Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_buf_item.h"
17#include "xfs_btree.h"
18#include "xfs_errortag.h"
19#include "xfs_error.h"
20#include "xfs_trace.h"
21#include "xfs_alloc.h"
22#include "xfs_log.h"
23#include "xfs_btree_staging.h"
24#include "xfs_ag.h"
25#include "xfs_alloc_btree.h"
26#include "xfs_ialloc_btree.h"
27#include "xfs_bmap_btree.h"
28#include "xfs_rmap_btree.h"
29#include "xfs_refcount_btree.h"
30#include "xfs_health.h"
31#include "xfs_buf_mem.h"
32#include "xfs_btree_mem.h"
33
34/*
35 * Btree magic numbers.
36 */
37uint32_t
38xfs_btree_magic(
39 struct xfs_mount *mp,
40 const struct xfs_btree_ops *ops)
41{
42 int idx = xfs_has_crc(mp) ? 1 : 0;
43 __be32 magic = ops->buf_ops->magic[idx];
44
45 /* Ensure we asked for crc for crc-only magics. */
46 ASSERT(magic != 0);
47 return be32_to_cpu(magic);
48}
49
50/*
51 * These sibling pointer checks are optimised for null sibling pointers. This
52 * happens a lot, and we don't need to byte swap at runtime if the sibling
53 * pointer is NULL.
54 *
55 * These are explicitly marked at inline because the cost of calling them as
56 * functions instead of inlining them is about 36 bytes extra code per call site
57 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
58 * two sibling check functions reduces the compiled code size by over 300
59 * bytes.
60 */
61static inline xfs_failaddr_t
62xfs_btree_check_fsblock_siblings(
63 struct xfs_mount *mp,
64 xfs_fsblock_t fsb,
65 __be64 dsibling)
66{
67 xfs_fsblock_t sibling;
68
69 if (dsibling == cpu_to_be64(NULLFSBLOCK))
70 return NULL;
71
72 sibling = be64_to_cpu(dsibling);
73 if (sibling == fsb)
74 return __this_address;
75 if (!xfs_verify_fsbno(mp, sibling))
76 return __this_address;
77 return NULL;
78}
79
80static inline xfs_failaddr_t
81xfs_btree_check_memblock_siblings(
82 struct xfs_buftarg *btp,
83 xfbno_t bno,
84 __be64 dsibling)
85{
86 xfbno_t sibling;
87
88 if (dsibling == cpu_to_be64(NULLFSBLOCK))
89 return NULL;
90
91 sibling = be64_to_cpu(dsibling);
92 if (sibling == bno)
93 return __this_address;
94 if (!xmbuf_verify_daddr(btp, xfbno_to_daddr(sibling)))
95 return __this_address;
96 return NULL;
97}
98
99static inline xfs_failaddr_t
100xfs_btree_check_agblock_siblings(
101 struct xfs_perag *pag,
102 xfs_agblock_t agbno,
103 __be32 dsibling)
104{
105 xfs_agblock_t sibling;
106
107 if (dsibling == cpu_to_be32(NULLAGBLOCK))
108 return NULL;
109
110 sibling = be32_to_cpu(dsibling);
111 if (sibling == agbno)
112 return __this_address;
113 if (!xfs_verify_agbno(pag, sibling))
114 return __this_address;
115 return NULL;
116}
117
118static xfs_failaddr_t
119__xfs_btree_check_lblock_hdr(
120 struct xfs_btree_cur *cur,
121 struct xfs_btree_block *block,
122 int level,
123 struct xfs_buf *bp)
124{
125 struct xfs_mount *mp = cur->bc_mp;
126
127 if (xfs_has_crc(mp)) {
128 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
129 return __this_address;
130 if (block->bb_u.l.bb_blkno !=
131 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
132 return __this_address;
133 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
134 return __this_address;
135 }
136
137 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
138 return __this_address;
139 if (be16_to_cpu(block->bb_level) != level)
140 return __this_address;
141 if (be16_to_cpu(block->bb_numrecs) >
142 cur->bc_ops->get_maxrecs(cur, level))
143 return __this_address;
144
145 return NULL;
146}
147
148/*
149 * Check a long btree block header. Return the address of the failing check,
150 * or NULL if everything is ok.
151 */
152static xfs_failaddr_t
153__xfs_btree_check_fsblock(
154 struct xfs_btree_cur *cur,
155 struct xfs_btree_block *block,
156 int level,
157 struct xfs_buf *bp)
158{
159 struct xfs_mount *mp = cur->bc_mp;
160 xfs_failaddr_t fa;
161 xfs_fsblock_t fsb;
162
163 fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
164 if (fa)
165 return fa;
166
167 /*
168 * For inode-rooted btrees, the root block sits in the inode fork. In
169 * that case bp is NULL, and the block must not have any siblings.
170 */
171 if (!bp) {
172 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK))
173 return __this_address;
174 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK))
175 return __this_address;
176 return NULL;
177 }
178
179 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
180 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
181 block->bb_u.l.bb_leftsib);
182 if (!fa)
183 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
184 block->bb_u.l.bb_rightsib);
185 return fa;
186}
187
188/*
189 * Check an in-memory btree block header. Return the address of the failing
190 * check, or NULL if everything is ok.
191 */
192static xfs_failaddr_t
193__xfs_btree_check_memblock(
194 struct xfs_btree_cur *cur,
195 struct xfs_btree_block *block,
196 int level,
197 struct xfs_buf *bp)
198{
199 struct xfs_buftarg *btp = cur->bc_mem.xfbtree->target;
200 xfs_failaddr_t fa;
201 xfbno_t bno;
202
203 fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
204 if (fa)
205 return fa;
206
207 bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
208 fa = xfs_btree_check_memblock_siblings(btp, bno,
209 block->bb_u.l.bb_leftsib);
210 if (!fa)
211 fa = xfs_btree_check_memblock_siblings(btp, bno,
212 block->bb_u.l.bb_rightsib);
213 return fa;
214}
215
216/*
217 * Check a short btree block header. Return the address of the failing check,
218 * or NULL if everything is ok.
219 */
220static xfs_failaddr_t
221__xfs_btree_check_agblock(
222 struct xfs_btree_cur *cur,
223 struct xfs_btree_block *block,
224 int level,
225 struct xfs_buf *bp)
226{
227 struct xfs_mount *mp = cur->bc_mp;
228 struct xfs_perag *pag = cur->bc_ag.pag;
229 xfs_failaddr_t fa;
230 xfs_agblock_t agbno;
231
232 if (xfs_has_crc(mp)) {
233 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
234 return __this_address;
235 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
236 return __this_address;
237 }
238
239 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
240 return __this_address;
241 if (be16_to_cpu(block->bb_level) != level)
242 return __this_address;
243 if (be16_to_cpu(block->bb_numrecs) >
244 cur->bc_ops->get_maxrecs(cur, level))
245 return __this_address;
246
247 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
248 fa = xfs_btree_check_agblock_siblings(pag, agbno,
249 block->bb_u.s.bb_leftsib);
250 if (!fa)
251 fa = xfs_btree_check_agblock_siblings(pag, agbno,
252 block->bb_u.s.bb_rightsib);
253 return fa;
254}
255
256/*
257 * Internal btree block check.
258 *
259 * Return NULL if the block is ok or the address of the failed check otherwise.
260 */
261xfs_failaddr_t
262__xfs_btree_check_block(
263 struct xfs_btree_cur *cur,
264 struct xfs_btree_block *block,
265 int level,
266 struct xfs_buf *bp)
267{
268 switch (cur->bc_ops->type) {
269 case XFS_BTREE_TYPE_MEM:
270 return __xfs_btree_check_memblock(cur, block, level, bp);
271 case XFS_BTREE_TYPE_AG:
272 return __xfs_btree_check_agblock(cur, block, level, bp);
273 case XFS_BTREE_TYPE_INODE:
274 return __xfs_btree_check_fsblock(cur, block, level, bp);
275 default:
276 ASSERT(0);
277 return __this_address;
278 }
279}
280
281static inline unsigned int xfs_btree_block_errtag(struct xfs_btree_cur *cur)
282{
283 if (cur->bc_ops->ptr_len == XFS_BTREE_SHORT_PTR_LEN)
284 return XFS_ERRTAG_BTREE_CHECK_SBLOCK;
285 return XFS_ERRTAG_BTREE_CHECK_LBLOCK;
286}
287
288/*
289 * Debug routine: check that block header is ok.
290 */
291int
292xfs_btree_check_block(
293 struct xfs_btree_cur *cur, /* btree cursor */
294 struct xfs_btree_block *block, /* generic btree block pointer */
295 int level, /* level of the btree block */
296 struct xfs_buf *bp) /* buffer containing block, if any */
297{
298 struct xfs_mount *mp = cur->bc_mp;
299 xfs_failaddr_t fa;
300
301 fa = __xfs_btree_check_block(cur, block, level, bp);
302 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
303 XFS_TEST_ERROR(false, mp, xfs_btree_block_errtag(cur))) {
304 if (bp)
305 trace_xfs_btree_corrupt(bp, _RET_IP_);
306 xfs_btree_mark_sick(cur);
307 return -EFSCORRUPTED;
308 }
309 return 0;
310}
311
312int
313__xfs_btree_check_ptr(
314 struct xfs_btree_cur *cur,
315 const union xfs_btree_ptr *ptr,
316 int index,
317 int level)
318{
319 if (level <= 0)
320 return -EFSCORRUPTED;
321
322 switch (cur->bc_ops->type) {
323 case XFS_BTREE_TYPE_MEM:
324 if (!xfbtree_verify_bno(cur->bc_mem.xfbtree,
325 be64_to_cpu((&ptr->l)[index])))
326 return -EFSCORRUPTED;
327 break;
328 case XFS_BTREE_TYPE_INODE:
329 if (!xfs_verify_fsbno(cur->bc_mp,
330 be64_to_cpu((&ptr->l)[index])))
331 return -EFSCORRUPTED;
332 break;
333 case XFS_BTREE_TYPE_AG:
334 if (!xfs_verify_agbno(cur->bc_ag.pag,
335 be32_to_cpu((&ptr->s)[index])))
336 return -EFSCORRUPTED;
337 break;
338 }
339
340 return 0;
341}
342
343/*
344 * Check that a given (indexed) btree pointer at a certain level of a
345 * btree is valid and doesn't point past where it should.
346 */
347static int
348xfs_btree_check_ptr(
349 struct xfs_btree_cur *cur,
350 const union xfs_btree_ptr *ptr,
351 int index,
352 int level)
353{
354 int error;
355
356 error = __xfs_btree_check_ptr(cur, ptr, index, level);
357 if (error) {
358 switch (cur->bc_ops->type) {
359 case XFS_BTREE_TYPE_MEM:
360 xfs_err(cur->bc_mp,
361"In-memory: Corrupt %sbt flags 0x%x pointer at level %d index %d fa %pS.",
362 cur->bc_ops->name, cur->bc_flags, level, index,
363 __this_address);
364 break;
365 case XFS_BTREE_TYPE_INODE:
366 xfs_err(cur->bc_mp,
367"Inode %llu fork %d: Corrupt %sbt pointer at level %d index %d.",
368 cur->bc_ino.ip->i_ino,
369 cur->bc_ino.whichfork, cur->bc_ops->name,
370 level, index);
371 break;
372 case XFS_BTREE_TYPE_AG:
373 xfs_err(cur->bc_mp,
374"AG %u: Corrupt %sbt pointer at level %d index %d.",
375 cur->bc_ag.pag->pag_agno, cur->bc_ops->name,
376 level, index);
377 break;
378 }
379 xfs_btree_mark_sick(cur);
380 }
381
382 return error;
383}
384
385#ifdef DEBUG
386# define xfs_btree_debug_check_ptr xfs_btree_check_ptr
387#else
388# define xfs_btree_debug_check_ptr(...) (0)
389#endif
390
391/*
392 * Calculate CRC on the whole btree block and stuff it into the
393 * long-form btree header.
394 *
395 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
396 * it into the buffer so recovery knows what the last modification was that made
397 * it to disk.
398 */
399void
400xfs_btree_fsblock_calc_crc(
401 struct xfs_buf *bp)
402{
403 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
404 struct xfs_buf_log_item *bip = bp->b_log_item;
405
406 if (!xfs_has_crc(bp->b_mount))
407 return;
408 if (bip)
409 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
410 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
411}
412
413bool
414xfs_btree_fsblock_verify_crc(
415 struct xfs_buf *bp)
416{
417 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
418 struct xfs_mount *mp = bp->b_mount;
419
420 if (xfs_has_crc(mp)) {
421 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
422 return false;
423 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
424 }
425
426 return true;
427}
428
429/*
430 * Calculate CRC on the whole btree block and stuff it into the
431 * short-form btree header.
432 *
433 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
434 * it into the buffer so recovery knows what the last modification was that made
435 * it to disk.
436 */
437void
438xfs_btree_agblock_calc_crc(
439 struct xfs_buf *bp)
440{
441 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
442 struct xfs_buf_log_item *bip = bp->b_log_item;
443
444 if (!xfs_has_crc(bp->b_mount))
445 return;
446 if (bip)
447 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
448 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
449}
450
451bool
452xfs_btree_agblock_verify_crc(
453 struct xfs_buf *bp)
454{
455 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
456 struct xfs_mount *mp = bp->b_mount;
457
458 if (xfs_has_crc(mp)) {
459 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
460 return false;
461 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
462 }
463
464 return true;
465}
466
467static int
468xfs_btree_free_block(
469 struct xfs_btree_cur *cur,
470 struct xfs_buf *bp)
471{
472 int error;
473
474 trace_xfs_btree_free_block(cur, bp);
475
476 /*
477 * Don't allow block freeing for a staging cursor, because staging
478 * cursors do not support regular btree modifications.
479 */
480 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
481 ASSERT(0);
482 return -EFSCORRUPTED;
483 }
484
485 error = cur->bc_ops->free_block(cur, bp);
486 if (!error) {
487 xfs_trans_binval(cur->bc_tp, bp);
488 XFS_BTREE_STATS_INC(cur, free);
489 }
490 return error;
491}
492
493/*
494 * Delete the btree cursor.
495 */
496void
497xfs_btree_del_cursor(
498 struct xfs_btree_cur *cur, /* btree cursor */
499 int error) /* del because of error */
500{
501 int i; /* btree level */
502
503 /*
504 * Clear the buffer pointers and release the buffers. If we're doing
505 * this because of an error, inspect all of the entries in the bc_bufs
506 * array for buffers to be unlocked. This is because some of the btree
507 * code works from level n down to 0, and if we get an error along the
508 * way we won't have initialized all the entries down to 0.
509 */
510 for (i = 0; i < cur->bc_nlevels; i++) {
511 if (cur->bc_levels[i].bp)
512 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
513 else if (!error)
514 break;
515 }
516
517 /*
518 * If we are doing a BMBT update, the number of unaccounted blocks
519 * allocated during this cursor life time should be zero. If it's not
520 * zero, then we should be shut down or on our way to shutdown due to
521 * cancelling a dirty transaction on error.
522 */
523 ASSERT(!xfs_btree_is_bmap(cur->bc_ops) || cur->bc_bmap.allocated == 0 ||
524 xfs_is_shutdown(cur->bc_mp) || error != 0);
525
526 switch (cur->bc_ops->type) {
527 case XFS_BTREE_TYPE_AG:
528 if (cur->bc_ag.pag)
529 xfs_perag_put(cur->bc_ag.pag);
530 break;
531 case XFS_BTREE_TYPE_INODE:
532 /* nothing to do */
533 break;
534 case XFS_BTREE_TYPE_MEM:
535 if (cur->bc_mem.pag)
536 xfs_perag_put(cur->bc_mem.pag);
537 break;
538 }
539
540 kmem_cache_free(cur->bc_cache, cur);
541}
542
543/* Return the buffer target for this btree's buffer. */
544static inline struct xfs_buftarg *
545xfs_btree_buftarg(
546 struct xfs_btree_cur *cur)
547{
548 if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
549 return cur->bc_mem.xfbtree->target;
550 return cur->bc_mp->m_ddev_targp;
551}
552
553/* Return the block size (in units of 512b sectors) for this btree. */
554static inline unsigned int
555xfs_btree_bbsize(
556 struct xfs_btree_cur *cur)
557{
558 if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
559 return XFBNO_BBSIZE;
560 return cur->bc_mp->m_bsize;
561}
562
563/*
564 * Duplicate the btree cursor.
565 * Allocate a new one, copy the record, re-get the buffers.
566 */
567int /* error */
568xfs_btree_dup_cursor(
569 struct xfs_btree_cur *cur, /* input cursor */
570 struct xfs_btree_cur **ncur) /* output cursor */
571{
572 struct xfs_mount *mp = cur->bc_mp;
573 struct xfs_trans *tp = cur->bc_tp;
574 struct xfs_buf *bp;
575 struct xfs_btree_cur *new;
576 int error;
577 int i;
578
579 /*
580 * Don't allow staging cursors to be duplicated because they're supposed
581 * to be kept private to a single thread.
582 */
583 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
584 ASSERT(0);
585 return -EFSCORRUPTED;
586 }
587
588 /*
589 * Allocate a new cursor like the old one.
590 */
591 new = cur->bc_ops->dup_cursor(cur);
592
593 /*
594 * Copy the record currently in the cursor.
595 */
596 new->bc_rec = cur->bc_rec;
597
598 /*
599 * For each level current, re-get the buffer and copy the ptr value.
600 */
601 for (i = 0; i < new->bc_nlevels; i++) {
602 new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
603 new->bc_levels[i].ra = cur->bc_levels[i].ra;
604 bp = cur->bc_levels[i].bp;
605 if (bp) {
606 error = xfs_trans_read_buf(mp, tp,
607 xfs_btree_buftarg(cur),
608 xfs_buf_daddr(bp),
609 xfs_btree_bbsize(cur), 0, &bp,
610 cur->bc_ops->buf_ops);
611 if (xfs_metadata_is_sick(error))
612 xfs_btree_mark_sick(new);
613 if (error) {
614 xfs_btree_del_cursor(new, error);
615 *ncur = NULL;
616 return error;
617 }
618 }
619 new->bc_levels[i].bp = bp;
620 }
621 *ncur = new;
622 return 0;
623}
624
625/*
626 * XFS btree block layout and addressing:
627 *
628 * There are two types of blocks in the btree: leaf and non-leaf blocks.
629 *
630 * The leaf record start with a header then followed by records containing
631 * the values. A non-leaf block also starts with the same header, and
632 * then first contains lookup keys followed by an equal number of pointers
633 * to the btree blocks at the previous level.
634 *
635 * +--------+-------+-------+-------+-------+-------+-------+
636 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
637 * +--------+-------+-------+-------+-------+-------+-------+
638 *
639 * +--------+-------+-------+-------+-------+-------+-------+
640 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
641 * +--------+-------+-------+-------+-------+-------+-------+
642 *
643 * The header is called struct xfs_btree_block for reasons better left unknown
644 * and comes in different versions for short (32bit) and long (64bit) block
645 * pointers. The record and key structures are defined by the btree instances
646 * and opaque to the btree core. The block pointers are simple disk endian
647 * integers, available in a short (32bit) and long (64bit) variant.
648 *
649 * The helpers below calculate the offset of a given record, key or pointer
650 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
651 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
652 * inside the btree block is done using indices starting at one, not zero!
653 *
654 * If XFS_BTGEO_OVERLAPPING is set, then this btree supports keys containing
655 * overlapping intervals. In such a tree, records are still sorted lowest to
656 * highest and indexed by the smallest key value that refers to the record.
657 * However, nodes are different: each pointer has two associated keys -- one
658 * indexing the lowest key available in the block(s) below (the same behavior
659 * as the key in a regular btree) and another indexing the highest key
660 * available in the block(s) below. Because records are /not/ sorted by the
661 * highest key, all leaf block updates require us to compute the highest key
662 * that matches any record in the leaf and to recursively update the high keys
663 * in the nodes going further up in the tree, if necessary. Nodes look like
664 * this:
665 *
666 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
667 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
668 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
669 *
670 * To perform an interval query on an overlapped tree, perform the usual
671 * depth-first search and use the low and high keys to decide if we can skip
672 * that particular node. If a leaf node is reached, return the records that
673 * intersect the interval. Note that an interval query may return numerous
674 * entries. For a non-overlapped tree, simply search for the record associated
675 * with the lowest key and iterate forward until a non-matching record is
676 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
677 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
678 * more detail.
679 *
680 * Why do we care about overlapping intervals? Let's say you have a bunch of
681 * reverse mapping records on a reflink filesystem:
682 *
683 * 1: +- file A startblock B offset C length D -----------+
684 * 2: +- file E startblock F offset G length H --------------+
685 * 3: +- file I startblock F offset J length K --+
686 * 4: +- file L... --+
687 *
688 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
689 * we'd simply increment the length of record 1. But how do we find the record
690 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
691 * record 3 because the keys are ordered first by startblock. An interval
692 * query would return records 1 and 2 because they both overlap (B+D-1), and
693 * from that we can pick out record 1 as the appropriate left neighbor.
694 *
695 * In the non-overlapped case you can do a LE lookup and decrement the cursor
696 * because a record's interval must end before the next record.
697 */
698
699/*
700 * Return size of the btree block header for this btree instance.
701 */
702static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
703{
704 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
705 if (xfs_has_crc(cur->bc_mp))
706 return XFS_BTREE_LBLOCK_CRC_LEN;
707 return XFS_BTREE_LBLOCK_LEN;
708 }
709 if (xfs_has_crc(cur->bc_mp))
710 return XFS_BTREE_SBLOCK_CRC_LEN;
711 return XFS_BTREE_SBLOCK_LEN;
712}
713
714/*
715 * Calculate offset of the n-th record in a btree block.
716 */
717STATIC size_t
718xfs_btree_rec_offset(
719 struct xfs_btree_cur *cur,
720 int n)
721{
722 return xfs_btree_block_len(cur) +
723 (n - 1) * cur->bc_ops->rec_len;
724}
725
726/*
727 * Calculate offset of the n-th key in a btree block.
728 */
729STATIC size_t
730xfs_btree_key_offset(
731 struct xfs_btree_cur *cur,
732 int n)
733{
734 return xfs_btree_block_len(cur) +
735 (n - 1) * cur->bc_ops->key_len;
736}
737
738/*
739 * Calculate offset of the n-th high key in a btree block.
740 */
741STATIC size_t
742xfs_btree_high_key_offset(
743 struct xfs_btree_cur *cur,
744 int n)
745{
746 return xfs_btree_block_len(cur) +
747 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
748}
749
750/*
751 * Calculate offset of the n-th block pointer in a btree block.
752 */
753STATIC size_t
754xfs_btree_ptr_offset(
755 struct xfs_btree_cur *cur,
756 int n,
757 int level)
758{
759 return xfs_btree_block_len(cur) +
760 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
761 (n - 1) * cur->bc_ops->ptr_len;
762}
763
764/*
765 * Return a pointer to the n-th record in the btree block.
766 */
767union xfs_btree_rec *
768xfs_btree_rec_addr(
769 struct xfs_btree_cur *cur,
770 int n,
771 struct xfs_btree_block *block)
772{
773 return (union xfs_btree_rec *)
774 ((char *)block + xfs_btree_rec_offset(cur, n));
775}
776
777/*
778 * Return a pointer to the n-th key in the btree block.
779 */
780union xfs_btree_key *
781xfs_btree_key_addr(
782 struct xfs_btree_cur *cur,
783 int n,
784 struct xfs_btree_block *block)
785{
786 return (union xfs_btree_key *)
787 ((char *)block + xfs_btree_key_offset(cur, n));
788}
789
790/*
791 * Return a pointer to the n-th high key in the btree block.
792 */
793union xfs_btree_key *
794xfs_btree_high_key_addr(
795 struct xfs_btree_cur *cur,
796 int n,
797 struct xfs_btree_block *block)
798{
799 return (union xfs_btree_key *)
800 ((char *)block + xfs_btree_high_key_offset(cur, n));
801}
802
803/*
804 * Return a pointer to the n-th block pointer in the btree block.
805 */
806union xfs_btree_ptr *
807xfs_btree_ptr_addr(
808 struct xfs_btree_cur *cur,
809 int n,
810 struct xfs_btree_block *block)
811{
812 int level = xfs_btree_get_level(block);
813
814 ASSERT(block->bb_level != 0);
815
816 return (union xfs_btree_ptr *)
817 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
818}
819
820struct xfs_ifork *
821xfs_btree_ifork_ptr(
822 struct xfs_btree_cur *cur)
823{
824 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
825
826 if (cur->bc_flags & XFS_BTREE_STAGING)
827 return cur->bc_ino.ifake->if_fork;
828 return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
829}
830
831/*
832 * Get the root block which is stored in the inode.
833 *
834 * For now this btree implementation assumes the btree root is always
835 * stored in the if_broot field of an inode fork.
836 */
837STATIC struct xfs_btree_block *
838xfs_btree_get_iroot(
839 struct xfs_btree_cur *cur)
840{
841 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
842
843 return (struct xfs_btree_block *)ifp->if_broot;
844}
845
846/*
847 * Retrieve the block pointer from the cursor at the given level.
848 * This may be an inode btree root or from a buffer.
849 */
850struct xfs_btree_block * /* generic btree block pointer */
851xfs_btree_get_block(
852 struct xfs_btree_cur *cur, /* btree cursor */
853 int level, /* level in btree */
854 struct xfs_buf **bpp) /* buffer containing the block */
855{
856 if (xfs_btree_at_iroot(cur, level)) {
857 *bpp = NULL;
858 return xfs_btree_get_iroot(cur);
859 }
860
861 *bpp = cur->bc_levels[level].bp;
862 return XFS_BUF_TO_BLOCK(*bpp);
863}
864
865/*
866 * Change the cursor to point to the first record at the given level.
867 * Other levels are unaffected.
868 */
869STATIC int /* success=1, failure=0 */
870xfs_btree_firstrec(
871 struct xfs_btree_cur *cur, /* btree cursor */
872 int level) /* level to change */
873{
874 struct xfs_btree_block *block; /* generic btree block pointer */
875 struct xfs_buf *bp; /* buffer containing block */
876
877 /*
878 * Get the block pointer for this level.
879 */
880 block = xfs_btree_get_block(cur, level, &bp);
881 if (xfs_btree_check_block(cur, block, level, bp))
882 return 0;
883 /*
884 * It's empty, there is no such record.
885 */
886 if (!block->bb_numrecs)
887 return 0;
888 /*
889 * Set the ptr value to 1, that's the first record/key.
890 */
891 cur->bc_levels[level].ptr = 1;
892 return 1;
893}
894
895/*
896 * Change the cursor to point to the last record in the current block
897 * at the given level. Other levels are unaffected.
898 */
899STATIC int /* success=1, failure=0 */
900xfs_btree_lastrec(
901 struct xfs_btree_cur *cur, /* btree cursor */
902 int level) /* level to change */
903{
904 struct xfs_btree_block *block; /* generic btree block pointer */
905 struct xfs_buf *bp; /* buffer containing block */
906
907 /*
908 * Get the block pointer for this level.
909 */
910 block = xfs_btree_get_block(cur, level, &bp);
911 if (xfs_btree_check_block(cur, block, level, bp))
912 return 0;
913 /*
914 * It's empty, there is no such record.
915 */
916 if (!block->bb_numrecs)
917 return 0;
918 /*
919 * Set the ptr value to numrecs, that's the last record/key.
920 */
921 cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
922 return 1;
923}
924
925/*
926 * Compute first and last byte offsets for the fields given.
927 * Interprets the offsets table, which contains struct field offsets.
928 */
929void
930xfs_btree_offsets(
931 uint32_t fields, /* bitmask of fields */
932 const short *offsets, /* table of field offsets */
933 int nbits, /* number of bits to inspect */
934 int *first, /* output: first byte offset */
935 int *last) /* output: last byte offset */
936{
937 int i; /* current bit number */
938 uint32_t imask; /* mask for current bit number */
939
940 ASSERT(fields != 0);
941 /*
942 * Find the lowest bit, so the first byte offset.
943 */
944 for (i = 0, imask = 1u; ; i++, imask <<= 1) {
945 if (imask & fields) {
946 *first = offsets[i];
947 break;
948 }
949 }
950 /*
951 * Find the highest bit, so the last byte offset.
952 */
953 for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
954 if (imask & fields) {
955 *last = offsets[i + 1] - 1;
956 break;
957 }
958 }
959}
960
961STATIC int
962xfs_btree_readahead_fsblock(
963 struct xfs_btree_cur *cur,
964 int lr,
965 struct xfs_btree_block *block)
966{
967 struct xfs_mount *mp = cur->bc_mp;
968 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
969 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
970 int rval = 0;
971
972 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
973 xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, left),
974 mp->m_bsize, cur->bc_ops->buf_ops);
975 rval++;
976 }
977
978 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
979 xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, right),
980 mp->m_bsize, cur->bc_ops->buf_ops);
981 rval++;
982 }
983
984 return rval;
985}
986
987STATIC int
988xfs_btree_readahead_memblock(
989 struct xfs_btree_cur *cur,
990 int lr,
991 struct xfs_btree_block *block)
992{
993 struct xfs_buftarg *btp = cur->bc_mem.xfbtree->target;
994 xfbno_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
995 xfbno_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
996 int rval = 0;
997
998 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
999 xfs_buf_readahead(btp, xfbno_to_daddr(left), XFBNO_BBSIZE,
1000 cur->bc_ops->buf_ops);
1001 rval++;
1002 }
1003
1004 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
1005 xfs_buf_readahead(btp, xfbno_to_daddr(right), XFBNO_BBSIZE,
1006 cur->bc_ops->buf_ops);
1007 rval++;
1008 }
1009
1010 return rval;
1011}
1012
1013STATIC int
1014xfs_btree_readahead_agblock(
1015 struct xfs_btree_cur *cur,
1016 int lr,
1017 struct xfs_btree_block *block)
1018{
1019 struct xfs_mount *mp = cur->bc_mp;
1020 xfs_agnumber_t agno = cur->bc_ag.pag->pag_agno;
1021 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
1022 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
1023 int rval = 0;
1024
1025 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
1026 xfs_buf_readahead(mp->m_ddev_targp,
1027 XFS_AGB_TO_DADDR(mp, agno, left),
1028 mp->m_bsize, cur->bc_ops->buf_ops);
1029 rval++;
1030 }
1031
1032 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
1033 xfs_buf_readahead(mp->m_ddev_targp,
1034 XFS_AGB_TO_DADDR(mp, agno, right),
1035 mp->m_bsize, cur->bc_ops->buf_ops);
1036 rval++;
1037 }
1038
1039 return rval;
1040}
1041
1042/*
1043 * Read-ahead btree blocks, at the given level.
1044 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
1045 */
1046STATIC int
1047xfs_btree_readahead(
1048 struct xfs_btree_cur *cur, /* btree cursor */
1049 int lev, /* level in btree */
1050 int lr) /* left/right bits */
1051{
1052 struct xfs_btree_block *block;
1053
1054 /*
1055 * No readahead needed if we are at the root level and the
1056 * btree root is stored in the inode.
1057 */
1058 if (xfs_btree_at_iroot(cur, lev))
1059 return 0;
1060
1061 if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1062 return 0;
1063
1064 cur->bc_levels[lev].ra |= lr;
1065 block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1066
1067 switch (cur->bc_ops->type) {
1068 case XFS_BTREE_TYPE_AG:
1069 return xfs_btree_readahead_agblock(cur, lr, block);
1070 case XFS_BTREE_TYPE_INODE:
1071 return xfs_btree_readahead_fsblock(cur, lr, block);
1072 case XFS_BTREE_TYPE_MEM:
1073 return xfs_btree_readahead_memblock(cur, lr, block);
1074 default:
1075 ASSERT(0);
1076 return 0;
1077 }
1078}
1079
1080STATIC int
1081xfs_btree_ptr_to_daddr(
1082 struct xfs_btree_cur *cur,
1083 const union xfs_btree_ptr *ptr,
1084 xfs_daddr_t *daddr)
1085{
1086 int error;
1087
1088 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1089 if (error)
1090 return error;
1091
1092 switch (cur->bc_ops->type) {
1093 case XFS_BTREE_TYPE_AG:
1094 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1095 be32_to_cpu(ptr->s));
1096 break;
1097 case XFS_BTREE_TYPE_INODE:
1098 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1099 break;
1100 case XFS_BTREE_TYPE_MEM:
1101 *daddr = xfbno_to_daddr(be64_to_cpu(ptr->l));
1102 break;
1103 }
1104 return 0;
1105}
1106
1107/*
1108 * Readahead @count btree blocks at the given @ptr location.
1109 *
1110 * We don't need to care about long or short form btrees here as we have a
1111 * method of converting the ptr directly to a daddr available to us.
1112 */
1113STATIC void
1114xfs_btree_readahead_ptr(
1115 struct xfs_btree_cur *cur,
1116 union xfs_btree_ptr *ptr,
1117 xfs_extlen_t count)
1118{
1119 xfs_daddr_t daddr;
1120
1121 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1122 return;
1123 xfs_buf_readahead(xfs_btree_buftarg(cur), daddr,
1124 xfs_btree_bbsize(cur) * count,
1125 cur->bc_ops->buf_ops);
1126}
1127
1128/*
1129 * Set the buffer for level "lev" in the cursor to bp, releasing
1130 * any previous buffer.
1131 */
1132STATIC void
1133xfs_btree_setbuf(
1134 struct xfs_btree_cur *cur, /* btree cursor */
1135 int lev, /* level in btree */
1136 struct xfs_buf *bp) /* new buffer to set */
1137{
1138 struct xfs_btree_block *b; /* btree block */
1139
1140 if (cur->bc_levels[lev].bp)
1141 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1142 cur->bc_levels[lev].bp = bp;
1143 cur->bc_levels[lev].ra = 0;
1144
1145 b = XFS_BUF_TO_BLOCK(bp);
1146 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1147 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1148 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1149 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1150 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1151 } else {
1152 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1153 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1154 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1155 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1156 }
1157}
1158
1159bool
1160xfs_btree_ptr_is_null(
1161 struct xfs_btree_cur *cur,
1162 const union xfs_btree_ptr *ptr)
1163{
1164 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1165 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1166 else
1167 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1168}
1169
1170void
1171xfs_btree_set_ptr_null(
1172 struct xfs_btree_cur *cur,
1173 union xfs_btree_ptr *ptr)
1174{
1175 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1176 ptr->l = cpu_to_be64(NULLFSBLOCK);
1177 else
1178 ptr->s = cpu_to_be32(NULLAGBLOCK);
1179}
1180
1181static inline bool
1182xfs_btree_ptrs_equal(
1183 struct xfs_btree_cur *cur,
1184 union xfs_btree_ptr *ptr1,
1185 union xfs_btree_ptr *ptr2)
1186{
1187 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1188 return ptr1->l == ptr2->l;
1189 return ptr1->s == ptr2->s;
1190}
1191
1192/*
1193 * Get/set/init sibling pointers
1194 */
1195void
1196xfs_btree_get_sibling(
1197 struct xfs_btree_cur *cur,
1198 struct xfs_btree_block *block,
1199 union xfs_btree_ptr *ptr,
1200 int lr)
1201{
1202 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1203
1204 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1205 if (lr == XFS_BB_RIGHTSIB)
1206 ptr->l = block->bb_u.l.bb_rightsib;
1207 else
1208 ptr->l = block->bb_u.l.bb_leftsib;
1209 } else {
1210 if (lr == XFS_BB_RIGHTSIB)
1211 ptr->s = block->bb_u.s.bb_rightsib;
1212 else
1213 ptr->s = block->bb_u.s.bb_leftsib;
1214 }
1215}
1216
1217void
1218xfs_btree_set_sibling(
1219 struct xfs_btree_cur *cur,
1220 struct xfs_btree_block *block,
1221 const union xfs_btree_ptr *ptr,
1222 int lr)
1223{
1224 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1225
1226 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1227 if (lr == XFS_BB_RIGHTSIB)
1228 block->bb_u.l.bb_rightsib = ptr->l;
1229 else
1230 block->bb_u.l.bb_leftsib = ptr->l;
1231 } else {
1232 if (lr == XFS_BB_RIGHTSIB)
1233 block->bb_u.s.bb_rightsib = ptr->s;
1234 else
1235 block->bb_u.s.bb_leftsib = ptr->s;
1236 }
1237}
1238
1239static void
1240__xfs_btree_init_block(
1241 struct xfs_mount *mp,
1242 struct xfs_btree_block *buf,
1243 const struct xfs_btree_ops *ops,
1244 xfs_daddr_t blkno,
1245 __u16 level,
1246 __u16 numrecs,
1247 __u64 owner)
1248{
1249 bool crc = xfs_has_crc(mp);
1250 __u32 magic = xfs_btree_magic(mp, ops);
1251
1252 buf->bb_magic = cpu_to_be32(magic);
1253 buf->bb_level = cpu_to_be16(level);
1254 buf->bb_numrecs = cpu_to_be16(numrecs);
1255
1256 if (ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1257 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1258 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1259 if (crc) {
1260 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1261 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1262 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1263 buf->bb_u.l.bb_pad = 0;
1264 buf->bb_u.l.bb_lsn = 0;
1265 }
1266 } else {
1267 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1268 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1269 if (crc) {
1270 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1271 /* owner is a 32 bit value on short blocks */
1272 buf->bb_u.s.bb_owner = cpu_to_be32((__u32)owner);
1273 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1274 buf->bb_u.s.bb_lsn = 0;
1275 }
1276 }
1277}
1278
1279void
1280xfs_btree_init_block(
1281 struct xfs_mount *mp,
1282 struct xfs_btree_block *block,
1283 const struct xfs_btree_ops *ops,
1284 __u16 level,
1285 __u16 numrecs,
1286 __u64 owner)
1287{
1288 __xfs_btree_init_block(mp, block, ops, XFS_BUF_DADDR_NULL, level,
1289 numrecs, owner);
1290}
1291
1292void
1293xfs_btree_init_buf(
1294 struct xfs_mount *mp,
1295 struct xfs_buf *bp,
1296 const struct xfs_btree_ops *ops,
1297 __u16 level,
1298 __u16 numrecs,
1299 __u64 owner)
1300{
1301 __xfs_btree_init_block(mp, XFS_BUF_TO_BLOCK(bp), ops,
1302 xfs_buf_daddr(bp), level, numrecs, owner);
1303 bp->b_ops = ops->buf_ops;
1304}
1305
1306static inline __u64
1307xfs_btree_owner(
1308 struct xfs_btree_cur *cur)
1309{
1310 switch (cur->bc_ops->type) {
1311 case XFS_BTREE_TYPE_MEM:
1312 return cur->bc_mem.xfbtree->owner;
1313 case XFS_BTREE_TYPE_INODE:
1314 return cur->bc_ino.ip->i_ino;
1315 case XFS_BTREE_TYPE_AG:
1316 return cur->bc_ag.pag->pag_agno;
1317 default:
1318 ASSERT(0);
1319 return 0;
1320 }
1321}
1322
1323void
1324xfs_btree_init_block_cur(
1325 struct xfs_btree_cur *cur,
1326 struct xfs_buf *bp,
1327 int level,
1328 int numrecs)
1329{
1330 xfs_btree_init_buf(cur->bc_mp, bp, cur->bc_ops, level, numrecs,
1331 xfs_btree_owner(cur));
1332}
1333
1334/*
1335 * Return true if ptr is the last record in the btree and
1336 * we need to track updates to this record. The decision
1337 * will be further refined in the update_lastrec method.
