Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
 
 
   4#include "iavf.h"
   5#include "iavf_prototype.h"
   6/* All iavf tracepoints are defined by the include below, which must
   7 * be included exactly once across the whole kernel with
   8 * CREATE_TRACE_POINTS defined
   9 */
  10#define CREATE_TRACE_POINTS
  11#include "iavf_trace.h"
  12
  13static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
  14static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
  15static int iavf_close(struct net_device *netdev);
  16static void iavf_init_get_resources(struct iavf_adapter *adapter);
  17static int iavf_check_reset_complete(struct iavf_hw *hw);
  18
  19char iavf_driver_name[] = "iavf";
  20static const char iavf_driver_string[] =
  21	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
  22
  23static const char iavf_copyright[] =
  24	"Copyright (c) 2013 - 2018 Intel Corporation.";
  25
  26/* iavf_pci_tbl - PCI Device ID Table
  27 *
  28 * Wildcard entries (PCI_ANY_ID) should come last
  29 * Last entry must be all 0s
  30 *
  31 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  32 *   Class, Class Mask, private data (not used) }
  33 */
  34static const struct pci_device_id iavf_pci_tbl[] = {
  35	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
  36	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
  37	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
  38	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
  39	/* required last entry */
  40	{0, }
  41};
  42
  43MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
  44
  45MODULE_ALIAS("i40evf");
  46MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  47MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
 
 
  48MODULE_LICENSE("GPL v2");
  49
  50static const struct net_device_ops iavf_netdev_ops;
  51
  52int iavf_status_to_errno(enum iavf_status status)
  53{
  54	switch (status) {
  55	case IAVF_SUCCESS:
  56		return 0;
  57	case IAVF_ERR_PARAM:
  58	case IAVF_ERR_MAC_TYPE:
  59	case IAVF_ERR_INVALID_MAC_ADDR:
  60	case IAVF_ERR_INVALID_LINK_SETTINGS:
  61	case IAVF_ERR_INVALID_PD_ID:
  62	case IAVF_ERR_INVALID_QP_ID:
  63	case IAVF_ERR_INVALID_CQ_ID:
  64	case IAVF_ERR_INVALID_CEQ_ID:
  65	case IAVF_ERR_INVALID_AEQ_ID:
  66	case IAVF_ERR_INVALID_SIZE:
  67	case IAVF_ERR_INVALID_ARP_INDEX:
  68	case IAVF_ERR_INVALID_FPM_FUNC_ID:
  69	case IAVF_ERR_QP_INVALID_MSG_SIZE:
  70	case IAVF_ERR_INVALID_FRAG_COUNT:
  71	case IAVF_ERR_INVALID_ALIGNMENT:
  72	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
  73	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
  74	case IAVF_ERR_INVALID_VF_ID:
  75	case IAVF_ERR_INVALID_HMCFN_ID:
  76	case IAVF_ERR_INVALID_PBLE_INDEX:
  77	case IAVF_ERR_INVALID_SD_INDEX:
  78	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
  79	case IAVF_ERR_INVALID_SD_TYPE:
  80	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
  81	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
  82	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
  83		return -EINVAL;
  84	case IAVF_ERR_NVM:
  85	case IAVF_ERR_NVM_CHECKSUM:
  86	case IAVF_ERR_PHY:
  87	case IAVF_ERR_CONFIG:
  88	case IAVF_ERR_UNKNOWN_PHY:
  89	case IAVF_ERR_LINK_SETUP:
  90	case IAVF_ERR_ADAPTER_STOPPED:
  91	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
  92	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
  93	case IAVF_ERR_RESET_FAILED:
  94	case IAVF_ERR_BAD_PTR:
  95	case IAVF_ERR_SWFW_SYNC:
  96	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
  97	case IAVF_ERR_QUEUE_EMPTY:
  98	case IAVF_ERR_FLUSHED_QUEUE:
  99	case IAVF_ERR_OPCODE_MISMATCH:
 100	case IAVF_ERR_CQP_COMPL_ERROR:
 101	case IAVF_ERR_BACKING_PAGE_ERROR:
 102	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
 103	case IAVF_ERR_MEMCPY_FAILED:
 104	case IAVF_ERR_SRQ_ENABLED:
 105	case IAVF_ERR_ADMIN_QUEUE_ERROR:
 106	case IAVF_ERR_ADMIN_QUEUE_FULL:
 107	case IAVF_ERR_BAD_RDMA_CQE:
 108	case IAVF_ERR_NVM_BLANK_MODE:
 109	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
 110	case IAVF_ERR_DIAG_TEST_FAILED:
 111	case IAVF_ERR_FIRMWARE_API_VERSION:
 112	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
 113		return -EIO;
 114	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
 115		return -ENODEV;
 116	case IAVF_ERR_NO_AVAILABLE_VSI:
 117	case IAVF_ERR_RING_FULL:
 118		return -ENOSPC;
 119	case IAVF_ERR_NO_MEMORY:
 120		return -ENOMEM;
 121	case IAVF_ERR_TIMEOUT:
 122	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
 123		return -ETIMEDOUT;
 124	case IAVF_ERR_NOT_IMPLEMENTED:
 125	case IAVF_NOT_SUPPORTED:
 126		return -EOPNOTSUPP;
 127	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
 128		return -EALREADY;
 129	case IAVF_ERR_NOT_READY:
 130		return -EBUSY;
 131	case IAVF_ERR_BUF_TOO_SHORT:
 132		return -EMSGSIZE;
 133	}
 134
 135	return -EIO;
 136}
 137
 138int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
 139{
 140	switch (v_status) {
 141	case VIRTCHNL_STATUS_SUCCESS:
 142		return 0;
 143	case VIRTCHNL_STATUS_ERR_PARAM:
 144	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
 145		return -EINVAL;
 146	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
 147		return -ENOMEM;
 148	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
 149	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
 150	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
 151		return -EIO;
 152	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
 153		return -EOPNOTSUPP;
 154	}
 155
 156	return -EIO;
 157}
 158
 159/**
 160 * iavf_pdev_to_adapter - go from pci_dev to adapter
 161 * @pdev: pci_dev pointer
 162 */
 163static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
 164{
 165	return netdev_priv(pci_get_drvdata(pdev));
 166}
 167
 168/**
 169 * iavf_is_reset_in_progress - Check if a reset is in progress
 170 * @adapter: board private structure
 171 */
 172static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
 173{
 174	if (adapter->state == __IAVF_RESETTING ||
 175	    adapter->flags & (IAVF_FLAG_RESET_PENDING |
 176			      IAVF_FLAG_RESET_NEEDED))
 177		return true;
 178
 179	return false;
 180}
 181
 182/**
 183 * iavf_wait_for_reset - Wait for reset to finish.
 184 * @adapter: board private structure
 185 *
 186 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
 187 */
 188int iavf_wait_for_reset(struct iavf_adapter *adapter)
 189{
 190	int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
 191					!iavf_is_reset_in_progress(adapter),
 192					msecs_to_jiffies(5000));
 193
 194	/* If ret < 0 then it means wait was interrupted.
 195	 * If ret == 0 then it means we got a timeout while waiting
 196	 * for reset to finish.
 197	 * If ret > 0 it means reset has finished.
 198	 */
 199	if (ret > 0)
 200		return 0;
 201	else if (ret < 0)
 202		return -EINTR;
 203	else
 204		return -EBUSY;
 205}
 206
 207/**
 208 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
 209 * @hw:   pointer to the HW structure
 210 * @mem:  ptr to mem struct to fill out
 211 * @size: size of memory requested
 212 * @alignment: what to align the allocation to
 213 **/
 214enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
 215					 struct iavf_dma_mem *mem,
 216					 u64 size, u32 alignment)
 217{
 218	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
 219
 220	if (!mem)
 221		return IAVF_ERR_PARAM;
 222
 223	mem->size = ALIGN(size, alignment);
 224	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
 225				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
 226	if (mem->va)
 227		return 0;
 228	else
 229		return IAVF_ERR_NO_MEMORY;
 230}
 231
 232/**
 233 * iavf_free_dma_mem - wrapper for DMA memory freeing
 234 * @hw:   pointer to the HW structure
 235 * @mem:  ptr to mem struct to free
 236 **/
 237enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
 238{
 239	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
 240
 241	if (!mem || !mem->va)
 242		return IAVF_ERR_PARAM;
 243	dma_free_coherent(&adapter->pdev->dev, mem->size,
 244			  mem->va, (dma_addr_t)mem->pa);
 245	return 0;
 246}
 247
 248/**
 249 * iavf_allocate_virt_mem - virt memory alloc wrapper
 250 * @hw:   pointer to the HW structure
 251 * @mem:  ptr to mem struct to fill out
 252 * @size: size of memory requested
 253 **/
 254enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
 255					struct iavf_virt_mem *mem, u32 size)
 256{
 257	if (!mem)
 258		return IAVF_ERR_PARAM;
 259
 260	mem->size = size;
 261	mem->va = kzalloc(size, GFP_KERNEL);
 262
 263	if (mem->va)
 264		return 0;
 265	else
 266		return IAVF_ERR_NO_MEMORY;
 267}
 268
 269/**
 270 * iavf_free_virt_mem - virt memory free wrapper
 271 * @hw:   pointer to the HW structure
 272 * @mem:  ptr to mem struct to free
 273 **/
 274void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
 275{
 276	kfree(mem->va);
 277}
 278
 279/**
 280 * iavf_schedule_reset - Set the flags and schedule a reset event
 281 * @adapter: board private structure
 282 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
 283 **/
 284void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
 285{
 286	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
 287	    !(adapter->flags &
 288	    (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
 289		adapter->flags |= flags;
 290		queue_work(adapter->wq, &adapter->reset_task);
 291	}
 292}
 293
 294/**
 295 * iavf_schedule_aq_request - Set the flags and schedule aq request
 296 * @adapter: board private structure
 297 * @flags: requested aq flags
 298 **/
 299void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
 300{
 301	adapter->aq_required |= flags;
 302	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
 303}
 304
 305/**
 306 * iavf_tx_timeout - Respond to a Tx Hang
 307 * @netdev: network interface device structure
 308 * @txqueue: queue number that is timing out
 309 **/
 310static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
 311{
 312	struct iavf_adapter *adapter = netdev_priv(netdev);
 313
 314	adapter->tx_timeout_count++;
 315	iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
 316}
 317
 318/**
 319 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
 320 * @adapter: board private structure
 321 **/
 322static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
 323{
 324	struct iavf_hw *hw = &adapter->hw;
 325
 326	if (!adapter->msix_entries)
 327		return;
 328
 329	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
 330
 331	iavf_flush(hw);
 332
 333	synchronize_irq(adapter->msix_entries[0].vector);
 334}
 335
 336/**
 337 * iavf_misc_irq_enable - Enable default interrupt generation settings
 338 * @adapter: board private structure
 339 **/
 340static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
 341{
 342	struct iavf_hw *hw = &adapter->hw;
 343
 344	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
 345				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
 346	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
 347
 348	iavf_flush(hw);
 349}
 350
 351/**
 352 * iavf_irq_disable - Mask off interrupt generation on the NIC
 353 * @adapter: board private structure
 354 **/
 355static void iavf_irq_disable(struct iavf_adapter *adapter)
 356{
 357	int i;
 358	struct iavf_hw *hw = &adapter->hw;
 359
 360	if (!adapter->msix_entries)
 361		return;
 362
 363	for (i = 1; i < adapter->num_msix_vectors; i++) {
 364		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
 365		synchronize_irq(adapter->msix_entries[i].vector);
 366	}
 367	iavf_flush(hw);
 368}
 369
 370/**
 371 * iavf_irq_enable_queues - Enable interrupt for all queues
 372 * @adapter: board private structure
 373 **/
 374static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
 375{
 376	struct iavf_hw *hw = &adapter->hw;
 377	int i;
 378
 379	for (i = 1; i < adapter->num_msix_vectors; i++) {
 380		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
 381		     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 382		     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
 383	}
 384}
 385
 386/**
 387 * iavf_irq_enable - Enable default interrupt generation settings
 388 * @adapter: board private structure
 389 * @flush: boolean value whether to run rd32()
 390 **/
 391void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
 392{
 393	struct iavf_hw *hw = &adapter->hw;
 394
 395	iavf_misc_irq_enable(adapter);
 396	iavf_irq_enable_queues(adapter);
 397
 398	if (flush)
 399		iavf_flush(hw);
 400}
 401
 402/**
 403 * iavf_msix_aq - Interrupt handler for vector 0
 404 * @irq: interrupt number
 405 * @data: pointer to netdev
 406 **/
 407static irqreturn_t iavf_msix_aq(int irq, void *data)
 408{
 409	struct net_device *netdev = data;
 410	struct iavf_adapter *adapter = netdev_priv(netdev);
 411	struct iavf_hw *hw = &adapter->hw;
 412
 413	/* handle non-queue interrupts, these reads clear the registers */
 414	rd32(hw, IAVF_VFINT_ICR01);
 415	rd32(hw, IAVF_VFINT_ICR0_ENA1);
 416
 417	if (adapter->state != __IAVF_REMOVE)
 418		/* schedule work on the private workqueue */
 419		queue_work(adapter->wq, &adapter->adminq_task);
 420
 421	return IRQ_HANDLED;
 422}
 423
 424/**
 425 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
 426 * @irq: interrupt number
 427 * @data: pointer to a q_vector
 428 **/
 429static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
 430{
 431	struct iavf_q_vector *q_vector = data;
 432
 433	if (!q_vector->tx.ring && !q_vector->rx.ring)
 434		return IRQ_HANDLED;
 435
 436	napi_schedule_irqoff(&q_vector->napi);
 437
 438	return IRQ_HANDLED;
 439}
 440
 441/**
 442 * iavf_map_vector_to_rxq - associate irqs with rx queues
 443 * @adapter: board private structure
 444 * @v_idx: interrupt number
 445 * @r_idx: queue number
 446 **/
 447static void
 448iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
 449{
 450	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 451	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
 452	struct iavf_hw *hw = &adapter->hw;
 453
 454	rx_ring->q_vector = q_vector;
 455	rx_ring->next = q_vector->rx.ring;
 456	rx_ring->vsi = &adapter->vsi;
 457	q_vector->rx.ring = rx_ring;
 458	q_vector->rx.count++;
 459	q_vector->rx.next_update = jiffies + 1;
 460	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
 461	q_vector->ring_mask |= BIT(r_idx);
 462	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
 463	     q_vector->rx.current_itr >> 1);
 464	q_vector->rx.current_itr = q_vector->rx.target_itr;
 465}
 466
 467/**
 468 * iavf_map_vector_to_txq - associate irqs with tx queues
 469 * @adapter: board private structure
 470 * @v_idx: interrupt number
 471 * @t_idx: queue number
 472 **/
 473static void
 474iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
 475{
 476	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 477	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
 478	struct iavf_hw *hw = &adapter->hw;
 479
 480	tx_ring->q_vector = q_vector;
 481	tx_ring->next = q_vector->tx.ring;
 482	tx_ring->vsi = &adapter->vsi;
 483	q_vector->tx.ring = tx_ring;
 484	q_vector->tx.count++;
 485	q_vector->tx.next_update = jiffies + 1;
 486	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
 487	q_vector->num_ringpairs++;
 488	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
 489	     q_vector->tx.target_itr >> 1);
 490	q_vector->tx.current_itr = q_vector->tx.target_itr;
 491}
 492
 493/**
 494 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
 495 * @adapter: board private structure to initialize
 496 *
 497 * This function maps descriptor rings to the queue-specific vectors
 498 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
 499 * one vector per ring/queue, but on a constrained vector budget, we
 500 * group the rings as "efficiently" as possible.  You would add new
 501 * mapping configurations in here.
 502 **/
 503static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
 504{
 505	int rings_remaining = adapter->num_active_queues;
 506	int ridx = 0, vidx = 0;
 507	int q_vectors;
 508
 509	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 510
 511	for (; ridx < rings_remaining; ridx++) {
 512		iavf_map_vector_to_rxq(adapter, vidx, ridx);
 513		iavf_map_vector_to_txq(adapter, vidx, ridx);
 514
 515		/* In the case where we have more queues than vectors, continue
 516		 * round-robin on vectors until all queues are mapped.
 517		 */
 518		if (++vidx >= q_vectors)
 519			vidx = 0;
 520	}
 521
 522	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
 523}
 524
 525/**
 526 * iavf_irq_affinity_notify - Callback for affinity changes
 527 * @notify: context as to what irq was changed
 528 * @mask: the new affinity mask
 529 *
 530 * This is a callback function used by the irq_set_affinity_notifier function
 531 * so that we may register to receive changes to the irq affinity masks.
 532 **/
 533static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
 534				     const cpumask_t *mask)
 535{
 536	struct iavf_q_vector *q_vector =
 537		container_of(notify, struct iavf_q_vector, affinity_notify);
 538
 539	cpumask_copy(&q_vector->affinity_mask, mask);
 540}
 541
 542/**
 543 * iavf_irq_affinity_release - Callback for affinity notifier release
 544 * @ref: internal core kernel usage
 545 *
 546 * This is a callback function used by the irq_set_affinity_notifier function
 547 * to inform the current notification subscriber that they will no longer
 548 * receive notifications.
 549 **/
 550static void iavf_irq_affinity_release(struct kref *ref) {}
 551
 552/**
 553 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
 554 * @adapter: board private structure
 555 * @basename: device basename
 556 *
 557 * Allocates MSI-X vectors for tx and rx handling, and requests
 558 * interrupts from the kernel.
 559 **/
 560static int
 561iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
 562{
 563	unsigned int vector, q_vectors;
 564	unsigned int rx_int_idx = 0, tx_int_idx = 0;
 565	int irq_num, err;
 566	int cpu;
 567
 568	iavf_irq_disable(adapter);
 569	/* Decrement for Other and TCP Timer vectors */
 570	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 571
 572	for (vector = 0; vector < q_vectors; vector++) {
 573		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
 574
 575		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 576
 577		if (q_vector->tx.ring && q_vector->rx.ring) {
 578			snprintf(q_vector->name, sizeof(q_vector->name),
 579				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
 580			tx_int_idx++;
 581		} else if (q_vector->rx.ring) {
 582			snprintf(q_vector->name, sizeof(q_vector->name),
 583				 "iavf-%s-rx-%u", basename, rx_int_idx++);
 584		} else if (q_vector->tx.ring) {
 585			snprintf(q_vector->name, sizeof(q_vector->name),
 586				 "iavf-%s-tx-%u", basename, tx_int_idx++);
 587		} else {
 588			/* skip this unused q_vector */
 589			continue;
 590		}
 591		err = request_irq(irq_num,
 592				  iavf_msix_clean_rings,
 593				  0,
 594				  q_vector->name,
 595				  q_vector);
 596		if (err) {
 597			dev_info(&adapter->pdev->dev,
 598				 "Request_irq failed, error: %d\n", err);
 599			goto free_queue_irqs;
 600		}
 601		/* register for affinity change notifications */
 602		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
 603		q_vector->affinity_notify.release =
 604						   iavf_irq_affinity_release;
 605		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
 606		/* Spread the IRQ affinity hints across online CPUs. Note that
 607		 * get_cpu_mask returns a mask with a permanent lifetime so
 608		 * it's safe to use as a hint for irq_update_affinity_hint.
 609		 */
 610		cpu = cpumask_local_spread(q_vector->v_idx, -1);
 611		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
 612	}
 613
 614	return 0;
 615
 616free_queue_irqs:
 617	while (vector) {
 618		vector--;
 619		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 620		irq_set_affinity_notifier(irq_num, NULL);
 621		irq_update_affinity_hint(irq_num, NULL);
 622		free_irq(irq_num, &adapter->q_vectors[vector]);
 623	}
 624	return err;
 625}
 626
 627/**
 628 * iavf_request_misc_irq - Initialize MSI-X interrupts
 629 * @adapter: board private structure
 630 *
 631 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
 632 * vector is only for the admin queue, and stays active even when the netdev
 633 * is closed.
 634 **/
 635static int iavf_request_misc_irq(struct iavf_adapter *adapter)
 636{
 637	struct net_device *netdev = adapter->netdev;
 638	int err;
 639
 640	snprintf(adapter->misc_vector_name,
 641		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
 642		 dev_name(&adapter->pdev->dev));
 643	err = request_irq(adapter->msix_entries[0].vector,
 644			  &iavf_msix_aq, 0,
 645			  adapter->misc_vector_name, netdev);
 646	if (err) {
 647		dev_err(&adapter->pdev->dev,
 648			"request_irq for %s failed: %d\n",
 649			adapter->misc_vector_name, err);
 650		free_irq(adapter->msix_entries[0].vector, netdev);
 651	}
 652	return err;
 653}
 654
 655/**
 656 * iavf_free_traffic_irqs - Free MSI-X interrupts
 657 * @adapter: board private structure
 658 *
 659 * Frees all MSI-X vectors other than 0.
 660 **/
 661static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
 662{
 663	int vector, irq_num, q_vectors;
 664
 665	if (!adapter->msix_entries)
 666		return;
 667
 668	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 669
 670	for (vector = 0; vector < q_vectors; vector++) {
 671		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 672		irq_set_affinity_notifier(irq_num, NULL);
 673		irq_update_affinity_hint(irq_num, NULL);
 674		free_irq(irq_num, &adapter->q_vectors[vector]);
 675	}
 676}
 677
 678/**
 679 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
 680 * @adapter: board private structure
 681 *
 682 * Frees MSI-X vector 0.
 683 **/
 684static void iavf_free_misc_irq(struct iavf_adapter *adapter)
 685{
 686	struct net_device *netdev = adapter->netdev;
 687
 688	if (!adapter->msix_entries)
 689		return;
 690
 691	free_irq(adapter->msix_entries[0].vector, netdev);
 692}
 693
 694/**
 695 * iavf_configure_tx - Configure Transmit Unit after Reset
 696 * @adapter: board private structure
 697 *
 698 * Configure the Tx unit of the MAC after a reset.
 699 **/
 700static void iavf_configure_tx(struct iavf_adapter *adapter)
 701{
 702	struct iavf_hw *hw = &adapter->hw;
 703	int i;
 704
 705	for (i = 0; i < adapter->num_active_queues; i++)
 706		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
 707}
 708
 709/**
 710 * iavf_configure_rx - Configure Receive Unit after Reset
 711 * @adapter: board private structure
 712 *
 713 * Configure the Rx unit of the MAC after a reset.
 714 **/
 715static void iavf_configure_rx(struct iavf_adapter *adapter)
 716{
 717	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
 718	struct iavf_hw *hw = &adapter->hw;
 719	int i;
 720
 721	/* Legacy Rx will always default to a 2048 buffer size. */
 722#if (PAGE_SIZE < 8192)
 723	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
 724		struct net_device *netdev = adapter->netdev;
 725
 726		/* For jumbo frames on systems with 4K pages we have to use
 727		 * an order 1 page, so we might as well increase the size
 728		 * of our Rx buffer to make better use of the available space
 729		 */
 730		rx_buf_len = IAVF_RXBUFFER_3072;
 731
 732		/* We use a 1536 buffer size for configurations with
 733		 * standard Ethernet mtu.  On x86 this gives us enough room
 734		 * for shared info and 192 bytes of padding.
 735		 */
 736		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
 737		    (netdev->mtu <= ETH_DATA_LEN))
 738			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
 739	}
 740#endif
 741
 742	for (i = 0; i < adapter->num_active_queues; i++) {
 743		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
 744		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
 745
 746		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
 747			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
 748		else
 749			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
 750	}
 751}
 752
 753/**
 754 * iavf_find_vlan - Search filter list for specific vlan filter
 755 * @adapter: board private structure
 756 * @vlan: vlan tag
 757 *
 758 * Returns ptr to the filter object or NULL. Must be called while holding the
 759 * mac_vlan_list_lock.
 760 **/
 761static struct
 762iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
 763				 struct iavf_vlan vlan)
 764{
 765	struct iavf_vlan_filter *f;
 766
 767	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
 768		if (f->vlan.vid == vlan.vid &&
 769		    f->vlan.tpid == vlan.tpid)
 770			return f;
 771	}
 772
 773	return NULL;
 774}
 775
 776/**
 777 * iavf_add_vlan - Add a vlan filter to the list
 778 * @adapter: board private structure
 779 * @vlan: VLAN tag
 780 *
 781 * Returns ptr to the filter object or NULL when no memory available.
 782 **/
 783static struct
 784iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
 785				struct iavf_vlan vlan)
 786{
 787	struct iavf_vlan_filter *f = NULL;
 788
 789	spin_lock_bh(&adapter->mac_vlan_list_lock);
 790
 791	f = iavf_find_vlan(adapter, vlan);
 792	if (!f) {
 793		f = kzalloc(sizeof(*f), GFP_ATOMIC);
 794		if (!f)
 795			goto clearout;
 796
 797		f->vlan = vlan;
 798
 799		list_add_tail(&f->list, &adapter->vlan_filter_list);
 800		f->state = IAVF_VLAN_ADD;
 801		adapter->num_vlan_filters++;
 802		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
 
 
 
 
 
 803	}
 804
 805clearout:
 806	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 807	return f;
 808}
 809
 810/**
 811 * iavf_del_vlan - Remove a vlan filter from the list
 812 * @adapter: board private structure
 813 * @vlan: VLAN tag
 814 **/
 815static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
 816{
 817	struct iavf_vlan_filter *f;
 818
 819	spin_lock_bh(&adapter->mac_vlan_list_lock);
 820
 821	f = iavf_find_vlan(adapter, vlan);
 822	if (f) {
 823		f->state = IAVF_VLAN_REMOVE;
 824		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER);
 
 
 
 
 
 
 
 
 
