272 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3273 error = xfs_btree_alloc_block(cur, &rptr, &lptr, stat);
3274 if (error)
3275 goto error0;
3276 if (*stat == 0)
3277 goto out0;
3278 XFS_BTREE_STATS_INC(cur, alloc);
3279
3280 /* Set up the new block. */
3281 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3282 if (error)
3283 goto error0;
3284
3285 /* Set the root in the holding structure increasing the level by 1. */
3286 xfs_btree_set_root(cur, &lptr, 1);
3287
3288 /*
3289 * At the previous root level there are now two blocks: the old root,
3290 * and the new block generated when it was split. We don't know which
3291 * one the cursor is pointing at, so we set up variables "left" and
3292 * "right" for each case.
3293 */
3294 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3295
3296#ifdef DEBUG
3297 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3298 if (error)
3299 goto error0;
3300#endif
3301
3302 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3303 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3304 /* Our block is left, pick up the right block. */
3305 lbp = bp;
3306 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3307 left = block;
3308 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3309 if (error)
3310 goto error0;
3311 bp = rbp;
3312 nptr = 1;
3313 } else {
3314 /* Our block is right, pick up the left block. */
3315 rbp = bp;
3316 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3317 right = block;
3318 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3319 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3320 if (error)
3321 goto error0;
3322 bp = lbp;
3323 nptr = 2;
3324 }
3325
3326 /* Fill in the new block's btree header and log it. */
3327 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3328 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3329 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3330 !xfs_btree_ptr_is_null(cur, &rptr));
3331
3332 /* Fill in the key data in the new root. */
3333 if (xfs_btree_get_level(left) > 0) {
3334 /*
3335 * Get the keys for the left block's keys and put them directly
3336 * in the parent block. Do the same for the right block.
3337 */
3338 xfs_btree_get_node_keys(cur, left,
3339 xfs_btree_key_addr(cur, 1, new));
3340 xfs_btree_get_node_keys(cur, right,
3341 xfs_btree_key_addr(cur, 2, new));
3342 } else {
3343 /*
3344 * Get the keys for the left block's records and put them
3345 * directly in the parent block. Do the same for the right
3346 * block.
3347 */
3348 xfs_btree_get_leaf_keys(cur, left,
3349 xfs_btree_key_addr(cur, 1, new));
3350 xfs_btree_get_leaf_keys(cur, right,
3351 xfs_btree_key_addr(cur, 2, new));
3352 }
3353 xfs_btree_log_keys(cur, nbp, 1, 2);
3354
3355 /* Fill in the pointer data in the new root. */
3356 xfs_btree_copy_ptrs(cur,
3357 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3358 xfs_btree_copy_ptrs(cur,
3359 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3360 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3361
3362 /* Fix up the cursor. */
3363 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3364 cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3365 cur->bc_nlevels++;
3366 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3367 *stat = 1;
3368 return 0;
3369error0:
3370 return error;
3371out0:
3372 *stat = 0;
3373 return 0;
3374}
3375
3376STATIC int
3377xfs_btree_make_block_unfull(
3378 struct xfs_btree_cur *cur, /* btree cursor */
3379 int level, /* btree level */
3380 int numrecs,/* # of recs in block */
3381 int *oindex,/* old tree index */
3382 int *index, /* new tree index */
3383 union xfs_btree_ptr *nptr, /* new btree ptr */
3384 struct xfs_btree_cur **ncur, /* new btree cursor */
3385 union xfs_btree_key *key, /* key of new block */
3386 int *stat)
3387{
3388 int error = 0;
3389
3390 if (xfs_btree_at_iroot(cur, level)) {
3391 struct xfs_inode *ip = cur->bc_ino.ip;
3392
3393 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3394 /* A root block that can be made bigger. */
3395 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3396 *stat = 1;
3397 } else {
3398 /* A root block that needs replacing */
3399 int logflags = 0;
3400
3401 error = xfs_btree_new_iroot(cur, &logflags, stat);
3402 if (error || *stat == 0)
3403 return error;
3404
3405 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3406 }
3407
3408 return 0;
3409 }
3410
3411 /* First, try shifting an entry to the right neighbor. */
3412 error = xfs_btree_rshift(cur, level, stat);
3413 if (error || *stat)
3414 return error;
3415
3416 /* Next, try shifting an entry to the left neighbor. */
3417 error = xfs_btree_lshift(cur, level, stat);
3418 if (error)
3419 return error;
3420
3421 if (*stat) {
3422 *oindex = *index = cur->bc_levels[level].ptr;
3423 return 0;
3424 }
3425
3426 /*
3427 * Next, try splitting the current block in half.
3428 *
3429 * If this works we have to re-set our variables because we
3430 * could be in a different block now.
3431 */
3432 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3433 if (error || *stat == 0)
3434 return error;
3435
3436
3437 *index = cur->bc_levels[level].ptr;
3438 return 0;
3439}
3440
3441/*
3442 * Insert one record/level. Return information to the caller
3443 * allowing the next level up to proceed if necessary.
3444 */
3445STATIC int
3446xfs_btree_insrec(
3447 struct xfs_btree_cur *cur, /* btree cursor */
3448 int level, /* level to insert record at */
3449 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3450 union xfs_btree_rec *rec, /* record to insert */
3451 union xfs_btree_key *key, /* i/o: block key for ptrp */
3452 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3453 int *stat) /* success/failure */
3454{
3455 struct xfs_btree_block *block; /* btree block */
3456 struct xfs_buf *bp; /* buffer for block */
3457 union xfs_btree_ptr nptr; /* new block ptr */
3458 struct xfs_btree_cur *ncur = NULL; /* new btree cursor */
3459 union xfs_btree_key nkey; /* new block key */
3460 union xfs_btree_key *lkey;
3461 int optr; /* old key/record index */
3462 int ptr; /* key/record index */
3463 int numrecs;/* number of records */
3464 int error; /* error return value */
3465 int i;
3466 xfs_daddr_t old_bn;
3467
3468 ncur = NULL;
3469 lkey = &nkey;
3470
3471 /*
3472 * If we have an external root pointer, and we've made it to the
3473 * root level, allocate a new root block and we're done.
3474 */
3475 if (cur->bc_ops->type != XFS_BTREE_TYPE_INODE &&
3476 level >= cur->bc_nlevels) {
3477 error = xfs_btree_new_root(cur, stat);
3478 xfs_btree_set_ptr_null(cur, ptrp);
3479
3480 return error;
3481 }
3482
3483 /* If we're off the left edge, return failure. */
3484 ptr = cur->bc_levels[level].ptr;
3485 if (ptr == 0) {
3486 *stat = 0;
3487 return 0;
3488 }
3489
3490 optr = ptr;
3491
3492 XFS_BTREE_STATS_INC(cur, insrec);
3493
3494 /* Get pointers to the btree buffer and block. */
3495 block = xfs_btree_get_block(cur, level, &bp);
3496 old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3497 numrecs = xfs_btree_get_numrecs(block);
3498
3499#ifdef DEBUG
3500 error = xfs_btree_check_block(cur, block, level, bp);
3501 if (error)
3502 goto error0;
3503
3504 /* Check that the new entry is being inserted in the right place. */
3505 if (ptr <= numrecs) {
3506 if (level == 0) {
3507 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3508 xfs_btree_rec_addr(cur, ptr, block)));
3509 } else {
3510 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3511 xfs_btree_key_addr(cur, ptr, block)));
3512 }
3513 }
3514#endif
3515
3516 /*
3517 * If the block is full, we can't insert the new entry until we
3518 * make the block un-full.
3519 */
3520 xfs_btree_set_ptr_null(cur, &nptr);
3521 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3522 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3523 &optr, &ptr, &nptr, &ncur, lkey, stat);
3524 if (error || *stat == 0)
3525 goto error0;
3526 }
3527
3528 /*
3529 * The current block may have changed if the block was
3530 * previously full and we have just made space in it.
3531 */
3532 block = xfs_btree_get_block(cur, level, &bp);
3533 numrecs = xfs_btree_get_numrecs(block);
3534
3535#ifdef DEBUG
3536 error = xfs_btree_check_block(cur, block, level, bp);
3537 if (error)
3538 goto error0;
3539#endif
3540
3541 /*
3542 * At this point we know there's room for our new entry in the block
3543 * we're pointing at.
3544 */
3545 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3546
3547 if (level > 0) {
3548 /* It's a nonleaf. make a hole in the keys and ptrs */
3549 union xfs_btree_key *kp;
3550 union xfs_btree_ptr *pp;
3551
3552 kp = xfs_btree_key_addr(cur, ptr, block);
3553 pp = xfs_btree_ptr_addr(cur, ptr, block);
3554
3555 for (i = numrecs - ptr; i >= 0; i--) {
3556 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3557 if (error)
3558 goto error0;
3559 }
3560
3561 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3562 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3563
3564 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3565 if (error)
3566 goto error0;
3567
3568 /* Now put the new data in, bump numrecs and log it. */
3569 xfs_btree_copy_keys(cur, kp, key, 1);
3570 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3571 numrecs++;
3572 xfs_btree_set_numrecs(block, numrecs);
3573 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3574 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3575#ifdef DEBUG
3576 if (ptr < numrecs) {
3577 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3578 xfs_btree_key_addr(cur, ptr + 1, block)));
3579 }
3580#endif
3581 } else {
3582 /* It's a leaf. make a hole in the records */
3583 union xfs_btree_rec *rp;
3584
3585 rp = xfs_btree_rec_addr(cur, ptr, block);
3586
3587 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3588
3589 /* Now put the new data in, bump numrecs and log it. */
3590 xfs_btree_copy_recs(cur, rp, rec, 1);
3591 xfs_btree_set_numrecs(block, ++numrecs);
3592 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3593#ifdef DEBUG
3594 if (ptr < numrecs) {
3595 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3596 xfs_btree_rec_addr(cur, ptr + 1, block)));
3597 }
3598#endif
3599 }
3600
3601 /* Log the new number of records in the btree header. */
3602 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3603
3604 /*
3605 * If we just inserted into a new tree block, we have to
3606 * recalculate nkey here because nkey is out of date.
3607 *
3608 * Otherwise we're just updating an existing block (having shoved
3609 * some records into the new tree block), so use the regular key
3610 * update mechanism.
3611 */
3612 if (bp && xfs_buf_daddr(bp) != old_bn) {
3613 xfs_btree_get_keys(cur, block, lkey);
3614 } else if (xfs_btree_needs_key_update(cur, optr)) {
3615 error = xfs_btree_update_keys(cur, level);
3616 if (error)
3617 goto error0;
3618 }
3619
3620 /*
3621 * If we are tracking the last record in the tree and
3622 * we are at the far right edge of the tree, update it.
3623 */
3624 if (xfs_btree_is_lastrec(cur, block, level)) {
3625 cur->bc_ops->update_lastrec(cur, block, rec,
3626 ptr, LASTREC_INSREC);
3627 }
3628
3629 /*
3630 * Return the new block number, if any.
3631 * If there is one, give back a record value and a cursor too.
3632 */
3633 *ptrp = nptr;
3634 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3635 xfs_btree_copy_keys(cur, key, lkey, 1);
3636 *curp = ncur;
3637 }
3638
3639 *stat = 1;
3640 return 0;
3641
3642error0:
3643 if (ncur)
3644 xfs_btree_del_cursor(ncur, error);
3645 return error;
3646}
3647
3648/*
3649 * Insert the record at the point referenced by cur.
3650 *
3651 * A multi-level split of the tree on insert will invalidate the original
3652 * cursor. All callers of this function should assume that the cursor is
3653 * no longer valid and revalidate it.
3654 */
3655int
3656xfs_btree_insert(
3657 struct xfs_btree_cur *cur,
3658 int *stat)
3659{
3660 int error; /* error return value */
3661 int i; /* result value, 0 for failure */
3662 int level; /* current level number in btree */
3663 union xfs_btree_ptr nptr; /* new block number (split result) */
3664 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3665 struct xfs_btree_cur *pcur; /* previous level's cursor */
3666 union xfs_btree_key bkey; /* key of block to insert */
3667 union xfs_btree_key *key;
3668 union xfs_btree_rec rec; /* record to insert */
3669
3670 level = 0;
3671 ncur = NULL;
3672 pcur = cur;
3673 key = &bkey;
3674
3675 xfs_btree_set_ptr_null(cur, &nptr);
3676
3677 /* Make a key out of the record data to be inserted, and save it. */
3678 cur->bc_ops->init_rec_from_cur(cur, &rec);
3679 cur->bc_ops->init_key_from_rec(key, &rec);
3680
3681 /*
3682 * Loop going up the tree, starting at the leaf level.
3683 * Stop when we don't get a split block, that must mean that
3684 * the insert is finished with this level.
3685 */
3686 do {
3687 /*
3688 * Insert nrec/nptr into this level of the tree.
3689 * Note if we fail, nptr will be null.
3690 */
3691 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3692 &ncur, &i);
3693 if (error) {
3694 if (pcur != cur)
3695 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3696 goto error0;
3697 }
3698
3699 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3700 xfs_btree_mark_sick(cur);
3701 error = -EFSCORRUPTED;
3702 goto error0;
3703 }
3704 level++;
3705
3706 /*
3707 * See if the cursor we just used is trash.
3708 * Can't trash the caller's cursor, but otherwise we should
3709 * if ncur is a new cursor or we're about to be done.
3710 */
3711 if (pcur != cur &&
3712 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3713 /* Save the state from the cursor before we trash it */
3714 if (cur->bc_ops->update_cursor &&
3715 !(cur->bc_flags & XFS_BTREE_STAGING))
3716 cur->bc_ops->update_cursor(pcur, cur);
3717 cur->bc_nlevels = pcur->bc_nlevels;
3718 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3719 }
3720 /* If we got a new cursor, switch to it. */
3721 if (ncur) {
3722 pcur = ncur;
3723 ncur = NULL;
3724 }
3725 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3726
3727 *stat = i;
3728 return 0;
3729error0:
3730 return error;
3731}
3732
3733/*
3734 * Try to merge a non-leaf block back into the inode root.
3735 *
3736 * Note: the killroot names comes from the fact that we're effectively
3737 * killing the old root block. But because we can't just delete the
3738 * inode we have to copy the single block it was pointing to into the
3739 * inode.
3740 */
3741STATIC int
3742xfs_btree_kill_iroot(
3743 struct xfs_btree_cur *cur)
3744{
3745 int whichfork = cur->bc_ino.whichfork;
3746 struct xfs_inode *ip = cur->bc_ino.ip;
3747 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
3748 struct xfs_btree_block *block;
3749 struct xfs_btree_block *cblock;
3750 union xfs_btree_key *kp;
3751 union xfs_btree_key *ckp;
3752 union xfs_btree_ptr *pp;
3753 union xfs_btree_ptr *cpp;
3754 struct xfs_buf *cbp;
3755 int level;
3756 int index;
3757 int numrecs;
3758 int error;
3759#ifdef DEBUG
3760 union xfs_btree_ptr ptr;
3761#endif
3762 int i;
3763
3764 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3765 ASSERT(cur->bc_nlevels > 1);
3766
3767 /*
3768 * Don't deal with the root block needs to be a leaf case.
3769 * We're just going to turn the thing back into extents anyway.
3770 */
3771 level = cur->bc_nlevels - 1;
3772 if (level == 1)
3773 goto out0;
3774
3775 /*
3776 * Give up if the root has multiple children.
3777 */
3778 block = xfs_btree_get_iroot(cur);
3779 if (xfs_btree_get_numrecs(block) != 1)
3780 goto out0;
3781
3782 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3783 numrecs = xfs_btree_get_numrecs(cblock);
3784
3785 /*
3786 * Only do this if the next level will fit.
3787 * Then the data must be copied up to the inode,
3788 * instead of freeing the root you free the next level.
3789 */
3790 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3791 goto out0;
3792
3793 XFS_BTREE_STATS_INC(cur, killroot);
3794
3795#ifdef DEBUG
3796 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3797 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3798 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3799 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3800#endif
3801
3802 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3803 if (index) {
3804 xfs_iroot_realloc(cur->bc_ino.ip, index,
3805 cur->bc_ino.whichfork);
3806 block = ifp->if_broot;
3807 }
3808
3809 be16_add_cpu(&block->bb_numrecs, index);
3810 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3811
3812 kp = xfs_btree_key_addr(cur, 1, block);
3813 ckp = xfs_btree_key_addr(cur, 1, cblock);
3814 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3815
3816 pp = xfs_btree_ptr_addr(cur, 1, block);
3817 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3818
3819 for (i = 0; i < numrecs; i++) {
3820 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3821 if (error)
3822 return error;
3823 }
3824
3825 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3826
3827 error = xfs_btree_free_block(cur, cbp);
3828 if (error)
3829 return error;
3830
3831 cur->bc_levels[level - 1].bp = NULL;
3832 be16_add_cpu(&block->bb_level, -1);
3833 xfs_trans_log_inode(cur->bc_tp, ip,
3834 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3835 cur->bc_nlevels--;
3836out0:
3837 return 0;
3838}
3839
3840/*
3841 * Kill the current root node, and replace it with it's only child node.
3842 */
3843STATIC int
3844xfs_btree_kill_root(
3845 struct xfs_btree_cur *cur,
3846 struct xfs_buf *bp,
3847 int level,
3848 union xfs_btree_ptr *newroot)
3849{
3850 int error;
3851
3852 XFS_BTREE_STATS_INC(cur, killroot);
3853
3854 /*
3855 * Update the root pointer, decreasing the level by 1 and then
3856 * free the old root.
3857 */
3858 xfs_btree_set_root(cur, newroot, -1);
3859
3860 error = xfs_btree_free_block(cur, bp);
3861 if (error)
3862 return error;
3863
3864 cur->bc_levels[level].bp = NULL;
3865 cur->bc_levels[level].ra = 0;
3866 cur->bc_nlevels--;
3867
3868 return 0;
3869}
3870
3871STATIC int
3872xfs_btree_dec_cursor(
3873 struct xfs_btree_cur *cur,
3874 int level,
3875 int *stat)
3876{
3877 int error;
3878 int i;
3879
3880 if (level > 0) {
3881 error = xfs_btree_decrement(cur, level, &i);
3882 if (error)
3883 return error;
3884 }
3885
3886 *stat = 1;
3887 return 0;
3888}
3889
3890/*
3891 * Single level of the btree record deletion routine.
3892 * Delete record pointed to by cur/level.
3893 * Remove the record from its block then rebalance the tree.
3894 * Return 0 for error, 1 for done, 2 to go on to the next level.
3895 */
3896STATIC int /* error */
3897xfs_btree_delrec(
3898 struct xfs_btree_cur *cur, /* btree cursor */
3899 int level, /* level removing record from */
3900 int *stat) /* fail/done/go-on */
3901{
3902 struct xfs_btree_block *block; /* btree block */
3903 union xfs_btree_ptr cptr; /* current block ptr */
3904 struct xfs_buf *bp; /* buffer for block */
3905 int error; /* error return value */
3906 int i; /* loop counter */
3907 union xfs_btree_ptr lptr; /* left sibling block ptr */
3908 struct xfs_buf *lbp; /* left buffer pointer */
3909 struct xfs_btree_block *left; /* left btree block */
3910 int lrecs = 0; /* left record count */
3911 int ptr; /* key/record index */
3912 union xfs_btree_ptr rptr; /* right sibling block ptr */
3913 struct xfs_buf *rbp; /* right buffer pointer */
3914 struct xfs_btree_block *right; /* right btree block */
3915 struct xfs_btree_block *rrblock; /* right-right btree block */
3916 struct xfs_buf *rrbp; /* right-right buffer pointer */
3917 int rrecs = 0; /* right record count */
3918 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3919 int numrecs; /* temporary numrec count */
3920
3921 tcur = NULL;
3922
3923 /* Get the index of the entry being deleted, check for nothing there. */
3924 ptr = cur->bc_levels[level].ptr;
3925 if (ptr == 0) {
3926 *stat = 0;
3927 return 0;
3928 }
3929
3930 /* Get the buffer & block containing the record or key/ptr. */
3931 block = xfs_btree_get_block(cur, level, &bp);
3932 numrecs = xfs_btree_get_numrecs(block);
3933
3934#ifdef DEBUG
3935 error = xfs_btree_check_block(cur, block, level, bp);
3936 if (error)
3937 goto error0;
3938#endif
3939
3940 /* Fail if we're off the end of the block. */
3941 if (ptr > numrecs) {
3942 *stat = 0;
3943 return 0;
3944 }
3945
3946 XFS_BTREE_STATS_INC(cur, delrec);
3947 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3948
3949 /* Excise the entries being deleted. */
3950 if (level > 0) {
3951 /* It's a nonleaf. operate on keys and ptrs */
3952 union xfs_btree_key *lkp;
3953 union xfs_btree_ptr *lpp;
3954
3955 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3956 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3957
3958 for (i = 0; i < numrecs - ptr; i++) {
3959 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3960 if (error)
3961 goto error0;
3962 }
3963
3964 if (ptr < numrecs) {
3965 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3966 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3967 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3968 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3969 }
3970 } else {
3971 /* It's a leaf. operate on records */
3972 if (ptr < numrecs) {
3973 xfs_btree_shift_recs(cur,
3974 xfs_btree_rec_addr(cur, ptr + 1, block),
3975 -1, numrecs - ptr);
3976 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3977 }
3978 }
3979
3980 /*
3981 * Decrement and log the number of entries in the block.
3982 */
3983 xfs_btree_set_numrecs(block, --numrecs);
3984 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3985
3986 /*
3987 * If we are tracking the last record in the tree and
3988 * we are at the far right edge of the tree, update it.
3989 */
3990 if (xfs_btree_is_lastrec(cur, block, level)) {
3991 cur->bc_ops->update_lastrec(cur, block, NULL,
3992 ptr, LASTREC_DELREC);
3993 }
3994
3995 /*
3996 * We're at the root level. First, shrink the root block in-memory.
3997 * Try to get rid of the next level down. If we can't then there's
3998 * nothing left to do.
3999 */
4000 if (xfs_btree_at_iroot(cur, level)) {
4001 xfs_iroot_realloc(cur->bc_ino.ip, -1, cur->bc_ino.whichfork);
4002
4003 error = xfs_btree_kill_iroot(cur);
4004 if (error)
4005 goto error0;
4006
4007 error = xfs_btree_dec_cursor(cur, level, stat);
4008 if (error)
4009 goto error0;
4010 *stat = 1;
4011 return 0;
4012 }
4013
4014 /*
4015 * If this is the root level, and there's only one entry left, and it's
4016 * NOT the leaf level, then we can get rid of this level.
4017 */
4018 if (level == cur->bc_nlevels - 1) {
4019 if (numrecs == 1 && level > 0) {
4020 union xfs_btree_ptr *pp;
4021 /*
4022 * pp is still set to the first pointer in the block.
4023 * Make it the new root of the btree.
4024 */
4025 pp = xfs_btree_ptr_addr(cur, 1, block);
4026 error = xfs_btree_kill_root(cur, bp, level, pp);
4027 if (error)
4028 goto error0;
4029 } else if (level > 0) {
4030 error = xfs_btree_dec_cursor(cur, level, stat);
4031 if (error)
4032 goto error0;
4033 }
4034 *stat = 1;
4035 return 0;
4036 }
4037
4038 /*
4039 * If we deleted the leftmost entry in the block, update the
4040 * key values above us in the tree.
4041 */
4042 if (xfs_btree_needs_key_update(cur, ptr)) {
4043 error = xfs_btree_update_keys(cur, level);
4044 if (error)
4045 goto error0;
4046 }
4047
4048 /*
4049 * If the number of records remaining in the block is at least
4050 * the minimum, we're done.
4051 */
4052 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
4053 error = xfs_btree_dec_cursor(cur, level, stat);
4054 if (error)
4055 goto error0;
4056 return 0;
4057 }
4058
4059 /*
4060 * Otherwise, we have to move some records around to keep the
4061 * tree balanced. Look at the left and right sibling blocks to
4062 * see if we can re-balance by moving only one record.
4063 */
4064 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4065 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
4066
4067 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
4068 /*
4069 * One child of root, need to get a chance to copy its contents
4070 * into the root and delete it. Can't go up to next level,
4071 * there's nothing to delete there.
4072 */
4073 if (xfs_btree_ptr_is_null(cur, &rptr) &&
4074 xfs_btree_ptr_is_null(cur, &lptr) &&
4075 level == cur->bc_nlevels - 2) {
4076 error = xfs_btree_kill_iroot(cur);
4077 if (!error)
4078 error = xfs_btree_dec_cursor(cur, level, stat);
4079 if (error)
4080 goto error0;
4081 return 0;
4082 }
4083 }
4084
4085 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
4086 !xfs_btree_ptr_is_null(cur, &lptr));
4087
4088 /*
4089 * Duplicate the cursor so our btree manipulations here won't
4090 * disrupt the next level up.
4091 */
4092 error = xfs_btree_dup_cursor(cur, &tcur);
4093 if (error)
4094 goto error0;
4095
4096 /*
4097 * If there's a right sibling, see if it's ok to shift an entry
4098 * out of it.
4099 */
4100 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
4101 /*
4102 * Move the temp cursor to the last entry in the next block.
4103 * Actually any entry but the first would suffice.
