Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include "iavf.h"
5#include "iavf_prototype.h"
6/* All iavf tracepoints are defined by the include below, which must
7 * be included exactly once across the whole kernel with
8 * CREATE_TRACE_POINTS defined
9 */
10#define CREATE_TRACE_POINTS
11#include "iavf_trace.h"
12
13static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
14static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
15static int iavf_close(struct net_device *netdev);
16static void iavf_init_get_resources(struct iavf_adapter *adapter);
17static int iavf_check_reset_complete(struct iavf_hw *hw);
18
19char iavf_driver_name[] = "iavf";
20static const char iavf_driver_string[] =
21 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
22
23static const char iavf_copyright[] =
24 "Copyright (c) 2013 - 2018 Intel Corporation.";
25
26/* iavf_pci_tbl - PCI Device ID Table
27 *
28 * Wildcard entries (PCI_ANY_ID) should come last
29 * Last entry must be all 0s
30 *
31 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
32 * Class, Class Mask, private data (not used) }
33 */
34static const struct pci_device_id iavf_pci_tbl[] = {
35 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
39 /* required last entry */
40 {0, }
41};
42
43MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
44
45MODULE_ALIAS("i40evf");
46MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
47MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
48MODULE_LICENSE("GPL v2");
49
50static const struct net_device_ops iavf_netdev_ops;
51
52int iavf_status_to_errno(enum iavf_status status)
53{
54 switch (status) {
55 case IAVF_SUCCESS:
56 return 0;
57 case IAVF_ERR_PARAM:
58 case IAVF_ERR_MAC_TYPE:
59 case IAVF_ERR_INVALID_MAC_ADDR:
60 case IAVF_ERR_INVALID_LINK_SETTINGS:
61 case IAVF_ERR_INVALID_PD_ID:
62 case IAVF_ERR_INVALID_QP_ID:
63 case IAVF_ERR_INVALID_CQ_ID:
64 case IAVF_ERR_INVALID_CEQ_ID:
65 case IAVF_ERR_INVALID_AEQ_ID:
66 case IAVF_ERR_INVALID_SIZE:
67 case IAVF_ERR_INVALID_ARP_INDEX:
68 case IAVF_ERR_INVALID_FPM_FUNC_ID:
69 case IAVF_ERR_QP_INVALID_MSG_SIZE:
70 case IAVF_ERR_INVALID_FRAG_COUNT:
71 case IAVF_ERR_INVALID_ALIGNMENT:
72 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
73 case IAVF_ERR_INVALID_IMM_DATA_SIZE:
74 case IAVF_ERR_INVALID_VF_ID:
75 case IAVF_ERR_INVALID_HMCFN_ID:
76 case IAVF_ERR_INVALID_PBLE_INDEX:
77 case IAVF_ERR_INVALID_SD_INDEX:
78 case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
79 case IAVF_ERR_INVALID_SD_TYPE:
80 case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
81 case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
82 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
83 return -EINVAL;
84 case IAVF_ERR_NVM:
85 case IAVF_ERR_NVM_CHECKSUM:
86 case IAVF_ERR_PHY:
87 case IAVF_ERR_CONFIG:
88 case IAVF_ERR_UNKNOWN_PHY:
89 case IAVF_ERR_LINK_SETUP:
90 case IAVF_ERR_ADAPTER_STOPPED:
91 case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
92 case IAVF_ERR_AUTONEG_NOT_COMPLETE:
93 case IAVF_ERR_RESET_FAILED:
94 case IAVF_ERR_BAD_PTR:
95 case IAVF_ERR_SWFW_SYNC:
96 case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
97 case IAVF_ERR_QUEUE_EMPTY:
98 case IAVF_ERR_FLUSHED_QUEUE:
99 case IAVF_ERR_OPCODE_MISMATCH:
100 case IAVF_ERR_CQP_COMPL_ERROR:
101 case IAVF_ERR_BACKING_PAGE_ERROR:
102 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
103 case IAVF_ERR_MEMCPY_FAILED:
104 case IAVF_ERR_SRQ_ENABLED:
105 case IAVF_ERR_ADMIN_QUEUE_ERROR:
106 case IAVF_ERR_ADMIN_QUEUE_FULL:
107 case IAVF_ERR_BAD_RDMA_CQE:
108 case IAVF_ERR_NVM_BLANK_MODE:
109 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
110 case IAVF_ERR_DIAG_TEST_FAILED:
111 case IAVF_ERR_FIRMWARE_API_VERSION:
112 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
113 return -EIO;
114 case IAVF_ERR_DEVICE_NOT_SUPPORTED:
115 return -ENODEV;
116 case IAVF_ERR_NO_AVAILABLE_VSI:
117 case IAVF_ERR_RING_FULL:
118 return -ENOSPC;
119 case IAVF_ERR_NO_MEMORY:
120 return -ENOMEM;
121 case IAVF_ERR_TIMEOUT:
122 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
123 return -ETIMEDOUT;
124 case IAVF_ERR_NOT_IMPLEMENTED:
125 case IAVF_NOT_SUPPORTED:
126 return -EOPNOTSUPP;
127 case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
128 return -EALREADY;
129 case IAVF_ERR_NOT_READY:
130 return -EBUSY;
131 case IAVF_ERR_BUF_TOO_SHORT:
132 return -EMSGSIZE;
133 }
134
135 return -EIO;
136}
137
138int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
139{
140 switch (v_status) {
141 case VIRTCHNL_STATUS_SUCCESS:
142 return 0;
143 case VIRTCHNL_STATUS_ERR_PARAM:
144 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
145 return -EINVAL;
146 case VIRTCHNL_STATUS_ERR_NO_MEMORY:
147 return -ENOMEM;
148 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
149 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
150 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
151 return -EIO;
152 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
153 return -EOPNOTSUPP;
154 }
155
156 return -EIO;
157}
158
159/**
160 * iavf_pdev_to_adapter - go from pci_dev to adapter
161 * @pdev: pci_dev pointer
162 */
163static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
164{
165 return netdev_priv(pci_get_drvdata(pdev));
166}
167
168/**
169 * iavf_is_reset_in_progress - Check if a reset is in progress
170 * @adapter: board private structure
171 */
172static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
173{
174 if (adapter->state == __IAVF_RESETTING ||
175 adapter->flags & (IAVF_FLAG_RESET_PENDING |
176 IAVF_FLAG_RESET_NEEDED))
177 return true;
178
179 return false;
180}
181
182/**
183 * iavf_wait_for_reset - Wait for reset to finish.
184 * @adapter: board private structure
185 *
186 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
187 */
188int iavf_wait_for_reset(struct iavf_adapter *adapter)
189{
190 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
191 !iavf_is_reset_in_progress(adapter),
192 msecs_to_jiffies(5000));
193
194 /* If ret < 0 then it means wait was interrupted.
195 * If ret == 0 then it means we got a timeout while waiting
196 * for reset to finish.
197 * If ret > 0 it means reset has finished.
198 */
199 if (ret > 0)
200 return 0;
201 else if (ret < 0)
202 return -EINTR;
203 else
204 return -EBUSY;
205}
206
207/**
208 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
209 * @hw: pointer to the HW structure
210 * @mem: ptr to mem struct to fill out
211 * @size: size of memory requested
212 * @alignment: what to align the allocation to
213 **/
214enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
215 struct iavf_dma_mem *mem,
216 u64 size, u32 alignment)
217{
218 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
219
220 if (!mem)
221 return IAVF_ERR_PARAM;
222
223 mem->size = ALIGN(size, alignment);
224 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
225 (dma_addr_t *)&mem->pa, GFP_KERNEL);
226 if (mem->va)
227 return 0;
228 else
229 return IAVF_ERR_NO_MEMORY;
230}
231
232/**
233 * iavf_free_dma_mem - wrapper for DMA memory freeing
234 * @hw: pointer to the HW structure
235 * @mem: ptr to mem struct to free
236 **/
237enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
238{
239 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
240
241 if (!mem || !mem->va)
242 return IAVF_ERR_PARAM;
243 dma_free_coherent(&adapter->pdev->dev, mem->size,
244 mem->va, (dma_addr_t)mem->pa);
245 return 0;
246}
247
248/**
249 * iavf_allocate_virt_mem - virt memory alloc wrapper
250 * @hw: pointer to the HW structure
251 * @mem: ptr to mem struct to fill out
252 * @size: size of memory requested
253 **/
254enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
255 struct iavf_virt_mem *mem, u32 size)
256{
257 if (!mem)
258 return IAVF_ERR_PARAM;
259
260 mem->size = size;
261 mem->va = kzalloc(size, GFP_KERNEL);
262
263 if (mem->va)
264 return 0;
265 else
266 return IAVF_ERR_NO_MEMORY;
267}
268
269/**
270 * iavf_free_virt_mem - virt memory free wrapper
271 * @hw: pointer to the HW structure
272 * @mem: ptr to mem struct to free
273 **/
274void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
275{
276 kfree(mem->va);
277}
278
279/**
280 * iavf_schedule_reset - Set the flags and schedule a reset event
281 * @adapter: board private structure
282 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
283 **/
284void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
285{
286 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
287 !(adapter->flags &
288 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
289 adapter->flags |= flags;
290 queue_work(adapter->wq, &adapter->reset_task);
291 }
292}
293
294/**
295 * iavf_schedule_aq_request - Set the flags and schedule aq request
296 * @adapter: board private structure
297 * @flags: requested aq flags
298 **/
299void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
300{
301 adapter->aq_required |= flags;
302 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
303}
304
305/**
306 * iavf_tx_timeout - Respond to a Tx Hang
307 * @netdev: network interface device structure
308 * @txqueue: queue number that is timing out
309 **/
310static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
311{
312 struct iavf_adapter *adapter = netdev_priv(netdev);
313
314 adapter->tx_timeout_count++;
315 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
316}
317
318/**
319 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
320 * @adapter: board private structure
321 **/
322static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
323{
324 struct iavf_hw *hw = &adapter->hw;
325
326 if (!adapter->msix_entries)
327 return;
328
329 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
330
331 iavf_flush(hw);
332
333 synchronize_irq(adapter->msix_entries[0].vector);
334}
335
336/**
337 * iavf_misc_irq_enable - Enable default interrupt generation settings
338 * @adapter: board private structure
339 **/
340static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
341{
342 struct iavf_hw *hw = &adapter->hw;
343
344 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
345 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
346 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
347
348 iavf_flush(hw);
349}
350
351/**
352 * iavf_irq_disable - Mask off interrupt generation on the NIC
353 * @adapter: board private structure
354 **/
355static void iavf_irq_disable(struct iavf_adapter *adapter)
356{
357 int i;
358 struct iavf_hw *hw = &adapter->hw;
359
360 if (!adapter->msix_entries)
361 return;
362
363 for (i = 1; i < adapter->num_msix_vectors; i++) {
364 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
365 synchronize_irq(adapter->msix_entries[i].vector);
366 }
367 iavf_flush(hw);
368}
369
370/**
371 * iavf_irq_enable_queues - Enable interrupt for all queues
372 * @adapter: board private structure
373 **/
374static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
375{
376 struct iavf_hw *hw = &adapter->hw;
377 int i;
378
379 for (i = 1; i < adapter->num_msix_vectors; i++) {
380 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
381 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
382 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
383 }
384}
385
386/**
387 * iavf_irq_enable - Enable default interrupt generation settings
388 * @adapter: board private structure
389 * @flush: boolean value whether to run rd32()
390 **/
391void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
392{
393 struct iavf_hw *hw = &adapter->hw;
394
395 iavf_misc_irq_enable(adapter);
396 iavf_irq_enable_queues(adapter);
397
398 if (flush)
399 iavf_flush(hw);
400}
401
402/**
403 * iavf_msix_aq - Interrupt handler for vector 0
404 * @irq: interrupt number
405 * @data: pointer to netdev
406 **/
407static irqreturn_t iavf_msix_aq(int irq, void *data)
408{
409 struct net_device *netdev = data;
410 struct iavf_adapter *adapter = netdev_priv(netdev);
411 struct iavf_hw *hw = &adapter->hw;
412
413 /* handle non-queue interrupts, these reads clear the registers */
414 rd32(hw, IAVF_VFINT_ICR01);
415 rd32(hw, IAVF_VFINT_ICR0_ENA1);
416
417 if (adapter->state != __IAVF_REMOVE)
418 /* schedule work on the private workqueue */
419 queue_work(adapter->wq, &adapter->adminq_task);
420
421 return IRQ_HANDLED;
422}
423
424/**
425 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
426 * @irq: interrupt number
427 * @data: pointer to a q_vector
428 **/
429static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
430{
431 struct iavf_q_vector *q_vector = data;
432
433 if (!q_vector->tx.ring && !q_vector->rx.ring)
434 return IRQ_HANDLED;
435
436 napi_schedule_irqoff(&q_vector->napi);
437
438 return IRQ_HANDLED;
439}
440
441/**
442 * iavf_map_vector_to_rxq - associate irqs with rx queues
443 * @adapter: board private structure
444 * @v_idx: interrupt number
445 * @r_idx: queue number
446 **/
447static void
448iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
449{
450 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
451 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
452 struct iavf_hw *hw = &adapter->hw;
453
454 rx_ring->q_vector = q_vector;
455 rx_ring->next = q_vector->rx.ring;
456 rx_ring->vsi = &adapter->vsi;
457 q_vector->rx.ring = rx_ring;
458 q_vector->rx.count++;
459 q_vector->rx.next_update = jiffies + 1;
460 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
461 q_vector->ring_mask |= BIT(r_idx);
462 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
463 q_vector->rx.current_itr >> 1);
464 q_vector->rx.current_itr = q_vector->rx.target_itr;
465}
466
467/**
468 * iavf_map_vector_to_txq - associate irqs with tx queues
469 * @adapter: board private structure
470 * @v_idx: interrupt number
471 * @t_idx: queue number
472 **/
473static void
474iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
475{
476 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
477 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
478 struct iavf_hw *hw = &adapter->hw;
479
480 tx_ring->q_vector = q_vector;
481 tx_ring->next = q_vector->tx.ring;
482 tx_ring->vsi = &adapter->vsi;
483 q_vector->tx.ring = tx_ring;
484 q_vector->tx.count++;
485 q_vector->tx.next_update = jiffies + 1;
486 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
487 q_vector->num_ringpairs++;
488 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
489 q_vector->tx.target_itr >> 1);
490 q_vector->tx.current_itr = q_vector->tx.target_itr;
491}
492
493/**
494 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
495 * @adapter: board private structure to initialize
496 *
497 * This function maps descriptor rings to the queue-specific vectors
498 * we were allotted through the MSI-X enabling code. Ideally, we'd have
499 * one vector per ring/queue, but on a constrained vector budget, we
500 * group the rings as "efficiently" as possible. You would add new
501 * mapping configurations in here.
502 **/
503static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
504{
505 int rings_remaining = adapter->num_active_queues;
506 int ridx = 0, vidx = 0;
507 int q_vectors;
508
509 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
510
511 for (; ridx < rings_remaining; ridx++) {
512 iavf_map_vector_to_rxq(adapter, vidx, ridx);
513 iavf_map_vector_to_txq(adapter, vidx, ridx);
514
515 /* In the case where we have more queues than vectors, continue
516 * round-robin on vectors until all queues are mapped.
517 */
518 if (++vidx >= q_vectors)
519 vidx = 0;
520 }
521
522 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
523}
524
525/**
526 * iavf_irq_affinity_notify - Callback for affinity changes
527 * @notify: context as to what irq was changed
528 * @mask: the new affinity mask
529 *
530 * This is a callback function used by the irq_set_affinity_notifier function
531 * so that we may register to receive changes to the irq affinity masks.
532 **/
533static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
534 const cpumask_t *mask)
535{
536 struct iavf_q_vector *q_vector =
537 container_of(notify, struct iavf_q_vector, affinity_notify);
538
539 cpumask_copy(&q_vector->affinity_mask, mask);
540}
541
542/**
543 * iavf_irq_affinity_release - Callback for affinity notifier release
544 * @ref: internal core kernel usage
545 *
546 * This is a callback function used by the irq_set_affinity_notifier function
547 * to inform the current notification subscriber that they will no longer
548 * receive notifications.
549 **/
550static void iavf_irq_affinity_release(struct kref *ref) {}
551
552/**
553 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
554 * @adapter: board private structure
555 * @basename: device basename
556 *
557 * Allocates MSI-X vectors for tx and rx handling, and requests
558 * interrupts from the kernel.
559 **/
560static int
561iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
562{
563 unsigned int vector, q_vectors;
564 unsigned int rx_int_idx = 0, tx_int_idx = 0;
565 int irq_num, err;
566 int cpu;
567
568 iavf_irq_disable(adapter);
569 /* Decrement for Other and TCP Timer vectors */
570 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
571
572 for (vector = 0; vector < q_vectors; vector++) {
573 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
574
575 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
576
577 if (q_vector->tx.ring && q_vector->rx.ring) {
578 snprintf(q_vector->name, sizeof(q_vector->name),
579 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
580 tx_int_idx++;
581 } else if (q_vector->rx.ring) {
582 snprintf(q_vector->name, sizeof(q_vector->name),
583 "iavf-%s-rx-%u", basename, rx_int_idx++);
584 } else if (q_vector->tx.ring) {
585 snprintf(q_vector->name, sizeof(q_vector->name),
586 "iavf-%s-tx-%u", basename, tx_int_idx++);
587 } else {
588 /* skip this unused q_vector */
589 continue;
590 }
591 err = request_irq(irq_num,
592 iavf_msix_clean_rings,
593 0,
594 q_vector->name,
595 q_vector);
596 if (err) {
597 dev_info(&adapter->pdev->dev,
598 "Request_irq failed, error: %d\n", err);
599 goto free_queue_irqs;
600 }
601 /* register for affinity change notifications */
602 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
603 q_vector->affinity_notify.release =
604 iavf_irq_affinity_release;
605 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
606 /* Spread the IRQ affinity hints across online CPUs. Note that
607 * get_cpu_mask returns a mask with a permanent lifetime so
608 * it's safe to use as a hint for irq_update_affinity_hint.
609 */
610 cpu = cpumask_local_spread(q_vector->v_idx, -1);
611 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
612 }
613
614 return 0;
615
616free_queue_irqs:
617 while (vector) {
618 vector--;
619 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
620 irq_set_affinity_notifier(irq_num, NULL);
621 irq_update_affinity_hint(irq_num, NULL);
622 free_irq(irq_num, &adapter->q_vectors[vector]);
623 }
624 return err;
625}
626
627/**
628 * iavf_request_misc_irq - Initialize MSI-X interrupts
629 * @adapter: board private structure
630 *
631 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
632 * vector is only for the admin queue, and stays active even when the netdev
633 * is closed.
634 **/
635static int iavf_request_misc_irq(struct iavf_adapter *adapter)
636{
637 struct net_device *netdev = adapter->netdev;
638 int err;
639
640 snprintf(adapter->misc_vector_name,
641 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
642 dev_name(&adapter->pdev->dev));
643 err = request_irq(adapter->msix_entries[0].vector,
644 &iavf_msix_aq, 0,
645 adapter->misc_vector_name, netdev);
646 if (err) {
647 dev_err(&adapter->pdev->dev,
648 "request_irq for %s failed: %d\n",
649 adapter->misc_vector_name, err);
650 free_irq(adapter->msix_entries[0].vector, netdev);
651 }
652 return err;
653}
654
655/**
656 * iavf_free_traffic_irqs - Free MSI-X interrupts
657 * @adapter: board private structure
658 *
659 * Frees all MSI-X vectors other than 0.
660 **/
661static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
662{
663 int vector, irq_num, q_vectors;
664
665 if (!adapter->msix_entries)
666 return;
667
668 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
669
670 for (vector = 0; vector < q_vectors; vector++) {
671 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
672 irq_set_affinity_notifier(irq_num, NULL);
673 irq_update_affinity_hint(irq_num, NULL);
674 free_irq(irq_num, &adapter->q_vectors[vector]);
675 }
676}
677
678/**
679 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
680 * @adapter: board private structure
681 *
682 * Frees MSI-X vector 0.
683 **/
684static void iavf_free_misc_irq(struct iavf_adapter *adapter)
685{
686 struct net_device *netdev = adapter->netdev;
687
688 if (!adapter->msix_entries)
689 return;
690
691 free_irq(adapter->msix_entries[0].vector, netdev);
692}
693
694/**
695 * iavf_configure_tx - Configure Transmit Unit after Reset
696 * @adapter: board private structure
697 *
698 * Configure the Tx unit of the MAC after a reset.
699 **/
700static void iavf_configure_tx(struct iavf_adapter *adapter)
701{
702 struct iavf_hw *hw = &adapter->hw;
703 int i;
704
705 for (i = 0; i < adapter->num_active_queues; i++)
706 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
707}
708
709/**
710 * iavf_configure_rx - Configure Receive Unit after Reset
711 * @adapter: board private structure
712 *
713 * Configure the Rx unit of the MAC after a reset.
714 **/
715static void iavf_configure_rx(struct iavf_adapter *adapter)
716{
717 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
718 struct iavf_hw *hw = &adapter->hw;
719 int i;
720
721 /* Legacy Rx will always default to a 2048 buffer size. */
722#if (PAGE_SIZE < 8192)
723 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
724 struct net_device *netdev = adapter->netdev;
725
726 /* For jumbo frames on systems with 4K pages we have to use
727 * an order 1 page, so we might as well increase the size
728 * of our Rx buffer to make better use of the available space
729 */
730 rx_buf_len = IAVF_RXBUFFER_3072;
731
732 /* We use a 1536 buffer size for configurations with
733 * standard Ethernet mtu. On x86 this gives us enough room
734 * for shared info and 192 bytes of padding.
735 */
736 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
737 (netdev->mtu <= ETH_DATA_LEN))
738 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
739 }
740#endif
741
742 for (i = 0; i < adapter->num_active_queues; i++) {
743 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
744 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
745
746 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
747 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
748 else
749 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
750 }
751}
752
753/**
754 * iavf_find_vlan - Search filter list for specific vlan filter
755 * @adapter: board private structure
756 * @vlan: vlan tag
757 *
758 * Returns ptr to the filter object or NULL. Must be called while holding the
759 * mac_vlan_list_lock.
760 **/
761static struct
762iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
763 struct iavf_vlan vlan)
764{
765 struct iavf_vlan_filter *f;
766
767 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
768 if (f->vlan.vid == vlan.vid &&
769 f->vlan.tpid == vlan.tpid)
770 return f;
771 }
772
773 return NULL;
774}
775
776/**
777 * iavf_add_vlan - Add a vlan filter to the list
778 * @adapter: board private structure
779 * @vlan: VLAN tag
780 *
781 * Returns ptr to the filter object or NULL when no memory available.
782 **/
783static struct
784iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
785 struct iavf_vlan vlan)
786{
787 struct iavf_vlan_filter *f = NULL;
788
789 spin_lock_bh(&adapter->mac_vlan_list_lock);
790
791 f = iavf_find_vlan(adapter, vlan);
792 if (!f) {
793 f = kzalloc(sizeof(*f), GFP_ATOMIC);
794 if (!f)
795 goto clearout;
796
797 f->vlan = vlan;
798
799 list_add_tail(&f->list, &adapter->vlan_filter_list);
800 f->state = IAVF_VLAN_ADD;
801 adapter->num_vlan_filters++;
802 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
803 }
804
805clearout:
806 spin_unlock_bh(&adapter->mac_vlan_list_lock);
807 return f;
808}
809
810/**
811 * iavf_del_vlan - Remove a vlan filter from the list
812 * @adapter: board private structure
813 * @vlan: VLAN tag
814 **/
815static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
816{
817 struct iavf_vlan_filter *f;
818
819 spin_lock_bh(&adapter->mac_vlan_list_lock);
820
821 f = iavf_find_vlan(adapter, vlan);
822 if (f) {
823 f->state = IAVF_VLAN_REMOVE;
824 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER);
825 }
826
827 spin_unlock_bh(&adapter->mac_vlan_list_lock);
828}
829
830/**
831 * iavf_restore_filters
832 * @adapter: board private structure
833 *
834 * Restore existing non MAC filters when VF netdev comes back up
835 **/
836static void iavf_restore_filters(struct iavf_adapter *adapter)
837{
838 struct iavf_vlan_filter *f;
839
840 /* re-add all VLAN filters */
841 spin_lock_bh(&adapter->mac_vlan_list_lock);
842
843 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
844 if (f->state == IAVF_VLAN_INACTIVE)
845 f->state = IAVF_VLAN_ADD;
846 }
847
848 spin_unlock_bh(&adapter->mac_vlan_list_lock);
849 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
850}
851
852/**
853 * iavf_get_num_vlans_added - get number of VLANs added
854 * @adapter: board private structure
855 */
856u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
857{
858 return adapter->num_vlan_filters;
859}
860
861/**
862 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
863 * @adapter: board private structure
864 *
865 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
866 * do not impose a limit as that maintains current behavior and for
867 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
868 **/
869static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
870{
871 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
872 * never been a limit on the VF driver side
873 */
874 if (VLAN_ALLOWED(adapter))
875 return VLAN_N_VID;
876 else if (VLAN_V2_ALLOWED(adapter))
877 return adapter->vlan_v2_caps.filtering.max_filters;
878
879 return 0;
880}
881
882/**
883 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
884 * @adapter: board private structure
885 **/
886static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
887{
888 if (iavf_get_num_vlans_added(adapter) <
889 iavf_get_max_vlans_allowed(adapter))
890 return false;
891
892 return true;
893}
894
895/**
896 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
897 * @netdev: network device struct
898 * @proto: unused protocol data
899 * @vid: VLAN tag
900 **/
901static int iavf_vlan_rx_add_vid(struct net_device *netdev,
902 __always_unused __be16 proto, u16 vid)
903{
904 struct iavf_adapter *adapter = netdev_priv(netdev);
905
906 /* Do not track VLAN 0 filter, always added by the PF on VF init */
907 if (!vid)
908 return 0;
909
910 if (!VLAN_FILTERING_ALLOWED(adapter))
911 return -EIO;
912
913 if (iavf_max_vlans_added(adapter)) {
914 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
915 iavf_get_max_vlans_allowed(adapter));
916 return -EIO;
917 }
918
919 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
920 return -ENOMEM;
921
922 return 0;
923}
924
925/**
926 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
927 * @netdev: network device struct
928 * @proto: unused protocol data
929 * @vid: VLAN tag
930 **/
931static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
932 __always_unused __be16 proto, u16 vid)
933{
934 struct iavf_adapter *adapter = netdev_priv(netdev);
935
936 /* We do not track VLAN 0 filter */
937 if (!vid)
938 return 0;
939
940 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
941 return 0;
942}
943
944/**
945 * iavf_find_filter - Search filter list for specific mac filter
946 * @adapter: board private structure
947 * @macaddr: the MAC address
948 *
949 * Returns ptr to the filter object or NULL. Must be called while holding the
950 * mac_vlan_list_lock.
951 **/
952static struct
953iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
954 const u8 *macaddr)
955{
956 struct iavf_mac_filter *f;
957
958 if (!macaddr)
959 return NULL;
960
961 list_for_each_entry(f, &adapter->mac_filter_list, list) {
962 if (ether_addr_equal(macaddr, f->macaddr))
963 return f;
964 }
965 return NULL;
966}
967
968/**
969 * iavf_add_filter - Add a mac filter to the filter list
970 * @adapter: board private structure
971 * @macaddr: the MAC address
972 *
973 * Returns ptr to the filter object or NULL when no memory available.
974 **/
975struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
976 const u8 *macaddr)
977{
978 struct iavf_mac_filter *f;
979
980 if (!macaddr)
981 return NULL;
982
983 f = iavf_find_filter(adapter, macaddr);
984 if (!f) {
985 f = kzalloc(sizeof(*f), GFP_ATOMIC);
986 if (!f)
987 return f;
988
989 ether_addr_copy(f->macaddr, macaddr);
990
991 list_add_tail(&f->list, &adapter->mac_filter_list);
992 f->add = true;
993 f->add_handled = false;
994 f->is_new_mac = true;
995 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
996 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
997 } else {
998 f->remove = false;
999 }
1000
1001 return f;
1002}
1003
1004/**
1005 * iavf_replace_primary_mac - Replace current primary address
1006 * @adapter: board private structure
1007 * @new_mac: new MAC address to be applied
1008 *
1009 * Replace current dev_addr and send request to PF for removal of previous
1010 * primary MAC address filter and addition of new primary MAC filter.
1011 * Return 0 for success, -ENOMEM for failure.
1012 *
1013 * Do not call this with mac_vlan_list_lock!
1014 **/
1015static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1016 const u8 *new_mac)
1017{
1018 struct iavf_hw *hw = &adapter->hw;
1019 struct iavf_mac_filter *new_f;
1020 struct iavf_mac_filter *old_f;
1021
1022 spin_lock_bh(&adapter->mac_vlan_list_lock);
1023
1024 new_f = iavf_add_filter(adapter, new_mac);
1025 if (!new_f) {
1026 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1027 return -ENOMEM;
1028 }
1029
1030 old_f = iavf_find_filter(adapter, hw->mac.addr);
1031 if (old_f) {
1032 old_f->is_primary = false;
1033 old_f->remove = true;
1034 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1035 }
1036 /* Always send the request to add if changing primary MAC,
1037 * even if filter is already present on the list
1038 */
1039 new_f->is_primary = true;
1040 new_f->add = true;
1041 ether_addr_copy(hw->mac.addr, new_mac);
1042
1043 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1044
1045 /* schedule the watchdog task to immediately process the request */
1046 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1047 return 0;
1048}
1049
1050/**
1051 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1052 * @netdev: network interface device structure
1053 * @macaddr: MAC address to set
1054 *
1055 * Returns true on success, false on failure
1056 */
1057static bool iavf_is_mac_set_handled(struct net_device *netdev,
1058 const u8 *macaddr)
1059{
1060 struct iavf_adapter *adapter = netdev_priv(netdev);
1061 struct iavf_mac_filter *f;
1062 bool ret = false;
1063
1064 spin_lock_bh(&adapter->mac_vlan_list_lock);
1065
1066 f = iavf_find_filter(adapter, macaddr);
1067
1068 if (!f || (!f->add && f->add_handled))
1069 ret = true;
1070
1071 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1072
1073 return ret;
1074}
1075
1076/**
1077 * iavf_set_mac - NDO callback to set port MAC address
1078 * @netdev: network interface device structure
1079 * @p: pointer to an address structure
1080 *
1081 * Returns 0 on success, negative on failure
1082 */
1083static int iavf_set_mac(struct net_device *netdev, void *p)
1084{
1085 struct iavf_adapter *adapter = netdev_priv(netdev);
1086 struct sockaddr *addr = p;
1087 int ret;
1088
1089 if (!is_valid_ether_addr(addr->sa_data))
1090 return -EADDRNOTAVAIL;
1091
1092 ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1093
1094 if (ret)
1095 return ret;
1096
1097 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1098 iavf_is_mac_set_handled(netdev, addr->sa_data),
1099 msecs_to_jiffies(2500));
1100
1101 /* If ret < 0 then it means wait was interrupted.
1102 * If ret == 0 then it means we got a timeout.
1103 * else it means we got response for set MAC from PF,
1104 * check if netdev MAC was updated to requested MAC,
1105 * if yes then set MAC succeeded otherwise it failed return -EACCES
1106 */
1107 if (ret < 0)
1108 return ret;
1109
1110 if (!ret)
1111 return -EAGAIN;
1112
1113 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1114 return -EACCES;
1115
1116 return 0;
1117}
1118
1119/**
1120 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1121 * @netdev: the netdevice
1122 * @addr: address to add
1123 *
1124 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1125 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1126 */
1127static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1128{
1129 struct iavf_adapter *adapter = netdev_priv(netdev);
1130
1131 if (iavf_add_filter(adapter, addr))
1132 return 0;
1133 else
1134 return -ENOMEM;
1135}
1136
1137/**
1138 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1139 * @netdev: the netdevice
1140 * @addr: address to add
1141 *
1142 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1143 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1144 */
1145static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1146{
1147 struct iavf_adapter *adapter = netdev_priv(netdev);
1148 struct iavf_mac_filter *f;
1149
1150 /* Under some circumstances, we might receive a request to delete
1151 * our own device address from our uc list. Because we store the
1152 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1153 * such requests and not delete our device address from this list.
