Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include "iavf.h"
5#include "iavf_prototype.h"
6/* All iavf tracepoints are defined by the include below, which must
7 * be included exactly once across the whole kernel with
8 * CREATE_TRACE_POINTS defined
9 */
10#define CREATE_TRACE_POINTS
11#include "iavf_trace.h"
12
13static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
14static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
15static int iavf_close(struct net_device *netdev);
16static void iavf_init_get_resources(struct iavf_adapter *adapter);
17static int iavf_check_reset_complete(struct iavf_hw *hw);
18
19char iavf_driver_name[] = "iavf";
20static const char iavf_driver_string[] =
21 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
22
23static const char iavf_copyright[] =
24 "Copyright (c) 2013 - 2018 Intel Corporation.";
25
26/* iavf_pci_tbl - PCI Device ID Table
27 *
28 * Wildcard entries (PCI_ANY_ID) should come last
29 * Last entry must be all 0s
30 *
31 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
32 * Class, Class Mask, private data (not used) }
33 */
34static const struct pci_device_id iavf_pci_tbl[] = {
35 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
39 /* required last entry */
40 {0, }
41};
42
43MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
44
45MODULE_ALIAS("i40evf");
46MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
47MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
48MODULE_LICENSE("GPL v2");
49
50static const struct net_device_ops iavf_netdev_ops;
51
52int iavf_status_to_errno(enum iavf_status status)
53{
54 switch (status) {
55 case IAVF_SUCCESS:
56 return 0;
57 case IAVF_ERR_PARAM:
58 case IAVF_ERR_MAC_TYPE:
59 case IAVF_ERR_INVALID_MAC_ADDR:
60 case IAVF_ERR_INVALID_LINK_SETTINGS:
61 case IAVF_ERR_INVALID_PD_ID:
62 case IAVF_ERR_INVALID_QP_ID:
63 case IAVF_ERR_INVALID_CQ_ID:
64 case IAVF_ERR_INVALID_CEQ_ID:
65 case IAVF_ERR_INVALID_AEQ_ID:
66 case IAVF_ERR_INVALID_SIZE:
67 case IAVF_ERR_INVALID_ARP_INDEX:
68 case IAVF_ERR_INVALID_FPM_FUNC_ID:
69 case IAVF_ERR_QP_INVALID_MSG_SIZE:
70 case IAVF_ERR_INVALID_FRAG_COUNT:
71 case IAVF_ERR_INVALID_ALIGNMENT:
72 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
73 case IAVF_ERR_INVALID_IMM_DATA_SIZE:
74 case IAVF_ERR_INVALID_VF_ID:
75 case IAVF_ERR_INVALID_HMCFN_ID:
76 case IAVF_ERR_INVALID_PBLE_INDEX:
77 case IAVF_ERR_INVALID_SD_INDEX:
78 case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
79 case IAVF_ERR_INVALID_SD_TYPE:
80 case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
81 case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
82 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
83 return -EINVAL;
84 case IAVF_ERR_NVM:
85 case IAVF_ERR_NVM_CHECKSUM:
86 case IAVF_ERR_PHY:
87 case IAVF_ERR_CONFIG:
88 case IAVF_ERR_UNKNOWN_PHY:
89 case IAVF_ERR_LINK_SETUP:
90 case IAVF_ERR_ADAPTER_STOPPED:
91 case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
92 case IAVF_ERR_AUTONEG_NOT_COMPLETE:
93 case IAVF_ERR_RESET_FAILED:
94 case IAVF_ERR_BAD_PTR:
95 case IAVF_ERR_SWFW_SYNC:
96 case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
97 case IAVF_ERR_QUEUE_EMPTY:
98 case IAVF_ERR_FLUSHED_QUEUE:
99 case IAVF_ERR_OPCODE_MISMATCH:
100 case IAVF_ERR_CQP_COMPL_ERROR:
101 case IAVF_ERR_BACKING_PAGE_ERROR:
102 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
103 case IAVF_ERR_MEMCPY_FAILED:
104 case IAVF_ERR_SRQ_ENABLED:
105 case IAVF_ERR_ADMIN_QUEUE_ERROR:
106 case IAVF_ERR_ADMIN_QUEUE_FULL:
107 case IAVF_ERR_BAD_RDMA_CQE:
108 case IAVF_ERR_NVM_BLANK_MODE:
109 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
110 case IAVF_ERR_DIAG_TEST_FAILED:
111 case IAVF_ERR_FIRMWARE_API_VERSION:
112 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
113 return -EIO;
114 case IAVF_ERR_DEVICE_NOT_SUPPORTED:
115 return -ENODEV;
116 case IAVF_ERR_NO_AVAILABLE_VSI:
117 case IAVF_ERR_RING_FULL:
118 return -ENOSPC;
119 case IAVF_ERR_NO_MEMORY:
120 return -ENOMEM;
121 case IAVF_ERR_TIMEOUT:
122 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
123 return -ETIMEDOUT;
124 case IAVF_ERR_NOT_IMPLEMENTED:
125 case IAVF_NOT_SUPPORTED:
126 return -EOPNOTSUPP;
127 case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
128 return -EALREADY;
129 case IAVF_ERR_NOT_READY:
130 return -EBUSY;
131 case IAVF_ERR_BUF_TOO_SHORT:
132 return -EMSGSIZE;
133 }
134
135 return -EIO;
136}
137
138int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
139{
140 switch (v_status) {
141 case VIRTCHNL_STATUS_SUCCESS:
142 return 0;
143 case VIRTCHNL_STATUS_ERR_PARAM:
144 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
145 return -EINVAL;
146 case VIRTCHNL_STATUS_ERR_NO_MEMORY:
147 return -ENOMEM;
148 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
149 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
150 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
151 return -EIO;
152 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
153 return -EOPNOTSUPP;
154 }
155
156 return -EIO;
157}
158
159/**
160 * iavf_pdev_to_adapter - go from pci_dev to adapter
161 * @pdev: pci_dev pointer
162 */
163static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
164{
165 return netdev_priv(pci_get_drvdata(pdev));
166}
167
168/**
169 * iavf_is_reset_in_progress - Check if a reset is in progress
170 * @adapter: board private structure
171 */
172static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
173{
174 if (adapter->state == __IAVF_RESETTING ||
175 adapter->flags & (IAVF_FLAG_RESET_PENDING |
176 IAVF_FLAG_RESET_NEEDED))
177 return true;
178
179 return false;
180}
181
182/**
183 * iavf_wait_for_reset - Wait for reset to finish.
184 * @adapter: board private structure
185 *
186 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
187 */
188int iavf_wait_for_reset(struct iavf_adapter *adapter)
189{
190 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
191 !iavf_is_reset_in_progress(adapter),
192 msecs_to_jiffies(5000));
193
194 /* If ret < 0 then it means wait was interrupted.
195 * If ret == 0 then it means we got a timeout while waiting
196 * for reset to finish.
197 * If ret > 0 it means reset has finished.
198 */
199 if (ret > 0)
200 return 0;
201 else if (ret < 0)
202 return -EINTR;
203 else
204 return -EBUSY;
205}
206
207/**
208 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
209 * @hw: pointer to the HW structure
210 * @mem: ptr to mem struct to fill out
211 * @size: size of memory requested
212 * @alignment: what to align the allocation to
213 **/
214enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
215 struct iavf_dma_mem *mem,
216 u64 size, u32 alignment)
217{
218 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
219
220 if (!mem)
221 return IAVF_ERR_PARAM;
222
223 mem->size = ALIGN(size, alignment);
224 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
225 (dma_addr_t *)&mem->pa, GFP_KERNEL);
226 if (mem->va)
227 return 0;
228 else
229 return IAVF_ERR_NO_MEMORY;
230}
231
232/**
233 * iavf_free_dma_mem - wrapper for DMA memory freeing
234 * @hw: pointer to the HW structure
235 * @mem: ptr to mem struct to free
236 **/
237enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
238{
239 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
240
241 if (!mem || !mem->va)
242 return IAVF_ERR_PARAM;
243 dma_free_coherent(&adapter->pdev->dev, mem->size,
244 mem->va, (dma_addr_t)mem->pa);
245 return 0;
246}
247
248/**
249 * iavf_allocate_virt_mem - virt memory alloc wrapper
250 * @hw: pointer to the HW structure
251 * @mem: ptr to mem struct to fill out
252 * @size: size of memory requested
253 **/
254enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
255 struct iavf_virt_mem *mem, u32 size)
256{
257 if (!mem)
258 return IAVF_ERR_PARAM;
259
260 mem->size = size;
261 mem->va = kzalloc(size, GFP_KERNEL);
262
263 if (mem->va)
264 return 0;
265 else
266 return IAVF_ERR_NO_MEMORY;
267}
268
269/**
270 * iavf_free_virt_mem - virt memory free wrapper
271 * @hw: pointer to the HW structure
272 * @mem: ptr to mem struct to free
273 **/
274void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
275{
276 kfree(mem->va);
277}
278
279/**
280 * iavf_schedule_reset - Set the flags and schedule a reset event
281 * @adapter: board private structure
282 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
283 **/
284void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
285{
286 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
287 !(adapter->flags &
288 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
289 adapter->flags |= flags;
290 queue_work(adapter->wq, &adapter->reset_task);
291 }
292}
293
294/**
295 * iavf_schedule_aq_request - Set the flags and schedule aq request
296 * @adapter: board private structure
297 * @flags: requested aq flags
298 **/
299void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
300{
301 adapter->aq_required |= flags;
302 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
303}
304
305/**
306 * iavf_tx_timeout - Respond to a Tx Hang
307 * @netdev: network interface device structure
308 * @txqueue: queue number that is timing out
309 **/
310static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
311{
312 struct iavf_adapter *adapter = netdev_priv(netdev);
313
314 adapter->tx_timeout_count++;
315 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
316}
317
318/**
319 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
320 * @adapter: board private structure
321 **/
322static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
323{
324 struct iavf_hw *hw = &adapter->hw;
325
326 if (!adapter->msix_entries)
327 return;
328
329 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
330
331 iavf_flush(hw);
332
333 synchronize_irq(adapter->msix_entries[0].vector);
334}
335
336/**
337 * iavf_misc_irq_enable - Enable default interrupt generation settings
338 * @adapter: board private structure
339 **/
340static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
341{
342 struct iavf_hw *hw = &adapter->hw;
343
344 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
345 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
346 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
347
348 iavf_flush(hw);
349}
350
351/**
352 * iavf_irq_disable - Mask off interrupt generation on the NIC
353 * @adapter: board private structure
354 **/
355static void iavf_irq_disable(struct iavf_adapter *adapter)
356{
357 int i;
358 struct iavf_hw *hw = &adapter->hw;
359
360 if (!adapter->msix_entries)
361 return;
362
363 for (i = 1; i < adapter->num_msix_vectors; i++) {
364 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
365 synchronize_irq(adapter->msix_entries[i].vector);
366 }
367 iavf_flush(hw);
368}
369
370/**
371 * iavf_irq_enable_queues - Enable interrupt for all queues
372 * @adapter: board private structure
373 **/
374static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
375{
376 struct iavf_hw *hw = &adapter->hw;
377 int i;
378
379 for (i = 1; i < adapter->num_msix_vectors; i++) {
380 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
381 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
382 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
383 }
384}
385
386/**
387 * iavf_irq_enable - Enable default interrupt generation settings
388 * @adapter: board private structure
389 * @flush: boolean value whether to run rd32()
390 **/
391void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
392{
393 struct iavf_hw *hw = &adapter->hw;
394
395 iavf_misc_irq_enable(adapter);
396 iavf_irq_enable_queues(adapter);
397
398 if (flush)
399 iavf_flush(hw);
400}
401
402/**
403 * iavf_msix_aq - Interrupt handler for vector 0
404 * @irq: interrupt number
405 * @data: pointer to netdev
406 **/
407static irqreturn_t iavf_msix_aq(int irq, void *data)
408{
409 struct net_device *netdev = data;
410 struct iavf_adapter *adapter = netdev_priv(netdev);
411 struct iavf_hw *hw = &adapter->hw;
412
413 /* handle non-queue interrupts, these reads clear the registers */
414 rd32(hw, IAVF_VFINT_ICR01);
415 rd32(hw, IAVF_VFINT_ICR0_ENA1);
416
417 if (adapter->state != __IAVF_REMOVE)
418 /* schedule work on the private workqueue */
419 queue_work(adapter->wq, &adapter->adminq_task);
420
421 return IRQ_HANDLED;
422}
423
424/**
425 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
426 * @irq: interrupt number
427 * @data: pointer to a q_vector
428 **/
429static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
430{
431 struct iavf_q_vector *q_vector = data;
432
433 if (!q_vector->tx.ring && !q_vector->rx.ring)
434 return IRQ_HANDLED;
435
436 napi_schedule_irqoff(&q_vector->napi);
437
438 return IRQ_HANDLED;
439}
440
441/**
442 * iavf_map_vector_to_rxq - associate irqs with rx queues
443 * @adapter: board private structure
444 * @v_idx: interrupt number
445 * @r_idx: queue number
446 **/
447static void
448iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
449{
450 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
451 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
452 struct iavf_hw *hw = &adapter->hw;
453
454 rx_ring->q_vector = q_vector;
455 rx_ring->next = q_vector->rx.ring;
456 rx_ring->vsi = &adapter->vsi;
457 q_vector->rx.ring = rx_ring;
458 q_vector->rx.count++;
459 q_vector->rx.next_update = jiffies + 1;
460 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
461 q_vector->ring_mask |= BIT(r_idx);
462 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
463 q_vector->rx.current_itr >> 1);
464 q_vector->rx.current_itr = q_vector->rx.target_itr;
465}
466
467/**
468 * iavf_map_vector_to_txq - associate irqs with tx queues
469 * @adapter: board private structure
470 * @v_idx: interrupt number
471 * @t_idx: queue number
472 **/
473static void
474iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
475{
476 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
477 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
478 struct iavf_hw *hw = &adapter->hw;
479
480 tx_ring->q_vector = q_vector;
481 tx_ring->next = q_vector->tx.ring;
482 tx_ring->vsi = &adapter->vsi;
483 q_vector->tx.ring = tx_ring;
484 q_vector->tx.count++;
485 q_vector->tx.next_update = jiffies + 1;
486 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
487 q_vector->num_ringpairs++;
488 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
489 q_vector->tx.target_itr >> 1);
490 q_vector->tx.current_itr = q_vector->tx.target_itr;
491}
492
493/**
494 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
495 * @adapter: board private structure to initialize
496 *
497 * This function maps descriptor rings to the queue-specific vectors
498 * we were allotted through the MSI-X enabling code. Ideally, we'd have
499 * one vector per ring/queue, but on a constrained vector budget, we
500 * group the rings as "efficiently" as possible. You would add new
501 * mapping configurations in here.
502 **/
503static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
504{
505 int rings_remaining = adapter->num_active_queues;
506 int ridx = 0, vidx = 0;
507 int q_vectors;
508
509 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
510
511 for (; ridx < rings_remaining; ridx++) {
512 iavf_map_vector_to_rxq(adapter, vidx, ridx);
513 iavf_map_vector_to_txq(adapter, vidx, ridx);
514
515 /* In the case where we have more queues than vectors, continue
516 * round-robin on vectors until all queues are mapped.
517 */
518 if (++vidx >= q_vectors)
519 vidx = 0;
520 }
521
522 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
523}
524
525/**
526 * iavf_irq_affinity_notify - Callback for affinity changes
527 * @notify: context as to what irq was changed
528 * @mask: the new affinity mask
529 *
530 * This is a callback function used by the irq_set_affinity_notifier function
531 * so that we may register to receive changes to the irq affinity masks.
532 **/
533static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
534 const cpumask_t *mask)
535{
536 struct iavf_q_vector *q_vector =
537 container_of(notify, struct iavf_q_vector, affinity_notify);
538
539 cpumask_copy(&q_vector->affinity_mask, mask);
540}
541
542/**
543 * iavf_irq_affinity_release - Callback for affinity notifier release
544 * @ref: internal core kernel usage
545 *
546 * This is a callback function used by the irq_set_affinity_notifier function
547 * to inform the current notification subscriber that they will no longer
548 * receive notifications.
549 **/
550static void iavf_irq_affinity_release(struct kref *ref) {}
551
552/**
553 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
554 * @adapter: board private structure
555 * @basename: device basename
556 *
557 * Allocates MSI-X vectors for tx and rx handling, and requests
558 * interrupts from the kernel.
559 **/
560static int
561iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
562{
563 unsigned int vector, q_vectors;
564 unsigned int rx_int_idx = 0, tx_int_idx = 0;
565 int irq_num, err;
566 int cpu;
567
568 iavf_irq_disable(adapter);
569 /* Decrement for Other and TCP Timer vectors */
570 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
571
572 for (vector = 0; vector < q_vectors; vector++) {
573 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
574
575 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
576
577 if (q_vector->tx.ring && q_vector->rx.ring) {
578 snprintf(q_vector->name, sizeof(q_vector->name),
579 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
580 tx_int_idx++;
581 } else if (q_vector->rx.ring) {
582 snprintf(q_vector->name, sizeof(q_vector->name),
583 "iavf-%s-rx-%u", basename, rx_int_idx++);
584 } else if (q_vector->tx.ring) {
585 snprintf(q_vector->name, sizeof(q_vector->name),
586 "iavf-%s-tx-%u", basename, tx_int_idx++);
587 } else {
588 /* skip this unused q_vector */
589 continue;
590 }
591 err = request_irq(irq_num,
592 iavf_msix_clean_rings,
593 0,
594 q_vector->name,
595 q_vector);
596 if (err) {
597 dev_info(&adapter->pdev->dev,
598 "Request_irq failed, error: %d\n", err);
599 goto free_queue_irqs;
600 }
601 /* register for affinity change notifications */
602 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
603 q_vector->affinity_notify.release =
604 iavf_irq_affinity_release;
605 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
606 /* Spread the IRQ affinity hints across online CPUs. Note that
607 * get_cpu_mask returns a mask with a permanent lifetime so
608 * it's safe to use as a hint for irq_update_affinity_hint.
609 */
610 cpu = cpumask_local_spread(q_vector->v_idx, -1);
611 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
612 }
613
614 return 0;
615
616free_queue_irqs:
617 while (vector) {
618 vector--;
619 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
620 irq_set_affinity_notifier(irq_num, NULL);
621 irq_update_affinity_hint(irq_num, NULL);
622 free_irq(irq_num, &adapter->q_vectors[vector]);
623 }
624 return err;
625}
626
627/**
628 * iavf_request_misc_irq - Initialize MSI-X interrupts
629 * @adapter: board private structure
630 *
631 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
632 * vector is only for the admin queue, and stays active even when the netdev
633 * is closed.
634 **/
635static int iavf_request_misc_irq(struct iavf_adapter *adapter)
636{
637 struct net_device *netdev = adapter->netdev;
638 int err;
639
640 snprintf(adapter->misc_vector_name,
641 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
642 dev_name(&adapter->pdev->dev));
643 err = request_irq(adapter->msix_entries[0].vector,
644 &iavf_msix_aq, 0,
645 adapter->misc_vector_name, netdev);
646 if (err) {
647 dev_err(&adapter->pdev->dev,
648 "request_irq for %s failed: %d\n",
649 adapter->misc_vector_name, err);
650 free_irq(adapter->msix_entries[0].vector, netdev);
651 }
652 return err;
653}
654
655/**
656 * iavf_free_traffic_irqs - Free MSI-X interrupts
657 * @adapter: board private structure
658 *
659 * Frees all MSI-X vectors other than 0.
660 **/
661static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
662{
663 int vector, irq_num, q_vectors;
664
665 if (!adapter->msix_entries)
666 return;
667
668 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
669
670 for (vector = 0; vector < q_vectors; vector++) {
671 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
672 irq_set_affinity_notifier(irq_num, NULL);
673 irq_update_affinity_hint(irq_num, NULL);
674 free_irq(irq_num, &adapter->q_vectors[vector]);
675 }
676}
677
678/**
679 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
680 * @adapter: board private structure
681 *
682 * Frees MSI-X vector 0.
683 **/
684static void iavf_free_misc_irq(struct iavf_adapter *adapter)
685{
686 struct net_device *netdev = adapter->netdev;
687
688 if (!adapter->msix_entries)
689 return;
690
691 free_irq(adapter->msix_entries[0].vector, netdev);
692}
693
694/**
695 * iavf_configure_tx - Configure Transmit Unit after Reset
696 * @adapter: board private structure
697 *
698 * Configure the Tx unit of the MAC after a reset.
699 **/
700static void iavf_configure_tx(struct iavf_adapter *adapter)
701{
702 struct iavf_hw *hw = &adapter->hw;
703 int i;
704
705 for (i = 0; i < adapter->num_active_queues; i++)
706 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
707}
708
709/**
710 * iavf_configure_rx - Configure Receive Unit after Reset
711 * @adapter: board private structure
712 *
713 * Configure the Rx unit of the MAC after a reset.
714 **/
715static void iavf_configure_rx(struct iavf_adapter *adapter)
716{
717 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
718 struct iavf_hw *hw = &adapter->hw;
719 int i;
720
721 /* Legacy Rx will always default to a 2048 buffer size. */
722#if (PAGE_SIZE < 8192)
723 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
724 struct net_device *netdev = adapter->netdev;
725
726 /* For jumbo frames on systems with 4K pages we have to use
727 * an order 1 page, so we might as well increase the size
728 * of our Rx buffer to make better use of the available space
729 */
730 rx_buf_len = IAVF_RXBUFFER_3072;
731
732 /* We use a 1536 buffer size for configurations with
733 * standard Ethernet mtu. On x86 this gives us enough room
734 * for shared info and 192 bytes of padding.
735 */
736 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
737 (netdev->mtu <= ETH_DATA_LEN))
738 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
739 }
740#endif
741
742 for (i = 0; i < adapter->num_active_queues; i++) {
743 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
744 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
745
746 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
747 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
748 else
749 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
750 }
751}
752
753/**
754 * iavf_find_vlan - Search filter list for specific vlan filter
755 * @adapter: board private structure
756 * @vlan: vlan tag
757 *
758 * Returns ptr to the filter object or NULL. Must be called while holding the
759 * mac_vlan_list_lock.
760 **/
761static struct
762iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
763 struct iavf_vlan vlan)
764{
765 struct iavf_vlan_filter *f;
766
767 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
768 if (f->vlan.vid == vlan.vid &&
769 f->vlan.tpid == vlan.tpid)
770 return f;
771 }
772
773 return NULL;
774}
775
776/**
777 * iavf_add_vlan - Add a vlan filter to the list
778 * @adapter: board private structure
779 * @vlan: VLAN tag
780 *
781 * Returns ptr to the filter object or NULL when no memory available.
782 **/
783static struct
784iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
785 struct iavf_vlan vlan)
786{
787 struct iavf_vlan_filter *f = NULL;
788
789 spin_lock_bh(&adapter->mac_vlan_list_lock);
790
791 f = iavf_find_vlan(adapter, vlan);
792 if (!f) {
793 f = kzalloc(sizeof(*f), GFP_ATOMIC);
794 if (!f)
795 goto clearout;
796
797 f->vlan = vlan;
798
799 list_add_tail(&f->list, &adapter->vlan_filter_list);
800 f->state = IAVF_VLAN_ADD;
801 adapter->num_vlan_filters++;
802 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
803 }
804
805clearout:
806 spin_unlock_bh(&adapter->mac_vlan_list_lock);
807 return f;
808}
809
810/**
811 * iavf_del_vlan - Remove a vlan filter from the list
812 * @adapter: board private structure
813 * @vlan: VLAN tag
814 **/
815static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
816{
817 struct iavf_vlan_filter *f;
818
819 spin_lock_bh(&adapter->mac_vlan_list_lock);
820
821 f = iavf_find_vlan(adapter, vlan);
822 if (f) {
823 f->state = IAVF_VLAN_REMOVE;
824 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER);
825 }
826
827 spin_unlock_bh(&adapter->mac_vlan_list_lock);
828}
829
830/**
831 * iavf_restore_filters
832 * @adapter: board private structure
833 *
834 * Restore existing non MAC filters when VF netdev comes back up
835 **/
836static void iavf_restore_filters(struct iavf_adapter *adapter)
837{
838 struct iavf_vlan_filter *f;
839
840 /* re-add all VLAN filters */
841 spin_lock_bh(&adapter->mac_vlan_list_lock);
842
843 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
844 if (f->state == IAVF_VLAN_INACTIVE)
845 f->state = IAVF_VLAN_ADD;
846 }
847
848 spin_unlock_bh(&adapter->mac_vlan_list_lock);
849 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
850}
851
852/**
853 * iavf_get_num_vlans_added - get number of VLANs added
854 * @adapter: board private structure
855 */
856u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
857{
858 return adapter->num_vlan_filters;
859}
860
861/**
862 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
863 * @adapter: board private structure
864 *
865 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
866 * do not impose a limit as that maintains current behavior and for
867 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
868 **/
869static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
870{
871 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
872 * never been a limit on the VF driver side
873 */
874 if (VLAN_ALLOWED(adapter))
875 return VLAN_N_VID;
876 else if (VLAN_V2_ALLOWED(adapter))
877 return adapter->vlan_v2_caps.filtering.max_filters;
878
879 return 0;
880}
881
882/**
883 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
884 * @adapter: board private structure
885 **/
886static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
887{
888 if (iavf_get_num_vlans_added(adapter) <
889 iavf_get_max_vlans_allowed(adapter))
890 return false;
891
892 return true;
893}
894
895/**
896 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
897 * @netdev: network device struct
898 * @proto: unused protocol data
899 * @vid: VLAN tag
900 **/
901static int iavf_vlan_rx_add_vid(struct net_device *netdev,
902 __always_unused __be16 proto, u16 vid)
903{
904 struct iavf_adapter *adapter = netdev_priv(netdev);
905
906 /* Do not track VLAN 0 filter, always added by the PF on VF init */
907 if (!vid)
908 return 0;
909
910 if (!VLAN_FILTERING_ALLOWED(adapter))
911 return -EIO;
912
913 if (iavf_max_vlans_added(adapter)) {
914 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
915 iavf_get_max_vlans_allowed(adapter));
916 return -EIO;
917 }
918
919 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
920 return -ENOMEM;
921
922 return 0;
923}
924
925/**
926 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
927 * @netdev: network device struct
928 * @proto: unused protocol data
929 * @vid: VLAN tag
930 **/
931static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
932 __always_unused __be16 proto, u16 vid)
933{
934 struct iavf_adapter *adapter = netdev_priv(netdev);
935
936 /* We do not track VLAN 0 filter */
937 if (!vid)
938 return 0;
939
940 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
941 return 0;
942}
943
944/**
945 * iavf_find_filter - Search filter list for specific mac filter
946 * @adapter: board private structure
947 * @macaddr: the MAC address
948 *
949 * Returns ptr to the filter object or NULL. Must be called while holding the
950 * mac_vlan_list_lock.
951 **/
952static struct
953iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
954 const u8 *macaddr)
955{
956 struct iavf_mac_filter *f;
957
958 if (!macaddr)
959 return NULL;
960
961 list_for_each_entry(f, &adapter->mac_filter_list, list) {
962 if (ether_addr_equal(macaddr, f->macaddr))
963 return f;
964 }
965 return NULL;
966}
967
968/**
969 * iavf_add_filter - Add a mac filter to the filter list
970 * @adapter: board private structure
971 * @macaddr: the MAC address
972 *
973 * Returns ptr to the filter object or NULL when no memory available.
974 **/
975struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
976 const u8 *macaddr)
977{
978 struct iavf_mac_filter *f;
979
980 if (!macaddr)
981 return NULL;
982
983 f = iavf_find_filter(adapter, macaddr);
984 if (!f) {
985 f = kzalloc(sizeof(*f), GFP_ATOMIC);
986 if (!f)
987 return f;
988
989 ether_addr_copy(f->macaddr, macaddr);
990
991 list_add_tail(&f->list, &adapter->mac_filter_list);
992 f->add = true;
993 f->add_handled = false;
994 f->is_new_mac = true;
995 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
996 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
997 } else {
998 f->remove = false;
999 }
1000
1001 return f;
1002}
1003
1004/**
1005 * iavf_replace_primary_mac - Replace current primary address
1006 * @adapter: board private structure
1007 * @new_mac: new MAC address to be applied
1008 *
1009 * Replace current dev_addr and send request to PF for removal of previous
1010 * primary MAC address filter and addition of new primary MAC filter.
1011 * Return 0 for success, -ENOMEM for failure.
1012 *
1013 * Do not call this with mac_vlan_list_lock!
1014 **/
1015static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1016 const u8 *new_mac)
1017{
1018 struct iavf_hw *hw = &adapter->hw;
1019 struct iavf_mac_filter *new_f;
1020 struct iavf_mac_filter *old_f;
1021
1022 spin_lock_bh(&adapter->mac_vlan_list_lock);
1023
1024 new_f = iavf_add_filter(adapter, new_mac);
1025 if (!new_f) {
1026 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1027 return -ENOMEM;
1028 }
1029
1030 old_f = iavf_find_filter(adapter, hw->mac.addr);
1031 if (old_f) {
1032 old_f->is_primary = false;
1033 old_f->remove = true;
1034 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1035 }
1036 /* Always send the request to add if changing primary MAC,
1037 * even if filter is already present on the list
1038 */
1039 new_f->is_primary = true;
1040 new_f->add = true;
1041 ether_addr_copy(hw->mac.addr, new_mac);
1042
1043 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1044
1045 /* schedule the watchdog task to immediately process the request */
1046 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1047 return 0;
1048}
1049
1050/**
1051 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1052 * @netdev: network interface device structure
1053 * @macaddr: MAC address to set
1054 *
1055 * Returns true on success, false on failure
1056 */
1057static bool iavf_is_mac_set_handled(struct net_device *netdev,
1058 const u8 *macaddr)
1059{
1060 struct iavf_adapter *adapter = netdev_priv(netdev);
1061 struct iavf_mac_filter *f;
1062 bool ret = false;
1063
1064 spin_lock_bh(&adapter->mac_vlan_list_lock);
1065
1066 f = iavf_find_filter(adapter, macaddr);
1067
1068 if (!f || (!f->add && f->add_handled))
1069 ret = true;
1070
1071 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1072
1073 return ret;
1074}
1075
1076/**
1077 * iavf_set_mac - NDO callback to set port MAC address
1078 * @netdev: network interface device structure
1079 * @p: pointer to an address structure
1080 *
1081 * Returns 0 on success, negative on failure
1082 */
1083static int iavf_set_mac(struct net_device *netdev, void *p)
1084{
1085 struct iavf_adapter *adapter = netdev_priv(netdev);
1086 struct sockaddr *addr = p;
1087 int ret;
1088
1089 if (!is_valid_ether_addr(addr->sa_data))
1090 return -EADDRNOTAVAIL;
1091
1092 ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1093
1094 if (ret)
1095 return ret;
1096
1097 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1098 iavf_is_mac_set_handled(netdev, addr->sa_data),
1099 msecs_to_jiffies(2500));
1100
1101 /* If ret < 0 then it means wait was interrupted.
1102 * If ret == 0 then it means we got a timeout.
1103 * else it means we got response for set MAC from PF,
1104 * check if netdev MAC was updated to requested MAC,
1105 * if yes then set MAC succeeded otherwise it failed return -EACCES
1106 */
1107 if (ret < 0)
1108 return ret;
1109
1110 if (!ret)
1111 return -EAGAIN;
1112
1113 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1114 return -EACCES;
1115
1116 return 0;
1117}
1118
1119/**
1120 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1121 * @netdev: the netdevice
1122 * @addr: address to add
1123 *
1124 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1125 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1126 */
1127static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1128{
1129 struct iavf_adapter *adapter = netdev_priv(netdev);
1130
1131 if (iavf_add_filter(adapter, addr))
1132 return 0;
1133 else
1134 return -ENOMEM;
1135}
1136
1137/**
1138 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1139 * @netdev: the netdevice
1140 * @addr: address to add
1141 *
1142 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1143 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1144 */
1145static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1146{
1147 struct iavf_adapter *adapter = netdev_priv(netdev);
1148 struct iavf_mac_filter *f;
1149
1150 /* Under some circumstances, we might receive a request to delete
1151 * our own device address from our uc list. Because we store the
1152 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1153 * such requests and not delete our device address from this list.
1154 */
1155 if (ether_addr_equal(addr, netdev->dev_addr))
1156 return 0;
1157
1158 f = iavf_find_filter(adapter, addr);
1159 if (f) {
1160 f->remove = true;
1161 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1162 }
1163 return 0;
1164}
1165
1166/**
1167 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1168 * @adapter: device specific adapter
1169 */
1170bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1171{
1172 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1173 (IFF_PROMISC | IFF_ALLMULTI);
1174}
1175
1176/**
1177 * iavf_set_rx_mode - NDO callback to set the netdev filters
1178 * @netdev: network interface device structure
1179 **/
1180static void iavf_set_rx_mode(struct net_device *netdev)
1181{
1182 struct iavf_adapter *adapter = netdev_priv(netdev);
1183
1184 spin_lock_bh(&adapter->mac_vlan_list_lock);
1185 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1186 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1187 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1188
1189 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1190 if (iavf_promiscuous_mode_changed(adapter))
1191 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1192 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1193}
1194
1195/**
1196 * iavf_napi_enable_all - enable NAPI on all queue vectors
1197 * @adapter: board private structure
1198 **/
1199static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1200{
1201 int q_idx;
1202 struct iavf_q_vector *q_vector;
1203 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1204
1205 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1206 struct napi_struct *napi;
1207
1208 q_vector = &adapter->q_vectors[q_idx];
1209 napi = &q_vector->napi;
1210 napi_enable(napi);
1211 }
1212}
1213
1214/**
1215 * iavf_napi_disable_all - disable NAPI on all queue vectors
1216 * @adapter: board private structure
1217 **/
1218static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1219{
1220 int q_idx;
1221 struct iavf_q_vector *q_vector;
1222 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1223
1224 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1225 q_vector = &adapter->q_vectors[q_idx];
1226 napi_disable(&q_vector->napi);
1227 }
1228}
1229
1230/**
1231 * iavf_configure - set up transmit and receive data structures
1232 * @adapter: board private structure
1233 **/
1234static void iavf_configure(struct iavf_adapter *adapter)
1235{
1236 struct net_device *netdev = adapter->netdev;
1237 int i;
1238
1239 iavf_set_rx_mode(netdev);
1240
1241 iavf_configure_tx(adapter);
1242 iavf_configure_rx(adapter);
1243 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1244
1245 for (i = 0; i < adapter->num_active_queues; i++) {
1246 struct iavf_ring *ring = &adapter->rx_rings[i];
1247
1248 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1249 }
1250}
1251
1252/**
1253 * iavf_up_complete - Finish the last steps of bringing up a connection
1254 * @adapter: board private structure
1255 *
1256 * Expects to be called while holding crit_lock.
1257 **/
1258static void iavf_up_complete(struct iavf_adapter *adapter)
1259{
1260 iavf_change_state(adapter, __IAVF_RUNNING);
1261 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1262
1263 iavf_napi_enable_all(adapter);
1264
1265 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1266}
1267
1268/**
1269 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1270 * yet and mark other to be removed.
1271 * @adapter: board private structure
1272 **/
1273static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1274{
1275 struct iavf_vlan_filter *vlf, *vlftmp;
1276 struct iavf_mac_filter *f, *ftmp;
1277
1278 spin_lock_bh(&adapter->mac_vlan_list_lock);
1279 /* clear the sync flag on all filters */
1280 __dev_uc_unsync(adapter->netdev, NULL);
1281 __dev_mc_unsync(adapter->netdev, NULL);
1282
1283 /* remove all MAC filters */
1284 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1285 list) {
1286 if (f->add) {
1287 list_del(&f->list);
1288 kfree(f);
1289 } else {
1290 f->remove = true;
1291 }
1292 }
1293
1294 /* disable all VLAN filters */
1295 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1296 list)
1297 vlf->state = IAVF_VLAN_DISABLE;
1298
1299 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1300}
1301
1302/**
1303 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1304 * mark other to be removed.
1305 * @adapter: board private structure
1306 **/
1307static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1308{
1309 struct iavf_cloud_filter *cf, *cftmp;
1310
1311 /* remove all cloud filters */
1312 spin_lock_bh(&adapter->cloud_filter_list_lock);
1313 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1314 list) {
1315 if (cf->add) {
1316 list_del(&cf->list);
1317 kfree(cf);
1318 adapter->num_cloud_filters--;
1319 } else {
1320 cf->del = true;
1321 }
1322 }
1323 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1324}
1325
1326/**
1327 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1328 * other to be removed.
1329 * @adapter: board private structure
1330 **/
1331static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1332{
1333 struct iavf_fdir_fltr *fdir;
1334
1335 /* remove all Flow Director filters */
1336 spin_lock_bh(&adapter->fdir_fltr_lock);
1337 list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1338 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1339 /* Cancel a request, keep filter as inactive */
1340 fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1341 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1342 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1343 /* Disable filters which are active or have a pending
1344 * request to PF to be added
1345 */
1346 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1347 }
1348 }
1349 spin_unlock_bh(&adapter->fdir_fltr_lock);
1350}
1351
1352/**
1353 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1354 * other to be removed.
1355 * @adapter: board private structure
1356 **/
1357static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1358{
1359 struct iavf_adv_rss *rss, *rsstmp;
1360
1361 /* remove all advance RSS configuration */
1362 spin_lock_bh(&adapter->adv_rss_lock);
1363 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1364 list) {
1365 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1366 list_del(&rss->list);
1367 kfree(rss);
1368 } else {
1369 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1370 }
1371 }
1372 spin_unlock_bh(&adapter->adv_rss_lock);
1373}
1374
1375/**
1376 * iavf_down - Shutdown the connection processing
1377 * @adapter: board private structure
1378 *
1379 * Expects to be called while holding crit_lock.
1380 **/
1381void iavf_down(struct iavf_adapter *adapter)
1382{
1383 struct net_device *netdev = adapter->netdev;
1384
1385 if (adapter->state <= __IAVF_DOWN_PENDING)
1386 return;
1387
1388 netif_carrier_off(netdev);
1389 netif_tx_disable(netdev);
1390 adapter->link_up = false;
1391 iavf_napi_disable_all(adapter);
1392 iavf_irq_disable(adapter);
1393
1394 iavf_clear_mac_vlan_filters(adapter);
1395 iavf_clear_cloud_filters(adapter);
1396 iavf_clear_fdir_filters(adapter);
1397 iavf_clear_adv_rss_conf(adapter);
1398
1399 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1400 return;
1401
1402 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1403 /* cancel any current operation */
1404 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1405 /* Schedule operations to close down the HW. Don't wait
1406 * here for this to complete. The watchdog is still running
1407 * and it will take care of this.
1408 */
1409 if (!list_empty(&adapter->mac_filter_list))
1410 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1411 if (!list_empty(&adapter->vlan_filter_list))
1412 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1413 if (!list_empty(&adapter->cloud_filter_list))
1414 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1415 if (!list_empty(&adapter->fdir_list_head))
1416 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1417 if (!list_empty(&adapter->adv_rss_list_head))
1418 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1419 }
1420
1421 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1422}
1423
1424/**
1425 * iavf_acquire_msix_vectors - Setup the MSIX capability
1426 * @adapter: board private structure
1427 * @vectors: number of vectors to request
1428 *
1429 * Work with the OS to set up the MSIX vectors needed.