1338 */
1339STATIC int
1340xfs_btree_is_lastrec(
1341 struct xfs_btree_cur *cur,
1342 struct xfs_btree_block *block,
1343 int level)
1344{
1345 union xfs_btree_ptr ptr;
1346
1347 if (level > 0)
1348 return 0;
1349 if (!(cur->bc_ops->geom_flags & XFS_BTGEO_LASTREC_UPDATE))
1350 return 0;
1351
1352 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1353 if (!xfs_btree_ptr_is_null(cur, &ptr))
1354 return 0;
1355 return 1;
1356}
1357
1358STATIC void
1359xfs_btree_buf_to_ptr(
1360 struct xfs_btree_cur *cur,
1361 struct xfs_buf *bp,
1362 union xfs_btree_ptr *ptr)
1363{
1364 switch (cur->bc_ops->type) {
1365 case XFS_BTREE_TYPE_AG:
1366 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1367 xfs_buf_daddr(bp)));
1368 break;
1369 case XFS_BTREE_TYPE_INODE:
1370 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1371 xfs_buf_daddr(bp)));
1372 break;
1373 case XFS_BTREE_TYPE_MEM:
1374 ptr->l = cpu_to_be64(xfs_daddr_to_xfbno(xfs_buf_daddr(bp)));
1375 break;
1376 }
1377}
1378
1379static inline void
1380xfs_btree_set_refs(
1381 struct xfs_btree_cur *cur,
1382 struct xfs_buf *bp)
1383{
1384 xfs_buf_set_ref(bp, cur->bc_ops->lru_refs);
1385}
1386
1387int
1388xfs_btree_get_buf_block(
1389 struct xfs_btree_cur *cur,
1390 const union xfs_btree_ptr *ptr,
1391 struct xfs_btree_block **block,
1392 struct xfs_buf **bpp)
1393{
1394 xfs_daddr_t d;
1395 int error;
1396
1397 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1398 if (error)
1399 return error;
1400 error = xfs_trans_get_buf(cur->bc_tp, xfs_btree_buftarg(cur), d,
1401 xfs_btree_bbsize(cur), 0, bpp);
1402 if (error)
1403 return error;
1404
1405 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1406 *block = XFS_BUF_TO_BLOCK(*bpp);
1407 return 0;
1408}
1409
1410/*
1411 * Read in the buffer at the given ptr and return the buffer and
1412 * the block pointer within the buffer.
1413 */
1414int
1415xfs_btree_read_buf_block(
1416 struct xfs_btree_cur *cur,
1417 const union xfs_btree_ptr *ptr,
1418 int flags,
1419 struct xfs_btree_block **block,
1420 struct xfs_buf **bpp)
1421{
1422 struct xfs_mount *mp = cur->bc_mp;
1423 xfs_daddr_t d;
1424 int error;
1425
1426 /* need to sort out how callers deal with failures first */
1427 ASSERT(!(flags & XBF_TRYLOCK));
1428
1429 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1430 if (error)
1431 return error;
1432 error = xfs_trans_read_buf(mp, cur->bc_tp, xfs_btree_buftarg(cur), d,
1433 xfs_btree_bbsize(cur), flags, bpp,
1434 cur->bc_ops->buf_ops);
1435 if (xfs_metadata_is_sick(error))
1436 xfs_btree_mark_sick(cur);
1437 if (error)
1438 return error;
1439
1440 xfs_btree_set_refs(cur, *bpp);
1441 *block = XFS_BUF_TO_BLOCK(*bpp);
1442 return 0;
1443}
1444
1445/*
1446 * Copy keys from one btree block to another.
1447 */
1448void
1449xfs_btree_copy_keys(
1450 struct xfs_btree_cur *cur,
1451 union xfs_btree_key *dst_key,
1452 const union xfs_btree_key *src_key,
1453 int numkeys)
1454{
1455 ASSERT(numkeys >= 0);
1456 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1457}
1458
1459/*
1460 * Copy records from one btree block to another.
1461 */
1462STATIC void
1463xfs_btree_copy_recs(
1464 struct xfs_btree_cur *cur,
1465 union xfs_btree_rec *dst_rec,
1466 union xfs_btree_rec *src_rec,
1467 int numrecs)
1468{
1469 ASSERT(numrecs >= 0);
1470 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1471}
1472
1473/*
1474 * Copy block pointers from one btree block to another.
1475 */
1476void
1477xfs_btree_copy_ptrs(
1478 struct xfs_btree_cur *cur,
1479 union xfs_btree_ptr *dst_ptr,
1480 const union xfs_btree_ptr *src_ptr,
1481 int numptrs)
1482{
1483 ASSERT(numptrs >= 0);
1484 memcpy(dst_ptr, src_ptr, numptrs * cur->bc_ops->ptr_len);
1485}
1486
1487/*
1488 * Shift keys one index left/right inside a single btree block.
1489 */
1490STATIC void
1491xfs_btree_shift_keys(
1492 struct xfs_btree_cur *cur,
1493 union xfs_btree_key *key,
1494 int dir,
1495 int numkeys)
1496{
1497 char *dst_key;
1498
1499 ASSERT(numkeys >= 0);
1500 ASSERT(dir == 1 || dir == -1);
1501
1502 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1503 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1504}
1505
1506/*
1507 * Shift records one index left/right inside a single btree block.
1508 */
1509STATIC void
1510xfs_btree_shift_recs(
1511 struct xfs_btree_cur *cur,
1512 union xfs_btree_rec *rec,
1513 int dir,
1514 int numrecs)
1515{
1516 char *dst_rec;
1517
1518 ASSERT(numrecs >= 0);
1519 ASSERT(dir == 1 || dir == -1);
1520
1521 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1522 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1523}
1524
1525/*
1526 * Shift block pointers one index left/right inside a single btree block.
1527 */
1528STATIC void
1529xfs_btree_shift_ptrs(
1530 struct xfs_btree_cur *cur,
1531 union xfs_btree_ptr *ptr,
1532 int dir,
1533 int numptrs)
1534{
1535 char *dst_ptr;
1536
1537 ASSERT(numptrs >= 0);
1538 ASSERT(dir == 1 || dir == -1);
1539
1540 dst_ptr = (char *)ptr + (dir * cur->bc_ops->ptr_len);
1541 memmove(dst_ptr, ptr, numptrs * cur->bc_ops->ptr_len);
1542}
1543
1544/*
1545 * Log key values from the btree block.
1546 */
1547STATIC void
1548xfs_btree_log_keys(
1549 struct xfs_btree_cur *cur,
1550 struct xfs_buf *bp,
1551 int first,
1552 int last)
1553{
1554
1555 if (bp) {
1556 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1557 xfs_trans_log_buf(cur->bc_tp, bp,
1558 xfs_btree_key_offset(cur, first),
1559 xfs_btree_key_offset(cur, last + 1) - 1);
1560 } else {
1561 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1562 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1563 }
1564}
1565
1566/*
1567 * Log record values from the btree block.
1568 */
1569void
1570xfs_btree_log_recs(
1571 struct xfs_btree_cur *cur,
1572 struct xfs_buf *bp,
1573 int first,
1574 int last)
1575{
1576
1577 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1578 xfs_trans_log_buf(cur->bc_tp, bp,
1579 xfs_btree_rec_offset(cur, first),
1580 xfs_btree_rec_offset(cur, last + 1) - 1);
1581
1582}
1583
1584/*
1585 * Log block pointer fields from a btree block (nonleaf).
1586 */
1587STATIC void
1588xfs_btree_log_ptrs(
1589 struct xfs_btree_cur *cur, /* btree cursor */
1590 struct xfs_buf *bp, /* buffer containing btree block */
1591 int first, /* index of first pointer to log */
1592 int last) /* index of last pointer to log */
1593{
1594
1595 if (bp) {
1596 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1597 int level = xfs_btree_get_level(block);
1598
1599 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1600 xfs_trans_log_buf(cur->bc_tp, bp,
1601 xfs_btree_ptr_offset(cur, first, level),
1602 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1603 } else {
1604 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1605 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1606 }
1607
1608}
1609
1610/*
1611 * Log fields from a btree block header.
1612 */
1613void
1614xfs_btree_log_block(
1615 struct xfs_btree_cur *cur, /* btree cursor */
1616 struct xfs_buf *bp, /* buffer containing btree block */
1617 uint32_t fields) /* mask of fields: XFS_BB_... */
1618{
1619 int first; /* first byte offset logged */
1620 int last; /* last byte offset logged */
1621 static const short soffsets[] = { /* table of offsets (short) */
1622 offsetof(struct xfs_btree_block, bb_magic),
1623 offsetof(struct xfs_btree_block, bb_level),
1624 offsetof(struct xfs_btree_block, bb_numrecs),
1625 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1626 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1627 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1628 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1629 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1630 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1631 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1632 XFS_BTREE_SBLOCK_CRC_LEN
1633 };
1634 static const short loffsets[] = { /* table of offsets (long) */
1635 offsetof(struct xfs_btree_block, bb_magic),
1636 offsetof(struct xfs_btree_block, bb_level),
1637 offsetof(struct xfs_btree_block, bb_numrecs),
1638 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1639 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1640 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1641 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1642 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1643 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1644 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1645 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1646 XFS_BTREE_LBLOCK_CRC_LEN
1647 };
1648
1649 if (bp) {
1650 int nbits;
1651
1652 if (xfs_has_crc(cur->bc_mp)) {
1653 /*
1654 * We don't log the CRC when updating a btree
1655 * block but instead recreate it during log
1656 * recovery. As the log buffers have checksums
1657 * of their own this is safe and avoids logging a crc
1658 * update in a lot of places.
1659 */
1660 if (fields == XFS_BB_ALL_BITS)
1661 fields = XFS_BB_ALL_BITS_CRC;
1662 nbits = XFS_BB_NUM_BITS_CRC;
1663 } else {
1664 nbits = XFS_BB_NUM_BITS;
1665 }
1666 xfs_btree_offsets(fields,
1667 (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) ?
1668 loffsets : soffsets,
1669 nbits, &first, &last);
1670 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1671 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1672 } else {
1673 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1674 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1675 }
1676}
1677
1678/*
1679 * Increment cursor by one record at the level.
1680 * For nonzero levels the leaf-ward information is untouched.
1681 */
1682int /* error */
1683xfs_btree_increment(
1684 struct xfs_btree_cur *cur,
1685 int level,
1686 int *stat) /* success/failure */
1687{
1688 struct xfs_btree_block *block;
1689 union xfs_btree_ptr ptr;
1690 struct xfs_buf *bp;
1691 int error; /* error return value */
1692 int lev;
1693
1694 ASSERT(level < cur->bc_nlevels);
1695
1696 /* Read-ahead to the right at this level. */
1697 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1698
1699 /* Get a pointer to the btree block. */
1700 block = xfs_btree_get_block(cur, level, &bp);
1701
1702#ifdef DEBUG
1703 error = xfs_btree_check_block(cur, block, level, bp);
1704 if (error)
1705 goto error0;
1706#endif
1707
1708 /* We're done if we remain in the block after the increment. */
1709 if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1710 goto out1;
1711
1712 /* Fail if we just went off the right edge of the tree. */
1713 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1714 if (xfs_btree_ptr_is_null(cur, &ptr))
1715 goto out0;
1716
1717 XFS_BTREE_STATS_INC(cur, increment);
1718
1719 /*
1720 * March up the tree incrementing pointers.
1721 * Stop when we don't go off the right edge of a block.
1722 */
1723 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1724 block = xfs_btree_get_block(cur, lev, &bp);
1725
1726#ifdef DEBUG
1727 error = xfs_btree_check_block(cur, block, lev, bp);
1728 if (error)
1729 goto error0;
1730#endif
1731
1732 if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1733 break;
1734
1735 /* Read-ahead the right block for the next loop. */
1736 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1737 }
1738
1739 /*
1740 * If we went off the root then we are either seriously
1741 * confused or have the tree root in an inode.
1742 */
1743 if (lev == cur->bc_nlevels) {
1744 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1745 goto out0;
1746 ASSERT(0);
1747 xfs_btree_mark_sick(cur);
1748 error = -EFSCORRUPTED;
1749 goto error0;
1750 }
1751 ASSERT(lev < cur->bc_nlevels);
1752
1753 /*
1754 * Now walk back down the tree, fixing up the cursor's buffer
1755 * pointers and key numbers.
1756 */
1757 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1758 union xfs_btree_ptr *ptrp;
1759
1760 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1761 --lev;
1762 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1763 if (error)
1764 goto error0;
1765
1766 xfs_btree_setbuf(cur, lev, bp);
1767 cur->bc_levels[lev].ptr = 1;
1768 }
1769out1:
1770 *stat = 1;
1771 return 0;
1772
1773out0:
1774 *stat = 0;
1775 return 0;
1776
1777error0:
1778 return error;
1779}
1780
1781/*
1782 * Decrement cursor by one record at the level.
1783 * For nonzero levels the leaf-ward information is untouched.
1784 */
1785int /* error */
1786xfs_btree_decrement(
1787 struct xfs_btree_cur *cur,
1788 int level,
1789 int *stat) /* success/failure */
1790{
1791 struct xfs_btree_block *block;
1792 struct xfs_buf *bp;
1793 int error; /* error return value */
1794 int lev;
1795 union xfs_btree_ptr ptr;
1796
1797 ASSERT(level < cur->bc_nlevels);
1798
1799 /* Read-ahead to the left at this level. */
1800 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1801
1802 /* We're done if we remain in the block after the decrement. */
1803 if (--cur->bc_levels[level].ptr > 0)
1804 goto out1;
1805
1806 /* Get a pointer to the btree block. */
1807 block = xfs_btree_get_block(cur, level, &bp);
1808
1809#ifdef DEBUG
1810 error = xfs_btree_check_block(cur, block, level, bp);
1811 if (error)
1812 goto error0;
1813#endif
1814
1815 /* Fail if we just went off the left edge of the tree. */
1816 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1817 if (xfs_btree_ptr_is_null(cur, &ptr))
1818 goto out0;
1819
1820 XFS_BTREE_STATS_INC(cur, decrement);
1821
1822 /*
1823 * March up the tree decrementing pointers.
1824 * Stop when we don't go off the left edge of a block.
1825 */
1826 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1827 if (--cur->bc_levels[lev].ptr > 0)
1828 break;
1829 /* Read-ahead the left block for the next loop. */
1830 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1831 }
1832
1833 /*
1834 * If we went off the root then we are seriously confused.
1835 * or the root of the tree is in an inode.
1836 */
1837 if (lev == cur->bc_nlevels) {
1838 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1839 goto out0;
1840 ASSERT(0);
1841 xfs_btree_mark_sick(cur);
1842 error = -EFSCORRUPTED;
1843 goto error0;
1844 }
1845 ASSERT(lev < cur->bc_nlevels);
1846
1847 /*
1848 * Now walk back down the tree, fixing up the cursor's buffer
1849 * pointers and key numbers.
1850 */
1851 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1852 union xfs_btree_ptr *ptrp;
1853
1854 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1855 --lev;
1856 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1857 if (error)
1858 goto error0;
1859 xfs_btree_setbuf(cur, lev, bp);
1860 cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1861 }
1862out1:
1863 *stat = 1;
1864 return 0;
1865
1866out0:
1867 *stat = 0;
1868 return 0;
1869
1870error0:
1871 return error;
1872}
1873
1874/*
1875 * Check the btree block owner now that we have the context to know who the
1876 * real owner is.
1877 */
1878static inline xfs_failaddr_t
1879xfs_btree_check_block_owner(
1880 struct xfs_btree_cur *cur,
1881 struct xfs_btree_block *block)
1882{
1883 __u64 owner;
1884
1885 if (!xfs_has_crc(cur->bc_mp) ||
1886 (cur->bc_flags & XFS_BTREE_BMBT_INVALID_OWNER))
1887 return NULL;
1888
1889 owner = xfs_btree_owner(cur);
1890 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1891 if (be64_to_cpu(block->bb_u.l.bb_owner) != owner)
1892 return __this_address;
1893 } else {
1894 if (be32_to_cpu(block->bb_u.s.bb_owner) != owner)
1895 return __this_address;
1896 }
1897
1898 return NULL;
1899}
1900
1901int
1902xfs_btree_lookup_get_block(
1903 struct xfs_btree_cur *cur, /* btree cursor */
1904 int level, /* level in the btree */
1905 const union xfs_btree_ptr *pp, /* ptr to btree block */
1906 struct xfs_btree_block **blkp) /* return btree block */
1907{
1908 struct xfs_buf *bp; /* buffer pointer for btree block */
1909 xfs_daddr_t daddr;
1910 int error = 0;
1911
1912 /* special case the root block if in an inode */
1913 if (xfs_btree_at_iroot(cur, level)) {
1914 *blkp = xfs_btree_get_iroot(cur);
1915 return 0;
1916 }
1917
1918 /*
1919 * If the old buffer at this level for the disk address we are
1920 * looking for re-use it.
1921 *
1922 * Otherwise throw it away and get a new one.
1923 */
1924 bp = cur->bc_levels[level].bp;
1925 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1926 if (error)
1927 return error;
1928 if (bp && xfs_buf_daddr(bp) == daddr) {
1929 *blkp = XFS_BUF_TO_BLOCK(bp);
1930 return 0;
1931 }
1932
1933 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1934 if (error)
1935 return error;
1936
1937 /* Check the inode owner since the verifiers don't. */
1938 if (xfs_btree_check_block_owner(cur, *blkp) != NULL)
1939 goto out_bad;
1940
1941 /* Did we get the level we were looking for? */
1942 if (be16_to_cpu((*blkp)->bb_level) != level)
1943 goto out_bad;
1944
1945 /* Check that internal nodes have at least one record. */
1946 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1947 goto out_bad;
1948
1949 xfs_btree_setbuf(cur, level, bp);
1950 return 0;
1951
1952out_bad:
1953 *blkp = NULL;
1954 xfs_buf_mark_corrupt(bp);
1955 xfs_trans_brelse(cur->bc_tp, bp);
1956 xfs_btree_mark_sick(cur);
1957 return -EFSCORRUPTED;
1958}
1959
1960/*
1961 * Get current search key. For level 0 we don't actually have a key
1962 * structure so we make one up from the record. For all other levels
1963 * we just return the right key.
1964 */
1965STATIC union xfs_btree_key *
1966xfs_lookup_get_search_key(
1967 struct xfs_btree_cur *cur,
1968 int level,
1969 int keyno,
1970 struct xfs_btree_block *block,
1971 union xfs_btree_key *kp)
1972{
1973 if (level == 0) {
1974 cur->bc_ops->init_key_from_rec(kp,
1975 xfs_btree_rec_addr(cur, keyno, block));
1976 return kp;
1977 }
1978
1979 return xfs_btree_key_addr(cur, keyno, block);
1980}
1981
1982/*
1983 * Initialize a pointer to the root block.
1984 */
1985void
1986xfs_btree_init_ptr_from_cur(
1987 struct xfs_btree_cur *cur,
1988 union xfs_btree_ptr *ptr)
1989{
1990 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
1991 /*
1992 * Inode-rooted btrees call xfs_btree_get_iroot to find the root
1993 * in xfs_btree_lookup_get_block and don't need a pointer here.
1994 */
1995 ptr->l = 0;
1996 } else if (cur->bc_flags & XFS_BTREE_STAGING) {
1997 ptr->s = cpu_to_be32(cur->bc_ag.afake->af_root);
1998 } else {
1999 cur->bc_ops->init_ptr_from_cur(cur, ptr);
2000 }
2001}
2002
2003/*
2004 * Lookup the record. The cursor is made to point to it, based on dir.
2005 * stat is set to 0 if can't find any such record, 1 for success.
2006 */
2007int /* error */
2008xfs_btree_lookup(
2009 struct xfs_btree_cur *cur, /* btree cursor */
2010 xfs_lookup_t dir, /* <=, ==, or >= */
2011 int *stat) /* success/failure */
2012{
2013 struct xfs_btree_block *block; /* current btree block */
2014 int64_t diff; /* difference for the current key */
2015 int error; /* error return value */
2016 int keyno; /* current key number */
2017 int level; /* level in the btree */
2018 union xfs_btree_ptr *pp; /* ptr to btree block */
2019 union xfs_btree_ptr ptr; /* ptr to btree block */
2020
2021 XFS_BTREE_STATS_INC(cur, lookup);
2022
2023 /* No such thing as a zero-level tree. */
2024 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) {
2025 xfs_btree_mark_sick(cur);
2026 return -EFSCORRUPTED;
2027 }
2028
2029 block = NULL;
2030 keyno = 0;
2031
2032 /* initialise start pointer from cursor */
2033 xfs_btree_init_ptr_from_cur(cur, &ptr);
2034 pp = &ptr;
2035
2036 /*
2037 * Iterate over each level in the btree, starting at the root.
2038 * For each level above the leaves, find the key we need, based
2039 * on the lookup record, then follow the corresponding block
2040 * pointer down to the next level.
2041 */
2042 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
2043 /* Get the block we need to do the lookup on. */
2044 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
2045 if (error)
2046 goto error0;
2047
2048 if (diff == 0) {
2049 /*
2050 * If we already had a key match at a higher level, we
2051 * know we need to use the first entry in this block.
2052 */
2053 keyno = 1;
2054 } else {
2055 /* Otherwise search this block. Do a binary search. */
2056
2057 int high; /* high entry number */
2058 int low; /* low entry number */
2059
2060 /* Set low and high entry numbers, 1-based. */
2061 low = 1;
2062 high = xfs_btree_get_numrecs(block);
2063 if (!high) {
2064 /* Block is empty, must be an empty leaf. */
2065 if (level != 0 || cur->bc_nlevels != 1) {
2066 XFS_CORRUPTION_ERROR(__func__,
2067 XFS_ERRLEVEL_LOW,
2068 cur->bc_mp, block,
2069 sizeof(*block));
2070 xfs_btree_mark_sick(cur);
2071 return -EFSCORRUPTED;
2072 }
2073
2074 cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
2075 *stat = 0;
2076 return 0;
2077 }
2078
2079 /* Binary search the block. */
2080 while (low <= high) {
2081 union xfs_btree_key key;
2082 union xfs_btree_key *kp;
2083
2084 XFS_BTREE_STATS_INC(cur, compare);
2085
2086 /* keyno is average of low and high. */
2087 keyno = (low + high) >> 1;
2088
2089 /* Get current search key */
2090 kp = xfs_lookup_get_search_key(cur, level,
2091 keyno, block, &key);
2092
2093 /*
2094 * Compute difference to get next direction:
2095 * - less than, move right
2096 * - greater than, move left
2097 * - equal, we're done
2098 */
2099 diff = cur->bc_ops->key_diff(cur, kp);
2100 if (diff < 0)
2101 low = keyno + 1;
2102 else if (diff > 0)
2103 high = keyno - 1;
2104 else
2105 break;
2106 }
2107 }
2108
2109 /*
2110 * If there are more levels, set up for the next level
2111 * by getting the block number and filling in the cursor.
2112 */
2113 if (level > 0) {
2114 /*
2115 * If we moved left, need the previous key number,
2116 * unless there isn't one.
2117 */
2118 if (diff > 0 && --keyno < 1)
2119 keyno = 1;
2120 pp = xfs_btree_ptr_addr(cur, keyno, block);
2121
2122 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
2123 if (error)
2124 goto error0;
2125
2126 cur->bc_levels[level].ptr = keyno;
2127 }
2128 }
2129
2130 /* Done with the search. See if we need to adjust the results. */
2131 if (dir != XFS_LOOKUP_LE && diff < 0) {
2132 keyno++;
2133 /*
2134 * If ge search and we went off the end of the block, but it's
2135 * not the last block, we're in the wrong block.
2136 */
2137 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2138 if (dir == XFS_LOOKUP_GE &&
2139 keyno > xfs_btree_get_numrecs(block) &&
2140 !xfs_btree_ptr_is_null(cur, &ptr)) {
2141 int i;
2142
2143 cur->bc_levels[0].ptr = keyno;
2144 error = xfs_btree_increment(cur, 0, &i);
2145 if (error)
2146 goto error0;
2147 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
2148 xfs_btree_mark_sick(cur);
2149 return -EFSCORRUPTED;
2150 }
2151 *stat = 1;
2152 return 0;
2153 }
2154 } else if (dir == XFS_LOOKUP_LE && diff > 0)
2155 keyno--;
2156 cur->bc_levels[0].ptr = keyno;
2157
2158 /* Return if we succeeded or not. */
2159 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2160 *stat = 0;
2161 else if (dir != XFS_LOOKUP_EQ || diff == 0)
2162 *stat = 1;
2163 else
2164 *stat = 0;
2165 return 0;
2166
2167error0:
2168 return error;
2169}
2170
2171/* Find the high key storage area from a regular key. */
2172union xfs_btree_key *
2173xfs_btree_high_key_from_key(
2174 struct xfs_btree_cur *cur,
2175 union xfs_btree_key *key)
2176{
2177 ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2178 return (union xfs_btree_key *)((char *)key +
2179 (cur->bc_ops->key_len / 2));
2180}
2181
2182/* Determine the low (and high if overlapped) keys of a leaf block */
2183STATIC void
2184xfs_btree_get_leaf_keys(
2185 struct xfs_btree_cur *cur,
2186 struct xfs_btree_block *block,
2187 union xfs_btree_key *key)
2188{
2189 union xfs_btree_key max_hkey;
2190 union xfs_btree_key hkey;
2191 union xfs_btree_rec *rec;
2192 union xfs_btree_key *high;
2193 int n;
2194
2195 rec = xfs_btree_rec_addr(cur, 1, block);
2196 cur->bc_ops->init_key_from_rec(key, rec);
2197
2198 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2199
2200 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2201 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2202 rec = xfs_btree_rec_addr(cur, n, block);
2203 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2204 if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey))
2205 max_hkey = hkey;
2206 }
2207
2208 high = xfs_btree_high_key_from_key(cur, key);
2209 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2210 }
2211}
2212
2213/* Determine the low (and high if overlapped) keys of a node block */
2214STATIC void
2215xfs_btree_get_node_keys(
2216 struct xfs_btree_cur *cur,
2217 struct xfs_btree_block *block,
2218 union xfs_btree_key *key)
2219{
2220 union xfs_btree_key *hkey;
2221 union xfs_btree_key *max_hkey;
2222 union xfs_btree_key *high;
2223 int n;
2224
2225 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2226 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2227 cur->bc_ops->key_len / 2);
2228
2229 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2230 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2231 hkey = xfs_btree_high_key_addr(cur, n, block);
2232 if (xfs_btree_keycmp_gt(cur, hkey, max_hkey))
2233 max_hkey = hkey;
2234 }
2235
2236 high = xfs_btree_high_key_from_key(cur, key);
2237 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2238 } else {
2239 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2240 cur->bc_ops->key_len);
2241 }
2242}
2243
2244/* Derive the keys for any btree block. */
2245void
2246xfs_btree_get_keys(
2247 struct xfs_btree_cur *cur,
2248 struct xfs_btree_block *block,
2249 union xfs_btree_key *key)
2250{
2251 if (be16_to_cpu(block->bb_level) == 0)
2252 xfs_btree_get_leaf_keys(cur, block, key);
2253 else
2254 xfs_btree_get_node_keys(cur, block, key);
2255}
2256
2257/*
2258 * Decide if we need to update the parent keys of a btree block. For
2259 * a standard btree this is only necessary if we're updating the first
2260 * record/key. For an overlapping btree, we must always update the
2261 * keys because the highest key can be in any of the records or keys
2262 * in the block.
2263 */
2264static inline bool
2265xfs_btree_needs_key_update(
2266 struct xfs_btree_cur *cur,
2267 int ptr)
2268{
2269 return (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) || ptr == 1;
2270}
2271
2272/*
2273 * Update the low and high parent keys of the given level, progressing
2274 * towards the root. If force_all is false, stop if the keys for a given
2275 * level do not need updating.
2276 */
2277STATIC int
2278__xfs_btree_updkeys(
2279 struct xfs_btree_cur *cur,
2280 int level,
2281 struct xfs_btree_block *block,
2282 struct xfs_buf *bp0,
2283 bool force_all)
2284{
2285 union xfs_btree_key key; /* keys from current level */
2286 union xfs_btree_key *lkey; /* keys from the next level up */
2287 union xfs_btree_key *hkey;
2288 union xfs_btree_key *nlkey; /* keys from the next level up */
2289 union xfs_btree_key *nhkey;
2290 struct xfs_buf *bp;
2291 int ptr;
2292
2293 ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2294
2295 /* Exit if there aren't any parent levels to update. */
2296 if (level + 1 >= cur->bc_nlevels)
2297 return 0;
2298
2299 trace_xfs_btree_updkeys(cur, level, bp0);
2300
2301 lkey = &key;
2302 hkey = xfs_btree_high_key_from_key(cur, lkey);
2303 xfs_btree_get_keys(cur, block, lkey);
2304 for (level++; level < cur->bc_nlevels; level++) {
2305#ifdef DEBUG
2306 int error;
2307#endif
2308 block = xfs_btree_get_block(cur, level, &bp);
2309 trace_xfs_btree_updkeys(cur, level, bp);
2310#ifdef DEBUG
2311 error = xfs_btree_check_block(cur, block, level, bp);
2312 if (error)
2313 return error;
2314#endif
2315 ptr = cur->bc_levels[level].ptr;
2316 nlkey = xfs_btree_key_addr(cur, ptr, block);
2317 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2318 if (!force_all &&
2319 xfs_btree_keycmp_eq(cur, nlkey, lkey) &&
2320 xfs_btree_keycmp_eq(cur, nhkey, hkey))
2321 break;
2322 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2323 xfs_btree_log_keys(cur, bp, ptr, ptr);
2324 if (level + 1 >= cur->bc_nlevels)
2325 break;
2326 xfs_btree_get_node_keys(cur, block, lkey);
2327 }
2328
2329 return 0;
2330}
2331
2332/* Update all the keys from some level in cursor back to the root. */
2333STATIC int
2334xfs_btree_updkeys_force(
2335 struct xfs_btree_cur *cur,
2336 int level)
2337{
2338 struct xfs_buf *bp;
2339 struct xfs_btree_block *block;
2340
2341 block = xfs_btree_get_block(cur, level, &bp);
2342 return __xfs_btree_updkeys(cur, level, block, bp, true);
2343}
2344
2345/*
2346 * Update the parent keys of the given level, progressing towards the root.
2347 */
2348STATIC int
2349xfs_btree_update_keys(
2350 struct xfs_btree_cur *cur,
2351 int level)
2352{
2353 struct xfs_btree_block *block;
2354 struct xfs_buf *bp;
2355 union xfs_btree_key *kp;
2356 union xfs_btree_key key;
2357 int ptr;
2358
2359 ASSERT(level >= 0);
2360
2361 block = xfs_btree_get_block(cur, level, &bp);
2362 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)
2363 return __xfs_btree_updkeys(cur, level, block, bp, false);
2364
2365 /*
2366 * Go up the tree from this level toward the root.
2367 * At each level, update the key value to the value input.
2368 * Stop when we reach a level where the cursor isn't pointing
2369 * at the first entry in the block.
2370 */
2371 xfs_btree_get_keys(cur, block, &key);
2372 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2373#ifdef DEBUG
2374 int error;
2375#endif
2376 block = xfs_btree_get_block(cur, level, &bp);
2377#ifdef DEBUG
2378 error = xfs_btree_check_block(cur, block, level, bp);
2379 if (error)
2380 return error;
2381#endif
2382 ptr = cur->bc_levels[level].ptr;
2383 kp = xfs_btree_key_addr(cur, ptr, block);
2384 xfs_btree_copy_keys(cur, kp, &key, 1);
2385 xfs_btree_log_keys(cur, bp, ptr, ptr);
2386 }
2387
2388 return 0;
2389}
2390
2391/*
2392 * Update the record referred to by cur to the value in the
2393 * given record. This either works (return 0) or gets an
2394 * EFSCORRUPTED error.
2395 */
2396int
2397xfs_btree_update(
2398 struct xfs_btree_cur *cur,
2399 union xfs_btree_rec *rec)
2400{
2401 struct xfs_btree_block *block;
2402 struct xfs_buf *bp;
2403 int error;
2404 int ptr;
2405 union xfs_btree_rec *rp;
2406
2407 /* Pick up the current block. */
2408 block = xfs_btree_get_block(cur, 0, &bp);
2409
2410#ifdef DEBUG
2411 error = xfs_btree_check_block(cur, block, 0, bp);
2412 if (error)
2413 goto error0;
2414#endif
2415 /* Get the address of the rec to be updated. */
2416 ptr = cur->bc_levels[0].ptr;
2417 rp = xfs_btree_rec_addr(cur, ptr, block);
2418
2419 /* Fill in the new contents and log them. */
2420 xfs_btree_copy_recs(cur, rp, rec, 1);
2421 xfs_btree_log_recs(cur, bp, ptr, ptr);
2422
2423 /*
2424 * If we are tracking the last record in the tree and
2425 * we are at the far right edge of the tree, update it.
2426 */
2427 if (xfs_btree_is_lastrec(cur, block, 0)) {
2428 cur->bc_ops->update_lastrec(cur, block, rec,
2429 ptr, LASTREC_UPDATE);
2430 }
2431
2432 /* Pass new key value up to our parent. */
2433 if (xfs_btree_needs_key_update(cur, ptr)) {
2434 error = xfs_btree_update_keys(cur, 0);
2435 if (error)
2436 goto error0;
2437 }
2438
2439 return 0;
2440
2441error0:
2442 return error;
2443}
2444
2445/*
2446 * Move 1 record left from cur/level if possible.
2447 * Update cur to reflect the new path.
2448 */
2449STATIC int /* error */
2450xfs_btree_lshift(
2451 struct xfs_btree_cur *cur,
2452 int level,
2453 int *stat) /* success/failure */
2454{
2455 struct xfs_buf *lbp; /* left buffer pointer */
2456 struct xfs_btree_block *left; /* left btree block */
2457 int lrecs; /* left record count */
2458 struct xfs_buf *rbp; /* right buffer pointer */
2459 struct xfs_btree_block *right; /* right btree block */
2460 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2461 int rrecs; /* right record count */
2462 union xfs_btree_ptr lptr; /* left btree pointer */
2463 union xfs_btree_key *rkp = NULL; /* right btree key */
2464 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2465 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2466 int error; /* error return value */
2467 int i;
2468
2469 if (xfs_btree_at_iroot(cur, level))
2470 goto out0;
2471
2472 /* Set up variables for this block as "right". */
2473 right = xfs_btree_get_block(cur, level, &rbp);
2474
2475#ifdef DEBUG
2476 error = xfs_btree_check_block(cur, right, level, rbp);
2477 if (error)
2478 goto error0;
2479#endif
2480
2481 /* If we've got no left sibling then we can't shift an entry left. */
2482 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2483 if (xfs_btree_ptr_is_null(cur, &lptr))
2484 goto out0;
2485
2486 /*
2487 * If the cursor entry is the one that would be moved, don't
2488 * do it... it's too complicated.
2489 */
2490 if (cur->bc_levels[level].ptr <= 1)
2491 goto out0;
2492
2493 /* Set up the left neighbor as "left". */
2494 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2495 if (error)
2496 goto error0;
2497
2498 /* If it's full, it can't take another entry. */
2499 lrecs = xfs_btree_get_numrecs(left);
2500 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2501 goto out0;
2502
2503 rrecs = xfs_btree_get_numrecs(right);
2504
2505 /*
2506 * We add one entry to the left side and remove one for the right side.
2507 * Account for it here, the changes will be updated on disk and logged
2508 * later.
2509 */
2510 lrecs++;
2511 rrecs--;
2512
2513 XFS_BTREE_STATS_INC(cur, lshift);
2514 XFS_BTREE_STATS_ADD(cur, moves, 1);
2515
2516 /*
2517 * If non-leaf, copy a key and a ptr to the left block.
2518 * Log the changes to the left block.
2519 */
2520 if (level > 0) {
2521 /* It's a non-leaf. Move keys and pointers. */
2522 union xfs_btree_key *lkp; /* left btree key */
2523 union xfs_btree_ptr *lpp; /* left address pointer */
2524
2525 lkp = xfs_btree_key_addr(cur, lrecs, left);
2526 rkp = xfs_btree_key_addr(cur, 1, right);
2527
2528 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2529 rpp = xfs_btree_ptr_addr(cur, 1, right);
2530
2531 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2532 if (error)
2533 goto error0;
2534
2535 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2536 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2537
2538 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2539 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2540
2541 ASSERT(cur->bc_ops->keys_inorder(cur,
2542 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2543 } else {
2544 /* It's a leaf. Move records. */
2545 union xfs_btree_rec *lrp; /* left record pointer */
2546
2547 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2548 rrp = xfs_btree_rec_addr(cur, 1, right);
2549
2550 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2551 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2552
2553 ASSERT(cur->bc_ops->recs_inorder(cur,
2554 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2555 }
2556
2557 xfs_btree_set_numrecs(left, lrecs);
2558 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2559
2560 xfs_btree_set_numrecs(right, rrecs);
2561 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2562
2563 /*
2564 * Slide the contents of right down one entry.