4104 */
4105 i = xfs_btree_lastrec(tcur, level);
4106 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4107 xfs_btree_mark_sick(cur);
4108 error = -EFSCORRUPTED;
4109 goto error0;
4110 }
4111
4112 error = xfs_btree_increment(tcur, level, &i);
4113 if (error)
4114 goto error0;
4115 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4116 xfs_btree_mark_sick(cur);
4117 error = -EFSCORRUPTED;
4118 goto error0;
4119 }
4120
4121 i = xfs_btree_lastrec(tcur, level);
4122 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4123 xfs_btree_mark_sick(cur);
4124 error = -EFSCORRUPTED;
4125 goto error0;
4126 }
4127
4128 /* Grab a pointer to the block. */
4129 right = xfs_btree_get_block(tcur, level, &rbp);
4130#ifdef DEBUG
4131 error = xfs_btree_check_block(tcur, right, level, rbp);
4132 if (error)
4133 goto error0;
4134#endif
4135 /* Grab the current block number, for future use. */
4136 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
4137
4138 /*
4139 * If right block is full enough so that removing one entry
4140 * won't make it too empty, and left-shifting an entry out
4141 * of right to us works, we're done.
4142 */
4143 if (xfs_btree_get_numrecs(right) - 1 >=
4144 cur->bc_ops->get_minrecs(tcur, level)) {
4145 error = xfs_btree_lshift(tcur, level, &i);
4146 if (error)
4147 goto error0;
4148 if (i) {
4149 ASSERT(xfs_btree_get_numrecs(block) >=
4150 cur->bc_ops->get_minrecs(tcur, level));
4151
4152 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4153 tcur = NULL;
4154
4155 error = xfs_btree_dec_cursor(cur, level, stat);
4156 if (error)
4157 goto error0;
4158 return 0;
4159 }
4160 }
4161
4162 /*
4163 * Otherwise, grab the number of records in right for
4164 * future reference, and fix up the temp cursor to point
4165 * to our block again (last record).
4166 */
4167 rrecs = xfs_btree_get_numrecs(right);
4168 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4169 i = xfs_btree_firstrec(tcur, level);
4170 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4171 xfs_btree_mark_sick(cur);
4172 error = -EFSCORRUPTED;
4173 goto error0;
4174 }
4175
4176 error = xfs_btree_decrement(tcur, level, &i);
4177 if (error)
4178 goto error0;
4179 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4180 xfs_btree_mark_sick(cur);
4181 error = -EFSCORRUPTED;
4182 goto error0;
4183 }
4184 }
4185 }
4186
4187 /*
4188 * If there's a left sibling, see if it's ok to shift an entry
4189 * out of it.
4190 */
4191 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4192 /*
4193 * Move the temp cursor to the first entry in the
4194 * previous block.
4195 */
4196 i = xfs_btree_firstrec(tcur, level);
4197 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4198 xfs_btree_mark_sick(cur);
4199 error = -EFSCORRUPTED;
4200 goto error0;
4201 }
4202
4203 error = xfs_btree_decrement(tcur, level, &i);
4204 if (error)
4205 goto error0;
4206 i = xfs_btree_firstrec(tcur, level);
4207 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4208 xfs_btree_mark_sick(cur);
4209 error = -EFSCORRUPTED;
4210 goto error0;
4211 }
4212
4213 /* Grab a pointer to the block. */
4214 left = xfs_btree_get_block(tcur, level, &lbp);
4215#ifdef DEBUG
4216 error = xfs_btree_check_block(cur, left, level, lbp);
4217 if (error)
4218 goto error0;
4219#endif
4220 /* Grab the current block number, for future use. */
4221 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4222
4223 /*
4224 * If left block is full enough so that removing one entry
4225 * won't make it too empty, and right-shifting an entry out
4226 * of left to us works, we're done.
4227 */
4228 if (xfs_btree_get_numrecs(left) - 1 >=
4229 cur->bc_ops->get_minrecs(tcur, level)) {
4230 error = xfs_btree_rshift(tcur, level, &i);
4231 if (error)
4232 goto error0;
4233 if (i) {
4234 ASSERT(xfs_btree_get_numrecs(block) >=
4235 cur->bc_ops->get_minrecs(tcur, level));
4236 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4237 tcur = NULL;
4238 if (level == 0)
4239 cur->bc_levels[0].ptr++;
4240
4241 *stat = 1;
4242 return 0;
4243 }
4244 }
4245
4246 /*
4247 * Otherwise, grab the number of records in right for
4248 * future reference.
4249 */
4250 lrecs = xfs_btree_get_numrecs(left);
4251 }
4252
4253 /* Delete the temp cursor, we're done with it. */
4254 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4255 tcur = NULL;
4256
4257 /* If here, we need to do a join to keep the tree balanced. */
4258 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4259
4260 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4261 lrecs + xfs_btree_get_numrecs(block) <=
4262 cur->bc_ops->get_maxrecs(cur, level)) {
4263 /*
4264 * Set "right" to be the starting block,
4265 * "left" to be the left neighbor.
4266 */
4267 rptr = cptr;
4268 right = block;
4269 rbp = bp;
4270 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4271 if (error)
4272 goto error0;
4273
4274 /*
4275 * If that won't work, see if we can join with the right neighbor block.
4276 */
4277 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4278 rrecs + xfs_btree_get_numrecs(block) <=
4279 cur->bc_ops->get_maxrecs(cur, level)) {
4280 /*
4281 * Set "left" to be the starting block,
4282 * "right" to be the right neighbor.
4283 */
4284 lptr = cptr;
4285 left = block;
4286 lbp = bp;
4287 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4288 if (error)
4289 goto error0;
4290
4291 /*
4292 * Otherwise, we can't fix the imbalance.
4293 * Just return. This is probably a logic error, but it's not fatal.
4294 */
4295 } else {
4296 error = xfs_btree_dec_cursor(cur, level, stat);
4297 if (error)
4298 goto error0;
4299 return 0;
4300 }
4301
4302 rrecs = xfs_btree_get_numrecs(right);
4303 lrecs = xfs_btree_get_numrecs(left);
4304
4305 /*
4306 * We're now going to join "left" and "right" by moving all the stuff
4307 * in "right" to "left" and deleting "right".
4308 */
4309 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4310 if (level > 0) {
4311 /* It's a non-leaf. Move keys and pointers. */
4312 union xfs_btree_key *lkp; /* left btree key */
4313 union xfs_btree_ptr *lpp; /* left address pointer */
4314 union xfs_btree_key *rkp; /* right btree key */
4315 union xfs_btree_ptr *rpp; /* right address pointer */
4316
4317 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4318 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4319 rkp = xfs_btree_key_addr(cur, 1, right);
4320 rpp = xfs_btree_ptr_addr(cur, 1, right);
4321
4322 for (i = 1; i < rrecs; i++) {
4323 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4324 if (error)
4325 goto error0;
4326 }
4327
4328 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4329 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4330
4331 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4332 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4333 } else {
4334 /* It's a leaf. Move records. */
4335 union xfs_btree_rec *lrp; /* left record pointer */
4336 union xfs_btree_rec *rrp; /* right record pointer */
4337
4338 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4339 rrp = xfs_btree_rec_addr(cur, 1, right);
4340
4341 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4342 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4343 }
4344
4345 XFS_BTREE_STATS_INC(cur, join);
4346
4347 /*
4348 * Fix up the number of records and right block pointer in the
4349 * surviving block, and log it.
4350 */
4351 xfs_btree_set_numrecs(left, lrecs + rrecs);
4352 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4353 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4354 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4355
4356 /* If there is a right sibling, point it to the remaining block. */
4357 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4358 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4359 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4360 if (error)
4361 goto error0;
4362 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4363 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4364 }
4365
4366 /* Free the deleted block. */
4367 error = xfs_btree_free_block(cur, rbp);
4368 if (error)
4369 goto error0;
4370
4371 /*
4372 * If we joined with the left neighbor, set the buffer in the
4373 * cursor to the left block, and fix up the index.
4374 */
4375 if (bp != lbp) {
4376 cur->bc_levels[level].bp = lbp;
4377 cur->bc_levels[level].ptr += lrecs;
4378 cur->bc_levels[level].ra = 0;
4379 }
4380 /*
4381 * If we joined with the right neighbor and there's a level above
4382 * us, increment the cursor at that level.
4383 */
4384 else if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE ||
4385 level + 1 < cur->bc_nlevels) {
4386 error = xfs_btree_increment(cur, level + 1, &i);
4387 if (error)
4388 goto error0;
4389 }
4390
4391 /*
4392 * Readjust the ptr at this level if it's not a leaf, since it's
4393 * still pointing at the deletion point, which makes the cursor
4394 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4395 * We can't use decrement because it would change the next level up.
4396 */
4397 if (level > 0)
4398 cur->bc_levels[level].ptr--;
4399
4400 /*
4401 * We combined blocks, so we have to update the parent keys if the
4402 * btree supports overlapped intervals. However,
4403 * bc_levels[level + 1].ptr points to the old block so that the caller
4404 * knows which record to delete. Therefore, the caller must be savvy
4405 * enough to call updkeys for us if we return stat == 2. The other
4406 * exit points from this function don't require deletions further up
4407 * the tree, so they can call updkeys directly.
4408 */
4409
4410 /* Return value means the next level up has something to do. */
4411 *stat = 2;
4412 return 0;
4413
4414error0:
4415 if (tcur)
4416 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4417 return error;
4418}
4419
4420/*
4421 * Delete the record pointed to by cur.
4422 * The cursor refers to the place where the record was (could be inserted)
4423 * when the operation returns.
4424 */
4425int /* error */
4426xfs_btree_delete(
4427 struct xfs_btree_cur *cur,
4428 int *stat) /* success/failure */
4429{
4430 int error; /* error return value */
4431 int level;
4432 int i;
4433 bool joined = false;
4434
4435 /*
4436 * Go up the tree, starting at leaf level.
4437 *
4438 * If 2 is returned then a join was done; go to the next level.
4439 * Otherwise we are done.
4440 */
4441 for (level = 0, i = 2; i == 2; level++) {
4442 error = xfs_btree_delrec(cur, level, &i);
4443 if (error)
4444 goto error0;
4445 if (i == 2)
4446 joined = true;
4447 }
4448
4449 /*
4450 * If we combined blocks as part of deleting the record, delrec won't
4451 * have updated the parent high keys so we have to do that here.
4452 */
4453 if (joined && (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)) {
4454 error = xfs_btree_updkeys_force(cur, 0);
4455 if (error)
4456 goto error0;
4457 }
4458
4459 if (i == 0) {
4460 for (level = 1; level < cur->bc_nlevels; level++) {
4461 if (cur->bc_levels[level].ptr == 0) {
4462 error = xfs_btree_decrement(cur, level, &i);
4463 if (error)
4464 goto error0;
4465 break;
4466 }
4467 }
4468 }
4469
4470 *stat = i;
4471 return 0;
4472error0:
4473 return error;
4474}
4475
4476/*
4477 * Get the data from the pointed-to record.
4478 */
4479int /* error */
4480xfs_btree_get_rec(
4481 struct xfs_btree_cur *cur, /* btree cursor */
4482 union xfs_btree_rec **recp, /* output: btree record */
4483 int *stat) /* output: success/failure */
4484{
4485 struct xfs_btree_block *block; /* btree block */
4486 struct xfs_buf *bp; /* buffer pointer */
4487 int ptr; /* record number */
4488#ifdef DEBUG
4489 int error; /* error return value */
4490#endif
4491
4492 ptr = cur->bc_levels[0].ptr;
4493 block = xfs_btree_get_block(cur, 0, &bp);
4494
4495#ifdef DEBUG
4496 error = xfs_btree_check_block(cur, block, 0, bp);
4497 if (error)
4498 return error;
4499#endif
4500
4501 /*
4502 * Off the right end or left end, return failure.
4503 */
4504 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4505 *stat = 0;
4506 return 0;
4507 }
4508
4509 /*
4510 * Point to the record and extract its data.
4511 */
4512 *recp = xfs_btree_rec_addr(cur, ptr, block);
4513 *stat = 1;
4514 return 0;
4515}
4516
4517/* Visit a block in a btree. */
4518STATIC int
4519xfs_btree_visit_block(
4520 struct xfs_btree_cur *cur,
4521 int level,
4522 xfs_btree_visit_blocks_fn fn,
4523 void *data)
4524{
4525 struct xfs_btree_block *block;
4526 struct xfs_buf *bp;
4527 union xfs_btree_ptr rptr, bufptr;
4528 int error;
4529
4530 /* do right sibling readahead */
4531 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4532 block = xfs_btree_get_block(cur, level, &bp);
4533
4534 /* process the block */
4535 error = fn(cur, level, data);
4536 if (error)
4537 return error;
4538
4539 /* now read rh sibling block for next iteration */
4540 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4541 if (xfs_btree_ptr_is_null(cur, &rptr))
4542 return -ENOENT;
4543
4544 /*
4545 * We only visit blocks once in this walk, so we have to avoid the
4546 * internal xfs_btree_lookup_get_block() optimisation where it will
4547 * return the same block without checking if the right sibling points
4548 * back to us and creates a cyclic reference in the btree.
4549 */
4550 xfs_btree_buf_to_ptr(cur, bp, &bufptr);
4551 if (xfs_btree_ptrs_equal(cur, &rptr, &bufptr)) {
4552 xfs_btree_mark_sick(cur);
4553 return -EFSCORRUPTED;
4554 }
4555
4556 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4557}
4558
4559
4560/* Visit every block in a btree. */
4561int
4562xfs_btree_visit_blocks(
4563 struct xfs_btree_cur *cur,
4564 xfs_btree_visit_blocks_fn fn,
4565 unsigned int flags,
4566 void *data)
4567{
4568 union xfs_btree_ptr lptr;
4569 int level;
4570 struct xfs_btree_block *block = NULL;
4571 int error = 0;
4572
4573 xfs_btree_init_ptr_from_cur(cur, &lptr);
4574
4575 /* for each level */
4576 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4577 /* grab the left hand block */
4578 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4579 if (error)
4580 return error;
4581
4582 /* readahead the left most block for the next level down */
4583 if (level > 0) {
4584 union xfs_btree_ptr *ptr;
4585
4586 ptr = xfs_btree_ptr_addr(cur, 1, block);
4587 xfs_btree_readahead_ptr(cur, ptr, 1);
4588
4589 /* save for the next iteration of the loop */
4590 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4591
4592 if (!(flags & XFS_BTREE_VISIT_LEAVES))
4593 continue;
4594 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4595 continue;
4596 }
4597
4598 /* for each buffer in the level */
4599 do {
4600 error = xfs_btree_visit_block(cur, level, fn, data);
4601 } while (!error);
4602
4603 if (error != -ENOENT)
4604 return error;
4605 }
4606
4607 return 0;
4608}
4609
4610/*
4611 * Change the owner of a btree.
4612 *
4613 * The mechanism we use here is ordered buffer logging. Because we don't know
4614 * how many buffers were are going to need to modify, we don't really want to
4615 * have to make transaction reservations for the worst case of every buffer in a
4616 * full size btree as that may be more space that we can fit in the log....
4617 *
4618 * We do the btree walk in the most optimal manner possible - we have sibling
4619 * pointers so we can just walk all the blocks on each level from left to right
4620 * in a single pass, and then move to the next level and do the same. We can
4621 * also do readahead on the sibling pointers to get IO moving more quickly,
4622 * though for slow disks this is unlikely to make much difference to performance
4623 * as the amount of CPU work we have to do before moving to the next block is
4624 * relatively small.
4625 *
4626 * For each btree block that we load, modify the owner appropriately, set the
4627 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4628 * we mark the region we change dirty so that if the buffer is relogged in
4629 * a subsequent transaction the changes we make here as an ordered buffer are
4630 * correctly relogged in that transaction. If we are in recovery context, then
4631 * just queue the modified buffer as delayed write buffer so the transaction
4632 * recovery completion writes the changes to disk.
4633 */
4634struct xfs_btree_block_change_owner_info {
4635 uint64_t new_owner;
4636 struct list_head *buffer_list;
4637};
4638
4639static int
4640xfs_btree_block_change_owner(
4641 struct xfs_btree_cur *cur,
4642 int level,
4643 void *data)
4644{
4645 struct xfs_btree_block_change_owner_info *bbcoi = data;
4646 struct xfs_btree_block *block;
4647 struct xfs_buf *bp;
4648
4649 /* modify the owner */
4650 block = xfs_btree_get_block(cur, level, &bp);
4651 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
4652 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4653 return 0;
4654 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4655 } else {
4656 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4657 return 0;
4658 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4659 }
4660
4661 /*
4662 * If the block is a root block hosted in an inode, we might not have a
4663 * buffer pointer here and we shouldn't attempt to log the change as the
4664 * information is already held in the inode and discarded when the root
4665 * block is formatted into the on-disk inode fork. We still change it,
4666 * though, so everything is consistent in memory.
4667 */
4668 if (!bp) {
4669 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
4670 ASSERT(level == cur->bc_nlevels - 1);
4671 return 0;
4672 }
4673
4674 if (cur->bc_tp) {
4675 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4676 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4677 return -EAGAIN;
4678 }
4679 } else {
4680 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4681 }
4682
4683 return 0;
4684}
4685
4686int
4687xfs_btree_change_owner(
4688 struct xfs_btree_cur *cur,
4689 uint64_t new_owner,
4690 struct list_head *buffer_list)
4691{
4692 struct xfs_btree_block_change_owner_info bbcoi;
4693
4694 bbcoi.new_owner = new_owner;
4695 bbcoi.buffer_list = buffer_list;
4696
4697 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4698 XFS_BTREE_VISIT_ALL, &bbcoi);
4699}
4700
4701/* Verify the v5 fields of a long-format btree block. */
4702xfs_failaddr_t
4703xfs_btree_fsblock_v5hdr_verify(
4704 struct xfs_buf *bp,
4705 uint64_t owner)
4706{
4707 struct xfs_mount *mp = bp->b_mount;
4708 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4709
4710 if (!xfs_has_crc(mp))
4711 return __this_address;
4712 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4713 return __this_address;
4714 if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4715 return __this_address;
4716 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4717 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4718 return __this_address;
4719 return NULL;
4720}
4721
4722/* Verify a long-format btree block. */
4723xfs_failaddr_t
4724xfs_btree_fsblock_verify(
4725 struct xfs_buf *bp,
4726 unsigned int max_recs)
4727{
4728 struct xfs_mount *mp = bp->b_mount;
4729 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4730 xfs_fsblock_t fsb;
4731 xfs_failaddr_t fa;
4732
4733 ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4734
4735 /* numrecs verification */
4736 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4737 return __this_address;
4738
4739 /* sibling pointer verification */
4740 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4741 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4742 block->bb_u.l.bb_leftsib);
4743 if (!fa)
4744 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4745 block->bb_u.l.bb_rightsib);
4746 return fa;
4747}
4748
4749/* Verify an in-memory btree block. */
4750xfs_failaddr_t
4751xfs_btree_memblock_verify(
4752 struct xfs_buf *bp,
4753 unsigned int max_recs)
4754{
4755 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4756 struct xfs_buftarg *btp = bp->b_target;
4757 xfs_failaddr_t fa;
4758 xfbno_t bno;
4759
4760 ASSERT(xfs_buftarg_is_mem(bp->b_target));
4761
4762 /* numrecs verification */
4763 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4764 return __this_address;
4765
4766 /* sibling pointer verification */
4767 bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
4768 fa = xfs_btree_check_memblock_siblings(btp, bno,
4769 block->bb_u.l.bb_leftsib);
4770 if (fa)
4771 return fa;
4772 fa = xfs_btree_check_memblock_siblings(btp, bno,
4773 block->bb_u.l.bb_rightsib);
4774 if (fa)
4775 return fa;
4776
4777 return NULL;
4778}
4779/**
4780 * xfs_btree_agblock_v5hdr_verify() -- verify the v5 fields of a short-format
4781 * btree block
4782 *
4783 * @bp: buffer containing the btree block
4784 */
4785xfs_failaddr_t
4786xfs_btree_agblock_v5hdr_verify(
4787 struct xfs_buf *bp)
4788{
4789 struct xfs_mount *mp = bp->b_mount;
4790 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4791 struct xfs_perag *pag = bp->b_pag;
4792
4793 if (!xfs_has_crc(mp))
4794 return __this_address;
4795 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4796 return __this_address;
4797 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4798 return __this_address;
4799 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4800 return __this_address;
4801 return NULL;
4802}
4803
4804/**
4805 * xfs_btree_agblock_verify() -- verify a short-format btree block
4806 *
4807 * @bp: buffer containing the btree block
4808 * @max_recs: maximum records allowed in this btree node
4809 */
4810xfs_failaddr_t
4811xfs_btree_agblock_verify(
4812 struct xfs_buf *bp,
4813 unsigned int max_recs)
4814{
4815 struct xfs_mount *mp = bp->b_mount;
4816 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4817 xfs_agblock_t agbno;
4818 xfs_failaddr_t fa;
4819
4820 ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4821
4822 /* numrecs verification */
4823 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4824 return __this_address;
4825
4826 /* sibling pointer verification */
4827 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4828 fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4829 block->bb_u.s.bb_leftsib);
4830 if (!fa)
4831 fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4832 block->bb_u.s.bb_rightsib);
4833 return fa;
4834}
4835
4836/*
4837 * For the given limits on leaf and keyptr records per block, calculate the
4838 * height of the tree needed to index the number of leaf records.
4839 */
4840unsigned int
4841xfs_btree_compute_maxlevels(
4842 const unsigned int *limits,
4843 unsigned long long records)
4844{
4845 unsigned long long level_blocks = howmany_64(records, limits[0]);
4846 unsigned int height = 1;
4847
4848 while (level_blocks > 1) {
4849 level_blocks = howmany_64(level_blocks, limits[1]);
4850 height++;
4851 }
4852
4853 return height;
4854}
4855
4856/*
4857 * For the given limits on leaf and keyptr records per block, calculate the
4858 * number of blocks needed to index the given number of leaf records.
4859 */
4860unsigned long long
4861xfs_btree_calc_size(
4862 const unsigned int *limits,
4863 unsigned long long records)
4864{
4865 unsigned long long level_blocks = howmany_64(records, limits[0]);
4866 unsigned long long blocks = level_blocks;
4867
4868 while (level_blocks > 1) {
4869 level_blocks = howmany_64(level_blocks, limits[1]);
4870 blocks += level_blocks;
4871 }
4872
4873 return blocks;
4874}
4875
4876/*
4877 * Given a number of available blocks for the btree to consume with records and
4878 * pointers, calculate the height of the tree needed to index all the records
4879 * that space can hold based on the number of pointers each interior node
4880 * holds.
4881 *
4882 * We start by assuming a single level tree consumes a single block, then track
4883 * the number of blocks each node level consumes until we no longer have space
4884 * to store the next node level. At this point, we are indexing all the leaf
4885 * blocks in the space, and there's no more free space to split the tree any
4886 * further. That's our maximum btree height.
4887 */
4888unsigned int
4889xfs_btree_space_to_height(
4890 const unsigned int *limits,
4891 unsigned long long leaf_blocks)
4892{
4893 /*
4894 * The root btree block can have fewer than minrecs pointers in it
4895 * because the tree might not be big enough to require that amount of
4896 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4897 */
4898 unsigned long long node_blocks = 2;
4899 unsigned long long blocks_left = leaf_blocks - 1;
4900 unsigned int height = 1;
4901
4902 if (leaf_blocks < 1)
4903 return 0;
4904
4905 while (node_blocks < blocks_left) {
4906 blocks_left -= node_blocks;
4907 node_blocks *= limits[1];
4908 height++;
4909 }
4910
4911 return height;
4912}
4913
4914/*
4915 * Query a regular btree for all records overlapping a given interval.
4916 * Start with a LE lookup of the key of low_rec and return all records
4917 * until we find a record with a key greater than the key of high_rec.
4918 */
4919STATIC int
4920xfs_btree_simple_query_range(
4921 struct xfs_btree_cur *cur,
4922 const union xfs_btree_key *low_key,
4923 const union xfs_btree_key *high_key,
4924 xfs_btree_query_range_fn fn,
4925 void *priv)
4926{
4927 union xfs_btree_rec *recp;
4928 union xfs_btree_key rec_key;
4929 int stat;
4930 bool firstrec = true;
4931 int error;
4932
4933 ASSERT(cur->bc_ops->init_high_key_from_rec);
4934 ASSERT(cur->bc_ops->diff_two_keys);
4935
4936 /*
4937 * Find the leftmost record. The btree cursor must be set
4938 * to the low record used to generate low_key.
4939 */
4940 stat = 0;
4941 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4942 if (error)
4943 goto out;
4944
4945 /* Nothing? See if there's anything to the right. */
4946 if (!stat) {
4947 error = xfs_btree_increment(cur, 0, &stat);
4948 if (error)
4949 goto out;
4950 }
4951
4952 while (stat) {
4953 /* Find the record. */
4954 error = xfs_btree_get_rec(cur, &recp, &stat);
4955 if (error || !stat)
4956 break;
4957
4958 /* Skip if low_key > high_key(rec). */
4959 if (firstrec) {
4960 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4961 firstrec = false;
4962 if (xfs_btree_keycmp_gt(cur, low_key, &rec_key))
4963 goto advloop;
4964 }
4965
4966 /* Stop if low_key(rec) > high_key. */
4967 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4968 if (xfs_btree_keycmp_gt(cur, &rec_key, high_key))
4969 break;
4970
4971 /* Callback */
4972 error = fn(cur, recp, priv);
4973 if (error)
4974 break;
4975
4976advloop:
4977 /* Move on to the next record. */
4978 error = xfs_btree_increment(cur, 0, &stat);
4979 if (error)
4980 break;
4981 }
4982
4983out:
4984 return error;
4985}
4986
4987/*
4988 * Query an overlapped interval btree for all records overlapping a given
4989 * interval. This function roughly follows the algorithm given in
4990 * "Interval Trees" of _Introduction to Algorithms_, which is section
4991 * 14.3 in the 2nd and 3rd editions.
4992 *
4993 * First, generate keys for the low and high records passed in.
4994 *
4995 * For any leaf node, generate the high and low keys for the record.
4996 * If the record keys overlap with the query low/high keys, pass the
4997 * record to the function iterator.