1430 *
1431 * Returns 0 on success, negative on failure
1432 **/
1433static int
1434iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1435{
1436 int err, vector_threshold;
1437
1438 /* We'll want at least 3 (vector_threshold):
1439 * 0) Other (Admin Queue and link, mostly)
1440 * 1) TxQ[0] Cleanup
1441 * 2) RxQ[0] Cleanup
1442 */
1443 vector_threshold = MIN_MSIX_COUNT;
1444
1445 /* The more we get, the more we will assign to Tx/Rx Cleanup
1446 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1447 * Right now, we simply care about how many we'll get; we'll
1448 * set them up later while requesting irq's.
1449 */
1450 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1451 vector_threshold, vectors);
1452 if (err < 0) {
1453 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1454 kfree(adapter->msix_entries);
1455 adapter->msix_entries = NULL;
1456 return err;
1457 }
1458
1459 /* Adjust for only the vectors we'll use, which is minimum
1460 * of max_msix_q_vectors + NONQ_VECS, or the number of
1461 * vectors we were allocated.
1462 */
1463 adapter->num_msix_vectors = err;
1464 return 0;
1465}
1466
1467/**
1468 * iavf_free_queues - Free memory for all rings
1469 * @adapter: board private structure to initialize
1470 *
1471 * Free all of the memory associated with queue pairs.
1472 **/
1473static void iavf_free_queues(struct iavf_adapter *adapter)
1474{
1475 if (!adapter->vsi_res)
1476 return;
1477 adapter->num_active_queues = 0;
1478 kfree(adapter->tx_rings);
1479 adapter->tx_rings = NULL;
1480 kfree(adapter->rx_rings);
1481 adapter->rx_rings = NULL;
1482}
1483
1484/**
1485 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1486 * @adapter: board private structure
1487 *
1488 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1489 * stripped in certain descriptor fields. Instead of checking the offload
1490 * capability bits in the hot path, cache the location the ring specific
1491 * flags.
1492 */
1493void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1494{
1495 int i;
1496
1497 for (i = 0; i < adapter->num_active_queues; i++) {
1498 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1499 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1500
1501 /* prevent multiple L2TAG bits being set after VFR */
1502 tx_ring->flags &=
1503 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1504 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1505 rx_ring->flags &=
1506 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1507 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1508
1509 if (VLAN_ALLOWED(adapter)) {
1510 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1511 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1512 } else if (VLAN_V2_ALLOWED(adapter)) {
1513 struct virtchnl_vlan_supported_caps *stripping_support;
1514 struct virtchnl_vlan_supported_caps *insertion_support;
1515
1516 stripping_support =
1517 &adapter->vlan_v2_caps.offloads.stripping_support;
1518 insertion_support =
1519 &adapter->vlan_v2_caps.offloads.insertion_support;
1520
1521 if (stripping_support->outer) {
1522 if (stripping_support->outer &
1523 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1524 rx_ring->flags |=
1525 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1526 else if (stripping_support->outer &
1527 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1528 rx_ring->flags |=
1529 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1530 } else if (stripping_support->inner) {
1531 if (stripping_support->inner &
1532 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1533 rx_ring->flags |=
1534 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1535 else if (stripping_support->inner &
1536 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1537 rx_ring->flags |=
1538 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1539 }
1540
1541 if (insertion_support->outer) {
1542 if (insertion_support->outer &
1543 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1544 tx_ring->flags |=
1545 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1546 else if (insertion_support->outer &
1547 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1548 tx_ring->flags |=
1549 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1550 } else if (insertion_support->inner) {
1551 if (insertion_support->inner &
1552 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1553 tx_ring->flags |=
1554 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1555 else if (insertion_support->inner &
1556 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1557 tx_ring->flags |=
1558 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1559 }
1560 }
1561 }
1562}
1563
1564/**
1565 * iavf_alloc_queues - Allocate memory for all rings
1566 * @adapter: board private structure to initialize
1567 *
1568 * We allocate one ring per queue at run-time since we don't know the
1569 * number of queues at compile-time. The polling_netdev array is
1570 * intended for Multiqueue, but should work fine with a single queue.
1571 **/
1572static int iavf_alloc_queues(struct iavf_adapter *adapter)
1573{
1574 int i, num_active_queues;
1575
1576 /* If we're in reset reallocating queues we don't actually know yet for
1577 * certain the PF gave us the number of queues we asked for but we'll
1578 * assume it did. Once basic reset is finished we'll confirm once we
1579 * start negotiating config with PF.
1580 */
1581 if (adapter->num_req_queues)
1582 num_active_queues = adapter->num_req_queues;
1583 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1584 adapter->num_tc)
1585 num_active_queues = adapter->ch_config.total_qps;
1586 else
1587 num_active_queues = min_t(int,
1588 adapter->vsi_res->num_queue_pairs,
1589 (int)(num_online_cpus()));
1590
1591
1592 adapter->tx_rings = kcalloc(num_active_queues,
1593 sizeof(struct iavf_ring), GFP_KERNEL);
1594 if (!adapter->tx_rings)
1595 goto err_out;
1596 adapter->rx_rings = kcalloc(num_active_queues,
1597 sizeof(struct iavf_ring), GFP_KERNEL);
1598 if (!adapter->rx_rings)
1599 goto err_out;
1600
1601 for (i = 0; i < num_active_queues; i++) {
1602 struct iavf_ring *tx_ring;
1603 struct iavf_ring *rx_ring;
1604
1605 tx_ring = &adapter->tx_rings[i];
1606
1607 tx_ring->queue_index = i;
1608 tx_ring->netdev = adapter->netdev;
1609 tx_ring->dev = &adapter->pdev->dev;
1610 tx_ring->count = adapter->tx_desc_count;
1611 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1612 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1613 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1614
1615 rx_ring = &adapter->rx_rings[i];
1616 rx_ring->queue_index = i;
1617 rx_ring->netdev = adapter->netdev;
1618 rx_ring->dev = &adapter->pdev->dev;
1619 rx_ring->count = adapter->rx_desc_count;
1620 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1621 }
1622
1623 adapter->num_active_queues = num_active_queues;
1624
1625 iavf_set_queue_vlan_tag_loc(adapter);
1626
1627 return 0;
1628
1629err_out:
1630 iavf_free_queues(adapter);
1631 return -ENOMEM;
1632}
1633
1634/**
1635 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1636 * @adapter: board private structure to initialize
1637 *
1638 * Attempt to configure the interrupts using the best available
1639 * capabilities of the hardware and the kernel.
1640 **/
1641static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1642{
1643 int vector, v_budget;
1644 int pairs = 0;
1645 int err = 0;
1646
1647 if (!adapter->vsi_res) {
1648 err = -EIO;
1649 goto out;
1650 }
1651 pairs = adapter->num_active_queues;
1652
1653 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1654 * us much good if we have more vectors than CPUs. However, we already
1655 * limit the total number of queues by the number of CPUs so we do not
1656 * need any further limiting here.
1657 */
1658 v_budget = min_t(int, pairs + NONQ_VECS,
1659 (int)adapter->vf_res->max_vectors);
1660
1661 adapter->msix_entries = kcalloc(v_budget,
1662 sizeof(struct msix_entry), GFP_KERNEL);
1663 if (!adapter->msix_entries) {
1664 err = -ENOMEM;
1665 goto out;
1666 }
1667
1668 for (vector = 0; vector < v_budget; vector++)
1669 adapter->msix_entries[vector].entry = vector;
1670
1671 err = iavf_acquire_msix_vectors(adapter, v_budget);
1672 if (!err)
1673 iavf_schedule_finish_config(adapter);
1674
1675out:
1676 return err;
1677}
1678
1679/**
1680 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1681 * @adapter: board private structure
1682 *
1683 * Return 0 on success, negative on failure
1684 **/
1685static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1686{
1687 struct iavf_aqc_get_set_rss_key_data *rss_key =
1688 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1689 struct iavf_hw *hw = &adapter->hw;
1690 enum iavf_status status;
1691
1692 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1693 /* bail because we already have a command pending */
1694 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1695 adapter->current_op);
1696 return -EBUSY;
1697 }
1698
1699 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1700 if (status) {
1701 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1702 iavf_stat_str(hw, status),
1703 iavf_aq_str(hw, hw->aq.asq_last_status));
1704 return iavf_status_to_errno(status);
1705
1706 }
1707
1708 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1709 adapter->rss_lut, adapter->rss_lut_size);
1710 if (status) {
1711 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1712 iavf_stat_str(hw, status),
1713 iavf_aq_str(hw, hw->aq.asq_last_status));
1714 return iavf_status_to_errno(status);
1715 }
1716
1717 return 0;
1718
1719}
1720
1721/**
1722 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1723 * @adapter: board private structure
1724 *
1725 * Returns 0 on success, negative on failure
1726 **/
1727static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1728{
1729 struct iavf_hw *hw = &adapter->hw;
1730 u32 *dw;
1731 u16 i;
1732
1733 dw = (u32 *)adapter->rss_key;
1734 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1735 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1736
1737 dw = (u32 *)adapter->rss_lut;
1738 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1739 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1740
1741 iavf_flush(hw);
1742
1743 return 0;
1744}
1745
1746/**
1747 * iavf_config_rss - Configure RSS keys and lut
1748 * @adapter: board private structure
1749 *
1750 * Returns 0 on success, negative on failure
1751 **/
1752int iavf_config_rss(struct iavf_adapter *adapter)
1753{
1754
1755 if (RSS_PF(adapter)) {
1756 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1757 IAVF_FLAG_AQ_SET_RSS_KEY;
1758 return 0;
1759 } else if (RSS_AQ(adapter)) {
1760 return iavf_config_rss_aq(adapter);
1761 } else {
1762 return iavf_config_rss_reg(adapter);
1763 }
1764}
1765
1766/**
1767 * iavf_fill_rss_lut - Fill the lut with default values
1768 * @adapter: board private structure
1769 **/
1770static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1771{
1772 u16 i;
1773
1774 for (i = 0; i < adapter->rss_lut_size; i++)
1775 adapter->rss_lut[i] = i % adapter->num_active_queues;
1776}
1777
1778/**
1779 * iavf_init_rss - Prepare for RSS
1780 * @adapter: board private structure
1781 *
1782 * Return 0 on success, negative on failure
1783 **/
1784static int iavf_init_rss(struct iavf_adapter *adapter)
1785{
1786 struct iavf_hw *hw = &adapter->hw;
1787
1788 if (!RSS_PF(adapter)) {
1789 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1790 if (adapter->vf_res->vf_cap_flags &
1791 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1792 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1793 else
1794 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1795
1796 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1797 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1798 }
1799
1800 iavf_fill_rss_lut(adapter);
1801 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1802
1803 return iavf_config_rss(adapter);
1804}
1805
1806/**
1807 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1808 * @adapter: board private structure to initialize
1809 *
1810 * We allocate one q_vector per queue interrupt. If allocation fails we
1811 * return -ENOMEM.
1812 **/
1813static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1814{
1815 int q_idx = 0, num_q_vectors;
1816 struct iavf_q_vector *q_vector;
1817
1818 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1819 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1820 GFP_KERNEL);
1821 if (!adapter->q_vectors)
1822 return -ENOMEM;
1823
1824 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1825 q_vector = &adapter->q_vectors[q_idx];
1826 q_vector->adapter = adapter;
1827 q_vector->vsi = &adapter->vsi;
1828 q_vector->v_idx = q_idx;
1829 q_vector->reg_idx = q_idx;
1830 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1831 netif_napi_add(adapter->netdev, &q_vector->napi,
1832 iavf_napi_poll);
1833 }
1834
1835 return 0;
1836}
1837
1838/**
1839 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1840 * @adapter: board private structure to initialize
1841 *
1842 * This function frees the memory allocated to the q_vectors. In addition if
1843 * NAPI is enabled it will delete any references to the NAPI struct prior
1844 * to freeing the q_vector.
1845 **/
1846static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1847{
1848 int q_idx, num_q_vectors;
1849
1850 if (!adapter->q_vectors)
1851 return;
1852
1853 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1854
1855 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1856 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1857
1858 netif_napi_del(&q_vector->napi);
1859 }
1860 kfree(adapter->q_vectors);
1861 adapter->q_vectors = NULL;
1862}
1863
1864/**
1865 * iavf_reset_interrupt_capability - Reset MSIX setup
1866 * @adapter: board private structure
1867 *
1868 **/
1869static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1870{
1871 if (!adapter->msix_entries)
1872 return;
1873
1874 pci_disable_msix(adapter->pdev);
1875 kfree(adapter->msix_entries);
1876 adapter->msix_entries = NULL;
1877}
1878
1879/**
1880 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1881 * @adapter: board private structure to initialize
1882 *
1883 **/
1884static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1885{
1886 int err;
1887
1888 err = iavf_alloc_queues(adapter);
1889 if (err) {
1890 dev_err(&adapter->pdev->dev,
1891 "Unable to allocate memory for queues\n");
1892 goto err_alloc_queues;
1893 }
1894
1895 err = iavf_set_interrupt_capability(adapter);
1896 if (err) {
1897 dev_err(&adapter->pdev->dev,
1898 "Unable to setup interrupt capabilities\n");
1899 goto err_set_interrupt;
1900 }
1901
1902 err = iavf_alloc_q_vectors(adapter);
1903 if (err) {
1904 dev_err(&adapter->pdev->dev,
1905 "Unable to allocate memory for queue vectors\n");
1906 goto err_alloc_q_vectors;
1907 }
1908
1909 /* If we've made it so far while ADq flag being ON, then we haven't
1910 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1911 * resources have been allocated in the reset path.
1912 * Now we can truly claim that ADq is enabled.
1913 */
1914 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1915 adapter->num_tc)
1916 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1917 adapter->num_tc);
1918
1919 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1920 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1921 adapter->num_active_queues);
1922
1923 return 0;
1924err_alloc_q_vectors:
1925 iavf_reset_interrupt_capability(adapter);
1926err_set_interrupt:
1927 iavf_free_queues(adapter);
1928err_alloc_queues:
1929 return err;
1930}
1931
1932/**
1933 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1934 * @adapter: board private structure
1935 **/
1936static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1937{
1938 iavf_free_q_vectors(adapter);
1939 iavf_reset_interrupt_capability(adapter);
1940 iavf_free_queues(adapter);
1941}
1942
1943/**
1944 * iavf_free_rss - Free memory used by RSS structs
1945 * @adapter: board private structure
1946 **/
1947static void iavf_free_rss(struct iavf_adapter *adapter)
1948{
1949 kfree(adapter->rss_key);
1950 adapter->rss_key = NULL;
1951
1952 kfree(adapter->rss_lut);
1953 adapter->rss_lut = NULL;
1954}
1955
1956/**
1957 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1958 * @adapter: board private structure
1959 * @running: true if adapter->state == __IAVF_RUNNING
1960 *
1961 * Returns 0 on success, negative on failure
1962 **/
1963static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1964{
1965 struct net_device *netdev = adapter->netdev;
1966 int err;
1967
1968 if (running)
1969 iavf_free_traffic_irqs(adapter);
1970 iavf_free_misc_irq(adapter);
1971 iavf_free_interrupt_scheme(adapter);
1972
1973 err = iavf_init_interrupt_scheme(adapter);
1974 if (err)
1975 goto err;
1976
1977 netif_tx_stop_all_queues(netdev);
1978
1979 err = iavf_request_misc_irq(adapter);
1980 if (err)
1981 goto err;
1982
1983 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1984
1985 iavf_map_rings_to_vectors(adapter);
1986err:
1987 return err;
1988}
1989
1990/**
1991 * iavf_finish_config - do all netdev work that needs RTNL
1992 * @work: our work_struct
1993 *
1994 * Do work that needs both RTNL and crit_lock.
1995 **/
1996static void iavf_finish_config(struct work_struct *work)
1997{
1998 struct iavf_adapter *adapter;
1999 int pairs, err;
2000
2001 adapter = container_of(work, struct iavf_adapter, finish_config);
2002
2003 /* Always take RTNL first to prevent circular lock dependency */
2004 rtnl_lock();
2005 mutex_lock(&adapter->crit_lock);
2006
2007 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
2008 adapter->netdev->reg_state == NETREG_REGISTERED &&
2009 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2010 netdev_update_features(adapter->netdev);
2011 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2012 }
2013
2014 switch (adapter->state) {
2015 case __IAVF_DOWN:
2016 if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2017 err = register_netdevice(adapter->netdev);
2018 if (err) {
2019 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2020 err);
2021
2022 /* go back and try again.*/
2023 iavf_free_rss(adapter);
2024 iavf_free_misc_irq(adapter);
2025 iavf_reset_interrupt_capability(adapter);
2026 iavf_change_state(adapter,
2027 __IAVF_INIT_CONFIG_ADAPTER);
2028 goto out;
2029 }
2030 }
2031
2032 /* Set the real number of queues when reset occurs while
2033 * state == __IAVF_DOWN
2034 */
2035 fallthrough;
2036 case __IAVF_RUNNING:
2037 pairs = adapter->num_active_queues;
2038 netif_set_real_num_rx_queues(adapter->netdev, pairs);
2039 netif_set_real_num_tx_queues(adapter->netdev, pairs);
2040 break;
2041
2042 default:
2043 break;
2044 }
2045
2046out:
2047 mutex_unlock(&adapter->crit_lock);
2048 rtnl_unlock();
2049}
2050
2051/**
2052 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2053 * @adapter: board private structure
2054 **/
2055void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2056{
2057 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2058 queue_work(adapter->wq, &adapter->finish_config);
2059}
2060
2061/**
2062 * iavf_process_aq_command - process aq_required flags
2063 * and sends aq command
2064 * @adapter: pointer to iavf adapter structure
2065 *
2066 * Returns 0 on success
2067 * Returns error code if no command was sent
2068 * or error code if the command failed.
2069 **/
2070static int iavf_process_aq_command(struct iavf_adapter *adapter)
2071{
2072 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2073 return iavf_send_vf_config_msg(adapter);
2074 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2075 return iavf_send_vf_offload_vlan_v2_msg(adapter);
2076 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2077 iavf_disable_queues(adapter);
2078 return 0;
2079 }
2080
2081 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2082 iavf_map_queues(adapter);
2083 return 0;
2084 }
2085
2086 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2087 iavf_add_ether_addrs(adapter);
2088 return 0;
2089 }
2090
2091 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2092 iavf_add_vlans(adapter);
2093 return 0;
2094 }
2095
2096 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2097 iavf_del_ether_addrs(adapter);
2098 return 0;
2099 }
2100
2101 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2102 iavf_del_vlans(adapter);
2103 return 0;
2104 }
2105
2106 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2107 iavf_enable_vlan_stripping(adapter);
2108 return 0;
2109 }
2110
2111 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2112 iavf_disable_vlan_stripping(adapter);
2113 return 0;
2114 }
2115
2116 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2117 iavf_configure_queues(adapter);
2118 return 0;
2119 }
2120
2121 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2122 iavf_enable_queues(adapter);
2123 return 0;
2124 }
2125
2126 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2127 /* This message goes straight to the firmware, not the
2128 * PF, so we don't have to set current_op as we will
2129 * not get a response through the ARQ.
2130 */
2131 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2132 return 0;
2133 }
2134 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2135 iavf_get_hena(adapter);
2136 return 0;
2137 }
2138 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2139 iavf_set_hena(adapter);
2140 return 0;
2141 }
2142 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2143 iavf_set_rss_key(adapter);
2144 return 0;
2145 }
2146 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2147 iavf_set_rss_lut(adapter);
2148 return 0;
2149 }
2150 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2151 iavf_set_rss_hfunc(adapter);
2152 return 0;
2153 }
2154
2155 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2156 iavf_set_promiscuous(adapter);
2157 return 0;
2158 }
2159
2160 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2161 iavf_enable_channels(adapter);
2162 return 0;
2163 }
2164
2165 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2166 iavf_disable_channels(adapter);
2167 return 0;
2168 }
2169 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2170 iavf_add_cloud_filter(adapter);
2171 return 0;
2172 }
2173 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2174 iavf_del_cloud_filter(adapter);
2175 return 0;
2176 }
2177 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2178 iavf_add_fdir_filter(adapter);
2179 return IAVF_SUCCESS;
2180 }
2181 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2182 iavf_del_fdir_filter(adapter);
2183 return IAVF_SUCCESS;
2184 }
2185 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2186 iavf_add_adv_rss_cfg(adapter);
2187 return 0;
2188 }
2189 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2190 iavf_del_adv_rss_cfg(adapter);
2191 return 0;
2192 }
2193 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2194 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2195 return 0;
2196 }
2197 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2198 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2199 return 0;
2200 }
2201 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2202 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2203 return 0;
2204 }
2205 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2206 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2207 return 0;
2208 }
2209 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2210 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2211 return 0;
2212 }
2213 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2214 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2215 return 0;
2216 }
2217 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2218 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2219 return 0;
2220 }
2221 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2222 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2223 return 0;
2224 }
2225
2226 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2227 iavf_request_stats(adapter);
2228 return 0;
2229 }
2230
2231 return -EAGAIN;
2232}
2233
2234/**
2235 * iavf_set_vlan_offload_features - set VLAN offload configuration
2236 * @adapter: board private structure
2237 * @prev_features: previous features used for comparison
2238 * @features: updated features used for configuration
2239 *
2240 * Set the aq_required bit(s) based on the requested features passed in to
2241 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2242 * the watchdog if any changes are requested to expedite the request via
2243 * virtchnl.
2244 **/
2245static void
2246iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2247 netdev_features_t prev_features,
2248 netdev_features_t features)
2249{
2250 bool enable_stripping = true, enable_insertion = true;
2251 u16 vlan_ethertype = 0;
2252 u64 aq_required = 0;
2253
2254 /* keep cases separate because one ethertype for offloads can be
2255 * disabled at the same time as another is disabled, so check for an
2256 * enabled ethertype first, then check for disabled. Default to
2257 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2258 * stripping.
2259 */
2260 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2261 vlan_ethertype = ETH_P_8021AD;
2262 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2263 vlan_ethertype = ETH_P_8021Q;
2264 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2265 vlan_ethertype = ETH_P_8021AD;
2266 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2267 vlan_ethertype = ETH_P_8021Q;
2268 else
2269 vlan_ethertype = ETH_P_8021Q;
2270
2271 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2272 enable_stripping = false;
2273 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2274 enable_insertion = false;
2275
2276 if (VLAN_ALLOWED(adapter)) {
2277 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2278 * stripping via virtchnl. VLAN insertion can be toggled on the
2279 * netdev, but it doesn't require a virtchnl message
2280 */
2281 if (enable_stripping)
2282 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2283 else
2284 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2285
2286 } else if (VLAN_V2_ALLOWED(adapter)) {
2287 switch (vlan_ethertype) {
2288 case ETH_P_8021Q:
2289 if (enable_stripping)
2290 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2291 else
2292 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2293
2294 if (enable_insertion)
2295 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2296 else
2297 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2298 break;
2299 case ETH_P_8021AD:
2300 if (enable_stripping)
2301 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2302 else
2303 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2304
2305 if (enable_insertion)
2306 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2307 else
2308 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2309 break;
2310 }
2311 }
2312
2313 if (aq_required)
2314 iavf_schedule_aq_request(adapter, aq_required);
2315}
2316
2317/**
2318 * iavf_startup - first step of driver startup
2319 * @adapter: board private structure
2320 *
2321 * Function process __IAVF_STARTUP driver state.
2322 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2323 * when fails the state is changed to __IAVF_INIT_FAILED
2324 **/
2325static void iavf_startup(struct iavf_adapter *adapter)
2326{
2327 struct pci_dev *pdev = adapter->pdev;
2328 struct iavf_hw *hw = &adapter->hw;
2329 enum iavf_status status;
2330 int ret;
2331
2332 WARN_ON(adapter->state != __IAVF_STARTUP);
2333
2334 /* driver loaded, probe complete */
2335 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2336 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2337
2338 ret = iavf_check_reset_complete(hw);
2339 if (ret) {
2340 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2341 ret);
2342 goto err;
2343 }
2344 hw->aq.num_arq_entries = IAVF_AQ_LEN;
2345 hw->aq.num_asq_entries = IAVF_AQ_LEN;
2346 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2347 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2348
2349 status = iavf_init_adminq(hw);
2350 if (status) {
2351 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2352 status);
2353 goto err;
2354 }
2355 ret = iavf_send_api_ver(adapter);
2356 if (ret) {
2357 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2358 iavf_shutdown_adminq(hw);
2359 goto err;
2360 }
2361 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2362 return;
2363err:
2364 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2365}
2366
2367/**
2368 * iavf_init_version_check - second step of driver startup
2369 * @adapter: board private structure
2370 *
2371 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2372 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2373 * when fails the state is changed to __IAVF_INIT_FAILED
2374 **/
2375static void iavf_init_version_check(struct iavf_adapter *adapter)
2376{
2377 struct pci_dev *pdev = adapter->pdev;
2378 struct iavf_hw *hw = &adapter->hw;
2379 int err = -EAGAIN;
2380
2381 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2382
2383 if (!iavf_asq_done(hw)) {
2384 dev_err(&pdev->dev, "Admin queue command never completed\n");
2385 iavf_shutdown_adminq(hw);
2386 iavf_change_state(adapter, __IAVF_STARTUP);
2387 goto err;
2388 }
2389
2390 /* aq msg sent, awaiting reply */
2391 err = iavf_verify_api_ver(adapter);
2392 if (err) {
2393 if (err == -EALREADY)
2394 err = iavf_send_api_ver(adapter);
2395 else
2396 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2397 adapter->pf_version.major,
2398 adapter->pf_version.minor,
2399 VIRTCHNL_VERSION_MAJOR,
2400 VIRTCHNL_VERSION_MINOR);
2401 goto err;
2402 }
2403 err = iavf_send_vf_config_msg(adapter);
2404 if (err) {
2405 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2406 err);
2407 goto err;
2408 }
2409 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2410 return;
2411err:
2412 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2413}
2414
2415/**
2416 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2417 * @adapter: board private structure
2418 */
2419int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2420{
2421 int i, num_req_queues = adapter->num_req_queues;
2422 struct iavf_vsi *vsi = &adapter->vsi;
2423
2424 for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2425 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2426 adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2427 }
2428 if (!adapter->vsi_res) {
2429 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2430 return -ENODEV;
2431 }
2432
2433 if (num_req_queues &&
2434 num_req_queues > adapter->vsi_res->num_queue_pairs) {
2435 /* Problem. The PF gave us fewer queues than what we had
2436 * negotiated in our request. Need a reset to see if we can't
2437 * get back to a working state.
2438 */
2439 dev_err(&adapter->pdev->dev,
2440 "Requested %d queues, but PF only gave us %d.\n",
2441 num_req_queues,
2442 adapter->vsi_res->num_queue_pairs);
2443 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2444 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2445 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2446
2447 return -EAGAIN;
2448 }
2449 adapter->num_req_queues = 0;
2450 adapter->vsi.id = adapter->vsi_res->vsi_id;
2451
2452 adapter->vsi.back = adapter;
2453 adapter->vsi.base_vector = 1;
2454 vsi->netdev = adapter->netdev;
2455 vsi->qs_handle = adapter->vsi_res->qset_handle;
2456 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2457 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2458 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2459 } else {
2460 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2461 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2462 }
2463
2464 return 0;
2465}
2466
2467/**
2468 * iavf_init_get_resources - third step of driver startup
2469 * @adapter: board private structure
2470 *
2471 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2472 * finishes driver initialization procedure.
2473 * When success the state is changed to __IAVF_DOWN
2474 * when fails the state is changed to __IAVF_INIT_FAILED
2475 **/
2476static void iavf_init_get_resources(struct iavf_adapter *adapter)
2477{
2478 struct pci_dev *pdev = adapter->pdev;
2479 struct iavf_hw *hw = &adapter->hw;
2480 int err;
2481
2482 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2483 /* aq msg sent, awaiting reply */
2484 if (!adapter->vf_res) {
2485 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2486 GFP_KERNEL);
2487 if (!adapter->vf_res) {
2488 err = -ENOMEM;
2489 goto err;
2490 }
2491 }
2492 err = iavf_get_vf_config(adapter);
2493 if (err == -EALREADY) {
2494 err = iavf_send_vf_config_msg(adapter);
2495 goto err;
2496 } else if (err == -EINVAL) {
2497 /* We only get -EINVAL if the device is in a very bad
2498 * state or if we've been disabled for previous bad
2499 * behavior. Either way, we're done now.
2500 */
2501 iavf_shutdown_adminq(hw);
2502 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2503 return;
2504 }
2505 if (err) {
2506 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2507 goto err_alloc;
2508 }
2509
2510 err = iavf_parse_vf_resource_msg(adapter);
2511 if (err) {
2512 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2513 err);
2514 goto err_alloc;
2515 }
2516 /* Some features require additional messages to negotiate extended
2517 * capabilities. These are processed in sequence by the
2518 * __IAVF_INIT_EXTENDED_CAPS driver state.
2519 */
2520 adapter->extended_caps = IAVF_EXTENDED_CAPS;
2521
2522 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2523 return;
2524
2525err_alloc:
2526 kfree(adapter->vf_res);
2527 adapter->vf_res = NULL;
2528err:
2529 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2530}
2531
2532/**
2533 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2534 * @adapter: board private structure
2535 *
2536 * Function processes send of the extended VLAN V2 capability message to the
2537 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2538 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2539 */
2540static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2541{
2542 int ret;
2543
2544 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2545
2546 ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2547 if (ret && ret == -EOPNOTSUPP) {
2548 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2549 * we did not send the capability exchange message and do not
2550 * expect a response.
2551 */
2552 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2553 }
2554
2555 /* We sent the message, so move on to the next step */
2556 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2557}
2558
2559/**
2560 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2561 * @adapter: board private structure
2562 *
2563 * Function processes receipt of the extended VLAN V2 capability message from
2564 * the PF.
2565 **/
2566static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2567{
2568 int ret;
2569
2570 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2571
2572 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2573
2574 ret = iavf_get_vf_vlan_v2_caps(adapter);
2575 if (ret)
2576 goto err;
2577
2578 /* We've processed receipt of the VLAN V2 caps message */
2579 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2580 return;
2581err:
2582 /* We didn't receive a reply. Make sure we try sending again when
2583 * __IAVF_INIT_FAILED attempts to recover.
2584 */
2585 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2586 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2587}
2588
2589/**
2590 * iavf_init_process_extended_caps - Part of driver startup
2591 * @adapter: board private structure
2592 *
2593 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2594 * handles negotiating capabilities for features which require an additional
2595 * message.
2596 *
2597 * Once all extended capabilities exchanges are finished, the driver will
2598 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2599 */
2600static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2601{
2602 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2603
2604 /* Process capability exchange for VLAN V2 */
2605 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2606 iavf_init_send_offload_vlan_v2_caps(adapter);
2607 return;
2608 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2609 iavf_init_recv_offload_vlan_v2_caps(adapter);
2610 return;
2611 }
2612
2613 /* When we reach here, no further extended capabilities exchanges are
2614 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2615 */
2616 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2617}
2618
2619/**
2620 * iavf_init_config_adapter - last part of driver startup
2621 * @adapter: board private structure
2622 *
2623 * After all the supported capabilities are negotiated, then the
2624 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2625 */
2626static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2627{
2628 struct net_device *netdev = adapter->netdev;
2629 struct pci_dev *pdev = adapter->pdev;
2630 int err;
2631
2632 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2633
2634 if (iavf_process_config(adapter))
2635 goto err;
2636
2637 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2638
2639 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2640
2641 netdev->netdev_ops = &iavf_netdev_ops;
2642 iavf_set_ethtool_ops(netdev);
2643 netdev->watchdog_timeo = 5 * HZ;
2644
2645 /* MTU range: 68 - 9710 */
2646 netdev->min_mtu = ETH_MIN_MTU;
2647 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2648
2649 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2650 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2651 adapter->hw.mac.addr);
2652 eth_hw_addr_random(netdev);
2653 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2654 } else {
2655 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2656 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2657 }
2658
2659 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2660 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2661 err = iavf_init_interrupt_scheme(adapter);
2662 if (err)
2663 goto err_sw_init;
2664 iavf_map_rings_to_vectors(adapter);
2665 if (adapter->vf_res->vf_cap_flags &
2666 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2667 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2668
2669 err = iavf_request_misc_irq(adapter);
2670 if (err)
2671 goto err_sw_init;
2672
2673 netif_carrier_off(netdev);
2674 adapter->link_up = false;
2675 netif_tx_stop_all_queues(netdev);
2676
2677 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2678 if (netdev->features & NETIF_F_GRO)
2679 dev_info(&pdev->dev, "GRO is enabled\n");
2680
2681 iavf_change_state(adapter, __IAVF_DOWN);
2682 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2683
2684 iavf_misc_irq_enable(adapter);
2685 wake_up(&adapter->down_waitqueue);
2686
2687 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2688 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2689 if (!adapter->rss_key || !adapter->rss_lut) {
2690 err = -ENOMEM;
2691 goto err_mem;
2692 }
2693 if (RSS_AQ(adapter))
2694 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2695 else
2696 iavf_init_rss(adapter);
2697
2698 if (VLAN_V2_ALLOWED(adapter))
2699 /* request initial VLAN offload settings */
2700 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2701
2702 iavf_schedule_finish_config(adapter);
2703 return;
2704
2705err_mem:
2706 iavf_free_rss(adapter);
2707 iavf_free_misc_irq(adapter);
2708err_sw_init:
2709 iavf_reset_interrupt_capability(adapter);
2710err:
2711 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2712}
2713
2714/**
2715 * iavf_watchdog_task - Periodic call-back task
2716 * @work: pointer to work_struct
2717 **/
2718static void iavf_watchdog_task(struct work_struct *work)
2719{
2720 struct iavf_adapter *adapter = container_of(work,
2721 struct iavf_adapter,
2722 watchdog_task.work);
2723 struct iavf_hw *hw = &adapter->hw;
2724 u32 reg_val;
2725
2726 if (!mutex_trylock(&adapter->crit_lock)) {
2727 if (adapter->state == __IAVF_REMOVE)
2728 return;
2729
2730 goto restart_watchdog;
2731 }
2732
2733 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2734 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2735
2736 switch (adapter->state) {
2737 case __IAVF_STARTUP:
2738 iavf_startup(adapter);
2739 mutex_unlock(&adapter->crit_lock);
2740 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2741 msecs_to_jiffies(30));
2742 return;
2743 case __IAVF_INIT_VERSION_CHECK:
2744 iavf_init_version_check(adapter);
2745 mutex_unlock(&adapter->crit_lock);
2746 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2747 msecs_to_jiffies(30));
2748 return;
2749 case __IAVF_INIT_GET_RESOURCES:
2750 iavf_init_get_resources(adapter);
2751 mutex_unlock(&adapter->crit_lock);
2752 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2753 msecs_to_jiffies(1));
2754 return;
2755 case __IAVF_INIT_EXTENDED_CAPS:
2756 iavf_init_process_extended_caps(adapter);
2757 mutex_unlock(&adapter->crit_lock);
2758 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2759 msecs_to_jiffies(1));
2760 return;
2761 case __IAVF_INIT_CONFIG_ADAPTER:
2762 iavf_init_config_adapter(adapter);
2763 mutex_unlock(&adapter->crit_lock);
2764 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2765 msecs_to_jiffies(1));
2766 return;
2767 case __IAVF_INIT_FAILED:
2768 if (test_bit(__IAVF_IN_REMOVE_TASK,
2769 &adapter->crit_section)) {
2770 /* Do not update the state and do not reschedule
2771 * watchdog task, iavf_remove should handle this state
2772 * as it can loop forever
2773 */
2774 mutex_unlock(&adapter->crit_lock);
2775 return;
2776 }
2777 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2778 dev_err(&adapter->pdev->dev,
2779 "Failed to communicate with PF; waiting before retry\n");
2780 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2781 iavf_shutdown_adminq(hw);
2782 mutex_unlock(&adapter->crit_lock);
2783 queue_delayed_work(adapter->wq,
2784 &adapter->watchdog_task, (5 * HZ));
2785 return;
2786 }
2787 /* Try again from failed step*/
2788 iavf_change_state(adapter, adapter->last_state);
2789 mutex_unlock(&adapter->crit_lock);
2790 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2791 return;
2792 case __IAVF_COMM_FAILED:
2793 if (test_bit(__IAVF_IN_REMOVE_TASK,
2794 &adapter->crit_section)) {
2795 /* Set state to __IAVF_INIT_FAILED and perform remove
2796 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2797 * doesn't bring the state back to __IAVF_COMM_FAILED.
2798 */
2799 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2800 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2801 mutex_unlock(&adapter->crit_lock);
2802 return;
2803 }
2804 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2805 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2806 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2807 reg_val == VIRTCHNL_VFR_COMPLETED) {
2808 /* A chance for redemption! */
2809 dev_err(&adapter->pdev->dev,
2810 "Hardware came out of reset. Attempting reinit.\n");
2811 /* When init task contacts the PF and
2812 * gets everything set up again, it'll restart the
2813 * watchdog for us. Down, boy. Sit. Stay. Woof.
2814 */
2815 iavf_change_state(adapter, __IAVF_STARTUP);
2816 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2817 }
2818 adapter->aq_required = 0;
2819 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2820 mutex_unlock(&adapter->crit_lock);
2821 queue_delayed_work(adapter->wq,
2822 &adapter->watchdog_task,
2823 msecs_to_jiffies(10));
2824 return;
2825 case __IAVF_RESETTING:
2826 mutex_unlock(&adapter->crit_lock);
2827 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2828 HZ * 2);
2829 return;
2830 case __IAVF_DOWN:
2831 case __IAVF_DOWN_PENDING:
2832 case __IAVF_TESTING:
2833 case __IAVF_RUNNING:
2834 if (adapter->current_op) {
2835 if (!iavf_asq_done(hw)) {
2836 dev_dbg(&adapter->pdev->dev,
2837 "Admin queue timeout\n");
2838 iavf_send_api_ver(adapter);
2839 }
2840 } else {
2841 int ret = iavf_process_aq_command(adapter);
2842
2843 /* An error will be returned if no commands were
2844 * processed; use this opportunity to update stats
2845 * if the error isn't -ENOTSUPP
2846 */
2847 if (ret && ret != -EOPNOTSUPP &&
2848 adapter->state == __IAVF_RUNNING)
2849 iavf_request_stats(adapter);
2850 }
2851 if (adapter->state == __IAVF_RUNNING)
2852 iavf_detect_recover_hung(&adapter->vsi);
2853 break;
2854 case __IAVF_REMOVE:
2855 default:
2856 mutex_unlock(&adapter->crit_lock);
2857 return;
2858 }
2859
2860 /* check for hw reset */
2861 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2862 if (!reg_val) {
2863 adapter->aq_required = 0;
2864 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2865 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2866 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2867 mutex_unlock(&adapter->crit_lock);
2868 queue_delayed_work(adapter->wq,
2869 &adapter->watchdog_task, HZ * 2);
2870 return;
2871 }
2872
2873 mutex_unlock(&adapter->crit_lock);
2874restart_watchdog:
2875 if (adapter->state >= __IAVF_DOWN)
2876 queue_work(adapter->wq, &adapter->adminq_task);
2877 if (adapter->aq_required)
2878 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2879 msecs_to_jiffies(20));
2880 else
2881 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2882 HZ * 2);
2883}
2884
2885/**
2886 * iavf_disable_vf - disable VF
2887 * @adapter: board private structure
2888 *
2889 * Set communication failed flag and free all resources.