 
 825	}
 826
 827	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 828}
 829
 830/**
 831 * iavf_restore_filters
 832 * @adapter: board private structure
 833 *
 834 * Restore existing non MAC filters when VF netdev comes back up
 835 **/
 836static void iavf_restore_filters(struct iavf_adapter *adapter)
 837{
 838	struct iavf_vlan_filter *f;
 839
 840	/* re-add all VLAN filters */
 841	spin_lock_bh(&adapter->mac_vlan_list_lock);
 842
 843	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
 844		if (f->state == IAVF_VLAN_INACTIVE)
 845			f->state = IAVF_VLAN_ADD;
 846	}
 847
 848	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 849	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
 850}
 851
 852/**
 853 * iavf_get_num_vlans_added - get number of VLANs added
 854 * @adapter: board private structure
 855 */
 856u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
 857{
 858	return adapter->num_vlan_filters;
 859}
 860
 861/**
 862 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
 863 * @adapter: board private structure
 864 *
 865 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
 866 * do not impose a limit as that maintains current behavior and for
 867 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
 868 **/
 869static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
 870{
 871	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
 872	 * never been a limit on the VF driver side
 873	 */
 874	if (VLAN_ALLOWED(adapter))
 875		return VLAN_N_VID;
 876	else if (VLAN_V2_ALLOWED(adapter))
 877		return adapter->vlan_v2_caps.filtering.max_filters;
 878
 879	return 0;
 880}
 881
 882/**
 883 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
 884 * @adapter: board private structure
 885 **/
 886static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
 887{
 888	if (iavf_get_num_vlans_added(adapter) <
 889	    iavf_get_max_vlans_allowed(adapter))
 890		return false;
 891
 892	return true;
 893}
 894
 895/**
 896 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
 897 * @netdev: network device struct
 898 * @proto: unused protocol data
 899 * @vid: VLAN tag
 900 **/
 901static int iavf_vlan_rx_add_vid(struct net_device *netdev,
 902				__always_unused __be16 proto, u16 vid)
 903{
 904	struct iavf_adapter *adapter = netdev_priv(netdev);
 905
 906	/* Do not track VLAN 0 filter, always added by the PF on VF init */
 907	if (!vid)
 908		return 0;
 909
 910	if (!VLAN_FILTERING_ALLOWED(adapter))
 911		return -EIO;
 912
 913	if (iavf_max_vlans_added(adapter)) {
 914		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
 915			   iavf_get_max_vlans_allowed(adapter));
 916		return -EIO;
 917	}
 918
 919	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
 920		return -ENOMEM;
 921
 922	return 0;
 923}
 924
 925/**
 926 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
 927 * @netdev: network device struct
 928 * @proto: unused protocol data
 929 * @vid: VLAN tag
 930 **/
 931static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
 932				 __always_unused __be16 proto, u16 vid)
 933{
 934	struct iavf_adapter *adapter = netdev_priv(netdev);
 935
 936	/* We do not track VLAN 0 filter */
 937	if (!vid)
 938		return 0;
 939
 940	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
 941	return 0;
 942}
 943
 944/**
 945 * iavf_find_filter - Search filter list for specific mac filter
 946 * @adapter: board private structure
 947 * @macaddr: the MAC address
 948 *
 949 * Returns ptr to the filter object or NULL. Must be called while holding the
 950 * mac_vlan_list_lock.
 951 **/
 952static struct
 953iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
 954				  const u8 *macaddr)
 955{
 956	struct iavf_mac_filter *f;
 957
 958	if (!macaddr)
 959		return NULL;
 960
 961	list_for_each_entry(f, &adapter->mac_filter_list, list) {
 962		if (ether_addr_equal(macaddr, f->macaddr))
 963			return f;
 964	}
 965	return NULL;
 966}
 967
 968/**
 969 * iavf_add_filter - Add a mac filter to the filter list
 970 * @adapter: board private structure
 971 * @macaddr: the MAC address
 972 *
 973 * Returns ptr to the filter object or NULL when no memory available.
 974 **/
 975struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
 976					const u8 *macaddr)
 977{
 978	struct iavf_mac_filter *f;
 979
 980	if (!macaddr)
 981		return NULL;
 982
 983	f = iavf_find_filter(adapter, macaddr);
 984	if (!f) {
 985		f = kzalloc(sizeof(*f), GFP_ATOMIC);
 986		if (!f)
 987			return f;
 988
 989		ether_addr_copy(f->macaddr, macaddr);
 990
 991		list_add_tail(&f->list, &adapter->mac_filter_list);
 992		f->add = true;
 993		f->add_handled = false;
 994		f->is_new_mac = true;
 995		f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
 996		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
 997	} else {
 998		f->remove = false;
 999	}
1000
1001	return f;
1002}
1003
1004/**
1005 * iavf_replace_primary_mac - Replace current primary address
1006 * @adapter: board private structure
1007 * @new_mac: new MAC address to be applied
1008 *
1009 * Replace current dev_addr and send request to PF for removal of previous
1010 * primary MAC address filter and addition of new primary MAC filter.
1011 * Return 0 for success, -ENOMEM for failure.
1012 *
1013 * Do not call this with mac_vlan_list_lock!
1014 **/
1015static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1016				    const u8 *new_mac)
1017{
1018	struct iavf_hw *hw = &adapter->hw;
1019	struct iavf_mac_filter *new_f;
1020	struct iavf_mac_filter *old_f;
1021
1022	spin_lock_bh(&adapter->mac_vlan_list_lock);
1023
1024	new_f = iavf_add_filter(adapter, new_mac);
1025	if (!new_f) {
1026		spin_unlock_bh(&adapter->mac_vlan_list_lock);
1027		return -ENOMEM;
1028	}
1029
1030	old_f = iavf_find_filter(adapter, hw->mac.addr);
1031	if (old_f) {
1032		old_f->is_primary = false;
1033		old_f->remove = true;
1034		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1035	}
1036	/* Always send the request to add if changing primary MAC,
1037	 * even if filter is already present on the list
1038	 */
1039	new_f->is_primary = true;
1040	new_f->add = true;
1041	ether_addr_copy(hw->mac.addr, new_mac);
1042
1043	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1044
1045	/* schedule the watchdog task to immediately process the request */
1046	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1047	return 0;
1048}
1049
1050/**
1051 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1052 * @netdev: network interface device structure
1053 * @macaddr: MAC address to set
1054 *
1055 * Returns true on success, false on failure
1056 */
1057static bool iavf_is_mac_set_handled(struct net_device *netdev,
1058				    const u8 *macaddr)
1059{
1060	struct iavf_adapter *adapter = netdev_priv(netdev);
1061	struct iavf_mac_filter *f;
1062	bool ret = false;
1063
1064	spin_lock_bh(&adapter->mac_vlan_list_lock);
1065
1066	f = iavf_find_filter(adapter, macaddr);
1067
1068	if (!f || (!f->add && f->add_handled))
1069		ret = true;
1070
1071	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1072
1073	return ret;
1074}
1075
1076/**
1077 * iavf_set_mac - NDO callback to set port MAC address
1078 * @netdev: network interface device structure
1079 * @p: pointer to an address structure
1080 *
1081 * Returns 0 on success, negative on failure
1082 */
1083static int iavf_set_mac(struct net_device *netdev, void *p)
1084{
1085	struct iavf_adapter *adapter = netdev_priv(netdev);
1086	struct sockaddr *addr = p;
1087	int ret;
1088
1089	if (!is_valid_ether_addr(addr->sa_data))
1090		return -EADDRNOTAVAIL;
1091
1092	ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1093
1094	if (ret)
1095		return ret;
1096
1097	ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1098					       iavf_is_mac_set_handled(netdev, addr->sa_data),
1099					       msecs_to_jiffies(2500));
1100
1101	/* If ret < 0 then it means wait was interrupted.
1102	 * If ret == 0 then it means we got a timeout.
1103	 * else it means we got response for set MAC from PF,
1104	 * check if netdev MAC was updated to requested MAC,
1105	 * if yes then set MAC succeeded otherwise it failed return -EACCES
1106	 */
1107	if (ret < 0)
1108		return ret;
1109
1110	if (!ret)
1111		return -EAGAIN;
1112
1113	if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1114		return -EACCES;
1115
1116	return 0;
1117}
1118
1119/**
1120 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1121 * @netdev: the netdevice
1122 * @addr: address to add
1123 *
1124 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1125 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1126 */
1127static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1128{
1129	struct iavf_adapter *adapter = netdev_priv(netdev);
1130
1131	if (iavf_add_filter(adapter, addr))
1132		return 0;
1133	else
1134		return -ENOMEM;
1135}
1136
1137/**
1138 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1139 * @netdev: the netdevice
1140 * @addr: address to add
1141 *
1142 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1143 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1144 */
1145static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1146{
1147	struct iavf_adapter *adapter = netdev_priv(netdev);
1148	struct iavf_mac_filter *f;
1149
1150	/* Under some circumstances, we might receive a request to delete
1151	 * our own device address from our uc list. Because we store the
1152	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1153	 * such requests and not delete our device address from this list.
1154	 */
1155	if (ether_addr_equal(addr, netdev->dev_addr))
1156		return 0;
1157
1158	f = iavf_find_filter(adapter, addr);
1159	if (f) {
1160		f->remove = true;
1161		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1162	}
1163	return 0;
1164}
1165
1166/**
1167 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1168 * @adapter: device specific adapter
1169 */
1170bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1171{
1172	return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1173		(IFF_PROMISC | IFF_ALLMULTI);
1174}
1175
1176/**
1177 * iavf_set_rx_mode - NDO callback to set the netdev filters
1178 * @netdev: network interface device structure
1179 **/
1180static void iavf_set_rx_mode(struct net_device *netdev)
1181{
1182	struct iavf_adapter *adapter = netdev_priv(netdev);
1183
1184	spin_lock_bh(&adapter->mac_vlan_list_lock);
1185	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1186	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1187	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1188
1189	spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1190	if (iavf_promiscuous_mode_changed(adapter))
1191		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1192	spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1193}
1194
1195/**
1196 * iavf_napi_enable_all - enable NAPI on all queue vectors
1197 * @adapter: board private structure
1198 **/
1199static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1200{
1201	int q_idx;
1202	struct iavf_q_vector *q_vector;
1203	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1204
1205	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1206		struct napi_struct *napi;
1207
1208		q_vector = &adapter->q_vectors[q_idx];
1209		napi = &q_vector->napi;
1210		napi_enable(napi);
1211	}
1212}
1213
1214/**
1215 * iavf_napi_disable_all - disable NAPI on all queue vectors
1216 * @adapter: board private structure
1217 **/
1218static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1219{
1220	int q_idx;
1221	struct iavf_q_vector *q_vector;
1222	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1223
1224	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1225		q_vector = &adapter->q_vectors[q_idx];
1226		napi_disable(&q_vector->napi);
1227	}
1228}
1229
1230/**
1231 * iavf_configure - set up transmit and receive data structures
1232 * @adapter: board private structure
1233 **/
1234static void iavf_configure(struct iavf_adapter *adapter)
1235{
1236	struct net_device *netdev = adapter->netdev;
1237	int i;
1238
1239	iavf_set_rx_mode(netdev);
1240
1241	iavf_configure_tx(adapter);
1242	iavf_configure_rx(adapter);
1243	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1244
1245	for (i = 0; i < adapter->num_active_queues; i++) {
1246		struct iavf_ring *ring = &adapter->rx_rings[i];
1247
1248		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1249	}
1250}
1251
1252/**
1253 * iavf_up_complete - Finish the last steps of bringing up a connection
1254 * @adapter: board private structure
1255 *
1256 * Expects to be called while holding crit_lock.
1257 **/
1258static void iavf_up_complete(struct iavf_adapter *adapter)
1259{
1260	iavf_change_state(adapter, __IAVF_RUNNING);
1261	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1262
1263	iavf_napi_enable_all(adapter);
1264
1265	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1266}
1267
1268/**
1269 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1270 * yet and mark other to be removed.
1271 * @adapter: board private structure
1272 **/
1273static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1274{
1275	struct iavf_vlan_filter *vlf, *vlftmp;
1276	struct iavf_mac_filter *f, *ftmp;
1277
1278	spin_lock_bh(&adapter->mac_vlan_list_lock);
1279	/* clear the sync flag on all filters */
1280	__dev_uc_unsync(adapter->netdev, NULL);
1281	__dev_mc_unsync(adapter->netdev, NULL);
1282
1283	/* remove all MAC filters */
1284	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1285				 list) {
1286		if (f->add) {
1287			list_del(&f->list);
1288			kfree(f);
1289		} else {
1290			f->remove = true;
1291		}
1292	}
1293
1294	/* disable all VLAN filters */
1295	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1296				 list)
1297		vlf->state = IAVF_VLAN_DISABLE;
1298
1299	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1300}
1301
1302/**
1303 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1304 * mark other to be removed.
1305 * @adapter: board private structure
1306 **/
1307static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1308{
1309	struct iavf_cloud_filter *cf, *cftmp;
1310
1311	/* remove all cloud filters */
1312	spin_lock_bh(&adapter->cloud_filter_list_lock);
1313	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1314				 list) {
1315		if (cf->add) {
1316			list_del(&cf->list);
1317			kfree(cf);
1318			adapter->num_cloud_filters--;
1319		} else {
1320			cf->del = true;
1321		}
1322	}
1323	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1324}
1325
1326/**
1327 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1328 * other to be removed.
1329 * @adapter: board private structure
1330 **/
1331static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1332{
1333	struct iavf_fdir_fltr *fdir;
1334
1335	/* remove all Flow Director filters */
1336	spin_lock_bh(&adapter->fdir_fltr_lock);
1337	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1338		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1339			/* Cancel a request, keep filter as inactive */
1340			fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1341		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1342			 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1343			/* Disable filters which are active or have a pending
1344			 * request to PF to be added
1345			 */
1346			fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1347		}
1348	}
1349	spin_unlock_bh(&adapter->fdir_fltr_lock);
1350}
1351
1352/**
1353 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1354 * other to be removed.
1355 * @adapter: board private structure
1356 **/
1357static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1358{
1359	struct iavf_adv_rss *rss, *rsstmp;
1360
1361	/* remove all advance RSS configuration */
1362	spin_lock_bh(&adapter->adv_rss_lock);
1363	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1364				 list) {
1365		if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1366			list_del(&rss->list);
1367			kfree(rss);
1368		} else {
1369			rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1370		}
1371	}
1372	spin_unlock_bh(&adapter->adv_rss_lock);
1373}
1374
1375/**
1376 * iavf_down - Shutdown the connection processing
1377 * @adapter: board private structure
1378 *
1379 * Expects to be called while holding crit_lock.
1380 **/
1381void iavf_down(struct iavf_adapter *adapter)
1382{
1383	struct net_device *netdev = adapter->netdev;
1384
1385	if (adapter->state <= __IAVF_DOWN_PENDING)
1386		return;
1387
1388	netif_carrier_off(netdev);
1389	netif_tx_disable(netdev);
1390	adapter->link_up = false;
1391	iavf_napi_disable_all(adapter);
1392	iavf_irq_disable(adapter);
1393
1394	iavf_clear_mac_vlan_filters(adapter);
1395	iavf_clear_cloud_filters(adapter);
1396	iavf_clear_fdir_filters(adapter);
1397	iavf_clear_adv_rss_conf(adapter);
1398
1399	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1400		return;
1401
1402	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1403		/* cancel any current operation */
1404		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1405		/* Schedule operations to close down the HW. Don't wait
1406		 * here for this to complete. The watchdog is still running
1407		 * and it will take care of this.
1408		 */
1409		if (!list_empty(&adapter->mac_filter_list))
1410			adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1411		if (!list_empty(&adapter->vlan_filter_list))
1412			adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1413		if (!list_empty(&adapter->cloud_filter_list))
1414			adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1415		if (!list_empty(&adapter->fdir_list_head))
1416			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1417		if (!list_empty(&adapter->adv_rss_list_head))
1418			adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1419	}
1420
1421	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1422}
1423
1424/**
1425 * iavf_acquire_msix_vectors - Setup the MSIX capability
1426 * @adapter: board private structure
1427 * @vectors: number of vectors to request
1428 *
1429 * Work with the OS to set up the MSIX vectors needed.
1430 *
1431 * Returns 0 on success, negative on failure
1432 **/
1433static int
1434iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1435{
1436	int err, vector_threshold;
1437
1438	/* We'll want at least 3 (vector_threshold):
1439	 * 0) Other (Admin Queue and link, mostly)
1440	 * 1) TxQ[0] Cleanup
1441	 * 2) RxQ[0] Cleanup
1442	 */
1443	vector_threshold = MIN_MSIX_COUNT;
1444
1445	/* The more we get, the more we will assign to Tx/Rx Cleanup
1446	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1447	 * Right now, we simply care about how many we'll get; we'll
1448	 * set them up later while requesting irq's.
1449	 */
1450	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1451				    vector_threshold, vectors);
1452	if (err < 0) {
1453		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1454		kfree(adapter->msix_entries);
1455		adapter->msix_entries = NULL;
1456		return err;
1457	}
1458
1459	/* Adjust for only the vectors we'll use, which is minimum
1460	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1461	 * vectors we were allocated.
1462	 */
1463	adapter->num_msix_vectors = err;
1464	return 0;
1465}
1466
1467/**
1468 * iavf_free_queues - Free memory for all rings
1469 * @adapter: board private structure to initialize
1470 *
1471 * Free all of the memory associated with queue pairs.
1472 **/
1473static void iavf_free_queues(struct iavf_adapter *adapter)
1474{
1475	if (!adapter->vsi_res)
1476		return;
1477	adapter->num_active_queues = 0;
1478	kfree(adapter->tx_rings);
1479	adapter->tx_rings = NULL;
1480	kfree(adapter->rx_rings);
1481	adapter->rx_rings = NULL;
1482}
1483
1484/**
1485 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1486 * @adapter: board private structure
1487 *
1488 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1489 * stripped in certain descriptor fields. Instead of checking the offload
1490 * capability bits in the hot path, cache the location the ring specific
1491 * flags.
1492 */
1493void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1494{
1495	int i;
1496
1497	for (i = 0; i < adapter->num_active_queues; i++) {
1498		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1499		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1500
1501		/* prevent multiple L2TAG bits being set after VFR */
1502		tx_ring->flags &=
1503			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1504			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1505		rx_ring->flags &=
1506			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1507			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1508
1509		if (VLAN_ALLOWED(adapter)) {
1510			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1511			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1512		} else if (VLAN_V2_ALLOWED(adapter)) {
1513			struct virtchnl_vlan_supported_caps *stripping_support;
1514			struct virtchnl_vlan_supported_caps *insertion_support;
1515
1516			stripping_support =
1517				&adapter->vlan_v2_caps.offloads.stripping_support;
1518			insertion_support =
1519				&adapter->vlan_v2_caps.offloads.insertion_support;
1520
1521			if (stripping_support->outer) {
1522				if (stripping_support->outer &
1523				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1524					rx_ring->flags |=
1525						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1526				else if (stripping_support->outer &
1527					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1528					rx_ring->flags |=
1529						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1530			} else if (stripping_support->inner) {
1531				if (stripping_support->inner &
1532				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1533					rx_ring->flags |=
1534						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1535				else if (stripping_support->inner &
1536					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1537					rx_ring->flags |=
1538						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1539			}
1540
1541			if (insertion_support->outer) {
1542				if (insertion_support->outer &
1543				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1544					tx_ring->flags |=
1545						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1546				else if (insertion_support->outer &
1547					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1548					tx_ring->flags |=
1549						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1550			} else if (insertion_support->inner) {
1551				if (insertion_support->inner &
1552				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1553					tx_ring->flags |=
1554						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1555				else if (insertion_support->inner &
1556					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1557					tx_ring->flags |=
1558						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1559			}
1560		}
1561	}
1562}
1563
1564/**
1565 * iavf_alloc_queues - Allocate memory for all rings
1566 * @adapter: board private structure to initialize
1567 *
1568 * We allocate one ring per queue at run-time since we don't know the
1569 * number of queues at compile-time.  The polling_netdev array is
1570 * intended for Multiqueue, but should work fine with a single queue.
1571 **/
1572static int iavf_alloc_queues(struct iavf_adapter *adapter)
1573{
1574	int i, num_active_queues;
1575
1576	/* If we're in reset reallocating queues we don't actually know yet for
1577	 * certain the PF gave us the number of queues we asked for but we'll
1578	 * assume it did.  Once basic reset is finished we'll confirm once we
1579	 * start negotiating config with PF.
1580	 */
1581	if (adapter->num_req_queues)
1582		num_active_queues = adapter->num_req_queues;
1583	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1584		 adapter->num_tc)
1585		num_active_queues = adapter->ch_config.total_qps;
1586	else
1587		num_active_queues = min_t(int,
1588					  adapter->vsi_res->num_queue_pairs,
1589					  (int)(num_online_cpus()));
1590
1591
1592	adapter->tx_rings = kcalloc(num_active_queues,
1593				    sizeof(struct iavf_ring), GFP_KERNEL);
1594	if (!adapter->tx_rings)
1595		goto err_out;
1596	adapter->rx_rings = kcalloc(num_active_queues,
1597				    sizeof(struct iavf_ring), GFP_KERNEL);
1598	if (!adapter->rx_rings)
1599		goto err_out;
1600
1601	for (i = 0; i < num_active_queues; i++) {
1602		struct iavf_ring *tx_ring;
1603		struct iavf_ring *rx_ring;
1604
1605		tx_ring = &adapter->tx_rings[i];
1606
1607		tx_ring->queue_index = i;
1608		tx_ring->netdev = adapter->netdev;
1609		tx_ring->dev = &adapter->pdev->dev;
1610		tx_ring->count = adapter->tx_desc_count;
1611		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1612		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1613			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1614
1615		rx_ring = &adapter->rx_rings[i];
1616		rx_ring->queue_index = i;
1617		rx_ring->netdev = adapter->netdev;
1618		rx_ring->dev = &adapter->pdev->dev;
1619		rx_ring->count = adapter->rx_desc_count;
1620		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1621	}
1622
1623	adapter->num_active_queues = num_active_queues;
1624
1625	iavf_set_queue_vlan_tag_loc(adapter);
1626
1627	return 0;
1628
1629err_out:
1630	iavf_free_queues(adapter);
1631	return -ENOMEM;
1632}
1633
1634/**
1635 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1636 * @adapter: board private structure to initialize
1637 *
1638 * Attempt to configure the interrupts using the best available
1639 * capabilities of the hardware and the kernel.
1640 **/
1641static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1642{
1643	int vector, v_budget;
1644	int pairs = 0;
1645	int err = 0;
1646
1647	if (!adapter->vsi_res) {
1648		err = -EIO;
1649		goto out;
1650	}
1651	pairs = adapter->num_active_queues;
1652
1653	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1654	 * us much good if we have more vectors than CPUs. However, we already
1655	 * limit the total number of queues by the number of CPUs so we do not
1656	 * need any further limiting here.
1657	 */
1658	v_budget = min_t(int, pairs + NONQ_VECS,
1659			 (int)adapter->vf_res->max_vectors);
1660
1661	adapter->msix_entries = kcalloc(v_budget,
1662					sizeof(struct msix_entry), GFP_KERNEL);
1663	if (!adapter->msix_entries) {
1664		err = -ENOMEM;
1665		goto out;
1666	}
1667
1668	for (vector = 0; vector < v_budget; vector++)
1669		adapter->msix_entries[vector].entry = vector;
1670
1671	err = iavf_acquire_msix_vectors(adapter, v_budget);
1672	if (!err)
1673		iavf_schedule_finish_config(adapter);
1674
1675out:
1676	return err;
1677}
1678
1679/**
1680 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1681 * @adapter: board private structure
1682 *
1683 * Return 0 on success, negative on failure
1684 **/
1685static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1686{
1687	struct iavf_aqc_get_set_rss_key_data *rss_key =
1688		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1689	struct iavf_hw *hw = &adapter->hw;
1690	enum iavf_status status;
1691
1692	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1693		/* bail because we already have a command pending */
1694		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1695			adapter->current_op);
1696		return -EBUSY;
1697	}
1698
1699	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1700	if (status) {
1701		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1702			iavf_stat_str(hw, status),
1703			iavf_aq_str(hw, hw->aq.asq_last_status));
1704		return iavf_status_to_errno(status);
1705
1706	}
1707
1708	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1709				     adapter->rss_lut, adapter->rss_lut_size);
1710	if (status) {
1711		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1712			iavf_stat_str(hw, status),
1713			iavf_aq_str(hw, hw->aq.asq_last_status));
1714		return iavf_status_to_errno(status);
1715	}
1716
1717	return 0;
1718
1719}
1720
1721/**
1722 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1723 * @adapter: board private structure
1724 *
1725 * Returns 0 on success, negative on failure
1726 **/
1727static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1728{
1729	struct iavf_hw *hw = &adapter->hw;
1730	u32 *dw;
1731	u16 i;
1732
1733	dw = (u32 *)adapter->rss_key;
1734	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1735		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1736
1737	dw = (u32 *)adapter->rss_lut;
1738	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1739		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1740
1741	iavf_flush(hw);
1742
1743	return 0;
1744}
1745
1746/**
1747 * iavf_config_rss - Configure RSS keys and lut
1748 * @adapter: board private structure
1749 *
1750 * Returns 0 on success, negative on failure
1751 **/
1752int iavf_config_rss(struct iavf_adapter *adapter)
1753{
1754
1755	if (RSS_PF(adapter)) {
1756		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1757					IAVF_FLAG_AQ_SET_RSS_KEY;
1758		return 0;
1759	} else if (RSS_AQ(adapter)) {
1760		return iavf_config_rss_aq(adapter);
1761	} else {
1762		return iavf_config_rss_reg(adapter);
1763	}
1764}
1765
1766/**
1767 * iavf_fill_rss_lut - Fill the lut with default values
1768 * @adapter: board private structure
1769 **/
1770static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1771{
1772	u16 i;
1773
1774	for (i = 0; i < adapter->rss_lut_size; i++)
1775		adapter->rss_lut[i] = i % adapter->num_active_queues;
1776}
1777
1778/**
1779 * iavf_init_rss - Prepare for RSS
1780 * @adapter: board private structure
1781 *
1782 * Return 0 on success, negative on failure
1783 **/
1784static int iavf_init_rss(struct iavf_adapter *adapter)
1785{
1786	struct iavf_hw *hw = &adapter->hw;
1787
1788	if (!RSS_PF(adapter)) {
1789		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1790		if (adapter->vf_res->vf_cap_flags &
1791		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1792			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1793		else
1794			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1795
1796		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1797		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1798	}
1799
1800	iavf_fill_rss_lut(adapter);
1801	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1802
1803	return iavf_config_rss(adapter);
1804}
1805
1806/**
1807 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1808 * @adapter: board private structure to initialize
1809 *
1810 * We allocate one q_vector per queue interrupt.  If allocation fails we
1811 * return -ENOMEM.
1812 **/
1813static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1814{
1815	int q_idx = 0, num_q_vectors;
1816	struct iavf_q_vector *q_vector;
1817
1818	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1819	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1820				     GFP_KERNEL);
1821	if (!adapter->q_vectors)
1822		return -ENOMEM;
1823
1824	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1825		q_vector = &adapter->q_vectors[q_idx];
1826		q_vector->adapter = adapter;
1827		q_vector->vsi = &adapter->vsi;
1828		q_vector->v_idx = q_idx;
1829		q_vector->reg_idx = q_idx;
1830		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1831		netif_napi_add(adapter->netdev, &q_vector->napi,
1832			       iavf_napi_poll);
1833	}
1834
1835	return 0;
1836}
1837
1838/**
1839 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1840 * @adapter: board private structure to initialize
1841 *
1842 * This function frees the memory allocated to the q_vectors.  In addition if
1843 * NAPI is enabled it will delete any references to the NAPI struct prior
1844 * to freeing the q_vector.
1845 **/
1846static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1847{
1848	int q_idx, num_q_vectors;
1849
1850	if (!adapter->q_vectors)
1851		return;
1852
1853	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1854
1855	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1856		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1857
1858		netif_napi_del(&q_vector->napi);
1859	}
1860	kfree(adapter->q_vectors);
1861	adapter->q_vectors = NULL;
1862}
1863
1864/**
1865 * iavf_reset_interrupt_capability - Reset MSIX setup
1866 * @adapter: board private structure
1867 *
1868 **/
1869static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1870{
1871	if (!adapter->msix_entries)
1872		return;
1873
1874	pci_disable_msix(adapter->pdev);
1875	kfree(adapter->msix_entries);
1876	adapter->msix_entries = NULL;
1877}
1878
1879/**
1880 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1881 * @adapter: board private structure to initialize
1882 *
1883 **/
1884static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1885{
1886	int err;
1887
1888	err = iavf_alloc_queues(adapter);
1889	if (err) {
1890		dev_err(&adapter->pdev->dev,
1891			"Unable to allocate memory for queues\n");
1892		goto err_alloc_queues;
1893	}
1894
1895	err = iavf_set_interrupt_capability(adapter);
1896	if (err) {
1897		dev_err(&adapter->pdev->dev,
1898			"Unable to setup interrupt capabilities\n");
1899		goto err_set_interrupt;
1900	}
1901
1902	err = iavf_alloc_q_vectors(adapter);
1903	if (err) {
1904		dev_err(&adapter->pdev->dev,
1905			"Unable to allocate memory for queue vectors\n");
1906		goto err_alloc_q_vectors;
1907	}
1908
1909	/* If we've made it so far while ADq flag being ON, then we haven't
1910	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1911	 * resources have been allocated in the reset path.
1912	 * Now we can truly claim that ADq is enabled.
1913	 */
1914	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1915	    adapter->num_tc)
1916		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1917			 adapter->num_tc);
1918
1919	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1920		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1921		 adapter->num_active_queues);
1922
1923	return 0;
1924err_alloc_q_vectors:
1925	iavf_reset_interrupt_capability(adapter);
1926err_set_interrupt:
1927	iavf_free_queues(adapter);
1928err_alloc_queues:
1929	return err;
1930}
1931
1932/**
1933 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1934 * @adapter: board private structure
1935 **/
1936static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1937{
1938	iavf_free_q_vectors(adapter);
1939	iavf_reset_interrupt_capability(adapter);
1940	iavf_free_queues(adapter);
1941}
1942
1943/**
1944 * iavf_free_rss - Free memory used by RSS structs
1945 * @adapter: board private structure
1946 **/
1947static void iavf_free_rss(struct iavf_adapter *adapter)
1948{
1949	kfree(adapter->rss_key);
1950	adapter->rss_key = NULL;
1951
1952	kfree(adapter->rss_lut);
1953	adapter->rss_lut = NULL;
1954}
1955
1956/**
1957 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1958 * @adapter: board private structure
1959 * @running: true if adapter->state == __IAVF_RUNNING
1960 *
1961 * Returns 0 on success, negative on failure
1962 **/
1963static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1964{
1965	struct net_device *netdev = adapter->netdev;
1966	int err;
1967
1968	if (running)
1969		iavf_free_traffic_irqs(adapter);
1970	iavf_free_misc_irq(adapter);
1971	iavf_free_interrupt_scheme(adapter);
1972
1973	err = iavf_init_interrupt_scheme(adapter);
1974	if (err)
1975		goto err;
1976
1977	netif_tx_stop_all_queues(netdev);
1978
1979	err = iavf_request_misc_irq(adapter);
1980	if (err)
1981		goto err;
1982
1983	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1984
1985	iavf_map_rings_to_vectors(adapter);
1986err:
1987	return err;
1988}
1989
1990/**
1991 * iavf_finish_config - do all netdev work that needs RTNL
1992 * @work: our work_struct
1993 *
1994 * Do work that needs both RTNL and crit_lock.
1995 **/
1996static void iavf_finish_config(struct work_struct *work)
1997{
1998	struct iavf_adapter *adapter;
1999	int pairs, err;
2000
2001	adapter = container_of(work, struct iavf_adapter, finish_config);
2002
2003	/* Always take RTNL first to prevent circular lock dependency */
 
 
2004	rtnl_lock();
 
2005	mutex_lock(&adapter->crit_lock);
2006
2007	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
2008	    adapter->netdev->reg_state == NETREG_REGISTERED &&
2009	    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2010		netdev_update_features(adapter->netdev);
2011		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2012	}
2013
2014	switch (adapter->state) {
2015	case __IAVF_DOWN:
2016		if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2017			err = register_netdevice(adapter->netdev);
2018			if (err) {
2019				dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2020					err);
2021
2022				/* go back and try again.*/
2023				iavf_free_rss(adapter);
2024				iavf_free_misc_irq(adapter);
2025				iavf_reset_interrupt_capability(adapter);
2026				iavf_change_state(adapter,
2027						  __IAVF_INIT_CONFIG_ADAPTER);
2028				goto out;
2029			}
2030		}
2031
2032		/* Set the real number of queues when reset occurs while
2033		 * state == __IAVF_DOWN
2034		 */
2035		fallthrough;
2036	case __IAVF_RUNNING:
2037		pairs = adapter->num_active_queues;
2038		netif_set_real_num_rx_queues(adapter->netdev, pairs);
2039		netif_set_real_num_tx_queues(adapter->netdev, pairs);
2040		break;
2041
2042	default:
2043		break;
2044	}
2045
2046out:
2047	mutex_unlock(&adapter->crit_lock);
 
2048	rtnl_unlock();
2049}
2050
2051/**
2052 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2053 * @adapter: board private structure
2054 **/
2055void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2056{
2057	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2058		queue_work(adapter->wq, &adapter->finish_config);
2059}
2060
2061/**
2062 * iavf_process_aq_command - process aq_required flags
2063 * and sends aq command
2064 * @adapter: pointer to iavf adapter structure
2065 *
2066 * Returns 0 on success
2067 * Returns error code if no command was sent
2068 * or error code if the command failed.
2069 **/
2070static int iavf_process_aq_command(struct iavf_adapter *adapter)
2071{
2072	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2073		return iavf_send_vf_config_msg(adapter);
2074	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2075		return iavf_send_vf_offload_vlan_v2_msg(adapter);
2076	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2077		iavf_disable_queues(adapter);
2078		return 0;
2079	}
2080
2081	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2082		iavf_map_queues(adapter);
2083		return 0;
2084	}
2085
2086	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2087		iavf_add_ether_addrs(adapter);
2088		return 0;
2089	}
2090
2091	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2092		iavf_add_vlans(adapter);
2093		return 0;
2094	}
2095
2096	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2097		iavf_del_ether_addrs(adapter);
2098		return 0;
2099	}
2100
2101	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2102		iavf_del_vlans(adapter);
2103		return 0;
2104	}
2105
2106	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2107		iavf_enable_vlan_stripping(adapter);
2108		return 0;
2109	}
2110
2111	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2112		iavf_disable_vlan_stripping(adapter);
2113		return 0;
2114	}
2115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2116	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2117		iavf_configure_queues(adapter);
2118		return 0;
2119	}
2120
2121	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2122		iavf_enable_queues(adapter);
2123		return 0;
2124	}
2125
2126	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2127		/* This message goes straight to the firmware, not the
2128		 * PF, so we don't have to set current_op as we will
2129		 * not get a response through the ARQ.
2130		 */
2131		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2132		return 0;
2133	}
2134	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2135		iavf_get_hena(adapter);
2136		return 0;
2137	}
2138	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2139		iavf_set_hena(adapter);
2140		return 0;
2141	}
2142	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2143		iavf_set_rss_key(adapter);
2144		return 0;
2145	}
2146	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2147		iavf_set_rss_lut(adapter);
2148		return 0;
2149	}
2150	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2151		iavf_set_rss_hfunc(adapter);
2152		return 0;
2153	}
2154
2155	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2156		iavf_set_promiscuous(adapter);
2157		return 0;
2158	}
2159
2160	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2161		iavf_enable_channels(adapter);
2162		return 0;
2163	}
2164
2165	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2166		iavf_disable_channels(adapter);
2167		return 0;
2168	}
2169	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2170		iavf_add_cloud_filter(adapter);
2171		return 0;
2172	}
2173	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2174		iavf_del_cloud_filter(adapter);
2175		return 0;
2176	}
2177	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2178		iavf_add_fdir_filter(adapter);
2179		return IAVF_SUCCESS;
2180	}
2181	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2182		iavf_del_fdir_filter(adapter);
2183		return IAVF_SUCCESS;
2184	}
2185	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2186		iavf_add_adv_rss_cfg(adapter);
2187		return 0;
2188	}
2189	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2190		iavf_del_adv_rss_cfg(adapter);
2191		return 0;
2192	}
2193	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2194		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2195		return 0;
2196	}
2197	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2198		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2199		return 0;
2200	}
2201	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2202		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2203		return 0;
2204	}
2205	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2206		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2207		return 0;
2208	}
2209	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2210		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2211		return 0;
2212	}
2213	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2214		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2215		return 0;
2216	}
2217	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2218		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2219		return 0;
2220	}
2221	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2222		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2223		return 0;
2224	}
2225
2226	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2227		iavf_request_stats(adapter);
2228		return 0;
2229	}
2230
2231	return -EAGAIN;
2232}
2233
2234/**
2235 * iavf_set_vlan_offload_features - set VLAN offload configuration
2236 * @adapter: board private structure
2237 * @prev_features: previous features used for comparison
2238 * @features: updated features used for configuration
2239 *
2240 * Set the aq_required bit(s) based on the requested features passed in to
2241 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2242 * the watchdog if any changes are requested to expedite the request via
2243 * virtchnl.
2244 **/
2245static void
2246iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2247			       netdev_features_t prev_features,
2248			       netdev_features_t features)
2249{
2250	bool enable_stripping = true, enable_insertion = true;
2251	u16 vlan_ethertype = 0;
2252	u64 aq_required = 0;
2253
2254	/* keep cases separate because one ethertype for offloads can be
2255	 * disabled at the same time as another is disabled, so check for an
2256	 * enabled ethertype first, then check for disabled. Default to
2257	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2258	 * stripping.
2259	 */
2260	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2261		vlan_ethertype = ETH_P_8021AD;
2262	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2263		vlan_ethertype = ETH_P_8021Q;
2264	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2265		vlan_ethertype = ETH_P_8021AD;
2266	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2267		vlan_ethertype = ETH_P_8021Q;
2268	else
2269		vlan_ethertype = ETH_P_8021Q;
2270
2271	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2272		enable_stripping = false;
2273	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2274		enable_insertion = false;
2275
2276	if (VLAN_ALLOWED(adapter)) {
2277		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2278		 * stripping via virtchnl. VLAN insertion can be toggled on the
2279		 * netdev, but it doesn't require a virtchnl message
2280		 */
2281		if (enable_stripping)
2282			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2283		else
2284			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2285
2286	} else if (VLAN_V2_ALLOWED(adapter)) {
2287		switch (vlan_ethertype) {
2288		case ETH_P_8021Q:
2289			if (enable_stripping)
2290				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2291			else
2292				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2293
2294			if (enable_insertion)
2295				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2296			else
2297				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2298			break;
2299		case ETH_P_8021AD:
2300			if (enable_stripping)
2301				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2302			else
2303				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2304
2305			if (enable_insertion)
2306				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2307			else
2308				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2309			break;
2310		}
2311	}
2312
2313	if (aq_required)
2314		iavf_schedule_aq_request(adapter, aq_required);
2315}
2316
2317/**
2318 * iavf_startup - first step of driver startup
2319 * @adapter: board private structure
2320 *
2321 * Function process __IAVF_STARTUP driver state.
2322 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2323 * when fails the state is changed to __IAVF_INIT_FAILED
2324 **/
2325static void iavf_startup(struct iavf_adapter *adapter)
2326{
2327	struct pci_dev *pdev = adapter->pdev;
2328	struct iavf_hw *hw = &adapter->hw;
2329	enum iavf_status status;
2330	int ret;
2331
2332	WARN_ON(adapter->state != __IAVF_STARTUP);
2333
2334	/* driver loaded, probe complete */
2335	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2336	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2337
2338	ret = iavf_check_reset_complete(hw);
2339	if (ret) {
2340		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2341			 ret);
2342		goto err;
2343	}
2344	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2345	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2346	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2347	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2348
2349	status = iavf_init_adminq(hw);
2350	if (status) {
2351		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2352			status);
2353		goto err;
2354	}
2355	ret = iavf_send_api_ver(adapter);
2356	if (ret) {
2357		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2358		iavf_shutdown_adminq(hw);
2359		goto err;
2360	}
2361	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2362	return;
2363err:
2364	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2365}
2366
2367/**
2368 * iavf_init_version_check - second step of driver startup
2369 * @adapter: board private structure
2370 *
2371 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2372 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2373 * when fails the state is changed to __IAVF_INIT_FAILED
2374 **/
2375static void iavf_init_version_check(struct iavf_adapter *adapter)
2376{
2377	struct pci_dev *pdev = adapter->pdev;
2378	struct iavf_hw *hw = &adapter->hw;
2379	int err = -EAGAIN;
2380
2381	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2382
2383	if (!iavf_asq_done(hw)) {
2384		dev_err(&pdev->dev, "Admin queue command never completed\n");
2385		iavf_shutdown_adminq(hw);
2386		iavf_change_state(adapter, __IAVF_STARTUP);
2387		goto err;
2388	}
2389
2390	/* aq msg sent, awaiting reply */
2391	err = iavf_verify_api_ver(adapter);
2392	if (err) {
2393		if (err == -EALREADY)
2394			err = iavf_send_api_ver(adapter);
2395		else
2396			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2397				adapter->pf_version.major,
2398				adapter->pf_version.minor,
2399				VIRTCHNL_VERSION_MAJOR,
2400				VIRTCHNL_VERSION_MINOR);
2401		goto err;
2402	}
2403	err = iavf_send_vf_config_msg(adapter);
2404	if (err) {
2405		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2406			err);
2407		goto err;
2408	}
2409	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2410	return;
2411err:
2412	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2413}
2414
2415/**
2416 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2417 * @adapter: board private structure
2418 */
2419int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2420{
2421	int i, num_req_queues = adapter->num_req_queues;
2422	struct iavf_vsi *vsi = &adapter->vsi;
2423
2424	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2425		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2426			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2427	}
2428	if (!adapter->vsi_res) {
2429		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2430		return -ENODEV;
2431	}
2432
2433	if (num_req_queues &&
2434	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2435		/* Problem.  The PF gave us fewer queues than what we had
2436		 * negotiated in our request.  Need a reset to see if we can't
2437		 * get back to a working state.
2438		 */
2439		dev_err(&adapter->pdev->dev,
2440			"Requested %d queues, but PF only gave us %d.\n",
2441			num_req_queues,
2442			adapter->vsi_res->num_queue_pairs);
2443		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2444		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2445		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2446
2447		return -EAGAIN;
2448	}
2449	adapter->num_req_queues = 0;
2450	adapter->vsi.id = adapter->vsi_res->vsi_id;
2451
2452	adapter->vsi.back = adapter;
2453	adapter->vsi.base_vector = 1;
2454	vsi->netdev = adapter->netdev;
2455	vsi->qs_handle = adapter->vsi_res->qset_handle;
2456	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2457		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2458		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2459	} else {
2460		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2461		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2462	}
2463
2464	return 0;
2465}
2466
2467/**
2468 * iavf_init_get_resources - third step of driver startup
2469 * @adapter: board private structure
2470 *
2471 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2472 * finishes driver initialization procedure.
2473 * When success the state is changed to __IAVF_DOWN
2474 * when fails the state is changed to __IAVF_INIT_FAILED
2475 **/
2476static void iavf_init_get_resources(struct iavf_adapter *adapter)
2477{
2478	struct pci_dev *pdev = adapter->pdev;
2479	struct iavf_hw *hw = &adapter->hw;
2480	int err;
2481
2482	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2483	/* aq msg sent, awaiting reply */
2484	if (!adapter->vf_res) {
2485		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2486					  GFP_KERNEL);
2487		if (!adapter->vf_res) {
2488			err = -ENOMEM;
2489			goto err;
2490		}
2491	}
2492	err = iavf_get_vf_config(adapter);
2493	if (err == -EALREADY) {
2494		err = iavf_send_vf_config_msg(adapter);
2495		goto err;
2496	} else if (err == -EINVAL) {
2497		/* We only get -EINVAL if the device is in a very bad
2498		 * state or if we've been disabled for previous bad
2499		 * behavior. Either way, we're done now.
2500		 */
2501		iavf_shutdown_adminq(hw);
2502		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2503		return;
2504	}
2505	if (err) {
2506		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2507		goto err_alloc;
2508	}
2509
2510	err = iavf_parse_vf_resource_msg(adapter);
2511	if (err) {
2512		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2513			err);
2514		goto err_alloc;
2515	}
2516	/* Some features require additional messages to negotiate extended
2517	 * capabilities. These are processed in sequence by the
2518	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2519	 */
2520	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2521
2522	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2523	return;
2524
2525err_alloc:
2526	kfree(adapter->vf_res);
2527	adapter->vf_res = NULL;
2528err:
2529	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2530}
2531
2532/**
2533 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2534 * @adapter: board private structure
2535 *
2536 * Function processes send of the extended VLAN V2 capability message to the
2537 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2538 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2539 */
2540static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2541{
2542	int ret;
2543
2544	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2545
2546	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2547	if (ret && ret == -EOPNOTSUPP) {
2548		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2549		 * we did not send the capability exchange message and do not
2550		 * expect a response.
2551		 */
2552		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2553	}
2554
2555	/* We sent the message, so move on to the next step */
2556	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2557}
2558
2559/**
2560 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2561 * @adapter: board private structure
2562 *
2563 * Function processes receipt of the extended VLAN V2 capability message from
2564 * the PF.
2565 **/
2566static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2567{
2568	int ret;
2569
2570	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2571
2572	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2573
2574	ret = iavf_get_vf_vlan_v2_caps(adapter);
2575	if (ret)
2576		goto err;
2577
2578	/* We've processed receipt of the VLAN V2 caps message */
2579	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2580	return;
2581err:
2582	/* We didn't receive a reply. Make sure we try sending again when
2583	 * __IAVF_INIT_FAILED attempts to recover.
2584	 */
2585	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2586	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2587}
2588
2589/**
2590 * iavf_init_process_extended_caps - Part of driver startup
2591 * @adapter: board private structure
2592 *
2593 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2594 * handles negotiating capabilities for features which require an additional
2595 * message.
2596 *
2597 * Once all extended capabilities exchanges are finished, the driver will
2598 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2599 */
2600static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2601{
2602	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2603
2604	/* Process capability exchange for VLAN V2 */
2605	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2606		iavf_init_send_offload_vlan_v2_caps(adapter);
2607		return;
2608	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2609		iavf_init_recv_offload_vlan_v2_caps(adapter);
2610		return;
2611	}
2612
2613	/* When we reach here, no further extended capabilities exchanges are
2614	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2615	 */
2616	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2617}
2618
2619/**
2620 * iavf_init_config_adapter - last part of driver startup
2621 * @adapter: board private structure
2622 *
2623 * After all the supported capabilities are negotiated, then the
2624 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2625 */
2626static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2627{
2628	struct net_device *netdev = adapter->netdev;
2629	struct pci_dev *pdev = adapter->pdev;
2630	int err;
2631
2632	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2633
2634	if (iavf_process_config(adapter))
2635		goto err;
2636
2637	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2638
2639	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2640
2641	netdev->netdev_ops = &iavf_netdev_ops;
2642	iavf_set_ethtool_ops(netdev);
2643	netdev->watchdog_timeo = 5 * HZ;
2644
2645	/* MTU range: 68 - 9710 */
2646	netdev->min_mtu = ETH_MIN_MTU;
2647	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2648
2649	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2650		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2651			 adapter->hw.mac.addr);
2652		eth_hw_addr_random(netdev);
2653		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2654	} else {
2655		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2656		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2657	}
2658
2659	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2660	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2661	err = iavf_init_interrupt_scheme(adapter);
2662	if (err)
2663		goto err_sw_init;
2664	iavf_map_rings_to_vectors(adapter);
2665	if (adapter->vf_res->vf_cap_flags &
2666		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2667		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2668
2669	err = iavf_request_misc_irq(adapter);
2670	if (err)
2671		goto err_sw_init;
2672
2673	netif_carrier_off(netdev);
2674	adapter->link_up = false;
2675	netif_tx_stop_all_queues(netdev);
2676
2677	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2678	if (netdev->features & NETIF_F_GRO)
2679		dev_info(&pdev->dev, "GRO is enabled\n");
2680
2681	iavf_change_state(adapter, __IAVF_DOWN);
2682	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2683
2684	iavf_misc_irq_enable(adapter);
2685	wake_up(&adapter->down_waitqueue);
2686
2687	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2688	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2689	if (!adapter->rss_key || !adapter->rss_lut) {
2690		err = -ENOMEM;
2691		goto err_mem;
2692	}
2693	if (RSS_AQ(adapter))
2694		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2695	else
2696		iavf_init_rss(adapter);
2697
2698	if (VLAN_V2_ALLOWED(adapter))
2699		/* request initial VLAN offload settings */
2700		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2701
 
 
 
2702	iavf_schedule_finish_config(adapter);
2703	return;
2704
2705err_mem:
2706	iavf_free_rss(adapter);
2707	iavf_free_misc_irq(adapter);
2708err_sw_init:
2709	iavf_reset_interrupt_capability(adapter);
2710err:
2711	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2712}
2713
2714/**
2715 * iavf_watchdog_task - Periodic call-back task
2716 * @work: pointer to work_struct
2717 **/
2718static void iavf_watchdog_task(struct work_struct *work)
2719{
2720	struct iavf_adapter *adapter = container_of(work,
2721						    struct iavf_adapter,
2722						    watchdog_task.work);
2723	struct iavf_hw *hw = &adapter->hw;
2724	u32 reg_val;
2725
2726	if (!mutex_trylock(&adapter->crit_lock)) {
2727		if (adapter->state == __IAVF_REMOVE)
2728			return;
2729
2730		goto restart_watchdog;
2731	}
2732
2733	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2734		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2735
2736	switch (adapter->state) {
2737	case __IAVF_STARTUP:
2738		iavf_startup(adapter);
2739		mutex_unlock(&adapter->crit_lock);
2740		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2741				   msecs_to_jiffies(30));
2742		return;
2743	case __IAVF_INIT_VERSION_CHECK:
2744		iavf_init_version_check(adapter);
2745		mutex_unlock(&adapter->crit_lock);
2746		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2747				   msecs_to_jiffies(30));
2748		return;
2749	case __IAVF_INIT_GET_RESOURCES:
2750		iavf_init_get_resources(adapter);
2751		mutex_unlock(&adapter->crit_lock);
2752		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2753				   msecs_to_jiffies(1));
2754		return;
2755	case __IAVF_INIT_EXTENDED_CAPS:
2756		iavf_init_process_extended_caps(adapter);
2757		mutex_unlock(&adapter->crit_lock);
2758		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2759				   msecs_to_jiffies(1));
2760		return;
2761	case __IAVF_INIT_CONFIG_ADAPTER:
2762		iavf_init_config_adapter(adapter);
2763		mutex_unlock(&adapter->crit_lock);
2764		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2765				   msecs_to_jiffies(1));
2766		return;
2767	case __IAVF_INIT_FAILED:
2768		if (test_bit(__IAVF_IN_REMOVE_TASK,
2769			     &adapter->crit_section)) {
2770			/* Do not update the state and do not reschedule
2771			 * watchdog task, iavf_remove should handle this state
2772			 * as it can loop forever
2773			 */
2774			mutex_unlock(&adapter->crit_lock);
2775			return;
2776		}
2777		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2778			dev_err(&adapter->pdev->dev,
2779				"Failed to communicate with PF; waiting before retry\n");
2780			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2781			iavf_shutdown_adminq(hw);
2782			mutex_unlock(&adapter->crit_lock);
2783			queue_delayed_work(adapter->wq,
2784					   &adapter->watchdog_task, (5 * HZ));
2785			return;
2786		}
2787		/* Try again from failed step*/
2788		iavf_change_state(adapter, adapter->last_state);
2789		mutex_unlock(&adapter->crit_lock);
2790		queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2791		return;
2792	case __IAVF_COMM_FAILED:
2793		if (test_bit(__IAVF_IN_REMOVE_TASK,
2794			     &adapter->crit_section)) {
2795			/* Set state to __IAVF_INIT_FAILED and perform remove
2796			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2797			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2798			 */
2799			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2800			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2801			mutex_unlock(&adapter->crit_lock);
2802			return;
2803		}
2804		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2805			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2806		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2807		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2808			/* A chance for redemption! */
2809			dev_err(&adapter->pdev->dev,
2810				"Hardware came out of reset. Attempting reinit.\n");
2811			/* When init task contacts the PF and
2812			 * gets everything set up again, it'll restart the
2813			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2814			 */
2815			iavf_change_state(adapter, __IAVF_STARTUP);
2816			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2817		}
2818		adapter->aq_required = 0;
2819		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2820		mutex_unlock(&adapter->crit_lock);
2821		queue_delayed_work(adapter->wq,
2822				   &adapter->watchdog_task,
2823				   msecs_to_jiffies(10));
2824		return;
2825	case __IAVF_RESETTING:
2826		mutex_unlock(&adapter->crit_lock);
2827		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2828				   HZ * 2);
2829		return;
2830	case __IAVF_DOWN:
2831	case __IAVF_DOWN_PENDING:
2832	case __IAVF_TESTING:
2833	case __IAVF_RUNNING:
2834		if (adapter->current_op) {
2835			if (!iavf_asq_done(hw)) {
2836				dev_dbg(&adapter->pdev->dev,
2837					"Admin queue timeout\n");
2838				iavf_send_api_ver(adapter);
2839			}
2840		} else {
2841			int ret = iavf_process_aq_command(adapter);
2842
2843			/* An error will be returned if no commands were
2844			 * processed; use this opportunity to update stats
2845			 * if the error isn't -ENOTSUPP
2846			 */
2847			if (ret && ret != -EOPNOTSUPP &&
2848			    adapter->state == __IAVF_RUNNING)
2849				iavf_request_stats(adapter);
2850		}
2851		if (adapter->state == __IAVF_RUNNING)
2852			iavf_detect_recover_hung(&adapter->vsi);
2853		break;
2854	case __IAVF_REMOVE:
2855	default:
2856		mutex_unlock(&adapter->crit_lock);
2857		return;
2858	}
2859
2860	/* check for hw reset */
2861	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2862	if (!reg_val) {
2863		adapter->aq_required = 0;
2864		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2865		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2866		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2867		mutex_unlock(&adapter->crit_lock);
2868		queue_delayed_work(adapter->wq,
2869				   &adapter->watchdog_task, HZ * 2);
2870		return;
2871	}
2872
2873	mutex_unlock(&adapter->crit_lock);
2874restart_watchdog:
2875	if (adapter->state >= __IAVF_DOWN)
2876		queue_work(adapter->wq, &adapter->adminq_task);
2877	if (adapter->aq_required)
2878		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2879				   msecs_to_jiffies(20));
2880	else
2881		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2882				   HZ * 2);
2883}
2884
2885/**
2886 * iavf_disable_vf - disable VF
2887 * @adapter: board private structure
2888 *
2889 * Set communication failed flag and free all resources.
2890 * NOTE: This function is expected to be called with crit_lock being held.
2891 **/
2892static void iavf_disable_vf(struct iavf_adapter *adapter)
2893{
2894	struct iavf_mac_filter *f, *ftmp;
2895	struct iavf_vlan_filter *fv, *fvtmp;
2896	struct iavf_cloud_filter *cf, *cftmp;
2897
2898	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2899
2900	/* We don't use netif_running() because it may be true prior to
2901	 * ndo_open() returning, so we can't assume it means all our open
2902	 * tasks have finished, since we're not holding the rtnl_lock here.
2903	 */
2904	if (adapter->state == __IAVF_RUNNING) {
2905		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2906		netif_carrier_off(adapter->netdev);
2907		netif_tx_disable(adapter->netdev);
2908		adapter->link_up = false;
2909		iavf_napi_disable_all(adapter);
2910		iavf_irq_disable(adapter);
2911		iavf_free_traffic_irqs(adapter);
2912		iavf_free_all_tx_resources(adapter);
2913		iavf_free_all_rx_resources(adapter);
2914	}
2915
2916	spin_lock_bh(&adapter->mac_vlan_list_lock);
2917
2918	/* Delete all of the filters */
2919	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2920		list_del(&f->list);
2921		kfree(f);
2922	}
2923
2924	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2925		list_del(&fv->list);
2926		kfree(fv);
2927	}
2928	adapter->num_vlan_filters = 0;
2929
2930	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2931
2932	spin_lock_bh(&adapter->cloud_filter_list_lock);
2933	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2934		list_del(&cf->list);
2935		kfree(cf);
2936		adapter->num_cloud_filters--;
2937	}
2938	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2939
2940	iavf_free_misc_irq(adapter);
2941	iavf_free_interrupt_scheme(adapter);
2942	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2943	iavf_shutdown_adminq(&adapter->hw);
2944	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2945	iavf_change_state(adapter, __IAVF_DOWN);
2946	wake_up(&adapter->down_waitqueue);
2947	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2948}
2949
2950/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2951 * iavf_reset_task - Call-back task to handle hardware reset
2952 * @work: pointer to work_struct
2953 *
2954 * During reset we need to shut down and reinitialize the admin queue
2955 * before we can use it to communicate with the PF again. We also clear
2956 * and reinit the rings because that context is lost as well.
2957 **/
2958static void iavf_reset_task(struct work_struct *work)
2959{
2960	struct iavf_adapter *adapter = container_of(work,
2961						      struct iavf_adapter,
2962						      reset_task);
2963	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2964	struct net_device *netdev = adapter->netdev;
2965	struct iavf_hw *hw = &adapter->hw;
2966	struct iavf_mac_filter *f, *ftmp;
2967	struct iavf_cloud_filter *cf;
2968	enum iavf_status status;
2969	u32 reg_val;
2970	int i = 0, err;
2971	bool running;
2972
2973	/* When device is being removed it doesn't make sense to run the reset
2974	 * task, just return in such a case.
2975	 */
 