1154 */
1155 if (ether_addr_equal(addr, netdev->dev_addr))
1156 return 0;
1157
1158 f = iavf_find_filter(adapter, addr);
1159 if (f) {
1160 f->remove = true;
1161 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1162 }
1163 return 0;
1164}
1165
1166/**
1167 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1168 * @adapter: device specific adapter
1169 */
1170bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1171{
1172 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1173 (IFF_PROMISC | IFF_ALLMULTI);
1174}
1175
1176/**
1177 * iavf_set_rx_mode - NDO callback to set the netdev filters
1178 * @netdev: network interface device structure
1179 **/
1180static void iavf_set_rx_mode(struct net_device *netdev)
1181{
1182 struct iavf_adapter *adapter = netdev_priv(netdev);
1183
1184 spin_lock_bh(&adapter->mac_vlan_list_lock);
1185 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1186 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1187 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1188
1189 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1190 if (iavf_promiscuous_mode_changed(adapter))
1191 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1192 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1193}
1194
1195/**
1196 * iavf_napi_enable_all - enable NAPI on all queue vectors
1197 * @adapter: board private structure
1198 **/
1199static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1200{
1201 int q_idx;
1202 struct iavf_q_vector *q_vector;
1203 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1204
1205 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1206 struct napi_struct *napi;
1207
1208 q_vector = &adapter->q_vectors[q_idx];
1209 napi = &q_vector->napi;
1210 napi_enable(napi);
1211 }
1212}
1213
1214/**
1215 * iavf_napi_disable_all - disable NAPI on all queue vectors
1216 * @adapter: board private structure
1217 **/
1218static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1219{
1220 int q_idx;
1221 struct iavf_q_vector *q_vector;
1222 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1223
1224 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1225 q_vector = &adapter->q_vectors[q_idx];
1226 napi_disable(&q_vector->napi);
1227 }
1228}
1229
1230/**
1231 * iavf_configure - set up transmit and receive data structures
1232 * @adapter: board private structure
1233 **/
1234static void iavf_configure(struct iavf_adapter *adapter)
1235{
1236 struct net_device *netdev = adapter->netdev;
1237 int i;
1238
1239 iavf_set_rx_mode(netdev);
1240
1241 iavf_configure_tx(adapter);
1242 iavf_configure_rx(adapter);
1243 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1244
1245 for (i = 0; i < adapter->num_active_queues; i++) {
1246 struct iavf_ring *ring = &adapter->rx_rings[i];
1247
1248 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1249 }
1250}
1251
1252/**
1253 * iavf_up_complete - Finish the last steps of bringing up a connection
1254 * @adapter: board private structure
1255 *
1256 * Expects to be called while holding crit_lock.
1257 **/
1258static void iavf_up_complete(struct iavf_adapter *adapter)
1259{
1260 iavf_change_state(adapter, __IAVF_RUNNING);
1261 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1262
1263 iavf_napi_enable_all(adapter);
1264
1265 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1266}
1267
1268/**
1269 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1270 * yet and mark other to be removed.
1271 * @adapter: board private structure
1272 **/
1273static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1274{
1275 struct iavf_vlan_filter *vlf, *vlftmp;
1276 struct iavf_mac_filter *f, *ftmp;
1277
1278 spin_lock_bh(&adapter->mac_vlan_list_lock);
1279 /* clear the sync flag on all filters */
1280 __dev_uc_unsync(adapter->netdev, NULL);
1281 __dev_mc_unsync(adapter->netdev, NULL);
1282
1283 /* remove all MAC filters */
1284 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1285 list) {
1286 if (f->add) {
1287 list_del(&f->list);
1288 kfree(f);
1289 } else {
1290 f->remove = true;
1291 }
1292 }
1293
1294 /* disable all VLAN filters */
1295 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1296 list)
1297 vlf->state = IAVF_VLAN_DISABLE;
1298
1299 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1300}
1301
1302/**
1303 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1304 * mark other to be removed.
1305 * @adapter: board private structure
1306 **/
1307static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1308{
1309 struct iavf_cloud_filter *cf, *cftmp;
1310
1311 /* remove all cloud filters */
1312 spin_lock_bh(&adapter->cloud_filter_list_lock);
1313 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1314 list) {
1315 if (cf->add) {
1316 list_del(&cf->list);
1317 kfree(cf);
1318 adapter->num_cloud_filters--;
1319 } else {
1320 cf->del = true;
1321 }
1322 }
1323 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1324}
1325
1326/**
1327 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1328 * other to be removed.
1329 * @adapter: board private structure
1330 **/
1331static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1332{
1333 struct iavf_fdir_fltr *fdir;
1334
1335 /* remove all Flow Director filters */
1336 spin_lock_bh(&adapter->fdir_fltr_lock);
1337 list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1338 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1339 /* Cancel a request, keep filter as inactive */
1340 fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1341 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1342 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1343 /* Disable filters which are active or have a pending
1344 * request to PF to be added
1345 */
1346 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1347 }
1348 }
1349 spin_unlock_bh(&adapter->fdir_fltr_lock);
1350}
1351
1352/**
1353 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1354 * other to be removed.
1355 * @adapter: board private structure
1356 **/
1357static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1358{
1359 struct iavf_adv_rss *rss, *rsstmp;
1360
1361 /* remove all advance RSS configuration */
1362 spin_lock_bh(&adapter->adv_rss_lock);
1363 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1364 list) {
1365 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1366 list_del(&rss->list);
1367 kfree(rss);
1368 } else {
1369 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1370 }
1371 }
1372 spin_unlock_bh(&adapter->adv_rss_lock);
1373}
1374
1375/**
1376 * iavf_down - Shutdown the connection processing
1377 * @adapter: board private structure
1378 *
1379 * Expects to be called while holding crit_lock.
1380 **/
1381void iavf_down(struct iavf_adapter *adapter)
1382{
1383 struct net_device *netdev = adapter->netdev;
1384
1385 if (adapter->state <= __IAVF_DOWN_PENDING)
1386 return;
1387
1388 netif_carrier_off(netdev);
1389 netif_tx_disable(netdev);
1390 adapter->link_up = false;
1391 iavf_napi_disable_all(adapter);
1392 iavf_irq_disable(adapter);
1393
1394 iavf_clear_mac_vlan_filters(adapter);
1395 iavf_clear_cloud_filters(adapter);
1396 iavf_clear_fdir_filters(adapter);
1397 iavf_clear_adv_rss_conf(adapter);
1398
1399 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1400 return;
1401
1402 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1403 /* cancel any current operation */
1404 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1405 /* Schedule operations to close down the HW. Don't wait
1406 * here for this to complete. The watchdog is still running
1407 * and it will take care of this.
1408 */
1409 if (!list_empty(&adapter->mac_filter_list))
1410 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1411 if (!list_empty(&adapter->vlan_filter_list))
1412 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1413 if (!list_empty(&adapter->cloud_filter_list))
1414 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1415 if (!list_empty(&adapter->fdir_list_head))
1416 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1417 if (!list_empty(&adapter->adv_rss_list_head))
1418 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1419 }
1420
1421 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1422}
1423
1424/**
1425 * iavf_acquire_msix_vectors - Setup the MSIX capability
1426 * @adapter: board private structure
1427 * @vectors: number of vectors to request
1428 *
1429 * Work with the OS to set up the MSIX vectors needed.
1430 *
1431 * Returns 0 on success, negative on failure
1432 **/
1433static int
1434iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1435{
1436 int err, vector_threshold;
1437
1438 /* We'll want at least 3 (vector_threshold):
1439 * 0) Other (Admin Queue and link, mostly)
1440 * 1) TxQ[0] Cleanup
1441 * 2) RxQ[0] Cleanup
1442 */
1443 vector_threshold = MIN_MSIX_COUNT;
1444
1445 /* The more we get, the more we will assign to Tx/Rx Cleanup
1446 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1447 * Right now, we simply care about how many we'll get; we'll
1448 * set them up later while requesting irq's.
1449 */
1450 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1451 vector_threshold, vectors);
1452 if (err < 0) {
1453 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1454 kfree(adapter->msix_entries);
1455 adapter->msix_entries = NULL;
1456 return err;
1457 }
1458
1459 /* Adjust for only the vectors we'll use, which is minimum
1460 * of max_msix_q_vectors + NONQ_VECS, or the number of
1461 * vectors we were allocated.
1462 */
1463 adapter->num_msix_vectors = err;
1464 return 0;
1465}
1466
1467/**
1468 * iavf_free_queues - Free memory for all rings
1469 * @adapter: board private structure to initialize
1470 *
1471 * Free all of the memory associated with queue pairs.
1472 **/
1473static void iavf_free_queues(struct iavf_adapter *adapter)
1474{
1475 if (!adapter->vsi_res)
1476 return;
1477 adapter->num_active_queues = 0;
1478 kfree(adapter->tx_rings);
1479 adapter->tx_rings = NULL;
1480 kfree(adapter->rx_rings);
1481 adapter->rx_rings = NULL;
1482}
1483
1484/**
1485 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1486 * @adapter: board private structure
1487 *
1488 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1489 * stripped in certain descriptor fields. Instead of checking the offload
1490 * capability bits in the hot path, cache the location the ring specific
1491 * flags.
1492 */
1493void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1494{
1495 int i;
1496
1497 for (i = 0; i < adapter->num_active_queues; i++) {
1498 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1499 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1500
1501 /* prevent multiple L2TAG bits being set after VFR */
1502 tx_ring->flags &=
1503 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1504 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1505 rx_ring->flags &=
1506 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1507 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1508
1509 if (VLAN_ALLOWED(adapter)) {
1510 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1511 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1512 } else if (VLAN_V2_ALLOWED(adapter)) {
1513 struct virtchnl_vlan_supported_caps *stripping_support;
1514 struct virtchnl_vlan_supported_caps *insertion_support;
1515
1516 stripping_support =
1517 &adapter->vlan_v2_caps.offloads.stripping_support;
1518 insertion_support =
1519 &adapter->vlan_v2_caps.offloads.insertion_support;
1520
1521 if (stripping_support->outer) {
1522 if (stripping_support->outer &
1523 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1524 rx_ring->flags |=
1525 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1526 else if (stripping_support->outer &
1527 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1528 rx_ring->flags |=
1529 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1530 } else if (stripping_support->inner) {
1531 if (stripping_support->inner &
1532 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1533 rx_ring->flags |=
1534 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1535 else if (stripping_support->inner &
1536 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1537 rx_ring->flags |=
1538 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1539 }
1540
1541 if (insertion_support->outer) {
1542 if (insertion_support->outer &
1543 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1544 tx_ring->flags |=
1545 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1546 else if (insertion_support->outer &
1547 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1548 tx_ring->flags |=
1549 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1550 } else if (insertion_support->inner) {
1551 if (insertion_support->inner &
1552 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1553 tx_ring->flags |=
1554 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1555 else if (insertion_support->inner &
1556 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1557 tx_ring->flags |=
1558 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1559 }
1560 }
1561 }
1562}
1563
1564/**
1565 * iavf_alloc_queues - Allocate memory for all rings
1566 * @adapter: board private structure to initialize
1567 *
1568 * We allocate one ring per queue at run-time since we don't know the
1569 * number of queues at compile-time. The polling_netdev array is
1570 * intended for Multiqueue, but should work fine with a single queue.
1571 **/
1572static int iavf_alloc_queues(struct iavf_adapter *adapter)
1573{
1574 int i, num_active_queues;
1575
1576 /* If we're in reset reallocating queues we don't actually know yet for
1577 * certain the PF gave us the number of queues we asked for but we'll
1578 * assume it did. Once basic reset is finished we'll confirm once we
1579 * start negotiating config with PF.
1580 */
1581 if (adapter->num_req_queues)
1582 num_active_queues = adapter->num_req_queues;
1583 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1584 adapter->num_tc)
1585 num_active_queues = adapter->ch_config.total_qps;
1586 else
1587 num_active_queues = min_t(int,
1588 adapter->vsi_res->num_queue_pairs,
1589 (int)(num_online_cpus()));
1590
1591
1592 adapter->tx_rings = kcalloc(num_active_queues,
1593 sizeof(struct iavf_ring), GFP_KERNEL);
1594 if (!adapter->tx_rings)
1595 goto err_out;
1596 adapter->rx_rings = kcalloc(num_active_queues,
1597 sizeof(struct iavf_ring), GFP_KERNEL);
1598 if (!adapter->rx_rings)
1599 goto err_out;
1600
1601 for (i = 0; i < num_active_queues; i++) {
1602 struct iavf_ring *tx_ring;
1603 struct iavf_ring *rx_ring;
1604
1605 tx_ring = &adapter->tx_rings[i];
1606
1607 tx_ring->queue_index = i;
1608 tx_ring->netdev = adapter->netdev;
1609 tx_ring->dev = &adapter->pdev->dev;
1610 tx_ring->count = adapter->tx_desc_count;
1611 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1612 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1613 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1614
1615 rx_ring = &adapter->rx_rings[i];
1616 rx_ring->queue_index = i;
1617 rx_ring->netdev = adapter->netdev;
1618 rx_ring->dev = &adapter->pdev->dev;
1619 rx_ring->count = adapter->rx_desc_count;
1620 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1621 }
1622
1623 adapter->num_active_queues = num_active_queues;
1624
1625 iavf_set_queue_vlan_tag_loc(adapter);
1626
1627 return 0;
1628
1629err_out:
1630 iavf_free_queues(adapter);
1631 return -ENOMEM;
1632}
1633
1634/**
1635 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1636 * @adapter: board private structure to initialize
1637 *
1638 * Attempt to configure the interrupts using the best available
1639 * capabilities of the hardware and the kernel.
1640 **/
1641static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1642{
1643 int vector, v_budget;
1644 int pairs = 0;
1645 int err = 0;
1646
1647 if (!adapter->vsi_res) {
1648 err = -EIO;
1649 goto out;
1650 }
1651 pairs = adapter->num_active_queues;
1652
1653 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1654 * us much good if we have more vectors than CPUs. However, we already
1655 * limit the total number of queues by the number of CPUs so we do not
1656 * need any further limiting here.
1657 */
1658 v_budget = min_t(int, pairs + NONQ_VECS,
1659 (int)adapter->vf_res->max_vectors);
1660
1661 adapter->msix_entries = kcalloc(v_budget,
1662 sizeof(struct msix_entry), GFP_KERNEL);
1663 if (!adapter->msix_entries) {
1664 err = -ENOMEM;
1665 goto out;
1666 }
1667
1668 for (vector = 0; vector < v_budget; vector++)
1669 adapter->msix_entries[vector].entry = vector;
1670
1671 err = iavf_acquire_msix_vectors(adapter, v_budget);
1672 if (!err)
1673 iavf_schedule_finish_config(adapter);
1674
1675out:
1676 return err;
1677}
1678
1679/**
1680 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1681 * @adapter: board private structure
1682 *
1683 * Return 0 on success, negative on failure
1684 **/
1685static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1686{
1687 struct iavf_aqc_get_set_rss_key_data *rss_key =
1688 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1689 struct iavf_hw *hw = &adapter->hw;
1690 enum iavf_status status;
1691
1692 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1693 /* bail because we already have a command pending */
1694 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1695 adapter->current_op);
1696 return -EBUSY;
1697 }
1698
1699 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1700 if (status) {
1701 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1702 iavf_stat_str(hw, status),
1703 iavf_aq_str(hw, hw->aq.asq_last_status));
1704 return iavf_status_to_errno(status);
1705
1706 }
1707
1708 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1709 adapter->rss_lut, adapter->rss_lut_size);
1710 if (status) {
1711 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1712 iavf_stat_str(hw, status),
1713 iavf_aq_str(hw, hw->aq.asq_last_status));
1714 return iavf_status_to_errno(status);
1715 }
1716
1717 return 0;
1718
1719}
1720
1721/**
1722 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1723 * @adapter: board private structure
1724 *
1725 * Returns 0 on success, negative on failure
1726 **/
1727static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1728{
1729 struct iavf_hw *hw = &adapter->hw;
1730 u32 *dw;
1731 u16 i;
1732
1733 dw = (u32 *)adapter->rss_key;
1734 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1735 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1736
1737 dw = (u32 *)adapter->rss_lut;
1738 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1739 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1740
1741 iavf_flush(hw);
1742
1743 return 0;
1744}
1745
1746/**
1747 * iavf_config_rss - Configure RSS keys and lut
1748 * @adapter: board private structure
1749 *
1750 * Returns 0 on success, negative on failure
1751 **/
1752int iavf_config_rss(struct iavf_adapter *adapter)
1753{
1754
1755 if (RSS_PF(adapter)) {
1756 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1757 IAVF_FLAG_AQ_SET_RSS_KEY;
1758 return 0;
1759 } else if (RSS_AQ(adapter)) {
1760 return iavf_config_rss_aq(adapter);
1761 } else {
1762 return iavf_config_rss_reg(adapter);
1763 }
1764}
1765
1766/**
1767 * iavf_fill_rss_lut - Fill the lut with default values
1768 * @adapter: board private structure
1769 **/
1770static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1771{
1772 u16 i;
1773
1774 for (i = 0; i < adapter->rss_lut_size; i++)
1775 adapter->rss_lut[i] = i % adapter->num_active_queues;
1776}
1777
1778/**
1779 * iavf_init_rss - Prepare for RSS
1780 * @adapter: board private structure
1781 *
1782 * Return 0 on success, negative on failure
1783 **/
1784static int iavf_init_rss(struct iavf_adapter *adapter)
1785{
1786 struct iavf_hw *hw = &adapter->hw;
1787
1788 if (!RSS_PF(adapter)) {
1789 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1790 if (adapter->vf_res->vf_cap_flags &
1791 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1792 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1793 else
1794 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1795
1796 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1797 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1798 }
1799
1800 iavf_fill_rss_lut(adapter);
1801 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1802
1803 return iavf_config_rss(adapter);
1804}
1805
1806/**
1807 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1808 * @adapter: board private structure to initialize
1809 *
1810 * We allocate one q_vector per queue interrupt. If allocation fails we
1811 * return -ENOMEM.
1812 **/
1813static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1814{
1815 int q_idx = 0, num_q_vectors;
1816 struct iavf_q_vector *q_vector;
1817
1818 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1819 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1820 GFP_KERNEL);
1821 if (!adapter->q_vectors)
1822 return -ENOMEM;
1823
1824 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1825 q_vector = &adapter->q_vectors[q_idx];
1826 q_vector->adapter = adapter;
1827 q_vector->vsi = &adapter->vsi;
1828 q_vector->v_idx = q_idx;
1829 q_vector->reg_idx = q_idx;
1830 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1831 netif_napi_add(adapter->netdev, &q_vector->napi,
1832 iavf_napi_poll);
1833 }
1834
1835 return 0;
1836}
1837
1838/**
1839 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1840 * @adapter: board private structure to initialize
1841 *
1842 * This function frees the memory allocated to the q_vectors. In addition if
1843 * NAPI is enabled it will delete any references to the NAPI struct prior
1844 * to freeing the q_vector.
1845 **/
1846static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1847{
1848 int q_idx, num_q_vectors;
1849
1850 if (!adapter->q_vectors)
1851 return;
1852
1853 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1854
1855 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1856 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1857
1858 netif_napi_del(&q_vector->napi);
1859 }
1860 kfree(adapter->q_vectors);
1861 adapter->q_vectors = NULL;
1862}
1863
1864/**
1865 * iavf_reset_interrupt_capability - Reset MSIX setup
1866 * @adapter: board private structure
1867 *
1868 **/
1869static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1870{
1871 if (!adapter->msix_entries)
1872 return;
1873
1874 pci_disable_msix(adapter->pdev);
1875 kfree(adapter->msix_entries);
1876 adapter->msix_entries = NULL;
1877}
1878
1879/**
1880 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1881 * @adapter: board private structure to initialize
1882 *
1883 **/
1884static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1885{
1886 int err;
1887
1888 err = iavf_alloc_queues(adapter);
1889 if (err) {
1890 dev_err(&adapter->pdev->dev,
1891 "Unable to allocate memory for queues\n");
1892 goto err_alloc_queues;
1893 }
1894
1895 err = iavf_set_interrupt_capability(adapter);
1896 if (err) {
1897 dev_err(&adapter->pdev->dev,
1898 "Unable to setup interrupt capabilities\n");
1899 goto err_set_interrupt;
1900 }
1901
1902 err = iavf_alloc_q_vectors(adapter);
1903 if (err) {
1904 dev_err(&adapter->pdev->dev,
1905 "Unable to allocate memory for queue vectors\n");
1906 goto err_alloc_q_vectors;
1907 }
1908
1909 /* If we've made it so far while ADq flag being ON, then we haven't
1910 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1911 * resources have been allocated in the reset path.
1912 * Now we can truly claim that ADq is enabled.
1913 */
1914 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1915 adapter->num_tc)
1916 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1917 adapter->num_tc);
1918
1919 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1920 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1921 adapter->num_active_queues);
1922
1923 return 0;
1924err_alloc_q_vectors:
1925 iavf_reset_interrupt_capability(adapter);
1926err_set_interrupt:
1927 iavf_free_queues(adapter);
1928err_alloc_queues:
1929 return err;
1930}
1931
1932/**
1933 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1934 * @adapter: board private structure
1935 **/
1936static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1937{
1938 iavf_free_q_vectors(adapter);
1939 iavf_reset_interrupt_capability(adapter);
1940 iavf_free_queues(adapter);
1941}
1942
1943/**
1944 * iavf_free_rss - Free memory used by RSS structs
1945 * @adapter: board private structure
1946 **/
1947static void iavf_free_rss(struct iavf_adapter *adapter)
1948{
1949 kfree(adapter->rss_key);
1950 adapter->rss_key = NULL;
1951
1952 kfree(adapter->rss_lut);
1953 adapter->rss_lut = NULL;
1954}
1955
1956/**
1957 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1958 * @adapter: board private structure
1959 * @running: true if adapter->state == __IAVF_RUNNING
1960 *
1961 * Returns 0 on success, negative on failure
1962 **/
1963static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1964{
1965 struct net_device *netdev = adapter->netdev;
1966 int err;
1967
1968 if (running)
1969 iavf_free_traffic_irqs(adapter);
1970 iavf_free_misc_irq(adapter);
1971 iavf_free_interrupt_scheme(adapter);
1972
1973 err = iavf_init_interrupt_scheme(adapter);
1974 if (err)
1975 goto err;
1976
1977 netif_tx_stop_all_queues(netdev);
1978
1979 err = iavf_request_misc_irq(adapter);
1980 if (err)
1981 goto err;
1982
1983 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1984
1985 iavf_map_rings_to_vectors(adapter);
1986err:
1987 return err;
1988}
1989
1990/**
1991 * iavf_finish_config - do all netdev work that needs RTNL
1992 * @work: our work_struct
1993 *
1994 * Do work that needs both RTNL and crit_lock.
1995 **/
1996static void iavf_finish_config(struct work_struct *work)
1997{
1998 struct iavf_adapter *adapter;
1999 int pairs, err;
2000
2001 adapter = container_of(work, struct iavf_adapter, finish_config);
2002
2003 /* Always take RTNL first to prevent circular lock dependency */
2004 rtnl_lock();
2005 mutex_lock(&adapter->crit_lock);
2006
2007 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
2008 adapter->netdev->reg_state == NETREG_REGISTERED &&
2009 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2010 netdev_update_features(adapter->netdev);
2011 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2012 }
2013
2014 switch (adapter->state) {
2015 case __IAVF_DOWN:
2016 if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2017 err = register_netdevice(adapter->netdev);
2018 if (err) {
2019 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2020 err);
2021
2022 /* go back and try again.*/
2023 iavf_free_rss(adapter);
2024 iavf_free_misc_irq(adapter);
2025 iavf_reset_interrupt_capability(adapter);
2026 iavf_change_state(adapter,
2027 __IAVF_INIT_CONFIG_ADAPTER);
2028 goto out;
2029 }
2030 }
2031
2032 /* Set the real number of queues when reset occurs while
2033 * state == __IAVF_DOWN
2034 */
2035 fallthrough;
2036 case __IAVF_RUNNING:
2037 pairs = adapter->num_active_queues;
2038 netif_set_real_num_rx_queues(adapter->netdev, pairs);
2039 netif_set_real_num_tx_queues(adapter->netdev, pairs);
2040 break;
2041
2042 default:
2043 break;
2044 }
2045
2046out:
2047 mutex_unlock(&adapter->crit_lock);
2048 rtnl_unlock();
2049}
2050
2051/**
2052 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2053 * @adapter: board private structure
2054 **/
2055void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2056{
2057 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2058 queue_work(adapter->wq, &adapter->finish_config);
2059}
2060
2061/**
2062 * iavf_process_aq_command - process aq_required flags
2063 * and sends aq command
2064 * @adapter: pointer to iavf adapter structure
2065 *
2066 * Returns 0 on success
2067 * Returns error code if no command was sent
2068 * or error code if the command failed.
2069 **/
2070static int iavf_process_aq_command(struct iavf_adapter *adapter)
2071{
2072 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2073 return iavf_send_vf_config_msg(adapter);
2074 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2075 return iavf_send_vf_offload_vlan_v2_msg(adapter);
2076 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2077 iavf_disable_queues(adapter);
2078 return 0;
2079 }
2080
2081 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2082 iavf_map_queues(adapter);
2083 return 0;
2084 }
2085
2086 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2087 iavf_add_ether_addrs(adapter);
2088 return 0;
2089 }
2090
2091 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2092 iavf_add_vlans(adapter);
2093 return 0;
2094 }
2095
2096 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2097 iavf_del_ether_addrs(adapter);
2098 return 0;
2099 }
2100
2101 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2102 iavf_del_vlans(adapter);
2103 return 0;
2104 }
2105
2106 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2107 iavf_enable_vlan_stripping(adapter);
2108 return 0;
2109 }
2110
2111 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2112 iavf_disable_vlan_stripping(adapter);
2113 return 0;
2114 }
2115
2116 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2117 iavf_configure_queues(adapter);
2118 return 0;
2119 }
2120
2121 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2122 iavf_enable_queues(adapter);
2123 return 0;
2124 }
2125
2126 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2127 /* This message goes straight to the firmware, not the
2128 * PF, so we don't have to set current_op as we will
2129 * not get a response through the ARQ.
2130 */
2131 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2132 return 0;
2133 }
2134 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2135 iavf_get_hena(adapter);
2136 return 0;
2137 }
2138 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2139 iavf_set_hena(adapter);
2140 return 0;
2141 }
2142 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2143 iavf_set_rss_key(adapter);
2144 return 0;
2145 }
2146 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2147 iavf_set_rss_lut(adapter);
2148 return 0;
2149 }
2150 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2151 iavf_set_rss_hfunc(adapter);
2152 return 0;
2153 }
2154
2155 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2156 iavf_set_promiscuous(adapter);
2157 return 0;
2158 }
2159
2160 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2161 iavf_enable_channels(adapter);
2162 return 0;
2163 }
2164
2165 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2166 iavf_disable_channels(adapter);
2167 return 0;
2168 }
2169 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2170 iavf_add_cloud_filter(adapter);
2171 return 0;
2172 }
2173 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2174 iavf_del_cloud_filter(adapter);
2175 return 0;
2176 }
2177 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2178 iavf_add_fdir_filter(adapter);
2179 return IAVF_SUCCESS;
2180 }
2181 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2182 iavf_del_fdir_filter(adapter);
2183 return IAVF_SUCCESS;
2184 }
2185 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2186 iavf_add_adv_rss_cfg(adapter);
2187 return 0;
2188 }
2189 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2190 iavf_del_adv_rss_cfg(adapter);
2191 return 0;
2192 }
2193 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2194 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2195 return 0;
2196 }
2197 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2198 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2199 return 0;
2200 }
2201 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2202 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2203 return 0;
2204 }
2205 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2206 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2207 return 0;
2208 }
2209 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2210 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2211 return 0;
2212 }
2213 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2214 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2215 return 0;
2216 }
2217 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2218 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2219 return 0;
2220 }
2221 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2222 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2223 return 0;
2224 }
2225
2226 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2227 iavf_request_stats(adapter);
2228 return 0;
2229 }
2230
2231 return -EAGAIN;
2232}
2233
2234/**
2235 * iavf_set_vlan_offload_features - set VLAN offload configuration
2236 * @adapter: board private structure
2237 * @prev_features: previous features used for comparison
2238 * @features: updated features used for configuration
2239 *
2240 * Set the aq_required bit(s) based on the requested features passed in to
2241 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2242 * the watchdog if any changes are requested to expedite the request via
2243 * virtchnl.
2244 **/
2245static void
2246iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2247 netdev_features_t prev_features,
2248 netdev_features_t features)
2249{
2250 bool enable_stripping = true, enable_insertion = true;
2251 u16 vlan_ethertype = 0;
2252 u64 aq_required = 0;
2253
2254 /* keep cases separate because one ethertype for offloads can be
2255 * disabled at the same time as another is disabled, so check for an
2256 * enabled ethertype first, then check for disabled. Default to
2257 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2258 * stripping.
2259 */
2260 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2261 vlan_ethertype = ETH_P_8021AD;
2262 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2263 vlan_ethertype = ETH_P_8021Q;
2264 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2265 vlan_ethertype = ETH_P_8021AD;
2266 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2267 vlan_ethertype = ETH_P_8021Q;
2268 else
2269 vlan_ethertype = ETH_P_8021Q;
2270
2271 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2272 enable_stripping = false;
2273 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2274 enable_insertion = false;
2275
2276 if (VLAN_ALLOWED(adapter)) {
2277 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2278 * stripping via virtchnl. VLAN insertion can be toggled on the
2279 * netdev, but it doesn't require a virtchnl message
2280 */
2281 if (enable_stripping)
2282 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2283 else
2284 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2285
2286 } else if (VLAN_V2_ALLOWED(adapter)) {
2287 switch (vlan_ethertype) {
2288 case ETH_P_8021Q:
2289 if (enable_stripping)
2290 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2291 else
2292 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2293
2294 if (enable_insertion)
2295 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2296 else
2297 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2298 break;
2299 case ETH_P_8021AD:
2300 if (enable_stripping)
2301 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2302 else
2303 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2304
2305 if (enable_insertion)
2306 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2307 else
2308 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2309 break;
2310 }
2311 }
2312
2313 if (aq_required)
2314 iavf_schedule_aq_request(adapter, aq_required);
2315}
2316
2317/**
2318 * iavf_startup - first step of driver startup
2319 * @adapter: board private structure
2320 *
2321 * Function process __IAVF_STARTUP driver state.
2322 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2323 * when fails the state is changed to __IAVF_INIT_FAILED
2324 **/
2325static void iavf_startup(struct iavf_adapter *adapter)
2326{
2327 struct pci_dev *pdev = adapter->pdev;
2328 struct iavf_hw *hw = &adapter->hw;
2329 enum iavf_status status;
2330 int ret;
2331
2332 WARN_ON(adapter->state != __IAVF_STARTUP);
2333
2334 /* driver loaded, probe complete */
2335 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2336 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2337
2338 ret = iavf_check_reset_complete(hw);
2339 if (ret) {
2340 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2341 ret);
2342 goto err;
2343 }
2344 hw->aq.num_arq_entries = IAVF_AQ_LEN;
2345 hw->aq.num_asq_entries = IAVF_AQ_LEN;
2346 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2347 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2348
2349 status = iavf_init_adminq(hw);
2350 if (status) {
2351 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2352 status);
2353 goto err;
2354 }
2355 ret = iavf_send_api_ver(adapter);
2356 if (ret) {
2357 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2358 iavf_shutdown_adminq(hw);
2359 goto err;
2360 }
2361 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2362 return;
2363err:
2364 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2365}
2366
2367/**
2368 * iavf_init_version_check - second step of driver startup
2369 * @adapter: board private structure
2370 *
2371 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2372 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2373 * when fails the state is changed to __IAVF_INIT_FAILED
2374 **/
2375static void iavf_init_version_check(struct iavf_adapter *adapter)
2376{
2377 struct pci_dev *pdev = adapter->pdev;
2378 struct iavf_hw *hw = &adapter->hw;
2379 int err = -EAGAIN;
2380
2381 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2382
2383 if (!iavf_asq_done(hw)) {
2384 dev_err(&pdev->dev, "Admin queue command never completed\n");
2385 iavf_shutdown_adminq(hw);
2386 iavf_change_state(adapter, __IAVF_STARTUP);
2387 goto err;
2388 }
2389
2390 /* aq msg sent, awaiting reply */
2391 err = iavf_verify_api_ver(adapter);
2392 if (err) {
2393 if (err == -EALREADY)
2394 err = iavf_send_api_ver(adapter);
2395 else
2396 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2397 adapter->pf_version.major,
2398 adapter->pf_version.minor,
2399 VIRTCHNL_VERSION_MAJOR,
2400 VIRTCHNL_VERSION_MINOR);
2401 goto err;
2402 }
2403 err = iavf_send_vf_config_msg(adapter);
2404 if (err) {
2405 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2406 err);
2407 goto err;
2408 }
2409 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2410 return;
2411err:
2412 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2413}
2414
2415/**
2416 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2417 * @adapter: board private structure
2418 */
2419int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2420{
2421 int i, num_req_queues = adapter->num_req_queues;
2422 struct iavf_vsi *vsi = &adapter->vsi;
2423
2424 for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2425 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2426 adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2427 }
2428 if (!adapter->vsi_res) {
2429 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2430 return -ENODEV;
2431 }
2432
2433 if (num_req_queues &&
2434 num_req_queues > adapter->vsi_res->num_queue_pairs) {
2435 /* Problem. The PF gave us fewer queues than what we had
2436 * negotiated in our request. Need a reset to see if we can't
2437 * get back to a working state.
2438 */
2439 dev_err(&adapter->pdev->dev,
2440 "Requested %d queues, but PF only gave us %d.\n",
2441 num_req_queues,
2442 adapter->vsi_res->num_queue_pairs);
2443 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2444 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2445 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2446
2447 return -EAGAIN;
2448 }
2449 adapter->num_req_queues = 0;
2450 adapter->vsi.id = adapter->vsi_res->vsi_id;
2451
2452 adapter->vsi.back = adapter;
2453 adapter->vsi.base_vector = 1;
2454 vsi->netdev = adapter->netdev;
2455 vsi->qs_handle = adapter->vsi_res->qset_handle;
2456 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2457 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2458 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2459 } else {
2460 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2461 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2462 }
2463
2464 return 0;
2465}
2466
2467/**
2468 * iavf_init_get_resources - third step of driver startup
2469 * @adapter: board private structure
2470 *
2471 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2472 * finishes driver initialization procedure.
