Linux Audio

Check our new training course

Loading...
v6.9.4
   1/*
   2 * Copyright 2008 Advanced Micro Devices, Inc.
   3 * Copyright 2008 Red Hat Inc.
   4 * Copyright 2009 Jerome Glisse.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the "Software"),
   8 * to deal in the Software without restriction, including without limitation
   9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10 * and/or sell copies of the Software, and to permit persons to whom the
  11 * Software is furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  22 * OTHER DEALINGS IN THE SOFTWARE.
  23 *
  24 * Authors: Dave Airlie
  25 *          Alex Deucher
  26 *          Jerome Glisse
  27 */
  28
  29#include <linux/dma-fence-array.h>
  30#include <linux/interval_tree_generic.h>
  31#include <linux/idr.h>
  32#include <linux/dma-buf.h>
  33
  34#include <drm/amdgpu_drm.h>
  35#include <drm/drm_drv.h>
  36#include <drm/ttm/ttm_tt.h>
  37#include <drm/drm_exec.h>
  38#include "amdgpu.h"
  39#include "amdgpu_trace.h"
  40#include "amdgpu_amdkfd.h"
  41#include "amdgpu_gmc.h"
  42#include "amdgpu_xgmi.h"
  43#include "amdgpu_dma_buf.h"
  44#include "amdgpu_res_cursor.h"
  45#include "kfd_svm.h"
  46
  47/**
  48 * DOC: GPUVM
  49 *
  50 * GPUVM is the MMU functionality provided on the GPU.
  51 * GPUVM is similar to the legacy GART on older asics, however
  52 * rather than there being a single global GART table
  53 * for the entire GPU, there can be multiple GPUVM page tables active
  54 * at any given time.  The GPUVM page tables can contain a mix
  55 * VRAM pages and system pages (both memory and MMIO) and system pages
  56 * can be mapped as snooped (cached system pages) or unsnooped
  57 * (uncached system pages).
  58 *
  59 * Each active GPUVM has an ID associated with it and there is a page table
  60 * linked with each VMID.  When executing a command buffer,
  61 * the kernel tells the engine what VMID to use for that command
  62 * buffer.  VMIDs are allocated dynamically as commands are submitted.
  63 * The userspace drivers maintain their own address space and the kernel
  64 * sets up their pages tables accordingly when they submit their
  65 * command buffers and a VMID is assigned.
  66 * The hardware supports up to 16 active GPUVMs at any given time.
  67 *
  68 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending
  69 * on the ASIC family.  GPUVM supports RWX attributes on each page as well
  70 * as other features such as encryption and caching attributes.
  71 *
  72 * VMID 0 is special.  It is the GPUVM used for the kernel driver.  In
  73 * addition to an aperture managed by a page table, VMID 0 also has
  74 * several other apertures.  There is an aperture for direct access to VRAM
  75 * and there is a legacy AGP aperture which just forwards accesses directly
  76 * to the matching system physical addresses (or IOVAs when an IOMMU is
  77 * present).  These apertures provide direct access to these memories without
  78 * incurring the overhead of a page table.  VMID 0 is used by the kernel
  79 * driver for tasks like memory management.
  80 *
  81 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory.
  82 * For user applications, each application can have their own unique GPUVM
  83 * address space.  The application manages the address space and the kernel
  84 * driver manages the GPUVM page tables for each process.  If an GPU client
  85 * accesses an invalid page, it will generate a GPU page fault, similar to
  86 * accessing an invalid page on a CPU.
  87 */
  88
  89#define START(node) ((node)->start)
  90#define LAST(node) ((node)->last)
  91
  92INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
  93		     START, LAST, static, amdgpu_vm_it)
  94
  95#undef START
  96#undef LAST
  97
  98/**
  99 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
 100 */
 101struct amdgpu_prt_cb {
 102
 103	/**
 104	 * @adev: amdgpu device
 105	 */
 106	struct amdgpu_device *adev;
 107
 108	/**
 109	 * @cb: callback
 110	 */
 111	struct dma_fence_cb cb;
 112};
 113
 114/**
 115 * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence
 
 
 116 */
 117struct amdgpu_vm_tlb_seq_struct {
 118	/**
 119	 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on
 120	 */
 121	struct amdgpu_vm *vm;
 122
 123	/**
 124	 * @cb: callback
 125	 */
 126	struct dma_fence_cb cb;
 127};
 
 
 
 
 
 
 
 
 
 128
 129/**
 130 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
 131 *
 132 * @adev: amdgpu_device pointer
 133 * @vm: amdgpu_vm pointer
 134 * @pasid: the pasid the VM is using on this GPU
 135 *
 136 * Set the pasid this VM is using on this GPU, can also be used to remove the
 137 * pasid by passing in zero.
 138 *
 
 
 139 */
 140int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 141			u32 pasid)
 142{
 143	int r;
 144
 145	if (vm->pasid == pasid)
 
 
 
 
 146		return 0;
 
 
 
 
 147
 148	if (vm->pasid) {
 149		r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
 150		if (r < 0)
 151			return r;
 
 
 
 
 
 
 
 
 
 
 152
 153		vm->pasid = 0;
 154	}
 
 
 
 
 
 
 
 
 
 155
 156	if (pasid) {
 157		r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
 158					GFP_KERNEL));
 159		if (r < 0)
 160			return r;
 
 
 
 
 
 
 161
 162		vm->pasid = pasid;
 163	}
 
 164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165
 166	return 0;
 
 
 
 
 
 
 
 
 
 
 
 167}
 168
 169/**
 170 * amdgpu_vm_bo_evicted - vm_bo is evicted
 171 *
 172 * @vm_bo: vm_bo which is evicted
 173 *
 174 * State for PDs/PTs and per VM BOs which are not at the location they should
 175 * be.
 176 */
 177static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
 178{
 179	struct amdgpu_vm *vm = vm_bo->vm;
 180	struct amdgpu_bo *bo = vm_bo->bo;
 181
 182	vm_bo->moved = true;
 183	spin_lock(&vm_bo->vm->status_lock);
 184	if (bo->tbo.type == ttm_bo_type_kernel)
 185		list_move(&vm_bo->vm_status, &vm->evicted);
 186	else
 187		list_move_tail(&vm_bo->vm_status, &vm->evicted);
 188	spin_unlock(&vm_bo->vm->status_lock);
 189}
 190/**
 191 * amdgpu_vm_bo_moved - vm_bo is moved
 192 *
 193 * @vm_bo: vm_bo which is moved
 194 *
 195 * State for per VM BOs which are moved, but that change is not yet reflected
 196 * in the page tables.
 197 */
 198static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
 199{
 200	spin_lock(&vm_bo->vm->status_lock);
 201	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
 202	spin_unlock(&vm_bo->vm->status_lock);
 203}
 204
 205/**
 206 * amdgpu_vm_bo_idle - vm_bo is idle
 207 *
 208 * @vm_bo: vm_bo which is now idle
 209 *
 210 * State for PDs/PTs and per VM BOs which have gone through the state machine
 211 * and are now idle.
 212 */
 213static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
 214{
 215	spin_lock(&vm_bo->vm->status_lock);
 216	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
 217	spin_unlock(&vm_bo->vm->status_lock);
 218	vm_bo->moved = false;
 219}
 220
 221/**
 222 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
 223 *
 224 * @vm_bo: vm_bo which is now invalidated
 225 *
 226 * State for normal BOs which are invalidated and that change not yet reflected
 227 * in the PTs.
 228 */
 229static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
 230{
 231	spin_lock(&vm_bo->vm->status_lock);
 232	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
 233	spin_unlock(&vm_bo->vm->status_lock);
 234}
 235
 236/**
 237 * amdgpu_vm_bo_evicted_user - vm_bo is evicted
 238 *
 239 * @vm_bo: vm_bo which is evicted
 240 *
 241 * State for BOs used by user mode queues which are not at the location they
 242 * should be.
 243 */
 244static void amdgpu_vm_bo_evicted_user(struct amdgpu_vm_bo_base *vm_bo)
 245{
 246	vm_bo->moved = true;
 247	spin_lock(&vm_bo->vm->status_lock);
 248	list_move(&vm_bo->vm_status, &vm_bo->vm->evicted_user);
 249	spin_unlock(&vm_bo->vm->status_lock);
 250}
 251
 252/**
 253 * amdgpu_vm_bo_relocated - vm_bo is reloacted
 254 *
 255 * @vm_bo: vm_bo which is relocated
 256 *
 257 * State for PDs/PTs which needs to update their parent PD.
 258 * For the root PD, just move to idle state.
 259 */
 260static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
 261{
 262	if (vm_bo->bo->parent) {
 263		spin_lock(&vm_bo->vm->status_lock);
 264		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
 265		spin_unlock(&vm_bo->vm->status_lock);
 266	} else {
 267		amdgpu_vm_bo_idle(vm_bo);
 268	}
 269}
 270
 271/**
 272 * amdgpu_vm_bo_done - vm_bo is done
 273 *
 274 * @vm_bo: vm_bo which is now done
 275 *
 276 * State for normal BOs which are invalidated and that change has been updated
 277 * in the PTs.
 278 */
 279static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
 280{
 281	spin_lock(&vm_bo->vm->status_lock);
 282	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
 283	spin_unlock(&vm_bo->vm->status_lock);
 284}
 285
 286/**
 287 * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine
 288 * @vm: the VM which state machine to reset
 289 *
 290 * Move all vm_bo object in the VM into a state where they will be updated
 291 * again during validation.
 292 */
 293static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm)
 294{
 295	struct amdgpu_vm_bo_base *vm_bo, *tmp;
 296
 297	spin_lock(&vm->status_lock);
 298	list_splice_init(&vm->done, &vm->invalidated);
 299	list_for_each_entry(vm_bo, &vm->invalidated, vm_status)
 300		vm_bo->moved = true;
 301	list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) {
 302		struct amdgpu_bo *bo = vm_bo->bo;
 303
 304		vm_bo->moved = true;
 305		if (!bo || bo->tbo.type != ttm_bo_type_kernel)
 306			list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
 307		else if (bo->parent)
 308			list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
 309	}
 310	spin_unlock(&vm->status_lock);
 311}
 312
 313/**
 314 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
 315 *
 316 * @base: base structure for tracking BO usage in a VM
 317 * @vm: vm to which bo is to be added
 318 * @bo: amdgpu buffer object
 319 *
 320 * Initialize a bo_va_base structure and add it to the appropriate lists
 321 *
 322 */
 323void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
 324			    struct amdgpu_vm *vm, struct amdgpu_bo *bo)
 