2976	if (!mutex_trylock(&adapter->crit_lock)) {
2977		if (adapter->state != __IAVF_REMOVE)
2978			queue_work(adapter->wq, &adapter->reset_task);
2979
 
2980		return;
2981	}
2982
2983	iavf_misc_irq_disable(adapter);
2984	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2985		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2986		/* Restart the AQ here. If we have been reset but didn't
2987		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2988		 */
2989		iavf_shutdown_adminq(hw);
2990		iavf_init_adminq(hw);
2991		iavf_request_reset(adapter);
2992	}
2993	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2994
2995	/* poll until we see the reset actually happen */
2996	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2997		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2998			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2999		if (!reg_val)
3000			break;
3001		usleep_range(5000, 10000);
3002	}
3003	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3004		dev_info(&adapter->pdev->dev, "Never saw reset\n");
3005		goto continue_reset; /* act like the reset happened */
3006	}
3007
3008	/* wait until the reset is complete and the PF is responding to us */
3009	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3010		/* sleep first to make sure a minimum wait time is met */
3011		msleep(IAVF_RESET_WAIT_MS);
3012
3013		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3014			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3015		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3016			break;
3017	}
3018
3019	pci_set_master(adapter->pdev);
3020	pci_restore_msi_state(adapter->pdev);
3021
3022	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3023		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3024			reg_val);
3025		iavf_disable_vf(adapter);
3026		mutex_unlock(&adapter->crit_lock);
 
3027		return; /* Do not attempt to reinit. It's dead, Jim. */
3028	}
3029
3030continue_reset:
3031	/* We don't use netif_running() because it may be true prior to
3032	 * ndo_open() returning, so we can't assume it means all our open
3033	 * tasks have finished, since we're not holding the rtnl_lock here.
3034	 */
3035	running = adapter->state == __IAVF_RUNNING;
3036
3037	if (running) {
3038		netif_carrier_off(netdev);
3039		netif_tx_stop_all_queues(netdev);
3040		adapter->link_up = false;
3041		iavf_napi_disable_all(adapter);
3042	}
3043	iavf_irq_disable(adapter);
3044
3045	iavf_change_state(adapter, __IAVF_RESETTING);
3046	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3047
3048	/* free the Tx/Rx rings and descriptors, might be better to just
3049	 * re-use them sometime in the future
3050	 */
3051	iavf_free_all_rx_resources(adapter);
3052	iavf_free_all_tx_resources(adapter);
3053
3054	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3055	/* kill and reinit the admin queue */
3056	iavf_shutdown_adminq(hw);
3057	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3058	status = iavf_init_adminq(hw);
3059	if (status) {
3060		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3061			 status);
3062		goto reset_err;
3063	}
3064	adapter->aq_required = 0;
3065
3066	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3067	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3068		err = iavf_reinit_interrupt_scheme(adapter, running);
3069		if (err)
3070			goto reset_err;
3071	}
3072
3073	if (RSS_AQ(adapter)) {
3074		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3075	} else {
3076		err = iavf_init_rss(adapter);
3077		if (err)
3078			goto reset_err;
3079	}
3080
3081	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3082	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3083	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3084	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3085	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3086	 * been successfully sent and negotiated
3087	 */
3088	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3089	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3090
3091	spin_lock_bh(&adapter->mac_vlan_list_lock);
3092
3093	/* Delete filter for the current MAC address, it could have
3094	 * been changed by the PF via administratively set MAC.
3095	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3096	 */
3097	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3098		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3099			list_del(&f->list);
3100			kfree(f);
3101		}
3102	}
3103	/* re-add all MAC filters */
3104	list_for_each_entry(f, &adapter->mac_filter_list, list) {
3105		f->add = true;
3106	}
3107	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3108
3109	/* check if TCs are running and re-add all cloud filters */
3110	spin_lock_bh(&adapter->cloud_filter_list_lock);
3111	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3112	    adapter->num_tc) {
3113		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3114			cf->add = true;
3115		}
3116	}
3117	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3118
3119	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3120	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3121	iavf_misc_irq_enable(adapter);
3122
3123	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3124
3125	/* We were running when the reset started, so we need to restore some
3126	 * state here.
3127	 */
3128	if (running) {
3129		/* allocate transmit descriptors */
3130		err = iavf_setup_all_tx_resources(adapter);
3131		if (err)
3132			goto reset_err;
3133
3134		/* allocate receive descriptors */
3135		err = iavf_setup_all_rx_resources(adapter);
3136		if (err)
3137			goto reset_err;
3138
3139		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3140		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3141			err = iavf_request_traffic_irqs(adapter, netdev->name);
3142			if (err)
3143				goto reset_err;
3144
3145			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3146		}
3147
3148		iavf_configure(adapter);
3149
3150		/* iavf_up_complete() will switch device back
3151		 * to __IAVF_RUNNING
3152		 */
3153		iavf_up_complete(adapter);
3154
3155		iavf_irq_enable(adapter, true);
 
 
3156	} else {
3157		iavf_change_state(adapter, __IAVF_DOWN);
3158		wake_up(&adapter->down_waitqueue);
3159	}
3160
3161	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3162
3163	wake_up(&adapter->reset_waitqueue);
3164	mutex_unlock(&adapter->crit_lock);
 
3165
3166	return;
3167reset_err:
3168	if (running) {
3169		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3170		iavf_free_traffic_irqs(adapter);
3171	}
3172	iavf_disable_vf(adapter);
3173
3174	mutex_unlock(&adapter->crit_lock);
 
3175	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3176}
3177
3178/**
3179 * iavf_adminq_task - worker thread to clean the admin queue
3180 * @work: pointer to work_struct containing our data
3181 **/
3182static void iavf_adminq_task(struct work_struct *work)
3183{
3184	struct iavf_adapter *adapter =
3185		container_of(work, struct iavf_adapter, adminq_task);
3186	struct iavf_hw *hw = &adapter->hw;
3187	struct iavf_arq_event_info event;
3188	enum virtchnl_ops v_op;
3189	enum iavf_status ret, v_ret;
3190	u32 val, oldval;
3191	u16 pending;
3192
3193	if (!mutex_trylock(&adapter->crit_lock)) {
3194		if (adapter->state == __IAVF_REMOVE)
3195			return;
3196
3197		queue_work(adapter->wq, &adapter->adminq_task);
3198		goto out;
3199	}
3200
3201	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3202		goto unlock;
3203
3204	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3205	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3206	if (!event.msg_buf)
3207		goto unlock;
3208
3209	do {
3210		ret = iavf_clean_arq_element(hw, &event, &pending);
3211		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3212		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3213
3214		if (ret || !v_op)
3215			break; /* No event to process or error cleaning ARQ */
3216
3217		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3218					 event.msg_len);
3219		if (pending != 0)
3220			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3221	} while (pending);
3222
3223	if (iavf_is_reset_in_progress(adapter))
3224		goto freedom;
3225
3226	/* check for error indications */
3227	val = rd32(hw, IAVF_VF_ARQLEN1);
3228	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3229		goto freedom;
3230	oldval = val;
3231	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3232		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3233		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3234	}
3235	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3236		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3237		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3238	}
3239	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3240		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3241		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3242	}
3243	if (oldval != val)
3244		wr32(hw, IAVF_VF_ARQLEN1, val);
3245
3246	val = rd32(hw, IAVF_VF_ATQLEN1);
3247	oldval = val;
3248	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3249		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3250		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3251	}
3252	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3253		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3254		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3255	}
3256	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3257		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3258		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3259	}
3260	if (oldval != val)
3261		wr32(hw, IAVF_VF_ATQLEN1, val);
3262
3263freedom:
3264	kfree(event.msg_buf);
3265unlock:
3266	mutex_unlock(&adapter->crit_lock);
3267out:
3268	/* re-enable Admin queue interrupt cause */
3269	iavf_misc_irq_enable(adapter);
3270}
3271
3272/**
3273 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3274 * @adapter: board private structure
3275 *
3276 * Free all transmit software resources
3277 **/
3278void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3279{
3280	int i;
3281
3282	if (!adapter->tx_rings)
3283		return;
3284
3285	for (i = 0; i < adapter->num_active_queues; i++)
3286		if (adapter->tx_rings[i].desc)
3287			iavf_free_tx_resources(&adapter->tx_rings[i]);
3288}
3289
3290/**
3291 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3292 * @adapter: board private structure
3293 *
3294 * If this function returns with an error, then it's possible one or
3295 * more of the rings is populated (while the rest are not).  It is the
3296 * callers duty to clean those orphaned rings.
3297 *
3298 * Return 0 on success, negative on failure
3299 **/
3300static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3301{
3302	int i, err = 0;
3303
3304	for (i = 0; i < adapter->num_active_queues; i++) {
3305		adapter->tx_rings[i].count = adapter->tx_desc_count;
3306		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3307		if (!err)
3308			continue;
3309		dev_err(&adapter->pdev->dev,
3310			"Allocation for Tx Queue %u failed\n", i);
3311		break;
3312	}
3313
3314	return err;
3315}
3316
3317/**
3318 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3319 * @adapter: board private structure
3320 *
3321 * If this function returns with an error, then it's possible one or
3322 * more of the rings is populated (while the rest are not).  It is the
3323 * callers duty to clean those orphaned rings.
3324 *
3325 * Return 0 on success, negative on failure
3326 **/
3327static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3328{
3329	int i, err = 0;
3330
3331	for (i = 0; i < adapter->num_active_queues; i++) {
3332		adapter->rx_rings[i].count = adapter->rx_desc_count;
3333		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3334		if (!err)
3335			continue;
3336		dev_err(&adapter->pdev->dev,
3337			"Allocation for Rx Queue %u failed\n", i);
3338		break;
3339	}
3340	return err;
3341}
3342
3343/**
3344 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3345 * @adapter: board private structure
3346 *
3347 * Free all receive software resources
3348 **/
3349void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3350{
3351	int i;
3352
3353	if (!adapter->rx_rings)
3354		return;
3355
3356	for (i = 0; i < adapter->num_active_queues; i++)
3357		if (adapter->rx_rings[i].desc)
3358			iavf_free_rx_resources(&adapter->rx_rings[i]);
3359}
3360
3361/**
3362 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3363 * @adapter: board private structure
3364 * @max_tx_rate: max Tx bw for a tc
3365 **/
3366static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3367				      u64 max_tx_rate)
3368{
3369	int speed = 0, ret = 0;
3370
3371	if (ADV_LINK_SUPPORT(adapter)) {
3372		if (adapter->link_speed_mbps < U32_MAX) {
3373			speed = adapter->link_speed_mbps;
3374			goto validate_bw;
3375		} else {
3376			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3377			return -EINVAL;
3378		}
3379	}
3380
3381	switch (adapter->link_speed) {
3382	case VIRTCHNL_LINK_SPEED_40GB:
3383		speed = SPEED_40000;
3384		break;
3385	case VIRTCHNL_LINK_SPEED_25GB:
3386		speed = SPEED_25000;
3387		break;
3388	case VIRTCHNL_LINK_SPEED_20GB:
3389		speed = SPEED_20000;
3390		break;
3391	case VIRTCHNL_LINK_SPEED_10GB:
3392		speed = SPEED_10000;
3393		break;
3394	case VIRTCHNL_LINK_SPEED_5GB:
3395		speed = SPEED_5000;
3396		break;
3397	case VIRTCHNL_LINK_SPEED_2_5GB:
3398		speed = SPEED_2500;
3399		break;
3400	case VIRTCHNL_LINK_SPEED_1GB:
3401		speed = SPEED_1000;
3402		break;
3403	case VIRTCHNL_LINK_SPEED_100MB:
3404		speed = SPEED_100;
3405		break;
3406	default:
3407		break;
3408	}
3409
3410validate_bw:
3411	if (max_tx_rate > speed) {
3412		dev_err(&adapter->pdev->dev,
3413			"Invalid tx rate specified\n");
3414		ret = -EINVAL;
3415	}
3416
3417	return ret;
3418}
3419
3420/**
3421 * iavf_validate_ch_config - validate queue mapping info
3422 * @adapter: board private structure
3423 * @mqprio_qopt: queue parameters
3424 *
3425 * This function validates if the config provided by the user to
3426 * configure queue channels is valid or not. Returns 0 on a valid
3427 * config.
3428 **/
3429static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3430				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3431{
3432	u64 total_max_rate = 0;
3433	u32 tx_rate_rem = 0;
3434	int i, num_qps = 0;
3435	u64 tx_rate = 0;
3436	int ret = 0;
3437
3438	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3439	    mqprio_qopt->qopt.num_tc < 1)
3440		return -EINVAL;
3441
3442	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3443		if (!mqprio_qopt->qopt.count[i] ||
3444		    mqprio_qopt->qopt.offset[i] != num_qps)
3445			return -EINVAL;
3446		if (mqprio_qopt->min_rate[i]) {
3447			dev_err(&adapter->pdev->dev,
3448				"Invalid min tx rate (greater than 0) specified for TC%d\n",
3449				i);
3450			return -EINVAL;
3451		}
3452
3453		/* convert to Mbps */
3454		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3455				  IAVF_MBPS_DIVISOR);
3456
3457		if (mqprio_qopt->max_rate[i] &&
3458		    tx_rate < IAVF_MBPS_QUANTA) {
3459			dev_err(&adapter->pdev->dev,
3460				"Invalid max tx rate for TC%d, minimum %dMbps\n",
3461				i, IAVF_MBPS_QUANTA);
3462			return -EINVAL;
3463		}
3464
3465		(void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3466
3467		if (tx_rate_rem != 0) {
3468			dev_err(&adapter->pdev->dev,
3469				"Invalid max tx rate for TC%d, not divisible by %d\n",
3470				i, IAVF_MBPS_QUANTA);
3471			return -EINVAL;
3472		}
3473
3474		total_max_rate += tx_rate;
3475		num_qps += mqprio_qopt->qopt.count[i];
3476	}
3477	if (num_qps > adapter->num_active_queues) {
3478		dev_err(&adapter->pdev->dev,
3479			"Cannot support requested number of queues\n");
3480		return -EINVAL;
3481	}
3482
3483	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3484	return ret;
3485}
3486
3487/**
3488 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3489 * @adapter: board private structure
3490 **/
3491static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3492{
3493	struct iavf_cloud_filter *cf, *cftmp;
3494
3495	spin_lock_bh(&adapter->cloud_filter_list_lock);
3496	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3497				 list) {
3498		list_del(&cf->list);
3499		kfree(cf);
3500		adapter->num_cloud_filters--;
3501	}
3502	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3503}
3504
3505/**
3506 * iavf_is_tc_config_same - Compare the mqprio TC config with the
3507 * TC config already configured on this adapter.
3508 * @adapter: board private structure
3509 * @mqprio_qopt: TC config received from kernel.
3510 *
3511 * This function compares the TC config received from the kernel
3512 * with the config already configured on the adapter.
3513 *
3514 * Return: True if configuration is same, false otherwise.
3515 **/
3516static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3517				   struct tc_mqprio_qopt *mqprio_qopt)
3518{
3519	struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3520	int i;
3521
3522	if (adapter->num_tc != mqprio_qopt->num_tc)
3523		return false;
3524
3525	for (i = 0; i < adapter->num_tc; i++) {
3526		if (ch[i].count != mqprio_qopt->count[i] ||
3527		    ch[i].offset != mqprio_qopt->offset[i])
3528			return false;
3529	}
3530	return true;
3531}
3532
3533/**
3534 * __iavf_setup_tc - configure multiple traffic classes
3535 * @netdev: network interface device structure
3536 * @type_data: tc offload data
3537 *
3538 * This function processes the config information provided by the
3539 * user to configure traffic classes/queue channels and packages the
3540 * information to request the PF to setup traffic classes.
3541 *
3542 * Returns 0 on success.
3543 **/
3544static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3545{
3546	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3547	struct iavf_adapter *adapter = netdev_priv(netdev);
3548	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3549	u8 num_tc = 0, total_qps = 0;
3550	int ret = 0, netdev_tc = 0;
3551	u64 max_tx_rate;
3552	u16 mode;
3553	int i;
3554
3555	num_tc = mqprio_qopt->qopt.num_tc;
3556	mode = mqprio_qopt->mode;
3557
3558	/* delete queue_channel */
3559	if (!mqprio_qopt->qopt.hw) {
3560		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3561			/* reset the tc configuration */
3562			netdev_reset_tc(netdev);
3563			adapter->num_tc = 0;
3564			netif_tx_stop_all_queues(netdev);
3565			netif_tx_disable(netdev);
3566			iavf_del_all_cloud_filters(adapter);
3567			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3568			total_qps = adapter->orig_num_active_queues;
3569			goto exit;
3570		} else {
3571			return -EINVAL;
3572		}
3573	}
3574
3575	/* add queue channel */
3576	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3577		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3578			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3579			return -EOPNOTSUPP;
3580		}
3581		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3582			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3583			return -EINVAL;
3584		}
3585
3586		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3587		if (ret)
3588			return ret;
3589		/* Return if same TC config is requested */
3590		if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3591			return 0;
3592		adapter->num_tc = num_tc;
3593
3594		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3595			if (i < num_tc) {
3596				adapter->ch_config.ch_info[i].count =
3597					mqprio_qopt->qopt.count[i];
3598				adapter->ch_config.ch_info[i].offset =
3599					mqprio_qopt->qopt.offset[i];
3600				total_qps += mqprio_qopt->qopt.count[i];
3601				max_tx_rate = mqprio_qopt->max_rate[i];
3602				/* convert to Mbps */
3603				max_tx_rate = div_u64(max_tx_rate,
3604						      IAVF_MBPS_DIVISOR);
3605				adapter->ch_config.ch_info[i].max_tx_rate =
3606					max_tx_rate;
3607			} else {
3608				adapter->ch_config.ch_info[i].count = 1;
3609				adapter->ch_config.ch_info[i].offset = 0;
3610			}
3611		}
3612
3613		/* Take snapshot of original config such as "num_active_queues"
3614		 * It is used later when delete ADQ flow is exercised, so that
3615		 * once delete ADQ flow completes, VF shall go back to its
3616		 * original queue configuration
3617		 */
3618
3619		adapter->orig_num_active_queues = adapter->num_active_queues;
3620
3621		/* Store queue info based on TC so that VF gets configured
3622		 * with correct number of queues when VF completes ADQ config
3623		 * flow
3624		 */
3625		adapter->ch_config.total_qps = total_qps;
3626
3627		netif_tx_stop_all_queues(netdev);
3628		netif_tx_disable(netdev);
3629		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3630		netdev_reset_tc(netdev);
3631		/* Report the tc mapping up the stack */
3632		netdev_set_num_tc(adapter->netdev, num_tc);
3633		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3634			u16 qcount = mqprio_qopt->qopt.count[i];
3635			u16 qoffset = mqprio_qopt->qopt.offset[i];
3636
3637			if (i < num_tc)
3638				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3639						    qoffset);
3640		}
3641	}
3642exit:
3643	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3644		return 0;
3645
 
3646	netif_set_real_num_rx_queues(netdev, total_qps);
3647	netif_set_real_num_tx_queues(netdev, total_qps);
 
3648
3649	return ret;
3650}
3651
3652/**
3653 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3654 * @adapter: board private structure
3655 * @f: pointer to struct flow_cls_offload
3656 * @filter: pointer to cloud filter structure
3657 */
3658static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3659				 struct flow_cls_offload *f,
3660				 struct iavf_cloud_filter *filter)
3661{
3662	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3663	struct flow_dissector *dissector = rule->match.dissector;
3664	u16 n_proto_mask = 0;
3665	u16 n_proto_key = 0;
3666	u8 field_flags = 0;
3667	u16 addr_type = 0;
3668	u16 n_proto = 0;
3669	int i = 0;
3670	struct virtchnl_filter *vf = &filter->f;
3671
3672	if (dissector->used_keys &
3673	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3674	      BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3675	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3676	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3677	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3678	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3679	      BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3680	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3681		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3682			dissector->used_keys);
3683		return -EOPNOTSUPP;
3684	}
3685
3686	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3687		struct flow_match_enc_keyid match;
3688
3689		flow_rule_match_enc_keyid(rule, &match);
3690		if (match.mask->keyid != 0)
3691			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3692	}
3693
3694	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3695		struct flow_match_basic match;
3696
3697		flow_rule_match_basic(rule, &match);
3698		n_proto_key = ntohs(match.key->n_proto);
3699		n_proto_mask = ntohs(match.mask->n_proto);
3700
3701		if (n_proto_key == ETH_P_ALL) {
3702			n_proto_key = 0;
3703			n_proto_mask = 0;
3704		}
3705		n_proto = n_proto_key & n_proto_mask;
3706		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3707			return -EINVAL;
3708		if (n_proto == ETH_P_IPV6) {
3709			/* specify flow type as TCP IPv6 */
3710			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3711		}
3712
3713		if (match.key->ip_proto != IPPROTO_TCP) {
3714			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3715			return -EINVAL;
3716		}
3717	}
3718
3719	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3720		struct flow_match_eth_addrs match;
3721
3722		flow_rule_match_eth_addrs(rule, &match);
3723
3724		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3725		if (!is_zero_ether_addr(match.mask->dst)) {
3726			if (is_broadcast_ether_addr(match.mask->dst)) {
3727				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3728			} else {
3729				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3730					match.mask->dst);
3731				return -EINVAL;
3732			}
3733		}
3734
3735		if (!is_zero_ether_addr(match.mask->src)) {
3736			if (is_broadcast_ether_addr(match.mask->src)) {
3737				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3738			} else {
3739				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3740					match.mask->src);
3741				return -EINVAL;
3742			}
3743		}
3744
3745		if (!is_zero_ether_addr(match.key->dst))
3746			if (is_valid_ether_addr(match.key->dst) ||
3747			    is_multicast_ether_addr(match.key->dst)) {
3748				/* set the mask if a valid dst_mac address */
3749				for (i = 0; i < ETH_ALEN; i++)
3750					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3751				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3752						match.key->dst);
3753			}
3754
3755		if (!is_zero_ether_addr(match.key->src))
3756			if (is_valid_ether_addr(match.key->src) ||
3757			    is_multicast_ether_addr(match.key->src)) {
3758				/* set the mask if a valid dst_mac address */
3759				for (i = 0; i < ETH_ALEN; i++)
3760					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3761				ether_addr_copy(vf->data.tcp_spec.src_mac,
3762						match.key->src);
3763		}
3764	}
3765
3766	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3767		struct flow_match_vlan match;
3768
3769		flow_rule_match_vlan(rule, &match);
3770		if (match.mask->vlan_id) {
3771			if (match.mask->vlan_id == VLAN_VID_MASK) {
3772				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3773			} else {
3774				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3775					match.mask->vlan_id);
3776				return -EINVAL;
3777			}
3778		}
3779		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3780		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3781	}
3782
3783	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3784		struct flow_match_control match;
3785
3786		flow_rule_match_control(rule, &match);
3787		addr_type = match.key->addr_type;
 
 
 
 
3788	}
3789
3790	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3791		struct flow_match_ipv4_addrs match;
3792
3793		flow_rule_match_ipv4_addrs(rule, &match);
3794		if (match.mask->dst) {
3795			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3796				field_flags |= IAVF_CLOUD_FIELD_IIP;
3797			} else {
3798				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3799					be32_to_cpu(match.mask->dst));
3800				return -EINVAL;
3801			}
3802		}
3803
3804		if (match.mask->src) {
3805			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3806				field_flags |= IAVF_CLOUD_FIELD_IIP;
3807			} else {
3808				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3809					be32_to_cpu(match.mask->src));
3810				return -EINVAL;
3811			}
3812		}
3813
3814		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3815			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3816			return -EINVAL;
3817		}
3818		if (match.key->dst) {
3819			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3820			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3821		}
3822		if (match.key->src) {
3823			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3824			vf->data.tcp_spec.src_ip[0] = match.key->src;
3825		}
3826	}
3827
3828	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3829		struct flow_match_ipv6_addrs match;
3830
3831		flow_rule_match_ipv6_addrs(rule, &match);
3832
3833		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3834		if (ipv6_addr_any(&match.mask->dst)) {
3835			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3836				IPV6_ADDR_ANY);
3837			return -EINVAL;
3838		}
3839
3840		/* src and dest IPv6 address should not be LOOPBACK
3841		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3842		 */
3843		if (ipv6_addr_loopback(&match.key->dst) ||
3844		    ipv6_addr_loopback(&match.key->src)) {
3845			dev_err(&adapter->pdev->dev,
3846				"ipv6 addr should not be loopback\n");
3847			return -EINVAL;
3848		}
3849		if (!ipv6_addr_any(&match.mask->dst) ||
3850		    !ipv6_addr_any(&match.mask->src))
3851			field_flags |= IAVF_CLOUD_FIELD_IIP;
3852
3853		for (i = 0; i < 4; i++)
3854			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3855		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3856		       sizeof(vf->data.tcp_spec.dst_ip));
3857		for (i = 0; i < 4; i++)
3858			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3859		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3860		       sizeof(vf->data.tcp_spec.src_ip));
3861	}
3862	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3863		struct flow_match_ports match;
3864
3865		flow_rule_match_ports(rule, &match);
3866		if (match.mask->src) {
3867			if (match.mask->src == cpu_to_be16(0xffff)) {
3868				field_flags |= IAVF_CLOUD_FIELD_IIP;
3869			} else {
3870				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3871					be16_to_cpu(match.mask->src));
3872				return -EINVAL;
3873			}
3874		}
3875
3876		if (match.mask->dst) {
3877			if (match.mask->dst == cpu_to_be16(0xffff)) {
3878				field_flags |= IAVF_CLOUD_FIELD_IIP;
3879			} else {
3880				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3881					be16_to_cpu(match.mask->dst));
3882				return -EINVAL;
3883			}
3884		}
3885		if (match.key->dst) {
3886			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3887			vf->data.tcp_spec.dst_port = match.key->dst;
3888		}
3889
3890		if (match.key->src) {
3891			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3892			vf->data.tcp_spec.src_port = match.key->src;
3893		}
3894	}
3895	vf->field_flags = field_flags;
3896
3897	return 0;
3898}
3899
3900/**
3901 * iavf_handle_tclass - Forward to a traffic class on the device
3902 * @adapter: board private structure
3903 * @tc: traffic class index on the device
3904 * @filter: pointer to cloud filter structure
3905 */
3906static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3907			      struct iavf_cloud_filter *filter)
3908{
3909	if (tc == 0)
3910		return 0;
3911	if (tc < adapter->num_tc) {
3912		if (!filter->f.data.tcp_spec.dst_port) {
3913			dev_err(&adapter->pdev->dev,
3914				"Specify destination port to redirect to traffic class other than TC0\n");
3915			return -EINVAL;
3916		}
3917	}
3918	/* redirect to a traffic class on the same device */
3919	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3920	filter->f.action_meta = tc;
3921	return 0;
3922}
3923
3924/**
3925 * iavf_find_cf - Find the cloud filter in the list
3926 * @adapter: Board private structure
3927 * @cookie: filter specific cookie
3928 *
3929 * Returns ptr to the filter object or NULL. Must be called while holding the
3930 * cloud_filter_list_lock.
3931 */
3932static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3933					      unsigned long *cookie)
3934{
3935	struct iavf_cloud_filter *filter = NULL;
3936
3937	if (!cookie)
3938		return NULL;
3939
3940	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3941		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3942			return filter;
3943	}
3944	return NULL;
3945}
3946
3947/**
3948 * iavf_configure_clsflower - Add tc flower filters
3949 * @adapter: board private structure
3950 * @cls_flower: Pointer to struct flow_cls_offload
3951 */
3952static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3953				    struct flow_cls_offload *cls_flower)
3954{
3955	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3956	struct iavf_cloud_filter *filter = NULL;
3957	int err = -EINVAL, count = 50;
3958
3959	if (tc < 0) {
3960		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3961		return -EINVAL;
3962	}
3963
3964	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3965	if (!filter)
3966		return -ENOMEM;
3967
3968	while (!mutex_trylock(&adapter->crit_lock)) {
3969		if (--count == 0) {
3970			kfree(filter);
3971			return err;
3972		}
3973		udelay(1);
3974	}
3975
3976	filter->cookie = cls_flower->cookie;
3977
3978	/* bail out here if filter already exists */
3979	spin_lock_bh(&adapter->cloud_filter_list_lock);
3980	if (iavf_find_cf(adapter, &cls_flower->cookie)) {
3981		dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
3982		err = -EEXIST;
3983		goto spin_unlock;
3984	}
3985	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3986
3987	/* set the mask to all zeroes to begin with */
3988	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3989	/* start out with flow type and eth type IPv4 to begin with */
3990	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3991	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3992	if (err)
3993		goto err;
3994
3995	err = iavf_handle_tclass(adapter, tc, filter);
3996	if (err)
3997		goto err;
3998
3999	/* add filter to the list */
4000	spin_lock_bh(&adapter->cloud_filter_list_lock);
4001	list_add_tail(&filter->list, &adapter->cloud_filter_list);
4002	adapter->num_cloud_filters++;
4003	filter->add = true;
4004	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4005spin_unlock:
4006	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4007err:
4008	if (err)
4009		kfree(filter);
4010
4011	mutex_unlock(&adapter->crit_lock);
4012	return err;
4013}
4014
4015/**
4016 * iavf_delete_clsflower - Remove tc flower filters
4017 * @adapter: board private structure
4018 * @cls_flower: Pointer to struct flow_cls_offload
4019 */
4020static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4021				 struct flow_cls_offload *cls_flower)
4022{
4023	struct iavf_cloud_filter *filter = NULL;
4024	int err = 0;
4025
4026	spin_lock_bh(&adapter->cloud_filter_list_lock);
4027	filter = iavf_find_cf(adapter, &cls_flower->cookie);
4028	if (filter) {
4029		filter->del = true;
4030		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4031	} else {
4032		err = -EINVAL;
4033	}
4034	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4035
4036	return err;
4037}
4038
4039/**
4040 * iavf_setup_tc_cls_flower - flower classifier offloads
4041 * @adapter: board private structure
4042 * @cls_flower: pointer to flow_cls_offload struct with flow info
4043 */
4044static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4045				    struct flow_cls_offload *cls_flower)
4046{
4047	switch (cls_flower->command) {
4048	case FLOW_CLS_REPLACE:
4049		return iavf_configure_clsflower(adapter, cls_flower);
4050	case FLOW_CLS_DESTROY:
4051		return iavf_delete_clsflower(adapter, cls_flower);
4052	case FLOW_CLS_STATS:
4053		return -EOPNOTSUPP;
4054	default:
4055		return -EOPNOTSUPP;
4056	}
4057}
4058
4059/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4060 * iavf_setup_tc_block_cb - block callback for tc
4061 * @type: type of offload
4062 * @type_data: offload data
4063 * @cb_priv:
4064 *
4065 * This function is the block callback for traffic classes
4066 **/
4067static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4068				  void *cb_priv)
4069{
4070	struct iavf_adapter *adapter = cb_priv;
4071
4072	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4073		return -EOPNOTSUPP;
4074
4075	switch (type) {
4076	case TC_SETUP_CLSFLOWER:
4077		return iavf_setup_tc_cls_flower(cb_priv, type_data);
 
 
4078	default:
4079		return -EOPNOTSUPP;
4080	}
4081}
4082
4083static LIST_HEAD(iavf_block_cb_list);
4084
4085/**
4086 * iavf_setup_tc - configure multiple traffic classes
4087 * @netdev: network interface device structure
4088 * @type: type of offload
4089 * @type_data: tc offload data
4090 *
4091 * This function is the callback to ndo_setup_tc in the
4092 * netdev_ops.
4093 *
4094 * Returns 0 on success
4095 **/
4096static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4097			 void *type_data)
4098{
4099	struct iavf_adapter *adapter = netdev_priv(netdev);
4100
4101	switch (type) {
4102	case TC_SETUP_QDISC_MQPRIO:
4103		return __iavf_setup_tc(netdev, type_data);
4104	case TC_SETUP_BLOCK:
4105		return flow_block_cb_setup_simple(type_data,
4106						  &iavf_block_cb_list,
4107						  iavf_setup_tc_block_cb,
4108						  adapter, adapter, true);
4109	default:
4110		return -EOPNOTSUPP;
4111	}
4112}
4113
4114/**
4115 * iavf_restore_fdir_filters
4116 * @adapter: board private structure
4117 *
4118 * Restore existing FDIR filters when VF netdev comes back up.
4119 **/
4120static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4121{
4122	struct iavf_fdir_fltr *f;
4123
4124	spin_lock_bh(&adapter->fdir_fltr_lock);
4125	list_for_each_entry(f, &adapter->fdir_list_head, list) {
4126		if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4127			/* Cancel a request, keep filter as active */
4128			f->state = IAVF_FDIR_FLTR_ACTIVE;
4129		} else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4130			   f->state == IAVF_FDIR_FLTR_INACTIVE) {
4131			/* Add filters which are inactive or have a pending
4132			 * request to PF to be deleted
4133			 */
4134			f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4135			adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4136		}
4137	}
4138	spin_unlock_bh(&adapter->fdir_fltr_lock);
4139}
4140
4141/**
4142 * iavf_open - Called when a network interface is made active
4143 * @netdev: network interface device structure
4144 *
4145 * Returns 0 on success, negative value on failure
4146 *
4147 * The open entry point is called when a network interface is made
4148 * active by the system (IFF_UP).  At this point all resources needed
4149 * for transmit and receive operations are allocated, the interrupt
4150 * handler is registered with the OS, the watchdog is started,
4151 * and the stack is notified that the interface is ready.
4152 **/
4153static int iavf_open(struct net_device *netdev)
4154{
4155	struct iavf_adapter *adapter = netdev_priv(netdev);
4156	int err;
4157
4158	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4159		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4160		return -EIO;
4161	}
4162
4163	while (!mutex_trylock(&adapter->crit_lock)) {
4164		/* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4165		 * is already taken and iavf_open is called from an upper
4166		 * device's notifier reacting on NETDEV_REGISTER event.
4167		 * We have to leave here to avoid dead lock.
4168		 */
4169		if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4170			return -EBUSY;
4171
4172		usleep_range(500, 1000);
4173	}
4174
4175	if (adapter->state != __IAVF_DOWN) {
4176		err = -EBUSY;
4177		goto err_unlock;
4178	}
4179
4180	if (adapter->state == __IAVF_RUNNING &&
4181	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4182		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4183		err = 0;
4184		goto err_unlock;
4185	}
4186
4187	/* allocate transmit descriptors */
4188	err = iavf_setup_all_tx_resources(adapter);
4189	if (err)
4190		goto err_setup_tx;
4191
4192	/* allocate receive descriptors */
4193	err = iavf_setup_all_rx_resources(adapter);
4194	if (err)
4195		goto err_setup_rx;
4196
4197	/* clear any pending interrupts, may auto mask */
4198	err = iavf_request_traffic_irqs(adapter, netdev->name);
4199	if (err)
4200		goto err_req_irq;
4201
4202	spin_lock_bh(&adapter->mac_vlan_list_lock);
4203
4204	iavf_add_filter(adapter, adapter->hw.mac.addr);
4205
4206	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4207
4208	/* Restore filters that were removed with IFF_DOWN */
4209	iavf_restore_filters(adapter);
4210	iavf_restore_fdir_filters(adapter);
4211
4212	iavf_configure(adapter);
4213
4214	iavf_up_complete(adapter);
4215
4216	iavf_irq_enable(adapter, true);
4217
4218	mutex_unlock(&adapter->crit_lock);
4219
4220	return 0;
4221
4222err_req_irq:
4223	iavf_down(adapter);
4224	iavf_free_traffic_irqs(adapter);
4225err_setup_rx:
4226	iavf_free_all_rx_resources(adapter);
4227err_setup_tx:
4228	iavf_free_all_tx_resources(adapter);
4229err_unlock:
4230	mutex_unlock(&adapter->crit_lock);
4231
4232	return err;
4233}
4234
4235/**
4236 * iavf_close - Disables a network interface
4237 * @netdev: network interface device structure
4238 *
4239 * Returns 0, this is not allowed to fail
4240 *
4241 * The close entry point is called when an interface is de-activated
4242 * by the OS.  The hardware is still under the drivers control, but
4243 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4244 * are freed, along with all transmit and receive resources.
4245 **/
4246static int iavf_close(struct net_device *netdev)
4247{
4248	struct iavf_adapter *adapter = netdev_priv(netdev);
4249	u64 aq_to_restore;
4250	int status;
4251
4252	mutex_lock(&adapter->crit_lock);
4253
4254	if (adapter->state <= __IAVF_DOWN_PENDING) {
4255		mutex_unlock(&adapter->crit_lock);
4256		return 0;
4257	}
4258
4259	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4260	/* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4261	 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4262	 * deadlock with adminq_task() until iavf_close timeouts. We must send
4263	 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4264	 * disable queues possible for vf. Give only necessary flags to
4265	 * iavf_down and save other to set them right before iavf_close()
4266	 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4267	 * iavf will be in DOWN state.
4268	 */
4269	aq_to_restore = adapter->aq_required;
4270	adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4271
4272	/* Remove flags which we do not want to send after close or we want to
4273	 * send before disable queues.
4274	 */
4275	aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG		|
4276			   IAVF_FLAG_AQ_ENABLE_QUEUES		|
4277			   IAVF_FLAG_AQ_CONFIGURE_QUEUES	|
4278			   IAVF_FLAG_AQ_ADD_VLAN_FILTER		|
4279			   IAVF_FLAG_AQ_ADD_MAC_FILTER		|
4280			   IAVF_FLAG_AQ_ADD_CLOUD_FILTER	|
4281			   IAVF_FLAG_AQ_ADD_FDIR_FILTER		|
4282			   IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4283
4284	iavf_down(adapter);
4285	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4286	iavf_free_traffic_irqs(adapter);
4287
4288	mutex_unlock(&adapter->crit_lock);
4289
4290	/* We explicitly don't free resources here because the hardware is
4291	 * still active and can DMA into memory. Resources are cleared in
4292	 * iavf_virtchnl_completion() after we get confirmation from the PF
4293	 * driver that the rings have been stopped.
4294	 *
4295	 * Also, we wait for state to transition to __IAVF_DOWN before
4296	 * returning. State change occurs in iavf_virtchnl_completion() after
4297	 * VF resources are released (which occurs after PF driver processes and
4298	 * responds to admin queue commands).
4299	 */
4300
4301	status = wait_event_timeout(adapter->down_waitqueue,
4302				    adapter->state == __IAVF_DOWN,
4303				    msecs_to_jiffies(500));
4304	if (!status)
4305		netdev_warn(netdev, "Device resources not yet released\n");
4306
4307	mutex_lock(&adapter->crit_lock);
4308	adapter->aq_required |= aq_to_restore;
4309	mutex_unlock(&adapter->crit_lock);
4310	return 0;
4311}
4312
4313/**
4314 * iavf_change_mtu - Change the Maximum Transfer Unit
4315 * @netdev: network interface device structure
4316 * @new_mtu: new value for maximum frame size
4317 *
4318 * Returns 0 on success, negative on failure
4319 **/
4320static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4321{
4322	struct iavf_adapter *adapter = netdev_priv(netdev);
4323	int ret = 0;
4324
4325	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4326		   netdev->mtu, new_mtu);
4327	netdev->mtu = new_mtu;
4328
4329	if (netif_running(netdev)) {
4330		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4331		ret = iavf_wait_for_reset(adapter);
4332		if (ret < 0)
4333			netdev_warn(netdev, "MTU change interrupted waiting for reset");
4334		else if (ret)
4335			netdev_warn(netdev, "MTU change timed out waiting for reset");
4336	}
4337
4338	return ret;
4339}
4340
4341/**
4342 * iavf_disable_fdir - disable Flow Director and clear existing filters
4343 * @adapter: board private structure
4344 **/
4345static void iavf_disable_fdir(struct iavf_adapter *adapter)
4346{
4347	struct iavf_fdir_fltr *fdir, *fdirtmp;
4348	bool del_filters = false;
4349
4350	adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4351
4352	/* remove all Flow Director filters */
4353	spin_lock_bh(&adapter->fdir_fltr_lock);
4354	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4355				 list) {
4356		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4357		    fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4358			/* Delete filters not registered in PF */
4359			list_del(&fdir->list);
 