2473 * When success the state is changed to __IAVF_DOWN
2474 * when fails the state is changed to __IAVF_INIT_FAILED
2475 **/
2476static void iavf_init_get_resources(struct iavf_adapter *adapter)
2477{
2478 struct pci_dev *pdev = adapter->pdev;
2479 struct iavf_hw *hw = &adapter->hw;
2480 int err;
2481
2482 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2483 /* aq msg sent, awaiting reply */
2484 if (!adapter->vf_res) {
2485 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2486 GFP_KERNEL);
2487 if (!adapter->vf_res) {
2488 err = -ENOMEM;
2489 goto err;
2490 }
2491 }
2492 err = iavf_get_vf_config(adapter);
2493 if (err == -EALREADY) {
2494 err = iavf_send_vf_config_msg(adapter);
2495 goto err;
2496 } else if (err == -EINVAL) {
2497 /* We only get -EINVAL if the device is in a very bad
2498 * state or if we've been disabled for previous bad
2499 * behavior. Either way, we're done now.
2500 */
2501 iavf_shutdown_adminq(hw);
2502 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2503 return;
2504 }
2505 if (err) {
2506 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2507 goto err_alloc;
2508 }
2509
2510 err = iavf_parse_vf_resource_msg(adapter);
2511 if (err) {
2512 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2513 err);
2514 goto err_alloc;
2515 }
2516 /* Some features require additional messages to negotiate extended
2517 * capabilities. These are processed in sequence by the
2518 * __IAVF_INIT_EXTENDED_CAPS driver state.
2519 */
2520 adapter->extended_caps = IAVF_EXTENDED_CAPS;
2521
2522 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2523 return;
2524
2525err_alloc:
2526 kfree(adapter->vf_res);
2527 adapter->vf_res = NULL;
2528err:
2529 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2530}
2531
2532/**
2533 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2534 * @adapter: board private structure
2535 *
2536 * Function processes send of the extended VLAN V2 capability message to the
2537 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2538 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2539 */
2540static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2541{
2542 int ret;
2543
2544 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2545
2546 ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2547 if (ret && ret == -EOPNOTSUPP) {
2548 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2549 * we did not send the capability exchange message and do not
2550 * expect a response.
2551 */
2552 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2553 }
2554
2555 /* We sent the message, so move on to the next step */
2556 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2557}
2558
2559/**
2560 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2561 * @adapter: board private structure
2562 *
2563 * Function processes receipt of the extended VLAN V2 capability message from
2564 * the PF.
2565 **/
2566static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2567{
2568 int ret;
2569
2570 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2571
2572 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2573
2574 ret = iavf_get_vf_vlan_v2_caps(adapter);
2575 if (ret)
2576 goto err;
2577
2578 /* We've processed receipt of the VLAN V2 caps message */
2579 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2580 return;
2581err:
2582 /* We didn't receive a reply. Make sure we try sending again when
2583 * __IAVF_INIT_FAILED attempts to recover.
2584 */
2585 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2586 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2587}
2588
2589/**
2590 * iavf_init_process_extended_caps - Part of driver startup
2591 * @adapter: board private structure
2592 *
2593 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2594 * handles negotiating capabilities for features which require an additional
2595 * message.
2596 *
2597 * Once all extended capabilities exchanges are finished, the driver will
2598 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2599 */
2600static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2601{
2602 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2603
2604 /* Process capability exchange for VLAN V2 */
2605 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2606 iavf_init_send_offload_vlan_v2_caps(adapter);
2607 return;
2608 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2609 iavf_init_recv_offload_vlan_v2_caps(adapter);
2610 return;
2611 }
2612
2613 /* When we reach here, no further extended capabilities exchanges are
2614 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2615 */
2616 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2617}
2618
2619/**
2620 * iavf_init_config_adapter - last part of driver startup
2621 * @adapter: board private structure
2622 *
2623 * After all the supported capabilities are negotiated, then the
2624 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2625 */
2626static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2627{
2628 struct net_device *netdev = adapter->netdev;
2629 struct pci_dev *pdev = adapter->pdev;
2630 int err;
2631
2632 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2633
2634 if (iavf_process_config(adapter))
2635 goto err;
2636
2637 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2638
2639 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2640
2641 netdev->netdev_ops = &iavf_netdev_ops;
2642 iavf_set_ethtool_ops(netdev);
2643 netdev->watchdog_timeo = 5 * HZ;
2644
2645 /* MTU range: 68 - 9710 */
2646 netdev->min_mtu = ETH_MIN_MTU;
2647 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2648
2649 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2650 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2651 adapter->hw.mac.addr);
2652 eth_hw_addr_random(netdev);
2653 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2654 } else {
2655 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2656 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2657 }
2658
2659 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2660 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2661 err = iavf_init_interrupt_scheme(adapter);
2662 if (err)
2663 goto err_sw_init;
2664 iavf_map_rings_to_vectors(adapter);
2665 if (adapter->vf_res->vf_cap_flags &
2666 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2667 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2668
2669 err = iavf_request_misc_irq(adapter);
2670 if (err)
2671 goto err_sw_init;
2672
2673 netif_carrier_off(netdev);
2674 adapter->link_up = false;
2675 netif_tx_stop_all_queues(netdev);
2676
2677 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2678 if (netdev->features & NETIF_F_GRO)
2679 dev_info(&pdev->dev, "GRO is enabled\n");
2680
2681 iavf_change_state(adapter, __IAVF_DOWN);
2682 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2683
2684 iavf_misc_irq_enable(adapter);
2685 wake_up(&adapter->down_waitqueue);
2686
2687 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2688 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2689 if (!adapter->rss_key || !adapter->rss_lut) {
2690 err = -ENOMEM;
2691 goto err_mem;
2692 }
2693 if (RSS_AQ(adapter))
2694 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2695 else
2696 iavf_init_rss(adapter);
2697
2698 if (VLAN_V2_ALLOWED(adapter))
2699 /* request initial VLAN offload settings */
2700 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2701
2702 iavf_schedule_finish_config(adapter);
2703 return;
2704
2705err_mem:
2706 iavf_free_rss(adapter);
2707 iavf_free_misc_irq(adapter);
2708err_sw_init:
2709 iavf_reset_interrupt_capability(adapter);
2710err:
2711 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2712}
2713
2714/**
2715 * iavf_watchdog_task - Periodic call-back task
2716 * @work: pointer to work_struct
2717 **/
2718static void iavf_watchdog_task(struct work_struct *work)
2719{
2720 struct iavf_adapter *adapter = container_of(work,
2721 struct iavf_adapter,
2722 watchdog_task.work);
2723 struct iavf_hw *hw = &adapter->hw;
2724 u32 reg_val;
2725
2726 if (!mutex_trylock(&adapter->crit_lock)) {
2727 if (adapter->state == __IAVF_REMOVE)
2728 return;
2729
2730 goto restart_watchdog;
2731 }
2732
2733 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2734 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2735
2736 switch (adapter->state) {
2737 case __IAVF_STARTUP:
2738 iavf_startup(adapter);
2739 mutex_unlock(&adapter->crit_lock);
2740 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2741 msecs_to_jiffies(30));
2742 return;
2743 case __IAVF_INIT_VERSION_CHECK:
2744 iavf_init_version_check(adapter);
2745 mutex_unlock(&adapter->crit_lock);
2746 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2747 msecs_to_jiffies(30));
2748 return;
2749 case __IAVF_INIT_GET_RESOURCES:
2750 iavf_init_get_resources(adapter);
2751 mutex_unlock(&adapter->crit_lock);
2752 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2753 msecs_to_jiffies(1));
2754 return;
2755 case __IAVF_INIT_EXTENDED_CAPS:
2756 iavf_init_process_extended_caps(adapter);
2757 mutex_unlock(&adapter->crit_lock);
2758 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2759 msecs_to_jiffies(1));
2760 return;
2761 case __IAVF_INIT_CONFIG_ADAPTER:
2762 iavf_init_config_adapter(adapter);
2763 mutex_unlock(&adapter->crit_lock);
2764 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2765 msecs_to_jiffies(1));
2766 return;
2767 case __IAVF_INIT_FAILED:
2768 if (test_bit(__IAVF_IN_REMOVE_TASK,
2769 &adapter->crit_section)) {
2770 /* Do not update the state and do not reschedule
2771 * watchdog task, iavf_remove should handle this state
2772 * as it can loop forever
2773 */
2774 mutex_unlock(&adapter->crit_lock);
2775 return;
2776 }
2777 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2778 dev_err(&adapter->pdev->dev,
2779 "Failed to communicate with PF; waiting before retry\n");
2780 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2781 iavf_shutdown_adminq(hw);
2782 mutex_unlock(&adapter->crit_lock);
2783 queue_delayed_work(adapter->wq,
2784 &adapter->watchdog_task, (5 * HZ));
2785 return;
2786 }
2787 /* Try again from failed step*/
2788 iavf_change_state(adapter, adapter->last_state);
2789 mutex_unlock(&adapter->crit_lock);
2790 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2791 return;
2792 case __IAVF_COMM_FAILED:
2793 if (test_bit(__IAVF_IN_REMOVE_TASK,
2794 &adapter->crit_section)) {
2795 /* Set state to __IAVF_INIT_FAILED and perform remove
2796 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2797 * doesn't bring the state back to __IAVF_COMM_FAILED.
2798 */
2799 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2800 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2801 mutex_unlock(&adapter->crit_lock);
2802 return;
2803 }
2804 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2805 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2806 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2807 reg_val == VIRTCHNL_VFR_COMPLETED) {
2808 /* A chance for redemption! */
2809 dev_err(&adapter->pdev->dev,
2810 "Hardware came out of reset. Attempting reinit.\n");
2811 /* When init task contacts the PF and
2812 * gets everything set up again, it'll restart the
2813 * watchdog for us. Down, boy. Sit. Stay. Woof.
2814 */
2815 iavf_change_state(adapter, __IAVF_STARTUP);
2816 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2817 }
2818 adapter->aq_required = 0;
2819 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2820 mutex_unlock(&adapter->crit_lock);
2821 queue_delayed_work(adapter->wq,
2822 &adapter->watchdog_task,
2823 msecs_to_jiffies(10));
2824 return;
2825 case __IAVF_RESETTING:
2826 mutex_unlock(&adapter->crit_lock);
2827 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2828 HZ * 2);
2829 return;
2830 case __IAVF_DOWN:
2831 case __IAVF_DOWN_PENDING:
2832 case __IAVF_TESTING:
2833 case __IAVF_RUNNING:
2834 if (adapter->current_op) {
2835 if (!iavf_asq_done(hw)) {
2836 dev_dbg(&adapter->pdev->dev,
2837 "Admin queue timeout\n");
2838 iavf_send_api_ver(adapter);
2839 }
2840 } else {
2841 int ret = iavf_process_aq_command(adapter);
2842
2843 /* An error will be returned if no commands were
2844 * processed; use this opportunity to update stats
2845 * if the error isn't -ENOTSUPP
2846 */
2847 if (ret && ret != -EOPNOTSUPP &&
2848 adapter->state == __IAVF_RUNNING)
2849 iavf_request_stats(adapter);
2850 }
2851 if (adapter->state == __IAVF_RUNNING)
2852 iavf_detect_recover_hung(&adapter->vsi);
2853 break;
2854 case __IAVF_REMOVE:
2855 default:
2856 mutex_unlock(&adapter->crit_lock);
2857 return;
2858 }
2859
2860 /* check for hw reset */
2861 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2862 if (!reg_val) {
2863 adapter->aq_required = 0;
2864 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2865 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2866 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2867 mutex_unlock(&adapter->crit_lock);
2868 queue_delayed_work(adapter->wq,
2869 &adapter->watchdog_task, HZ * 2);
2870 return;
2871 }
2872
2873 mutex_unlock(&adapter->crit_lock);
2874restart_watchdog:
2875 if (adapter->state >= __IAVF_DOWN)
2876 queue_work(adapter->wq, &adapter->adminq_task);
2877 if (adapter->aq_required)
2878 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2879 msecs_to_jiffies(20));
2880 else
2881 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2882 HZ * 2);
2883}
2884
2885/**
2886 * iavf_disable_vf - disable VF
2887 * @adapter: board private structure
2888 *
2889 * Set communication failed flag and free all resources.
2890 * NOTE: This function is expected to be called with crit_lock being held.
2891 **/
2892static void iavf_disable_vf(struct iavf_adapter *adapter)
2893{
2894 struct iavf_mac_filter *f, *ftmp;
2895 struct iavf_vlan_filter *fv, *fvtmp;
2896 struct iavf_cloud_filter *cf, *cftmp;
2897
2898 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2899
2900 /* We don't use netif_running() because it may be true prior to
2901 * ndo_open() returning, so we can't assume it means all our open
2902 * tasks have finished, since we're not holding the rtnl_lock here.
2903 */
2904 if (adapter->state == __IAVF_RUNNING) {
2905 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2906 netif_carrier_off(adapter->netdev);
2907 netif_tx_disable(adapter->netdev);
2908 adapter->link_up = false;
2909 iavf_napi_disable_all(adapter);
2910 iavf_irq_disable(adapter);
2911 iavf_free_traffic_irqs(adapter);
2912 iavf_free_all_tx_resources(adapter);
2913 iavf_free_all_rx_resources(adapter);
2914 }
2915
2916 spin_lock_bh(&adapter->mac_vlan_list_lock);
2917
2918 /* Delete all of the filters */
2919 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2920 list_del(&f->list);
2921 kfree(f);
2922 }
2923
2924 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2925 list_del(&fv->list);
2926 kfree(fv);
2927 }
2928 adapter->num_vlan_filters = 0;
2929
2930 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2931
2932 spin_lock_bh(&adapter->cloud_filter_list_lock);
2933 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2934 list_del(&cf->list);
2935 kfree(cf);
2936 adapter->num_cloud_filters--;
2937 }
2938 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2939
2940 iavf_free_misc_irq(adapter);
2941 iavf_free_interrupt_scheme(adapter);
2942 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2943 iavf_shutdown_adminq(&adapter->hw);
2944 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2945 iavf_change_state(adapter, __IAVF_DOWN);
2946 wake_up(&adapter->down_waitqueue);
2947 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2948}
2949
2950/**
2951 * iavf_reset_task - Call-back task to handle hardware reset
2952 * @work: pointer to work_struct
2953 *
2954 * During reset we need to shut down and reinitialize the admin queue
2955 * before we can use it to communicate with the PF again. We also clear
2956 * and reinit the rings because that context is lost as well.
2957 **/
2958static void iavf_reset_task(struct work_struct *work)
2959{
2960 struct iavf_adapter *adapter = container_of(work,
2961 struct iavf_adapter,
2962 reset_task);
2963 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2964 struct net_device *netdev = adapter->netdev;
2965 struct iavf_hw *hw = &adapter->hw;
2966 struct iavf_mac_filter *f, *ftmp;
2967 struct iavf_cloud_filter *cf;
2968 enum iavf_status status;
2969 u32 reg_val;
2970 int i = 0, err;
2971 bool running;
2972
2973 /* When device is being removed it doesn't make sense to run the reset
2974 * task, just return in such a case.
2975 */
2976 if (!mutex_trylock(&adapter->crit_lock)) {
2977 if (adapter->state != __IAVF_REMOVE)
2978 queue_work(adapter->wq, &adapter->reset_task);
2979
2980 return;
2981 }
2982
2983 iavf_misc_irq_disable(adapter);
2984 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2985 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2986 /* Restart the AQ here. If we have been reset but didn't
2987 * detect it, or if the PF had to reinit, our AQ will be hosed.
2988 */
2989 iavf_shutdown_adminq(hw);
2990 iavf_init_adminq(hw);
2991 iavf_request_reset(adapter);
2992 }
2993 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2994
2995 /* poll until we see the reset actually happen */
2996 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2997 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2998 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2999 if (!reg_val)
3000 break;
3001 usleep_range(5000, 10000);
3002 }
3003 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3004 dev_info(&adapter->pdev->dev, "Never saw reset\n");
3005 goto continue_reset; /* act like the reset happened */
3006 }
3007
3008 /* wait until the reset is complete and the PF is responding to us */
3009 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3010 /* sleep first to make sure a minimum wait time is met */
3011 msleep(IAVF_RESET_WAIT_MS);
3012
3013 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3014 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3015 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3016 break;
3017 }
3018
3019 pci_set_master(adapter->pdev);
3020 pci_restore_msi_state(adapter->pdev);
3021
3022 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3023 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3024 reg_val);
3025 iavf_disable_vf(adapter);
3026 mutex_unlock(&adapter->crit_lock);
3027 return; /* Do not attempt to reinit. It's dead, Jim. */
3028 }
3029
3030continue_reset:
3031 /* We don't use netif_running() because it may be true prior to
3032 * ndo_open() returning, so we can't assume it means all our open
3033 * tasks have finished, since we're not holding the rtnl_lock here.
3034 */
3035 running = adapter->state == __IAVF_RUNNING;
3036
3037 if (running) {
3038 netif_carrier_off(netdev);
3039 netif_tx_stop_all_queues(netdev);
3040 adapter->link_up = false;
3041 iavf_napi_disable_all(adapter);
3042 }
3043 iavf_irq_disable(adapter);
3044
3045 iavf_change_state(adapter, __IAVF_RESETTING);
3046 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3047
3048 /* free the Tx/Rx rings and descriptors, might be better to just
3049 * re-use them sometime in the future
3050 */
3051 iavf_free_all_rx_resources(adapter);
3052 iavf_free_all_tx_resources(adapter);
3053
3054 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3055 /* kill and reinit the admin queue */
3056 iavf_shutdown_adminq(hw);
3057 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3058 status = iavf_init_adminq(hw);
3059 if (status) {
3060 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3061 status);
3062 goto reset_err;
3063 }
3064 adapter->aq_required = 0;
3065
3066 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3067 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3068 err = iavf_reinit_interrupt_scheme(adapter, running);
3069 if (err)
3070 goto reset_err;
3071 }
3072
3073 if (RSS_AQ(adapter)) {
3074 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3075 } else {
3076 err = iavf_init_rss(adapter);
3077 if (err)
3078 goto reset_err;
3079 }
3080
3081 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3082 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3083 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3084 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3085 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3086 * been successfully sent and negotiated
3087 */
3088 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3089 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3090
3091 spin_lock_bh(&adapter->mac_vlan_list_lock);
3092
3093 /* Delete filter for the current MAC address, it could have
3094 * been changed by the PF via administratively set MAC.
3095 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3096 */
3097 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3098 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3099 list_del(&f->list);
3100 kfree(f);
3101 }
3102 }
3103 /* re-add all MAC filters */
3104 list_for_each_entry(f, &adapter->mac_filter_list, list) {
3105 f->add = true;
3106 }
3107 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3108
3109 /* check if TCs are running and re-add all cloud filters */
3110 spin_lock_bh(&adapter->cloud_filter_list_lock);
3111 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3112 adapter->num_tc) {
3113 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3114 cf->add = true;
3115 }
3116 }
3117 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3118
3119 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3120 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3121 iavf_misc_irq_enable(adapter);
3122
3123 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3124
3125 /* We were running when the reset started, so we need to restore some
3126 * state here.
3127 */
3128 if (running) {
3129 /* allocate transmit descriptors */
3130 err = iavf_setup_all_tx_resources(adapter);
3131 if (err)
3132 goto reset_err;
3133
3134 /* allocate receive descriptors */
3135 err = iavf_setup_all_rx_resources(adapter);
3136 if (err)
3137 goto reset_err;
3138
3139 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3140 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3141 err = iavf_request_traffic_irqs(adapter, netdev->name);
3142 if (err)
3143 goto reset_err;
3144
3145 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3146 }
3147
3148 iavf_configure(adapter);
3149
3150 /* iavf_up_complete() will switch device back
3151 * to __IAVF_RUNNING
3152 */
3153 iavf_up_complete(adapter);
3154
3155 iavf_irq_enable(adapter, true);
3156 } else {
3157 iavf_change_state(adapter, __IAVF_DOWN);
3158 wake_up(&adapter->down_waitqueue);
3159 }
3160
3161 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3162
3163 wake_up(&adapter->reset_waitqueue);
3164 mutex_unlock(&adapter->crit_lock);
3165
3166 return;
3167reset_err:
3168 if (running) {
3169 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3170 iavf_free_traffic_irqs(adapter);
3171 }
3172 iavf_disable_vf(adapter);
3173
3174 mutex_unlock(&adapter->crit_lock);
3175 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3176}
3177
3178/**
3179 * iavf_adminq_task - worker thread to clean the admin queue
3180 * @work: pointer to work_struct containing our data
3181 **/
3182static void iavf_adminq_task(struct work_struct *work)
3183{
3184 struct iavf_adapter *adapter =
3185 container_of(work, struct iavf_adapter, adminq_task);
3186 struct iavf_hw *hw = &adapter->hw;
3187 struct iavf_arq_event_info event;
3188 enum virtchnl_ops v_op;
3189 enum iavf_status ret, v_ret;
3190 u32 val, oldval;
3191 u16 pending;
3192
3193 if (!mutex_trylock(&adapter->crit_lock)) {
3194 if (adapter->state == __IAVF_REMOVE)
3195 return;
3196
3197 queue_work(adapter->wq, &adapter->adminq_task);
3198 goto out;
3199 }
3200
3201 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3202 goto unlock;
3203
3204 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3205 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3206 if (!event.msg_buf)
3207 goto unlock;
3208
3209 do {
3210 ret = iavf_clean_arq_element(hw, &event, &pending);
3211 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3212 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3213
3214 if (ret || !v_op)
3215 break; /* No event to process or error cleaning ARQ */
3216
3217 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3218 event.msg_len);
3219 if (pending != 0)
3220 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3221 } while (pending);
3222
3223 if (iavf_is_reset_in_progress(adapter))
3224 goto freedom;
3225
3226 /* check for error indications */
3227 val = rd32(hw, IAVF_VF_ARQLEN1);
3228 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3229 goto freedom;
3230 oldval = val;
3231 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3232 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3233 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3234 }
3235 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3236 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3237 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3238 }
3239 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3240 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3241 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3242 }
3243 if (oldval != val)
3244 wr32(hw, IAVF_VF_ARQLEN1, val);
3245
3246 val = rd32(hw, IAVF_VF_ATQLEN1);
3247 oldval = val;
3248 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3249 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3250 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3251 }
3252 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3253 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3254 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3255 }
3256 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3257 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3258 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3259 }
3260 if (oldval != val)
3261 wr32(hw, IAVF_VF_ATQLEN1, val);
3262
3263freedom:
3264 kfree(event.msg_buf);
3265unlock:
3266 mutex_unlock(&adapter->crit_lock);
3267out:
3268 /* re-enable Admin queue interrupt cause */
3269 iavf_misc_irq_enable(adapter);
3270}
3271
3272/**
3273 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3274 * @adapter: board private structure
3275 *
3276 * Free all transmit software resources
3277 **/
3278void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3279{
3280 int i;
3281
3282 if (!adapter->tx_rings)
3283 return;
3284
3285 for (i = 0; i < adapter->num_active_queues; i++)
3286 if (adapter->tx_rings[i].desc)
3287 iavf_free_tx_resources(&adapter->tx_rings[i]);
3288}
3289
3290/**
3291 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3292 * @adapter: board private structure
3293 *
3294 * If this function returns with an error, then it's possible one or
3295 * more of the rings is populated (while the rest are not). It is the
3296 * callers duty to clean those orphaned rings.
3297 *
3298 * Return 0 on success, negative on failure
3299 **/
3300static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3301{
3302 int i, err = 0;
3303
3304 for (i = 0; i < adapter->num_active_queues; i++) {
3305 adapter->tx_rings[i].count = adapter->tx_desc_count;
3306 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3307 if (!err)
3308 continue;
3309 dev_err(&adapter->pdev->dev,
3310 "Allocation for Tx Queue %u failed\n", i);
3311 break;
3312 }
3313
3314 return err;
3315}
3316
3317/**
3318 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3319 * @adapter: board private structure
3320 *
3321 * If this function returns with an error, then it's possible one or
3322 * more of the rings is populated (while the rest are not). It is the
3323 * callers duty to clean those orphaned rings.
3324 *
3325 * Return 0 on success, negative on failure
3326 **/
3327static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3328{
3329 int i, err = 0;
3330
3331 for (i = 0; i < adapter->num_active_queues; i++) {
3332 adapter->rx_rings[i].count = adapter->rx_desc_count;
3333 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3334 if (!err)
3335 continue;
3336 dev_err(&adapter->pdev->dev,
3337 "Allocation for Rx Queue %u failed\n", i);
3338 break;
3339 }
3340 return err;
3341}
3342
3343/**
3344 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3345 * @adapter: board private structure
3346 *
3347 * Free all receive software resources
3348 **/
3349void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3350{
3351 int i;
3352
3353 if (!adapter->rx_rings)
3354 return;
3355
3356 for (i = 0; i < adapter->num_active_queues; i++)
3357 if (adapter->rx_rings[i].desc)
3358 iavf_free_rx_resources(&adapter->rx_rings[i]);
3359}
3360
3361/**
3362 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3363 * @adapter: board private structure
3364 * @max_tx_rate: max Tx bw for a tc
3365 **/
3366static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3367 u64 max_tx_rate)
3368{
3369 int speed = 0, ret = 0;
3370
3371 if (ADV_LINK_SUPPORT(adapter)) {
3372 if (adapter->link_speed_mbps < U32_MAX) {
3373 speed = adapter->link_speed_mbps;
3374 goto validate_bw;
3375 } else {
3376 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3377 return -EINVAL;
3378 }
3379 }
3380
3381 switch (adapter->link_speed) {
3382 case VIRTCHNL_LINK_SPEED_40GB:
3383 speed = SPEED_40000;
3384 break;
3385 case VIRTCHNL_LINK_SPEED_25GB:
3386 speed = SPEED_25000;
3387 break;
3388 case VIRTCHNL_LINK_SPEED_20GB:
3389 speed = SPEED_20000;
3390 break;
3391 case VIRTCHNL_LINK_SPEED_10GB:
3392 speed = SPEED_10000;
3393 break;
3394 case VIRTCHNL_LINK_SPEED_5GB:
3395 speed = SPEED_5000;
3396 break;
3397 case VIRTCHNL_LINK_SPEED_2_5GB:
3398 speed = SPEED_2500;
3399 break;
3400 case VIRTCHNL_LINK_SPEED_1GB:
3401 speed = SPEED_1000;
3402 break;
3403 case VIRTCHNL_LINK_SPEED_100MB:
3404 speed = SPEED_100;
3405 break;
3406 default:
3407 break;
3408 }
3409
3410validate_bw:
3411 if (max_tx_rate > speed) {
3412 dev_err(&adapter->pdev->dev,
3413 "Invalid tx rate specified\n");
3414 ret = -EINVAL;
3415 }
3416
3417 return ret;
3418}
3419
3420/**
3421 * iavf_validate_ch_config - validate queue mapping info
3422 * @adapter: board private structure
3423 * @mqprio_qopt: queue parameters
3424 *
3425 * This function validates if the config provided by the user to
3426 * configure queue channels is valid or not. Returns 0 on a valid
3427 * config.
3428 **/
3429static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3430 struct tc_mqprio_qopt_offload *mqprio_qopt)
3431{
3432 u64 total_max_rate = 0;
3433 u32 tx_rate_rem = 0;
3434 int i, num_qps = 0;
3435 u64 tx_rate = 0;
3436 int ret = 0;
3437
3438 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3439 mqprio_qopt->qopt.num_tc < 1)
3440 return -EINVAL;
3441
3442 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3443 if (!mqprio_qopt->qopt.count[i] ||
3444 mqprio_qopt->qopt.offset[i] != num_qps)
3445 return -EINVAL;
3446 if (mqprio_qopt->min_rate[i]) {
3447 dev_err(&adapter->pdev->dev,
3448 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3449 i);
3450 return -EINVAL;
3451 }
3452
3453 /* convert to Mbps */
3454 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3455 IAVF_MBPS_DIVISOR);
3456
3457 if (mqprio_qopt->max_rate[i] &&
3458 tx_rate < IAVF_MBPS_QUANTA) {
3459 dev_err(&adapter->pdev->dev,
3460 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3461 i, IAVF_MBPS_QUANTA);
3462 return -EINVAL;
3463 }
3464
3465 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3466
3467 if (tx_rate_rem != 0) {
3468 dev_err(&adapter->pdev->dev,
3469 "Invalid max tx rate for TC%d, not divisible by %d\n",
3470 i, IAVF_MBPS_QUANTA);
3471 return -EINVAL;
3472 }
3473
3474 total_max_rate += tx_rate;
3475 num_qps += mqprio_qopt->qopt.count[i];
3476 }
3477 if (num_qps > adapter->num_active_queues) {
3478 dev_err(&adapter->pdev->dev,
3479 "Cannot support requested number of queues\n");
3480 return -EINVAL;
3481 }
3482
3483 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3484 return ret;
3485}
3486
3487/**
3488 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3489 * @adapter: board private structure
3490 **/
3491static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3492{
3493 struct iavf_cloud_filter *cf, *cftmp;
3494
3495 spin_lock_bh(&adapter->cloud_filter_list_lock);
3496 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3497 list) {
3498 list_del(&cf->list);
3499 kfree(cf);
3500 adapter->num_cloud_filters--;
3501 }
3502 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3503}
3504
3505/**
3506 * iavf_is_tc_config_same - Compare the mqprio TC config with the
3507 * TC config already configured on this adapter.
3508 * @adapter: board private structure
3509 * @mqprio_qopt: TC config received from kernel.
3510 *
3511 * This function compares the TC config received from the kernel
3512 * with the config already configured on the adapter.
3513 *
3514 * Return: True if configuration is same, false otherwise.
3515 **/
3516static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3517 struct tc_mqprio_qopt *mqprio_qopt)
3518{
3519 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3520 int i;
3521
3522 if (adapter->num_tc != mqprio_qopt->num_tc)
3523 return false;
3524
3525 for (i = 0; i < adapter->num_tc; i++) {
3526 if (ch[i].count != mqprio_qopt->count[i] ||
3527 ch[i].offset != mqprio_qopt->offset[i])
3528 return false;
3529 }
3530 return true;
3531}
3532
3533/**
3534 * __iavf_setup_tc - configure multiple traffic classes
3535 * @netdev: network interface device structure
3536 * @type_data: tc offload data
3537 *
3538 * This function processes the config information provided by the
3539 * user to configure traffic classes/queue channels and packages the
3540 * information to request the PF to setup traffic classes.
3541 *
3542 * Returns 0 on success.