4998 *
4999 * For any internal node, compare the low and high keys of each
5000 * pointer against the query low/high keys. If there's an overlap,
5001 * follow the pointer.
5002 *
5003 * As an optimization, we stop scanning a block when we find a low key
5004 * that is greater than the query's high key.
5005 */
5006STATIC int
5007xfs_btree_overlapped_query_range(
5008 struct xfs_btree_cur *cur,
5009 const union xfs_btree_key *low_key,
5010 const union xfs_btree_key *high_key,
5011 xfs_btree_query_range_fn fn,
5012 void *priv)
5013{
5014 union xfs_btree_ptr ptr;
5015 union xfs_btree_ptr *pp;
5016 union xfs_btree_key rec_key;
5017 union xfs_btree_key rec_hkey;
5018 union xfs_btree_key *lkp;
5019 union xfs_btree_key *hkp;
5020 union xfs_btree_rec *recp;
5021 struct xfs_btree_block *block;
5022 int level;
5023 struct xfs_buf *bp;
5024 int i;
5025 int error;
5026
5027 /* Load the root of the btree. */
5028 level = cur->bc_nlevels - 1;
5029 xfs_btree_init_ptr_from_cur(cur, &ptr);
5030 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
5031 if (error)
5032 return error;
5033 xfs_btree_get_block(cur, level, &bp);
5034 trace_xfs_btree_overlapped_query_range(cur, level, bp);
5035#ifdef DEBUG
5036 error = xfs_btree_check_block(cur, block, level, bp);
5037 if (error)
5038 goto out;
5039#endif
5040 cur->bc_levels[level].ptr = 1;
5041
5042 while (level < cur->bc_nlevels) {
5043 block = xfs_btree_get_block(cur, level, &bp);
5044
5045 /* End of node, pop back towards the root. */
5046 if (cur->bc_levels[level].ptr >
5047 be16_to_cpu(block->bb_numrecs)) {
5048pop_up:
5049 if (level < cur->bc_nlevels - 1)
5050 cur->bc_levels[level + 1].ptr++;
5051 level++;
5052 continue;
5053 }
5054
5055 if (level == 0) {
5056 /* Handle a leaf node. */
5057 recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
5058 block);
5059
5060 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
5061 cur->bc_ops->init_key_from_rec(&rec_key, recp);
5062
5063 /*
5064 * If (query's high key < record's low key), then there
5065 * are no more interesting records in this block. Pop
5066 * up to the leaf level to find more record blocks.
5067 *
5068 * If (record's high key >= query's low key) and
5069 * (query's high key >= record's low key), then
5070 * this record overlaps the query range; callback.
5071 */
5072 if (xfs_btree_keycmp_lt(cur, high_key, &rec_key))
5073 goto pop_up;
5074 if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) {
5075 error = fn(cur, recp, priv);
5076 if (error)
5077 break;
5078 }
5079 cur->bc_levels[level].ptr++;
5080 continue;
5081 }
5082
5083 /* Handle an internal node. */
5084 lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
5085 hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
5086 block);
5087 pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
5088
5089 /*
5090 * If (query's high key < pointer's low key), then there are no
5091 * more interesting keys in this block. Pop up one leaf level
5092 * to continue looking for records.
5093 *
5094 * If (pointer's high key >= query's low key) and
5095 * (query's high key >= pointer's low key), then
5096 * this record overlaps the query range; follow pointer.
5097 */
5098 if (xfs_btree_keycmp_lt(cur, high_key, lkp))
5099 goto pop_up;
5100 if (xfs_btree_keycmp_ge(cur, hkp, low_key)) {
5101 level--;
5102 error = xfs_btree_lookup_get_block(cur, level, pp,
5103 &block);
5104 if (error)
5105 goto out;
5106 xfs_btree_get_block(cur, level, &bp);
5107 trace_xfs_btree_overlapped_query_range(cur, level, bp);
5108#ifdef DEBUG
5109 error = xfs_btree_check_block(cur, block, level, bp);
5110 if (error)
5111 goto out;
5112#endif
5113 cur->bc_levels[level].ptr = 1;
5114 continue;
5115 }
5116 cur->bc_levels[level].ptr++;
5117 }
5118
5119out:
5120 /*
5121 * If we don't end this function with the cursor pointing at a record
5122 * block, a subsequent non-error cursor deletion will not release
5123 * node-level buffers, causing a buffer leak. This is quite possible
5124 * with a zero-results range query, so release the buffers if we
5125 * failed to return any results.
5126 */
5127 if (cur->bc_levels[0].bp == NULL) {
5128 for (i = 0; i < cur->bc_nlevels; i++) {
5129 if (cur->bc_levels[i].bp) {
5130 xfs_trans_brelse(cur->bc_tp,
5131 cur->bc_levels[i].bp);
5132 cur->bc_levels[i].bp = NULL;
5133 cur->bc_levels[i].ptr = 0;
5134 cur->bc_levels[i].ra = 0;
5135 }
5136 }
5137 }
5138
5139 return error;
5140}
5141
5142static inline void
5143xfs_btree_key_from_irec(
5144 struct xfs_btree_cur *cur,
5145 union xfs_btree_key *key,
5146 const union xfs_btree_irec *irec)
5147{
5148 union xfs_btree_rec rec;
5149
5150 cur->bc_rec = *irec;
5151 cur->bc_ops->init_rec_from_cur(cur, &rec);
5152 cur->bc_ops->init_key_from_rec(key, &rec);
5153}
5154
5155/*
5156 * Query a btree for all records overlapping a given interval of keys. The
5157 * supplied function will be called with each record found; return one of the
5158 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
5159 * code. This function returns -ECANCELED, zero, or a negative error code.
5160 */
5161int
5162xfs_btree_query_range(
5163 struct xfs_btree_cur *cur,
5164 const union xfs_btree_irec *low_rec,
5165 const union xfs_btree_irec *high_rec,
5166 xfs_btree_query_range_fn fn,
5167 void *priv)
5168{
5169 union xfs_btree_key low_key;
5170 union xfs_btree_key high_key;
5171
5172 /* Find the keys of both ends of the interval. */
5173 xfs_btree_key_from_irec(cur, &high_key, high_rec);
5174 xfs_btree_key_from_irec(cur, &low_key, low_rec);
5175
5176 /* Enforce low key <= high key. */
5177 if (!xfs_btree_keycmp_le(cur, &low_key, &high_key))
5178 return -EINVAL;
5179
5180 if (!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5181 return xfs_btree_simple_query_range(cur, &low_key,
5182 &high_key, fn, priv);
5183 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
5184 fn, priv);
5185}
5186
5187/* Query a btree for all records. */
5188int
5189xfs_btree_query_all(
5190 struct xfs_btree_cur *cur,
5191 xfs_btree_query_range_fn fn,
5192 void *priv)
5193{
5194 union xfs_btree_key low_key;
5195 union xfs_btree_key high_key;
5196
5197 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5198 memset(&low_key, 0, sizeof(low_key));
5199 memset(&high_key, 0xFF, sizeof(high_key));
5200
5201 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
5202}
5203
5204static int
5205xfs_btree_count_blocks_helper(
5206 struct xfs_btree_cur *cur,
5207 int level,
5208 void *data)
5209{
5210 xfs_extlen_t *blocks = data;
5211 (*blocks)++;
5212
5213 return 0;
5214}
5215
5216/* Count the blocks in a btree and return the result in *blocks. */
5217int
5218xfs_btree_count_blocks(
5219 struct xfs_btree_cur *cur,
5220 xfs_extlen_t *blocks)
5221{
5222 *blocks = 0;
5223 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5224 XFS_BTREE_VISIT_ALL, blocks);
5225}
5226
5227/* Compare two btree pointers. */
5228int64_t
5229xfs_btree_diff_two_ptrs(
5230 struct xfs_btree_cur *cur,
5231 const union xfs_btree_ptr *a,
5232 const union xfs_btree_ptr *b)
5233{
5234 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5235 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5236 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5237}
5238
5239struct xfs_btree_has_records {
5240 /* Keys for the start and end of the range we want to know about. */
5241 union xfs_btree_key start_key;
5242 union xfs_btree_key end_key;
5243
5244 /* Mask for key comparisons, if desired. */
5245 const union xfs_btree_key *key_mask;
5246
5247 /* Highest record key we've seen so far. */
5248 union xfs_btree_key high_key;
5249
5250 enum xbtree_recpacking outcome;
5251};
5252
5253STATIC int
5254xfs_btree_has_records_helper(
5255 struct xfs_btree_cur *cur,
5256 const union xfs_btree_rec *rec,
5257 void *priv)
5258{
5259 union xfs_btree_key rec_key;
5260 union xfs_btree_key rec_high_key;
5261 struct xfs_btree_has_records *info = priv;
5262 enum xbtree_key_contig key_contig;
5263
5264 cur->bc_ops->init_key_from_rec(&rec_key, rec);
5265
5266 if (info->outcome == XBTREE_RECPACKING_EMPTY) {
5267 info->outcome = XBTREE_RECPACKING_SPARSE;
5268
5269 /*
5270 * If the first record we find does not overlap the start key,
5271 * then there is a hole at the start of the search range.
5272 * Classify this as sparse and stop immediately.
5273 */
5274 if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key,
5275 info->key_mask))
5276 return -ECANCELED;
5277 } else {
5278 /*
5279 * If a subsequent record does not overlap with the any record
5280 * we've seen so far, there is a hole in the middle of the
5281 * search range. Classify this as sparse and stop.
5282 * If the keys overlap and this btree does not allow overlap,
5283 * signal corruption.
5284 */
5285 key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key,
5286 &rec_key, info->key_mask);
5287 if (key_contig == XBTREE_KEY_OVERLAP &&
5288 !(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5289 return -EFSCORRUPTED;
5290 if (key_contig == XBTREE_KEY_GAP)
5291 return -ECANCELED;
5292 }
5293
5294 /*
5295 * If high_key(rec) is larger than any other high key we've seen,
5296 * remember it for later.
5297 */
5298 cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec);
5299 if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key,
5300 info->key_mask))
5301 info->high_key = rec_high_key; /* struct copy */
5302
5303 return 0;
5304}
5305
5306/*
5307 * Scan part of the keyspace of a btree and tell us if that keyspace does not
5308 * map to any records; is fully mapped to records; or is partially mapped to
5309 * records. This is the btree record equivalent to determining if a file is
5310 * sparse.
5311 *
5312 * For most btree types, the record scan should use all available btree key
5313 * fields to compare the keys encountered. These callers should pass NULL for
5314 * @mask. However, some callers (e.g. scanning physical space in the rmapbt)
5315 * want to ignore some part of the btree record keyspace when performing the
5316 * comparison. These callers should pass in a union xfs_btree_key object with
5317 * the fields that *should* be a part of the comparison set to any nonzero
5318 * value, and the rest zeroed.
5319 */
5320int
5321xfs_btree_has_records(
5322 struct xfs_btree_cur *cur,
5323 const union xfs_btree_irec *low,
5324 const union xfs_btree_irec *high,
5325 const union xfs_btree_key *mask,
5326 enum xbtree_recpacking *outcome)
5327{
5328 struct xfs_btree_has_records info = {
5329 .outcome = XBTREE_RECPACKING_EMPTY,
5330 .key_mask = mask,
5331 };
5332 int error;
5333
5334 /* Not all btrees support this operation. */
5335 if (!cur->bc_ops->keys_contiguous) {
5336 ASSERT(0);
5337 return -EOPNOTSUPP;
5338 }
5339
5340 xfs_btree_key_from_irec(cur, &info.start_key, low);
5341 xfs_btree_key_from_irec(cur, &info.end_key, high);
5342
5343 error = xfs_btree_query_range(cur, low, high,
5344 xfs_btree_has_records_helper, &info);
5345 if (error == -ECANCELED)
5346 goto out;
5347 if (error)
5348 return error;
5349
5350 if (info.outcome == XBTREE_RECPACKING_EMPTY)
5351 goto out;
5352
5353 /*
5354 * If the largest high_key(rec) we saw during the walk is greater than
5355 * the end of the search range, classify this as full. Otherwise,
5356 * there is a hole at the end of the search range.
5357 */
5358 if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key,
5359 mask))
5360 info.outcome = XBTREE_RECPACKING_FULL;
5361
5362out:
5363 *outcome = info.outcome;
5364 return 0;
5365}
5366
5367/* Are there more records in this btree? */
5368bool
5369xfs_btree_has_more_records(
5370 struct xfs_btree_cur *cur)
5371{
5372 struct xfs_btree_block *block;
5373 struct xfs_buf *bp;
5374
5375 block = xfs_btree_get_block(cur, 0, &bp);
5376
5377 /* There are still records in this block. */
5378 if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5379 return true;
5380
5381 /* There are more record blocks. */
5382 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5383 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5384 else
5385 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5386}
5387
5388/* Set up all the btree cursor caches. */
5389int __init
5390xfs_btree_init_cur_caches(void)
5391{
5392 int error;
5393
5394 error = xfs_allocbt_init_cur_cache();
5395 if (error)
5396 return error;
5397 error = xfs_inobt_init_cur_cache();
5398 if (error)
5399 goto err;
5400 error = xfs_bmbt_init_cur_cache();
5401 if (error)
5402 goto err;
5403 error = xfs_rmapbt_init_cur_cache();
5404 if (error)
5405 goto err;
5406 error = xfs_refcountbt_init_cur_cache();
5407 if (error)
5408 goto err;
5409
5410 return 0;
5411err:
5412 xfs_btree_destroy_cur_caches();
5413 return error;
5414}
5415
5416/* Destroy all the btree cursor caches, if they've been allocated. */
5417void
5418xfs_btree_destroy_cur_caches(void)
5419{
5420 xfs_allocbt_destroy_cur_cache();
5421 xfs_inobt_destroy_cur_cache();
5422 xfs_bmbt_destroy_cur_cache();
5423 xfs_rmapbt_destroy_cur_cache();
5424 xfs_refcountbt_destroy_cur_cache();
5425}
5426
5427/* Move the btree cursor before the first record. */
5428int
5429xfs_btree_goto_left_edge(
5430 struct xfs_btree_cur *cur)
5431{
5432 int stat = 0;
5433 int error;
5434
5435 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5436 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5437 if (error)
5438 return error;
5439 if (!stat)
5440 return 0;
5441
5442 error = xfs_btree_decrement(cur, 0, &stat);
5443 if (error)
5444 return error;
5445 if (stat != 0) {
5446 ASSERT(0);
5447 xfs_btree_mark_sick(cur);
5448 return -EFSCORRUPTED;
5449 }
5450
5451 return 0;
5452}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_buf_item.h"
17#include "xfs_btree.h"
18#include "xfs_errortag.h"
19#include "xfs_error.h"
20#include "xfs_trace.h"
21#include "xfs_alloc.h"
22#include "xfs_log.h"
23#include "xfs_btree_staging.h"
24
25/*
26 * Cursor allocation zone.
27 */
28kmem_zone_t *xfs_btree_cur_zone;
29
30/*
31 * Btree magic numbers.
32 */
33static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
34 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
35 XFS_FIBT_MAGIC, 0 },
36 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
37 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
38 XFS_REFC_CRC_MAGIC }
39};
40
41uint32_t
42xfs_btree_magic(
43 int crc,
44 xfs_btnum_t btnum)
45{
46 uint32_t magic = xfs_magics[crc][btnum];
47
48 /* Ensure we asked for crc for crc-only magics. */
49 ASSERT(magic != 0);
50 return magic;
51}
52
53/*
54 * Check a long btree block header. Return the address of the failing check,
55 * or NULL if everything is ok.
56 */
57xfs_failaddr_t
58__xfs_btree_check_lblock(
59 struct xfs_btree_cur *cur,
60 struct xfs_btree_block *block,
61 int level,
62 struct xfs_buf *bp)
63{
64 struct xfs_mount *mp = cur->bc_mp;
65 xfs_btnum_t btnum = cur->bc_btnum;
66 int crc = xfs_sb_version_hascrc(&mp->m_sb);
67
68 if (crc) {
69 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
70 return __this_address;
71 if (block->bb_u.l.bb_blkno !=
72 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
73 return __this_address;
74 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
75 return __this_address;
76 }
77
78 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
79 return __this_address;
80 if (be16_to_cpu(block->bb_level) != level)
81 return __this_address;
82 if (be16_to_cpu(block->bb_numrecs) >
83 cur->bc_ops->get_maxrecs(cur, level))
84 return __this_address;
85 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
86 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
87 level + 1))
88 return __this_address;
89 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
90 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
91 level + 1))
92 return __this_address;
93
94 return NULL;
95}
96
97/* Check a long btree block header. */
98static int
99xfs_btree_check_lblock(
100 struct xfs_btree_cur *cur,
101 struct xfs_btree_block *block,
102 int level,
103 struct xfs_buf *bp)
104{
105 struct xfs_mount *mp = cur->bc_mp;
106 xfs_failaddr_t fa;
107
108 fa = __xfs_btree_check_lblock(cur, block, level, bp);
109 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
110 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
111 if (bp)
112 trace_xfs_btree_corrupt(bp, _RET_IP_);
113 return -EFSCORRUPTED;
114 }
115 return 0;
116}
117
118/*
119 * Check a short btree block header. Return the address of the failing check,
120 * or NULL if everything is ok.
121 */
122xfs_failaddr_t
123__xfs_btree_check_sblock(
124 struct xfs_btree_cur *cur,
125 struct xfs_btree_block *block,
126 int level,
127 struct xfs_buf *bp)
128{
129 struct xfs_mount *mp = cur->bc_mp;
130 xfs_btnum_t btnum = cur->bc_btnum;
131 int crc = xfs_sb_version_hascrc(&mp->m_sb);
132
133 if (crc) {
134 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
135 return __this_address;
136 if (block->bb_u.s.bb_blkno !=
137 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
138 return __this_address;
139 }
140
141 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
142 return __this_address;
143 if (be16_to_cpu(block->bb_level) != level)
144 return __this_address;
145 if (be16_to_cpu(block->bb_numrecs) >
146 cur->bc_ops->get_maxrecs(cur, level))
147 return __this_address;
148 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
149 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
150 level + 1))
151 return __this_address;
152 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
153 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
154 level + 1))
155 return __this_address;
156
157 return NULL;
158}
159
160/* Check a short btree block header. */
161STATIC int
162xfs_btree_check_sblock(
163 struct xfs_btree_cur *cur,
164 struct xfs_btree_block *block,
165 int level,
166 struct xfs_buf *bp)
167{
168 struct xfs_mount *mp = cur->bc_mp;
169 xfs_failaddr_t fa;
170
171 fa = __xfs_btree_check_sblock(cur, block, level, bp);
172 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
173 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
174 if (bp)
175 trace_xfs_btree_corrupt(bp, _RET_IP_);
176 return -EFSCORRUPTED;
177 }
178 return 0;
179}
180
181/*
182 * Debug routine: check that block header is ok.
183 */
184int
185xfs_btree_check_block(
186 struct xfs_btree_cur *cur, /* btree cursor */
187 struct xfs_btree_block *block, /* generic btree block pointer */
188 int level, /* level of the btree block */
189 struct xfs_buf *bp) /* buffer containing block, if any */
190{
191 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
192 return xfs_btree_check_lblock(cur, block, level, bp);
193 else
194 return xfs_btree_check_sblock(cur, block, level, bp);
195}
196
197/* Check that this long pointer is valid and points within the fs. */
198bool
199xfs_btree_check_lptr(
200 struct xfs_btree_cur *cur,
201 xfs_fsblock_t fsbno,
202 int level)
203{
204 if (level <= 0)
205 return false;
206 return xfs_verify_fsbno(cur->bc_mp, fsbno);
207}
208
209/* Check that this short pointer is valid and points within the AG. */
210bool
211xfs_btree_check_sptr(
212 struct xfs_btree_cur *cur,
213 xfs_agblock_t agbno,
214 int level)
215{
216 if (level <= 0)
217 return false;
218 return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.agno, agbno);
219}
220
221/*
222 * Check that a given (indexed) btree pointer at a certain level of a
223 * btree is valid and doesn't point past where it should.
224 */
225static int
226xfs_btree_check_ptr(
227 struct xfs_btree_cur *cur,
228 union xfs_btree_ptr *ptr,
229 int index,
230 int level)
231{
232 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
233 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
234 level))
235 return 0;
236 xfs_err(cur->bc_mp,
237"Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
238 cur->bc_ino.ip->i_ino,
239 cur->bc_ino.whichfork, cur->bc_btnum,
240 level, index);
241 } else {
242 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
243 level))
244 return 0;
245 xfs_err(cur->bc_mp,
246"AG %u: Corrupt btree %d pointer at level %d index %d.",
247 cur->bc_ag.agno, cur->bc_btnum,
248 level, index);
249 }
250
251 return -EFSCORRUPTED;
252}
253
254#ifdef DEBUG
255# define xfs_btree_debug_check_ptr xfs_btree_check_ptr
256#else
257# define xfs_btree_debug_check_ptr(...) (0)
258#endif
259
260/*
261 * Calculate CRC on the whole btree block and stuff it into the
262 * long-form btree header.
263 *
264 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
265 * it into the buffer so recovery knows what the last modification was that made
266 * it to disk.
267 */
268void
269xfs_btree_lblock_calc_crc(
270 struct xfs_buf *bp)
271{
272 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
273 struct xfs_buf_log_item *bip = bp->b_log_item;
274
275 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
276 return;
277 if (bip)
278 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
279 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
280}
281
282bool
283xfs_btree_lblock_verify_crc(
284 struct xfs_buf *bp)
285{
286 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
287 struct xfs_mount *mp = bp->b_mount;
288
289 if (xfs_sb_version_hascrc(&mp->m_sb)) {
290 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
291 return false;
292 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
293 }
294
295 return true;
296}
297
298/*
299 * Calculate CRC on the whole btree block and stuff it into the
300 * short-form btree header.
301 *
302 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
303 * it into the buffer so recovery knows what the last modification was that made
304 * it to disk.
305 */
306void
307xfs_btree_sblock_calc_crc(
308 struct xfs_buf *bp)
309{
310 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
311 struct xfs_buf_log_item *bip = bp->b_log_item;
312
313 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
314 return;
315 if (bip)
316 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
317 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
318}
319
320bool
321xfs_btree_sblock_verify_crc(
322 struct xfs_buf *bp)
323{
324 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
325 struct xfs_mount *mp = bp->b_mount;
326
327 if (xfs_sb_version_hascrc(&mp->m_sb)) {
328 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
329 return false;
330 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
331 }
332
333 return true;
334}
335
336static int
337xfs_btree_free_block(
338 struct xfs_btree_cur *cur,
339 struct xfs_buf *bp)
340{
341 int error;
342
343 error = cur->bc_ops->free_block(cur, bp);
344 if (!error) {
345 xfs_trans_binval(cur->bc_tp, bp);
346 XFS_BTREE_STATS_INC(cur, free);
347 }
348 return error;
349}
350
351/*
352 * Delete the btree cursor.
353 */
354void
355xfs_btree_del_cursor(
356 xfs_btree_cur_t *cur, /* btree cursor */
357 int error) /* del because of error */
358{
359 int i; /* btree level */
360
361 /*
362 * Clear the buffer pointers, and release the buffers.
363 * If we're doing this in the face of an error, we
364 * need to make sure to inspect all of the entries
365 * in the bc_bufs array for buffers to be unlocked.
366 * This is because some of the btree code works from
367 * level n down to 0, and if we get an error along
368 * the way we won't have initialized all the entries
369 * down to 0.
370 */
371 for (i = 0; i < cur->bc_nlevels; i++) {
372 if (cur->bc_bufs[i])
373 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
374 else if (!error)
375 break;
376 }
377 /*
378 * Can't free a bmap cursor without having dealt with the
379 * allocated indirect blocks' accounting.
380 */
381 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
382 cur->bc_ino.allocated == 0);
383 /*
384 * Free the cursor.
385 */
386 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
387 kmem_free((void *)cur->bc_ops);
388 kmem_cache_free(xfs_btree_cur_zone, cur);
389}
390
391/*
392 * Duplicate the btree cursor.
393 * Allocate a new one, copy the record, re-get the buffers.
394 */
395int /* error */
396xfs_btree_dup_cursor(
397 xfs_btree_cur_t *cur, /* input cursor */
398 xfs_btree_cur_t **ncur) /* output cursor */
399{
400 xfs_buf_t *bp; /* btree block's buffer pointer */
401 int error; /* error return value */
402 int i; /* level number of btree block */
403 xfs_mount_t *mp; /* mount structure for filesystem */
404 xfs_btree_cur_t *new; /* new cursor value */
405 xfs_trans_t *tp; /* transaction pointer, can be NULL */
406
407 tp = cur->bc_tp;
408 mp = cur->bc_mp;
409
410 /*
411 * Allocate a new cursor like the old one.
412 */
413 new = cur->bc_ops->dup_cursor(cur);
414
415 /*
416 * Copy the record currently in the cursor.
417 */
418 new->bc_rec = cur->bc_rec;
419
420 /*
421 * For each level current, re-get the buffer and copy the ptr value.
422 */
423 for (i = 0; i < new->bc_nlevels; i++) {
424 new->bc_ptrs[i] = cur->bc_ptrs[i];
425 new->bc_ra[i] = cur->bc_ra[i];
426 bp = cur->bc_bufs[i];
427 if (bp) {
428 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
429 XFS_BUF_ADDR(bp), mp->m_bsize,
430 0, &bp,
431 cur->bc_ops->buf_ops);
432 if (error) {
433 xfs_btree_del_cursor(new, error);
434 *ncur = NULL;
435 return error;
436 }
437 }
438 new->bc_bufs[i] = bp;
439 }
440 *ncur = new;
441 return 0;
442}
443
444/*
445 * XFS btree block layout and addressing:
446 *
447 * There are two types of blocks in the btree: leaf and non-leaf blocks.