2565 */
2566 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2567 if (level > 0) {
2568 /* It's a nonleaf. operate on keys and ptrs */
2569 for (i = 0; i < rrecs; i++) {
2570 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2571 if (error)
2572 goto error0;
2573 }
2574
2575 xfs_btree_shift_keys(cur,
2576 xfs_btree_key_addr(cur, 2, right),
2577 -1, rrecs);
2578 xfs_btree_shift_ptrs(cur,
2579 xfs_btree_ptr_addr(cur, 2, right),
2580 -1, rrecs);
2581
2582 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2583 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2584 } else {
2585 /* It's a leaf. operate on records */
2586 xfs_btree_shift_recs(cur,
2587 xfs_btree_rec_addr(cur, 2, right),
2588 -1, rrecs);
2589 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2590 }
2591
2592 /*
2593 * Using a temporary cursor, update the parent key values of the
2594 * block on the left.
2595 */
2596 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2597 error = xfs_btree_dup_cursor(cur, &tcur);
2598 if (error)
2599 goto error0;
2600 i = xfs_btree_firstrec(tcur, level);
2601 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2602 xfs_btree_mark_sick(cur);
2603 error = -EFSCORRUPTED;
2604 goto error0;
2605 }
2606
2607 error = xfs_btree_decrement(tcur, level, &i);
2608 if (error)
2609 goto error1;
2610
2611 /* Update the parent high keys of the left block, if needed. */
2612 error = xfs_btree_update_keys(tcur, level);
2613 if (error)
2614 goto error1;
2615
2616 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2617 }
2618
2619 /* Update the parent keys of the right block. */
2620 error = xfs_btree_update_keys(cur, level);
2621 if (error)
2622 goto error0;
2623
2624 /* Slide the cursor value left one. */
2625 cur->bc_levels[level].ptr--;
2626
2627 *stat = 1;
2628 return 0;
2629
2630out0:
2631 *stat = 0;
2632 return 0;
2633
2634error0:
2635 return error;
2636
2637error1:
2638 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2639 return error;
2640}
2641
2642/*
2643 * Move 1 record right from cur/level if possible.
2644 * Update cur to reflect the new path.
2645 */
2646STATIC int /* error */
2647xfs_btree_rshift(
2648 struct xfs_btree_cur *cur,
2649 int level,
2650 int *stat) /* success/failure */
2651{
2652 struct xfs_buf *lbp; /* left buffer pointer */
2653 struct xfs_btree_block *left; /* left btree block */
2654 struct xfs_buf *rbp; /* right buffer pointer */
2655 struct xfs_btree_block *right; /* right btree block */
2656 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2657 union xfs_btree_ptr rptr; /* right block pointer */
2658 union xfs_btree_key *rkp; /* right btree key */
2659 int rrecs; /* right record count */
2660 int lrecs; /* left record count */
2661 int error; /* error return value */
2662 int i; /* loop counter */
2663
2664 if (xfs_btree_at_iroot(cur, level))
2665 goto out0;
2666
2667 /* Set up variables for this block as "left". */
2668 left = xfs_btree_get_block(cur, level, &lbp);
2669
2670#ifdef DEBUG
2671 error = xfs_btree_check_block(cur, left, level, lbp);
2672 if (error)
2673 goto error0;
2674#endif
2675
2676 /* If we've got no right sibling then we can't shift an entry right. */
2677 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2678 if (xfs_btree_ptr_is_null(cur, &rptr))
2679 goto out0;
2680
2681 /*
2682 * If the cursor entry is the one that would be moved, don't
2683 * do it... it's too complicated.
2684 */
2685 lrecs = xfs_btree_get_numrecs(left);
2686 if (cur->bc_levels[level].ptr >= lrecs)
2687 goto out0;
2688
2689 /* Set up the right neighbor as "right". */
2690 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2691 if (error)
2692 goto error0;
2693
2694 /* If it's full, it can't take another entry. */
2695 rrecs = xfs_btree_get_numrecs(right);
2696 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2697 goto out0;
2698
2699 XFS_BTREE_STATS_INC(cur, rshift);
2700 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2701
2702 /*
2703 * Make a hole at the start of the right neighbor block, then
2704 * copy the last left block entry to the hole.
2705 */
2706 if (level > 0) {
2707 /* It's a nonleaf. make a hole in the keys and ptrs */
2708 union xfs_btree_key *lkp;
2709 union xfs_btree_ptr *lpp;
2710 union xfs_btree_ptr *rpp;
2711
2712 lkp = xfs_btree_key_addr(cur, lrecs, left);
2713 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2714 rkp = xfs_btree_key_addr(cur, 1, right);
2715 rpp = xfs_btree_ptr_addr(cur, 1, right);
2716
2717 for (i = rrecs - 1; i >= 0; i--) {
2718 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2719 if (error)
2720 goto error0;
2721 }
2722
2723 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2724 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2725
2726 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2727 if (error)
2728 goto error0;
2729
2730 /* Now put the new data in, and log it. */
2731 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2732 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2733
2734 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2735 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2736
2737 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2738 xfs_btree_key_addr(cur, 2, right)));
2739 } else {
2740 /* It's a leaf. make a hole in the records */
2741 union xfs_btree_rec *lrp;
2742 union xfs_btree_rec *rrp;
2743
2744 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2745 rrp = xfs_btree_rec_addr(cur, 1, right);
2746
2747 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2748
2749 /* Now put the new data in, and log it. */
2750 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2751 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2752 }
2753
2754 /*
2755 * Decrement and log left's numrecs, bump and log right's numrecs.
2756 */
2757 xfs_btree_set_numrecs(left, --lrecs);
2758 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2759
2760 xfs_btree_set_numrecs(right, ++rrecs);
2761 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2762
2763 /*
2764 * Using a temporary cursor, update the parent key values of the
2765 * block on the right.
2766 */
2767 error = xfs_btree_dup_cursor(cur, &tcur);
2768 if (error)
2769 goto error0;
2770 i = xfs_btree_lastrec(tcur, level);
2771 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2772 xfs_btree_mark_sick(cur);
2773 error = -EFSCORRUPTED;
2774 goto error0;
2775 }
2776
2777 error = xfs_btree_increment(tcur, level, &i);
2778 if (error)
2779 goto error1;
2780
2781 /* Update the parent high keys of the left block, if needed. */
2782 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2783 error = xfs_btree_update_keys(cur, level);
2784 if (error)
2785 goto error1;
2786 }
2787
2788 /* Update the parent keys of the right block. */
2789 error = xfs_btree_update_keys(tcur, level);
2790 if (error)
2791 goto error1;
2792
2793 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2794
2795 *stat = 1;
2796 return 0;
2797
2798out0:
2799 *stat = 0;
2800 return 0;
2801
2802error0:
2803 return error;
2804
2805error1:
2806 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2807 return error;
2808}
2809
2810static inline int
2811xfs_btree_alloc_block(
2812 struct xfs_btree_cur *cur,
2813 const union xfs_btree_ptr *hint_block,
2814 union xfs_btree_ptr *new_block,
2815 int *stat)
2816{
2817 int error;
2818
2819 /*
2820 * Don't allow block allocation for a staging cursor, because staging
2821 * cursors do not support regular btree modifications.
2822 *
2823 * Bulk loading uses a separate callback to obtain new blocks from a
2824 * preallocated list, which prevents ENOSPC failures during loading.
2825 */
2826 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
2827 ASSERT(0);
2828 return -EFSCORRUPTED;
2829 }
2830
2831 error = cur->bc_ops->alloc_block(cur, hint_block, new_block, stat);
2832 trace_xfs_btree_alloc_block(cur, new_block, *stat, error);
2833 return error;
2834}
2835
2836/*
2837 * Split cur/level block in half.
2838 * Return new block number and the key to its first
2839 * record (to be inserted into parent).
2840 */
2841STATIC int /* error */
2842__xfs_btree_split(
2843 struct xfs_btree_cur *cur,
2844 int level,
2845 union xfs_btree_ptr *ptrp,
2846 union xfs_btree_key *key,
2847 struct xfs_btree_cur **curp,
2848 int *stat) /* success/failure */
2849{
2850 union xfs_btree_ptr lptr; /* left sibling block ptr */
2851 struct xfs_buf *lbp; /* left buffer pointer */
2852 struct xfs_btree_block *left; /* left btree block */
2853 union xfs_btree_ptr rptr; /* right sibling block ptr */
2854 struct xfs_buf *rbp; /* right buffer pointer */
2855 struct xfs_btree_block *right; /* right btree block */
2856 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2857 struct xfs_buf *rrbp; /* right-right buffer pointer */
2858 struct xfs_btree_block *rrblock; /* right-right btree block */
2859 int lrecs;
2860 int rrecs;
2861 int src_index;
2862 int error; /* error return value */
2863 int i;
2864
2865 XFS_BTREE_STATS_INC(cur, split);
2866
2867 /* Set up left block (current one). */
2868 left = xfs_btree_get_block(cur, level, &lbp);
2869
2870#ifdef DEBUG
2871 error = xfs_btree_check_block(cur, left, level, lbp);
2872 if (error)
2873 goto error0;
2874#endif
2875
2876 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2877
2878 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2879 error = xfs_btree_alloc_block(cur, &lptr, &rptr, stat);
2880 if (error)
2881 goto error0;
2882 if (*stat == 0)
2883 goto out0;
2884 XFS_BTREE_STATS_INC(cur, alloc);
2885
2886 /* Set up the new block as "right". */
2887 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2888 if (error)
2889 goto error0;
2890
2891 /* Fill in the btree header for the new right block. */
2892 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2893
2894 /*
2895 * Split the entries between the old and the new block evenly.
2896 * Make sure that if there's an odd number of entries now, that
2897 * each new block will have the same number of entries.
2898 */
2899 lrecs = xfs_btree_get_numrecs(left);
2900 rrecs = lrecs / 2;
2901 if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2902 rrecs++;
2903 src_index = (lrecs - rrecs + 1);
2904
2905 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2906
2907 /* Adjust numrecs for the later get_*_keys() calls. */
2908 lrecs -= rrecs;
2909 xfs_btree_set_numrecs(left, lrecs);
2910 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2911
2912 /*
2913 * Copy btree block entries from the left block over to the
2914 * new block, the right. Update the right block and log the
2915 * changes.
2916 */
2917 if (level > 0) {
2918 /* It's a non-leaf. Move keys and pointers. */
2919 union xfs_btree_key *lkp; /* left btree key */
2920 union xfs_btree_ptr *lpp; /* left address pointer */
2921 union xfs_btree_key *rkp; /* right btree key */
2922 union xfs_btree_ptr *rpp; /* right address pointer */
2923
2924 lkp = xfs_btree_key_addr(cur, src_index, left);
2925 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2926 rkp = xfs_btree_key_addr(cur, 1, right);
2927 rpp = xfs_btree_ptr_addr(cur, 1, right);
2928
2929 for (i = src_index; i < rrecs; i++) {
2930 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2931 if (error)
2932 goto error0;
2933 }
2934
2935 /* Copy the keys & pointers to the new block. */
2936 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2937 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2938
2939 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2940 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2941
2942 /* Stash the keys of the new block for later insertion. */
2943 xfs_btree_get_node_keys(cur, right, key);
2944 } else {
2945 /* It's a leaf. Move records. */
2946 union xfs_btree_rec *lrp; /* left record pointer */
2947 union xfs_btree_rec *rrp; /* right record pointer */
2948
2949 lrp = xfs_btree_rec_addr(cur, src_index, left);
2950 rrp = xfs_btree_rec_addr(cur, 1, right);
2951
2952 /* Copy records to the new block. */
2953 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2954 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2955
2956 /* Stash the keys of the new block for later insertion. */
2957 xfs_btree_get_leaf_keys(cur, right, key);
2958 }
2959
2960 /*
2961 * Find the left block number by looking in the buffer.
2962 * Adjust sibling pointers.
2963 */
2964 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2965 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2966 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2967 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2968
2969 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2970 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2971
2972 /*
2973 * If there's a block to the new block's right, make that block
2974 * point back to right instead of to left.
2975 */
2976 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2977 error = xfs_btree_read_buf_block(cur, &rrptr,
2978 0, &rrblock, &rrbp);
2979 if (error)
2980 goto error0;
2981 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2982 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2983 }
2984
2985 /* Update the parent high keys of the left block, if needed. */
2986 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2987 error = xfs_btree_update_keys(cur, level);
2988 if (error)
2989 goto error0;
2990 }
2991
2992 /*
2993 * If the cursor is really in the right block, move it there.
2994 * If it's just pointing past the last entry in left, then we'll
2995 * insert there, so don't change anything in that case.
2996 */
2997 if (cur->bc_levels[level].ptr > lrecs + 1) {
2998 xfs_btree_setbuf(cur, level, rbp);
2999 cur->bc_levels[level].ptr -= lrecs;
3000 }
3001 /*
3002 * If there are more levels, we'll need another cursor which refers
3003 * the right block, no matter where this cursor was.
3004 */
3005 if (level + 1 < cur->bc_nlevels) {
3006 error = xfs_btree_dup_cursor(cur, curp);
3007 if (error)
3008 goto error0;
3009 (*curp)->bc_levels[level + 1].ptr++;
3010 }
3011 *ptrp = rptr;
3012 *stat = 1;
3013 return 0;
3014out0:
3015 *stat = 0;
3016 return 0;
3017
3018error0:
3019 return error;
3020}
3021
3022#ifdef __KERNEL__
3023struct xfs_btree_split_args {
3024 struct xfs_btree_cur *cur;
3025 int level;
3026 union xfs_btree_ptr *ptrp;
3027 union xfs_btree_key *key;
3028 struct xfs_btree_cur **curp;
3029 int *stat; /* success/failure */
3030 int result;
3031 bool kswapd; /* allocation in kswapd context */
3032 struct completion *done;
3033 struct work_struct work;
3034};
3035
3036/*
3037 * Stack switching interfaces for allocation
3038 */
3039static void
3040xfs_btree_split_worker(
3041 struct work_struct *work)
3042{
3043 struct xfs_btree_split_args *args = container_of(work,
3044 struct xfs_btree_split_args, work);
3045 unsigned long pflags;
3046 unsigned long new_pflags = 0;
3047
3048 /*
3049 * we are in a transaction context here, but may also be doing work
3050 * in kswapd context, and hence we may need to inherit that state
3051 * temporarily to ensure that we don't block waiting for memory reclaim
3052 * in any way.
3053 */
3054 if (args->kswapd)
3055 new_pflags |= PF_MEMALLOC | PF_KSWAPD;
3056
3057 current_set_flags_nested(&pflags, new_pflags);
3058 xfs_trans_set_context(args->cur->bc_tp);
3059
3060 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
3061 args->key, args->curp, args->stat);
3062
3063 xfs_trans_clear_context(args->cur->bc_tp);
3064 current_restore_flags_nested(&pflags, new_pflags);
3065
3066 /*
3067 * Do not access args after complete() has run here. We don't own args
3068 * and the owner may run and free args before we return here.
3069 */
3070 complete(args->done);
3071
3072}
3073
3074/*
3075 * BMBT split requests often come in with little stack to work on so we push
3076 * them off to a worker thread so there is lots of stack to use. For the other
3077 * btree types, just call directly to avoid the context switch overhead here.
3078 *
3079 * Care must be taken here - the work queue rescuer thread introduces potential
3080 * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
3081 * AGFs to allocate blocks. A task being run by the rescuer could attempt to
3082 * lock an AGF that is already locked by a task queued to run by the rescuer,
3083 * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
3084 * release it until the current thread it is running gains the lock.
3085 *
3086 * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
3087 * already locked to allocate from. The only place that doesn't hold an AGF
3088 * locked is unwritten extent conversion at IO completion, but that has already
3089 * been offloaded to a worker thread and hence has no stack consumption issues
3090 * we have to worry about.
3091 */
3092STATIC int /* error */
3093xfs_btree_split(
3094 struct xfs_btree_cur *cur,
3095 int level,
3096 union xfs_btree_ptr *ptrp,
3097 union xfs_btree_key *key,
3098 struct xfs_btree_cur **curp,
3099 int *stat) /* success/failure */
3100{
3101 struct xfs_btree_split_args args;
3102 DECLARE_COMPLETION_ONSTACK(done);
3103
3104 if (!xfs_btree_is_bmap(cur->bc_ops) ||
3105 cur->bc_tp->t_highest_agno == NULLAGNUMBER)
3106 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
3107
3108 args.cur = cur;
3109 args.level = level;
3110 args.ptrp = ptrp;
3111 args.key = key;
3112 args.curp = curp;
3113 args.stat = stat;
3114 args.done = &done;
3115 args.kswapd = current_is_kswapd();
3116 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
3117 queue_work(xfs_alloc_wq, &args.work);
3118 wait_for_completion(&done);
3119 destroy_work_on_stack(&args.work);
3120 return args.result;
3121}
3122#else
3123#define xfs_btree_split __xfs_btree_split
3124#endif /* __KERNEL__ */
3125
3126/*
3127 * Copy the old inode root contents into a real block and make the
3128 * broot point to it.
3129 */
3130int /* error */
3131xfs_btree_new_iroot(
3132 struct xfs_btree_cur *cur, /* btree cursor */
3133 int *logflags, /* logging flags for inode */
3134 int *stat) /* return status - 0 fail */
3135{
3136 struct xfs_buf *cbp; /* buffer for cblock */
3137 struct xfs_btree_block *block; /* btree block */
3138 struct xfs_btree_block *cblock; /* child btree block */
3139 union xfs_btree_key *ckp; /* child key pointer */
3140 union xfs_btree_ptr *cpp; /* child ptr pointer */
3141 union xfs_btree_key *kp; /* pointer to btree key */
3142 union xfs_btree_ptr *pp; /* pointer to block addr */
3143 union xfs_btree_ptr nptr; /* new block addr */
3144 int level; /* btree level */
3145 int error; /* error return code */
3146 int i; /* loop counter */
3147
3148 XFS_BTREE_STATS_INC(cur, newroot);
3149
3150 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3151
3152 level = cur->bc_nlevels - 1;
3153
3154 block = xfs_btree_get_iroot(cur);
3155 pp = xfs_btree_ptr_addr(cur, 1, block);
3156
3157 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3158 error = xfs_btree_alloc_block(cur, pp, &nptr, stat);
3159 if (error)
3160 goto error0;
3161 if (*stat == 0)
3162 return 0;
3163
3164 XFS_BTREE_STATS_INC(cur, alloc);
3165
3166 /* Copy the root into a real block. */
3167 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3168 if (error)
3169 goto error0;
3170
3171 /*
3172 * we can't just memcpy() the root in for CRC enabled btree blocks.
3173 * In that case have to also ensure the blkno remains correct
3174 */
3175 memcpy(cblock, block, xfs_btree_block_len(cur));
3176 if (xfs_has_crc(cur->bc_mp)) {
3177 __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3178 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
3179 cblock->bb_u.l.bb_blkno = bno;
3180 else
3181 cblock->bb_u.s.bb_blkno = bno;
3182 }
3183
3184 be16_add_cpu(&block->bb_level, 1);
3185 xfs_btree_set_numrecs(block, 1);
3186 cur->bc_nlevels++;
3187 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3188 cur->bc_levels[level + 1].ptr = 1;
3189
3190 kp = xfs_btree_key_addr(cur, 1, block);
3191 ckp = xfs_btree_key_addr(cur, 1, cblock);
3192 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3193
3194 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3195 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3196 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3197 if (error)
3198 goto error0;
3199 }
3200
3201 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3202
3203 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3204 if (error)
3205 goto error0;
3206
3207 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3208
3209 xfs_iroot_realloc(cur->bc_ino.ip,
3210 1 - xfs_btree_get_numrecs(cblock),
3211 cur->bc_ino.whichfork);
3212
3213 xfs_btree_setbuf(cur, level, cbp);
3214
3215 /*
3216 * Do all this logging at the end so that
3217 * the root is at the right level.
3218 */
3219 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3220 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3221 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3222
3223 *logflags |=
3224 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3225 *stat = 1;
3226 return 0;
3227error0:
3228 return error;
3229}
3230
3231static void
3232xfs_btree_set_root(
3233 struct xfs_btree_cur *cur,
3234 const union xfs_btree_ptr *ptr,
3235 int inc)
3236{
3237 if (cur->bc_flags & XFS_BTREE_STAGING) {
3238 /* Update the btree root information for a per-AG fake root. */
3239 cur->bc_ag.afake->af_root = be32_to_cpu(ptr->s);
3240 cur->bc_ag.afake->af_levels += inc;
3241 } else {
3242 cur->bc_ops->set_root(cur, ptr, inc);
3243 }
3244}
3245
3246/*
3247 * Allocate a new root block, fill it in.
3248 */
3249STATIC int /* error */
3250xfs_btree_new_root(
3251 struct xfs_btree_cur *cur, /* btree cursor */
3252 int *stat) /* success/failure */
3253{
3254 struct xfs_btree_block *block; /* one half of the old root block */
3255 struct xfs_buf *bp; /* buffer containing block */
3256 int error; /* error return value */
3257 struct xfs_buf *lbp; /* left buffer pointer */
3258 struct xfs_btree_block *left; /* left btree block */
3259 struct xfs_buf *nbp; /* new (root) buffer */
3260 struct xfs_btree_block *new; /* new (root) btree block */
3261 int nptr; /* new value for key index, 1 or 2 */
3262 struct xfs_buf *rbp; /* right buffer pointer */
3263 struct xfs_btree_block *right; /* right btree block */
3264 union xfs_btree_ptr rptr;
3265 union xfs_btree_ptr lptr;
3266
3267 XFS_BTREE_STATS_INC(cur, newroot);
3268
3269 /* initialise our start point from the cursor */
3270 xfs_btree_init_ptr_from_cur(cur, &rptr);
3271
3272 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3273 error = xfs_btree_alloc_block(cur, &rptr, &lptr, stat);
3274 if (error)
3275 goto error0;
3276 if (*stat == 0)
3277 goto out0;
3278 XFS_BTREE_STATS_INC(cur, alloc);
3279
3280 /* Set up the new block. */
3281 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3282 if (error)
3283 goto error0;
3284
3285 /* Set the root in the holding structure increasing the level by 1. */
3286 xfs_btree_set_root(cur, &lptr, 1);
3287
3288 /*
3289 * At the previous root level there are now two blocks: the old root,
3290 * and the new block generated when it was split. We don't know which
3291 * one the cursor is pointing at, so we set up variables "left" and
3292 * "right" for each case.
3293 */
3294 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3295
3296#ifdef DEBUG
3297 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3298 if (error)
3299 goto error0;
3300#endif
3301
3302 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3303 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3304 /* Our block is left, pick up the right block. */
3305 lbp = bp;
3306 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3307 left = block;
3308 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3309 if (error)
3310 goto error0;
3311 bp = rbp;
3312 nptr = 1;
3313 } else {
3314 /* Our block is right, pick up the left block. */
3315 rbp = bp;
3316 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3317 right = block;
3318 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3319 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3320 if (error)
3321 goto error0;
3322 bp = lbp;
3323 nptr = 2;
3324 }
3325
3326 /* Fill in the new block's btree header and log it. */
3327 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3328 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3329 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3330 !xfs_btree_ptr_is_null(cur, &rptr));
3331
3332 /* Fill in the key data in the new root. */
3333 if (xfs_btree_get_level(left) > 0) {
3334 /*
3335 * Get the keys for the left block's keys and put them directly
3336 * in the parent block. Do the same for the right block.
3337 */
3338 xfs_btree_get_node_keys(cur, left,
3339 xfs_btree_key_addr(cur, 1, new));
3340 xfs_btree_get_node_keys(cur, right,
3341 xfs_btree_key_addr(cur, 2, new));
3342 } else {
3343 /*
3344 * Get the keys for the left block's records and put them
3345 * directly in the parent block. Do the same for the right
3346 * block.
3347 */
3348 xfs_btree_get_leaf_keys(cur, left,
3349 xfs_btree_key_addr(cur, 1, new));
3350 xfs_btree_get_leaf_keys(cur, right,
3351 xfs_btree_key_addr(cur, 2, new));
3352 }
3353 xfs_btree_log_keys(cur, nbp, 1, 2);
3354
3355 /* Fill in the pointer data in the new root. */
3356 xfs_btree_copy_ptrs(cur,
3357 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3358 xfs_btree_copy_ptrs(cur,
3359 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3360 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3361
3362 /* Fix up the cursor. */
3363 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3364 cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3365 cur->bc_nlevels++;
3366 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3367 *stat = 1;
3368 return 0;
3369error0:
3370 return error;
3371out0:
3372 *stat = 0;
3373 return 0;
3374}
3375
3376STATIC int
3377xfs_btree_make_block_unfull(
3378 struct xfs_btree_cur *cur, /* btree cursor */
3379 int level, /* btree level */
3380 int numrecs,/* # of recs in block */
3381 int *oindex,/* old tree index */
3382 int *index, /* new tree index */
3383 union xfs_btree_ptr *nptr, /* new btree ptr */
3384 struct xfs_btree_cur **ncur, /* new btree cursor */
3385 union xfs_btree_key *key, /* key of new block */
3386 int *stat)
3387{
3388 int error = 0;
3389
3390 if (xfs_btree_at_iroot(cur, level)) {
3391 struct xfs_inode *ip = cur->bc_ino.ip;
3392
3393 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3394 /* A root block that can be made bigger. */
3395 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3396 *stat = 1;
3397 } else {
3398 /* A root block that needs replacing */
3399 int logflags = 0;
3400
3401 error = xfs_btree_new_iroot(cur, &logflags, stat);
3402 if (error || *stat == 0)
3403 return error;
3404
3405 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3406 }
3407
3408 return 0;
3409 }
3410
3411 /* First, try shifting an entry to the right neighbor. */
3412 error = xfs_btree_rshift(cur, level, stat);
3413 if (error || *stat)
3414 return error;
3415
3416 /* Next, try shifting an entry to the left neighbor. */
3417 error = xfs_btree_lshift(cur, level, stat);
3418 if (error)
3419 return error;
3420
3421 if (*stat) {
3422 *oindex = *index = cur->bc_levels[level].ptr;
3423 return 0;
3424 }
3425
3426 /*
3427 * Next, try splitting the current block in half.
3428 *
3429 * If this works we have to re-set our variables because we
3430 * could be in a different block now.
3431 */
3432 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3433 if (error || *stat == 0)
3434 return error;
3435
3436
3437 *index = cur->bc_levels[level].ptr;
3438 return 0;
3439}
3440
3441/*
3442 * Insert one record/level. Return information to the caller
3443 * allowing the next level up to proceed if necessary.
3444 */
3445STATIC int
3446xfs_btree_insrec(
3447 struct xfs_btree_cur *cur, /* btree cursor */
3448 int level, /* level to insert record at */
3449 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3450 union xfs_btree_rec *rec, /* record to insert */
3451 union xfs_btree_key *key, /* i/o: block key for ptrp */
3452 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3453 int *stat) /* success/failure */
3454{
3455 struct xfs_btree_block *block; /* btree block */
3456 struct xfs_buf *bp; /* buffer for block */
3457 union xfs_btree_ptr nptr; /* new block ptr */
3458 struct xfs_btree_cur *ncur = NULL; /* new btree cursor */
3459 union xfs_btree_key nkey; /* new block key */
3460 union xfs_btree_key *lkey;
3461 int optr; /* old key/record index */
3462 int ptr; /* key/record index */
3463 int numrecs;/* number of records */
3464 int error; /* error return value */
3465 int i;
3466 xfs_daddr_t old_bn;
3467
3468 ncur = NULL;
3469 lkey = &nkey;
3470
3471 /*
3472 * If we have an external root pointer, and we've made it to the
3473 * root level, allocate a new root block and we're done.
3474 */
3475 if (cur->bc_ops->type != XFS_BTREE_TYPE_INODE &&
3476 level >= cur->bc_nlevels) {
3477 error = xfs_btree_new_root(cur, stat);
3478 xfs_btree_set_ptr_null(cur, ptrp);
3479
3480 return error;
3481 }
3482
3483 /* If we're off the left edge, return failure. */
3484 ptr = cur->bc_levels[level].ptr;
3485 if (ptr == 0) {
3486 *stat = 0;
3487 return 0;
3488 }
3489
3490 optr = ptr;
3491
3492 XFS_BTREE_STATS_INC(cur, insrec);
3493
3494 /* Get pointers to the btree buffer and block. */
3495 block = xfs_btree_get_block(cur, level, &bp);
3496 old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3497 numrecs = xfs_btree_get_numrecs(block);
3498
3499#ifdef DEBUG
3500 error = xfs_btree_check_block(cur, block, level, bp);
3501 if (error)
3502 goto error0;
3503
3504 /* Check that the new entry is being inserted in the right place. */
3505 if (ptr <= numrecs) {
3506 if (level == 0) {
3507 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3508 xfs_btree_rec_addr(cur, ptr, block)));
3509 } else {
3510 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3511 xfs_btree_key_addr(cur, ptr, block)));
3512 }
3513 }
3514#endif
3515
3516 /*
3517 * If the block is full, we can't insert the new entry until we
3518 * make the block un-full.
3519 */
3520 xfs_btree_set_ptr_null(cur, &nptr);
3521 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3522 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3523 &optr, &ptr, &nptr, &ncur, lkey, stat);
3524 if (error || *stat == 0)
3525 goto error0;
3526 }
3527
3528 /*
3529 * The current block may have changed if the block was
3530 * previously full and we have just made space in it.
3531 */
3532 block = xfs_btree_get_block(cur, level, &bp);
3533 numrecs = xfs_btree_get_numrecs(block);
3534
3535#ifdef DEBUG
3536 error = xfs_btree_check_block(cur, block, level, bp);
3537 if (error)
3538 goto error0;
3539#endif
3540
3541 /*
3542 * At this point we know there's room for our new entry in the block
3543 * we're pointing at.
3544 */
3545 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3546
3547 if (level > 0) {
3548 /* It's a nonleaf. make a hole in the keys and ptrs */
3549 union xfs_btree_key *kp;
3550 union xfs_btree_ptr *pp;
3551
3552 kp = xfs_btree_key_addr(cur, ptr, block);
3553 pp = xfs_btree_ptr_addr(cur, ptr, block);
3554
3555 for (i = numrecs - ptr; i >= 0; i--) {
3556 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3557 if (error)
3558 goto error0;
3559 }
3560
3561 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3562 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3563
3564 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3565 if (error)
3566 goto error0;
3567
3568 /* Now put the new data in, bump numrecs and log it. */
3569 xfs_btree_copy_keys(cur, kp, key, 1);
3570 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3571 numrecs++;
3572 xfs_btree_set_numrecs(block, numrecs);
3573 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3574 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3575#ifdef DEBUG
3576 if (ptr < numrecs) {
3577 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3578 xfs_btree_key_addr(cur, ptr + 1, block)));
3579 }
3580#endif
3581 } else {
3582 /* It's a leaf. make a hole in the records */
3583 union xfs_btree_rec *rp;
3584
3585 rp = xfs_btree_rec_addr(cur, ptr, block);
3586
3587 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3588
3589 /* Now put the new data in, bump numrecs and log it. */
3590 xfs_btree_copy_recs(cur, rp, rec, 1);
3591 xfs_btree_set_numrecs(block, ++numrecs);
3592 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3593#ifdef DEBUG
3594 if (ptr < numrecs) {
3595 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3596 xfs_btree_rec_addr(cur, ptr + 1, block)));
3597 }
3598#endif
3599 }
3600
3601 /* Log the new number of records in the btree header. */
3602 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3603
3604 /*
3605 * If we just inserted into a new tree block, we have to
3606 * recalculate nkey here because nkey is out of date.
3607 *
3608 * Otherwise we're just updating an existing block (having shoved
3609 * some records into the new tree block), so use the regular key
3610 * update mechanism.
3611 */
3612 if (bp && xfs_buf_daddr(bp) != old_bn) {
3613 xfs_btree_get_keys(cur, block, lkey);
3614 } else if (xfs_btree_needs_key_update(cur, optr)) {
3615 error = xfs_btree_update_keys(cur, level);
3616 if (error)
3617 goto error0;
3618 }
3619
3620 /*
3621 * If we are tracking the last record in the tree and
3622 * we are at the far right edge of the tree, update it.
3623 */
3624 if (xfs_btree_is_lastrec(cur, block, level)) {
3625 cur->bc_ops->update_lastrec(cur, block, rec,
3626 ptr, LASTREC_INSREC);
3627 }
3628
3629 /*
3630 * Return the new block number, if any.
3631 * If there is one, give back a record value and a cursor too.
3632 */
3633 *ptrp = nptr;
3634 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3635 xfs_btree_copy_keys(cur, key, lkey, 1);
3636 *curp = ncur;
3637 }
3638
3639 *stat = 1;
3640 return 0;
3641
3642error0:
3643 if (ncur)
3644 xfs_btree_del_cursor(ncur, error);
3645 return error;
3646}
3647
3648/*
3649 * Insert the record at the point referenced by cur.
3650 *
3651 * A multi-level split of the tree on insert will invalidate the original
3652 * cursor. All callers of this function should assume that the cursor is
3653 * no longer valid and revalidate it.
3654 */
3655int
3656xfs_btree_insert(
3657 struct xfs_btree_cur *cur,
3658 int *stat)
3659{
3660 int error; /* error return value */
3661 int i; /* result value, 0 for failure */
3662 int level; /* current level number in btree */
3663 union xfs_btree_ptr nptr; /* new block number (split result) */
3664 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3665 struct xfs_btree_cur *pcur; /* previous level's cursor */
3666 union xfs_btree_key bkey; /* key of block to insert */
3667 union xfs_btree_key *key;
3668 union xfs_btree_rec rec; /* record to insert */
3669
3670 level = 0;
3671 ncur = NULL;
3672 pcur = cur;
3673 key = &bkey;
3674
3675 xfs_btree_set_ptr_null(cur, &nptr);
3676
3677 /* Make a key out of the record data to be inserted, and save it. */
3678 cur->bc_ops->init_rec_from_cur(cur, &rec);
3679 cur->bc_ops->init_key_from_rec(key, &rec);
3680
3681 /*
3682 * Loop going up the tree, starting at the leaf level.
3683 * Stop when we don't get a split block, that must mean that
3684 * the insert is finished with this level.
3685 */
3686 do {
3687 /*
3688 * Insert nrec/nptr into this level of the tree.
3689 * Note if we fail, nptr will be null.
3690 */
3691 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3692 &ncur, &i);
3693 if (error) {
3694 if (pcur != cur)
3695 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3696 goto error0;
3697 }
3698
3699 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3700 xfs_btree_mark_sick(cur);
3701 error = -EFSCORRUPTED;
3702 goto error0;
3703 }
3704 level++;
3705
3706 /*
3707 * See if the cursor we just used is trash.
3708 * Can't trash the caller's cursor, but otherwise we should
3709 * if ncur is a new cursor or we're about to be done.
3710 */
3711 if (pcur != cur &&
3712 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3713 /* Save the state from the cursor before we trash it */
3714 if (cur->bc_ops->update_cursor &&
3715 !(cur->bc_flags & XFS_BTREE_STAGING))
3716 cur->bc_ops->update_cursor(pcur, cur);
3717 cur->bc_nlevels = pcur->bc_nlevels;
3718 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3719 }
3720 /* If we got a new cursor, switch to it. */
3721 if (ncur) {
3722 pcur = ncur;
3723 ncur = NULL;
3724 }
3725 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3726
3727 *stat = i;
3728 return 0;
3729error0:
3730 return error;
3731}
3732
3733/*
3734 * Try to merge a non-leaf block back into the inode root.
3735 *
3736 * Note: the killroot names comes from the fact that we're effectively
3737 * killing the old root block. But because we can't just delete the
3738 * inode we have to copy the single block it was pointing to into the
3739 * inode.
3740 */
3741STATIC int
3742xfs_btree_kill_iroot(
3743 struct xfs_btree_cur *cur)
3744{
3745 int whichfork = cur->bc_ino.whichfork;
3746 struct xfs_inode *ip = cur->bc_ino.ip;
3747 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
3748 struct xfs_btree_block *block;
3749 struct xfs_btree_block *cblock;
3750 union xfs_btree_key *kp;
3751 union xfs_btree_key *ckp;
3752 union xfs_btree_ptr *pp;
3753 union xfs_btree_ptr *cpp;
3754 struct xfs_buf *cbp;
3755 int level;
3756 int index;
3757 int numrecs;
3758 int error;
3759#ifdef DEBUG
3760 union xfs_btree_ptr ptr;
3761#endif
3762 int i;
3763
3764 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3765 ASSERT(cur->bc_nlevels > 1);
3766
3767 /*
3768 * Don't deal with the root block needs to be a leaf case.
3769 * We're just going to turn the thing back into extents anyway.
3770 */
3771 level = cur->bc_nlevels - 1;
3772 if (level == 1)
3773 goto out0;
3774
3775 /*
3776 * Give up if the root has multiple children.
3777 */
3778 block = xfs_btree_get_iroot(cur);
3779 if (xfs_btree_get_numrecs(block) != 1)
3780 goto out0;
3781
3782 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3783 numrecs = xfs_btree_get_numrecs(cblock);
3784
3785 /*
3786 * Only do this if the next level will fit.
3787 * Then the data must be copied up to the inode,
3788 * instead of freeing the root you free the next level.