3543 **/
3544static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3545{
3546 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3547 struct iavf_adapter *adapter = netdev_priv(netdev);
3548 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3549 u8 num_tc = 0, total_qps = 0;
3550 int ret = 0, netdev_tc = 0;
3551 u64 max_tx_rate;
3552 u16 mode;
3553 int i;
3554
3555 num_tc = mqprio_qopt->qopt.num_tc;
3556 mode = mqprio_qopt->mode;
3557
3558 /* delete queue_channel */
3559 if (!mqprio_qopt->qopt.hw) {
3560 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3561 /* reset the tc configuration */
3562 netdev_reset_tc(netdev);
3563 adapter->num_tc = 0;
3564 netif_tx_stop_all_queues(netdev);
3565 netif_tx_disable(netdev);
3566 iavf_del_all_cloud_filters(adapter);
3567 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3568 total_qps = adapter->orig_num_active_queues;
3569 goto exit;
3570 } else {
3571 return -EINVAL;
3572 }
3573 }
3574
3575 /* add queue channel */
3576 if (mode == TC_MQPRIO_MODE_CHANNEL) {
3577 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3578 dev_err(&adapter->pdev->dev, "ADq not supported\n");
3579 return -EOPNOTSUPP;
3580 }
3581 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3582 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3583 return -EINVAL;
3584 }
3585
3586 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3587 if (ret)
3588 return ret;
3589 /* Return if same TC config is requested */
3590 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3591 return 0;
3592 adapter->num_tc = num_tc;
3593
3594 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3595 if (i < num_tc) {
3596 adapter->ch_config.ch_info[i].count =
3597 mqprio_qopt->qopt.count[i];
3598 adapter->ch_config.ch_info[i].offset =
3599 mqprio_qopt->qopt.offset[i];
3600 total_qps += mqprio_qopt->qopt.count[i];
3601 max_tx_rate = mqprio_qopt->max_rate[i];
3602 /* convert to Mbps */
3603 max_tx_rate = div_u64(max_tx_rate,
3604 IAVF_MBPS_DIVISOR);
3605 adapter->ch_config.ch_info[i].max_tx_rate =
3606 max_tx_rate;
3607 } else {
3608 adapter->ch_config.ch_info[i].count = 1;
3609 adapter->ch_config.ch_info[i].offset = 0;
3610 }
3611 }
3612
3613 /* Take snapshot of original config such as "num_active_queues"
3614 * It is used later when delete ADQ flow is exercised, so that
3615 * once delete ADQ flow completes, VF shall go back to its
3616 * original queue configuration
3617 */
3618
3619 adapter->orig_num_active_queues = adapter->num_active_queues;
3620
3621 /* Store queue info based on TC so that VF gets configured
3622 * with correct number of queues when VF completes ADQ config
3623 * flow
3624 */
3625 adapter->ch_config.total_qps = total_qps;
3626
3627 netif_tx_stop_all_queues(netdev);
3628 netif_tx_disable(netdev);
3629 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3630 netdev_reset_tc(netdev);
3631 /* Report the tc mapping up the stack */
3632 netdev_set_num_tc(adapter->netdev, num_tc);
3633 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3634 u16 qcount = mqprio_qopt->qopt.count[i];
3635 u16 qoffset = mqprio_qopt->qopt.offset[i];
3636
3637 if (i < num_tc)
3638 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3639 qoffset);
3640 }
3641 }
3642exit:
3643 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3644 return 0;
3645
3646 netif_set_real_num_rx_queues(netdev, total_qps);
3647 netif_set_real_num_tx_queues(netdev, total_qps);
3648
3649 return ret;
3650}
3651
3652/**
3653 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3654 * @adapter: board private structure
3655 * @f: pointer to struct flow_cls_offload
3656 * @filter: pointer to cloud filter structure
3657 */
3658static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3659 struct flow_cls_offload *f,
3660 struct iavf_cloud_filter *filter)
3661{
3662 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3663 struct flow_dissector *dissector = rule->match.dissector;
3664 u16 n_proto_mask = 0;
3665 u16 n_proto_key = 0;
3666 u8 field_flags = 0;
3667 u16 addr_type = 0;
3668 u16 n_proto = 0;
3669 int i = 0;
3670 struct virtchnl_filter *vf = &filter->f;
3671
3672 if (dissector->used_keys &
3673 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3674 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3675 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3676 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3677 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3678 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3679 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3680 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3681 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3682 dissector->used_keys);
3683 return -EOPNOTSUPP;
3684 }
3685
3686 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3687 struct flow_match_enc_keyid match;
3688
3689 flow_rule_match_enc_keyid(rule, &match);
3690 if (match.mask->keyid != 0)
3691 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3692 }
3693
3694 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3695 struct flow_match_basic match;
3696
3697 flow_rule_match_basic(rule, &match);
3698 n_proto_key = ntohs(match.key->n_proto);
3699 n_proto_mask = ntohs(match.mask->n_proto);
3700
3701 if (n_proto_key == ETH_P_ALL) {
3702 n_proto_key = 0;
3703 n_proto_mask = 0;
3704 }
3705 n_proto = n_proto_key & n_proto_mask;
3706 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3707 return -EINVAL;
3708 if (n_proto == ETH_P_IPV6) {
3709 /* specify flow type as TCP IPv6 */
3710 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3711 }
3712
3713 if (match.key->ip_proto != IPPROTO_TCP) {
3714 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3715 return -EINVAL;
3716 }
3717 }
3718
3719 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3720 struct flow_match_eth_addrs match;
3721
3722 flow_rule_match_eth_addrs(rule, &match);
3723
3724 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3725 if (!is_zero_ether_addr(match.mask->dst)) {
3726 if (is_broadcast_ether_addr(match.mask->dst)) {
3727 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3728 } else {
3729 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3730 match.mask->dst);
3731 return -EINVAL;
3732 }
3733 }
3734
3735 if (!is_zero_ether_addr(match.mask->src)) {
3736 if (is_broadcast_ether_addr(match.mask->src)) {
3737 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3738 } else {
3739 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3740 match.mask->src);
3741 return -EINVAL;
3742 }
3743 }
3744
3745 if (!is_zero_ether_addr(match.key->dst))
3746 if (is_valid_ether_addr(match.key->dst) ||
3747 is_multicast_ether_addr(match.key->dst)) {
3748 /* set the mask if a valid dst_mac address */
3749 for (i = 0; i < ETH_ALEN; i++)
3750 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3751 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3752 match.key->dst);
3753 }
3754
3755 if (!is_zero_ether_addr(match.key->src))
3756 if (is_valid_ether_addr(match.key->src) ||
3757 is_multicast_ether_addr(match.key->src)) {
3758 /* set the mask if a valid dst_mac address */
3759 for (i = 0; i < ETH_ALEN; i++)
3760 vf->mask.tcp_spec.src_mac[i] |= 0xff;
3761 ether_addr_copy(vf->data.tcp_spec.src_mac,
3762 match.key->src);
3763 }
3764 }
3765
3766 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3767 struct flow_match_vlan match;
3768
3769 flow_rule_match_vlan(rule, &match);
3770 if (match.mask->vlan_id) {
3771 if (match.mask->vlan_id == VLAN_VID_MASK) {
3772 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3773 } else {
3774 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3775 match.mask->vlan_id);
3776 return -EINVAL;
3777 }
3778 }
3779 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3780 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3781 }
3782
3783 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3784 struct flow_match_control match;
3785
3786 flow_rule_match_control(rule, &match);
3787 addr_type = match.key->addr_type;
3788 }
3789
3790 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3791 struct flow_match_ipv4_addrs match;
3792
3793 flow_rule_match_ipv4_addrs(rule, &match);
3794 if (match.mask->dst) {
3795 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3796 field_flags |= IAVF_CLOUD_FIELD_IIP;
3797 } else {
3798 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3799 be32_to_cpu(match.mask->dst));
3800 return -EINVAL;
3801 }
3802 }
3803
3804 if (match.mask->src) {
3805 if (match.mask->src == cpu_to_be32(0xffffffff)) {
3806 field_flags |= IAVF_CLOUD_FIELD_IIP;
3807 } else {
3808 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3809 be32_to_cpu(match.mask->src));
3810 return -EINVAL;
3811 }
3812 }
3813
3814 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3815 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3816 return -EINVAL;
3817 }
3818 if (match.key->dst) {
3819 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3820 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3821 }
3822 if (match.key->src) {
3823 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3824 vf->data.tcp_spec.src_ip[0] = match.key->src;
3825 }
3826 }
3827
3828 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3829 struct flow_match_ipv6_addrs match;
3830
3831 flow_rule_match_ipv6_addrs(rule, &match);
3832
3833 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3834 if (ipv6_addr_any(&match.mask->dst)) {
3835 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3836 IPV6_ADDR_ANY);
3837 return -EINVAL;
3838 }
3839
3840 /* src and dest IPv6 address should not be LOOPBACK
3841 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3842 */
3843 if (ipv6_addr_loopback(&match.key->dst) ||
3844 ipv6_addr_loopback(&match.key->src)) {
3845 dev_err(&adapter->pdev->dev,
3846 "ipv6 addr should not be loopback\n");
3847 return -EINVAL;
3848 }
3849 if (!ipv6_addr_any(&match.mask->dst) ||
3850 !ipv6_addr_any(&match.mask->src))
3851 field_flags |= IAVF_CLOUD_FIELD_IIP;
3852
3853 for (i = 0; i < 4; i++)
3854 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3855 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3856 sizeof(vf->data.tcp_spec.dst_ip));
3857 for (i = 0; i < 4; i++)
3858 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3859 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3860 sizeof(vf->data.tcp_spec.src_ip));
3861 }
3862 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3863 struct flow_match_ports match;
3864
3865 flow_rule_match_ports(rule, &match);
3866 if (match.mask->src) {
3867 if (match.mask->src == cpu_to_be16(0xffff)) {
3868 field_flags |= IAVF_CLOUD_FIELD_IIP;
3869 } else {
3870 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3871 be16_to_cpu(match.mask->src));
3872 return -EINVAL;
3873 }
3874 }
3875
3876 if (match.mask->dst) {
3877 if (match.mask->dst == cpu_to_be16(0xffff)) {
3878 field_flags |= IAVF_CLOUD_FIELD_IIP;
3879 } else {
3880 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3881 be16_to_cpu(match.mask->dst));
3882 return -EINVAL;
3883 }
3884 }
3885 if (match.key->dst) {
3886 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3887 vf->data.tcp_spec.dst_port = match.key->dst;
3888 }
3889
3890 if (match.key->src) {
3891 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3892 vf->data.tcp_spec.src_port = match.key->src;
3893 }
3894 }
3895 vf->field_flags = field_flags;
3896
3897 return 0;
3898}
3899
3900/**
3901 * iavf_handle_tclass - Forward to a traffic class on the device
3902 * @adapter: board private structure
3903 * @tc: traffic class index on the device
3904 * @filter: pointer to cloud filter structure
3905 */
3906static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3907 struct iavf_cloud_filter *filter)
3908{
3909 if (tc == 0)
3910 return 0;
3911 if (tc < adapter->num_tc) {
3912 if (!filter->f.data.tcp_spec.dst_port) {
3913 dev_err(&adapter->pdev->dev,
3914 "Specify destination port to redirect to traffic class other than TC0\n");
3915 return -EINVAL;
3916 }
3917 }
3918 /* redirect to a traffic class on the same device */
3919 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3920 filter->f.action_meta = tc;
3921 return 0;
3922}
3923
3924/**
3925 * iavf_find_cf - Find the cloud filter in the list
3926 * @adapter: Board private structure
3927 * @cookie: filter specific cookie
3928 *
3929 * Returns ptr to the filter object or NULL. Must be called while holding the
3930 * cloud_filter_list_lock.
3931 */
3932static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3933 unsigned long *cookie)
3934{
3935 struct iavf_cloud_filter *filter = NULL;
3936
3937 if (!cookie)
3938 return NULL;
3939
3940 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3941 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3942 return filter;
3943 }
3944 return NULL;
3945}
3946
3947/**
3948 * iavf_configure_clsflower - Add tc flower filters
3949 * @adapter: board private structure
3950 * @cls_flower: Pointer to struct flow_cls_offload
3951 */
3952static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3953 struct flow_cls_offload *cls_flower)
3954{
3955 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3956 struct iavf_cloud_filter *filter = NULL;
3957 int err = -EINVAL, count = 50;
3958
3959 if (tc < 0) {
3960 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3961 return -EINVAL;
3962 }
3963
3964 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3965 if (!filter)
3966 return -ENOMEM;
3967
3968 while (!mutex_trylock(&adapter->crit_lock)) {
3969 if (--count == 0) {
3970 kfree(filter);
3971 return err;
3972 }
3973 udelay(1);
3974 }
3975
3976 filter->cookie = cls_flower->cookie;
3977
3978 /* bail out here if filter already exists */
3979 spin_lock_bh(&adapter->cloud_filter_list_lock);
3980 if (iavf_find_cf(adapter, &cls_flower->cookie)) {
3981 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
3982 err = -EEXIST;
3983 goto spin_unlock;
3984 }
3985 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3986
3987 /* set the mask to all zeroes to begin with */
3988 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3989 /* start out with flow type and eth type IPv4 to begin with */
3990 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3991 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3992 if (err)
3993 goto err;
3994
3995 err = iavf_handle_tclass(adapter, tc, filter);
3996 if (err)
3997 goto err;
3998
3999 /* add filter to the list */
4000 spin_lock_bh(&adapter->cloud_filter_list_lock);
4001 list_add_tail(&filter->list, &adapter->cloud_filter_list);
4002 adapter->num_cloud_filters++;
4003 filter->add = true;
4004 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4005spin_unlock:
4006 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4007err:
4008 if (err)
4009 kfree(filter);
4010
4011 mutex_unlock(&adapter->crit_lock);
4012 return err;
4013}
4014
4015/**
4016 * iavf_delete_clsflower - Remove tc flower filters
4017 * @adapter: board private structure
4018 * @cls_flower: Pointer to struct flow_cls_offload
4019 */
4020static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4021 struct flow_cls_offload *cls_flower)
4022{
4023 struct iavf_cloud_filter *filter = NULL;
4024 int err = 0;
4025
4026 spin_lock_bh(&adapter->cloud_filter_list_lock);
4027 filter = iavf_find_cf(adapter, &cls_flower->cookie);
4028 if (filter) {
4029 filter->del = true;
4030 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4031 } else {
4032 err = -EINVAL;
4033 }
4034 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4035
4036 return err;
4037}
4038
4039/**
4040 * iavf_setup_tc_cls_flower - flower classifier offloads
4041 * @adapter: board private structure
4042 * @cls_flower: pointer to flow_cls_offload struct with flow info
4043 */
4044static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4045 struct flow_cls_offload *cls_flower)
4046{
4047 switch (cls_flower->command) {
4048 case FLOW_CLS_REPLACE:
4049 return iavf_configure_clsflower(adapter, cls_flower);
4050 case FLOW_CLS_DESTROY:
4051 return iavf_delete_clsflower(adapter, cls_flower);
4052 case FLOW_CLS_STATS:
4053 return -EOPNOTSUPP;
4054 default:
4055 return -EOPNOTSUPP;
4056 }
4057}
4058
4059/**
4060 * iavf_setup_tc_block_cb - block callback for tc
4061 * @type: type of offload
4062 * @type_data: offload data
4063 * @cb_priv:
4064 *
4065 * This function is the block callback for traffic classes
4066 **/
4067static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4068 void *cb_priv)
4069{
4070 struct iavf_adapter *adapter = cb_priv;
4071
4072 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4073 return -EOPNOTSUPP;
4074
4075 switch (type) {
4076 case TC_SETUP_CLSFLOWER:
4077 return iavf_setup_tc_cls_flower(cb_priv, type_data);
4078 default:
4079 return -EOPNOTSUPP;
4080 }
4081}
4082
4083static LIST_HEAD(iavf_block_cb_list);
4084
4085/**
4086 * iavf_setup_tc - configure multiple traffic classes
4087 * @netdev: network interface device structure
4088 * @type: type of offload
4089 * @type_data: tc offload data
4090 *
4091 * This function is the callback to ndo_setup_tc in the
4092 * netdev_ops.
4093 *
4094 * Returns 0 on success
4095 **/
4096static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4097 void *type_data)
4098{
4099 struct iavf_adapter *adapter = netdev_priv(netdev);
4100
4101 switch (type) {
4102 case TC_SETUP_QDISC_MQPRIO:
4103 return __iavf_setup_tc(netdev, type_data);
4104 case TC_SETUP_BLOCK:
4105 return flow_block_cb_setup_simple(type_data,
4106 &iavf_block_cb_list,
4107 iavf_setup_tc_block_cb,
4108 adapter, adapter, true);
4109 default:
4110 return -EOPNOTSUPP;
4111 }
4112}
4113
4114/**
4115 * iavf_restore_fdir_filters
4116 * @adapter: board private structure
4117 *
4118 * Restore existing FDIR filters when VF netdev comes back up.
4119 **/
4120static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4121{
4122 struct iavf_fdir_fltr *f;
4123
4124 spin_lock_bh(&adapter->fdir_fltr_lock);
4125 list_for_each_entry(f, &adapter->fdir_list_head, list) {
4126 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4127 /* Cancel a request, keep filter as active */
4128 f->state = IAVF_FDIR_FLTR_ACTIVE;
4129 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4130 f->state == IAVF_FDIR_FLTR_INACTIVE) {
4131 /* Add filters which are inactive or have a pending
4132 * request to PF to be deleted
4133 */
4134 f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4135 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4136 }
4137 }
4138 spin_unlock_bh(&adapter->fdir_fltr_lock);
4139}
4140
4141/**
4142 * iavf_open - Called when a network interface is made active
4143 * @netdev: network interface device structure
4144 *
4145 * Returns 0 on success, negative value on failure
4146 *
4147 * The open entry point is called when a network interface is made
4148 * active by the system (IFF_UP). At this point all resources needed
4149 * for transmit and receive operations are allocated, the interrupt
4150 * handler is registered with the OS, the watchdog is started,
4151 * and the stack is notified that the interface is ready.
4152 **/
4153static int iavf_open(struct net_device *netdev)
4154{
4155 struct iavf_adapter *adapter = netdev_priv(netdev);
4156 int err;
4157
4158 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4159 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4160 return -EIO;
4161 }
4162
4163 while (!mutex_trylock(&adapter->crit_lock)) {
4164 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4165 * is already taken and iavf_open is called from an upper
4166 * device's notifier reacting on NETDEV_REGISTER event.
4167 * We have to leave here to avoid dead lock.
4168 */
4169 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4170 return -EBUSY;
4171
4172 usleep_range(500, 1000);
4173 }
4174
4175 if (adapter->state != __IAVF_DOWN) {
4176 err = -EBUSY;
4177 goto err_unlock;
4178 }
4179
4180 if (adapter->state == __IAVF_RUNNING &&
4181 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4182 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4183 err = 0;
4184 goto err_unlock;
4185 }
4186
4187 /* allocate transmit descriptors */
4188 err = iavf_setup_all_tx_resources(adapter);
4189 if (err)
4190 goto err_setup_tx;
4191
4192 /* allocate receive descriptors */
4193 err = iavf_setup_all_rx_resources(adapter);
4194 if (err)
4195 goto err_setup_rx;
4196
4197 /* clear any pending interrupts, may auto mask */
4198 err = iavf_request_traffic_irqs(adapter, netdev->name);
4199 if (err)
4200 goto err_req_irq;
4201
4202 spin_lock_bh(&adapter->mac_vlan_list_lock);
4203
4204 iavf_add_filter(adapter, adapter->hw.mac.addr);
4205
4206 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4207
4208 /* Restore filters that were removed with IFF_DOWN */
4209 iavf_restore_filters(adapter);
4210 iavf_restore_fdir_filters(adapter);
4211
4212 iavf_configure(adapter);
4213
4214 iavf_up_complete(adapter);
4215
4216 iavf_irq_enable(adapter, true);
4217
4218 mutex_unlock(&adapter->crit_lock);
4219
4220 return 0;
4221
4222err_req_irq:
4223 iavf_down(adapter);
4224 iavf_free_traffic_irqs(adapter);
4225err_setup_rx:
4226 iavf_free_all_rx_resources(adapter);
4227err_setup_tx:
4228 iavf_free_all_tx_resources(adapter);
4229err_unlock:
4230 mutex_unlock(&adapter->crit_lock);
4231
4232 return err;
4233}
4234
4235/**
4236 * iavf_close - Disables a network interface
4237 * @netdev: network interface device structure
4238 *
4239 * Returns 0, this is not allowed to fail
4240 *
4241 * The close entry point is called when an interface is de-activated
4242 * by the OS. The hardware is still under the drivers control, but
4243 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4244 * are freed, along with all transmit and receive resources.
4245 **/
4246static int iavf_close(struct net_device *netdev)
4247{
4248 struct iavf_adapter *adapter = netdev_priv(netdev);
4249 u64 aq_to_restore;
4250 int status;
4251
4252 mutex_lock(&adapter->crit_lock);
4253
4254 if (adapter->state <= __IAVF_DOWN_PENDING) {
4255 mutex_unlock(&adapter->crit_lock);
4256 return 0;
4257 }
4258
4259 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4260 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4261 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4262 * deadlock with adminq_task() until iavf_close timeouts. We must send
4263 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4264 * disable queues possible for vf. Give only necessary flags to
4265 * iavf_down and save other to set them right before iavf_close()
4266 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4267 * iavf will be in DOWN state.
4268 */
4269 aq_to_restore = adapter->aq_required;
4270 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4271
4272 /* Remove flags which we do not want to send after close or we want to
4273 * send before disable queues.
4274 */
4275 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG |
4276 IAVF_FLAG_AQ_ENABLE_QUEUES |
4277 IAVF_FLAG_AQ_CONFIGURE_QUEUES |
4278 IAVF_FLAG_AQ_ADD_VLAN_FILTER |
4279 IAVF_FLAG_AQ_ADD_MAC_FILTER |
4280 IAVF_FLAG_AQ_ADD_CLOUD_FILTER |
4281 IAVF_FLAG_AQ_ADD_FDIR_FILTER |
4282 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4283
4284 iavf_down(adapter);
4285 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4286 iavf_free_traffic_irqs(adapter);
4287
4288 mutex_unlock(&adapter->crit_lock);
4289
4290 /* We explicitly don't free resources here because the hardware is
4291 * still active and can DMA into memory. Resources are cleared in
4292 * iavf_virtchnl_completion() after we get confirmation from the PF
4293 * driver that the rings have been stopped.
4294 *
4295 * Also, we wait for state to transition to __IAVF_DOWN before
4296 * returning. State change occurs in iavf_virtchnl_completion() after
4297 * VF resources are released (which occurs after PF driver processes and
4298 * responds to admin queue commands).
4299 */
4300
4301 status = wait_event_timeout(adapter->down_waitqueue,
4302 adapter->state == __IAVF_DOWN,
4303 msecs_to_jiffies(500));
4304 if (!status)
4305 netdev_warn(netdev, "Device resources not yet released\n");
4306
4307 mutex_lock(&adapter->crit_lock);
4308 adapter->aq_required |= aq_to_restore;
4309 mutex_unlock(&adapter->crit_lock);
4310 return 0;
4311}
4312
4313/**
4314 * iavf_change_mtu - Change the Maximum Transfer Unit
4315 * @netdev: network interface device structure
4316 * @new_mtu: new value for maximum frame size
4317 *
4318 * Returns 0 on success, negative on failure
4319 **/
4320static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4321{
4322 struct iavf_adapter *adapter = netdev_priv(netdev);
4323 int ret = 0;
4324
4325 netdev_dbg(netdev, "changing MTU from %d to %d\n",
4326 netdev->mtu, new_mtu);
4327 netdev->mtu = new_mtu;
4328
4329 if (netif_running(netdev)) {
4330 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4331 ret = iavf_wait_for_reset(adapter);
4332 if (ret < 0)
4333 netdev_warn(netdev, "MTU change interrupted waiting for reset");
4334 else if (ret)
4335 netdev_warn(netdev, "MTU change timed out waiting for reset");
4336 }
4337
4338 return ret;
4339}
4340
4341/**
4342 * iavf_disable_fdir - disable Flow Director and clear existing filters
4343 * @adapter: board private structure
4344 **/
4345static void iavf_disable_fdir(struct iavf_adapter *adapter)
4346{
4347 struct iavf_fdir_fltr *fdir, *fdirtmp;
4348 bool del_filters = false;
4349
4350 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4351
4352 /* remove all Flow Director filters */
4353 spin_lock_bh(&adapter->fdir_fltr_lock);
4354 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4355 list) {
4356 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4357 fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4358 /* Delete filters not registered in PF */
4359 list_del(&fdir->list);
4360 kfree(fdir);
4361 adapter->fdir_active_fltr--;
4362 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4363 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4364 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4365 /* Filters registered in PF, schedule their deletion */
4366 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4367 del_filters = true;
4368 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4369 /* Request to delete filter already sent to PF, change
4370 * state to DEL_PENDING to delete filter after PF's
4371 * response, not set as INACTIVE
4372 */
4373 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4374 }
4375 }
4376 spin_unlock_bh(&adapter->fdir_fltr_lock);
4377
4378 if (del_filters) {
4379 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4380 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4381 }
4382}
4383
4384#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
4385 NETIF_F_HW_VLAN_CTAG_TX | \
4386 NETIF_F_HW_VLAN_STAG_RX | \
4387 NETIF_F_HW_VLAN_STAG_TX)
4388
4389/**
4390 * iavf_set_features - set the netdev feature flags
4391 * @netdev: ptr to the netdev being adjusted
4392 * @features: the feature set that the stack is suggesting
4393 * Note: expects to be called while under rtnl_lock()
4394 **/
4395static int iavf_set_features(struct net_device *netdev,
4396 netdev_features_t features)
4397{
4398 struct iavf_adapter *adapter = netdev_priv(netdev);
4399
4400 /* trigger update on any VLAN feature change */
4401 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4402 (features & NETIF_VLAN_OFFLOAD_FEATURES))
4403 iavf_set_vlan_offload_features(adapter, netdev->features,
4404 features);
4405 if (CRC_OFFLOAD_ALLOWED(adapter) &&
4406 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4407 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4408
4409 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4410 if (features & NETIF_F_NTUPLE)
4411 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4412 else
4413 iavf_disable_fdir(adapter);
4414 }
4415
4416 return 0;
4417}
4418
4419/**
4420 * iavf_features_check - Validate encapsulated packet conforms to limits
4421 * @skb: skb buff
4422 * @dev: This physical port's netdev
4423 * @features: Offload features that the stack believes apply
4424 **/
4425static netdev_features_t iavf_features_check(struct sk_buff *skb,
4426 struct net_device *dev,
4427 netdev_features_t features)
4428{
4429 size_t len;
4430
4431 /* No point in doing any of this if neither checksum nor GSO are
4432 * being requested for this frame. We can rule out both by just
4433 * checking for CHECKSUM_PARTIAL
4434 */
4435 if (skb->ip_summed != CHECKSUM_PARTIAL)
4436 return features;
4437
4438 /* We cannot support GSO if the MSS is going to be less than
4439 * 64 bytes. If it is then we need to drop support for GSO.
4440 */
4441 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4442 features &= ~NETIF_F_GSO_MASK;
4443
4444 /* MACLEN can support at most 63 words */
4445 len = skb_network_offset(skb);
4446 if (len & ~(63 * 2))
4447 goto out_err;
4448
4449 /* IPLEN and EIPLEN can support at most 127 dwords */
4450 len = skb_network_header_len(skb);
4451 if (len & ~(127 * 4))
4452 goto out_err;
4453
4454 if (skb->encapsulation) {
4455 /* L4TUNLEN can support 127 words */
4456 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4457 if (len & ~(127 * 2))
4458 goto out_err;
4459
4460 /* IPLEN can support at most 127 dwords */
4461 len = skb_inner_transport_header(skb) -
4462 skb_inner_network_header(skb);
4463 if (len & ~(127 * 4))
4464 goto out_err;
4465 }
4466
4467 /* No need to validate L4LEN as TCP is the only protocol with a
4468 * flexible value and we support all possible values supported
4469 * by TCP, which is at most 15 dwords
4470 */
4471
4472 return features;
4473out_err:
4474 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4475}
4476
4477/**
4478 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4479 * @adapter: board private structure
4480 *
4481 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4482 * were negotiated determine the VLAN features that can be toggled on and off.
4483 **/
4484static netdev_features_t
4485iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4486{
4487 netdev_features_t hw_features = 0;
4488
4489 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4490 return hw_features;
4491
4492 /* Enable VLAN features if supported */
4493 if (VLAN_ALLOWED(adapter)) {
4494 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4495 NETIF_F_HW_VLAN_CTAG_RX);
4496 } else if (VLAN_V2_ALLOWED(adapter)) {
4497 struct virtchnl_vlan_caps *vlan_v2_caps =
4498 &adapter->vlan_v2_caps;
4499 struct virtchnl_vlan_supported_caps *stripping_support =
4500 &vlan_v2_caps->offloads.stripping_support;
4501 struct virtchnl_vlan_supported_caps *insertion_support =
4502 &vlan_v2_caps->offloads.insertion_support;
4503
4504 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4505 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4506 if (stripping_support->outer &
4507 VIRTCHNL_VLAN_ETHERTYPE_8100)
4508 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4509 if (stripping_support->outer &
4510 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4511 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4512 } else if (stripping_support->inner !=
4513 VIRTCHNL_VLAN_UNSUPPORTED &&
4514 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4515 if (stripping_support->inner &
4516 VIRTCHNL_VLAN_ETHERTYPE_8100)
4517 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4518 }
4519
4520 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4521 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4522 if (insertion_support->outer &
4523 VIRTCHNL_VLAN_ETHERTYPE_8100)
4524 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4525 if (insertion_support->outer &
4526 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4527 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4528 } else if (insertion_support->inner &&
4529 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4530 if (insertion_support->inner &
4531 VIRTCHNL_VLAN_ETHERTYPE_8100)
4532 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4533 }
4534 }
4535
4536 if (CRC_OFFLOAD_ALLOWED(adapter))
4537 hw_features |= NETIF_F_RXFCS;
4538
4539 return hw_features;
4540}
4541
4542/**
4543 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4544 * @adapter: board private structure
4545 *
4546 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4547 * were negotiated determine the VLAN features that are enabled by default.
4548 **/
4549static netdev_features_t
4550iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4551{
4552 netdev_features_t features = 0;
4553
4554 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4555 return features;
4556
4557 if (VLAN_ALLOWED(adapter)) {
4558 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4559 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4560 } else if (VLAN_V2_ALLOWED(adapter)) {
4561 struct virtchnl_vlan_caps *vlan_v2_caps =
4562 &adapter->vlan_v2_caps;
4563 struct virtchnl_vlan_supported_caps *filtering_support =
4564 &vlan_v2_caps->filtering.filtering_support;
4565 struct virtchnl_vlan_supported_caps *stripping_support =
4566 &vlan_v2_caps->offloads.stripping_support;
4567 struct virtchnl_vlan_supported_caps *insertion_support =
4568 &vlan_v2_caps->offloads.insertion_support;
4569 u32 ethertype_init;
4570
4571 /* give priority to outer stripping and don't support both outer
4572 * and inner stripping
4573 */
4574 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4575 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4576 if (stripping_support->outer &
4577 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4578 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4579 features |= NETIF_F_HW_VLAN_CTAG_RX;
4580 else if (stripping_support->outer &
4581 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4582 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4583 features |= NETIF_F_HW_VLAN_STAG_RX;
4584 } else if (stripping_support->inner !=
4585 VIRTCHNL_VLAN_UNSUPPORTED) {
4586 if (stripping_support->inner &
4587 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4588 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4589 features |= NETIF_F_HW_VLAN_CTAG_RX;
4590 }
4591
4592 /* give priority to outer insertion and don't support both outer
4593 * and inner insertion
4594 */
4595 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4596 if (insertion_support->outer &
4597 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4598 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4599 features |= NETIF_F_HW_VLAN_CTAG_TX;
4600 else if (insertion_support->outer &
4601 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4602 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4603 features |= NETIF_F_HW_VLAN_STAG_TX;
4604 } else if (insertion_support->inner !=
4605 VIRTCHNL_VLAN_UNSUPPORTED) {
4606 if (insertion_support->inner &
4607 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4608 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4609 features |= NETIF_F_HW_VLAN_CTAG_TX;
4610 }
4611
4612 /* give priority to outer filtering and don't bother if both
4613 * outer and inner filtering are enabled
4614 */
4615 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4616 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4617 if (filtering_support->outer &
4618 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4619 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4620 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4621 if (filtering_support->outer &
4622 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4623 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4624 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4625 } else if (filtering_support->inner !=
4626 VIRTCHNL_VLAN_UNSUPPORTED) {
4627 if (filtering_support->inner &
4628 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4629 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4630 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4631 if (filtering_support->inner &
4632 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4633 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4634 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4635 }
4636 }
4637
4638 return features;
4639}
4640
4641#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4642 (!(((requested) & (feature_bit)) && \
4643 !((allowed) & (feature_bit))))
4644
4645/**
4646 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4647 * @adapter: board private structure
4648 * @requested_features: stack requested NETDEV features
4649 **/
4650static netdev_features_t
4651iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4652 netdev_features_t requested_features)
4653{
4654 netdev_features_t allowed_features;
4655
4656 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4657 iavf_get_netdev_vlan_features(adapter);
4658
4659 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4660 allowed_features,
4661 NETIF_F_HW_VLAN_CTAG_TX))
4662 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4663
4664 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4665 allowed_features,
4666 NETIF_F_HW_VLAN_CTAG_RX))
4667 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4668
4669 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4670 allowed_features,
4671 NETIF_F_HW_VLAN_STAG_TX))
4672 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4673 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4674 allowed_features,
4675 NETIF_F_HW_VLAN_STAG_RX))
4676 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4677
4678 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4679 allowed_features,
4680 NETIF_F_HW_VLAN_CTAG_FILTER))
4681 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4682
4683 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4684 allowed_features,
4685 NETIF_F_HW_VLAN_STAG_FILTER))
4686 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4687
4688 if ((requested_features &
4689 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4690 (requested_features &
4691 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4692 adapter->vlan_v2_caps.offloads.ethertype_match ==
4693 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4694 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4695 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4696 NETIF_F_HW_VLAN_STAG_TX);
4697 }
4698
4699 return requested_features;
4700}
4701
4702/**
4703 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4704 * @adapter: board private structure
4705 * @requested_features: stack requested NETDEV features
4706 *
4707 * Returns fixed-up features bits
4708 **/
4709static netdev_features_t
4710iavf_fix_strip_features(struct iavf_adapter *adapter,
4711 netdev_features_t requested_features)
4712{
4713 struct net_device *netdev = adapter->netdev;
4714 bool crc_offload_req, is_vlan_strip;
4715 netdev_features_t vlan_strip;
4716 int num_non_zero_vlan;
4717
4718 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4719 (requested_features & NETIF_F_RXFCS);
4720 num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4721 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4722 is_vlan_strip = requested_features & vlan_strip;
4723
4724 if (!crc_offload_req)
4725 return requested_features;
4726
4727 if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4728 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4729 requested_features &= ~vlan_strip;
4730 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4731 return requested_features;
4732 }
4733
4734 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4735 requested_features &= ~vlan_strip;
4736 if (!(netdev->features & vlan_strip))
4737 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4738
4739 return requested_features;
4740 }
4741
4742 if (num_non_zero_vlan && is_vlan_strip &&
4743 !(netdev->features & NETIF_F_RXFCS)) {
4744 requested_features &= ~NETIF_F_RXFCS;
4745 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4746 }
4747
4748 return requested_features;
4749}
4750
4751/**
4752 * iavf_fix_features - fix up the netdev feature bits
4753 * @netdev: our net device
4754 * @features: desired feature bits
4755 *
4756 * Returns fixed-up features bits
4757 **/
4758static netdev_features_t iavf_fix_features(struct net_device *netdev,
4759 netdev_features_t features)
4760{
4761 struct iavf_adapter *adapter = netdev_priv(netdev);
4762
4763 features = iavf_fix_netdev_vlan_features(adapter, features);
4764
4765 if (!FDIR_FLTR_SUPPORT(adapter))
4766 features &= ~NETIF_F_NTUPLE;
4767
4768 return iavf_fix_strip_features(adapter, features);
4769}
4770
4771static const struct net_device_ops iavf_netdev_ops = {
4772 .ndo_open = iavf_open,
4773 .ndo_stop = iavf_close,
4774 .ndo_start_xmit = iavf_xmit_frame,
4775 .ndo_set_rx_mode = iavf_set_rx_mode,
4776 .ndo_validate_addr = eth_validate_addr,
4777 .ndo_set_mac_address = iavf_set_mac,
4778 .ndo_change_mtu = iavf_change_mtu,
4779 .ndo_tx_timeout = iavf_tx_timeout,
4780 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
4781 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
4782 .ndo_features_check = iavf_features_check,
4783 .ndo_fix_features = iavf_fix_features,
4784 .ndo_set_features = iavf_set_features,
4785 .ndo_setup_tc = iavf_setup_tc,
4786};
4787
4788/**
4789 * iavf_check_reset_complete - check that VF reset is complete
4790 * @hw: pointer to hw struct
4791 *
4792 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4793 **/
4794static int iavf_check_reset_complete(struct iavf_hw *hw)
4795{
4796 u32 rstat;
4797 int i;
4798
4799 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4800 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4801 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4802 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4803 (rstat == VIRTCHNL_VFR_COMPLETED))
4804 return 0;
4805 msleep(IAVF_RESET_WAIT_MS);
4806 }
4807 return -EBUSY;
4808}
4809
4810/**
4811 * iavf_process_config - Process the config information we got from the PF
4812 * @adapter: board private structure
4813 *
4814 * Verify that we have a valid config struct, and set up our netdev features
4815 * and our VSI struct.