 325{
 326	base->vm = vm;
 327	base->bo = bo;
 328	base->next = NULL;
 329	INIT_LIST_HEAD(&base->vm_status);
 330
 331	if (!bo)
 332		return;
 333	base->next = bo->vm_bo;
 334	bo->vm_bo = base;
 335
 336	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
 337		return;
 338
 339	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
 340
 341	ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move);
 342	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
 343		amdgpu_vm_bo_relocated(base);
 344	else
 345		amdgpu_vm_bo_idle(base);
 346
 347	if (bo->preferred_domains &
 348	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
 349		return;
 350
 351	/*
 352	 * we checked all the prerequisites, but it looks like this per vm bo
 353	 * is currently evicted. add the bo to the evicted list to make sure it
 354	 * is validated on next vm use to avoid fault.
 355	 * */
 356	amdgpu_vm_bo_evicted(base);
 357}
 358
 359/**
 360 * amdgpu_vm_lock_pd - lock PD in drm_exec
 361 *
 362 * @vm: vm providing the BOs
 363 * @exec: drm execution context
 364 * @num_fences: number of extra fences to reserve
 365 *
 366 * Lock the VM root PD in the DRM execution context.
 
 367 */
 368int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec,
 369		      unsigned int num_fences)
 370{
 371	/* We need at least two fences for the VM PD/PT updates */
 372	return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base,
 373				    2 + num_fences);
 
 
 
 374}
 375
 
 
 
 
 
 
 
 
 
 
 376/**
 377 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
 378 *
 379 * @adev: amdgpu device pointer
 380 * @vm: vm providing the BOs
 
 
 381 *
 382 * Move all BOs to the end of LRU and remember their positions to put them
 383 * together.
 384 */
 385void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
 386				struct amdgpu_vm *vm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 387{
 388	spin_lock(&adev->mman.bdev.lru_lock);
 389	ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
 390	spin_unlock(&adev->mman.bdev.lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 391}
 392
 393/* Create scheduler entities for page table updates */
 394static int amdgpu_vm_init_entities(struct amdgpu_device *adev,
 395				   struct amdgpu_vm *vm)
 
 
 
 
 
 
 
 
 
 396{
 397	int r;
 398
 399	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
 400				  adev->vm_manager.vm_pte_scheds,
 401				  adev->vm_manager.vm_pte_num_scheds, NULL);
 402	if (r)
 403		goto error;
 404
 405	return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
 406				     adev->vm_manager.vm_pte_scheds,
 407				     adev->vm_manager.vm_pte_num_scheds, NULL);
 408
 409error:
 410	drm_sched_entity_destroy(&vm->immediate);
 411	return r;
 
 
 
 
 412}
 413
 414/* Destroy the entities for page table updates again */
 415static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm)
 
 
 
 
 
 
 
 
 416{
 417	drm_sched_entity_destroy(&vm->immediate);
 418	drm_sched_entity_destroy(&vm->delayed);
 
 
 
 
 
 419}
 420
 421/**
 422 * amdgpu_vm_generation - return the page table re-generation counter
 423 * @adev: the amdgpu_device
 424 * @vm: optional VM to check, might be NULL
 425 *
 426 * Returns a page table re-generation token to allow checking if submissions
 427 * are still valid to use this VM. The VM parameter might be NULL in which case
 428 * just the VRAM lost counter will be used.
 
 429 */
 430uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm)
 
 431{
 432	uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32;
 
 
 433
 434	if (!vm)
 435		return result;
 
 
 
 
 
 
 
 436
 437	result += vm->generation;
 438	/* Add one if the page tables will be re-generated on next CS */
 439	if (drm_sched_entity_error(&vm->delayed))
 440		++result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441
 442	return result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 443}
 444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445/**
 446 * amdgpu_vm_validate - validate evicted BOs tracked in the VM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447 *
 448 * @adev: amdgpu device pointer
 449 * @vm: vm providing the BOs
 450 * @ticket: optional reservation ticket used to reserve the VM
 451 * @validate: callback to do the validation
 452 * @param: parameter for the validation callback
 453 *
 454 * Validate the page table BOs and per-VM BOs on command submission if
 455 * necessary. If a ticket is given, also try to validate evicted user queue
 456 * BOs. They must already be reserved with the given ticket.
 457 *
 458 * Returns:
 459 * Validation result.
 460 */
 461int amdgpu_vm_validate(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 462		       struct ww_acquire_ctx *ticket,
 463		       int (*validate)(void *p, struct amdgpu_bo *bo),
 464		       void *param)
 465{
 466	struct amdgpu_vm_bo_base *bo_base;
 467	struct amdgpu_bo *shadow;
 468	struct amdgpu_bo *bo;
 469	int r;
 470
 471	if (drm_sched_entity_error(&vm->delayed)) {
 472		++vm->generation;
 473		amdgpu_vm_bo_reset_state_machine(vm);
 474		amdgpu_vm_fini_entities(vm);
 475		r = amdgpu_vm_init_entities(adev, vm);
 476		if (r)
 477			return r;
 478	}
 479
 480	spin_lock(&vm->status_lock);
 481	while (!list_empty(&vm->evicted)) {
 482		bo_base = list_first_entry(&vm->evicted,
 483					   struct amdgpu_vm_bo_base,
 484					   vm_status);
 485		spin_unlock(&vm->status_lock);
 486
 487		bo = bo_base->bo;
 488		shadow = amdgpu_bo_shadowed(bo);
 489
 490		r = validate(param, bo);
 491		if (r)
 492			return r;
 493		if (shadow) {
 494			r = validate(param, shadow);
 495			if (r)
 496				return r;
 497		}
 498
 499		if (bo->tbo.type != ttm_bo_type_kernel) {
 500			amdgpu_vm_bo_moved(bo_base);
 501		} else {
 502			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
 503			amdgpu_vm_bo_relocated(bo_base);
 504		}
 505		spin_lock(&vm->status_lock);
 506	}
 507	while (ticket && !list_empty(&vm->evicted_user)) {
 508		bo_base = list_first_entry(&vm->evicted_user,
 509					   struct amdgpu_vm_bo_base,
 510					   vm_status);
 511		spin_unlock(&vm->status_lock);
 512
 513		bo = bo_base->bo;
 514
 515		if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) {
 516			struct amdgpu_task_info *ti = amdgpu_vm_get_task_info_vm(vm);
 517
 518			pr_warn_ratelimited("Evicted user BO is not reserved\n");
 519			if (ti) {
 520				pr_warn_ratelimited("pid %d\n", ti->pid);
 521				amdgpu_vm_put_task_info(ti);
 522			}
 523
 524			return -EINVAL;
 525		}
 526
 527		r = validate(param, bo);
 528		if (r)
 529			return r;
 530
 531		amdgpu_vm_bo_invalidated(bo_base);
 532
 533		spin_lock(&vm->status_lock);
 534	}
 535	spin_unlock(&vm->status_lock);
 536
 537	amdgpu_vm_eviction_lock(vm);
 538	vm->evicting = false;
 539	amdgpu_vm_eviction_unlock(vm);
 540
 541	return 0;
 542}
 543
 544/**
 545 * amdgpu_vm_ready - check VM is ready for updates
 546 *
 547 * @vm: VM to check
 548 *
 549 * Check if all VM PDs/PTs are ready for updates
 550 *
 551 * Returns:
 552 * True if VM is not evicting.
 553 */
 554bool amdgpu_vm_ready(struct amdgpu_vm *vm)
 555{
 556	bool empty;
 557	bool ret;
 558
 559	amdgpu_vm_eviction_lock(vm);
 560	ret = !vm->evicting;
 561	amdgpu_vm_eviction_unlock(vm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562
 563	spin_lock(&vm->status_lock);
 564	empty = list_empty(&vm->evicted);
 565	spin_unlock(&vm->status_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567	return ret && empty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568}
 569
 570/**
 571 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
 572 *
 573 * @adev: amdgpu_device pointer
 574 */
 575void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
 576{
 577	const struct amdgpu_ip_block *ip_block;
 578	bool has_compute_vm_bug;
 579	struct amdgpu_ring *ring;
 580	int i;
 581
 582	has_compute_vm_bug = false;
 583
 584	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
 585	if (ip_block) {
 586		/* Compute has a VM bug for GFX version < 7.
 587		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
 588		if (ip_block->version->major <= 7)
 589			has_compute_vm_bug = true;
 590		else if (ip_block->version->major == 8)
 591			if (adev->gfx.mec_fw_version < 673)
 592				has_compute_vm_bug = true;
 593	}
 594
 595	for (i = 0; i < adev->num_rings; i++) {
 596		ring = adev->rings[i];
 597		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
 598			/* only compute rings */
 599			ring->has_compute_vm_bug = has_compute_vm_bug;
 600		else
 601			ring->has_compute_vm_bug = false;
 602	}
 603}
 604
 605/**
 606 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
 607 *
 608 * @ring: ring on which the job will be submitted
 609 * @job: job to submit
 610 *
 611 * Returns:
 612 * True if sync is needed.
 613 */
 614bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
 615				  struct amdgpu_job *job)
 616{
 617	struct amdgpu_device *adev = ring->adev;
 618	unsigned vmhub = ring->vm_hub;
 619	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
 