4360			kfree(fdir);
4361			adapter->fdir_active_fltr--;
4362		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4363			   fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4364			   fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4365			/* Filters registered in PF, schedule their deletion */
4366			fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4367			del_filters = true;
4368		} else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4369			/* Request to delete filter already sent to PF, change
4370			 * state to DEL_PENDING to delete filter after PF's
4371			 * response, not set as INACTIVE
4372			 */
4373			fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4374		}
4375	}
4376	spin_unlock_bh(&adapter->fdir_fltr_lock);
4377
4378	if (del_filters) {
4379		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4380		mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4381	}
4382}
4383
4384#define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4385					 NETIF_F_HW_VLAN_CTAG_TX | \
4386					 NETIF_F_HW_VLAN_STAG_RX | \
4387					 NETIF_F_HW_VLAN_STAG_TX)
4388
4389/**
4390 * iavf_set_features - set the netdev feature flags
4391 * @netdev: ptr to the netdev being adjusted
4392 * @features: the feature set that the stack is suggesting
4393 * Note: expects to be called while under rtnl_lock()
4394 **/
4395static int iavf_set_features(struct net_device *netdev,
4396			     netdev_features_t features)
4397{
4398	struct iavf_adapter *adapter = netdev_priv(netdev);
4399
4400	/* trigger update on any VLAN feature change */
4401	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4402	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4403		iavf_set_vlan_offload_features(adapter, netdev->features,
4404					       features);
4405	if (CRC_OFFLOAD_ALLOWED(adapter) &&
4406	    ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4407		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4408
4409	if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4410		if (features & NETIF_F_NTUPLE)
4411			adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4412		else
4413			iavf_disable_fdir(adapter);
4414	}
4415
4416	return 0;
4417}
4418
4419/**
4420 * iavf_features_check - Validate encapsulated packet conforms to limits
4421 * @skb: skb buff
4422 * @dev: This physical port's netdev
4423 * @features: Offload features that the stack believes apply
4424 **/
4425static netdev_features_t iavf_features_check(struct sk_buff *skb,
4426					     struct net_device *dev,
4427					     netdev_features_t features)
4428{
4429	size_t len;
4430
4431	/* No point in doing any of this if neither checksum nor GSO are
4432	 * being requested for this frame.  We can rule out both by just
4433	 * checking for CHECKSUM_PARTIAL
4434	 */
4435	if (skb->ip_summed != CHECKSUM_PARTIAL)
4436		return features;
4437
4438	/* We cannot support GSO if the MSS is going to be less than
4439	 * 64 bytes.  If it is then we need to drop support for GSO.
4440	 */
4441	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4442		features &= ~NETIF_F_GSO_MASK;
4443
4444	/* MACLEN can support at most 63 words */
4445	len = skb_network_offset(skb);
4446	if (len & ~(63 * 2))
4447		goto out_err;
4448
4449	/* IPLEN and EIPLEN can support at most 127 dwords */
4450	len = skb_network_header_len(skb);
4451	if (len & ~(127 * 4))
4452		goto out_err;
4453
4454	if (skb->encapsulation) {
4455		/* L4TUNLEN can support 127 words */
4456		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4457		if (len & ~(127 * 2))
4458			goto out_err;
4459
4460		/* IPLEN can support at most 127 dwords */
4461		len = skb_inner_transport_header(skb) -
4462		      skb_inner_network_header(skb);
4463		if (len & ~(127 * 4))
4464			goto out_err;
4465	}
4466
4467	/* No need to validate L4LEN as TCP is the only protocol with a
4468	 * flexible value and we support all possible values supported
4469	 * by TCP, which is at most 15 dwords
4470	 */
4471
4472	return features;
4473out_err:
4474	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4475}
4476
4477/**
4478 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4479 * @adapter: board private structure
4480 *
4481 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4482 * were negotiated determine the VLAN features that can be toggled on and off.
4483 **/
4484static netdev_features_t
4485iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4486{
4487	netdev_features_t hw_features = 0;
4488
4489	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4490		return hw_features;
4491
4492	/* Enable VLAN features if supported */
4493	if (VLAN_ALLOWED(adapter)) {
4494		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4495				NETIF_F_HW_VLAN_CTAG_RX);
4496	} else if (VLAN_V2_ALLOWED(adapter)) {
4497		struct virtchnl_vlan_caps *vlan_v2_caps =
4498			&adapter->vlan_v2_caps;
4499		struct virtchnl_vlan_supported_caps *stripping_support =
4500			&vlan_v2_caps->offloads.stripping_support;
4501		struct virtchnl_vlan_supported_caps *insertion_support =
4502			&vlan_v2_caps->offloads.insertion_support;
4503
4504		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4505		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4506			if (stripping_support->outer &
4507			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4508				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4509			if (stripping_support->outer &
4510			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4511				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4512		} else if (stripping_support->inner !=
4513			   VIRTCHNL_VLAN_UNSUPPORTED &&
4514			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4515			if (stripping_support->inner &
4516			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4517				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4518		}
4519
4520		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4521		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4522			if (insertion_support->outer &
4523			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4524				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4525			if (insertion_support->outer &
4526			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4527				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4528		} else if (insertion_support->inner &&
4529			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4530			if (insertion_support->inner &
4531			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4532				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4533		}
4534	}
4535
4536	if (CRC_OFFLOAD_ALLOWED(adapter))
4537		hw_features |= NETIF_F_RXFCS;
4538
4539	return hw_features;
4540}
4541
4542/**
4543 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4544 * @adapter: board private structure
4545 *
4546 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4547 * were negotiated determine the VLAN features that are enabled by default.
4548 **/
4549static netdev_features_t
4550iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4551{
4552	netdev_features_t features = 0;
4553
4554	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4555		return features;
4556
4557	if (VLAN_ALLOWED(adapter)) {
4558		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4559			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4560	} else if (VLAN_V2_ALLOWED(adapter)) {
4561		struct virtchnl_vlan_caps *vlan_v2_caps =
4562			&adapter->vlan_v2_caps;
4563		struct virtchnl_vlan_supported_caps *filtering_support =
4564			&vlan_v2_caps->filtering.filtering_support;
4565		struct virtchnl_vlan_supported_caps *stripping_support =
4566			&vlan_v2_caps->offloads.stripping_support;
4567		struct virtchnl_vlan_supported_caps *insertion_support =
4568			&vlan_v2_caps->offloads.insertion_support;
4569		u32 ethertype_init;
4570
4571		/* give priority to outer stripping and don't support both outer
4572		 * and inner stripping
4573		 */
4574		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4575		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4576			if (stripping_support->outer &
4577			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4578			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4579				features |= NETIF_F_HW_VLAN_CTAG_RX;
4580			else if (stripping_support->outer &
4581				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4582				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4583				features |= NETIF_F_HW_VLAN_STAG_RX;
4584		} else if (stripping_support->inner !=
4585			   VIRTCHNL_VLAN_UNSUPPORTED) {
4586			if (stripping_support->inner &
4587			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4588			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4589				features |= NETIF_F_HW_VLAN_CTAG_RX;
4590		}
4591
4592		/* give priority to outer insertion and don't support both outer
4593		 * and inner insertion
4594		 */
4595		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4596			if (insertion_support->outer &
4597			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4598			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4599				features |= NETIF_F_HW_VLAN_CTAG_TX;
4600			else if (insertion_support->outer &
4601				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4602				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4603				features |= NETIF_F_HW_VLAN_STAG_TX;
4604		} else if (insertion_support->inner !=
4605			   VIRTCHNL_VLAN_UNSUPPORTED) {
4606			if (insertion_support->inner &
4607			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4608			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4609				features |= NETIF_F_HW_VLAN_CTAG_TX;
4610		}
4611
4612		/* give priority to outer filtering and don't bother if both
4613		 * outer and inner filtering are enabled
4614		 */
4615		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4616		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4617			if (filtering_support->outer &
4618			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4619			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4620				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4621			if (filtering_support->outer &
4622			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4623			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4624				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4625		} else if (filtering_support->inner !=
4626			   VIRTCHNL_VLAN_UNSUPPORTED) {
4627			if (filtering_support->inner &
4628			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4629			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4630				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4631			if (filtering_support->inner &
4632			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4633			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4634				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4635		}
4636	}
4637
4638	return features;
4639}
4640
4641#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4642	(!(((requested) & (feature_bit)) && \
4643	   !((allowed) & (feature_bit))))
4644
4645/**
4646 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4647 * @adapter: board private structure
4648 * @requested_features: stack requested NETDEV features
4649 **/
4650static netdev_features_t
4651iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4652			      netdev_features_t requested_features)
4653{
4654	netdev_features_t allowed_features;
4655
4656	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4657		iavf_get_netdev_vlan_features(adapter);
4658
4659	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4660					      allowed_features,
4661					      NETIF_F_HW_VLAN_CTAG_TX))
4662		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4663
4664	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4665					      allowed_features,
4666					      NETIF_F_HW_VLAN_CTAG_RX))
4667		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4668
4669	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4670					      allowed_features,
4671					      NETIF_F_HW_VLAN_STAG_TX))
4672		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4673	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4674					      allowed_features,
4675					      NETIF_F_HW_VLAN_STAG_RX))
4676		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4677
4678	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4679					      allowed_features,
4680					      NETIF_F_HW_VLAN_CTAG_FILTER))
4681		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4682
4683	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4684					      allowed_features,
4685					      NETIF_F_HW_VLAN_STAG_FILTER))
4686		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4687
4688	if ((requested_features &
4689	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4690	    (requested_features &
4691	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4692	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4693	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4694		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4695		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4696					NETIF_F_HW_VLAN_STAG_TX);
4697	}
4698
4699	return requested_features;
4700}
4701
4702/**
4703 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4704 * @adapter: board private structure
4705 * @requested_features: stack requested NETDEV features
4706 *
4707 * Returns fixed-up features bits
4708 **/
4709static netdev_features_t
4710iavf_fix_strip_features(struct iavf_adapter *adapter,
4711			netdev_features_t requested_features)
4712{
4713	struct net_device *netdev = adapter->netdev;
4714	bool crc_offload_req, is_vlan_strip;
4715	netdev_features_t vlan_strip;
4716	int num_non_zero_vlan;
4717
4718	crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4719			  (requested_features & NETIF_F_RXFCS);
4720	num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4721	vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4722	is_vlan_strip = requested_features & vlan_strip;
4723
4724	if (!crc_offload_req)
4725		return requested_features;
4726
4727	if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4728	    !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4729		requested_features &= ~vlan_strip;
4730		netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4731		return requested_features;
4732	}
4733
4734	if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4735		requested_features &= ~vlan_strip;
4736		if (!(netdev->features & vlan_strip))
4737			netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4738
4739		return requested_features;
4740	}
4741
4742	if (num_non_zero_vlan && is_vlan_strip &&
4743	    !(netdev->features & NETIF_F_RXFCS)) {
4744		requested_features &= ~NETIF_F_RXFCS;
4745		netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4746	}
4747
4748	return requested_features;
4749}
4750
4751/**
4752 * iavf_fix_features - fix up the netdev feature bits
4753 * @netdev: our net device
4754 * @features: desired feature bits
4755 *
4756 * Returns fixed-up features bits
4757 **/
4758static netdev_features_t iavf_fix_features(struct net_device *netdev,
4759					   netdev_features_t features)
4760{
4761	struct iavf_adapter *adapter = netdev_priv(netdev);
4762
4763	features = iavf_fix_netdev_vlan_features(adapter, features);
4764
4765	if (!FDIR_FLTR_SUPPORT(adapter))
4766		features &= ~NETIF_F_NTUPLE;
4767
4768	return iavf_fix_strip_features(adapter, features);
4769}
4770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4771static const struct net_device_ops iavf_netdev_ops = {
4772	.ndo_open		= iavf_open,
4773	.ndo_stop		= iavf_close,
4774	.ndo_start_xmit		= iavf_xmit_frame,
4775	.ndo_set_rx_mode	= iavf_set_rx_mode,
4776	.ndo_validate_addr	= eth_validate_addr,
4777	.ndo_set_mac_address	= iavf_set_mac,
4778	.ndo_change_mtu		= iavf_change_mtu,
4779	.ndo_tx_timeout		= iavf_tx_timeout,
4780	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
4781	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
4782	.ndo_features_check	= iavf_features_check,
4783	.ndo_fix_features	= iavf_fix_features,
4784	.ndo_set_features	= iavf_set_features,
4785	.ndo_setup_tc		= iavf_setup_tc,
 
4786};
4787
4788/**
4789 * iavf_check_reset_complete - check that VF reset is complete
4790 * @hw: pointer to hw struct
4791 *
4792 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4793 **/
4794static int iavf_check_reset_complete(struct iavf_hw *hw)
4795{
4796	u32 rstat;
4797	int i;
4798
4799	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4800		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4801			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4802		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4803		    (rstat == VIRTCHNL_VFR_COMPLETED))
4804			return 0;
4805		msleep(IAVF_RESET_WAIT_MS);
4806	}
4807	return -EBUSY;
4808}
4809
4810/**
4811 * iavf_process_config - Process the config information we got from the PF
4812 * @adapter: board private structure
4813 *
4814 * Verify that we have a valid config struct, and set up our netdev features
4815 * and our VSI struct.
4816 **/
4817int iavf_process_config(struct iavf_adapter *adapter)
4818{
4819	struct virtchnl_vf_resource *vfres = adapter->vf_res;
4820	netdev_features_t hw_vlan_features, vlan_features;
4821	struct net_device *netdev = adapter->netdev;
4822	netdev_features_t hw_enc_features;
4823	netdev_features_t hw_features;
4824
4825	hw_enc_features = NETIF_F_SG			|
4826			  NETIF_F_IP_CSUM		|
4827			  NETIF_F_IPV6_CSUM		|
4828			  NETIF_F_HIGHDMA		|
4829			  NETIF_F_SOFT_FEATURES	|
4830			  NETIF_F_TSO			|
4831			  NETIF_F_TSO_ECN		|
4832			  NETIF_F_TSO6			|
4833			  NETIF_F_SCTP_CRC		|
4834			  NETIF_F_RXHASH		|
4835			  NETIF_F_RXCSUM		|
4836			  0;
4837
4838	/* advertise to stack only if offloads for encapsulated packets is
4839	 * supported
4840	 */
4841	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4842		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
4843				   NETIF_F_GSO_GRE		|
4844				   NETIF_F_GSO_GRE_CSUM		|
4845				   NETIF_F_GSO_IPXIP4		|
4846				   NETIF_F_GSO_IPXIP6		|
4847				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
4848				   NETIF_F_GSO_PARTIAL		|
4849				   0;
4850
4851		if (!(vfres->vf_cap_flags &
4852		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4853			netdev->gso_partial_features |=
4854				NETIF_F_GSO_UDP_TUNNEL_CSUM;
4855
4856		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4857		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4858		netdev->hw_enc_features |= hw_enc_features;
4859	}
4860	/* record features VLANs can make use of */
4861	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4862
4863	/* Write features and hw_features separately to avoid polluting
4864	 * with, or dropping, features that are set when we registered.
4865	 */
4866	hw_features = hw_enc_features;
4867
4868	/* get HW VLAN features that can be toggled */
4869	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4870
4871	/* Enable cloud filter if ADQ is supported */
4872	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
 
4873		hw_features |= NETIF_F_HW_TC;
 
4874	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4875		hw_features |= NETIF_F_GSO_UDP_L4;
4876
4877	netdev->hw_features |= hw_features | hw_vlan_features;
4878	vlan_features = iavf_get_netdev_vlan_features(adapter);
4879
4880	netdev->features |= hw_features | vlan_features;
4881
4882	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4883		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4884
4885	if (FDIR_FLTR_SUPPORT(adapter)) {
4886		netdev->hw_features |= NETIF_F_NTUPLE;
4887		netdev->features |= NETIF_F_NTUPLE;
4888		adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4889	}
4890
4891	netdev->priv_flags |= IFF_UNICAST_FLT;
4892
4893	/* Do not turn on offloads when they are requested to be turned off.
4894	 * TSO needs minimum 576 bytes to work correctly.
4895	 */
4896	if (netdev->wanted_features) {
4897		if (!(netdev->wanted_features & NETIF_F_TSO) ||
4898		    netdev->mtu < 576)
4899			netdev->features &= ~NETIF_F_TSO;
4900		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4901		    netdev->mtu < 576)
4902			netdev->features &= ~NETIF_F_TSO6;
4903		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4904			netdev->features &= ~NETIF_F_TSO_ECN;
4905		if (!(netdev->wanted_features & NETIF_F_GRO))
4906			netdev->features &= ~NETIF_F_GRO;
4907		if (!(netdev->wanted_features & NETIF_F_GSO))
4908			netdev->features &= ~NETIF_F_GSO;
4909	}
4910
4911	return 0;
4912}
4913
4914/**
4915 * iavf_probe - Device Initialization Routine
4916 * @pdev: PCI device information struct
4917 * @ent: entry in iavf_pci_tbl
4918 *
4919 * Returns 0 on success, negative on failure
4920 *
4921 * iavf_probe initializes an adapter identified by a pci_dev structure.
4922 * The OS initialization, configuring of the adapter private structure,
4923 * and a hardware reset occur.
4924 **/
4925static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4926{
4927	struct net_device *netdev;
4928	struct iavf_adapter *adapter = NULL;
4929	struct iavf_hw *hw = NULL;
4930	int err;
4931
4932	err = pci_enable_device(pdev);
4933	if (err)
4934		return err;
4935
4936	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4937	if (err) {
4938		dev_err(&pdev->dev,
4939			"DMA configuration failed: 0x%x\n", err);
4940		goto err_dma;
4941	}
4942
4943	err = pci_request_regions(pdev, iavf_driver_name);
4944	if (err) {
4945		dev_err(&pdev->dev,
4946			"pci_request_regions failed 0x%x\n", err);
4947		goto err_pci_reg;
4948	}
4949
4950	pci_set_master(pdev);
4951
4952	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4953				   IAVF_MAX_REQ_QUEUES);
4954	if (!netdev) {
4955		err = -ENOMEM;
4956		goto err_alloc_etherdev;
4957	}
4958
4959	SET_NETDEV_DEV(netdev, &pdev->dev);
4960
4961	pci_set_drvdata(pdev, netdev);
4962	adapter = netdev_priv(netdev);
4963
4964	adapter->netdev = netdev;
4965	adapter->pdev = pdev;
4966
4967	hw = &adapter->hw;
4968	hw->back = adapter;
4969
4970	adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4971					      iavf_driver_name);
4972	if (!adapter->wq) {
4973		err = -ENOMEM;
4974		goto err_alloc_wq;
4975	}
4976
4977	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4978	iavf_change_state(adapter, __IAVF_STARTUP);
4979
4980	/* Call save state here because it relies on the adapter struct. */
4981	pci_save_state(pdev);
4982
4983	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4984			      pci_resource_len(pdev, 0));
4985	if (!hw->hw_addr) {
4986		err = -EIO;
4987		goto err_ioremap;
4988	}
4989	hw->vendor_id = pdev->vendor;
4990	hw->device_id = pdev->device;
4991	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4992	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4993	hw->subsystem_device_id = pdev->subsystem_device;
4994	hw->bus.device = PCI_SLOT(pdev->devfn);
4995	hw->bus.func = PCI_FUNC(pdev->devfn);
4996	hw->bus.bus_id = pdev->bus->number;
4997
 
 
 
 
 
 
 
4998	/* set up the locks for the AQ, do this only once in probe
4999	 * and destroy them only once in remove
5000	 */
5001	mutex_init(&adapter->crit_lock);
5002	mutex_init(&hw->aq.asq_mutex);
5003	mutex_init(&hw->aq.arq_mutex);
5004
5005	spin_lock_init(&adapter->mac_vlan_list_lock);
5006	spin_lock_init(&adapter->cloud_filter_list_lock);
5007	spin_lock_init(&adapter->fdir_fltr_lock);
5008	spin_lock_init(&adapter->adv_rss_lock);
5009	spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5010
5011	INIT_LIST_HEAD(&adapter->mac_filter_list);
5012	INIT_LIST_HEAD(&adapter->vlan_filter_list);
5013	INIT_LIST_HEAD(&adapter->cloud_filter_list);
5014	INIT_LIST_HEAD(&adapter->fdir_list_head);
5015	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5016
5017	INIT_WORK(&adapter->reset_task, iavf_reset_task);
5018	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5019	INIT_WORK(&adapter->finish_config, iavf_finish_config);
5020	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5021
5022	/* Setup the wait queue for indicating transition to down status */
5023	init_waitqueue_head(&adapter->down_waitqueue);
5024
5025	/* Setup the wait queue for indicating transition to running state */
5026	init_waitqueue_head(&adapter->reset_waitqueue);
5027
5028	/* Setup the wait queue for indicating virtchannel events */
5029	init_waitqueue_head(&adapter->vc_waitqueue);
5030
5031	queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5032			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5033	/* Initialization goes on in the work. Do not add more of it below. */
5034	return 0;
5035
 
 
5036err_ioremap:
5037	destroy_workqueue(adapter->wq);
5038err_alloc_wq:
5039	free_netdev(netdev);
5040err_alloc_etherdev:
5041	pci_release_regions(pdev);
5042err_pci_reg:
5043err_dma:
5044	pci_disable_device(pdev);
5045	return err;
5046}
5047
5048/**
5049 * iavf_suspend - Power management suspend routine
5050 * @dev_d: device info pointer
5051 *
5052 * Called when the system (VM) is entering sleep/suspend.
5053 **/
5054static int __maybe_unused iavf_suspend(struct device *dev_d)
5055{
5056	struct net_device *netdev = dev_get_drvdata(dev_d);
5057	struct iavf_adapter *adapter = netdev_priv(netdev);
5058
5059	netif_device_detach(netdev);
5060
5061	mutex_lock(&adapter->crit_lock);
5062
5063	if (netif_running(netdev)) {
5064		rtnl_lock();
5065		iavf_down(adapter);
5066		rtnl_unlock();
5067	}
5068	iavf_free_misc_irq(adapter);
5069	iavf_reset_interrupt_capability(adapter);
5070
5071	mutex_unlock(&adapter->crit_lock);
5072
5073	return 0;
5074}
5075
5076/**
5077 * iavf_resume - Power management resume routine
5078 * @dev_d: device info pointer
5079 *
5080 * Called when the system (VM) is resumed from sleep/suspend.
5081 **/
5082static int __maybe_unused iavf_resume(struct device *dev_d)
5083{
5084	struct pci_dev *pdev = to_pci_dev(dev_d);
5085	struct iavf_adapter *adapter;
5086	u32 err;
5087
5088	adapter = iavf_pdev_to_adapter(pdev);
5089
5090	pci_set_master(pdev);
5091
5092	rtnl_lock();
5093	err = iavf_set_interrupt_capability(adapter);
5094	if (err) {
5095		rtnl_unlock();
5096		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5097		return err;
5098	}
5099	err = iavf_request_misc_irq(adapter);
5100	rtnl_unlock();
5101	if (err) {
5102		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5103		return err;
5104	}
5105
5106	queue_work(adapter->wq, &adapter->reset_task);
5107
5108	netif_device_attach(adapter->netdev);
5109
5110	return err;
5111}
5112
5113/**
5114 * iavf_remove - Device Removal Routine
5115 * @pdev: PCI device information struct
5116 *
5117 * iavf_remove is called by the PCI subsystem to alert the driver
5118 * that it should release a PCI device.  The could be caused by a
5119 * Hot-Plug event, or because the driver is going to be removed from
5120 * memory.
5121 **/
5122static void iavf_remove(struct pci_dev *pdev)
5123{
5124	struct iavf_fdir_fltr *fdir, *fdirtmp;
5125	struct iavf_vlan_filter *vlf, *vlftmp;
5126	struct iavf_cloud_filter *cf, *cftmp;
5127	struct iavf_adv_rss *rss, *rsstmp;
5128	struct iavf_mac_filter *f, *ftmp;
5129	struct iavf_adapter *adapter;
5130	struct net_device *netdev;
5131	struct iavf_hw *hw;
5132
5133	/* Don't proceed with remove if netdev is already freed */
5134	netdev = pci_get_drvdata(pdev);
5135	if (!netdev)
5136		return;
5137
5138	adapter = iavf_pdev_to_adapter(pdev);
5139	hw = &adapter->hw;
5140
5141	if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5142		return;
5143
5144	/* Wait until port initialization is complete.
5145	 * There are flows where register/unregister netdev may race.
5146	 */
5147	while (1) {
5148		mutex_lock(&adapter->crit_lock);
5149		if (adapter->state == __IAVF_RUNNING ||
5150		    adapter->state == __IAVF_DOWN ||
5151		    adapter->state == __IAVF_INIT_FAILED) {
5152			mutex_unlock(&adapter->crit_lock);
5153			break;
5154		}
5155		/* Simply return if we already went through iavf_shutdown */
5156		if (adapter->state == __IAVF_REMOVE) {
5157			mutex_unlock(&adapter->crit_lock);
5158			return;
5159		}
5160
5161		mutex_unlock(&adapter->crit_lock);
5162		usleep_range(500, 1000);
5163	}
5164	cancel_delayed_work_sync(&adapter->watchdog_task);
5165	cancel_work_sync(&adapter->finish_config);
5166
5167	if (netdev->reg_state == NETREG_REGISTERED)
5168		unregister_netdev(netdev);
5169
5170	mutex_lock(&adapter->crit_lock);
5171	dev_info(&adapter->pdev->dev, "Removing device\n");
5172	iavf_change_state(adapter, __IAVF_REMOVE);
5173
5174	iavf_request_reset(adapter);
5175	msleep(50);
5176	/* If the FW isn't responding, kick it once, but only once. */
5177	if (!iavf_asq_done(hw)) {
5178		iavf_request_reset(adapter);
5179		msleep(50);
5180	}
5181
5182	iavf_misc_irq_disable(adapter);
5183	/* Shut down all the garbage mashers on the detention level */
5184	cancel_work_sync(&adapter->reset_task);
5185	cancel_delayed_work_sync(&adapter->watchdog_task);
5186	cancel_work_sync(&adapter->adminq_task);
5187
5188	adapter->aq_required = 0;
5189	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5190
5191	iavf_free_all_tx_resources(adapter);
5192	iavf_free_all_rx_resources(adapter);
5193	iavf_free_misc_irq(adapter);
5194	iavf_free_interrupt_scheme(adapter);
5195
5196	iavf_free_rss(adapter);
5197
5198	if (hw->aq.asq.count)
5199		iavf_shutdown_adminq(hw);
5200
5201	/* destroy the locks only once, here */
5202	mutex_destroy(&hw->aq.arq_mutex);
5203	mutex_destroy(&hw->aq.asq_mutex);
5204	mutex_unlock(&adapter->crit_lock);
5205	mutex_destroy(&adapter->crit_lock);
5206
5207	iounmap(hw->hw_addr);
5208	pci_release_regions(pdev);
5209	kfree(adapter->vf_res);
5210	spin_lock_bh(&adapter->mac_vlan_list_lock);
5211	/* If we got removed before an up/down sequence, we've got a filter
5212	 * hanging out there that we need to get rid of.
5213	 */
5214	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5215		list_del(&f->list);
5216		kfree(f);
5217	}
5218	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5219				 list) {
5220		list_del(&vlf->list);
5221		kfree(vlf);
5222	}
5223
5224	spin_unlock_bh(&adapter->mac_vlan_list_lock);
5225
5226	spin_lock_bh(&adapter->cloud_filter_list_lock);
5227	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5228		list_del(&cf->list);
5229		kfree(cf);
5230	}
5231	spin_unlock_bh(&adapter->cloud_filter_list_lock);
5232
5233	spin_lock_bh(&adapter->fdir_fltr_lock);
5234	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5235		list_del(&fdir->list);
5236		kfree(fdir);
5237	}
5238	spin_unlock_bh(&adapter->fdir_fltr_lock);
5239
5240	spin_lock_bh(&adapter->adv_rss_lock);
5241	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5242				 list) {
5243		list_del(&rss->list);
5244		kfree(rss);
5245	}
5246	spin_unlock_bh(&adapter->adv_rss_lock);
5247
5248	destroy_workqueue(adapter->wq);
5249
5250	pci_set_drvdata(pdev, NULL);
5251
5252	free_netdev(netdev);
5253
5254	pci_disable_device(pdev);
5255}
5256
5257/**
5258 * iavf_shutdown - Shutdown the device in preparation for a reboot
5259 * @pdev: pci device structure
5260 **/
5261static void iavf_shutdown(struct pci_dev *pdev)
5262{
5263	iavf_remove(pdev);
5264
5265	if (system_state == SYSTEM_POWER_OFF)
5266		pci_set_power_state(pdev, PCI_D3hot);
5267}
5268
5269static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5270
5271static struct pci_driver iavf_driver = {
5272	.name      = iavf_driver_name,
5273	.id_table  = iavf_pci_tbl,
5274	.probe     = iavf_probe,
5275	.remove    = iavf_remove,
5276	.driver.pm = &iavf_pm_ops,
5277	.shutdown  = iavf_shutdown,
5278};
5279
5280/**
5281 * iavf_init_module - Driver Registration Routine
5282 *
5283 * iavf_init_module is the first routine called when the driver is
5284 * loaded. All it does is register with the PCI subsystem.
5285 **/
5286static int __init iavf_init_module(void)
5287{
5288	pr_info("iavf: %s\n", iavf_driver_string);
5289
5290	pr_info("%s\n", iavf_copyright);
5291
5292	return pci_register_driver(&iavf_driver);
5293}
5294
5295module_init(iavf_init_module);
5296
5297/**
5298 * iavf_exit_module - Driver Exit Cleanup Routine
5299 *
5300 * iavf_exit_module is called just before the driver is removed
5301 * from memory.
5302 **/
5303static void __exit iavf_exit_module(void)
5304{
5305	pci_unregister_driver(&iavf_driver);
5306}
5307
5308module_exit(iavf_exit_module);
5309
5310/* iavf_main.c */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/net/intel/libie/rx.h>
   5
   6#include "iavf.h"
   7#include "iavf_prototype.h"
   8/* All iavf tracepoints are defined by the include below, which must
   9 * be included exactly once across the whole kernel with
  10 * CREATE_TRACE_POINTS defined
  11 */
  12#define CREATE_TRACE_POINTS
  13#include "iavf_trace.h"
  14
  15static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
  16static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
  17static int iavf_close(struct net_device *netdev);
  18static void iavf_init_get_resources(struct iavf_adapter *adapter);
  19static int iavf_check_reset_complete(struct iavf_hw *hw);
  20
  21char iavf_driver_name[] = "iavf";
  22static const char iavf_driver_string[] =
  23	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
  24
  25static const char iavf_copyright[] =
  26	"Copyright (c) 2013 - 2018 Intel Corporation.";
  27
  28/* iavf_pci_tbl - PCI Device ID Table
  29 *
  30 * Wildcard entries (PCI_ANY_ID) should come last
  31 * Last entry must be all 0s
  32 *
  33 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  34 *   Class, Class Mask, private data (not used) }
  35 */
  36static const struct pci_device_id iavf_pci_tbl[] = {
  37	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
  38	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
  39	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
  40	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
  41	/* required last entry */
  42	{0, }
  43};
  44
  45MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
  46
  47MODULE_ALIAS("i40evf");
 