3789 */
3790 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3791 goto out0;
3792
3793 XFS_BTREE_STATS_INC(cur, killroot);
3794
3795#ifdef DEBUG
3796 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3797 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3798 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3799 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3800#endif
3801
3802 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3803 if (index) {
3804 xfs_iroot_realloc(cur->bc_ino.ip, index,
3805 cur->bc_ino.whichfork);
3806 block = ifp->if_broot;
3807 }
3808
3809 be16_add_cpu(&block->bb_numrecs, index);
3810 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3811
3812 kp = xfs_btree_key_addr(cur, 1, block);
3813 ckp = xfs_btree_key_addr(cur, 1, cblock);
3814 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3815
3816 pp = xfs_btree_ptr_addr(cur, 1, block);
3817 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3818
3819 for (i = 0; i < numrecs; i++) {
3820 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3821 if (error)
3822 return error;
3823 }
3824
3825 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3826
3827 error = xfs_btree_free_block(cur, cbp);
3828 if (error)
3829 return error;
3830
3831 cur->bc_levels[level - 1].bp = NULL;
3832 be16_add_cpu(&block->bb_level, -1);
3833 xfs_trans_log_inode(cur->bc_tp, ip,
3834 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3835 cur->bc_nlevels--;
3836out0:
3837 return 0;
3838}
3839
3840/*
3841 * Kill the current root node, and replace it with it's only child node.
3842 */
3843STATIC int
3844xfs_btree_kill_root(
3845 struct xfs_btree_cur *cur,
3846 struct xfs_buf *bp,
3847 int level,
3848 union xfs_btree_ptr *newroot)
3849{
3850 int error;
3851
3852 XFS_BTREE_STATS_INC(cur, killroot);
3853
3854 /*
3855 * Update the root pointer, decreasing the level by 1 and then
3856 * free the old root.
3857 */
3858 xfs_btree_set_root(cur, newroot, -1);
3859
3860 error = xfs_btree_free_block(cur, bp);
3861 if (error)
3862 return error;
3863
3864 cur->bc_levels[level].bp = NULL;
3865 cur->bc_levels[level].ra = 0;
3866 cur->bc_nlevels--;
3867
3868 return 0;
3869}
3870
3871STATIC int
3872xfs_btree_dec_cursor(
3873 struct xfs_btree_cur *cur,
3874 int level,
3875 int *stat)
3876{
3877 int error;
3878 int i;
3879
3880 if (level > 0) {
3881 error = xfs_btree_decrement(cur, level, &i);
3882 if (error)
3883 return error;
3884 }
3885
3886 *stat = 1;
3887 return 0;
3888}
3889
3890/*
3891 * Single level of the btree record deletion routine.
3892 * Delete record pointed to by cur/level.
3893 * Remove the record from its block then rebalance the tree.
3894 * Return 0 for error, 1 for done, 2 to go on to the next level.
3895 */
3896STATIC int /* error */
3897xfs_btree_delrec(
3898 struct xfs_btree_cur *cur, /* btree cursor */
3899 int level, /* level removing record from */
3900 int *stat) /* fail/done/go-on */
3901{
3902 struct xfs_btree_block *block; /* btree block */
3903 union xfs_btree_ptr cptr; /* current block ptr */
3904 struct xfs_buf *bp; /* buffer for block */
3905 int error; /* error return value */
3906 int i; /* loop counter */
3907 union xfs_btree_ptr lptr; /* left sibling block ptr */
3908 struct xfs_buf *lbp; /* left buffer pointer */
3909 struct xfs_btree_block *left; /* left btree block */
3910 int lrecs = 0; /* left record count */
3911 int ptr; /* key/record index */
3912 union xfs_btree_ptr rptr; /* right sibling block ptr */
3913 struct xfs_buf *rbp; /* right buffer pointer */
3914 struct xfs_btree_block *right; /* right btree block */
3915 struct xfs_btree_block *rrblock; /* right-right btree block */
3916 struct xfs_buf *rrbp; /* right-right buffer pointer */
3917 int rrecs = 0; /* right record count */
3918 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3919 int numrecs; /* temporary numrec count */
3920
3921 tcur = NULL;
3922
3923 /* Get the index of the entry being deleted, check for nothing there. */
3924 ptr = cur->bc_levels[level].ptr;
3925 if (ptr == 0) {
3926 *stat = 0;
3927 return 0;
3928 }
3929
3930 /* Get the buffer & block containing the record or key/ptr. */
3931 block = xfs_btree_get_block(cur, level, &bp);
3932 numrecs = xfs_btree_get_numrecs(block);
3933
3934#ifdef DEBUG
3935 error = xfs_btree_check_block(cur, block, level, bp);
3936 if (error)
3937 goto error0;
3938#endif
3939
3940 /* Fail if we're off the end of the block. */
3941 if (ptr > numrecs) {
3942 *stat = 0;
3943 return 0;
3944 }
3945
3946 XFS_BTREE_STATS_INC(cur, delrec);
3947 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3948
3949 /* Excise the entries being deleted. */
3950 if (level > 0) {
3951 /* It's a nonleaf. operate on keys and ptrs */
3952 union xfs_btree_key *lkp;
3953 union xfs_btree_ptr *lpp;
3954
3955 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3956 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3957
3958 for (i = 0; i < numrecs - ptr; i++) {
3959 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3960 if (error)
3961 goto error0;
3962 }
3963
3964 if (ptr < numrecs) {
3965 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3966 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3967 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3968 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3969 }
3970 } else {
3971 /* It's a leaf. operate on records */
3972 if (ptr < numrecs) {
3973 xfs_btree_shift_recs(cur,
3974 xfs_btree_rec_addr(cur, ptr + 1, block),
3975 -1, numrecs - ptr);
3976 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3977 }
3978 }
3979
3980 /*
3981 * Decrement and log the number of entries in the block.
3982 */
3983 xfs_btree_set_numrecs(block, --numrecs);
3984 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3985
3986 /*
3987 * If we are tracking the last record in the tree and
3988 * we are at the far right edge of the tree, update it.
3989 */
3990 if (xfs_btree_is_lastrec(cur, block, level)) {
3991 cur->bc_ops->update_lastrec(cur, block, NULL,
3992 ptr, LASTREC_DELREC);
3993 }
3994
3995 /*
3996 * We're at the root level. First, shrink the root block in-memory.
3997 * Try to get rid of the next level down. If we can't then there's
3998 * nothing left to do.
3999 */
4000 if (xfs_btree_at_iroot(cur, level)) {
4001 xfs_iroot_realloc(cur->bc_ino.ip, -1, cur->bc_ino.whichfork);
4002
4003 error = xfs_btree_kill_iroot(cur);
4004 if (error)
4005 goto error0;
4006
4007 error = xfs_btree_dec_cursor(cur, level, stat);
4008 if (error)
4009 goto error0;
4010 *stat = 1;
4011 return 0;
4012 }
4013
4014 /*
4015 * If this is the root level, and there's only one entry left, and it's
4016 * NOT the leaf level, then we can get rid of this level.
4017 */
4018 if (level == cur->bc_nlevels - 1) {
4019 if (numrecs == 1 && level > 0) {
4020 union xfs_btree_ptr *pp;
4021 /*
4022 * pp is still set to the first pointer in the block.
4023 * Make it the new root of the btree.
4024 */
4025 pp = xfs_btree_ptr_addr(cur, 1, block);
4026 error = xfs_btree_kill_root(cur, bp, level, pp);
4027 if (error)
4028 goto error0;
4029 } else if (level > 0) {
4030 error = xfs_btree_dec_cursor(cur, level, stat);
4031 if (error)
4032 goto error0;
4033 }
4034 *stat = 1;
4035 return 0;
4036 }
4037
4038 /*
4039 * If we deleted the leftmost entry in the block, update the
4040 * key values above us in the tree.
4041 */
4042 if (xfs_btree_needs_key_update(cur, ptr)) {
4043 error = xfs_btree_update_keys(cur, level);
4044 if (error)
4045 goto error0;
4046 }
4047
4048 /*
4049 * If the number of records remaining in the block is at least
4050 * the minimum, we're done.
4051 */
4052 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
4053 error = xfs_btree_dec_cursor(cur, level, stat);
4054 if (error)
4055 goto error0;
4056 return 0;
4057 }
4058
4059 /*
4060 * Otherwise, we have to move some records around to keep the
4061 * tree balanced. Look at the left and right sibling blocks to
4062 * see if we can re-balance by moving only one record.
4063 */
4064 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4065 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
4066
4067 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
4068 /*
4069 * One child of root, need to get a chance to copy its contents
4070 * into the root and delete it. Can't go up to next level,
4071 * there's nothing to delete there.
4072 */
4073 if (xfs_btree_ptr_is_null(cur, &rptr) &&
4074 xfs_btree_ptr_is_null(cur, &lptr) &&
4075 level == cur->bc_nlevels - 2) {
4076 error = xfs_btree_kill_iroot(cur);
4077 if (!error)
4078 error = xfs_btree_dec_cursor(cur, level, stat);
4079 if (error)
4080 goto error0;
4081 return 0;
4082 }
4083 }
4084
4085 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
4086 !xfs_btree_ptr_is_null(cur, &lptr));
4087
4088 /*
4089 * Duplicate the cursor so our btree manipulations here won't
4090 * disrupt the next level up.
4091 */
4092 error = xfs_btree_dup_cursor(cur, &tcur);
4093 if (error)
4094 goto error0;
4095
4096 /*
4097 * If there's a right sibling, see if it's ok to shift an entry
4098 * out of it.
4099 */
4100 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
4101 /*
4102 * Move the temp cursor to the last entry in the next block.
4103 * Actually any entry but the first would suffice.
4104 */
4105 i = xfs_btree_lastrec(tcur, level);
4106 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4107 xfs_btree_mark_sick(cur);
4108 error = -EFSCORRUPTED;
4109 goto error0;
4110 }
4111
4112 error = xfs_btree_increment(tcur, level, &i);
4113 if (error)
4114 goto error0;
4115 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4116 xfs_btree_mark_sick(cur);
4117 error = -EFSCORRUPTED;
4118 goto error0;
4119 }
4120
4121 i = xfs_btree_lastrec(tcur, level);
4122 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4123 xfs_btree_mark_sick(cur);
4124 error = -EFSCORRUPTED;
4125 goto error0;
4126 }
4127
4128 /* Grab a pointer to the block. */
4129 right = xfs_btree_get_block(tcur, level, &rbp);
4130#ifdef DEBUG
4131 error = xfs_btree_check_block(tcur, right, level, rbp);
4132 if (error)
4133 goto error0;
4134#endif
4135 /* Grab the current block number, for future use. */
4136 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
4137
4138 /*
4139 * If right block is full enough so that removing one entry
4140 * won't make it too empty, and left-shifting an entry out
4141 * of right to us works, we're done.
4142 */
4143 if (xfs_btree_get_numrecs(right) - 1 >=
4144 cur->bc_ops->get_minrecs(tcur, level)) {
4145 error = xfs_btree_lshift(tcur, level, &i);
4146 if (error)
4147 goto error0;
4148 if (i) {
4149 ASSERT(xfs_btree_get_numrecs(block) >=
4150 cur->bc_ops->get_minrecs(tcur, level));
4151
4152 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4153 tcur = NULL;
4154
4155 error = xfs_btree_dec_cursor(cur, level, stat);
4156 if (error)
4157 goto error0;
4158 return 0;
4159 }
4160 }
4161
4162 /*
4163 * Otherwise, grab the number of records in right for
4164 * future reference, and fix up the temp cursor to point
4165 * to our block again (last record).
4166 */
4167 rrecs = xfs_btree_get_numrecs(right);
4168 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4169 i = xfs_btree_firstrec(tcur, level);
4170 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4171 xfs_btree_mark_sick(cur);
4172 error = -EFSCORRUPTED;
4173 goto error0;
4174 }
4175
4176 error = xfs_btree_decrement(tcur, level, &i);
4177 if (error)
4178 goto error0;
4179 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4180 xfs_btree_mark_sick(cur);
4181 error = -EFSCORRUPTED;
4182 goto error0;
4183 }
4184 }
4185 }
4186
4187 /*
4188 * If there's a left sibling, see if it's ok to shift an entry
4189 * out of it.
4190 */
4191 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4192 /*
4193 * Move the temp cursor to the first entry in the
4194 * previous block.
4195 */
4196 i = xfs_btree_firstrec(tcur, level);
4197 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4198 xfs_btree_mark_sick(cur);
4199 error = -EFSCORRUPTED;
4200 goto error0;
4201 }
4202
4203 error = xfs_btree_decrement(tcur, level, &i);
4204 if (error)
4205 goto error0;
4206 i = xfs_btree_firstrec(tcur, level);
4207 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4208 xfs_btree_mark_sick(cur);
4209 error = -EFSCORRUPTED;
4210 goto error0;
4211 }
4212
4213 /* Grab a pointer to the block. */
4214 left = xfs_btree_get_block(tcur, level, &lbp);
4215#ifdef DEBUG
4216 error = xfs_btree_check_block(cur, left, level, lbp);
4217 if (error)
4218 goto error0;
4219#endif
4220 /* Grab the current block number, for future use. */
4221 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4222
4223 /*
4224 * If left block is full enough so that removing one entry
4225 * won't make it too empty, and right-shifting an entry out
4226 * of left to us works, we're done.
4227 */
4228 if (xfs_btree_get_numrecs(left) - 1 >=
4229 cur->bc_ops->get_minrecs(tcur, level)) {
4230 error = xfs_btree_rshift(tcur, level, &i);
4231 if (error)
4232 goto error0;
4233 if (i) {
4234 ASSERT(xfs_btree_get_numrecs(block) >=
4235 cur->bc_ops->get_minrecs(tcur, level));
4236 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4237 tcur = NULL;
4238 if (level == 0)
4239 cur->bc_levels[0].ptr++;
4240
4241 *stat = 1;
4242 return 0;
4243 }
4244 }
4245
4246 /*
4247 * Otherwise, grab the number of records in right for
4248 * future reference.
4249 */
4250 lrecs = xfs_btree_get_numrecs(left);
4251 }
4252
4253 /* Delete the temp cursor, we're done with it. */
4254 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4255 tcur = NULL;
4256
4257 /* If here, we need to do a join to keep the tree balanced. */
4258 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4259
4260 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4261 lrecs + xfs_btree_get_numrecs(block) <=
4262 cur->bc_ops->get_maxrecs(cur, level)) {
4263 /*
4264 * Set "right" to be the starting block,
4265 * "left" to be the left neighbor.
4266 */
4267 rptr = cptr;
4268 right = block;
4269 rbp = bp;
4270 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4271 if (error)
4272 goto error0;
4273
4274 /*
4275 * If that won't work, see if we can join with the right neighbor block.
4276 */
4277 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4278 rrecs + xfs_btree_get_numrecs(block) <=
4279 cur->bc_ops->get_maxrecs(cur, level)) {
4280 /*
4281 * Set "left" to be the starting block,
4282 * "right" to be the right neighbor.
4283 */
4284 lptr = cptr;
4285 left = block;
4286 lbp = bp;
4287 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4288 if (error)
4289 goto error0;
4290
4291 /*
4292 * Otherwise, we can't fix the imbalance.
4293 * Just return. This is probably a logic error, but it's not fatal.
4294 */
4295 } else {
4296 error = xfs_btree_dec_cursor(cur, level, stat);
4297 if (error)
4298 goto error0;
4299 return 0;
4300 }
4301
4302 rrecs = xfs_btree_get_numrecs(right);
4303 lrecs = xfs_btree_get_numrecs(left);
4304
4305 /*
4306 * We're now going to join "left" and "right" by moving all the stuff
4307 * in "right" to "left" and deleting "right".
4308 */
4309 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4310 if (level > 0) {
4311 /* It's a non-leaf. Move keys and pointers. */
4312 union xfs_btree_key *lkp; /* left btree key */
4313 union xfs_btree_ptr *lpp; /* left address pointer */
4314 union xfs_btree_key *rkp; /* right btree key */
4315 union xfs_btree_ptr *rpp; /* right address pointer */
4316
4317 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4318 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4319 rkp = xfs_btree_key_addr(cur, 1, right);
4320 rpp = xfs_btree_ptr_addr(cur, 1, right);
4321
4322 for (i = 1; i < rrecs; i++) {
4323 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4324 if (error)
4325 goto error0;
4326 }
4327
4328 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4329 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4330
4331 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4332 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4333 } else {
4334 /* It's a leaf. Move records. */
4335 union xfs_btree_rec *lrp; /* left record pointer */
4336 union xfs_btree_rec *rrp; /* right record pointer */
4337
4338 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4339 rrp = xfs_btree_rec_addr(cur, 1, right);
4340
4341 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4342 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4343 }
4344
4345 XFS_BTREE_STATS_INC(cur, join);
4346
4347 /*
4348 * Fix up the number of records and right block pointer in the
4349 * surviving block, and log it.
4350 */
4351 xfs_btree_set_numrecs(left, lrecs + rrecs);
4352 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4353 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4354 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4355
4356 /* If there is a right sibling, point it to the remaining block. */
4357 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4358 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4359 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4360 if (error)
4361 goto error0;
4362 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4363 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4364 }
4365
4366 /* Free the deleted block. */
4367 error = xfs_btree_free_block(cur, rbp);
4368 if (error)
4369 goto error0;
4370
4371 /*
4372 * If we joined with the left neighbor, set the buffer in the
4373 * cursor to the left block, and fix up the index.
4374 */
4375 if (bp != lbp) {
4376 cur->bc_levels[level].bp = lbp;
4377 cur->bc_levels[level].ptr += lrecs;
4378 cur->bc_levels[level].ra = 0;
4379 }
4380 /*
4381 * If we joined with the right neighbor and there's a level above
4382 * us, increment the cursor at that level.
4383 */
4384 else if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE ||
4385 level + 1 < cur->bc_nlevels) {
4386 error = xfs_btree_increment(cur, level + 1, &i);
4387 if (error)
4388 goto error0;
4389 }
4390
4391 /*
4392 * Readjust the ptr at this level if it's not a leaf, since it's
4393 * still pointing at the deletion point, which makes the cursor
4394 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4395 * We can't use decrement because it would change the next level up.
4396 */
4397 if (level > 0)
4398 cur->bc_levels[level].ptr--;
4399
4400 /*
4401 * We combined blocks, so we have to update the parent keys if the
4402 * btree supports overlapped intervals. However,
4403 * bc_levels[level + 1].ptr points to the old block so that the caller
4404 * knows which record to delete. Therefore, the caller must be savvy
4405 * enough to call updkeys for us if we return stat == 2. The other
4406 * exit points from this function don't require deletions further up
4407 * the tree, so they can call updkeys directly.
4408 */
4409
4410 /* Return value means the next level up has something to do. */
4411 *stat = 2;
4412 return 0;
4413
4414error0:
4415 if (tcur)
4416 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4417 return error;
4418}
4419
4420/*
4421 * Delete the record pointed to by cur.
4422 * The cursor refers to the place where the record was (could be inserted)
4423 * when the operation returns.
4424 */
4425int /* error */
4426xfs_btree_delete(
4427 struct xfs_btree_cur *cur,
4428 int *stat) /* success/failure */
4429{
4430 int error; /* error return value */
4431 int level;
4432 int i;
4433 bool joined = false;
4434
4435 /*
4436 * Go up the tree, starting at leaf level.
4437 *
4438 * If 2 is returned then a join was done; go to the next level.
4439 * Otherwise we are done.
4440 */
4441 for (level = 0, i = 2; i == 2; level++) {
4442 error = xfs_btree_delrec(cur, level, &i);
4443 if (error)
4444 goto error0;
4445 if (i == 2)
4446 joined = true;
4447 }
4448
4449 /*
4450 * If we combined blocks as part of deleting the record, delrec won't
4451 * have updated the parent high keys so we have to do that here.
4452 */
4453 if (joined && (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)) {
4454 error = xfs_btree_updkeys_force(cur, 0);
4455 if (error)
4456 goto error0;
4457 }
4458
4459 if (i == 0) {
4460 for (level = 1; level < cur->bc_nlevels; level++) {
4461 if (cur->bc_levels[level].ptr == 0) {
4462 error = xfs_btree_decrement(cur, level, &i);
4463 if (error)
4464 goto error0;
4465 break;
4466 }
4467 }
4468 }
4469
4470 *stat = i;
4471 return 0;
4472error0:
4473 return error;
4474}
4475
4476/*
4477 * Get the data from the pointed-to record.
4478 */
4479int /* error */
4480xfs_btree_get_rec(
4481 struct xfs_btree_cur *cur, /* btree cursor */
4482 union xfs_btree_rec **recp, /* output: btree record */
4483 int *stat) /* output: success/failure */
4484{
4485 struct xfs_btree_block *block; /* btree block */
4486 struct xfs_buf *bp; /* buffer pointer */
4487 int ptr; /* record number */
4488#ifdef DEBUG
4489 int error; /* error return value */
4490#endif
4491
4492 ptr = cur->bc_levels[0].ptr;
4493 block = xfs_btree_get_block(cur, 0, &bp);
4494
4495#ifdef DEBUG
4496 error = xfs_btree_check_block(cur, block, 0, bp);
4497 if (error)
4498 return error;
4499#endif
4500
4501 /*
4502 * Off the right end or left end, return failure.
4503 */
4504 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4505 *stat = 0;
4506 return 0;
4507 }
4508
4509 /*
4510 * Point to the record and extract its data.
4511 */
4512 *recp = xfs_btree_rec_addr(cur, ptr, block);
4513 *stat = 1;
4514 return 0;
4515}
4516
4517/* Visit a block in a btree. */
4518STATIC int
4519xfs_btree_visit_block(
4520 struct xfs_btree_cur *cur,
4521 int level,
4522 xfs_btree_visit_blocks_fn fn,
4523 void *data)
4524{
4525 struct xfs_btree_block *block;
4526 struct xfs_buf *bp;
4527 union xfs_btree_ptr rptr, bufptr;
4528 int error;
4529
4530 /* do right sibling readahead */
4531 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4532 block = xfs_btree_get_block(cur, level, &bp);
4533
4534 /* process the block */
4535 error = fn(cur, level, data);
4536 if (error)
4537 return error;
4538
4539 /* now read rh sibling block for next iteration */
4540 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4541 if (xfs_btree_ptr_is_null(cur, &rptr))
4542 return -ENOENT;
4543
4544 /*
4545 * We only visit blocks once in this walk, so we have to avoid the
4546 * internal xfs_btree_lookup_get_block() optimisation where it will
4547 * return the same block without checking if the right sibling points
4548 * back to us and creates a cyclic reference in the btree.
4549 */
4550 xfs_btree_buf_to_ptr(cur, bp, &bufptr);
4551 if (xfs_btree_ptrs_equal(cur, &rptr, &bufptr)) {
4552 xfs_btree_mark_sick(cur);
4553 return -EFSCORRUPTED;
4554 }
4555
4556 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4557}
4558
4559
4560/* Visit every block in a btree. */
4561int
4562xfs_btree_visit_blocks(
4563 struct xfs_btree_cur *cur,
4564 xfs_btree_visit_blocks_fn fn,
4565 unsigned int flags,
4566 void *data)
4567{
4568 union xfs_btree_ptr lptr;
4569 int level;
4570 struct xfs_btree_block *block = NULL;
4571 int error = 0;
4572
4573 xfs_btree_init_ptr_from_cur(cur, &lptr);
4574
4575 /* for each level */
4576 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4577 /* grab the left hand block */
4578 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4579 if (error)
4580 return error;
4581
4582 /* readahead the left most block for the next level down */
4583 if (level > 0) {
4584 union xfs_btree_ptr *ptr;
4585
4586 ptr = xfs_btree_ptr_addr(cur, 1, block);
4587 xfs_btree_readahead_ptr(cur, ptr, 1);
4588
4589 /* save for the next iteration of the loop */
4590 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4591
4592 if (!(flags & XFS_BTREE_VISIT_LEAVES))
4593 continue;
4594 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4595 continue;
4596 }
4597
4598 /* for each buffer in the level */
4599 do {
4600 error = xfs_btree_visit_block(cur, level, fn, data);
4601 } while (!error);
4602
4603 if (error != -ENOENT)
4604 return error;
4605 }
4606
4607 return 0;
4608}
4609
4610/*
4611 * Change the owner of a btree.
4612 *
4613 * The mechanism we use here is ordered buffer logging. Because we don't know
4614 * how many buffers were are going to need to modify, we don't really want to
4615 * have to make transaction reservations for the worst case of every buffer in a
4616 * full size btree as that may be more space that we can fit in the log....
4617 *
4618 * We do the btree walk in the most optimal manner possible - we have sibling
4619 * pointers so we can just walk all the blocks on each level from left to right
4620 * in a single pass, and then move to the next level and do the same. We can
4621 * also do readahead on the sibling pointers to get IO moving more quickly,
4622 * though for slow disks this is unlikely to make much difference to performance
4623 * as the amount of CPU work we have to do before moving to the next block is
4624 * relatively small.
4625 *
4626 * For each btree block that we load, modify the owner appropriately, set the
4627 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4628 * we mark the region we change dirty so that if the buffer is relogged in
4629 * a subsequent transaction the changes we make here as an ordered buffer are
4630 * correctly relogged in that transaction. If we are in recovery context, then
4631 * just queue the modified buffer as delayed write buffer so the transaction
4632 * recovery completion writes the changes to disk.
4633 */
4634struct xfs_btree_block_change_owner_info {
4635 uint64_t new_owner;
4636 struct list_head *buffer_list;
4637};
4638
4639static int
4640xfs_btree_block_change_owner(
4641 struct xfs_btree_cur *cur,
4642 int level,
4643 void *data)
4644{
4645 struct xfs_btree_block_change_owner_info *bbcoi = data;
4646 struct xfs_btree_block *block;
4647 struct xfs_buf *bp;
4648
4649 /* modify the owner */
4650 block = xfs_btree_get_block(cur, level, &bp);
4651 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
4652 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4653 return 0;
4654 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4655 } else {
4656 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4657 return 0;
4658 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4659 }
4660
4661 /*
4662 * If the block is a root block hosted in an inode, we might not have a
4663 * buffer pointer here and we shouldn't attempt to log the change as the
4664 * information is already held in the inode and discarded when the root
4665 * block is formatted into the on-disk inode fork. We still change it,
4666 * though, so everything is consistent in memory.
4667 */
4668 if (!bp) {
4669 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
4670 ASSERT(level == cur->bc_nlevels - 1);
4671 return 0;
4672 }
4673
4674 if (cur->bc_tp) {
4675 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4676 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4677 return -EAGAIN;
4678 }
4679 } else {
4680 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4681 }
4682
4683 return 0;
4684}
4685
4686int
4687xfs_btree_change_owner(
4688 struct xfs_btree_cur *cur,
4689 uint64_t new_owner,
4690 struct list_head *buffer_list)
4691{
4692 struct xfs_btree_block_change_owner_info bbcoi;
4693
4694 bbcoi.new_owner = new_owner;
4695 bbcoi.buffer_list = buffer_list;
4696
4697 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4698 XFS_BTREE_VISIT_ALL, &bbcoi);
4699}
4700
4701/* Verify the v5 fields of a long-format btree block. */
4702xfs_failaddr_t
4703xfs_btree_fsblock_v5hdr_verify(
4704 struct xfs_buf *bp,
4705 uint64_t owner)
4706{
4707 struct xfs_mount *mp = bp->b_mount;
4708 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4709
4710 if (!xfs_has_crc(mp))
4711 return __this_address;
4712 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4713 return __this_address;
4714 if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4715 return __this_address;
4716 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4717 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4718 return __this_address;
4719 return NULL;
4720}
4721
4722/* Verify a long-format btree block. */
4723xfs_failaddr_t
4724xfs_btree_fsblock_verify(
4725 struct xfs_buf *bp,
4726 unsigned int max_recs)
4727{
4728 struct xfs_mount *mp = bp->b_mount;
4729 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4730 xfs_fsblock_t fsb;
4731 xfs_failaddr_t fa;
4732
4733 ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4734
4735 /* numrecs verification */
4736 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4737 return __this_address;
4738
4739 /* sibling pointer verification */
4740 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4741 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4742 block->bb_u.l.bb_leftsib);
4743 if (!fa)
4744 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4745 block->bb_u.l.bb_rightsib);
4746 return fa;
4747}
4748
4749/* Verify an in-memory btree block. */
4750xfs_failaddr_t
4751xfs_btree_memblock_verify(
4752 struct xfs_buf *bp,
4753 unsigned int max_recs)
4754{
4755 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4756 struct xfs_buftarg *btp = bp->b_target;
4757 xfs_failaddr_t fa;
4758 xfbno_t bno;
4759
4760 ASSERT(xfs_buftarg_is_mem(bp->b_target));
4761
4762 /* numrecs verification */
4763 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4764 return __this_address;
4765
4766 /* sibling pointer verification */
4767 bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
4768 fa = xfs_btree_check_memblock_siblings(btp, bno,
4769 block->bb_u.l.bb_leftsib);
4770 if (fa)
4771 return fa;
4772 fa = xfs_btree_check_memblock_siblings(btp, bno,
4773 block->bb_u.l.bb_rightsib);
4774 if (fa)
4775 return fa;
4776
4777 return NULL;
4778}
4779/**
4780 * xfs_btree_agblock_v5hdr_verify() -- verify the v5 fields of a short-format
4781 * btree block
4782 *
4783 * @bp: buffer containing the btree block
4784 */
4785xfs_failaddr_t
4786xfs_btree_agblock_v5hdr_verify(
4787 struct xfs_buf *bp)
4788{
4789 struct xfs_mount *mp = bp->b_mount;
4790 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4791 struct xfs_perag *pag = bp->b_pag;
4792
4793 if (!xfs_has_crc(mp))
4794 return __this_address;
4795 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4796 return __this_address;
4797 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4798 return __this_address;
4799 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4800 return __this_address;
4801 return NULL;
4802}
4803
4804/**
4805 * xfs_btree_agblock_verify() -- verify a short-format btree block
4806 *
4807 * @bp: buffer containing the btree block
4808 * @max_recs: maximum records allowed in this btree node
4809 */
4810xfs_failaddr_t
4811xfs_btree_agblock_verify(
4812 struct xfs_buf *bp,
4813 unsigned int max_recs)
4814{
4815 struct xfs_mount *mp = bp->b_mount;
4816 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4817 xfs_agblock_t agbno;
4818 xfs_failaddr_t fa;
4819
4820 ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4821
4822 /* numrecs verification */
4823 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4824 return __this_address;
4825
4826 /* sibling pointer verification */
4827 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4828 fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4829 block->bb_u.s.bb_leftsib);
4830 if (!fa)
4831 fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4832 block->bb_u.s.bb_rightsib);
4833 return fa;
4834}
4835
4836/*
4837 * For the given limits on leaf and keyptr records per block, calculate the
4838 * height of the tree needed to index the number of leaf records.
4839 */
4840unsigned int
4841xfs_btree_compute_maxlevels(
4842 const unsigned int *limits,
4843 unsigned long long records)
4844{
4845 unsigned long long level_blocks = howmany_64(records, limits[0]);
4846 unsigned int height = 1;
4847
4848 while (level_blocks > 1) {
4849 level_blocks = howmany_64(level_blocks, limits[1]);
4850 height++;
4851 }
4852
4853 return height;
4854}
4855
4856/*
4857 * For the given limits on leaf and keyptr records per block, calculate the
4858 * number of blocks needed to index the given number of leaf records.
4859 */
4860unsigned long long
4861xfs_btree_calc_size(
4862 const unsigned int *limits,
4863 unsigned long long records)
4864{
4865 unsigned long long level_blocks = howmany_64(records, limits[0]);
4866 unsigned long long blocks = level_blocks;
4867
4868 while (level_blocks > 1) {
4869 level_blocks = howmany_64(level_blocks, limits[1]);
4870 blocks += level_blocks;
4871 }
4872
4873 return blocks;
4874}
4875
4876/*
4877 * Given a number of available blocks for the btree to consume with records and
4878 * pointers, calculate the height of the tree needed to index all the records
4879 * that space can hold based on the number of pointers each interior node
4880 * holds.
4881 *
4882 * We start by assuming a single level tree consumes a single block, then track
4883 * the number of blocks each node level consumes until we no longer have space
4884 * to store the next node level. At this point, we are indexing all the leaf
4885 * blocks in the space, and there's no more free space to split the tree any
4886 * further. That's our maximum btree height.
4887 */
4888unsigned int
4889xfs_btree_space_to_height(
4890 const unsigned int *limits,
4891 unsigned long long leaf_blocks)
4892{
4893 /*
4894 * The root btree block can have fewer than minrecs pointers in it
4895 * because the tree might not be big enough to require that amount of
4896 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4897 */
4898 unsigned long long node_blocks = 2;
4899 unsigned long long blocks_left = leaf_blocks - 1;
4900 unsigned int height = 1;
4901
4902 if (leaf_blocks < 1)
4903 return 0;
4904
4905 while (node_blocks < blocks_left) {
4906 blocks_left -= node_blocks;
4907 node_blocks *= limits[1];
4908 height++;
4909 }
4910
4911 return height;
4912}
4913
4914/*
4915 * Query a regular btree for all records overlapping a given interval.
4916 * Start with a LE lookup of the key of low_rec and return all records
4917 * until we find a record with a key greater than the key of high_rec.
4918 */
4919STATIC int
4920xfs_btree_simple_query_range(
4921 struct xfs_btree_cur *cur,
4922 const union xfs_btree_key *low_key,
4923 const union xfs_btree_key *high_key,
4924 xfs_btree_query_range_fn fn,
4925 void *priv)
4926{
4927 union xfs_btree_rec *recp;
4928 union xfs_btree_key rec_key;
4929 int stat;
4930 bool firstrec = true;
4931 int error;
4932
4933 ASSERT(cur->bc_ops->init_high_key_from_rec);
4934 ASSERT(cur->bc_ops->diff_two_keys);
4935
4936 /*
4937 * Find the leftmost record. The btree cursor must be set
4938 * to the low record used to generate low_key.
4939 */
4940 stat = 0;
4941 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4942 if (error)
4943 goto out;
4944
4945 /* Nothing? See if there's anything to the right. */
4946 if (!stat) {
4947 error = xfs_btree_increment(cur, 0, &stat);
4948 if (error)
4949 goto out;
4950 }
4951
4952 while (stat) {
4953 /* Find the record. */
4954 error = xfs_btree_get_rec(cur, &recp, &stat);
4955 if (error || !stat)
4956 break;
4957
4958 /* Skip if low_key > high_key(rec). */
4959 if (firstrec) {
4960 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4961 firstrec = false;
4962 if (xfs_btree_keycmp_gt(cur, low_key, &rec_key))
4963 goto advloop;
4964 }
4965
4966 /* Stop if low_key(rec) > high_key. */
4967 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4968 if (xfs_btree_keycmp_gt(cur, &rec_key, high_key))
4969 break;
4970
4971 /* Callback */
4972 error = fn(cur, recp, priv);
4973 if (error)
4974 break;
4975
4976advloop:
4977 /* Move on to the next record. */
4978 error = xfs_btree_increment(cur, 0, &stat);
4979 if (error)
4980 break;
4981 }
4982
4983out:
4984 return error;
4985}
4986
4987/*
4988 * Query an overlapped interval btree for all records overlapping a given
4989 * interval. This function roughly follows the algorithm given in
4990 * "Interval Trees" of _Introduction to Algorithms_, which is section
4991 * 14.3 in the 2nd and 3rd editions.
4992 *
4993 * First, generate keys for the low and high records passed in.
4994 *
4995 * For any leaf node, generate the high and low keys for the record.
4996 * If the record keys overlap with the query low/high keys, pass the
4997 * record to the function iterator.
4998 *
4999 * For any internal node, compare the low and high keys of each
5000 * pointer against the query low/high keys. If there's an overlap,
5001 * follow the pointer.
5002 *
5003 * As an optimization, we stop scanning a block when we find a low key
5004 * that is greater than the query's high key.
5005 */
5006STATIC int
5007xfs_btree_overlapped_query_range(
5008 struct xfs_btree_cur *cur,
5009 const union xfs_btree_key *low_key,
5010 const union xfs_btree_key *high_key,
5011 xfs_btree_query_range_fn fn,
5012 void *priv)
5013{
5014 union xfs_btree_ptr ptr;
5015 union xfs_btree_ptr *pp;
5016 union xfs_btree_key rec_key;
5017 union xfs_btree_key rec_hkey;
5018 union xfs_btree_key *lkp;
5019 union xfs_btree_key *hkp;
5020 union xfs_btree_rec *recp;
5021 struct xfs_btree_block *block;
5022 int level;
5023 struct xfs_buf *bp;
5024 int i;
5025 int error;
5026
5027 /* Load the root of the btree. */
5028 level = cur->bc_nlevels - 1;
5029 xfs_btree_init_ptr_from_cur(cur, &ptr);
5030 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
5031 if (error)
5032 return error;
5033 xfs_btree_get_block(cur, level, &bp);
5034 trace_xfs_btree_overlapped_query_range(cur, level, bp);
5035#ifdef DEBUG
5036 error = xfs_btree_check_block(cur, block, level, bp);
5037 if (error)
5038 goto out;
5039#endif
5040 cur->bc_levels[level].ptr = 1;
5041
5042 while (level < cur->bc_nlevels) {
5043 block = xfs_btree_get_block(cur, level, &bp);
5044
5045 /* End of node, pop back towards the root. */
5046 if (cur->bc_levels[level].ptr >
5047 be16_to_cpu(block->bb_numrecs)) {
5048pop_up:
5049 if (level < cur->bc_nlevels - 1)
5050 cur->bc_levels[level + 1].ptr++;
5051 level++;
5052 continue;
5053 }
5054
5055 if (level == 0) {
5056 /* Handle a leaf node. */
5057 recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
5058 block);
5059
5060 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
5061 cur->bc_ops->init_key_from_rec(&rec_key, recp);
5062
5063 /*
5064 * If (query's high key < record's low key), then there
5065 * are no more interesting records in this block. Pop
5066 * up to the leaf level to find more record blocks.