4816 **/
4817int iavf_process_config(struct iavf_adapter *adapter)
4818{
4819 struct virtchnl_vf_resource *vfres = adapter->vf_res;
4820 netdev_features_t hw_vlan_features, vlan_features;
4821 struct net_device *netdev = adapter->netdev;
4822 netdev_features_t hw_enc_features;
4823 netdev_features_t hw_features;
4824
4825 hw_enc_features = NETIF_F_SG |
4826 NETIF_F_IP_CSUM |
4827 NETIF_F_IPV6_CSUM |
4828 NETIF_F_HIGHDMA |
4829 NETIF_F_SOFT_FEATURES |
4830 NETIF_F_TSO |
4831 NETIF_F_TSO_ECN |
4832 NETIF_F_TSO6 |
4833 NETIF_F_SCTP_CRC |
4834 NETIF_F_RXHASH |
4835 NETIF_F_RXCSUM |
4836 0;
4837
4838 /* advertise to stack only if offloads for encapsulated packets is
4839 * supported
4840 */
4841 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4842 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
4843 NETIF_F_GSO_GRE |
4844 NETIF_F_GSO_GRE_CSUM |
4845 NETIF_F_GSO_IPXIP4 |
4846 NETIF_F_GSO_IPXIP6 |
4847 NETIF_F_GSO_UDP_TUNNEL_CSUM |
4848 NETIF_F_GSO_PARTIAL |
4849 0;
4850
4851 if (!(vfres->vf_cap_flags &
4852 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4853 netdev->gso_partial_features |=
4854 NETIF_F_GSO_UDP_TUNNEL_CSUM;
4855
4856 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4857 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4858 netdev->hw_enc_features |= hw_enc_features;
4859 }
4860 /* record features VLANs can make use of */
4861 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4862
4863 /* Write features and hw_features separately to avoid polluting
4864 * with, or dropping, features that are set when we registered.
4865 */
4866 hw_features = hw_enc_features;
4867
4868 /* get HW VLAN features that can be toggled */
4869 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4870
4871 /* Enable cloud filter if ADQ is supported */
4872 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4873 hw_features |= NETIF_F_HW_TC;
4874 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4875 hw_features |= NETIF_F_GSO_UDP_L4;
4876
4877 netdev->hw_features |= hw_features | hw_vlan_features;
4878 vlan_features = iavf_get_netdev_vlan_features(adapter);
4879
4880 netdev->features |= hw_features | vlan_features;
4881
4882 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4883 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4884
4885 if (FDIR_FLTR_SUPPORT(adapter)) {
4886 netdev->hw_features |= NETIF_F_NTUPLE;
4887 netdev->features |= NETIF_F_NTUPLE;
4888 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4889 }
4890
4891 netdev->priv_flags |= IFF_UNICAST_FLT;
4892
4893 /* Do not turn on offloads when they are requested to be turned off.
4894 * TSO needs minimum 576 bytes to work correctly.
4895 */
4896 if (netdev->wanted_features) {
4897 if (!(netdev->wanted_features & NETIF_F_TSO) ||
4898 netdev->mtu < 576)
4899 netdev->features &= ~NETIF_F_TSO;
4900 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4901 netdev->mtu < 576)
4902 netdev->features &= ~NETIF_F_TSO6;
4903 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4904 netdev->features &= ~NETIF_F_TSO_ECN;
4905 if (!(netdev->wanted_features & NETIF_F_GRO))
4906 netdev->features &= ~NETIF_F_GRO;
4907 if (!(netdev->wanted_features & NETIF_F_GSO))
4908 netdev->features &= ~NETIF_F_GSO;
4909 }
4910
4911 return 0;
4912}
4913
4914/**
4915 * iavf_probe - Device Initialization Routine
4916 * @pdev: PCI device information struct
4917 * @ent: entry in iavf_pci_tbl
4918 *
4919 * Returns 0 on success, negative on failure
4920 *
4921 * iavf_probe initializes an adapter identified by a pci_dev structure.
4922 * The OS initialization, configuring of the adapter private structure,
4923 * and a hardware reset occur.
4924 **/
4925static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4926{
4927 struct net_device *netdev;
4928 struct iavf_adapter *adapter = NULL;
4929 struct iavf_hw *hw = NULL;
4930 int err;
4931
4932 err = pci_enable_device(pdev);
4933 if (err)
4934 return err;
4935
4936 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4937 if (err) {
4938 dev_err(&pdev->dev,
4939 "DMA configuration failed: 0x%x\n", err);
4940 goto err_dma;
4941 }
4942
4943 err = pci_request_regions(pdev, iavf_driver_name);
4944 if (err) {
4945 dev_err(&pdev->dev,
4946 "pci_request_regions failed 0x%x\n", err);
4947 goto err_pci_reg;
4948 }
4949
4950 pci_set_master(pdev);
4951
4952 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4953 IAVF_MAX_REQ_QUEUES);
4954 if (!netdev) {
4955 err = -ENOMEM;
4956 goto err_alloc_etherdev;
4957 }
4958
4959 SET_NETDEV_DEV(netdev, &pdev->dev);
4960
4961 pci_set_drvdata(pdev, netdev);
4962 adapter = netdev_priv(netdev);
4963
4964 adapter->netdev = netdev;
4965 adapter->pdev = pdev;
4966
4967 hw = &adapter->hw;
4968 hw->back = adapter;
4969
4970 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4971 iavf_driver_name);
4972 if (!adapter->wq) {
4973 err = -ENOMEM;
4974 goto err_alloc_wq;
4975 }
4976
4977 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4978 iavf_change_state(adapter, __IAVF_STARTUP);
4979
4980 /* Call save state here because it relies on the adapter struct. */
4981 pci_save_state(pdev);
4982
4983 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4984 pci_resource_len(pdev, 0));
4985 if (!hw->hw_addr) {
4986 err = -EIO;
4987 goto err_ioremap;
4988 }
4989 hw->vendor_id = pdev->vendor;
4990 hw->device_id = pdev->device;
4991 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4992 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4993 hw->subsystem_device_id = pdev->subsystem_device;
4994 hw->bus.device = PCI_SLOT(pdev->devfn);
4995 hw->bus.func = PCI_FUNC(pdev->devfn);
4996 hw->bus.bus_id = pdev->bus->number;
4997
4998 /* set up the locks for the AQ, do this only once in probe
4999 * and destroy them only once in remove
5000 */
5001 mutex_init(&adapter->crit_lock);
5002 mutex_init(&hw->aq.asq_mutex);
5003 mutex_init(&hw->aq.arq_mutex);
5004
5005 spin_lock_init(&adapter->mac_vlan_list_lock);
5006 spin_lock_init(&adapter->cloud_filter_list_lock);
5007 spin_lock_init(&adapter->fdir_fltr_lock);
5008 spin_lock_init(&adapter->adv_rss_lock);
5009 spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5010
5011 INIT_LIST_HEAD(&adapter->mac_filter_list);
5012 INIT_LIST_HEAD(&adapter->vlan_filter_list);
5013 INIT_LIST_HEAD(&adapter->cloud_filter_list);
5014 INIT_LIST_HEAD(&adapter->fdir_list_head);
5015 INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5016
5017 INIT_WORK(&adapter->reset_task, iavf_reset_task);
5018 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5019 INIT_WORK(&adapter->finish_config, iavf_finish_config);
5020 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5021
5022 /* Setup the wait queue for indicating transition to down status */
5023 init_waitqueue_head(&adapter->down_waitqueue);
5024
5025 /* Setup the wait queue for indicating transition to running state */
5026 init_waitqueue_head(&adapter->reset_waitqueue);
5027
5028 /* Setup the wait queue for indicating virtchannel events */
5029 init_waitqueue_head(&adapter->vc_waitqueue);
5030
5031 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5032 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5033 /* Initialization goes on in the work. Do not add more of it below. */
5034 return 0;
5035
5036err_ioremap:
5037 destroy_workqueue(adapter->wq);
5038err_alloc_wq:
5039 free_netdev(netdev);
5040err_alloc_etherdev:
5041 pci_release_regions(pdev);
5042err_pci_reg:
5043err_dma:
5044 pci_disable_device(pdev);
5045 return err;
5046}
5047
5048/**
5049 * iavf_suspend - Power management suspend routine
5050 * @dev_d: device info pointer
5051 *
5052 * Called when the system (VM) is entering sleep/suspend.
5053 **/
5054static int __maybe_unused iavf_suspend(struct device *dev_d)
5055{
5056 struct net_device *netdev = dev_get_drvdata(dev_d);
5057 struct iavf_adapter *adapter = netdev_priv(netdev);
5058
5059 netif_device_detach(netdev);
5060
5061 mutex_lock(&adapter->crit_lock);
5062
5063 if (netif_running(netdev)) {
5064 rtnl_lock();
5065 iavf_down(adapter);
5066 rtnl_unlock();
5067 }
5068 iavf_free_misc_irq(adapter);
5069 iavf_reset_interrupt_capability(adapter);
5070
5071 mutex_unlock(&adapter->crit_lock);
5072
5073 return 0;
5074}
5075
5076/**
5077 * iavf_resume - Power management resume routine
5078 * @dev_d: device info pointer
5079 *
5080 * Called when the system (VM) is resumed from sleep/suspend.
5081 **/
5082static int __maybe_unused iavf_resume(struct device *dev_d)
5083{
5084 struct pci_dev *pdev = to_pci_dev(dev_d);
5085 struct iavf_adapter *adapter;
5086 u32 err;
5087
5088 adapter = iavf_pdev_to_adapter(pdev);
5089
5090 pci_set_master(pdev);
5091
5092 rtnl_lock();
5093 err = iavf_set_interrupt_capability(adapter);
5094 if (err) {
5095 rtnl_unlock();
5096 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5097 return err;
5098 }
5099 err = iavf_request_misc_irq(adapter);
5100 rtnl_unlock();
5101 if (err) {
5102 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5103 return err;
5104 }
5105
5106 queue_work(adapter->wq, &adapter->reset_task);
5107
5108 netif_device_attach(adapter->netdev);
5109
5110 return err;
5111}
5112
5113/**
5114 * iavf_remove - Device Removal Routine
5115 * @pdev: PCI device information struct
5116 *
5117 * iavf_remove is called by the PCI subsystem to alert the driver
5118 * that it should release a PCI device. The could be caused by a
5119 * Hot-Plug event, or because the driver is going to be removed from
5120 * memory.
5121 **/
5122static void iavf_remove(struct pci_dev *pdev)
5123{
5124 struct iavf_fdir_fltr *fdir, *fdirtmp;
5125 struct iavf_vlan_filter *vlf, *vlftmp;
5126 struct iavf_cloud_filter *cf, *cftmp;
5127 struct iavf_adv_rss *rss, *rsstmp;
5128 struct iavf_mac_filter *f, *ftmp;
5129 struct iavf_adapter *adapter;
5130 struct net_device *netdev;
5131 struct iavf_hw *hw;
5132
5133 /* Don't proceed with remove if netdev is already freed */
5134 netdev = pci_get_drvdata(pdev);
5135 if (!netdev)
5136 return;
5137
5138 adapter = iavf_pdev_to_adapter(pdev);
5139 hw = &adapter->hw;
5140
5141 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5142 return;
5143
5144 /* Wait until port initialization is complete.
5145 * There are flows where register/unregister netdev may race.
5146 */
5147 while (1) {
5148 mutex_lock(&adapter->crit_lock);
5149 if (adapter->state == __IAVF_RUNNING ||
5150 adapter->state == __IAVF_DOWN ||
5151 adapter->state == __IAVF_INIT_FAILED) {
5152 mutex_unlock(&adapter->crit_lock);
5153 break;
5154 }
5155 /* Simply return if we already went through iavf_shutdown */
5156 if (adapter->state == __IAVF_REMOVE) {
5157 mutex_unlock(&adapter->crit_lock);
5158 return;
5159 }
5160
5161 mutex_unlock(&adapter->crit_lock);
5162 usleep_range(500, 1000);
5163 }
5164 cancel_delayed_work_sync(&adapter->watchdog_task);
5165 cancel_work_sync(&adapter->finish_config);
5166
5167 if (netdev->reg_state == NETREG_REGISTERED)
5168 unregister_netdev(netdev);
5169
5170 mutex_lock(&adapter->crit_lock);
5171 dev_info(&adapter->pdev->dev, "Removing device\n");
5172 iavf_change_state(adapter, __IAVF_REMOVE);
5173
5174 iavf_request_reset(adapter);
5175 msleep(50);
5176 /* If the FW isn't responding, kick it once, but only once. */
5177 if (!iavf_asq_done(hw)) {
5178 iavf_request_reset(adapter);
5179 msleep(50);
5180 }
5181
5182 iavf_misc_irq_disable(adapter);
5183 /* Shut down all the garbage mashers on the detention level */
5184 cancel_work_sync(&adapter->reset_task);
5185 cancel_delayed_work_sync(&adapter->watchdog_task);
5186 cancel_work_sync(&adapter->adminq_task);
5187
5188 adapter->aq_required = 0;
5189 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5190
5191 iavf_free_all_tx_resources(adapter);
5192 iavf_free_all_rx_resources(adapter);
5193 iavf_free_misc_irq(adapter);
5194 iavf_free_interrupt_scheme(adapter);
5195
5196 iavf_free_rss(adapter);
5197
5198 if (hw->aq.asq.count)
5199 iavf_shutdown_adminq(hw);
5200
5201 /* destroy the locks only once, here */
5202 mutex_destroy(&hw->aq.arq_mutex);
5203 mutex_destroy(&hw->aq.asq_mutex);
5204 mutex_unlock(&adapter->crit_lock);
5205 mutex_destroy(&adapter->crit_lock);
5206
5207 iounmap(hw->hw_addr);
5208 pci_release_regions(pdev);
5209 kfree(adapter->vf_res);
5210 spin_lock_bh(&adapter->mac_vlan_list_lock);
5211 /* If we got removed before an up/down sequence, we've got a filter
5212 * hanging out there that we need to get rid of.
5213 */
5214 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5215 list_del(&f->list);
5216 kfree(f);
5217 }
5218 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5219 list) {
5220 list_del(&vlf->list);
5221 kfree(vlf);
5222 }
5223
5224 spin_unlock_bh(&adapter->mac_vlan_list_lock);
5225
5226 spin_lock_bh(&adapter->cloud_filter_list_lock);
5227 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5228 list_del(&cf->list);
5229 kfree(cf);
5230 }
5231 spin_unlock_bh(&adapter->cloud_filter_list_lock);
5232
5233 spin_lock_bh(&adapter->fdir_fltr_lock);
5234 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5235 list_del(&fdir->list);
5236 kfree(fdir);
5237 }
5238 spin_unlock_bh(&adapter->fdir_fltr_lock);
5239
5240 spin_lock_bh(&adapter->adv_rss_lock);
5241 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5242 list) {
5243 list_del(&rss->list);
5244 kfree(rss);
5245 }
5246 spin_unlock_bh(&adapter->adv_rss_lock);
5247
5248 destroy_workqueue(adapter->wq);
5249
5250 pci_set_drvdata(pdev, NULL);
5251
5252 free_netdev(netdev);
5253
5254 pci_disable_device(pdev);
5255}
5256
5257/**
5258 * iavf_shutdown - Shutdown the device in preparation for a reboot
5259 * @pdev: pci device structure
5260 **/
5261static void iavf_shutdown(struct pci_dev *pdev)
5262{
5263 iavf_remove(pdev);
5264
5265 if (system_state == SYSTEM_POWER_OFF)
5266 pci_set_power_state(pdev, PCI_D3hot);
5267}
5268
5269static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5270
5271static struct pci_driver iavf_driver = {
5272 .name = iavf_driver_name,
5273 .id_table = iavf_pci_tbl,
5274 .probe = iavf_probe,
5275 .remove = iavf_remove,
5276 .driver.pm = &iavf_pm_ops,
5277 .shutdown = iavf_shutdown,
5278};
5279
5280/**
5281 * iavf_init_module - Driver Registration Routine
5282 *
5283 * iavf_init_module is the first routine called when the driver is
5284 * loaded. All it does is register with the PCI subsystem.
5285 **/
5286static int __init iavf_init_module(void)
5287{
5288 pr_info("iavf: %s\n", iavf_driver_string);
5289
5290 pr_info("%s\n", iavf_copyright);
5291
5292 return pci_register_driver(&iavf_driver);
5293}
5294
5295module_init(iavf_init_module);
5296
5297/**
5298 * iavf_exit_module - Driver Exit Cleanup Routine
5299 *
5300 * iavf_exit_module is called just before the driver is removed
5301 * from memory.
5302 **/
5303static void __exit iavf_exit_module(void)
5304{
5305 pci_unregister_driver(&iavf_driver);
5306}
5307
5308module_exit(iavf_exit_module);
5309
5310/* iavf_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include "iavf.h"
5#include "iavf_prototype.h"
6#include "iavf_client.h"
7/* All iavf tracepoints are defined by the include below, which must
8 * be included exactly once across the whole kernel with
9 * CREATE_TRACE_POINTS defined
10 */
11#define CREATE_TRACE_POINTS
12#include "iavf_trace.h"
13
14static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16static int iavf_close(struct net_device *netdev);
17static int iavf_init_get_resources(struct iavf_adapter *adapter);
18static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20char iavf_driver_name[] = "iavf";
21static const char iavf_driver_string[] =
22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24static const char iavf_copyright[] =
25 "Copyright (c) 2013 - 2018 Intel Corporation.";
26
27/* iavf_pci_tbl - PCI Device ID Table
28 *
29 * Wildcard entries (PCI_ANY_ID) should come last
30 * Last entry must be all 0s
31 *
32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33 * Class, Class Mask, private data (not used) }
34 */
35static const struct pci_device_id iavf_pci_tbl[] = {
36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 /* required last entry */
41 {0, }
42};
43
44MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45
46MODULE_ALIAS("i40evf");
47MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49MODULE_LICENSE("GPL v2");
50
51static const struct net_device_ops iavf_netdev_ops;
52struct workqueue_struct *iavf_wq;
53
54/**
55 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56 * @hw: pointer to the HW structure
57 * @mem: ptr to mem struct to fill out
58 * @size: size of memory requested
59 * @alignment: what to align the allocation to
60 **/
61enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62 struct iavf_dma_mem *mem,
63 u64 size, u32 alignment)
64{
65 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66
67 if (!mem)
68 return IAVF_ERR_PARAM;
69
70 mem->size = ALIGN(size, alignment);
71 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72 (dma_addr_t *)&mem->pa, GFP_KERNEL);
73 if (mem->va)
74 return 0;
75 else
76 return IAVF_ERR_NO_MEMORY;
77}
78
79/**
80 * iavf_free_dma_mem_d - OS specific memory free for shared code
81 * @hw: pointer to the HW structure
82 * @mem: ptr to mem struct to free
83 **/
84enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85 struct iavf_dma_mem *mem)
86{
87 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88
89 if (!mem || !mem->va)
90 return IAVF_ERR_PARAM;
91 dma_free_coherent(&adapter->pdev->dev, mem->size,
92 mem->va, (dma_addr_t)mem->pa);
93 return 0;
94}
95
96/**
97 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98 * @hw: pointer to the HW structure
99 * @mem: ptr to mem struct to fill out
100 * @size: size of memory requested
101 **/
102enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103 struct iavf_virt_mem *mem, u32 size)
104{
105 if (!mem)
106 return IAVF_ERR_PARAM;
107
108 mem->size = size;
109 mem->va = kzalloc(size, GFP_KERNEL);
110
111 if (mem->va)
112 return 0;
113 else
114 return IAVF_ERR_NO_MEMORY;
115}
116
117/**
118 * iavf_free_virt_mem_d - OS specific memory free for shared code
119 * @hw: pointer to the HW structure
120 * @mem: ptr to mem struct to free
121 **/
122enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123 struct iavf_virt_mem *mem)
124{
125 if (!mem)
126 return IAVF_ERR_PARAM;
127
128 /* it's ok to kfree a NULL pointer */
129 kfree(mem->va);
130
131 return 0;
132}
133
134/**
135 * iavf_schedule_reset - Set the flags and schedule a reset event
136 * @adapter: board private structure
137 **/
138void iavf_schedule_reset(struct iavf_adapter *adapter)
139{
140 if (!(adapter->flags &
141 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
142 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
143 queue_work(iavf_wq, &adapter->reset_task);
144 }
145}
146
147/**
148 * iavf_tx_timeout - Respond to a Tx Hang
149 * @netdev: network interface device structure
150 **/
151static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
152{
153 struct iavf_adapter *adapter = netdev_priv(netdev);
154
155 adapter->tx_timeout_count++;
156 iavf_schedule_reset(adapter);
157}
158
159/**
160 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
161 * @adapter: board private structure
162 **/
163static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
164{
165 struct iavf_hw *hw = &adapter->hw;
166
167 if (!adapter->msix_entries)
168 return;
169
170 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
171
172 iavf_flush(hw);
173
174 synchronize_irq(adapter->msix_entries[0].vector);
175}
176
177/**
178 * iavf_misc_irq_enable - Enable default interrupt generation settings
179 * @adapter: board private structure
180 **/
181static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
182{
183 struct iavf_hw *hw = &adapter->hw;
184
185 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
186 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
187 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
188
189 iavf_flush(hw);
190}
191
192/**
193 * iavf_irq_disable - Mask off interrupt generation on the NIC
194 * @adapter: board private structure
195 **/
196static void iavf_irq_disable(struct iavf_adapter *adapter)
197{
198 int i;
199 struct iavf_hw *hw = &adapter->hw;
200
201 if (!adapter->msix_entries)
202 return;
203
204 for (i = 1; i < adapter->num_msix_vectors; i++) {
205 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
206 synchronize_irq(adapter->msix_entries[i].vector);
207 }
208 iavf_flush(hw);
209}
210
211/**
212 * iavf_irq_enable_queues - Enable interrupt for specified queues
213 * @adapter: board private structure
214 * @mask: bitmap of queues to enable
215 **/
216void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
217{
218 struct iavf_hw *hw = &adapter->hw;
219 int i;
220
221 for (i = 1; i < adapter->num_msix_vectors; i++) {
222 if (mask & BIT(i - 1)) {
223 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
224 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
225 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
226 }
227 }
228}
229
230/**
231 * iavf_irq_enable - Enable default interrupt generation settings
232 * @adapter: board private structure
233 * @flush: boolean value whether to run rd32()
234 **/
235void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
236{
237 struct iavf_hw *hw = &adapter->hw;
238
239 iavf_misc_irq_enable(adapter);
240 iavf_irq_enable_queues(adapter, ~0);
241
242 if (flush)
243 iavf_flush(hw);
244}
245
246/**
247 * iavf_msix_aq - Interrupt handler for vector 0
248 * @irq: interrupt number
249 * @data: pointer to netdev
250 **/
251static irqreturn_t iavf_msix_aq(int irq, void *data)
252{
253 struct net_device *netdev = data;
254 struct iavf_adapter *adapter = netdev_priv(netdev);
255 struct iavf_hw *hw = &adapter->hw;
256
257 /* handle non-queue interrupts, these reads clear the registers */
258 rd32(hw, IAVF_VFINT_ICR01);
259 rd32(hw, IAVF_VFINT_ICR0_ENA1);
260
261 /* schedule work on the private workqueue */
262 queue_work(iavf_wq, &adapter->adminq_task);
263
264 return IRQ_HANDLED;
265}
266
267/**
268 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
269 * @irq: interrupt number
270 * @data: pointer to a q_vector
271 **/
272static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
273{
274 struct iavf_q_vector *q_vector = data;
275
276 if (!q_vector->tx.ring && !q_vector->rx.ring)
277 return IRQ_HANDLED;
278
279 napi_schedule_irqoff(&q_vector->napi);
280
281 return IRQ_HANDLED;
282}
283
284/**
285 * iavf_map_vector_to_rxq - associate irqs with rx queues
286 * @adapter: board private structure
287 * @v_idx: interrupt number
288 * @r_idx: queue number
289 **/
290static void
291iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
292{
293 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
294 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
295 struct iavf_hw *hw = &adapter->hw;
296
297 rx_ring->q_vector = q_vector;
298 rx_ring->next = q_vector->rx.ring;
299 rx_ring->vsi = &adapter->vsi;
300 q_vector->rx.ring = rx_ring;
301 q_vector->rx.count++;
302 q_vector->rx.next_update = jiffies + 1;
303 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
304 q_vector->ring_mask |= BIT(r_idx);
305 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
306 q_vector->rx.current_itr >> 1);
307 q_vector->rx.current_itr = q_vector->rx.target_itr;
308}
309
310/**
311 * iavf_map_vector_to_txq - associate irqs with tx queues
312 * @adapter: board private structure
313 * @v_idx: interrupt number
314 * @t_idx: queue number
315 **/
316static void
317iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
318{
319 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
320 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
321 struct iavf_hw *hw = &adapter->hw;
322
323 tx_ring->q_vector = q_vector;
324 tx_ring->next = q_vector->tx.ring;
325 tx_ring->vsi = &adapter->vsi;
326 q_vector->tx.ring = tx_ring;
327 q_vector->tx.count++;
328 q_vector->tx.next_update = jiffies + 1;
329 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
330 q_vector->num_ringpairs++;
331 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
332 q_vector->tx.target_itr >> 1);
333 q_vector->tx.current_itr = q_vector->tx.target_itr;
334}
335
336/**
337 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
338 * @adapter: board private structure to initialize
339 *
340 * This function maps descriptor rings to the queue-specific vectors
341 * we were allotted through the MSI-X enabling code. Ideally, we'd have
342 * one vector per ring/queue, but on a constrained vector budget, we
343 * group the rings as "efficiently" as possible. You would add new
344 * mapping configurations in here.
345 **/
346static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
347{
348 int rings_remaining = adapter->num_active_queues;
349 int ridx = 0, vidx = 0;
350 int q_vectors;
351
352 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
353
354 for (; ridx < rings_remaining; ridx++) {
355 iavf_map_vector_to_rxq(adapter, vidx, ridx);
356 iavf_map_vector_to_txq(adapter, vidx, ridx);
357
358 /* In the case where we have more queues than vectors, continue
359 * round-robin on vectors until all queues are mapped.
360 */
361 if (++vidx >= q_vectors)
362 vidx = 0;
363 }
364
365 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
366}
367
368/**
369 * iavf_irq_affinity_notify - Callback for affinity changes
370 * @notify: context as to what irq was changed
371 * @mask: the new affinity mask
372 *
373 * This is a callback function used by the irq_set_affinity_notifier function
374 * so that we may register to receive changes to the irq affinity masks.
375 **/
376static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
377 const cpumask_t *mask)
378{
379 struct iavf_q_vector *q_vector =
380 container_of(notify, struct iavf_q_vector, affinity_notify);
381
382 cpumask_copy(&q_vector->affinity_mask, mask);
383}
384
385/**
386 * iavf_irq_affinity_release - Callback for affinity notifier release
387 * @ref: internal core kernel usage
388 *
389 * This is a callback function used by the irq_set_affinity_notifier function
390 * to inform the current notification subscriber that they will no longer
391 * receive notifications.
392 **/
393static void iavf_irq_affinity_release(struct kref *ref) {}
394
395/**
396 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
397 * @adapter: board private structure
398 * @basename: device basename
399 *
400 * Allocates MSI-X vectors for tx and rx handling, and requests
401 * interrupts from the kernel.
402 **/
403static int
404iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
405{
406 unsigned int vector, q_vectors;
407 unsigned int rx_int_idx = 0, tx_int_idx = 0;
408 int irq_num, err;
409 int cpu;
410
411 iavf_irq_disable(adapter);
412 /* Decrement for Other and TCP Timer vectors */
413 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
414
415 for (vector = 0; vector < q_vectors; vector++) {
416 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
417
418 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
419
420 if (q_vector->tx.ring && q_vector->rx.ring) {
421 snprintf(q_vector->name, sizeof(q_vector->name),
422 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
423 tx_int_idx++;
424 } else if (q_vector->rx.ring) {
425 snprintf(q_vector->name, sizeof(q_vector->name),
426 "iavf-%s-rx-%d", basename, rx_int_idx++);
427 } else if (q_vector->tx.ring) {
428 snprintf(q_vector->name, sizeof(q_vector->name),
429 "iavf-%s-tx-%d", basename, tx_int_idx++);
430 } else {
431 /* skip this unused q_vector */
432 continue;
433 }
434 err = request_irq(irq_num,
435 iavf_msix_clean_rings,
436 0,
437 q_vector->name,
438 q_vector);
439 if (err) {
440 dev_info(&adapter->pdev->dev,
441 "Request_irq failed, error: %d\n", err);
442 goto free_queue_irqs;
443 }
444 /* register for affinity change notifications */
445 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
446 q_vector->affinity_notify.release =
447 iavf_irq_affinity_release;
448 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
449 /* Spread the IRQ affinity hints across online CPUs. Note that
450 * get_cpu_mask returns a mask with a permanent lifetime so
451 * it's safe to use as a hint for irq_set_affinity_hint.
452 */
453 cpu = cpumask_local_spread(q_vector->v_idx, -1);
454 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
455 }
456
457 return 0;
458
459free_queue_irqs:
460 while (vector) {
461 vector--;
462 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
463 irq_set_affinity_notifier(irq_num, NULL);
464 irq_set_affinity_hint(irq_num, NULL);
465 free_irq(irq_num, &adapter->q_vectors[vector]);
466 }
467 return err;
468}
469
470/**
471 * iavf_request_misc_irq - Initialize MSI-X interrupts
472 * @adapter: board private structure
473 *
474 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
475 * vector is only for the admin queue, and stays active even when the netdev
476 * is closed.
477 **/
478static int iavf_request_misc_irq(struct iavf_adapter *adapter)
479{
480 struct net_device *netdev = adapter->netdev;
481 int err;
482
483 snprintf(adapter->misc_vector_name,
484 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
485 dev_name(&adapter->pdev->dev));
486 err = request_irq(adapter->msix_entries[0].vector,
487 &iavf_msix_aq, 0,
488 adapter->misc_vector_name, netdev);
489 if (err) {
490 dev_err(&adapter->pdev->dev,
491 "request_irq for %s failed: %d\n",
492 adapter->misc_vector_name, err);
493 free_irq(adapter->msix_entries[0].vector, netdev);
494 }
495 return err;
496}
497
498/**
499 * iavf_free_traffic_irqs - Free MSI-X interrupts
500 * @adapter: board private structure
501 *
502 * Frees all MSI-X vectors other than 0.
503 **/
504static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
505{
506 int vector, irq_num, q_vectors;
507
508 if (!adapter->msix_entries)
509 return;
510
511 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
512
513 for (vector = 0; vector < q_vectors; vector++) {
514 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
515 irq_set_affinity_notifier(irq_num, NULL);
516 irq_set_affinity_hint(irq_num, NULL);
517 free_irq(irq_num, &adapter->q_vectors[vector]);
518 }
519}
520
521/**
522 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
523 * @adapter: board private structure
524 *
525 * Frees MSI-X vector 0.
526 **/
527static void iavf_free_misc_irq(struct iavf_adapter *adapter)
528{
529 struct net_device *netdev = adapter->netdev;
530
531 if (!adapter->msix_entries)
532 return;
533
534 free_irq(adapter->msix_entries[0].vector, netdev);
535}
536
537/**
538 * iavf_configure_tx - Configure Transmit Unit after Reset
539 * @adapter: board private structure
540 *
541 * Configure the Tx unit of the MAC after a reset.