  48MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
  49MODULE_IMPORT_NS("LIBETH");
  50MODULE_IMPORT_NS("LIBIE");
  51MODULE_LICENSE("GPL v2");
  52
  53static const struct net_device_ops iavf_netdev_ops;
  54
  55int iavf_status_to_errno(enum iavf_status status)
  56{
  57	switch (status) {
  58	case IAVF_SUCCESS:
  59		return 0;
  60	case IAVF_ERR_PARAM:
  61	case IAVF_ERR_MAC_TYPE:
  62	case IAVF_ERR_INVALID_MAC_ADDR:
  63	case IAVF_ERR_INVALID_LINK_SETTINGS:
  64	case IAVF_ERR_INVALID_PD_ID:
  65	case IAVF_ERR_INVALID_QP_ID:
  66	case IAVF_ERR_INVALID_CQ_ID:
  67	case IAVF_ERR_INVALID_CEQ_ID:
  68	case IAVF_ERR_INVALID_AEQ_ID:
  69	case IAVF_ERR_INVALID_SIZE:
  70	case IAVF_ERR_INVALID_ARP_INDEX:
  71	case IAVF_ERR_INVALID_FPM_FUNC_ID:
  72	case IAVF_ERR_QP_INVALID_MSG_SIZE:
  73	case IAVF_ERR_INVALID_FRAG_COUNT:
  74	case IAVF_ERR_INVALID_ALIGNMENT:
  75	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
  76	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
  77	case IAVF_ERR_INVALID_VF_ID:
  78	case IAVF_ERR_INVALID_HMCFN_ID:
  79	case IAVF_ERR_INVALID_PBLE_INDEX:
  80	case IAVF_ERR_INVALID_SD_INDEX:
  81	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
  82	case IAVF_ERR_INVALID_SD_TYPE:
  83	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
  84	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
  85	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
  86		return -EINVAL;
  87	case IAVF_ERR_NVM:
  88	case IAVF_ERR_NVM_CHECKSUM:
  89	case IAVF_ERR_PHY:
  90	case IAVF_ERR_CONFIG:
  91	case IAVF_ERR_UNKNOWN_PHY:
  92	case IAVF_ERR_LINK_SETUP:
  93	case IAVF_ERR_ADAPTER_STOPPED:
  94	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
  95	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
  96	case IAVF_ERR_RESET_FAILED:
  97	case IAVF_ERR_BAD_PTR:
  98	case IAVF_ERR_SWFW_SYNC:
  99	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
 100	case IAVF_ERR_QUEUE_EMPTY:
 101	case IAVF_ERR_FLUSHED_QUEUE:
 102	case IAVF_ERR_OPCODE_MISMATCH:
 103	case IAVF_ERR_CQP_COMPL_ERROR:
 104	case IAVF_ERR_BACKING_PAGE_ERROR:
 105	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
 106	case IAVF_ERR_MEMCPY_FAILED:
 107	case IAVF_ERR_SRQ_ENABLED:
 108	case IAVF_ERR_ADMIN_QUEUE_ERROR:
 109	case IAVF_ERR_ADMIN_QUEUE_FULL:
 110	case IAVF_ERR_BAD_RDMA_CQE:
 111	case IAVF_ERR_NVM_BLANK_MODE:
 112	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
 113	case IAVF_ERR_DIAG_TEST_FAILED:
 114	case IAVF_ERR_FIRMWARE_API_VERSION:
 115	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
 116		return -EIO;
 117	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
 118		return -ENODEV;
 119	case IAVF_ERR_NO_AVAILABLE_VSI:
 120	case IAVF_ERR_RING_FULL:
 121		return -ENOSPC;
 122	case IAVF_ERR_NO_MEMORY:
 123		return -ENOMEM;
 124	case IAVF_ERR_TIMEOUT:
 125	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
 126		return -ETIMEDOUT;
 127	case IAVF_ERR_NOT_IMPLEMENTED:
 128	case IAVF_NOT_SUPPORTED:
 129		return -EOPNOTSUPP;
 130	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
 131		return -EALREADY;
 132	case IAVF_ERR_NOT_READY:
 133		return -EBUSY;
 134	case IAVF_ERR_BUF_TOO_SHORT:
 135		return -EMSGSIZE;
 136	}
 137
 138	return -EIO;
 139}
 140
 141int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
 142{
 143	switch (v_status) {
 144	case VIRTCHNL_STATUS_SUCCESS:
 145		return 0;
 146	case VIRTCHNL_STATUS_ERR_PARAM:
 147	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
 148		return -EINVAL;
 149	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
 150		return -ENOMEM;
 151	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
 152	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
 153	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
 154		return -EIO;
 155	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
 156		return -EOPNOTSUPP;
 157	}
 158
 159	return -EIO;
 160}
 161
 162/**
 163 * iavf_pdev_to_adapter - go from pci_dev to adapter
 164 * @pdev: pci_dev pointer
 165 */
 166static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
 167{
 168	return netdev_priv(pci_get_drvdata(pdev));
 169}
 170
 171/**
 172 * iavf_is_reset_in_progress - Check if a reset is in progress
 173 * @adapter: board private structure
 174 */
 175static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
 176{
 177	if (adapter->state == __IAVF_RESETTING ||
 178	    adapter->flags & (IAVF_FLAG_RESET_PENDING |
 179			      IAVF_FLAG_RESET_NEEDED))
 180		return true;
 181
 182	return false;
 183}
 184
 185/**
 186 * iavf_wait_for_reset - Wait for reset to finish.
 187 * @adapter: board private structure
 188 *
 189 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
 190 */
 191int iavf_wait_for_reset(struct iavf_adapter *adapter)
 192{
 193	int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
 194					!iavf_is_reset_in_progress(adapter),
 195					msecs_to_jiffies(5000));
 196
 197	/* If ret < 0 then it means wait was interrupted.
 198	 * If ret == 0 then it means we got a timeout while waiting
 199	 * for reset to finish.
 200	 * If ret > 0 it means reset has finished.
 201	 */
 202	if (ret > 0)
 203		return 0;
 204	else if (ret < 0)
 205		return -EINTR;
 206	else
 207		return -EBUSY;
 208}
 209
 210/**
 211 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
 212 * @hw:   pointer to the HW structure
 213 * @mem:  ptr to mem struct to fill out
 214 * @size: size of memory requested
 215 * @alignment: what to align the allocation to
 216 **/
 217enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
 218					 struct iavf_dma_mem *mem,
 219					 u64 size, u32 alignment)
 220{
 221	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
 222
 223	if (!mem)
 224		return IAVF_ERR_PARAM;
 225
 226	mem->size = ALIGN(size, alignment);
 227	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
 228				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
 229	if (mem->va)
 230		return 0;
 231	else
 232		return IAVF_ERR_NO_MEMORY;
 233}
 234
 235/**
 236 * iavf_free_dma_mem - wrapper for DMA memory freeing
 237 * @hw:   pointer to the HW structure
 238 * @mem:  ptr to mem struct to free
 239 **/
 240enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
 241{
 242	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
 243
 244	if (!mem || !mem->va)
 245		return IAVF_ERR_PARAM;
 246	dma_free_coherent(&adapter->pdev->dev, mem->size,
 247			  mem->va, (dma_addr_t)mem->pa);
 248	return 0;
 249}
 250
 251/**
 252 * iavf_allocate_virt_mem - virt memory alloc wrapper
 253 * @hw:   pointer to the HW structure
 254 * @mem:  ptr to mem struct to fill out
 255 * @size: size of memory requested
 256 **/
 257enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
 258					struct iavf_virt_mem *mem, u32 size)
 259{
 260	if (!mem)
 261		return IAVF_ERR_PARAM;
 262
 263	mem->size = size;
 264	mem->va = kzalloc(size, GFP_KERNEL);
 265
 266	if (mem->va)
 267		return 0;
 268	else
 269		return IAVF_ERR_NO_MEMORY;
 270}
 271
 272/**
 273 * iavf_free_virt_mem - virt memory free wrapper
 274 * @hw:   pointer to the HW structure
 275 * @mem:  ptr to mem struct to free
 276 **/
 277void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
 278{
 279	kfree(mem->va);
 280}
 281
 282/**
 283 * iavf_schedule_reset - Set the flags and schedule a reset event
 284 * @adapter: board private structure
 285 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
 286 **/
 287void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
 288{
 289	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
 290	    !(adapter->flags &
 291	    (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
 292		adapter->flags |= flags;
 293		queue_work(adapter->wq, &adapter->reset_task);
 294	}
 295}
 296
 297/**
 298 * iavf_schedule_aq_request - Set the flags and schedule aq request
 299 * @adapter: board private structure
 300 * @flags: requested aq flags
 301 **/
 302void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
 303{
 304	adapter->aq_required |= flags;
 305	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
 306}
 307
 308/**
 309 * iavf_tx_timeout - Respond to a Tx Hang
 310 * @netdev: network interface device structure
 311 * @txqueue: queue number that is timing out
 312 **/
 313static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
 314{
 315	struct iavf_adapter *adapter = netdev_priv(netdev);
 316
 317	adapter->tx_timeout_count++;
 318	iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
 319}
 320
 321/**
 322 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
 323 * @adapter: board private structure
 324 **/
 325static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
 326{
 327	struct iavf_hw *hw = &adapter->hw;
 328
 329	if (!adapter->msix_entries)
 330		return;
 331
 332	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
 333
 334	iavf_flush(hw);
 335
 336	synchronize_irq(adapter->msix_entries[0].vector);
 337}
 338
 339/**
 340 * iavf_misc_irq_enable - Enable default interrupt generation settings
 341 * @adapter: board private structure
 342 **/
 343static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
 344{
 345	struct iavf_hw *hw = &adapter->hw;
 346
 347	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
 348				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
 349	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
 350
 351	iavf_flush(hw);
 352}
 353
 354/**
 355 * iavf_irq_disable - Mask off interrupt generation on the NIC
 356 * @adapter: board private structure
 357 **/
 358static void iavf_irq_disable(struct iavf_adapter *adapter)
 359{
 360	int i;
 361	struct iavf_hw *hw = &adapter->hw;
 362
 363	if (!adapter->msix_entries)
 364		return;
 365
 366	for (i = 1; i < adapter->num_msix_vectors; i++) {
 367		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
 368		synchronize_irq(adapter->msix_entries[i].vector);
 369	}
 370	iavf_flush(hw);
 371}
 372
 373/**
 374 * iavf_irq_enable_queues - Enable interrupt for all queues
 375 * @adapter: board private structure
 376 **/
 377static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
 378{
 379	struct iavf_hw *hw = &adapter->hw;
 380	int i;
 381
 382	for (i = 1; i < adapter->num_msix_vectors; i++) {
 383		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
 384		     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 385		     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
 386	}
 387}
 388
 389/**
 390 * iavf_irq_enable - Enable default interrupt generation settings
 391 * @adapter: board private structure
 392 * @flush: boolean value whether to run rd32()
 393 **/
 394void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
 395{
 396	struct iavf_hw *hw = &adapter->hw;
 397
 398	iavf_misc_irq_enable(adapter);
 399	iavf_irq_enable_queues(adapter);
 400
 401	if (flush)
 402		iavf_flush(hw);
 403}
 404
 405/**
 406 * iavf_msix_aq - Interrupt handler for vector 0
 407 * @irq: interrupt number
 408 * @data: pointer to netdev
 409 **/
 410static irqreturn_t iavf_msix_aq(int irq, void *data)
 411{
 412	struct net_device *netdev = data;
 413	struct iavf_adapter *adapter = netdev_priv(netdev);
 414	struct iavf_hw *hw = &adapter->hw;
 415
 416	/* handle non-queue interrupts, these reads clear the registers */
 417	rd32(hw, IAVF_VFINT_ICR01);
 418	rd32(hw, IAVF_VFINT_ICR0_ENA1);
 419
 420	if (adapter->state != __IAVF_REMOVE)
 421		/* schedule work on the private workqueue */
 422		queue_work(adapter->wq, &adapter->adminq_task);
 423
 424	return IRQ_HANDLED;
 425}
 426
 427/**
 428 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
 429 * @irq: interrupt number
 430 * @data: pointer to a q_vector
 431 **/
 432static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
 433{
 434	struct iavf_q_vector *q_vector = data;
 435
 436	if (!q_vector->tx.ring && !q_vector->rx.ring)
 437		return IRQ_HANDLED;
 438
 439	napi_schedule_irqoff(&q_vector->napi);
 440
 441	return IRQ_HANDLED;
 442}
 443
 444/**
 445 * iavf_map_vector_to_rxq - associate irqs with rx queues
 446 * @adapter: board private structure
 447 * @v_idx: interrupt number
 448 * @r_idx: queue number
 449 **/
 450static void
 451iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
 452{
 453	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 454	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
 455	struct iavf_hw *hw = &adapter->hw;
 456
 457	rx_ring->q_vector = q_vector;
 458	rx_ring->next = q_vector->rx.ring;
 459	rx_ring->vsi = &adapter->vsi;
 460	q_vector->rx.ring = rx_ring;
 461	q_vector->rx.count++;
 462	q_vector->rx.next_update = jiffies + 1;
 463	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
 464	q_vector->ring_mask |= BIT(r_idx);
 465	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
 466	     q_vector->rx.current_itr >> 1);
 467	q_vector->rx.current_itr = q_vector->rx.target_itr;
 468}
 469
 470/**
 471 * iavf_map_vector_to_txq - associate irqs with tx queues
 472 * @adapter: board private structure
 473 * @v_idx: interrupt number
 474 * @t_idx: queue number
 475 **/
 476static void
 477iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
 478{
 479	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 480	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
 481	struct iavf_hw *hw = &adapter->hw;
 482
 483	tx_ring->q_vector = q_vector;
 484	tx_ring->next = q_vector->tx.ring;
 485	tx_ring->vsi = &adapter->vsi;
 486	q_vector->tx.ring = tx_ring;
 487	q_vector->tx.count++;
 488	q_vector->tx.next_update = jiffies + 1;
 489	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
 490	q_vector->num_ringpairs++;
 491	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
 492	     q_vector->tx.target_itr >> 1);
 493	q_vector->tx.current_itr = q_vector->tx.target_itr;
 494}
 495
 496/**
 497 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
 498 * @adapter: board private structure to initialize
 499 *
 500 * This function maps descriptor rings to the queue-specific vectors
 501 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
 502 * one vector per ring/queue, but on a constrained vector budget, we
 503 * group the rings as "efficiently" as possible.  You would add new
 504 * mapping configurations in here.
 505 **/
 506static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
 507{
 508	int rings_remaining = adapter->num_active_queues;
 509	int ridx = 0, vidx = 0;
 510	int q_vectors;
 511
 512	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 513
 514	for (; ridx < rings_remaining; ridx++) {
 515		iavf_map_vector_to_rxq(adapter, vidx, ridx);
 516		iavf_map_vector_to_txq(adapter, vidx, ridx);
 517
 518		/* In the case where we have more queues than vectors, continue
 519		 * round-robin on vectors until all queues are mapped.
 520		 */
 521		if (++vidx >= q_vectors)
 522			vidx = 0;
 523	}
 524
 525	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
 526}
 527
 528/**
 529 * iavf_irq_affinity_notify - Callback for affinity changes
 530 * @notify: context as to what irq was changed
 531 * @mask: the new affinity mask
 532 *
 533 * This is a callback function used by the irq_set_affinity_notifier function
 534 * so that we may register to receive changes to the irq affinity masks.
 535 **/
 536static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
 537				     const cpumask_t *mask)
 538{
 539	struct iavf_q_vector *q_vector =
 540		container_of(notify, struct iavf_q_vector, affinity_notify);
 541
 542	cpumask_copy(&q_vector->affinity_mask, mask);
 543}
 544
 545/**
 546 * iavf_irq_affinity_release - Callback for affinity notifier release
 547 * @ref: internal core kernel usage
 548 *
 549 * This is a callback function used by the irq_set_affinity_notifier function
 550 * to inform the current notification subscriber that they will no longer
 551 * receive notifications.
 552 **/
 553static void iavf_irq_affinity_release(struct kref *ref) {}
 554
 555/**
 556 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
 557 * @adapter: board private structure
 558 * @basename: device basename
 559 *
 560 * Allocates MSI-X vectors for tx and rx handling, and requests
 561 * interrupts from the kernel.
 562 **/
 563static int
 564iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
 565{
 566	unsigned int vector, q_vectors;
 567	unsigned int rx_int_idx = 0, tx_int_idx = 0;
 568	int irq_num, err;
 569	int cpu;
 570
 571	iavf_irq_disable(adapter);
 572	/* Decrement for Other and TCP Timer vectors */
 573	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 574
 575	for (vector = 0; vector < q_vectors; vector++) {
 576		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
 577
 578		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 579
 580		if (q_vector->tx.ring && q_vector->rx.ring) {
 581			snprintf(q_vector->name, sizeof(q_vector->name),
 582				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
 583			tx_int_idx++;
 584		} else if (q_vector->rx.ring) {
 585			snprintf(q_vector->name, sizeof(q_vector->name),
 586				 "iavf-%s-rx-%u", basename, rx_int_idx++);
 587		} else if (q_vector->tx.ring) {
 588			snprintf(q_vector->name, sizeof(q_vector->name),
 589				 "iavf-%s-tx-%u", basename, tx_int_idx++);
 590		} else {
 591			/* skip this unused q_vector */
 592			continue;
 593		}
 594		err = request_irq(irq_num,
 595				  iavf_msix_clean_rings,
 596				  0,
 597				  q_vector->name,
 598				  q_vector);
 599		if (err) {
 600			dev_info(&adapter->pdev->dev,
 601				 "Request_irq failed, error: %d\n", err);
 602			goto free_queue_irqs;
 603		}
 604		/* register for affinity change notifications */
 605		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
 606		q_vector->affinity_notify.release =
 607						   iavf_irq_affinity_release;
 608		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
 609		/* Spread the IRQ affinity hints across online CPUs. Note that
 610		 * get_cpu_mask returns a mask with a permanent lifetime so
 611		 * it's safe to use as a hint for irq_update_affinity_hint.
 612		 */
 613		cpu = cpumask_local_spread(q_vector->v_idx, -1);
 614		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
 615	}
 616
 617	return 0;
 618
 619free_queue_irqs:
 620	while (vector) {
 621		vector--;
 622		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 623		irq_set_affinity_notifier(irq_num, NULL);
 624		irq_update_affinity_hint(irq_num, NULL);
 625		free_irq(irq_num, &adapter->q_vectors[vector]);
 626	}
 627	return err;
 628}
 629
 630/**
 631 * iavf_request_misc_irq - Initialize MSI-X interrupts
 632 * @adapter: board private structure
 633 *
 634 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
 635 * vector is only for the admin queue, and stays active even when the netdev
 636 * is closed.
 637 **/
 638static int iavf_request_misc_irq(struct iavf_adapter *adapter)
 639{
 640	struct net_device *netdev = adapter->netdev;
 641	int err;
 642
 643	snprintf(adapter->misc_vector_name,
 644		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
 645		 dev_name(&adapter->pdev->dev));
 646	err = request_irq(adapter->msix_entries[0].vector,
 647			  &iavf_msix_aq, 0,
 648			  adapter->misc_vector_name, netdev);
 649	if (err) {
 650		dev_err(&adapter->pdev->dev,
 651			"request_irq for %s failed: %d\n",
 652			adapter->misc_vector_name, err);
 653		free_irq(adapter->msix_entries[0].vector, netdev);
 654	}
 655	return err;
 656}
 657
 658/**
 659 * iavf_free_traffic_irqs - Free MSI-X interrupts
 660 * @adapter: board private structure
 661 *
 662 * Frees all MSI-X vectors other than 0.
 663 **/
 664static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
 665{
 666	int vector, irq_num, q_vectors;
 667
 668	if (!adapter->msix_entries)
 669		return;
 670
 671	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 672
 673	for (vector = 0; vector < q_vectors; vector++) {
 674		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 675		irq_set_affinity_notifier(irq_num, NULL);
 676		irq_update_affinity_hint(irq_num, NULL);
 677		free_irq(irq_num, &adapter->q_vectors[vector]);
 678	}
 679}
 680
 681/**
 682 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
 683 * @adapter: board private structure
 684 *
 685 * Frees MSI-X vector 0.
 686 **/
 687static void iavf_free_misc_irq(struct iavf_adapter *adapter)
 688{
 689	struct net_device *netdev = adapter->netdev;
 690
 691	if (!adapter->msix_entries)
 692		return;
 693
 694	free_irq(adapter->msix_entries[0].vector, netdev);
 695}
 696
 697/**
 698 * iavf_configure_tx - Configure Transmit Unit after Reset
 699 * @adapter: board private structure
 700 *
 701 * Configure the Tx unit of the MAC after a reset.
 702 **/
 703static void iavf_configure_tx(struct iavf_adapter *adapter)
 704{
 705	struct iavf_hw *hw = &adapter->hw;
 706	int i;
 707
 708	for (i = 0; i < adapter->num_active_queues; i++)
 709		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
 710}
 711
 712/**
 713 * iavf_configure_rx - Configure Receive Unit after Reset
 714 * @adapter: board private structure
 715 *
 716 * Configure the Rx unit of the MAC after a reset.
 717 **/
 718static void iavf_configure_rx(struct iavf_adapter *adapter)
 719{
 
 720	struct iavf_hw *hw = &adapter->hw;
 
 721
 722	for (u32 i = 0; i < adapter->num_active_queues; i++)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 723		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
 
 
 
 
 
 
 
 724}
 725
 726/**
 727 * iavf_find_vlan - Search filter list for specific vlan filter
 728 * @adapter: board private structure
 729 * @vlan: vlan tag
 730 *
 731 * Returns ptr to the filter object or NULL. Must be called while holding the
 732 * mac_vlan_list_lock.
 733 **/
 734static struct
 735iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
 736				 struct iavf_vlan vlan)
 737{
 738	struct iavf_vlan_filter *f;
 739
 740	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
 741		if (f->vlan.vid == vlan.vid &&
 742		    f->vlan.tpid == vlan.tpid)
 743			return f;
 744	}
 745
 746	return NULL;
 747}
 748
 749/**
 750 * iavf_add_vlan - Add a vlan filter to the list
 751 * @adapter: board private structure
 752 * @vlan: VLAN tag
 753 *
 754 * Returns ptr to the filter object or NULL when no memory available.
 755 **/
 756static struct
 757iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
 758				struct iavf_vlan vlan)
 759{
 760	struct iavf_vlan_filter *f = NULL;
 761
 762	spin_lock_bh(&adapter->mac_vlan_list_lock);
 763
 764	f = iavf_find_vlan(adapter, vlan);
 765	if (!f) {
 766		f = kzalloc(sizeof(*f), GFP_ATOMIC);
 767		if (!f)
 768			goto clearout;
 769
 770		f->vlan = vlan;
 771
 772		list_add_tail(&f->list, &adapter->vlan_filter_list);
 773		f->state = IAVF_VLAN_ADD;
 774		adapter->num_vlan_filters++;
 775		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
 776	} else if (f->state == IAVF_VLAN_REMOVE) {
 777		/* IAVF_VLAN_REMOVE means that VLAN wasn't yet removed.
 778		 * We can safely only change the state here.
 779		 */
 780		f->state = IAVF_VLAN_ACTIVE;
 781	}
 782
 783clearout:
 784	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 785	return f;
 786}
 787
 788/**
 789 * iavf_del_vlan - Remove a vlan filter from the list
 790 * @adapter: board private structure
 791 * @vlan: VLAN tag
 792 **/
 793static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
 794{
 795	struct iavf_vlan_filter *f;
 796
 797	spin_lock_bh(&adapter->mac_vlan_list_lock);
 798
 799	f = iavf_find_vlan(adapter, vlan);
 800	if (f) {
 801		/* IAVF_ADD_VLAN means that VLAN wasn't even added yet.
 802		 * Remove it from the list.
 803		 */
 804		if (f->state == IAVF_VLAN_ADD) {
 805			list_del(&f->list);
 806			kfree(f);
 807			adapter->num_vlan_filters--;
 808		} else {
 809			f->state = IAVF_VLAN_REMOVE;
 810			iavf_schedule_aq_request(adapter,
 811						 IAVF_FLAG_AQ_DEL_VLAN_FILTER);
 812		}
 813	}
 814
 815	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 816}
 817
 818/**
 819 * iavf_restore_filters
 820 * @adapter: board private structure
 821 *
 822 * Restore existing non MAC filters when VF netdev comes back up
 823 **/
 824static void iavf_restore_filters(struct iavf_adapter *adapter)
 825{
 826	struct iavf_vlan_filter *f;
 827
 828	/* re-add all VLAN filters */
 829	spin_lock_bh(&adapter->mac_vlan_list_lock);
 830
 831	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
 832		if (f->state == IAVF_VLAN_INACTIVE)
 833			f->state = IAVF_VLAN_ADD;
 834	}
 835
 836	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 837	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
 838}
 839
 840/**
 841 * iavf_get_num_vlans_added - get number of VLANs added
 842 * @adapter: board private structure
 843 */
 844u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
 845{
 846	return adapter->num_vlan_filters;
 847}
 848
 849/**
 850 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
 851 * @adapter: board private structure
 852 *
 853 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
 854 * do not impose a limit as that maintains current behavior and for
 855 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
 856 **/
 857static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
 858{
 859	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
 860	 * never been a limit on the VF driver side
 861	 */
 862	if (VLAN_ALLOWED(adapter))
 863		return VLAN_N_VID;
 864	else if (VLAN_V2_ALLOWED(adapter))
 865		return adapter->vlan_v2_caps.filtering.max_filters;
 866
 867	return 0;
 868}
 869
 870/**
 871 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
 872 * @adapter: board private structure
 873 **/
 874static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
 875{
 876	if (iavf_get_num_vlans_added(adapter) <
 877	    iavf_get_max_vlans_allowed(adapter))
 878		return false;
 879
 880	return true;
 881}
 882
 883/**
 884 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
 885 * @netdev: network device struct
 886 * @proto: unused protocol data
 887 * @vid: VLAN tag
 888 **/
 889static int iavf_vlan_rx_add_vid(struct net_device *netdev,
 890				__always_unused __be16 proto, u16 vid)
 891{
 892	struct iavf_adapter *adapter = netdev_priv(netdev);
 893
 894	/* Do not track VLAN 0 filter, always added by the PF on VF init */
 895	if (!vid)
 896		return 0;
 897
 898	if (!VLAN_FILTERING_ALLOWED(adapter))
 899		return -EIO;
 900
 901	if (iavf_max_vlans_added(adapter)) {
 902		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
 903			   iavf_get_max_vlans_allowed(adapter));
 904		return -EIO;
 905	}
 906
 907	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
 908		return -ENOMEM;
 909
 910	return 0;
 911}
 912
 913/**
 914 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
 915 * @netdev: network device struct
 916 * @proto: unused protocol data
 917 * @vid: VLAN tag
 918 **/
 919static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
 920				 __always_unused __be16 proto, u16 vid)
 921{
 922	struct iavf_adapter *adapter = netdev_priv(netdev);
 923
 924	/* We do not track VLAN 0 filter */
 925	if (!vid)
 926		return 0;
 927
 928	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
 929	return 0;
 930}
 931
 932/**
 933 * iavf_find_filter - Search filter list for specific mac filter
 934 * @adapter: board private structure
 935 * @macaddr: the MAC address
 936 *
 937 * Returns ptr to the filter object or NULL. Must be called while holding the
 938 * mac_vlan_list_lock.
 939 **/
 940static struct
 941iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
 942				  const u8 *macaddr)
 943{
 944	struct iavf_mac_filter *f;
 945
 946	if (!macaddr)
 947		return NULL;
 948
 949	list_for_each_entry(f, &adapter->mac_filter_list, list) {
 950		if (ether_addr_equal(macaddr, f->macaddr))
 951			return f;
 952	}
 953	return NULL;
 954}
 955
 956/**
 957 * iavf_add_filter - Add a mac filter to the filter list
 958 * @adapter: board private structure
 959 * @macaddr: the MAC address
 960 *
 961 * Returns ptr to the filter object or NULL when no memory available.
 962 **/
 963struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
 964					const u8 *macaddr)
 965{
 966	struct iavf_mac_filter *f;
 967
 968	if (!macaddr)
 969		return NULL;
 970
 971	f = iavf_find_filter(adapter, macaddr);
 972	if (!f) {
 973		f = kzalloc(sizeof(*f), GFP_ATOMIC);
 974		if (!f)
 975			return f;
 976
 977		ether_addr_copy(f->macaddr, macaddr);
 978
 979		list_add_tail(&f->list, &adapter->mac_filter_list);
 980		f->add = true;
 981		f->add_handled = false;
 982		f->is_new_mac = true;
 983		f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
 984		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
 985	} else {
 986		f->remove = false;
 987	}
 988
 989	return f;
 990}
 991
 992/**
 993 * iavf_replace_primary_mac - Replace current primary address
 994 * @adapter: board private structure
 995 * @new_mac: new MAC address to be applied
 996 *
 997 * Replace current dev_addr and send request to PF for removal of previous
 998 * primary MAC address filter and addition of new primary MAC filter.
 999 * Return 0 for success, -ENOMEM for failure.
1000 *
1001 * Do not call this with mac_vlan_list_lock!
1002 **/
1003static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1004				    const u8 *new_mac)
1005{
1006	struct iavf_hw *hw = &adapter->hw;
1007	struct iavf_mac_filter *new_f;
1008	struct iavf_mac_filter *old_f;
1009
1010	spin_lock_bh(&adapter->mac_vlan_list_lock);
1011
1012	new_f = iavf_add_filter(adapter, new_mac);
1013	if (!new_f) {
1014		spin_unlock_bh(&adapter->mac_vlan_list_lock);
1015		return -ENOMEM;
1016	}
1017
1018	old_f = iavf_find_filter(adapter, hw->mac.addr);
1019	if (old_f) {
1020		old_f->is_primary = false;
1021		old_f->remove = true;
1022		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1023	}
1024	/* Always send the request to add if changing primary MAC,
1025	 * even if filter is already present on the list
1026	 */
1027	new_f->is_primary = true;
1028	new_f->add = true;
1029	ether_addr_copy(hw->mac.addr, new_mac);
1030
1031	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1032
1033	/* schedule the watchdog task to immediately process the request */
1034	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1035	return 0;
1036}
1037
1038/**
1039 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1040 * @netdev: network interface device structure
1041 * @macaddr: MAC address to set
1042 *
1043 * Returns true on success, false on failure
1044 */
1045static bool iavf_is_mac_set_handled(struct net_device *netdev,
1046				    const u8 *macaddr)
1047{
1048	struct iavf_adapter *adapter = netdev_priv(netdev);
1049	struct iavf_mac_filter *f;
1050	bool ret = false;
1051
1052	spin_lock_bh(&adapter->mac_vlan_list_lock);
1053
1054	f = iavf_find_filter(adapter, macaddr);
1055
1056	if (!f || (!f->add && f->add_handled))
1057		ret = true;
1058
1059	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1060
1061	return ret;
1062}
1063
1064/**
1065 * iavf_set_mac - NDO callback to set port MAC address
1066 * @netdev: network interface device structure
1067 * @p: pointer to an address structure
1068 *
1069 * Returns 0 on success, negative on failure
1070 */
1071static int iavf_set_mac(struct net_device *netdev, void *p)
1072{
1073	struct iavf_adapter *adapter = netdev_priv(netdev);
1074	struct sockaddr *addr = p;
1075	int ret;
1076
1077	if (!is_valid_ether_addr(addr->sa_data))
1078		return -EADDRNOTAVAIL;
1079
1080	ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1081
1082	if (ret)
1083		return ret;
1084
1085	ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1086					       iavf_is_mac_set_handled(netdev, addr->sa_data),
1087					       msecs_to_jiffies(2500));
1088
1089	/* If ret < 0 then it means wait was interrupted.
1090	 * If ret == 0 then it means we got a timeout.
1091	 * else it means we got response for set MAC from PF,
1092	 * check if netdev MAC was updated to requested MAC,
1093	 * if yes then set MAC succeeded otherwise it failed return -EACCES
1094	 */
1095	if (ret < 0)
1096		return ret;
1097
1098	if (!ret)
1099		return -EAGAIN;
1100
1101	if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1102		return -EACCES;
1103
1104	return 0;
1105}
1106
1107/**
1108 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1109 * @netdev: the netdevice
1110 * @addr: address to add
1111 *
1112 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1113 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1114 */
1115static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1116{
1117	struct iavf_adapter *adapter = netdev_priv(netdev);
1118
1119	if (iavf_add_filter(adapter, addr))
1120		return 0;
1121	else
1122		return -ENOMEM;
1123}
1124
1125/**
1126 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1127 * @netdev: the netdevice
1128 * @addr: address to add
1129 *
1130 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1131 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1132 */
1133static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1134{
1135	struct iavf_adapter *adapter = netdev_priv(netdev);
1136	struct iavf_mac_filter *f;
1137
1138	/* Under some circumstances, we might receive a request to delete
1139	 * our own device address from our uc list. Because we store the
1140	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1141	 * such requests and not delete our device address from this list.
1142	 */
1143	if (ether_addr_equal(addr, netdev->dev_addr))
1144		return 0;
1145
1146	f = iavf_find_filter(adapter, addr);
1147	if (f) {
1148		f->remove = true;
1149		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1150	}
1151	return 0;
1152}
1153
1154/**
1155 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1156 * @adapter: device specific adapter
1157 */
1158bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1159{
1160	return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1161		(IFF_PROMISC | IFF_ALLMULTI);
1162}
1163
1164/**
1165 * iavf_set_rx_mode - NDO callback to set the netdev filters
1166 * @netdev: network interface device structure
1167 **/
1168static void iavf_set_rx_mode(struct net_device *netdev)
1169{
1170	struct iavf_adapter *adapter = netdev_priv(netdev);
1171
1172	spin_lock_bh(&adapter->mac_vlan_list_lock);
1173	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1174	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1175	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1176
1177	spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1178	if (iavf_promiscuous_mode_changed(adapter))
1179		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1180	spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1181}
1182
1183/**
1184 * iavf_napi_enable_all - enable NAPI on all queue vectors
1185 * @adapter: board private structure
1186 **/
1187static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1188{
1189	int q_idx;
1190	struct iavf_q_vector *q_vector;
1191	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1192
1193	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1194		struct napi_struct *napi;
1195
1196		q_vector = &adapter->q_vectors[q_idx];
1197		napi = &q_vector->napi;
1198		napi_enable(napi);
1199	}
1200}
1201
1202/**
1203 * iavf_napi_disable_all - disable NAPI on all queue vectors
1204 * @adapter: board private structure
1205 **/
1206static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1207{
1208	int q_idx;
1209	struct iavf_q_vector *q_vector;
1210	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1211
1212	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1213		q_vector = &adapter->q_vectors[q_idx];
1214		napi_disable(&q_vector->napi);
1215	}
1216}
1217
1218/**
1219 * iavf_configure - set up transmit and receive data structures
1220 * @adapter: board private structure
1221 **/
1222static void iavf_configure(struct iavf_adapter *adapter)
1223{
1224	struct net_device *netdev = adapter->netdev;
1225	int i;
1226
1227	iavf_set_rx_mode(netdev);
1228
1229	iavf_configure_tx(adapter);
1230	iavf_configure_rx(adapter);
1231	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1232
1233	for (i = 0; i < adapter->num_active_queues; i++) {
1234		struct iavf_ring *ring = &adapter->rx_rings[i];
1235
1236		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1237	}
1238}
1239
1240/**
1241 * iavf_up_complete - Finish the last steps of bringing up a connection
1242 * @adapter: board private structure
1243 *
1244 * Expects to be called while holding crit_lock.
1245 **/
1246static void iavf_up_complete(struct iavf_adapter *adapter)
1247{
1248	iavf_change_state(adapter, __IAVF_RUNNING);
1249	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1250
1251	iavf_napi_enable_all(adapter);
1252
1253	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1254}
1255
1256/**
1257 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1258 * yet and mark other to be removed.
1259 * @adapter: board private structure
1260 **/
1261static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1262{
1263	struct iavf_vlan_filter *vlf, *vlftmp;
1264	struct iavf_mac_filter *f, *ftmp;
1265
1266	spin_lock_bh(&adapter->mac_vlan_list_lock);
1267	/* clear the sync flag on all filters */
1268	__dev_uc_unsync(adapter->netdev, NULL);
1269	__dev_mc_unsync(adapter->netdev, NULL);
1270
1271	/* remove all MAC filters */
1272	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1273				 list) {
1274		if (f->add) {
1275			list_del(&f->list);
1276			kfree(f);
1277		} else {
1278			f->remove = true;
1279		}
1280	}
1281
1282	/* disable all VLAN filters */
1283	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1284				 list)
1285		vlf->state = IAVF_VLAN_DISABLE;
1286
1287	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1288}
1289
1290/**
1291 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1292 * mark other to be removed.
1293 * @adapter: board private structure
1294 **/
1295static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1296{
1297	struct iavf_cloud_filter *cf, *cftmp;
1298
1299	/* remove all cloud filters */
1300	spin_lock_bh(&adapter->cloud_filter_list_lock);
1301	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1302				 list) {
1303		if (cf->add) {
1304			list_del(&cf->list);
1305			kfree(cf);
1306			adapter->num_cloud_filters--;
1307		} else {
1308			cf->del = true;
1309		}
1310	}
1311	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1312}
1313
1314/**
1315 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1316 * other to be removed.
1317 * @adapter: board private structure
1318 **/
1319static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1320{
1321	struct iavf_fdir_fltr *fdir;
1322
1323	/* remove all Flow Director filters */
1324	spin_lock_bh(&adapter->fdir_fltr_lock);
1325	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1326		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1327			/* Cancel a request, keep filter as inactive */
1328			fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1329		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1330			 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1331			/* Disable filters which are active or have a pending
1332			 * request to PF to be added
1333			 */
1334			fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1335		}
1336	}
1337	spin_unlock_bh(&adapter->fdir_fltr_lock);
1338}
1339
1340/**
1341 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1342 * other to be removed.
1343 * @adapter: board private structure
1344 **/
1345static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1346{
1347	struct iavf_adv_rss *rss, *rsstmp;
1348
1349	/* remove all advance RSS configuration */
1350	spin_lock_bh(&adapter->adv_rss_lock);
1351	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1352				 list) {
1353		if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1354			list_del(&rss->list);
1355			kfree(rss);
1356		} else {
1357			rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1358		}
1359	}
1360	spin_unlock_bh(&adapter->adv_rss_lock);
1361}
1362
1363/**
1364 * iavf_down - Shutdown the connection processing
1365 * @adapter: board private structure
1366 *
1367 * Expects to be called while holding crit_lock.
1368 **/
1369void iavf_down(struct iavf_adapter *adapter)
1370{
1371	struct net_device *netdev = adapter->netdev;
1372
1373	if (adapter->state <= __IAVF_DOWN_PENDING)
1374		return;
1375
1376	netif_carrier_off(netdev);
1377	netif_tx_disable(netdev);
1378	adapter->link_up = false;
1379	iavf_napi_disable_all(adapter);
1380	iavf_irq_disable(adapter);
1381
1382	iavf_clear_mac_vlan_filters(adapter);
1383	iavf_clear_cloud_filters(adapter);
1384	iavf_clear_fdir_filters(adapter);
1385	iavf_clear_adv_rss_conf(adapter);
1386
1387	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1388		return;
1389
1390	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1391		/* cancel any current operation */
1392		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1393		/* Schedule operations to close down the HW. Don't wait
1394		 * here for this to complete. The watchdog is still running
1395		 * and it will take care of this.
1396		 */
1397		if (!list_empty(&adapter->mac_filter_list))
1398			adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1399		if (!list_empty(&adapter->vlan_filter_list))
1400			adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1401		if (!list_empty(&adapter->cloud_filter_list))
1402			adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1403		if (!list_empty(&adapter->fdir_list_head))
1404			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1405		if (!list_empty(&adapter->adv_rss_list_head))
1406			adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1407	}
1408
1409	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1410}
1411
1412/**
1413 * iavf_acquire_msix_vectors - Setup the MSIX capability
1414 * @adapter: board private structure
1415 * @vectors: number of vectors to request
1416 *
1417 * Work with the OS to set up the MSIX vectors needed.
1418 *
1419 * Returns 0 on success, negative on failure
1420 **/
1421static int
1422iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1423{
1424	int err, vector_threshold;
1425
1426	/* We'll want at least 3 (vector_threshold):
1427	 * 0) Other (Admin Queue and link, mostly)
1428	 * 1) TxQ[0] Cleanup
1429	 * 2) RxQ[0] Cleanup
1430	 */
1431	vector_threshold = MIN_MSIX_COUNT;
1432
1433	/* The more we get, the more we will assign to Tx/Rx Cleanup
1434	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1435	 * Right now, we simply care about how many we'll get; we'll
1436	 * set them up later while requesting irq's.
1437	 */
1438	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1439				    vector_threshold, vectors);
1440	if (err < 0) {
1441		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1442		kfree(adapter->msix_entries);
1443		adapter->msix_entries = NULL;
1444		return err;
1445	}
1446
1447	/* Adjust for only the vectors we'll use, which is minimum
1448	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1449	 * vectors we were allocated.
1450	 */
1451	adapter->num_msix_vectors = err;
1452	return 0;
1453}
1454
1455/**
1456 * iavf_free_queues - Free memory for all rings
1457 * @adapter: board private structure to initialize
1458 *
1459 * Free all of the memory associated with queue pairs.
1460 **/
1461static void iavf_free_queues(struct iavf_adapter *adapter)
1462{
1463	if (!adapter->vsi_res)
1464		return;
1465	adapter->num_active_queues = 0;
1466	kfree(adapter->tx_rings);
1467	adapter->tx_rings = NULL;
1468	kfree(adapter->rx_rings);
1469	adapter->rx_rings = NULL;
1470}
1471
1472/**
1473 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1474 * @adapter: board private structure
1475 *
1476 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1477 * stripped in certain descriptor fields. Instead of checking the offload
1478 * capability bits in the hot path, cache the location the ring specific
1479 * flags.
1480 */
1481void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1482{
1483	int i;
1484
1485	for (i = 0; i < adapter->num_active_queues; i++) {
1486		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1487		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1488
1489		/* prevent multiple L2TAG bits being set after VFR */
1490		tx_ring->flags &=
1491			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1492			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1493		rx_ring->flags &=
1494			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1495			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1496
1497		if (VLAN_ALLOWED(adapter)) {
1498			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1499			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1500		} else if (VLAN_V2_ALLOWED(adapter)) {
1501			struct virtchnl_vlan_supported_caps *stripping_support;
1502			struct virtchnl_vlan_supported_caps *insertion_support;
1503
1504			stripping_support =
1505				&adapter->vlan_v2_caps.offloads.stripping_support;
1506			insertion_support =
1507				&adapter->vlan_v2_caps.offloads.insertion_support;
1508
1509			if (stripping_support->outer) {
1510				if (stripping_support->outer &
1511				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1512					rx_ring->flags |=
1513						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1514				else if (stripping_support->outer &
1515					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1516					rx_ring->flags |=
1517						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1518			} else if (stripping_support->inner) {
1519				if (stripping_support->inner &
1520				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1521					rx_ring->flags |=
1522						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1523				else if (stripping_support->inner &
1524					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1525					rx_ring->flags |=
1526						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1527			}
1528
1529			if (insertion_support->outer) {
1530				if (insertion_support->outer &
1531				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1532					tx_ring->flags |=
1533						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1534				else if (insertion_support->outer &
1535					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1536					tx_ring->flags |=
1537						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1538			} else if (insertion_support->inner) {
1539				if (insertion_support->inner &
1540				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1541					tx_ring->flags |=
1542						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1543				else if (insertion_support->inner &
1544					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1545					tx_ring->flags |=
1546						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1547			}
1548		}
1549	}
1550}
1551
1552/**
1553 * iavf_alloc_queues - Allocate memory for all rings
1554 * @adapter: board private structure to initialize
1555 *
1556 * We allocate one ring per queue at run-time since we don't know the
1557 * number of queues at compile-time.  The polling_netdev array is
1558 * intended for Multiqueue, but should work fine with a single queue.
1559 **/
1560static int iavf_alloc_queues(struct iavf_adapter *adapter)
1561{
1562	int i, num_active_queues;
1563
1564	/* If we're in reset reallocating queues we don't actually know yet for
1565	 * certain the PF gave us the number of queues we asked for but we'll
1566	 * assume it did.  Once basic reset is finished we'll confirm once we
1567	 * start negotiating config with PF.
1568	 */
1569	if (adapter->num_req_queues)
1570		num_active_queues = adapter->num_req_queues;
1571	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1572		 adapter->num_tc)
1573		num_active_queues = adapter->ch_config.total_qps;
1574	else
1575		num_active_queues = min_t(int,
1576					  adapter->vsi_res->num_queue_pairs,
1577					  (int)(num_online_cpus()));
1578
1579
1580	adapter->tx_rings = kcalloc(num_active_queues,
1581				    sizeof(struct iavf_ring), GFP_KERNEL);
1582	if (!adapter->tx_rings)
1583		goto err_out;
1584	adapter->rx_rings = kcalloc(num_active_queues,
1585				    sizeof(struct iavf_ring), GFP_KERNEL);
1586	if (!adapter->rx_rings)
1587		goto err_out;
1588
1589	for (i = 0; i < num_active_queues; i++) {
1590		struct iavf_ring *tx_ring;
1591		struct iavf_ring *rx_ring;
1592
1593		tx_ring = &adapter->tx_rings[i];
1594
1595		tx_ring->queue_index = i;
1596		tx_ring->netdev = adapter->netdev;
1597		tx_ring->dev = &adapter->pdev->dev;
1598		tx_ring->count = adapter->tx_desc_count;
1599		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1600		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1601			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1602
1603		rx_ring = &adapter->rx_rings[i];
1604		rx_ring->queue_index = i;
1605		rx_ring->netdev = adapter->netdev;
 