2890 * NOTE: This function is expected to be called with crit_lock being held.
2891 **/
2892static void iavf_disable_vf(struct iavf_adapter *adapter)
2893{
2894 struct iavf_mac_filter *f, *ftmp;
2895 struct iavf_vlan_filter *fv, *fvtmp;
2896 struct iavf_cloud_filter *cf, *cftmp;
2897
2898 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2899
2900 /* We don't use netif_running() because it may be true prior to
2901 * ndo_open() returning, so we can't assume it means all our open
2902 * tasks have finished, since we're not holding the rtnl_lock here.
2903 */
2904 if (adapter->state == __IAVF_RUNNING) {
2905 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2906 netif_carrier_off(adapter->netdev);
2907 netif_tx_disable(adapter->netdev);
2908 adapter->link_up = false;
2909 iavf_napi_disable_all(adapter);
2910 iavf_irq_disable(adapter);
2911 iavf_free_traffic_irqs(adapter);
2912 iavf_free_all_tx_resources(adapter);
2913 iavf_free_all_rx_resources(adapter);
2914 }
2915
2916 spin_lock_bh(&adapter->mac_vlan_list_lock);
2917
2918 /* Delete all of the filters */
2919 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2920 list_del(&f->list);
2921 kfree(f);
2922 }
2923
2924 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2925 list_del(&fv->list);
2926 kfree(fv);
2927 }
2928 adapter->num_vlan_filters = 0;
2929
2930 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2931
2932 spin_lock_bh(&adapter->cloud_filter_list_lock);
2933 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2934 list_del(&cf->list);
2935 kfree(cf);
2936 adapter->num_cloud_filters--;
2937 }
2938 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2939
2940 iavf_free_misc_irq(adapter);
2941 iavf_free_interrupt_scheme(adapter);
2942 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2943 iavf_shutdown_adminq(&adapter->hw);
2944 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2945 iavf_change_state(adapter, __IAVF_DOWN);
2946 wake_up(&adapter->down_waitqueue);
2947 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2948}
2949
2950/**
2951 * iavf_reset_task - Call-back task to handle hardware reset
2952 * @work: pointer to work_struct
2953 *
2954 * During reset we need to shut down and reinitialize the admin queue
2955 * before we can use it to communicate with the PF again. We also clear
2956 * and reinit the rings because that context is lost as well.
2957 **/
2958static void iavf_reset_task(struct work_struct *work)
2959{
2960 struct iavf_adapter *adapter = container_of(work,
2961 struct iavf_adapter,
2962 reset_task);
2963 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2964 struct net_device *netdev = adapter->netdev;
2965 struct iavf_hw *hw = &adapter->hw;
2966 struct iavf_mac_filter *f, *ftmp;
2967 struct iavf_cloud_filter *cf;
2968 enum iavf_status status;
2969 u32 reg_val;
2970 int i = 0, err;
2971 bool running;
2972
2973 /* When device is being removed it doesn't make sense to run the reset
2974 * task, just return in such a case.
2975 */
2976 if (!mutex_trylock(&adapter->crit_lock)) {
2977 if (adapter->state != __IAVF_REMOVE)
2978 queue_work(adapter->wq, &adapter->reset_task);
2979
2980 return;
2981 }
2982
2983 iavf_misc_irq_disable(adapter);
2984 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2985 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2986 /* Restart the AQ here. If we have been reset but didn't
2987 * detect it, or if the PF had to reinit, our AQ will be hosed.
2988 */
2989 iavf_shutdown_adminq(hw);
2990 iavf_init_adminq(hw);
2991 iavf_request_reset(adapter);
2992 }
2993 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2994
2995 /* poll until we see the reset actually happen */
2996 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2997 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2998 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2999 if (!reg_val)
3000 break;
3001 usleep_range(5000, 10000);
3002 }
3003 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3004 dev_info(&adapter->pdev->dev, "Never saw reset\n");
3005 goto continue_reset; /* act like the reset happened */
3006 }
3007
3008 /* wait until the reset is complete and the PF is responding to us */
3009 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3010 /* sleep first to make sure a minimum wait time is met */
3011 msleep(IAVF_RESET_WAIT_MS);
3012
3013 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3014 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3015 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3016 break;
3017 }
3018
3019 pci_set_master(adapter->pdev);
3020 pci_restore_msi_state(adapter->pdev);
3021
3022 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3023 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3024 reg_val);
3025 iavf_disable_vf(adapter);
3026 mutex_unlock(&adapter->crit_lock);
3027 return; /* Do not attempt to reinit. It's dead, Jim. */
3028 }
3029
3030continue_reset:
3031 /* We don't use netif_running() because it may be true prior to
3032 * ndo_open() returning, so we can't assume it means all our open
3033 * tasks have finished, since we're not holding the rtnl_lock here.
3034 */
3035 running = adapter->state == __IAVF_RUNNING;
3036
3037 if (running) {
3038 netif_carrier_off(netdev);
3039 netif_tx_stop_all_queues(netdev);
3040 adapter->link_up = false;
3041 iavf_napi_disable_all(adapter);
3042 }
3043 iavf_irq_disable(adapter);
3044
3045 iavf_change_state(adapter, __IAVF_RESETTING);
3046 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3047
3048 /* free the Tx/Rx rings and descriptors, might be better to just
3049 * re-use them sometime in the future
3050 */
3051 iavf_free_all_rx_resources(adapter);
3052 iavf_free_all_tx_resources(adapter);
3053
3054 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3055 /* kill and reinit the admin queue */
3056 iavf_shutdown_adminq(hw);
3057 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3058 status = iavf_init_adminq(hw);
3059 if (status) {
3060 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3061 status);
3062 goto reset_err;
3063 }
3064 adapter->aq_required = 0;
3065
3066 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3067 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3068 err = iavf_reinit_interrupt_scheme(adapter, running);
3069 if (err)
3070 goto reset_err;
3071 }
3072
3073 if (RSS_AQ(adapter)) {
3074 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3075 } else {
3076 err = iavf_init_rss(adapter);
3077 if (err)
3078 goto reset_err;
3079 }
3080
3081 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3082 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3083 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3084 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3085 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3086 * been successfully sent and negotiated
3087 */
3088 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3089 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3090
3091 spin_lock_bh(&adapter->mac_vlan_list_lock);
3092
3093 /* Delete filter for the current MAC address, it could have
3094 * been changed by the PF via administratively set MAC.
3095 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3096 */
3097 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3098 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3099 list_del(&f->list);
3100 kfree(f);
3101 }
3102 }
3103 /* re-add all MAC filters */
3104 list_for_each_entry(f, &adapter->mac_filter_list, list) {
3105 f->add = true;
3106 }
3107 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3108
3109 /* check if TCs are running and re-add all cloud filters */
3110 spin_lock_bh(&adapter->cloud_filter_list_lock);
3111 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3112 adapter->num_tc) {
3113 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3114 cf->add = true;
3115 }
3116 }
3117 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3118
3119 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3120 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3121 iavf_misc_irq_enable(adapter);
3122
3123 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3124
3125 /* We were running when the reset started, so we need to restore some
3126 * state here.
3127 */
3128 if (running) {
3129 /* allocate transmit descriptors */
3130 err = iavf_setup_all_tx_resources(adapter);
3131 if (err)
3132 goto reset_err;
3133
3134 /* allocate receive descriptors */
3135 err = iavf_setup_all_rx_resources(adapter);
3136 if (err)
3137 goto reset_err;
3138
3139 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3140 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3141 err = iavf_request_traffic_irqs(adapter, netdev->name);
3142 if (err)
3143 goto reset_err;
3144
3145 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3146 }
3147
3148 iavf_configure(adapter);
3149
3150 /* iavf_up_complete() will switch device back
3151 * to __IAVF_RUNNING
3152 */
3153 iavf_up_complete(adapter);
3154
3155 iavf_irq_enable(adapter, true);
3156 } else {
3157 iavf_change_state(adapter, __IAVF_DOWN);
3158 wake_up(&adapter->down_waitqueue);
3159 }
3160
3161 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3162
3163 wake_up(&adapter->reset_waitqueue);
3164 mutex_unlock(&adapter->crit_lock);
3165
3166 return;
3167reset_err:
3168 if (running) {
3169 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3170 iavf_free_traffic_irqs(adapter);
3171 }
3172 iavf_disable_vf(adapter);
3173
3174 mutex_unlock(&adapter->crit_lock);
3175 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3176}
3177
3178/**
3179 * iavf_adminq_task - worker thread to clean the admin queue
3180 * @work: pointer to work_struct containing our data
3181 **/
3182static void iavf_adminq_task(struct work_struct *work)
3183{
3184 struct iavf_adapter *adapter =
3185 container_of(work, struct iavf_adapter, adminq_task);
3186 struct iavf_hw *hw = &adapter->hw;
3187 struct iavf_arq_event_info event;
3188 enum virtchnl_ops v_op;
3189 enum iavf_status ret, v_ret;
3190 u32 val, oldval;
3191 u16 pending;
3192
3193 if (!mutex_trylock(&adapter->crit_lock)) {
3194 if (adapter->state == __IAVF_REMOVE)
3195 return;
3196
3197 queue_work(adapter->wq, &adapter->adminq_task);
3198 goto out;
3199 }
3200
3201 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3202 goto unlock;
3203
3204 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3205 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3206 if (!event.msg_buf)
3207 goto unlock;
3208
3209 do {
3210 ret = iavf_clean_arq_element(hw, &event, &pending);
3211 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3212 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3213
3214 if (ret || !v_op)
3215 break; /* No event to process or error cleaning ARQ */
3216
3217 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3218 event.msg_len);
3219 if (pending != 0)
3220 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3221 } while (pending);
3222
3223 if (iavf_is_reset_in_progress(adapter))
3224 goto freedom;
3225
3226 /* check for error indications */
3227 val = rd32(hw, IAVF_VF_ARQLEN1);
3228 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3229 goto freedom;
3230 oldval = val;
3231 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3232 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3233 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3234 }
3235 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3236 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3237 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3238 }
3239 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3240 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3241 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3242 }
3243 if (oldval != val)
3244 wr32(hw, IAVF_VF_ARQLEN1, val);
3245
3246 val = rd32(hw, IAVF_VF_ATQLEN1);
3247 oldval = val;
3248 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3249 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3250 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3251 }
3252 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3253 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3254 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3255 }
3256 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3257 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3258 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3259 }
3260 if (oldval != val)
3261 wr32(hw, IAVF_VF_ATQLEN1, val);
3262
3263freedom:
3264 kfree(event.msg_buf);
3265unlock:
3266 mutex_unlock(&adapter->crit_lock);
3267out:
3268 /* re-enable Admin queue interrupt cause */
3269 iavf_misc_irq_enable(adapter);
3270}
3271
3272/**
3273 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3274 * @adapter: board private structure
3275 *
3276 * Free all transmit software resources
3277 **/
3278void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3279{
3280 int i;
3281
3282 if (!adapter->tx_rings)
3283 return;
3284
3285 for (i = 0; i < adapter->num_active_queues; i++)
3286 if (adapter->tx_rings[i].desc)
3287 iavf_free_tx_resources(&adapter->tx_rings[i]);
3288}
3289
3290/**
3291 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3292 * @adapter: board private structure
3293 *
3294 * If this function returns with an error, then it's possible one or
3295 * more of the rings is populated (while the rest are not). It is the
3296 * callers duty to clean those orphaned rings.
3297 *
3298 * Return 0 on success, negative on failure
3299 **/
3300static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3301{
3302 int i, err = 0;
3303
3304 for (i = 0; i < adapter->num_active_queues; i++) {
3305 adapter->tx_rings[i].count = adapter->tx_desc_count;
3306 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3307 if (!err)
3308 continue;
3309 dev_err(&adapter->pdev->dev,
3310 "Allocation for Tx Queue %u failed\n", i);
3311 break;
3312 }
3313
3314 return err;
3315}
3316
3317/**
3318 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3319 * @adapter: board private structure
3320 *
3321 * If this function returns with an error, then it's possible one or
3322 * more of the rings is populated (while the rest are not). It is the
3323 * callers duty to clean those orphaned rings.
3324 *
3325 * Return 0 on success, negative on failure
3326 **/
3327static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3328{
3329 int i, err = 0;
3330
3331 for (i = 0; i < adapter->num_active_queues; i++) {
3332 adapter->rx_rings[i].count = adapter->rx_desc_count;
3333 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3334 if (!err)
3335 continue;
3336 dev_err(&adapter->pdev->dev,
3337 "Allocation for Rx Queue %u failed\n", i);
3338 break;
3339 }
3340 return err;
3341}
3342
3343/**
3344 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3345 * @adapter: board private structure
3346 *
3347 * Free all receive software resources
3348 **/
3349void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3350{
3351 int i;
3352
3353 if (!adapter->rx_rings)
3354 return;
3355
3356 for (i = 0; i < adapter->num_active_queues; i++)
3357 if (adapter->rx_rings[i].desc)
3358 iavf_free_rx_resources(&adapter->rx_rings[i]);
3359}
3360
3361/**
3362 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3363 * @adapter: board private structure
3364 * @max_tx_rate: max Tx bw for a tc
3365 **/
3366static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3367 u64 max_tx_rate)
3368{
3369 int speed = 0, ret = 0;
3370
3371 if (ADV_LINK_SUPPORT(adapter)) {
3372 if (adapter->link_speed_mbps < U32_MAX) {
3373 speed = adapter->link_speed_mbps;
3374 goto validate_bw;
3375 } else {
3376 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3377 return -EINVAL;
3378 }
3379 }
3380
3381 switch (adapter->link_speed) {
3382 case VIRTCHNL_LINK_SPEED_40GB:
3383 speed = SPEED_40000;
3384 break;
3385 case VIRTCHNL_LINK_SPEED_25GB:
3386 speed = SPEED_25000;
3387 break;
3388 case VIRTCHNL_LINK_SPEED_20GB:
3389 speed = SPEED_20000;
3390 break;
3391 case VIRTCHNL_LINK_SPEED_10GB:
3392 speed = SPEED_10000;
3393 break;
3394 case VIRTCHNL_LINK_SPEED_5GB:
3395 speed = SPEED_5000;
3396 break;
3397 case VIRTCHNL_LINK_SPEED_2_5GB:
3398 speed = SPEED_2500;
3399 break;
3400 case VIRTCHNL_LINK_SPEED_1GB:
3401 speed = SPEED_1000;
3402 break;
3403 case VIRTCHNL_LINK_SPEED_100MB:
3404 speed = SPEED_100;
3405 break;
3406 default:
3407 break;
3408 }
3409
3410validate_bw:
3411 if (max_tx_rate > speed) {
3412 dev_err(&adapter->pdev->dev,
3413 "Invalid tx rate specified\n");
3414 ret = -EINVAL;
3415 }
3416
3417 return ret;
3418}
3419
3420/**
3421 * iavf_validate_ch_config - validate queue mapping info
3422 * @adapter: board private structure
3423 * @mqprio_qopt: queue parameters
3424 *
3425 * This function validates if the config provided by the user to
3426 * configure queue channels is valid or not. Returns 0 on a valid
3427 * config.
3428 **/
3429static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3430 struct tc_mqprio_qopt_offload *mqprio_qopt)
3431{
3432 u64 total_max_rate = 0;
3433 u32 tx_rate_rem = 0;
3434 int i, num_qps = 0;
3435 u64 tx_rate = 0;
3436 int ret = 0;
3437
3438 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3439 mqprio_qopt->qopt.num_tc < 1)
3440 return -EINVAL;
3441
3442 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3443 if (!mqprio_qopt->qopt.count[i] ||
3444 mqprio_qopt->qopt.offset[i] != num_qps)
3445 return -EINVAL;
3446 if (mqprio_qopt->min_rate[i]) {
3447 dev_err(&adapter->pdev->dev,
3448 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3449 i);
3450 return -EINVAL;
3451 }
3452
3453 /* convert to Mbps */
3454 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3455 IAVF_MBPS_DIVISOR);
3456
3457 if (mqprio_qopt->max_rate[i] &&
3458 tx_rate < IAVF_MBPS_QUANTA) {
3459 dev_err(&adapter->pdev->dev,
3460 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3461 i, IAVF_MBPS_QUANTA);
3462 return -EINVAL;
3463 }
3464
3465 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3466
3467 if (tx_rate_rem != 0) {
3468 dev_err(&adapter->pdev->dev,
3469 "Invalid max tx rate for TC%d, not divisible by %d\n",
3470 i, IAVF_MBPS_QUANTA);
3471 return -EINVAL;
3472 }
3473
3474 total_max_rate += tx_rate;
3475 num_qps += mqprio_qopt->qopt.count[i];
3476 }
3477 if (num_qps > adapter->num_active_queues) {
3478 dev_err(&adapter->pdev->dev,
3479 "Cannot support requested number of queues\n");
3480 return -EINVAL;
3481 }
3482
3483 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3484 return ret;
3485}
3486
3487/**
3488 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3489 * @adapter: board private structure
3490 **/
3491static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3492{
3493 struct iavf_cloud_filter *cf, *cftmp;
3494
3495 spin_lock_bh(&adapter->cloud_filter_list_lock);
3496 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3497 list) {
3498 list_del(&cf->list);
3499 kfree(cf);
3500 adapter->num_cloud_filters--;
3501 }
3502 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3503}
3504
3505/**
3506 * iavf_is_tc_config_same - Compare the mqprio TC config with the
3507 * TC config already configured on this adapter.
3508 * @adapter: board private structure
3509 * @mqprio_qopt: TC config received from kernel.
3510 *
3511 * This function compares the TC config received from the kernel
3512 * with the config already configured on the adapter.
3513 *
3514 * Return: True if configuration is same, false otherwise.
3515 **/
3516static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3517 struct tc_mqprio_qopt *mqprio_qopt)
3518{
3519 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3520 int i;
3521
3522 if (adapter->num_tc != mqprio_qopt->num_tc)
3523 return false;
3524
3525 for (i = 0; i < adapter->num_tc; i++) {
3526 if (ch[i].count != mqprio_qopt->count[i] ||
3527 ch[i].offset != mqprio_qopt->offset[i])
3528 return false;
3529 }
3530 return true;
3531}
3532
3533/**
3534 * __iavf_setup_tc - configure multiple traffic classes
3535 * @netdev: network interface device structure
3536 * @type_data: tc offload data
3537 *
3538 * This function processes the config information provided by the
3539 * user to configure traffic classes/queue channels and packages the
3540 * information to request the PF to setup traffic classes.
3541 *
3542 * Returns 0 on success.
3543 **/
3544static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3545{
3546 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3547 struct iavf_adapter *adapter = netdev_priv(netdev);
3548 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3549 u8 num_tc = 0, total_qps = 0;
3550 int ret = 0, netdev_tc = 0;
3551 u64 max_tx_rate;
3552 u16 mode;
3553 int i;
3554
3555 num_tc = mqprio_qopt->qopt.num_tc;
3556 mode = mqprio_qopt->mode;
3557
3558 /* delete queue_channel */
3559 if (!mqprio_qopt->qopt.hw) {
3560 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3561 /* reset the tc configuration */
3562 netdev_reset_tc(netdev);
3563 adapter->num_tc = 0;
3564 netif_tx_stop_all_queues(netdev);
3565 netif_tx_disable(netdev);
3566 iavf_del_all_cloud_filters(adapter);
3567 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3568 total_qps = adapter->orig_num_active_queues;
3569 goto exit;
3570 } else {
3571 return -EINVAL;
3572 }
3573 }
3574
3575 /* add queue channel */
3576 if (mode == TC_MQPRIO_MODE_CHANNEL) {
3577 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3578 dev_err(&adapter->pdev->dev, "ADq not supported\n");
3579 return -EOPNOTSUPP;
3580 }
3581 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3582 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3583 return -EINVAL;
3584 }
3585
3586 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3587 if (ret)
3588 return ret;
3589 /* Return if same TC config is requested */
3590 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3591 return 0;
3592 adapter->num_tc = num_tc;
3593
3594 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3595 if (i < num_tc) {
3596 adapter->ch_config.ch_info[i].count =
3597 mqprio_qopt->qopt.count[i];
3598 adapter->ch_config.ch_info[i].offset =
3599 mqprio_qopt->qopt.offset[i];
3600 total_qps += mqprio_qopt->qopt.count[i];
3601 max_tx_rate = mqprio_qopt->max_rate[i];
3602 /* convert to Mbps */
3603 max_tx_rate = div_u64(max_tx_rate,
3604 IAVF_MBPS_DIVISOR);
3605 adapter->ch_config.ch_info[i].max_tx_rate =
3606 max_tx_rate;
3607 } else {
3608 adapter->ch_config.ch_info[i].count = 1;
3609 adapter->ch_config.ch_info[i].offset = 0;
3610 }
3611 }
3612
3613 /* Take snapshot of original config such as "num_active_queues"
3614 * It is used later when delete ADQ flow is exercised, so that
3615 * once delete ADQ flow completes, VF shall go back to its
3616 * original queue configuration
3617 */
3618
3619 adapter->orig_num_active_queues = adapter->num_active_queues;
3620
3621 /* Store queue info based on TC so that VF gets configured
3622 * with correct number of queues when VF completes ADQ config
3623 * flow
3624 */
3625 adapter->ch_config.total_qps = total_qps;
3626
3627 netif_tx_stop_all_queues(netdev);
3628 netif_tx_disable(netdev);
3629 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3630 netdev_reset_tc(netdev);
3631 /* Report the tc mapping up the stack */
3632 netdev_set_num_tc(adapter->netdev, num_tc);
3633 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3634 u16 qcount = mqprio_qopt->qopt.count[i];
3635 u16 qoffset = mqprio_qopt->qopt.offset[i];
3636
3637 if (i < num_tc)
3638 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3639 qoffset);
3640 }
3641 }
3642exit:
3643 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3644 return 0;
3645
3646 netif_set_real_num_rx_queues(netdev, total_qps);
3647 netif_set_real_num_tx_queues(netdev, total_qps);
3648
3649 return ret;
3650}
3651
3652/**
3653 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3654 * @adapter: board private structure
3655 * @f: pointer to struct flow_cls_offload
3656 * @filter: pointer to cloud filter structure
3657 */
3658static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3659 struct flow_cls_offload *f,
3660 struct iavf_cloud_filter *filter)
3661{
3662 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3663 struct flow_dissector *dissector = rule->match.dissector;
3664 u16 n_proto_mask = 0;
3665 u16 n_proto_key = 0;
3666 u8 field_flags = 0;
3667 u16 addr_type = 0;
3668 u16 n_proto = 0;
3669 int i = 0;
3670 struct virtchnl_filter *vf = &filter->f;
3671
3672 if (dissector->used_keys &
3673 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3674 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3675 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3676 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3677 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3678 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3679 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3680 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3681 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3682 dissector->used_keys);
3683 return -EOPNOTSUPP;
3684 }
3685
3686 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3687 struct flow_match_enc_keyid match;
3688
3689 flow_rule_match_enc_keyid(rule, &match);
3690 if (match.mask->keyid != 0)
3691 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3692 }
3693
3694 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3695 struct flow_match_basic match;
3696
3697 flow_rule_match_basic(rule, &match);
3698 n_proto_key = ntohs(match.key->n_proto);
3699 n_proto_mask = ntohs(match.mask->n_proto);
3700
3701 if (n_proto_key == ETH_P_ALL) {
3702 n_proto_key = 0;
3703 n_proto_mask = 0;
3704 }
3705 n_proto = n_proto_key & n_proto_mask;
3706 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3707 return -EINVAL;
3708 if (n_proto == ETH_P_IPV6) {
3709 /* specify flow type as TCP IPv6 */
3710 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3711 }
3712
3713 if (match.key->ip_proto != IPPROTO_TCP) {
3714 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3715 return -EINVAL;
3716 }
3717 }
3718
3719 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3720 struct flow_match_eth_addrs match;
3721
3722 flow_rule_match_eth_addrs(rule, &match);
3723
3724 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3725 if (!is_zero_ether_addr(match.mask->dst)) {
3726 if (is_broadcast_ether_addr(match.mask->dst)) {
3727 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3728 } else {
3729 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3730 match.mask->dst);
3731 return -EINVAL;
3732 }
3733 }
3734
3735 if (!is_zero_ether_addr(match.mask->src)) {
3736 if (is_broadcast_ether_addr(match.mask->src)) {
3737 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3738 } else {
3739 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3740 match.mask->src);
3741 return -EINVAL;
3742 }
3743 }
3744
3745 if (!is_zero_ether_addr(match.key->dst))
3746 if (is_valid_ether_addr(match.key->dst) ||
3747 is_multicast_ether_addr(match.key->dst)) {
3748 /* set the mask if a valid dst_mac address */
3749 for (i = 0; i < ETH_ALEN; i++)
3750 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3751 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3752 match.key->dst);
3753 }
3754
3755 if (!is_zero_ether_addr(match.key->src))
3756 if (is_valid_ether_addr(match.key->src) ||
3757 is_multicast_ether_addr(match.key->src)) {
3758 /* set the mask if a valid dst_mac address */
3759 for (i = 0; i < ETH_ALEN; i++)
3760 vf->mask.tcp_spec.src_mac[i] |= 0xff;
3761 ether_addr_copy(vf->data.tcp_spec.src_mac,
3762 match.key->src);
3763 }
3764 }
3765
3766 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3767 struct flow_match_vlan match;
3768
3769 flow_rule_match_vlan(rule, &match);
3770 if (match.mask->vlan_id) {
3771 if (match.mask->vlan_id == VLAN_VID_MASK) {
3772 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3773 } else {
3774 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3775 match.mask->vlan_id);
3776 return -EINVAL;
3777 }
3778 }
3779 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3780 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3781 }
3782
3783 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3784 struct flow_match_control match;
3785
3786 flow_rule_match_control(rule, &match);
3787 addr_type = match.key->addr_type;
3788 }
3789
3790 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3791 struct flow_match_ipv4_addrs match;
3792
3793 flow_rule_match_ipv4_addrs(rule, &match);
3794 if (match.mask->dst) {
3795 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3796 field_flags |= IAVF_CLOUD_FIELD_IIP;
3797 } else {
3798 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3799 be32_to_cpu(match.mask->dst));
3800 return -EINVAL;
3801 }
3802 }
3803
3804 if (match.mask->src) {
3805 if (match.mask->src == cpu_to_be32(0xffffffff)) {
3806 field_flags |= IAVF_CLOUD_FIELD_IIP;
3807 } else {
3808 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3809 be32_to_cpu(match.mask->src));
3810 return -EINVAL;
3811 }
3812 }
3813
3814 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3815 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3816 return -EINVAL;
3817 }
3818 if (match.key->dst) {
3819 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3820 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3821 }
3822 if (match.key->src) {
3823 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3824 vf->data.tcp_spec.src_ip[0] = match.key->src;
3825 }
3826 }
3827
3828 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3829 struct flow_match_ipv6_addrs match;
3830
3831 flow_rule_match_ipv6_addrs(rule, &match);
3832
3833 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3834 if (ipv6_addr_any(&match.mask->dst)) {
3835 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3836 IPV6_ADDR_ANY);
3837 return -EINVAL;
3838 }
3839
3840 /* src and dest IPv6 address should not be LOOPBACK
3841 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3842 */
3843 if (ipv6_addr_loopback(&match.key->dst) ||
3844 ipv6_addr_loopback(&match.key->src)) {
3845 dev_err(&adapter->pdev->dev,
3846 "ipv6 addr should not be loopback\n");
3847 return -EINVAL;
3848 }
3849 if (!ipv6_addr_any(&match.mask->dst) ||
3850 !ipv6_addr_any(&match.mask->src))
3851 field_flags |= IAVF_CLOUD_FIELD_IIP;
3852
3853 for (i = 0; i < 4; i++)
3854 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3855 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3856 sizeof(vf->data.tcp_spec.dst_ip));
3857 for (i = 0; i < 4; i++)
3858 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3859 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3860 sizeof(vf->data.tcp_spec.src_ip));
3861 }
3862 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3863 struct flow_match_ports match;
3864
3865 flow_rule_match_ports(rule, &match);
3866 if (match.mask->src) {
3867 if (match.mask->src == cpu_to_be16(0xffff)) {
3868 field_flags |= IAVF_CLOUD_FIELD_IIP;
3869 } else {
3870 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3871 be16_to_cpu(match.mask->src));
3872 return -EINVAL;
3873 }
3874 }
3875
3876 if (match.mask->dst) {
3877 if (match.mask->dst == cpu_to_be16(0xffff)) {
3878 field_flags |= IAVF_CLOUD_FIELD_IIP;
3879 } else {
3880 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3881 be16_to_cpu(match.mask->dst));
3882 return -EINVAL;
3883 }
3884 }
3885 if (match.key->dst) {
3886 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3887 vf->data.tcp_spec.dst_port = match.key->dst;
3888 }
3889
3890 if (match.key->src) {
3891 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3892 vf->data.tcp_spec.src_port = match.key->src;
3893 }
3894 }
3895 vf->field_flags = field_flags;
3896
3897 return 0;
3898}
3899
3900/**
3901 * iavf_handle_tclass - Forward to a traffic class on the device
3902 * @adapter: board private structure
3903 * @tc: traffic class index on the device
3904 * @filter: pointer to cloud filter structure
3905 */
3906static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3907 struct iavf_cloud_filter *filter)
3908{
3909 if (tc == 0)
3910 return 0;
3911 if (tc < adapter->num_tc) {
3912 if (!filter->f.data.tcp_spec.dst_port) {
3913 dev_err(&adapter->pdev->dev,
3914 "Specify destination port to redirect to traffic class other than TC0\n");
3915 return -EINVAL;
3916 }
3917 }
3918 /* redirect to a traffic class on the same device */
3919 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3920 filter->f.action_meta = tc;
3921 return 0;
3922}
3923
3924/**
3925 * iavf_find_cf - Find the cloud filter in the list
3926 * @adapter: Board private structure
3927 * @cookie: filter specific cookie
3928 *
3929 * Returns ptr to the filter object or NULL. Must be called while holding the
3930 * cloud_filter_list_lock.
3931 */
3932static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3933 unsigned long *cookie)
3934{
3935 struct iavf_cloud_filter *filter = NULL;
3936
3937 if (!cookie)
3938 return NULL;
3939
3940 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3941 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3942 return filter;
3943 }
3944 return NULL;
3945}
3946
3947/**
3948 * iavf_configure_clsflower - Add tc flower filters
3949 * @adapter: board private structure
3950 * @cls_flower: Pointer to struct flow_cls_offload
3951 */
3952static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3953 struct flow_cls_offload *cls_flower)
3954{
3955 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3956 struct iavf_cloud_filter *filter = NULL;
3957 int err = -EINVAL, count = 50;
3958
3959 if (tc < 0) {
3960 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3961 return -EINVAL;
3962 }
3963
3964 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3965 if (!filter)
3966 return -ENOMEM;
3967
3968 while (!mutex_trylock(&adapter->crit_lock)) {
3969 if (--count == 0) {
3970 kfree(filter);
3971 return err;
3972 }
3973 udelay(1);
3974 }
3975
3976 filter->cookie = cls_flower->cookie;
3977
3978 /* bail out here if filter already exists */
3979 spin_lock_bh(&adapter->cloud_filter_list_lock);
3980 if (iavf_find_cf(adapter, &cls_flower->cookie)) {
3981 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
3982 err = -EEXIST;
3983 goto spin_unlock;
3984 }
3985 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3986
3987 /* set the mask to all zeroes to begin with */
3988 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3989 /* start out with flow type and eth type IPv4 to begin with */
3990 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3991 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3992 if (err)
3993 goto err;
3994
3995 err = iavf_handle_tclass(adapter, tc, filter);
3996 if (err)
3997 goto err;
3998
3999 /* add filter to the list */
4000 spin_lock_bh(&adapter->cloud_filter_list_lock);
4001 list_add_tail(&filter->list, &adapter->cloud_filter_list);
4002 adapter->num_cloud_filters++;
4003 filter->add = true;
4004 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4005spin_unlock:
4006 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4007err:
4008 if (err)
4009 kfree(filter);
4010
4011 mutex_unlock(&adapter->crit_lock);
4012 return err;
4013}
4014
4015/**
4016 * iavf_delete_clsflower - Remove tc flower filters
4017 * @adapter: board private structure
4018 * @cls_flower: Pointer to struct flow_cls_offload
4019 */
4020static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4021 struct flow_cls_offload *cls_flower)
4022{
4023 struct iavf_cloud_filter *filter = NULL;
4024 int err = 0;
4025
4026 spin_lock_bh(&adapter->cloud_filter_list_lock);
4027 filter = iavf_find_cf(adapter, &cls_flower->cookie);
4028 if (filter) {
4029 filter->del = true;
4030 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4031 } else {
4032 err = -EINVAL;
4033 }
4034 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4035
4036 return err;
4037}
4038
4039/**
4040 * iavf_setup_tc_cls_flower - flower classifier offloads
4041 * @adapter: board private structure
4042 * @cls_flower: pointer to flow_cls_offload struct with flow info
4043 */
4044static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4045 struct flow_cls_offload *cls_flower)
4046{
4047 switch (cls_flower->command) {
4048 case FLOW_CLS_REPLACE:
4049 return iavf_configure_clsflower(adapter, cls_flower);
4050 case FLOW_CLS_DESTROY:
4051 return iavf_delete_clsflower(adapter, cls_flower);
4052 case FLOW_CLS_STATS:
4053 return -EOPNOTSUPP;
4054 default:
4055 return -EOPNOTSUPP;
4056 }
4057}
4058
4059/**
4060 * iavf_setup_tc_block_cb - block callback for tc
4061 * @type: type of offload
4062 * @type_data: offload data
4063 * @cb_priv:
4064 *
4065 * This function is the block callback for traffic classes
4066 **/
4067static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4068 void *cb_priv)
4069{
4070 struct iavf_adapter *adapter = cb_priv;
4071
4072 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4073 return -EOPNOTSUPP;
4074
4075 switch (type) {
4076 case TC_SETUP_CLSFLOWER:
4077 return iavf_setup_tc_cls_flower(cb_priv, type_data);
4078 default:
4079 return -EOPNOTSUPP;
4080 }
4081}
4082
4083static LIST_HEAD(iavf_block_cb_list);
4084
4085/**
4086 * iavf_setup_tc - configure multiple traffic classes
4087 * @netdev: network interface device structure
4088 * @type: type of offload
4089 * @type_data: tc offload data
4090 *
4091 * This function is the callback to ndo_setup_tc in the
4092 * netdev_ops.
4093 *
4094 * Returns 0 on success
4095 **/
4096static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4097 void *type_data)
4098{
4099 struct iavf_adapter *adapter = netdev_priv(netdev);
4100
4101 switch (type) {
4102 case TC_SETUP_QDISC_MQPRIO:
4103 return __iavf_setup_tc(netdev, type_data);
4104 case TC_SETUP_BLOCK:
4105 return flow_block_cb_setup_simple(type_data,
4106 &iavf_block_cb_list,
4107 iavf_setup_tc_block_cb,
4108 adapter, adapter, true);
4109 default:
4110 return -EOPNOTSUPP;
4111 }
4112}
4113
4114/**
4115 * iavf_restore_fdir_filters
4116 * @adapter: board private structure
4117 *
4118 * Restore existing FDIR filters when VF netdev comes back up.
4119 **/
4120static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4121{
4122 struct iavf_fdir_fltr *f;
4123
4124 spin_lock_bh(&adapter->fdir_fltr_lock);
4125 list_for_each_entry(f, &adapter->fdir_list_head, list) {
4126 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4127 /* Cancel a request, keep filter as active */
4128 f->state = IAVF_FDIR_FLTR_ACTIVE;
4129 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4130 f->state == IAVF_FDIR_FLTR_INACTIVE) {
4131 /* Add filters which are inactive or have a pending
4132 * request to PF to be deleted
4133 */
4134 f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4135 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4136 }
4137 }
4138 spin_unlock_bh(&adapter->fdir_fltr_lock);
4139}
4140
4141/**
4142 * iavf_open - Called when a network interface is made active
4143 * @netdev: network interface device structure
4144 *
4145 * Returns 0 on success, negative value on failure
4146 *
4147 * The open entry point is called when a network interface is made
4148 * active by the system (IFF_UP). At this point all resources needed
4149 * for transmit and receive operations are allocated, the interrupt
4150 * handler is registered with the OS, the watchdog is started,
4151 * and the stack is notified that the interface is ready.
4152 **/
4153static int iavf_open(struct net_device *netdev)
4154{
4155 struct iavf_adapter *adapter = netdev_priv(netdev);
4156 int err;
4157
4158 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4159 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4160 return -EIO;
4161 }
4162
4163 while (!mutex_trylock(&adapter->crit_lock)) {
4164 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4165 * is already taken and iavf_open is called from an upper
4166 * device's notifier reacting on NETDEV_REGISTER event.
4167 * We have to leave here to avoid dead lock.
4168 */
4169 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4170 return -EBUSY;
4171
4172 usleep_range(500, 1000);
4173 }
4174
4175 if (adapter->state != __IAVF_DOWN) {
4176 err = -EBUSY;
4177 goto err_unlock;
4178 }
4179
4180 if (adapter->state == __IAVF_RUNNING &&
4181 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4182 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4183 err = 0;
4184 goto err_unlock;
4185 }
4186
4187 /* allocate transmit descriptors */
4188 err = iavf_setup_all_tx_resources(adapter);
4189 if (err)
4190 goto err_setup_tx;
4191
4192 /* allocate receive descriptors */
4193 err = iavf_setup_all_rx_resources(adapter);
4194 if (err)
4195 goto err_setup_rx;
4196
4197 /* clear any pending interrupts, may auto mask */
4198 err = iavf_request_traffic_irqs(adapter, netdev->name);
4199 if (err)
4200 goto err_req_irq;
4201
4202 spin_lock_bh(&adapter->mac_vlan_list_lock);
4203
4204 iavf_add_filter(adapter, adapter->hw.mac.addr);
4205
4206 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4207
4208 /* Restore filters that were removed with IFF_DOWN */
4209 iavf_restore_filters(adapter);
4210 iavf_restore_fdir_filters(adapter);
4211
4212 iavf_configure(adapter);
4213
4214 iavf_up_complete(adapter);
4215
4216 iavf_irq_enable(adapter, true);
4217
4218 mutex_unlock(&adapter->crit_lock);
4219
4220 return 0;
4221
4222err_req_irq:
4223 iavf_down(adapter);
4224 iavf_free_traffic_irqs(adapter);
4225err_setup_rx:
4226 iavf_free_all_rx_resources(adapter);
4227err_setup_tx:
4228 iavf_free_all_tx_resources(adapter);
4229err_unlock:
4230 mutex_unlock(&adapter->crit_lock);
4231
4232 return err;
4233}
4234
4235/**
4236 * iavf_close - Disables a network interface
4237 * @netdev: network interface device structure
4238 *
4239 * Returns 0, this is not allowed to fail
4240 *
4241 * The close entry point is called when an interface is de-activated
4242 * by the OS. The hardware is still under the drivers control, but
4243 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4244 * are freed, along with all transmit and receive resources.