 
 
 620
 621	if (job->vmid == 0)
 622		return false;
 
 
 
 
 
 
 
 
 623
 624	if (job->vm_needs_flush || ring->has_compute_vm_bug)
 625		return true;
 626
 627	if (ring->funcs->emit_gds_switch && job->gds_switch_needed)
 628		return true;
 629
 630	if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid]))
 631		return true;
 632
 633	return false;
 634}
 635
 636/**
 637 * amdgpu_vm_flush - hardware flush the vm
 638 *
 639 * @ring: ring to use for flush
 640 * @job:  related job
 641 * @need_pipe_sync: is pipe sync needed
 642 *
 643 * Emit a VM flush when it is necessary.
 644 *
 645 * Returns:
 646 * 0 on success, errno otherwise.
 647 */
 648int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
 649		    bool need_pipe_sync)
 650{
 651	struct amdgpu_device *adev = ring->adev;
 652	unsigned vmhub = ring->vm_hub;
 653	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
 654	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
 655	bool spm_update_needed = job->spm_update_needed;
 656	bool gds_switch_needed = ring->funcs->emit_gds_switch &&
 657		job->gds_switch_needed;
 
 
 
 
 658	bool vm_flush_needed = job->vm_needs_flush;
 659	struct dma_fence *fence = NULL;
 660	bool pasid_mapping_needed = false;
 661	unsigned int patch;
 
 662	int r;
 663
 
 
 
 664	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
 665		gds_switch_needed = true;
 666		vm_flush_needed = true;
 667		pasid_mapping_needed = true;
 668		spm_update_needed = true;
 669	}
 670
 671	mutex_lock(&id_mgr->lock);
 672	if (id->pasid != job->pasid || !id->pasid_mapping ||
 673	    !dma_fence_is_signaled(id->pasid_mapping))
 674		pasid_mapping_needed = true;
 675	mutex_unlock(&id_mgr->lock);
 676
 677	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
 678	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
 679			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
 680	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
 681		ring->funcs->emit_wreg;
 682
 683	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
 684		return 0;
 685
 686	amdgpu_ring_ib_begin(ring);
 687	if (ring->funcs->init_cond_exec)
 688		patch = amdgpu_ring_init_cond_exec(ring,
 689						   ring->cond_exe_gpu_addr);
 690
 691	if (need_pipe_sync)
 692		amdgpu_ring_emit_pipeline_sync(ring);
 693
 694	if (vm_flush_needed) {
 695		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
 696		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
 697	}
 698
 699	if (pasid_mapping_needed)
 700		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
 701
 702	if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid)
 703		adev->gfx.rlc.funcs->update_spm_vmid(adev, ring, job->vmid);
 704
 705	if (!ring->is_mes_queue && ring->funcs->emit_gds_switch &&
 706	    gds_switch_needed) {
 707		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
 708					    job->gds_size, job->gws_base,
 709					    job->gws_size, job->oa_base,
 710					    job->oa_size);
 711	}
 712
 713	if (vm_flush_needed || pasid_mapping_needed) {
 714		r = amdgpu_fence_emit(ring, &fence, NULL, 0);
 715		if (r)
 716			return r;
 717	}
 718
 719	if (vm_flush_needed) {
 720		mutex_lock(&id_mgr->lock);
 721		dma_fence_put(id->last_flush);
 722		id->last_flush = dma_fence_get(fence);
 723		id->current_gpu_reset_count =
 724			atomic_read(&adev->gpu_reset_counter);
 725		mutex_unlock(&id_mgr->lock);
 726	}
 727
 728	if (pasid_mapping_needed) {
 729		mutex_lock(&id_mgr->lock);
 730		id->pasid = job->pasid;
 731		dma_fence_put(id->pasid_mapping);
 732		id->pasid_mapping = dma_fence_get(fence);
 733		mutex_unlock(&id_mgr->lock);
 734	}
 735	dma_fence_put(fence);
 736
 737	amdgpu_ring_patch_cond_exec(ring, patch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738
 739	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
 740	if (ring->funcs->emit_switch_buffer) {
 741		amdgpu_ring_emit_switch_buffer(ring);
 742		amdgpu_ring_emit_switch_buffer(ring);
 743	}
 744	amdgpu_ring_ib_end(ring);
 745	return 0;
 746}
 747
 748/**
 749 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
 750 *
 751 * @vm: requested vm
 752 * @bo: requested buffer object
 753 *
 754 * Find @bo inside the requested vm.
 755 * Search inside the @bos vm list for the requested vm
 756 * Returns the found bo_va or NULL if none is found
 757 *
 758 * Object has to be reserved!
 759 *
 760 * Returns:
 761 * Found bo_va or NULL.
 762 */
 763struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
 764				       struct amdgpu_bo *bo)
 765{
 766	struct amdgpu_vm_bo_base *base;
 767
 768	for (base = bo->vm_bo; base; base = base->next) {
 769		if (base->vm != vm)
 770			continue;
 771
 772		return container_of(base, struct amdgpu_bo_va, base);
 773	}
 774	return NULL;
 775}
 776
 777/**
 778 * amdgpu_vm_map_gart - Resolve gart mapping of addr
 779 *
 780 * @pages_addr: optional DMA address to use for lookup
 781 * @addr: the unmapped addr
 782 *
 783 * Look up the physical address of the page that the pte resolves
 784 * to.
 785 *
 786 * Returns:
 787 * The pointer for the page table entry.
 788 */
 789uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
 790{
 791	uint64_t result;
 792
 793	/* page table offset */
 794	result = pages_addr[addr >> PAGE_SHIFT];
 795
 796	/* in case cpu page size != gpu page size*/
 797	result |= addr & (~PAGE_MASK);
 798
 799	result &= 0xFFFFFFFFFFFFF000ULL;
 800
 801	return result;
 802}
 803
 804/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805 * amdgpu_vm_update_pdes - make sure that all directories are valid
 806 *
 807 * @adev: amdgpu_device pointer
 808 * @vm: requested vm
 809 * @immediate: submit immediately to the paging queue
 810 *
 811 * Makes sure all directories are up to date.
 812 *
 813 * Returns:
 814 * 0 for success, error for failure.
 815 */
 816int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
 817			  struct amdgpu_vm *vm, bool immediate)
 818{
 819	struct amdgpu_vm_update_params params;
 820	struct amdgpu_vm_bo_base *entry;
 821	bool flush_tlb_needed = false;
 822	LIST_HEAD(relocated);
 823	int r, idx;
 824
 825	spin_lock(&vm->status_lock);
 826	list_splice_init(&vm->relocated, &relocated);
 827	spin_unlock(&vm->status_lock);
 828
 829	if (list_empty(&relocated))
 830		return 0;
 831
 832	if (!drm_dev_enter(adev_to_drm(adev), &idx))
 833		return -ENODEV;
 834
 835	memset(&params, 0, sizeof(params));
 836	params.adev = adev;
 837	params.vm = vm;
 838	params.immediate = immediate;
 839
 840	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
 841	if (r)
 842		goto error;
 
 
 
 843
 844	list_for_each_entry(entry, &relocated, vm_status) {
 845		/* vm_flush_needed after updating moved PDEs */
 846		flush_tlb_needed |= entry->moved;
 847
 848		r = amdgpu_vm_pde_update(&params, entry);
 849		if (r)
 850			goto error;
 851	}
 852
 853	r = vm->update_funcs->commit(&params, &vm->last_update);
 854	if (r)
 855		goto error;
 
 
 
 
 
 
 856
 857	if (flush_tlb_needed)
 858		atomic64_inc(&vm->tlb_seq);
 
 
 
 
 
 
 
 
 859
 860	while (!list_empty(&relocated)) {
 861		entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base,
 862					 vm_status);
 863		amdgpu_vm_bo_idle(entry);
 
 
 
 
 
 
 