542 **/
543static void iavf_configure_tx(struct iavf_adapter *adapter)
544{
545 struct iavf_hw *hw = &adapter->hw;
546 int i;
547
548 for (i = 0; i < adapter->num_active_queues; i++)
549 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
550}
551
552/**
553 * iavf_configure_rx - Configure Receive Unit after Reset
554 * @adapter: board private structure
555 *
556 * Configure the Rx unit of the MAC after a reset.
557 **/
558static void iavf_configure_rx(struct iavf_adapter *adapter)
559{
560 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
561 struct iavf_hw *hw = &adapter->hw;
562 int i;
563
564 /* Legacy Rx will always default to a 2048 buffer size. */
565#if (PAGE_SIZE < 8192)
566 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
567 struct net_device *netdev = adapter->netdev;
568
569 /* For jumbo frames on systems with 4K pages we have to use
570 * an order 1 page, so we might as well increase the size
571 * of our Rx buffer to make better use of the available space
572 */
573 rx_buf_len = IAVF_RXBUFFER_3072;
574
575 /* We use a 1536 buffer size for configurations with
576 * standard Ethernet mtu. On x86 this gives us enough room
577 * for shared info and 192 bytes of padding.
578 */
579 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
580 (netdev->mtu <= ETH_DATA_LEN))
581 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
582 }
583#endif
584
585 for (i = 0; i < adapter->num_active_queues; i++) {
586 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
587 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
588
589 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
590 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
591 else
592 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
593 }
594}
595
596/**
597 * iavf_find_vlan - Search filter list for specific vlan filter
598 * @adapter: board private structure
599 * @vlan: vlan tag
600 *
601 * Returns ptr to the filter object or NULL. Must be called while holding the
602 * mac_vlan_list_lock.
603 **/
604static struct
605iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
606{
607 struct iavf_vlan_filter *f;
608
609 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
610 if (vlan == f->vlan)
611 return f;
612 }
613 return NULL;
614}
615
616/**
617 * iavf_add_vlan - Add a vlan filter to the list
618 * @adapter: board private structure
619 * @vlan: VLAN tag
620 *
621 * Returns ptr to the filter object or NULL when no memory available.
622 **/
623static struct
624iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
625{
626 struct iavf_vlan_filter *f = NULL;
627
628 spin_lock_bh(&adapter->mac_vlan_list_lock);
629
630 f = iavf_find_vlan(adapter, vlan);
631 if (!f) {
632 f = kzalloc(sizeof(*f), GFP_ATOMIC);
633 if (!f)
634 goto clearout;
635
636 f->vlan = vlan;
637
638 list_add_tail(&f->list, &adapter->vlan_filter_list);
639 f->add = true;
640 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
641 }
642
643clearout:
644 spin_unlock_bh(&adapter->mac_vlan_list_lock);
645 return f;
646}
647
648/**
649 * iavf_del_vlan - Remove a vlan filter from the list
650 * @adapter: board private structure
651 * @vlan: VLAN tag
652 **/
653static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
654{
655 struct iavf_vlan_filter *f;
656
657 spin_lock_bh(&adapter->mac_vlan_list_lock);
658
659 f = iavf_find_vlan(adapter, vlan);
660 if (f) {
661 f->remove = true;
662 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
663 }
664
665 spin_unlock_bh(&adapter->mac_vlan_list_lock);
666}
667
668/**
669 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
670 * @netdev: network device struct
671 * @proto: unused protocol data
672 * @vid: VLAN tag
673 **/
674static int iavf_vlan_rx_add_vid(struct net_device *netdev,
675 __always_unused __be16 proto, u16 vid)
676{
677 struct iavf_adapter *adapter = netdev_priv(netdev);
678
679 if (!VLAN_ALLOWED(adapter))
680 return -EIO;
681 if (iavf_add_vlan(adapter, vid) == NULL)
682 return -ENOMEM;
683 return 0;
684}
685
686/**
687 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
688 * @netdev: network device struct
689 * @proto: unused protocol data
690 * @vid: VLAN tag
691 **/
692static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
693 __always_unused __be16 proto, u16 vid)
694{
695 struct iavf_adapter *adapter = netdev_priv(netdev);
696
697 if (VLAN_ALLOWED(adapter)) {
698 iavf_del_vlan(adapter, vid);
699 return 0;
700 }
701 return -EIO;
702}
703
704/**
705 * iavf_find_filter - Search filter list for specific mac filter
706 * @adapter: board private structure
707 * @macaddr: the MAC address
708 *
709 * Returns ptr to the filter object or NULL. Must be called while holding the
710 * mac_vlan_list_lock.
711 **/
712static struct
713iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
714 const u8 *macaddr)
715{
716 struct iavf_mac_filter *f;
717
718 if (!macaddr)
719 return NULL;
720
721 list_for_each_entry(f, &adapter->mac_filter_list, list) {
722 if (ether_addr_equal(macaddr, f->macaddr))
723 return f;
724 }
725 return NULL;
726}
727
728/**
729 * iavf_add_filter - Add a mac filter to the filter list
730 * @adapter: board private structure
731 * @macaddr: the MAC address
732 *
733 * Returns ptr to the filter object or NULL when no memory available.
734 **/
735struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
736 const u8 *macaddr)
737{
738 struct iavf_mac_filter *f;
739
740 if (!macaddr)
741 return NULL;
742
743 f = iavf_find_filter(adapter, macaddr);
744 if (!f) {
745 f = kzalloc(sizeof(*f), GFP_ATOMIC);
746 if (!f)
747 return f;
748
749 ether_addr_copy(f->macaddr, macaddr);
750
751 list_add_tail(&f->list, &adapter->mac_filter_list);
752 f->add = true;
753 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
754 } else {
755 f->remove = false;
756 }
757
758 return f;
759}
760
761/**
762 * iavf_set_mac - NDO callback to set port mac address
763 * @netdev: network interface device structure
764 * @p: pointer to an address structure
765 *
766 * Returns 0 on success, negative on failure
767 **/
768static int iavf_set_mac(struct net_device *netdev, void *p)
769{
770 struct iavf_adapter *adapter = netdev_priv(netdev);
771 struct iavf_hw *hw = &adapter->hw;
772 struct iavf_mac_filter *f;
773 struct sockaddr *addr = p;
774
775 if (!is_valid_ether_addr(addr->sa_data))
776 return -EADDRNOTAVAIL;
777
778 if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
779 return 0;
780
781 spin_lock_bh(&adapter->mac_vlan_list_lock);
782
783 f = iavf_find_filter(adapter, hw->mac.addr);
784 if (f) {
785 f->remove = true;
786 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
787 }
788
789 f = iavf_add_filter(adapter, addr->sa_data);
790
791 spin_unlock_bh(&adapter->mac_vlan_list_lock);
792
793 if (f) {
794 ether_addr_copy(hw->mac.addr, addr->sa_data);
795 }
796
797 return (f == NULL) ? -ENOMEM : 0;
798}
799
800/**
801 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
802 * @netdev: the netdevice
803 * @addr: address to add
804 *
805 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
806 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
807 */
808static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
809{
810 struct iavf_adapter *adapter = netdev_priv(netdev);
811
812 if (iavf_add_filter(adapter, addr))
813 return 0;
814 else
815 return -ENOMEM;
816}
817
818/**
819 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
820 * @netdev: the netdevice
821 * @addr: address to add
822 *
823 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
824 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
825 */
826static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
827{
828 struct iavf_adapter *adapter = netdev_priv(netdev);
829 struct iavf_mac_filter *f;
830
831 /* Under some circumstances, we might receive a request to delete
832 * our own device address from our uc list. Because we store the
833 * device address in the VSI's MAC/VLAN filter list, we need to ignore
834 * such requests and not delete our device address from this list.
835 */
836 if (ether_addr_equal(addr, netdev->dev_addr))
837 return 0;
838
839 f = iavf_find_filter(adapter, addr);
840 if (f) {
841 f->remove = true;
842 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
843 }
844 return 0;
845}
846
847/**
848 * iavf_set_rx_mode - NDO callback to set the netdev filters
849 * @netdev: network interface device structure
850 **/
851static void iavf_set_rx_mode(struct net_device *netdev)
852{
853 struct iavf_adapter *adapter = netdev_priv(netdev);
854
855 spin_lock_bh(&adapter->mac_vlan_list_lock);
856 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
857 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
858 spin_unlock_bh(&adapter->mac_vlan_list_lock);
859
860 if (netdev->flags & IFF_PROMISC &&
861 !(adapter->flags & IAVF_FLAG_PROMISC_ON))
862 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
863 else if (!(netdev->flags & IFF_PROMISC) &&
864 adapter->flags & IAVF_FLAG_PROMISC_ON)
865 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
866
867 if (netdev->flags & IFF_ALLMULTI &&
868 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
869 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
870 else if (!(netdev->flags & IFF_ALLMULTI) &&
871 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
872 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
873}
874
875/**
876 * iavf_napi_enable_all - enable NAPI on all queue vectors
877 * @adapter: board private structure
878 **/
879static void iavf_napi_enable_all(struct iavf_adapter *adapter)
880{
881 int q_idx;
882 struct iavf_q_vector *q_vector;
883 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
884
885 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
886 struct napi_struct *napi;
887
888 q_vector = &adapter->q_vectors[q_idx];
889 napi = &q_vector->napi;
890 napi_enable(napi);
891 }
892}
893
894/**
895 * iavf_napi_disable_all - disable NAPI on all queue vectors
896 * @adapter: board private structure
897 **/
898static void iavf_napi_disable_all(struct iavf_adapter *adapter)
899{
900 int q_idx;
901 struct iavf_q_vector *q_vector;
902 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
903
904 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
905 q_vector = &adapter->q_vectors[q_idx];
906 napi_disable(&q_vector->napi);
907 }
908}
909
910/**
911 * iavf_configure - set up transmit and receive data structures
912 * @adapter: board private structure
913 **/
914static void iavf_configure(struct iavf_adapter *adapter)
915{
916 struct net_device *netdev = adapter->netdev;
917 int i;
918
919 iavf_set_rx_mode(netdev);
920
921 iavf_configure_tx(adapter);
922 iavf_configure_rx(adapter);
923 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
924
925 for (i = 0; i < adapter->num_active_queues; i++) {
926 struct iavf_ring *ring = &adapter->rx_rings[i];
927
928 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
929 }
930}
931
932/**
933 * iavf_up_complete - Finish the last steps of bringing up a connection
934 * @adapter: board private structure
935 *
936 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
937 **/
938static void iavf_up_complete(struct iavf_adapter *adapter)
939{
940 adapter->state = __IAVF_RUNNING;
941 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
942
943 iavf_napi_enable_all(adapter);
944
945 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
946 if (CLIENT_ENABLED(adapter))
947 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
948 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
949}
950
951/**
952 * iavf_down - Shutdown the connection processing
953 * @adapter: board private structure
954 *
955 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
956 **/
957void iavf_down(struct iavf_adapter *adapter)
958{
959 struct net_device *netdev = adapter->netdev;
960 struct iavf_vlan_filter *vlf;
961 struct iavf_mac_filter *f;
962 struct iavf_cloud_filter *cf;
963
964 if (adapter->state <= __IAVF_DOWN_PENDING)
965 return;
966
967 netif_carrier_off(netdev);
968 netif_tx_disable(netdev);
969 adapter->link_up = false;
970 iavf_napi_disable_all(adapter);
971 iavf_irq_disable(adapter);
972
973 spin_lock_bh(&adapter->mac_vlan_list_lock);
974
975 /* clear the sync flag on all filters */
976 __dev_uc_unsync(adapter->netdev, NULL);
977 __dev_mc_unsync(adapter->netdev, NULL);
978
979 /* remove all MAC filters */
980 list_for_each_entry(f, &adapter->mac_filter_list, list) {
981 f->remove = true;
982 }
983
984 /* remove all VLAN filters */
985 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
986 vlf->remove = true;
987 }
988
989 spin_unlock_bh(&adapter->mac_vlan_list_lock);
990
991 /* remove all cloud filters */
992 spin_lock_bh(&adapter->cloud_filter_list_lock);
993 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
994 cf->del = true;
995 }
996 spin_unlock_bh(&adapter->cloud_filter_list_lock);
997
998 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
999 adapter->state != __IAVF_RESETTING) {
1000 /* cancel any current operation */
1001 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1002 /* Schedule operations to close down the HW. Don't wait
1003 * here for this to complete. The watchdog is still running
1004 * and it will take care of this.
1005 */
1006 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1007 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1008 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1009 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1010 }
1011
1012 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1013}
1014
1015/**
1016 * iavf_acquire_msix_vectors - Setup the MSIX capability
1017 * @adapter: board private structure
1018 * @vectors: number of vectors to request
1019 *
1020 * Work with the OS to set up the MSIX vectors needed.
1021 *
1022 * Returns 0 on success, negative on failure
1023 **/
1024static int
1025iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1026{
1027 int err, vector_threshold;
1028
1029 /* We'll want at least 3 (vector_threshold):
1030 * 0) Other (Admin Queue and link, mostly)
1031 * 1) TxQ[0] Cleanup
1032 * 2) RxQ[0] Cleanup
1033 */
1034 vector_threshold = MIN_MSIX_COUNT;
1035
1036 /* The more we get, the more we will assign to Tx/Rx Cleanup
1037 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1038 * Right now, we simply care about how many we'll get; we'll
1039 * set them up later while requesting irq's.
1040 */
1041 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1042 vector_threshold, vectors);
1043 if (err < 0) {
1044 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1045 kfree(adapter->msix_entries);
1046 adapter->msix_entries = NULL;
1047 return err;
1048 }
1049
1050 /* Adjust for only the vectors we'll use, which is minimum
1051 * of max_msix_q_vectors + NONQ_VECS, or the number of
1052 * vectors we were allocated.
1053 */
1054 adapter->num_msix_vectors = err;
1055 return 0;
1056}
1057
1058/**
1059 * iavf_free_queues - Free memory for all rings
1060 * @adapter: board private structure to initialize
1061 *
1062 * Free all of the memory associated with queue pairs.
1063 **/
1064static void iavf_free_queues(struct iavf_adapter *adapter)
1065{
1066 if (!adapter->vsi_res)
1067 return;
1068 adapter->num_active_queues = 0;
1069 kfree(adapter->tx_rings);
1070 adapter->tx_rings = NULL;
1071 kfree(adapter->rx_rings);
1072 adapter->rx_rings = NULL;
1073}
1074
1075/**
1076 * iavf_alloc_queues - Allocate memory for all rings
1077 * @adapter: board private structure to initialize
1078 *
1079 * We allocate one ring per queue at run-time since we don't know the
1080 * number of queues at compile-time. The polling_netdev array is
1081 * intended for Multiqueue, but should work fine with a single queue.
1082 **/
1083static int iavf_alloc_queues(struct iavf_adapter *adapter)
1084{
1085 int i, num_active_queues;
1086
1087 /* If we're in reset reallocating queues we don't actually know yet for
1088 * certain the PF gave us the number of queues we asked for but we'll
1089 * assume it did. Once basic reset is finished we'll confirm once we
1090 * start negotiating config with PF.
1091 */
1092 if (adapter->num_req_queues)
1093 num_active_queues = adapter->num_req_queues;
1094 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1095 adapter->num_tc)
1096 num_active_queues = adapter->ch_config.total_qps;
1097 else
1098 num_active_queues = min_t(int,
1099 adapter->vsi_res->num_queue_pairs,
1100 (int)(num_online_cpus()));
1101
1102
1103 adapter->tx_rings = kcalloc(num_active_queues,
1104 sizeof(struct iavf_ring), GFP_KERNEL);
1105 if (!adapter->tx_rings)
1106 goto err_out;
1107 adapter->rx_rings = kcalloc(num_active_queues,
1108 sizeof(struct iavf_ring), GFP_KERNEL);
1109 if (!adapter->rx_rings)
1110 goto err_out;
1111
1112 for (i = 0; i < num_active_queues; i++) {
1113 struct iavf_ring *tx_ring;
1114 struct iavf_ring *rx_ring;
1115
1116 tx_ring = &adapter->tx_rings[i];
1117
1118 tx_ring->queue_index = i;
1119 tx_ring->netdev = adapter->netdev;
1120 tx_ring->dev = &adapter->pdev->dev;
1121 tx_ring->count = adapter->tx_desc_count;
1122 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1123 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1124 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1125
1126 rx_ring = &adapter->rx_rings[i];
1127 rx_ring->queue_index = i;
1128 rx_ring->netdev = adapter->netdev;
1129 rx_ring->dev = &adapter->pdev->dev;
1130 rx_ring->count = adapter->rx_desc_count;
1131 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1132 }
1133
1134 adapter->num_active_queues = num_active_queues;
1135
1136 return 0;
1137
1138err_out:
1139 iavf_free_queues(adapter);
1140 return -ENOMEM;
1141}
1142
1143/**
1144 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1145 * @adapter: board private structure to initialize
1146 *
1147 * Attempt to configure the interrupts using the best available
1148 * capabilities of the hardware and the kernel.
1149 **/
1150static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1151{
1152 int vector, v_budget;
1153 int pairs = 0;
1154 int err = 0;
1155
1156 if (!adapter->vsi_res) {
1157 err = -EIO;
1158 goto out;
1159 }
1160 pairs = adapter->num_active_queues;
1161
1162 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1163 * us much good if we have more vectors than CPUs. However, we already
1164 * limit the total number of queues by the number of CPUs so we do not
1165 * need any further limiting here.
1166 */
1167 v_budget = min_t(int, pairs + NONQ_VECS,
1168 (int)adapter->vf_res->max_vectors);
1169
1170 adapter->msix_entries = kcalloc(v_budget,
1171 sizeof(struct msix_entry), GFP_KERNEL);
1172 if (!adapter->msix_entries) {
1173 err = -ENOMEM;
1174 goto out;
1175 }
1176
1177 for (vector = 0; vector < v_budget; vector++)
1178 adapter->msix_entries[vector].entry = vector;
1179
1180 err = iavf_acquire_msix_vectors(adapter, v_budget);
1181
1182out:
1183 netif_set_real_num_rx_queues(adapter->netdev, pairs);
1184 netif_set_real_num_tx_queues(adapter->netdev, pairs);
1185 return err;
1186}
1187
1188/**
1189 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1190 * @adapter: board private structure
1191 *
1192 * Return 0 on success, negative on failure
1193 **/
1194static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1195{
1196 struct iavf_aqc_get_set_rss_key_data *rss_key =
1197 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1198 struct iavf_hw *hw = &adapter->hw;
1199 int ret = 0;
1200
1201 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1202 /* bail because we already have a command pending */
1203 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1204 adapter->current_op);
1205 return -EBUSY;
1206 }
1207
1208 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1209 if (ret) {
1210 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1211 iavf_stat_str(hw, ret),
1212 iavf_aq_str(hw, hw->aq.asq_last_status));
1213 return ret;
1214
1215 }
1216
1217 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1218 adapter->rss_lut, adapter->rss_lut_size);
1219 if (ret) {
1220 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1221 iavf_stat_str(hw, ret),
1222 iavf_aq_str(hw, hw->aq.asq_last_status));
1223 }
1224
1225 return ret;
1226
1227}
1228
1229/**
1230 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1231 * @adapter: board private structure
1232 *
1233 * Returns 0 on success, negative on failure
1234 **/
1235static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1236{
1237 struct iavf_hw *hw = &adapter->hw;
1238 u32 *dw;
1239 u16 i;
1240
1241 dw = (u32 *)adapter->rss_key;
1242 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1243 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1244
1245 dw = (u32 *)adapter->rss_lut;
1246 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1247 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1248
1249 iavf_flush(hw);
1250
1251 return 0;
1252}
1253
1254/**
1255 * iavf_config_rss - Configure RSS keys and lut
1256 * @adapter: board private structure
1257 *
1258 * Returns 0 on success, negative on failure
1259 **/
1260int iavf_config_rss(struct iavf_adapter *adapter)
1261{
1262
1263 if (RSS_PF(adapter)) {
1264 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1265 IAVF_FLAG_AQ_SET_RSS_KEY;
1266 return 0;
1267 } else if (RSS_AQ(adapter)) {
1268 return iavf_config_rss_aq(adapter);
1269 } else {
1270 return iavf_config_rss_reg(adapter);
1271 }
1272}
1273
1274/**
1275 * iavf_fill_rss_lut - Fill the lut with default values
1276 * @adapter: board private structure
1277 **/
1278static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1279{
1280 u16 i;
1281
1282 for (i = 0; i < adapter->rss_lut_size; i++)
1283 adapter->rss_lut[i] = i % adapter->num_active_queues;
1284}
1285
1286/**
1287 * iavf_init_rss - Prepare for RSS
1288 * @adapter: board private structure
1289 *
1290 * Return 0 on success, negative on failure
1291 **/
1292static int iavf_init_rss(struct iavf_adapter *adapter)
1293{
1294 struct iavf_hw *hw = &adapter->hw;
1295 int ret;
1296
1297 if (!RSS_PF(adapter)) {
1298 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1299 if (adapter->vf_res->vf_cap_flags &
1300 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1301 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1302 else
1303 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1304
1305 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1306 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1307 }
1308
1309 iavf_fill_rss_lut(adapter);
1310 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1311 ret = iavf_config_rss(adapter);
1312
1313 return ret;
1314}
1315
1316/**
1317 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1318 * @adapter: board private structure to initialize
1319 *
1320 * We allocate one q_vector per queue interrupt. If allocation fails we
1321 * return -ENOMEM.
1322 **/
1323static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1324{
1325 int q_idx = 0, num_q_vectors;
1326 struct iavf_q_vector *q_vector;
1327
1328 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1329 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1330 GFP_KERNEL);
1331 if (!adapter->q_vectors)
1332 return -ENOMEM;
1333
1334 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1335 q_vector = &adapter->q_vectors[q_idx];
1336 q_vector->adapter = adapter;
1337 q_vector->vsi = &adapter->vsi;
1338 q_vector->v_idx = q_idx;
1339 q_vector->reg_idx = q_idx;
1340 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1341 netif_napi_add(adapter->netdev, &q_vector->napi,
1342 iavf_napi_poll, NAPI_POLL_WEIGHT);
1343 }
1344
1345 return 0;
1346}
1347
1348/**
1349 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1350 * @adapter: board private structure to initialize
1351 *
1352 * This function frees the memory allocated to the q_vectors. In addition if
1353 * NAPI is enabled it will delete any references to the NAPI struct prior
1354 * to freeing the q_vector.
1355 **/
1356static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1357{
1358 int q_idx, num_q_vectors;
1359 int napi_vectors;
1360
1361 if (!adapter->q_vectors)
1362 return;
1363
1364 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1365 napi_vectors = adapter->num_active_queues;
1366
1367 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1368 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1369
1370 if (q_idx < napi_vectors)
1371 netif_napi_del(&q_vector->napi);
1372 }
1373 kfree(adapter->q_vectors);
1374 adapter->q_vectors = NULL;
1375}
1376
1377/**
1378 * iavf_reset_interrupt_capability - Reset MSIX setup
1379 * @adapter: board private structure
1380 *
1381 **/
1382void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1383{
1384 if (!adapter->msix_entries)
1385 return;
1386
1387 pci_disable_msix(adapter->pdev);
1388 kfree(adapter->msix_entries);
1389 adapter->msix_entries = NULL;
1390}
1391
1392/**
1393 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1394 * @adapter: board private structure to initialize
1395 *
1396 **/
1397int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1398{
1399 int err;
1400
1401 err = iavf_alloc_queues(adapter);
1402 if (err) {
1403 dev_err(&adapter->pdev->dev,
1404 "Unable to allocate memory for queues\n");
1405 goto err_alloc_queues;
1406 }
1407
1408 rtnl_lock();
1409 err = iavf_set_interrupt_capability(adapter);
1410 rtnl_unlock();
1411 if (err) {
1412 dev_err(&adapter->pdev->dev,
1413 "Unable to setup interrupt capabilities\n");
1414 goto err_set_interrupt;
1415 }
1416
1417 err = iavf_alloc_q_vectors(adapter);
1418 if (err) {
1419 dev_err(&adapter->pdev->dev,
1420 "Unable to allocate memory for queue vectors\n");
1421 goto err_alloc_q_vectors;
1422 }
1423
1424 /* If we've made it so far while ADq flag being ON, then we haven't
1425 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1426 * resources have been allocated in the reset path.
1427 * Now we can truly claim that ADq is enabled.
1428 */
1429 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1430 adapter->num_tc)
1431 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1432 adapter->num_tc);
1433
1434 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1435 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1436 adapter->num_active_queues);
1437
1438 return 0;
1439err_alloc_q_vectors:
1440 iavf_reset_interrupt_capability(adapter);
1441err_set_interrupt:
1442 iavf_free_queues(adapter);
1443err_alloc_queues:
1444 return err;
1445}
1446
1447/**
1448 * iavf_free_rss - Free memory used by RSS structs
1449 * @adapter: board private structure
1450 **/
1451static void iavf_free_rss(struct iavf_adapter *adapter)
1452{
1453 kfree(adapter->rss_key);
1454 adapter->rss_key = NULL;
1455
1456 kfree(adapter->rss_lut);
1457 adapter->rss_lut = NULL;
1458}
1459
1460/**
1461 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1462 * @adapter: board private structure
1463 *
1464 * Returns 0 on success, negative on failure
1465 **/
1466static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1467{
1468 struct net_device *netdev = adapter->netdev;
1469 int err;
1470
1471 if (netif_running(netdev))
1472 iavf_free_traffic_irqs(adapter);
1473 iavf_free_misc_irq(adapter);
1474 iavf_reset_interrupt_capability(adapter);
1475 iavf_free_q_vectors(adapter);
1476 iavf_free_queues(adapter);
1477
1478 err = iavf_init_interrupt_scheme(adapter);
1479 if (err)
1480 goto err;
1481
1482 netif_tx_stop_all_queues(netdev);
1483
1484 err = iavf_request_misc_irq(adapter);
1485 if (err)
1486 goto err;
1487
1488 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1489
1490 iavf_map_rings_to_vectors(adapter);
1491
1492 if (RSS_AQ(adapter))
1493 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1494 else
1495 err = iavf_init_rss(adapter);
1496err:
1497 return err;
1498}
1499
1500/**
1501 * iavf_process_aq_command - process aq_required flags
1502 * and sends aq command
1503 * @adapter: pointer to iavf adapter structure
1504 *
1505 * Returns 0 on success
1506 * Returns error code if no command was sent
1507 * or error code if the command failed.
1508 **/
1509static int iavf_process_aq_command(struct iavf_adapter *adapter)
1510{
1511 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1512 return iavf_send_vf_config_msg(adapter);
1513 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1514 iavf_disable_queues(adapter);
1515 return 0;
1516 }
1517
1518 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1519 iavf_map_queues(adapter);
1520 return 0;
1521 }
1522
1523 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1524 iavf_add_ether_addrs(adapter);
1525 return 0;
1526 }
1527
1528 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1529 iavf_add_vlans(adapter);
1530 return 0;
1531 }
1532
1533 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1534 iavf_del_ether_addrs(adapter);
1535 return 0;
1536 }
1537
1538 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1539 iavf_del_vlans(adapter);
1540 return 0;
1541 }
1542
1543 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1544 iavf_enable_vlan_stripping(adapter);
1545 return 0;
1546 }
1547
1548 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1549 iavf_disable_vlan_stripping(adapter);
1550 return 0;
1551 }
1552
1553 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1554 iavf_configure_queues(adapter);
1555 return 0;
1556 }
1557
1558 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1559 iavf_enable_queues(adapter);
1560 return 0;
1561 }
1562
1563 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1564 /* This message goes straight to the firmware, not the
1565 * PF, so we don't have to set current_op as we will
1566 * not get a response through the ARQ.
1567 */
1568 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1569 return 0;
1570 }
1571 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1572 iavf_get_hena(adapter);
1573 return 0;
1574 }
1575 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1576 iavf_set_hena(adapter);
1577 return 0;
1578 }
1579 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1580 iavf_set_rss_key(adapter);
1581 return 0;
1582 }
1583 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1584 iavf_set_rss_lut(adapter);
1585 return 0;
1586 }
1587
1588 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1589 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1590 FLAG_VF_MULTICAST_PROMISC);
1591 return 0;
1592 }
1593
1594 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1595 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1596 return 0;
1597 }
1598
1599 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1600 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1601 iavf_set_promiscuous(adapter, 0);
1602 return 0;
1603 }
1604
1605 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1606 iavf_enable_channels(adapter);
1607 return 0;
1608 }
1609
1610 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1611 iavf_disable_channels(adapter);
1612 return 0;
1613 }
1614 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1615 iavf_add_cloud_filter(adapter);
1616 return 0;
1617 }
1618
1619 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1620 iavf_del_cloud_filter(adapter);
1621 return 0;
1622 }
1623 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1624 iavf_del_cloud_filter(adapter);
1625 return 0;
1626 }
1627 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1628 iavf_add_cloud_filter(adapter);
1629 return 0;
1630 }
1631 return -EAGAIN;
1632}
1633
1634/**
1635 * iavf_startup - first step of driver startup
1636 * @adapter: board private structure
1637 *
1638 * Function process __IAVF_STARTUP driver state.
1639 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1640 * when fails it returns -EAGAIN
1641 **/
1642static int iavf_startup(struct iavf_adapter *adapter)
1643{
1644 struct pci_dev *pdev = adapter->pdev;
1645 struct iavf_hw *hw = &adapter->hw;
1646 int err;
1647
1648 WARN_ON(adapter->state != __IAVF_STARTUP);
1649
1650 /* driver loaded, probe complete */
1651 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1652 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1653 err = iavf_set_mac_type(hw);
1654 if (err) {
1655 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1656 goto err;
1657 }
1658
1659 err = iavf_check_reset_complete(hw);
1660 if (err) {
1661 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1662 err);
1663 goto err;
1664 }
1665 hw->aq.num_arq_entries = IAVF_AQ_LEN;
1666 hw->aq.num_asq_entries = IAVF_AQ_LEN;
1667 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1668 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1669
1670 err = iavf_init_adminq(hw);
1671 if (err) {
1672 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1673 goto err;
1674 }
1675 err = iavf_send_api_ver(adapter);
1676 if (err) {
1677 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1678 iavf_shutdown_adminq(hw);
1679 goto err;
1680 }
1681 adapter->state = __IAVF_INIT_VERSION_CHECK;
1682err:
1683 return err;
1684}
1685
1686/**
1687 * iavf_init_version_check - second step of driver startup
1688 * @adapter: board private structure
1689 *
1690 * Function process __IAVF_INIT_VERSION_CHECK driver state.
1691 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1692 * when fails it returns -EAGAIN
1693 **/
1694static int iavf_init_version_check(struct iavf_adapter *adapter)
1695{
1696 struct pci_dev *pdev = adapter->pdev;
1697 struct iavf_hw *hw = &adapter->hw;
1698 int err = -EAGAIN;
1699
1700 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1701
1702 if (!iavf_asq_done(hw)) {
1703 dev_err(&pdev->dev, "Admin queue command never completed\n");
1704 iavf_shutdown_adminq(hw);
1705 adapter->state = __IAVF_STARTUP;
1706 goto err;
1707 }
1708
1709 /* aq msg sent, awaiting reply */
1710 err = iavf_verify_api_ver(adapter);
1711 if (err) {
1712 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1713 err = iavf_send_api_ver(adapter);
1714 else
1715 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1716 adapter->pf_version.major,
1717 adapter->pf_version.minor,
1718 VIRTCHNL_VERSION_MAJOR,
1719 VIRTCHNL_VERSION_MINOR);
1720 goto err;
1721 }
1722 err = iavf_send_vf_config_msg(adapter);
1723 if (err) {
1724 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1725 err);
1726 goto err;
1727 }
1728 adapter->state = __IAVF_INIT_GET_RESOURCES;
1729
1730err:
1731 return err;
1732}
1733
1734/**
1735 * iavf_init_get_resources - third step of driver startup
1736 * @adapter: board private structure
1737 *
1738 * Function process __IAVF_INIT_GET_RESOURCES driver state and
1739 * finishes driver initialization procedure.
1740 * When success the state is changed to __IAVF_DOWN
1741 * when fails it returns -EAGAIN
1742 **/
1743static int iavf_init_get_resources(struct iavf_adapter *adapter)
1744{
1745 struct net_device *netdev = adapter->netdev;
1746 struct pci_dev *pdev = adapter->pdev;
1747 struct iavf_hw *hw = &adapter->hw;
1748 int err;
1749
1750 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1751 /* aq msg sent, awaiting reply */
1752 if (!adapter->vf_res) {
1753 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1754 GFP_KERNEL);
1755 if (!adapter->vf_res) {
1756 err = -ENOMEM;
1757 goto err;
1758 }
1759 }
1760 err = iavf_get_vf_config(adapter);
1761 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1762 err = iavf_send_vf_config_msg(adapter);
1763 goto err;
1764 } else if (err == IAVF_ERR_PARAM) {
1765 /* We only get ERR_PARAM if the device is in a very bad
1766 * state or if we've been disabled for previous bad
1767 * behavior. Either way, we're done now.