448 *
449 * The leaf record start with a header then followed by records containing
450 * the values. A non-leaf block also starts with the same header, and
451 * then first contains lookup keys followed by an equal number of pointers
452 * to the btree blocks at the previous level.
453 *
454 * +--------+-------+-------+-------+-------+-------+-------+
455 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
456 * +--------+-------+-------+-------+-------+-------+-------+
457 *
458 * +--------+-------+-------+-------+-------+-------+-------+
459 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
460 * +--------+-------+-------+-------+-------+-------+-------+
461 *
462 * The header is called struct xfs_btree_block for reasons better left unknown
463 * and comes in different versions for short (32bit) and long (64bit) block
464 * pointers. The record and key structures are defined by the btree instances
465 * and opaque to the btree core. The block pointers are simple disk endian
466 * integers, available in a short (32bit) and long (64bit) variant.
467 *
468 * The helpers below calculate the offset of a given record, key or pointer
469 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
470 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
471 * inside the btree block is done using indices starting at one, not zero!
472 *
473 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
474 * overlapping intervals. In such a tree, records are still sorted lowest to
475 * highest and indexed by the smallest key value that refers to the record.
476 * However, nodes are different: each pointer has two associated keys -- one
477 * indexing the lowest key available in the block(s) below (the same behavior
478 * as the key in a regular btree) and another indexing the highest key
479 * available in the block(s) below. Because records are /not/ sorted by the
480 * highest key, all leaf block updates require us to compute the highest key
481 * that matches any record in the leaf and to recursively update the high keys
482 * in the nodes going further up in the tree, if necessary. Nodes look like
483 * this:
484 *
485 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
486 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
487 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
488 *
489 * To perform an interval query on an overlapped tree, perform the usual
490 * depth-first search and use the low and high keys to decide if we can skip
491 * that particular node. If a leaf node is reached, return the records that
492 * intersect the interval. Note that an interval query may return numerous
493 * entries. For a non-overlapped tree, simply search for the record associated
494 * with the lowest key and iterate forward until a non-matching record is
495 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
496 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
497 * more detail.
498 *
499 * Why do we care about overlapping intervals? Let's say you have a bunch of
500 * reverse mapping records on a reflink filesystem:
501 *
502 * 1: +- file A startblock B offset C length D -----------+
503 * 2: +- file E startblock F offset G length H --------------+
504 * 3: +- file I startblock F offset J length K --+
505 * 4: +- file L... --+
506 *
507 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
508 * we'd simply increment the length of record 1. But how do we find the record
509 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
510 * record 3 because the keys are ordered first by startblock. An interval
511 * query would return records 1 and 2 because they both overlap (B+D-1), and
512 * from that we can pick out record 1 as the appropriate left neighbor.
513 *
514 * In the non-overlapped case you can do a LE lookup and decrement the cursor
515 * because a record's interval must end before the next record.
516 */
517
518/*
519 * Return size of the btree block header for this btree instance.
520 */
521static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
522{
523 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
524 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
525 return XFS_BTREE_LBLOCK_CRC_LEN;
526 return XFS_BTREE_LBLOCK_LEN;
527 }
528 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
529 return XFS_BTREE_SBLOCK_CRC_LEN;
530 return XFS_BTREE_SBLOCK_LEN;
531}
532
533/*
534 * Return size of btree block pointers for this btree instance.
535 */
536static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
537{
538 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
539 sizeof(__be64) : sizeof(__be32);
540}
541
542/*
543 * Calculate offset of the n-th record in a btree block.
544 */
545STATIC size_t
546xfs_btree_rec_offset(
547 struct xfs_btree_cur *cur,
548 int n)
549{
550 return xfs_btree_block_len(cur) +
551 (n - 1) * cur->bc_ops->rec_len;
552}
553
554/*
555 * Calculate offset of the n-th key in a btree block.
556 */
557STATIC size_t
558xfs_btree_key_offset(
559 struct xfs_btree_cur *cur,
560 int n)
561{
562 return xfs_btree_block_len(cur) +
563 (n - 1) * cur->bc_ops->key_len;
564}
565
566/*
567 * Calculate offset of the n-th high key in a btree block.
568 */
569STATIC size_t
570xfs_btree_high_key_offset(
571 struct xfs_btree_cur *cur,
572 int n)
573{
574 return xfs_btree_block_len(cur) +
575 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
576}
577
578/*
579 * Calculate offset of the n-th block pointer in a btree block.
580 */
581STATIC size_t
582xfs_btree_ptr_offset(
583 struct xfs_btree_cur *cur,
584 int n,
585 int level)
586{
587 return xfs_btree_block_len(cur) +
588 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
589 (n - 1) * xfs_btree_ptr_len(cur);
590}
591
592/*
593 * Return a pointer to the n-th record in the btree block.
594 */
595union xfs_btree_rec *
596xfs_btree_rec_addr(
597 struct xfs_btree_cur *cur,
598 int n,
599 struct xfs_btree_block *block)
600{
601 return (union xfs_btree_rec *)
602 ((char *)block + xfs_btree_rec_offset(cur, n));
603}
604
605/*
606 * Return a pointer to the n-th key in the btree block.
607 */
608union xfs_btree_key *
609xfs_btree_key_addr(
610 struct xfs_btree_cur *cur,
611 int n,
612 struct xfs_btree_block *block)
613{
614 return (union xfs_btree_key *)
615 ((char *)block + xfs_btree_key_offset(cur, n));
616}
617
618/*
619 * Return a pointer to the n-th high key in the btree block.
620 */
621union xfs_btree_key *
622xfs_btree_high_key_addr(
623 struct xfs_btree_cur *cur,
624 int n,
625 struct xfs_btree_block *block)
626{
627 return (union xfs_btree_key *)
628 ((char *)block + xfs_btree_high_key_offset(cur, n));
629}
630
631/*
632 * Return a pointer to the n-th block pointer in the btree block.
633 */
634union xfs_btree_ptr *
635xfs_btree_ptr_addr(
636 struct xfs_btree_cur *cur,
637 int n,
638 struct xfs_btree_block *block)
639{
640 int level = xfs_btree_get_level(block);
641
642 ASSERT(block->bb_level != 0);
643
644 return (union xfs_btree_ptr *)
645 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
646}
647
648struct xfs_ifork *
649xfs_btree_ifork_ptr(
650 struct xfs_btree_cur *cur)
651{
652 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
653
654 if (cur->bc_flags & XFS_BTREE_STAGING)
655 return cur->bc_ino.ifake->if_fork;
656 return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork);
657}
658
659/*
660 * Get the root block which is stored in the inode.
661 *
662 * For now this btree implementation assumes the btree root is always
663 * stored in the if_broot field of an inode fork.
664 */
665STATIC struct xfs_btree_block *
666xfs_btree_get_iroot(
667 struct xfs_btree_cur *cur)
668{
669 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
670
671 return (struct xfs_btree_block *)ifp->if_broot;
672}
673
674/*
675 * Retrieve the block pointer from the cursor at the given level.
676 * This may be an inode btree root or from a buffer.
677 */
678struct xfs_btree_block * /* generic btree block pointer */
679xfs_btree_get_block(
680 struct xfs_btree_cur *cur, /* btree cursor */
681 int level, /* level in btree */
682 struct xfs_buf **bpp) /* buffer containing the block */
683{
684 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
685 (level == cur->bc_nlevels - 1)) {
686 *bpp = NULL;
687 return xfs_btree_get_iroot(cur);
688 }
689
690 *bpp = cur->bc_bufs[level];
691 return XFS_BUF_TO_BLOCK(*bpp);
692}
693
694/*
695 * Change the cursor to point to the first record at the given level.
696 * Other levels are unaffected.
697 */
698STATIC int /* success=1, failure=0 */
699xfs_btree_firstrec(
700 xfs_btree_cur_t *cur, /* btree cursor */
701 int level) /* level to change */
702{
703 struct xfs_btree_block *block; /* generic btree block pointer */
704 xfs_buf_t *bp; /* buffer containing block */
705
706 /*
707 * Get the block pointer for this level.
708 */
709 block = xfs_btree_get_block(cur, level, &bp);
710 if (xfs_btree_check_block(cur, block, level, bp))
711 return 0;
712 /*
713 * It's empty, there is no such record.
714 */
715 if (!block->bb_numrecs)
716 return 0;
717 /*
718 * Set the ptr value to 1, that's the first record/key.
719 */
720 cur->bc_ptrs[level] = 1;
721 return 1;
722}
723
724/*
725 * Change the cursor to point to the last record in the current block
726 * at the given level. Other levels are unaffected.
727 */
728STATIC int /* success=1, failure=0 */
729xfs_btree_lastrec(
730 xfs_btree_cur_t *cur, /* btree cursor */
731 int level) /* level to change */
732{
733 struct xfs_btree_block *block; /* generic btree block pointer */
734 xfs_buf_t *bp; /* buffer containing block */
735
736 /*
737 * Get the block pointer for this level.
738 */
739 block = xfs_btree_get_block(cur, level, &bp);
740 if (xfs_btree_check_block(cur, block, level, bp))
741 return 0;
742 /*
743 * It's empty, there is no such record.
744 */
745 if (!block->bb_numrecs)
746 return 0;
747 /*
748 * Set the ptr value to numrecs, that's the last record/key.
749 */
750 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
751 return 1;
752}
753
754/*
755 * Compute first and last byte offsets for the fields given.
756 * Interprets the offsets table, which contains struct field offsets.
757 */
758void
759xfs_btree_offsets(
760 int64_t fields, /* bitmask of fields */
761 const short *offsets, /* table of field offsets */
762 int nbits, /* number of bits to inspect */
763 int *first, /* output: first byte offset */
764 int *last) /* output: last byte offset */
765{
766 int i; /* current bit number */
767 int64_t imask; /* mask for current bit number */
768
769 ASSERT(fields != 0);
770 /*
771 * Find the lowest bit, so the first byte offset.
772 */
773 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
774 if (imask & fields) {
775 *first = offsets[i];
776 break;
777 }
778 }
779 /*
780 * Find the highest bit, so the last byte offset.
781 */
782 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
783 if (imask & fields) {
784 *last = offsets[i + 1] - 1;
785 break;
786 }
787 }
788}
789
790/*
791 * Get a buffer for the block, return it read in.
792 * Long-form addressing.
793 */
794int
795xfs_btree_read_bufl(
796 struct xfs_mount *mp, /* file system mount point */
797 struct xfs_trans *tp, /* transaction pointer */
798 xfs_fsblock_t fsbno, /* file system block number */
799 struct xfs_buf **bpp, /* buffer for fsbno */
800 int refval, /* ref count value for buffer */
801 const struct xfs_buf_ops *ops)
802{
803 struct xfs_buf *bp; /* return value */
804 xfs_daddr_t d; /* real disk block address */
805 int error;
806
807 if (!xfs_verify_fsbno(mp, fsbno))
808 return -EFSCORRUPTED;
809 d = XFS_FSB_TO_DADDR(mp, fsbno);
810 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
811 mp->m_bsize, 0, &bp, ops);
812 if (error)
813 return error;
814 if (bp)
815 xfs_buf_set_ref(bp, refval);
816 *bpp = bp;
817 return 0;
818}
819
820/*
821 * Read-ahead the block, don't wait for it, don't return a buffer.
822 * Long-form addressing.
823 */
824/* ARGSUSED */
825void
826xfs_btree_reada_bufl(
827 struct xfs_mount *mp, /* file system mount point */
828 xfs_fsblock_t fsbno, /* file system block number */
829 xfs_extlen_t count, /* count of filesystem blocks */
830 const struct xfs_buf_ops *ops)
831{
832 xfs_daddr_t d;
833
834 ASSERT(fsbno != NULLFSBLOCK);
835 d = XFS_FSB_TO_DADDR(mp, fsbno);
836 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
837}
838
839/*
840 * Read-ahead the block, don't wait for it, don't return a buffer.
841 * Short-form addressing.
842 */
843/* ARGSUSED */
844void
845xfs_btree_reada_bufs(
846 struct xfs_mount *mp, /* file system mount point */
847 xfs_agnumber_t agno, /* allocation group number */
848 xfs_agblock_t agbno, /* allocation group block number */
849 xfs_extlen_t count, /* count of filesystem blocks */
850 const struct xfs_buf_ops *ops)
851{
852 xfs_daddr_t d;
853
854 ASSERT(agno != NULLAGNUMBER);
855 ASSERT(agbno != NULLAGBLOCK);
856 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
857 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
858}
859
860STATIC int
861xfs_btree_readahead_lblock(
862 struct xfs_btree_cur *cur,
863 int lr,
864 struct xfs_btree_block *block)
865{
866 int rval = 0;
867 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
868 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
869
870 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
871 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
872 cur->bc_ops->buf_ops);
873 rval++;
874 }
875
876 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
877 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
878 cur->bc_ops->buf_ops);
879 rval++;
880 }
881
882 return rval;
883}
884
885STATIC int
886xfs_btree_readahead_sblock(
887 struct xfs_btree_cur *cur,
888 int lr,
889 struct xfs_btree_block *block)
890{
891 int rval = 0;
892 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
893 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
894
895
896 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
897 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno,
898 left, 1, cur->bc_ops->buf_ops);
899 rval++;
900 }
901
902 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
903 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno,
904 right, 1, cur->bc_ops->buf_ops);
905 rval++;
906 }
907
908 return rval;
909}
910
911/*
912 * Read-ahead btree blocks, at the given level.
913 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
914 */
915STATIC int
916xfs_btree_readahead(
917 struct xfs_btree_cur *cur, /* btree cursor */
918 int lev, /* level in btree */
919 int lr) /* left/right bits */
920{
921 struct xfs_btree_block *block;
922
923 /*
924 * No readahead needed if we are at the root level and the
925 * btree root is stored in the inode.
926 */
927 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
928 (lev == cur->bc_nlevels - 1))
929 return 0;
930
931 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
932 return 0;
933
934 cur->bc_ra[lev] |= lr;
935 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
936
937 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
938 return xfs_btree_readahead_lblock(cur, lr, block);
939 return xfs_btree_readahead_sblock(cur, lr, block);
940}
941
942STATIC int
943xfs_btree_ptr_to_daddr(
944 struct xfs_btree_cur *cur,
945 union xfs_btree_ptr *ptr,
946 xfs_daddr_t *daddr)
947{
948 xfs_fsblock_t fsbno;
949 xfs_agblock_t agbno;
950 int error;
951
952 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
953 if (error)
954 return error;
955
956 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
957 fsbno = be64_to_cpu(ptr->l);
958 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
959 } else {
960 agbno = be32_to_cpu(ptr->s);
961 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.agno,
962 agbno);
963 }
964
965 return 0;
966}
967
968/*
969 * Readahead @count btree blocks at the given @ptr location.
970 *
971 * We don't need to care about long or short form btrees here as we have a
972 * method of converting the ptr directly to a daddr available to us.
973 */
974STATIC void
975xfs_btree_readahead_ptr(
976 struct xfs_btree_cur *cur,
977 union xfs_btree_ptr *ptr,
978 xfs_extlen_t count)
979{
980 xfs_daddr_t daddr;
981
982 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
983 return;
984 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
985 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
986}
987
988/*
989 * Set the buffer for level "lev" in the cursor to bp, releasing
990 * any previous buffer.
991 */
992STATIC void
993xfs_btree_setbuf(
994 xfs_btree_cur_t *cur, /* btree cursor */
995 int lev, /* level in btree */
996 xfs_buf_t *bp) /* new buffer to set */
997{
998 struct xfs_btree_block *b; /* btree block */
999
1000 if (cur->bc_bufs[lev])
1001 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1002 cur->bc_bufs[lev] = bp;
1003 cur->bc_ra[lev] = 0;
1004
1005 b = XFS_BUF_TO_BLOCK(bp);
1006 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1007 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1008 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1009 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1010 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1011 } else {
1012 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1013 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1014 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1015 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1016 }
1017}
1018
1019bool
1020xfs_btree_ptr_is_null(
1021 struct xfs_btree_cur *cur,
1022 union xfs_btree_ptr *ptr)
1023{
1024 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1025 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1026 else
1027 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1028}
1029
1030void
1031xfs_btree_set_ptr_null(
1032 struct xfs_btree_cur *cur,
1033 union xfs_btree_ptr *ptr)
1034{
1035 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1036 ptr->l = cpu_to_be64(NULLFSBLOCK);
1037 else
1038 ptr->s = cpu_to_be32(NULLAGBLOCK);
1039}
1040
1041/*
1042 * Get/set/init sibling pointers
1043 */
1044void
1045xfs_btree_get_sibling(
1046 struct xfs_btree_cur *cur,
1047 struct xfs_btree_block *block,
1048 union xfs_btree_ptr *ptr,
1049 int lr)
1050{
1051 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1052
1053 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1054 if (lr == XFS_BB_RIGHTSIB)
1055 ptr->l = block->bb_u.l.bb_rightsib;
1056 else
1057 ptr->l = block->bb_u.l.bb_leftsib;
1058 } else {
1059 if (lr == XFS_BB_RIGHTSIB)
1060 ptr->s = block->bb_u.s.bb_rightsib;
1061 else
1062 ptr->s = block->bb_u.s.bb_leftsib;
1063 }
1064}
1065
1066void
1067xfs_btree_set_sibling(
1068 struct xfs_btree_cur *cur,
1069 struct xfs_btree_block *block,
1070 union xfs_btree_ptr *ptr,
1071 int lr)
1072{
1073 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1074
1075 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1076 if (lr == XFS_BB_RIGHTSIB)
1077 block->bb_u.l.bb_rightsib = ptr->l;
1078 else
1079 block->bb_u.l.bb_leftsib = ptr->l;
1080 } else {
1081 if (lr == XFS_BB_RIGHTSIB)
1082 block->bb_u.s.bb_rightsib = ptr->s;
1083 else
1084 block->bb_u.s.bb_leftsib = ptr->s;
1085 }
1086}
1087
1088void
1089xfs_btree_init_block_int(
1090 struct xfs_mount *mp,
1091 struct xfs_btree_block *buf,
1092 xfs_daddr_t blkno,
1093 xfs_btnum_t btnum,
1094 __u16 level,
1095 __u16 numrecs,
1096 __u64 owner,
1097 unsigned int flags)
1098{
1099 int crc = xfs_sb_version_hascrc(&mp->m_sb);
1100 __u32 magic = xfs_btree_magic(crc, btnum);
1101
1102 buf->bb_magic = cpu_to_be32(magic);
1103 buf->bb_level = cpu_to_be16(level);
1104 buf->bb_numrecs = cpu_to_be16(numrecs);
1105
1106 if (flags & XFS_BTREE_LONG_PTRS) {
1107 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1108 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1109 if (crc) {
1110 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1111 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1112 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1113 buf->bb_u.l.bb_pad = 0;
1114 buf->bb_u.l.bb_lsn = 0;
1115 }
1116 } else {
1117 /* owner is a 32 bit value on short blocks */
1118 __u32 __owner = (__u32)owner;
1119
1120 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1121 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1122 if (crc) {
1123 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1124 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1125 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1126 buf->bb_u.s.bb_lsn = 0;
1127 }
1128 }
1129}
1130
1131void
1132xfs_btree_init_block(
1133 struct xfs_mount *mp,
1134 struct xfs_buf *bp,
1135 xfs_btnum_t btnum,
1136 __u16 level,
1137 __u16 numrecs,
1138 __u64 owner)
1139{
1140 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1141 btnum, level, numrecs, owner, 0);
1142}
1143
1144void
1145xfs_btree_init_block_cur(
1146 struct xfs_btree_cur *cur,
1147 struct xfs_buf *bp,
1148 int level,
1149 int numrecs)
1150{
1151 __u64 owner;
1152
1153 /*
1154 * we can pull the owner from the cursor right now as the different
1155 * owners align directly with the pointer size of the btree. This may
1156 * change in future, but is safe for current users of the generic btree
1157 * code.
1158 */
1159 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1160 owner = cur->bc_ino.ip->i_ino;
1161 else
1162 owner = cur->bc_ag.agno;
1163
1164 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1165 cur->bc_btnum, level, numrecs,
1166 owner, cur->bc_flags);
1167}
1168
1169/*
1170 * Return true if ptr is the last record in the btree and
1171 * we need to track updates to this record. The decision
1172 * will be further refined in the update_lastrec method.
1173 */
1174STATIC int
1175xfs_btree_is_lastrec(
1176 struct xfs_btree_cur *cur,
1177 struct xfs_btree_block *block,
1178 int level)
1179{
1180 union xfs_btree_ptr ptr;
1181
1182 if (level > 0)
1183 return 0;
1184 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1185 return 0;
1186
1187 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1188 if (!xfs_btree_ptr_is_null(cur, &ptr))
1189 return 0;
1190 return 1;
1191}
1192
1193STATIC void
1194xfs_btree_buf_to_ptr(
1195 struct xfs_btree_cur *cur,
1196 struct xfs_buf *bp,
1197 union xfs_btree_ptr *ptr)
1198{
1199 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1200 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1201 XFS_BUF_ADDR(bp)));
1202 else {
1203 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1204 XFS_BUF_ADDR(bp)));
1205 }
1206}
1207
1208STATIC void
1209xfs_btree_set_refs(
1210 struct xfs_btree_cur *cur,
1211 struct xfs_buf *bp)
1212{
1213 switch (cur->bc_btnum) {
1214 case XFS_BTNUM_BNO:
1215 case XFS_BTNUM_CNT:
1216 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1217 break;
1218 case XFS_BTNUM_INO:
1219 case XFS_BTNUM_FINO:
1220 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1221 break;
1222 case XFS_BTNUM_BMAP:
1223 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1224 break;
1225 case XFS_BTNUM_RMAP:
1226 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1227 break;
1228 case XFS_BTNUM_REFC:
1229 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1230 break;
1231 default:
1232 ASSERT(0);
1233 }
1234}
1235
1236int
1237xfs_btree_get_buf_block(
1238 struct xfs_btree_cur *cur,
1239 union xfs_btree_ptr *ptr,
1240 struct xfs_btree_block **block,
1241 struct xfs_buf **bpp)
1242{
1243 struct xfs_mount *mp = cur->bc_mp;
1244 xfs_daddr_t d;
1245 int error;
1246
1247 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1248 if (error)
1249 return error;
1250 error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1251 0, bpp);
1252 if (error)
1253 return error;
1254
1255 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1256 *block = XFS_BUF_TO_BLOCK(*bpp);
1257 return 0;
1258}
1259
1260/*
1261 * Read in the buffer at the given ptr and return the buffer and
1262 * the block pointer within the buffer.
1263 */
1264STATIC int
1265xfs_btree_read_buf_block(
1266 struct xfs_btree_cur *cur,
1267 union xfs_btree_ptr *ptr,
1268 int flags,
1269 struct xfs_btree_block **block,
1270 struct xfs_buf **bpp)
1271{
1272 struct xfs_mount *mp = cur->bc_mp;
1273 xfs_daddr_t d;
1274 int error;
1275
1276 /* need to sort out how callers deal with failures first */
1277 ASSERT(!(flags & XBF_TRYLOCK));
1278
1279 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1280 if (error)
1281 return error;
1282 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1283 mp->m_bsize, flags, bpp,
1284 cur->bc_ops->buf_ops);
1285 if (error)
1286 return error;
1287
1288 xfs_btree_set_refs(cur, *bpp);
1289 *block = XFS_BUF_TO_BLOCK(*bpp);
1290 return 0;
1291}
1292
1293/*
1294 * Copy keys from one btree block to another.
1295 */
1296void
1297xfs_btree_copy_keys(
1298 struct xfs_btree_cur *cur,
1299 union xfs_btree_key *dst_key,
1300 union xfs_btree_key *src_key,
1301 int numkeys)
1302{
1303 ASSERT(numkeys >= 0);
1304 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1305}
1306
1307/*
1308 * Copy records from one btree block to another.
1309 */
1310STATIC void
1311xfs_btree_copy_recs(
1312 struct xfs_btree_cur *cur,
1313 union xfs_btree_rec *dst_rec,
1314 union xfs_btree_rec *src_rec,
1315 int numrecs)
1316{
1317 ASSERT(numrecs >= 0);
1318 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1319}
1320
1321/*
1322 * Copy block pointers from one btree block to another.
1323 */
1324void
1325xfs_btree_copy_ptrs(
1326 struct xfs_btree_cur *cur,
1327 union xfs_btree_ptr *dst_ptr,
1328 const union xfs_btree_ptr *src_ptr,
1329 int numptrs)
1330{
1331 ASSERT(numptrs >= 0);
1332 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1333}
1334
1335/*
1336 * Shift keys one index left/right inside a single btree block.
1337 */
1338STATIC void
1339xfs_btree_shift_keys(
1340 struct xfs_btree_cur *cur,
1341 union xfs_btree_key *key,
1342 int dir,
1343 int numkeys)
1344{
1345 char *dst_key;
1346
1347 ASSERT(numkeys >= 0);
1348 ASSERT(dir == 1 || dir == -1);
1349
1350 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1351 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1352}
1353
1354/*
1355 * Shift records one index left/right inside a single btree block.
1356 */
1357STATIC void
1358xfs_btree_shift_recs(
1359 struct xfs_btree_cur *cur,
1360 union xfs_btree_rec *rec,
1361 int dir,
1362 int numrecs)
1363{
1364 char *dst_rec;
1365
1366 ASSERT(numrecs >= 0);
1367 ASSERT(dir == 1 || dir == -1);
1368
1369 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1370 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1371}
1372
1373/*
1374 * Shift block pointers one index left/right inside a single btree block.