4245 **/
4246static int iavf_close(struct net_device *netdev)
4247{
4248 struct iavf_adapter *adapter = netdev_priv(netdev);
4249 u64 aq_to_restore;
4250 int status;
4251
4252 mutex_lock(&adapter->crit_lock);
4253
4254 if (adapter->state <= __IAVF_DOWN_PENDING) {
4255 mutex_unlock(&adapter->crit_lock);
4256 return 0;
4257 }
4258
4259 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4260 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4261 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4262 * deadlock with adminq_task() until iavf_close timeouts. We must send
4263 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4264 * disable queues possible for vf. Give only necessary flags to
4265 * iavf_down and save other to set them right before iavf_close()
4266 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4267 * iavf will be in DOWN state.
4268 */
4269 aq_to_restore = adapter->aq_required;
4270 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4271
4272 /* Remove flags which we do not want to send after close or we want to
4273 * send before disable queues.
4274 */
4275 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG |
4276 IAVF_FLAG_AQ_ENABLE_QUEUES |
4277 IAVF_FLAG_AQ_CONFIGURE_QUEUES |
4278 IAVF_FLAG_AQ_ADD_VLAN_FILTER |
4279 IAVF_FLAG_AQ_ADD_MAC_FILTER |
4280 IAVF_FLAG_AQ_ADD_CLOUD_FILTER |
4281 IAVF_FLAG_AQ_ADD_FDIR_FILTER |
4282 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4283
4284 iavf_down(adapter);
4285 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4286 iavf_free_traffic_irqs(adapter);
4287
4288 mutex_unlock(&adapter->crit_lock);
4289
4290 /* We explicitly don't free resources here because the hardware is
4291 * still active and can DMA into memory. Resources are cleared in
4292 * iavf_virtchnl_completion() after we get confirmation from the PF
4293 * driver that the rings have been stopped.
4294 *
4295 * Also, we wait for state to transition to __IAVF_DOWN before
4296 * returning. State change occurs in iavf_virtchnl_completion() after
4297 * VF resources are released (which occurs after PF driver processes and
4298 * responds to admin queue commands).
4299 */
4300
4301 status = wait_event_timeout(adapter->down_waitqueue,
4302 adapter->state == __IAVF_DOWN,
4303 msecs_to_jiffies(500));
4304 if (!status)
4305 netdev_warn(netdev, "Device resources not yet released\n");
4306
4307 mutex_lock(&adapter->crit_lock);
4308 adapter->aq_required |= aq_to_restore;
4309 mutex_unlock(&adapter->crit_lock);
4310 return 0;
4311}
4312
4313/**
4314 * iavf_change_mtu - Change the Maximum Transfer Unit
4315 * @netdev: network interface device structure
4316 * @new_mtu: new value for maximum frame size
4317 *
4318 * Returns 0 on success, negative on failure
4319 **/
4320static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4321{
4322 struct iavf_adapter *adapter = netdev_priv(netdev);
4323 int ret = 0;
4324
4325 netdev_dbg(netdev, "changing MTU from %d to %d\n",
4326 netdev->mtu, new_mtu);
4327 netdev->mtu = new_mtu;
4328
4329 if (netif_running(netdev)) {
4330 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4331 ret = iavf_wait_for_reset(adapter);
4332 if (ret < 0)
4333 netdev_warn(netdev, "MTU change interrupted waiting for reset");
4334 else if (ret)
4335 netdev_warn(netdev, "MTU change timed out waiting for reset");
4336 }
4337
4338 return ret;
4339}
4340
4341/**
4342 * iavf_disable_fdir - disable Flow Director and clear existing filters
4343 * @adapter: board private structure
4344 **/
4345static void iavf_disable_fdir(struct iavf_adapter *adapter)
4346{
4347 struct iavf_fdir_fltr *fdir, *fdirtmp;
4348 bool del_filters = false;
4349
4350 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4351
4352 /* remove all Flow Director filters */
4353 spin_lock_bh(&adapter->fdir_fltr_lock);
4354 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4355 list) {
4356 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4357 fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4358 /* Delete filters not registered in PF */
4359 list_del(&fdir->list);
4360 kfree(fdir);
4361 adapter->fdir_active_fltr--;
4362 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4363 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4364 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4365 /* Filters registered in PF, schedule their deletion */
4366 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4367 del_filters = true;
4368 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4369 /* Request to delete filter already sent to PF, change
4370 * state to DEL_PENDING to delete filter after PF's
4371 * response, not set as INACTIVE
4372 */
4373 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4374 }
4375 }
4376 spin_unlock_bh(&adapter->fdir_fltr_lock);
4377
4378 if (del_filters) {
4379 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4380 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4381 }
4382}
4383
4384#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
4385 NETIF_F_HW_VLAN_CTAG_TX | \
4386 NETIF_F_HW_VLAN_STAG_RX | \
4387 NETIF_F_HW_VLAN_STAG_TX)
4388
4389/**
4390 * iavf_set_features - set the netdev feature flags
4391 * @netdev: ptr to the netdev being adjusted
4392 * @features: the feature set that the stack is suggesting
4393 * Note: expects to be called while under rtnl_lock()
4394 **/
4395static int iavf_set_features(struct net_device *netdev,
4396 netdev_features_t features)
4397{
4398 struct iavf_adapter *adapter = netdev_priv(netdev);
4399
4400 /* trigger update on any VLAN feature change */
4401 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4402 (features & NETIF_VLAN_OFFLOAD_FEATURES))
4403 iavf_set_vlan_offload_features(adapter, netdev->features,
4404 features);
4405 if (CRC_OFFLOAD_ALLOWED(adapter) &&
4406 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4407 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4408
4409 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4410 if (features & NETIF_F_NTUPLE)
4411 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4412 else
4413 iavf_disable_fdir(adapter);
4414 }
4415
4416 return 0;
4417}
4418
4419/**
4420 * iavf_features_check - Validate encapsulated packet conforms to limits
4421 * @skb: skb buff
4422 * @dev: This physical port's netdev
4423 * @features: Offload features that the stack believes apply
4424 **/
4425static netdev_features_t iavf_features_check(struct sk_buff *skb,
4426 struct net_device *dev,
4427 netdev_features_t features)
4428{
4429 size_t len;
4430
4431 /* No point in doing any of this if neither checksum nor GSO are
4432 * being requested for this frame. We can rule out both by just
4433 * checking for CHECKSUM_PARTIAL
4434 */
4435 if (skb->ip_summed != CHECKSUM_PARTIAL)
4436 return features;
4437
4438 /* We cannot support GSO if the MSS is going to be less than
4439 * 64 bytes. If it is then we need to drop support for GSO.
4440 */
4441 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4442 features &= ~NETIF_F_GSO_MASK;
4443
4444 /* MACLEN can support at most 63 words */
4445 len = skb_network_offset(skb);
4446 if (len & ~(63 * 2))
4447 goto out_err;
4448
4449 /* IPLEN and EIPLEN can support at most 127 dwords */
4450 len = skb_network_header_len(skb);
4451 if (len & ~(127 * 4))
4452 goto out_err;
4453
4454 if (skb->encapsulation) {
4455 /* L4TUNLEN can support 127 words */
4456 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4457 if (len & ~(127 * 2))
4458 goto out_err;
4459
4460 /* IPLEN can support at most 127 dwords */
4461 len = skb_inner_transport_header(skb) -
4462 skb_inner_network_header(skb);
4463 if (len & ~(127 * 4))
4464 goto out_err;
4465 }
4466
4467 /* No need to validate L4LEN as TCP is the only protocol with a
4468 * flexible value and we support all possible values supported
4469 * by TCP, which is at most 15 dwords
4470 */
4471
4472 return features;
4473out_err:
4474 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4475}
4476
4477/**
4478 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4479 * @adapter: board private structure
4480 *
4481 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4482 * were negotiated determine the VLAN features that can be toggled on and off.
4483 **/
4484static netdev_features_t
4485iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4486{
4487 netdev_features_t hw_features = 0;
4488
4489 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4490 return hw_features;
4491
4492 /* Enable VLAN features if supported */
4493 if (VLAN_ALLOWED(adapter)) {
4494 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4495 NETIF_F_HW_VLAN_CTAG_RX);
4496 } else if (VLAN_V2_ALLOWED(adapter)) {
4497 struct virtchnl_vlan_caps *vlan_v2_caps =
4498 &adapter->vlan_v2_caps;
4499 struct virtchnl_vlan_supported_caps *stripping_support =
4500 &vlan_v2_caps->offloads.stripping_support;
4501 struct virtchnl_vlan_supported_caps *insertion_support =
4502 &vlan_v2_caps->offloads.insertion_support;
4503
4504 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4505 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4506 if (stripping_support->outer &
4507 VIRTCHNL_VLAN_ETHERTYPE_8100)
4508 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4509 if (stripping_support->outer &
4510 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4511 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4512 } else if (stripping_support->inner !=
4513 VIRTCHNL_VLAN_UNSUPPORTED &&
4514 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4515 if (stripping_support->inner &
4516 VIRTCHNL_VLAN_ETHERTYPE_8100)
4517 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4518 }
4519
4520 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4521 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4522 if (insertion_support->outer &
4523 VIRTCHNL_VLAN_ETHERTYPE_8100)
4524 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4525 if (insertion_support->outer &
4526 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4527 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4528 } else if (insertion_support->inner &&
4529 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4530 if (insertion_support->inner &
4531 VIRTCHNL_VLAN_ETHERTYPE_8100)
4532 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4533 }
4534 }
4535
4536 if (CRC_OFFLOAD_ALLOWED(adapter))
4537 hw_features |= NETIF_F_RXFCS;
4538
4539 return hw_features;
4540}
4541
4542/**
4543 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4544 * @adapter: board private structure
4545 *
4546 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4547 * were negotiated determine the VLAN features that are enabled by default.
4548 **/
4549static netdev_features_t
4550iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4551{
4552 netdev_features_t features = 0;
4553
4554 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4555 return features;
4556
4557 if (VLAN_ALLOWED(adapter)) {
4558 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4559 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4560 } else if (VLAN_V2_ALLOWED(adapter)) {
4561 struct virtchnl_vlan_caps *vlan_v2_caps =
4562 &adapter->vlan_v2_caps;
4563 struct virtchnl_vlan_supported_caps *filtering_support =
4564 &vlan_v2_caps->filtering.filtering_support;
4565 struct virtchnl_vlan_supported_caps *stripping_support =
4566 &vlan_v2_caps->offloads.stripping_support;
4567 struct virtchnl_vlan_supported_caps *insertion_support =
4568 &vlan_v2_caps->offloads.insertion_support;
4569 u32 ethertype_init;
4570
4571 /* give priority to outer stripping and don't support both outer
4572 * and inner stripping
4573 */
4574 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4575 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4576 if (stripping_support->outer &
4577 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4578 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4579 features |= NETIF_F_HW_VLAN_CTAG_RX;
4580 else if (stripping_support->outer &
4581 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4582 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4583 features |= NETIF_F_HW_VLAN_STAG_RX;
4584 } else if (stripping_support->inner !=
4585 VIRTCHNL_VLAN_UNSUPPORTED) {
4586 if (stripping_support->inner &
4587 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4588 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4589 features |= NETIF_F_HW_VLAN_CTAG_RX;
4590 }
4591
4592 /* give priority to outer insertion and don't support both outer
4593 * and inner insertion
4594 */
4595 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4596 if (insertion_support->outer &
4597 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4598 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4599 features |= NETIF_F_HW_VLAN_CTAG_TX;
4600 else if (insertion_support->outer &
4601 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4602 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4603 features |= NETIF_F_HW_VLAN_STAG_TX;
4604 } else if (insertion_support->inner !=
4605 VIRTCHNL_VLAN_UNSUPPORTED) {
4606 if (insertion_support->inner &
4607 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4608 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4609 features |= NETIF_F_HW_VLAN_CTAG_TX;
4610 }
4611
4612 /* give priority to outer filtering and don't bother if both
4613 * outer and inner filtering are enabled
4614 */
4615 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4616 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4617 if (filtering_support->outer &
4618 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4619 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4620 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4621 if (filtering_support->outer &
4622 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4623 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4624 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4625 } else if (filtering_support->inner !=
4626 VIRTCHNL_VLAN_UNSUPPORTED) {
4627 if (filtering_support->inner &
4628 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4629 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4630 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4631 if (filtering_support->inner &
4632 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4633 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4634 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4635 }
4636 }
4637
4638 return features;
4639}
4640
4641#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4642 (!(((requested) & (feature_bit)) && \
4643 !((allowed) & (feature_bit))))
4644
4645/**
4646 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4647 * @adapter: board private structure
4648 * @requested_features: stack requested NETDEV features
4649 **/
4650static netdev_features_t
4651iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4652 netdev_features_t requested_features)
4653{
4654 netdev_features_t allowed_features;
4655
4656 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4657 iavf_get_netdev_vlan_features(adapter);
4658
4659 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4660 allowed_features,
4661 NETIF_F_HW_VLAN_CTAG_TX))
4662 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4663
4664 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4665 allowed_features,
4666 NETIF_F_HW_VLAN_CTAG_RX))
4667 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4668
4669 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4670 allowed_features,
4671 NETIF_F_HW_VLAN_STAG_TX))
4672 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4673 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4674 allowed_features,
4675 NETIF_F_HW_VLAN_STAG_RX))
4676 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4677
4678 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4679 allowed_features,
4680 NETIF_F_HW_VLAN_CTAG_FILTER))
4681 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4682
4683 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4684 allowed_features,
4685 NETIF_F_HW_VLAN_STAG_FILTER))
4686 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4687
4688 if ((requested_features &
4689 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4690 (requested_features &
4691 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4692 adapter->vlan_v2_caps.offloads.ethertype_match ==
4693 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4694 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4695 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4696 NETIF_F_HW_VLAN_STAG_TX);
4697 }
4698
4699 return requested_features;
4700}
4701
4702/**
4703 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4704 * @adapter: board private structure
4705 * @requested_features: stack requested NETDEV features
4706 *
4707 * Returns fixed-up features bits
4708 **/
4709static netdev_features_t
4710iavf_fix_strip_features(struct iavf_adapter *adapter,
4711 netdev_features_t requested_features)
4712{
4713 struct net_device *netdev = adapter->netdev;
4714 bool crc_offload_req, is_vlan_strip;
4715 netdev_features_t vlan_strip;
4716 int num_non_zero_vlan;
4717
4718 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4719 (requested_features & NETIF_F_RXFCS);
4720 num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4721 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4722 is_vlan_strip = requested_features & vlan_strip;
4723
4724 if (!crc_offload_req)
4725 return requested_features;
4726
4727 if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4728 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4729 requested_features &= ~vlan_strip;
4730 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4731 return requested_features;
4732 }
4733
4734 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4735 requested_features &= ~vlan_strip;
4736 if (!(netdev->features & vlan_strip))
4737 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4738
4739 return requested_features;
4740 }
4741
4742 if (num_non_zero_vlan && is_vlan_strip &&
4743 !(netdev->features & NETIF_F_RXFCS)) {
4744 requested_features &= ~NETIF_F_RXFCS;
4745 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4746 }
4747
4748 return requested_features;
4749}
4750
4751/**
4752 * iavf_fix_features - fix up the netdev feature bits
4753 * @netdev: our net device
4754 * @features: desired feature bits
4755 *
4756 * Returns fixed-up features bits
4757 **/
4758static netdev_features_t iavf_fix_features(struct net_device *netdev,
4759 netdev_features_t features)
4760{
4761 struct iavf_adapter *adapter = netdev_priv(netdev);
4762
4763 features = iavf_fix_netdev_vlan_features(adapter, features);
4764
4765 if (!FDIR_FLTR_SUPPORT(adapter))
4766 features &= ~NETIF_F_NTUPLE;
4767
4768 return iavf_fix_strip_features(adapter, features);
4769}
4770
4771static const struct net_device_ops iavf_netdev_ops = {
4772 .ndo_open = iavf_open,
4773 .ndo_stop = iavf_close,
4774 .ndo_start_xmit = iavf_xmit_frame,
4775 .ndo_set_rx_mode = iavf_set_rx_mode,
4776 .ndo_validate_addr = eth_validate_addr,
4777 .ndo_set_mac_address = iavf_set_mac,
4778 .ndo_change_mtu = iavf_change_mtu,
4779 .ndo_tx_timeout = iavf_tx_timeout,
4780 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
4781 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
4782 .ndo_features_check = iavf_features_check,
4783 .ndo_fix_features = iavf_fix_features,
4784 .ndo_set_features = iavf_set_features,
4785 .ndo_setup_tc = iavf_setup_tc,
4786};
4787
4788/**
4789 * iavf_check_reset_complete - check that VF reset is complete
4790 * @hw: pointer to hw struct
4791 *
4792 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4793 **/
4794static int iavf_check_reset_complete(struct iavf_hw *hw)
4795{
4796 u32 rstat;
4797 int i;
4798
4799 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4800 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4801 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4802 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4803 (rstat == VIRTCHNL_VFR_COMPLETED))
4804 return 0;
4805 msleep(IAVF_RESET_WAIT_MS);
4806 }
4807 return -EBUSY;
4808}
4809
4810/**
4811 * iavf_process_config - Process the config information we got from the PF
4812 * @adapter: board private structure
4813 *
4814 * Verify that we have a valid config struct, and set up our netdev features
4815 * and our VSI struct.
4816 **/
4817int iavf_process_config(struct iavf_adapter *adapter)
4818{
4819 struct virtchnl_vf_resource *vfres = adapter->vf_res;
4820 netdev_features_t hw_vlan_features, vlan_features;
4821 struct net_device *netdev = adapter->netdev;
4822 netdev_features_t hw_enc_features;
4823 netdev_features_t hw_features;
4824
4825 hw_enc_features = NETIF_F_SG |
4826 NETIF_F_IP_CSUM |
4827 NETIF_F_IPV6_CSUM |
4828 NETIF_F_HIGHDMA |
4829 NETIF_F_SOFT_FEATURES |
4830 NETIF_F_TSO |
4831 NETIF_F_TSO_ECN |
4832 NETIF_F_TSO6 |
4833 NETIF_F_SCTP_CRC |
4834 NETIF_F_RXHASH |
4835 NETIF_F_RXCSUM |
4836 0;
4837
4838 /* advertise to stack only if offloads for encapsulated packets is
4839 * supported
4840 */
4841 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4842 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
4843 NETIF_F_GSO_GRE |
4844 NETIF_F_GSO_GRE_CSUM |
4845 NETIF_F_GSO_IPXIP4 |
4846 NETIF_F_GSO_IPXIP6 |
4847 NETIF_F_GSO_UDP_TUNNEL_CSUM |
4848 NETIF_F_GSO_PARTIAL |
4849 0;
4850
4851 if (!(vfres->vf_cap_flags &
4852 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4853 netdev->gso_partial_features |=
4854 NETIF_F_GSO_UDP_TUNNEL_CSUM;
4855
4856 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4857 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4858 netdev->hw_enc_features |= hw_enc_features;
4859 }
4860 /* record features VLANs can make use of */
4861 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4862
4863 /* Write features and hw_features separately to avoid polluting
4864 * with, or dropping, features that are set when we registered.
4865 */
4866 hw_features = hw_enc_features;
4867
4868 /* get HW VLAN features that can be toggled */
4869 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4870
4871 /* Enable cloud filter if ADQ is supported */
4872 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4873 hw_features |= NETIF_F_HW_TC;
4874 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4875 hw_features |= NETIF_F_GSO_UDP_L4;
4876
4877 netdev->hw_features |= hw_features | hw_vlan_features;
4878 vlan_features = iavf_get_netdev_vlan_features(adapter);
4879
4880 netdev->features |= hw_features | vlan_features;
4881
4882 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4883 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4884
4885 if (FDIR_FLTR_SUPPORT(adapter)) {
4886 netdev->hw_features |= NETIF_F_NTUPLE;
4887 netdev->features |= NETIF_F_NTUPLE;
4888 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4889 }
4890
4891 netdev->priv_flags |= IFF_UNICAST_FLT;
4892
4893 /* Do not turn on offloads when they are requested to be turned off.
4894 * TSO needs minimum 576 bytes to work correctly.
4895 */
4896 if (netdev->wanted_features) {
4897 if (!(netdev->wanted_features & NETIF_F_TSO) ||
4898 netdev->mtu < 576)
4899 netdev->features &= ~NETIF_F_TSO;
4900 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4901 netdev->mtu < 576)
4902 netdev->features &= ~NETIF_F_TSO6;
4903 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4904 netdev->features &= ~NETIF_F_TSO_ECN;
4905 if (!(netdev->wanted_features & NETIF_F_GRO))
4906 netdev->features &= ~NETIF_F_GRO;
4907 if (!(netdev->wanted_features & NETIF_F_GSO))
4908 netdev->features &= ~NETIF_F_GSO;
4909 }
4910
4911 return 0;
4912}
4913
4914/**
4915 * iavf_probe - Device Initialization Routine
4916 * @pdev: PCI device information struct
4917 * @ent: entry in iavf_pci_tbl
4918 *
4919 * Returns 0 on success, negative on failure
4920 *
4921 * iavf_probe initializes an adapter identified by a pci_dev structure.
4922 * The OS initialization, configuring of the adapter private structure,
4923 * and a hardware reset occur.
4924 **/
4925static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4926{
4927 struct net_device *netdev;
4928 struct iavf_adapter *adapter = NULL;
4929 struct iavf_hw *hw = NULL;
4930 int err;
4931
4932 err = pci_enable_device(pdev);
4933 if (err)
4934 return err;
4935
4936 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4937 if (err) {
4938 dev_err(&pdev->dev,
4939 "DMA configuration failed: 0x%x\n", err);
4940 goto err_dma;
4941 }
4942
4943 err = pci_request_regions(pdev, iavf_driver_name);
4944 if (err) {
4945 dev_err(&pdev->dev,
4946 "pci_request_regions failed 0x%x\n", err);
4947 goto err_pci_reg;
4948 }
4949
4950 pci_set_master(pdev);
4951
4952 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4953 IAVF_MAX_REQ_QUEUES);
4954 if (!netdev) {
4955 err = -ENOMEM;
4956 goto err_alloc_etherdev;
4957 }
4958
4959 SET_NETDEV_DEV(netdev, &pdev->dev);
4960
4961 pci_set_drvdata(pdev, netdev);
4962 adapter = netdev_priv(netdev);
4963
4964 adapter->netdev = netdev;
4965 adapter->pdev = pdev;
4966
4967 hw = &adapter->hw;
4968 hw->back = adapter;
4969
4970 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4971 iavf_driver_name);
4972 if (!adapter->wq) {
4973 err = -ENOMEM;
4974 goto err_alloc_wq;
4975 }
4976
4977 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4978 iavf_change_state(adapter, __IAVF_STARTUP);
4979
4980 /* Call save state here because it relies on the adapter struct. */
4981 pci_save_state(pdev);
4982
4983 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4984 pci_resource_len(pdev, 0));
4985 if (!hw->hw_addr) {
4986 err = -EIO;
4987 goto err_ioremap;
4988 }
4989 hw->vendor_id = pdev->vendor;
4990 hw->device_id = pdev->device;
4991 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4992 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4993 hw->subsystem_device_id = pdev->subsystem_device;
4994 hw->bus.device = PCI_SLOT(pdev->devfn);
4995 hw->bus.func = PCI_FUNC(pdev->devfn);
4996 hw->bus.bus_id = pdev->bus->number;
4997
4998 /* set up the locks for the AQ, do this only once in probe
4999 * and destroy them only once in remove
5000 */
5001 mutex_init(&adapter->crit_lock);
5002 mutex_init(&hw->aq.asq_mutex);
5003 mutex_init(&hw->aq.arq_mutex);
5004
5005 spin_lock_init(&adapter->mac_vlan_list_lock);
5006 spin_lock_init(&adapter->cloud_filter_list_lock);
5007 spin_lock_init(&adapter->fdir_fltr_lock);
5008 spin_lock_init(&adapter->adv_rss_lock);
5009 spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5010
5011 INIT_LIST_HEAD(&adapter->mac_filter_list);
5012 INIT_LIST_HEAD(&adapter->vlan_filter_list);
5013 INIT_LIST_HEAD(&adapter->cloud_filter_list);
5014 INIT_LIST_HEAD(&adapter->fdir_list_head);
5015 INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5016
5017 INIT_WORK(&adapter->reset_task, iavf_reset_task);
5018 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5019 INIT_WORK(&adapter->finish_config, iavf_finish_config);
5020 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5021
5022 /* Setup the wait queue for indicating transition to down status */
5023 init_waitqueue_head(&adapter->down_waitqueue);
5024
5025 /* Setup the wait queue for indicating transition to running state */
5026 init_waitqueue_head(&adapter->reset_waitqueue);
5027
5028 /* Setup the wait queue for indicating virtchannel events */
5029 init_waitqueue_head(&adapter->vc_waitqueue);
5030
5031 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5032 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5033 /* Initialization goes on in the work. Do not add more of it below. */
5034 return 0;
5035
5036err_ioremap:
5037 destroy_workqueue(adapter->wq);
5038err_alloc_wq:
5039 free_netdev(netdev);
5040err_alloc_etherdev:
5041 pci_release_regions(pdev);
5042err_pci_reg:
5043err_dma:
5044 pci_disable_device(pdev);
5045 return err;
5046}
5047
5048/**
5049 * iavf_suspend - Power management suspend routine
5050 * @dev_d: device info pointer
5051 *
5052 * Called when the system (VM) is entering sleep/suspend.
5053 **/
5054static int __maybe_unused iavf_suspend(struct device *dev_d)
5055{
5056 struct net_device *netdev = dev_get_drvdata(dev_d);
5057 struct iavf_adapter *adapter = netdev_priv(netdev);
5058
5059 netif_device_detach(netdev);
5060
5061 mutex_lock(&adapter->crit_lock);
5062
5063 if (netif_running(netdev)) {
5064 rtnl_lock();
5065 iavf_down(adapter);
5066 rtnl_unlock();
5067 }
5068 iavf_free_misc_irq(adapter);
5069 iavf_reset_interrupt_capability(adapter);
5070
5071 mutex_unlock(&adapter->crit_lock);
5072
5073 return 0;
5074}
5075
5076/**
5077 * iavf_resume - Power management resume routine
5078 * @dev_d: device info pointer
5079 *
5080 * Called when the system (VM) is resumed from sleep/suspend.
5081 **/
5082static int __maybe_unused iavf_resume(struct device *dev_d)
5083{
5084 struct pci_dev *pdev = to_pci_dev(dev_d);
5085 struct iavf_adapter *adapter;
5086 u32 err;
5087
5088 adapter = iavf_pdev_to_adapter(pdev);
5089
5090 pci_set_master(pdev);
5091
5092 rtnl_lock();
5093 err = iavf_set_interrupt_capability(adapter);
5094 if (err) {
5095 rtnl_unlock();
5096 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5097 return err;
5098 }
5099 err = iavf_request_misc_irq(adapter);
5100 rtnl_unlock();
5101 if (err) {
5102 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5103 return err;
5104 }
5105
5106 queue_work(adapter->wq, &adapter->reset_task);
5107
5108 netif_device_attach(adapter->netdev);
5109
5110 return err;
5111}
5112
5113/**
5114 * iavf_remove - Device Removal Routine
5115 * @pdev: PCI device information struct
5116 *
5117 * iavf_remove is called by the PCI subsystem to alert the driver
5118 * that it should release a PCI device. The could be caused by a
5119 * Hot-Plug event, or because the driver is going to be removed from
5120 * memory.
5121 **/
5122static void iavf_remove(struct pci_dev *pdev)
5123{
5124 struct iavf_fdir_fltr *fdir, *fdirtmp;
5125 struct iavf_vlan_filter *vlf, *vlftmp;
5126 struct iavf_cloud_filter *cf, *cftmp;
5127 struct iavf_adv_rss *rss, *rsstmp;
5128 struct iavf_mac_filter *f, *ftmp;
5129 struct iavf_adapter *adapter;
5130 struct net_device *netdev;
5131 struct iavf_hw *hw;
5132
5133 /* Don't proceed with remove if netdev is already freed */
5134 netdev = pci_get_drvdata(pdev);
5135 if (!netdev)
5136 return;
5137
5138 adapter = iavf_pdev_to_adapter(pdev);
5139 hw = &adapter->hw;
5140
5141 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5142 return;
5143
5144 /* Wait until port initialization is complete.
5145 * There are flows where register/unregister netdev may race.
5146 */
5147 while (1) {
5148 mutex_lock(&adapter->crit_lock);
5149 if (adapter->state == __IAVF_RUNNING ||
5150 adapter->state == __IAVF_DOWN ||
5151 adapter->state == __IAVF_INIT_FAILED) {
5152 mutex_unlock(&adapter->crit_lock);
5153 break;
5154 }
5155 /* Simply return if we already went through iavf_shutdown */
5156 if (adapter->state == __IAVF_REMOVE) {
5157 mutex_unlock(&adapter->crit_lock);
5158 return;
5159 }
5160
5161 mutex_unlock(&adapter->crit_lock);
5162 usleep_range(500, 1000);
5163 }
5164 cancel_delayed_work_sync(&adapter->watchdog_task);
5165 cancel_work_sync(&adapter->finish_config);
5166
5167 if (netdev->reg_state == NETREG_REGISTERED)
5168 unregister_netdev(netdev);
5169
5170 mutex_lock(&adapter->crit_lock);
5171 dev_info(&adapter->pdev->dev, "Removing device\n");
5172 iavf_change_state(adapter, __IAVF_REMOVE);
5173
5174 iavf_request_reset(adapter);
5175 msleep(50);
5176 /* If the FW isn't responding, kick it once, but only once. */
5177 if (!iavf_asq_done(hw)) {
5178 iavf_request_reset(adapter);
5179 msleep(50);
5180 }
5181
5182 iavf_misc_irq_disable(adapter);
5183 /* Shut down all the garbage mashers on the detention level */
5184 cancel_work_sync(&adapter->reset_task);
5185 cancel_delayed_work_sync(&adapter->watchdog_task);
5186 cancel_work_sync(&adapter->adminq_task);
5187
5188 adapter->aq_required = 0;
5189 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5190
5191 iavf_free_all_tx_resources(adapter);
5192 iavf_free_all_rx_resources(adapter);
5193 iavf_free_misc_irq(adapter);
5194 iavf_free_interrupt_scheme(adapter);
5195
5196 iavf_free_rss(adapter);
5197
5198 if (hw->aq.asq.count)
5199 iavf_shutdown_adminq(hw);
5200
5201 /* destroy the locks only once, here */
5202 mutex_destroy(&hw->aq.arq_mutex);
5203 mutex_destroy(&hw->aq.asq_mutex);
5204 mutex_unlock(&adapter->crit_lock);
5205 mutex_destroy(&adapter->crit_lock);
5206
5207 iounmap(hw->hw_addr);
5208 pci_release_regions(pdev);
5209 kfree(adapter->vf_res);
5210 spin_lock_bh(&adapter->mac_vlan_list_lock);
5211 /* If we got removed before an up/down sequence, we've got a filter
5212 * hanging out there that we need to get rid of.
5213 */
5214 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5215 list_del(&f->list);
5216 kfree(f);
5217 }
5218 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5219 list) {
5220 list_del(&vlf->list);
5221 kfree(vlf);
5222 }
5223
5224 spin_unlock_bh(&adapter->mac_vlan_list_lock);
5225
5226 spin_lock_bh(&adapter->cloud_filter_list_lock);
5227 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5228 list_del(&cf->list);
5229 kfree(cf);
5230 }
5231 spin_unlock_bh(&adapter->cloud_filter_list_lock);
5232
5233 spin_lock_bh(&adapter->fdir_fltr_lock);
5234 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5235 list_del(&fdir->list);
5236 kfree(fdir);
5237 }
5238 spin_unlock_bh(&adapter->fdir_fltr_lock);
5239
5240 spin_lock_bh(&adapter->adv_rss_lock);
5241 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5242 list) {
5243 list_del(&rss->list);
5244 kfree(rss);
5245 }
5246 spin_unlock_bh(&adapter->adv_rss_lock);
5247
5248 destroy_workqueue(adapter->wq);
5249
5250 pci_set_drvdata(pdev, NULL);
5251
5252 free_netdev(netdev);
5253
5254 pci_disable_device(pdev);
5255}
5256
5257/**
5258 * iavf_shutdown - Shutdown the device in preparation for a reboot
5259 * @pdev: pci device structure
5260 **/
5261static void iavf_shutdown(struct pci_dev *pdev)
5262{
5263 iavf_remove(pdev);
5264
5265 if (system_state == SYSTEM_POWER_OFF)
5266 pci_set_power_state(pdev, PCI_D3hot);
5267}
5268
5269static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5270
5271static struct pci_driver iavf_driver = {
5272 .name = iavf_driver_name,
5273 .id_table = iavf_pci_tbl,
5274 .probe = iavf_probe,
5275 .remove = iavf_remove,
5276 .driver.pm = &iavf_pm_ops,
5277 .shutdown = iavf_shutdown,
5278};
5279
5280/**
5281 * iavf_init_module - Driver Registration Routine
5282 *
5283 * iavf_init_module is the first routine called when the driver is
5284 * loaded. All it does is register with the PCI subsystem.
5285 **/
5286static int __init iavf_init_module(void)
5287{
5288 pr_info("iavf: %s\n", iavf_driver_string);
5289
5290 pr_info("%s\n", iavf_copyright);
5291
5292 return pci_register_driver(&iavf_driver);
5293}
5294
5295module_init(iavf_init_module);
5296
5297/**
5298 * iavf_exit_module - Driver Exit Cleanup Routine
5299 *
5300 * iavf_exit_module is called just before the driver is removed
5301 * from memory.
5302 **/
5303static void __exit iavf_exit_module(void)
5304{
5305 pci_unregister_driver(&iavf_driver);
5306}
5307
5308module_exit(iavf_exit_module);
5309
5310/* iavf_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/net/intel/libie/rx.h>
5
6#include "iavf.h"
7#include "iavf_prototype.h"
8/* All iavf tracepoints are defined by the include below, which must
9 * be included exactly once across the whole kernel with
10 * CREATE_TRACE_POINTS defined
11 */
12#define CREATE_TRACE_POINTS
13#include "iavf_trace.h"
14
15static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
16static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
17static int iavf_close(struct net_device *netdev);
18static void iavf_init_get_resources(struct iavf_adapter *adapter);
19static int iavf_check_reset_complete(struct iavf_hw *hw);
20
21char iavf_driver_name[] = "iavf";
22static const char iavf_driver_string[] =
23 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
24
25static const char iavf_copyright[] =
26 "Copyright (c) 2013 - 2018 Intel Corporation.";
27
28/* iavf_pci_tbl - PCI Device ID Table
29 *
30 * Wildcard entries (PCI_ANY_ID) should come last
31 * Last entry must be all 0s
32 *
33 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
34 * Class, Class Mask, private data (not used) }
35 */
36static const struct pci_device_id iavf_pci_tbl[] = {
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
41 /* required last entry */
42 {0, }
43};
44
45MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
46
47MODULE_ALIAS("i40evf");
48MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49MODULE_IMPORT_NS("LIBETH");
50MODULE_IMPORT_NS("LIBIE");
51MODULE_LICENSE("GPL v2");
52
53static const struct net_device_ops iavf_netdev_ops;
54
55int iavf_status_to_errno(enum iavf_status status)
56{
57 switch (status) {
58 case IAVF_SUCCESS:
59 return 0;
60 case IAVF_ERR_PARAM:
61 case IAVF_ERR_MAC_TYPE:
62 case IAVF_ERR_INVALID_MAC_ADDR:
63 case IAVF_ERR_INVALID_LINK_SETTINGS:
64 case IAVF_ERR_INVALID_PD_ID:
65 case IAVF_ERR_INVALID_QP_ID:
66 case IAVF_ERR_INVALID_CQ_ID:
67 case IAVF_ERR_INVALID_CEQ_ID:
68 case IAVF_ERR_INVALID_AEQ_ID:
69 case IAVF_ERR_INVALID_SIZE:
70 case IAVF_ERR_INVALID_ARP_INDEX:
71 case IAVF_ERR_INVALID_FPM_FUNC_ID:
72 case IAVF_ERR_QP_INVALID_MSG_SIZE:
73 case IAVF_ERR_INVALID_FRAG_COUNT:
74 case IAVF_ERR_INVALID_ALIGNMENT:
75 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
76 case IAVF_ERR_INVALID_IMM_DATA_SIZE:
77 case IAVF_ERR_INVALID_VF_ID:
78 case IAVF_ERR_INVALID_HMCFN_ID:
79 case IAVF_ERR_INVALID_PBLE_INDEX:
80 case IAVF_ERR_INVALID_SD_INDEX:
81 case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
82 case IAVF_ERR_INVALID_SD_TYPE:
83 case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
84 case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
85 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
86 return -EINVAL;
87 case IAVF_ERR_NVM:
88 case IAVF_ERR_NVM_CHECKSUM:
89 case IAVF_ERR_PHY:
90 case IAVF_ERR_CONFIG:
91 case IAVF_ERR_UNKNOWN_PHY:
92 case IAVF_ERR_LINK_SETUP:
93 case IAVF_ERR_ADAPTER_STOPPED:
94 case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
95 case IAVF_ERR_AUTONEG_NOT_COMPLETE:
96 case IAVF_ERR_RESET_FAILED:
97 case IAVF_ERR_BAD_PTR:
98 case IAVF_ERR_SWFW_SYNC:
99 case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
100 case IAVF_ERR_QUEUE_EMPTY:
101 case IAVF_ERR_FLUSHED_QUEUE:
102 case IAVF_ERR_OPCODE_MISMATCH:
103 case IAVF_ERR_CQP_COMPL_ERROR:
104 case IAVF_ERR_BACKING_PAGE_ERROR:
105 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
106 case IAVF_ERR_MEMCPY_FAILED:
107 case IAVF_ERR_SRQ_ENABLED:
108 case IAVF_ERR_ADMIN_QUEUE_ERROR:
109 case IAVF_ERR_ADMIN_QUEUE_FULL:
110 case IAVF_ERR_BAD_RDMA_CQE:
111 case IAVF_ERR_NVM_BLANK_MODE:
112 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
113 case IAVF_ERR_DIAG_TEST_FAILED:
114 case IAVF_ERR_FIRMWARE_API_VERSION:
115 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
116 return -EIO;
117 case IAVF_ERR_DEVICE_NOT_SUPPORTED:
118 return -ENODEV;
119 case IAVF_ERR_NO_AVAILABLE_VSI:
120 case IAVF_ERR_RING_FULL:
121 return -ENOSPC;
122 case IAVF_ERR_NO_MEMORY:
123 return -ENOMEM;
124 case IAVF_ERR_TIMEOUT:
125 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
126 return -ETIMEDOUT;
127 case IAVF_ERR_NOT_IMPLEMENTED:
128 case IAVF_NOT_SUPPORTED:
129 return -EOPNOTSUPP;
130 case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
131 return -EALREADY;
132 case IAVF_ERR_NOT_READY:
133 return -EBUSY;
134 case IAVF_ERR_BUF_TOO_SHORT:
135 return -EMSGSIZE;
136 }
137
138 return -EIO;
139}
140
141int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
142{
143 switch (v_status) {
144 case VIRTCHNL_STATUS_SUCCESS:
145 return 0;
146 case VIRTCHNL_STATUS_ERR_PARAM:
147 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
148 return -EINVAL;
149 case VIRTCHNL_STATUS_ERR_NO_MEMORY:
150 return -ENOMEM;
151 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
152 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
153 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
154 return -EIO;
155 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
156 return -EOPNOTSUPP;
157 }
158
159 return -EIO;
160}
161
162/**
163 * iavf_pdev_to_adapter - go from pci_dev to adapter
164 * @pdev: pci_dev pointer
165 */
166static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
167{
168 return netdev_priv(pci_get_drvdata(pdev));
169}
170
171/**
172 * iavf_is_reset_in_progress - Check if a reset is in progress
173 * @adapter: board private structure
174 */
175static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
176{
177 if (adapter->state == __IAVF_RESETTING ||
178 adapter->flags & (IAVF_FLAG_RESET_PENDING |
179 IAVF_FLAG_RESET_NEEDED))
180 return true;
181
182 return false;
183}
184
185/**
186 * iavf_wait_for_reset - Wait for reset to finish.