1768 */
1769 iavf_shutdown_adminq(hw);
1770 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1771 return 0;
1772 }
1773 if (err) {
1774 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1775 goto err_alloc;
1776 }
1777
1778 if (iavf_process_config(adapter))
1779 goto err_alloc;
1780 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1781
1782 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1783
1784 netdev->netdev_ops = &iavf_netdev_ops;
1785 iavf_set_ethtool_ops(netdev);
1786 netdev->watchdog_timeo = 5 * HZ;
1787
1788 /* MTU range: 68 - 9710 */
1789 netdev->min_mtu = ETH_MIN_MTU;
1790 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1791
1792 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1793 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1794 adapter->hw.mac.addr);
1795 eth_hw_addr_random(netdev);
1796 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1797 } else {
1798 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1799 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1800 }
1801
1802 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1803 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1804 err = iavf_init_interrupt_scheme(adapter);
1805 if (err)
1806 goto err_sw_init;
1807 iavf_map_rings_to_vectors(adapter);
1808 if (adapter->vf_res->vf_cap_flags &
1809 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1810 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1811
1812 err = iavf_request_misc_irq(adapter);
1813 if (err)
1814 goto err_sw_init;
1815
1816 netif_carrier_off(netdev);
1817 adapter->link_up = false;
1818
1819 /* set the semaphore to prevent any callbacks after device registration
1820 * up to time when state of driver will be set to __IAVF_DOWN
1821 */
1822 rtnl_lock();
1823 if (!adapter->netdev_registered) {
1824 err = register_netdevice(netdev);
1825 if (err) {
1826 rtnl_unlock();
1827 goto err_register;
1828 }
1829 }
1830
1831 adapter->netdev_registered = true;
1832
1833 netif_tx_stop_all_queues(netdev);
1834 if (CLIENT_ALLOWED(adapter)) {
1835 err = iavf_lan_add_device(adapter);
1836 if (err) {
1837 rtnl_unlock();
1838 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1839 err);
1840 }
1841 }
1842 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1843 if (netdev->features & NETIF_F_GRO)
1844 dev_info(&pdev->dev, "GRO is enabled\n");
1845
1846 adapter->state = __IAVF_DOWN;
1847 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1848 rtnl_unlock();
1849
1850 iavf_misc_irq_enable(adapter);
1851 wake_up(&adapter->down_waitqueue);
1852
1853 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1854 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1855 if (!adapter->rss_key || !adapter->rss_lut) {
1856 err = -ENOMEM;
1857 goto err_mem;
1858 }
1859 if (RSS_AQ(adapter))
1860 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1861 else
1862 iavf_init_rss(adapter);
1863
1864 return err;
1865err_mem:
1866 iavf_free_rss(adapter);
1867err_register:
1868 iavf_free_misc_irq(adapter);
1869err_sw_init:
1870 iavf_reset_interrupt_capability(adapter);
1871err_alloc:
1872 kfree(adapter->vf_res);
1873 adapter->vf_res = NULL;
1874err:
1875 return err;
1876}
1877
1878/**
1879 * iavf_watchdog_task - Periodic call-back task
1880 * @work: pointer to work_struct
1881 **/
1882static void iavf_watchdog_task(struct work_struct *work)
1883{
1884 struct iavf_adapter *adapter = container_of(work,
1885 struct iavf_adapter,
1886 watchdog_task.work);
1887 struct iavf_hw *hw = &adapter->hw;
1888 u32 reg_val;
1889
1890 if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1891 goto restart_watchdog;
1892
1893 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1894 adapter->state = __IAVF_COMM_FAILED;
1895
1896 switch (adapter->state) {
1897 case __IAVF_COMM_FAILED:
1898 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1899 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1900 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1901 reg_val == VIRTCHNL_VFR_COMPLETED) {
1902 /* A chance for redemption! */
1903 dev_err(&adapter->pdev->dev,
1904 "Hardware came out of reset. Attempting reinit.\n");
1905 adapter->state = __IAVF_STARTUP;
1906 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1907 queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1908 clear_bit(__IAVF_IN_CRITICAL_TASK,
1909 &adapter->crit_section);
1910 /* Don't reschedule the watchdog, since we've restarted
1911 * the init task. When init_task contacts the PF and
1912 * gets everything set up again, it'll restart the
1913 * watchdog for us. Down, boy. Sit. Stay. Woof.
1914 */
1915 return;
1916 }
1917 adapter->aq_required = 0;
1918 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1919 clear_bit(__IAVF_IN_CRITICAL_TASK,
1920 &adapter->crit_section);
1921 queue_delayed_work(iavf_wq,
1922 &adapter->watchdog_task,
1923 msecs_to_jiffies(10));
1924 goto watchdog_done;
1925 case __IAVF_RESETTING:
1926 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1927 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1928 return;
1929 case __IAVF_DOWN:
1930 case __IAVF_DOWN_PENDING:
1931 case __IAVF_TESTING:
1932 case __IAVF_RUNNING:
1933 if (adapter->current_op) {
1934 if (!iavf_asq_done(hw)) {
1935 dev_dbg(&adapter->pdev->dev,
1936 "Admin queue timeout\n");
1937 iavf_send_api_ver(adapter);
1938 }
1939 } else {
1940 /* An error will be returned if no commands were
1941 * processed; use this opportunity to update stats
1942 */
1943 if (iavf_process_aq_command(adapter) &&
1944 adapter->state == __IAVF_RUNNING)
1945 iavf_request_stats(adapter);
1946 }
1947 break;
1948 case __IAVF_REMOVE:
1949 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1950 return;
1951 default:
1952 goto restart_watchdog;
1953 }
1954
1955 /* check for hw reset */
1956 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1957 if (!reg_val) {
1958 adapter->state = __IAVF_RESETTING;
1959 adapter->flags |= IAVF_FLAG_RESET_PENDING;
1960 adapter->aq_required = 0;
1961 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1962 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1963 queue_work(iavf_wq, &adapter->reset_task);
1964 goto watchdog_done;
1965 }
1966
1967 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1968watchdog_done:
1969 if (adapter->state == __IAVF_RUNNING ||
1970 adapter->state == __IAVF_COMM_FAILED)
1971 iavf_detect_recover_hung(&adapter->vsi);
1972 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1973restart_watchdog:
1974 if (adapter->aq_required)
1975 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1976 msecs_to_jiffies(20));
1977 else
1978 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1979 queue_work(iavf_wq, &adapter->adminq_task);
1980}
1981
1982static void iavf_disable_vf(struct iavf_adapter *adapter)
1983{
1984 struct iavf_mac_filter *f, *ftmp;
1985 struct iavf_vlan_filter *fv, *fvtmp;
1986 struct iavf_cloud_filter *cf, *cftmp;
1987
1988 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1989
1990 /* We don't use netif_running() because it may be true prior to
1991 * ndo_open() returning, so we can't assume it means all our open
1992 * tasks have finished, since we're not holding the rtnl_lock here.
1993 */
1994 if (adapter->state == __IAVF_RUNNING) {
1995 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1996 netif_carrier_off(adapter->netdev);
1997 netif_tx_disable(adapter->netdev);
1998 adapter->link_up = false;
1999 iavf_napi_disable_all(adapter);
2000 iavf_irq_disable(adapter);
2001 iavf_free_traffic_irqs(adapter);
2002 iavf_free_all_tx_resources(adapter);
2003 iavf_free_all_rx_resources(adapter);
2004 }
2005
2006 spin_lock_bh(&adapter->mac_vlan_list_lock);
2007
2008 /* Delete all of the filters */
2009 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2010 list_del(&f->list);
2011 kfree(f);
2012 }
2013
2014 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2015 list_del(&fv->list);
2016 kfree(fv);
2017 }
2018
2019 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2020
2021 spin_lock_bh(&adapter->cloud_filter_list_lock);
2022 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2023 list_del(&cf->list);
2024 kfree(cf);
2025 adapter->num_cloud_filters--;
2026 }
2027 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2028
2029 iavf_free_misc_irq(adapter);
2030 iavf_reset_interrupt_capability(adapter);
2031 iavf_free_queues(adapter);
2032 iavf_free_q_vectors(adapter);
2033 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2034 iavf_shutdown_adminq(&adapter->hw);
2035 adapter->netdev->flags &= ~IFF_UP;
2036 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2037 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2038 adapter->state = __IAVF_DOWN;
2039 wake_up(&adapter->down_waitqueue);
2040 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2041}
2042
2043/**
2044 * iavf_reset_task - Call-back task to handle hardware reset
2045 * @work: pointer to work_struct
2046 *
2047 * During reset we need to shut down and reinitialize the admin queue
2048 * before we can use it to communicate with the PF again. We also clear
2049 * and reinit the rings because that context is lost as well.
2050 **/
2051static void iavf_reset_task(struct work_struct *work)
2052{
2053 struct iavf_adapter *adapter = container_of(work,
2054 struct iavf_adapter,
2055 reset_task);
2056 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2057 struct net_device *netdev = adapter->netdev;
2058 struct iavf_hw *hw = &adapter->hw;
2059 struct iavf_mac_filter *f, *ftmp;
2060 struct iavf_vlan_filter *vlf;
2061 struct iavf_cloud_filter *cf;
2062 u32 reg_val;
2063 int i = 0, err;
2064 bool running;
2065
2066 /* When device is being removed it doesn't make sense to run the reset
2067 * task, just return in such a case.
2068 */
2069 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2070 return;
2071
2072 while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2073 &adapter->crit_section))
2074 usleep_range(500, 1000);
2075 if (CLIENT_ENABLED(adapter)) {
2076 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2077 IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2078 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2079 IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2080 cancel_delayed_work_sync(&adapter->client_task);
2081 iavf_notify_client_close(&adapter->vsi, true);
2082 }
2083 iavf_misc_irq_disable(adapter);
2084 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2085 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2086 /* Restart the AQ here. If we have been reset but didn't
2087 * detect it, or if the PF had to reinit, our AQ will be hosed.
2088 */
2089 iavf_shutdown_adminq(hw);
2090 iavf_init_adminq(hw);
2091 iavf_request_reset(adapter);
2092 }
2093 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2094
2095 /* poll until we see the reset actually happen */
2096 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2097 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2098 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2099 if (!reg_val)
2100 break;
2101 usleep_range(5000, 10000);
2102 }
2103 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2104 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2105 goto continue_reset; /* act like the reset happened */
2106 }
2107
2108 /* wait until the reset is complete and the PF is responding to us */
2109 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2110 /* sleep first to make sure a minimum wait time is met */
2111 msleep(IAVF_RESET_WAIT_MS);
2112
2113 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2114 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2115 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2116 break;
2117 }
2118
2119 pci_set_master(adapter->pdev);
2120
2121 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2122 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2123 reg_val);
2124 iavf_disable_vf(adapter);
2125 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2126 return; /* Do not attempt to reinit. It's dead, Jim. */
2127 }
2128
2129continue_reset:
2130 /* We don't use netif_running() because it may be true prior to
2131 * ndo_open() returning, so we can't assume it means all our open
2132 * tasks have finished, since we're not holding the rtnl_lock here.
2133 */
2134 running = ((adapter->state == __IAVF_RUNNING) ||
2135 (adapter->state == __IAVF_RESETTING));
2136
2137 if (running) {
2138 netif_carrier_off(netdev);
2139 netif_tx_stop_all_queues(netdev);
2140 adapter->link_up = false;
2141 iavf_napi_disable_all(adapter);
2142 }
2143 iavf_irq_disable(adapter);
2144
2145 adapter->state = __IAVF_RESETTING;
2146 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2147
2148 /* free the Tx/Rx rings and descriptors, might be better to just
2149 * re-use them sometime in the future
2150 */
2151 iavf_free_all_rx_resources(adapter);
2152 iavf_free_all_tx_resources(adapter);
2153
2154 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2155 /* kill and reinit the admin queue */
2156 iavf_shutdown_adminq(hw);
2157 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2158 err = iavf_init_adminq(hw);
2159 if (err)
2160 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2161 err);
2162 adapter->aq_required = 0;
2163
2164 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2165 err = iavf_reinit_interrupt_scheme(adapter);
2166 if (err)
2167 goto reset_err;
2168 }
2169
2170 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2171 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2172
2173 spin_lock_bh(&adapter->mac_vlan_list_lock);
2174
2175 /* Delete filter for the current MAC address, it could have
2176 * been changed by the PF via administratively set MAC.
2177 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2178 */
2179 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2180 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2181 list_del(&f->list);
2182 kfree(f);
2183 }
2184 }
2185 /* re-add all MAC filters */
2186 list_for_each_entry(f, &adapter->mac_filter_list, list) {
2187 f->add = true;
2188 }
2189 /* re-add all VLAN filters */
2190 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2191 vlf->add = true;
2192 }
2193
2194 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2195
2196 /* check if TCs are running and re-add all cloud filters */
2197 spin_lock_bh(&adapter->cloud_filter_list_lock);
2198 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2199 adapter->num_tc) {
2200 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2201 cf->add = true;
2202 }
2203 }
2204 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2205
2206 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2207 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2208 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2209 iavf_misc_irq_enable(adapter);
2210
2211 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2212
2213 /* We were running when the reset started, so we need to restore some
2214 * state here.
2215 */
2216 if (running) {
2217 /* allocate transmit descriptors */
2218 err = iavf_setup_all_tx_resources(adapter);
2219 if (err)
2220 goto reset_err;
2221
2222 /* allocate receive descriptors */
2223 err = iavf_setup_all_rx_resources(adapter);
2224 if (err)
2225 goto reset_err;
2226
2227 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2228 err = iavf_request_traffic_irqs(adapter, netdev->name);
2229 if (err)
2230 goto reset_err;
2231
2232 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2233 }
2234
2235 iavf_configure(adapter);
2236
2237 iavf_up_complete(adapter);
2238
2239 iavf_irq_enable(adapter, true);
2240 } else {
2241 adapter->state = __IAVF_DOWN;
2242 wake_up(&adapter->down_waitqueue);
2243 }
2244 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2245 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2246
2247 return;
2248reset_err:
2249 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2250 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2251 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2252 iavf_close(netdev);
2253}
2254
2255/**
2256 * iavf_adminq_task - worker thread to clean the admin queue
2257 * @work: pointer to work_struct containing our data
2258 **/
2259static void iavf_adminq_task(struct work_struct *work)
2260{
2261 struct iavf_adapter *adapter =
2262 container_of(work, struct iavf_adapter, adminq_task);
2263 struct iavf_hw *hw = &adapter->hw;
2264 struct iavf_arq_event_info event;
2265 enum virtchnl_ops v_op;
2266 enum iavf_status ret, v_ret;
2267 u32 val, oldval;
2268 u16 pending;
2269
2270 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2271 goto out;
2272
2273 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2274 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2275 if (!event.msg_buf)
2276 goto out;
2277
2278 do {
2279 ret = iavf_clean_arq_element(hw, &event, &pending);
2280 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2281 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2282
2283 if (ret || !v_op)
2284 break; /* No event to process or error cleaning ARQ */
2285
2286 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2287 event.msg_len);
2288 if (pending != 0)
2289 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2290 } while (pending);
2291
2292 if ((adapter->flags &
2293 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2294 adapter->state == __IAVF_RESETTING)
2295 goto freedom;
2296
2297 /* check for error indications */
2298 val = rd32(hw, hw->aq.arq.len);
2299 if (val == 0xdeadbeef) /* indicates device in reset */
2300 goto freedom;
2301 oldval = val;
2302 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2303 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2304 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2305 }
2306 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2307 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2308 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2309 }
2310 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2311 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2312 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2313 }
2314 if (oldval != val)
2315 wr32(hw, hw->aq.arq.len, val);
2316
2317 val = rd32(hw, hw->aq.asq.len);
2318 oldval = val;
2319 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2320 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2321 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2322 }
2323 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2324 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2325 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2326 }
2327 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2328 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2329 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2330 }
2331 if (oldval != val)
2332 wr32(hw, hw->aq.asq.len, val);
2333
2334freedom:
2335 kfree(event.msg_buf);
2336out:
2337 /* re-enable Admin queue interrupt cause */
2338 iavf_misc_irq_enable(adapter);
2339}
2340
2341/**
2342 * iavf_client_task - worker thread to perform client work
2343 * @work: pointer to work_struct containing our data
2344 *
2345 * This task handles client interactions. Because client calls can be
2346 * reentrant, we can't handle them in the watchdog.
2347 **/
2348static void iavf_client_task(struct work_struct *work)
2349{
2350 struct iavf_adapter *adapter =
2351 container_of(work, struct iavf_adapter, client_task.work);
2352
2353 /* If we can't get the client bit, just give up. We'll be rescheduled
2354 * later.
2355 */
2356
2357 if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2358 return;
2359
2360 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2361 iavf_client_subtask(adapter);
2362 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2363 goto out;
2364 }
2365 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2366 iavf_notify_client_l2_params(&adapter->vsi);
2367 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2368 goto out;
2369 }
2370 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2371 iavf_notify_client_close(&adapter->vsi, false);
2372 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2373 goto out;
2374 }
2375 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2376 iavf_notify_client_open(&adapter->vsi);
2377 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2378 }
2379out:
2380 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2381}
2382
2383/**
2384 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2385 * @adapter: board private structure
2386 *
2387 * Free all transmit software resources
2388 **/
2389void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2390{
2391 int i;
2392
2393 if (!adapter->tx_rings)
2394 return;
2395
2396 for (i = 0; i < adapter->num_active_queues; i++)
2397 if (adapter->tx_rings[i].desc)
2398 iavf_free_tx_resources(&adapter->tx_rings[i]);
2399}
2400
2401/**
2402 * iavf_setup_all_tx_resources - allocate all queues Tx resources
2403 * @adapter: board private structure
2404 *
2405 * If this function returns with an error, then it's possible one or
2406 * more of the rings is populated (while the rest are not). It is the
2407 * callers duty to clean those orphaned rings.
2408 *
2409 * Return 0 on success, negative on failure
2410 **/
2411static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2412{
2413 int i, err = 0;
2414
2415 for (i = 0; i < adapter->num_active_queues; i++) {
2416 adapter->tx_rings[i].count = adapter->tx_desc_count;
2417 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2418 if (!err)
2419 continue;
2420 dev_err(&adapter->pdev->dev,
2421 "Allocation for Tx Queue %u failed\n", i);
2422 break;
2423 }
2424
2425 return err;
2426}
2427
2428/**
2429 * iavf_setup_all_rx_resources - allocate all queues Rx resources
2430 * @adapter: board private structure
2431 *
2432 * If this function returns with an error, then it's possible one or
2433 * more of the rings is populated (while the rest are not). It is the
2434 * callers duty to clean those orphaned rings.
2435 *
2436 * Return 0 on success, negative on failure
2437 **/
2438static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2439{
2440 int i, err = 0;
2441
2442 for (i = 0; i < adapter->num_active_queues; i++) {
2443 adapter->rx_rings[i].count = adapter->rx_desc_count;
2444 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2445 if (!err)
2446 continue;
2447 dev_err(&adapter->pdev->dev,
2448 "Allocation for Rx Queue %u failed\n", i);
2449 break;
2450 }
2451 return err;
2452}
2453
2454/**
2455 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2456 * @adapter: board private structure
2457 *
2458 * Free all receive software resources
2459 **/
2460void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2461{
2462 int i;
2463
2464 if (!adapter->rx_rings)
2465 return;
2466
2467 for (i = 0; i < adapter->num_active_queues; i++)
2468 if (adapter->rx_rings[i].desc)
2469 iavf_free_rx_resources(&adapter->rx_rings[i]);
2470}
2471
2472/**
2473 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2474 * @adapter: board private structure
2475 * @max_tx_rate: max Tx bw for a tc
2476 **/
2477static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2478 u64 max_tx_rate)
2479{
2480 int speed = 0, ret = 0;
2481
2482 if (ADV_LINK_SUPPORT(adapter)) {
2483 if (adapter->link_speed_mbps < U32_MAX) {
2484 speed = adapter->link_speed_mbps;
2485 goto validate_bw;
2486 } else {
2487 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2488 return -EINVAL;
2489 }
2490 }
2491
2492 switch (adapter->link_speed) {
2493 case VIRTCHNL_LINK_SPEED_40GB:
2494 speed = SPEED_40000;
2495 break;
2496 case VIRTCHNL_LINK_SPEED_25GB:
2497 speed = SPEED_25000;
2498 break;
2499 case VIRTCHNL_LINK_SPEED_20GB:
2500 speed = SPEED_20000;
2501 break;
2502 case VIRTCHNL_LINK_SPEED_10GB:
2503 speed = SPEED_10000;
2504 break;
2505 case VIRTCHNL_LINK_SPEED_5GB:
2506 speed = SPEED_5000;
2507 break;
2508 case VIRTCHNL_LINK_SPEED_2_5GB:
2509 speed = SPEED_2500;
2510 break;
2511 case VIRTCHNL_LINK_SPEED_1GB:
2512 speed = SPEED_1000;
2513 break;
2514 case VIRTCHNL_LINK_SPEED_100MB:
2515 speed = SPEED_100;
2516 break;
2517 default:
2518 break;
2519 }
2520
2521validate_bw:
2522 if (max_tx_rate > speed) {
2523 dev_err(&adapter->pdev->dev,
2524 "Invalid tx rate specified\n");
2525 ret = -EINVAL;
2526 }
2527
2528 return ret;
2529}
2530
2531/**
2532 * iavf_validate_channel_config - validate queue mapping info
2533 * @adapter: board private structure
2534 * @mqprio_qopt: queue parameters
2535 *
2536 * This function validates if the config provided by the user to
2537 * configure queue channels is valid or not. Returns 0 on a valid
2538 * config.
2539 **/
2540static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2541 struct tc_mqprio_qopt_offload *mqprio_qopt)
2542{
2543 u64 total_max_rate = 0;
2544 int i, num_qps = 0;
2545 u64 tx_rate = 0;
2546 int ret = 0;
2547
2548 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2549 mqprio_qopt->qopt.num_tc < 1)
2550 return -EINVAL;
2551
2552 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2553 if (!mqprio_qopt->qopt.count[i] ||
2554 mqprio_qopt->qopt.offset[i] != num_qps)
2555 return -EINVAL;
2556 if (mqprio_qopt->min_rate[i]) {
2557 dev_err(&adapter->pdev->dev,
2558 "Invalid min tx rate (greater than 0) specified\n");
2559 return -EINVAL;
2560 }
2561 /*convert to Mbps */
2562 tx_rate = div_u64(mqprio_qopt->max_rate[i],
2563 IAVF_MBPS_DIVISOR);
2564 total_max_rate += tx_rate;
2565 num_qps += mqprio_qopt->qopt.count[i];
2566 }
2567 if (num_qps > IAVF_MAX_REQ_QUEUES)
2568 return -EINVAL;
2569
2570 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2571 return ret;
2572}
2573
2574/**
2575 * iavf_del_all_cloud_filters - delete all cloud filters
2576 * on the traffic classes
2577 **/
2578static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2579{
2580 struct iavf_cloud_filter *cf, *cftmp;
2581
2582 spin_lock_bh(&adapter->cloud_filter_list_lock);
2583 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2584 list) {
2585 list_del(&cf->list);
2586 kfree(cf);
2587 adapter->num_cloud_filters--;
2588 }
2589 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2590}
2591
2592/**
2593 * __iavf_setup_tc - configure multiple traffic classes
2594 * @netdev: network interface device structure
2595 * @type_date: tc offload data
2596 *
2597 * This function processes the config information provided by the
2598 * user to configure traffic classes/queue channels and packages the
2599 * information to request the PF to setup traffic classes.
2600 *
2601 * Returns 0 on success.
2602 **/
2603static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2604{
2605 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2606 struct iavf_adapter *adapter = netdev_priv(netdev);
2607 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2608 u8 num_tc = 0, total_qps = 0;
2609 int ret = 0, netdev_tc = 0;
2610 u64 max_tx_rate;
2611 u16 mode;
2612 int i;
2613
2614 num_tc = mqprio_qopt->qopt.num_tc;
2615 mode = mqprio_qopt->mode;
2616
2617 /* delete queue_channel */
2618 if (!mqprio_qopt->qopt.hw) {
2619 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2620 /* reset the tc configuration */
2621 netdev_reset_tc(netdev);
2622 adapter->num_tc = 0;
2623 netif_tx_stop_all_queues(netdev);
2624 netif_tx_disable(netdev);
2625 iavf_del_all_cloud_filters(adapter);
2626 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2627 goto exit;
2628 } else {
2629 return -EINVAL;
2630 }
2631 }
2632
2633 /* add queue channel */
2634 if (mode == TC_MQPRIO_MODE_CHANNEL) {
2635 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2636 dev_err(&adapter->pdev->dev, "ADq not supported\n");
2637 return -EOPNOTSUPP;
2638 }
2639 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2640 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2641 return -EINVAL;
2642 }
2643
2644 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2645 if (ret)
2646 return ret;
2647 /* Return if same TC config is requested */
2648 if (adapter->num_tc == num_tc)
2649 return 0;
2650 adapter->num_tc = num_tc;
2651
2652 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2653 if (i < num_tc) {
2654 adapter->ch_config.ch_info[i].count =
2655 mqprio_qopt->qopt.count[i];
2656 adapter->ch_config.ch_info[i].offset =
2657 mqprio_qopt->qopt.offset[i];
2658 total_qps += mqprio_qopt->qopt.count[i];
2659 max_tx_rate = mqprio_qopt->max_rate[i];
2660 /* convert to Mbps */
2661 max_tx_rate = div_u64(max_tx_rate,
2662 IAVF_MBPS_DIVISOR);
2663 adapter->ch_config.ch_info[i].max_tx_rate =
2664 max_tx_rate;
2665 } else {
2666 adapter->ch_config.ch_info[i].count = 1;
2667 adapter->ch_config.ch_info[i].offset = 0;
2668 }
2669 }
2670 adapter->ch_config.total_qps = total_qps;
2671 netif_tx_stop_all_queues(netdev);
2672 netif_tx_disable(netdev);
2673 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2674 netdev_reset_tc(netdev);
2675 /* Report the tc mapping up the stack */
2676 netdev_set_num_tc(adapter->netdev, num_tc);
2677 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2678 u16 qcount = mqprio_qopt->qopt.count[i];
2679 u16 qoffset = mqprio_qopt->qopt.offset[i];
2680
2681 if (i < num_tc)
2682 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2683 qoffset);
2684 }
2685 }
2686exit:
2687 return ret;
2688}
2689
2690/**
2691 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2692 * @adapter: board private structure
2693 * @cls_flower: pointer to struct flow_cls_offload
2694 * @filter: pointer to cloud filter structure
2695 */
2696static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2697 struct flow_cls_offload *f,
2698 struct iavf_cloud_filter *filter)
2699{
2700 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2701 struct flow_dissector *dissector = rule->match.dissector;
2702 u16 n_proto_mask = 0;
2703 u16 n_proto_key = 0;
2704 u8 field_flags = 0;
2705 u16 addr_type = 0;
2706 u16 n_proto = 0;
2707 int i = 0;
2708 struct virtchnl_filter *vf = &filter->f;
2709
2710 if (dissector->used_keys &
2711 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2712 BIT(FLOW_DISSECTOR_KEY_BASIC) |
2713 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2714 BIT(FLOW_DISSECTOR_KEY_VLAN) |
2715 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2716 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2717 BIT(FLOW_DISSECTOR_KEY_PORTS) |
2718 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2719 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2720 dissector->used_keys);
2721 return -EOPNOTSUPP;
2722 }
2723
2724 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2725 struct flow_match_enc_keyid match;
2726
2727 flow_rule_match_enc_keyid(rule, &match);
2728 if (match.mask->keyid != 0)
2729 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2730 }
2731
2732 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2733 struct flow_match_basic match;
2734
2735 flow_rule_match_basic(rule, &match);
2736 n_proto_key = ntohs(match.key->n_proto);
2737 n_proto_mask = ntohs(match.mask->n_proto);
2738
2739 if (n_proto_key == ETH_P_ALL) {
2740 n_proto_key = 0;
2741 n_proto_mask = 0;
2742 }
2743 n_proto = n_proto_key & n_proto_mask;
2744 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2745 return -EINVAL;
2746 if (n_proto == ETH_P_IPV6) {
2747 /* specify flow type as TCP IPv6 */
2748 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2749 }
2750
2751 if (match.key->ip_proto != IPPROTO_TCP) {
2752 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2753 return -EINVAL;
2754 }
2755 }
2756
2757 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2758 struct flow_match_eth_addrs match;
2759
2760 flow_rule_match_eth_addrs(rule, &match);
2761
2762 /* use is_broadcast and is_zero to check for all 0xf or 0 */
2763 if (!is_zero_ether_addr(match.mask->dst)) {
2764 if (is_broadcast_ether_addr(match.mask->dst)) {
2765 field_flags |= IAVF_CLOUD_FIELD_OMAC;
2766 } else {
2767 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2768 match.mask->dst);
2769 return IAVF_ERR_CONFIG;
2770 }
2771 }
2772
2773 if (!is_zero_ether_addr(match.mask->src)) {
2774 if (is_broadcast_ether_addr(match.mask->src)) {
2775 field_flags |= IAVF_CLOUD_FIELD_IMAC;
2776 } else {
2777 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2778 match.mask->src);
2779 return IAVF_ERR_CONFIG;
2780 }
2781 }
2782
2783 if (!is_zero_ether_addr(match.key->dst))
2784 if (is_valid_ether_addr(match.key->dst) ||
2785 is_multicast_ether_addr(match.key->dst)) {
2786 /* set the mask if a valid dst_mac address */
2787 for (i = 0; i < ETH_ALEN; i++)
2788 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2789 ether_addr_copy(vf->data.tcp_spec.dst_mac,
2790 match.key->dst);
2791 }
2792
2793 if (!is_zero_ether_addr(match.key->src))
2794 if (is_valid_ether_addr(match.key->src) ||
2795 is_multicast_ether_addr(match.key->src)) {
2796 /* set the mask if a valid dst_mac address */
2797 for (i = 0; i < ETH_ALEN; i++)
2798 vf->mask.tcp_spec.src_mac[i] |= 0xff;
2799 ether_addr_copy(vf->data.tcp_spec.src_mac,
2800 match.key->src);
2801 }
2802 }
2803
2804 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2805 struct flow_match_vlan match;
2806
2807 flow_rule_match_vlan(rule, &match);
2808 if (match.mask->vlan_id) {
2809 if (match.mask->vlan_id == VLAN_VID_MASK) {
2810 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2811 } else {
2812 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2813 match.mask->vlan_id);
2814 return IAVF_ERR_CONFIG;
2815 }
2816 }
2817 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2818 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2819 }
2820
2821 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2822 struct flow_match_control match;
2823
2824 flow_rule_match_control(rule, &match);
2825 addr_type = match.key->addr_type;
2826 }
2827
2828 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2829 struct flow_match_ipv4_addrs match;
2830
2831 flow_rule_match_ipv4_addrs(rule, &match);
2832 if (match.mask->dst) {
2833 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2834 field_flags |= IAVF_CLOUD_FIELD_IIP;
2835 } else {
2836 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2837 be32_to_cpu(match.mask->dst));
2838 return IAVF_ERR_CONFIG;
2839 }
2840 }
2841
2842 if (match.mask->src) {
2843 if (match.mask->src == cpu_to_be32(0xffffffff)) {
2844 field_flags |= IAVF_CLOUD_FIELD_IIP;
2845 } else {
2846 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2847 be32_to_cpu(match.mask->dst));
2848 return IAVF_ERR_CONFIG;
2849 }
2850 }
2851
2852 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2853 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2854 return IAVF_ERR_CONFIG;
2855 }
2856 if (match.key->dst) {
2857 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2858 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2859 }
2860 if (match.key->src) {
2861 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2862 vf->data.tcp_spec.src_ip[0] = match.key->src;
2863 }
2864 }
2865
2866 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2867 struct flow_match_ipv6_addrs match;
2868
2869 flow_rule_match_ipv6_addrs(rule, &match);
2870
2871 /* validate mask, make sure it is not IPV6_ADDR_ANY */
2872 if (ipv6_addr_any(&match.mask->dst)) {
2873 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2874 IPV6_ADDR_ANY);
2875 return IAVF_ERR_CONFIG;
2876 }
2877
2878 /* src and dest IPv6 address should not be LOOPBACK
2879 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2880 */
2881 if (ipv6_addr_loopback(&match.key->dst) ||
2882 ipv6_addr_loopback(&match.key->src)) {
2883 dev_err(&adapter->pdev->dev,
2884 "ipv6 addr should not be loopback\n");
2885 return IAVF_ERR_CONFIG;
2886 }
2887 if (!ipv6_addr_any(&match.mask->dst) ||
2888 !ipv6_addr_any(&match.mask->src))
2889 field_flags |= IAVF_CLOUD_FIELD_IIP;
2890
2891 for (i = 0; i < 4; i++)
2892 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2893 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2894 sizeof(vf->data.tcp_spec.dst_ip));
2895 for (i = 0; i < 4; i++)
2896 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2897 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2898 sizeof(vf->data.tcp_spec.src_ip));
2899 }
2900 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2901 struct flow_match_ports match;
2902
2903 flow_rule_match_ports(rule, &match);
2904 if (match.mask->src) {
2905 if (match.mask->src == cpu_to_be16(0xffff)) {
2906 field_flags |= IAVF_CLOUD_FIELD_IIP;
2907 } else {
2908 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2909 be16_to_cpu(match.mask->src));
2910 return IAVF_ERR_CONFIG;
2911 }
2912 }
2913
2914 if (match.mask->dst) {
2915 if (match.mask->dst == cpu_to_be16(0xffff)) {
2916 field_flags |= IAVF_CLOUD_FIELD_IIP;
2917 } else {
2918 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2919 be16_to_cpu(match.mask->dst));
2920 return IAVF_ERR_CONFIG;
2921 }
2922 }
2923 if (match.key->dst) {
2924 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2925 vf->data.tcp_spec.dst_port = match.key->dst;
2926 }
2927
2928 if (match.key->src) {
2929 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2930 vf->data.tcp_spec.src_port = match.key->src;
2931 }
2932 }
2933 vf->field_flags = field_flags;
2934
2935 return 0;
2936}
2937
2938/**
2939 * iavf_handle_tclass - Forward to a traffic class on the device
2940 * @adapter: board private structure
2941 * @tc: traffic class index on the device
2942 * @filter: pointer to cloud filter structure
2943 */
2944static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2945 struct iavf_cloud_filter *filter)
2946{
2947 if (tc == 0)
2948 return 0;
2949 if (tc < adapter->num_tc) {
2950 if (!filter->f.data.tcp_spec.dst_port) {
2951 dev_err(&adapter->pdev->dev,
2952 "Specify destination port to redirect to traffic class other than TC0\n");
2953 return -EINVAL;
2954 }
2955 }
2956 /* redirect to a traffic class on the same device */
2957 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2958 filter->f.action_meta = tc;
2959 return 0;
2960}
2961
2962/**
2963 * iavf_configure_clsflower - Add tc flower filters
2964 * @adapter: board private structure
2965 * @cls_flower: Pointer to struct flow_cls_offload
2966 */
2967static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2968 struct flow_cls_offload *cls_flower)
2969{
2970 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2971 struct iavf_cloud_filter *filter = NULL;
2972 int err = -EINVAL, count = 50;
2973
2974 if (tc < 0) {
2975 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2976 return -EINVAL;
2977 }
2978
2979 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2980 if (!filter)
2981 return -ENOMEM;
2982
2983 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2984 &adapter->crit_section)) {
2985 if (--count == 0)
2986 goto err;
2987 udelay(1);
2988 }
2989
2990 filter->cookie = cls_flower->cookie;
2991
2992 /* set the mask to all zeroes to begin with */
2993 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
2994 /* start out with flow type and eth type IPv4 to begin with */
2995 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
2996 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
2997 if (err < 0)
2998 goto err;
2999
3000 err = iavf_handle_tclass(adapter, tc, filter);
3001 if (err < 0)
3002 goto err;
3003
3004 /* add filter to the list */
3005 spin_lock_bh(&adapter->cloud_filter_list_lock);
3006 list_add_tail(&filter->list, &adapter->cloud_filter_list);
3007 adapter->num_cloud_filters++;
3008 filter->add = true;
3009 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3010 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3011err:
3012 if (err)
3013 kfree(filter);
3014
3015 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3016 return err;
3017}
3018
3019/* iavf_find_cf - Find the cloud filter in the list
3020 * @adapter: Board private structure
3021 * @cookie: filter specific cookie
3022 *
3023 * Returns ptr to the filter object or NULL. Must be called while holding the
3024 * cloud_filter_list_lock.