1375 */
1376STATIC void
1377xfs_btree_shift_ptrs(
1378 struct xfs_btree_cur *cur,
1379 union xfs_btree_ptr *ptr,
1380 int dir,
1381 int numptrs)
1382{
1383 char *dst_ptr;
1384
1385 ASSERT(numptrs >= 0);
1386 ASSERT(dir == 1 || dir == -1);
1387
1388 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1389 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1390}
1391
1392/*
1393 * Log key values from the btree block.
1394 */
1395STATIC void
1396xfs_btree_log_keys(
1397 struct xfs_btree_cur *cur,
1398 struct xfs_buf *bp,
1399 int first,
1400 int last)
1401{
1402
1403 if (bp) {
1404 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1405 xfs_trans_log_buf(cur->bc_tp, bp,
1406 xfs_btree_key_offset(cur, first),
1407 xfs_btree_key_offset(cur, last + 1) - 1);
1408 } else {
1409 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1410 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1411 }
1412}
1413
1414/*
1415 * Log record values from the btree block.
1416 */
1417void
1418xfs_btree_log_recs(
1419 struct xfs_btree_cur *cur,
1420 struct xfs_buf *bp,
1421 int first,
1422 int last)
1423{
1424
1425 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1426 xfs_trans_log_buf(cur->bc_tp, bp,
1427 xfs_btree_rec_offset(cur, first),
1428 xfs_btree_rec_offset(cur, last + 1) - 1);
1429
1430}
1431
1432/*
1433 * Log block pointer fields from a btree block (nonleaf).
1434 */
1435STATIC void
1436xfs_btree_log_ptrs(
1437 struct xfs_btree_cur *cur, /* btree cursor */
1438 struct xfs_buf *bp, /* buffer containing btree block */
1439 int first, /* index of first pointer to log */
1440 int last) /* index of last pointer to log */
1441{
1442
1443 if (bp) {
1444 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1445 int level = xfs_btree_get_level(block);
1446
1447 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1448 xfs_trans_log_buf(cur->bc_tp, bp,
1449 xfs_btree_ptr_offset(cur, first, level),
1450 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1451 } else {
1452 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1453 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1454 }
1455
1456}
1457
1458/*
1459 * Log fields from a btree block header.
1460 */
1461void
1462xfs_btree_log_block(
1463 struct xfs_btree_cur *cur, /* btree cursor */
1464 struct xfs_buf *bp, /* buffer containing btree block */
1465 int fields) /* mask of fields: XFS_BB_... */
1466{
1467 int first; /* first byte offset logged */
1468 int last; /* last byte offset logged */
1469 static const short soffsets[] = { /* table of offsets (short) */
1470 offsetof(struct xfs_btree_block, bb_magic),
1471 offsetof(struct xfs_btree_block, bb_level),
1472 offsetof(struct xfs_btree_block, bb_numrecs),
1473 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1474 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1475 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1476 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1477 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1478 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1479 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1480 XFS_BTREE_SBLOCK_CRC_LEN
1481 };
1482 static const short loffsets[] = { /* table of offsets (long) */
1483 offsetof(struct xfs_btree_block, bb_magic),
1484 offsetof(struct xfs_btree_block, bb_level),
1485 offsetof(struct xfs_btree_block, bb_numrecs),
1486 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1487 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1488 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1489 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1490 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1491 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1492 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1493 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1494 XFS_BTREE_LBLOCK_CRC_LEN
1495 };
1496
1497 if (bp) {
1498 int nbits;
1499
1500 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1501 /*
1502 * We don't log the CRC when updating a btree
1503 * block but instead recreate it during log
1504 * recovery. As the log buffers have checksums
1505 * of their own this is safe and avoids logging a crc
1506 * update in a lot of places.
1507 */
1508 if (fields == XFS_BB_ALL_BITS)
1509 fields = XFS_BB_ALL_BITS_CRC;
1510 nbits = XFS_BB_NUM_BITS_CRC;
1511 } else {
1512 nbits = XFS_BB_NUM_BITS;
1513 }
1514 xfs_btree_offsets(fields,
1515 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1516 loffsets : soffsets,
1517 nbits, &first, &last);
1518 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1519 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1520 } else {
1521 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1522 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1523 }
1524}
1525
1526/*
1527 * Increment cursor by one record at the level.
1528 * For nonzero levels the leaf-ward information is untouched.
1529 */
1530int /* error */
1531xfs_btree_increment(
1532 struct xfs_btree_cur *cur,
1533 int level,
1534 int *stat) /* success/failure */
1535{
1536 struct xfs_btree_block *block;
1537 union xfs_btree_ptr ptr;
1538 struct xfs_buf *bp;
1539 int error; /* error return value */
1540 int lev;
1541
1542 ASSERT(level < cur->bc_nlevels);
1543
1544 /* Read-ahead to the right at this level. */
1545 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1546
1547 /* Get a pointer to the btree block. */
1548 block = xfs_btree_get_block(cur, level, &bp);
1549
1550#ifdef DEBUG
1551 error = xfs_btree_check_block(cur, block, level, bp);
1552 if (error)
1553 goto error0;
1554#endif
1555
1556 /* We're done if we remain in the block after the increment. */
1557 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1558 goto out1;
1559
1560 /* Fail if we just went off the right edge of the tree. */
1561 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1562 if (xfs_btree_ptr_is_null(cur, &ptr))
1563 goto out0;
1564
1565 XFS_BTREE_STATS_INC(cur, increment);
1566
1567 /*
1568 * March up the tree incrementing pointers.
1569 * Stop when we don't go off the right edge of a block.
1570 */
1571 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1572 block = xfs_btree_get_block(cur, lev, &bp);
1573
1574#ifdef DEBUG
1575 error = xfs_btree_check_block(cur, block, lev, bp);
1576 if (error)
1577 goto error0;
1578#endif
1579
1580 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1581 break;
1582
1583 /* Read-ahead the right block for the next loop. */
1584 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1585 }
1586
1587 /*
1588 * If we went off the root then we are either seriously
1589 * confused or have the tree root in an inode.
1590 */
1591 if (lev == cur->bc_nlevels) {
1592 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1593 goto out0;
1594 ASSERT(0);
1595 error = -EFSCORRUPTED;
1596 goto error0;
1597 }
1598 ASSERT(lev < cur->bc_nlevels);
1599
1600 /*
1601 * Now walk back down the tree, fixing up the cursor's buffer
1602 * pointers and key numbers.
1603 */
1604 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1605 union xfs_btree_ptr *ptrp;
1606
1607 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1608 --lev;
1609 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1610 if (error)
1611 goto error0;
1612
1613 xfs_btree_setbuf(cur, lev, bp);
1614 cur->bc_ptrs[lev] = 1;
1615 }
1616out1:
1617 *stat = 1;
1618 return 0;
1619
1620out0:
1621 *stat = 0;
1622 return 0;
1623
1624error0:
1625 return error;
1626}
1627
1628/*
1629 * Decrement cursor by one record at the level.
1630 * For nonzero levels the leaf-ward information is untouched.
1631 */
1632int /* error */
1633xfs_btree_decrement(
1634 struct xfs_btree_cur *cur,
1635 int level,
1636 int *stat) /* success/failure */
1637{
1638 struct xfs_btree_block *block;
1639 xfs_buf_t *bp;
1640 int error; /* error return value */
1641 int lev;
1642 union xfs_btree_ptr ptr;
1643
1644 ASSERT(level < cur->bc_nlevels);
1645
1646 /* Read-ahead to the left at this level. */
1647 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1648
1649 /* We're done if we remain in the block after the decrement. */
1650 if (--cur->bc_ptrs[level] > 0)
1651 goto out1;
1652
1653 /* Get a pointer to the btree block. */
1654 block = xfs_btree_get_block(cur, level, &bp);
1655
1656#ifdef DEBUG
1657 error = xfs_btree_check_block(cur, block, level, bp);
1658 if (error)
1659 goto error0;
1660#endif
1661
1662 /* Fail if we just went off the left edge of the tree. */
1663 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1664 if (xfs_btree_ptr_is_null(cur, &ptr))
1665 goto out0;
1666
1667 XFS_BTREE_STATS_INC(cur, decrement);
1668
1669 /*
1670 * March up the tree decrementing pointers.
1671 * Stop when we don't go off the left edge of a block.
1672 */
1673 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1674 if (--cur->bc_ptrs[lev] > 0)
1675 break;
1676 /* Read-ahead the left block for the next loop. */
1677 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1678 }
1679
1680 /*
1681 * If we went off the root then we are seriously confused.
1682 * or the root of the tree is in an inode.
1683 */
1684 if (lev == cur->bc_nlevels) {
1685 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1686 goto out0;
1687 ASSERT(0);
1688 error = -EFSCORRUPTED;
1689 goto error0;
1690 }
1691 ASSERT(lev < cur->bc_nlevels);
1692
1693 /*
1694 * Now walk back down the tree, fixing up the cursor's buffer
1695 * pointers and key numbers.
1696 */
1697 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1698 union xfs_btree_ptr *ptrp;
1699
1700 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1701 --lev;
1702 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1703 if (error)
1704 goto error0;
1705 xfs_btree_setbuf(cur, lev, bp);
1706 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1707 }
1708out1:
1709 *stat = 1;
1710 return 0;
1711
1712out0:
1713 *stat = 0;
1714 return 0;
1715
1716error0:
1717 return error;
1718}
1719
1720int
1721xfs_btree_lookup_get_block(
1722 struct xfs_btree_cur *cur, /* btree cursor */
1723 int level, /* level in the btree */
1724 union xfs_btree_ptr *pp, /* ptr to btree block */
1725 struct xfs_btree_block **blkp) /* return btree block */
1726{
1727 struct xfs_buf *bp; /* buffer pointer for btree block */
1728 xfs_daddr_t daddr;
1729 int error = 0;
1730
1731 /* special case the root block if in an inode */
1732 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1733 (level == cur->bc_nlevels - 1)) {
1734 *blkp = xfs_btree_get_iroot(cur);
1735 return 0;
1736 }
1737
1738 /*
1739 * If the old buffer at this level for the disk address we are
1740 * looking for re-use it.
1741 *
1742 * Otherwise throw it away and get a new one.
1743 */
1744 bp = cur->bc_bufs[level];
1745 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1746 if (error)
1747 return error;
1748 if (bp && XFS_BUF_ADDR(bp) == daddr) {
1749 *blkp = XFS_BUF_TO_BLOCK(bp);
1750 return 0;
1751 }
1752
1753 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1754 if (error)
1755 return error;
1756
1757 /* Check the inode owner since the verifiers don't. */
1758 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1759 !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1760 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1761 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1762 cur->bc_ino.ip->i_ino)
1763 goto out_bad;
1764
1765 /* Did we get the level we were looking for? */
1766 if (be16_to_cpu((*blkp)->bb_level) != level)
1767 goto out_bad;
1768
1769 /* Check that internal nodes have at least one record. */
1770 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1771 goto out_bad;
1772
1773 xfs_btree_setbuf(cur, level, bp);
1774 return 0;
1775
1776out_bad:
1777 *blkp = NULL;
1778 xfs_buf_mark_corrupt(bp);
1779 xfs_trans_brelse(cur->bc_tp, bp);
1780 return -EFSCORRUPTED;
1781}
1782
1783/*
1784 * Get current search key. For level 0 we don't actually have a key
1785 * structure so we make one up from the record. For all other levels
1786 * we just return the right key.
1787 */
1788STATIC union xfs_btree_key *
1789xfs_lookup_get_search_key(
1790 struct xfs_btree_cur *cur,
1791 int level,
1792 int keyno,
1793 struct xfs_btree_block *block,
1794 union xfs_btree_key *kp)
1795{
1796 if (level == 0) {
1797 cur->bc_ops->init_key_from_rec(kp,
1798 xfs_btree_rec_addr(cur, keyno, block));
1799 return kp;
1800 }
1801
1802 return xfs_btree_key_addr(cur, keyno, block);
1803}
1804
1805/*
1806 * Lookup the record. The cursor is made to point to it, based on dir.
1807 * stat is set to 0 if can't find any such record, 1 for success.
1808 */
1809int /* error */
1810xfs_btree_lookup(
1811 struct xfs_btree_cur *cur, /* btree cursor */
1812 xfs_lookup_t dir, /* <=, ==, or >= */
1813 int *stat) /* success/failure */
1814{
1815 struct xfs_btree_block *block; /* current btree block */
1816 int64_t diff; /* difference for the current key */
1817 int error; /* error return value */
1818 int keyno; /* current key number */
1819 int level; /* level in the btree */
1820 union xfs_btree_ptr *pp; /* ptr to btree block */
1821 union xfs_btree_ptr ptr; /* ptr to btree block */
1822
1823 XFS_BTREE_STATS_INC(cur, lookup);
1824
1825 /* No such thing as a zero-level tree. */
1826 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1827 return -EFSCORRUPTED;
1828
1829 block = NULL;
1830 keyno = 0;
1831
1832 /* initialise start pointer from cursor */
1833 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1834 pp = &ptr;
1835
1836 /*
1837 * Iterate over each level in the btree, starting at the root.
1838 * For each level above the leaves, find the key we need, based
1839 * on the lookup record, then follow the corresponding block
1840 * pointer down to the next level.
1841 */
1842 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1843 /* Get the block we need to do the lookup on. */
1844 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1845 if (error)
1846 goto error0;
1847
1848 if (diff == 0) {
1849 /*
1850 * If we already had a key match at a higher level, we
1851 * know we need to use the first entry in this block.
1852 */
1853 keyno = 1;
1854 } else {
1855 /* Otherwise search this block. Do a binary search. */
1856
1857 int high; /* high entry number */
1858 int low; /* low entry number */
1859
1860 /* Set low and high entry numbers, 1-based. */
1861 low = 1;
1862 high = xfs_btree_get_numrecs(block);
1863 if (!high) {
1864 /* Block is empty, must be an empty leaf. */
1865 if (level != 0 || cur->bc_nlevels != 1) {
1866 XFS_CORRUPTION_ERROR(__func__,
1867 XFS_ERRLEVEL_LOW,
1868 cur->bc_mp, block,
1869 sizeof(*block));
1870 return -EFSCORRUPTED;
1871 }
1872
1873 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1874 *stat = 0;
1875 return 0;
1876 }
1877
1878 /* Binary search the block. */
1879 while (low <= high) {
1880 union xfs_btree_key key;
1881 union xfs_btree_key *kp;
1882
1883 XFS_BTREE_STATS_INC(cur, compare);
1884
1885 /* keyno is average of low and high. */
1886 keyno = (low + high) >> 1;
1887
1888 /* Get current search key */
1889 kp = xfs_lookup_get_search_key(cur, level,
1890 keyno, block, &key);
1891
1892 /*
1893 * Compute difference to get next direction:
1894 * - less than, move right
1895 * - greater than, move left
1896 * - equal, we're done
1897 */
1898 diff = cur->bc_ops->key_diff(cur, kp);
1899 if (diff < 0)
1900 low = keyno + 1;
1901 else if (diff > 0)
1902 high = keyno - 1;
1903 else
1904 break;
1905 }
1906 }
1907
1908 /*
1909 * If there are more levels, set up for the next level
1910 * by getting the block number and filling in the cursor.
1911 */
1912 if (level > 0) {
1913 /*
1914 * If we moved left, need the previous key number,
1915 * unless there isn't one.
1916 */
1917 if (diff > 0 && --keyno < 1)
1918 keyno = 1;
1919 pp = xfs_btree_ptr_addr(cur, keyno, block);
1920
1921 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1922 if (error)
1923 goto error0;
1924
1925 cur->bc_ptrs[level] = keyno;
1926 }
1927 }
1928
1929 /* Done with the search. See if we need to adjust the results. */
1930 if (dir != XFS_LOOKUP_LE && diff < 0) {
1931 keyno++;
1932 /*
1933 * If ge search and we went off the end of the block, but it's
1934 * not the last block, we're in the wrong block.
1935 */
1936 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1937 if (dir == XFS_LOOKUP_GE &&
1938 keyno > xfs_btree_get_numrecs(block) &&
1939 !xfs_btree_ptr_is_null(cur, &ptr)) {
1940 int i;
1941
1942 cur->bc_ptrs[0] = keyno;
1943 error = xfs_btree_increment(cur, 0, &i);
1944 if (error)
1945 goto error0;
1946 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1947 return -EFSCORRUPTED;
1948 *stat = 1;
1949 return 0;
1950 }
1951 } else if (dir == XFS_LOOKUP_LE && diff > 0)
1952 keyno--;
1953 cur->bc_ptrs[0] = keyno;
1954
1955 /* Return if we succeeded or not. */
1956 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1957 *stat = 0;
1958 else if (dir != XFS_LOOKUP_EQ || diff == 0)
1959 *stat = 1;
1960 else
1961 *stat = 0;
1962 return 0;
1963
1964error0:
1965 return error;
1966}
1967
1968/* Find the high key storage area from a regular key. */
1969union xfs_btree_key *
1970xfs_btree_high_key_from_key(
1971 struct xfs_btree_cur *cur,
1972 union xfs_btree_key *key)
1973{
1974 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1975 return (union xfs_btree_key *)((char *)key +
1976 (cur->bc_ops->key_len / 2));
1977}
1978
1979/* Determine the low (and high if overlapped) keys of a leaf block */
1980STATIC void
1981xfs_btree_get_leaf_keys(
1982 struct xfs_btree_cur *cur,
1983 struct xfs_btree_block *block,
1984 union xfs_btree_key *key)
1985{
1986 union xfs_btree_key max_hkey;
1987 union xfs_btree_key hkey;
1988 union xfs_btree_rec *rec;
1989 union xfs_btree_key *high;
1990 int n;
1991
1992 rec = xfs_btree_rec_addr(cur, 1, block);
1993 cur->bc_ops->init_key_from_rec(key, rec);
1994
1995 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1996
1997 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1998 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1999 rec = xfs_btree_rec_addr(cur, n, block);
2000 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2001 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2002 > 0)
2003 max_hkey = hkey;
2004 }
2005
2006 high = xfs_btree_high_key_from_key(cur, key);
2007 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2008 }
2009}
2010
2011/* Determine the low (and high if overlapped) keys of a node block */
2012STATIC void
2013xfs_btree_get_node_keys(
2014 struct xfs_btree_cur *cur,
2015 struct xfs_btree_block *block,
2016 union xfs_btree_key *key)
2017{
2018 union xfs_btree_key *hkey;
2019 union xfs_btree_key *max_hkey;
2020 union xfs_btree_key *high;
2021 int n;
2022
2023 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2024 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2025 cur->bc_ops->key_len / 2);
2026
2027 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2028 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2029 hkey = xfs_btree_high_key_addr(cur, n, block);
2030 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2031 max_hkey = hkey;
2032 }
2033
2034 high = xfs_btree_high_key_from_key(cur, key);
2035 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2036 } else {
2037 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2038 cur->bc_ops->key_len);
2039 }
2040}
2041
2042/* Derive the keys for any btree block. */
2043void
2044xfs_btree_get_keys(
2045 struct xfs_btree_cur *cur,
2046 struct xfs_btree_block *block,
2047 union xfs_btree_key *key)
2048{
2049 if (be16_to_cpu(block->bb_level) == 0)
2050 xfs_btree_get_leaf_keys(cur, block, key);
2051 else
2052 xfs_btree_get_node_keys(cur, block, key);
2053}
2054
2055/*
2056 * Decide if we need to update the parent keys of a btree block. For
2057 * a standard btree this is only necessary if we're updating the first
2058 * record/key. For an overlapping btree, we must always update the
2059 * keys because the highest key can be in any of the records or keys
2060 * in the block.
2061 */
2062static inline bool
2063xfs_btree_needs_key_update(
2064 struct xfs_btree_cur *cur,
2065 int ptr)
2066{
2067 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2068}
2069
2070/*
2071 * Update the low and high parent keys of the given level, progressing
2072 * towards the root. If force_all is false, stop if the keys for a given
2073 * level do not need updating.
2074 */
2075STATIC int
2076__xfs_btree_updkeys(
2077 struct xfs_btree_cur *cur,
2078 int level,
2079 struct xfs_btree_block *block,
2080 struct xfs_buf *bp0,
2081 bool force_all)
2082{
2083 union xfs_btree_key key; /* keys from current level */
2084 union xfs_btree_key *lkey; /* keys from the next level up */
2085 union xfs_btree_key *hkey;
2086 union xfs_btree_key *nlkey; /* keys from the next level up */
2087 union xfs_btree_key *nhkey;
2088 struct xfs_buf *bp;
2089 int ptr;
2090
2091 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2092
2093 /* Exit if there aren't any parent levels to update. */
2094 if (level + 1 >= cur->bc_nlevels)
2095 return 0;
2096
2097 trace_xfs_btree_updkeys(cur, level, bp0);
2098
2099 lkey = &key;
2100 hkey = xfs_btree_high_key_from_key(cur, lkey);
2101 xfs_btree_get_keys(cur, block, lkey);
2102 for (level++; level < cur->bc_nlevels; level++) {
2103#ifdef DEBUG
2104 int error;
2105#endif
2106 block = xfs_btree_get_block(cur, level, &bp);
2107 trace_xfs_btree_updkeys(cur, level, bp);
2108#ifdef DEBUG
2109 error = xfs_btree_check_block(cur, block, level, bp);
2110 if (error)
2111 return error;
2112#endif
2113 ptr = cur->bc_ptrs[level];
2114 nlkey = xfs_btree_key_addr(cur, ptr, block);
2115 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2116 if (!force_all &&
2117 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2118 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2119 break;
2120 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2121 xfs_btree_log_keys(cur, bp, ptr, ptr);
2122 if (level + 1 >= cur->bc_nlevels)
2123 break;
2124 xfs_btree_get_node_keys(cur, block, lkey);
2125 }
2126
2127 return 0;
2128}
2129
2130/* Update all the keys from some level in cursor back to the root. */
2131STATIC int
2132xfs_btree_updkeys_force(
2133 struct xfs_btree_cur *cur,
2134 int level)
2135{
2136 struct xfs_buf *bp;
2137 struct xfs_btree_block *block;
2138
2139 block = xfs_btree_get_block(cur, level, &bp);
2140 return __xfs_btree_updkeys(cur, level, block, bp, true);
2141}
2142
2143/*
2144 * Update the parent keys of the given level, progressing towards the root.
2145 */
2146STATIC int
2147xfs_btree_update_keys(
2148 struct xfs_btree_cur *cur,
2149 int level)
2150{
2151 struct xfs_btree_block *block;
2152 struct xfs_buf *bp;
2153 union xfs_btree_key *kp;
2154 union xfs_btree_key key;
2155 int ptr;
2156
2157 ASSERT(level >= 0);
2158
2159 block = xfs_btree_get_block(cur, level, &bp);
2160 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2161 return __xfs_btree_updkeys(cur, level, block, bp, false);
2162
2163 /*
2164 * Go up the tree from this level toward the root.
2165 * At each level, update the key value to the value input.
2166 * Stop when we reach a level where the cursor isn't pointing
2167 * at the first entry in the block.
2168 */
2169 xfs_btree_get_keys(cur, block, &key);
2170 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2171#ifdef DEBUG
2172 int error;
2173#endif
2174 block = xfs_btree_get_block(cur, level, &bp);
2175#ifdef DEBUG
2176 error = xfs_btree_check_block(cur, block, level, bp);
2177 if (error)
2178 return error;
2179#endif
2180 ptr = cur->bc_ptrs[level];
2181 kp = xfs_btree_key_addr(cur, ptr, block);
2182 xfs_btree_copy_keys(cur, kp, &key, 1);
2183 xfs_btree_log_keys(cur, bp, ptr, ptr);
2184 }
2185
2186 return 0;
2187}
2188
2189/*
2190 * Update the record referred to by cur to the value in the
2191 * given record. This either works (return 0) or gets an
2192 * EFSCORRUPTED error.
2193 */
2194int
2195xfs_btree_update(
2196 struct xfs_btree_cur *cur,
2197 union xfs_btree_rec *rec)
2198{
2199 struct xfs_btree_block *block;
2200 struct xfs_buf *bp;
2201 int error;
2202 int ptr;
2203 union xfs_btree_rec *rp;
2204
2205 /* Pick up the current block. */
2206 block = xfs_btree_get_block(cur, 0, &bp);
2207
2208#ifdef DEBUG
2209 error = xfs_btree_check_block(cur, block, 0, bp);
2210 if (error)
2211 goto error0;
2212#endif
2213 /* Get the address of the rec to be updated. */
2214 ptr = cur->bc_ptrs[0];
2215 rp = xfs_btree_rec_addr(cur, ptr, block);
2216
2217 /* Fill in the new contents and log them. */
2218 xfs_btree_copy_recs(cur, rp, rec, 1);
2219 xfs_btree_log_recs(cur, bp, ptr, ptr);
2220
2221 /*
2222 * If we are tracking the last record in the tree and
2223 * we are at the far right edge of the tree, update it.
2224 */
2225 if (xfs_btree_is_lastrec(cur, block, 0)) {
2226 cur->bc_ops->update_lastrec(cur, block, rec,
2227 ptr, LASTREC_UPDATE);
2228 }
2229
2230 /* Pass new key value up to our parent. */
2231 if (xfs_btree_needs_key_update(cur, ptr)) {
2232 error = xfs_btree_update_keys(cur, 0);
2233 if (error)
2234 goto error0;
2235 }
2236
2237 return 0;
2238
2239error0:
2240 return error;
2241}
2242
2243/*
2244 * Move 1 record left from cur/level if possible.
2245 * Update cur to reflect the new path.