187 * @adapter: board private structure
188 *
189 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
190 */
191int iavf_wait_for_reset(struct iavf_adapter *adapter)
192{
193 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
194 !iavf_is_reset_in_progress(adapter),
195 msecs_to_jiffies(5000));
196
197 /* If ret < 0 then it means wait was interrupted.
198 * If ret == 0 then it means we got a timeout while waiting
199 * for reset to finish.
200 * If ret > 0 it means reset has finished.
201 */
202 if (ret > 0)
203 return 0;
204 else if (ret < 0)
205 return -EINTR;
206 else
207 return -EBUSY;
208}
209
210/**
211 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
212 * @hw: pointer to the HW structure
213 * @mem: ptr to mem struct to fill out
214 * @size: size of memory requested
215 * @alignment: what to align the allocation to
216 **/
217enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
218 struct iavf_dma_mem *mem,
219 u64 size, u32 alignment)
220{
221 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
222
223 if (!mem)
224 return IAVF_ERR_PARAM;
225
226 mem->size = ALIGN(size, alignment);
227 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
228 (dma_addr_t *)&mem->pa, GFP_KERNEL);
229 if (mem->va)
230 return 0;
231 else
232 return IAVF_ERR_NO_MEMORY;
233}
234
235/**
236 * iavf_free_dma_mem - wrapper for DMA memory freeing
237 * @hw: pointer to the HW structure
238 * @mem: ptr to mem struct to free
239 **/
240enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
241{
242 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
243
244 if (!mem || !mem->va)
245 return IAVF_ERR_PARAM;
246 dma_free_coherent(&adapter->pdev->dev, mem->size,
247 mem->va, (dma_addr_t)mem->pa);
248 return 0;
249}
250
251/**
252 * iavf_allocate_virt_mem - virt memory alloc wrapper
253 * @hw: pointer to the HW structure
254 * @mem: ptr to mem struct to fill out
255 * @size: size of memory requested
256 **/
257enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
258 struct iavf_virt_mem *mem, u32 size)
259{
260 if (!mem)
261 return IAVF_ERR_PARAM;
262
263 mem->size = size;
264 mem->va = kzalloc(size, GFP_KERNEL);
265
266 if (mem->va)
267 return 0;
268 else
269 return IAVF_ERR_NO_MEMORY;
270}
271
272/**
273 * iavf_free_virt_mem - virt memory free wrapper
274 * @hw: pointer to the HW structure
275 * @mem: ptr to mem struct to free
276 **/
277void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
278{
279 kfree(mem->va);
280}
281
282/**
283 * iavf_schedule_reset - Set the flags and schedule a reset event
284 * @adapter: board private structure
285 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
286 **/
287void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
288{
289 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
290 !(adapter->flags &
291 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
292 adapter->flags |= flags;
293 queue_work(adapter->wq, &adapter->reset_task);
294 }
295}
296
297/**
298 * iavf_schedule_aq_request - Set the flags and schedule aq request
299 * @adapter: board private structure
300 * @flags: requested aq flags
301 **/
302void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
303{
304 adapter->aq_required |= flags;
305 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
306}
307
308/**
309 * iavf_tx_timeout - Respond to a Tx Hang
310 * @netdev: network interface device structure
311 * @txqueue: queue number that is timing out
312 **/
313static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
314{
315 struct iavf_adapter *adapter = netdev_priv(netdev);
316
317 adapter->tx_timeout_count++;
318 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
319}
320
321/**
322 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
323 * @adapter: board private structure
324 **/
325static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
326{
327 struct iavf_hw *hw = &adapter->hw;
328
329 if (!adapter->msix_entries)
330 return;
331
332 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
333
334 iavf_flush(hw);
335
336 synchronize_irq(adapter->msix_entries[0].vector);
337}
338
339/**
340 * iavf_misc_irq_enable - Enable default interrupt generation settings
341 * @adapter: board private structure
342 **/
343static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
344{
345 struct iavf_hw *hw = &adapter->hw;
346
347 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
348 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
349 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
350
351 iavf_flush(hw);
352}
353
354/**
355 * iavf_irq_disable - Mask off interrupt generation on the NIC
356 * @adapter: board private structure
357 **/
358static void iavf_irq_disable(struct iavf_adapter *adapter)
359{
360 int i;
361 struct iavf_hw *hw = &adapter->hw;
362
363 if (!adapter->msix_entries)
364 return;
365
366 for (i = 1; i < adapter->num_msix_vectors; i++) {
367 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
368 synchronize_irq(adapter->msix_entries[i].vector);
369 }
370 iavf_flush(hw);
371}
372
373/**
374 * iavf_irq_enable_queues - Enable interrupt for all queues
375 * @adapter: board private structure
376 **/
377static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
378{
379 struct iavf_hw *hw = &adapter->hw;
380 int i;
381
382 for (i = 1; i < adapter->num_msix_vectors; i++) {
383 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
384 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
385 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
386 }
387}
388
389/**
390 * iavf_irq_enable - Enable default interrupt generation settings
391 * @adapter: board private structure
392 * @flush: boolean value whether to run rd32()
393 **/
394void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
395{
396 struct iavf_hw *hw = &adapter->hw;
397
398 iavf_misc_irq_enable(adapter);
399 iavf_irq_enable_queues(adapter);
400
401 if (flush)
402 iavf_flush(hw);
403}
404
405/**
406 * iavf_msix_aq - Interrupt handler for vector 0
407 * @irq: interrupt number
408 * @data: pointer to netdev
409 **/
410static irqreturn_t iavf_msix_aq(int irq, void *data)
411{
412 struct net_device *netdev = data;
413 struct iavf_adapter *adapter = netdev_priv(netdev);
414 struct iavf_hw *hw = &adapter->hw;
415
416 /* handle non-queue interrupts, these reads clear the registers */
417 rd32(hw, IAVF_VFINT_ICR01);
418 rd32(hw, IAVF_VFINT_ICR0_ENA1);
419
420 if (adapter->state != __IAVF_REMOVE)
421 /* schedule work on the private workqueue */
422 queue_work(adapter->wq, &adapter->adminq_task);
423
424 return IRQ_HANDLED;
425}
426
427/**
428 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
429 * @irq: interrupt number
430 * @data: pointer to a q_vector
431 **/
432static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
433{
434 struct iavf_q_vector *q_vector = data;
435
436 if (!q_vector->tx.ring && !q_vector->rx.ring)
437 return IRQ_HANDLED;
438
439 napi_schedule_irqoff(&q_vector->napi);
440
441 return IRQ_HANDLED;
442}
443
444/**
445 * iavf_map_vector_to_rxq - associate irqs with rx queues
446 * @adapter: board private structure
447 * @v_idx: interrupt number
448 * @r_idx: queue number
449 **/
450static void
451iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
452{
453 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
454 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
455 struct iavf_hw *hw = &adapter->hw;
456
457 rx_ring->q_vector = q_vector;
458 rx_ring->next = q_vector->rx.ring;
459 rx_ring->vsi = &adapter->vsi;
460 q_vector->rx.ring = rx_ring;
461 q_vector->rx.count++;
462 q_vector->rx.next_update = jiffies + 1;
463 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
464 q_vector->ring_mask |= BIT(r_idx);
465 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
466 q_vector->rx.current_itr >> 1);
467 q_vector->rx.current_itr = q_vector->rx.target_itr;
468}
469
470/**
471 * iavf_map_vector_to_txq - associate irqs with tx queues
472 * @adapter: board private structure
473 * @v_idx: interrupt number
474 * @t_idx: queue number
475 **/
476static void
477iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
478{
479 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
480 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
481 struct iavf_hw *hw = &adapter->hw;
482
483 tx_ring->q_vector = q_vector;
484 tx_ring->next = q_vector->tx.ring;
485 tx_ring->vsi = &adapter->vsi;
486 q_vector->tx.ring = tx_ring;
487 q_vector->tx.count++;
488 q_vector->tx.next_update = jiffies + 1;
489 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
490 q_vector->num_ringpairs++;
491 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
492 q_vector->tx.target_itr >> 1);
493 q_vector->tx.current_itr = q_vector->tx.target_itr;
494}
495
496/**
497 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
498 * @adapter: board private structure to initialize
499 *
500 * This function maps descriptor rings to the queue-specific vectors
501 * we were allotted through the MSI-X enabling code. Ideally, we'd have
502 * one vector per ring/queue, but on a constrained vector budget, we
503 * group the rings as "efficiently" as possible. You would add new
504 * mapping configurations in here.
505 **/
506static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
507{
508 int rings_remaining = adapter->num_active_queues;
509 int ridx = 0, vidx = 0;
510 int q_vectors;
511
512 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
513
514 for (; ridx < rings_remaining; ridx++) {
515 iavf_map_vector_to_rxq(adapter, vidx, ridx);
516 iavf_map_vector_to_txq(adapter, vidx, ridx);
517
518 /* In the case where we have more queues than vectors, continue
519 * round-robin on vectors until all queues are mapped.
520 */
521 if (++vidx >= q_vectors)
522 vidx = 0;
523 }
524
525 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
526}
527
528/**
529 * iavf_irq_affinity_notify - Callback for affinity changes
530 * @notify: context as to what irq was changed
531 * @mask: the new affinity mask
532 *
533 * This is a callback function used by the irq_set_affinity_notifier function
534 * so that we may register to receive changes to the irq affinity masks.
535 **/
536static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
537 const cpumask_t *mask)
538{
539 struct iavf_q_vector *q_vector =
540 container_of(notify, struct iavf_q_vector, affinity_notify);
541
542 cpumask_copy(&q_vector->affinity_mask, mask);
543}
544
545/**
546 * iavf_irq_affinity_release - Callback for affinity notifier release
547 * @ref: internal core kernel usage
548 *
549 * This is a callback function used by the irq_set_affinity_notifier function
550 * to inform the current notification subscriber that they will no longer
551 * receive notifications.
552 **/
553static void iavf_irq_affinity_release(struct kref *ref) {}
554
555/**
556 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
557 * @adapter: board private structure
558 * @basename: device basename
559 *
560 * Allocates MSI-X vectors for tx and rx handling, and requests
561 * interrupts from the kernel.
562 **/
563static int
564iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
565{
566 unsigned int vector, q_vectors;
567 unsigned int rx_int_idx = 0, tx_int_idx = 0;
568 int irq_num, err;
569 int cpu;
570
571 iavf_irq_disable(adapter);
572 /* Decrement for Other and TCP Timer vectors */
573 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
574
575 for (vector = 0; vector < q_vectors; vector++) {
576 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
577
578 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
579
580 if (q_vector->tx.ring && q_vector->rx.ring) {
581 snprintf(q_vector->name, sizeof(q_vector->name),
582 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
583 tx_int_idx++;
584 } else if (q_vector->rx.ring) {
585 snprintf(q_vector->name, sizeof(q_vector->name),
586 "iavf-%s-rx-%u", basename, rx_int_idx++);
587 } else if (q_vector->tx.ring) {
588 snprintf(q_vector->name, sizeof(q_vector->name),
589 "iavf-%s-tx-%u", basename, tx_int_idx++);
590 } else {
591 /* skip this unused q_vector */
592 continue;
593 }
594 err = request_irq(irq_num,
595 iavf_msix_clean_rings,
596 0,
597 q_vector->name,
598 q_vector);
599 if (err) {
600 dev_info(&adapter->pdev->dev,
601 "Request_irq failed, error: %d\n", err);
602 goto free_queue_irqs;
603 }
604 /* register for affinity change notifications */
605 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
606 q_vector->affinity_notify.release =
607 iavf_irq_affinity_release;
608 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
609 /* Spread the IRQ affinity hints across online CPUs. Note that
610 * get_cpu_mask returns a mask with a permanent lifetime so
611 * it's safe to use as a hint for irq_update_affinity_hint.
612 */
613 cpu = cpumask_local_spread(q_vector->v_idx, -1);
614 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
615 }
616
617 return 0;
618
619free_queue_irqs:
620 while (vector) {
621 vector--;
622 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
623 irq_set_affinity_notifier(irq_num, NULL);
624 irq_update_affinity_hint(irq_num, NULL);
625 free_irq(irq_num, &adapter->q_vectors[vector]);
626 }
627 return err;
628}
629
630/**
631 * iavf_request_misc_irq - Initialize MSI-X interrupts
632 * @adapter: board private structure
633 *
634 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
635 * vector is only for the admin queue, and stays active even when the netdev
636 * is closed.
637 **/
638static int iavf_request_misc_irq(struct iavf_adapter *adapter)
639{
640 struct net_device *netdev = adapter->netdev;
641 int err;
642
643 snprintf(adapter->misc_vector_name,
644 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
645 dev_name(&adapter->pdev->dev));
646 err = request_irq(adapter->msix_entries[0].vector,
647 &iavf_msix_aq, 0,
648 adapter->misc_vector_name, netdev);
649 if (err) {
650 dev_err(&adapter->pdev->dev,
651 "request_irq for %s failed: %d\n",
652 adapter->misc_vector_name, err);
653 free_irq(adapter->msix_entries[0].vector, netdev);
654 }
655 return err;
656}
657
658/**
659 * iavf_free_traffic_irqs - Free MSI-X interrupts
660 * @adapter: board private structure
661 *
662 * Frees all MSI-X vectors other than 0.
663 **/
664static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
665{
666 int vector, irq_num, q_vectors;
667
668 if (!adapter->msix_entries)
669 return;
670
671 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
672
673 for (vector = 0; vector < q_vectors; vector++) {
674 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
675 irq_set_affinity_notifier(irq_num, NULL);
676 irq_update_affinity_hint(irq_num, NULL);
677 free_irq(irq_num, &adapter->q_vectors[vector]);
678 }
679}
680
681/**
682 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
683 * @adapter: board private structure
684 *
685 * Frees MSI-X vector 0.
686 **/
687static void iavf_free_misc_irq(struct iavf_adapter *adapter)
688{
689 struct net_device *netdev = adapter->netdev;
690
691 if (!adapter->msix_entries)
692 return;
693
694 free_irq(adapter->msix_entries[0].vector, netdev);
695}
696
697/**
698 * iavf_configure_tx - Configure Transmit Unit after Reset
699 * @adapter: board private structure
700 *
701 * Configure the Tx unit of the MAC after a reset.
702 **/
703static void iavf_configure_tx(struct iavf_adapter *adapter)
704{
705 struct iavf_hw *hw = &adapter->hw;
706 int i;
707
708 for (i = 0; i < adapter->num_active_queues; i++)
709 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
710}
711
712/**
713 * iavf_configure_rx - Configure Receive Unit after Reset
714 * @adapter: board private structure
715 *
716 * Configure the Rx unit of the MAC after a reset.
717 **/
718static void iavf_configure_rx(struct iavf_adapter *adapter)
719{
720 struct iavf_hw *hw = &adapter->hw;
721
722 for (u32 i = 0; i < adapter->num_active_queues; i++)
723 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
724}
725
726/**
727 * iavf_find_vlan - Search filter list for specific vlan filter
728 * @adapter: board private structure
729 * @vlan: vlan tag
730 *
731 * Returns ptr to the filter object or NULL. Must be called while holding the
732 * mac_vlan_list_lock.
733 **/
734static struct
735iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
736 struct iavf_vlan vlan)
737{
738 struct iavf_vlan_filter *f;
739
740 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
741 if (f->vlan.vid == vlan.vid &&
742 f->vlan.tpid == vlan.tpid)
743 return f;
744 }
745
746 return NULL;
747}
748
749/**
750 * iavf_add_vlan - Add a vlan filter to the list
751 * @adapter: board private structure
752 * @vlan: VLAN tag
753 *
754 * Returns ptr to the filter object or NULL when no memory available.
755 **/
756static struct
757iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
758 struct iavf_vlan vlan)
759{
760 struct iavf_vlan_filter *f = NULL;
761
762 spin_lock_bh(&adapter->mac_vlan_list_lock);
763
764 f = iavf_find_vlan(adapter, vlan);
765 if (!f) {
766 f = kzalloc(sizeof(*f), GFP_ATOMIC);
767 if (!f)
768 goto clearout;
769
770 f->vlan = vlan;
771
772 list_add_tail(&f->list, &adapter->vlan_filter_list);
773 f->state = IAVF_VLAN_ADD;
774 adapter->num_vlan_filters++;
775 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
776 } else if (f->state == IAVF_VLAN_REMOVE) {
777 /* IAVF_VLAN_REMOVE means that VLAN wasn't yet removed.
778 * We can safely only change the state here.
779 */
780 f->state = IAVF_VLAN_ACTIVE;
781 }
782
783clearout:
784 spin_unlock_bh(&adapter->mac_vlan_list_lock);
785 return f;
786}
787
788/**
789 * iavf_del_vlan - Remove a vlan filter from the list
790 * @adapter: board private structure
791 * @vlan: VLAN tag
792 **/
793static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
794{
795 struct iavf_vlan_filter *f;
796
797 spin_lock_bh(&adapter->mac_vlan_list_lock);
798
799 f = iavf_find_vlan(adapter, vlan);
800 if (f) {
801 /* IAVF_ADD_VLAN means that VLAN wasn't even added yet.
802 * Remove it from the list.
803 */
804 if (f->state == IAVF_VLAN_ADD) {
805 list_del(&f->list);
806 kfree(f);
807 adapter->num_vlan_filters--;
808 } else {
809 f->state = IAVF_VLAN_REMOVE;
810 iavf_schedule_aq_request(adapter,
811 IAVF_FLAG_AQ_DEL_VLAN_FILTER);
812 }
813 }
814
815 spin_unlock_bh(&adapter->mac_vlan_list_lock);
816}
817
818/**
819 * iavf_restore_filters
820 * @adapter: board private structure
821 *
822 * Restore existing non MAC filters when VF netdev comes back up
823 **/
824static void iavf_restore_filters(struct iavf_adapter *adapter)
825{
826 struct iavf_vlan_filter *f;
827
828 /* re-add all VLAN filters */
829 spin_lock_bh(&adapter->mac_vlan_list_lock);
830
831 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
832 if (f->state == IAVF_VLAN_INACTIVE)
833 f->state = IAVF_VLAN_ADD;
834 }
835
836 spin_unlock_bh(&adapter->mac_vlan_list_lock);
837 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
838}
839
840/**
841 * iavf_get_num_vlans_added - get number of VLANs added
842 * @adapter: board private structure
843 */
844u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
845{
846 return adapter->num_vlan_filters;
847}
848
849/**
850 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
851 * @adapter: board private structure
852 *
853 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
854 * do not impose a limit as that maintains current behavior and for
855 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
856 **/
857static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
858{
859 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
860 * never been a limit on the VF driver side
861 */
862 if (VLAN_ALLOWED(adapter))
863 return VLAN_N_VID;
864 else if (VLAN_V2_ALLOWED(adapter))
865 return adapter->vlan_v2_caps.filtering.max_filters;
866
867 return 0;
868}
869
870/**
871 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
872 * @adapter: board private structure
873 **/
874static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
875{
876 if (iavf_get_num_vlans_added(adapter) <
877 iavf_get_max_vlans_allowed(adapter))
878 return false;
879
880 return true;
881}
882
883/**
884 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
885 * @netdev: network device struct
886 * @proto: unused protocol data
887 * @vid: VLAN tag
888 **/
889static int iavf_vlan_rx_add_vid(struct net_device *netdev,
890 __always_unused __be16 proto, u16 vid)
891{
892 struct iavf_adapter *adapter = netdev_priv(netdev);
893
894 /* Do not track VLAN 0 filter, always added by the PF on VF init */
895 if (!vid)
896 return 0;
897
898 if (!VLAN_FILTERING_ALLOWED(adapter))
899 return -EIO;
900
901 if (iavf_max_vlans_added(adapter)) {
902 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
903 iavf_get_max_vlans_allowed(adapter));
904 return -EIO;
905 }
906
907 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
908 return -ENOMEM;
909
910 return 0;
911}
912
913/**
914 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
915 * @netdev: network device struct
916 * @proto: unused protocol data
917 * @vid: VLAN tag
918 **/
919static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
920 __always_unused __be16 proto, u16 vid)
921{
922 struct iavf_adapter *adapter = netdev_priv(netdev);
923
924 /* We do not track VLAN 0 filter */
925 if (!vid)
926 return 0;
927
928 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
929 return 0;
930}
931
932/**
933 * iavf_find_filter - Search filter list for specific mac filter
934 * @adapter: board private structure
935 * @macaddr: the MAC address
936 *
937 * Returns ptr to the filter object or NULL. Must be called while holding the
938 * mac_vlan_list_lock.
939 **/
940static struct
941iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
942 const u8 *macaddr)
943{
944 struct iavf_mac_filter *f;
945
946 if (!macaddr)
947 return NULL;
948
949 list_for_each_entry(f, &adapter->mac_filter_list, list) {
950 if (ether_addr_equal(macaddr, f->macaddr))
951 return f;
952 }
953 return NULL;
954}
955
956/**
957 * iavf_add_filter - Add a mac filter to the filter list
958 * @adapter: board private structure
959 * @macaddr: the MAC address
960 *
961 * Returns ptr to the filter object or NULL when no memory available.
962 **/
963struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
964 const u8 *macaddr)
965{
966 struct iavf_mac_filter *f;
967
968 if (!macaddr)
969 return NULL;
970
971 f = iavf_find_filter(adapter, macaddr);
972 if (!f) {
973 f = kzalloc(sizeof(*f), GFP_ATOMIC);
974 if (!f)
975 return f;
976
977 ether_addr_copy(f->macaddr, macaddr);
978
979 list_add_tail(&f->list, &adapter->mac_filter_list);
980 f->add = true;
981 f->add_handled = false;
982 f->is_new_mac = true;
983 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
984 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
985 } else {
986 f->remove = false;
987 }
988
989 return f;
990}
991
992/**
993 * iavf_replace_primary_mac - Replace current primary address
994 * @adapter: board private structure
995 * @new_mac: new MAC address to be applied
996 *
997 * Replace current dev_addr and send request to PF for removal of previous
998 * primary MAC address filter and addition of new primary MAC filter.
999 * Return 0 for success, -ENOMEM for failure.
1000 *
1001 * Do not call this with mac_vlan_list_lock!
1002 **/
1003static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1004 const u8 *new_mac)
1005{
1006 struct iavf_hw *hw = &adapter->hw;
1007 struct iavf_mac_filter *new_f;
1008 struct iavf_mac_filter *old_f;
1009
1010 spin_lock_bh(&adapter->mac_vlan_list_lock);
1011
1012 new_f = iavf_add_filter(adapter, new_mac);
1013 if (!new_f) {
1014 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1015 return -ENOMEM;
1016 }
1017
1018 old_f = iavf_find_filter(adapter, hw->mac.addr);
1019 if (old_f) {
1020 old_f->is_primary = false;
1021 old_f->remove = true;
1022 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1023 }
1024 /* Always send the request to add if changing primary MAC,
1025 * even if filter is already present on the list
1026 */
1027 new_f->is_primary = true;
1028 new_f->add = true;
1029 ether_addr_copy(hw->mac.addr, new_mac);
1030
1031 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1032
1033 /* schedule the watchdog task to immediately process the request */
1034 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1035 return 0;
1036}
1037
1038/**
1039 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1040 * @netdev: network interface device structure
1041 * @macaddr: MAC address to set
1042 *
1043 * Returns true on success, false on failure
1044 */
1045static bool iavf_is_mac_set_handled(struct net_device *netdev,
1046 const u8 *macaddr)
1047{
1048 struct iavf_adapter *adapter = netdev_priv(netdev);
1049 struct iavf_mac_filter *f;
1050 bool ret = false;
1051
1052 spin_lock_bh(&adapter->mac_vlan_list_lock);
1053
1054 f = iavf_find_filter(adapter, macaddr);
1055
1056 if (!f || (!f->add && f->add_handled))
1057 ret = true;
1058
1059 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1060
1061 return ret;
1062}
1063
1064/**
1065 * iavf_set_mac - NDO callback to set port MAC address
1066 * @netdev: network interface device structure
1067 * @p: pointer to an address structure
1068 *
1069 * Returns 0 on success, negative on failure
1070 */
1071static int iavf_set_mac(struct net_device *netdev, void *p)
1072{
1073 struct iavf_adapter *adapter = netdev_priv(netdev);
1074 struct sockaddr *addr = p;
1075 int ret;
1076
1077 if (!is_valid_ether_addr(addr->sa_data))
1078 return -EADDRNOTAVAIL;
1079
1080 ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1081
1082 if (ret)
1083 return ret;
1084
1085 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1086 iavf_is_mac_set_handled(netdev, addr->sa_data),
1087 msecs_to_jiffies(2500));
1088
1089 /* If ret < 0 then it means wait was interrupted.
1090 * If ret == 0 then it means we got a timeout.
1091 * else it means we got response for set MAC from PF,
1092 * check if netdev MAC was updated to requested MAC,
1093 * if yes then set MAC succeeded otherwise it failed return -EACCES
1094 */
1095 if (ret < 0)
1096 return ret;
1097
1098 if (!ret)
1099 return -EAGAIN;
1100
1101 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1102 return -EACCES;
1103
1104 return 0;
1105}
1106
1107/**
1108 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1109 * @netdev: the netdevice
1110 * @addr: address to add
1111 *
1112 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1113 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1114 */
1115static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1116{
1117 struct iavf_adapter *adapter = netdev_priv(netdev);
1118
1119 if (iavf_add_filter(adapter, addr))
1120 return 0;
1121 else
1122 return -ENOMEM;
1123}
1124
1125/**
1126 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1127 * @netdev: the netdevice
1128 * @addr: address to add
1129 *
1130 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1131 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1132 */
1133static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1134{
1135 struct iavf_adapter *adapter = netdev_priv(netdev);
1136 struct iavf_mac_filter *f;
1137
1138 /* Under some circumstances, we might receive a request to delete
1139 * our own device address from our uc list. Because we store the
1140 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1141 * such requests and not delete our device address from this list.
1142 */
1143 if (ether_addr_equal(addr, netdev->dev_addr))
1144 return 0;
1145
1146 f = iavf_find_filter(adapter, addr);
1147 if (f) {
1148 f->remove = true;
1149 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1150 }
1151 return 0;
1152}
1153
1154/**
1155 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1156 * @adapter: device specific adapter
1157 */
1158bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1159{
1160 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1161 (IFF_PROMISC | IFF_ALLMULTI);
1162}
1163
1164/**
1165 * iavf_set_rx_mode - NDO callback to set the netdev filters
1166 * @netdev: network interface device structure
1167 **/
1168static void iavf_set_rx_mode(struct net_device *netdev)
1169{
1170 struct iavf_adapter *adapter = netdev_priv(netdev);
1171
1172 spin_lock_bh(&adapter->mac_vlan_list_lock);
1173 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1174 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1175 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1176
1177 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1178 if (iavf_promiscuous_mode_changed(adapter))
1179 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1180 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1181}
1182
1183/**
1184 * iavf_napi_enable_all - enable NAPI on all queue vectors
1185 * @adapter: board private structure
1186 **/
1187static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1188{
1189 int q_idx;
1190 struct iavf_q_vector *q_vector;
1191 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1192
1193 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1194 struct napi_struct *napi;
1195
1196 q_vector = &adapter->q_vectors[q_idx];
1197 napi = &q_vector->napi;
1198 napi_enable(napi);
1199 }
1200}
1201
1202/**
1203 * iavf_napi_disable_all - disable NAPI on all queue vectors
1204 * @adapter: board private structure
1205 **/
1206static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1207{
1208 int q_idx;
1209 struct iavf_q_vector *q_vector;
1210 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1211
1212 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1213 q_vector = &adapter->q_vectors[q_idx];
1214 napi_disable(&q_vector->napi);
1215 }
1216}
1217
1218/**
1219 * iavf_configure - set up transmit and receive data structures
1220 * @adapter: board private structure
1221 **/
1222static void iavf_configure(struct iavf_adapter *adapter)
1223{
1224 struct net_device *netdev = adapter->netdev;
1225 int i;
1226
1227 iavf_set_rx_mode(netdev);
1228
1229 iavf_configure_tx(adapter);
1230 iavf_configure_rx(adapter);
1231 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1232
1233 for (i = 0; i < adapter->num_active_queues; i++) {
1234 struct iavf_ring *ring = &adapter->rx_rings[i];
1235
1236 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1237 }
1238}
1239
1240/**
1241 * iavf_up_complete - Finish the last steps of bringing up a connection
1242 * @adapter: board private structure
1243 *
1244 * Expects to be called while holding crit_lock.
1245 **/
1246static void iavf_up_complete(struct iavf_adapter *adapter)
1247{
1248 iavf_change_state(adapter, __IAVF_RUNNING);
1249 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1250
1251 iavf_napi_enable_all(adapter);
1252
1253 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1254}
1255
1256/**
1257 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1258 * yet and mark other to be removed.
1259 * @adapter: board private structure
1260 **/
1261static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1262{
1263 struct iavf_vlan_filter *vlf, *vlftmp;
1264 struct iavf_mac_filter *f, *ftmp;
1265
1266 spin_lock_bh(&adapter->mac_vlan_list_lock);
1267 /* clear the sync flag on all filters */
1268 __dev_uc_unsync(adapter->netdev, NULL);
1269 __dev_mc_unsync(adapter->netdev, NULL);
1270
1271 /* remove all MAC filters */
1272 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1273 list) {
1274 if (f->add) {
1275 list_del(&f->list);
1276 kfree(f);
1277 } else {
1278 f->remove = true;
1279 }
1280 }
1281
1282 /* disable all VLAN filters */
1283 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1284 list)
1285 vlf->state = IAVF_VLAN_DISABLE;
1286
1287 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1288}
1289
1290/**
1291 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1292 * mark other to be removed.
1293 * @adapter: board private structure
1294 **/
1295static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1296{
1297 struct iavf_cloud_filter *cf, *cftmp;
1298
1299 /* remove all cloud filters */
1300 spin_lock_bh(&adapter->cloud_filter_list_lock);
1301 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1302 list) {
1303 if (cf->add) {
1304 list_del(&cf->list);
1305 kfree(cf);
1306 adapter->num_cloud_filters--;
1307 } else {
1308 cf->del = true;
1309 }
1310 }
1311 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1312}
1313
1314/**
1315 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1316 * other to be removed.
1317 * @adapter: board private structure
1318 **/
1319static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1320{
1321 struct iavf_fdir_fltr *fdir;
1322
1323 /* remove all Flow Director filters */
1324 spin_lock_bh(&adapter->fdir_fltr_lock);
1325 list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1326 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1327 /* Cancel a request, keep filter as inactive */
1328 fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1329 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1330 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1331 /* Disable filters which are active or have a pending
1332 * request to PF to be added
1333 */
1334 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1335 }
1336 }
1337 spin_unlock_bh(&adapter->fdir_fltr_lock);
1338}
1339
1340/**
1341 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1342 * other to be removed.
1343 * @adapter: board private structure
1344 **/
1345static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1346{
1347 struct iavf_adv_rss *rss, *rsstmp;
1348
1349 /* remove all advance RSS configuration */
1350 spin_lock_bh(&adapter->adv_rss_lock);
1351 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1352 list) {
1353 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1354 list_del(&rss->list);
1355 kfree(rss);
1356 } else {
1357 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1358 }
1359 }
1360 spin_unlock_bh(&adapter->adv_rss_lock);
1361}
1362
1363/**
1364 * iavf_down - Shutdown the connection processing
1365 * @adapter: board private structure
1366 *
1367 * Expects to be called while holding crit_lock.
1368 **/
1369void iavf_down(struct iavf_adapter *adapter)
1370{
1371 struct net_device *netdev = adapter->netdev;
1372
1373 if (adapter->state <= __IAVF_DOWN_PENDING)
1374 return;
1375
1376 netif_carrier_off(netdev);
1377 netif_tx_disable(netdev);
1378 adapter->link_up = false;
1379 iavf_napi_disable_all(adapter);
1380 iavf_irq_disable(adapter);
1381
1382 iavf_clear_mac_vlan_filters(adapter);
1383 iavf_clear_cloud_filters(adapter);
1384 iavf_clear_fdir_filters(adapter);
1385 iavf_clear_adv_rss_conf(adapter);
1386
1387 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1388 return;
1389
1390 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1391 /* cancel any current operation */
1392 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1393 /* Schedule operations to close down the HW. Don't wait
1394 * here for this to complete. The watchdog is still running
1395 * and it will take care of this.
1396 */
1397 if (!list_empty(&adapter->mac_filter_list))
1398 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1399 if (!list_empty(&adapter->vlan_filter_list))
1400 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1401 if (!list_empty(&adapter->cloud_filter_list))
1402 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1403 if (!list_empty(&adapter->fdir_list_head))
1404 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1405 if (!list_empty(&adapter->adv_rss_list_head))
1406 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1407 }
1408
1409 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1410}
1411
1412/**
1413 * iavf_acquire_msix_vectors - Setup the MSIX capability
1414 * @adapter: board private structure
1415 * @vectors: number of vectors to request
1416 *
1417 * Work with the OS to set up the MSIX vectors needed.
1418 *
1419 * Returns 0 on success, negative on failure
1420 **/
1421static int
1422iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1423{
1424 int err, vector_threshold;
1425
1426 /* We'll want at least 3 (vector_threshold):
1427 * 0) Other (Admin Queue and link, mostly)
1428 * 1) TxQ[0] Cleanup
1429 * 2) RxQ[0] Cleanup
1430 */
1431 vector_threshold = MIN_MSIX_COUNT;
1432
1433 /* The more we get, the more we will assign to Tx/Rx Cleanup
1434 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1435 * Right now, we simply care about how many we'll get; we'll
1436 * set them up later while requesting irq's.
1437 */
1438 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1439 vector_threshold, vectors);
1440 if (err < 0) {
1441 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1442 kfree(adapter->msix_entries);
1443 adapter->msix_entries = NULL;
1444 return err;
1445 }
1446
1447 /* Adjust for only the vectors we'll use, which is minimum
1448 * of max_msix_q_vectors + NONQ_VECS, or the number of
1449 * vectors we were allocated.
1450 */
1451 adapter->num_msix_vectors = err;
1452 return 0;
1453}
1454
1455/**
1456 * iavf_free_queues - Free memory for all rings
1457 * @adapter: board private structure to initialize
1458 *
1459 * Free all of the memory associated with queue pairs.
1460 **/
1461static void iavf_free_queues(struct iavf_adapter *adapter)
1462{
1463 if (!adapter->vsi_res)
1464 return;
1465 adapter->num_active_queues = 0;
1466 kfree(adapter->tx_rings);
1467 adapter->tx_rings = NULL;
1468 kfree(adapter->rx_rings);
1469 adapter->rx_rings = NULL;
1470}
1471
1472/**
1473 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1474 * @adapter: board private structure
1475 *
1476 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1477 * stripped in certain descriptor fields. Instead of checking the offload
1478 * capability bits in the hot path, cache the location the ring specific
1479 * flags.
1480 */
1481void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1482{
1483 int i;
1484
1485 for (i = 0; i < adapter->num_active_queues; i++) {
1486 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1487 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1488
1489 /* prevent multiple L2TAG bits being set after VFR */
1490 tx_ring->flags &=
1491 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1492 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1493 rx_ring->flags &=
1494 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1495 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1496
1497 if (VLAN_ALLOWED(adapter)) {
1498 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1499 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1500 } else if (VLAN_V2_ALLOWED(adapter)) {
1501 struct virtchnl_vlan_supported_caps *stripping_support;
1502 struct virtchnl_vlan_supported_caps *insertion_support;
1503
1504 stripping_support =
1505 &adapter->vlan_v2_caps.offloads.stripping_support;
1506 insertion_support =
1507 &adapter->vlan_v2_caps.offloads.insertion_support;
1508
1509 if (stripping_support->outer) {
1510 if (stripping_support->outer &
1511 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1512 rx_ring->flags |=
1513 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1514 else if (stripping_support->outer &
1515 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1516 rx_ring->flags |=
1517 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1518 } else if (stripping_support->inner) {
1519 if (stripping_support->inner &
1520 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1521 rx_ring->flags |=
1522 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1523 else if (stripping_support->inner &
1524 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1525 rx_ring->flags |=
1526 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1527 }
1528
1529 if (insertion_support->outer) {
1530 if (insertion_support->outer &
1531 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1532 tx_ring->flags |=
1533 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1534 else if (insertion_support->outer &
1535 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1536 tx_ring->flags |=
1537 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1538 } else if (insertion_support->inner) {
1539 if (insertion_support->inner &
1540 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1541 tx_ring->flags |=
1542 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1543 else if (insertion_support->inner &
1544 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1545 tx_ring->flags |=
1546 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1547 }
1548 }
1549 }
1550}
1551
1552/**
1553 * iavf_alloc_queues - Allocate memory for all rings
1554 * @adapter: board private structure to initialize
1555 *
1556 * We allocate one ring per queue at run-time since we don't know the
1557 * number of queues at compile-time. The polling_netdev array is
1558 * intended for Multiqueue, but should work fine with a single queue.
1559 **/
1560static int iavf_alloc_queues(struct iavf_adapter *adapter)
1561{
1562 int i, num_active_queues;
1563
1564 /* If we're in reset reallocating queues we don't actually know yet for
1565 * certain the PF gave us the number of queues we asked for but we'll
1566 * assume it did. Once basic reset is finished we'll confirm once we
1567 * start negotiating config with PF.