5067 *
5068 * If (record's high key >= query's low key) and
5069 * (query's high key >= record's low key), then
5070 * this record overlaps the query range; callback.
5071 */
5072 if (xfs_btree_keycmp_lt(cur, high_key, &rec_key))
5073 goto pop_up;
5074 if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) {
5075 error = fn(cur, recp, priv);
5076 if (error)
5077 break;
5078 }
5079 cur->bc_levels[level].ptr++;
5080 continue;
5081 }
5082
5083 /* Handle an internal node. */
5084 lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
5085 hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
5086 block);
5087 pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
5088
5089 /*
5090 * If (query's high key < pointer's low key), then there are no
5091 * more interesting keys in this block. Pop up one leaf level
5092 * to continue looking for records.
5093 *
5094 * If (pointer's high key >= query's low key) and
5095 * (query's high key >= pointer's low key), then
5096 * this record overlaps the query range; follow pointer.
5097 */
5098 if (xfs_btree_keycmp_lt(cur, high_key, lkp))
5099 goto pop_up;
5100 if (xfs_btree_keycmp_ge(cur, hkp, low_key)) {
5101 level--;
5102 error = xfs_btree_lookup_get_block(cur, level, pp,
5103 &block);
5104 if (error)
5105 goto out;
5106 xfs_btree_get_block(cur, level, &bp);
5107 trace_xfs_btree_overlapped_query_range(cur, level, bp);
5108#ifdef DEBUG
5109 error = xfs_btree_check_block(cur, block, level, bp);
5110 if (error)
5111 goto out;
5112#endif
5113 cur->bc_levels[level].ptr = 1;
5114 continue;
5115 }
5116 cur->bc_levels[level].ptr++;
5117 }
5118
5119out:
5120 /*
5121 * If we don't end this function with the cursor pointing at a record
5122 * block, a subsequent non-error cursor deletion will not release
5123 * node-level buffers, causing a buffer leak. This is quite possible
5124 * with a zero-results range query, so release the buffers if we
5125 * failed to return any results.
5126 */
5127 if (cur->bc_levels[0].bp == NULL) {
5128 for (i = 0; i < cur->bc_nlevels; i++) {
5129 if (cur->bc_levels[i].bp) {
5130 xfs_trans_brelse(cur->bc_tp,
5131 cur->bc_levels[i].bp);
5132 cur->bc_levels[i].bp = NULL;
5133 cur->bc_levels[i].ptr = 0;
5134 cur->bc_levels[i].ra = 0;
5135 }
5136 }
5137 }
5138
5139 return error;
5140}
5141
5142static inline void
5143xfs_btree_key_from_irec(
5144 struct xfs_btree_cur *cur,
5145 union xfs_btree_key *key,
5146 const union xfs_btree_irec *irec)
5147{
5148 union xfs_btree_rec rec;
5149
5150 cur->bc_rec = *irec;
5151 cur->bc_ops->init_rec_from_cur(cur, &rec);
5152 cur->bc_ops->init_key_from_rec(key, &rec);
5153}
5154
5155/*
5156 * Query a btree for all records overlapping a given interval of keys. The
5157 * supplied function will be called with each record found; return one of the
5158 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
5159 * code. This function returns -ECANCELED, zero, or a negative error code.
5160 */
5161int
5162xfs_btree_query_range(
5163 struct xfs_btree_cur *cur,
5164 const union xfs_btree_irec *low_rec,
5165 const union xfs_btree_irec *high_rec,
5166 xfs_btree_query_range_fn fn,
5167 void *priv)
5168{
5169 union xfs_btree_key low_key;
5170 union xfs_btree_key high_key;
5171
5172 /* Find the keys of both ends of the interval. */
5173 xfs_btree_key_from_irec(cur, &high_key, high_rec);
5174 xfs_btree_key_from_irec(cur, &low_key, low_rec);
5175
5176 /* Enforce low key <= high key. */
5177 if (!xfs_btree_keycmp_le(cur, &low_key, &high_key))
5178 return -EINVAL;
5179
5180 if (!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5181 return xfs_btree_simple_query_range(cur, &low_key,
5182 &high_key, fn, priv);
5183 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
5184 fn, priv);
5185}
5186
5187/* Query a btree for all records. */
5188int
5189xfs_btree_query_all(
5190 struct xfs_btree_cur *cur,
5191 xfs_btree_query_range_fn fn,
5192 void *priv)
5193{
5194 union xfs_btree_key low_key;
5195 union xfs_btree_key high_key;
5196
5197 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5198 memset(&low_key, 0, sizeof(low_key));
5199 memset(&high_key, 0xFF, sizeof(high_key));
5200
5201 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
5202}
5203
5204static int
5205xfs_btree_count_blocks_helper(
5206 struct xfs_btree_cur *cur,
5207 int level,
5208 void *data)
5209{
5210 xfs_extlen_t *blocks = data;
5211 (*blocks)++;
5212
5213 return 0;
5214}
5215
5216/* Count the blocks in a btree and return the result in *blocks. */
5217int
5218xfs_btree_count_blocks(
5219 struct xfs_btree_cur *cur,
5220 xfs_extlen_t *blocks)
5221{
5222 *blocks = 0;
5223 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5224 XFS_BTREE_VISIT_ALL, blocks);
5225}
5226
5227/* Compare two btree pointers. */
5228int64_t
5229xfs_btree_diff_two_ptrs(
5230 struct xfs_btree_cur *cur,
5231 const union xfs_btree_ptr *a,
5232 const union xfs_btree_ptr *b)
5233{
5234 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5235 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5236 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5237}
5238
5239struct xfs_btree_has_records {
5240 /* Keys for the start and end of the range we want to know about. */
5241 union xfs_btree_key start_key;
5242 union xfs_btree_key end_key;
5243
5244 /* Mask for key comparisons, if desired. */
5245 const union xfs_btree_key *key_mask;
5246
5247 /* Highest record key we've seen so far. */
5248 union xfs_btree_key high_key;
5249
5250 enum xbtree_recpacking outcome;
5251};
5252
5253STATIC int
5254xfs_btree_has_records_helper(
5255 struct xfs_btree_cur *cur,
5256 const union xfs_btree_rec *rec,
5257 void *priv)
5258{
5259 union xfs_btree_key rec_key;
5260 union xfs_btree_key rec_high_key;
5261 struct xfs_btree_has_records *info = priv;
5262 enum xbtree_key_contig key_contig;
5263
5264 cur->bc_ops->init_key_from_rec(&rec_key, rec);
5265
5266 if (info->outcome == XBTREE_RECPACKING_EMPTY) {
5267 info->outcome = XBTREE_RECPACKING_SPARSE;
5268
5269 /*
5270 * If the first record we find does not overlap the start key,
5271 * then there is a hole at the start of the search range.
5272 * Classify this as sparse and stop immediately.
5273 */
5274 if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key,
5275 info->key_mask))
5276 return -ECANCELED;
5277 } else {
5278 /*
5279 * If a subsequent record does not overlap with the any record
5280 * we've seen so far, there is a hole in the middle of the
5281 * search range. Classify this as sparse and stop.
5282 * If the keys overlap and this btree does not allow overlap,
5283 * signal corruption.
5284 */
5285 key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key,
5286 &rec_key, info->key_mask);
5287 if (key_contig == XBTREE_KEY_OVERLAP &&
5288 !(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5289 return -EFSCORRUPTED;
5290 if (key_contig == XBTREE_KEY_GAP)
5291 return -ECANCELED;
5292 }
5293
5294 /*
5295 * If high_key(rec) is larger than any other high key we've seen,
5296 * remember it for later.
5297 */
5298 cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec);
5299 if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key,
5300 info->key_mask))
5301 info->high_key = rec_high_key; /* struct copy */
5302
5303 return 0;
5304}
5305
5306/*
5307 * Scan part of the keyspace of a btree and tell us if that keyspace does not
5308 * map to any records; is fully mapped to records; or is partially mapped to
5309 * records. This is the btree record equivalent to determining if a file is
5310 * sparse.
5311 *
5312 * For most btree types, the record scan should use all available btree key
5313 * fields to compare the keys encountered. These callers should pass NULL for
5314 * @mask. However, some callers (e.g. scanning physical space in the rmapbt)
5315 * want to ignore some part of the btree record keyspace when performing the
5316 * comparison. These callers should pass in a union xfs_btree_key object with
5317 * the fields that *should* be a part of the comparison set to any nonzero
5318 * value, and the rest zeroed.
5319 */
5320int
5321xfs_btree_has_records(
5322 struct xfs_btree_cur *cur,
5323 const union xfs_btree_irec *low,
5324 const union xfs_btree_irec *high,
5325 const union xfs_btree_key *mask,
5326 enum xbtree_recpacking *outcome)
5327{
5328 struct xfs_btree_has_records info = {
5329 .outcome = XBTREE_RECPACKING_EMPTY,
5330 .key_mask = mask,
5331 };
5332 int error;
5333
5334 /* Not all btrees support this operation. */
5335 if (!cur->bc_ops->keys_contiguous) {
5336 ASSERT(0);
5337 return -EOPNOTSUPP;
5338 }
5339
5340 xfs_btree_key_from_irec(cur, &info.start_key, low);
5341 xfs_btree_key_from_irec(cur, &info.end_key, high);
5342
5343 error = xfs_btree_query_range(cur, low, high,
5344 xfs_btree_has_records_helper, &info);
5345 if (error == -ECANCELED)
5346 goto out;
5347 if (error)
5348 return error;
5349
5350 if (info.outcome == XBTREE_RECPACKING_EMPTY)
5351 goto out;
5352
5353 /*
5354 * If the largest high_key(rec) we saw during the walk is greater than
5355 * the end of the search range, classify this as full. Otherwise,
5356 * there is a hole at the end of the search range.
5357 */
5358 if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key,
5359 mask))
5360 info.outcome = XBTREE_RECPACKING_FULL;
5361
5362out:
5363 *outcome = info.outcome;
5364 return 0;
5365}
5366
5367/* Are there more records in this btree? */
5368bool
5369xfs_btree_has_more_records(
5370 struct xfs_btree_cur *cur)
5371{
5372 struct xfs_btree_block *block;
5373 struct xfs_buf *bp;
5374
5375 block = xfs_btree_get_block(cur, 0, &bp);
5376
5377 /* There are still records in this block. */
5378 if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5379 return true;
5380
5381 /* There are more record blocks. */
5382 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5383 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5384 else
5385 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5386}
5387
5388/* Set up all the btree cursor caches. */
5389int __init
5390xfs_btree_init_cur_caches(void)
5391{
5392 int error;
5393
5394 error = xfs_allocbt_init_cur_cache();
5395 if (error)
5396 return error;
5397 error = xfs_inobt_init_cur_cache();
5398 if (error)
5399 goto err;
5400 error = xfs_bmbt_init_cur_cache();
5401 if (error)
5402 goto err;
5403 error = xfs_rmapbt_init_cur_cache();
5404 if (error)
5405 goto err;
5406 error = xfs_refcountbt_init_cur_cache();
5407 if (error)
5408 goto err;
5409
5410 return 0;
5411err:
5412 xfs_btree_destroy_cur_caches();
5413 return error;
5414}
5415
5416/* Destroy all the btree cursor caches, if they've been allocated. */
5417void
5418xfs_btree_destroy_cur_caches(void)
5419{
5420 xfs_allocbt_destroy_cur_cache();
5421 xfs_inobt_destroy_cur_cache();
5422 xfs_bmbt_destroy_cur_cache();
5423 xfs_rmapbt_destroy_cur_cache();
5424 xfs_refcountbt_destroy_cur_cache();
5425}
5426
5427/* Move the btree cursor before the first record. */
5428int
5429xfs_btree_goto_left_edge(
5430 struct xfs_btree_cur *cur)
5431{
5432 int stat = 0;
5433 int error;
5434
5435 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5436 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5437 if (error)
5438 return error;
5439 if (!stat)
5440 return 0;
5441
5442 error = xfs_btree_decrement(cur, 0, &stat);
5443 if (error)
5444 return error;
5445 if (stat != 0) {
5446 ASSERT(0);
5447 xfs_btree_mark_sick(cur);
5448 return -EFSCORRUPTED;
5449 }
5450
5451 return 0;
5452}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_buf_item.h"
17#include "xfs_btree.h"
18#include "xfs_errortag.h"
19#include "xfs_error.h"
20#include "xfs_trace.h"
21#include "xfs_alloc.h"
22#include "xfs_log.h"
23
24/*
25 * Cursor allocation zone.
26 */
27kmem_zone_t *xfs_btree_cur_zone;
28
29/*
30 * Btree magic numbers.
31 */
32static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
33 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
34 XFS_FIBT_MAGIC, 0 },
35 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
36 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
37 XFS_REFC_CRC_MAGIC }
38};
39
40uint32_t
41xfs_btree_magic(
42 int crc,
43 xfs_btnum_t btnum)
44{
45 uint32_t magic = xfs_magics[crc][btnum];
46
47 /* Ensure we asked for crc for crc-only magics. */
48 ASSERT(magic != 0);
49 return magic;
50}
51
52/*
53 * Check a long btree block header. Return the address of the failing check,
54 * or NULL if everything is ok.
55 */
56xfs_failaddr_t
57__xfs_btree_check_lblock(
58 struct xfs_btree_cur *cur,
59 struct xfs_btree_block *block,
60 int level,
61 struct xfs_buf *bp)
62{
63 struct xfs_mount *mp = cur->bc_mp;
64 xfs_btnum_t btnum = cur->bc_btnum;
65 int crc = xfs_sb_version_hascrc(&mp->m_sb);
66
67 if (crc) {
68 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
69 return __this_address;
70 if (block->bb_u.l.bb_blkno !=
71 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
72 return __this_address;
73 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
74 return __this_address;
75 }
76
77 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
78 return __this_address;
79 if (be16_to_cpu(block->bb_level) != level)
80 return __this_address;
81 if (be16_to_cpu(block->bb_numrecs) >
82 cur->bc_ops->get_maxrecs(cur, level))
83 return __this_address;
84 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
85 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
86 level + 1))
87 return __this_address;
88 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
89 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
90 level + 1))
91 return __this_address;
92
93 return NULL;
94}
95
96/* Check a long btree block header. */
97static int
98xfs_btree_check_lblock(
99 struct xfs_btree_cur *cur,
100 struct xfs_btree_block *block,
101 int level,
102 struct xfs_buf *bp)
103{
104 struct xfs_mount *mp = cur->bc_mp;
105 xfs_failaddr_t fa;
106
107 fa = __xfs_btree_check_lblock(cur, block, level, bp);
108 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
109 XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
110 if (bp)
111 trace_xfs_btree_corrupt(bp, _RET_IP_);
112 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
113 return -EFSCORRUPTED;
114 }
115 return 0;
116}
117
118/*
119 * Check a short btree block header. Return the address of the failing check,
120 * or NULL if everything is ok.
121 */
122xfs_failaddr_t
123__xfs_btree_check_sblock(
124 struct xfs_btree_cur *cur,
125 struct xfs_btree_block *block,
126 int level,
127 struct xfs_buf *bp)
128{
129 struct xfs_mount *mp = cur->bc_mp;
130 xfs_btnum_t btnum = cur->bc_btnum;
131 int crc = xfs_sb_version_hascrc(&mp->m_sb);
132
133 if (crc) {
134 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
135 return __this_address;
136 if (block->bb_u.s.bb_blkno !=
137 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
138 return __this_address;
139 }
140
141 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
142 return __this_address;
143 if (be16_to_cpu(block->bb_level) != level)
144 return __this_address;
145 if (be16_to_cpu(block->bb_numrecs) >
146 cur->bc_ops->get_maxrecs(cur, level))
147 return __this_address;
148 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
149 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
150 level + 1))
151 return __this_address;
152 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
153 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
154 level + 1))
155 return __this_address;
156
157 return NULL;
158}
159
160/* Check a short btree block header. */
161STATIC int
162xfs_btree_check_sblock(
163 struct xfs_btree_cur *cur,
164 struct xfs_btree_block *block,
165 int level,
166 struct xfs_buf *bp)
167{
168 struct xfs_mount *mp = cur->bc_mp;
169 xfs_failaddr_t fa;
170
171 fa = __xfs_btree_check_sblock(cur, block, level, bp);
172 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
173 XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
174 if (bp)
175 trace_xfs_btree_corrupt(bp, _RET_IP_);
176 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
177 return -EFSCORRUPTED;
178 }
179 return 0;
180}
181
182/*
183 * Debug routine: check that block header is ok.
184 */
185int
186xfs_btree_check_block(
187 struct xfs_btree_cur *cur, /* btree cursor */
188 struct xfs_btree_block *block, /* generic btree block pointer */
189 int level, /* level of the btree block */
190 struct xfs_buf *bp) /* buffer containing block, if any */
191{
192 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
193 return xfs_btree_check_lblock(cur, block, level, bp);
194 else
195 return xfs_btree_check_sblock(cur, block, level, bp);
196}
197
198/* Check that this long pointer is valid and points within the fs. */
199bool
200xfs_btree_check_lptr(
201 struct xfs_btree_cur *cur,
202 xfs_fsblock_t fsbno,
203 int level)
204{
205 if (level <= 0)
206 return false;
207 return xfs_verify_fsbno(cur->bc_mp, fsbno);
208}
209
210/* Check that this short pointer is valid and points within the AG. */
211bool
212xfs_btree_check_sptr(
213 struct xfs_btree_cur *cur,
214 xfs_agblock_t agbno,
215 int level)
216{
217 if (level <= 0)
218 return false;
219 return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
220}
221
222/*
223 * Check that a given (indexed) btree pointer at a certain level of a
224 * btree is valid and doesn't point past where it should.
225 */
226static int
227xfs_btree_check_ptr(
228 struct xfs_btree_cur *cur,
229 union xfs_btree_ptr *ptr,
230 int index,
231 int level)
232{
233 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
234 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
235 level))
236 return 0;
237 xfs_err(cur->bc_mp,
238"Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
239 cur->bc_private.b.ip->i_ino,
240 cur->bc_private.b.whichfork, cur->bc_btnum,
241 level, index);
242 } else {
243 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
244 level))
245 return 0;
246 xfs_err(cur->bc_mp,
247"AG %u: Corrupt btree %d pointer at level %d index %d.",
248 cur->bc_private.a.agno, cur->bc_btnum,
249 level, index);
250 }
251
252 return -EFSCORRUPTED;
253}
254
255#ifdef DEBUG
256# define xfs_btree_debug_check_ptr xfs_btree_check_ptr
257#else
258# define xfs_btree_debug_check_ptr(...) (0)
259#endif
260
261/*
262 * Calculate CRC on the whole btree block and stuff it into the
263 * long-form btree header.
264 *
265 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
266 * it into the buffer so recovery knows what the last modification was that made
267 * it to disk.
268 */
269void
270xfs_btree_lblock_calc_crc(
271 struct xfs_buf *bp)
272{
273 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
274 struct xfs_buf_log_item *bip = bp->b_log_item;
275
276 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
277 return;
278 if (bip)
279 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
280 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
281}
282
283bool
284xfs_btree_lblock_verify_crc(
285 struct xfs_buf *bp)
286{
287 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
288 struct xfs_mount *mp = bp->b_mount;
289
290 if (xfs_sb_version_hascrc(&mp->m_sb)) {
291 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
292 return false;
293 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
294 }
295
296 return true;
297}
298
299/*
300 * Calculate CRC on the whole btree block and stuff it into the
301 * short-form btree header.
302 *
303 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
304 * it into the buffer so recovery knows what the last modification was that made
305 * it to disk.
306 */
307void
308xfs_btree_sblock_calc_crc(
309 struct xfs_buf *bp)
310{
311 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
312 struct xfs_buf_log_item *bip = bp->b_log_item;
313
314 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
315 return;
316 if (bip)
317 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
318 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
319}
320
321bool
322xfs_btree_sblock_verify_crc(
323 struct xfs_buf *bp)
324{
325 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
326 struct xfs_mount *mp = bp->b_mount;
327
328 if (xfs_sb_version_hascrc(&mp->m_sb)) {
329 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
330 return false;
331 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
332 }
333
334 return true;
335}
336
337static int
338xfs_btree_free_block(
339 struct xfs_btree_cur *cur,
340 struct xfs_buf *bp)
341{
342 int error;
343
344 error = cur->bc_ops->free_block(cur, bp);
345 if (!error) {
346 xfs_trans_binval(cur->bc_tp, bp);
347 XFS_BTREE_STATS_INC(cur, free);
348 }
349 return error;
350}
351
352/*
353 * Delete the btree cursor.
354 */
355void
356xfs_btree_del_cursor(
357 xfs_btree_cur_t *cur, /* btree cursor */
358 int error) /* del because of error */
359{
360 int i; /* btree level */
361
362 /*
363 * Clear the buffer pointers, and release the buffers.
364 * If we're doing this in the face of an error, we
365 * need to make sure to inspect all of the entries
366 * in the bc_bufs array for buffers to be unlocked.
367 * This is because some of the btree code works from
368 * level n down to 0, and if we get an error along
369 * the way we won't have initialized all the entries
370 * down to 0.
371 */
372 for (i = 0; i < cur->bc_nlevels; i++) {
373 if (cur->bc_bufs[i])
374 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
375 else if (!error)
376 break;
377 }
378 /*
379 * Can't free a bmap cursor without having dealt with the
380 * allocated indirect blocks' accounting.
381 */
382 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
383 cur->bc_private.b.allocated == 0);
384 /*
385 * Free the cursor.
386 */
387 kmem_zone_free(xfs_btree_cur_zone, cur);
388}
389
390/*
391 * Duplicate the btree cursor.
392 * Allocate a new one, copy the record, re-get the buffers.
393 */
394int /* error */
395xfs_btree_dup_cursor(
396 xfs_btree_cur_t *cur, /* input cursor */
397 xfs_btree_cur_t **ncur) /* output cursor */
398{
399 xfs_buf_t *bp; /* btree block's buffer pointer */
400 int error; /* error return value */
401 int i; /* level number of btree block */
402 xfs_mount_t *mp; /* mount structure for filesystem */
403 xfs_btree_cur_t *new; /* new cursor value */
404 xfs_trans_t *tp; /* transaction pointer, can be NULL */
405
406 tp = cur->bc_tp;
407 mp = cur->bc_mp;
408
409 /*
410 * Allocate a new cursor like the old one.
411 */
412 new = cur->bc_ops->dup_cursor(cur);
413
414 /*
415 * Copy the record currently in the cursor.
416 */
417 new->bc_rec = cur->bc_rec;
418
419 /*
420 * For each level current, re-get the buffer and copy the ptr value.
421 */
422 for (i = 0; i < new->bc_nlevels; i++) {
423 new->bc_ptrs[i] = cur->bc_ptrs[i];
424 new->bc_ra[i] = cur->bc_ra[i];
425 bp = cur->bc_bufs[i];
426 if (bp) {
427 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
428 XFS_BUF_ADDR(bp), mp->m_bsize,
429 0, &bp,
430 cur->bc_ops->buf_ops);
431 if (error) {
432 xfs_btree_del_cursor(new, error);
433 *ncur = NULL;
434 return error;
435 }
436 }
437 new->bc_bufs[i] = bp;
438 }
439 *ncur = new;
440 return 0;
441}
442
443/*
444 * XFS btree block layout and addressing:
445 *
446 * There are two types of blocks in the btree: leaf and non-leaf blocks.
447 *
448 * The leaf record start with a header then followed by records containing
449 * the values. A non-leaf block also starts with the same header, and
450 * then first contains lookup keys followed by an equal number of pointers
451 * to the btree blocks at the previous level.
452 *
453 * +--------+-------+-------+-------+-------+-------+-------+
454 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
455 * +--------+-------+-------+-------+-------+-------+-------+
456 *
457 * +--------+-------+-------+-------+-------+-------+-------+
458 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
459 * +--------+-------+-------+-------+-------+-------+-------+
460 *
461 * The header is called struct xfs_btree_block for reasons better left unknown
462 * and comes in different versions for short (32bit) and long (64bit) block
463 * pointers. The record and key structures are defined by the btree instances
464 * and opaque to the btree core. The block pointers are simple disk endian
465 * integers, available in a short (32bit) and long (64bit) variant.
466 *
467 * The helpers below calculate the offset of a given record, key or pointer
468 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
469 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
470 * inside the btree block is done using indices starting at one, not zero!
471 *
472 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
473 * overlapping intervals. In such a tree, records are still sorted lowest to
474 * highest and indexed by the smallest key value that refers to the record.
475 * However, nodes are different: each pointer has two associated keys -- one
476 * indexing the lowest key available in the block(s) below (the same behavior
477 * as the key in a regular btree) and another indexing the highest key
478 * available in the block(s) below. Because records are /not/ sorted by the
479 * highest key, all leaf block updates require us to compute the highest key
480 * that matches any record in the leaf and to recursively update the high keys
481 * in the nodes going further up in the tree, if necessary. Nodes look like
482 * this:
483 *
484 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
485 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
486 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
487 *
488 * To perform an interval query on an overlapped tree, perform the usual
489 * depth-first search and use the low and high keys to decide if we can skip
490 * that particular node. If a leaf node is reached, return the records that
491 * intersect the interval. Note that an interval query may return numerous
492 * entries. For a non-overlapped tree, simply search for the record associated
493 * with the lowest key and iterate forward until a non-matching record is
494 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
495 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
496 * more detail.
497 *
498 * Why do we care about overlapping intervals? Let's say you have a bunch of
499 * reverse mapping records on a reflink filesystem:
500 *
501 * 1: +- file A startblock B offset C length D -----------+
502 * 2: +- file E startblock F offset G length H --------------+
503 * 3: +- file I startblock F offset J length K --+
504 * 4: +- file L... --+
505 *
506 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
507 * we'd simply increment the length of record 1. But how do we find the record
508 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
509 * record 3 because the keys are ordered first by startblock. An interval
510 * query would return records 1 and 2 because they both overlap (B+D-1), and
511 * from that we can pick out record 1 as the appropriate left neighbor.
512 *
513 * In the non-overlapped case you can do a LE lookup and decrement the cursor
514 * because a record's interval must end before the next record.
515 */
516
517/*
518 * Return size of the btree block header for this btree instance.
519 */
520static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
521{
522 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
523 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
524 return XFS_BTREE_LBLOCK_CRC_LEN;
525 return XFS_BTREE_LBLOCK_LEN;
526 }
527 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
528 return XFS_BTREE_SBLOCK_CRC_LEN;
529 return XFS_BTREE_SBLOCK_LEN;
530}
531
532/*
533 * Return size of btree block pointers for this btree instance.
534 */
535static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
536{
537 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
538 sizeof(__be64) : sizeof(__be32);
539}
540
541/*
542 * Calculate offset of the n-th record in a btree block.
543 */
544STATIC size_t
545xfs_btree_rec_offset(
546 struct xfs_btree_cur *cur,
547 int n)
548{
549 return xfs_btree_block_len(cur) +
550 (n - 1) * cur->bc_ops->rec_len;
551}
552
553/*
554 * Calculate offset of the n-th key in a btree block.
555 */
556STATIC size_t
557xfs_btree_key_offset(
558 struct xfs_btree_cur *cur,
559 int n)
560{
561 return xfs_btree_block_len(cur) +
562 (n - 1) * cur->bc_ops->key_len;
563}
564
565/*
566 * Calculate offset of the n-th high key in a btree block.
567 */
568STATIC size_t
569xfs_btree_high_key_offset(
570 struct xfs_btree_cur *cur,
571 int n)
572{
573 return xfs_btree_block_len(cur) +
574 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
575}
576
577/*
578 * Calculate offset of the n-th block pointer in a btree block.
579 */
580STATIC size_t
581xfs_btree_ptr_offset(
582 struct xfs_btree_cur *cur,
583 int n,
584 int level)
585{
586 return xfs_btree_block_len(cur) +
587 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
588 (n - 1) * xfs_btree_ptr_len(cur);
589}
590
591/*
592 * Return a pointer to the n-th record in the btree block.
593 */
594union xfs_btree_rec *
595xfs_btree_rec_addr(
596 struct xfs_btree_cur *cur,
597 int n,
598 struct xfs_btree_block *block)
599{
600 return (union xfs_btree_rec *)
601 ((char *)block + xfs_btree_rec_offset(cur, n));
602}
603
604/*
605 * Return a pointer to the n-th key in the btree block.
606 */
607union xfs_btree_key *
608xfs_btree_key_addr(
609 struct xfs_btree_cur *cur,
610 int n,
611 struct xfs_btree_block *block)
612{
613 return (union xfs_btree_key *)
614 ((char *)block + xfs_btree_key_offset(cur, n));
615}
616
617/*
618 * Return a pointer to the n-th high key in the btree block.
619 */
620union xfs_btree_key *
621xfs_btree_high_key_addr(
622 struct xfs_btree_cur *cur,
623 int n,
624 struct xfs_btree_block *block)
625{
626 return (union xfs_btree_key *)
627 ((char *)block + xfs_btree_high_key_offset(cur, n));
628}
629
630/*
631 * Return a pointer to the n-th block pointer in the btree block.
632 */
633union xfs_btree_ptr *
634xfs_btree_ptr_addr(
635 struct xfs_btree_cur *cur,
636 int n,
637 struct xfs_btree_block *block)
638{
639 int level = xfs_btree_get_level(block);
640
641 ASSERT(block->bb_level != 0);
642
643 return (union xfs_btree_ptr *)
644 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
645}
646
647/*
648 * Get the root block which is stored in the inode.
649 *
650 * For now this btree implementation assumes the btree root is always
651 * stored in the if_broot field of an inode fork.
652 */
653STATIC struct xfs_btree_block *
654xfs_btree_get_iroot(
655 struct xfs_btree_cur *cur)
656{
657 struct xfs_ifork *ifp;
658
659 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
660 return (struct xfs_btree_block *)ifp->if_broot;
661}
662
663/*
664 * Retrieve the block pointer from the cursor at the given level.
665 * This may be an inode btree root or from a buffer.
666 */
667struct xfs_btree_block * /* generic btree block pointer */
668xfs_btree_get_block(
669 struct xfs_btree_cur *cur, /* btree cursor */
670 int level, /* level in btree */
671 struct xfs_buf **bpp) /* buffer containing the block */
672{
673 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
674 (level == cur->bc_nlevels - 1)) {
675 *bpp = NULL;
676 return xfs_btree_get_iroot(cur);
677 }
678
679 *bpp = cur->bc_bufs[level];
680 return XFS_BUF_TO_BLOCK(*bpp);
681}
682
683/*
684 * Get a buffer for the block, return it with no data read.
685 * Long-form addressing.
686 */
687xfs_buf_t * /* buffer for fsbno */
688xfs_btree_get_bufl(
689 xfs_mount_t *mp, /* file system mount point */
690 xfs_trans_t *tp, /* transaction pointer */
691 xfs_fsblock_t fsbno) /* file system block number */
692{
693 xfs_daddr_t d; /* real disk block address */
694
695 ASSERT(fsbno != NULLFSBLOCK);
696 d = XFS_FSB_TO_DADDR(mp, fsbno);
697 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, 0);
698}
699
700/*
701 * Get a buffer for the block, return it with no data read.
702 * Short-form addressing.
703 */
704xfs_buf_t * /* buffer for agno/agbno */
705xfs_btree_get_bufs(
706 xfs_mount_t *mp, /* file system mount point */
707 xfs_trans_t *tp, /* transaction pointer */
708 xfs_agnumber_t agno, /* allocation group number */
709 xfs_agblock_t agbno) /* allocation group block number */
710{
711 xfs_daddr_t d; /* real disk block address */
712
713 ASSERT(agno != NULLAGNUMBER);
714 ASSERT(agbno != NULLAGBLOCK);
715 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
716 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, 0);
717}
718
719/*
720 * Check for the cursor referring to the last block at the given level.
721 */
722int /* 1=is last block, 0=not last block */
723xfs_btree_islastblock(
724 xfs_btree_cur_t *cur, /* btree cursor */
725 int level) /* level to check */
726{
727 struct xfs_btree_block *block; /* generic btree block pointer */
728 xfs_buf_t *bp; /* buffer containing block */
729
730 block = xfs_btree_get_block(cur, level, &bp);
731 xfs_btree_check_block(cur, block, level, bp);
732 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
733 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
734 else
735 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
736}
737
738/*
739 * Change the cursor to point to the first record at the given level.
740 * Other levels are unaffected.
741 */
742STATIC int /* success=1, failure=0 */
743xfs_btree_firstrec(
744 xfs_btree_cur_t *cur, /* btree cursor */
745 int level) /* level to change */
746{
747 struct xfs_btree_block *block; /* generic btree block pointer */
748 xfs_buf_t *bp; /* buffer containing block */
749
750 /*
751 * Get the block pointer for this level.
752 */
753 block = xfs_btree_get_block(cur, level, &bp);
754 if (xfs_btree_check_block(cur, block, level, bp))
755 return 0;
756 /*
757 * It's empty, there is no such record.
758 */
759 if (!block->bb_numrecs)
760 return 0;
761 /*
762 * Set the ptr value to 1, that's the first record/key.
763 */
764 cur->bc_ptrs[level] = 1;
765 return 1;
766}
767
768/*
769 * Change the cursor to point to the last record in the current block
770 * at the given level. Other levels are unaffected.
771 */
772STATIC int /* success=1, failure=0 */
773xfs_btree_lastrec(
774 xfs_btree_cur_t *cur, /* btree cursor */
775 int level) /* level to change */
776{
777 struct xfs_btree_block *block; /* generic btree block pointer */
778 xfs_buf_t *bp; /* buffer containing block */
779
780 /*
781 * Get the block pointer for this level.
782 */
783 block = xfs_btree_get_block(cur, level, &bp);
784 if (xfs_btree_check_block(cur, block, level, bp))
785 return 0;
786 /*
787 * It's empty, there is no such record.
788 */
789 if (!block->bb_numrecs)
790 return 0;
791 /*
792 * Set the ptr value to numrecs, that's the last record/key.
793 */
794 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
795 return 1;
796}
797
798/*
799 * Compute first and last byte offsets for the fields given.
800 * Interprets the offsets table, which contains struct field offsets.
801 */
802void
803xfs_btree_offsets(
804 int64_t fields, /* bitmask of fields */
805 const short *offsets, /* table of field offsets */
806 int nbits, /* number of bits to inspect */
807 int *first, /* output: first byte offset */
808 int *last) /* output: last byte offset */
809{
810 int i; /* current bit number */
811 int64_t imask; /* mask for current bit number */
812
813 ASSERT(fields != 0);
814 /*
815 * Find the lowest bit, so the first byte offset.
816 */
817 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
818 if (imask & fields) {
819 *first = offsets[i];
820 break;
821 }
822 }
823 /*
824 * Find the highest bit, so the last byte offset.
825 */
826 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
827 if (imask & fields) {
828 *last = offsets[i + 1] - 1;
829 break;
830 }
831 }
832}
833
834/*
835 * Get a buffer for the block, return it read in.
836 * Long-form addressing.
837 */
838int
839xfs_btree_read_bufl(
840 struct xfs_mount *mp, /* file system mount point */
841 struct xfs_trans *tp, /* transaction pointer */
842 xfs_fsblock_t fsbno, /* file system block number */
843 struct xfs_buf **bpp, /* buffer for fsbno */
844 int refval, /* ref count value for buffer */
845 const struct xfs_buf_ops *ops)
846{
847 struct xfs_buf *bp; /* return value */
848 xfs_daddr_t d; /* real disk block address */
849 int error;
850
851 if (!xfs_verify_fsbno(mp, fsbno))
852 return -EFSCORRUPTED;
853 d = XFS_FSB_TO_DADDR(mp, fsbno);
854 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
855 mp->m_bsize, 0, &bp, ops);
856 if (error)
857 return error;
858 if (bp)
859 xfs_buf_set_ref(bp, refval);
860 *bpp = bp;
861 return 0;
862}
863
864/*
865 * Read-ahead the block, don't wait for it, don't return a buffer.
866 * Long-form addressing.
867 */
868/* ARGSUSED */
869void
870xfs_btree_reada_bufl(
871 struct xfs_mount *mp, /* file system mount point */
872 xfs_fsblock_t fsbno, /* file system block number */
873 xfs_extlen_t count, /* count of filesystem blocks */
874 const struct xfs_buf_ops *ops)
875{
876 xfs_daddr_t d;
877
878 ASSERT(fsbno != NULLFSBLOCK);
879 d = XFS_FSB_TO_DADDR(mp, fsbno);
880 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
881}
882
883/*
884 * Read-ahead the block, don't wait for it, don't return a buffer.
885 * Short-form addressing.
886 */
887/* ARGSUSED */
888void
889xfs_btree_reada_bufs(
890 struct xfs_mount *mp, /* file system mount point */
891 xfs_agnumber_t agno, /* allocation group number */
892 xfs_agblock_t agbno, /* allocation group block number */
893 xfs_extlen_t count, /* count of filesystem blocks */
894 const struct xfs_buf_ops *ops)
895{
896 xfs_daddr_t d;
897
898 ASSERT(agno != NULLAGNUMBER);
899 ASSERT(agbno != NULLAGBLOCK);
900 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
901 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
902}
903
904STATIC int
905xfs_btree_readahead_lblock(
906 struct xfs_btree_cur *cur,
907 int lr,
908 struct xfs_btree_block *block)
909{
910 int rval = 0;
911 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
912 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
913
914 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
915 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
916 cur->bc_ops->buf_ops);
917 rval++;
918 }
919
920 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
921 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
922 cur->bc_ops->buf_ops);
923 rval++;
924 }
925
926 return rval;
927}
928
929STATIC int
930xfs_btree_readahead_sblock(
931 struct xfs_btree_cur *cur,
932 int lr,
933 struct xfs_btree_block *block)
934{
935 int rval = 0;
936 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
937 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
938
939
940 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
941 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
942 left, 1, cur->bc_ops->buf_ops);
943 rval++;
944 }
945
946 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
947 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
948 right, 1, cur->bc_ops->buf_ops);
949 rval++;
950 }
951
952 return rval;
953}
954
955/*
956 * Read-ahead btree blocks, at the given level.