2246 */
2247STATIC int /* error */
2248xfs_btree_lshift(
2249 struct xfs_btree_cur *cur,
2250 int level,
2251 int *stat) /* success/failure */
2252{
2253 struct xfs_buf *lbp; /* left buffer pointer */
2254 struct xfs_btree_block *left; /* left btree block */
2255 int lrecs; /* left record count */
2256 struct xfs_buf *rbp; /* right buffer pointer */
2257 struct xfs_btree_block *right; /* right btree block */
2258 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2259 int rrecs; /* right record count */
2260 union xfs_btree_ptr lptr; /* left btree pointer */
2261 union xfs_btree_key *rkp = NULL; /* right btree key */
2262 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2263 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2264 int error; /* error return value */
2265 int i;
2266
2267 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2268 level == cur->bc_nlevels - 1)
2269 goto out0;
2270
2271 /* Set up variables for this block as "right". */
2272 right = xfs_btree_get_block(cur, level, &rbp);
2273
2274#ifdef DEBUG
2275 error = xfs_btree_check_block(cur, right, level, rbp);
2276 if (error)
2277 goto error0;
2278#endif
2279
2280 /* If we've got no left sibling then we can't shift an entry left. */
2281 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2282 if (xfs_btree_ptr_is_null(cur, &lptr))
2283 goto out0;
2284
2285 /*
2286 * If the cursor entry is the one that would be moved, don't
2287 * do it... it's too complicated.
2288 */
2289 if (cur->bc_ptrs[level] <= 1)
2290 goto out0;
2291
2292 /* Set up the left neighbor as "left". */
2293 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2294 if (error)
2295 goto error0;
2296
2297 /* If it's full, it can't take another entry. */
2298 lrecs = xfs_btree_get_numrecs(left);
2299 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2300 goto out0;
2301
2302 rrecs = xfs_btree_get_numrecs(right);
2303
2304 /*
2305 * We add one entry to the left side and remove one for the right side.
2306 * Account for it here, the changes will be updated on disk and logged
2307 * later.
2308 */
2309 lrecs++;
2310 rrecs--;
2311
2312 XFS_BTREE_STATS_INC(cur, lshift);
2313 XFS_BTREE_STATS_ADD(cur, moves, 1);
2314
2315 /*
2316 * If non-leaf, copy a key and a ptr to the left block.
2317 * Log the changes to the left block.
2318 */
2319 if (level > 0) {
2320 /* It's a non-leaf. Move keys and pointers. */
2321 union xfs_btree_key *lkp; /* left btree key */
2322 union xfs_btree_ptr *lpp; /* left address pointer */
2323
2324 lkp = xfs_btree_key_addr(cur, lrecs, left);
2325 rkp = xfs_btree_key_addr(cur, 1, right);
2326
2327 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2328 rpp = xfs_btree_ptr_addr(cur, 1, right);
2329
2330 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2331 if (error)
2332 goto error0;
2333
2334 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2335 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2336
2337 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2338 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2339
2340 ASSERT(cur->bc_ops->keys_inorder(cur,
2341 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2342 } else {
2343 /* It's a leaf. Move records. */
2344 union xfs_btree_rec *lrp; /* left record pointer */
2345
2346 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2347 rrp = xfs_btree_rec_addr(cur, 1, right);
2348
2349 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2350 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2351
2352 ASSERT(cur->bc_ops->recs_inorder(cur,
2353 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2354 }
2355
2356 xfs_btree_set_numrecs(left, lrecs);
2357 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2358
2359 xfs_btree_set_numrecs(right, rrecs);
2360 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2361
2362 /*
2363 * Slide the contents of right down one entry.
2364 */
2365 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2366 if (level > 0) {
2367 /* It's a nonleaf. operate on keys and ptrs */
2368 for (i = 0; i < rrecs; i++) {
2369 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2370 if (error)
2371 goto error0;
2372 }
2373
2374 xfs_btree_shift_keys(cur,
2375 xfs_btree_key_addr(cur, 2, right),
2376 -1, rrecs);
2377 xfs_btree_shift_ptrs(cur,
2378 xfs_btree_ptr_addr(cur, 2, right),
2379 -1, rrecs);
2380
2381 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2382 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2383 } else {
2384 /* It's a leaf. operate on records */
2385 xfs_btree_shift_recs(cur,
2386 xfs_btree_rec_addr(cur, 2, right),
2387 -1, rrecs);
2388 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2389 }
2390
2391 /*
2392 * Using a temporary cursor, update the parent key values of the
2393 * block on the left.
2394 */
2395 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2396 error = xfs_btree_dup_cursor(cur, &tcur);
2397 if (error)
2398 goto error0;
2399 i = xfs_btree_firstrec(tcur, level);
2400 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2401 error = -EFSCORRUPTED;
2402 goto error0;
2403 }
2404
2405 error = xfs_btree_decrement(tcur, level, &i);
2406 if (error)
2407 goto error1;
2408
2409 /* Update the parent high keys of the left block, if needed. */
2410 error = xfs_btree_update_keys(tcur, level);
2411 if (error)
2412 goto error1;
2413
2414 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2415 }
2416
2417 /* Update the parent keys of the right block. */
2418 error = xfs_btree_update_keys(cur, level);
2419 if (error)
2420 goto error0;
2421
2422 /* Slide the cursor value left one. */
2423 cur->bc_ptrs[level]--;
2424
2425 *stat = 1;
2426 return 0;
2427
2428out0:
2429 *stat = 0;
2430 return 0;
2431
2432error0:
2433 return error;
2434
2435error1:
2436 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2437 return error;
2438}
2439
2440/*
2441 * Move 1 record right from cur/level if possible.
2442 * Update cur to reflect the new path.
2443 */
2444STATIC int /* error */
2445xfs_btree_rshift(
2446 struct xfs_btree_cur *cur,
2447 int level,
2448 int *stat) /* success/failure */
2449{
2450 struct xfs_buf *lbp; /* left buffer pointer */
2451 struct xfs_btree_block *left; /* left btree block */
2452 struct xfs_buf *rbp; /* right buffer pointer */
2453 struct xfs_btree_block *right; /* right btree block */
2454 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2455 union xfs_btree_ptr rptr; /* right block pointer */
2456 union xfs_btree_key *rkp; /* right btree key */
2457 int rrecs; /* right record count */
2458 int lrecs; /* left record count */
2459 int error; /* error return value */
2460 int i; /* loop counter */
2461
2462 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2463 (level == cur->bc_nlevels - 1))
2464 goto out0;
2465
2466 /* Set up variables for this block as "left". */
2467 left = xfs_btree_get_block(cur, level, &lbp);
2468
2469#ifdef DEBUG
2470 error = xfs_btree_check_block(cur, left, level, lbp);
2471 if (error)
2472 goto error0;
2473#endif
2474
2475 /* If we've got no right sibling then we can't shift an entry right. */
2476 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2477 if (xfs_btree_ptr_is_null(cur, &rptr))
2478 goto out0;
2479
2480 /*
2481 * If the cursor entry is the one that would be moved, don't
2482 * do it... it's too complicated.
2483 */
2484 lrecs = xfs_btree_get_numrecs(left);
2485 if (cur->bc_ptrs[level] >= lrecs)
2486 goto out0;
2487
2488 /* Set up the right neighbor as "right". */
2489 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2490 if (error)
2491 goto error0;
2492
2493 /* If it's full, it can't take another entry. */
2494 rrecs = xfs_btree_get_numrecs(right);
2495 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2496 goto out0;
2497
2498 XFS_BTREE_STATS_INC(cur, rshift);
2499 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2500
2501 /*
2502 * Make a hole at the start of the right neighbor block, then
2503 * copy the last left block entry to the hole.
2504 */
2505 if (level > 0) {
2506 /* It's a nonleaf. make a hole in the keys and ptrs */
2507 union xfs_btree_key *lkp;
2508 union xfs_btree_ptr *lpp;
2509 union xfs_btree_ptr *rpp;
2510
2511 lkp = xfs_btree_key_addr(cur, lrecs, left);
2512 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2513 rkp = xfs_btree_key_addr(cur, 1, right);
2514 rpp = xfs_btree_ptr_addr(cur, 1, right);
2515
2516 for (i = rrecs - 1; i >= 0; i--) {
2517 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2518 if (error)
2519 goto error0;
2520 }
2521
2522 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2523 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2524
2525 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2526 if (error)
2527 goto error0;
2528
2529 /* Now put the new data in, and log it. */
2530 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2531 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2532
2533 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2534 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2535
2536 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2537 xfs_btree_key_addr(cur, 2, right)));
2538 } else {
2539 /* It's a leaf. make a hole in the records */
2540 union xfs_btree_rec *lrp;
2541 union xfs_btree_rec *rrp;
2542
2543 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2544 rrp = xfs_btree_rec_addr(cur, 1, right);
2545
2546 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2547
2548 /* Now put the new data in, and log it. */
2549 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2550 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2551 }
2552
2553 /*
2554 * Decrement and log left's numrecs, bump and log right's numrecs.
2555 */
2556 xfs_btree_set_numrecs(left, --lrecs);
2557 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2558
2559 xfs_btree_set_numrecs(right, ++rrecs);
2560 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2561
2562 /*
2563 * Using a temporary cursor, update the parent key values of the
2564 * block on the right.
2565 */
2566 error = xfs_btree_dup_cursor(cur, &tcur);
2567 if (error)
2568 goto error0;
2569 i = xfs_btree_lastrec(tcur, level);
2570 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2571 error = -EFSCORRUPTED;
2572 goto error0;
2573 }
2574
2575 error = xfs_btree_increment(tcur, level, &i);
2576 if (error)
2577 goto error1;
2578
2579 /* Update the parent high keys of the left block, if needed. */
2580 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2581 error = xfs_btree_update_keys(cur, level);
2582 if (error)
2583 goto error1;
2584 }
2585
2586 /* Update the parent keys of the right block. */
2587 error = xfs_btree_update_keys(tcur, level);
2588 if (error)
2589 goto error1;
2590
2591 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2592
2593 *stat = 1;
2594 return 0;
2595
2596out0:
2597 *stat = 0;
2598 return 0;
2599
2600error0:
2601 return error;
2602
2603error1:
2604 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2605 return error;
2606}
2607
2608/*
2609 * Split cur/level block in half.
2610 * Return new block number and the key to its first
2611 * record (to be inserted into parent).
2612 */
2613STATIC int /* error */
2614__xfs_btree_split(
2615 struct xfs_btree_cur *cur,
2616 int level,
2617 union xfs_btree_ptr *ptrp,
2618 union xfs_btree_key *key,
2619 struct xfs_btree_cur **curp,
2620 int *stat) /* success/failure */
2621{
2622 union xfs_btree_ptr lptr; /* left sibling block ptr */
2623 struct xfs_buf *lbp; /* left buffer pointer */
2624 struct xfs_btree_block *left; /* left btree block */
2625 union xfs_btree_ptr rptr; /* right sibling block ptr */
2626 struct xfs_buf *rbp; /* right buffer pointer */
2627 struct xfs_btree_block *right; /* right btree block */
2628 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2629 struct xfs_buf *rrbp; /* right-right buffer pointer */
2630 struct xfs_btree_block *rrblock; /* right-right btree block */
2631 int lrecs;
2632 int rrecs;
2633 int src_index;
2634 int error; /* error return value */
2635 int i;
2636
2637 XFS_BTREE_STATS_INC(cur, split);
2638
2639 /* Set up left block (current one). */
2640 left = xfs_btree_get_block(cur, level, &lbp);
2641
2642#ifdef DEBUG
2643 error = xfs_btree_check_block(cur, left, level, lbp);
2644 if (error)
2645 goto error0;
2646#endif
2647
2648 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2649
2650 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2651 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2652 if (error)
2653 goto error0;
2654 if (*stat == 0)
2655 goto out0;
2656 XFS_BTREE_STATS_INC(cur, alloc);
2657
2658 /* Set up the new block as "right". */
2659 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2660 if (error)
2661 goto error0;
2662
2663 /* Fill in the btree header for the new right block. */
2664 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2665
2666 /*
2667 * Split the entries between the old and the new block evenly.
2668 * Make sure that if there's an odd number of entries now, that
2669 * each new block will have the same number of entries.
2670 */
2671 lrecs = xfs_btree_get_numrecs(left);
2672 rrecs = lrecs / 2;
2673 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2674 rrecs++;
2675 src_index = (lrecs - rrecs + 1);
2676
2677 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2678
2679 /* Adjust numrecs for the later get_*_keys() calls. */
2680 lrecs -= rrecs;
2681 xfs_btree_set_numrecs(left, lrecs);
2682 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2683
2684 /*
2685 * Copy btree block entries from the left block over to the
2686 * new block, the right. Update the right block and log the
2687 * changes.
2688 */
2689 if (level > 0) {
2690 /* It's a non-leaf. Move keys and pointers. */
2691 union xfs_btree_key *lkp; /* left btree key */
2692 union xfs_btree_ptr *lpp; /* left address pointer */
2693 union xfs_btree_key *rkp; /* right btree key */
2694 union xfs_btree_ptr *rpp; /* right address pointer */
2695
2696 lkp = xfs_btree_key_addr(cur, src_index, left);
2697 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2698 rkp = xfs_btree_key_addr(cur, 1, right);
2699 rpp = xfs_btree_ptr_addr(cur, 1, right);
2700
2701 for (i = src_index; i < rrecs; i++) {
2702 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2703 if (error)
2704 goto error0;
2705 }
2706
2707 /* Copy the keys & pointers to the new block. */
2708 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2709 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2710
2711 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2712 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2713
2714 /* Stash the keys of the new block for later insertion. */
2715 xfs_btree_get_node_keys(cur, right, key);
2716 } else {
2717 /* It's a leaf. Move records. */
2718 union xfs_btree_rec *lrp; /* left record pointer */
2719 union xfs_btree_rec *rrp; /* right record pointer */
2720
2721 lrp = xfs_btree_rec_addr(cur, src_index, left);
2722 rrp = xfs_btree_rec_addr(cur, 1, right);
2723
2724 /* Copy records to the new block. */
2725 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2726 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2727
2728 /* Stash the keys of the new block for later insertion. */
2729 xfs_btree_get_leaf_keys(cur, right, key);
2730 }
2731
2732 /*
2733 * Find the left block number by looking in the buffer.
2734 * Adjust sibling pointers.
2735 */
2736 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2737 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2738 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2739 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2740
2741 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2742 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2743
2744 /*
2745 * If there's a block to the new block's right, make that block
2746 * point back to right instead of to left.
2747 */
2748 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2749 error = xfs_btree_read_buf_block(cur, &rrptr,
2750 0, &rrblock, &rrbp);
2751 if (error)
2752 goto error0;
2753 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2754 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2755 }
2756
2757 /* Update the parent high keys of the left block, if needed. */
2758 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2759 error = xfs_btree_update_keys(cur, level);
2760 if (error)
2761 goto error0;
2762 }
2763
2764 /*
2765 * If the cursor is really in the right block, move it there.
2766 * If it's just pointing past the last entry in left, then we'll
2767 * insert there, so don't change anything in that case.
2768 */
2769 if (cur->bc_ptrs[level] > lrecs + 1) {
2770 xfs_btree_setbuf(cur, level, rbp);
2771 cur->bc_ptrs[level] -= lrecs;
2772 }
2773 /*
2774 * If there are more levels, we'll need another cursor which refers
2775 * the right block, no matter where this cursor was.
2776 */
2777 if (level + 1 < cur->bc_nlevels) {
2778 error = xfs_btree_dup_cursor(cur, curp);
2779 if (error)
2780 goto error0;
2781 (*curp)->bc_ptrs[level + 1]++;
2782 }
2783 *ptrp = rptr;
2784 *stat = 1;
2785 return 0;
2786out0:
2787 *stat = 0;
2788 return 0;
2789
2790error0:
2791 return error;
2792}
2793
2794struct xfs_btree_split_args {
2795 struct xfs_btree_cur *cur;
2796 int level;
2797 union xfs_btree_ptr *ptrp;
2798 union xfs_btree_key *key;
2799 struct xfs_btree_cur **curp;
2800 int *stat; /* success/failure */
2801 int result;
2802 bool kswapd; /* allocation in kswapd context */
2803 struct completion *done;
2804 struct work_struct work;
2805};
2806
2807/*
2808 * Stack switching interfaces for allocation
2809 */
2810static void
2811xfs_btree_split_worker(
2812 struct work_struct *work)
2813{
2814 struct xfs_btree_split_args *args = container_of(work,
2815 struct xfs_btree_split_args, work);
2816 unsigned long pflags;
2817 unsigned long new_pflags = PF_MEMALLOC_NOFS;
2818
2819 /*
2820 * we are in a transaction context here, but may also be doing work
2821 * in kswapd context, and hence we may need to inherit that state
2822 * temporarily to ensure that we don't block waiting for memory reclaim
2823 * in any way.
2824 */
2825 if (args->kswapd)
2826 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2827
2828 current_set_flags_nested(&pflags, new_pflags);
2829
2830 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2831 args->key, args->curp, args->stat);
2832 complete(args->done);
2833
2834 current_restore_flags_nested(&pflags, new_pflags);
2835}
2836
2837/*
2838 * BMBT split requests often come in with little stack to work on. Push
2839 * them off to a worker thread so there is lots of stack to use. For the other
2840 * btree types, just call directly to avoid the context switch overhead here.
2841 */
2842STATIC int /* error */
2843xfs_btree_split(
2844 struct xfs_btree_cur *cur,
2845 int level,
2846 union xfs_btree_ptr *ptrp,
2847 union xfs_btree_key *key,
2848 struct xfs_btree_cur **curp,
2849 int *stat) /* success/failure */
2850{
2851 struct xfs_btree_split_args args;
2852 DECLARE_COMPLETION_ONSTACK(done);
2853
2854 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2855 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2856
2857 args.cur = cur;
2858 args.level = level;
2859 args.ptrp = ptrp;
2860 args.key = key;
2861 args.curp = curp;
2862 args.stat = stat;
2863 args.done = &done;
2864 args.kswapd = current_is_kswapd();
2865 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2866 queue_work(xfs_alloc_wq, &args.work);
2867 wait_for_completion(&done);
2868 destroy_work_on_stack(&args.work);
2869 return args.result;
2870}
2871
2872
2873/*
2874 * Copy the old inode root contents into a real block and make the
2875 * broot point to it.
2876 */
2877int /* error */
2878xfs_btree_new_iroot(
2879 struct xfs_btree_cur *cur, /* btree cursor */
2880 int *logflags, /* logging flags for inode */
2881 int *stat) /* return status - 0 fail */
2882{
2883 struct xfs_buf *cbp; /* buffer for cblock */
2884 struct xfs_btree_block *block; /* btree block */
2885 struct xfs_btree_block *cblock; /* child btree block */
2886 union xfs_btree_key *ckp; /* child key pointer */
2887 union xfs_btree_ptr *cpp; /* child ptr pointer */
2888 union xfs_btree_key *kp; /* pointer to btree key */
2889 union xfs_btree_ptr *pp; /* pointer to block addr */
2890 union xfs_btree_ptr nptr; /* new block addr */
2891 int level; /* btree level */
2892 int error; /* error return code */
2893 int i; /* loop counter */
2894
2895 XFS_BTREE_STATS_INC(cur, newroot);
2896
2897 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2898
2899 level = cur->bc_nlevels - 1;
2900
2901 block = xfs_btree_get_iroot(cur);
2902 pp = xfs_btree_ptr_addr(cur, 1, block);
2903
2904 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2905 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2906 if (error)
2907 goto error0;
2908 if (*stat == 0)
2909 return 0;
2910
2911 XFS_BTREE_STATS_INC(cur, alloc);
2912
2913 /* Copy the root into a real block. */
2914 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2915 if (error)
2916 goto error0;
2917
2918 /*
2919 * we can't just memcpy() the root in for CRC enabled btree blocks.
2920 * In that case have to also ensure the blkno remains correct
2921 */
2922 memcpy(cblock, block, xfs_btree_block_len(cur));
2923 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2924 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2925 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2926 else
2927 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2928 }
2929
2930 be16_add_cpu(&block->bb_level, 1);
2931 xfs_btree_set_numrecs(block, 1);
2932 cur->bc_nlevels++;
2933 cur->bc_ptrs[level + 1] = 1;
2934
2935 kp = xfs_btree_key_addr(cur, 1, block);
2936 ckp = xfs_btree_key_addr(cur, 1, cblock);
2937 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2938
2939 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2940 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2941 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2942 if (error)
2943 goto error0;
2944 }
2945
2946 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2947
2948 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2949 if (error)
2950 goto error0;
2951
2952 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2953
2954 xfs_iroot_realloc(cur->bc_ino.ip,
2955 1 - xfs_btree_get_numrecs(cblock),
2956 cur->bc_ino.whichfork);
2957
2958 xfs_btree_setbuf(cur, level, cbp);
2959
2960 /*
2961 * Do all this logging at the end so that
2962 * the root is at the right level.
2963 */
2964 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2965 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2966 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2967
2968 *logflags |=
2969 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
2970 *stat = 1;
2971 return 0;
2972error0:
2973 return error;
2974}
2975
2976/*
2977 * Allocate a new root block, fill it in.
2978 */
2979STATIC int /* error */
2980xfs_btree_new_root(
2981 struct xfs_btree_cur *cur, /* btree cursor */
2982 int *stat) /* success/failure */
2983{
2984 struct xfs_btree_block *block; /* one half of the old root block */
2985 struct xfs_buf *bp; /* buffer containing block */
2986 int error; /* error return value */
2987 struct xfs_buf *lbp; /* left buffer pointer */
2988 struct xfs_btree_block *left; /* left btree block */
2989 struct xfs_buf *nbp; /* new (root) buffer */
2990 struct xfs_btree_block *new; /* new (root) btree block */
2991 int nptr; /* new value for key index, 1 or 2 */
2992 struct xfs_buf *rbp; /* right buffer pointer */
2993 struct xfs_btree_block *right; /* right btree block */
2994 union xfs_btree_ptr rptr;
2995 union xfs_btree_ptr lptr;
2996
2997 XFS_BTREE_STATS_INC(cur, newroot);
2998
2999 /* initialise our start point from the cursor */
3000 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3001
3002 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3003 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3004 if (error)
3005 goto error0;
3006 if (*stat == 0)
3007 goto out0;
3008 XFS_BTREE_STATS_INC(cur, alloc);
3009
3010 /* Set up the new block. */
3011 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3012 if (error)
3013 goto error0;
3014
3015 /* Set the root in the holding structure increasing the level by 1. */
3016 cur->bc_ops->set_root(cur, &lptr, 1);
3017
3018 /*
3019 * At the previous root level there are now two blocks: the old root,
3020 * and the new block generated when it was split. We don't know which
3021 * one the cursor is pointing at, so we set up variables "left" and
3022 * "right" for each case.
3023 */
3024 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3025
3026#ifdef DEBUG
3027 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3028 if (error)
3029 goto error0;
3030#endif
3031
3032 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3033 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3034 /* Our block is left, pick up the right block. */
3035 lbp = bp;
3036 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3037 left = block;
3038 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3039 if (error)
3040 goto error0;
3041 bp = rbp;
3042 nptr = 1;
3043 } else {
3044 /* Our block is right, pick up the left block. */
3045 rbp = bp;
3046 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3047 right = block;
3048 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3049 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3050 if (error)
3051 goto error0;
3052 bp = lbp;
3053 nptr = 2;
3054 }
3055
3056 /* Fill in the new block's btree header and log it. */
3057 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3058 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3059 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3060 !xfs_btree_ptr_is_null(cur, &rptr));
3061
3062 /* Fill in the key data in the new root. */
3063 if (xfs_btree_get_level(left) > 0) {
3064 /*
3065 * Get the keys for the left block's keys and put them directly
3066 * in the parent block. Do the same for the right block.
3067 */
3068 xfs_btree_get_node_keys(cur, left,
3069 xfs_btree_key_addr(cur, 1, new));
3070 xfs_btree_get_node_keys(cur, right,
3071 xfs_btree_key_addr(cur, 2, new));
3072 } else {
3073 /*
3074 * Get the keys for the left block's records and put them
3075 * directly in the parent block. Do the same for the right
3076 * block.
3077 */
3078 xfs_btree_get_leaf_keys(cur, left,
3079 xfs_btree_key_addr(cur, 1, new));
3080 xfs_btree_get_leaf_keys(cur, right,
3081 xfs_btree_key_addr(cur, 2, new));
3082 }
3083 xfs_btree_log_keys(cur, nbp, 1, 2);
3084
3085 /* Fill in the pointer data in the new root. */
3086 xfs_btree_copy_ptrs(cur,
3087 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3088 xfs_btree_copy_ptrs(cur,
3089 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3090 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3091
3092 /* Fix up the cursor. */
3093 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3094 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3095 cur->bc_nlevels++;
3096 *stat = 1;
3097 return 0;
3098error0:
3099 return error;
3100out0:
3101 *stat = 0;
3102 return 0;
3103}
3104
3105STATIC int
3106xfs_btree_make_block_unfull(
3107 struct xfs_btree_cur *cur, /* btree cursor */
3108 int level, /* btree level */
3109 int numrecs,/* # of recs in block */
3110 int *oindex,/* old tree index */
3111 int *index, /* new tree index */
3112 union xfs_btree_ptr *nptr, /* new btree ptr */
3113 struct xfs_btree_cur **ncur, /* new btree cursor */
3114 union xfs_btree_key *key, /* key of new block */
3115 int *stat)
3116{
3117 int error = 0;
3118
3119 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3120 level == cur->bc_nlevels - 1) {
3121 struct xfs_inode *ip = cur->bc_ino.ip;
3122
3123 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3124 /* A root block that can be made bigger. */
3125 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3126 *stat = 1;
3127 } else {
3128 /* A root block that needs replacing */
3129 int logflags = 0;
3130
3131 error = xfs_btree_new_iroot(cur, &logflags, stat);
3132 if (error || *stat == 0)
3133 return error;
3134
3135 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3136 }
3137
3138 return 0;
3139 }
3140
3141 /* First, try shifting an entry to the right neighbor. */
3142 error = xfs_btree_rshift(cur, level, stat);
3143 if (error || *stat)
3144 return error;
3145
3146 /* Next, try shifting an entry to the left neighbor. */
3147 error = xfs_btree_lshift(cur, level, stat);
3148 if (error)
3149 return error;
3150
3151 if (*stat) {
3152 *oindex = *index = cur->bc_ptrs[level];
3153 return 0;
3154 }
3155
3156 /*
3157 * Next, try splitting the current block in half.