1568 */
1569 if (adapter->num_req_queues)
1570 num_active_queues = adapter->num_req_queues;
1571 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1572 adapter->num_tc)
1573 num_active_queues = adapter->ch_config.total_qps;
1574 else
1575 num_active_queues = min_t(int,
1576 adapter->vsi_res->num_queue_pairs,
1577 (int)(num_online_cpus()));
1578
1579
1580 adapter->tx_rings = kcalloc(num_active_queues,
1581 sizeof(struct iavf_ring), GFP_KERNEL);
1582 if (!adapter->tx_rings)
1583 goto err_out;
1584 adapter->rx_rings = kcalloc(num_active_queues,
1585 sizeof(struct iavf_ring), GFP_KERNEL);
1586 if (!adapter->rx_rings)
1587 goto err_out;
1588
1589 for (i = 0; i < num_active_queues; i++) {
1590 struct iavf_ring *tx_ring;
1591 struct iavf_ring *rx_ring;
1592
1593 tx_ring = &adapter->tx_rings[i];
1594
1595 tx_ring->queue_index = i;
1596 tx_ring->netdev = adapter->netdev;
1597 tx_ring->dev = &adapter->pdev->dev;
1598 tx_ring->count = adapter->tx_desc_count;
1599 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1600 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1601 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1602
1603 rx_ring = &adapter->rx_rings[i];
1604 rx_ring->queue_index = i;
1605 rx_ring->netdev = adapter->netdev;
1606 rx_ring->count = adapter->rx_desc_count;
1607 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1608 }
1609
1610 adapter->num_active_queues = num_active_queues;
1611
1612 iavf_set_queue_vlan_tag_loc(adapter);
1613
1614 return 0;
1615
1616err_out:
1617 iavf_free_queues(adapter);
1618 return -ENOMEM;
1619}
1620
1621/**
1622 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1623 * @adapter: board private structure to initialize
1624 *
1625 * Attempt to configure the interrupts using the best available
1626 * capabilities of the hardware and the kernel.
1627 **/
1628static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1629{
1630 int vector, v_budget;
1631 int pairs = 0;
1632 int err = 0;
1633
1634 if (!adapter->vsi_res) {
1635 err = -EIO;
1636 goto out;
1637 }
1638 pairs = adapter->num_active_queues;
1639
1640 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1641 * us much good if we have more vectors than CPUs. However, we already
1642 * limit the total number of queues by the number of CPUs so we do not
1643 * need any further limiting here.
1644 */
1645 v_budget = min_t(int, pairs + NONQ_VECS,
1646 (int)adapter->vf_res->max_vectors);
1647
1648 adapter->msix_entries = kcalloc(v_budget,
1649 sizeof(struct msix_entry), GFP_KERNEL);
1650 if (!adapter->msix_entries) {
1651 err = -ENOMEM;
1652 goto out;
1653 }
1654
1655 for (vector = 0; vector < v_budget; vector++)
1656 adapter->msix_entries[vector].entry = vector;
1657
1658 err = iavf_acquire_msix_vectors(adapter, v_budget);
1659 if (!err)
1660 iavf_schedule_finish_config(adapter);
1661
1662out:
1663 return err;
1664}
1665
1666/**
1667 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1668 * @adapter: board private structure
1669 *
1670 * Return 0 on success, negative on failure
1671 **/
1672static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1673{
1674 struct iavf_aqc_get_set_rss_key_data *rss_key =
1675 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1676 struct iavf_hw *hw = &adapter->hw;
1677 enum iavf_status status;
1678
1679 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1680 /* bail because we already have a command pending */
1681 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1682 adapter->current_op);
1683 return -EBUSY;
1684 }
1685
1686 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1687 if (status) {
1688 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1689 iavf_stat_str(hw, status),
1690 iavf_aq_str(hw, hw->aq.asq_last_status));
1691 return iavf_status_to_errno(status);
1692
1693 }
1694
1695 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1696 adapter->rss_lut, adapter->rss_lut_size);
1697 if (status) {
1698 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1699 iavf_stat_str(hw, status),
1700 iavf_aq_str(hw, hw->aq.asq_last_status));
1701 return iavf_status_to_errno(status);
1702 }
1703
1704 return 0;
1705
1706}
1707
1708/**
1709 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1710 * @adapter: board private structure
1711 *
1712 * Returns 0 on success, negative on failure
1713 **/
1714static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1715{
1716 struct iavf_hw *hw = &adapter->hw;
1717 u32 *dw;
1718 u16 i;
1719
1720 dw = (u32 *)adapter->rss_key;
1721 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1722 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1723
1724 dw = (u32 *)adapter->rss_lut;
1725 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1726 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1727
1728 iavf_flush(hw);
1729
1730 return 0;
1731}
1732
1733/**
1734 * iavf_config_rss - Configure RSS keys and lut
1735 * @adapter: board private structure
1736 *
1737 * Returns 0 on success, negative on failure
1738 **/
1739int iavf_config_rss(struct iavf_adapter *adapter)
1740{
1741
1742 if (RSS_PF(adapter)) {
1743 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1744 IAVF_FLAG_AQ_SET_RSS_KEY;
1745 return 0;
1746 } else if (RSS_AQ(adapter)) {
1747 return iavf_config_rss_aq(adapter);
1748 } else {
1749 return iavf_config_rss_reg(adapter);
1750 }
1751}
1752
1753/**
1754 * iavf_fill_rss_lut - Fill the lut with default values
1755 * @adapter: board private structure
1756 **/
1757static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1758{
1759 u16 i;
1760
1761 for (i = 0; i < adapter->rss_lut_size; i++)
1762 adapter->rss_lut[i] = i % adapter->num_active_queues;
1763}
1764
1765/**
1766 * iavf_init_rss - Prepare for RSS
1767 * @adapter: board private structure
1768 *
1769 * Return 0 on success, negative on failure
1770 **/
1771static int iavf_init_rss(struct iavf_adapter *adapter)
1772{
1773 struct iavf_hw *hw = &adapter->hw;
1774
1775 if (!RSS_PF(adapter)) {
1776 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1777 if (adapter->vf_res->vf_cap_flags &
1778 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1779 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1780 else
1781 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1782
1783 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1784 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1785 }
1786
1787 iavf_fill_rss_lut(adapter);
1788 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1789
1790 return iavf_config_rss(adapter);
1791}
1792
1793/**
1794 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1795 * @adapter: board private structure to initialize
1796 *
1797 * We allocate one q_vector per queue interrupt. If allocation fails we
1798 * return -ENOMEM.
1799 **/
1800static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1801{
1802 int q_idx = 0, num_q_vectors;
1803 struct iavf_q_vector *q_vector;
1804
1805 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1806 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1807 GFP_KERNEL);
1808 if (!adapter->q_vectors)
1809 return -ENOMEM;
1810
1811 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1812 q_vector = &adapter->q_vectors[q_idx];
1813 q_vector->adapter = adapter;
1814 q_vector->vsi = &adapter->vsi;
1815 q_vector->v_idx = q_idx;
1816 q_vector->reg_idx = q_idx;
1817 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1818 netif_napi_add(adapter->netdev, &q_vector->napi,
1819 iavf_napi_poll);
1820 }
1821
1822 return 0;
1823}
1824
1825/**
1826 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1827 * @adapter: board private structure to initialize
1828 *
1829 * This function frees the memory allocated to the q_vectors. In addition if
1830 * NAPI is enabled it will delete any references to the NAPI struct prior
1831 * to freeing the q_vector.
1832 **/
1833static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1834{
1835 int q_idx, num_q_vectors;
1836
1837 if (!adapter->q_vectors)
1838 return;
1839
1840 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1841
1842 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1843 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1844
1845 netif_napi_del(&q_vector->napi);
1846 }
1847 kfree(adapter->q_vectors);
1848 adapter->q_vectors = NULL;
1849}
1850
1851/**
1852 * iavf_reset_interrupt_capability - Reset MSIX setup
1853 * @adapter: board private structure
1854 *
1855 **/
1856static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1857{
1858 if (!adapter->msix_entries)
1859 return;
1860
1861 pci_disable_msix(adapter->pdev);
1862 kfree(adapter->msix_entries);
1863 adapter->msix_entries = NULL;
1864}
1865
1866/**
1867 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1868 * @adapter: board private structure to initialize
1869 *
1870 **/
1871static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1872{
1873 int err;
1874
1875 err = iavf_alloc_queues(adapter);
1876 if (err) {
1877 dev_err(&adapter->pdev->dev,
1878 "Unable to allocate memory for queues\n");
1879 goto err_alloc_queues;
1880 }
1881
1882 err = iavf_set_interrupt_capability(adapter);
1883 if (err) {
1884 dev_err(&adapter->pdev->dev,
1885 "Unable to setup interrupt capabilities\n");
1886 goto err_set_interrupt;
1887 }
1888
1889 err = iavf_alloc_q_vectors(adapter);
1890 if (err) {
1891 dev_err(&adapter->pdev->dev,
1892 "Unable to allocate memory for queue vectors\n");
1893 goto err_alloc_q_vectors;
1894 }
1895
1896 /* If we've made it so far while ADq flag being ON, then we haven't
1897 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1898 * resources have been allocated in the reset path.
1899 * Now we can truly claim that ADq is enabled.
1900 */
1901 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1902 adapter->num_tc)
1903 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1904 adapter->num_tc);
1905
1906 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1907 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1908 adapter->num_active_queues);
1909
1910 return 0;
1911err_alloc_q_vectors:
1912 iavf_reset_interrupt_capability(adapter);
1913err_set_interrupt:
1914 iavf_free_queues(adapter);
1915err_alloc_queues:
1916 return err;
1917}
1918
1919/**
1920 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1921 * @adapter: board private structure
1922 **/
1923static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1924{
1925 iavf_free_q_vectors(adapter);
1926 iavf_reset_interrupt_capability(adapter);
1927 iavf_free_queues(adapter);
1928}
1929
1930/**
1931 * iavf_free_rss - Free memory used by RSS structs
1932 * @adapter: board private structure
1933 **/
1934static void iavf_free_rss(struct iavf_adapter *adapter)
1935{
1936 kfree(adapter->rss_key);
1937 adapter->rss_key = NULL;
1938
1939 kfree(adapter->rss_lut);
1940 adapter->rss_lut = NULL;
1941}
1942
1943/**
1944 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1945 * @adapter: board private structure
1946 * @running: true if adapter->state == __IAVF_RUNNING
1947 *
1948 * Returns 0 on success, negative on failure
1949 **/
1950static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1951{
1952 struct net_device *netdev = adapter->netdev;
1953 int err;
1954
1955 if (running)
1956 iavf_free_traffic_irqs(adapter);
1957 iavf_free_misc_irq(adapter);
1958 iavf_free_interrupt_scheme(adapter);
1959
1960 err = iavf_init_interrupt_scheme(adapter);
1961 if (err)
1962 goto err;
1963
1964 netif_tx_stop_all_queues(netdev);
1965
1966 err = iavf_request_misc_irq(adapter);
1967 if (err)
1968 goto err;
1969
1970 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1971
1972 iavf_map_rings_to_vectors(adapter);
1973err:
1974 return err;
1975}
1976
1977/**
1978 * iavf_finish_config - do all netdev work that needs RTNL
1979 * @work: our work_struct
1980 *
1981 * Do work that needs both RTNL and crit_lock.
1982 **/
1983static void iavf_finish_config(struct work_struct *work)
1984{
1985 struct iavf_adapter *adapter;
1986 int pairs, err;
1987
1988 adapter = container_of(work, struct iavf_adapter, finish_config);
1989
1990 /* Always take RTNL first to prevent circular lock dependency;
1991 * The dev->lock is needed to update the queue number
1992 */
1993 rtnl_lock();
1994 mutex_lock(&adapter->netdev->lock);
1995 mutex_lock(&adapter->crit_lock);
1996
1997 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
1998 adapter->netdev->reg_state == NETREG_REGISTERED &&
1999 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2000 netdev_update_features(adapter->netdev);
2001 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2002 }
2003
2004 switch (adapter->state) {
2005 case __IAVF_DOWN:
2006 if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2007 err = register_netdevice(adapter->netdev);
2008 if (err) {
2009 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2010 err);
2011
2012 /* go back and try again.*/
2013 iavf_free_rss(adapter);
2014 iavf_free_misc_irq(adapter);
2015 iavf_reset_interrupt_capability(adapter);
2016 iavf_change_state(adapter,
2017 __IAVF_INIT_CONFIG_ADAPTER);
2018 goto out;
2019 }
2020 }
2021
2022 /* Set the real number of queues when reset occurs while
2023 * state == __IAVF_DOWN
2024 */
2025 fallthrough;
2026 case __IAVF_RUNNING:
2027 pairs = adapter->num_active_queues;
2028 netif_set_real_num_rx_queues(adapter->netdev, pairs);
2029 netif_set_real_num_tx_queues(adapter->netdev, pairs);
2030 break;
2031
2032 default:
2033 break;
2034 }
2035
2036out:
2037 mutex_unlock(&adapter->crit_lock);
2038 mutex_unlock(&adapter->netdev->lock);
2039 rtnl_unlock();
2040}
2041
2042/**
2043 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2044 * @adapter: board private structure
2045 **/
2046void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2047{
2048 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2049 queue_work(adapter->wq, &adapter->finish_config);
2050}
2051
2052/**
2053 * iavf_process_aq_command - process aq_required flags
2054 * and sends aq command
2055 * @adapter: pointer to iavf adapter structure
2056 *
2057 * Returns 0 on success
2058 * Returns error code if no command was sent
2059 * or error code if the command failed.
2060 **/
2061static int iavf_process_aq_command(struct iavf_adapter *adapter)
2062{
2063 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2064 return iavf_send_vf_config_msg(adapter);
2065 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2066 return iavf_send_vf_offload_vlan_v2_msg(adapter);
2067 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2068 iavf_disable_queues(adapter);
2069 return 0;
2070 }
2071
2072 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2073 iavf_map_queues(adapter);
2074 return 0;
2075 }
2076
2077 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2078 iavf_add_ether_addrs(adapter);
2079 return 0;
2080 }
2081
2082 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2083 iavf_add_vlans(adapter);
2084 return 0;
2085 }
2086
2087 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2088 iavf_del_ether_addrs(adapter);
2089 return 0;
2090 }
2091
2092 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2093 iavf_del_vlans(adapter);
2094 return 0;
2095 }
2096
2097 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2098 iavf_enable_vlan_stripping(adapter);
2099 return 0;
2100 }
2101
2102 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2103 iavf_disable_vlan_stripping(adapter);
2104 return 0;
2105 }
2106
2107 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) {
2108 iavf_cfg_queues_bw(adapter);
2109 return 0;
2110 }
2111
2112 if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) {
2113 iavf_get_qos_caps(adapter);
2114 return 0;
2115 }
2116
2117 if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) {
2118 iavf_cfg_queues_quanta_size(adapter);
2119 return 0;
2120 }
2121
2122 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2123 iavf_configure_queues(adapter);
2124 return 0;
2125 }
2126
2127 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2128 iavf_enable_queues(adapter);
2129 return 0;
2130 }
2131
2132 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2133 /* This message goes straight to the firmware, not the
2134 * PF, so we don't have to set current_op as we will
2135 * not get a response through the ARQ.
2136 */
2137 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2138 return 0;
2139 }
2140 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2141 iavf_get_hena(adapter);
2142 return 0;
2143 }
2144 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2145 iavf_set_hena(adapter);
2146 return 0;
2147 }
2148 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2149 iavf_set_rss_key(adapter);
2150 return 0;
2151 }
2152 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2153 iavf_set_rss_lut(adapter);
2154 return 0;
2155 }
2156 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2157 iavf_set_rss_hfunc(adapter);
2158 return 0;
2159 }
2160
2161 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2162 iavf_set_promiscuous(adapter);
2163 return 0;
2164 }
2165
2166 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2167 iavf_enable_channels(adapter);
2168 return 0;
2169 }
2170
2171 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2172 iavf_disable_channels(adapter);
2173 return 0;
2174 }
2175 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2176 iavf_add_cloud_filter(adapter);
2177 return 0;
2178 }
2179 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2180 iavf_del_cloud_filter(adapter);
2181 return 0;
2182 }
2183 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2184 iavf_add_fdir_filter(adapter);
2185 return IAVF_SUCCESS;
2186 }
2187 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2188 iavf_del_fdir_filter(adapter);
2189 return IAVF_SUCCESS;
2190 }
2191 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2192 iavf_add_adv_rss_cfg(adapter);
2193 return 0;
2194 }
2195 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2196 iavf_del_adv_rss_cfg(adapter);
2197 return 0;
2198 }
2199 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2200 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2201 return 0;
2202 }
2203 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2204 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2205 return 0;
2206 }
2207 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2208 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2209 return 0;
2210 }
2211 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2212 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2213 return 0;
2214 }
2215 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2216 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2217 return 0;
2218 }
2219 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2220 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2221 return 0;
2222 }
2223 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2224 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2225 return 0;
2226 }
2227 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2228 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2229 return 0;
2230 }
2231
2232 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2233 iavf_request_stats(adapter);
2234 return 0;
2235 }
2236
2237 return -EAGAIN;
2238}
2239
2240/**
2241 * iavf_set_vlan_offload_features - set VLAN offload configuration
2242 * @adapter: board private structure
2243 * @prev_features: previous features used for comparison
2244 * @features: updated features used for configuration
2245 *
2246 * Set the aq_required bit(s) based on the requested features passed in to
2247 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2248 * the watchdog if any changes are requested to expedite the request via
2249 * virtchnl.
2250 **/
2251static void
2252iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2253 netdev_features_t prev_features,
2254 netdev_features_t features)
2255{
2256 bool enable_stripping = true, enable_insertion = true;
2257 u16 vlan_ethertype = 0;
2258 u64 aq_required = 0;
2259
2260 /* keep cases separate because one ethertype for offloads can be
2261 * disabled at the same time as another is disabled, so check for an
2262 * enabled ethertype first, then check for disabled. Default to
2263 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2264 * stripping.
2265 */
2266 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2267 vlan_ethertype = ETH_P_8021AD;
2268 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2269 vlan_ethertype = ETH_P_8021Q;
2270 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2271 vlan_ethertype = ETH_P_8021AD;
2272 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2273 vlan_ethertype = ETH_P_8021Q;
2274 else
2275 vlan_ethertype = ETH_P_8021Q;
2276
2277 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2278 enable_stripping = false;
2279 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2280 enable_insertion = false;
2281
2282 if (VLAN_ALLOWED(adapter)) {
2283 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2284 * stripping via virtchnl. VLAN insertion can be toggled on the
2285 * netdev, but it doesn't require a virtchnl message
2286 */
2287 if (enable_stripping)
2288 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2289 else
2290 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2291
2292 } else if (VLAN_V2_ALLOWED(adapter)) {
2293 switch (vlan_ethertype) {
2294 case ETH_P_8021Q:
2295 if (enable_stripping)
2296 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2297 else
2298 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2299
2300 if (enable_insertion)
2301 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2302 else
2303 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2304 break;
2305 case ETH_P_8021AD:
2306 if (enable_stripping)
2307 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2308 else
2309 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2310
2311 if (enable_insertion)
2312 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2313 else
2314 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2315 break;
2316 }
2317 }
2318
2319 if (aq_required)
2320 iavf_schedule_aq_request(adapter, aq_required);
2321}
2322
2323/**
2324 * iavf_startup - first step of driver startup
2325 * @adapter: board private structure
2326 *
2327 * Function process __IAVF_STARTUP driver state.
2328 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2329 * when fails the state is changed to __IAVF_INIT_FAILED
2330 **/
2331static void iavf_startup(struct iavf_adapter *adapter)
2332{
2333 struct pci_dev *pdev = adapter->pdev;
2334 struct iavf_hw *hw = &adapter->hw;
2335 enum iavf_status status;
2336 int ret;
2337
2338 WARN_ON(adapter->state != __IAVF_STARTUP);
2339
2340 /* driver loaded, probe complete */
2341 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2342 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2343
2344 ret = iavf_check_reset_complete(hw);
2345 if (ret) {
2346 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2347 ret);
2348 goto err;
2349 }
2350 hw->aq.num_arq_entries = IAVF_AQ_LEN;
2351 hw->aq.num_asq_entries = IAVF_AQ_LEN;
2352 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2353 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2354
2355 status = iavf_init_adminq(hw);
2356 if (status) {
2357 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2358 status);
2359 goto err;
2360 }
2361 ret = iavf_send_api_ver(adapter);
2362 if (ret) {
2363 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2364 iavf_shutdown_adminq(hw);
2365 goto err;
2366 }
2367 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2368 return;
2369err:
2370 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2371}
2372
2373/**
2374 * iavf_init_version_check - second step of driver startup
2375 * @adapter: board private structure
2376 *
2377 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2378 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2379 * when fails the state is changed to __IAVF_INIT_FAILED
2380 **/
2381static void iavf_init_version_check(struct iavf_adapter *adapter)
2382{
2383 struct pci_dev *pdev = adapter->pdev;
2384 struct iavf_hw *hw = &adapter->hw;
2385 int err = -EAGAIN;
2386
2387 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2388
2389 if (!iavf_asq_done(hw)) {
2390 dev_err(&pdev->dev, "Admin queue command never completed\n");
2391 iavf_shutdown_adminq(hw);
2392 iavf_change_state(adapter, __IAVF_STARTUP);
2393 goto err;
2394 }
2395
2396 /* aq msg sent, awaiting reply */
2397 err = iavf_verify_api_ver(adapter);
2398 if (err) {
2399 if (err == -EALREADY)
2400 err = iavf_send_api_ver(adapter);
2401 else
2402 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2403 adapter->pf_version.major,
2404 adapter->pf_version.minor,
2405 VIRTCHNL_VERSION_MAJOR,
2406 VIRTCHNL_VERSION_MINOR);
2407 goto err;
2408 }
2409 err = iavf_send_vf_config_msg(adapter);
2410 if (err) {
2411 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2412 err);
2413 goto err;
2414 }
2415 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2416 return;
2417err:
2418 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2419}
2420
2421/**
2422 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2423 * @adapter: board private structure
2424 */
2425int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2426{
2427 int i, num_req_queues = adapter->num_req_queues;
2428 struct iavf_vsi *vsi = &adapter->vsi;
2429
2430 for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2431 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2432 adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2433 }
2434 if (!adapter->vsi_res) {
2435 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2436 return -ENODEV;
2437 }
2438
2439 if (num_req_queues &&
2440 num_req_queues > adapter->vsi_res->num_queue_pairs) {
2441 /* Problem. The PF gave us fewer queues than what we had
2442 * negotiated in our request. Need a reset to see if we can't
2443 * get back to a working state.
2444 */
2445 dev_err(&adapter->pdev->dev,
2446 "Requested %d queues, but PF only gave us %d.\n",
2447 num_req_queues,
2448 adapter->vsi_res->num_queue_pairs);
2449 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2450 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2451 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2452
2453 return -EAGAIN;
2454 }
2455 adapter->num_req_queues = 0;
2456 adapter->vsi.id = adapter->vsi_res->vsi_id;
2457
2458 adapter->vsi.back = adapter;
2459 adapter->vsi.base_vector = 1;
2460 vsi->netdev = adapter->netdev;
2461 vsi->qs_handle = adapter->vsi_res->qset_handle;
2462 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2463 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2464 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2465 } else {
2466 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2467 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2468 }
2469
2470 return 0;
2471}
2472
2473/**
2474 * iavf_init_get_resources - third step of driver startup
2475 * @adapter: board private structure
2476 *
2477 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2478 * finishes driver initialization procedure.
2479 * When success the state is changed to __IAVF_DOWN
2480 * when fails the state is changed to __IAVF_INIT_FAILED
2481 **/
2482static void iavf_init_get_resources(struct iavf_adapter *adapter)
2483{
2484 struct pci_dev *pdev = adapter->pdev;
2485 struct iavf_hw *hw = &adapter->hw;
2486 int err;
2487
2488 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2489 /* aq msg sent, awaiting reply */
2490 if (!adapter->vf_res) {
2491 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2492 GFP_KERNEL);
2493 if (!adapter->vf_res) {
2494 err = -ENOMEM;
2495 goto err;
2496 }
2497 }
2498 err = iavf_get_vf_config(adapter);
2499 if (err == -EALREADY) {
2500 err = iavf_send_vf_config_msg(adapter);
2501 goto err;
2502 } else if (err == -EINVAL) {
2503 /* We only get -EINVAL if the device is in a very bad
2504 * state or if we've been disabled for previous bad
2505 * behavior. Either way, we're done now.
2506 */
2507 iavf_shutdown_adminq(hw);
2508 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2509 return;
2510 }
2511 if (err) {
2512 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2513 goto err_alloc;
2514 }
2515
2516 err = iavf_parse_vf_resource_msg(adapter);
2517 if (err) {
2518 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2519 err);
2520 goto err_alloc;
2521 }
2522 /* Some features require additional messages to negotiate extended
2523 * capabilities. These are processed in sequence by the
2524 * __IAVF_INIT_EXTENDED_CAPS driver state.
2525 */
2526 adapter->extended_caps = IAVF_EXTENDED_CAPS;
2527
2528 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2529 return;
2530
2531err_alloc:
2532 kfree(adapter->vf_res);
2533 adapter->vf_res = NULL;
2534err:
2535 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2536}
2537
2538/**
2539 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2540 * @adapter: board private structure
2541 *
2542 * Function processes send of the extended VLAN V2 capability message to the
2543 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2544 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2545 */
2546static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2547{
2548 int ret;
2549
2550 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2551
2552 ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2553 if (ret && ret == -EOPNOTSUPP) {
2554 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2555 * we did not send the capability exchange message and do not
2556 * expect a response.
2557 */
2558 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2559 }
2560
2561 /* We sent the message, so move on to the next step */
2562 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2563}
2564
2565/**
2566 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2567 * @adapter: board private structure
2568 *
2569 * Function processes receipt of the extended VLAN V2 capability message from
2570 * the PF.
2571 **/
2572static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2573{
2574 int ret;
2575
2576 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2577
2578 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2579
2580 ret = iavf_get_vf_vlan_v2_caps(adapter);
2581 if (ret)
2582 goto err;
2583
2584 /* We've processed receipt of the VLAN V2 caps message */
2585 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2586 return;
2587err:
2588 /* We didn't receive a reply. Make sure we try sending again when
2589 * __IAVF_INIT_FAILED attempts to recover.
2590 */
2591 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2592 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2593}
2594
2595/**
2596 * iavf_init_process_extended_caps - Part of driver startup
2597 * @adapter: board private structure
2598 *
2599 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2600 * handles negotiating capabilities for features which require an additional
2601 * message.
2602 *
2603 * Once all extended capabilities exchanges are finished, the driver will
2604 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2605 */
2606static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2607{
2608 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2609
2610 /* Process capability exchange for VLAN V2 */
2611 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2612 iavf_init_send_offload_vlan_v2_caps(adapter);
2613 return;
2614 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2615 iavf_init_recv_offload_vlan_v2_caps(adapter);
2616 return;
2617 }
2618
2619 /* When we reach here, no further extended capabilities exchanges are
2620 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2621 */
2622 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2623}
2624
2625/**
2626 * iavf_init_config_adapter - last part of driver startup
2627 * @adapter: board private structure
2628 *
2629 * After all the supported capabilities are negotiated, then the
2630 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2631 */
2632static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2633{
2634 struct net_device *netdev = adapter->netdev;
2635 struct pci_dev *pdev = adapter->pdev;
2636 int err;
2637
2638 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2639
2640 if (iavf_process_config(adapter))
2641 goto err;
2642
2643 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2644
2645 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2646
2647 netdev->netdev_ops = &iavf_netdev_ops;
2648 iavf_set_ethtool_ops(netdev);
2649 netdev->watchdog_timeo = 5 * HZ;
2650
2651 netdev->min_mtu = ETH_MIN_MTU;
2652 netdev->max_mtu = LIBIE_MAX_MTU;
2653
2654 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2655 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2656 adapter->hw.mac.addr);
2657 eth_hw_addr_random(netdev);
2658 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2659 } else {
2660 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2661 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2662 }
2663
2664 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2665 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2666 err = iavf_init_interrupt_scheme(adapter);
2667 if (err)
2668 goto err_sw_init;
2669 iavf_map_rings_to_vectors(adapter);
2670 if (adapter->vf_res->vf_cap_flags &
2671 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2672 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2673
2674 err = iavf_request_misc_irq(adapter);
2675 if (err)
2676 goto err_sw_init;
2677
2678 netif_carrier_off(netdev);
2679 adapter->link_up = false;
2680 netif_tx_stop_all_queues(netdev);
2681
2682 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2683 if (netdev->features & NETIF_F_GRO)
2684 dev_info(&pdev->dev, "GRO is enabled\n");
2685
2686 iavf_change_state(adapter, __IAVF_DOWN);
2687 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2688
2689 iavf_misc_irq_enable(adapter);
2690 wake_up(&adapter->down_waitqueue);
2691
2692 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2693 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2694 if (!adapter->rss_key || !adapter->rss_lut) {
2695 err = -ENOMEM;
2696 goto err_mem;
2697 }
2698 if (RSS_AQ(adapter))
2699 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2700 else
2701 iavf_init_rss(adapter);
2702
2703 if (VLAN_V2_ALLOWED(adapter))
2704 /* request initial VLAN offload settings */
2705 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2706
2707 if (QOS_ALLOWED(adapter))
2708 adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS;
2709
2710 iavf_schedule_finish_config(adapter);
2711 return;
2712
2713err_mem:
2714 iavf_free_rss(adapter);
2715 iavf_free_misc_irq(adapter);
2716err_sw_init:
2717 iavf_reset_interrupt_capability(adapter);
2718err:
2719 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2720}
2721
2722/**
2723 * iavf_watchdog_task - Periodic call-back task
2724 * @work: pointer to work_struct
2725 **/
2726static void iavf_watchdog_task(struct work_struct *work)
2727{
2728 struct iavf_adapter *adapter = container_of(work,
2729 struct iavf_adapter,
2730 watchdog_task.work);
2731 struct iavf_hw *hw = &adapter->hw;
2732 u32 reg_val;
2733
2734 if (!mutex_trylock(&adapter->crit_lock)) {
2735 if (adapter->state == __IAVF_REMOVE)
2736 return;
2737
2738 goto restart_watchdog;
2739 }
2740
2741 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2742 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2743
2744 switch (adapter->state) {
2745 case __IAVF_STARTUP:
2746 iavf_startup(adapter);
2747 mutex_unlock(&adapter->crit_lock);
2748 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2749 msecs_to_jiffies(30));
2750 return;
2751 case __IAVF_INIT_VERSION_CHECK:
2752 iavf_init_version_check(adapter);
2753 mutex_unlock(&adapter->crit_lock);
2754 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2755 msecs_to_jiffies(30));
2756 return;
2757 case __IAVF_INIT_GET_RESOURCES:
2758 iavf_init_get_resources(adapter);
2759 mutex_unlock(&adapter->crit_lock);
2760 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2761 msecs_to_jiffies(1));
2762 return;
2763 case __IAVF_INIT_EXTENDED_CAPS:
2764 iavf_init_process_extended_caps(adapter);
2765 mutex_unlock(&adapter->crit_lock);
2766 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2767 msecs_to_jiffies(1));
2768 return;
2769 case __IAVF_INIT_CONFIG_ADAPTER:
2770 iavf_init_config_adapter(adapter);
2771 mutex_unlock(&adapter->crit_lock);
2772 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2773 msecs_to_jiffies(1));
2774 return;
2775 case __IAVF_INIT_FAILED:
2776 if (test_bit(__IAVF_IN_REMOVE_TASK,
2777 &adapter->crit_section)) {
2778 /* Do not update the state and do not reschedule
2779 * watchdog task, iavf_remove should handle this state
2780 * as it can loop forever
2781 */
2782 mutex_unlock(&adapter->crit_lock);
2783 return;
2784 }
2785 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2786 dev_err(&adapter->pdev->dev,
2787 "Failed to communicate with PF; waiting before retry\n");
2788 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2789 iavf_shutdown_adminq(hw);
2790 mutex_unlock(&adapter->crit_lock);
2791 queue_delayed_work(adapter->wq,
2792 &adapter->watchdog_task, (5 * HZ));
2793 return;
2794 }
2795 /* Try again from failed step*/
2796 iavf_change_state(adapter, adapter->last_state);
2797 mutex_unlock(&adapter->crit_lock);
2798 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2799 return;
2800 case __IAVF_COMM_FAILED:
2801 if (test_bit(__IAVF_IN_REMOVE_TASK,
2802 &adapter->crit_section)) {
2803 /* Set state to __IAVF_INIT_FAILED and perform remove
2804 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2805 * doesn't bring the state back to __IAVF_COMM_FAILED.
2806 */
2807 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2808 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2809 mutex_unlock(&adapter->crit_lock);
2810 return;
2811 }
2812 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2813 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2814 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2815 reg_val == VIRTCHNL_VFR_COMPLETED) {
2816 /* A chance for redemption! */
2817 dev_err(&adapter->pdev->dev,
2818 "Hardware came out of reset. Attempting reinit.\n");
2819 /* When init task contacts the PF and
2820 * gets everything set up again, it'll restart the
2821 * watchdog for us. Down, boy. Sit. Stay. Woof.
2822 */
2823 iavf_change_state(adapter, __IAVF_STARTUP);
2824 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2825 }
2826 adapter->aq_required = 0;
2827 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2828 mutex_unlock(&adapter->crit_lock);
2829 queue_delayed_work(adapter->wq,
2830 &adapter->watchdog_task,
2831 msecs_to_jiffies(10));
2832 return;
2833 case __IAVF_RESETTING:
2834 mutex_unlock(&adapter->crit_lock);
2835 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2836 HZ * 2);
2837 return;
2838 case __IAVF_DOWN:
2839 case __IAVF_DOWN_PENDING:
2840 case __IAVF_TESTING:
2841 case __IAVF_RUNNING:
2842 if (adapter->current_op) {
2843 if (!iavf_asq_done(hw)) {
2844 dev_dbg(&adapter->pdev->dev,
2845 "Admin queue timeout\n");
2846 iavf_send_api_ver(adapter);
2847 }
2848 } else {
2849 int ret = iavf_process_aq_command(adapter);
2850
2851 /* An error will be returned if no commands were
2852 * processed; use this opportunity to update stats
2853 * if the error isn't -ENOTSUPP
2854 */
2855 if (ret && ret != -EOPNOTSUPP &&
2856 adapter->state == __IAVF_RUNNING)
2857 iavf_request_stats(adapter);
2858 }
2859 if (adapter->state == __IAVF_RUNNING)
2860 iavf_detect_recover_hung(&adapter->vsi);
2861 break;
2862 case __IAVF_REMOVE:
2863 default:
2864 mutex_unlock(&adapter->crit_lock);
2865 return;
2866 }
2867
2868 /* check for hw reset */
2869 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2870 if (!reg_val) {
2871 adapter->aq_required = 0;
2872 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2873 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2874 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2875 mutex_unlock(&adapter->crit_lock);
2876 queue_delayed_work(adapter->wq,
2877 &adapter->watchdog_task, HZ * 2);
2878 return;
2879 }
2880
2881 mutex_unlock(&adapter->crit_lock);
2882restart_watchdog:
2883 if (adapter->state >= __IAVF_DOWN)
2884 queue_work(adapter->wq, &adapter->adminq_task);
2885 if (adapter->aq_required)
2886 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2887 msecs_to_jiffies(20));
2888 else
2889 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2890 HZ * 2);
2891}
2892
2893/**
2894 * iavf_disable_vf - disable VF
2895 * @adapter: board private structure
2896 *
2897 * Set communication failed flag and free all resources.
2898 * NOTE: This function is expected to be called with crit_lock being held.
2899 **/
2900static void iavf_disable_vf(struct iavf_adapter *adapter)
2901{
2902 struct iavf_mac_filter *f, *ftmp;
2903 struct iavf_vlan_filter *fv, *fvtmp;
2904 struct iavf_cloud_filter *cf, *cftmp;
2905
2906 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2907
2908 /* We don't use netif_running() because it may be true prior to
2909 * ndo_open() returning, so we can't assume it means all our open
2910 * tasks have finished, since we're not holding the rtnl_lock here.
2911 */
2912 if (adapter->state == __IAVF_RUNNING) {
2913 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2914 netif_carrier_off(adapter->netdev);
2915 netif_tx_disable(adapter->netdev);
2916 adapter->link_up = false;
2917 iavf_napi_disable_all(adapter);
2918 iavf_irq_disable(adapter);
2919 iavf_free_traffic_irqs(adapter);
2920 iavf_free_all_tx_resources(adapter);
2921 iavf_free_all_rx_resources(adapter);
2922 }
2923
2924 spin_lock_bh(&adapter->mac_vlan_list_lock);
2925
2926 /* Delete all of the filters */
2927 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2928 list_del(&f->list);
2929 kfree(f);
2930 }
2931
2932 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2933 list_del(&fv->list);
2934 kfree(fv);
2935 }
2936 adapter->num_vlan_filters = 0;
2937
2938 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2939
2940 spin_lock_bh(&adapter->cloud_filter_list_lock);
2941 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2942 list_del(&cf->list);
2943 kfree(cf);
2944 adapter->num_cloud_filters--;
2945 }
2946 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2947
2948 iavf_free_misc_irq(adapter);
2949 iavf_free_interrupt_scheme(adapter);
2950 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2951 iavf_shutdown_adminq(&adapter->hw);
2952 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2953 iavf_change_state(adapter, __IAVF_DOWN);
2954 wake_up(&adapter->down_waitqueue);
2955 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2956}
2957
2958/**
2959 * iavf_reconfig_qs_bw - Call-back task to handle hardware reset
2960 * @adapter: board private structure
2961 *
2962 * After a reset, the shaper parameters of queues need to be replayed again.
2963 * Since the net_shaper object inside TX rings persists across reset,
2964 * set the update flag for all queues so that the virtchnl message is triggered
2965 * for all queues.
2966 **/
2967static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter)
2968{
2969 int i, num = 0;
2970
2971 for (i = 0; i < adapter->num_active_queues; i++)
2972 if (adapter->tx_rings[i].q_shaper.bw_min ||
2973 adapter->tx_rings[i].q_shaper.bw_max) {
2974 adapter->tx_rings[i].q_shaper_update = true;
2975 num++;
2976 }
2977
2978 if (num)
2979 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
2980}
2981
2982/**
2983 * iavf_reset_task - Call-back task to handle hardware reset
2984 * @work: pointer to work_struct
2985 *
2986 * During reset we need to shut down and reinitialize the admin queue
2987 * before we can use it to communicate with the PF again. We also clear
2988 * and reinit the rings because that context is lost as well.
2989 **/
2990static void iavf_reset_task(struct work_struct *work)
2991{
2992 struct iavf_adapter *adapter = container_of(work,
2993 struct iavf_adapter,
2994 reset_task);
2995 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2996 struct net_device *netdev = adapter->netdev;
2997 struct iavf_hw *hw = &adapter->hw;
2998 struct iavf_mac_filter *f, *ftmp;
2999 struct iavf_cloud_filter *cf;
3000 enum iavf_status status;
3001 u32 reg_val;
3002 int i = 0, err;
3003 bool running;
3004
3005 /* When device is being removed it doesn't make sense to run the reset
3006 * task, just return in such a case.
3007 */
3008 mutex_lock(&netdev->lock);
3009 if (!mutex_trylock(&adapter->crit_lock)) {
3010 if (adapter->state != __IAVF_REMOVE)
3011 queue_work(adapter->wq, &adapter->reset_task);
3012
3013 mutex_unlock(&netdev->lock);
3014 return;
3015 }
3016
3017 iavf_misc_irq_disable(adapter);
3018 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
3019 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
3020 /* Restart the AQ here. If we have been reset but didn't
3021 * detect it, or if the PF had to reinit, our AQ will be hosed.