1606		rx_ring->count = adapter->rx_desc_count;
1607		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1608	}
1609
1610	adapter->num_active_queues = num_active_queues;
1611
1612	iavf_set_queue_vlan_tag_loc(adapter);
1613
1614	return 0;
1615
1616err_out:
1617	iavf_free_queues(adapter);
1618	return -ENOMEM;
1619}
1620
1621/**
1622 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1623 * @adapter: board private structure to initialize
1624 *
1625 * Attempt to configure the interrupts using the best available
1626 * capabilities of the hardware and the kernel.
1627 **/
1628static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1629{
1630	int vector, v_budget;
1631	int pairs = 0;
1632	int err = 0;
1633
1634	if (!adapter->vsi_res) {
1635		err = -EIO;
1636		goto out;
1637	}
1638	pairs = adapter->num_active_queues;
1639
1640	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1641	 * us much good if we have more vectors than CPUs. However, we already
1642	 * limit the total number of queues by the number of CPUs so we do not
1643	 * need any further limiting here.
1644	 */
1645	v_budget = min_t(int, pairs + NONQ_VECS,
1646			 (int)adapter->vf_res->max_vectors);
1647
1648	adapter->msix_entries = kcalloc(v_budget,
1649					sizeof(struct msix_entry), GFP_KERNEL);
1650	if (!adapter->msix_entries) {
1651		err = -ENOMEM;
1652		goto out;
1653	}
1654
1655	for (vector = 0; vector < v_budget; vector++)
1656		adapter->msix_entries[vector].entry = vector;
1657
1658	err = iavf_acquire_msix_vectors(adapter, v_budget);
1659	if (!err)
1660		iavf_schedule_finish_config(adapter);
1661
1662out:
1663	return err;
1664}
1665
1666/**
1667 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1668 * @adapter: board private structure
1669 *
1670 * Return 0 on success, negative on failure
1671 **/
1672static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1673{
1674	struct iavf_aqc_get_set_rss_key_data *rss_key =
1675		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1676	struct iavf_hw *hw = &adapter->hw;
1677	enum iavf_status status;
1678
1679	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1680		/* bail because we already have a command pending */
1681		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1682			adapter->current_op);
1683		return -EBUSY;
1684	}
1685
1686	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1687	if (status) {
1688		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1689			iavf_stat_str(hw, status),
1690			iavf_aq_str(hw, hw->aq.asq_last_status));
1691		return iavf_status_to_errno(status);
1692
1693	}
1694
1695	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1696				     adapter->rss_lut, adapter->rss_lut_size);
1697	if (status) {
1698		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1699			iavf_stat_str(hw, status),
1700			iavf_aq_str(hw, hw->aq.asq_last_status));
1701		return iavf_status_to_errno(status);
1702	}
1703
1704	return 0;
1705
1706}
1707
1708/**
1709 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1710 * @adapter: board private structure
1711 *
1712 * Returns 0 on success, negative on failure
1713 **/
1714static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1715{
1716	struct iavf_hw *hw = &adapter->hw;
1717	u32 *dw;
1718	u16 i;
1719
1720	dw = (u32 *)adapter->rss_key;
1721	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1722		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1723
1724	dw = (u32 *)adapter->rss_lut;
1725	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1726		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1727
1728	iavf_flush(hw);
1729
1730	return 0;
1731}
1732
1733/**
1734 * iavf_config_rss - Configure RSS keys and lut
1735 * @adapter: board private structure
1736 *
1737 * Returns 0 on success, negative on failure
1738 **/
1739int iavf_config_rss(struct iavf_adapter *adapter)
1740{
1741
1742	if (RSS_PF(adapter)) {
1743		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1744					IAVF_FLAG_AQ_SET_RSS_KEY;
1745		return 0;
1746	} else if (RSS_AQ(adapter)) {
1747		return iavf_config_rss_aq(adapter);
1748	} else {
1749		return iavf_config_rss_reg(adapter);
1750	}
1751}
1752
1753/**
1754 * iavf_fill_rss_lut - Fill the lut with default values
1755 * @adapter: board private structure
1756 **/
1757static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1758{
1759	u16 i;
1760
1761	for (i = 0; i < adapter->rss_lut_size; i++)
1762		adapter->rss_lut[i] = i % adapter->num_active_queues;
1763}
1764
1765/**
1766 * iavf_init_rss - Prepare for RSS
1767 * @adapter: board private structure
1768 *
1769 * Return 0 on success, negative on failure
1770 **/
1771static int iavf_init_rss(struct iavf_adapter *adapter)
1772{
1773	struct iavf_hw *hw = &adapter->hw;
1774
1775	if (!RSS_PF(adapter)) {
1776		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1777		if (adapter->vf_res->vf_cap_flags &
1778		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1779			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1780		else
1781			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1782
1783		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1784		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1785	}
1786
1787	iavf_fill_rss_lut(adapter);
1788	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1789
1790	return iavf_config_rss(adapter);
1791}
1792
1793/**
1794 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1795 * @adapter: board private structure to initialize
1796 *
1797 * We allocate one q_vector per queue interrupt.  If allocation fails we
1798 * return -ENOMEM.
1799 **/
1800static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1801{
1802	int q_idx = 0, num_q_vectors;
1803	struct iavf_q_vector *q_vector;
1804
1805	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1806	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1807				     GFP_KERNEL);
1808	if (!adapter->q_vectors)
1809		return -ENOMEM;
1810
1811	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1812		q_vector = &adapter->q_vectors[q_idx];
1813		q_vector->adapter = adapter;
1814		q_vector->vsi = &adapter->vsi;
1815		q_vector->v_idx = q_idx;
1816		q_vector->reg_idx = q_idx;
1817		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1818		netif_napi_add(adapter->netdev, &q_vector->napi,
1819			       iavf_napi_poll);
1820	}
1821
1822	return 0;
1823}
1824
1825/**
1826 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1827 * @adapter: board private structure to initialize
1828 *
1829 * This function frees the memory allocated to the q_vectors.  In addition if
1830 * NAPI is enabled it will delete any references to the NAPI struct prior
1831 * to freeing the q_vector.
1832 **/
1833static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1834{
1835	int q_idx, num_q_vectors;
1836
1837	if (!adapter->q_vectors)
1838		return;
1839
1840	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1841
1842	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1843		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1844
1845		netif_napi_del(&q_vector->napi);
1846	}
1847	kfree(adapter->q_vectors);
1848	adapter->q_vectors = NULL;
1849}
1850
1851/**
1852 * iavf_reset_interrupt_capability - Reset MSIX setup
1853 * @adapter: board private structure
1854 *
1855 **/
1856static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1857{
1858	if (!adapter->msix_entries)
1859		return;
1860
1861	pci_disable_msix(adapter->pdev);
1862	kfree(adapter->msix_entries);
1863	adapter->msix_entries = NULL;
1864}
1865
1866/**
1867 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1868 * @adapter: board private structure to initialize
1869 *
1870 **/
1871static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1872{
1873	int err;
1874
1875	err = iavf_alloc_queues(adapter);
1876	if (err) {
1877		dev_err(&adapter->pdev->dev,
1878			"Unable to allocate memory for queues\n");
1879		goto err_alloc_queues;
1880	}
1881
1882	err = iavf_set_interrupt_capability(adapter);
1883	if (err) {
1884		dev_err(&adapter->pdev->dev,
1885			"Unable to setup interrupt capabilities\n");
1886		goto err_set_interrupt;
1887	}
1888
1889	err = iavf_alloc_q_vectors(adapter);
1890	if (err) {
1891		dev_err(&adapter->pdev->dev,
1892			"Unable to allocate memory for queue vectors\n");
1893		goto err_alloc_q_vectors;
1894	}
1895
1896	/* If we've made it so far while ADq flag being ON, then we haven't
1897	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1898	 * resources have been allocated in the reset path.
1899	 * Now we can truly claim that ADq is enabled.
1900	 */
1901	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1902	    adapter->num_tc)
1903		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1904			 adapter->num_tc);
1905
1906	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1907		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1908		 adapter->num_active_queues);
1909
1910	return 0;
1911err_alloc_q_vectors:
1912	iavf_reset_interrupt_capability(adapter);
1913err_set_interrupt:
1914	iavf_free_queues(adapter);
1915err_alloc_queues:
1916	return err;
1917}
1918
1919/**
1920 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1921 * @adapter: board private structure
1922 **/
1923static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1924{
1925	iavf_free_q_vectors(adapter);
1926	iavf_reset_interrupt_capability(adapter);
1927	iavf_free_queues(adapter);
1928}
1929
1930/**
1931 * iavf_free_rss - Free memory used by RSS structs
1932 * @adapter: board private structure
1933 **/
1934static void iavf_free_rss(struct iavf_adapter *adapter)
1935{
1936	kfree(adapter->rss_key);
1937	adapter->rss_key = NULL;
1938
1939	kfree(adapter->rss_lut);
1940	adapter->rss_lut = NULL;
1941}
1942
1943/**
1944 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1945 * @adapter: board private structure
1946 * @running: true if adapter->state == __IAVF_RUNNING
1947 *
1948 * Returns 0 on success, negative on failure
1949 **/
1950static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1951{
1952	struct net_device *netdev = adapter->netdev;
1953	int err;
1954
1955	if (running)
1956		iavf_free_traffic_irqs(adapter);
1957	iavf_free_misc_irq(adapter);
1958	iavf_free_interrupt_scheme(adapter);
1959
1960	err = iavf_init_interrupt_scheme(adapter);
1961	if (err)
1962		goto err;
1963
1964	netif_tx_stop_all_queues(netdev);
1965
1966	err = iavf_request_misc_irq(adapter);
1967	if (err)
1968		goto err;
1969
1970	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1971
1972	iavf_map_rings_to_vectors(adapter);
1973err:
1974	return err;
1975}
1976
1977/**
1978 * iavf_finish_config - do all netdev work that needs RTNL
1979 * @work: our work_struct
1980 *
1981 * Do work that needs both RTNL and crit_lock.
1982 **/
1983static void iavf_finish_config(struct work_struct *work)
1984{
1985	struct iavf_adapter *adapter;
1986	int pairs, err;
1987
1988	adapter = container_of(work, struct iavf_adapter, finish_config);
1989
1990	/* Always take RTNL first to prevent circular lock dependency;
1991	 * The dev->lock is needed to update the queue number
1992	 */
1993	rtnl_lock();
1994	mutex_lock(&adapter->netdev->lock);
1995	mutex_lock(&adapter->crit_lock);
1996
1997	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
1998	    adapter->netdev->reg_state == NETREG_REGISTERED &&
1999	    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2000		netdev_update_features(adapter->netdev);
2001		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2002	}
2003
2004	switch (adapter->state) {
2005	case __IAVF_DOWN:
2006		if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2007			err = register_netdevice(adapter->netdev);
2008			if (err) {
2009				dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2010					err);
2011
2012				/* go back and try again.*/
2013				iavf_free_rss(adapter);
2014				iavf_free_misc_irq(adapter);
2015				iavf_reset_interrupt_capability(adapter);
2016				iavf_change_state(adapter,
2017						  __IAVF_INIT_CONFIG_ADAPTER);
2018				goto out;
2019			}
2020		}
2021
2022		/* Set the real number of queues when reset occurs while
2023		 * state == __IAVF_DOWN
2024		 */
2025		fallthrough;
2026	case __IAVF_RUNNING:
2027		pairs = adapter->num_active_queues;
2028		netif_set_real_num_rx_queues(adapter->netdev, pairs);
2029		netif_set_real_num_tx_queues(adapter->netdev, pairs);
2030		break;
2031
2032	default:
2033		break;
2034	}
2035
2036out:
2037	mutex_unlock(&adapter->crit_lock);
2038	mutex_unlock(&adapter->netdev->lock);
2039	rtnl_unlock();
2040}
2041
2042/**
2043 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2044 * @adapter: board private structure
2045 **/
2046void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2047{
2048	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2049		queue_work(adapter->wq, &adapter->finish_config);
2050}
2051
2052/**
2053 * iavf_process_aq_command - process aq_required flags
2054 * and sends aq command
2055 * @adapter: pointer to iavf adapter structure
2056 *
2057 * Returns 0 on success
2058 * Returns error code if no command was sent
2059 * or error code if the command failed.
2060 **/
2061static int iavf_process_aq_command(struct iavf_adapter *adapter)
2062{
2063	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2064		return iavf_send_vf_config_msg(adapter);
2065	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2066		return iavf_send_vf_offload_vlan_v2_msg(adapter);
2067	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2068		iavf_disable_queues(adapter);
2069		return 0;
2070	}
2071
2072	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2073		iavf_map_queues(adapter);
2074		return 0;
2075	}
2076
2077	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2078		iavf_add_ether_addrs(adapter);
2079		return 0;
2080	}
2081
2082	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2083		iavf_add_vlans(adapter);
2084		return 0;
2085	}
2086
2087	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2088		iavf_del_ether_addrs(adapter);
2089		return 0;
2090	}
2091
2092	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2093		iavf_del_vlans(adapter);
2094		return 0;
2095	}
2096
2097	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2098		iavf_enable_vlan_stripping(adapter);
2099		return 0;
2100	}
2101
2102	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2103		iavf_disable_vlan_stripping(adapter);
2104		return 0;
2105	}
2106
2107	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) {
2108		iavf_cfg_queues_bw(adapter);
2109		return 0;
2110	}
2111
2112	if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) {
2113		iavf_get_qos_caps(adapter);
2114		return 0;
2115	}
2116
2117	if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) {
2118		iavf_cfg_queues_quanta_size(adapter);
2119		return 0;
2120	}
2121
2122	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2123		iavf_configure_queues(adapter);
2124		return 0;
2125	}
2126
2127	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2128		iavf_enable_queues(adapter);
2129		return 0;
2130	}
2131
2132	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2133		/* This message goes straight to the firmware, not the
2134		 * PF, so we don't have to set current_op as we will
2135		 * not get a response through the ARQ.
2136		 */
2137		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2138		return 0;
2139	}
2140	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2141		iavf_get_hena(adapter);
2142		return 0;
2143	}
2144	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2145		iavf_set_hena(adapter);
2146		return 0;
2147	}
2148	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2149		iavf_set_rss_key(adapter);
2150		return 0;
2151	}
2152	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2153		iavf_set_rss_lut(adapter);
2154		return 0;
2155	}
2156	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2157		iavf_set_rss_hfunc(adapter);
2158		return 0;
2159	}
2160
2161	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2162		iavf_set_promiscuous(adapter);
2163		return 0;
2164	}
2165
2166	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2167		iavf_enable_channels(adapter);
2168		return 0;
2169	}
2170
2171	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2172		iavf_disable_channels(adapter);
2173		return 0;
2174	}
2175	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2176		iavf_add_cloud_filter(adapter);
2177		return 0;
2178	}
2179	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2180		iavf_del_cloud_filter(adapter);
2181		return 0;
2182	}
2183	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2184		iavf_add_fdir_filter(adapter);
2185		return IAVF_SUCCESS;
2186	}
2187	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2188		iavf_del_fdir_filter(adapter);
2189		return IAVF_SUCCESS;
2190	}
2191	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2192		iavf_add_adv_rss_cfg(adapter);
2193		return 0;
2194	}
2195	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2196		iavf_del_adv_rss_cfg(adapter);
2197		return 0;
2198	}
2199	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2200		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2201		return 0;
2202	}
2203	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2204		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2205		return 0;
2206	}
2207	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2208		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2209		return 0;
2210	}
2211	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2212		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2213		return 0;
2214	}
2215	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2216		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2217		return 0;
2218	}
2219	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2220		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2221		return 0;
2222	}
2223	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2224		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2225		return 0;
2226	}
2227	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2228		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2229		return 0;
2230	}
2231
2232	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2233		iavf_request_stats(adapter);
2234		return 0;
2235	}
2236
2237	return -EAGAIN;
2238}
2239
2240/**
2241 * iavf_set_vlan_offload_features - set VLAN offload configuration
2242 * @adapter: board private structure
2243 * @prev_features: previous features used for comparison
2244 * @features: updated features used for configuration
2245 *
2246 * Set the aq_required bit(s) based on the requested features passed in to
2247 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2248 * the watchdog if any changes are requested to expedite the request via
2249 * virtchnl.
2250 **/
2251static void
2252iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2253			       netdev_features_t prev_features,
2254			       netdev_features_t features)
2255{
2256	bool enable_stripping = true, enable_insertion = true;
2257	u16 vlan_ethertype = 0;
2258	u64 aq_required = 0;
2259
2260	/* keep cases separate because one ethertype for offloads can be
2261	 * disabled at the same time as another is disabled, so check for an
2262	 * enabled ethertype first, then check for disabled. Default to
2263	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2264	 * stripping.
2265	 */
2266	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2267		vlan_ethertype = ETH_P_8021AD;
2268	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2269		vlan_ethertype = ETH_P_8021Q;
2270	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2271		vlan_ethertype = ETH_P_8021AD;
2272	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2273		vlan_ethertype = ETH_P_8021Q;
2274	else
2275		vlan_ethertype = ETH_P_8021Q;
2276
2277	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2278		enable_stripping = false;
2279	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2280		enable_insertion = false;
2281
2282	if (VLAN_ALLOWED(adapter)) {
2283		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2284		 * stripping via virtchnl. VLAN insertion can be toggled on the
2285		 * netdev, but it doesn't require a virtchnl message
2286		 */
2287		if (enable_stripping)
2288			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2289		else
2290			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2291
2292	} else if (VLAN_V2_ALLOWED(adapter)) {
2293		switch (vlan_ethertype) {
2294		case ETH_P_8021Q:
2295			if (enable_stripping)
2296				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2297			else
2298				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2299
2300			if (enable_insertion)
2301				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2302			else
2303				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2304			break;
2305		case ETH_P_8021AD:
2306			if (enable_stripping)
2307				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2308			else
2309				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2310
2311			if (enable_insertion)
2312				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2313			else
2314				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2315			break;
2316		}
2317	}
2318
2319	if (aq_required)
2320		iavf_schedule_aq_request(adapter, aq_required);
2321}
2322
2323/**
2324 * iavf_startup - first step of driver startup
2325 * @adapter: board private structure
2326 *
2327 * Function process __IAVF_STARTUP driver state.
2328 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2329 * when fails the state is changed to __IAVF_INIT_FAILED
2330 **/
2331static void iavf_startup(struct iavf_adapter *adapter)
2332{
2333	struct pci_dev *pdev = adapter->pdev;
2334	struct iavf_hw *hw = &adapter->hw;
2335	enum iavf_status status;
2336	int ret;
2337
2338	WARN_ON(adapter->state != __IAVF_STARTUP);
2339
2340	/* driver loaded, probe complete */
2341	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2342	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2343
2344	ret = iavf_check_reset_complete(hw);
2345	if (ret) {
2346		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2347			 ret);
2348		goto err;
2349	}
2350	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2351	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2352	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2353	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2354
2355	status = iavf_init_adminq(hw);
2356	if (status) {
2357		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2358			status);
2359		goto err;
2360	}
2361	ret = iavf_send_api_ver(adapter);
2362	if (ret) {
2363		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2364		iavf_shutdown_adminq(hw);
2365		goto err;
2366	}
2367	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2368	return;
2369err:
2370	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2371}
2372
2373/**
2374 * iavf_init_version_check - second step of driver startup
2375 * @adapter: board private structure
2376 *
2377 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2378 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2379 * when fails the state is changed to __IAVF_INIT_FAILED
2380 **/
2381static void iavf_init_version_check(struct iavf_adapter *adapter)
2382{
2383	struct pci_dev *pdev = adapter->pdev;
2384	struct iavf_hw *hw = &adapter->hw;
2385	int err = -EAGAIN;
2386
2387	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2388
2389	if (!iavf_asq_done(hw)) {
2390		dev_err(&pdev->dev, "Admin queue command never completed\n");
2391		iavf_shutdown_adminq(hw);
2392		iavf_change_state(adapter, __IAVF_STARTUP);
2393		goto err;
2394	}
2395
2396	/* aq msg sent, awaiting reply */
2397	err = iavf_verify_api_ver(adapter);
2398	if (err) {
2399		if (err == -EALREADY)
2400			err = iavf_send_api_ver(adapter);
2401		else
2402			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2403				adapter->pf_version.major,
2404				adapter->pf_version.minor,
2405				VIRTCHNL_VERSION_MAJOR,
2406				VIRTCHNL_VERSION_MINOR);
2407		goto err;
2408	}
2409	err = iavf_send_vf_config_msg(adapter);
2410	if (err) {
2411		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2412			err);
2413		goto err;
2414	}
2415	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2416	return;
2417err:
2418	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2419}
2420
2421/**
2422 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2423 * @adapter: board private structure
2424 */
2425int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2426{
2427	int i, num_req_queues = adapter->num_req_queues;
2428	struct iavf_vsi *vsi = &adapter->vsi;
2429
2430	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2431		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2432			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2433	}
2434	if (!adapter->vsi_res) {
2435		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2436		return -ENODEV;
2437	}
2438
2439	if (num_req_queues &&
2440	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2441		/* Problem.  The PF gave us fewer queues than what we had
2442		 * negotiated in our request.  Need a reset to see if we can't
2443		 * get back to a working state.
2444		 */
2445		dev_err(&adapter->pdev->dev,
2446			"Requested %d queues, but PF only gave us %d.\n",
2447			num_req_queues,
2448			adapter->vsi_res->num_queue_pairs);
2449		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2450		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2451		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2452
2453		return -EAGAIN;
2454	}
2455	adapter->num_req_queues = 0;
2456	adapter->vsi.id = adapter->vsi_res->vsi_id;
2457
2458	adapter->vsi.back = adapter;
2459	adapter->vsi.base_vector = 1;
2460	vsi->netdev = adapter->netdev;
2461	vsi->qs_handle = adapter->vsi_res->qset_handle;
2462	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2463		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2464		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2465	} else {
2466		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2467		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2468	}
2469
2470	return 0;
2471}
2472
2473/**
2474 * iavf_init_get_resources - third step of driver startup
2475 * @adapter: board private structure
2476 *
2477 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2478 * finishes driver initialization procedure.
2479 * When success the state is changed to __IAVF_DOWN
2480 * when fails the state is changed to __IAVF_INIT_FAILED
2481 **/
2482static void iavf_init_get_resources(struct iavf_adapter *adapter)
2483{
2484	struct pci_dev *pdev = adapter->pdev;
2485	struct iavf_hw *hw = &adapter->hw;
2486	int err;
2487
2488	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2489	/* aq msg sent, awaiting reply */
2490	if (!adapter->vf_res) {
2491		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2492					  GFP_KERNEL);
2493		if (!adapter->vf_res) {
2494			err = -ENOMEM;
2495			goto err;
2496		}
2497	}
2498	err = iavf_get_vf_config(adapter);
2499	if (err == -EALREADY) {
2500		err = iavf_send_vf_config_msg(adapter);
2501		goto err;
2502	} else if (err == -EINVAL) {
2503		/* We only get -EINVAL if the device is in a very bad
2504		 * state or if we've been disabled for previous bad
2505		 * behavior. Either way, we're done now.
2506		 */
2507		iavf_shutdown_adminq(hw);
2508		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2509		return;
2510	}
2511	if (err) {
2512		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2513		goto err_alloc;
2514	}
2515
2516	err = iavf_parse_vf_resource_msg(adapter);
2517	if (err) {
2518		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2519			err);
2520		goto err_alloc;
2521	}
2522	/* Some features require additional messages to negotiate extended
2523	 * capabilities. These are processed in sequence by the
2524	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2525	 */
2526	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2527
2528	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2529	return;
2530
2531err_alloc:
2532	kfree(adapter->vf_res);
2533	adapter->vf_res = NULL;
2534err:
2535	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2536}
2537
2538/**
2539 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2540 * @adapter: board private structure
2541 *
2542 * Function processes send of the extended VLAN V2 capability message to the
2543 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2544 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2545 */
2546static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2547{
2548	int ret;
2549
2550	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2551
2552	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2553	if (ret && ret == -EOPNOTSUPP) {
2554		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2555		 * we did not send the capability exchange message and do not
2556		 * expect a response.
2557		 */
2558		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2559	}
2560
2561	/* We sent the message, so move on to the next step */
2562	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2563}
2564
2565/**
2566 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2567 * @adapter: board private structure
2568 *
2569 * Function processes receipt of the extended VLAN V2 capability message from
2570 * the PF.
2571 **/
2572static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2573{
2574	int ret;
2575
2576	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2577
2578	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2579
2580	ret = iavf_get_vf_vlan_v2_caps(adapter);
2581	if (ret)
2582		goto err;
2583
2584	/* We've processed receipt of the VLAN V2 caps message */
2585	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2586	return;
2587err:
2588	/* We didn't receive a reply. Make sure we try sending again when
2589	 * __IAVF_INIT_FAILED attempts to recover.
2590	 */
2591	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2592	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2593}
2594
2595/**
2596 * iavf_init_process_extended_caps - Part of driver startup
2597 * @adapter: board private structure
2598 *
2599 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2600 * handles negotiating capabilities for features which require an additional
2601 * message.
2602 *
2603 * Once all extended capabilities exchanges are finished, the driver will
2604 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2605 */
2606static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2607{
2608	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2609
2610	/* Process capability exchange for VLAN V2 */
2611	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2612		iavf_init_send_offload_vlan_v2_caps(adapter);
2613		return;
2614	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2615		iavf_init_recv_offload_vlan_v2_caps(adapter);
2616		return;
2617	}
2618
2619	/* When we reach here, no further extended capabilities exchanges are
2620	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2621	 */
2622	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2623}
2624
2625/**
2626 * iavf_init_config_adapter - last part of driver startup
2627 * @adapter: board private structure
2628 *
2629 * After all the supported capabilities are negotiated, then the
2630 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2631 */
2632static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2633{
2634	struct net_device *netdev = adapter->netdev;
2635	struct pci_dev *pdev = adapter->pdev;
2636	int err;
2637
2638	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2639
2640	if (iavf_process_config(adapter))
2641		goto err;
2642
2643	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2644
2645	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2646
2647	netdev->netdev_ops = &iavf_netdev_ops;
2648	iavf_set_ethtool_ops(netdev);
2649	netdev->watchdog_timeo = 5 * HZ;
2650
 