3158 *
3159 * If this works we have to re-set our variables because we
3160 * could be in a different block now.
3161 */
3162 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3163 if (error || *stat == 0)
3164 return error;
3165
3166
3167 *index = cur->bc_ptrs[level];
3168 return 0;
3169}
3170
3171/*
3172 * Insert one record/level. Return information to the caller
3173 * allowing the next level up to proceed if necessary.
3174 */
3175STATIC int
3176xfs_btree_insrec(
3177 struct xfs_btree_cur *cur, /* btree cursor */
3178 int level, /* level to insert record at */
3179 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3180 union xfs_btree_rec *rec, /* record to insert */
3181 union xfs_btree_key *key, /* i/o: block key for ptrp */
3182 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3183 int *stat) /* success/failure */
3184{
3185 struct xfs_btree_block *block; /* btree block */
3186 struct xfs_buf *bp; /* buffer for block */
3187 union xfs_btree_ptr nptr; /* new block ptr */
3188 struct xfs_btree_cur *ncur; /* new btree cursor */
3189 union xfs_btree_key nkey; /* new block key */
3190 union xfs_btree_key *lkey;
3191 int optr; /* old key/record index */
3192 int ptr; /* key/record index */
3193 int numrecs;/* number of records */
3194 int error; /* error return value */
3195 int i;
3196 xfs_daddr_t old_bn;
3197
3198 ncur = NULL;
3199 lkey = &nkey;
3200
3201 /*
3202 * If we have an external root pointer, and we've made it to the
3203 * root level, allocate a new root block and we're done.
3204 */
3205 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3206 (level >= cur->bc_nlevels)) {
3207 error = xfs_btree_new_root(cur, stat);
3208 xfs_btree_set_ptr_null(cur, ptrp);
3209
3210 return error;
3211 }
3212
3213 /* If we're off the left edge, return failure. */
3214 ptr = cur->bc_ptrs[level];
3215 if (ptr == 0) {
3216 *stat = 0;
3217 return 0;
3218 }
3219
3220 optr = ptr;
3221
3222 XFS_BTREE_STATS_INC(cur, insrec);
3223
3224 /* Get pointers to the btree buffer and block. */
3225 block = xfs_btree_get_block(cur, level, &bp);
3226 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3227 numrecs = xfs_btree_get_numrecs(block);
3228
3229#ifdef DEBUG
3230 error = xfs_btree_check_block(cur, block, level, bp);
3231 if (error)
3232 goto error0;
3233
3234 /* Check that the new entry is being inserted in the right place. */
3235 if (ptr <= numrecs) {
3236 if (level == 0) {
3237 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3238 xfs_btree_rec_addr(cur, ptr, block)));
3239 } else {
3240 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3241 xfs_btree_key_addr(cur, ptr, block)));
3242 }
3243 }
3244#endif
3245
3246 /*
3247 * If the block is full, we can't insert the new entry until we
3248 * make the block un-full.
3249 */
3250 xfs_btree_set_ptr_null(cur, &nptr);
3251 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3252 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3253 &optr, &ptr, &nptr, &ncur, lkey, stat);
3254 if (error || *stat == 0)
3255 goto error0;
3256 }
3257
3258 /*
3259 * The current block may have changed if the block was
3260 * previously full and we have just made space in it.
3261 */
3262 block = xfs_btree_get_block(cur, level, &bp);
3263 numrecs = xfs_btree_get_numrecs(block);
3264
3265#ifdef DEBUG
3266 error = xfs_btree_check_block(cur, block, level, bp);
3267 if (error)
3268 return error;
3269#endif
3270
3271 /*
3272 * At this point we know there's room for our new entry in the block
3273 * we're pointing at.
3274 */
3275 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3276
3277 if (level > 0) {
3278 /* It's a nonleaf. make a hole in the keys and ptrs */
3279 union xfs_btree_key *kp;
3280 union xfs_btree_ptr *pp;
3281
3282 kp = xfs_btree_key_addr(cur, ptr, block);
3283 pp = xfs_btree_ptr_addr(cur, ptr, block);
3284
3285 for (i = numrecs - ptr; i >= 0; i--) {
3286 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3287 if (error)
3288 return error;
3289 }
3290
3291 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3292 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3293
3294 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3295 if (error)
3296 goto error0;
3297
3298 /* Now put the new data in, bump numrecs and log it. */
3299 xfs_btree_copy_keys(cur, kp, key, 1);
3300 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3301 numrecs++;
3302 xfs_btree_set_numrecs(block, numrecs);
3303 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3304 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3305#ifdef DEBUG
3306 if (ptr < numrecs) {
3307 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3308 xfs_btree_key_addr(cur, ptr + 1, block)));
3309 }
3310#endif
3311 } else {
3312 /* It's a leaf. make a hole in the records */
3313 union xfs_btree_rec *rp;
3314
3315 rp = xfs_btree_rec_addr(cur, ptr, block);
3316
3317 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3318
3319 /* Now put the new data in, bump numrecs and log it. */
3320 xfs_btree_copy_recs(cur, rp, rec, 1);
3321 xfs_btree_set_numrecs(block, ++numrecs);
3322 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3323#ifdef DEBUG
3324 if (ptr < numrecs) {
3325 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3326 xfs_btree_rec_addr(cur, ptr + 1, block)));
3327 }
3328#endif
3329 }
3330
3331 /* Log the new number of records in the btree header. */
3332 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3333
3334 /*
3335 * If we just inserted into a new tree block, we have to
3336 * recalculate nkey here because nkey is out of date.
3337 *
3338 * Otherwise we're just updating an existing block (having shoved
3339 * some records into the new tree block), so use the regular key
3340 * update mechanism.
3341 */
3342 if (bp && bp->b_bn != old_bn) {
3343 xfs_btree_get_keys(cur, block, lkey);
3344 } else if (xfs_btree_needs_key_update(cur, optr)) {
3345 error = xfs_btree_update_keys(cur, level);
3346 if (error)
3347 goto error0;
3348 }
3349
3350 /*
3351 * If we are tracking the last record in the tree and
3352 * we are at the far right edge of the tree, update it.
3353 */
3354 if (xfs_btree_is_lastrec(cur, block, level)) {
3355 cur->bc_ops->update_lastrec(cur, block, rec,
3356 ptr, LASTREC_INSREC);
3357 }
3358
3359 /*
3360 * Return the new block number, if any.
3361 * If there is one, give back a record value and a cursor too.
3362 */
3363 *ptrp = nptr;
3364 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3365 xfs_btree_copy_keys(cur, key, lkey, 1);
3366 *curp = ncur;
3367 }
3368
3369 *stat = 1;
3370 return 0;
3371
3372error0:
3373 return error;
3374}
3375
3376/*
3377 * Insert the record at the point referenced by cur.
3378 *
3379 * A multi-level split of the tree on insert will invalidate the original
3380 * cursor. All callers of this function should assume that the cursor is
3381 * no longer valid and revalidate it.
3382 */
3383int
3384xfs_btree_insert(
3385 struct xfs_btree_cur *cur,
3386 int *stat)
3387{
3388 int error; /* error return value */
3389 int i; /* result value, 0 for failure */
3390 int level; /* current level number in btree */
3391 union xfs_btree_ptr nptr; /* new block number (split result) */
3392 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3393 struct xfs_btree_cur *pcur; /* previous level's cursor */
3394 union xfs_btree_key bkey; /* key of block to insert */
3395 union xfs_btree_key *key;
3396 union xfs_btree_rec rec; /* record to insert */
3397
3398 level = 0;
3399 ncur = NULL;
3400 pcur = cur;
3401 key = &bkey;
3402
3403 xfs_btree_set_ptr_null(cur, &nptr);
3404
3405 /* Make a key out of the record data to be inserted, and save it. */
3406 cur->bc_ops->init_rec_from_cur(cur, &rec);
3407 cur->bc_ops->init_key_from_rec(key, &rec);
3408
3409 /*
3410 * Loop going up the tree, starting at the leaf level.
3411 * Stop when we don't get a split block, that must mean that
3412 * the insert is finished with this level.
3413 */
3414 do {
3415 /*
3416 * Insert nrec/nptr into this level of the tree.
3417 * Note if we fail, nptr will be null.
3418 */
3419 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3420 &ncur, &i);
3421 if (error) {
3422 if (pcur != cur)
3423 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3424 goto error0;
3425 }
3426
3427 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3428 error = -EFSCORRUPTED;
3429 goto error0;
3430 }
3431 level++;
3432
3433 /*
3434 * See if the cursor we just used is trash.
3435 * Can't trash the caller's cursor, but otherwise we should
3436 * if ncur is a new cursor or we're about to be done.
3437 */
3438 if (pcur != cur &&
3439 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3440 /* Save the state from the cursor before we trash it */
3441 if (cur->bc_ops->update_cursor)
3442 cur->bc_ops->update_cursor(pcur, cur);
3443 cur->bc_nlevels = pcur->bc_nlevels;
3444 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3445 }
3446 /* If we got a new cursor, switch to it. */
3447 if (ncur) {
3448 pcur = ncur;
3449 ncur = NULL;
3450 }
3451 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3452
3453 *stat = i;
3454 return 0;
3455error0:
3456 return error;
3457}
3458
3459/*
3460 * Try to merge a non-leaf block back into the inode root.
3461 *
3462 * Note: the killroot names comes from the fact that we're effectively
3463 * killing the old root block. But because we can't just delete the
3464 * inode we have to copy the single block it was pointing to into the
3465 * inode.
3466 */
3467STATIC int
3468xfs_btree_kill_iroot(
3469 struct xfs_btree_cur *cur)
3470{
3471 int whichfork = cur->bc_ino.whichfork;
3472 struct xfs_inode *ip = cur->bc_ino.ip;
3473 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3474 struct xfs_btree_block *block;
3475 struct xfs_btree_block *cblock;
3476 union xfs_btree_key *kp;
3477 union xfs_btree_key *ckp;
3478 union xfs_btree_ptr *pp;
3479 union xfs_btree_ptr *cpp;
3480 struct xfs_buf *cbp;
3481 int level;
3482 int index;
3483 int numrecs;
3484 int error;
3485#ifdef DEBUG
3486 union xfs_btree_ptr ptr;
3487#endif
3488 int i;
3489
3490 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3491 ASSERT(cur->bc_nlevels > 1);
3492
3493 /*
3494 * Don't deal with the root block needs to be a leaf case.
3495 * We're just going to turn the thing back into extents anyway.
3496 */
3497 level = cur->bc_nlevels - 1;
3498 if (level == 1)
3499 goto out0;
3500
3501 /*
3502 * Give up if the root has multiple children.
3503 */
3504 block = xfs_btree_get_iroot(cur);
3505 if (xfs_btree_get_numrecs(block) != 1)
3506 goto out0;
3507
3508 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3509 numrecs = xfs_btree_get_numrecs(cblock);
3510
3511 /*
3512 * Only do this if the next level will fit.
3513 * Then the data must be copied up to the inode,
3514 * instead of freeing the root you free the next level.
3515 */
3516 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3517 goto out0;
3518
3519 XFS_BTREE_STATS_INC(cur, killroot);
3520
3521#ifdef DEBUG
3522 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3523 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3524 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3525 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3526#endif
3527
3528 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3529 if (index) {
3530 xfs_iroot_realloc(cur->bc_ino.ip, index,
3531 cur->bc_ino.whichfork);
3532 block = ifp->if_broot;
3533 }
3534
3535 be16_add_cpu(&block->bb_numrecs, index);
3536 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3537
3538 kp = xfs_btree_key_addr(cur, 1, block);
3539 ckp = xfs_btree_key_addr(cur, 1, cblock);
3540 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3541
3542 pp = xfs_btree_ptr_addr(cur, 1, block);
3543 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3544
3545 for (i = 0; i < numrecs; i++) {
3546 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3547 if (error)
3548 return error;
3549 }
3550
3551 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3552
3553 error = xfs_btree_free_block(cur, cbp);
3554 if (error)
3555 return error;
3556
3557 cur->bc_bufs[level - 1] = NULL;
3558 be16_add_cpu(&block->bb_level, -1);
3559 xfs_trans_log_inode(cur->bc_tp, ip,
3560 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3561 cur->bc_nlevels--;
3562out0:
3563 return 0;
3564}
3565
3566/*
3567 * Kill the current root node, and replace it with it's only child node.
3568 */
3569STATIC int
3570xfs_btree_kill_root(
3571 struct xfs_btree_cur *cur,
3572 struct xfs_buf *bp,
3573 int level,
3574 union xfs_btree_ptr *newroot)
3575{
3576 int error;
3577
3578 XFS_BTREE_STATS_INC(cur, killroot);
3579
3580 /*
3581 * Update the root pointer, decreasing the level by 1 and then
3582 * free the old root.
3583 */
3584 cur->bc_ops->set_root(cur, newroot, -1);
3585
3586 error = xfs_btree_free_block(cur, bp);
3587 if (error)
3588 return error;
3589
3590 cur->bc_bufs[level] = NULL;
3591 cur->bc_ra[level] = 0;
3592 cur->bc_nlevels--;
3593
3594 return 0;
3595}
3596
3597STATIC int
3598xfs_btree_dec_cursor(
3599 struct xfs_btree_cur *cur,
3600 int level,
3601 int *stat)
3602{
3603 int error;
3604 int i;
3605
3606 if (level > 0) {
3607 error = xfs_btree_decrement(cur, level, &i);
3608 if (error)
3609 return error;
3610 }
3611
3612 *stat = 1;
3613 return 0;
3614}
3615
3616/*
3617 * Single level of the btree record deletion routine.
3618 * Delete record pointed to by cur/level.
3619 * Remove the record from its block then rebalance the tree.
3620 * Return 0 for error, 1 for done, 2 to go on to the next level.
3621 */
3622STATIC int /* error */
3623xfs_btree_delrec(
3624 struct xfs_btree_cur *cur, /* btree cursor */
3625 int level, /* level removing record from */
3626 int *stat) /* fail/done/go-on */
3627{
3628 struct xfs_btree_block *block; /* btree block */
3629 union xfs_btree_ptr cptr; /* current block ptr */
3630 struct xfs_buf *bp; /* buffer for block */
3631 int error; /* error return value */
3632 int i; /* loop counter */
3633 union xfs_btree_ptr lptr; /* left sibling block ptr */
3634 struct xfs_buf *lbp; /* left buffer pointer */
3635 struct xfs_btree_block *left; /* left btree block */
3636 int lrecs = 0; /* left record count */
3637 int ptr; /* key/record index */
3638 union xfs_btree_ptr rptr; /* right sibling block ptr */
3639 struct xfs_buf *rbp; /* right buffer pointer */
3640 struct xfs_btree_block *right; /* right btree block */
3641 struct xfs_btree_block *rrblock; /* right-right btree block */
3642 struct xfs_buf *rrbp; /* right-right buffer pointer */
3643 int rrecs = 0; /* right record count */
3644 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3645 int numrecs; /* temporary numrec count */
3646
3647 tcur = NULL;
3648
3649 /* Get the index of the entry being deleted, check for nothing there. */
3650 ptr = cur->bc_ptrs[level];
3651 if (ptr == 0) {
3652 *stat = 0;
3653 return 0;
3654 }
3655
3656 /* Get the buffer & block containing the record or key/ptr. */
3657 block = xfs_btree_get_block(cur, level, &bp);
3658 numrecs = xfs_btree_get_numrecs(block);
3659
3660#ifdef DEBUG
3661 error = xfs_btree_check_block(cur, block, level, bp);
3662 if (error)
3663 goto error0;
3664#endif
3665
3666 /* Fail if we're off the end of the block. */
3667 if (ptr > numrecs) {
3668 *stat = 0;
3669 return 0;
3670 }
3671
3672 XFS_BTREE_STATS_INC(cur, delrec);
3673 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3674
3675 /* Excise the entries being deleted. */
3676 if (level > 0) {
3677 /* It's a nonleaf. operate on keys and ptrs */
3678 union xfs_btree_key *lkp;
3679 union xfs_btree_ptr *lpp;
3680
3681 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3682 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3683
3684 for (i = 0; i < numrecs - ptr; i++) {
3685 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3686 if (error)
3687 goto error0;
3688 }
3689
3690 if (ptr < numrecs) {
3691 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3692 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3693 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3694 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3695 }
3696 } else {
3697 /* It's a leaf. operate on records */
3698 if (ptr < numrecs) {
3699 xfs_btree_shift_recs(cur,
3700 xfs_btree_rec_addr(cur, ptr + 1, block),
3701 -1, numrecs - ptr);
3702 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3703 }
3704 }
3705
3706 /*
3707 * Decrement and log the number of entries in the block.
3708 */
3709 xfs_btree_set_numrecs(block, --numrecs);
3710 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3711
3712 /*
3713 * If we are tracking the last record in the tree and
3714 * we are at the far right edge of the tree, update it.
3715 */
3716 if (xfs_btree_is_lastrec(cur, block, level)) {
3717 cur->bc_ops->update_lastrec(cur, block, NULL,
3718 ptr, LASTREC_DELREC);
3719 }
3720
3721 /*
3722 * We're at the root level. First, shrink the root block in-memory.
3723 * Try to get rid of the next level down. If we can't then there's
3724 * nothing left to do.
3725 */
3726 if (level == cur->bc_nlevels - 1) {
3727 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3728 xfs_iroot_realloc(cur->bc_ino.ip, -1,
3729 cur->bc_ino.whichfork);
3730
3731 error = xfs_btree_kill_iroot(cur);
3732 if (error)
3733 goto error0;
3734
3735 error = xfs_btree_dec_cursor(cur, level, stat);
3736 if (error)
3737 goto error0;
3738 *stat = 1;
3739 return 0;
3740 }
3741
3742 /*
3743 * If this is the root level, and there's only one entry left,
3744 * and it's NOT the leaf level, then we can get rid of this
3745 * level.
3746 */
3747 if (numrecs == 1 && level > 0) {
3748 union xfs_btree_ptr *pp;
3749 /*
3750 * pp is still set to the first pointer in the block.
3751 * Make it the new root of the btree.
3752 */
3753 pp = xfs_btree_ptr_addr(cur, 1, block);
3754 error = xfs_btree_kill_root(cur, bp, level, pp);
3755 if (error)
3756 goto error0;
3757 } else if (level > 0) {
3758 error = xfs_btree_dec_cursor(cur, level, stat);
3759 if (error)
3760 goto error0;
3761 }
3762 *stat = 1;
3763 return 0;
3764 }
3765
3766 /*
3767 * If we deleted the leftmost entry in the block, update the
3768 * key values above us in the tree.
3769 */
3770 if (xfs_btree_needs_key_update(cur, ptr)) {
3771 error = xfs_btree_update_keys(cur, level);
3772 if (error)
3773 goto error0;
3774 }
3775
3776 /*
3777 * If the number of records remaining in the block is at least
3778 * the minimum, we're done.
3779 */
3780 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3781 error = xfs_btree_dec_cursor(cur, level, stat);
3782 if (error)
3783 goto error0;
3784 return 0;
3785 }
3786
3787 /*
3788 * Otherwise, we have to move some records around to keep the
3789 * tree balanced. Look at the left and right sibling blocks to
3790 * see if we can re-balance by moving only one record.
3791 */
3792 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3793 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3794
3795 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3796 /*
3797 * One child of root, need to get a chance to copy its contents
3798 * into the root and delete it. Can't go up to next level,
3799 * there's nothing to delete there.
3800 */
3801 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3802 xfs_btree_ptr_is_null(cur, &lptr) &&
3803 level == cur->bc_nlevels - 2) {
3804 error = xfs_btree_kill_iroot(cur);
3805 if (!error)
3806 error = xfs_btree_dec_cursor(cur, level, stat);
3807 if (error)
3808 goto error0;
3809 return 0;
3810 }
3811 }
3812
3813 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3814 !xfs_btree_ptr_is_null(cur, &lptr));
3815
3816 /*
3817 * Duplicate the cursor so our btree manipulations here won't
3818 * disrupt the next level up.
3819 */
3820 error = xfs_btree_dup_cursor(cur, &tcur);
3821 if (error)
3822 goto error0;
3823
3824 /*
3825 * If there's a right sibling, see if it's ok to shift an entry
3826 * out of it.
3827 */
3828 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3829 /*
3830 * Move the temp cursor to the last entry in the next block.
3831 * Actually any entry but the first would suffice.
3832 */
3833 i = xfs_btree_lastrec(tcur, level);
3834 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3835 error = -EFSCORRUPTED;
3836 goto error0;
3837 }
3838
3839 error = xfs_btree_increment(tcur, level, &i);
3840 if (error)
3841 goto error0;
3842 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3843 error = -EFSCORRUPTED;
3844 goto error0;
3845 }
3846
3847 i = xfs_btree_lastrec(tcur, level);
3848 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3849 error = -EFSCORRUPTED;
3850 goto error0;
3851 }
3852
3853 /* Grab a pointer to the block. */
3854 right = xfs_btree_get_block(tcur, level, &rbp);
3855#ifdef DEBUG
3856 error = xfs_btree_check_block(tcur, right, level, rbp);
3857 if (error)
3858 goto error0;
3859#endif
3860 /* Grab the current block number, for future use. */
3861 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3862
3863 /*
3864 * If right block is full enough so that removing one entry
3865 * won't make it too empty, and left-shifting an entry out
3866 * of right to us works, we're done.
3867 */
3868 if (xfs_btree_get_numrecs(right) - 1 >=
3869 cur->bc_ops->get_minrecs(tcur, level)) {
3870 error = xfs_btree_lshift(tcur, level, &i);
3871 if (error)
3872 goto error0;
3873 if (i) {
3874 ASSERT(xfs_btree_get_numrecs(block) >=
3875 cur->bc_ops->get_minrecs(tcur, level));
3876
3877 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3878 tcur = NULL;
3879
3880 error = xfs_btree_dec_cursor(cur, level, stat);
3881 if (error)
3882 goto error0;
3883 return 0;
3884 }
3885 }
3886
3887 /*
3888 * Otherwise, grab the number of records in right for
3889 * future reference, and fix up the temp cursor to point
3890 * to our block again (last record).
3891 */
3892 rrecs = xfs_btree_get_numrecs(right);
3893 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3894 i = xfs_btree_firstrec(tcur, level);
3895 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3896 error = -EFSCORRUPTED;
3897 goto error0;
3898 }
3899
3900 error = xfs_btree_decrement(tcur, level, &i);
3901 if (error)
3902 goto error0;
3903 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3904 error = -EFSCORRUPTED;
3905 goto error0;
3906 }
3907 }
3908 }
3909
3910 /*
3911 * If there's a left sibling, see if it's ok to shift an entry
3912 * out of it.
3913 */
3914 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3915 /*
3916 * Move the temp cursor to the first entry in the
3917 * previous block.
3918 */
3919 i = xfs_btree_firstrec(tcur, level);
3920 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3921 error = -EFSCORRUPTED;
3922 goto error0;
3923 }
3924
3925 error = xfs_btree_decrement(tcur, level, &i);
3926 if (error)
3927 goto error0;
3928 i = xfs_btree_firstrec(tcur, level);
3929 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3930 error = -EFSCORRUPTED;
3931 goto error0;
3932 }
3933
3934 /* Grab a pointer to the block. */
3935 left = xfs_btree_get_block(tcur, level, &lbp);
3936#ifdef DEBUG
3937 error = xfs_btree_check_block(cur, left, level, lbp);
3938 if (error)
3939 goto error0;
3940#endif
3941 /* Grab the current block number, for future use. */
3942 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3943
3944 /*
3945 * If left block is full enough so that removing one entry
3946 * won't make it too empty, and right-shifting an entry out
3947 * of left to us works, we're done.
3948 */
3949 if (xfs_btree_get_numrecs(left) - 1 >=
3950 cur->bc_ops->get_minrecs(tcur, level)) {
3951 error = xfs_btree_rshift(tcur, level, &i);
3952 if (error)
3953 goto error0;
3954 if (i) {
3955 ASSERT(xfs_btree_get_numrecs(block) >=
3956 cur->bc_ops->get_minrecs(tcur, level));
3957 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3958 tcur = NULL;
3959 if (level == 0)
3960 cur->bc_ptrs[0]++;
3961
3962 *stat = 1;
3963 return 0;
3964 }
3965 }
3966
3967 /*
3968 * Otherwise, grab the number of records in right for
3969 * future reference.
3970 */
3971 lrecs = xfs_btree_get_numrecs(left);
3972 }
3973
3974 /* Delete the temp cursor, we're done with it. */
3975 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3976 tcur = NULL;
3977
3978 /* If here, we need to do a join to keep the tree balanced. */
3979 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3980
3981 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3982 lrecs + xfs_btree_get_numrecs(block) <=
3983 cur->bc_ops->get_maxrecs(cur, level)) {
3984 /*
3985 * Set "right" to be the starting block,
3986 * "left" to be the left neighbor.
3987 */
3988 rptr = cptr;
3989 right = block;
3990 rbp = bp;
3991 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3992 if (error)
3993 goto error0;
3994
3995 /*
3996 * If that won't work, see if we can join with the right neighbor block.
3997 */
3998 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
3999 rrecs + xfs_btree_get_numrecs(block) <=
4000 cur->bc_ops->get_maxrecs(cur, level)) {
4001 /*
4002 * Set "left" to be the starting block,
4003 * "right" to be the right neighbor.