 864	}
 865
 866error:
 867	drm_dev_exit(idx);
 868	return r;
 869}
 870
 871/**
 872 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence
 873 * @fence: unused
 874 * @cb: the callback structure
 
 
 
 
 
 875 *
 876 * Increments the tlb sequence to make sure that future CS execute a VM flush.
 877 */
 878static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence,
 879				 struct dma_fence_cb *cb)
 
 880{
 881	struct amdgpu_vm_tlb_seq_struct *tlb_cb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882
 883	tlb_cb = container_of(cb, typeof(*tlb_cb), cb);
 884	atomic64_inc(&tlb_cb->vm->tlb_seq);
 885	kfree(tlb_cb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886}
 887
 888/**
 889 * amdgpu_vm_update_range - update a range in the vm page table
 890 *
 891 * @adev: amdgpu_device pointer to use for commands
 892 * @vm: the VM to update the range
 893 * @immediate: immediate submission in a page fault
 894 * @unlocked: unlocked invalidation during MM callback
 895 * @flush_tlb: trigger tlb invalidation after update completed
 896 * @allow_override: change MTYPE for local NUMA nodes
 897 * @resv: fences we need to sync to
 898 * @start: start of mapped range
 899 * @last: last mapped entry
 900 * @flags: flags for the entries
 901 * @offset: offset into nodes and pages_addr
 902 * @vram_base: base for vram mappings
 903 * @res: ttm_resource to map
 904 * @pages_addr: DMA addresses to use for mapping
 905 * @fence: optional resulting fence
 906 *
 907 * Fill in the page table entries between @start and @last.
 908 *
 909 * Returns:
 910 * 0 for success, negative erro code for failure.
 911 */
 912int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 913			   bool immediate, bool unlocked, bool flush_tlb, bool allow_override,
 914			   struct dma_resv *resv, uint64_t start, uint64_t last,
 915			   uint64_t flags, uint64_t offset, uint64_t vram_base,
 916			   struct ttm_resource *res, dma_addr_t *pages_addr,
 917			   struct dma_fence **fence)
 
 918{
 919	struct amdgpu_vm_update_params params;
 920	struct amdgpu_vm_tlb_seq_struct *tlb_cb;
 921	struct amdgpu_res_cursor cursor;
 922	enum amdgpu_sync_mode sync_mode;
 923	int r, idx;
 924
 925	if (!drm_dev_enter(adev_to_drm(adev), &idx))
 926		return -ENODEV;
 927
 928	tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL);
 929	if (!tlb_cb) {
 930		r = -ENOMEM;
 931		goto error_unlock;
 932	}
 933
 934	/* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache,
 935	 * heavy-weight flush TLB unconditionally.
 936	 */
 937	flush_tlb |= adev->gmc.xgmi.num_physical_nodes &&
 938		     amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0);
 939
 940	/*
 941	 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB
 942	 */
 943	flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0);
 944
 945	memset(&params, 0, sizeof(params));
 946	params.adev = adev;
 947	params.vm = vm;
 948	params.immediate = immediate;
 949	params.pages_addr = pages_addr;
 950	params.unlocked = unlocked;
 951	params.allow_override = allow_override;
 952
 953	/* Implicitly sync to command submissions in the same VM before
 954	 * unmapping. Sync to moving fences before mapping.
 955	 */
 956	if (!(flags & AMDGPU_PTE_VALID))
 957		sync_mode = AMDGPU_SYNC_EQ_OWNER;
 958	else
 959		sync_mode = AMDGPU_SYNC_EXPLICIT;
 960
 961	amdgpu_vm_eviction_lock(vm);
 962	if (vm->evicting) {
 963		r = -EBUSY;
 964		goto error_free;
 965	}
 966
 967	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
 968		struct dma_fence *tmp = dma_fence_get_stub();
 969
 970		amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
 971		swap(vm->last_unlocked, tmp);
 972		dma_fence_put(tmp);
 973	}
 974
 975	r = vm->update_funcs->prepare(&params, resv, sync_mode);
 976	if (r)
 977		goto error_free;
 978
 979	amdgpu_res_first(pages_addr ? NULL : res, offset,
 980			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
 981	while (cursor.remaining) {
 982		uint64_t tmp, num_entries, addr;
 983
 984		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
 985		if (pages_addr) {
 986			bool contiguous = true;
 987
 988			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
 989				uint64_t pfn = cursor.start >> PAGE_SHIFT;
 990				uint64_t count;
 991
 992				contiguous = pages_addr[pfn + 1] ==
 993					pages_addr[pfn] + PAGE_SIZE;
 994
 995				tmp = num_entries /
 996					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
 997				for (count = 2; count < tmp; ++count) {
 998					uint64_t idx = pfn + count;
 999
1000					if (contiguous != (pages_addr[idx] ==
1001					    pages_addr[idx - 1] + PAGE_SIZE))
1002						break;
1003				}
1004				if (!contiguous)
1005					count--;
1006				num_entries = count *
1007					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1008			}
1009
1010			if (!contiguous) {
1011				addr = cursor.start;
1012				params.pages_addr = pages_addr;
1013			} else {
1014				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1015				params.pages_addr = NULL;
1016			}
1017
1018		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1019			addr = vram_base + cursor.start;
1020		} else {
1021			addr = 0;
1022		}
1023
1024		tmp = start + num_entries;
1025		r = amdgpu_vm_ptes_update(&params, start, tmp, addr, flags);
1026		if (r)
1027			goto error_free;
1028
1029		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1030		start = tmp;
1031	}
1032
1033	r = vm->update_funcs->commit(&params, fence);
1034
1035	if (flush_tlb || params.table_freed) {
1036		tlb_cb->vm = vm;
1037		if (fence && *fence &&
1038		    !dma_fence_add_callback(*fence, &tlb_cb->cb,
1039					   amdgpu_vm_tlb_seq_cb)) {
1040			dma_fence_put(vm->last_tlb_flush);
1041			vm->last_tlb_flush = dma_fence_get(*fence);
1042		} else {
1043			amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb);
1044		}
1045		tlb_cb = NULL;
1046	}
1047
1048error_free:
1049	kfree(tlb_cb);
1050
1051error_unlock:
1052	amdgpu_vm_eviction_unlock(vm);
1053	drm_dev_exit(idx);
1054	return r;
1055}
1056
1057static void amdgpu_vm_bo_get_memory(struct amdgpu_bo_va *bo_va,
1058				    struct amdgpu_mem_stats *stats)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059{
1060	struct amdgpu_vm *vm = bo_va->base.vm;
1061	struct amdgpu_bo *bo = bo_va->base.bo;
1062
1063	if (!bo)
1064		return;
1065
1066	/*
1067	 * For now ignore BOs which are currently locked and potentially
1068	 * changing their location.
1069	 */
1070	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv &&
1071	    !dma_resv_trylock(bo->tbo.base.resv))
1072		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073
1074	amdgpu_bo_get_memory(bo, stats);
1075	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
1076	    dma_resv_unlock(bo->tbo.base.resv);
1077}
 
 
 
 
 
 
 
 
 
1078
1079void amdgpu_vm_get_memory(struct amdgpu_vm *vm,
1080			  struct amdgpu_mem_stats *stats)
1081{
1082	struct amdgpu_bo_va *bo_va, *tmp;
 
 
 
 
 
 
 
 
1083
1084	spin_lock(&vm->status_lock);
1085	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status)
1086		amdgpu_vm_bo_get_memory(bo_va, stats);
 
 
 
 
 
1087
1088	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status)
1089		amdgpu_vm_bo_get_memory(bo_va, stats);
 
 
1090
1091	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status)
1092		amdgpu_vm_bo_get_memory(bo_va, stats);
 
 
 
 
1093
1094	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status)
1095		amdgpu_vm_bo_get_memory(bo_va, stats);
 
 
 
 
1096
1097	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status)
1098		amdgpu_vm_bo_get_memory(bo_va, stats);
1099
1100	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status)
1101		amdgpu_vm_bo_get_memory(bo_va, stats);
1102	spin_unlock(&vm->status_lock);
1103}
1104
1105/**
1106 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1107 *
1108 * @adev: amdgpu_device pointer
1109 * @bo_va: requested BO and VM object
1110 * @clear: if true clear the entries
1111 *
1112 * Fill in the page table entries for @bo_va.
1113 *
1114 * Returns:
1115 * 0 for success, -EINVAL for failure.
1116 */
1117int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1118			bool clear)
1119{
1120	struct amdgpu_bo *bo = bo_va->base.bo;
1121	struct amdgpu_vm *vm = bo_va->base.vm;
1122	struct amdgpu_bo_va_mapping *mapping;
1123	dma_addr_t *pages_addr = NULL;
1124	struct ttm_resource *mem;
 
1125	struct dma_fence **last_update;
1126	bool flush_tlb = clear;
1127	bool uncached;
1128	struct dma_resv *resv;
1129	uint64_t vram_base;
1130	uint64_t flags;
 
1131	int r;
1132
1133	if (clear || !bo) {
1134		mem = NULL;
1135		resv = vm->root.bo->tbo.base.resv;
 
1136	} else {
1137		struct drm_gem_object *obj = &bo->tbo.base;
1138
 
 
 
 
 