957 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
958 */
959STATIC int
960xfs_btree_readahead(
961 struct xfs_btree_cur *cur, /* btree cursor */
962 int lev, /* level in btree */
963 int lr) /* left/right bits */
964{
965 struct xfs_btree_block *block;
966
967 /*
968 * No readahead needed if we are at the root level and the
969 * btree root is stored in the inode.
970 */
971 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
972 (lev == cur->bc_nlevels - 1))
973 return 0;
974
975 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
976 return 0;
977
978 cur->bc_ra[lev] |= lr;
979 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
980
981 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
982 return xfs_btree_readahead_lblock(cur, lr, block);
983 return xfs_btree_readahead_sblock(cur, lr, block);
984}
985
986STATIC int
987xfs_btree_ptr_to_daddr(
988 struct xfs_btree_cur *cur,
989 union xfs_btree_ptr *ptr,
990 xfs_daddr_t *daddr)
991{
992 xfs_fsblock_t fsbno;
993 xfs_agblock_t agbno;
994 int error;
995
996 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
997 if (error)
998 return error;
999
1000 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1001 fsbno = be64_to_cpu(ptr->l);
1002 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1003 } else {
1004 agbno = be32_to_cpu(ptr->s);
1005 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
1006 agbno);
1007 }
1008
1009 return 0;
1010}
1011
1012/*
1013 * Readahead @count btree blocks at the given @ptr location.
1014 *
1015 * We don't need to care about long or short form btrees here as we have a
1016 * method of converting the ptr directly to a daddr available to us.
1017 */
1018STATIC void
1019xfs_btree_readahead_ptr(
1020 struct xfs_btree_cur *cur,
1021 union xfs_btree_ptr *ptr,
1022 xfs_extlen_t count)
1023{
1024 xfs_daddr_t daddr;
1025
1026 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1027 return;
1028 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1029 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1030}
1031
1032/*
1033 * Set the buffer for level "lev" in the cursor to bp, releasing
1034 * any previous buffer.
1035 */
1036STATIC void
1037xfs_btree_setbuf(
1038 xfs_btree_cur_t *cur, /* btree cursor */
1039 int lev, /* level in btree */
1040 xfs_buf_t *bp) /* new buffer to set */
1041{
1042 struct xfs_btree_block *b; /* btree block */
1043
1044 if (cur->bc_bufs[lev])
1045 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1046 cur->bc_bufs[lev] = bp;
1047 cur->bc_ra[lev] = 0;
1048
1049 b = XFS_BUF_TO_BLOCK(bp);
1050 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1051 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1052 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1053 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1054 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1055 } else {
1056 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1057 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1058 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1059 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1060 }
1061}
1062
1063bool
1064xfs_btree_ptr_is_null(
1065 struct xfs_btree_cur *cur,
1066 union xfs_btree_ptr *ptr)
1067{
1068 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1069 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1070 else
1071 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1072}
1073
1074STATIC void
1075xfs_btree_set_ptr_null(
1076 struct xfs_btree_cur *cur,
1077 union xfs_btree_ptr *ptr)
1078{
1079 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1080 ptr->l = cpu_to_be64(NULLFSBLOCK);
1081 else
1082 ptr->s = cpu_to_be32(NULLAGBLOCK);
1083}
1084
1085/*
1086 * Get/set/init sibling pointers
1087 */
1088void
1089xfs_btree_get_sibling(
1090 struct xfs_btree_cur *cur,
1091 struct xfs_btree_block *block,
1092 union xfs_btree_ptr *ptr,
1093 int lr)
1094{
1095 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1096
1097 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1098 if (lr == XFS_BB_RIGHTSIB)
1099 ptr->l = block->bb_u.l.bb_rightsib;
1100 else
1101 ptr->l = block->bb_u.l.bb_leftsib;
1102 } else {
1103 if (lr == XFS_BB_RIGHTSIB)
1104 ptr->s = block->bb_u.s.bb_rightsib;
1105 else
1106 ptr->s = block->bb_u.s.bb_leftsib;
1107 }
1108}
1109
1110STATIC void
1111xfs_btree_set_sibling(
1112 struct xfs_btree_cur *cur,
1113 struct xfs_btree_block *block,
1114 union xfs_btree_ptr *ptr,
1115 int lr)
1116{
1117 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1118
1119 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1120 if (lr == XFS_BB_RIGHTSIB)
1121 block->bb_u.l.bb_rightsib = ptr->l;
1122 else
1123 block->bb_u.l.bb_leftsib = ptr->l;
1124 } else {
1125 if (lr == XFS_BB_RIGHTSIB)
1126 block->bb_u.s.bb_rightsib = ptr->s;
1127 else
1128 block->bb_u.s.bb_leftsib = ptr->s;
1129 }
1130}
1131
1132void
1133xfs_btree_init_block_int(
1134 struct xfs_mount *mp,
1135 struct xfs_btree_block *buf,
1136 xfs_daddr_t blkno,
1137 xfs_btnum_t btnum,
1138 __u16 level,
1139 __u16 numrecs,
1140 __u64 owner,
1141 unsigned int flags)
1142{
1143 int crc = xfs_sb_version_hascrc(&mp->m_sb);
1144 __u32 magic = xfs_btree_magic(crc, btnum);
1145
1146 buf->bb_magic = cpu_to_be32(magic);
1147 buf->bb_level = cpu_to_be16(level);
1148 buf->bb_numrecs = cpu_to_be16(numrecs);
1149
1150 if (flags & XFS_BTREE_LONG_PTRS) {
1151 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1152 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1153 if (crc) {
1154 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1155 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1156 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1157 buf->bb_u.l.bb_pad = 0;
1158 buf->bb_u.l.bb_lsn = 0;
1159 }
1160 } else {
1161 /* owner is a 32 bit value on short blocks */
1162 __u32 __owner = (__u32)owner;
1163
1164 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1165 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1166 if (crc) {
1167 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1168 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1169 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1170 buf->bb_u.s.bb_lsn = 0;
1171 }
1172 }
1173}
1174
1175void
1176xfs_btree_init_block(
1177 struct xfs_mount *mp,
1178 struct xfs_buf *bp,
1179 xfs_btnum_t btnum,
1180 __u16 level,
1181 __u16 numrecs,
1182 __u64 owner)
1183{
1184 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1185 btnum, level, numrecs, owner, 0);
1186}
1187
1188STATIC void
1189xfs_btree_init_block_cur(
1190 struct xfs_btree_cur *cur,
1191 struct xfs_buf *bp,
1192 int level,
1193 int numrecs)
1194{
1195 __u64 owner;
1196
1197 /*
1198 * we can pull the owner from the cursor right now as the different
1199 * owners align directly with the pointer size of the btree. This may
1200 * change in future, but is safe for current users of the generic btree
1201 * code.
1202 */
1203 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1204 owner = cur->bc_private.b.ip->i_ino;
1205 else
1206 owner = cur->bc_private.a.agno;
1207
1208 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1209 cur->bc_btnum, level, numrecs,
1210 owner, cur->bc_flags);
1211}
1212
1213/*
1214 * Return true if ptr is the last record in the btree and
1215 * we need to track updates to this record. The decision
1216 * will be further refined in the update_lastrec method.
1217 */
1218STATIC int
1219xfs_btree_is_lastrec(
1220 struct xfs_btree_cur *cur,
1221 struct xfs_btree_block *block,
1222 int level)
1223{
1224 union xfs_btree_ptr ptr;
1225
1226 if (level > 0)
1227 return 0;
1228 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1229 return 0;
1230
1231 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1232 if (!xfs_btree_ptr_is_null(cur, &ptr))
1233 return 0;
1234 return 1;
1235}
1236
1237STATIC void
1238xfs_btree_buf_to_ptr(
1239 struct xfs_btree_cur *cur,
1240 struct xfs_buf *bp,
1241 union xfs_btree_ptr *ptr)
1242{
1243 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1244 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1245 XFS_BUF_ADDR(bp)));
1246 else {
1247 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1248 XFS_BUF_ADDR(bp)));
1249 }
1250}
1251
1252STATIC void
1253xfs_btree_set_refs(
1254 struct xfs_btree_cur *cur,
1255 struct xfs_buf *bp)
1256{
1257 switch (cur->bc_btnum) {
1258 case XFS_BTNUM_BNO:
1259 case XFS_BTNUM_CNT:
1260 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1261 break;
1262 case XFS_BTNUM_INO:
1263 case XFS_BTNUM_FINO:
1264 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1265 break;
1266 case XFS_BTNUM_BMAP:
1267 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1268 break;
1269 case XFS_BTNUM_RMAP:
1270 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1271 break;
1272 case XFS_BTNUM_REFC:
1273 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1274 break;
1275 default:
1276 ASSERT(0);
1277 }
1278}
1279
1280STATIC int
1281xfs_btree_get_buf_block(
1282 struct xfs_btree_cur *cur,
1283 union xfs_btree_ptr *ptr,
1284 struct xfs_btree_block **block,
1285 struct xfs_buf **bpp)
1286{
1287 struct xfs_mount *mp = cur->bc_mp;
1288 xfs_daddr_t d;
1289 int error;
1290
1291 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1292 if (error)
1293 return error;
1294 *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1295 mp->m_bsize, 0);
1296
1297 if (!*bpp)
1298 return -ENOMEM;
1299
1300 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1301 *block = XFS_BUF_TO_BLOCK(*bpp);
1302 return 0;
1303}
1304
1305/*
1306 * Read in the buffer at the given ptr and return the buffer and
1307 * the block pointer within the buffer.
1308 */
1309STATIC int
1310xfs_btree_read_buf_block(
1311 struct xfs_btree_cur *cur,
1312 union xfs_btree_ptr *ptr,
1313 int flags,
1314 struct xfs_btree_block **block,
1315 struct xfs_buf **bpp)
1316{
1317 struct xfs_mount *mp = cur->bc_mp;
1318 xfs_daddr_t d;
1319 int error;
1320
1321 /* need to sort out how callers deal with failures first */
1322 ASSERT(!(flags & XBF_TRYLOCK));
1323
1324 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1325 if (error)
1326 return error;
1327 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1328 mp->m_bsize, flags, bpp,
1329 cur->bc_ops->buf_ops);
1330 if (error)
1331 return error;
1332
1333 xfs_btree_set_refs(cur, *bpp);
1334 *block = XFS_BUF_TO_BLOCK(*bpp);
1335 return 0;
1336}
1337
1338/*
1339 * Copy keys from one btree block to another.
1340 */
1341STATIC void
1342xfs_btree_copy_keys(
1343 struct xfs_btree_cur *cur,
1344 union xfs_btree_key *dst_key,
1345 union xfs_btree_key *src_key,
1346 int numkeys)
1347{
1348 ASSERT(numkeys >= 0);
1349 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1350}
1351
1352/*
1353 * Copy records from one btree block to another.
1354 */
1355STATIC void
1356xfs_btree_copy_recs(
1357 struct xfs_btree_cur *cur,
1358 union xfs_btree_rec *dst_rec,
1359 union xfs_btree_rec *src_rec,
1360 int numrecs)
1361{
1362 ASSERT(numrecs >= 0);
1363 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1364}
1365
1366/*
1367 * Copy block pointers from one btree block to another.
1368 */
1369STATIC void
1370xfs_btree_copy_ptrs(
1371 struct xfs_btree_cur *cur,
1372 union xfs_btree_ptr *dst_ptr,
1373 union xfs_btree_ptr *src_ptr,
1374 int numptrs)
1375{
1376 ASSERT(numptrs >= 0);
1377 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1378}
1379
1380/*
1381 * Shift keys one index left/right inside a single btree block.
1382 */
1383STATIC void
1384xfs_btree_shift_keys(
1385 struct xfs_btree_cur *cur,
1386 union xfs_btree_key *key,
1387 int dir,
1388 int numkeys)
1389{
1390 char *dst_key;
1391
1392 ASSERT(numkeys >= 0);
1393 ASSERT(dir == 1 || dir == -1);
1394
1395 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1396 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1397}
1398
1399/*
1400 * Shift records one index left/right inside a single btree block.
1401 */
1402STATIC void
1403xfs_btree_shift_recs(
1404 struct xfs_btree_cur *cur,
1405 union xfs_btree_rec *rec,
1406 int dir,
1407 int numrecs)
1408{
1409 char *dst_rec;
1410
1411 ASSERT(numrecs >= 0);
1412 ASSERT(dir == 1 || dir == -1);
1413
1414 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1415 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1416}
1417
1418/*
1419 * Shift block pointers one index left/right inside a single btree block.
1420 */
1421STATIC void
1422xfs_btree_shift_ptrs(
1423 struct xfs_btree_cur *cur,
1424 union xfs_btree_ptr *ptr,
1425 int dir,
1426 int numptrs)
1427{
1428 char *dst_ptr;
1429
1430 ASSERT(numptrs >= 0);
1431 ASSERT(dir == 1 || dir == -1);
1432
1433 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1434 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1435}
1436
1437/*
1438 * Log key values from the btree block.
1439 */
1440STATIC void
1441xfs_btree_log_keys(
1442 struct xfs_btree_cur *cur,
1443 struct xfs_buf *bp,
1444 int first,
1445 int last)
1446{
1447
1448 if (bp) {
1449 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1450 xfs_trans_log_buf(cur->bc_tp, bp,
1451 xfs_btree_key_offset(cur, first),
1452 xfs_btree_key_offset(cur, last + 1) - 1);
1453 } else {
1454 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1455 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1456 }
1457}
1458
1459/*
1460 * Log record values from the btree block.
1461 */
1462void
1463xfs_btree_log_recs(
1464 struct xfs_btree_cur *cur,
1465 struct xfs_buf *bp,
1466 int first,
1467 int last)
1468{
1469
1470 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1471 xfs_trans_log_buf(cur->bc_tp, bp,
1472 xfs_btree_rec_offset(cur, first),
1473 xfs_btree_rec_offset(cur, last + 1) - 1);
1474
1475}
1476
1477/*
1478 * Log block pointer fields from a btree block (nonleaf).
1479 */
1480STATIC void
1481xfs_btree_log_ptrs(
1482 struct xfs_btree_cur *cur, /* btree cursor */
1483 struct xfs_buf *bp, /* buffer containing btree block */
1484 int first, /* index of first pointer to log */
1485 int last) /* index of last pointer to log */
1486{
1487
1488 if (bp) {
1489 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1490 int level = xfs_btree_get_level(block);
1491
1492 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1493 xfs_trans_log_buf(cur->bc_tp, bp,
1494 xfs_btree_ptr_offset(cur, first, level),
1495 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1496 } else {
1497 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1498 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1499 }
1500
1501}
1502
1503/*
1504 * Log fields from a btree block header.
1505 */
1506void
1507xfs_btree_log_block(
1508 struct xfs_btree_cur *cur, /* btree cursor */
1509 struct xfs_buf *bp, /* buffer containing btree block */
1510 int fields) /* mask of fields: XFS_BB_... */
1511{
1512 int first; /* first byte offset logged */
1513 int last; /* last byte offset logged */
1514 static const short soffsets[] = { /* table of offsets (short) */
1515 offsetof(struct xfs_btree_block, bb_magic),
1516 offsetof(struct xfs_btree_block, bb_level),
1517 offsetof(struct xfs_btree_block, bb_numrecs),
1518 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1519 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1520 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1521 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1522 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1523 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1524 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1525 XFS_BTREE_SBLOCK_CRC_LEN
1526 };
1527 static const short loffsets[] = { /* table of offsets (long) */
1528 offsetof(struct xfs_btree_block, bb_magic),
1529 offsetof(struct xfs_btree_block, bb_level),
1530 offsetof(struct xfs_btree_block, bb_numrecs),
1531 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1532 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1533 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1534 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1535 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1536 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1537 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1538 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1539 XFS_BTREE_LBLOCK_CRC_LEN
1540 };
1541
1542 if (bp) {
1543 int nbits;
1544
1545 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1546 /*
1547 * We don't log the CRC when updating a btree
1548 * block but instead recreate it during log
1549 * recovery. As the log buffers have checksums
1550 * of their own this is safe and avoids logging a crc
1551 * update in a lot of places.
1552 */
1553 if (fields == XFS_BB_ALL_BITS)
1554 fields = XFS_BB_ALL_BITS_CRC;
1555 nbits = XFS_BB_NUM_BITS_CRC;
1556 } else {
1557 nbits = XFS_BB_NUM_BITS;
1558 }
1559 xfs_btree_offsets(fields,
1560 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1561 loffsets : soffsets,
1562 nbits, &first, &last);
1563 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1564 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1565 } else {
1566 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1567 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1568 }
1569}
1570
1571/*
1572 * Increment cursor by one record at the level.
1573 * For nonzero levels the leaf-ward information is untouched.
1574 */
1575int /* error */
1576xfs_btree_increment(
1577 struct xfs_btree_cur *cur,
1578 int level,
1579 int *stat) /* success/failure */
1580{
1581 struct xfs_btree_block *block;
1582 union xfs_btree_ptr ptr;
1583 struct xfs_buf *bp;
1584 int error; /* error return value */
1585 int lev;
1586
1587 ASSERT(level < cur->bc_nlevels);
1588
1589 /* Read-ahead to the right at this level. */
1590 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1591
1592 /* Get a pointer to the btree block. */
1593 block = xfs_btree_get_block(cur, level, &bp);
1594
1595#ifdef DEBUG
1596 error = xfs_btree_check_block(cur, block, level, bp);
1597 if (error)
1598 goto error0;
1599#endif
1600
1601 /* We're done if we remain in the block after the increment. */
1602 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1603 goto out1;
1604
1605 /* Fail if we just went off the right edge of the tree. */
1606 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1607 if (xfs_btree_ptr_is_null(cur, &ptr))
1608 goto out0;
1609
1610 XFS_BTREE_STATS_INC(cur, increment);
1611
1612 /*
1613 * March up the tree incrementing pointers.
1614 * Stop when we don't go off the right edge of a block.
1615 */
1616 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1617 block = xfs_btree_get_block(cur, lev, &bp);
1618
1619#ifdef DEBUG
1620 error = xfs_btree_check_block(cur, block, lev, bp);
1621 if (error)
1622 goto error0;
1623#endif
1624
1625 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1626 break;
1627
1628 /* Read-ahead the right block for the next loop. */
1629 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1630 }
1631
1632 /*
1633 * If we went off the root then we are either seriously
1634 * confused or have the tree root in an inode.
1635 */
1636 if (lev == cur->bc_nlevels) {
1637 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1638 goto out0;
1639 ASSERT(0);
1640 error = -EFSCORRUPTED;
1641 goto error0;
1642 }
1643 ASSERT(lev < cur->bc_nlevels);
1644
1645 /*
1646 * Now walk back down the tree, fixing up the cursor's buffer
1647 * pointers and key numbers.
1648 */
1649 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1650 union xfs_btree_ptr *ptrp;
1651
1652 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1653 --lev;
1654 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1655 if (error)
1656 goto error0;
1657
1658 xfs_btree_setbuf(cur, lev, bp);
1659 cur->bc_ptrs[lev] = 1;
1660 }
1661out1:
1662 *stat = 1;
1663 return 0;
1664
1665out0:
1666 *stat = 0;
1667 return 0;
1668
1669error0:
1670 return error;
1671}
1672
1673/*
1674 * Decrement cursor by one record at the level.
1675 * For nonzero levels the leaf-ward information is untouched.
1676 */
1677int /* error */
1678xfs_btree_decrement(
1679 struct xfs_btree_cur *cur,
1680 int level,
1681 int *stat) /* success/failure */
1682{
1683 struct xfs_btree_block *block;
1684 xfs_buf_t *bp;
1685 int error; /* error return value */
1686 int lev;
1687 union xfs_btree_ptr ptr;
1688
1689 ASSERT(level < cur->bc_nlevels);
1690
1691 /* Read-ahead to the left at this level. */
1692 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1693
1694 /* We're done if we remain in the block after the decrement. */
1695 if (--cur->bc_ptrs[level] > 0)
1696 goto out1;
1697
1698 /* Get a pointer to the btree block. */
1699 block = xfs_btree_get_block(cur, level, &bp);
1700
1701#ifdef DEBUG
1702 error = xfs_btree_check_block(cur, block, level, bp);
1703 if (error)
1704 goto error0;
1705#endif
1706
1707 /* Fail if we just went off the left edge of the tree. */
1708 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1709 if (xfs_btree_ptr_is_null(cur, &ptr))
1710 goto out0;
1711
1712 XFS_BTREE_STATS_INC(cur, decrement);
1713
1714 /*
1715 * March up the tree decrementing pointers.
1716 * Stop when we don't go off the left edge of a block.
1717 */
1718 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1719 if (--cur->bc_ptrs[lev] > 0)
1720 break;
1721 /* Read-ahead the left block for the next loop. */
1722 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1723 }
1724
1725 /*
1726 * If we went off the root then we are seriously confused.
1727 * or the root of the tree is in an inode.
1728 */
1729 if (lev == cur->bc_nlevels) {
1730 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1731 goto out0;
1732 ASSERT(0);
1733 error = -EFSCORRUPTED;
1734 goto error0;
1735 }
1736 ASSERT(lev < cur->bc_nlevels);
1737
1738 /*
1739 * Now walk back down the tree, fixing up the cursor's buffer
1740 * pointers and key numbers.
1741 */
1742 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1743 union xfs_btree_ptr *ptrp;
1744
1745 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1746 --lev;
1747 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1748 if (error)
1749 goto error0;
1750 xfs_btree_setbuf(cur, lev, bp);
1751 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1752 }
1753out1:
1754 *stat = 1;
1755 return 0;
1756
1757out0:
1758 *stat = 0;
1759 return 0;
1760
1761error0:
1762 return error;
1763}
1764
1765int
1766xfs_btree_lookup_get_block(
1767 struct xfs_btree_cur *cur, /* btree cursor */
1768 int level, /* level in the btree */
1769 union xfs_btree_ptr *pp, /* ptr to btree block */
1770 struct xfs_btree_block **blkp) /* return btree block */
1771{
1772 struct xfs_buf *bp; /* buffer pointer for btree block */
1773 xfs_daddr_t daddr;
1774 int error = 0;
1775
1776 /* special case the root block if in an inode */
1777 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1778 (level == cur->bc_nlevels - 1)) {
1779 *blkp = xfs_btree_get_iroot(cur);
1780 return 0;
1781 }
1782
1783 /*
1784 * If the old buffer at this level for the disk address we are
1785 * looking for re-use it.
1786 *
1787 * Otherwise throw it away and get a new one.
1788 */
1789 bp = cur->bc_bufs[level];
1790 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1791 if (error)
1792 return error;
1793 if (bp && XFS_BUF_ADDR(bp) == daddr) {
1794 *blkp = XFS_BUF_TO_BLOCK(bp);
1795 return 0;
1796 }
1797
1798 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1799 if (error)
1800 return error;
1801
1802 /* Check the inode owner since the verifiers don't. */
1803 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1804 !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1805 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1806 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1807 cur->bc_private.b.ip->i_ino)
1808 goto out_bad;
1809
1810 /* Did we get the level we were looking for? */
1811 if (be16_to_cpu((*blkp)->bb_level) != level)
1812 goto out_bad;
1813
1814 /* Check that internal nodes have at least one record. */
1815 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1816 goto out_bad;
1817
1818 xfs_btree_setbuf(cur, level, bp);
1819 return 0;
1820
1821out_bad:
1822 *blkp = NULL;
1823 xfs_trans_brelse(cur->bc_tp, bp);
1824 return -EFSCORRUPTED;
1825}
1826
1827/*
1828 * Get current search key. For level 0 we don't actually have a key
1829 * structure so we make one up from the record. For all other levels
1830 * we just return the right key.
1831 */
1832STATIC union xfs_btree_key *
1833xfs_lookup_get_search_key(
1834 struct xfs_btree_cur *cur,
1835 int level,
1836 int keyno,
1837 struct xfs_btree_block *block,
1838 union xfs_btree_key *kp)
1839{
1840 if (level == 0) {
1841 cur->bc_ops->init_key_from_rec(kp,
1842 xfs_btree_rec_addr(cur, keyno, block));
1843 return kp;
1844 }
1845
1846 return xfs_btree_key_addr(cur, keyno, block);
1847}
1848
1849/*
1850 * Lookup the record. The cursor is made to point to it, based on dir.
1851 * stat is set to 0 if can't find any such record, 1 for success.
1852 */
1853int /* error */
1854xfs_btree_lookup(
1855 struct xfs_btree_cur *cur, /* btree cursor */
1856 xfs_lookup_t dir, /* <=, ==, or >= */
1857 int *stat) /* success/failure */
1858{
1859 struct xfs_btree_block *block; /* current btree block */
1860 int64_t diff; /* difference for the current key */
1861 int error; /* error return value */
1862 int keyno; /* current key number */
1863 int level; /* level in the btree */
1864 union xfs_btree_ptr *pp; /* ptr to btree block */
1865 union xfs_btree_ptr ptr; /* ptr to btree block */
1866
1867 XFS_BTREE_STATS_INC(cur, lookup);
1868
1869 /* No such thing as a zero-level tree. */
1870 if (cur->bc_nlevels == 0)
1871 return -EFSCORRUPTED;
1872
1873 block = NULL;
1874 keyno = 0;
1875
1876 /* initialise start pointer from cursor */
1877 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1878 pp = &ptr;
1879
1880 /*
1881 * Iterate over each level in the btree, starting at the root.
1882 * For each level above the leaves, find the key we need, based
1883 * on the lookup record, then follow the corresponding block
1884 * pointer down to the next level.
1885 */
1886 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1887 /* Get the block we need to do the lookup on. */
1888 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1889 if (error)
1890 goto error0;
1891
1892 if (diff == 0) {
1893 /*
1894 * If we already had a key match at a higher level, we
1895 * know we need to use the first entry in this block.
1896 */
1897 keyno = 1;
1898 } else {
1899 /* Otherwise search this block. Do a binary search. */
1900
1901 int high; /* high entry number */
1902 int low; /* low entry number */
1903
1904 /* Set low and high entry numbers, 1-based. */
1905 low = 1;
1906 high = xfs_btree_get_numrecs(block);
1907 if (!high) {
1908 /* Block is empty, must be an empty leaf. */
1909 if (level != 0 || cur->bc_nlevels != 1) {
1910 XFS_CORRUPTION_ERROR(__func__,
1911 XFS_ERRLEVEL_LOW,
1912 cur->bc_mp, block,
1913 sizeof(*block));
1914 return -EFSCORRUPTED;
1915 }
1916
1917 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1918 *stat = 0;
1919 return 0;
1920 }
1921
1922 /* Binary search the block. */
1923 while (low <= high) {
1924 union xfs_btree_key key;
1925 union xfs_btree_key *kp;
1926
1927 XFS_BTREE_STATS_INC(cur, compare);
1928
1929 /* keyno is average of low and high. */
1930 keyno = (low + high) >> 1;
1931
1932 /* Get current search key */
1933 kp = xfs_lookup_get_search_key(cur, level,
1934 keyno, block, &key);
1935
1936 /*
1937 * Compute difference to get next direction:
1938 * - less than, move right
1939 * - greater than, move left
1940 * - equal, we're done
1941 */
1942 diff = cur->bc_ops->key_diff(cur, kp);
1943 if (diff < 0)
1944 low = keyno + 1;
1945 else if (diff > 0)
1946 high = keyno - 1;
1947 else
1948 break;
1949 }
1950 }
1951
1952 /*
1953 * If there are more levels, set up for the next level
1954 * by getting the block number and filling in the cursor.
1955 */
1956 if (level > 0) {
1957 /*
1958 * If we moved left, need the previous key number,
1959 * unless there isn't one.
1960 */
1961 if (diff > 0 && --keyno < 1)
1962 keyno = 1;
1963 pp = xfs_btree_ptr_addr(cur, keyno, block);
1964
1965 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1966 if (error)
1967 goto error0;
1968
1969 cur->bc_ptrs[level] = keyno;
1970 }
1971 }
1972
1973 /* Done with the search. See if we need to adjust the results. */
1974 if (dir != XFS_LOOKUP_LE && diff < 0) {
1975 keyno++;
1976 /*
1977 * If ge search and we went off the end of the block, but it's
1978 * not the last block, we're in the wrong block.
1979 */
1980 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1981 if (dir == XFS_LOOKUP_GE &&
1982 keyno > xfs_btree_get_numrecs(block) &&
1983 !xfs_btree_ptr_is_null(cur, &ptr)) {
1984 int i;
1985
1986 cur->bc_ptrs[0] = keyno;
1987 error = xfs_btree_increment(cur, 0, &i);
1988 if (error)
1989 goto error0;
1990 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1991 *stat = 1;
1992 return 0;
1993 }
1994 } else if (dir == XFS_LOOKUP_LE && diff > 0)
1995 keyno--;
1996 cur->bc_ptrs[0] = keyno;
1997
1998 /* Return if we succeeded or not. */
1999 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2000 *stat = 0;
2001 else if (dir != XFS_LOOKUP_EQ || diff == 0)
2002 *stat = 1;
2003 else
2004 *stat = 0;
2005 return 0;
2006
2007error0:
2008 return error;
2009}
2010
2011/* Find the high key storage area from a regular key. */
2012union xfs_btree_key *
2013xfs_btree_high_key_from_key(
2014 struct xfs_btree_cur *cur,
2015 union xfs_btree_key *key)
2016{
2017 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2018 return (union xfs_btree_key *)((char *)key +
2019 (cur->bc_ops->key_len / 2));
2020}
2021
2022/* Determine the low (and high if overlapped) keys of a leaf block */
2023STATIC void
2024xfs_btree_get_leaf_keys(
2025 struct xfs_btree_cur *cur,
2026 struct xfs_btree_block *block,
2027 union xfs_btree_key *key)
2028{
2029 union xfs_btree_key max_hkey;
2030 union xfs_btree_key hkey;
2031 union xfs_btree_rec *rec;
2032 union xfs_btree_key *high;
2033 int n;
2034
2035 rec = xfs_btree_rec_addr(cur, 1, block);
2036 cur->bc_ops->init_key_from_rec(key, rec);
2037
2038 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2039
2040 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2041 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2042 rec = xfs_btree_rec_addr(cur, n, block);
2043 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2044 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2045 > 0)
2046 max_hkey = hkey;
2047 }
2048
2049 high = xfs_btree_high_key_from_key(cur, key);
2050 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2051 }
2052}
2053
2054/* Determine the low (and high if overlapped) keys of a node block */
2055STATIC void
2056xfs_btree_get_node_keys(
2057 struct xfs_btree_cur *cur,
2058 struct xfs_btree_block *block,
2059 union xfs_btree_key *key)
2060{
2061 union xfs_btree_key *hkey;
2062 union xfs_btree_key *max_hkey;
2063 union xfs_btree_key *high;
2064 int n;
2065
2066 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2067 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2068 cur->bc_ops->key_len / 2);
2069
2070 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2071 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2072 hkey = xfs_btree_high_key_addr(cur, n, block);
2073 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2074 max_hkey = hkey;
2075 }
2076
2077 high = xfs_btree_high_key_from_key(cur, key);
2078 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2079 } else {
2080 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2081 cur->bc_ops->key_len);
2082 }
2083}
2084
2085/* Derive the keys for any btree block. */
2086void
2087xfs_btree_get_keys(
2088 struct xfs_btree_cur *cur,
2089 struct xfs_btree_block *block,
2090 union xfs_btree_key *key)
2091{
2092 if (be16_to_cpu(block->bb_level) == 0)
2093 xfs_btree_get_leaf_keys(cur, block, key);
2094 else
2095 xfs_btree_get_node_keys(cur, block, key);
2096}
2097
2098/*
2099 * Decide if we need to update the parent keys of a btree block. For
2100 * a standard btree this is only necessary if we're updating the first
2101 * record/key. For an overlapping btree, we must always update the
2102 * keys because the highest key can be in any of the records or keys
2103 * in the block.
2104 */
2105static inline bool
2106xfs_btree_needs_key_update(
2107 struct xfs_btree_cur *cur,
2108 int ptr)
2109{
2110 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2111}
2112
2113/*
2114 * Update the low and high parent keys of the given level, progressing
2115 * towards the root. If force_all is false, stop if the keys for a given
2116 * level do not need updating.
2117 */
2118STATIC int
2119__xfs_btree_updkeys(
2120 struct xfs_btree_cur *cur,
2121 int level,
2122 struct xfs_btree_block *block,
2123 struct xfs_buf *bp0,
2124 bool force_all)
2125{
2126 union xfs_btree_key key; /* keys from current level */
2127 union xfs_btree_key *lkey; /* keys from the next level up */
2128 union xfs_btree_key *hkey;
2129 union xfs_btree_key *nlkey; /* keys from the next level up */
2130 union xfs_btree_key *nhkey;
2131 struct xfs_buf *bp;
2132 int ptr;
2133
2134 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2135
2136 /* Exit if there aren't any parent levels to update. */
2137 if (level + 1 >= cur->bc_nlevels)
2138 return 0;
2139
2140 trace_xfs_btree_updkeys(cur, level, bp0);
2141
2142 lkey = &key;
2143 hkey = xfs_btree_high_key_from_key(cur, lkey);
2144 xfs_btree_get_keys(cur, block, lkey);
2145 for (level++; level < cur->bc_nlevels; level++) {
2146#ifdef DEBUG
2147 int error;
2148#endif
2149 block = xfs_btree_get_block(cur, level, &bp);
2150 trace_xfs_btree_updkeys(cur, level, bp);
2151#ifdef DEBUG
2152 error = xfs_btree_check_block(cur, block, level, bp);
2153 if (error)
2154 return error;
2155#endif
2156 ptr = cur->bc_ptrs[level];
2157 nlkey = xfs_btree_key_addr(cur, ptr, block);
2158 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2159 if (!force_all &&
2160 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2161 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2162 break;
2163 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2164 xfs_btree_log_keys(cur, bp, ptr, ptr);
2165 if (level + 1 >= cur->bc_nlevels)
2166 break;
2167 xfs_btree_get_node_keys(cur, block, lkey);
2168 }
2169
2170 return 0;
2171}
2172
2173/* Update all the keys from some level in cursor back to the root. */
2174STATIC int
2175xfs_btree_updkeys_force(
2176 struct xfs_btree_cur *cur,
2177 int level)
2178{
2179 struct xfs_buf *bp;
2180 struct xfs_btree_block *block;
2181
2182 block = xfs_btree_get_block(cur, level, &bp);
2183 return __xfs_btree_updkeys(cur, level, block, bp, true);
2184}
2185
2186/*
2187 * Update the parent keys of the given level, progressing towards the root.
2188 */
2189STATIC int
2190xfs_btree_update_keys(
2191 struct xfs_btree_cur *cur,
2192 int level)
2193{
2194 struct xfs_btree_block *block;
2195 struct xfs_buf *bp;
2196 union xfs_btree_key *kp;
2197 union xfs_btree_key key;
2198 int ptr;
2199
2200 ASSERT(level >= 0);
2201
2202 block = xfs_btree_get_block(cur, level, &bp);
2203 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2204 return __xfs_btree_updkeys(cur, level, block, bp, false);
2205
2206 /*
2207 * Go up the tree from this level toward the root.
2208 * At each level, update the key value to the value input.
2209 * Stop when we reach a level where the cursor isn't pointing
2210 * at the first entry in the block.
2211 */
2212 xfs_btree_get_keys(cur, block, &key);
2213 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2214#ifdef DEBUG
2215 int error;
2216#endif
2217 block = xfs_btree_get_block(cur, level, &bp);
2218#ifdef DEBUG
2219 error = xfs_btree_check_block(cur, block, level, bp);
2220 if (error)
2221 return error;
2222#endif
2223 ptr = cur->bc_ptrs[level];
2224 kp = xfs_btree_key_addr(cur, ptr, block);
2225 xfs_btree_copy_keys(cur, kp, &key, 1);
2226 xfs_btree_log_keys(cur, bp, ptr, ptr);
2227 }
2228
2229 return 0;
2230}
2231
2232/*
2233 * Update the record referred to by cur to the value in the
2234 * given record. This either works (return 0) or gets an
2235 * EFSCORRUPTED error.
2236 */
2237int
2238xfs_btree_update(
2239 struct xfs_btree_cur *cur,
2240 union xfs_btree_rec *rec)
2241{
2242 struct xfs_btree_block *block;
2243 struct xfs_buf *bp;
2244 int error;
2245 int ptr;
2246 union xfs_btree_rec *rp;
2247
2248 /* Pick up the current block. */
2249 block = xfs_btree_get_block(cur, 0, &bp);
2250
2251#ifdef DEBUG
2252 error = xfs_btree_check_block(cur, block, 0, bp);
2253 if (error)
2254 goto error0;
2255#endif
2256 /* Get the address of the rec to be updated. */
2257 ptr = cur->bc_ptrs[0];
2258 rp = xfs_btree_rec_addr(cur, ptr, block);
2259
2260 /* Fill in the new contents and log them. */
2261 xfs_btree_copy_recs(cur, rp, rec, 1);
2262 xfs_btree_log_recs(cur, bp, ptr, ptr);
2263
2264 /*
2265 * If we are tracking the last record in the tree and
2266 * we are at the far right edge of the tree, update it.
2267 */
2268 if (xfs_btree_is_lastrec(cur, block, 0)) {
2269 cur->bc_ops->update_lastrec(cur, block, rec,
2270 ptr, LASTREC_UPDATE);
2271 }
2272
2273 /* Pass new key value up to our parent. */
2274 if (xfs_btree_needs_key_update(cur, ptr)) {
2275 error = xfs_btree_update_keys(cur, 0);
2276 if (error)
2277 goto error0;
2278 }
2279
2280 return 0;
2281
2282error0:
2283 return error;
2284}
2285
2286/*
2287 * Move 1 record left from cur/level if possible.
2288 * Update cur to reflect the new path.