3022 */
3023 iavf_shutdown_adminq(hw);
3024 iavf_init_adminq(hw);
3025 iavf_request_reset(adapter);
3026 }
3027 adapter->flags |= IAVF_FLAG_RESET_PENDING;
3028
3029 /* poll until we see the reset actually happen */
3030 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
3031 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
3032 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
3033 if (!reg_val)
3034 break;
3035 usleep_range(5000, 10000);
3036 }
3037 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3038 dev_info(&adapter->pdev->dev, "Never saw reset\n");
3039 goto continue_reset; /* act like the reset happened */
3040 }
3041
3042 /* wait until the reset is complete and the PF is responding to us */
3043 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3044 /* sleep first to make sure a minimum wait time is met */
3045 msleep(IAVF_RESET_WAIT_MS);
3046
3047 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3048 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3049 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3050 break;
3051 }
3052
3053 pci_set_master(adapter->pdev);
3054 pci_restore_msi_state(adapter->pdev);
3055
3056 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3057 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3058 reg_val);
3059 iavf_disable_vf(adapter);
3060 mutex_unlock(&adapter->crit_lock);
3061 mutex_unlock(&netdev->lock);
3062 return; /* Do not attempt to reinit. It's dead, Jim. */
3063 }
3064
3065continue_reset:
3066 /* We don't use netif_running() because it may be true prior to
3067 * ndo_open() returning, so we can't assume it means all our open
3068 * tasks have finished, since we're not holding the rtnl_lock here.
3069 */
3070 running = adapter->state == __IAVF_RUNNING;
3071
3072 if (running) {
3073 netif_carrier_off(netdev);
3074 netif_tx_stop_all_queues(netdev);
3075 adapter->link_up = false;
3076 iavf_napi_disable_all(adapter);
3077 }
3078 iavf_irq_disable(adapter);
3079
3080 iavf_change_state(adapter, __IAVF_RESETTING);
3081 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3082
3083 /* free the Tx/Rx rings and descriptors, might be better to just
3084 * re-use them sometime in the future
3085 */
3086 iavf_free_all_rx_resources(adapter);
3087 iavf_free_all_tx_resources(adapter);
3088
3089 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3090 /* kill and reinit the admin queue */
3091 iavf_shutdown_adminq(hw);
3092 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3093 status = iavf_init_adminq(hw);
3094 if (status) {
3095 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3096 status);
3097 goto reset_err;
3098 }
3099 adapter->aq_required = 0;
3100
3101 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3102 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3103 err = iavf_reinit_interrupt_scheme(adapter, running);
3104 if (err)
3105 goto reset_err;
3106 }
3107
3108 if (RSS_AQ(adapter)) {
3109 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3110 } else {
3111 err = iavf_init_rss(adapter);
3112 if (err)
3113 goto reset_err;
3114 }
3115
3116 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3117 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3118 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3119 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3120 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3121 * been successfully sent and negotiated
3122 */
3123 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3124 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3125
3126 spin_lock_bh(&adapter->mac_vlan_list_lock);
3127
3128 /* Delete filter for the current MAC address, it could have
3129 * been changed by the PF via administratively set MAC.
3130 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3131 */
3132 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3133 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3134 list_del(&f->list);
3135 kfree(f);
3136 }
3137 }
3138 /* re-add all MAC filters */
3139 list_for_each_entry(f, &adapter->mac_filter_list, list) {
3140 f->add = true;
3141 }
3142 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3143
3144 /* check if TCs are running and re-add all cloud filters */
3145 spin_lock_bh(&adapter->cloud_filter_list_lock);
3146 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3147 adapter->num_tc) {
3148 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3149 cf->add = true;
3150 }
3151 }
3152 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3153
3154 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3155 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3156 iavf_misc_irq_enable(adapter);
3157
3158 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3159
3160 /* We were running when the reset started, so we need to restore some
3161 * state here.
3162 */
3163 if (running) {
3164 /* allocate transmit descriptors */
3165 err = iavf_setup_all_tx_resources(adapter);
3166 if (err)
3167 goto reset_err;
3168
3169 /* allocate receive descriptors */
3170 err = iavf_setup_all_rx_resources(adapter);
3171 if (err)
3172 goto reset_err;
3173
3174 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3175 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3176 err = iavf_request_traffic_irqs(adapter, netdev->name);
3177 if (err)
3178 goto reset_err;
3179
3180 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3181 }
3182
3183 iavf_configure(adapter);
3184
3185 /* iavf_up_complete() will switch device back
3186 * to __IAVF_RUNNING
3187 */
3188 iavf_up_complete(adapter);
3189
3190 iavf_irq_enable(adapter, true);
3191
3192 iavf_reconfig_qs_bw(adapter);
3193 } else {
3194 iavf_change_state(adapter, __IAVF_DOWN);
3195 wake_up(&adapter->down_waitqueue);
3196 }
3197
3198 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3199
3200 wake_up(&adapter->reset_waitqueue);
3201 mutex_unlock(&adapter->crit_lock);
3202 mutex_unlock(&netdev->lock);
3203
3204 return;
3205reset_err:
3206 if (running) {
3207 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3208 iavf_free_traffic_irqs(adapter);
3209 }
3210 iavf_disable_vf(adapter);
3211
3212 mutex_unlock(&adapter->crit_lock);
3213 mutex_unlock(&netdev->lock);
3214 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3215}
3216
3217/**
3218 * iavf_adminq_task - worker thread to clean the admin queue
3219 * @work: pointer to work_struct containing our data
3220 **/
3221static void iavf_adminq_task(struct work_struct *work)
3222{
3223 struct iavf_adapter *adapter =
3224 container_of(work, struct iavf_adapter, adminq_task);
3225 struct iavf_hw *hw = &adapter->hw;
3226 struct iavf_arq_event_info event;
3227 enum virtchnl_ops v_op;
3228 enum iavf_status ret, v_ret;
3229 u32 val, oldval;
3230 u16 pending;
3231
3232 if (!mutex_trylock(&adapter->crit_lock)) {
3233 if (adapter->state == __IAVF_REMOVE)
3234 return;
3235
3236 queue_work(adapter->wq, &adapter->adminq_task);
3237 goto out;
3238 }
3239
3240 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3241 goto unlock;
3242
3243 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3244 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3245 if (!event.msg_buf)
3246 goto unlock;
3247
3248 do {
3249 ret = iavf_clean_arq_element(hw, &event, &pending);
3250 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3251 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3252
3253 if (ret || !v_op)
3254 break; /* No event to process or error cleaning ARQ */
3255
3256 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3257 event.msg_len);
3258 if (pending != 0)
3259 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3260 } while (pending);
3261
3262 if (iavf_is_reset_in_progress(adapter))
3263 goto freedom;
3264
3265 /* check for error indications */
3266 val = rd32(hw, IAVF_VF_ARQLEN1);
3267 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3268 goto freedom;
3269 oldval = val;
3270 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3271 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3272 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3273 }
3274 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3275 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3276 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3277 }
3278 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3279 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3280 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3281 }
3282 if (oldval != val)
3283 wr32(hw, IAVF_VF_ARQLEN1, val);
3284
3285 val = rd32(hw, IAVF_VF_ATQLEN1);
3286 oldval = val;
3287 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3288 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3289 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3290 }
3291 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3292 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3293 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3294 }
3295 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3296 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3297 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3298 }
3299 if (oldval != val)
3300 wr32(hw, IAVF_VF_ATQLEN1, val);
3301
3302freedom:
3303 kfree(event.msg_buf);
3304unlock:
3305 mutex_unlock(&adapter->crit_lock);
3306out:
3307 /* re-enable Admin queue interrupt cause */
3308 iavf_misc_irq_enable(adapter);
3309}
3310
3311/**
3312 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3313 * @adapter: board private structure
3314 *
3315 * Free all transmit software resources
3316 **/
3317void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3318{
3319 int i;
3320
3321 if (!adapter->tx_rings)
3322 return;
3323
3324 for (i = 0; i < adapter->num_active_queues; i++)
3325 if (adapter->tx_rings[i].desc)
3326 iavf_free_tx_resources(&adapter->tx_rings[i]);
3327}
3328
3329/**
3330 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3331 * @adapter: board private structure
3332 *
3333 * If this function returns with an error, then it's possible one or
3334 * more of the rings is populated (while the rest are not). It is the
3335 * callers duty to clean those orphaned rings.
3336 *
3337 * Return 0 on success, negative on failure
3338 **/
3339static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3340{
3341 int i, err = 0;
3342
3343 for (i = 0; i < adapter->num_active_queues; i++) {
3344 adapter->tx_rings[i].count = adapter->tx_desc_count;
3345 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3346 if (!err)
3347 continue;
3348 dev_err(&adapter->pdev->dev,
3349 "Allocation for Tx Queue %u failed\n", i);
3350 break;
3351 }
3352
3353 return err;
3354}
3355
3356/**
3357 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3358 * @adapter: board private structure
3359 *
3360 * If this function returns with an error, then it's possible one or
3361 * more of the rings is populated (while the rest are not). It is the
3362 * callers duty to clean those orphaned rings.
3363 *
3364 * Return 0 on success, negative on failure
3365 **/
3366static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3367{
3368 int i, err = 0;
3369
3370 for (i = 0; i < adapter->num_active_queues; i++) {
3371 adapter->rx_rings[i].count = adapter->rx_desc_count;
3372 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3373 if (!err)
3374 continue;
3375 dev_err(&adapter->pdev->dev,
3376 "Allocation for Rx Queue %u failed\n", i);
3377 break;
3378 }
3379 return err;
3380}
3381
3382/**
3383 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3384 * @adapter: board private structure
3385 *
3386 * Free all receive software resources
3387 **/
3388void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3389{
3390 int i;
3391
3392 if (!adapter->rx_rings)
3393 return;
3394
3395 for (i = 0; i < adapter->num_active_queues; i++)
3396 if (adapter->rx_rings[i].desc)
3397 iavf_free_rx_resources(&adapter->rx_rings[i]);
3398}
3399
3400/**
3401 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3402 * @adapter: board private structure
3403 * @max_tx_rate: max Tx bw for a tc
3404 **/
3405static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3406 u64 max_tx_rate)
3407{
3408 int speed = 0, ret = 0;
3409
3410 if (ADV_LINK_SUPPORT(adapter)) {
3411 if (adapter->link_speed_mbps < U32_MAX) {
3412 speed = adapter->link_speed_mbps;
3413 goto validate_bw;
3414 } else {
3415 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3416 return -EINVAL;
3417 }
3418 }
3419
3420 switch (adapter->link_speed) {
3421 case VIRTCHNL_LINK_SPEED_40GB:
3422 speed = SPEED_40000;
3423 break;
3424 case VIRTCHNL_LINK_SPEED_25GB:
3425 speed = SPEED_25000;
3426 break;
3427 case VIRTCHNL_LINK_SPEED_20GB:
3428 speed = SPEED_20000;
3429 break;
3430 case VIRTCHNL_LINK_SPEED_10GB:
3431 speed = SPEED_10000;
3432 break;
3433 case VIRTCHNL_LINK_SPEED_5GB:
3434 speed = SPEED_5000;
3435 break;
3436 case VIRTCHNL_LINK_SPEED_2_5GB:
3437 speed = SPEED_2500;
3438 break;
3439 case VIRTCHNL_LINK_SPEED_1GB:
3440 speed = SPEED_1000;
3441 break;
3442 case VIRTCHNL_LINK_SPEED_100MB:
3443 speed = SPEED_100;
3444 break;
3445 default:
3446 break;
3447 }
3448
3449validate_bw:
3450 if (max_tx_rate > speed) {
3451 dev_err(&adapter->pdev->dev,
3452 "Invalid tx rate specified\n");
3453 ret = -EINVAL;
3454 }
3455
3456 return ret;
3457}
3458
3459/**
3460 * iavf_validate_ch_config - validate queue mapping info
3461 * @adapter: board private structure
3462 * @mqprio_qopt: queue parameters
3463 *
3464 * This function validates if the config provided by the user to
3465 * configure queue channels is valid or not. Returns 0 on a valid
3466 * config.
3467 **/
3468static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3469 struct tc_mqprio_qopt_offload *mqprio_qopt)
3470{
3471 u64 total_max_rate = 0;
3472 u32 tx_rate_rem = 0;
3473 int i, num_qps = 0;
3474 u64 tx_rate = 0;
3475 int ret = 0;
3476
3477 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3478 mqprio_qopt->qopt.num_tc < 1)
3479 return -EINVAL;
3480
3481 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3482 if (!mqprio_qopt->qopt.count[i] ||
3483 mqprio_qopt->qopt.offset[i] != num_qps)
3484 return -EINVAL;
3485 if (mqprio_qopt->min_rate[i]) {
3486 dev_err(&adapter->pdev->dev,
3487 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3488 i);
3489 return -EINVAL;
3490 }
3491
3492 /* convert to Mbps */
3493 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3494 IAVF_MBPS_DIVISOR);
3495
3496 if (mqprio_qopt->max_rate[i] &&
3497 tx_rate < IAVF_MBPS_QUANTA) {
3498 dev_err(&adapter->pdev->dev,
3499 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3500 i, IAVF_MBPS_QUANTA);
3501 return -EINVAL;
3502 }
3503
3504 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3505
3506 if (tx_rate_rem != 0) {
3507 dev_err(&adapter->pdev->dev,
3508 "Invalid max tx rate for TC%d, not divisible by %d\n",
3509 i, IAVF_MBPS_QUANTA);
3510 return -EINVAL;
3511 }
3512
3513 total_max_rate += tx_rate;
3514 num_qps += mqprio_qopt->qopt.count[i];
3515 }
3516 if (num_qps > adapter->num_active_queues) {
3517 dev_err(&adapter->pdev->dev,
3518 "Cannot support requested number of queues\n");
3519 return -EINVAL;
3520 }
3521
3522 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3523 return ret;
3524}
3525
3526/**
3527 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3528 * @adapter: board private structure
3529 **/
3530static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3531{
3532 struct iavf_cloud_filter *cf, *cftmp;
3533
3534 spin_lock_bh(&adapter->cloud_filter_list_lock);
3535 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3536 list) {
3537 list_del(&cf->list);
3538 kfree(cf);
3539 adapter->num_cloud_filters--;
3540 }
3541 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3542}
3543
3544/**
3545 * iavf_is_tc_config_same - Compare the mqprio TC config with the
3546 * TC config already configured on this adapter.
3547 * @adapter: board private structure
3548 * @mqprio_qopt: TC config received from kernel.
3549 *
3550 * This function compares the TC config received from the kernel
3551 * with the config already configured on the adapter.
3552 *
3553 * Return: True if configuration is same, false otherwise.
3554 **/
3555static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3556 struct tc_mqprio_qopt *mqprio_qopt)
3557{
3558 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3559 int i;
3560
3561 if (adapter->num_tc != mqprio_qopt->num_tc)
3562 return false;
3563
3564 for (i = 0; i < adapter->num_tc; i++) {
3565 if (ch[i].count != mqprio_qopt->count[i] ||
3566 ch[i].offset != mqprio_qopt->offset[i])
3567 return false;
3568 }
3569 return true;
3570}
3571
3572/**
3573 * __iavf_setup_tc - configure multiple traffic classes
3574 * @netdev: network interface device structure
3575 * @type_data: tc offload data
3576 *
3577 * This function processes the config information provided by the
3578 * user to configure traffic classes/queue channels and packages the
3579 * information to request the PF to setup traffic classes.
3580 *
3581 * Returns 0 on success.
3582 **/
3583static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3584{
3585 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3586 struct iavf_adapter *adapter = netdev_priv(netdev);
3587 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3588 u8 num_tc = 0, total_qps = 0;
3589 int ret = 0, netdev_tc = 0;
3590 u64 max_tx_rate;
3591 u16 mode;
3592 int i;
3593
3594 num_tc = mqprio_qopt->qopt.num_tc;
3595 mode = mqprio_qopt->mode;
3596
3597 /* delete queue_channel */
3598 if (!mqprio_qopt->qopt.hw) {
3599 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3600 /* reset the tc configuration */
3601 netdev_reset_tc(netdev);
3602 adapter->num_tc = 0;
3603 netif_tx_stop_all_queues(netdev);
3604 netif_tx_disable(netdev);
3605 iavf_del_all_cloud_filters(adapter);
3606 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3607 total_qps = adapter->orig_num_active_queues;
3608 goto exit;
3609 } else {
3610 return -EINVAL;
3611 }
3612 }
3613
3614 /* add queue channel */
3615 if (mode == TC_MQPRIO_MODE_CHANNEL) {
3616 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3617 dev_err(&adapter->pdev->dev, "ADq not supported\n");
3618 return -EOPNOTSUPP;
3619 }
3620 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3621 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3622 return -EINVAL;
3623 }
3624
3625 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3626 if (ret)
3627 return ret;
3628 /* Return if same TC config is requested */
3629 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3630 return 0;
3631 adapter->num_tc = num_tc;
3632
3633 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3634 if (i < num_tc) {
3635 adapter->ch_config.ch_info[i].count =
3636 mqprio_qopt->qopt.count[i];
3637 adapter->ch_config.ch_info[i].offset =
3638 mqprio_qopt->qopt.offset[i];
3639 total_qps += mqprio_qopt->qopt.count[i];
3640 max_tx_rate = mqprio_qopt->max_rate[i];
3641 /* convert to Mbps */
3642 max_tx_rate = div_u64(max_tx_rate,
3643 IAVF_MBPS_DIVISOR);
3644 adapter->ch_config.ch_info[i].max_tx_rate =
3645 max_tx_rate;
3646 } else {
3647 adapter->ch_config.ch_info[i].count = 1;
3648 adapter->ch_config.ch_info[i].offset = 0;
3649 }
3650 }
3651
3652 /* Take snapshot of original config such as "num_active_queues"
3653 * It is used later when delete ADQ flow is exercised, so that
3654 * once delete ADQ flow completes, VF shall go back to its
3655 * original queue configuration
3656 */
3657
3658 adapter->orig_num_active_queues = adapter->num_active_queues;
3659
3660 /* Store queue info based on TC so that VF gets configured
3661 * with correct number of queues when VF completes ADQ config
3662 * flow
3663 */
3664 adapter->ch_config.total_qps = total_qps;
3665
3666 netif_tx_stop_all_queues(netdev);
3667 netif_tx_disable(netdev);
3668 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3669 netdev_reset_tc(netdev);
3670 /* Report the tc mapping up the stack */
3671 netdev_set_num_tc(adapter->netdev, num_tc);
3672 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3673 u16 qcount = mqprio_qopt->qopt.count[i];
3674 u16 qoffset = mqprio_qopt->qopt.offset[i];
3675
3676 if (i < num_tc)
3677 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3678 qoffset);
3679 }
3680 }
3681exit:
3682 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3683 return 0;
3684
3685 mutex_lock(&netdev->lock);
3686 netif_set_real_num_rx_queues(netdev, total_qps);
3687 netif_set_real_num_tx_queues(netdev, total_qps);
3688 mutex_unlock(&netdev->lock);
3689
3690 return ret;
3691}
3692
3693/**
3694 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3695 * @adapter: board private structure
3696 * @f: pointer to struct flow_cls_offload
3697 * @filter: pointer to cloud filter structure
3698 */
3699static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3700 struct flow_cls_offload *f,
3701 struct iavf_cloud_filter *filter)
3702{
3703 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3704 struct flow_dissector *dissector = rule->match.dissector;
3705 u16 n_proto_mask = 0;
3706 u16 n_proto_key = 0;
3707 u8 field_flags = 0;
3708 u16 addr_type = 0;
3709 u16 n_proto = 0;
3710 int i = 0;
3711 struct virtchnl_filter *vf = &filter->f;
3712
3713 if (dissector->used_keys &
3714 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3715 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3716 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3717 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3718 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3719 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3720 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3721 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3722 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3723 dissector->used_keys);
3724 return -EOPNOTSUPP;
3725 }
3726
3727 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3728 struct flow_match_enc_keyid match;
3729
3730 flow_rule_match_enc_keyid(rule, &match);
3731 if (match.mask->keyid != 0)
3732 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3733 }
3734
3735 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3736 struct flow_match_basic match;
3737
3738 flow_rule_match_basic(rule, &match);
3739 n_proto_key = ntohs(match.key->n_proto);
3740 n_proto_mask = ntohs(match.mask->n_proto);
3741
3742 if (n_proto_key == ETH_P_ALL) {
3743 n_proto_key = 0;
3744 n_proto_mask = 0;
3745 }
3746 n_proto = n_proto_key & n_proto_mask;
3747 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3748 return -EINVAL;
3749 if (n_proto == ETH_P_IPV6) {
3750 /* specify flow type as TCP IPv6 */
3751 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3752 }
3753
3754 if (match.key->ip_proto != IPPROTO_TCP) {
3755 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3756 return -EINVAL;
3757 }
3758 }
3759
3760 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3761 struct flow_match_eth_addrs match;
3762
3763 flow_rule_match_eth_addrs(rule, &match);
3764
3765 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3766 if (!is_zero_ether_addr(match.mask->dst)) {
3767 if (is_broadcast_ether_addr(match.mask->dst)) {
3768 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3769 } else {
3770 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3771 match.mask->dst);
3772 return -EINVAL;
3773 }
3774 }
3775
3776 if (!is_zero_ether_addr(match.mask->src)) {
3777 if (is_broadcast_ether_addr(match.mask->src)) {
3778 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3779 } else {
3780 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3781 match.mask->src);
3782 return -EINVAL;
3783 }
3784 }
3785
3786 if (!is_zero_ether_addr(match.key->dst))
3787 if (is_valid_ether_addr(match.key->dst) ||
3788 is_multicast_ether_addr(match.key->dst)) {
3789 /* set the mask if a valid dst_mac address */
3790 for (i = 0; i < ETH_ALEN; i++)
3791 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3792 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3793 match.key->dst);
3794 }
3795
3796 if (!is_zero_ether_addr(match.key->src))
3797 if (is_valid_ether_addr(match.key->src) ||
3798 is_multicast_ether_addr(match.key->src)) {
3799 /* set the mask if a valid dst_mac address */
3800 for (i = 0; i < ETH_ALEN; i++)
3801 vf->mask.tcp_spec.src_mac[i] |= 0xff;
3802 ether_addr_copy(vf->data.tcp_spec.src_mac,
3803 match.key->src);
3804 }
3805 }
3806
3807 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3808 struct flow_match_vlan match;
3809
3810 flow_rule_match_vlan(rule, &match);
3811 if (match.mask->vlan_id) {
3812 if (match.mask->vlan_id == VLAN_VID_MASK) {
3813 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3814 } else {
3815 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3816 match.mask->vlan_id);
3817 return -EINVAL;
3818 }
3819 }
3820 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3821 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3822 }
3823
3824 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3825 struct flow_match_control match;
3826
3827 flow_rule_match_control(rule, &match);
3828 addr_type = match.key->addr_type;
3829
3830 if (flow_rule_has_control_flags(match.mask->flags,
3831 f->common.extack))
3832 return -EOPNOTSUPP;
3833 }
3834
3835 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3836 struct flow_match_ipv4_addrs match;
3837
3838 flow_rule_match_ipv4_addrs(rule, &match);
3839 if (match.mask->dst) {
3840 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3841 field_flags |= IAVF_CLOUD_FIELD_IIP;
3842 } else {
3843 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3844 be32_to_cpu(match.mask->dst));
3845 return -EINVAL;
3846 }
3847 }
3848
3849 if (match.mask->src) {
3850 if (match.mask->src == cpu_to_be32(0xffffffff)) {
3851 field_flags |= IAVF_CLOUD_FIELD_IIP;
3852 } else {
3853 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3854 be32_to_cpu(match.mask->src));
3855 return -EINVAL;
3856 }
3857 }
3858
3859 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3860 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3861 return -EINVAL;
3862 }
3863 if (match.key->dst) {
3864 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3865 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3866 }
3867 if (match.key->src) {
3868 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3869 vf->data.tcp_spec.src_ip[0] = match.key->src;
3870 }
3871 }
3872
3873 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3874 struct flow_match_ipv6_addrs match;
3875
3876 flow_rule_match_ipv6_addrs(rule, &match);
3877
3878 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3879 if (ipv6_addr_any(&match.mask->dst)) {
3880 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3881 IPV6_ADDR_ANY);
3882 return -EINVAL;
3883 }
3884
3885 /* src and dest IPv6 address should not be LOOPBACK
3886 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3887 */
3888 if (ipv6_addr_loopback(&match.key->dst) ||
3889 ipv6_addr_loopback(&match.key->src)) {
3890 dev_err(&adapter->pdev->dev,
3891 "ipv6 addr should not be loopback\n");
3892 return -EINVAL;
3893 }
3894 if (!ipv6_addr_any(&match.mask->dst) ||
3895 !ipv6_addr_any(&match.mask->src))
3896 field_flags |= IAVF_CLOUD_FIELD_IIP;
3897
3898 for (i = 0; i < 4; i++)
3899 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3900 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3901 sizeof(vf->data.tcp_spec.dst_ip));
3902 for (i = 0; i < 4; i++)
3903 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3904 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3905 sizeof(vf->data.tcp_spec.src_ip));
3906 }
3907 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3908 struct flow_match_ports match;
3909
3910 flow_rule_match_ports(rule, &match);
3911 if (match.mask->src) {
3912 if (match.mask->src == cpu_to_be16(0xffff)) {
3913 field_flags |= IAVF_CLOUD_FIELD_IIP;
3914 } else {
3915 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3916 be16_to_cpu(match.mask->src));
3917 return -EINVAL;
3918 }
3919 }
3920
3921 if (match.mask->dst) {
3922 if (match.mask->dst == cpu_to_be16(0xffff)) {
3923 field_flags |= IAVF_CLOUD_FIELD_IIP;
3924 } else {
3925 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3926 be16_to_cpu(match.mask->dst));
3927 return -EINVAL;
3928 }
3929 }
3930 if (match.key->dst) {
3931 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3932 vf->data.tcp_spec.dst_port = match.key->dst;
3933 }
3934
3935 if (match.key->src) {
3936 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3937 vf->data.tcp_spec.src_port = match.key->src;
3938 }
3939 }
3940 vf->field_flags = field_flags;
3941
3942 return 0;
3943}
3944
3945/**
3946 * iavf_handle_tclass - Forward to a traffic class on the device
3947 * @adapter: board private structure
3948 * @tc: traffic class index on the device
3949 * @filter: pointer to cloud filter structure
3950 */
3951static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3952 struct iavf_cloud_filter *filter)
3953{
3954 if (tc == 0)
3955 return 0;
3956 if (tc < adapter->num_tc) {
3957 if (!filter->f.data.tcp_spec.dst_port) {
3958 dev_err(&adapter->pdev->dev,
3959 "Specify destination port to redirect to traffic class other than TC0\n");
3960 return -EINVAL;
3961 }
3962 }
3963 /* redirect to a traffic class on the same device */
3964 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3965 filter->f.action_meta = tc;
3966 return 0;
3967}
3968
3969/**
3970 * iavf_find_cf - Find the cloud filter in the list
3971 * @adapter: Board private structure
3972 * @cookie: filter specific cookie
3973 *
3974 * Returns ptr to the filter object or NULL. Must be called while holding the
3975 * cloud_filter_list_lock.
3976 */
3977static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3978 unsigned long *cookie)
3979{
3980 struct iavf_cloud_filter *filter = NULL;
3981
3982 if (!cookie)
3983 return NULL;
3984
3985 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3986 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3987 return filter;
3988 }
3989 return NULL;
3990}
3991
3992/**
3993 * iavf_configure_clsflower - Add tc flower filters
3994 * @adapter: board private structure
3995 * @cls_flower: Pointer to struct flow_cls_offload
3996 */
3997static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3998 struct flow_cls_offload *cls_flower)
3999{
4000 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
4001 struct iavf_cloud_filter *filter = NULL;
4002 int err = -EINVAL, count = 50;
4003
4004 if (tc < 0) {
4005 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
4006 return -EINVAL;
4007 }
4008
4009 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
4010 if (!filter)
4011 return -ENOMEM;
4012
4013 while (!mutex_trylock(&adapter->crit_lock)) {
4014 if (--count == 0) {
4015 kfree(filter);
4016 return err;
4017 }
4018 udelay(1);
4019 }
4020
4021 filter->cookie = cls_flower->cookie;
4022
4023 /* bail out here if filter already exists */
4024 spin_lock_bh(&adapter->cloud_filter_list_lock);
4025 if (iavf_find_cf(adapter, &cls_flower->cookie)) {
4026 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
4027 err = -EEXIST;
4028 goto spin_unlock;
4029 }
4030 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4031
4032 /* set the mask to all zeroes to begin with */
4033 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
4034 /* start out with flow type and eth type IPv4 to begin with */
4035 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
4036 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
4037 if (err)
4038 goto err;
4039
4040 err = iavf_handle_tclass(adapter, tc, filter);
4041 if (err)
4042 goto err;
4043
4044 /* add filter to the list */
4045 spin_lock_bh(&adapter->cloud_filter_list_lock);
4046 list_add_tail(&filter->list, &adapter->cloud_filter_list);
4047 adapter->num_cloud_filters++;
4048 filter->add = true;
4049 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4050spin_unlock:
4051 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4052err:
4053 if (err)
4054 kfree(filter);
4055
4056 mutex_unlock(&adapter->crit_lock);
4057 return err;
4058}
4059
4060/**
4061 * iavf_delete_clsflower - Remove tc flower filters
4062 * @adapter: board private structure
4063 * @cls_flower: Pointer to struct flow_cls_offload
4064 */
4065static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4066 struct flow_cls_offload *cls_flower)
4067{
4068 struct iavf_cloud_filter *filter = NULL;
4069 int err = 0;
4070
4071 spin_lock_bh(&adapter->cloud_filter_list_lock);
4072 filter = iavf_find_cf(adapter, &cls_flower->cookie);
4073 if (filter) {
4074 filter->del = true;
4075 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4076 } else {
4077 err = -EINVAL;
4078 }
4079 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4080
4081 return err;
4082}
4083
4084/**
4085 * iavf_setup_tc_cls_flower - flower classifier offloads
4086 * @adapter: pointer to iavf adapter structure
4087 * @cls_flower: pointer to flow_cls_offload struct with flow info
4088 */
4089static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4090 struct flow_cls_offload *cls_flower)
4091{
4092 switch (cls_flower->command) {
4093 case FLOW_CLS_REPLACE:
4094 return iavf_configure_clsflower(adapter, cls_flower);
4095 case FLOW_CLS_DESTROY:
4096 return iavf_delete_clsflower(adapter, cls_flower);
4097 case FLOW_CLS_STATS:
4098 return -EOPNOTSUPP;
4099 default:
4100 return -EOPNOTSUPP;
4101 }
4102}
4103
4104/**
4105 * iavf_add_cls_u32 - Add U32 classifier offloads
4106 * @adapter: pointer to iavf adapter structure
4107 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4108 *
4109 * Return: 0 on success or negative errno on failure.
4110 */
4111static int iavf_add_cls_u32(struct iavf_adapter *adapter,
4112 struct tc_cls_u32_offload *cls_u32)
4113{
4114 struct netlink_ext_ack *extack = cls_u32->common.extack;
4115 struct virtchnl_fdir_rule *rule_cfg;
4116 struct virtchnl_filter_action *vact;
4117 struct virtchnl_proto_hdrs *hdrs;
4118 struct ethhdr *spec_h, *mask_h;
4119 const struct tc_action *act;
4120 struct iavf_fdir_fltr *fltr;
4121 struct tcf_exts *exts;
4122 unsigned int q_index;
4123 int i, status = 0;
4124 int off_base = 0;
4125
4126 if (cls_u32->knode.link_handle) {
4127 NL_SET_ERR_MSG_MOD(extack, "Linking not supported");
4128 return -EOPNOTSUPP;
4129 }
4130
4131 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
4132 if (!fltr)
4133 return -ENOMEM;
4134
4135 rule_cfg = &fltr->vc_add_msg.rule_cfg;
4136 hdrs = &rule_cfg->proto_hdrs;
4137 hdrs->count = 0;
4138
4139 /* The parser lib at the PF expects the packet starting with MAC hdr */
4140 switch (ntohs(cls_u32->common.protocol)) {
4141 case ETH_P_802_3:
4142 break;
4143 case ETH_P_IP:
4144 spec_h = (struct ethhdr *)hdrs->raw.spec;
4145 mask_h = (struct ethhdr *)hdrs->raw.mask;
4146 spec_h->h_proto = htons(ETH_P_IP);
4147 mask_h->h_proto = htons(0xFFFF);
4148 off_base += ETH_HLEN;
4149 break;
4150 default:
4151 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported");
4152 status = -EOPNOTSUPP;
4153 goto free_alloc;
4154 }
4155
4156 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) {
4157 __be32 val, mask;
4158 int off;
4159
4160 off = off_base + cls_u32->knode.sel->keys[i].off;
4161 val = cls_u32->knode.sel->keys[i].val;
4162 mask = cls_u32->knode.sel->keys[i].mask;
4163
4164 if (off >= sizeof(hdrs->raw.spec)) {
4165 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed.");
4166 status = -EINVAL;
4167 goto free_alloc;
4168 }
4169
4170 memcpy(&hdrs->raw.spec[off], &val, sizeof(val));
4171 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask));
4172 hdrs->raw.pkt_len = off + sizeof(val);
4173 }
4174
4175 /* Only one action is allowed */
4176 rule_cfg->action_set.count = 1;
4177 vact = &rule_cfg->action_set.actions[0];
4178 exts = cls_u32->knode.exts;
4179
4180 tcf_exts_for_each_action(i, act, exts) {
4181 /* FDIR queue */
4182 if (is_tcf_skbedit_rx_queue_mapping(act)) {
4183 q_index = tcf_skbedit_rx_queue_mapping(act);
4184 if (q_index >= adapter->num_active_queues) {
4185 status = -EINVAL;
4186 goto free_alloc;
4187 }
4188
4189 vact->type = VIRTCHNL_ACTION_QUEUE;
4190 vact->act_conf.queue.index = q_index;
4191 break;
4192 }
4193
4194 /* Drop */
4195 if (is_tcf_gact_shot(act)) {
4196 vact->type = VIRTCHNL_ACTION_DROP;
4197 break;
4198 }
4199
4200 /* Unsupported action */
4201 NL_SET_ERR_MSG_MOD(extack, "Unsupported action.");
4202 status = -EOPNOTSUPP;
4203 goto free_alloc;
4204 }
4205
4206 fltr->vc_add_msg.vsi_id = adapter->vsi.id;
4207 fltr->cls_u32_handle = cls_u32->knode.handle;
4208 return iavf_fdir_add_fltr(adapter, fltr);
4209
4210free_alloc:
4211 kfree(fltr);
4212 return status;
4213}
4214
4215/**
4216 * iavf_del_cls_u32 - Delete U32 classifier offloads
4217 * @adapter: pointer to iavf adapter structure
4218 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4219 *
4220 * Return: 0 on success or negative errno on failure.
4221 */
4222static int iavf_del_cls_u32(struct iavf_adapter *adapter,
4223 struct tc_cls_u32_offload *cls_u32)
4224{
4225 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle);
4226}
4227
4228/**
4229 * iavf_setup_tc_cls_u32 - U32 filter offloads
4230 * @adapter: pointer to iavf adapter structure
4231 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4232 *
4233 * Return: 0 on success or negative errno on failure.
4234 */
4235static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter,
4236 struct tc_cls_u32_offload *cls_u32)
4237{
4238 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter))
4239 return -EOPNOTSUPP;
4240
4241 switch (cls_u32->command) {
4242 case TC_CLSU32_NEW_KNODE:
4243 case TC_CLSU32_REPLACE_KNODE:
4244 return iavf_add_cls_u32(adapter, cls_u32);
4245 case TC_CLSU32_DELETE_KNODE:
4246 return iavf_del_cls_u32(adapter, cls_u32);
4247 default:
4248 return -EOPNOTSUPP;
4249 }
4250}
4251
4252/**
4253 * iavf_setup_tc_block_cb - block callback for tc
4254 * @type: type of offload
4255 * @type_data: offload data
4256 * @cb_priv:
4257 *
4258 * This function is the block callback for traffic classes
4259 **/
4260static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4261 void *cb_priv)
4262{
4263 struct iavf_adapter *adapter = cb_priv;
4264
4265 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4266 return -EOPNOTSUPP;
4267
4268 switch (type) {
4269 case TC_SETUP_CLSFLOWER:
4270 return iavf_setup_tc_cls_flower(cb_priv, type_data);
4271 case TC_SETUP_CLSU32:
4272 return iavf_setup_tc_cls_u32(cb_priv, type_data);
4273 default:
4274 return -EOPNOTSUPP;
4275 }
4276}
4277
4278static LIST_HEAD(iavf_block_cb_list);
4279
4280/**
4281 * iavf_setup_tc - configure multiple traffic classes
4282 * @netdev: network interface device structure
4283 * @type: type of offload
4284 * @type_data: tc offload data
4285 *
4286 * This function is the callback to ndo_setup_tc in the
4287 * netdev_ops.
4288 *
4289 * Returns 0 on success
4290 **/
4291static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4292 void *type_data)
4293{
4294 struct iavf_adapter *adapter = netdev_priv(netdev);
4295
4296 switch (type) {
4297 case TC_SETUP_QDISC_MQPRIO:
4298 return __iavf_setup_tc(netdev, type_data);
4299 case TC_SETUP_BLOCK:
4300 return flow_block_cb_setup_simple(type_data,
4301 &iavf_block_cb_list,
4302 iavf_setup_tc_block_cb,
4303 adapter, adapter, true);
4304 default:
4305 return -EOPNOTSUPP;
4306 }
4307}
4308
4309/**
4310 * iavf_restore_fdir_filters
4311 * @adapter: board private structure
4312 *
4313 * Restore existing FDIR filters when VF netdev comes back up.
4314 **/
4315static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4316{
4317 struct iavf_fdir_fltr *f;
4318
4319 spin_lock_bh(&adapter->fdir_fltr_lock);
4320 list_for_each_entry(f, &adapter->fdir_list_head, list) {
4321 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4322 /* Cancel a request, keep filter as active */
4323 f->state = IAVF_FDIR_FLTR_ACTIVE;
4324 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4325 f->state == IAVF_FDIR_FLTR_INACTIVE) {
4326 /* Add filters which are inactive or have a pending
4327 * request to PF to be deleted
4328 */
4329 f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4330 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4331 }
4332 }
4333 spin_unlock_bh(&adapter->fdir_fltr_lock);
4334}
4335
4336/**
4337 * iavf_open - Called when a network interface is made active
4338 * @netdev: network interface device structure
4339 *
4340 * Returns 0 on success, negative value on failure
4341 *
4342 * The open entry point is called when a network interface is made
4343 * active by the system (IFF_UP). At this point all resources needed
4344 * for transmit and receive operations are allocated, the interrupt
4345 * handler is registered with the OS, the watchdog is started,
4346 * and the stack is notified that the interface is ready.
4347 **/
4348static int iavf_open(struct net_device *netdev)
4349{
4350 struct iavf_adapter *adapter = netdev_priv(netdev);
4351 int err;
4352
4353 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4354 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4355 return -EIO;
4356 }
4357
4358 while (!mutex_trylock(&adapter->crit_lock)) {
4359 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4360 * is already taken and iavf_open is called from an upper
4361 * device's notifier reacting on NETDEV_REGISTER event.
4362 * We have to leave here to avoid dead lock.