 
1139		resv = bo->tbo.base.resv;
1140		if (obj->import_attach && bo_va->is_xgmi) {
1141			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1142			struct drm_gem_object *gobj = dma_buf->priv;
1143			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1144
1145			if (abo->tbo.resource &&
1146			    abo->tbo.resource->mem_type == TTM_PL_VRAM)
1147				bo = gem_to_amdgpu_bo(gobj);
1148		}
1149		mem = bo->tbo.resource;
1150		if (mem && (mem->mem_type == TTM_PL_TT ||
1151			    mem->mem_type == AMDGPU_PL_PREEMPT))
1152			pages_addr = bo->tbo.ttm->dma_address;
1153	}
1154
1155	if (bo) {
1156		struct amdgpu_device *bo_adev;
1157
1158		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1159
1160		if (amdgpu_bo_encrypted(bo))
1161			flags |= AMDGPU_PTE_TMZ;
1162
1163		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1164		vram_base = bo_adev->vm_manager.vram_base_offset;
1165		uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0;
1166	} else {
1167		flags = 0x0;
1168		vram_base = 0;
1169		uncached = false;
1170	}
1171
1172	if (clear || (bo && bo->tbo.base.resv ==
1173		      vm->root.bo->tbo.base.resv))
1174		last_update = &vm->last_update;
1175	else
1176		last_update = &bo_va->last_pt_update;
1177
1178	if (!clear && bo_va->base.moved) {
1179		flush_tlb = true;
1180		list_splice_init(&bo_va->valids, &bo_va->invalids);
1181
1182	} else if (bo_va->cleared != clear) {
1183		list_splice_init(&bo_va->valids, &bo_va->invalids);
1184	}
1185
1186	list_for_each_entry(mapping, &bo_va->invalids, list) {
1187		uint64_t update_flags = flags;
1188
1189		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1190		 * but in case of something, we filter the flags in first place
1191		 */
1192		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1193			update_flags &= ~AMDGPU_PTE_READABLE;
1194		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1195			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1196
1197		/* Apply ASIC specific mapping flags */
1198		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1199
1200		trace_amdgpu_vm_bo_update(mapping);
1201
1202		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb,
1203					   !uncached, resv, mapping->start, mapping->last,
1204					   update_flags, mapping->offset,
1205					   vram_base, mem, pages_addr,
1206					   last_update);
1207		if (r)
1208			return r;
1209	}
1210
1211	/* If the BO is not in its preferred location add it back to
1212	 * the evicted list so that it gets validated again on the
1213	 * next command submission.
1214	 */
1215	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1216		uint32_t mem_type = bo->tbo.resource->mem_type;
1217
1218		if (!(bo->preferred_domains &
1219		      amdgpu_mem_type_to_domain(mem_type)))
1220			amdgpu_vm_bo_evicted(&bo_va->base);
1221		else
1222			amdgpu_vm_bo_idle(&bo_va->base);
1223	} else {
1224		amdgpu_vm_bo_done(&bo_va->base);
1225	}
1226
1227	list_splice_init(&bo_va->invalids, &bo_va->valids);
1228	bo_va->cleared = clear;
1229	bo_va->base.moved = false;
1230
1231	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1232		list_for_each_entry(mapping, &bo_va->valids, list)
1233			trace_amdgpu_vm_bo_mapping(mapping);
1234	}
1235
1236	return 0;
1237}
1238
1239/**
1240 * amdgpu_vm_update_prt_state - update the global PRT state
1241 *
1242 * @adev: amdgpu_device pointer
1243 */
1244static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1245{
1246	unsigned long flags;
1247	bool enable;
1248
1249	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1250	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1251	adev->gmc.gmc_funcs->set_prt(adev, enable);
1252	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1253}
1254
1255/**
1256 * amdgpu_vm_prt_get - add a PRT user
1257 *
1258 * @adev: amdgpu_device pointer
1259 */
1260static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1261{
1262	if (!adev->gmc.gmc_funcs->set_prt)
1263		return;
1264
1265	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1266		amdgpu_vm_update_prt_state(adev);
1267}
1268
1269/**
1270 * amdgpu_vm_prt_put - drop a PRT user
1271 *
1272 * @adev: amdgpu_device pointer
1273 */
1274static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1275{
1276	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1277		amdgpu_vm_update_prt_state(adev);
1278}
1279
1280/**
1281 * amdgpu_vm_prt_cb - callback for updating the PRT status
1282 *
1283 * @fence: fence for the callback
1284 * @_cb: the callback function
1285 */
1286static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1287{
1288	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1289
1290	amdgpu_vm_prt_put(cb->adev);
1291	kfree(cb);
1292}
1293
1294/**
1295 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1296 *
1297 * @adev: amdgpu_device pointer
1298 * @fence: fence for the callback
1299 */
1300static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1301				 struct dma_fence *fence)
1302{
1303	struct amdgpu_prt_cb *cb;
1304
1305	if (!adev->gmc.gmc_funcs->set_prt)
1306		return;
1307
1308	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1309	if (!cb) {
1310		/* Last resort when we are OOM */
1311		if (fence)
1312			dma_fence_wait(fence, false);
1313
1314		amdgpu_vm_prt_put(adev);
1315	} else {
1316		cb->adev = adev;
1317		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1318						     amdgpu_vm_prt_cb))
1319			amdgpu_vm_prt_cb(fence, &cb->cb);
1320	}
1321}
1322
1323/**
1324 * amdgpu_vm_free_mapping - free a mapping
1325 *
1326 * @adev: amdgpu_device pointer
1327 * @vm: requested vm
1328 * @mapping: mapping to be freed
1329 * @fence: fence of the unmap operation
1330 *
1331 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1332 */
1333static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1334				   struct amdgpu_vm *vm,
1335				   struct amdgpu_bo_va_mapping *mapping,
1336				   struct dma_fence *fence)
1337{
1338	if (mapping->flags & AMDGPU_PTE_PRT)
1339		amdgpu_vm_add_prt_cb(adev, fence);
1340	kfree(mapping);
1341}
1342
1343/**
1344 * amdgpu_vm_prt_fini - finish all prt mappings
1345 *
1346 * @adev: amdgpu_device pointer
1347 * @vm: requested vm
1348 *
1349 * Register a cleanup callback to disable PRT support after VM dies.
1350 */
1351static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1352{
1353	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
1354	struct dma_resv_iter cursor;
1355	struct dma_fence *fence;
 
1356
1357	dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) {
1358		/* Add a callback for each fence in the reservation object */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1359		amdgpu_vm_prt_get(adev);
1360		amdgpu_vm_add_prt_cb(adev, fence);
1361	}
 
 
1362}
1363
1364/**
1365 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1366 *
1367 * @adev: amdgpu_device pointer
1368 * @vm: requested vm
1369 * @fence: optional resulting fence (unchanged if no work needed to be done
1370 * or if an error occurred)
1371 *
1372 * Make sure all freed BOs are cleared in the PT.
1373 * PTs have to be reserved and mutex must be locked!
1374 *
1375 * Returns:
1376 * 0 for success.
1377 *
1378 */
1379int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1380			  struct amdgpu_vm *vm,
1381			  struct dma_fence **fence)
1382{
1383	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
1384	struct amdgpu_bo_va_mapping *mapping;
1385	uint64_t init_pte_value = 0;
1386	struct dma_fence *f = NULL;
1387	int r;
1388
1389	while (!list_empty(&vm->freed)) {
1390		mapping = list_first_entry(&vm->freed,
1391			struct amdgpu_bo_va_mapping, list);
1392		list_del(&mapping->list);
1393
1394		r = amdgpu_vm_update_range(adev, vm, false, false, true, false,
1395					   resv, mapping->start, mapping->last,
1396					   init_pte_value, 0, 0, NULL, NULL,
1397					   &f);
 
 
 
1398		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1399		if (r) {
1400			dma_fence_put(f);
1401			return r;
1402		}
1403	}
1404
1405	if (fence && f) {
1406		dma_fence_put(*fence);
1407		*fence = f;
1408	} else {
1409		dma_fence_put(f);
1410	}
1411
1412	return 0;
1413
1414}
1415
1416/**
1417 * amdgpu_vm_handle_moved - handle moved BOs in the PT
1418 *
1419 * @adev: amdgpu_device pointer
1420 * @vm: requested vm
1421 * @ticket: optional reservation ticket used to reserve the VM
1422 *
1423 * Make sure all BOs which are moved are updated in the PTs.
1424 *
1425 * Returns:
1426 * 0 for success.
1427 *
1428 * PTs have to be reserved!
1429 */
1430int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1431			   struct amdgpu_vm *vm,
1432			   struct ww_acquire_ctx *ticket)
1433{
1434	struct amdgpu_bo_va *bo_va;
1435	struct dma_resv *resv;
1436	bool clear, unlock;
1437	int r;
1438
1439	spin_lock(&vm->status_lock);
1440	while (!list_empty(&vm->moved)) {
1441		bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va,
1442					 base.vm_status);
1443		spin_unlock(&vm->status_lock);
1444
1445		/* Per VM BOs never need to bo cleared in the page tables */
1446		r = amdgpu_vm_bo_update(adev, bo_va, false);
1447		if (r)
1448			return r;
1449		spin_lock(&vm->status_lock);
1450	}
1451
 