4004 */
4005 lptr = cptr;
4006 left = block;
4007 lbp = bp;
4008 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4009 if (error)
4010 goto error0;
4011
4012 /*
4013 * Otherwise, we can't fix the imbalance.
4014 * Just return. This is probably a logic error, but it's not fatal.
4015 */
4016 } else {
4017 error = xfs_btree_dec_cursor(cur, level, stat);
4018 if (error)
4019 goto error0;
4020 return 0;
4021 }
4022
4023 rrecs = xfs_btree_get_numrecs(right);
4024 lrecs = xfs_btree_get_numrecs(left);
4025
4026 /*
4027 * We're now going to join "left" and "right" by moving all the stuff
4028 * in "right" to "left" and deleting "right".
4029 */
4030 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4031 if (level > 0) {
4032 /* It's a non-leaf. Move keys and pointers. */
4033 union xfs_btree_key *lkp; /* left btree key */
4034 union xfs_btree_ptr *lpp; /* left address pointer */
4035 union xfs_btree_key *rkp; /* right btree key */
4036 union xfs_btree_ptr *rpp; /* right address pointer */
4037
4038 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4039 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4040 rkp = xfs_btree_key_addr(cur, 1, right);
4041 rpp = xfs_btree_ptr_addr(cur, 1, right);
4042
4043 for (i = 1; i < rrecs; i++) {
4044 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4045 if (error)
4046 goto error0;
4047 }
4048
4049 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4050 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4051
4052 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4053 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4054 } else {
4055 /* It's a leaf. Move records. */
4056 union xfs_btree_rec *lrp; /* left record pointer */
4057 union xfs_btree_rec *rrp; /* right record pointer */
4058
4059 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4060 rrp = xfs_btree_rec_addr(cur, 1, right);
4061
4062 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4063 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4064 }
4065
4066 XFS_BTREE_STATS_INC(cur, join);
4067
4068 /*
4069 * Fix up the number of records and right block pointer in the
4070 * surviving block, and log it.
4071 */
4072 xfs_btree_set_numrecs(left, lrecs + rrecs);
4073 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4074 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4075 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4076
4077 /* If there is a right sibling, point it to the remaining block. */
4078 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4079 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4080 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4081 if (error)
4082 goto error0;
4083 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4084 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4085 }
4086
4087 /* Free the deleted block. */
4088 error = xfs_btree_free_block(cur, rbp);
4089 if (error)
4090 goto error0;
4091
4092 /*
4093 * If we joined with the left neighbor, set the buffer in the
4094 * cursor to the left block, and fix up the index.
4095 */
4096 if (bp != lbp) {
4097 cur->bc_bufs[level] = lbp;
4098 cur->bc_ptrs[level] += lrecs;
4099 cur->bc_ra[level] = 0;
4100 }
4101 /*
4102 * If we joined with the right neighbor and there's a level above
4103 * us, increment the cursor at that level.
4104 */
4105 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4106 (level + 1 < cur->bc_nlevels)) {
4107 error = xfs_btree_increment(cur, level + 1, &i);
4108 if (error)
4109 goto error0;
4110 }
4111
4112 /*
4113 * Readjust the ptr at this level if it's not a leaf, since it's
4114 * still pointing at the deletion point, which makes the cursor
4115 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4116 * We can't use decrement because it would change the next level up.
4117 */
4118 if (level > 0)
4119 cur->bc_ptrs[level]--;
4120
4121 /*
4122 * We combined blocks, so we have to update the parent keys if the
4123 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4124 * points to the old block so that the caller knows which record to
4125 * delete. Therefore, the caller must be savvy enough to call updkeys
4126 * for us if we return stat == 2. The other exit points from this
4127 * function don't require deletions further up the tree, so they can
4128 * call updkeys directly.
4129 */
4130
4131 /* Return value means the next level up has something to do. */
4132 *stat = 2;
4133 return 0;
4134
4135error0:
4136 if (tcur)
4137 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4138 return error;
4139}
4140
4141/*
4142 * Delete the record pointed to by cur.
4143 * The cursor refers to the place where the record was (could be inserted)
4144 * when the operation returns.
4145 */
4146int /* error */
4147xfs_btree_delete(
4148 struct xfs_btree_cur *cur,
4149 int *stat) /* success/failure */
4150{
4151 int error; /* error return value */
4152 int level;
4153 int i;
4154 bool joined = false;
4155
4156 /*
4157 * Go up the tree, starting at leaf level.
4158 *
4159 * If 2 is returned then a join was done; go to the next level.
4160 * Otherwise we are done.
4161 */
4162 for (level = 0, i = 2; i == 2; level++) {
4163 error = xfs_btree_delrec(cur, level, &i);
4164 if (error)
4165 goto error0;
4166 if (i == 2)
4167 joined = true;
4168 }
4169
4170 /*
4171 * If we combined blocks as part of deleting the record, delrec won't
4172 * have updated the parent high keys so we have to do that here.
4173 */
4174 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4175 error = xfs_btree_updkeys_force(cur, 0);
4176 if (error)
4177 goto error0;
4178 }
4179
4180 if (i == 0) {
4181 for (level = 1; level < cur->bc_nlevels; level++) {
4182 if (cur->bc_ptrs[level] == 0) {
4183 error = xfs_btree_decrement(cur, level, &i);
4184 if (error)
4185 goto error0;
4186 break;
4187 }
4188 }
4189 }
4190
4191 *stat = i;
4192 return 0;
4193error0:
4194 return error;
4195}
4196
4197/*
4198 * Get the data from the pointed-to record.
4199 */
4200int /* error */
4201xfs_btree_get_rec(
4202 struct xfs_btree_cur *cur, /* btree cursor */
4203 union xfs_btree_rec **recp, /* output: btree record */
4204 int *stat) /* output: success/failure */
4205{
4206 struct xfs_btree_block *block; /* btree block */
4207 struct xfs_buf *bp; /* buffer pointer */
4208 int ptr; /* record number */
4209#ifdef DEBUG
4210 int error; /* error return value */
4211#endif
4212
4213 ptr = cur->bc_ptrs[0];
4214 block = xfs_btree_get_block(cur, 0, &bp);
4215
4216#ifdef DEBUG
4217 error = xfs_btree_check_block(cur, block, 0, bp);
4218 if (error)
4219 return error;
4220#endif
4221
4222 /*
4223 * Off the right end or left end, return failure.
4224 */
4225 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4226 *stat = 0;
4227 return 0;
4228 }
4229
4230 /*
4231 * Point to the record and extract its data.
4232 */
4233 *recp = xfs_btree_rec_addr(cur, ptr, block);
4234 *stat = 1;
4235 return 0;
4236}
4237
4238/* Visit a block in a btree. */
4239STATIC int
4240xfs_btree_visit_block(
4241 struct xfs_btree_cur *cur,
4242 int level,
4243 xfs_btree_visit_blocks_fn fn,
4244 void *data)
4245{
4246 struct xfs_btree_block *block;
4247 struct xfs_buf *bp;
4248 union xfs_btree_ptr rptr;
4249 int error;
4250
4251 /* do right sibling readahead */
4252 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4253 block = xfs_btree_get_block(cur, level, &bp);
4254
4255 /* process the block */
4256 error = fn(cur, level, data);
4257 if (error)
4258 return error;
4259
4260 /* now read rh sibling block for next iteration */
4261 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4262 if (xfs_btree_ptr_is_null(cur, &rptr))
4263 return -ENOENT;
4264
4265 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4266}
4267
4268
4269/* Visit every block in a btree. */
4270int
4271xfs_btree_visit_blocks(
4272 struct xfs_btree_cur *cur,
4273 xfs_btree_visit_blocks_fn fn,
4274 unsigned int flags,
4275 void *data)
4276{
4277 union xfs_btree_ptr lptr;
4278 int level;
4279 struct xfs_btree_block *block = NULL;
4280 int error = 0;
4281
4282 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4283
4284 /* for each level */
4285 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4286 /* grab the left hand block */
4287 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4288 if (error)
4289 return error;
4290
4291 /* readahead the left most block for the next level down */
4292 if (level > 0) {
4293 union xfs_btree_ptr *ptr;
4294
4295 ptr = xfs_btree_ptr_addr(cur, 1, block);
4296 xfs_btree_readahead_ptr(cur, ptr, 1);
4297
4298 /* save for the next iteration of the loop */
4299 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4300
4301 if (!(flags & XFS_BTREE_VISIT_LEAVES))
4302 continue;
4303 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4304 continue;
4305 }
4306
4307 /* for each buffer in the level */
4308 do {
4309 error = xfs_btree_visit_block(cur, level, fn, data);
4310 } while (!error);
4311
4312 if (error != -ENOENT)
4313 return error;
4314 }
4315
4316 return 0;
4317}
4318
4319/*
4320 * Change the owner of a btree.
4321 *
4322 * The mechanism we use here is ordered buffer logging. Because we don't know
4323 * how many buffers were are going to need to modify, we don't really want to
4324 * have to make transaction reservations for the worst case of every buffer in a
4325 * full size btree as that may be more space that we can fit in the log....
4326 *
4327 * We do the btree walk in the most optimal manner possible - we have sibling
4328 * pointers so we can just walk all the blocks on each level from left to right
4329 * in a single pass, and then move to the next level and do the same. We can
4330 * also do readahead on the sibling pointers to get IO moving more quickly,
4331 * though for slow disks this is unlikely to make much difference to performance
4332 * as the amount of CPU work we have to do before moving to the next block is
4333 * relatively small.
4334 *
4335 * For each btree block that we load, modify the owner appropriately, set the
4336 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4337 * we mark the region we change dirty so that if the buffer is relogged in
4338 * a subsequent transaction the changes we make here as an ordered buffer are
4339 * correctly relogged in that transaction. If we are in recovery context, then
4340 * just queue the modified buffer as delayed write buffer so the transaction
4341 * recovery completion writes the changes to disk.
4342 */
4343struct xfs_btree_block_change_owner_info {
4344 uint64_t new_owner;
4345 struct list_head *buffer_list;
4346};
4347
4348static int
4349xfs_btree_block_change_owner(
4350 struct xfs_btree_cur *cur,
4351 int level,
4352 void *data)
4353{
4354 struct xfs_btree_block_change_owner_info *bbcoi = data;
4355 struct xfs_btree_block *block;
4356 struct xfs_buf *bp;
4357
4358 /* modify the owner */
4359 block = xfs_btree_get_block(cur, level, &bp);
4360 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4361 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4362 return 0;
4363 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4364 } else {
4365 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4366 return 0;
4367 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4368 }
4369
4370 /*
4371 * If the block is a root block hosted in an inode, we might not have a
4372 * buffer pointer here and we shouldn't attempt to log the change as the
4373 * information is already held in the inode and discarded when the root
4374 * block is formatted into the on-disk inode fork. We still change it,
4375 * though, so everything is consistent in memory.
4376 */
4377 if (!bp) {
4378 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4379 ASSERT(level == cur->bc_nlevels - 1);
4380 return 0;
4381 }
4382
4383 if (cur->bc_tp) {
4384 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4385 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4386 return -EAGAIN;
4387 }
4388 } else {
4389 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4390 }
4391
4392 return 0;
4393}
4394
4395int
4396xfs_btree_change_owner(
4397 struct xfs_btree_cur *cur,
4398 uint64_t new_owner,
4399 struct list_head *buffer_list)
4400{
4401 struct xfs_btree_block_change_owner_info bbcoi;
4402
4403 bbcoi.new_owner = new_owner;
4404 bbcoi.buffer_list = buffer_list;
4405
4406 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4407 XFS_BTREE_VISIT_ALL, &bbcoi);
4408}
4409
4410/* Verify the v5 fields of a long-format btree block. */
4411xfs_failaddr_t
4412xfs_btree_lblock_v5hdr_verify(
4413 struct xfs_buf *bp,
4414 uint64_t owner)
4415{
4416 struct xfs_mount *mp = bp->b_mount;
4417 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4418
4419 if (!xfs_sb_version_hascrc(&mp->m_sb))
4420 return __this_address;
4421 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4422 return __this_address;
4423 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4424 return __this_address;
4425 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4426 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4427 return __this_address;
4428 return NULL;
4429}
4430
4431/* Verify a long-format btree block. */
4432xfs_failaddr_t
4433xfs_btree_lblock_verify(
4434 struct xfs_buf *bp,
4435 unsigned int max_recs)
4436{
4437 struct xfs_mount *mp = bp->b_mount;
4438 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4439
4440 /* numrecs verification */
4441 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4442 return __this_address;
4443
4444 /* sibling pointer verification */
4445 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4446 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4447 return __this_address;
4448 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4449 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4450 return __this_address;
4451
4452 return NULL;
4453}
4454
4455/**
4456 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4457 * btree block
4458 *
4459 * @bp: buffer containing the btree block
4460 */
4461xfs_failaddr_t
4462xfs_btree_sblock_v5hdr_verify(
4463 struct xfs_buf *bp)
4464{
4465 struct xfs_mount *mp = bp->b_mount;
4466 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4467 struct xfs_perag *pag = bp->b_pag;
4468
4469 if (!xfs_sb_version_hascrc(&mp->m_sb))
4470 return __this_address;
4471 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4472 return __this_address;
4473 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4474 return __this_address;
4475 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4476 return __this_address;
4477 return NULL;
4478}
4479
4480/**
4481 * xfs_btree_sblock_verify() -- verify a short-format btree block
4482 *
4483 * @bp: buffer containing the btree block
4484 * @max_recs: maximum records allowed in this btree node
4485 */
4486xfs_failaddr_t
4487xfs_btree_sblock_verify(
4488 struct xfs_buf *bp,
4489 unsigned int max_recs)
4490{
4491 struct xfs_mount *mp = bp->b_mount;
4492 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4493 xfs_agblock_t agno;
4494
4495 /* numrecs verification */
4496 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4497 return __this_address;
4498
4499 /* sibling pointer verification */
4500 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4501 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4502 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4503 return __this_address;
4504 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4505 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4506 return __this_address;
4507
4508 return NULL;
4509}
4510
4511/*
4512 * Calculate the number of btree levels needed to store a given number of
4513 * records in a short-format btree.
4514 */
4515uint
4516xfs_btree_compute_maxlevels(
4517 uint *limits,
4518 unsigned long len)
4519{
4520 uint level;
4521 unsigned long maxblocks;
4522
4523 maxblocks = (len + limits[0] - 1) / limits[0];
4524 for (level = 1; maxblocks > 1; level++)
4525 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4526 return level;
4527}
4528
4529/*
4530 * Query a regular btree for all records overlapping a given interval.
4531 * Start with a LE lookup of the key of low_rec and return all records
4532 * until we find a record with a key greater than the key of high_rec.
4533 */
4534STATIC int
4535xfs_btree_simple_query_range(
4536 struct xfs_btree_cur *cur,
4537 union xfs_btree_key *low_key,
4538 union xfs_btree_key *high_key,
4539 xfs_btree_query_range_fn fn,
4540 void *priv)
4541{
4542 union xfs_btree_rec *recp;
4543 union xfs_btree_key rec_key;
4544 int64_t diff;
4545 int stat;
4546 bool firstrec = true;
4547 int error;
4548
4549 ASSERT(cur->bc_ops->init_high_key_from_rec);
4550 ASSERT(cur->bc_ops->diff_two_keys);
4551
4552 /*
4553 * Find the leftmost record. The btree cursor must be set
4554 * to the low record used to generate low_key.
4555 */
4556 stat = 0;
4557 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4558 if (error)
4559 goto out;
4560
4561 /* Nothing? See if there's anything to the right. */
4562 if (!stat) {
4563 error = xfs_btree_increment(cur, 0, &stat);
4564 if (error)
4565 goto out;
4566 }
4567
4568 while (stat) {
4569 /* Find the record. */
4570 error = xfs_btree_get_rec(cur, &recp, &stat);
4571 if (error || !stat)
4572 break;
4573
4574 /* Skip if high_key(rec) < low_key. */
4575 if (firstrec) {
4576 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4577 firstrec = false;
4578 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4579 &rec_key);
4580 if (diff > 0)
4581 goto advloop;
4582 }
4583
4584 /* Stop if high_key < low_key(rec). */
4585 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4586 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4587 if (diff > 0)
4588 break;
4589
4590 /* Callback */
4591 error = fn(cur, recp, priv);
4592 if (error)
4593 break;
4594
4595advloop:
4596 /* Move on to the next record. */
4597 error = xfs_btree_increment(cur, 0, &stat);
4598 if (error)
4599 break;
4600 }
4601
4602out:
4603 return error;
4604}
4605
4606/*
4607 * Query an overlapped interval btree for all records overlapping a given
4608 * interval. This function roughly follows the algorithm given in
4609 * "Interval Trees" of _Introduction to Algorithms_, which is section
4610 * 14.3 in the 2nd and 3rd editions.
4611 *
4612 * First, generate keys for the low and high records passed in.
4613 *
4614 * For any leaf node, generate the high and low keys for the record.
4615 * If the record keys overlap with the query low/high keys, pass the
4616 * record to the function iterator.
4617 *
4618 * For any internal node, compare the low and high keys of each
4619 * pointer against the query low/high keys. If there's an overlap,
4620 * follow the pointer.
4621 *
4622 * As an optimization, we stop scanning a block when we find a low key
4623 * that is greater than the query's high key.
4624 */
4625STATIC int
4626xfs_btree_overlapped_query_range(
4627 struct xfs_btree_cur *cur,
4628 union xfs_btree_key *low_key,
4629 union xfs_btree_key *high_key,
4630 xfs_btree_query_range_fn fn,
4631 void *priv)
4632{
4633 union xfs_btree_ptr ptr;
4634 union xfs_btree_ptr *pp;
4635 union xfs_btree_key rec_key;
4636 union xfs_btree_key rec_hkey;
4637 union xfs_btree_key *lkp;
4638 union xfs_btree_key *hkp;
4639 union xfs_btree_rec *recp;
4640 struct xfs_btree_block *block;
4641 int64_t ldiff;
4642 int64_t hdiff;
4643 int level;
4644 struct xfs_buf *bp;
4645 int i;
4646 int error;
4647
4648 /* Load the root of the btree. */
4649 level = cur->bc_nlevels - 1;
4650 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4651 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4652 if (error)
4653 return error;
4654 xfs_btree_get_block(cur, level, &bp);
4655 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4656#ifdef DEBUG
4657 error = xfs_btree_check_block(cur, block, level, bp);
4658 if (error)
4659 goto out;
4660#endif
4661 cur->bc_ptrs[level] = 1;
4662
4663 while (level < cur->bc_nlevels) {
4664 block = xfs_btree_get_block(cur, level, &bp);
4665
4666 /* End of node, pop back towards the root. */
4667 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4668pop_up:
4669 if (level < cur->bc_nlevels - 1)
4670 cur->bc_ptrs[level + 1]++;
4671 level++;
4672 continue;
4673 }
4674
4675 if (level == 0) {
4676 /* Handle a leaf node. */
4677 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4678
4679 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4680 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4681 low_key);
4682
4683 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4684 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4685 &rec_key);
4686
4687 /*
4688 * If (record's high key >= query's low key) and
4689 * (query's high key >= record's low key), then
4690 * this record overlaps the query range; callback.
4691 */
4692 if (ldiff >= 0 && hdiff >= 0) {
4693 error = fn(cur, recp, priv);
4694 if (error)
4695 break;
4696 } else if (hdiff < 0) {
4697 /* Record is larger than high key; pop. */
4698 goto pop_up;
4699 }
4700 cur->bc_ptrs[level]++;
4701 continue;
4702 }
4703
4704 /* Handle an internal node. */
4705 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4706 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4707 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4708
4709 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4710 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4711
4712 /*
4713 * If (pointer's high key >= query's low key) and
4714 * (query's high key >= pointer's low key), then
4715 * this record overlaps the query range; follow pointer.
4716 */
4717 if (ldiff >= 0 && hdiff >= 0) {
4718 level--;
4719 error = xfs_btree_lookup_get_block(cur, level, pp,
4720 &block);
4721 if (error)
4722 goto out;
4723 xfs_btree_get_block(cur, level, &bp);
4724 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4725#ifdef DEBUG
4726 error = xfs_btree_check_block(cur, block, level, bp);
4727 if (error)
4728 goto out;
4729#endif
4730 cur->bc_ptrs[level] = 1;
4731 continue;
4732 } else if (hdiff < 0) {
4733 /* The low key is larger than the upper range; pop. */
4734 goto pop_up;
4735 }
4736 cur->bc_ptrs[level]++;
4737 }
4738
4739out:
4740 /*
4741 * If we don't end this function with the cursor pointing at a record
4742 * block, a subsequent non-error cursor deletion will not release
4743 * node-level buffers, causing a buffer leak. This is quite possible
4744 * with a zero-results range query, so release the buffers if we
4745 * failed to return any results.
4746 */
4747 if (cur->bc_bufs[0] == NULL) {
4748 for (i = 0; i < cur->bc_nlevels; i++) {
4749 if (cur->bc_bufs[i]) {
4750 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4751 cur->bc_bufs[i] = NULL;
4752 cur->bc_ptrs[i] = 0;
4753 cur->bc_ra[i] = 0;
4754 }
4755 }
4756 }
4757
4758 return error;
4759}
4760
4761/*
4762 * Query a btree for all records overlapping a given interval of keys. The
4763 * supplied function will be called with each record found; return one of the
4764 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4765 * code. This function returns -ECANCELED, zero, or a negative error code.
4766 */
4767int
4768xfs_btree_query_range(
4769 struct xfs_btree_cur *cur,
4770 union xfs_btree_irec *low_rec,
4771 union xfs_btree_irec *high_rec,
4772 xfs_btree_query_range_fn fn,
4773 void *priv)
4774{
4775 union xfs_btree_rec rec;
4776 union xfs_btree_key low_key;
4777 union xfs_btree_key high_key;
4778
4779 /* Find the keys of both ends of the interval. */
4780 cur->bc_rec = *high_rec;
4781 cur->bc_ops->init_rec_from_cur(cur, &rec);
4782 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4783
4784 cur->bc_rec = *low_rec;
4785 cur->bc_ops->init_rec_from_cur(cur, &rec);
4786 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4787
4788 /* Enforce low key < high key. */
4789 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4790 return -EINVAL;
4791
4792 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4793 return xfs_btree_simple_query_range(cur, &low_key,
4794 &high_key, fn, priv);
4795 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4796 fn, priv);
4797}
4798
4799/* Query a btree for all records. */
4800int
4801xfs_btree_query_all(
4802 struct xfs_btree_cur *cur,
4803 xfs_btree_query_range_fn fn,
4804 void *priv)
4805{
4806 union xfs_btree_key low_key;
4807 union xfs_btree_key high_key;
4808
4809 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4810 memset(&low_key, 0, sizeof(low_key));
4811 memset(&high_key, 0xFF, sizeof(high_key));
4812
4813 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4814}
4815
4816/*
4817 * Calculate the number of blocks needed to store a given number of records
4818 * in a short-format (per-AG metadata) btree.
4819 */
4820unsigned long long
4821xfs_btree_calc_size(
4822 uint *limits,
4823 unsigned long long len)
4824{
4825 int level;
4826 int maxrecs;
4827 unsigned long long rval;
4828
4829 maxrecs = limits[0];
4830 for (level = 0, rval = 0; len > 1; level++) {
4831 len += maxrecs - 1;
4832 do_div(len, maxrecs);
4833 maxrecs = limits[1];
4834 rval += len;
4835 }
4836 return rval;
4837}
4838
4839static int
4840xfs_btree_count_blocks_helper(
4841 struct xfs_btree_cur *cur,
4842 int level,
4843 void *data)
4844{
4845 xfs_extlen_t *blocks = data;
4846 (*blocks)++;
4847
4848 return 0;
4849}
4850
4851/* Count the blocks in a btree and return the result in *blocks. */
4852int
4853xfs_btree_count_blocks(
4854 struct xfs_btree_cur *cur,
4855 xfs_extlen_t *blocks)
4856{
4857 *blocks = 0;
4858 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4859 XFS_BTREE_VISIT_ALL, blocks);
4860}
4861
4862/* Compare two btree pointers. */
4863int64_t
4864xfs_btree_diff_two_ptrs(
4865 struct xfs_btree_cur *cur,
4866 const union xfs_btree_ptr *a,
4867 const union xfs_btree_ptr *b)
4868{
4869 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4870 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4871 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4872}
4873
4874/* If there's an extent, we're done. */
4875STATIC int
4876xfs_btree_has_record_helper(
4877 struct xfs_btree_cur *cur,
4878 union xfs_btree_rec *rec,
4879 void *priv)
4880{
4881 return -ECANCELED;
4882}
4883
4884/* Is there a record covering a given range of keys? */
4885int
4886xfs_btree_has_record(
4887 struct xfs_btree_cur *cur,
4888 union xfs_btree_irec *low,
4889 union xfs_btree_irec *high,
4890 bool *exists)
4891{
4892 int error;
4893
4894 error = xfs_btree_query_range(cur, low, high,
4895 &xfs_btree_has_record_helper, NULL);
4896 if (error == -ECANCELED) {
4897 *exists = true;
4898 return 0;
4899 }
4900 *exists = false;
4901 return error;
4902}
4903
4904/* Are there more records in this btree? */
4905bool
4906xfs_btree_has_more_records(
4907 struct xfs_btree_cur *cur)
4908{
4909 struct xfs_btree_block *block;
4910 struct xfs_buf *bp;
4911
4912 block = xfs_btree_get_block(cur, 0, &bp);
4913
4914 /* There are still records in this block. */
4915 if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4916 return true;
4917
4918 /* There are more record blocks. */
4919 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4920 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4921 else
4922 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4923}