4363 */
4364 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4365 return -EBUSY;
4366
4367 usleep_range(500, 1000);
4368 }
4369
4370 if (adapter->state != __IAVF_DOWN) {
4371 err = -EBUSY;
4372 goto err_unlock;
4373 }
4374
4375 if (adapter->state == __IAVF_RUNNING &&
4376 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4377 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4378 err = 0;
4379 goto err_unlock;
4380 }
4381
4382 /* allocate transmit descriptors */
4383 err = iavf_setup_all_tx_resources(adapter);
4384 if (err)
4385 goto err_setup_tx;
4386
4387 /* allocate receive descriptors */
4388 err = iavf_setup_all_rx_resources(adapter);
4389 if (err)
4390 goto err_setup_rx;
4391
4392 /* clear any pending interrupts, may auto mask */
4393 err = iavf_request_traffic_irqs(adapter, netdev->name);
4394 if (err)
4395 goto err_req_irq;
4396
4397 spin_lock_bh(&adapter->mac_vlan_list_lock);
4398
4399 iavf_add_filter(adapter, adapter->hw.mac.addr);
4400
4401 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4402
4403 /* Restore filters that were removed with IFF_DOWN */
4404 iavf_restore_filters(adapter);
4405 iavf_restore_fdir_filters(adapter);
4406
4407 iavf_configure(adapter);
4408
4409 iavf_up_complete(adapter);
4410
4411 iavf_irq_enable(adapter, true);
4412
4413 mutex_unlock(&adapter->crit_lock);
4414
4415 return 0;
4416
4417err_req_irq:
4418 iavf_down(adapter);
4419 iavf_free_traffic_irqs(adapter);
4420err_setup_rx:
4421 iavf_free_all_rx_resources(adapter);
4422err_setup_tx:
4423 iavf_free_all_tx_resources(adapter);
4424err_unlock:
4425 mutex_unlock(&adapter->crit_lock);
4426
4427 return err;
4428}
4429
4430/**
4431 * iavf_close - Disables a network interface
4432 * @netdev: network interface device structure
4433 *
4434 * Returns 0, this is not allowed to fail
4435 *
4436 * The close entry point is called when an interface is de-activated
4437 * by the OS. The hardware is still under the drivers control, but
4438 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4439 * are freed, along with all transmit and receive resources.
4440 **/
4441static int iavf_close(struct net_device *netdev)
4442{
4443 struct iavf_adapter *adapter = netdev_priv(netdev);
4444 u64 aq_to_restore;
4445 int status;
4446
4447 mutex_lock(&adapter->crit_lock);
4448
4449 if (adapter->state <= __IAVF_DOWN_PENDING) {
4450 mutex_unlock(&adapter->crit_lock);
4451 return 0;
4452 }
4453
4454 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4455 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4456 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4457 * deadlock with adminq_task() until iavf_close timeouts. We must send
4458 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4459 * disable queues possible for vf. Give only necessary flags to
4460 * iavf_down and save other to set them right before iavf_close()
4461 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4462 * iavf will be in DOWN state.
4463 */
4464 aq_to_restore = adapter->aq_required;
4465 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4466
4467 /* Remove flags which we do not want to send after close or we want to
4468 * send before disable queues.
4469 */
4470 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG |
4471 IAVF_FLAG_AQ_ENABLE_QUEUES |
4472 IAVF_FLAG_AQ_CONFIGURE_QUEUES |
4473 IAVF_FLAG_AQ_ADD_VLAN_FILTER |
4474 IAVF_FLAG_AQ_ADD_MAC_FILTER |
4475 IAVF_FLAG_AQ_ADD_CLOUD_FILTER |
4476 IAVF_FLAG_AQ_ADD_FDIR_FILTER |
4477 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4478
4479 iavf_down(adapter);
4480 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4481 iavf_free_traffic_irqs(adapter);
4482
4483 mutex_unlock(&adapter->crit_lock);
4484
4485 /* We explicitly don't free resources here because the hardware is
4486 * still active and can DMA into memory. Resources are cleared in
4487 * iavf_virtchnl_completion() after we get confirmation from the PF
4488 * driver that the rings have been stopped.
4489 *
4490 * Also, we wait for state to transition to __IAVF_DOWN before
4491 * returning. State change occurs in iavf_virtchnl_completion() after
4492 * VF resources are released (which occurs after PF driver processes and
4493 * responds to admin queue commands).
4494 */
4495
4496 status = wait_event_timeout(adapter->down_waitqueue,
4497 adapter->state == __IAVF_DOWN,
4498 msecs_to_jiffies(500));
4499 if (!status)
4500 netdev_warn(netdev, "Device resources not yet released\n");
4501
4502 mutex_lock(&adapter->crit_lock);
4503 adapter->aq_required |= aq_to_restore;
4504 mutex_unlock(&adapter->crit_lock);
4505 return 0;
4506}
4507
4508/**
4509 * iavf_change_mtu - Change the Maximum Transfer Unit
4510 * @netdev: network interface device structure
4511 * @new_mtu: new value for maximum frame size
4512 *
4513 * Returns 0 on success, negative on failure
4514 **/
4515static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4516{
4517 struct iavf_adapter *adapter = netdev_priv(netdev);
4518 int ret = 0;
4519
4520 netdev_dbg(netdev, "changing MTU from %d to %d\n",
4521 netdev->mtu, new_mtu);
4522 WRITE_ONCE(netdev->mtu, new_mtu);
4523
4524 if (netif_running(netdev)) {
4525 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4526 ret = iavf_wait_for_reset(adapter);
4527 if (ret < 0)
4528 netdev_warn(netdev, "MTU change interrupted waiting for reset");
4529 else if (ret)
4530 netdev_warn(netdev, "MTU change timed out waiting for reset");
4531 }
4532
4533 return ret;
4534}
4535
4536/**
4537 * iavf_disable_fdir - disable Flow Director and clear existing filters
4538 * @adapter: board private structure
4539 **/
4540static void iavf_disable_fdir(struct iavf_adapter *adapter)
4541{
4542 struct iavf_fdir_fltr *fdir, *fdirtmp;
4543 bool del_filters = false;
4544
4545 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4546
4547 /* remove all Flow Director filters */
4548 spin_lock_bh(&adapter->fdir_fltr_lock);
4549 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4550 list) {
4551 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4552 fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4553 /* Delete filters not registered in PF */
4554 list_del(&fdir->list);
4555 iavf_dec_fdir_active_fltr(adapter, fdir);
4556 kfree(fdir);
4557 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4558 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4559 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4560 /* Filters registered in PF, schedule their deletion */
4561 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4562 del_filters = true;
4563 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4564 /* Request to delete filter already sent to PF, change
4565 * state to DEL_PENDING to delete filter after PF's
4566 * response, not set as INACTIVE
4567 */
4568 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4569 }
4570 }
4571 spin_unlock_bh(&adapter->fdir_fltr_lock);
4572
4573 if (del_filters) {
4574 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4575 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4576 }
4577}
4578
4579#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
4580 NETIF_F_HW_VLAN_CTAG_TX | \
4581 NETIF_F_HW_VLAN_STAG_RX | \
4582 NETIF_F_HW_VLAN_STAG_TX)
4583
4584/**
4585 * iavf_set_features - set the netdev feature flags
4586 * @netdev: ptr to the netdev being adjusted
4587 * @features: the feature set that the stack is suggesting
4588 * Note: expects to be called while under rtnl_lock()
4589 **/
4590static int iavf_set_features(struct net_device *netdev,
4591 netdev_features_t features)
4592{
4593 struct iavf_adapter *adapter = netdev_priv(netdev);
4594
4595 /* trigger update on any VLAN feature change */
4596 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4597 (features & NETIF_VLAN_OFFLOAD_FEATURES))
4598 iavf_set_vlan_offload_features(adapter, netdev->features,
4599 features);
4600 if (CRC_OFFLOAD_ALLOWED(adapter) &&
4601 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4602 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4603
4604 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4605 if (features & NETIF_F_NTUPLE)
4606 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4607 else
4608 iavf_disable_fdir(adapter);
4609 }
4610
4611 return 0;
4612}
4613
4614/**
4615 * iavf_features_check - Validate encapsulated packet conforms to limits
4616 * @skb: skb buff
4617 * @dev: This physical port's netdev
4618 * @features: Offload features that the stack believes apply
4619 **/
4620static netdev_features_t iavf_features_check(struct sk_buff *skb,
4621 struct net_device *dev,
4622 netdev_features_t features)
4623{
4624 size_t len;
4625
4626 /* No point in doing any of this if neither checksum nor GSO are
4627 * being requested for this frame. We can rule out both by just
4628 * checking for CHECKSUM_PARTIAL
4629 */
4630 if (skb->ip_summed != CHECKSUM_PARTIAL)
4631 return features;
4632
4633 /* We cannot support GSO if the MSS is going to be less than
4634 * 64 bytes. If it is then we need to drop support for GSO.
4635 */
4636 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4637 features &= ~NETIF_F_GSO_MASK;
4638
4639 /* MACLEN can support at most 63 words */
4640 len = skb_network_offset(skb);
4641 if (len & ~(63 * 2))
4642 goto out_err;
4643
4644 /* IPLEN and EIPLEN can support at most 127 dwords */
4645 len = skb_network_header_len(skb);
4646 if (len & ~(127 * 4))
4647 goto out_err;
4648
4649 if (skb->encapsulation) {
4650 /* L4TUNLEN can support 127 words */
4651 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4652 if (len & ~(127 * 2))
4653 goto out_err;
4654
4655 /* IPLEN can support at most 127 dwords */
4656 len = skb_inner_transport_header(skb) -
4657 skb_inner_network_header(skb);
4658 if (len & ~(127 * 4))
4659 goto out_err;
4660 }
4661
4662 /* No need to validate L4LEN as TCP is the only protocol with a
4663 * flexible value and we support all possible values supported
4664 * by TCP, which is at most 15 dwords
4665 */
4666
4667 return features;
4668out_err:
4669 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4670}
4671
4672/**
4673 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4674 * @adapter: board private structure
4675 *
4676 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4677 * were negotiated determine the VLAN features that can be toggled on and off.
4678 **/
4679static netdev_features_t
4680iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4681{
4682 netdev_features_t hw_features = 0;
4683
4684 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4685 return hw_features;
4686
4687 /* Enable VLAN features if supported */
4688 if (VLAN_ALLOWED(adapter)) {
4689 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4690 NETIF_F_HW_VLAN_CTAG_RX);
4691 } else if (VLAN_V2_ALLOWED(adapter)) {
4692 struct virtchnl_vlan_caps *vlan_v2_caps =
4693 &adapter->vlan_v2_caps;
4694 struct virtchnl_vlan_supported_caps *stripping_support =
4695 &vlan_v2_caps->offloads.stripping_support;
4696 struct virtchnl_vlan_supported_caps *insertion_support =
4697 &vlan_v2_caps->offloads.insertion_support;
4698
4699 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4700 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4701 if (stripping_support->outer &
4702 VIRTCHNL_VLAN_ETHERTYPE_8100)
4703 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4704 if (stripping_support->outer &
4705 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4706 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4707 } else if (stripping_support->inner !=
4708 VIRTCHNL_VLAN_UNSUPPORTED &&
4709 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4710 if (stripping_support->inner &
4711 VIRTCHNL_VLAN_ETHERTYPE_8100)
4712 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4713 }
4714
4715 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4716 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4717 if (insertion_support->outer &
4718 VIRTCHNL_VLAN_ETHERTYPE_8100)
4719 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4720 if (insertion_support->outer &
4721 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4722 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4723 } else if (insertion_support->inner &&
4724 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4725 if (insertion_support->inner &
4726 VIRTCHNL_VLAN_ETHERTYPE_8100)
4727 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4728 }
4729 }
4730
4731 if (CRC_OFFLOAD_ALLOWED(adapter))
4732 hw_features |= NETIF_F_RXFCS;
4733
4734 return hw_features;
4735}
4736
4737/**
4738 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4739 * @adapter: board private structure
4740 *
4741 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4742 * were negotiated determine the VLAN features that are enabled by default.
4743 **/
4744static netdev_features_t
4745iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4746{
4747 netdev_features_t features = 0;
4748
4749 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4750 return features;
4751
4752 if (VLAN_ALLOWED(adapter)) {
4753 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4754 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4755 } else if (VLAN_V2_ALLOWED(adapter)) {
4756 struct virtchnl_vlan_caps *vlan_v2_caps =
4757 &adapter->vlan_v2_caps;
4758 struct virtchnl_vlan_supported_caps *filtering_support =
4759 &vlan_v2_caps->filtering.filtering_support;
4760 struct virtchnl_vlan_supported_caps *stripping_support =
4761 &vlan_v2_caps->offloads.stripping_support;
4762 struct virtchnl_vlan_supported_caps *insertion_support =
4763 &vlan_v2_caps->offloads.insertion_support;
4764 u32 ethertype_init;
4765
4766 /* give priority to outer stripping and don't support both outer
4767 * and inner stripping
4768 */
4769 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4770 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4771 if (stripping_support->outer &
4772 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4773 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4774 features |= NETIF_F_HW_VLAN_CTAG_RX;
4775 else if (stripping_support->outer &
4776 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4777 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4778 features |= NETIF_F_HW_VLAN_STAG_RX;
4779 } else if (stripping_support->inner !=
4780 VIRTCHNL_VLAN_UNSUPPORTED) {
4781 if (stripping_support->inner &
4782 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4783 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4784 features |= NETIF_F_HW_VLAN_CTAG_RX;
4785 }
4786
4787 /* give priority to outer insertion and don't support both outer
4788 * and inner insertion
4789 */
4790 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4791 if (insertion_support->outer &
4792 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4793 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4794 features |= NETIF_F_HW_VLAN_CTAG_TX;
4795 else if (insertion_support->outer &
4796 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4797 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4798 features |= NETIF_F_HW_VLAN_STAG_TX;
4799 } else if (insertion_support->inner !=
4800 VIRTCHNL_VLAN_UNSUPPORTED) {
4801 if (insertion_support->inner &
4802 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4803 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4804 features |= NETIF_F_HW_VLAN_CTAG_TX;
4805 }
4806
4807 /* give priority to outer filtering and don't bother if both
4808 * outer and inner filtering are enabled
4809 */
4810 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4811 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4812 if (filtering_support->outer &
4813 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4814 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4815 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4816 if (filtering_support->outer &
4817 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4818 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4819 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4820 } else if (filtering_support->inner !=
4821 VIRTCHNL_VLAN_UNSUPPORTED) {
4822 if (filtering_support->inner &
4823 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4824 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4825 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4826 if (filtering_support->inner &
4827 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4828 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4829 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4830 }
4831 }
4832
4833 return features;
4834}
4835
4836#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4837 (!(((requested) & (feature_bit)) && \
4838 !((allowed) & (feature_bit))))
4839
4840/**
4841 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4842 * @adapter: board private structure
4843 * @requested_features: stack requested NETDEV features
4844 **/
4845static netdev_features_t
4846iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4847 netdev_features_t requested_features)
4848{
4849 netdev_features_t allowed_features;
4850
4851 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4852 iavf_get_netdev_vlan_features(adapter);
4853
4854 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4855 allowed_features,
4856 NETIF_F_HW_VLAN_CTAG_TX))
4857 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4858
4859 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4860 allowed_features,
4861 NETIF_F_HW_VLAN_CTAG_RX))
4862 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4863
4864 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4865 allowed_features,
4866 NETIF_F_HW_VLAN_STAG_TX))
4867 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4868 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4869 allowed_features,
4870 NETIF_F_HW_VLAN_STAG_RX))
4871 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4872
4873 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4874 allowed_features,
4875 NETIF_F_HW_VLAN_CTAG_FILTER))
4876 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4877
4878 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4879 allowed_features,
4880 NETIF_F_HW_VLAN_STAG_FILTER))
4881 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4882
4883 if ((requested_features &
4884 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4885 (requested_features &
4886 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4887 adapter->vlan_v2_caps.offloads.ethertype_match ==
4888 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4889 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4890 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4891 NETIF_F_HW_VLAN_STAG_TX);
4892 }
4893
4894 return requested_features;
4895}
4896
4897/**
4898 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4899 * @adapter: board private structure
4900 * @requested_features: stack requested NETDEV features
4901 *
4902 * Returns fixed-up features bits
4903 **/
4904static netdev_features_t
4905iavf_fix_strip_features(struct iavf_adapter *adapter,
4906 netdev_features_t requested_features)
4907{
4908 struct net_device *netdev = adapter->netdev;
4909 bool crc_offload_req, is_vlan_strip;
4910 netdev_features_t vlan_strip;
4911 int num_non_zero_vlan;
4912
4913 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4914 (requested_features & NETIF_F_RXFCS);
4915 num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4916 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4917 is_vlan_strip = requested_features & vlan_strip;
4918
4919 if (!crc_offload_req)
4920 return requested_features;
4921
4922 if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4923 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4924 requested_features &= ~vlan_strip;
4925 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4926 return requested_features;
4927 }
4928
4929 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4930 requested_features &= ~vlan_strip;
4931 if (!(netdev->features & vlan_strip))
4932 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4933
4934 return requested_features;
4935 }
4936
4937 if (num_non_zero_vlan && is_vlan_strip &&
4938 !(netdev->features & NETIF_F_RXFCS)) {
4939 requested_features &= ~NETIF_F_RXFCS;
4940 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4941 }
4942
4943 return requested_features;
4944}
4945
4946/**
4947 * iavf_fix_features - fix up the netdev feature bits
4948 * @netdev: our net device
4949 * @features: desired feature bits
4950 *
4951 * Returns fixed-up features bits
4952 **/
4953static netdev_features_t iavf_fix_features(struct net_device *netdev,
4954 netdev_features_t features)
4955{
4956 struct iavf_adapter *adapter = netdev_priv(netdev);
4957
4958 features = iavf_fix_netdev_vlan_features(adapter, features);
4959
4960 if (!FDIR_FLTR_SUPPORT(adapter))
4961 features &= ~NETIF_F_NTUPLE;
4962
4963 return iavf_fix_strip_features(adapter, features);
4964}
4965
4966static int
4967iavf_verify_shaper(struct net_shaper_binding *binding,
4968 const struct net_shaper *shaper,
4969 struct netlink_ext_ack *extack)
4970{
4971 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
4972 u64 vf_max;
4973
4974 if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) {
4975 vf_max = adapter->qos_caps->cap[0].shaper.peak;
4976 if (vf_max && shaper->bw_max > vf_max) {
4977 NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)",
4978 shaper->bw_max, shaper->handle.id,
4979 vf_max);
4980 return -EINVAL;
4981 }
4982 }
4983 return 0;
4984}
4985
4986static int
4987iavf_shaper_set(struct net_shaper_binding *binding,
4988 const struct net_shaper *shaper,
4989 struct netlink_ext_ack *extack)
4990{
4991 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
4992 const struct net_shaper_handle *handle = &shaper->handle;
4993 struct iavf_ring *tx_ring;
4994 int ret = 0;
4995
4996 mutex_lock(&adapter->crit_lock);
4997 if (handle->id >= adapter->num_active_queues)
4998 goto unlock;
4999
5000 ret = iavf_verify_shaper(binding, shaper, extack);
5001 if (ret)
5002 goto unlock;
5003
5004 tx_ring = &adapter->tx_rings[handle->id];
5005
5006 tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000);
5007 tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000);
5008 tx_ring->q_shaper_update = true;
5009
5010 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
5011
5012unlock:
5013 mutex_unlock(&adapter->crit_lock);
5014 return ret;
5015}
5016
5017static int iavf_shaper_del(struct net_shaper_binding *binding,
5018 const struct net_shaper_handle *handle,
5019 struct netlink_ext_ack *extack)
5020{
5021 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
5022 struct iavf_ring *tx_ring;
5023
5024 mutex_lock(&adapter->crit_lock);
5025 if (handle->id >= adapter->num_active_queues)
5026 goto unlock;
5027
5028 tx_ring = &adapter->tx_rings[handle->id];
5029 tx_ring->q_shaper.bw_min = 0;
5030 tx_ring->q_shaper.bw_max = 0;
5031 tx_ring->q_shaper_update = true;
5032
5033 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
5034
5035unlock:
5036 mutex_unlock(&adapter->crit_lock);
5037 return 0;
5038}
5039
5040static void iavf_shaper_cap(struct net_shaper_binding *binding,
5041 enum net_shaper_scope scope,
5042 unsigned long *flags)
5043{
5044 if (scope != NET_SHAPER_SCOPE_QUEUE)
5045 return;
5046
5047 *flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) |
5048 BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) |
5049 BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS);
5050}
5051
5052static const struct net_shaper_ops iavf_shaper_ops = {
5053 .set = iavf_shaper_set,
5054 .delete = iavf_shaper_del,
5055 .capabilities = iavf_shaper_cap,
5056};
5057
5058static const struct net_device_ops iavf_netdev_ops = {
5059 .ndo_open = iavf_open,
5060 .ndo_stop = iavf_close,
5061 .ndo_start_xmit = iavf_xmit_frame,
5062 .ndo_set_rx_mode = iavf_set_rx_mode,
5063 .ndo_validate_addr = eth_validate_addr,
5064 .ndo_set_mac_address = iavf_set_mac,
5065 .ndo_change_mtu = iavf_change_mtu,
5066 .ndo_tx_timeout = iavf_tx_timeout,
5067 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
5068 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
5069 .ndo_features_check = iavf_features_check,
5070 .ndo_fix_features = iavf_fix_features,
5071 .ndo_set_features = iavf_set_features,
5072 .ndo_setup_tc = iavf_setup_tc,
5073 .net_shaper_ops = &iavf_shaper_ops,
5074};
5075
5076/**
5077 * iavf_check_reset_complete - check that VF reset is complete
5078 * @hw: pointer to hw struct
5079 *
5080 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
5081 **/
5082static int iavf_check_reset_complete(struct iavf_hw *hw)
5083{
5084 u32 rstat;
5085 int i;
5086
5087 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
5088 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
5089 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
5090 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
5091 (rstat == VIRTCHNL_VFR_COMPLETED))
5092 return 0;
5093 msleep(IAVF_RESET_WAIT_MS);
5094 }
5095 return -EBUSY;
5096}
5097
5098/**
5099 * iavf_process_config - Process the config information we got from the PF
5100 * @adapter: board private structure
5101 *
5102 * Verify that we have a valid config struct, and set up our netdev features
5103 * and our VSI struct.
5104 **/
5105int iavf_process_config(struct iavf_adapter *adapter)
5106{
5107 struct virtchnl_vf_resource *vfres = adapter->vf_res;
5108 netdev_features_t hw_vlan_features, vlan_features;
5109 struct net_device *netdev = adapter->netdev;
5110 netdev_features_t hw_enc_features;
5111 netdev_features_t hw_features;
5112
5113 hw_enc_features = NETIF_F_SG |
5114 NETIF_F_IP_CSUM |
5115 NETIF_F_IPV6_CSUM |
5116 NETIF_F_HIGHDMA |
5117 NETIF_F_SOFT_FEATURES |
5118 NETIF_F_TSO |
5119 NETIF_F_TSO_ECN |
5120 NETIF_F_TSO6 |
5121 NETIF_F_SCTP_CRC |
5122 NETIF_F_RXHASH |
5123 NETIF_F_RXCSUM |
5124 0;
5125
5126 /* advertise to stack only if offloads for encapsulated packets is
5127 * supported
5128 */
5129 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
5130 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
5131 NETIF_F_GSO_GRE |
5132 NETIF_F_GSO_GRE_CSUM |
5133 NETIF_F_GSO_IPXIP4 |
5134 NETIF_F_GSO_IPXIP6 |
5135 NETIF_F_GSO_UDP_TUNNEL_CSUM |
5136 NETIF_F_GSO_PARTIAL |
5137 0;
5138
5139 if (!(vfres->vf_cap_flags &
5140 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
5141 netdev->gso_partial_features |=
5142 NETIF_F_GSO_UDP_TUNNEL_CSUM;
5143
5144 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
5145 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
5146 netdev->hw_enc_features |= hw_enc_features;
5147 }
5148 /* record features VLANs can make use of */
5149 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
5150
5151 /* Write features and hw_features separately to avoid polluting
5152 * with, or dropping, features that are set when we registered.
5153 */
5154 hw_features = hw_enc_features;
5155
5156 /* get HW VLAN features that can be toggled */
5157 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
5158
5159 /* Enable HW TC offload if ADQ or tc U32 is supported */
5160 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ ||
5161 TC_U32_SUPPORT(adapter))
5162 hw_features |= NETIF_F_HW_TC;
5163
5164 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
5165 hw_features |= NETIF_F_GSO_UDP_L4;
5166
5167 netdev->hw_features |= hw_features | hw_vlan_features;
5168 vlan_features = iavf_get_netdev_vlan_features(adapter);
5169
5170 netdev->features |= hw_features | vlan_features;
5171
5172 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
5173 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5174
5175 if (FDIR_FLTR_SUPPORT(adapter)) {
5176 netdev->hw_features |= NETIF_F_NTUPLE;
5177 netdev->features |= NETIF_F_NTUPLE;
5178 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
5179 }
5180
5181 netdev->priv_flags |= IFF_UNICAST_FLT;
5182
5183 /* Do not turn on offloads when they are requested to be turned off.
5184 * TSO needs minimum 576 bytes to work correctly.
5185 */
5186 if (netdev->wanted_features) {
5187 if (!(netdev->wanted_features & NETIF_F_TSO) ||
5188 netdev->mtu < 576)
5189 netdev->features &= ~NETIF_F_TSO;
5190 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
5191 netdev->mtu < 576)
5192 netdev->features &= ~NETIF_F_TSO6;
5193 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
5194 netdev->features &= ~NETIF_F_TSO_ECN;
5195 if (!(netdev->wanted_features & NETIF_F_GRO))
5196 netdev->features &= ~NETIF_F_GRO;
5197 if (!(netdev->wanted_features & NETIF_F_GSO))
5198 netdev->features &= ~NETIF_F_GSO;
5199 }
5200
5201 return 0;
5202}
5203
5204/**
5205 * iavf_probe - Device Initialization Routine
5206 * @pdev: PCI device information struct
5207 * @ent: entry in iavf_pci_tbl
5208 *
5209 * Returns 0 on success, negative on failure
5210 *
5211 * iavf_probe initializes an adapter identified by a pci_dev structure.
5212 * The OS initialization, configuring of the adapter private structure,
5213 * and a hardware reset occur.
5214 **/
5215static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5216{
5217 struct net_device *netdev;
5218 struct iavf_adapter *adapter = NULL;
5219 struct iavf_hw *hw = NULL;
5220 int err, len;
5221
5222 err = pci_enable_device(pdev);
5223 if (err)
5224 return err;
5225
5226 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5227 if (err) {
5228 dev_err(&pdev->dev,
5229 "DMA configuration failed: 0x%x\n", err);
5230 goto err_dma;
5231 }
5232
5233 err = pci_request_regions(pdev, iavf_driver_name);
5234 if (err) {
5235 dev_err(&pdev->dev,
5236 "pci_request_regions failed 0x%x\n", err);
5237 goto err_pci_reg;
5238 }
5239
5240 pci_set_master(pdev);
5241
5242 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
5243 IAVF_MAX_REQ_QUEUES);
5244 if (!netdev) {
5245 err = -ENOMEM;
5246 goto err_alloc_etherdev;
5247 }
5248
5249 SET_NETDEV_DEV(netdev, &pdev->dev);
5250
5251 pci_set_drvdata(pdev, netdev);
5252 adapter = netdev_priv(netdev);
5253
5254 adapter->netdev = netdev;
5255 adapter->pdev = pdev;
5256
5257 hw = &adapter->hw;
5258 hw->back = adapter;
5259
5260 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
5261 iavf_driver_name);
5262 if (!adapter->wq) {
5263 err = -ENOMEM;
5264 goto err_alloc_wq;
5265 }
5266
5267 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
5268 iavf_change_state(adapter, __IAVF_STARTUP);
5269
5270 /* Call save state here because it relies on the adapter struct. */
5271 pci_save_state(pdev);
5272
5273 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
5274 pci_resource_len(pdev, 0));
5275 if (!hw->hw_addr) {
5276 err = -EIO;
5277 goto err_ioremap;
5278 }
5279 hw->vendor_id = pdev->vendor;
5280 hw->device_id = pdev->device;
5281 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5282 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5283 hw->subsystem_device_id = pdev->subsystem_device;
5284 hw->bus.device = PCI_SLOT(pdev->devfn);
5285 hw->bus.func = PCI_FUNC(pdev->devfn);
5286 hw->bus.bus_id = pdev->bus->number;
5287
5288 len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM);
5289 adapter->qos_caps = kzalloc(len, GFP_KERNEL);
5290 if (!adapter->qos_caps) {
5291 err = -ENOMEM;
5292 goto err_alloc_qos_cap;
5293 }
5294
5295 /* set up the locks for the AQ, do this only once in probe
5296 * and destroy them only once in remove
5297 */
5298 mutex_init(&adapter->crit_lock);
5299 mutex_init(&hw->aq.asq_mutex);
5300 mutex_init(&hw->aq.arq_mutex);
5301
5302 spin_lock_init(&adapter->mac_vlan_list_lock);
5303 spin_lock_init(&adapter->cloud_filter_list_lock);
5304 spin_lock_init(&adapter->fdir_fltr_lock);
5305 spin_lock_init(&adapter->adv_rss_lock);
5306 spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5307
5308 INIT_LIST_HEAD(&adapter->mac_filter_list);
5309 INIT_LIST_HEAD(&adapter->vlan_filter_list);
5310 INIT_LIST_HEAD(&adapter->cloud_filter_list);
5311 INIT_LIST_HEAD(&adapter->fdir_list_head);
5312 INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5313
5314 INIT_WORK(&adapter->reset_task, iavf_reset_task);
5315 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5316 INIT_WORK(&adapter->finish_config, iavf_finish_config);
5317 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5318
5319 /* Setup the wait queue for indicating transition to down status */
5320 init_waitqueue_head(&adapter->down_waitqueue);
5321
5322 /* Setup the wait queue for indicating transition to running state */
5323 init_waitqueue_head(&adapter->reset_waitqueue);
5324
5325 /* Setup the wait queue for indicating virtchannel events */
5326 init_waitqueue_head(&adapter->vc_waitqueue);
5327
5328 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5329 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5330 /* Initialization goes on in the work. Do not add more of it below. */
5331 return 0;
5332
5333err_alloc_qos_cap:
5334 iounmap(hw->hw_addr);
5335err_ioremap:
5336 destroy_workqueue(adapter->wq);
5337err_alloc_wq:
5338 free_netdev(netdev);
5339err_alloc_etherdev:
5340 pci_release_regions(pdev);
5341err_pci_reg:
5342err_dma:
5343 pci_disable_device(pdev);
5344 return err;
5345}
5346
5347/**
5348 * iavf_suspend - Power management suspend routine
5349 * @dev_d: device info pointer
5350 *
5351 * Called when the system (VM) is entering sleep/suspend.
5352 **/
5353static int iavf_suspend(struct device *dev_d)
5354{
5355 struct net_device *netdev = dev_get_drvdata(dev_d);
5356 struct iavf_adapter *adapter = netdev_priv(netdev);
5357
5358 netif_device_detach(netdev);
5359
5360 mutex_lock(&adapter->crit_lock);
5361
5362 if (netif_running(netdev)) {
5363 rtnl_lock();
5364 iavf_down(adapter);
5365 rtnl_unlock();
5366 }
5367 iavf_free_misc_irq(adapter);
5368 iavf_reset_interrupt_capability(adapter);
5369
5370 mutex_unlock(&adapter->crit_lock);
5371
5372 return 0;
5373}
5374
5375/**
5376 * iavf_resume - Power management resume routine
5377 * @dev_d: device info pointer
5378 *
5379 * Called when the system (VM) is resumed from sleep/suspend.
5380 **/
5381static int iavf_resume(struct device *dev_d)
5382{
5383 struct pci_dev *pdev = to_pci_dev(dev_d);
5384 struct iavf_adapter *adapter;
5385 u32 err;
5386
5387 adapter = iavf_pdev_to_adapter(pdev);
5388
5389 pci_set_master(pdev);
5390
5391 rtnl_lock();
5392 err = iavf_set_interrupt_capability(adapter);
5393 if (err) {
5394 rtnl_unlock();
5395 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5396 return err;
5397 }
5398 err = iavf_request_misc_irq(adapter);
5399 rtnl_unlock();
5400 if (err) {
5401 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5402 return err;
5403 }
5404
5405 queue_work(adapter->wq, &adapter->reset_task);
5406
5407 netif_device_attach(adapter->netdev);
5408
5409 return err;
5410}
5411
5412/**
5413 * iavf_remove - Device Removal Routine
5414 * @pdev: PCI device information struct
5415 *
5416 * iavf_remove is called by the PCI subsystem to alert the driver
5417 * that it should release a PCI device. The could be caused by a
5418 * Hot-Plug event, or because the driver is going to be removed from
5419 * memory.
5420 **/
5421static void iavf_remove(struct pci_dev *pdev)
5422{
5423 struct iavf_fdir_fltr *fdir, *fdirtmp;
5424 struct iavf_vlan_filter *vlf, *vlftmp;
5425 struct iavf_cloud_filter *cf, *cftmp;
5426 struct iavf_adv_rss *rss, *rsstmp;
5427 struct iavf_mac_filter *f, *ftmp;
5428 struct iavf_adapter *adapter;
5429 struct net_device *netdev;
5430 struct iavf_hw *hw;
5431
5432 /* Don't proceed with remove if netdev is already freed */
5433 netdev = pci_get_drvdata(pdev);
5434 if (!netdev)
5435 return;
5436
5437 adapter = iavf_pdev_to_adapter(pdev);
5438 hw = &adapter->hw;
5439
5440 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5441 return;
5442
5443 /* Wait until port initialization is complete.
5444 * There are flows where register/unregister netdev may race.
5445 */
5446 while (1) {
5447 mutex_lock(&adapter->crit_lock);
5448 if (adapter->state == __IAVF_RUNNING ||
5449 adapter->state == __IAVF_DOWN ||
5450 adapter->state == __IAVF_INIT_FAILED) {
5451 mutex_unlock(&adapter->crit_lock);
5452 break;
5453 }
5454 /* Simply return if we already went through iavf_shutdown */
5455 if (adapter->state == __IAVF_REMOVE) {
5456 mutex_unlock(&adapter->crit_lock);
5457 return;
5458 }
5459
5460 mutex_unlock(&adapter->crit_lock);
5461 usleep_range(500, 1000);
5462 }
5463 cancel_delayed_work_sync(&adapter->watchdog_task);
5464 cancel_work_sync(&adapter->finish_config);
5465
5466 if (netdev->reg_state == NETREG_REGISTERED)
5467 unregister_netdev(netdev);
5468
5469 mutex_lock(&adapter->crit_lock);
5470 dev_info(&adapter->pdev->dev, "Removing device\n");
5471 iavf_change_state(adapter, __IAVF_REMOVE);
5472
5473 iavf_request_reset(adapter);
5474 msleep(50);
5475 /* If the FW isn't responding, kick it once, but only once. */
5476 if (!iavf_asq_done(hw)) {
5477 iavf_request_reset(adapter);
5478 msleep(50);
5479 }
5480
5481 iavf_misc_irq_disable(adapter);
5482 /* Shut down all the garbage mashers on the detention level */
5483 cancel_work_sync(&adapter->reset_task);
5484 cancel_delayed_work_sync(&adapter->watchdog_task);
5485 cancel_work_sync(&adapter->adminq_task);
5486
5487 adapter->aq_required = 0;
5488 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5489
5490 iavf_free_all_tx_resources(adapter);
5491 iavf_free_all_rx_resources(adapter);
5492 iavf_free_misc_irq(adapter);
5493 iavf_free_interrupt_scheme(adapter);
5494
5495 iavf_free_rss(adapter);
5496
5497 if (hw->aq.asq.count)
5498 iavf_shutdown_adminq(hw);
5499
5500 /* destroy the locks only once, here */
5501 mutex_destroy(&hw->aq.arq_mutex);
5502 mutex_destroy(&hw->aq.asq_mutex);
5503 mutex_unlock(&adapter->crit_lock);
5504 mutex_destroy(&adapter->crit_lock);
5505
5506 iounmap(hw->hw_addr);
5507 pci_release_regions(pdev);
5508 kfree(adapter->vf_res);
5509 spin_lock_bh(&adapter->mac_vlan_list_lock);
5510 /* If we got removed before an up/down sequence, we've got a filter
5511 * hanging out there that we need to get rid of.
5512 */
5513 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5514 list_del(&f->list);
5515 kfree(f);
5516 }
5517 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5518 list) {
5519 list_del(&vlf->list);
5520 kfree(vlf);
5521 }
5522
5523 spin_unlock_bh(&adapter->mac_vlan_list_lock);
5524
5525 spin_lock_bh(&adapter->cloud_filter_list_lock);
5526 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5527 list_del(&cf->list);
5528 kfree(cf);
5529 }
5530 spin_unlock_bh(&adapter->cloud_filter_list_lock);
5531
5532 spin_lock_bh(&adapter->fdir_fltr_lock);
5533 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5534 list_del(&fdir->list);
5535 kfree(fdir);
5536 }
5537 spin_unlock_bh(&adapter->fdir_fltr_lock);
5538
5539 spin_lock_bh(&adapter->adv_rss_lock);
5540 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5541 list) {
5542 list_del(&rss->list);
5543 kfree(rss);
5544 }
5545 spin_unlock_bh(&adapter->adv_rss_lock);
5546
5547 destroy_workqueue(adapter->wq);
5548
5549 pci_set_drvdata(pdev, NULL);
5550
5551 free_netdev(netdev);
5552
5553 pci_disable_device(pdev);
5554}
5555
5556/**
5557 * iavf_shutdown - Shutdown the device in preparation for a reboot
5558 * @pdev: pci device structure
5559 **/
5560static void iavf_shutdown(struct pci_dev *pdev)
5561{
5562 iavf_remove(pdev);
5563
5564 if (system_state == SYSTEM_POWER_OFF)
5565 pci_set_power_state(pdev, PCI_D3hot);
5566}
5567
5568static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5569
5570static struct pci_driver iavf_driver = {
5571 .name = iavf_driver_name,
5572 .id_table = iavf_pci_tbl,
5573 .probe = iavf_probe,
5574 .remove = iavf_remove,
5575 .driver.pm = pm_sleep_ptr(&iavf_pm_ops),
5576 .shutdown = iavf_shutdown,
5577};
5578
5579/**
5580 * iavf_init_module - Driver Registration Routine
5581 *
5582 * iavf_init_module is the first routine called when the driver is
5583 * loaded. All it does is register with the PCI subsystem.
5584 **/
5585static int __init iavf_init_module(void)
5586{
5587 pr_info("iavf: %s\n", iavf_driver_string);
5588
5589 pr_info("%s\n", iavf_copyright);
5590
5591 return pci_register_driver(&iavf_driver);
5592}
5593
5594module_init(iavf_init_module);
5595
5596/**
5597 * iavf_exit_module - Driver Exit Cleanup Routine
5598 *
5599 * iavf_exit_module is called just before the driver is removed
5600 * from memory.
5601 **/
5602static void __exit iavf_exit_module(void)
5603{
5604 pci_unregister_driver(&iavf_driver);
5605}
5606
5607module_exit(iavf_exit_module);
5608
5609/* iavf_main.c */