1452	while (!list_empty(&vm->invalidated)) {
1453		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
1454					 base.vm_status);
1455		resv = bo_va->base.bo->tbo.base.resv;
1456		spin_unlock(&vm->status_lock);
1457
1458		/* Try to reserve the BO to avoid clearing its ptes */
1459		if (!adev->debug_vm && dma_resv_trylock(resv)) {
1460			clear = false;
1461			unlock = true;
1462		/* The caller is already holding the reservation lock */
1463		} else if (ticket && dma_resv_locking_ctx(resv) == ticket) {
1464			clear = false;
1465			unlock = false;
1466		/* Somebody else is using the BO right now */
1467		} else {
1468			clear = true;
1469			unlock = false;
1470		}
1471
1472		r = amdgpu_vm_bo_update(adev, bo_va, clear);
1473
1474		if (unlock)
1475			dma_resv_unlock(resv);
1476		if (r)
1477			return r;
1478
1479		/* Remember evicted DMABuf imports in compute VMs for later
1480		 * validation
1481		 */
1482		if (vm->is_compute_context &&
1483		    bo_va->base.bo->tbo.base.import_attach &&
1484		    (!bo_va->base.bo->tbo.resource ||
1485		     bo_va->base.bo->tbo.resource->mem_type == TTM_PL_SYSTEM))
1486			amdgpu_vm_bo_evicted_user(&bo_va->base);
1487
1488		spin_lock(&vm->status_lock);
1489	}
1490	spin_unlock(&vm->status_lock);
1491
1492	return 0;
1493}
1494
1495/**
1496 * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM
1497 *
1498 * @adev: amdgpu_device pointer
1499 * @vm: requested vm
1500 * @flush_type: flush type
1501 * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush.
1502 *
1503 * Flush TLB if needed for a compute VM.
1504 *
1505 * Returns:
1506 * 0 for success.
1507 */
1508int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev,
1509				struct amdgpu_vm *vm,
1510				uint32_t flush_type,
1511				uint32_t xcc_mask)
1512{
1513	uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
1514	bool all_hub = false;
1515	int xcc = 0, r = 0;
1516
1517	WARN_ON_ONCE(!vm->is_compute_context);
1518
1519	/*
1520	 * It can be that we race and lose here, but that is extremely unlikely
1521	 * and the worst thing which could happen is that we flush the changes
1522	 * into the TLB once more which is harmless.
1523	 */
1524	if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq)
1525		return 0;
1526
1527	if (adev->family == AMDGPU_FAMILY_AI ||
1528	    adev->family == AMDGPU_FAMILY_RV)
1529		all_hub = true;
1530
1531	for_each_inst(xcc, xcc_mask) {
1532		r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type,
1533						   all_hub, xcc);
1534		if (r)
1535			break;
1536	}
1537	return r;
1538}
1539
1540/**
1541 * amdgpu_vm_bo_add - add a bo to a specific vm
1542 *
1543 * @adev: amdgpu_device pointer
1544 * @vm: requested vm
1545 * @bo: amdgpu buffer object
1546 *
1547 * Add @bo into the requested vm.
1548 * Add @bo to the list of bos associated with the vm
1549 *
1550 * Returns:
1551 * Newly added bo_va or NULL for failure
1552 *
1553 * Object has to be reserved!
1554 */
1555struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1556				      struct amdgpu_vm *vm,
1557				      struct amdgpu_bo *bo)
1558{
1559	struct amdgpu_bo_va *bo_va;
1560
1561	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1562	if (bo_va == NULL) {
1563		return NULL;
1564	}
1565	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
1566
1567	bo_va->ref_count = 1;
1568	bo_va->last_pt_update = dma_fence_get_stub();
1569	INIT_LIST_HEAD(&bo_va->valids);
1570	INIT_LIST_HEAD(&bo_va->invalids);
1571
1572	if (!bo)
1573		return bo_va;
1574
1575	dma_resv_assert_held(bo->tbo.base.resv);
1576	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
1577		bo_va->is_xgmi = true;
1578		/* Power up XGMI if it can be potentially used */
1579		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
1580	}
1581
1582	return bo_va;
1583}
1584
1585
1586/**
1587 * amdgpu_vm_bo_insert_map - insert a new mapping
1588 *
1589 * @adev: amdgpu_device pointer
1590 * @bo_va: bo_va to store the address
1591 * @mapping: the mapping to insert
1592 *
1593 * Insert a new mapping into all structures.
1594 */
1595static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
1596				    struct amdgpu_bo_va *bo_va,
1597				    struct amdgpu_bo_va_mapping *mapping)
1598{
1599	struct amdgpu_vm *vm = bo_va->base.vm;
1600	struct amdgpu_bo *bo = bo_va->base.bo;
1601
1602	mapping->bo_va = bo_va;
1603	list_add(&mapping->list, &bo_va->invalids);
1604	amdgpu_vm_it_insert(mapping, &vm->va);
1605
1606	if (mapping->flags & AMDGPU_PTE_PRT)
1607		amdgpu_vm_prt_get(adev);
1608
1609	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
1610	    !bo_va->base.moved) {
1611		amdgpu_vm_bo_moved(&bo_va->base);
1612	}
1613	trace_amdgpu_vm_bo_map(bo_va, mapping);
1614}
1615
1616/* Validate operation parameters to prevent potential abuse */
1617static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev,
1618					  struct amdgpu_bo *bo,
1619					  uint64_t saddr,
1620					  uint64_t offset,
1621					  uint64_t size)
1622{
1623	uint64_t tmp, lpfn;
1624
1625	if (saddr & AMDGPU_GPU_PAGE_MASK
1626	    || offset & AMDGPU_GPU_PAGE_MASK
1627	    || size & AMDGPU_GPU_PAGE_MASK)
1628		return -EINVAL;
1629
1630	if (check_add_overflow(saddr, size, &tmp)
1631	    || check_add_overflow(offset, size, &tmp)
1632	    || size == 0 /* which also leads to end < begin */)
1633		return -EINVAL;
1634
1635	/* make sure object fit at this offset */
1636	if (bo && offset + size > amdgpu_bo_size(bo))
1637		return -EINVAL;
1638
1639	/* Ensure last pfn not exceed max_pfn */
1640	lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT;
1641	if (lpfn >= adev->vm_manager.max_pfn)
1642		return -EINVAL;
1643
1644	return 0;
1645}
1646
1647/**
1648 * amdgpu_vm_bo_map - map bo inside a vm
1649 *
1650 * @adev: amdgpu_device pointer
1651 * @bo_va: bo_va to store the address
1652 * @saddr: where to map the BO
1653 * @offset: requested offset in the BO
1654 * @size: BO size in bytes
1655 * @flags: attributes of pages (read/write/valid/etc.)
1656 *
1657 * Add a mapping of the BO at the specefied addr into the VM.
1658 *
1659 * Returns:
1660 * 0 for success, error for failure.
1661 *
1662 * Object has to be reserved and unreserved outside!
1663 */
1664int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1665		     struct amdgpu_bo_va *bo_va,
1666		     uint64_t saddr, uint64_t offset,
1667		     uint64_t size, uint64_t flags)
1668{
1669	struct amdgpu_bo_va_mapping *mapping, *tmp;
1670	struct amdgpu_bo *bo = bo_va->base.bo;
1671	struct amdgpu_vm *vm = bo_va->base.vm;
1672	uint64_t eaddr;
1673	int r;
1674
1675	r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size);
1676	if (r)
1677		return r;
 
 
 
 
 
 
 
 
1678
1679	saddr /= AMDGPU_GPU_PAGE_SIZE;
1680	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
1681
1682	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1683	if (tmp) {
1684		/* bo and tmp overlap, invalid addr */
1685		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1686			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
1687			tmp->start, tmp->last + 1);
1688		return -EINVAL;
1689	}
1690
1691	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1692	if (!mapping)
1693		return -ENOMEM;
1694
1695	mapping->start = saddr;
1696	mapping->last = eaddr;
1697	mapping->offset = offset;
1698	mapping->flags = flags;
1699
1700	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1701
1702	return 0;
1703}
1704
1705/**
1706 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1707 *
1708 * @adev: amdgpu_device pointer
1709 * @bo_va: bo_va to store the address
1710 * @saddr: where to map the BO
1711 * @offset: requested offset in the BO
1712 * @size: BO size in bytes
1713 * @flags: attributes of pages (read/write/valid/etc.)
1714 *
1715 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1716 * mappings as we do so.
1717 *
1718 * Returns:
1719 * 0 for success, error for failure.
1720 *
1721 * Object has to be reserved and unreserved outside!
1722 */
1723int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1724			     struct amdgpu_bo_va *bo_va,
1725			     uint64_t saddr, uint64_t offset,
1726			     uint64_t size, uint64_t flags)
1727{
1728	struct amdgpu_bo_va_mapping *mapping;
1729	struct amdgpu_bo *bo = bo_va->base.bo;
1730	uint64_t eaddr;
1731	int r;
1732
1733	r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size);
1734	if (r)
1735		return r;
 
 
 
 
 
 
 