2651	netdev->min_mtu = ETH_MIN_MTU;
2652	netdev->max_mtu = LIBIE_MAX_MTU;
2653
2654	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2655		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2656			 adapter->hw.mac.addr);
2657		eth_hw_addr_random(netdev);
2658		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2659	} else {
2660		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2661		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2662	}
2663
2664	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2665	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2666	err = iavf_init_interrupt_scheme(adapter);
2667	if (err)
2668		goto err_sw_init;
2669	iavf_map_rings_to_vectors(adapter);
2670	if (adapter->vf_res->vf_cap_flags &
2671		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2672		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2673
2674	err = iavf_request_misc_irq(adapter);
2675	if (err)
2676		goto err_sw_init;
2677
2678	netif_carrier_off(netdev);
2679	adapter->link_up = false;
2680	netif_tx_stop_all_queues(netdev);
2681
2682	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2683	if (netdev->features & NETIF_F_GRO)
2684		dev_info(&pdev->dev, "GRO is enabled\n");
2685
2686	iavf_change_state(adapter, __IAVF_DOWN);
2687	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2688
2689	iavf_misc_irq_enable(adapter);
2690	wake_up(&adapter->down_waitqueue);
2691
2692	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2693	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2694	if (!adapter->rss_key || !adapter->rss_lut) {
2695		err = -ENOMEM;
2696		goto err_mem;
2697	}
2698	if (RSS_AQ(adapter))
2699		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2700	else
2701		iavf_init_rss(adapter);
2702
2703	if (VLAN_V2_ALLOWED(adapter))
2704		/* request initial VLAN offload settings */
2705		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2706
2707	if (QOS_ALLOWED(adapter))
2708		adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS;
2709
2710	iavf_schedule_finish_config(adapter);
2711	return;
2712
2713err_mem:
2714	iavf_free_rss(adapter);
2715	iavf_free_misc_irq(adapter);
2716err_sw_init:
2717	iavf_reset_interrupt_capability(adapter);
2718err:
2719	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2720}
2721
2722/**
2723 * iavf_watchdog_task - Periodic call-back task
2724 * @work: pointer to work_struct
2725 **/
2726static void iavf_watchdog_task(struct work_struct *work)
2727{
2728	struct iavf_adapter *adapter = container_of(work,
2729						    struct iavf_adapter,
2730						    watchdog_task.work);
2731	struct iavf_hw *hw = &adapter->hw;
2732	u32 reg_val;
2733
2734	if (!mutex_trylock(&adapter->crit_lock)) {
2735		if (adapter->state == __IAVF_REMOVE)
2736			return;
2737
2738		goto restart_watchdog;
2739	}
2740
2741	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2742		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2743
2744	switch (adapter->state) {
2745	case __IAVF_STARTUP:
2746		iavf_startup(adapter);
2747		mutex_unlock(&adapter->crit_lock);
2748		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2749				   msecs_to_jiffies(30));
2750		return;
2751	case __IAVF_INIT_VERSION_CHECK:
2752		iavf_init_version_check(adapter);
2753		mutex_unlock(&adapter->crit_lock);
2754		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2755				   msecs_to_jiffies(30));
2756		return;
2757	case __IAVF_INIT_GET_RESOURCES:
2758		iavf_init_get_resources(adapter);
2759		mutex_unlock(&adapter->crit_lock);
2760		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2761				   msecs_to_jiffies(1));
2762		return;
2763	case __IAVF_INIT_EXTENDED_CAPS:
2764		iavf_init_process_extended_caps(adapter);
2765		mutex_unlock(&adapter->crit_lock);
2766		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2767				   msecs_to_jiffies(1));
2768		return;
2769	case __IAVF_INIT_CONFIG_ADAPTER:
2770		iavf_init_config_adapter(adapter);
2771		mutex_unlock(&adapter->crit_lock);
2772		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2773				   msecs_to_jiffies(1));
2774		return;
2775	case __IAVF_INIT_FAILED:
2776		if (test_bit(__IAVF_IN_REMOVE_TASK,
2777			     &adapter->crit_section)) {
2778			/* Do not update the state and do not reschedule
2779			 * watchdog task, iavf_remove should handle this state
2780			 * as it can loop forever
2781			 */
2782			mutex_unlock(&adapter->crit_lock);
2783			return;
2784		}
2785		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2786			dev_err(&adapter->pdev->dev,
2787				"Failed to communicate with PF; waiting before retry\n");
2788			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2789			iavf_shutdown_adminq(hw);
2790			mutex_unlock(&adapter->crit_lock);
2791			queue_delayed_work(adapter->wq,
2792					   &adapter->watchdog_task, (5 * HZ));
2793			return;
2794		}
2795		/* Try again from failed step*/
2796		iavf_change_state(adapter, adapter->last_state);
2797		mutex_unlock(&adapter->crit_lock);
2798		queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2799		return;
2800	case __IAVF_COMM_FAILED:
2801		if (test_bit(__IAVF_IN_REMOVE_TASK,
2802			     &adapter->crit_section)) {
2803			/* Set state to __IAVF_INIT_FAILED and perform remove
2804			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2805			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2806			 */
2807			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2808			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2809			mutex_unlock(&adapter->crit_lock);
2810			return;
2811		}
2812		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2813			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2814		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2815		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2816			/* A chance for redemption! */
2817			dev_err(&adapter->pdev->dev,
2818				"Hardware came out of reset. Attempting reinit.\n");
2819			/* When init task contacts the PF and
2820			 * gets everything set up again, it'll restart the
2821			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2822			 */
2823			iavf_change_state(adapter, __IAVF_STARTUP);
2824			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2825		}
2826		adapter->aq_required = 0;
2827		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2828		mutex_unlock(&adapter->crit_lock);
2829		queue_delayed_work(adapter->wq,
2830				   &adapter->watchdog_task,
2831				   msecs_to_jiffies(10));
2832		return;
2833	case __IAVF_RESETTING:
2834		mutex_unlock(&adapter->crit_lock);
2835		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2836				   HZ * 2);
2837		return;
2838	case __IAVF_DOWN:
2839	case __IAVF_DOWN_PENDING:
2840	case __IAVF_TESTING:
2841	case __IAVF_RUNNING:
2842		if (adapter->current_op) {
2843			if (!iavf_asq_done(hw)) {
2844				dev_dbg(&adapter->pdev->dev,
2845					"Admin queue timeout\n");
2846				iavf_send_api_ver(adapter);
2847			}
2848		} else {
2849			int ret = iavf_process_aq_command(adapter);
2850
2851			/* An error will be returned if no commands were
2852			 * processed; use this opportunity to update stats
2853			 * if the error isn't -ENOTSUPP
2854			 */
2855			if (ret && ret != -EOPNOTSUPP &&
2856			    adapter->state == __IAVF_RUNNING)
2857				iavf_request_stats(adapter);
2858		}
2859		if (adapter->state == __IAVF_RUNNING)
2860			iavf_detect_recover_hung(&adapter->vsi);
2861		break;
2862	case __IAVF_REMOVE:
2863	default:
2864		mutex_unlock(&adapter->crit_lock);
2865		return;
2866	}
2867
2868	/* check for hw reset */
2869	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2870	if (!reg_val) {
2871		adapter->aq_required = 0;
2872		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2873		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2874		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2875		mutex_unlock(&adapter->crit_lock);
2876		queue_delayed_work(adapter->wq,
2877				   &adapter->watchdog_task, HZ * 2);
2878		return;
2879	}
2880
2881	mutex_unlock(&adapter->crit_lock);
2882restart_watchdog:
2883	if (adapter->state >= __IAVF_DOWN)
2884		queue_work(adapter->wq, &adapter->adminq_task);
2885	if (adapter->aq_required)
2886		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2887				   msecs_to_jiffies(20));
2888	else
2889		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2890				   HZ * 2);
2891}
2892
2893/**
2894 * iavf_disable_vf - disable VF
2895 * @adapter: board private structure
2896 *
2897 * Set communication failed flag and free all resources.
2898 * NOTE: This function is expected to be called with crit_lock being held.
2899 **/
2900static void iavf_disable_vf(struct iavf_adapter *adapter)
2901{
2902	struct iavf_mac_filter *f, *ftmp;
2903	struct iavf_vlan_filter *fv, *fvtmp;
2904	struct iavf_cloud_filter *cf, *cftmp;
2905
2906	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2907
2908	/* We don't use netif_running() because it may be true prior to
2909	 * ndo_open() returning, so we can't assume it means all our open
2910	 * tasks have finished, since we're not holding the rtnl_lock here.
2911	 */
2912	if (adapter->state == __IAVF_RUNNING) {
2913		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2914		netif_carrier_off(adapter->netdev);
2915		netif_tx_disable(adapter->netdev);
2916		adapter->link_up = false;
2917		iavf_napi_disable_all(adapter);
2918		iavf_irq_disable(adapter);
2919		iavf_free_traffic_irqs(adapter);
2920		iavf_free_all_tx_resources(adapter);
2921		iavf_free_all_rx_resources(adapter);
2922	}
2923
2924	spin_lock_bh(&adapter->mac_vlan_list_lock);
2925
2926	/* Delete all of the filters */
2927	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2928		list_del(&f->list);
2929		kfree(f);
2930	}
2931
2932	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2933		list_del(&fv->list);
2934		kfree(fv);
2935	}
2936	adapter->num_vlan_filters = 0;
2937
2938	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2939
2940	spin_lock_bh(&adapter->cloud_filter_list_lock);
2941	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2942		list_del(&cf->list);
2943		kfree(cf);
2944		adapter->num_cloud_filters--;
2945	}
2946	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2947
2948	iavf_free_misc_irq(adapter);
2949	iavf_free_interrupt_scheme(adapter);
2950	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2951	iavf_shutdown_adminq(&adapter->hw);
2952	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2953	iavf_change_state(adapter, __IAVF_DOWN);
2954	wake_up(&adapter->down_waitqueue);
2955	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2956}
2957
2958/**
2959 * iavf_reconfig_qs_bw - Call-back task to handle hardware reset
2960 * @adapter: board private structure
2961 *
2962 * After a reset, the shaper parameters of queues need to be replayed again.
2963 * Since the net_shaper object inside TX rings persists across reset,
2964 * set the update flag for all queues so that the virtchnl message is triggered
2965 * for all queues.
2966 **/
2967static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter)
2968{
2969	int i, num = 0;
2970
2971	for (i = 0; i < adapter->num_active_queues; i++)
2972		if (adapter->tx_rings[i].q_shaper.bw_min ||
2973		    adapter->tx_rings[i].q_shaper.bw_max) {
2974			adapter->tx_rings[i].q_shaper_update = true;
2975			num++;
2976		}
2977
2978	if (num)
2979		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
2980}
2981
2982/**
2983 * iavf_reset_task - Call-back task to handle hardware reset
2984 * @work: pointer to work_struct
2985 *
2986 * During reset we need to shut down and reinitialize the admin queue
2987 * before we can use it to communicate with the PF again. We also clear
2988 * and reinit the rings because that context is lost as well.
2989 **/
2990static void iavf_reset_task(struct work_struct *work)
2991{
2992	struct iavf_adapter *adapter = container_of(work,
2993						      struct iavf_adapter,
2994						      reset_task);
2995	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2996	struct net_device *netdev = adapter->netdev;
2997	struct iavf_hw *hw = &adapter->hw;
2998	struct iavf_mac_filter *f, *ftmp;
2999	struct iavf_cloud_filter *cf;
3000	enum iavf_status status;
3001	u32 reg_val;
3002	int i = 0, err;
3003	bool running;
3004
3005	/* When device is being removed it doesn't make sense to run the reset
3006	 * task, just return in such a case.
3007	 */
3008	mutex_lock(&netdev->lock);
3009	if (!mutex_trylock(&adapter->crit_lock)) {
3010		if (adapter->state != __IAVF_REMOVE)
3011			queue_work(adapter->wq, &adapter->reset_task);
3012
3013		mutex_unlock(&netdev->lock);
3014		return;
3015	}
3016
3017	iavf_misc_irq_disable(adapter);
3018	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
3019		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
3020		/* Restart the AQ here. If we have been reset but didn't
3021		 * detect it, or if the PF had to reinit, our AQ will be hosed.
3022		 */
3023		iavf_shutdown_adminq(hw);
3024		iavf_init_adminq(hw);
3025		iavf_request_reset(adapter);
3026	}
3027	adapter->flags |= IAVF_FLAG_RESET_PENDING;
3028
3029	/* poll until we see the reset actually happen */
3030	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
3031		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
3032			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
3033		if (!reg_val)
3034			break;
3035		usleep_range(5000, 10000);
3036	}
3037	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3038		dev_info(&adapter->pdev->dev, "Never saw reset\n");
3039		goto continue_reset; /* act like the reset happened */
3040	}
3041
3042	/* wait until the reset is complete and the PF is responding to us */
3043	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3044		/* sleep first to make sure a minimum wait time is met */
3045		msleep(IAVF_RESET_WAIT_MS);
3046
3047		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3048			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3049		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3050			break;
3051	}
3052
3053	pci_set_master(adapter->pdev);
3054	pci_restore_msi_state(adapter->pdev);
3055
3056	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3057		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3058			reg_val);
3059		iavf_disable_vf(adapter);
3060		mutex_unlock(&adapter->crit_lock);
3061		mutex_unlock(&netdev->lock);
3062		return; /* Do not attempt to reinit. It's dead, Jim. */
3063	}
3064
3065continue_reset:
3066	/* We don't use netif_running() because it may be true prior to
3067	 * ndo_open() returning, so we can't assume it means all our open
3068	 * tasks have finished, since we're not holding the rtnl_lock here.
3069	 */
3070	running = adapter->state == __IAVF_RUNNING;
3071
3072	if (running) {
3073		netif_carrier_off(netdev);
3074		netif_tx_stop_all_queues(netdev);
3075		adapter->link_up = false;
3076		iavf_napi_disable_all(adapter);
3077	}
3078	iavf_irq_disable(adapter);
3079
3080	iavf_change_state(adapter, __IAVF_RESETTING);
3081	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3082
3083	/* free the Tx/Rx rings and descriptors, might be better to just
3084	 * re-use them sometime in the future
3085	 */
3086	iavf_free_all_rx_resources(adapter);
3087	iavf_free_all_tx_resources(adapter);
3088
3089	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3090	/* kill and reinit the admin queue */
3091	iavf_shutdown_adminq(hw);
3092	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3093	status = iavf_init_adminq(hw);
3094	if (status) {
3095		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3096			 status);
3097		goto reset_err;
3098	}
3099	adapter->aq_required = 0;
3100
3101	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3102	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3103		err = iavf_reinit_interrupt_scheme(adapter, running);
3104		if (err)
3105			goto reset_err;
3106	}
3107
3108	if (RSS_AQ(adapter)) {
3109		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3110	} else {
3111		err = iavf_init_rss(adapter);
3112		if (err)
3113			goto reset_err;
3114	}
3115
3116	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3117	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3118	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3119	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3120	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3121	 * been successfully sent and negotiated
3122	 */
3123	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3124	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3125
3126	spin_lock_bh(&adapter->mac_vlan_list_lock);
3127
3128	/* Delete filter for the current MAC address, it could have
3129	 * been changed by the PF via administratively set MAC.
3130	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3131	 */
3132	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3133		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3134			list_del(&f->list);
3135			kfree(f);
3136		}
3137	}
3138	/* re-add all MAC filters */
3139	list_for_each_entry(f, &adapter->mac_filter_list, list) {
3140		f->add = true;
3141	}
3142	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3143
3144	/* check if TCs are running and re-add all cloud filters */
3145	spin_lock_bh(&adapter->cloud_filter_list_lock);
3146	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3147	    adapter->num_tc) {
3148		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3149			cf->add = true;
3150		}
3151	}
3152	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3153
3154	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3155	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3156	iavf_misc_irq_enable(adapter);
3157
3158	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3159
3160	/* We were running when the reset started, so we need to restore some
3161	 * state here.
3162	 */
3163	if (running) {
3164		/* allocate transmit descriptors */
3165		err = iavf_setup_all_tx_resources(adapter);
3166		if (err)
3167			goto reset_err;
3168
3169		/* allocate receive descriptors */
3170		err = iavf_setup_all_rx_resources(adapter);
3171		if (err)
3172			goto reset_err;
3173
3174		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3175		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3176			err = iavf_request_traffic_irqs(adapter, netdev->name);
3177			if (err)
3178				goto reset_err;
3179
3180			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3181		}
3182
3183		iavf_configure(adapter);
3184
3185		/* iavf_up_complete() will switch device back
3186		 * to __IAVF_RUNNING
3187		 */
3188		iavf_up_complete(adapter);
3189
3190		iavf_irq_enable(adapter, true);
3191
3192		iavf_reconfig_qs_bw(adapter);
3193	} else {
3194		iavf_change_state(adapter, __IAVF_DOWN);
3195		wake_up(&adapter->down_waitqueue);
3196	}
3197
3198	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3199
3200	wake_up(&adapter->reset_waitqueue);
3201	mutex_unlock(&adapter->crit_lock);
3202	mutex_unlock(&netdev->lock);
3203
3204	return;
3205reset_err:
3206	if (running) {
3207		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3208		iavf_free_traffic_irqs(adapter);
3209	}
3210	iavf_disable_vf(adapter);
3211
3212	mutex_unlock(&adapter->crit_lock);
3213	mutex_unlock(&netdev->lock);
3214	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3215}
3216
3217/**
3218 * iavf_adminq_task - worker thread to clean the admin queue
3219 * @work: pointer to work_struct containing our data
3220 **/
3221static void iavf_adminq_task(struct work_struct *work)
3222{
3223	struct iavf_adapter *adapter =
3224		container_of(work, struct iavf_adapter, adminq_task);
3225	struct iavf_hw *hw = &adapter->hw;
3226	struct iavf_arq_event_info event;
3227	enum virtchnl_ops v_op;
3228	enum iavf_status ret, v_ret;
3229	u32 val, oldval;
3230	u16 pending;
3231
3232	if (!mutex_trylock(&adapter->crit_lock)) {
3233		if (adapter->state == __IAVF_REMOVE)
3234			return;
3235
3236		queue_work(adapter->wq, &adapter->adminq_task);
3237		goto out;
3238	}
3239
3240	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3241		goto unlock;
3242
3243	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3244	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3245	if (!event.msg_buf)
3246		goto unlock;
3247
3248	do {
3249		ret = iavf_clean_arq_element(hw, &event, &pending);
3250		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3251		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3252
3253		if (ret || !v_op)
3254			break; /* No event to process or error cleaning ARQ */
3255
3256		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3257					 event.msg_len);
3258		if (pending != 0)
3259			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3260	} while (pending);
3261
3262	if (iavf_is_reset_in_progress(adapter))
3263		goto freedom;
3264
3265	/* check for error indications */
3266	val = rd32(hw, IAVF_VF_ARQLEN1);
3267	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3268		goto freedom;
3269	oldval = val;
3270	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3271		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3272		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3273	}
3274	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3275		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3276		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3277	}
3278	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3279		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3280		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3281	}
3282	if (oldval != val)
3283		wr32(hw, IAVF_VF_ARQLEN1, val);
3284
3285	val = rd32(hw, IAVF_VF_ATQLEN1);
3286	oldval = val;
3287	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3288		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3289		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3290	}
3291	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3292		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3293		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3294	}
3295	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3296		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3297		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3298	}
3299	if (oldval != val)
3300		wr32(hw, IAVF_VF_ATQLEN1, val);
3301
3302freedom:
3303	kfree(event.msg_buf);
3304unlock:
3305	mutex_unlock(&adapter->crit_lock);
3306out:
3307	/* re-enable Admin queue interrupt cause */
3308	iavf_misc_irq_enable(adapter);
3309}
3310
3311/**
3312 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3313 * @adapter: board private structure
3314 *
3315 * Free all transmit software resources
3316 **/
3317void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3318{
3319	int i;
3320
3321	if (!adapter->tx_rings)
3322		return;
3323
3324	for (i = 0; i < adapter->num_active_queues; i++)
3325		if (adapter->tx_rings[i].desc)
3326			iavf_free_tx_resources(&adapter->tx_rings[i]);
3327}
3328
3329/**
3330 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3331 * @adapter: board private structure
3332 *
3333 * If this function returns with an error, then it's possible one or
3334 * more of the rings is populated (while the rest are not).  It is the
3335 * callers duty to clean those orphaned rings.
3336 *
3337 * Return 0 on success, negative on failure
3338 **/
3339static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3340{
3341	int i, err = 0;
3342
3343	for (i = 0; i < adapter->num_active_queues; i++) {
3344		adapter->tx_rings[i].count = adapter->tx_desc_count;
3345		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3346		if (!err)
3347			continue;
3348		dev_err(&adapter->pdev->dev,
3349			"Allocation for Tx Queue %u failed\n", i);
3350		break;
3351	}
3352
3353	return err;
3354}
3355
3356/**
3357 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3358 * @adapter: board private structure
3359 *
3360 * If this function returns with an error, then it's possible one or
3361 * more of the rings is populated (while the rest are not).  It is the
3362 * callers duty to clean those orphaned rings.
3363 *
3364 * Return 0 on success, negative on failure
3365 **/
3366static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3367{
3368	int i, err = 0;
3369
3370	for (i = 0; i < adapter->num_active_queues; i++) {
3371		adapter->rx_rings[i].count = adapter->rx_desc_count;
3372		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3373		if (!err)
3374			continue;
3375		dev_err(&adapter->pdev->dev,
3376			"Allocation for Rx Queue %u failed\n", i);
3377		break;
3378	}
3379	return err;
3380}
3381
3382/**
3383 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3384 * @adapter: board private structure
3385 *
3386 * Free all receive software resources
3387 **/
3388void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3389{
3390	int i;
3391
3392	if (!adapter->rx_rings)
3393		return;
3394
3395	for (i = 0; i < adapter->num_active_queues; i++)
3396		if (adapter->rx_rings[i].desc)
3397			iavf_free_rx_resources(&adapter->rx_rings[i]);
3398}
3399
3400/**
3401 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3402 * @adapter: board private structure
3403 * @max_tx_rate: max Tx bw for a tc
3404 **/
3405static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3406				      u64 max_tx_rate)
3407{
3408	int speed = 0, ret = 0;
3409
3410	if (ADV_LINK_SUPPORT(adapter)) {
3411		if (adapter->link_speed_mbps < U32_MAX) {
3412			speed = adapter->link_speed_mbps;
3413			goto validate_bw;
3414		} else {
3415			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3416			return -EINVAL;
3417		}
3418	}
3419
3420	switch (adapter->link_speed) {
3421	case VIRTCHNL_LINK_SPEED_40GB:
3422		speed = SPEED_40000;
3423		break;
3424	case VIRTCHNL_LINK_SPEED_25GB:
3425		speed = SPEED_25000;
3426		break;
3427	case VIRTCHNL_LINK_SPEED_20GB:
3428		speed = SPEED_20000;
3429		break;
3430	case VIRTCHNL_LINK_SPEED_10GB:
3431		speed = SPEED_10000;
3432		break;
3433	case VIRTCHNL_LINK_SPEED_5GB:
3434		speed = SPEED_5000;
3435		break;
3436	case VIRTCHNL_LINK_SPEED_2_5GB:
3437		speed = SPEED_2500;
3438		break;
3439	case VIRTCHNL_LINK_SPEED_1GB:
3440		speed = SPEED_1000;
3441		break;
3442	case VIRTCHNL_LINK_SPEED_100MB:
3443		speed = SPEED_100;
3444		break;
3445	default:
3446		break;
3447	}
3448
3449validate_bw:
3450	if (max_tx_rate > speed) {
3451		dev_err(&adapter->pdev->dev,
3452			"Invalid tx rate specified\n");
3453		ret = -EINVAL;
3454	}
3455
3456	return ret;
3457}
3458
3459/**
3460 * iavf_validate_ch_config - validate queue mapping info
3461 * @adapter: board private structure
3462 * @mqprio_qopt: queue parameters
3463 *
3464 * This function validates if the config provided by the user to
3465 * configure queue channels is valid or not. Returns 0 on a valid
3466 * config.
3467 **/
3468static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3469				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3470{
3471	u64 total_max_rate = 0;
3472	u32 tx_rate_rem = 0;
3473	int i, num_qps = 0;
3474	u64 tx_rate = 0;
3475	int ret = 0;
3476
3477	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3478	    mqprio_qopt->qopt.num_tc < 1)
3479		return -EINVAL;
3480
3481	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3482		if (!mqprio_qopt->qopt.count[i] ||
3483		    mqprio_qopt->qopt.offset[i] != num_qps)
3484			return -EINVAL;
3485		if (mqprio_qopt->min_rate[i]) {
3486			dev_err(&adapter->pdev->dev,
3487				"Invalid min tx rate (greater than 0) specified for TC%d\n",
3488				i);
3489			return -EINVAL;
3490		}
3491
3492		/* convert to Mbps */
3493		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3494				  IAVF_MBPS_DIVISOR);
3495
3496		if (mqprio_qopt->max_rate[i] &&
3497		    tx_rate < IAVF_MBPS_QUANTA) {
3498			dev_err(&adapter->pdev->dev,
3499				"Invalid max tx rate for TC%d, minimum %dMbps\n",
3500				i, IAVF_MBPS_QUANTA);
3501			return -EINVAL;
3502		}
3503
3504		(void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3505
3506		if (tx_rate_rem != 0) {
3507			dev_err(&adapter->pdev->dev,
3508				"Invalid max tx rate for TC%d, not divisible by %d\n",
3509				i, IAVF_MBPS_QUANTA);
3510			return -EINVAL;
3511		}
3512
3513		total_max_rate += tx_rate;
3514		num_qps += mqprio_qopt->qopt.count[i];
3515	}
3516	if (num_qps > adapter->num_active_queues) {
3517		dev_err(&adapter->pdev->dev,
3518			"Cannot support requested number of queues\n");
3519		return -EINVAL;
3520	}
3521
3522	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3523	return ret;
3524}
3525
3526/**
3527 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3528 * @adapter: board private structure
3529 **/
3530static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3531{
3532	struct iavf_cloud_filter *cf, *cftmp;
3533
3534	spin_lock_bh(&adapter->cloud_filter_list_lock);
3535	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3536				 list) {
3537		list_del(&cf->list);
3538		kfree(cf);
3539		adapter->num_cloud_filters--;
3540	}
3541	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3542}
3543
3544/**
3545 * iavf_is_tc_config_same - Compare the mqprio TC config with the
3546 * TC config already configured on this adapter.
3547 * @adapter: board private structure
3548 * @mqprio_qopt: TC config received from kernel.
3549 *
3550 * This function compares the TC config received from the kernel
3551 * with the config already configured on the adapter.
3552 *
3553 * Return: True if configuration is same, false otherwise.
3554 **/
3555static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3556				   struct tc_mqprio_qopt *mqprio_qopt)
3557{
3558	struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3559	int i;
3560
3561	if (adapter->num_tc != mqprio_qopt->num_tc)
3562		return false;
3563
3564	for (i = 0; i < adapter->num_tc; i++) {
3565		if (ch[i].count != mqprio_qopt->count[i] ||
3566		    ch[i].offset != mqprio_qopt->offset[i])
3567			return false;
3568	}
3569	return true;
3570}
3571
3572/**
3573 * __iavf_setup_tc - configure multiple traffic classes
3574 * @netdev: network interface device structure
3575 * @type_data: tc offload data
3576 *
3577 * This function processes the config information provided by the
3578 * user to configure traffic classes/queue channels and packages the
3579 * information to request the PF to setup traffic classes.
3580 *
3581 * Returns 0 on success.
3582 **/
3583static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3584{
3585	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3586	struct iavf_adapter *adapter = netdev_priv(netdev);
3587	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3588	u8 num_tc = 0, total_qps = 0;
3589	int ret = 0, netdev_tc = 0;
3590	u64 max_tx_rate;
3591	u16 mode;
3592	int i;
3593
3594	num_tc = mqprio_qopt->qopt.num_tc;
3595	mode = mqprio_qopt->mode;
3596
3597	/* delete queue_channel */
3598	if (!mqprio_qopt->qopt.hw) {
3599		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3600			/* reset the tc configuration */
3601			netdev_reset_tc(netdev);
3602			adapter->num_tc = 0;
3603			netif_tx_stop_all_queues(netdev);
3604			netif_tx_disable(netdev);
3605			iavf_del_all_cloud_filters(adapter);
3606			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3607			total_qps = adapter->orig_num_active_queues;
3608			goto exit;
3609		} else {
3610			return -EINVAL;
3611		}
3612	}
3613
3614	/* add queue channel */
3615	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3616		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3617			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3618			return -EOPNOTSUPP;
3619		}
3620		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3621			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3622			return -EINVAL;
3623		}
3624
3625		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3626		if (ret)
3627			return ret;
3628		/* Return if same TC config is requested */
3629		if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3630			return 0;
3631		adapter->num_tc = num_tc;
3632
3633		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3634			if (i < num_tc) {
3635				adapter->ch_config.ch_info[i].count =
3636					mqprio_qopt->qopt.count[i];
3637				adapter->ch_config.ch_info[i].offset =
3638					mqprio_qopt->qopt.offset[i];
3639				total_qps += mqprio_qopt->qopt.count[i];
3640				max_tx_rate = mqprio_qopt->max_rate[i];
3641				/* convert to Mbps */
3642				max_tx_rate = div_u64(max_tx_rate,
3643						      IAVF_MBPS_DIVISOR);
3644				adapter->ch_config.ch_info[i].max_tx_rate =
3645					max_tx_rate;
3646			} else {
3647				adapter->ch_config.ch_info[i].count = 1;
3648				adapter->ch_config.ch_info[i].offset = 0;
3649			}
3650		}
3651
3652		/* Take snapshot of original config such as "num_active_queues"
3653		 * It is used later when delete ADQ flow is exercised, so that
3654		 * once delete ADQ flow completes, VF shall go back to its
3655		 * original queue configuration
3656		 */
3657
3658		adapter->orig_num_active_queues = adapter->num_active_queues;
3659
3660		/* Store queue info based on TC so that VF gets configured
3661		 * with correct number of queues when VF completes ADQ config
3662		 * flow
3663		 */
3664		adapter->ch_config.total_qps = total_qps;
3665
3666		netif_tx_stop_all_queues(netdev);
3667		netif_tx_disable(netdev);
3668		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3669		netdev_reset_tc(netdev);
3670		/* Report the tc mapping up the stack */
3671		netdev_set_num_tc(adapter->netdev, num_tc);
3672		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3673			u16 qcount = mqprio_qopt->qopt.count[i];
3674			u16 qoffset = mqprio_qopt->qopt.offset[i];
3675
3676			if (i < num_tc)
3677				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3678						    qoffset);
3679		}
3680	}
3681exit:
3682	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3683		return 0;
3684
3685	mutex_lock(&netdev->lock);
3686	netif_set_real_num_rx_queues(netdev, total_qps);
3687	netif_set_real_num_tx_queues(netdev, total_qps);
3688	mutex_unlock(&netdev->lock);
3689
3690	return ret;
3691}
3692
3693/**
3694 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3695 * @adapter: board private structure
3696 * @f: pointer to struct flow_cls_offload
3697 * @filter: pointer to cloud filter structure
3698 */
3699static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3700				 struct flow_cls_offload *f,
3701				 struct iavf_cloud_filter *filter)
3702{
3703	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3704	struct flow_dissector *dissector = rule->match.dissector;
3705	u16 n_proto_mask = 0;
3706	u16 n_proto_key = 0;
3707	u8 field_flags = 0;
3708	u16 addr_type = 0;
3709	u16 n_proto = 0;
3710	int i = 0;
3711	struct virtchnl_filter *vf = &filter->f;
3712
3713	if (dissector->used_keys &
3714	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3715	      BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3716	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3717	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3718	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3719	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3720	      BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3721	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3722		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3723			dissector->used_keys);
3724		return -EOPNOTSUPP;
3725	}
3726
3727	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3728		struct flow_match_enc_keyid match;
3729
3730		flow_rule_match_enc_keyid(rule, &match);
3731		if (match.mask->keyid != 0)
3732			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3733	}
3734
3735	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3736		struct flow_match_basic match;
3737
3738		flow_rule_match_basic(rule, &match);
3739		n_proto_key = ntohs(match.key->n_proto);
3740		n_proto_mask = ntohs(match.mask->n_proto);
3741
3742		if (n_proto_key == ETH_P_ALL) {
3743			n_proto_key = 0;
3744			n_proto_mask = 0;
3745		}
3746		n_proto = n_proto_key & n_proto_mask;
3747		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3748			return -EINVAL;
3749		if (n_proto == ETH_P_IPV6) {
3750			/* specify flow type as TCP IPv6 */
3751			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3752		}
3753
3754		if (match.key->ip_proto != IPPROTO_TCP) {
3755			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3756			return -EINVAL;
3757		}
3758	}
3759
3760	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3761		struct flow_match_eth_addrs match;
3762
3763		flow_rule_match_eth_addrs(rule, &match);
3764
3765		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3766		if (!is_zero_ether_addr(match.mask->dst)) {
3767			if (is_broadcast_ether_addr(match.mask->dst)) {
3768				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3769			} else {
3770				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3771					match.mask->dst);
3772				return -EINVAL;
3773			}
3774		}
3775
3776		if (!is_zero_ether_addr(match.mask->src)) {
3777			if (is_broadcast_ether_addr(match.mask->src)) {
3778				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3779			} else {
3780				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3781					match.mask->src);
3782				return -EINVAL;
3783			}
3784		}
3785
3786		if (!is_zero_ether_addr(match.key->dst))
3787			if (is_valid_ether_addr(match.key->dst) ||
3788			    is_multicast_ether_addr(match.key->dst)) {
3789				/* set the mask if a valid dst_mac address */
3790				for (i = 0; i < ETH_ALEN; i++)
3791					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3792				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3793						match.key->dst);
3794			}
3795
3796		if (!is_zero_ether_addr(match.key->src))
3797			if (is_valid_ether_addr(match.key->src) ||
3798			    is_multicast_ether_addr(match.key->src)) {
3799				/* set the mask if a valid dst_mac address */
3800				for (i = 0; i < ETH_ALEN; i++)
3801					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3802				ether_addr_copy(vf->data.tcp_spec.src_mac,
3803						match.key->src);
3804		}
3805	}
3806
3807	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3808		struct flow_match_vlan match;
3809
3810		flow_rule_match_vlan(rule, &match);
3811		if (match.mask->vlan_id) {
3812			if (match.mask->vlan_id == VLAN_VID_MASK) {
3813				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3814			} else {
3815				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3816					match.mask->vlan_id);
3817				return -EINVAL;
3818			}
3819		}
3820		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3821		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3822	}
3823
3824	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3825		struct flow_match_control match;
3826
3827		flow_rule_match_control(rule, &match);
3828		addr_type = match.key->addr_type;
3829
3830		if (flow_rule_has_control_flags(match.mask->flags,
3831						f->common.extack))
3832			return -EOPNOTSUPP;
3833	}
3834
3835	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3836		struct flow_match_ipv4_addrs match;
3837
3838		flow_rule_match_ipv4_addrs(rule, &match);
3839		if (match.mask->dst) {
3840			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3841				field_flags |= IAVF_CLOUD_FIELD_IIP;
3842			} else {
3843				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3844					be32_to_cpu(match.mask->dst));
3845				return -EINVAL;
3846			}
3847		}
3848
3849		if (match.mask->src) {
3850			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3851				field_flags |= IAVF_CLOUD_FIELD_IIP;
3852			} else {
3853				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3854					be32_to_cpu(match.mask->src));
3855				return -EINVAL;
3856			}
3857		}
3858
3859		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3860			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3861			return -EINVAL;
3862		}
3863		if (match.key->dst) {
3864			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3865			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3866		}
3867		if (match.key->src) {
3868			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3869			vf->data.tcp_spec.src_ip[0] = match.key->src;
3870		}
3871	}
3872
3873	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3874		struct flow_match_ipv6_addrs match;
3875
3876		flow_rule_match_ipv6_addrs(rule, &match);
3877
3878		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3879		if (ipv6_addr_any(&match.mask->dst)) {
3880			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3881				IPV6_ADDR_ANY);
3882			return -EINVAL;
3883		}
3884
3885		/* src and dest IPv6 address should not be LOOPBACK
3886		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3887		 */
3888		if (ipv6_addr_loopback(&match.key->dst) ||
3889		    ipv6_addr_loopback(&match.key->src)) {
3890			dev_err(&adapter->pdev->dev,
3891				"ipv6 addr should not be loopback\n");
3892			return -EINVAL;
3893		}
3894		if (!ipv6_addr_any(&match.mask->dst) ||
3895		    !ipv6_addr_any(&match.mask->src))
3896			field_flags |= IAVF_CLOUD_FIELD_IIP;
3897
3898		for (i = 0; i < 4; i++)
3899			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3900		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3901		       sizeof(vf->data.tcp_spec.dst_ip));
3902		for (i = 0; i < 4; i++)
3903			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3904		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3905		       sizeof(vf->data.tcp_spec.src_ip));
3906	}
3907	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3908		struct flow_match_ports match;
3909
3910		flow_rule_match_ports(rule, &match);
3911		if (match.mask->src) {
3912			if (match.mask->src == cpu_to_be16(0xffff)) {
3913				field_flags |= IAVF_CLOUD_FIELD_IIP;
3914			} else {
3915				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3916					be16_to_cpu(match.mask->src));
3917				return -EINVAL;
3918			}
3919		}
3920
3921		if (match.mask->dst) {
3922			if (match.mask->dst == cpu_to_be16(0xffff)) {
3923				field_flags |= IAVF_CLOUD_FIELD_IIP;
3924			} else {
3925				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3926					be16_to_cpu(match.mask->dst));
3927				return -EINVAL;
3928			}
3929		}
3930		if (match.key->dst) {
3931			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3932			vf->data.tcp_spec.dst_port = match.key->dst;
3933		}
3934
3935		if (match.key->src) {
3936			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3937			vf->data.tcp_spec.src_port = match.key->src;
3938		}
3939	}
3940	vf->field_flags = field_flags;
3941
3942	return 0;
3943}
3944
3945/**
3946 * iavf_handle_tclass - Forward to a traffic class on the device
3947 * @adapter: board private structure
3948 * @tc: traffic class index on the device
3949 * @filter: pointer to cloud filter structure
3950 */
3951static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3952			      struct iavf_cloud_filter *filter)
3953{
3954	if (tc == 0)
3955		return 0;
3956	if (tc < adapter->num_tc) {
3957		if (!filter->f.data.tcp_spec.dst_port) {
3958			dev_err(&adapter->pdev->dev,
3959				"Specify destination port to redirect to traffic class other than TC0\n");
3960			return -EINVAL;
3961		}
3962	}
3963	/* redirect to a traffic class on the same device */
3964	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3965	filter->f.action_meta = tc;
3966	return 0;
3967}
3968
3969/**
3970 * iavf_find_cf - Find the cloud filter in the list
3971 * @adapter: Board private structure
3972 * @cookie: filter specific cookie
3973 *
3974 * Returns ptr to the filter object or NULL. Must be called while holding the
3975 * cloud_filter_list_lock.
3976 */
3977static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3978					      unsigned long *cookie)
3979{
3980	struct iavf_cloud_filter *filter = NULL;
3981
3982	if (!cookie)
3983		return NULL;
3984
3985	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3986		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3987			return filter;
3988	}
3989	return NULL;
3990}
3991
3992/**
3993 * iavf_configure_clsflower - Add tc flower filters
3994 * @adapter: board private structure
3995 * @cls_flower: Pointer to struct flow_cls_offload
3996 */
3997static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3998				    struct flow_cls_offload *cls_flower)
3999{
4000	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
4001	struct iavf_cloud_filter *filter = NULL;
4002	int err = -EINVAL, count = 50;
4003
4004	if (tc < 0) {
4005		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
4006		return -EINVAL;
4007	}
4008
4009	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
4010	if (!filter)
4011		return -ENOMEM;
4012
4013	while (!mutex_trylock(&adapter->crit_lock)) {
4014		if (--count == 0) {
4015			kfree(filter);
4016			return err;
4017		}
4018		udelay(1);
4019	}
4020
4021	filter->cookie = cls_flower->cookie;
4022
4023	/* bail out here if filter already exists */
4024	spin_lock_bh(&adapter->cloud_filter_list_lock);
4025	if (iavf_find_cf(adapter, &cls_flower->cookie)) {
4026		dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
4027		err = -EEXIST;
4028		goto spin_unlock;
4029	}
4030	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4031
4032	/* set the mask to all zeroes to begin with */
4033	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
4034	/* start out with flow type and eth type IPv4 to begin with */
4035	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
4036	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
4037	if (err)
4038		goto err;
4039
4040	err = iavf_handle_tclass(adapter, tc, filter);
4041	if (err)
4042		goto err;
4043
4044	/* add filter to the list */
4045	spin_lock_bh(&adapter->cloud_filter_list_lock);
4046	list_add_tail(&filter->list, &adapter->cloud_filter_list);
4047	adapter->num_cloud_filters++;
4048	filter->add = true;
4049	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4050spin_unlock:
4051	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4052err:
4053	if (err)
4054		kfree(filter);
4055
4056	mutex_unlock(&adapter->crit_lock);
4057	return err;
4058}
4059
4060/**
4061 * iavf_delete_clsflower - Remove tc flower filters
4062 * @adapter: board private structure
4063 * @cls_flower: Pointer to struct flow_cls_offload
4064 */
4065static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4066				 struct flow_cls_offload *cls_flower)
4067{
4068	struct iavf_cloud_filter *filter = NULL;
4069	int err = 0;
4070
4071	spin_lock_bh(&adapter->cloud_filter_list_lock);
4072	filter = iavf_find_cf(adapter, &cls_flower->cookie);
4073	if (filter) {
4074		filter->del = true;
4075		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4076	} else {
4077		err = -EINVAL;
4078	}
4079	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4080
4081	return err;
4082}
4083
4084/**
4085 * iavf_setup_tc_cls_flower - flower classifier offloads
4086 * @adapter: pointer to iavf adapter structure
4087 * @cls_flower: pointer to flow_cls_offload struct with flow info
4088 */
4089static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4090				    struct flow_cls_offload *cls_flower)
4091{
4092	switch (cls_flower->command) {
4093	case FLOW_CLS_REPLACE:
4094		return iavf_configure_clsflower(adapter, cls_flower);
4095	case FLOW_CLS_DESTROY:
4096		return iavf_delete_clsflower(adapter, cls_flower);
4097	case FLOW_CLS_STATS:
4098		return -EOPNOTSUPP;
4099	default:
4100		return -EOPNOTSUPP;
4101	}
4102}
4103
4104/**
4105 * iavf_add_cls_u32 - Add U32 classifier offloads
4106 * @adapter: pointer to iavf adapter structure
4107 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4108 *
4109 * Return: 0 on success or negative errno on failure.
4110 */
4111static int iavf_add_cls_u32(struct iavf_adapter *adapter,
4112			    struct tc_cls_u32_offload *cls_u32)
4113{
4114	struct netlink_ext_ack *extack = cls_u32->common.extack;
4115	struct virtchnl_fdir_rule *rule_cfg;
4116	struct virtchnl_filter_action *vact;
4117	struct virtchnl_proto_hdrs *hdrs;
4118	struct ethhdr *spec_h, *mask_h;
4119	const struct tc_action *act;
4120	struct iavf_fdir_fltr *fltr;
4121	struct tcf_exts *exts;
4122	unsigned int q_index;
4123	int i, status = 0;
4124	int off_base = 0;
4125
4126	if (cls_u32->knode.link_handle) {
4127		NL_SET_ERR_MSG_MOD(extack, "Linking not supported");
4128		return -EOPNOTSUPP;
4129	}
4130
4131	fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
4132	if (!fltr)
4133		return -ENOMEM;
4134
4135	rule_cfg = &fltr->vc_add_msg.rule_cfg;
4136	hdrs = &rule_cfg->proto_hdrs;
4137	hdrs->count = 0;
4138
4139	/* The parser lib at the PF expects the packet starting with MAC hdr */
4140	switch (ntohs(cls_u32->common.protocol)) {
4141	case ETH_P_802_3:
4142		break;
4143	case ETH_P_IP:
4144		spec_h = (struct ethhdr *)hdrs->raw.spec;
4145		mask_h = (struct ethhdr *)hdrs->raw.mask;
4146		spec_h->h_proto = htons(ETH_P_IP);
4147		mask_h->h_proto = htons(0xFFFF);
4148		off_base += ETH_HLEN;
4149		break;
4150	default:
4151		NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported");
4152		status = -EOPNOTSUPP;
4153		goto free_alloc;
4154	}
4155
4156	for (i = 0; i < cls_u32->knode.sel->nkeys; i++) {
4157		__be32 val, mask;
4158		int off;
4159
4160		off = off_base + cls_u32->knode.sel->keys[i].off;
4161		val = cls_u32->knode.sel->keys[i].val;
4162		mask = cls_u32->knode.sel->keys[i].mask;
4163
4164		if (off >= sizeof(hdrs->raw.spec)) {
4165			NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed.");
4166			status = -EINVAL;
4167			goto free_alloc;
4168		}
4169
4170		memcpy(&hdrs->raw.spec[off], &val, sizeof(val));
4171		memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask));
4172		hdrs->raw.pkt_len = off + sizeof(val);
4173	}
4174
4175	/* Only one action is allowed */
4176	rule_cfg->action_set.count = 1;
4177	vact = &rule_cfg->action_set.actions[0];
4178	exts = cls_u32->knode.exts;
4179
4180	tcf_exts_for_each_action(i, act, exts) {
4181		/* FDIR queue */
4182		if (is_tcf_skbedit_rx_queue_mapping(act)) {
4183			q_index = tcf_skbedit_rx_queue_mapping(act);
4184			if (q_index >= adapter->num_active_queues) {
4185				status = -EINVAL;
4186				goto free_alloc;
4187			}
4188
4189			vact->type = VIRTCHNL_ACTION_QUEUE;
4190			vact->act_conf.queue.index = q_index;
4191			break;
4192		}
4193
4194		/* Drop */
4195		if (is_tcf_gact_shot(act)) {
4196			vact->type = VIRTCHNL_ACTION_DROP;
4197			break;
4198		}
4199
4200		/* Unsupported action */
4201		NL_SET_ERR_MSG_MOD(extack, "Unsupported action.");
4202		status = -EOPNOTSUPP;
4203		goto free_alloc;
4204	}
4205
4206	fltr->vc_add_msg.vsi_id = adapter->vsi.id;
4207	fltr->cls_u32_handle = cls_u32->knode.handle;
4208	return iavf_fdir_add_fltr(adapter, fltr);
4209
4210free_alloc:
4211	kfree(fltr);
4212	return status;
4213}
4214
4215/**
4216 * iavf_del_cls_u32 - Delete U32 classifier offloads
4217 * @adapter: pointer to iavf adapter structure
4218 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4219 *
4220 * Return: 0 on success or negative errno on failure.
4221 */
4222static int iavf_del_cls_u32(struct iavf_adapter *adapter,
4223			    struct tc_cls_u32_offload *cls_u32)
4224{
4225	return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle);
4226}
4227
4228/**
4229 * iavf_setup_tc_cls_u32 - U32 filter offloads
4230 * @adapter: pointer to iavf adapter structure
4231 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4232 *
4233 * Return: 0 on success or negative errno on failure.
4234 */
4235static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter,
4236				 struct tc_cls_u32_offload *cls_u32)
4237{
4238	if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter))
4239		return -EOPNOTSUPP;
4240
4241	switch (cls_u32->command) {
4242	case TC_CLSU32_NEW_KNODE:
4243	case TC_CLSU32_REPLACE_KNODE:
4244		return iavf_add_cls_u32(adapter, cls_u32);
4245	case TC_CLSU32_DELETE_KNODE:
4246		return iavf_del_cls_u32(adapter, cls_u32);
4247	default:
4248		return -EOPNOTSUPP;
4249	}
4250}
4251
4252/**
4253 * iavf_setup_tc_block_cb - block callback for tc
4254 * @type: type of offload
4255 * @type_data: offload data
4256 * @cb_priv:
4257 *
4258 * This function is the block callback for traffic classes
4259 **/
4260static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4261				  void *cb_priv)
4262{
4263	struct iavf_adapter *adapter = cb_priv;
4264
4265	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4266		return -EOPNOTSUPP;
4267
4268	switch (type) {
4269	case TC_SETUP_CLSFLOWER:
4270		return iavf_setup_tc_cls_flower(cb_priv, type_data);
4271	case TC_SETUP_CLSU32:
4272		return iavf_setup_tc_cls_u32(cb_priv, type_data);
4273	default:
4274		return -EOPNOTSUPP;
4275	}
4276}
4277
4278static LIST_HEAD(iavf_block_cb_list);
4279
4280/**
4281 * iavf_setup_tc - configure multiple traffic classes
4282 * @netdev: network interface device structure
4283 * @type: type of offload
4284 * @type_data: tc offload data
4285 *
4286 * This function is the callback to ndo_setup_tc in the
4287 * netdev_ops.
4288 *
4289 * Returns 0 on success
4290 **/
4291static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4292			 void *type_data)
4293{
4294	struct iavf_adapter *adapter = netdev_priv(netdev);
4295
4296	switch (type) {
4297	case TC_SETUP_QDISC_MQPRIO:
4298		return __iavf_setup_tc(netdev, type_data);
4299	case TC_SETUP_BLOCK:
4300		return flow_block_cb_setup_simple(type_data,
4301						  &iavf_block_cb_list,
4302						  iavf_setup_tc_block_cb,
4303						  adapter, adapter, true);
4304	default:
4305		return -EOPNOTSUPP;
4306	}
4307}
4308
4309/**
4310 * iavf_restore_fdir_filters
4311 * @adapter: board private structure
4312 *
4313 * Restore existing FDIR filters when VF netdev comes back up.
4314 **/
4315static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4316{
4317	struct iavf_fdir_fltr *f;
4318
4319	spin_lock_bh(&adapter->fdir_fltr_lock);
4320	list_for_each_entry(f, &adapter->fdir_list_head, list) {
4321		if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4322			/* Cancel a request, keep filter as active */
4323			f->state = IAVF_FDIR_FLTR_ACTIVE;
4324		} else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4325			   f->state == IAVF_FDIR_FLTR_INACTIVE) {
4326			/* Add filters which are inactive or have a pending
4327			 * request to PF to be deleted
4328			 */
4329			f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4330			adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4331		}
4332	}
4333	spin_unlock_bh(&adapter->fdir_fltr_lock);
4334}
4335
4336/**
4337 * iavf_open - Called when a network interface is made active
4338 * @netdev: network interface device structure
4339 *
4340 * Returns 0 on success, negative value on failure
4341 *
4342 * The open entry point is called when a network interface is made
4343 * active by the system (IFF_UP).  At this point all resources needed
4344 * for transmit and receive operations are allocated, the interrupt
4345 * handler is registered with the OS, the watchdog is started,
4346 * and the stack is notified that the interface is ready.
4347 **/
4348static int iavf_open(struct net_device *netdev)
4349{
4350	struct iavf_adapter *adapter = netdev_priv(netdev);
4351	int err;
4352
4353	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4354		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4355		return -EIO;
4356	}
4357
4358	while (!mutex_trylock(&adapter->crit_lock)) {
4359		/* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4360		 * is already taken and iavf_open is called from an upper
4361		 * device's notifier reacting on NETDEV_REGISTER event.
4362		 * We have to leave here to avoid dead lock.
4363		 */
4364		if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4365			return -EBUSY;
4366
4367		usleep_range(500, 1000);
4368	}
4369
4370	if (adapter->state != __IAVF_DOWN) {
4371		err = -EBUSY;
4372		goto err_unlock;
4373	}
4374
4375	if (adapter->state == __IAVF_RUNNING &&
4376	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4377		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4378		err = 0;
4379		goto err_unlock;
4380	}
4381
4382	/* allocate transmit descriptors */
4383	err = iavf_setup_all_tx_resources(adapter);
4384	if (err)
4385		goto err_setup_tx;
4386
4387	/* allocate receive descriptors */
4388	err = iavf_setup_all_rx_resources(adapter);
4389	if (err)
4390		goto err_setup_rx;
4391
4392	/* clear any pending interrupts, may auto mask */
4393	err = iavf_request_traffic_irqs(adapter, netdev->name);
4394	if (err)
4395		goto err_req_irq;
4396
4397	spin_lock_bh(&adapter->mac_vlan_list_lock);
4398
4399	iavf_add_filter(adapter, adapter->hw.mac.addr);
4400
4401	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4402
4403	/* Restore filters that were removed with IFF_DOWN */
4404	iavf_restore_filters(adapter);
4405	iavf_restore_fdir_filters(adapter);
4406
4407	iavf_configure(adapter);
4408
4409	iavf_up_complete(adapter);
4410
4411	iavf_irq_enable(adapter, true);
4412
4413	mutex_unlock(&adapter->crit_lock);
4414
4415	return 0;
4416
4417err_req_irq:
4418	iavf_down(adapter);
4419	iavf_free_traffic_irqs(adapter);
4420err_setup_rx:
4421	iavf_free_all_rx_resources(adapter);
4422err_setup_tx:
4423	iavf_free_all_tx_resources(adapter);
4424err_unlock:
4425	mutex_unlock(&adapter->crit_lock);
4426
4427	return err;
4428}
4429
4430/**
4431 * iavf_close - Disables a network interface
4432 * @netdev: network interface device structure
4433 *
4434 * Returns 0, this is not allowed to fail
4435 *
4436 * The close entry point is called when an interface is de-activated
4437 * by the OS.  The hardware is still under the drivers control, but
4438 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4439 * are freed, along with all transmit and receive resources.
4440 **/
4441static int iavf_close(struct net_device *netdev)
4442{
4443	struct iavf_adapter *adapter = netdev_priv(netdev);
4444	u64 aq_to_restore;
4445	int status;
4446
4447	mutex_lock(&adapter->crit_lock);
4448
4449	if (adapter->state <= __IAVF_DOWN_PENDING) {
4450		mutex_unlock(&adapter->crit_lock);
4451		return 0;
4452	}
4453
4454	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4455	/* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4456	 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4457	 * deadlock with adminq_task() until iavf_close timeouts. We must send
4458	 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4459	 * disable queues possible for vf. Give only necessary flags to
4460	 * iavf_down and save other to set them right before iavf_close()
4461	 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4462	 * iavf will be in DOWN state.
4463	 */
4464	aq_to_restore = adapter->aq_required;
4465	adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4466
4467	/* Remove flags which we do not want to send after close or we want to
4468	 * send before disable queues.
4469	 */
4470	aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG		|
4471			   IAVF_FLAG_AQ_ENABLE_QUEUES		|
4472			   IAVF_FLAG_AQ_CONFIGURE_QUEUES	|
4473			   IAVF_FLAG_AQ_ADD_VLAN_FILTER		|
4474			   IAVF_FLAG_AQ_ADD_MAC_FILTER		|
4475			   IAVF_FLAG_AQ_ADD_CLOUD_FILTER	|
4476			   IAVF_FLAG_AQ_ADD_FDIR_FILTER		|
4477			   IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4478
4479	iavf_down(adapter);
4480	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4481	iavf_free_traffic_irqs(adapter);
4482
4483	mutex_unlock(&adapter->crit_lock);
4484
4485	/* We explicitly don't free resources here because the hardware is
4486	 * still active and can DMA into memory. Resources are cleared in
4487	 * iavf_virtchnl_completion() after we get confirmation from the PF
4488	 * driver that the rings have been stopped.
4489	 *
4490	 * Also, we wait for state to transition to __IAVF_DOWN before
4491	 * returning. State change occurs in iavf_virtchnl_completion() after
4492	 * VF resources are released (which occurs after PF driver processes and
4493	 * responds to admin queue commands).
4494	 */
4495
4496	status = wait_event_timeout(adapter->down_waitqueue,
4497				    adapter->state == __IAVF_DOWN,
4498				    msecs_to_jiffies(500));
4499	if (!status)
4500		netdev_warn(netdev, "Device resources not yet released\n");
4501
4502	mutex_lock(&adapter->crit_lock);
4503	adapter->aq_required |= aq_to_restore;
4504	mutex_unlock(&adapter->crit_lock);
4505	return 0;
4506}
4507
4508/**
4509 * iavf_change_mtu - Change the Maximum Transfer Unit
4510 * @netdev: network interface device structure
4511 * @new_mtu: new value for maximum frame size
4512 *
4513 * Returns 0 on success, negative on failure
4514 **/
4515static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4516{
4517	struct iavf_adapter *adapter = netdev_priv(netdev);
4518	int ret = 0;
4519
4520	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4521		   netdev->mtu, new_mtu);
4522	WRITE_ONCE(netdev->mtu, new_mtu);
4523
4524	if (netif_running(netdev)) {
4525		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4526		ret = iavf_wait_for_reset(adapter);
4527		if (ret < 0)
4528			netdev_warn(netdev, "MTU change interrupted waiting for reset");
4529		else if (ret)
4530			netdev_warn(netdev, "MTU change timed out waiting for reset");
4531	}
4532
4533	return ret;
4534}
4535
4536/**
4537 * iavf_disable_fdir - disable Flow Director and clear existing filters
4538 * @adapter: board private structure
4539 **/
4540static void iavf_disable_fdir(struct iavf_adapter *adapter)
4541{
4542	struct iavf_fdir_fltr *fdir, *fdirtmp;
4543	bool del_filters = false;
4544
4545	adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4546
4547	/* remove all Flow Director filters */
4548	spin_lock_bh(&adapter->fdir_fltr_lock);
4549	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4550				 list) {
4551		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4552		    fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4553			/* Delete filters not registered in PF */
4554			list_del(&fdir->list);
4555			iavf_dec_fdir_active_fltr(adapter, fdir);
4556			kfree(fdir);
 