3025 */
3026static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3027 unsigned long *cookie)
3028{
3029 struct iavf_cloud_filter *filter = NULL;
3030
3031 if (!cookie)
3032 return NULL;
3033
3034 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3035 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3036 return filter;
3037 }
3038 return NULL;
3039}
3040
3041/**
3042 * iavf_delete_clsflower - Remove tc flower filters
3043 * @adapter: board private structure
3044 * @cls_flower: Pointer to struct flow_cls_offload
3045 */
3046static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3047 struct flow_cls_offload *cls_flower)
3048{
3049 struct iavf_cloud_filter *filter = NULL;
3050 int err = 0;
3051
3052 spin_lock_bh(&adapter->cloud_filter_list_lock);
3053 filter = iavf_find_cf(adapter, &cls_flower->cookie);
3054 if (filter) {
3055 filter->del = true;
3056 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3057 } else {
3058 err = -EINVAL;
3059 }
3060 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3061
3062 return err;
3063}
3064
3065/**
3066 * iavf_setup_tc_cls_flower - flower classifier offloads
3067 * @netdev: net device to configure
3068 * @type_data: offload data
3069 */
3070static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3071 struct flow_cls_offload *cls_flower)
3072{
3073 switch (cls_flower->command) {
3074 case FLOW_CLS_REPLACE:
3075 return iavf_configure_clsflower(adapter, cls_flower);
3076 case FLOW_CLS_DESTROY:
3077 return iavf_delete_clsflower(adapter, cls_flower);
3078 case FLOW_CLS_STATS:
3079 return -EOPNOTSUPP;
3080 default:
3081 return -EOPNOTSUPP;
3082 }
3083}
3084
3085/**
3086 * iavf_setup_tc_block_cb - block callback for tc
3087 * @type: type of offload
3088 * @type_data: offload data
3089 * @cb_priv:
3090 *
3091 * This function is the block callback for traffic classes
3092 **/
3093static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3094 void *cb_priv)
3095{
3096 struct iavf_adapter *adapter = cb_priv;
3097
3098 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3099 return -EOPNOTSUPP;
3100
3101 switch (type) {
3102 case TC_SETUP_CLSFLOWER:
3103 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3104 default:
3105 return -EOPNOTSUPP;
3106 }
3107}
3108
3109static LIST_HEAD(iavf_block_cb_list);
3110
3111/**
3112 * iavf_setup_tc - configure multiple traffic classes
3113 * @netdev: network interface device structure
3114 * @type: type of offload
3115 * @type_date: tc offload data
3116 *
3117 * This function is the callback to ndo_setup_tc in the
3118 * netdev_ops.
3119 *
3120 * Returns 0 on success
3121 **/
3122static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3123 void *type_data)
3124{
3125 struct iavf_adapter *adapter = netdev_priv(netdev);
3126
3127 switch (type) {
3128 case TC_SETUP_QDISC_MQPRIO:
3129 return __iavf_setup_tc(netdev, type_data);
3130 case TC_SETUP_BLOCK:
3131 return flow_block_cb_setup_simple(type_data,
3132 &iavf_block_cb_list,
3133 iavf_setup_tc_block_cb,
3134 adapter, adapter, true);
3135 default:
3136 return -EOPNOTSUPP;
3137 }
3138}
3139
3140/**
3141 * iavf_open - Called when a network interface is made active
3142 * @netdev: network interface device structure
3143 *
3144 * Returns 0 on success, negative value on failure
3145 *
3146 * The open entry point is called when a network interface is made
3147 * active by the system (IFF_UP). At this point all resources needed
3148 * for transmit and receive operations are allocated, the interrupt
3149 * handler is registered with the OS, the watchdog is started,
3150 * and the stack is notified that the interface is ready.
3151 **/
3152static int iavf_open(struct net_device *netdev)
3153{
3154 struct iavf_adapter *adapter = netdev_priv(netdev);
3155 int err;
3156
3157 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3158 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3159 return -EIO;
3160 }
3161
3162 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3163 &adapter->crit_section))
3164 usleep_range(500, 1000);
3165
3166 if (adapter->state != __IAVF_DOWN) {
3167 err = -EBUSY;
3168 goto err_unlock;
3169 }
3170
3171 /* allocate transmit descriptors */
3172 err = iavf_setup_all_tx_resources(adapter);
3173 if (err)
3174 goto err_setup_tx;
3175
3176 /* allocate receive descriptors */
3177 err = iavf_setup_all_rx_resources(adapter);
3178 if (err)
3179 goto err_setup_rx;
3180
3181 /* clear any pending interrupts, may auto mask */
3182 err = iavf_request_traffic_irqs(adapter, netdev->name);
3183 if (err)
3184 goto err_req_irq;
3185
3186 spin_lock_bh(&adapter->mac_vlan_list_lock);
3187
3188 iavf_add_filter(adapter, adapter->hw.mac.addr);
3189
3190 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3191
3192 iavf_configure(adapter);
3193
3194 iavf_up_complete(adapter);
3195
3196 iavf_irq_enable(adapter, true);
3197
3198 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3199
3200 return 0;
3201
3202err_req_irq:
3203 iavf_down(adapter);
3204 iavf_free_traffic_irqs(adapter);
3205err_setup_rx:
3206 iavf_free_all_rx_resources(adapter);
3207err_setup_tx:
3208 iavf_free_all_tx_resources(adapter);
3209err_unlock:
3210 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3211
3212 return err;
3213}
3214
3215/**
3216 * iavf_close - Disables a network interface
3217 * @netdev: network interface device structure
3218 *
3219 * Returns 0, this is not allowed to fail
3220 *
3221 * The close entry point is called when an interface is de-activated
3222 * by the OS. The hardware is still under the drivers control, but
3223 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3224 * are freed, along with all transmit and receive resources.
3225 **/
3226static int iavf_close(struct net_device *netdev)
3227{
3228 struct iavf_adapter *adapter = netdev_priv(netdev);
3229 int status;
3230
3231 if (adapter->state <= __IAVF_DOWN_PENDING)
3232 return 0;
3233
3234 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3235 &adapter->crit_section))
3236 usleep_range(500, 1000);
3237
3238 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3239 if (CLIENT_ENABLED(adapter))
3240 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3241
3242 iavf_down(adapter);
3243 adapter->state = __IAVF_DOWN_PENDING;
3244 iavf_free_traffic_irqs(adapter);
3245
3246 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3247
3248 /* We explicitly don't free resources here because the hardware is
3249 * still active and can DMA into memory. Resources are cleared in
3250 * iavf_virtchnl_completion() after we get confirmation from the PF
3251 * driver that the rings have been stopped.
3252 *
3253 * Also, we wait for state to transition to __IAVF_DOWN before
3254 * returning. State change occurs in iavf_virtchnl_completion() after
3255 * VF resources are released (which occurs after PF driver processes and
3256 * responds to admin queue commands).
3257 */
3258
3259 status = wait_event_timeout(adapter->down_waitqueue,
3260 adapter->state == __IAVF_DOWN,
3261 msecs_to_jiffies(500));
3262 if (!status)
3263 netdev_warn(netdev, "Device resources not yet released\n");
3264 return 0;
3265}
3266
3267/**
3268 * iavf_change_mtu - Change the Maximum Transfer Unit
3269 * @netdev: network interface device structure
3270 * @new_mtu: new value for maximum frame size
3271 *
3272 * Returns 0 on success, negative on failure
3273 **/
3274static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3275{
3276 struct iavf_adapter *adapter = netdev_priv(netdev);
3277
3278 netdev->mtu = new_mtu;
3279 if (CLIENT_ENABLED(adapter)) {
3280 iavf_notify_client_l2_params(&adapter->vsi);
3281 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3282 }
3283 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3284 queue_work(iavf_wq, &adapter->reset_task);
3285
3286 return 0;
3287}
3288
3289/**
3290 * iavf_set_features - set the netdev feature flags
3291 * @netdev: ptr to the netdev being adjusted
3292 * @features: the feature set that the stack is suggesting
3293 * Note: expects to be called while under rtnl_lock()
3294 **/
3295static int iavf_set_features(struct net_device *netdev,
3296 netdev_features_t features)
3297{
3298 struct iavf_adapter *adapter = netdev_priv(netdev);
3299
3300 /* Don't allow changing VLAN_RX flag when adapter is not capable
3301 * of VLAN offload
3302 */
3303 if (!VLAN_ALLOWED(adapter)) {
3304 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3305 return -EINVAL;
3306 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3307 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3308 adapter->aq_required |=
3309 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3310 else
3311 adapter->aq_required |=
3312 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3313 }
3314
3315 return 0;
3316}
3317
3318/**
3319 * iavf_features_check - Validate encapsulated packet conforms to limits
3320 * @skb: skb buff
3321 * @dev: This physical port's netdev
3322 * @features: Offload features that the stack believes apply
3323 **/
3324static netdev_features_t iavf_features_check(struct sk_buff *skb,
3325 struct net_device *dev,
3326 netdev_features_t features)
3327{
3328 size_t len;
3329
3330 /* No point in doing any of this if neither checksum nor GSO are
3331 * being requested for this frame. We can rule out both by just
3332 * checking for CHECKSUM_PARTIAL
3333 */
3334 if (skb->ip_summed != CHECKSUM_PARTIAL)
3335 return features;
3336
3337 /* We cannot support GSO if the MSS is going to be less than
3338 * 64 bytes. If it is then we need to drop support for GSO.
3339 */
3340 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3341 features &= ~NETIF_F_GSO_MASK;
3342
3343 /* MACLEN can support at most 63 words */
3344 len = skb_network_header(skb) - skb->data;
3345 if (len & ~(63 * 2))
3346 goto out_err;
3347
3348 /* IPLEN and EIPLEN can support at most 127 dwords */
3349 len = skb_transport_header(skb) - skb_network_header(skb);
3350 if (len & ~(127 * 4))
3351 goto out_err;
3352
3353 if (skb->encapsulation) {
3354 /* L4TUNLEN can support 127 words */
3355 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3356 if (len & ~(127 * 2))
3357 goto out_err;
3358
3359 /* IPLEN can support at most 127 dwords */
3360 len = skb_inner_transport_header(skb) -
3361 skb_inner_network_header(skb);
3362 if (len & ~(127 * 4))
3363 goto out_err;
3364 }
3365
3366 /* No need to validate L4LEN as TCP is the only protocol with a
3367 * a flexible value and we support all possible values supported
3368 * by TCP, which is at most 15 dwords
3369 */
3370
3371 return features;
3372out_err:
3373 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3374}
3375
3376/**
3377 * iavf_fix_features - fix up the netdev feature bits
3378 * @netdev: our net device
3379 * @features: desired feature bits
3380 *
3381 * Returns fixed-up features bits
3382 **/
3383static netdev_features_t iavf_fix_features(struct net_device *netdev,
3384 netdev_features_t features)
3385{
3386 struct iavf_adapter *adapter = netdev_priv(netdev);
3387
3388 if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3389 features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3390 NETIF_F_HW_VLAN_CTAG_RX |
3391 NETIF_F_HW_VLAN_CTAG_FILTER);
3392
3393 return features;
3394}
3395
3396static const struct net_device_ops iavf_netdev_ops = {
3397 .ndo_open = iavf_open,
3398 .ndo_stop = iavf_close,
3399 .ndo_start_xmit = iavf_xmit_frame,
3400 .ndo_set_rx_mode = iavf_set_rx_mode,
3401 .ndo_validate_addr = eth_validate_addr,
3402 .ndo_set_mac_address = iavf_set_mac,
3403 .ndo_change_mtu = iavf_change_mtu,
3404 .ndo_tx_timeout = iavf_tx_timeout,
3405 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
3406 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
3407 .ndo_features_check = iavf_features_check,
3408 .ndo_fix_features = iavf_fix_features,
3409 .ndo_set_features = iavf_set_features,
3410 .ndo_setup_tc = iavf_setup_tc,
3411};
3412
3413/**
3414 * iavf_check_reset_complete - check that VF reset is complete
3415 * @hw: pointer to hw struct
3416 *
3417 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3418 **/
3419static int iavf_check_reset_complete(struct iavf_hw *hw)
3420{
3421 u32 rstat;
3422 int i;
3423
3424 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3425 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3426 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3427 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3428 (rstat == VIRTCHNL_VFR_COMPLETED))
3429 return 0;
3430 usleep_range(10, 20);
3431 }
3432 return -EBUSY;
3433}
3434
3435/**
3436 * iavf_process_config - Process the config information we got from the PF
3437 * @adapter: board private structure
3438 *
3439 * Verify that we have a valid config struct, and set up our netdev features
3440 * and our VSI struct.
3441 **/
3442int iavf_process_config(struct iavf_adapter *adapter)
3443{
3444 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3445 int i, num_req_queues = adapter->num_req_queues;
3446 struct net_device *netdev = adapter->netdev;
3447 struct iavf_vsi *vsi = &adapter->vsi;
3448 netdev_features_t hw_enc_features;
3449 netdev_features_t hw_features;
3450
3451 /* got VF config message back from PF, now we can parse it */
3452 for (i = 0; i < vfres->num_vsis; i++) {
3453 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3454 adapter->vsi_res = &vfres->vsi_res[i];
3455 }
3456 if (!adapter->vsi_res) {
3457 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3458 return -ENODEV;
3459 }
3460
3461 if (num_req_queues &&
3462 num_req_queues > adapter->vsi_res->num_queue_pairs) {
3463 /* Problem. The PF gave us fewer queues than what we had
3464 * negotiated in our request. Need a reset to see if we can't
3465 * get back to a working state.
3466 */
3467 dev_err(&adapter->pdev->dev,
3468 "Requested %d queues, but PF only gave us %d.\n",
3469 num_req_queues,
3470 adapter->vsi_res->num_queue_pairs);
3471 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3472 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3473 iavf_schedule_reset(adapter);
3474 return -ENODEV;
3475 }
3476 adapter->num_req_queues = 0;
3477
3478 hw_enc_features = NETIF_F_SG |
3479 NETIF_F_IP_CSUM |
3480 NETIF_F_IPV6_CSUM |
3481 NETIF_F_HIGHDMA |
3482 NETIF_F_SOFT_FEATURES |
3483 NETIF_F_TSO |
3484 NETIF_F_TSO_ECN |
3485 NETIF_F_TSO6 |
3486 NETIF_F_SCTP_CRC |
3487 NETIF_F_RXHASH |
3488 NETIF_F_RXCSUM |
3489 0;
3490
3491 /* advertise to stack only if offloads for encapsulated packets is
3492 * supported
3493 */
3494 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3495 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
3496 NETIF_F_GSO_GRE |
3497 NETIF_F_GSO_GRE_CSUM |
3498 NETIF_F_GSO_IPXIP4 |
3499 NETIF_F_GSO_IPXIP6 |
3500 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3501 NETIF_F_GSO_PARTIAL |
3502 0;
3503
3504 if (!(vfres->vf_cap_flags &
3505 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3506 netdev->gso_partial_features |=
3507 NETIF_F_GSO_UDP_TUNNEL_CSUM;
3508
3509 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3510 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3511 netdev->hw_enc_features |= hw_enc_features;
3512 }
3513 /* record features VLANs can make use of */
3514 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3515
3516 /* Write features and hw_features separately to avoid polluting
3517 * with, or dropping, features that are set when we registered.
3518 */
3519 hw_features = hw_enc_features;
3520
3521 /* Enable VLAN features if supported */
3522 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3523 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3524 NETIF_F_HW_VLAN_CTAG_RX);
3525 /* Enable cloud filter if ADQ is supported */
3526 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3527 hw_features |= NETIF_F_HW_TC;
3528
3529 netdev->hw_features |= hw_features;
3530
3531 netdev->features |= hw_features;
3532
3533 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3534 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3535
3536 netdev->priv_flags |= IFF_UNICAST_FLT;
3537
3538 /* Do not turn on offloads when they are requested to be turned off.
3539 * TSO needs minimum 576 bytes to work correctly.
3540 */
3541 if (netdev->wanted_features) {
3542 if (!(netdev->wanted_features & NETIF_F_TSO) ||
3543 netdev->mtu < 576)
3544 netdev->features &= ~NETIF_F_TSO;
3545 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3546 netdev->mtu < 576)
3547 netdev->features &= ~NETIF_F_TSO6;
3548 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3549 netdev->features &= ~NETIF_F_TSO_ECN;
3550 if (!(netdev->wanted_features & NETIF_F_GRO))
3551 netdev->features &= ~NETIF_F_GRO;
3552 if (!(netdev->wanted_features & NETIF_F_GSO))
3553 netdev->features &= ~NETIF_F_GSO;
3554 }
3555
3556 adapter->vsi.id = adapter->vsi_res->vsi_id;
3557
3558 adapter->vsi.back = adapter;
3559 adapter->vsi.base_vector = 1;
3560 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3561 vsi->netdev = adapter->netdev;
3562 vsi->qs_handle = adapter->vsi_res->qset_handle;
3563 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3564 adapter->rss_key_size = vfres->rss_key_size;
3565 adapter->rss_lut_size = vfres->rss_lut_size;
3566 } else {
3567 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3568 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3569 }
3570
3571 return 0;
3572}
3573
3574/**
3575 * iavf_init_task - worker thread to perform delayed initialization
3576 * @work: pointer to work_struct containing our data
3577 *
3578 * This task completes the work that was begun in probe. Due to the nature
3579 * of VF-PF communications, we may need to wait tens of milliseconds to get
3580 * responses back from the PF. Rather than busy-wait in probe and bog down the
3581 * whole system, we'll do it in a task so we can sleep.
3582 * This task only runs during driver init. Once we've established
3583 * communications with the PF driver and set up our netdev, the watchdog
3584 * takes over.
3585 **/
3586static void iavf_init_task(struct work_struct *work)
3587{
3588 struct iavf_adapter *adapter = container_of(work,
3589 struct iavf_adapter,
3590 init_task.work);
3591 struct iavf_hw *hw = &adapter->hw;
3592
3593 switch (adapter->state) {
3594 case __IAVF_STARTUP:
3595 if (iavf_startup(adapter) < 0)
3596 goto init_failed;
3597 break;
3598 case __IAVF_INIT_VERSION_CHECK:
3599 if (iavf_init_version_check(adapter) < 0)
3600 goto init_failed;
3601 break;
3602 case __IAVF_INIT_GET_RESOURCES:
3603 if (iavf_init_get_resources(adapter) < 0)
3604 goto init_failed;
3605 return;
3606 default:
3607 goto init_failed;
3608 }
3609
3610 queue_delayed_work(iavf_wq, &adapter->init_task,
3611 msecs_to_jiffies(30));
3612 return;
3613init_failed:
3614 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3615 dev_err(&adapter->pdev->dev,
3616 "Failed to communicate with PF; waiting before retry\n");
3617 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3618 iavf_shutdown_adminq(hw);
3619 adapter->state = __IAVF_STARTUP;
3620 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3621 return;
3622 }
3623 queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3624}
3625
3626/**
3627 * iavf_shutdown - Shutdown the device in preparation for a reboot
3628 * @pdev: pci device structure
3629 **/
3630static void iavf_shutdown(struct pci_dev *pdev)
3631{
3632 struct net_device *netdev = pci_get_drvdata(pdev);
3633 struct iavf_adapter *adapter = netdev_priv(netdev);
3634
3635 netif_device_detach(netdev);
3636
3637 if (netif_running(netdev))
3638 iavf_close(netdev);
3639
3640 /* Prevent the watchdog from running. */
3641 adapter->state = __IAVF_REMOVE;
3642 adapter->aq_required = 0;
3643
3644#ifdef CONFIG_PM
3645 pci_save_state(pdev);
3646
3647#endif
3648 pci_disable_device(pdev);
3649}
3650
3651/**
3652 * iavf_probe - Device Initialization Routine
3653 * @pdev: PCI device information struct
3654 * @ent: entry in iavf_pci_tbl
3655 *
3656 * Returns 0 on success, negative on failure
3657 *
3658 * iavf_probe initializes an adapter identified by a pci_dev structure.
3659 * The OS initialization, configuring of the adapter private structure,
3660 * and a hardware reset occur.
3661 **/
3662static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3663{
3664 struct net_device *netdev;
3665 struct iavf_adapter *adapter = NULL;
3666 struct iavf_hw *hw = NULL;
3667 int err;
3668
3669 err = pci_enable_device(pdev);
3670 if (err)
3671 return err;
3672
3673 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3674 if (err) {
3675 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3676 if (err) {
3677 dev_err(&pdev->dev,
3678 "DMA configuration failed: 0x%x\n", err);
3679 goto err_dma;
3680 }
3681 }
3682
3683 err = pci_request_regions(pdev, iavf_driver_name);
3684 if (err) {
3685 dev_err(&pdev->dev,
3686 "pci_request_regions failed 0x%x\n", err);
3687 goto err_pci_reg;
3688 }
3689
3690 pci_enable_pcie_error_reporting(pdev);
3691
3692 pci_set_master(pdev);
3693
3694 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3695 IAVF_MAX_REQ_QUEUES);
3696 if (!netdev) {
3697 err = -ENOMEM;
3698 goto err_alloc_etherdev;
3699 }
3700
3701 SET_NETDEV_DEV(netdev, &pdev->dev);
3702
3703 pci_set_drvdata(pdev, netdev);
3704 adapter = netdev_priv(netdev);
3705
3706 adapter->netdev = netdev;
3707 adapter->pdev = pdev;
3708
3709 hw = &adapter->hw;
3710 hw->back = adapter;
3711
3712 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3713 adapter->state = __IAVF_STARTUP;
3714
3715 /* Call save state here because it relies on the adapter struct. */
3716 pci_save_state(pdev);
3717
3718 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3719 pci_resource_len(pdev, 0));
3720 if (!hw->hw_addr) {
3721 err = -EIO;
3722 goto err_ioremap;
3723 }
3724 hw->vendor_id = pdev->vendor;
3725 hw->device_id = pdev->device;
3726 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3727 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3728 hw->subsystem_device_id = pdev->subsystem_device;
3729 hw->bus.device = PCI_SLOT(pdev->devfn);
3730 hw->bus.func = PCI_FUNC(pdev->devfn);
3731 hw->bus.bus_id = pdev->bus->number;
3732
3733 /* set up the locks for the AQ, do this only once in probe
3734 * and destroy them only once in remove
3735 */
3736 mutex_init(&hw->aq.asq_mutex);
3737 mutex_init(&hw->aq.arq_mutex);
3738
3739 spin_lock_init(&adapter->mac_vlan_list_lock);
3740 spin_lock_init(&adapter->cloud_filter_list_lock);
3741
3742 INIT_LIST_HEAD(&adapter->mac_filter_list);
3743 INIT_LIST_HEAD(&adapter->vlan_filter_list);
3744 INIT_LIST_HEAD(&adapter->cloud_filter_list);
3745
3746 INIT_WORK(&adapter->reset_task, iavf_reset_task);
3747 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3748 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3749 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3750 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3751 queue_delayed_work(iavf_wq, &adapter->init_task,
3752 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3753
3754 /* Setup the wait queue for indicating transition to down status */
3755 init_waitqueue_head(&adapter->down_waitqueue);
3756
3757 return 0;
3758
3759err_ioremap:
3760 free_netdev(netdev);
3761err_alloc_etherdev:
3762 pci_release_regions(pdev);
3763err_pci_reg:
3764err_dma:
3765 pci_disable_device(pdev);
3766 return err;
3767}
3768
3769/**
3770 * iavf_suspend - Power management suspend routine
3771 * @pdev: PCI device information struct
3772 * @state: unused
3773 *
3774 * Called when the system (VM) is entering sleep/suspend.
3775 **/
3776static int __maybe_unused iavf_suspend(struct device *dev_d)
3777{
3778 struct net_device *netdev = dev_get_drvdata(dev_d);
3779 struct iavf_adapter *adapter = netdev_priv(netdev);
3780
3781 netif_device_detach(netdev);
3782
3783 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3784 &adapter->crit_section))
3785 usleep_range(500, 1000);
3786
3787 if (netif_running(netdev)) {
3788 rtnl_lock();
3789 iavf_down(adapter);
3790 rtnl_unlock();
3791 }
3792 iavf_free_misc_irq(adapter);
3793 iavf_reset_interrupt_capability(adapter);
3794
3795 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3796
3797 return 0;
3798}
3799
3800/**
3801 * iavf_resume - Power management resume routine
3802 * @pdev: PCI device information struct
3803 *
3804 * Called when the system (VM) is resumed from sleep/suspend.
3805 **/
3806static int __maybe_unused iavf_resume(struct device *dev_d)
3807{
3808 struct pci_dev *pdev = to_pci_dev(dev_d);
3809 struct net_device *netdev = pci_get_drvdata(pdev);
3810 struct iavf_adapter *adapter = netdev_priv(netdev);
3811 u32 err;
3812
3813 pci_set_master(pdev);
3814
3815 rtnl_lock();
3816 err = iavf_set_interrupt_capability(adapter);
3817 if (err) {
3818 rtnl_unlock();
3819 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3820 return err;
3821 }
3822 err = iavf_request_misc_irq(adapter);
3823 rtnl_unlock();
3824 if (err) {
3825 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3826 return err;
3827 }
3828
3829 queue_work(iavf_wq, &adapter->reset_task);
3830
3831 netif_device_attach(netdev);
3832
3833 return err;
3834}
3835
3836/**
3837 * iavf_remove - Device Removal Routine
3838 * @pdev: PCI device information struct
3839 *
3840 * iavf_remove is called by the PCI subsystem to alert the driver
3841 * that it should release a PCI device. The could be caused by a
3842 * Hot-Plug event, or because the driver is going to be removed from
3843 * memory.
3844 **/
3845static void iavf_remove(struct pci_dev *pdev)
3846{
3847 struct net_device *netdev = pci_get_drvdata(pdev);
3848 struct iavf_adapter *adapter = netdev_priv(netdev);
3849 struct iavf_vlan_filter *vlf, *vlftmp;
3850 struct iavf_mac_filter *f, *ftmp;
3851 struct iavf_cloud_filter *cf, *cftmp;
3852 struct iavf_hw *hw = &adapter->hw;
3853 int err;
3854 /* Indicate we are in remove and not to run reset_task */
3855 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3856 cancel_delayed_work_sync(&adapter->init_task);
3857 cancel_work_sync(&adapter->reset_task);
3858 cancel_delayed_work_sync(&adapter->client_task);
3859 if (adapter->netdev_registered) {
3860 unregister_netdev(netdev);
3861 adapter->netdev_registered = false;
3862 }
3863 if (CLIENT_ALLOWED(adapter)) {
3864 err = iavf_lan_del_device(adapter);
3865 if (err)
3866 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3867 err);
3868 }
3869
3870 /* Shut down all the garbage mashers on the detention level */
3871 adapter->state = __IAVF_REMOVE;
3872 adapter->aq_required = 0;
3873 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3874 iavf_request_reset(adapter);
3875 msleep(50);
3876 /* If the FW isn't responding, kick it once, but only once. */
3877 if (!iavf_asq_done(hw)) {
3878 iavf_request_reset(adapter);
3879 msleep(50);
3880 }
3881 iavf_free_all_tx_resources(adapter);
3882 iavf_free_all_rx_resources(adapter);
3883 iavf_misc_irq_disable(adapter);
3884 iavf_free_misc_irq(adapter);
3885 iavf_reset_interrupt_capability(adapter);
3886 iavf_free_q_vectors(adapter);
3887
3888 cancel_delayed_work_sync(&adapter->watchdog_task);
3889
3890 cancel_work_sync(&adapter->adminq_task);
3891
3892 iavf_free_rss(adapter);
3893
3894 if (hw->aq.asq.count)
3895 iavf_shutdown_adminq(hw);
3896
3897 /* destroy the locks only once, here */
3898 mutex_destroy(&hw->aq.arq_mutex);
3899 mutex_destroy(&hw->aq.asq_mutex);
3900
3901 iounmap(hw->hw_addr);
3902 pci_release_regions(pdev);
3903 iavf_free_all_tx_resources(adapter);
3904 iavf_free_all_rx_resources(adapter);
3905 iavf_free_queues(adapter);
3906 kfree(adapter->vf_res);
3907 spin_lock_bh(&adapter->mac_vlan_list_lock);
3908 /* If we got removed before an up/down sequence, we've got a filter
3909 * hanging out there that we need to get rid of.
3910 */
3911 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3912 list_del(&f->list);
3913 kfree(f);
3914 }
3915 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3916 list) {
3917 list_del(&vlf->list);
3918 kfree(vlf);
3919 }
3920
3921 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3922
3923 spin_lock_bh(&adapter->cloud_filter_list_lock);
3924 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3925 list_del(&cf->list);
3926 kfree(cf);
3927 }
3928 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3929
3930 free_netdev(netdev);
3931
3932 pci_disable_pcie_error_reporting(pdev);
3933
3934 pci_disable_device(pdev);
3935}
3936
3937static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
3938
3939static struct pci_driver iavf_driver = {
3940 .name = iavf_driver_name,
3941 .id_table = iavf_pci_tbl,
3942 .probe = iavf_probe,
3943 .remove = iavf_remove,
3944 .driver.pm = &iavf_pm_ops,
3945 .shutdown = iavf_shutdown,
3946};
3947
3948/**
3949 * iavf_init_module - Driver Registration Routine
3950 *
3951 * iavf_init_module is the first routine called when the driver is
3952 * loaded. All it does is register with the PCI subsystem.
3953 **/
3954static int __init iavf_init_module(void)
3955{
3956 int ret;
3957
3958 pr_info("iavf: %s\n", iavf_driver_string);
3959
3960 pr_info("%s\n", iavf_copyright);
3961
3962 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3963 iavf_driver_name);
3964 if (!iavf_wq) {
3965 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3966 return -ENOMEM;
3967 }
3968 ret = pci_register_driver(&iavf_driver);
3969 return ret;
3970}
3971
3972module_init(iavf_init_module);
3973
3974/**
3975 * iavf_exit_module - Driver Exit Cleanup Routine
3976 *
3977 * iavf_exit_module is called just before the driver is removed
3978 * from memory.
3979 **/
3980static void __exit iavf_exit_module(void)
3981{
3982 pci_unregister_driver(&iavf_driver);
3983 destroy_workqueue(iavf_wq);
3984}
3985
3986module_exit(iavf_exit_module);
3987
3988/* iavf_main.c */