 
1736
1737	/* Allocate all the needed memory */
1738	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1739	if (!mapping)
1740		return -ENOMEM;
1741
1742	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
1743	if (r) {
1744		kfree(mapping);
1745		return r;
1746	}
1747
1748	saddr /= AMDGPU_GPU_PAGE_SIZE;
1749	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
1750
1751	mapping->start = saddr;
1752	mapping->last = eaddr;
1753	mapping->offset = offset;
1754	mapping->flags = flags;
1755
1756	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1757
1758	return 0;
1759}
1760
1761/**
1762 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1763 *
1764 * @adev: amdgpu_device pointer
1765 * @bo_va: bo_va to remove the address from
1766 * @saddr: where to the BO is mapped
1767 *
1768 * Remove a mapping of the BO at the specefied addr from the VM.
1769 *
1770 * Returns:
1771 * 0 for success, error for failure.
1772 *
1773 * Object has to be reserved and unreserved outside!
1774 */
1775int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1776		       struct amdgpu_bo_va *bo_va,
1777		       uint64_t saddr)
1778{
1779	struct amdgpu_bo_va_mapping *mapping;
1780	struct amdgpu_vm *vm = bo_va->base.vm;
1781	bool valid = true;
1782
1783	saddr /= AMDGPU_GPU_PAGE_SIZE;
1784
1785	list_for_each_entry(mapping, &bo_va->valids, list) {
1786		if (mapping->start == saddr)
1787			break;
1788	}
1789
1790	if (&mapping->list == &bo_va->valids) {
1791		valid = false;
1792
1793		list_for_each_entry(mapping, &bo_va->invalids, list) {
1794			if (mapping->start == saddr)
1795				break;
1796		}
1797
1798		if (&mapping->list == &bo_va->invalids)
1799			return -ENOENT;
1800	}
1801
1802	list_del(&mapping->list);
1803	amdgpu_vm_it_remove(mapping, &vm->va);
1804	mapping->bo_va = NULL;
1805	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1806
1807	if (valid)
1808		list_add(&mapping->list, &vm->freed);
1809	else
1810		amdgpu_vm_free_mapping(adev, vm, mapping,
1811				       bo_va->last_pt_update);
1812
1813	return 0;
1814}
1815
1816/**
1817 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
1818 *
1819 * @adev: amdgpu_device pointer
1820 * @vm: VM structure to use
1821 * @saddr: start of the range
1822 * @size: size of the range
1823 *
1824 * Remove all mappings in a range, split them as appropriate.
1825 *
1826 * Returns:
1827 * 0 for success, error for failure.
1828 */
1829int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
1830				struct amdgpu_vm *vm,
1831				uint64_t saddr, uint64_t size)
1832{
1833	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
1834	LIST_HEAD(removed);
1835	uint64_t eaddr;
1836	int r;
1837
1838	r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size);
1839	if (r)
1840		return r;
1841
 