4557		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4558			   fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4559			   fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4560			/* Filters registered in PF, schedule their deletion */
4561			fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4562			del_filters = true;
4563		} else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4564			/* Request to delete filter already sent to PF, change
4565			 * state to DEL_PENDING to delete filter after PF's
4566			 * response, not set as INACTIVE
4567			 */
4568			fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4569		}
4570	}
4571	spin_unlock_bh(&adapter->fdir_fltr_lock);
4572
4573	if (del_filters) {
4574		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4575		mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4576	}
4577}
4578
4579#define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4580					 NETIF_F_HW_VLAN_CTAG_TX | \
4581					 NETIF_F_HW_VLAN_STAG_RX | \
4582					 NETIF_F_HW_VLAN_STAG_TX)
4583
4584/**
4585 * iavf_set_features - set the netdev feature flags
4586 * @netdev: ptr to the netdev being adjusted
4587 * @features: the feature set that the stack is suggesting
4588 * Note: expects to be called while under rtnl_lock()
4589 **/
4590static int iavf_set_features(struct net_device *netdev,
4591			     netdev_features_t features)
4592{
4593	struct iavf_adapter *adapter = netdev_priv(netdev);
4594
4595	/* trigger update on any VLAN feature change */
4596	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4597	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4598		iavf_set_vlan_offload_features(adapter, netdev->features,
4599					       features);
4600	if (CRC_OFFLOAD_ALLOWED(adapter) &&
4601	    ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4602		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4603
4604	if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4605		if (features & NETIF_F_NTUPLE)
4606			adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4607		else
4608			iavf_disable_fdir(adapter);
4609	}
4610
4611	return 0;
4612}
4613
4614/**
4615 * iavf_features_check - Validate encapsulated packet conforms to limits
4616 * @skb: skb buff
4617 * @dev: This physical port's netdev
4618 * @features: Offload features that the stack believes apply
4619 **/
4620static netdev_features_t iavf_features_check(struct sk_buff *skb,
4621					     struct net_device *dev,
4622					     netdev_features_t features)
4623{
4624	size_t len;
4625
4626	/* No point in doing any of this if neither checksum nor GSO are
4627	 * being requested for this frame.  We can rule out both by just
4628	 * checking for CHECKSUM_PARTIAL
4629	 */
4630	if (skb->ip_summed != CHECKSUM_PARTIAL)
4631		return features;
4632
4633	/* We cannot support GSO if the MSS is going to be less than
4634	 * 64 bytes.  If it is then we need to drop support for GSO.
4635	 */
4636	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4637		features &= ~NETIF_F_GSO_MASK;
4638
4639	/* MACLEN can support at most 63 words */
4640	len = skb_network_offset(skb);
4641	if (len & ~(63 * 2))
4642		goto out_err;
4643
4644	/* IPLEN and EIPLEN can support at most 127 dwords */
4645	len = skb_network_header_len(skb);
4646	if (len & ~(127 * 4))
4647		goto out_err;
4648
4649	if (skb->encapsulation) {
4650		/* L4TUNLEN can support 127 words */
4651		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4652		if (len & ~(127 * 2))
4653			goto out_err;
4654
4655		/* IPLEN can support at most 127 dwords */
4656		len = skb_inner_transport_header(skb) -
4657		      skb_inner_network_header(skb);
4658		if (len & ~(127 * 4))
4659			goto out_err;
4660	}
4661
4662	/* No need to validate L4LEN as TCP is the only protocol with a
4663	 * flexible value and we support all possible values supported
4664	 * by TCP, which is at most 15 dwords
4665	 */
4666
4667	return features;
4668out_err:
4669	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4670}
4671
4672/**
4673 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4674 * @adapter: board private structure
4675 *
4676 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4677 * were negotiated determine the VLAN features that can be toggled on and off.
4678 **/
4679static netdev_features_t
4680iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4681{
4682	netdev_features_t hw_features = 0;
4683
4684	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4685		return hw_features;
4686
4687	/* Enable VLAN features if supported */
4688	if (VLAN_ALLOWED(adapter)) {
4689		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4690				NETIF_F_HW_VLAN_CTAG_RX);
4691	} else if (VLAN_V2_ALLOWED(adapter)) {
4692		struct virtchnl_vlan_caps *vlan_v2_caps =
4693			&adapter->vlan_v2_caps;
4694		struct virtchnl_vlan_supported_caps *stripping_support =
4695			&vlan_v2_caps->offloads.stripping_support;
4696		struct virtchnl_vlan_supported_caps *insertion_support =
4697			&vlan_v2_caps->offloads.insertion_support;
4698
4699		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4700		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4701			if (stripping_support->outer &
4702			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4703				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4704			if (stripping_support->outer &
4705			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4706				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4707		} else if (stripping_support->inner !=
4708			   VIRTCHNL_VLAN_UNSUPPORTED &&
4709			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4710			if (stripping_support->inner &
4711			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4712				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4713		}
4714
4715		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4716		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4717			if (insertion_support->outer &
4718			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4719				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4720			if (insertion_support->outer &
4721			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4722				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4723		} else if (insertion_support->inner &&
4724			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4725			if (insertion_support->inner &
4726			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4727				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4728		}
4729	}
4730
4731	if (CRC_OFFLOAD_ALLOWED(adapter))
4732		hw_features |= NETIF_F_RXFCS;
4733
4734	return hw_features;
4735}
4736
4737/**
4738 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4739 * @adapter: board private structure
4740 *
4741 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4742 * were negotiated determine the VLAN features that are enabled by default.
4743 **/
4744static netdev_features_t
4745iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4746{
4747	netdev_features_t features = 0;
4748
4749	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4750		return features;
4751
4752	if (VLAN_ALLOWED(adapter)) {
4753		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4754			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4755	} else if (VLAN_V2_ALLOWED(adapter)) {
4756		struct virtchnl_vlan_caps *vlan_v2_caps =
4757			&adapter->vlan_v2_caps;
4758		struct virtchnl_vlan_supported_caps *filtering_support =
4759			&vlan_v2_caps->filtering.filtering_support;
4760		struct virtchnl_vlan_supported_caps *stripping_support =
4761			&vlan_v2_caps->offloads.stripping_support;
4762		struct virtchnl_vlan_supported_caps *insertion_support =
4763			&vlan_v2_caps->offloads.insertion_support;
4764		u32 ethertype_init;
4765
4766		/* give priority to outer stripping and don't support both outer
4767		 * and inner stripping
4768		 */
4769		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4770		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4771			if (stripping_support->outer &
4772			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4773			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4774				features |= NETIF_F_HW_VLAN_CTAG_RX;
4775			else if (stripping_support->outer &
4776				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4777				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4778				features |= NETIF_F_HW_VLAN_STAG_RX;
4779		} else if (stripping_support->inner !=
4780			   VIRTCHNL_VLAN_UNSUPPORTED) {
4781			if (stripping_support->inner &
4782			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4783			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4784				features |= NETIF_F_HW_VLAN_CTAG_RX;
4785		}
4786
4787		/* give priority to outer insertion and don't support both outer
4788		 * and inner insertion
4789		 */
4790		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4791			if (insertion_support->outer &
4792			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4793			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4794				features |= NETIF_F_HW_VLAN_CTAG_TX;
4795			else if (insertion_support->outer &
4796				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4797				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4798				features |= NETIF_F_HW_VLAN_STAG_TX;
4799		} else if (insertion_support->inner !=
4800			   VIRTCHNL_VLAN_UNSUPPORTED) {
4801			if (insertion_support->inner &
4802			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4803			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4804				features |= NETIF_F_HW_VLAN_CTAG_TX;
4805		}
4806
4807		/* give priority to outer filtering and don't bother if both
4808		 * outer and inner filtering are enabled
4809		 */
4810		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4811		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4812			if (filtering_support->outer &
4813			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4814			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4815				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4816			if (filtering_support->outer &
4817			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4818			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4819				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4820		} else if (filtering_support->inner !=
4821			   VIRTCHNL_VLAN_UNSUPPORTED) {
4822			if (filtering_support->inner &
4823			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4824			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4825				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4826			if (filtering_support->inner &
4827			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4828			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4829				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4830		}
4831	}
4832
4833	return features;
4834}
4835
4836#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4837	(!(((requested) & (feature_bit)) && \
4838	   !((allowed) & (feature_bit))))
4839
4840/**
4841 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4842 * @adapter: board private structure
4843 * @requested_features: stack requested NETDEV features
4844 **/
4845static netdev_features_t
4846iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4847			      netdev_features_t requested_features)
4848{
4849	netdev_features_t allowed_features;
4850
4851	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4852		iavf_get_netdev_vlan_features(adapter);
4853
4854	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4855					      allowed_features,
4856					      NETIF_F_HW_VLAN_CTAG_TX))
4857		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4858
4859	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4860					      allowed_features,
4861					      NETIF_F_HW_VLAN_CTAG_RX))
4862		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4863
4864	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4865					      allowed_features,
4866					      NETIF_F_HW_VLAN_STAG_TX))
4867		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4868	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4869					      allowed_features,
4870					      NETIF_F_HW_VLAN_STAG_RX))
4871		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4872
4873	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4874					      allowed_features,
4875					      NETIF_F_HW_VLAN_CTAG_FILTER))
4876		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4877
4878	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4879					      allowed_features,
4880					      NETIF_F_HW_VLAN_STAG_FILTER))
4881		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4882
4883	if ((requested_features &
4884	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4885	    (requested_features &
4886	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4887	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4888	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4889		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4890		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4891					NETIF_F_HW_VLAN_STAG_TX);
4892	}
4893
4894	return requested_features;
4895}
4896
4897/**
4898 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4899 * @adapter: board private structure
4900 * @requested_features: stack requested NETDEV features
4901 *
4902 * Returns fixed-up features bits
4903 **/
4904static netdev_features_t
4905iavf_fix_strip_features(struct iavf_adapter *adapter,
4906			netdev_features_t requested_features)
4907{
4908	struct net_device *netdev = adapter->netdev;
4909	bool crc_offload_req, is_vlan_strip;
4910	netdev_features_t vlan_strip;
4911	int num_non_zero_vlan;
4912
4913	crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4914			  (requested_features & NETIF_F_RXFCS);
4915	num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4916	vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4917	is_vlan_strip = requested_features & vlan_strip;
4918
4919	if (!crc_offload_req)
4920		return requested_features;
4921
4922	if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4923	    !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4924		requested_features &= ~vlan_strip;
4925		netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4926		return requested_features;
4927	}
4928
4929	if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4930		requested_features &= ~vlan_strip;
4931		if (!(netdev->features & vlan_strip))
4932			netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4933
4934		return requested_features;
4935	}
4936
4937	if (num_non_zero_vlan && is_vlan_strip &&
4938	    !(netdev->features & NETIF_F_RXFCS)) {
4939		requested_features &= ~NETIF_F_RXFCS;
4940		netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4941	}
4942
4943	return requested_features;
4944}
4945
4946/**
4947 * iavf_fix_features - fix up the netdev feature bits
4948 * @netdev: our net device
4949 * @features: desired feature bits
4950 *
4951 * Returns fixed-up features bits
4952 **/
4953static netdev_features_t iavf_fix_features(struct net_device *netdev,
4954					   netdev_features_t features)
4955{
4956	struct iavf_adapter *adapter = netdev_priv(netdev);
4957
4958	features = iavf_fix_netdev_vlan_features(adapter, features);
4959
4960	if (!FDIR_FLTR_SUPPORT(adapter))
4961		features &= ~NETIF_F_NTUPLE;
4962
4963	return iavf_fix_strip_features(adapter, features);
4964}
4965
4966static int
4967iavf_verify_shaper(struct net_shaper_binding *binding,
4968		   const struct net_shaper *shaper,
4969		   struct netlink_ext_ack *extack)
4970{
4971	struct iavf_adapter *adapter = netdev_priv(binding->netdev);
4972	u64 vf_max;
4973
4974	if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) {
4975		vf_max = adapter->qos_caps->cap[0].shaper.peak;
4976		if (vf_max && shaper->bw_max > vf_max) {
4977			NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)",
4978					   shaper->bw_max, shaper->handle.id,
4979					   vf_max);
4980			return -EINVAL;
4981		}
4982	}
4983	return 0;
4984}
4985
4986static int
4987iavf_shaper_set(struct net_shaper_binding *binding,
4988		const struct net_shaper *shaper,
4989		struct netlink_ext_ack *extack)
4990{
4991	struct iavf_adapter *adapter = netdev_priv(binding->netdev);
4992	const struct net_shaper_handle *handle = &shaper->handle;
4993	struct iavf_ring *tx_ring;
4994	int ret = 0;
4995
4996	mutex_lock(&adapter->crit_lock);
4997	if (handle->id >= adapter->num_active_queues)
4998		goto unlock;
4999
5000	ret = iavf_verify_shaper(binding, shaper, extack);
5001	if (ret)
5002		goto unlock;
5003
5004	tx_ring = &adapter->tx_rings[handle->id];
5005
5006	tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000);
5007	tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000);
5008	tx_ring->q_shaper_update = true;
5009
5010	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
5011
5012unlock:
5013	mutex_unlock(&adapter->crit_lock);
5014	return ret;
5015}
5016
5017static int iavf_shaper_del(struct net_shaper_binding *binding,
5018			   const struct net_shaper_handle *handle,
5019			   struct netlink_ext_ack *extack)
5020{
5021	struct iavf_adapter *adapter = netdev_priv(binding->netdev);
5022	struct iavf_ring *tx_ring;
5023
5024	mutex_lock(&adapter->crit_lock);
5025	if (handle->id >= adapter->num_active_queues)
5026		goto unlock;
5027
5028	tx_ring = &adapter->tx_rings[handle->id];
5029	tx_ring->q_shaper.bw_min = 0;
5030	tx_ring->q_shaper.bw_max = 0;
5031	tx_ring->q_shaper_update = true;
5032
5033	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
5034
5035unlock:
5036	mutex_unlock(&adapter->crit_lock);
5037	return 0;
5038}
5039
5040static void iavf_shaper_cap(struct net_shaper_binding *binding,
5041			    enum net_shaper_scope scope,
5042			    unsigned long *flags)
5043{
5044	if (scope != NET_SHAPER_SCOPE_QUEUE)
5045		return;
5046
5047	*flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) |
5048		 BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) |
5049		 BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS);
5050}
5051
5052static const struct net_shaper_ops iavf_shaper_ops = {
5053	.set = iavf_shaper_set,
5054	.delete = iavf_shaper_del,
5055	.capabilities = iavf_shaper_cap,
5056};
5057
5058static const struct net_device_ops iavf_netdev_ops = {
5059	.ndo_open		= iavf_open,
5060	.ndo_stop		= iavf_close,
5061	.ndo_start_xmit		= iavf_xmit_frame,
5062	.ndo_set_rx_mode	= iavf_set_rx_mode,
5063	.ndo_validate_addr	= eth_validate_addr,
5064	.ndo_set_mac_address	= iavf_set_mac,
5065	.ndo_change_mtu		= iavf_change_mtu,
5066	.ndo_tx_timeout		= iavf_tx_timeout,
5067	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
5068	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
5069	.ndo_features_check	= iavf_features_check,
5070	.ndo_fix_features	= iavf_fix_features,
5071	.ndo_set_features	= iavf_set_features,
5072	.ndo_setup_tc		= iavf_setup_tc,
5073	.net_shaper_ops		= &iavf_shaper_ops,
5074};
5075
5076/**
5077 * iavf_check_reset_complete - check that VF reset is complete
5078 * @hw: pointer to hw struct
5079 *
5080 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
5081 **/
5082static int iavf_check_reset_complete(struct iavf_hw *hw)
5083{
5084	u32 rstat;
5085	int i;
5086
5087	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
5088		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
5089			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
5090		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
5091		    (rstat == VIRTCHNL_VFR_COMPLETED))
5092			return 0;
5093		msleep(IAVF_RESET_WAIT_MS);
5094	}
5095	return -EBUSY;
5096}
5097
5098/**
5099 * iavf_process_config - Process the config information we got from the PF
5100 * @adapter: board private structure
5101 *
5102 * Verify that we have a valid config struct, and set up our netdev features
5103 * and our VSI struct.
5104 **/
5105int iavf_process_config(struct iavf_adapter *adapter)
5106{
5107	struct virtchnl_vf_resource *vfres = adapter->vf_res;
5108	netdev_features_t hw_vlan_features, vlan_features;
5109	struct net_device *netdev = adapter->netdev;
5110	netdev_features_t hw_enc_features;
5111	netdev_features_t hw_features;
5112
5113	hw_enc_features = NETIF_F_SG			|
5114			  NETIF_F_IP_CSUM		|
5115			  NETIF_F_IPV6_CSUM		|
5116			  NETIF_F_HIGHDMA		|
5117			  NETIF_F_SOFT_FEATURES	|
5118			  NETIF_F_TSO			|
5119			  NETIF_F_TSO_ECN		|
5120			  NETIF_F_TSO6			|
5121			  NETIF_F_SCTP_CRC		|
5122			  NETIF_F_RXHASH		|
5123			  NETIF_F_RXCSUM		|
5124			  0;
5125
5126	/* advertise to stack only if offloads for encapsulated packets is
5127	 * supported
5128	 */
5129	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
5130		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
5131				   NETIF_F_GSO_GRE		|
5132				   NETIF_F_GSO_GRE_CSUM		|
5133				   NETIF_F_GSO_IPXIP4		|
5134				   NETIF_F_GSO_IPXIP6		|
5135				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
5136				   NETIF_F_GSO_PARTIAL		|
5137				   0;
5138
5139		if (!(vfres->vf_cap_flags &
5140		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
5141			netdev->gso_partial_features |=
5142				NETIF_F_GSO_UDP_TUNNEL_CSUM;
5143
5144		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
5145		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
5146		netdev->hw_enc_features |= hw_enc_features;
5147	}
5148	/* record features VLANs can make use of */
5149	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
5150
5151	/* Write features and hw_features separately to avoid polluting
5152	 * with, or dropping, features that are set when we registered.
5153	 */
5154	hw_features = hw_enc_features;
5155
5156	/* get HW VLAN features that can be toggled */
5157	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
5158
5159	/* Enable HW TC offload if ADQ or tc U32 is supported */
5160	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ ||
5161	    TC_U32_SUPPORT(adapter))
5162		hw_features |= NETIF_F_HW_TC;
5163
5164	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
5165		hw_features |= NETIF_F_GSO_UDP_L4;
5166
5167	netdev->hw_features |= hw_features | hw_vlan_features;
5168	vlan_features = iavf_get_netdev_vlan_features(adapter);
5169
5170	netdev->features |= hw_features | vlan_features;
5171
5172	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
5173		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5174
5175	if (FDIR_FLTR_SUPPORT(adapter)) {
5176		netdev->hw_features |= NETIF_F_NTUPLE;
5177		netdev->features |= NETIF_F_NTUPLE;
5178		adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
5179	}
5180
5181	netdev->priv_flags |= IFF_UNICAST_FLT;
5182
5183	/* Do not turn on offloads when they are requested to be turned off.
5184	 * TSO needs minimum 576 bytes to work correctly.
5185	 */
5186	if (netdev->wanted_features) {
5187		if (!(netdev->wanted_features & NETIF_F_TSO) ||
5188		    netdev->mtu < 576)
5189			netdev->features &= ~NETIF_F_TSO;
5190		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
5191		    netdev->mtu < 576)
5192			netdev->features &= ~NETIF_F_TSO6;
5193		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
5194			netdev->features &= ~NETIF_F_TSO_ECN;
5195		if (!(netdev->wanted_features & NETIF_F_GRO))
5196			netdev->features &= ~NETIF_F_GRO;
5197		if (!(netdev->wanted_features & NETIF_F_GSO))
5198			netdev->features &= ~NETIF_F_GSO;
5199	}
5200
5201	return 0;
5202}
5203
5204/**
5205 * iavf_probe - Device Initialization Routine
5206 * @pdev: PCI device information struct
5207 * @ent: entry in iavf_pci_tbl
5208 *
5209 * Returns 0 on success, negative on failure
5210 *
5211 * iavf_probe initializes an adapter identified by a pci_dev structure.
5212 * The OS initialization, configuring of the adapter private structure,
5213 * and a hardware reset occur.
5214 **/
5215static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5216{
5217	struct net_device *netdev;
5218	struct iavf_adapter *adapter = NULL;
5219	struct iavf_hw *hw = NULL;
5220	int err, len;
5221
5222	err = pci_enable_device(pdev);
5223	if (err)
5224		return err;
5225
5226	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5227	if (err) {
5228		dev_err(&pdev->dev,
5229			"DMA configuration failed: 0x%x\n", err);
5230		goto err_dma;
5231	}
5232
5233	err = pci_request_regions(pdev, iavf_driver_name);
5234	if (err) {
5235		dev_err(&pdev->dev,
5236			"pci_request_regions failed 0x%x\n", err);
5237		goto err_pci_reg;
5238	}
5239
5240	pci_set_master(pdev);
5241
5242	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
5243				   IAVF_MAX_REQ_QUEUES);
5244	if (!netdev) {
5245		err = -ENOMEM;
5246		goto err_alloc_etherdev;
5247	}
5248
5249	SET_NETDEV_DEV(netdev, &pdev->dev);
5250
5251	pci_set_drvdata(pdev, netdev);
5252	adapter = netdev_priv(netdev);
5253
5254	adapter->netdev = netdev;
5255	adapter->pdev = pdev;
5256
5257	hw = &adapter->hw;
5258	hw->back = adapter;
5259
5260	adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
5261					      iavf_driver_name);
5262	if (!adapter->wq) {
5263		err = -ENOMEM;
5264		goto err_alloc_wq;
5265	}
5266
5267	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
5268	iavf_change_state(adapter, __IAVF_STARTUP);
5269
5270	/* Call save state here because it relies on the adapter struct. */
5271	pci_save_state(pdev);
5272
5273	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
5274			      pci_resource_len(pdev, 0));
5275	if (!hw->hw_addr) {
5276		err = -EIO;
5277		goto err_ioremap;
5278	}
5279	hw->vendor_id = pdev->vendor;
5280	hw->device_id = pdev->device;
5281	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5282	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5283	hw->subsystem_device_id = pdev->subsystem_device;
5284	hw->bus.device = PCI_SLOT(pdev->devfn);
5285	hw->bus.func = PCI_FUNC(pdev->devfn);
5286	hw->bus.bus_id = pdev->bus->number;
5287
5288	len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM);
5289	adapter->qos_caps = kzalloc(len, GFP_KERNEL);
5290	if (!adapter->qos_caps) {
5291		err = -ENOMEM;
5292		goto err_alloc_qos_cap;
5293	}
5294
5295	/* set up the locks for the AQ, do this only once in probe
5296	 * and destroy them only once in remove
5297	 */
5298	mutex_init(&adapter->crit_lock);
5299	mutex_init(&hw->aq.asq_mutex);
5300	mutex_init(&hw->aq.arq_mutex);
5301
5302	spin_lock_init(&adapter->mac_vlan_list_lock);
5303	spin_lock_init(&adapter->cloud_filter_list_lock);
5304	spin_lock_init(&adapter->fdir_fltr_lock);
5305	spin_lock_init(&adapter->adv_rss_lock);
5306	spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5307
5308	INIT_LIST_HEAD(&adapter->mac_filter_list);
5309	INIT_LIST_HEAD(&adapter->vlan_filter_list);
5310	INIT_LIST_HEAD(&adapter->cloud_filter_list);
5311	INIT_LIST_HEAD(&adapter->fdir_list_head);
5312	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5313
5314	INIT_WORK(&adapter->reset_task, iavf_reset_task);
5315	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5316	INIT_WORK(&adapter->finish_config, iavf_finish_config);
5317	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5318
5319	/* Setup the wait queue for indicating transition to down status */
5320	init_waitqueue_head(&adapter->down_waitqueue);
5321
5322	/* Setup the wait queue for indicating transition to running state */
5323	init_waitqueue_head(&adapter->reset_waitqueue);
5324
5325	/* Setup the wait queue for indicating virtchannel events */
5326	init_waitqueue_head(&adapter->vc_waitqueue);
5327
5328	queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5329			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5330	/* Initialization goes on in the work. Do not add more of it below. */
5331	return 0;
5332
5333err_alloc_qos_cap:
5334	iounmap(hw->hw_addr);
5335err_ioremap:
5336	destroy_workqueue(adapter->wq);
5337err_alloc_wq:
5338	free_netdev(netdev);
5339err_alloc_etherdev:
5340	pci_release_regions(pdev);
5341err_pci_reg:
5342err_dma:
5343	pci_disable_device(pdev);
5344	return err;
5345}
5346
5347/**
5348 * iavf_suspend - Power management suspend routine
5349 * @dev_d: device info pointer
5350 *
5351 * Called when the system (VM) is entering sleep/suspend.
5352 **/
5353static int iavf_suspend(struct device *dev_d)
5354{
5355	struct net_device *netdev = dev_get_drvdata(dev_d);
5356	struct iavf_adapter *adapter = netdev_priv(netdev);
5357
5358	netif_device_detach(netdev);
5359
5360	mutex_lock(&adapter->crit_lock);
5361
5362	if (netif_running(netdev)) {
5363		rtnl_lock();
5364		iavf_down(adapter);
5365		rtnl_unlock();
5366	}
5367	iavf_free_misc_irq(adapter);
5368	iavf_reset_interrupt_capability(adapter);
5369
5370	mutex_unlock(&adapter->crit_lock);
5371
5372	return 0;
5373}
5374
5375/**
5376 * iavf_resume - Power management resume routine
5377 * @dev_d: device info pointer
5378 *
5379 * Called when the system (VM) is resumed from sleep/suspend.
5380 **/
5381static int iavf_resume(struct device *dev_d)
5382{
5383	struct pci_dev *pdev = to_pci_dev(dev_d);
5384	struct iavf_adapter *adapter;
5385	u32 err;
5386
5387	adapter = iavf_pdev_to_adapter(pdev);
5388
5389	pci_set_master(pdev);
5390
5391	rtnl_lock();
5392	err = iavf_set_interrupt_capability(adapter);
5393	if (err) {
5394		rtnl_unlock();
5395		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5396		return err;
5397	}
5398	err = iavf_request_misc_irq(adapter);
5399	rtnl_unlock();
5400	if (err) {
5401		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5402		return err;
5403	}
5404
5405	queue_work(adapter->wq, &adapter->reset_task);
5406
5407	netif_device_attach(adapter->netdev);
5408
5409	return err;
5410}
5411
5412/**
5413 * iavf_remove - Device Removal Routine
5414 * @pdev: PCI device information struct
5415 *
5416 * iavf_remove is called by the PCI subsystem to alert the driver
5417 * that it should release a PCI device.  The could be caused by a
5418 * Hot-Plug event, or because the driver is going to be removed from
5419 * memory.
5420 **/
5421static void iavf_remove(struct pci_dev *pdev)
5422{
5423	struct iavf_fdir_fltr *fdir, *fdirtmp;
5424	struct iavf_vlan_filter *vlf, *vlftmp;
5425	struct iavf_cloud_filter *cf, *cftmp;
5426	struct iavf_adv_rss *rss, *rsstmp;
5427	struct iavf_mac_filter *f, *ftmp;
5428	struct iavf_adapter *adapter;
5429	struct net_device *netdev;
5430	struct iavf_hw *hw;
5431
5432	/* Don't proceed with remove if netdev is already freed */
5433	netdev = pci_get_drvdata(pdev);
5434	if (!netdev)
5435		return;
5436
5437	adapter = iavf_pdev_to_adapter(pdev);
5438	hw = &adapter->hw;
5439
5440	if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5441		return;
5442
5443	/* Wait until port initialization is complete.
5444	 * There are flows where register/unregister netdev may race.
5445	 */
5446	while (1) {
5447		mutex_lock(&adapter->crit_lock);
5448		if (adapter->state == __IAVF_RUNNING ||
5449		    adapter->state == __IAVF_DOWN ||
5450		    adapter->state == __IAVF_INIT_FAILED) {
5451			mutex_unlock(&adapter->crit_lock);
5452			break;
5453		}
5454		/* Simply return if we already went through iavf_shutdown */
5455		if (adapter->state == __IAVF_REMOVE) {
5456			mutex_unlock(&adapter->crit_lock);
5457			return;
5458		}
5459
5460		mutex_unlock(&adapter->crit_lock);
5461		usleep_range(500, 1000);
5462	}
5463	cancel_delayed_work_sync(&adapter->watchdog_task);
5464	cancel_work_sync(&adapter->finish_config);
5465
5466	if (netdev->reg_state == NETREG_REGISTERED)
5467		unregister_netdev(netdev);
5468
5469	mutex_lock(&adapter->crit_lock);
5470	dev_info(&adapter->pdev->dev, "Removing device\n");
5471	iavf_change_state(adapter, __IAVF_REMOVE);
5472
5473	iavf_request_reset(adapter);
5474	msleep(50);
5475	/* If the FW isn't responding, kick it once, but only once. */
5476	if (!iavf_asq_done(hw)) {
5477		iavf_request_reset(adapter);
5478		msleep(50);
5479	}
5480
5481	iavf_misc_irq_disable(adapter);
5482	/* Shut down all the garbage mashers on the detention level */
5483	cancel_work_sync(&adapter->reset_task);
5484	cancel_delayed_work_sync(&adapter->watchdog_task);
5485	cancel_work_sync(&adapter->adminq_task);
5486
5487	adapter->aq_required = 0;
5488	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5489
5490	iavf_free_all_tx_resources(adapter);
5491	iavf_free_all_rx_resources(adapter);
5492	iavf_free_misc_irq(adapter);
5493	iavf_free_interrupt_scheme(adapter);
5494
5495	iavf_free_rss(adapter);
5496
5497	if (hw->aq.asq.count)
5498		iavf_shutdown_adminq(hw);
5499
5500	/* destroy the locks only once, here */
5501	mutex_destroy(&hw->aq.arq_mutex);
5502	mutex_destroy(&hw->aq.asq_mutex);
5503	mutex_unlock(&adapter->crit_lock);
5504	mutex_destroy(&adapter->crit_lock);
5505
5506	iounmap(hw->hw_addr);
5507	pci_release_regions(pdev);
5508	kfree(adapter->vf_res);
5509	spin_lock_bh(&adapter->mac_vlan_list_lock);
5510	/* If we got removed before an up/down sequence, we've got a filter
5511	 * hanging out there that we need to get rid of.
5512	 */
5513	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5514		list_del(&f->list);
5515		kfree(f);
5516	}
5517	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5518				 list) {
5519		list_del(&vlf->list);
5520		kfree(vlf);
5521	}
5522
5523	spin_unlock_bh(&adapter->mac_vlan_list_lock);
5524
5525	spin_lock_bh(&adapter->cloud_filter_list_lock);
5526	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5527		list_del(&cf->list);
5528		kfree(cf);
5529	}
5530	spin_unlock_bh(&adapter->cloud_filter_list_lock);
5531
5532	spin_lock_bh(&adapter->fdir_fltr_lock);
5533	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5534		list_del(&fdir->list);
5535		kfree(fdir);
5536	}
5537	spin_unlock_bh(&adapter->fdir_fltr_lock);
5538
5539	spin_lock_bh(&adapter->adv_rss_lock);
5540	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5541				 list) {
5542		list_del(&rss->list);
5543		kfree(rss);
5544	}
5545	spin_unlock_bh(&adapter->adv_rss_lock);
5546
5547	destroy_workqueue(adapter->wq);
5548
5549	pci_set_drvdata(pdev, NULL);
5550
5551	free_netdev(netdev);
5552
5553	pci_disable_device(pdev);
5554}
5555
5556/**
5557 * iavf_shutdown - Shutdown the device in preparation for a reboot
5558 * @pdev: pci device structure
5559 **/
5560static void iavf_shutdown(struct pci_dev *pdev)
5561{
5562	iavf_remove(pdev);
5563
5564	if (system_state == SYSTEM_POWER_OFF)
5565		pci_set_power_state(pdev, PCI_D3hot);
5566}
5567
5568static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5569
5570static struct pci_driver iavf_driver = {
5571	.name      = iavf_driver_name,
5572	.id_table  = iavf_pci_tbl,
5573	.probe     = iavf_probe,
5574	.remove    = iavf_remove,
5575	.driver.pm = pm_sleep_ptr(&iavf_pm_ops),
5576	.shutdown  = iavf_shutdown,
5577};
5578
5579/**
5580 * iavf_init_module - Driver Registration Routine
5581 *
5582 * iavf_init_module is the first routine called when the driver is
5583 * loaded. All it does is register with the PCI subsystem.
5584 **/
5585static int __init iavf_init_module(void)
5586{
5587	pr_info("iavf: %s\n", iavf_driver_string);
5588
5589	pr_info("%s\n", iavf_copyright);
5590
5591	return pci_register_driver(&iavf_driver);
5592}
5593
5594module_init(iavf_init_module);
5595
5596/**
5597 * iavf_exit_module - Driver Exit Cleanup Routine
5598 *
5599 * iavf_exit_module is called just before the driver is removed
5600 * from memory.
5601 **/
5602static void __exit iavf_exit_module(void)
5603{
5604	pci_unregister_driver(&iavf_driver);
5605}
5606
5607module_exit(iavf_exit_module);
5608
5609/* iavf_main.c */