2289 */
2290STATIC int /* error */
2291xfs_btree_lshift(
2292 struct xfs_btree_cur *cur,
2293 int level,
2294 int *stat) /* success/failure */
2295{
2296 struct xfs_buf *lbp; /* left buffer pointer */
2297 struct xfs_btree_block *left; /* left btree block */
2298 int lrecs; /* left record count */
2299 struct xfs_buf *rbp; /* right buffer pointer */
2300 struct xfs_btree_block *right; /* right btree block */
2301 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2302 int rrecs; /* right record count */
2303 union xfs_btree_ptr lptr; /* left btree pointer */
2304 union xfs_btree_key *rkp = NULL; /* right btree key */
2305 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2306 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2307 int error; /* error return value */
2308 int i;
2309
2310 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2311 level == cur->bc_nlevels - 1)
2312 goto out0;
2313
2314 /* Set up variables for this block as "right". */
2315 right = xfs_btree_get_block(cur, level, &rbp);
2316
2317#ifdef DEBUG
2318 error = xfs_btree_check_block(cur, right, level, rbp);
2319 if (error)
2320 goto error0;
2321#endif
2322
2323 /* If we've got no left sibling then we can't shift an entry left. */
2324 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2325 if (xfs_btree_ptr_is_null(cur, &lptr))
2326 goto out0;
2327
2328 /*
2329 * If the cursor entry is the one that would be moved, don't
2330 * do it... it's too complicated.
2331 */
2332 if (cur->bc_ptrs[level] <= 1)
2333 goto out0;
2334
2335 /* Set up the left neighbor as "left". */
2336 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2337 if (error)
2338 goto error0;
2339
2340 /* If it's full, it can't take another entry. */
2341 lrecs = xfs_btree_get_numrecs(left);
2342 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2343 goto out0;
2344
2345 rrecs = xfs_btree_get_numrecs(right);
2346
2347 /*
2348 * We add one entry to the left side and remove one for the right side.
2349 * Account for it here, the changes will be updated on disk and logged
2350 * later.
2351 */
2352 lrecs++;
2353 rrecs--;
2354
2355 XFS_BTREE_STATS_INC(cur, lshift);
2356 XFS_BTREE_STATS_ADD(cur, moves, 1);
2357
2358 /*
2359 * If non-leaf, copy a key and a ptr to the left block.
2360 * Log the changes to the left block.
2361 */
2362 if (level > 0) {
2363 /* It's a non-leaf. Move keys and pointers. */
2364 union xfs_btree_key *lkp; /* left btree key */
2365 union xfs_btree_ptr *lpp; /* left address pointer */
2366
2367 lkp = xfs_btree_key_addr(cur, lrecs, left);
2368 rkp = xfs_btree_key_addr(cur, 1, right);
2369
2370 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2371 rpp = xfs_btree_ptr_addr(cur, 1, right);
2372
2373 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2374 if (error)
2375 goto error0;
2376
2377 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2378 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2379
2380 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2381 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2382
2383 ASSERT(cur->bc_ops->keys_inorder(cur,
2384 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2385 } else {
2386 /* It's a leaf. Move records. */
2387 union xfs_btree_rec *lrp; /* left record pointer */
2388
2389 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2390 rrp = xfs_btree_rec_addr(cur, 1, right);
2391
2392 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2393 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2394
2395 ASSERT(cur->bc_ops->recs_inorder(cur,
2396 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2397 }
2398
2399 xfs_btree_set_numrecs(left, lrecs);
2400 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2401
2402 xfs_btree_set_numrecs(right, rrecs);
2403 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2404
2405 /*
2406 * Slide the contents of right down one entry.
2407 */
2408 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2409 if (level > 0) {
2410 /* It's a nonleaf. operate on keys and ptrs */
2411 int i; /* loop index */
2412
2413 for (i = 0; i < rrecs; i++) {
2414 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2415 if (error)
2416 goto error0;
2417 }
2418
2419 xfs_btree_shift_keys(cur,
2420 xfs_btree_key_addr(cur, 2, right),
2421 -1, rrecs);
2422 xfs_btree_shift_ptrs(cur,
2423 xfs_btree_ptr_addr(cur, 2, right),
2424 -1, rrecs);
2425
2426 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2427 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2428 } else {
2429 /* It's a leaf. operate on records */
2430 xfs_btree_shift_recs(cur,
2431 xfs_btree_rec_addr(cur, 2, right),
2432 -1, rrecs);
2433 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2434 }
2435
2436 /*
2437 * Using a temporary cursor, update the parent key values of the
2438 * block on the left.
2439 */
2440 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2441 error = xfs_btree_dup_cursor(cur, &tcur);
2442 if (error)
2443 goto error0;
2444 i = xfs_btree_firstrec(tcur, level);
2445 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2446
2447 error = xfs_btree_decrement(tcur, level, &i);
2448 if (error)
2449 goto error1;
2450
2451 /* Update the parent high keys of the left block, if needed. */
2452 error = xfs_btree_update_keys(tcur, level);
2453 if (error)
2454 goto error1;
2455
2456 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2457 }
2458
2459 /* Update the parent keys of the right block. */
2460 error = xfs_btree_update_keys(cur, level);
2461 if (error)
2462 goto error0;
2463
2464 /* Slide the cursor value left one. */
2465 cur->bc_ptrs[level]--;
2466
2467 *stat = 1;
2468 return 0;
2469
2470out0:
2471 *stat = 0;
2472 return 0;
2473
2474error0:
2475 return error;
2476
2477error1:
2478 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2479 return error;
2480}
2481
2482/*
2483 * Move 1 record right from cur/level if possible.
2484 * Update cur to reflect the new path.
2485 */
2486STATIC int /* error */
2487xfs_btree_rshift(
2488 struct xfs_btree_cur *cur,
2489 int level,
2490 int *stat) /* success/failure */
2491{
2492 struct xfs_buf *lbp; /* left buffer pointer */
2493 struct xfs_btree_block *left; /* left btree block */
2494 struct xfs_buf *rbp; /* right buffer pointer */
2495 struct xfs_btree_block *right; /* right btree block */
2496 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2497 union xfs_btree_ptr rptr; /* right block pointer */
2498 union xfs_btree_key *rkp; /* right btree key */
2499 int rrecs; /* right record count */
2500 int lrecs; /* left record count */
2501 int error; /* error return value */
2502 int i; /* loop counter */
2503
2504 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2505 (level == cur->bc_nlevels - 1))
2506 goto out0;
2507
2508 /* Set up variables for this block as "left". */
2509 left = xfs_btree_get_block(cur, level, &lbp);
2510
2511#ifdef DEBUG
2512 error = xfs_btree_check_block(cur, left, level, lbp);
2513 if (error)
2514 goto error0;
2515#endif
2516
2517 /* If we've got no right sibling then we can't shift an entry right. */
2518 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2519 if (xfs_btree_ptr_is_null(cur, &rptr))
2520 goto out0;
2521
2522 /*
2523 * If the cursor entry is the one that would be moved, don't
2524 * do it... it's too complicated.
2525 */
2526 lrecs = xfs_btree_get_numrecs(left);
2527 if (cur->bc_ptrs[level] >= lrecs)
2528 goto out0;
2529
2530 /* Set up the right neighbor as "right". */
2531 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2532 if (error)
2533 goto error0;
2534
2535 /* If it's full, it can't take another entry. */
2536 rrecs = xfs_btree_get_numrecs(right);
2537 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2538 goto out0;
2539
2540 XFS_BTREE_STATS_INC(cur, rshift);
2541 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2542
2543 /*
2544 * Make a hole at the start of the right neighbor block, then
2545 * copy the last left block entry to the hole.
2546 */
2547 if (level > 0) {
2548 /* It's a nonleaf. make a hole in the keys and ptrs */
2549 union xfs_btree_key *lkp;
2550 union xfs_btree_ptr *lpp;
2551 union xfs_btree_ptr *rpp;
2552
2553 lkp = xfs_btree_key_addr(cur, lrecs, left);
2554 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2555 rkp = xfs_btree_key_addr(cur, 1, right);
2556 rpp = xfs_btree_ptr_addr(cur, 1, right);
2557
2558 for (i = rrecs - 1; i >= 0; i--) {
2559 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2560 if (error)
2561 goto error0;
2562 }
2563
2564 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2565 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2566
2567 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2568 if (error)
2569 goto error0;
2570
2571 /* Now put the new data in, and log it. */
2572 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2573 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2574
2575 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2576 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2577
2578 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2579 xfs_btree_key_addr(cur, 2, right)));
2580 } else {
2581 /* It's a leaf. make a hole in the records */
2582 union xfs_btree_rec *lrp;
2583 union xfs_btree_rec *rrp;
2584
2585 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2586 rrp = xfs_btree_rec_addr(cur, 1, right);
2587
2588 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2589
2590 /* Now put the new data in, and log it. */
2591 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2592 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2593 }
2594
2595 /*
2596 * Decrement and log left's numrecs, bump and log right's numrecs.
2597 */
2598 xfs_btree_set_numrecs(left, --lrecs);
2599 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2600
2601 xfs_btree_set_numrecs(right, ++rrecs);
2602 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2603
2604 /*
2605 * Using a temporary cursor, update the parent key values of the
2606 * block on the right.
2607 */
2608 error = xfs_btree_dup_cursor(cur, &tcur);
2609 if (error)
2610 goto error0;
2611 i = xfs_btree_lastrec(tcur, level);
2612 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2613
2614 error = xfs_btree_increment(tcur, level, &i);
2615 if (error)
2616 goto error1;
2617
2618 /* Update the parent high keys of the left block, if needed. */
2619 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2620 error = xfs_btree_update_keys(cur, level);
2621 if (error)
2622 goto error1;
2623 }
2624
2625 /* Update the parent keys of the right block. */
2626 error = xfs_btree_update_keys(tcur, level);
2627 if (error)
2628 goto error1;
2629
2630 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2631
2632 *stat = 1;
2633 return 0;
2634
2635out0:
2636 *stat = 0;
2637 return 0;
2638
2639error0:
2640 return error;
2641
2642error1:
2643 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2644 return error;
2645}
2646
2647/*
2648 * Split cur/level block in half.
2649 * Return new block number and the key to its first
2650 * record (to be inserted into parent).
2651 */
2652STATIC int /* error */
2653__xfs_btree_split(
2654 struct xfs_btree_cur *cur,
2655 int level,
2656 union xfs_btree_ptr *ptrp,
2657 union xfs_btree_key *key,
2658 struct xfs_btree_cur **curp,
2659 int *stat) /* success/failure */
2660{
2661 union xfs_btree_ptr lptr; /* left sibling block ptr */
2662 struct xfs_buf *lbp; /* left buffer pointer */
2663 struct xfs_btree_block *left; /* left btree block */
2664 union xfs_btree_ptr rptr; /* right sibling block ptr */
2665 struct xfs_buf *rbp; /* right buffer pointer */
2666 struct xfs_btree_block *right; /* right btree block */
2667 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2668 struct xfs_buf *rrbp; /* right-right buffer pointer */
2669 struct xfs_btree_block *rrblock; /* right-right btree block */
2670 int lrecs;
2671 int rrecs;
2672 int src_index;
2673 int error; /* error return value */
2674 int i;
2675
2676 XFS_BTREE_STATS_INC(cur, split);
2677
2678 /* Set up left block (current one). */
2679 left = xfs_btree_get_block(cur, level, &lbp);
2680
2681#ifdef DEBUG
2682 error = xfs_btree_check_block(cur, left, level, lbp);
2683 if (error)
2684 goto error0;
2685#endif
2686
2687 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2688
2689 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2690 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2691 if (error)
2692 goto error0;
2693 if (*stat == 0)
2694 goto out0;
2695 XFS_BTREE_STATS_INC(cur, alloc);
2696
2697 /* Set up the new block as "right". */
2698 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2699 if (error)
2700 goto error0;
2701
2702 /* Fill in the btree header for the new right block. */
2703 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2704
2705 /*
2706 * Split the entries between the old and the new block evenly.
2707 * Make sure that if there's an odd number of entries now, that
2708 * each new block will have the same number of entries.
2709 */
2710 lrecs = xfs_btree_get_numrecs(left);
2711 rrecs = lrecs / 2;
2712 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2713 rrecs++;
2714 src_index = (lrecs - rrecs + 1);
2715
2716 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2717
2718 /* Adjust numrecs for the later get_*_keys() calls. */
2719 lrecs -= rrecs;
2720 xfs_btree_set_numrecs(left, lrecs);
2721 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2722
2723 /*
2724 * Copy btree block entries from the left block over to the
2725 * new block, the right. Update the right block and log the
2726 * changes.
2727 */
2728 if (level > 0) {
2729 /* It's a non-leaf. Move keys and pointers. */
2730 union xfs_btree_key *lkp; /* left btree key */
2731 union xfs_btree_ptr *lpp; /* left address pointer */
2732 union xfs_btree_key *rkp; /* right btree key */
2733 union xfs_btree_ptr *rpp; /* right address pointer */
2734
2735 lkp = xfs_btree_key_addr(cur, src_index, left);
2736 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2737 rkp = xfs_btree_key_addr(cur, 1, right);
2738 rpp = xfs_btree_ptr_addr(cur, 1, right);
2739
2740 for (i = src_index; i < rrecs; i++) {
2741 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2742 if (error)
2743 goto error0;
2744 }
2745
2746 /* Copy the keys & pointers to the new block. */
2747 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2748 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2749
2750 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2751 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2752
2753 /* Stash the keys of the new block for later insertion. */
2754 xfs_btree_get_node_keys(cur, right, key);
2755 } else {
2756 /* It's a leaf. Move records. */
2757 union xfs_btree_rec *lrp; /* left record pointer */
2758 union xfs_btree_rec *rrp; /* right record pointer */
2759
2760 lrp = xfs_btree_rec_addr(cur, src_index, left);
2761 rrp = xfs_btree_rec_addr(cur, 1, right);
2762
2763 /* Copy records to the new block. */
2764 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2765 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2766
2767 /* Stash the keys of the new block for later insertion. */
2768 xfs_btree_get_leaf_keys(cur, right, key);
2769 }
2770
2771 /*
2772 * Find the left block number by looking in the buffer.
2773 * Adjust sibling pointers.
2774 */
2775 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2776 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2777 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2778 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2779
2780 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2781 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2782
2783 /*
2784 * If there's a block to the new block's right, make that block
2785 * point back to right instead of to left.
2786 */
2787 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2788 error = xfs_btree_read_buf_block(cur, &rrptr,
2789 0, &rrblock, &rrbp);
2790 if (error)
2791 goto error0;
2792 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2793 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2794 }
2795
2796 /* Update the parent high keys of the left block, if needed. */
2797 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2798 error = xfs_btree_update_keys(cur, level);
2799 if (error)
2800 goto error0;
2801 }
2802
2803 /*
2804 * If the cursor is really in the right block, move it there.
2805 * If it's just pointing past the last entry in left, then we'll
2806 * insert there, so don't change anything in that case.
2807 */
2808 if (cur->bc_ptrs[level] > lrecs + 1) {
2809 xfs_btree_setbuf(cur, level, rbp);
2810 cur->bc_ptrs[level] -= lrecs;
2811 }
2812 /*
2813 * If there are more levels, we'll need another cursor which refers
2814 * the right block, no matter where this cursor was.
2815 */
2816 if (level + 1 < cur->bc_nlevels) {
2817 error = xfs_btree_dup_cursor(cur, curp);
2818 if (error)
2819 goto error0;
2820 (*curp)->bc_ptrs[level + 1]++;
2821 }
2822 *ptrp = rptr;
2823 *stat = 1;
2824 return 0;
2825out0:
2826 *stat = 0;
2827 return 0;
2828
2829error0:
2830 return error;
2831}
2832
2833struct xfs_btree_split_args {
2834 struct xfs_btree_cur *cur;
2835 int level;
2836 union xfs_btree_ptr *ptrp;
2837 union xfs_btree_key *key;
2838 struct xfs_btree_cur **curp;
2839 int *stat; /* success/failure */
2840 int result;
2841 bool kswapd; /* allocation in kswapd context */
2842 struct completion *done;
2843 struct work_struct work;
2844};
2845
2846/*
2847 * Stack switching interfaces for allocation
2848 */
2849static void
2850xfs_btree_split_worker(
2851 struct work_struct *work)
2852{
2853 struct xfs_btree_split_args *args = container_of(work,
2854 struct xfs_btree_split_args, work);
2855 unsigned long pflags;
2856 unsigned long new_pflags = PF_MEMALLOC_NOFS;
2857
2858 /*
2859 * we are in a transaction context here, but may also be doing work
2860 * in kswapd context, and hence we may need to inherit that state
2861 * temporarily to ensure that we don't block waiting for memory reclaim
2862 * in any way.
2863 */
2864 if (args->kswapd)
2865 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2866
2867 current_set_flags_nested(&pflags, new_pflags);
2868
2869 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2870 args->key, args->curp, args->stat);
2871 complete(args->done);
2872
2873 current_restore_flags_nested(&pflags, new_pflags);
2874}
2875
2876/*
2877 * BMBT split requests often come in with little stack to work on. Push
2878 * them off to a worker thread so there is lots of stack to use. For the other
2879 * btree types, just call directly to avoid the context switch overhead here.
2880 */
2881STATIC int /* error */
2882xfs_btree_split(
2883 struct xfs_btree_cur *cur,
2884 int level,
2885 union xfs_btree_ptr *ptrp,
2886 union xfs_btree_key *key,
2887 struct xfs_btree_cur **curp,
2888 int *stat) /* success/failure */
2889{
2890 struct xfs_btree_split_args args;
2891 DECLARE_COMPLETION_ONSTACK(done);
2892
2893 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2894 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2895
2896 args.cur = cur;
2897 args.level = level;
2898 args.ptrp = ptrp;
2899 args.key = key;
2900 args.curp = curp;
2901 args.stat = stat;
2902 args.done = &done;
2903 args.kswapd = current_is_kswapd();
2904 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2905 queue_work(xfs_alloc_wq, &args.work);
2906 wait_for_completion(&done);
2907 destroy_work_on_stack(&args.work);
2908 return args.result;
2909}
2910
2911
2912/*
2913 * Copy the old inode root contents into a real block and make the
2914 * broot point to it.
2915 */
2916int /* error */
2917xfs_btree_new_iroot(
2918 struct xfs_btree_cur *cur, /* btree cursor */
2919 int *logflags, /* logging flags for inode */
2920 int *stat) /* return status - 0 fail */
2921{
2922 struct xfs_buf *cbp; /* buffer for cblock */
2923 struct xfs_btree_block *block; /* btree block */
2924 struct xfs_btree_block *cblock; /* child btree block */
2925 union xfs_btree_key *ckp; /* child key pointer */
2926 union xfs_btree_ptr *cpp; /* child ptr pointer */
2927 union xfs_btree_key *kp; /* pointer to btree key */
2928 union xfs_btree_ptr *pp; /* pointer to block addr */
2929 union xfs_btree_ptr nptr; /* new block addr */
2930 int level; /* btree level */
2931 int error; /* error return code */
2932 int i; /* loop counter */
2933
2934 XFS_BTREE_STATS_INC(cur, newroot);
2935
2936 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2937
2938 level = cur->bc_nlevels - 1;
2939
2940 block = xfs_btree_get_iroot(cur);
2941 pp = xfs_btree_ptr_addr(cur, 1, block);
2942
2943 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2944 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2945 if (error)
2946 goto error0;
2947 if (*stat == 0)
2948 return 0;
2949
2950 XFS_BTREE_STATS_INC(cur, alloc);
2951
2952 /* Copy the root into a real block. */
2953 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2954 if (error)
2955 goto error0;
2956
2957 /*
2958 * we can't just memcpy() the root in for CRC enabled btree blocks.
2959 * In that case have to also ensure the blkno remains correct
2960 */
2961 memcpy(cblock, block, xfs_btree_block_len(cur));
2962 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2963 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2964 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2965 else
2966 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2967 }
2968
2969 be16_add_cpu(&block->bb_level, 1);
2970 xfs_btree_set_numrecs(block, 1);
2971 cur->bc_nlevels++;
2972 cur->bc_ptrs[level + 1] = 1;
2973
2974 kp = xfs_btree_key_addr(cur, 1, block);
2975 ckp = xfs_btree_key_addr(cur, 1, cblock);
2976 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2977
2978 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2979 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2980 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2981 if (error)
2982 goto error0;
2983 }
2984
2985 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2986
2987 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2988 if (error)
2989 goto error0;
2990
2991 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2992
2993 xfs_iroot_realloc(cur->bc_private.b.ip,
2994 1 - xfs_btree_get_numrecs(cblock),
2995 cur->bc_private.b.whichfork);
2996
2997 xfs_btree_setbuf(cur, level, cbp);
2998
2999 /*
3000 * Do all this logging at the end so that
3001 * the root is at the right level.
3002 */
3003 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3004 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3005 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3006
3007 *logflags |=
3008 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3009 *stat = 1;
3010 return 0;
3011error0:
3012 return error;
3013}
3014
3015/*
3016 * Allocate a new root block, fill it in.
3017 */
3018STATIC int /* error */
3019xfs_btree_new_root(
3020 struct xfs_btree_cur *cur, /* btree cursor */
3021 int *stat) /* success/failure */
3022{
3023 struct xfs_btree_block *block; /* one half of the old root block */
3024 struct xfs_buf *bp; /* buffer containing block */
3025 int error; /* error return value */
3026 struct xfs_buf *lbp; /* left buffer pointer */
3027 struct xfs_btree_block *left; /* left btree block */
3028 struct xfs_buf *nbp; /* new (root) buffer */
3029 struct xfs_btree_block *new; /* new (root) btree block */
3030 int nptr; /* new value for key index, 1 or 2 */
3031 struct xfs_buf *rbp; /* right buffer pointer */
3032 struct xfs_btree_block *right; /* right btree block */
3033 union xfs_btree_ptr rptr;
3034 union xfs_btree_ptr lptr;
3035
3036 XFS_BTREE_STATS_INC(cur, newroot);
3037
3038 /* initialise our start point from the cursor */
3039 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3040
3041 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3042 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3043 if (error)
3044 goto error0;
3045 if (*stat == 0)
3046 goto out0;
3047 XFS_BTREE_STATS_INC(cur, alloc);
3048
3049 /* Set up the new block. */
3050 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3051 if (error)
3052 goto error0;
3053
3054 /* Set the root in the holding structure increasing the level by 1. */
3055 cur->bc_ops->set_root(cur, &lptr, 1);
3056
3057 /*
3058 * At the previous root level there are now two blocks: the old root,
3059 * and the new block generated when it was split. We don't know which
3060 * one the cursor is pointing at, so we set up variables "left" and
3061 * "right" for each case.
3062 */
3063 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3064
3065#ifdef DEBUG
3066 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3067 if (error)
3068 goto error0;
3069#endif
3070
3071 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3072 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3073 /* Our block is left, pick up the right block. */
3074 lbp = bp;
3075 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3076 left = block;
3077 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3078 if (error)
3079 goto error0;
3080 bp = rbp;
3081 nptr = 1;
3082 } else {
3083 /* Our block is right, pick up the left block. */
3084 rbp = bp;
3085 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3086 right = block;
3087 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3088 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3089 if (error)
3090 goto error0;
3091 bp = lbp;
3092 nptr = 2;
3093 }
3094
3095 /* Fill in the new block's btree header and log it. */
3096 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3097 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3098 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3099 !xfs_btree_ptr_is_null(cur, &rptr));
3100
3101 /* Fill in the key data in the new root. */
3102 if (xfs_btree_get_level(left) > 0) {
3103 /*
3104 * Get the keys for the left block's keys and put them directly
3105 * in the parent block. Do the same for the right block.
3106 */
3107 xfs_btree_get_node_keys(cur, left,
3108 xfs_btree_key_addr(cur, 1, new));
3109 xfs_btree_get_node_keys(cur, right,
3110 xfs_btree_key_addr(cur, 2, new));
3111 } else {
3112 /*
3113 * Get the keys for the left block's records and put them
3114 * directly in the parent block. Do the same for the right
3115 * block.
3116 */
3117 xfs_btree_get_leaf_keys(cur, left,
3118 xfs_btree_key_addr(cur, 1, new));
3119 xfs_btree_get_leaf_keys(cur, right,
3120 xfs_btree_key_addr(cur, 2, new));
3121 }
3122 xfs_btree_log_keys(cur, nbp, 1, 2);
3123
3124 /* Fill in the pointer data in the new root. */
3125 xfs_btree_copy_ptrs(cur,
3126 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3127 xfs_btree_copy_ptrs(cur,
3128 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3129 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3130
3131 /* Fix up the cursor. */
3132 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3133 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3134 cur->bc_nlevels++;
3135 *stat = 1;
3136 return 0;
3137error0:
3138 return error;
3139out0:
3140 *stat = 0;
3141 return 0;
3142}
3143
3144STATIC int
3145xfs_btree_make_block_unfull(
3146 struct xfs_btree_cur *cur, /* btree cursor */
3147 int level, /* btree level */
3148 int numrecs,/* # of recs in block */
3149 int *oindex,/* old tree index */
3150 int *index, /* new tree index */
3151 union xfs_btree_ptr *nptr, /* new btree ptr */
3152 struct xfs_btree_cur **ncur, /* new btree cursor */
3153 union xfs_btree_key *key, /* key of new block */
3154 int *stat)
3155{
3156 int error = 0;
3157
3158 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3159 level == cur->bc_nlevels - 1) {
3160 struct xfs_inode *ip = cur->bc_private.b.ip;
3161
3162 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3163 /* A root block that can be made bigger. */
3164 xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3165 *stat = 1;
3166 } else {
3167 /* A root block that needs replacing */
3168 int logflags = 0;
3169
3170 error = xfs_btree_new_iroot(cur, &logflags, stat);
3171 if (error || *stat == 0)
3172 return error;
3173
3174 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3175 }
3176
3177 return 0;
3178 }
3179
3180 /* First, try shifting an entry to the right neighbor. */
3181 error = xfs_btree_rshift(cur, level, stat);
3182 if (error || *stat)
3183 return error;
3184
3185 /* Next, try shifting an entry to the left neighbor. */
3186 error = xfs_btree_lshift(cur, level, stat);
3187 if (error)
3188 return error;
3189
3190 if (*stat) {
3191 *oindex = *index = cur->bc_ptrs[level];
3192 return 0;
3193 }
3194
3195 /*
3196 * Next, try splitting the current block in half.
3197 *
3198 * If this works we have to re-set our variables because we
3199 * could be in a different block now.
3200 */
3201 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3202 if (error || *stat == 0)
3203 return error;
3204
3205
3206 *index = cur->bc_ptrs[level];
3207 return 0;
3208}
3209
3210/*
3211 * Insert one record/level. Return information to the caller
3212 * allowing the next level up to proceed if necessary.
3213 */
3214STATIC int
3215xfs_btree_insrec(
3216 struct xfs_btree_cur *cur, /* btree cursor */
3217 int level, /* level to insert record at */
3218 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3219 union xfs_btree_rec *rec, /* record to insert */
3220 union xfs_btree_key *key, /* i/o: block key for ptrp */
3221 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3222 int *stat) /* success/failure */
3223{
3224 struct xfs_btree_block *block; /* btree block */
3225 struct xfs_buf *bp; /* buffer for block */
3226 union xfs_btree_ptr nptr; /* new block ptr */
3227 struct xfs_btree_cur *ncur; /* new btree cursor */
3228 union xfs_btree_key nkey; /* new block key */
3229 union xfs_btree_key *lkey;
3230 int optr; /* old key/record index */
3231 int ptr; /* key/record index */
3232 int numrecs;/* number of records */
3233 int error; /* error return value */
3234 int i;
3235 xfs_daddr_t old_bn;
3236
3237 ncur = NULL;
3238 lkey = &nkey;
3239
3240 /*
3241 * If we have an external root pointer, and we've made it to the
3242 * root level, allocate a new root block and we're done.
3243 */
3244 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3245 (level >= cur->bc_nlevels)) {
3246 error = xfs_btree_new_root(cur, stat);
3247 xfs_btree_set_ptr_null(cur, ptrp);
3248
3249 return error;
3250 }
3251
3252 /* If we're off the left edge, return failure. */
3253 ptr = cur->bc_ptrs[level];
3254 if (ptr == 0) {
3255 *stat = 0;
3256 return 0;
3257 }
3258
3259 optr = ptr;
3260
3261 XFS_BTREE_STATS_INC(cur, insrec);
3262
3263 /* Get pointers to the btree buffer and block. */
3264 block = xfs_btree_get_block(cur, level, &bp);
3265 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3266 numrecs = xfs_btree_get_numrecs(block);
3267
3268#ifdef DEBUG
3269 error = xfs_btree_check_block(cur, block, level, bp);
3270 if (error)
3271 goto error0;
3272
3273 /* Check that the new entry is being inserted in the right place. */
3274 if (ptr <= numrecs) {
3275 if (level == 0) {
3276 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3277 xfs_btree_rec_addr(cur, ptr, block)));
3278 } else {
3279 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3280 xfs_btree_key_addr(cur, ptr, block)));
3281 }
3282 }
3283#endif
3284
3285 /*
3286 * If the block is full, we can't insert the new entry until we
3287 * make the block un-full.
3288 */
3289 xfs_btree_set_ptr_null(cur, &nptr);
3290 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3291 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3292 &optr, &ptr, &nptr, &ncur, lkey, stat);
3293 if (error || *stat == 0)
3294 goto error0;
3295 }
3296
3297 /*
3298 * The current block may have changed if the block was
3299 * previously full and we have just made space in it.
3300 */
3301 block = xfs_btree_get_block(cur, level, &bp);
3302 numrecs = xfs_btree_get_numrecs(block);
3303
3304#ifdef DEBUG
3305 error = xfs_btree_check_block(cur, block, level, bp);
3306 if (error)
3307 return error;
3308#endif
3309
3310 /*
3311 * At this point we know there's room for our new entry in the block
3312 * we're pointing at.
3313 */
3314 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3315
3316 if (level > 0) {
3317 /* It's a nonleaf. make a hole in the keys and ptrs */
3318 union xfs_btree_key *kp;
3319 union xfs_btree_ptr *pp;
3320
3321 kp = xfs_btree_key_addr(cur, ptr, block);
3322 pp = xfs_btree_ptr_addr(cur, ptr, block);
3323
3324 for (i = numrecs - ptr; i >= 0; i--) {
3325 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3326 if (error)
3327 return error;
3328 }
3329
3330 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3331 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3332
3333 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3334 if (error)
3335 goto error0;
3336
3337 /* Now put the new data in, bump numrecs and log it. */
3338 xfs_btree_copy_keys(cur, kp, key, 1);
3339 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3340 numrecs++;
3341 xfs_btree_set_numrecs(block, numrecs);
3342 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3343 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3344#ifdef DEBUG
3345 if (ptr < numrecs) {
3346 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3347 xfs_btree_key_addr(cur, ptr + 1, block)));
3348 }
3349#endif
3350 } else {
3351 /* It's a leaf. make a hole in the records */
3352 union xfs_btree_rec *rp;
3353
3354 rp = xfs_btree_rec_addr(cur, ptr, block);
3355
3356 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3357
3358 /* Now put the new data in, bump numrecs and log it. */
3359 xfs_btree_copy_recs(cur, rp, rec, 1);
3360 xfs_btree_set_numrecs(block, ++numrecs);
3361 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3362#ifdef DEBUG
3363 if (ptr < numrecs) {
3364 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3365 xfs_btree_rec_addr(cur, ptr + 1, block)));
3366 }
3367#endif
3368 }
3369
3370 /* Log the new number of records in the btree header. */
3371 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3372
3373 /*
3374 * If we just inserted into a new tree block, we have to
3375 * recalculate nkey here because nkey is out of date.
3376 *
3377 * Otherwise we're just updating an existing block (having shoved
3378 * some records into the new tree block), so use the regular key
3379 * update mechanism.
3380 */
3381 if (bp && bp->b_bn != old_bn) {
3382 xfs_btree_get_keys(cur, block, lkey);
3383 } else if (xfs_btree_needs_key_update(cur, optr)) {
3384 error = xfs_btree_update_keys(cur, level);
3385 if (error)
3386 goto error0;
3387 }
3388
3389 /*
3390 * If we are tracking the last record in the tree and
3391 * we are at the far right edge of the tree, update it.
3392 */
3393 if (xfs_btree_is_lastrec(cur, block, level)) {
3394 cur->bc_ops->update_lastrec(cur, block, rec,
3395 ptr, LASTREC_INSREC);
3396 }
3397
3398 /*
3399 * Return the new block number, if any.
3400 * If there is one, give back a record value and a cursor too.
3401 */
3402 *ptrp = nptr;
3403 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3404 xfs_btree_copy_keys(cur, key, lkey, 1);
3405 *curp = ncur;
3406 }
3407
3408 *stat = 1;
3409 return 0;
3410
3411error0:
3412 return error;
3413}
3414
3415/*
3416 * Insert the record at the point referenced by cur.
3417 *
3418 * A multi-level split of the tree on insert will invalidate the original
3419 * cursor. All callers of this function should assume that the cursor is
3420 * no longer valid and revalidate it.
3421 */
3422int
3423xfs_btree_insert(
3424 struct xfs_btree_cur *cur,
3425 int *stat)
3426{
3427 int error; /* error return value */
3428 int i; /* result value, 0 for failure */
3429 int level; /* current level number in btree */
3430 union xfs_btree_ptr nptr; /* new block number (split result) */
3431 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3432 struct xfs_btree_cur *pcur; /* previous level's cursor */
3433 union xfs_btree_key bkey; /* key of block to insert */
3434 union xfs_btree_key *key;
3435 union xfs_btree_rec rec; /* record to insert */
3436
3437 level = 0;
3438 ncur = NULL;
3439 pcur = cur;
3440 key = &bkey;
3441
3442 xfs_btree_set_ptr_null(cur, &nptr);
3443
3444 /* Make a key out of the record data to be inserted, and save it. */
3445 cur->bc_ops->init_rec_from_cur(cur, &rec);
3446 cur->bc_ops->init_key_from_rec(key, &rec);
3447
3448 /*
3449 * Loop going up the tree, starting at the leaf level.
3450 * Stop when we don't get a split block, that must mean that
3451 * the insert is finished with this level.
3452 */
3453 do {
3454 /*
3455 * Insert nrec/nptr into this level of the tree.
3456 * Note if we fail, nptr will be null.
3457 */
3458 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3459 &ncur, &i);
3460 if (error) {
3461 if (pcur != cur)
3462 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3463 goto error0;
3464 }
3465
3466 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3467 level++;
3468
3469 /*
3470 * See if the cursor we just used is trash.
3471 * Can't trash the caller's cursor, but otherwise we should
3472 * if ncur is a new cursor or we're about to be done.
3473 */
3474 if (pcur != cur &&
3475 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3476 /* Save the state from the cursor before we trash it */
3477 if (cur->bc_ops->update_cursor)
3478 cur->bc_ops->update_cursor(pcur, cur);
3479 cur->bc_nlevels = pcur->bc_nlevels;
3480 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3481 }
3482 /* If we got a new cursor, switch to it. */
3483 if (ncur) {
3484 pcur = ncur;
3485 ncur = NULL;
3486 }
3487 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3488
3489 *stat = i;
3490 return 0;
3491error0:
3492 return error;
3493}
3494
3495/*
3496 * Try to merge a non-leaf block back into the inode root.
3497 *
3498 * Note: the killroot names comes from the fact that we're effectively
3499 * killing the old root block. But because we can't just delete the
3500 * inode we have to copy the single block it was pointing to into the
3501 * inode.
3502 */
3503STATIC int
3504xfs_btree_kill_iroot(
3505 struct xfs_btree_cur *cur)
3506{
3507 int whichfork = cur->bc_private.b.whichfork;
3508 struct xfs_inode *ip = cur->bc_private.b.ip;
3509 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3510 struct xfs_btree_block *block;
3511 struct xfs_btree_block *cblock;
3512 union xfs_btree_key *kp;
3513 union xfs_btree_key *ckp;
3514 union xfs_btree_ptr *pp;
3515 union xfs_btree_ptr *cpp;
3516 struct xfs_buf *cbp;
3517 int level;
3518 int index;
3519 int numrecs;
3520 int error;
3521#ifdef DEBUG
3522 union xfs_btree_ptr ptr;
3523#endif
3524 int i;
3525
3526 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3527 ASSERT(cur->bc_nlevels > 1);
3528
3529 /*
3530 * Don't deal with the root block needs to be a leaf case.
3531 * We're just going to turn the thing back into extents anyway.
3532 */
3533 level = cur->bc_nlevels - 1;
3534 if (level == 1)
3535 goto out0;
3536
3537 /*
3538 * Give up if the root has multiple children.
3539 */
3540 block = xfs_btree_get_iroot(cur);
3541 if (xfs_btree_get_numrecs(block) != 1)
3542 goto out0;
3543
3544 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3545 numrecs = xfs_btree_get_numrecs(cblock);
3546
3547 /*
3548 * Only do this if the next level will fit.
3549 * Then the data must be copied up to the inode,
3550 * instead of freeing the root you free the next level.
3551 */
3552 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3553 goto out0;
3554
3555 XFS_BTREE_STATS_INC(cur, killroot);
3556
3557#ifdef DEBUG
3558 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3559 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3560 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3561 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3562#endif
3563
3564 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3565 if (index) {
3566 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3567 cur->bc_private.b.whichfork);
3568 block = ifp->if_broot;
3569 }
3570
3571 be16_add_cpu(&block->bb_numrecs, index);
3572 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3573
3574 kp = xfs_btree_key_addr(cur, 1, block);
3575 ckp = xfs_btree_key_addr(cur, 1, cblock);
3576 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3577
3578 pp = xfs_btree_ptr_addr(cur, 1, block);
3579 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3580
3581 for (i = 0; i < numrecs; i++) {
3582 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3583 if (error)
3584 return error;
3585 }
3586
3587 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3588
3589 error = xfs_btree_free_block(cur, cbp);
3590 if (error)
3591 return error;
3592
3593 cur->bc_bufs[level - 1] = NULL;
3594 be16_add_cpu(&block->bb_level, -1);
3595 xfs_trans_log_inode(cur->bc_tp, ip,
3596 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3597 cur->bc_nlevels--;
3598out0:
3599 return 0;
3600}
3601
3602/*
3603 * Kill the current root node, and replace it with it's only child node.
3604 */
3605STATIC int
3606xfs_btree_kill_root(
3607 struct xfs_btree_cur *cur,
3608 struct xfs_buf *bp,
3609 int level,
3610 union xfs_btree_ptr *newroot)
3611{
3612 int error;
3613
3614 XFS_BTREE_STATS_INC(cur, killroot);
3615
3616 /*
3617 * Update the root pointer, decreasing the level by 1 and then
3618 * free the old root.
3619 */
3620 cur->bc_ops->set_root(cur, newroot, -1);
3621
3622 error = xfs_btree_free_block(cur, bp);
3623 if (error)
3624 return error;
3625
3626 cur->bc_bufs[level] = NULL;
3627 cur->bc_ra[level] = 0;
3628 cur->bc_nlevels--;
3629
3630 return 0;
3631}
3632
3633STATIC int
3634xfs_btree_dec_cursor(
3635 struct xfs_btree_cur *cur,
3636 int level,
3637 int *stat)
3638{
3639 int error;
3640 int i;
3641
3642 if (level > 0) {
3643 error = xfs_btree_decrement(cur, level, &i);
3644 if (error)
3645 return error;
3646 }
3647
3648 *stat = 1;
3649 return 0;
3650}
3651
3652/*
3653 * Single level of the btree record deletion routine.
3654 * Delete record pointed to by cur/level.
3655 * Remove the record from its block then rebalance the tree.
3656 * Return 0 for error, 1 for done, 2 to go on to the next level.
3657 */
3658STATIC int /* error */
3659xfs_btree_delrec(
3660 struct xfs_btree_cur *cur, /* btree cursor */
3661 int level, /* level removing record from */
3662 int *stat) /* fail/done/go-on */
3663{
3664 struct xfs_btree_block *block; /* btree block */
3665 union xfs_btree_ptr cptr; /* current block ptr */
3666 struct xfs_buf *bp; /* buffer for block */
3667 int error; /* error return value */
3668 int i; /* loop counter */
3669 union xfs_btree_ptr lptr; /* left sibling block ptr */
3670 struct xfs_buf *lbp; /* left buffer pointer */
3671 struct xfs_btree_block *left; /* left btree block */
3672 int lrecs = 0; /* left record count */
3673 int ptr; /* key/record index */
3674 union xfs_btree_ptr rptr; /* right sibling block ptr */
3675 struct xfs_buf *rbp; /* right buffer pointer */
3676 struct xfs_btree_block *right; /* right btree block */
3677 struct xfs_btree_block *rrblock; /* right-right btree block */
3678 struct xfs_buf *rrbp; /* right-right buffer pointer */
3679 int rrecs = 0; /* right record count */
3680 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3681 int numrecs; /* temporary numrec count */
3682
3683 tcur = NULL;
3684
3685 /* Get the index of the entry being deleted, check for nothing there. */
3686 ptr = cur->bc_ptrs[level];
3687 if (ptr == 0) {
3688 *stat = 0;
3689 return 0;
3690 }
3691
3692 /* Get the buffer & block containing the record or key/ptr. */
3693 block = xfs_btree_get_block(cur, level, &bp);
3694 numrecs = xfs_btree_get_numrecs(block);
3695
3696#ifdef DEBUG
3697 error = xfs_btree_check_block(cur, block, level, bp);
3698 if (error)
3699 goto error0;
3700#endif
3701
3702 /* Fail if we're off the end of the block. */
3703 if (ptr > numrecs) {
3704 *stat = 0;
3705 return 0;
3706 }
3707
3708 XFS_BTREE_STATS_INC(cur, delrec);
3709 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3710
3711 /* Excise the entries being deleted. */
3712 if (level > 0) {
3713 /* It's a nonleaf. operate on keys and ptrs */
3714 union xfs_btree_key *lkp;
3715 union xfs_btree_ptr *lpp;
3716
3717 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3718 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3719
3720 for (i = 0; i < numrecs - ptr; i++) {
3721 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3722 if (error)
3723 goto error0;
3724 }
3725
3726 if (ptr < numrecs) {
3727 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3728 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3729 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3730 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3731 }
3732 } else {
3733 /* It's a leaf. operate on records */
3734 if (ptr < numrecs) {
3735 xfs_btree_shift_recs(cur,
3736 xfs_btree_rec_addr(cur, ptr + 1, block),
3737 -1, numrecs - ptr);
3738 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3739 }
3740 }
3741
3742 /*
3743 * Decrement and log the number of entries in the block.
3744 */
3745 xfs_btree_set_numrecs(block, --numrecs);
3746 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3747
3748 /*
3749 * If we are tracking the last record in the tree and
3750 * we are at the far right edge of the tree, update it.
3751 */
3752 if (xfs_btree_is_lastrec(cur, block, level)) {
3753 cur->bc_ops->update_lastrec(cur, block, NULL,
3754 ptr, LASTREC_DELREC);
3755 }
3756
3757 /*
3758 * We're at the root level. First, shrink the root block in-memory.
3759 * Try to get rid of the next level down. If we can't then there's
3760 * nothing left to do.
3761 */
3762 if (level == cur->bc_nlevels - 1) {
3763 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3764 xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3765 cur->bc_private.b.whichfork);
3766
3767 error = xfs_btree_kill_iroot(cur);
3768 if (error)
3769 goto error0;
3770
3771 error = xfs_btree_dec_cursor(cur, level, stat);
3772 if (error)
3773 goto error0;
3774 *stat = 1;
3775 return 0;
3776 }
3777
3778 /*
3779 * If this is the root level, and there's only one entry left,
3780 * and it's NOT the leaf level, then we can get rid of this
3781 * level.
3782 */
3783 if (numrecs == 1 && level > 0) {
3784 union xfs_btree_ptr *pp;
3785 /*
3786 * pp is still set to the first pointer in the block.
3787 * Make it the new root of the btree.
3788 */
3789 pp = xfs_btree_ptr_addr(cur, 1, block);
3790 error = xfs_btree_kill_root(cur, bp, level, pp);
3791 if (error)
3792 goto error0;
3793 } else if (level > 0) {
3794 error = xfs_btree_dec_cursor(cur, level, stat);
3795 if (error)
3796 goto error0;
3797 }
3798 *stat = 1;
3799 return 0;
3800 }
3801
3802 /*
3803 * If we deleted the leftmost entry in the block, update the
3804 * key values above us in the tree.
3805 */
3806 if (xfs_btree_needs_key_update(cur, ptr)) {
3807 error = xfs_btree_update_keys(cur, level);
3808 if (error)
3809 goto error0;
3810 }
3811
3812 /*
3813 * If the number of records remaining in the block is at least
3814 * the minimum, we're done.
3815 */
3816 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3817 error = xfs_btree_dec_cursor(cur, level, stat);
3818 if (error)
3819 goto error0;
3820 return 0;
3821 }
3822
3823 /*
3824 * Otherwise, we have to move some records around to keep the
3825 * tree balanced. Look at the left and right sibling blocks to
3826 * see if we can re-balance by moving only one record.
3827 */
3828 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3829 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3830
3831 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3832 /*
3833 * One child of root, need to get a chance to copy its contents
3834 * into the root and delete it. Can't go up to next level,
3835 * there's nothing to delete there.
3836 */
3837 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3838 xfs_btree_ptr_is_null(cur, &lptr) &&
3839 level == cur->bc_nlevels - 2) {
3840 error = xfs_btree_kill_iroot(cur);
3841 if (!error)
3842 error = xfs_btree_dec_cursor(cur, level, stat);
3843 if (error)
3844 goto error0;
3845 return 0;
3846 }
3847 }
3848
3849 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3850 !xfs_btree_ptr_is_null(cur, &lptr));
3851
3852 /*
3853 * Duplicate the cursor so our btree manipulations here won't
3854 * disrupt the next level up.
3855 */
3856 error = xfs_btree_dup_cursor(cur, &tcur);
3857 if (error)
3858 goto error0;
3859
3860 /*
3861 * If there's a right sibling, see if it's ok to shift an entry
3862 * out of it.
3863 */
3864 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3865 /*
3866 * Move the temp cursor to the last entry in the next block.
3867 * Actually any entry but the first would suffice.
3868 */
3869 i = xfs_btree_lastrec(tcur, level);
3870 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3871
3872 error = xfs_btree_increment(tcur, level, &i);
3873 if (error)
3874 goto error0;
3875 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3876
3877 i = xfs_btree_lastrec(tcur, level);
3878 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3879
3880 /* Grab a pointer to the block. */
3881 right = xfs_btree_get_block(tcur, level, &rbp);
3882#ifdef DEBUG
3883 error = xfs_btree_check_block(tcur, right, level, rbp);
3884 if (error)
3885 goto error0;
3886#endif
3887 /* Grab the current block number, for future use. */
3888 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3889
3890 /*
3891 * If right block is full enough so that removing one entry
3892 * won't make it too empty, and left-shifting an entry out
3893 * of right to us works, we're done.
3894 */
3895 if (xfs_btree_get_numrecs(right) - 1 >=
3896 cur->bc_ops->get_minrecs(tcur, level)) {
3897 error = xfs_btree_lshift(tcur, level, &i);
3898 if (error)
3899 goto error0;
3900 if (i) {
3901 ASSERT(xfs_btree_get_numrecs(block) >=
3902 cur->bc_ops->get_minrecs(tcur, level));
3903
3904 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3905 tcur = NULL;
3906
3907 error = xfs_btree_dec_cursor(cur, level, stat);
3908 if (error)
3909 goto error0;
3910 return 0;
3911 }
3912 }
3913
3914 /*
3915 * Otherwise, grab the number of records in right for
3916 * future reference, and fix up the temp cursor to point
3917 * to our block again (last record).
3918 */
3919 rrecs = xfs_btree_get_numrecs(right);
3920 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3921 i = xfs_btree_firstrec(tcur, level);
3922 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3923
3924 error = xfs_btree_decrement(tcur, level, &i);
3925 if (error)
3926 goto error0;
3927 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3928 }
3929 }
3930
3931 /*
3932 * If there's a left sibling, see if it's ok to shift an entry
3933 * out of it.
3934 */
3935 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3936 /*
3937 * Move the temp cursor to the first entry in the
3938 * previous block.
3939 */
3940 i = xfs_btree_firstrec(tcur, level);
3941 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3942
3943 error = xfs_btree_decrement(tcur, level, &i);
3944 if (error)
3945 goto error0;
3946 i = xfs_btree_firstrec(tcur, level);
3947 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3948
3949 /* Grab a pointer to the block. */
3950 left = xfs_btree_get_block(tcur, level, &lbp);
3951#ifdef DEBUG
3952 error = xfs_btree_check_block(cur, left, level, lbp);
3953 if (error)
3954 goto error0;
3955#endif
3956 /* Grab the current block number, for future use. */
3957 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3958
3959 /*
3960 * If left block is full enough so that removing one entry
3961 * won't make it too empty, and right-shifting an entry out
3962 * of left to us works, we're done.
3963 */
3964 if (xfs_btree_get_numrecs(left) - 1 >=
3965 cur->bc_ops->get_minrecs(tcur, level)) {
3966 error = xfs_btree_rshift(tcur, level, &i);
3967 if (error)
3968 goto error0;
3969 if (i) {
3970 ASSERT(xfs_btree_get_numrecs(block) >=
3971 cur->bc_ops->get_minrecs(tcur, level));
3972 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3973 tcur = NULL;
3974 if (level == 0)
3975 cur->bc_ptrs[0]++;
3976
3977 *stat = 1;
3978 return 0;
3979 }
3980 }
3981
3982 /*
3983 * Otherwise, grab the number of records in right for
3984 * future reference.
3985 */
3986 lrecs = xfs_btree_get_numrecs(left);
3987 }
3988
3989 /* Delete the temp cursor, we're done with it. */
3990 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3991 tcur = NULL;
3992
3993 /* If here, we need to do a join to keep the tree balanced. */
3994 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3995
3996 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3997 lrecs + xfs_btree_get_numrecs(block) <=
3998 cur->bc_ops->get_maxrecs(cur, level)) {
3999 /*
4000 * Set "right" to be the starting block,
4001 * "left" to be the left neighbor.
4002 */
4003 rptr = cptr;
4004 right = block;
4005 rbp = bp;
4006 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4007 if (error)
4008 goto error0;
4009
4010 /*
4011 * If that won't work, see if we can join with the right neighbor block.
4012 */
4013 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4014 rrecs + xfs_btree_get_numrecs(block) <=
4015 cur->bc_ops->get_maxrecs(cur, level)) {
4016 /*
4017 * Set "left" to be the starting block,
4018 * "right" to be the right neighbor.
4019 */
4020 lptr = cptr;
4021 left = block;
4022 lbp = bp;
4023 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4024 if (error)
4025 goto error0;
4026
4027 /*
4028 * Otherwise, we can't fix the imbalance.
4029 * Just return. This is probably a logic error, but it's not fatal.
4030 */
4031 } else {
4032 error = xfs_btree_dec_cursor(cur, level, stat);
4033 if (error)
4034 goto error0;
4035 return 0;
4036 }
4037
4038 rrecs = xfs_btree_get_numrecs(right);
4039 lrecs = xfs_btree_get_numrecs(left);
4040
4041 /*
4042 * We're now going to join "left" and "right" by moving all the stuff
4043 * in "right" to "left" and deleting "right".
4044 */
4045 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4046 if (level > 0) {
4047 /* It's a non-leaf. Move keys and pointers. */
4048 union xfs_btree_key *lkp; /* left btree key */
4049 union xfs_btree_ptr *lpp; /* left address pointer */
4050 union xfs_btree_key *rkp; /* right btree key */
4051 union xfs_btree_ptr *rpp; /* right address pointer */
4052
4053 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4054 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4055 rkp = xfs_btree_key_addr(cur, 1, right);
4056 rpp = xfs_btree_ptr_addr(cur, 1, right);
4057
4058 for (i = 1; i < rrecs; i++) {
4059 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4060 if (error)
4061 goto error0;
4062 }
4063
4064 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4065 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4066
4067 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4068 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4069 } else {
4070 /* It's a leaf. Move records. */
4071 union xfs_btree_rec *lrp; /* left record pointer */
4072 union xfs_btree_rec *rrp; /* right record pointer */
4073
4074 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4075 rrp = xfs_btree_rec_addr(cur, 1, right);
4076
4077 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4078 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4079 }
4080
4081 XFS_BTREE_STATS_INC(cur, join);
4082
4083 /*
4084 * Fix up the number of records and right block pointer in the
4085 * surviving block, and log it.
4086 */
4087 xfs_btree_set_numrecs(left, lrecs + rrecs);
4088 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4089 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4090 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4091
4092 /* If there is a right sibling, point it to the remaining block. */
4093 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4094 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4095 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4096 if (error)
4097 goto error0;
4098 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4099 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4100 }
4101
4102 /* Free the deleted block. */
4103 error = xfs_btree_free_block(cur, rbp);
4104 if (error)
4105 goto error0;
4106
4107 /*
4108 * If we joined with the left neighbor, set the buffer in the
4109 * cursor to the left block, and fix up the index.
4110 */
4111 if (bp != lbp) {
4112 cur->bc_bufs[level] = lbp;
4113 cur->bc_ptrs[level] += lrecs;
4114 cur->bc_ra[level] = 0;
4115 }
4116 /*
4117 * If we joined with the right neighbor and there's a level above
4118 * us, increment the cursor at that level.
4119 */
4120 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4121 (level + 1 < cur->bc_nlevels)) {
4122 error = xfs_btree_increment(cur, level + 1, &i);
4123 if (error)
4124 goto error0;
4125 }
4126
4127 /*
4128 * Readjust the ptr at this level if it's not a leaf, since it's
4129 * still pointing at the deletion point, which makes the cursor
4130 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4131 * We can't use decrement because it would change the next level up.
4132 */
4133 if (level > 0)
4134 cur->bc_ptrs[level]--;
4135
4136 /*
4137 * We combined blocks, so we have to update the parent keys if the
4138 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4139 * points to the old block so that the caller knows which record to
4140 * delete. Therefore, the caller must be savvy enough to call updkeys
4141 * for us if we return stat == 2. The other exit points from this
4142 * function don't require deletions further up the tree, so they can
4143 * call updkeys directly.
4144 */
4145
4146 /* Return value means the next level up has something to do. */
4147 *stat = 2;
4148 return 0;
4149
4150error0:
4151 if (tcur)
4152 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4153 return error;
4154}
4155
4156/*
4157 * Delete the record pointed to by cur.
4158 * The cursor refers to the place where the record was (could be inserted)
4159 * when the operation returns.
4160 */
4161int /* error */
4162xfs_btree_delete(
4163 struct xfs_btree_cur *cur,
4164 int *stat) /* success/failure */
4165{
4166 int error; /* error return value */
4167 int level;
4168 int i;
4169 bool joined = false;
4170
4171 /*
4172 * Go up the tree, starting at leaf level.
4173 *
4174 * If 2 is returned then a join was done; go to the next level.
4175 * Otherwise we are done.
4176 */
4177 for (level = 0, i = 2; i == 2; level++) {
4178 error = xfs_btree_delrec(cur, level, &i);
4179 if (error)
4180 goto error0;
4181 if (i == 2)
4182 joined = true;
4183 }
4184
4185 /*
4186 * If we combined blocks as part of deleting the record, delrec won't
4187 * have updated the parent high keys so we have to do that here.
4188 */
4189 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4190 error = xfs_btree_updkeys_force(cur, 0);
4191 if (error)
4192 goto error0;
4193 }
4194
4195 if (i == 0) {
4196 for (level = 1; level < cur->bc_nlevels; level++) {
4197 if (cur->bc_ptrs[level] == 0) {
4198 error = xfs_btree_decrement(cur, level, &i);
4199 if (error)
4200 goto error0;
4201 break;
4202 }
4203 }
4204 }
4205
4206 *stat = i;
4207 return 0;
4208error0:
4209 return error;
4210}
4211
4212/*
4213 * Get the data from the pointed-to record.
4214 */
4215int /* error */
4216xfs_btree_get_rec(
4217 struct xfs_btree_cur *cur, /* btree cursor */
4218 union xfs_btree_rec **recp, /* output: btree record */
4219 int *stat) /* output: success/failure */
4220{
4221 struct xfs_btree_block *block; /* btree block */
4222 struct xfs_buf *bp; /* buffer pointer */
4223 int ptr; /* record number */
4224#ifdef DEBUG
4225 int error; /* error return value */
4226#endif
4227
4228 ptr = cur->bc_ptrs[0];
4229 block = xfs_btree_get_block(cur, 0, &bp);
4230
4231#ifdef DEBUG
4232 error = xfs_btree_check_block(cur, block, 0, bp);
4233 if (error)
4234 return error;
4235#endif
4236
4237 /*
4238 * Off the right end or left end, return failure.
4239 */
4240 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4241 *stat = 0;
4242 return 0;
4243 }
4244
4245 /*
4246 * Point to the record and extract its data.
4247 */
4248 *recp = xfs_btree_rec_addr(cur, ptr, block);
4249 *stat = 1;
4250 return 0;
4251}
4252
4253/* Visit a block in a btree. */
4254STATIC int
4255xfs_btree_visit_block(
4256 struct xfs_btree_cur *cur,
4257 int level,
4258 xfs_btree_visit_blocks_fn fn,
4259 void *data)
4260{
4261 struct xfs_btree_block *block;
4262 struct xfs_buf *bp;
4263 union xfs_btree_ptr rptr;
4264 int error;
4265
4266 /* do right sibling readahead */
4267 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4268 block = xfs_btree_get_block(cur, level, &bp);
4269
4270 /* process the block */
4271 error = fn(cur, level, data);
4272 if (error)
4273 return error;
4274
4275 /* now read rh sibling block for next iteration */
4276 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4277 if (xfs_btree_ptr_is_null(cur, &rptr))
4278 return -ENOENT;
4279
4280 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4281}
4282
4283
4284/* Visit every block in a btree. */
4285int
4286xfs_btree_visit_blocks(
4287 struct xfs_btree_cur *cur,
4288 xfs_btree_visit_blocks_fn fn,
4289 void *data)
4290{
4291 union xfs_btree_ptr lptr;
4292 int level;
4293 struct xfs_btree_block *block = NULL;
4294 int error = 0;
4295
4296 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4297
4298 /* for each level */
4299 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4300 /* grab the left hand block */
4301 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4302 if (error)
4303 return error;
4304
4305 /* readahead the left most block for the next level down */
4306 if (level > 0) {
4307 union xfs_btree_ptr *ptr;
4308
4309 ptr = xfs_btree_ptr_addr(cur, 1, block);
4310 xfs_btree_readahead_ptr(cur, ptr, 1);
4311
4312 /* save for the next iteration of the loop */
4313 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4314 }
4315
4316 /* for each buffer in the level */
4317 do {
4318 error = xfs_btree_visit_block(cur, level, fn, data);
4319 } while (!error);
4320
4321 if (error != -ENOENT)
4322 return error;
4323 }
4324
4325 return 0;
4326}
4327
4328/*
4329 * Change the owner of a btree.
4330 *
4331 * The mechanism we use here is ordered buffer logging. Because we don't know
4332 * how many buffers were are going to need to modify, we don't really want to
4333 * have to make transaction reservations for the worst case of every buffer in a
4334 * full size btree as that may be more space that we can fit in the log....
4335 *
4336 * We do the btree walk in the most optimal manner possible - we have sibling
4337 * pointers so we can just walk all the blocks on each level from left to right
4338 * in a single pass, and then move to the next level and do the same. We can
4339 * also do readahead on the sibling pointers to get IO moving more quickly,
4340 * though for slow disks this is unlikely to make much difference to performance
4341 * as the amount of CPU work we have to do before moving to the next block is
4342 * relatively small.
4343 *
4344 * For each btree block that we load, modify the owner appropriately, set the
4345 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4346 * we mark the region we change dirty so that if the buffer is relogged in
4347 * a subsequent transaction the changes we make here as an ordered buffer are
4348 * correctly relogged in that transaction. If we are in recovery context, then
4349 * just queue the modified buffer as delayed write buffer so the transaction
4350 * recovery completion writes the changes to disk.
4351 */
4352struct xfs_btree_block_change_owner_info {
4353 uint64_t new_owner;
4354 struct list_head *buffer_list;
4355};
4356
4357static int
4358xfs_btree_block_change_owner(
4359 struct xfs_btree_cur *cur,
4360 int level,
4361 void *data)
4362{
4363 struct xfs_btree_block_change_owner_info *bbcoi = data;
4364 struct xfs_btree_block *block;
4365 struct xfs_buf *bp;
4366
4367 /* modify the owner */
4368 block = xfs_btree_get_block(cur, level, &bp);
4369 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4370 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4371 return 0;
4372 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4373 } else {
4374 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4375 return 0;
4376 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4377 }
4378
4379 /*
4380 * If the block is a root block hosted in an inode, we might not have a
4381 * buffer pointer here and we shouldn't attempt to log the change as the
4382 * information is already held in the inode and discarded when the root
4383 * block is formatted into the on-disk inode fork. We still change it,
4384 * though, so everything is consistent in memory.
4385 */
4386 if (!bp) {
4387 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4388 ASSERT(level == cur->bc_nlevels - 1);
4389 return 0;
4390 }
4391
4392 if (cur->bc_tp) {
4393 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4394 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4395 return -EAGAIN;
4396 }
4397 } else {
4398 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4399 }
4400
4401 return 0;
4402}
4403
4404int
4405xfs_btree_change_owner(
4406 struct xfs_btree_cur *cur,
4407 uint64_t new_owner,
4408 struct list_head *buffer_list)
4409{
4410 struct xfs_btree_block_change_owner_info bbcoi;
4411
4412 bbcoi.new_owner = new_owner;
4413 bbcoi.buffer_list = buffer_list;
4414
4415 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4416 &bbcoi);
4417}
4418
4419/* Verify the v5 fields of a long-format btree block. */
4420xfs_failaddr_t
4421xfs_btree_lblock_v5hdr_verify(
4422 struct xfs_buf *bp,
4423 uint64_t owner)
4424{
4425 struct xfs_mount *mp = bp->b_mount;
4426 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4427
4428 if (!xfs_sb_version_hascrc(&mp->m_sb))
4429 return __this_address;
4430 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4431 return __this_address;
4432 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4433 return __this_address;
4434 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4435 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4436 return __this_address;
4437 return NULL;
4438}
4439
4440/* Verify a long-format btree block. */
4441xfs_failaddr_t
4442xfs_btree_lblock_verify(
4443 struct xfs_buf *bp,
4444 unsigned int max_recs)
4445{
4446 struct xfs_mount *mp = bp->b_mount;
4447 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4448
4449 /* numrecs verification */
4450 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4451 return __this_address;
4452
4453 /* sibling pointer verification */
4454 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4455 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4456 return __this_address;
4457 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4458 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4459 return __this_address;
4460
4461 return NULL;
4462}
4463
4464/**
4465 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4466 * btree block
4467 *
4468 * @bp: buffer containing the btree block
4469 */
4470xfs_failaddr_t
4471xfs_btree_sblock_v5hdr_verify(
4472 struct xfs_buf *bp)
4473{
4474 struct xfs_mount *mp = bp->b_mount;
4475 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4476 struct xfs_perag *pag = bp->b_pag;
4477
4478 if (!xfs_sb_version_hascrc(&mp->m_sb))
4479 return __this_address;
4480 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4481 return __this_address;
4482 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4483 return __this_address;
4484 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4485 return __this_address;
4486 return NULL;
4487}
4488
4489/**
4490 * xfs_btree_sblock_verify() -- verify a short-format btree block
4491 *
4492 * @bp: buffer containing the btree block
4493 * @max_recs: maximum records allowed in this btree node
4494 */
4495xfs_failaddr_t
4496xfs_btree_sblock_verify(
4497 struct xfs_buf *bp,
4498 unsigned int max_recs)
4499{
4500 struct xfs_mount *mp = bp->b_mount;
4501 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4502 xfs_agblock_t agno;
4503
4504 /* numrecs verification */
4505 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4506 return __this_address;
4507
4508 /* sibling pointer verification */
4509 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4510 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4511 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4512 return __this_address;
4513 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4514 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4515 return __this_address;
4516
4517 return NULL;
4518}
4519
4520/*
4521 * Calculate the number of btree levels needed to store a given number of
4522 * records in a short-format btree.
4523 */
4524uint
4525xfs_btree_compute_maxlevels(
4526 uint *limits,
4527 unsigned long len)
4528{
4529 uint level;
4530 unsigned long maxblocks;
4531
4532 maxblocks = (len + limits[0] - 1) / limits[0];
4533 for (level = 1; maxblocks > 1; level++)
4534 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4535 return level;
4536}
4537
4538/*
4539 * Query a regular btree for all records overlapping a given interval.
4540 * Start with a LE lookup of the key of low_rec and return all records
4541 * until we find a record with a key greater than the key of high_rec.
4542 */
4543STATIC int
4544xfs_btree_simple_query_range(
4545 struct xfs_btree_cur *cur,
4546 union xfs_btree_key *low_key,
4547 union xfs_btree_key *high_key,
4548 xfs_btree_query_range_fn fn,
4549 void *priv)
4550{
4551 union xfs_btree_rec *recp;
4552 union xfs_btree_key rec_key;
4553 int64_t diff;
4554 int stat;
4555 bool firstrec = true;
4556 int error;
4557
4558 ASSERT(cur->bc_ops->init_high_key_from_rec);
4559 ASSERT(cur->bc_ops->diff_two_keys);
4560
4561 /*
4562 * Find the leftmost record. The btree cursor must be set
4563 * to the low record used to generate low_key.
4564 */
4565 stat = 0;
4566 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4567 if (error)
4568 goto out;
4569
4570 /* Nothing? See if there's anything to the right. */
4571 if (!stat) {
4572 error = xfs_btree_increment(cur, 0, &stat);
4573 if (error)
4574 goto out;
4575 }
4576
4577 while (stat) {
4578 /* Find the record. */
4579 error = xfs_btree_get_rec(cur, &recp, &stat);
4580 if (error || !stat)
4581 break;
4582
4583 /* Skip if high_key(rec) < low_key. */
4584 if (firstrec) {
4585 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4586 firstrec = false;
4587 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4588 &rec_key);
4589 if (diff > 0)
4590 goto advloop;
4591 }
4592
4593 /* Stop if high_key < low_key(rec). */
4594 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4595 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4596 if (diff > 0)
4597 break;
4598
4599 /* Callback */
4600 error = fn(cur, recp, priv);
4601 if (error)
4602 break;
4603
4604advloop:
4605 /* Move on to the next record. */
4606 error = xfs_btree_increment(cur, 0, &stat);
4607 if (error)
4608 break;
4609 }
4610
4611out:
4612 return error;
4613}
4614
4615/*
4616 * Query an overlapped interval btree for all records overlapping a given
4617 * interval. This function roughly follows the algorithm given in
4618 * "Interval Trees" of _Introduction to Algorithms_, which is section
4619 * 14.3 in the 2nd and 3rd editions.
4620 *
4621 * First, generate keys for the low and high records passed in.
4622 *
4623 * For any leaf node, generate the high and low keys for the record.
4624 * If the record keys overlap with the query low/high keys, pass the
4625 * record to the function iterator.
4626 *
4627 * For any internal node, compare the low and high keys of each
4628 * pointer against the query low/high keys. If there's an overlap,
4629 * follow the pointer.
4630 *
4631 * As an optimization, we stop scanning a block when we find a low key
4632 * that is greater than the query's high key.
4633 */
4634STATIC int
4635xfs_btree_overlapped_query_range(
4636 struct xfs_btree_cur *cur,
4637 union xfs_btree_key *low_key,
4638 union xfs_btree_key *high_key,
4639 xfs_btree_query_range_fn fn,
4640 void *priv)
4641{
4642 union xfs_btree_ptr ptr;
4643 union xfs_btree_ptr *pp;
4644 union xfs_btree_key rec_key;
4645 union xfs_btree_key rec_hkey;
4646 union xfs_btree_key *lkp;
4647 union xfs_btree_key *hkp;
4648 union xfs_btree_rec *recp;
4649 struct xfs_btree_block *block;
4650 int64_t ldiff;
4651 int64_t hdiff;
4652 int level;
4653 struct xfs_buf *bp;
4654 int i;
4655 int error;
4656
4657 /* Load the root of the btree. */
4658 level = cur->bc_nlevels - 1;
4659 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4660 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4661 if (error)
4662 return error;
4663 xfs_btree_get_block(cur, level, &bp);
4664 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4665#ifdef DEBUG
4666 error = xfs_btree_check_block(cur, block, level, bp);
4667 if (error)
4668 goto out;
4669#endif
4670 cur->bc_ptrs[level] = 1;
4671
4672 while (level < cur->bc_nlevels) {
4673 block = xfs_btree_get_block(cur, level, &bp);
4674
4675 /* End of node, pop back towards the root. */
4676 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4677pop_up:
4678 if (level < cur->bc_nlevels - 1)
4679 cur->bc_ptrs[level + 1]++;
4680 level++;
4681 continue;
4682 }
4683
4684 if (level == 0) {
4685 /* Handle a leaf node. */
4686 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4687
4688 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4689 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4690 low_key);
4691
4692 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4693 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4694 &rec_key);
4695
4696 /*
4697 * If (record's high key >= query's low key) and
4698 * (query's high key >= record's low key), then
4699 * this record overlaps the query range; callback.
4700 */
4701 if (ldiff >= 0 && hdiff >= 0) {
4702 error = fn(cur, recp, priv);
4703 if (error)
4704 break;
4705 } else if (hdiff < 0) {
4706 /* Record is larger than high key; pop. */
4707 goto pop_up;
4708 }
4709 cur->bc_ptrs[level]++;
4710 continue;
4711 }
4712
4713 /* Handle an internal node. */
4714 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4715 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4716 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4717
4718 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4719 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4720
4721 /*
4722 * If (pointer's high key >= query's low key) and
4723 * (query's high key >= pointer's low key), then
4724 * this record overlaps the query range; follow pointer.
4725 */
4726 if (ldiff >= 0 && hdiff >= 0) {
4727 level--;
4728 error = xfs_btree_lookup_get_block(cur, level, pp,
4729 &block);
4730 if (error)
4731 goto out;
4732 xfs_btree_get_block(cur, level, &bp);
4733 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4734#ifdef DEBUG
4735 error = xfs_btree_check_block(cur, block, level, bp);
4736 if (error)
4737 goto out;
4738#endif
4739 cur->bc_ptrs[level] = 1;
4740 continue;
4741 } else if (hdiff < 0) {
4742 /* The low key is larger than the upper range; pop. */
4743 goto pop_up;
4744 }
4745 cur->bc_ptrs[level]++;
4746 }
4747
4748out:
4749 /*
4750 * If we don't end this function with the cursor pointing at a record
4751 * block, a subsequent non-error cursor deletion will not release
4752 * node-level buffers, causing a buffer leak. This is quite possible
4753 * with a zero-results range query, so release the buffers if we
4754 * failed to return any results.
4755 */
4756 if (cur->bc_bufs[0] == NULL) {
4757 for (i = 0; i < cur->bc_nlevels; i++) {
4758 if (cur->bc_bufs[i]) {
4759 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4760 cur->bc_bufs[i] = NULL;
4761 cur->bc_ptrs[i] = 0;
4762 cur->bc_ra[i] = 0;
4763 }
4764 }
4765 }
4766
4767 return error;
4768}
4769
4770/*
4771 * Query a btree for all records overlapping a given interval of keys. The
4772 * supplied function will be called with each record found; return one of the
4773 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4774 * code. This function returns -ECANCELED, zero, or a negative error code.
4775 */
4776int
4777xfs_btree_query_range(
4778 struct xfs_btree_cur *cur,
4779 union xfs_btree_irec *low_rec,
4780 union xfs_btree_irec *high_rec,
4781 xfs_btree_query_range_fn fn,
4782 void *priv)
4783{
4784 union xfs_btree_rec rec;
4785 union xfs_btree_key low_key;
4786 union xfs_btree_key high_key;
4787
4788 /* Find the keys of both ends of the interval. */
4789 cur->bc_rec = *high_rec;
4790 cur->bc_ops->init_rec_from_cur(cur, &rec);
4791 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4792
4793 cur->bc_rec = *low_rec;
4794 cur->bc_ops->init_rec_from_cur(cur, &rec);
4795 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4796
4797 /* Enforce low key < high key. */
4798 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4799 return -EINVAL;
4800
4801 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4802 return xfs_btree_simple_query_range(cur, &low_key,
4803 &high_key, fn, priv);
4804 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4805 fn, priv);
4806}
4807
4808/* Query a btree for all records. */
4809int
4810xfs_btree_query_all(
4811 struct xfs_btree_cur *cur,
4812 xfs_btree_query_range_fn fn,
4813 void *priv)
4814{
4815 union xfs_btree_key low_key;
4816 union xfs_btree_key high_key;
4817
4818 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4819 memset(&low_key, 0, sizeof(low_key));
4820 memset(&high_key, 0xFF, sizeof(high_key));
4821
4822 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4823}
4824
4825/*
4826 * Calculate the number of blocks needed to store a given number of records
4827 * in a short-format (per-AG metadata) btree.
4828 */
4829unsigned long long
4830xfs_btree_calc_size(
4831 uint *limits,
4832 unsigned long long len)
4833{
4834 int level;
4835 int maxrecs;
4836 unsigned long long rval;
4837
4838 maxrecs = limits[0];
4839 for (level = 0, rval = 0; len > 1; level++) {
4840 len += maxrecs - 1;
4841 do_div(len, maxrecs);
4842 maxrecs = limits[1];
4843 rval += len;
4844 }
4845 return rval;
4846}
4847
4848static int
4849xfs_btree_count_blocks_helper(
4850 struct xfs_btree_cur *cur,
4851 int level,
4852 void *data)
4853{
4854 xfs_extlen_t *blocks = data;
4855 (*blocks)++;
4856
4857 return 0;
4858}
4859
4860/* Count the blocks in a btree and return the result in *blocks. */
4861int
4862xfs_btree_count_blocks(
4863 struct xfs_btree_cur *cur,
4864 xfs_extlen_t *blocks)
4865{
4866 *blocks = 0;
4867 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4868 blocks);
4869}
4870
4871/* Compare two btree pointers. */
4872int64_t
4873xfs_btree_diff_two_ptrs(
4874 struct xfs_btree_cur *cur,
4875 const union xfs_btree_ptr *a,
4876 const union xfs_btree_ptr *b)
4877{
4878 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4879 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4880 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4881}
4882
4883/* If there's an extent, we're done. */
4884STATIC int
4885xfs_btree_has_record_helper(
4886 struct xfs_btree_cur *cur,
4887 union xfs_btree_rec *rec,
4888 void *priv)
4889{
4890 return -ECANCELED;
4891}
4892
4893/* Is there a record covering a given range of keys? */
4894int
4895xfs_btree_has_record(
4896 struct xfs_btree_cur *cur,
4897 union xfs_btree_irec *low,
4898 union xfs_btree_irec *high,
4899 bool *exists)
4900{
4901 int error;
4902
4903 error = xfs_btree_query_range(cur, low, high,
4904 &xfs_btree_has_record_helper, NULL);
4905 if (error == -ECANCELED) {
4906 *exists = true;
4907 return 0;
4908 }
4909 *exists = false;
4910 return error;
4911}
4912
4913/* Are there more records in this btree? */
4914bool
4915xfs_btree_has_more_records(
4916 struct xfs_btree_cur *cur)
4917{
4918 struct xfs_btree_block *block;
4919 struct xfs_buf *bp;
4920
4921 block = xfs_btree_get_block(cur, 0, &bp);
4922
4923 /* There are still records in this block. */
4924 if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4925 return true;
4926
4927 /* There are more record blocks. */
4928 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4929 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4930 else
4931 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4932}