1842	saddr /= AMDGPU_GPU_PAGE_SIZE;
1843	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
1844
1845	/* Allocate all the needed memory */
1846	before = kzalloc(sizeof(*before), GFP_KERNEL);
1847	if (!before)
1848		return -ENOMEM;
1849	INIT_LIST_HEAD(&before->list);
1850
1851	after = kzalloc(sizeof(*after), GFP_KERNEL);
1852	if (!after) {
1853		kfree(before);
1854		return -ENOMEM;
1855	}
1856	INIT_LIST_HEAD(&after->list);
1857
1858	/* Now gather all removed mappings */
1859	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1860	while (tmp) {
1861		/* Remember mapping split at the start */
1862		if (tmp->start < saddr) {
1863			before->start = tmp->start;
1864			before->last = saddr - 1;
1865			before->offset = tmp->offset;
1866			before->flags = tmp->flags;
1867			before->bo_va = tmp->bo_va;
1868			list_add(&before->list, &tmp->bo_va->invalids);
1869		}
1870
1871		/* Remember mapping split at the end */
1872		if (tmp->last > eaddr) {
1873			after->start = eaddr + 1;
1874			after->last = tmp->last;
1875			after->offset = tmp->offset;
1876			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
1877			after->flags = tmp->flags;
1878			after->bo_va = tmp->bo_va;
1879			list_add(&after->list, &tmp->bo_va->invalids);
1880		}
1881
1882		list_del(&tmp->list);
1883		list_add(&tmp->list, &removed);
1884
1885		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
1886	}
1887
1888	/* And free them up */
1889	list_for_each_entry_safe(tmp, next, &removed, list) {
1890		amdgpu_vm_it_remove(tmp, &vm->va);
1891		list_del(&tmp->list);
1892
1893		if (tmp->start < saddr)
1894		    tmp->start = saddr;
1895		if (tmp->last > eaddr)
1896		    tmp->last = eaddr;
1897
1898		tmp->bo_va = NULL;
1899		list_add(&tmp->list, &vm->freed);
1900		trace_amdgpu_vm_bo_unmap(NULL, tmp);
1901	}
1902
1903	/* Insert partial mapping before the range */
1904	if (!list_empty(&before->list)) {
1905		struct amdgpu_bo *bo = before->bo_va->base.bo;
1906
1907		amdgpu_vm_it_insert(before, &vm->va);
1908		if (before->flags & AMDGPU_PTE_PRT)
1909			amdgpu_vm_prt_get(adev);
1910
1911		if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
1912		    !before->bo_va->base.moved)
1913			amdgpu_vm_bo_moved(&before->bo_va->base);
1914	} else {
1915		kfree(before);
1916	}
1917
1918	/* Insert partial mapping after the range */
1919	if (!list_empty(&after->list)) {
1920		struct amdgpu_bo *bo = after->bo_va->base.bo;
1921
1922		amdgpu_vm_it_insert(after, &vm->va);
1923		if (after->flags & AMDGPU_PTE_PRT)
1924			amdgpu_vm_prt_get(adev);
1925
1926		if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
1927		    !after->bo_va->base.moved)
1928			amdgpu_vm_bo_moved(&after->bo_va->base);
1929	} else {
1930		kfree(after);
1931	}
1932
1933	return 0;
1934}
1935
1936/**
1937 * amdgpu_vm_bo_lookup_mapping - find mapping by address
1938 *
1939 * @vm: the requested VM
1940 * @addr: the address
1941 *
1942 * Find a mapping by it's address.
1943 *
1944 * Returns:
1945 * The amdgpu_bo_va_mapping matching for addr or NULL
1946 *
1947 */
1948struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
1949							 uint64_t addr)
1950{
1951	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
1952}
1953
1954/**
1955 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
1956 *
1957 * @vm: the requested vm
1958 * @ticket: CS ticket
1959 *
1960 * Trace all mappings of BOs reserved during a command submission.
1961 */
1962void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
1963{
1964	struct amdgpu_bo_va_mapping *mapping;
1965
1966	if (!trace_amdgpu_vm_bo_cs_enabled())
1967		return;
1968
1969	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
1970	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
1971		if (mapping->bo_va && mapping->bo_va->base.bo) {
1972			struct amdgpu_bo *bo;
1973
1974			bo = mapping->bo_va->base.bo;
1975			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
1976			    ticket)
1977				continue;
1978		}
1979
1980		trace_amdgpu_vm_bo_cs(mapping);
1981	}
1982}
1983
1984/**
1985 * amdgpu_vm_bo_del - remove a bo from a specific vm
1986 *
1987 * @adev: amdgpu_device pointer
1988 * @bo_va: requested bo_va
1989 *
1990 * Remove @bo_va->bo from the requested vm.
1991 *
1992 * Object have to be reserved!
1993 */
1994void amdgpu_vm_bo_del(struct amdgpu_device *adev,
1995		      struct amdgpu_bo_va *bo_va)
1996{
1997	struct amdgpu_bo_va_mapping *mapping, *next;
1998	struct amdgpu_bo *bo = bo_va->base.bo;
1999	struct amdgpu_vm *vm = bo_va->base.vm;
2000	struct amdgpu_vm_bo_base **base;
2001
2002	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
2003
2004	if (bo) {
2005		dma_resv_assert_held(bo->tbo.base.resv);
2006		if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2007			ttm_bo_set_bulk_move(&bo->tbo, NULL);
2008
2009		for (base = &bo_va->base.bo->vm_bo; *base;
2010		     base = &(*base)->next) {
2011			if (*base != &bo_va->base)
2012				continue;
2013
2014			*base = bo_va->base.next;
2015			break;
2016		}
2017	}
2018
2019	spin_lock(&vm->status_lock);
2020	list_del(&bo_va->base.vm_status);
2021	spin_unlock(&vm->status_lock);
2022
2023	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2024		list_del(&mapping->list);
2025		amdgpu_vm_it_remove(mapping, &vm->va);
2026		mapping->bo_va = NULL;
2027		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2028		list_add(&mapping->list, &vm->freed);
2029	}
2030	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2031		list_del(&mapping->list);
2032		amdgpu_vm_it_remove(mapping, &vm->va);
2033		amdgpu_vm_free_mapping(adev, vm, mapping,
2034				       bo_va->last_pt_update);
2035	}
2036
2037	dma_fence_put(bo_va->last_pt_update);
2038
2039	if (bo && bo_va->is_xgmi)
2040		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2041
2042	kfree(bo_va);
2043}
2044
2045/**
2046 * amdgpu_vm_evictable - check if we can evict a VM
2047 *
2048 * @bo: A page table of the VM.
2049 *
2050 * Check if it is possible to evict a VM.
2051 */
2052bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2053{
2054	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2055
2056	/* Page tables of a destroyed VM can go away immediately */
2057	if (!bo_base || !bo_base->vm)
2058		return true;
2059
2060	/* Don't evict VM page tables while they are busy */
2061	if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP))
2062		return false;
2063
2064	/* Try to block ongoing updates */
2065	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2066		return false;
2067
2068	/* Don't evict VM page tables while they are updated */
2069	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2070		amdgpu_vm_eviction_unlock(bo_base->vm);
2071		return false;
2072	}
2073
2074	bo_base->vm->evicting = true;
2075	amdgpu_vm_eviction_unlock(bo_base->vm);
2076	return true;
2077}
2078
2079/**
2080 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2081 *
2082 * @adev: amdgpu_device pointer
2083 * @bo: amdgpu buffer object
2084 * @evicted: is the BO evicted
2085 *
2086 * Mark @bo as invalid.
2087 */
2088void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2089			     struct amdgpu_bo *bo, bool evicted)
2090{
2091	struct amdgpu_vm_bo_base *bo_base;
2092
2093	/* shadow bo doesn't have bo base, its validation needs its parent */
2094	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2095		bo = bo->parent;
2096
2097	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2098		struct amdgpu_vm *vm = bo_base->vm;
2099
2100		if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
2101			amdgpu_vm_bo_evicted(bo_base);
2102			continue;
2103		}
2104
2105		if (bo_base->moved)
2106			continue;
2107		bo_base->moved = true;
2108
2109		if (bo->tbo.type == ttm_bo_type_kernel)
2110			amdgpu_vm_bo_relocated(bo_base);
2111		else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2112			amdgpu_vm_bo_moved(bo_base);
2113		else
2114			amdgpu_vm_bo_invalidated(bo_base);
2115	}
2116}
2117
2118/**
2119 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2120 *
2121 * @vm_size: VM size
2122 *
2123 * Returns:
2124 * VM page table as power of two
2125 */
2126static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2127{
2128	/* Total bits covered by PD + PTs */
2129	unsigned bits = ilog2(vm_size) + 18;
2130
2131	/* Make sure the PD is 4K in size up to 8GB address space.
2132	   Above that split equal between PD and PTs */
2133	if (vm_size <= 8)
2134		return (bits - 9);
2135	else
2136		return ((bits + 3) / 2);
2137}
2138
2139/**
2140 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2141 *
2142 * @adev: amdgpu_device pointer
2143 * @min_vm_size: the minimum vm size in GB if it's set auto
2144 * @fragment_size_default: Default PTE fragment size
2145 * @max_level: max VMPT level
2146 * @max_bits: max address space size in bits
2147 *
2148 */
2149void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2150			   uint32_t fragment_size_default, unsigned max_level,
2151			   unsigned max_bits)
2152{
2153	unsigned int max_size = 1 << (max_bits - 30);
2154	unsigned int vm_size;
2155	uint64_t tmp;
2156
2157	/* adjust vm size first */
2158	if (amdgpu_vm_size != -1) {
2159		vm_size = amdgpu_vm_size;
2160		if (vm_size > max_size) {
2161			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2162				 amdgpu_vm_size, max_size);
2163			vm_size = max_size;
2164		}
2165	} else {
2166		struct sysinfo si;
2167		unsigned int phys_ram_gb;
2168
2169		/* Optimal VM size depends on the amount of physical
2170		 * RAM available. Underlying requirements and
2171		 * assumptions:
2172		 *
2173		 *  - Need to map system memory and VRAM from all GPUs
2174		 *     - VRAM from other GPUs not known here
2175		 *     - Assume VRAM <= system memory
2176		 *  - On GFX8 and older, VM space can be segmented for
2177		 *    different MTYPEs
2178		 *  - Need to allow room for fragmentation, guard pages etc.
2179		 *
2180		 * This adds up to a rough guess of system memory x3.
2181		 * Round up to power of two to maximize the available
2182		 * VM size with the given page table size.
2183		 */
2184		si_meminfo(&si);
2185		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2186			       (1 << 30) - 1) >> 30;
2187		vm_size = roundup_pow_of_two(
2188			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2189	}
2190
2191	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2192
2193	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2194	if (amdgpu_vm_block_size != -1)
2195		tmp >>= amdgpu_vm_block_size - 9;
2196	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2197	adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp);
2198	switch (adev->vm_manager.num_level) {
2199	case 3:
2200		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2201		break;
2202	case 2:
2203		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2204		break;
2205	case 1:
2206		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2207		break;
2208	default:
2209		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2210	}
2211	/* block size depends on vm size and hw setup*/
2212	if (amdgpu_vm_block_size != -1)
2213		adev->vm_manager.block_size =
2214			min((unsigned)amdgpu_vm_block_size, max_bits
2215			    - AMDGPU_GPU_PAGE_SHIFT
2216			    - 9 * adev->vm_manager.num_level);
2217	else if (adev->vm_manager.num_level > 1)
2218		adev->vm_manager.block_size = 9;
2219	else
2220		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2221
2222	if (amdgpu_vm_fragment_size == -1)
2223		adev->vm_manager.fragment_size = fragment_size_default;
2224	else
2225		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2226
2227	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2228		 vm_size, adev->vm_manager.num_level + 1,
2229		 adev->vm_manager.block_size,
2230		 adev->vm_manager.fragment_size);
2231}
2232
2233/**
2234 * amdgpu_vm_wait_idle - wait for the VM to become idle
2235 *
2236 * @vm: VM object to wait for
2237 * @timeout: timeout to wait for VM to become idle
2238 */
2239long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2240{
2241	timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv,
2242					DMA_RESV_USAGE_BOOKKEEP,
2243					true, timeout);
2244	if (timeout <= 0)
2245		return timeout;
2246
2247	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2248}
2249
2250static void amdgpu_vm_destroy_task_info(struct kref *kref)
2251{
2252	struct amdgpu_task_info *ti = container_of(kref, struct amdgpu_task_info, refcount);
2253
2254	kfree(ti);
2255}
2256
2257static inline struct amdgpu_vm *
2258amdgpu_vm_get_vm_from_pasid(struct amdgpu_device *adev, u32 pasid)
2259{
2260	struct amdgpu_vm *vm;
2261	unsigned long flags;
2262
2263	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
2264	vm = xa_load(&adev->vm_manager.pasids, pasid);
2265	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
2266
2267	return vm;
2268}
2269
2270/**
2271 * amdgpu_vm_put_task_info - reference down the vm task_info ptr
2272 *
2273 * @task_info: task_info struct under discussion.
2274 *
2275 * frees the vm task_info ptr at the last put
2276 */
2277void amdgpu_vm_put_task_info(struct amdgpu_task_info *task_info)
2278{
2279	kref_put(&task_info->refcount, amdgpu_vm_destroy_task_info);
2280}
2281
2282/**
2283 * amdgpu_vm_get_task_info_vm - Extracts task info for a vm.
2284 *
2285 * @vm: VM to get info from
2286 *
2287 * Returns the reference counted task_info structure, which must be
2288 * referenced down with amdgpu_vm_put_task_info.
2289 */
2290struct amdgpu_task_info *
2291amdgpu_vm_get_task_info_vm(struct amdgpu_vm *vm)
2292{
2293	struct amdgpu_task_info *ti = NULL;
2294
2295	if (vm) {
2296		ti = vm->task_info;
2297		kref_get(&vm->task_info->refcount);
2298	}
2299
2300	return ti;
2301}
2302
2303/**
2304 * amdgpu_vm_get_task_info_pasid - Extracts task info for a PASID.
2305 *
2306 * @adev: drm device pointer
2307 * @pasid: PASID identifier for VM
2308 *
2309 * Returns the reference counted task_info structure, which must be
2310 * referenced down with amdgpu_vm_put_task_info.
2311 */
2312struct amdgpu_task_info *
2313amdgpu_vm_get_task_info_pasid(struct amdgpu_device *adev, u32 pasid)
2314{
2315	return amdgpu_vm_get_task_info_vm(
2316			amdgpu_vm_get_vm_from_pasid(adev, pasid));
2317}
2318
2319static int amdgpu_vm_create_task_info(struct amdgpu_vm *vm)
2320{
2321	vm->task_info = kzalloc(sizeof(struct amdgpu_task_info), GFP_KERNEL);
2322	if (!vm->task_info)
2323		return -ENOMEM;
2324
2325	kref_init(&vm->task_info->refcount);
2326	return 0;
2327}
2328
2329/**
2330 * amdgpu_vm_set_task_info - Sets VMs task info.
2331 *
2332 * @vm: vm for which to set the info
2333 */
2334void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
2335{
2336	if (!vm->task_info)
2337		return;
2338
2339	if (vm->task_info->pid == current->pid)
2340		return;
2341
2342	vm->task_info->pid = current->pid;
2343	get_task_comm(vm->task_info->task_name, current);
2344
2345	if (current->group_leader->mm != current->mm)
2346		return;
2347
2348	vm->task_info->tgid = current->group_leader->pid;
2349	get_task_comm(vm->task_info->process_name, current->group_leader);
2350}
2351
2352/**
2353 * amdgpu_vm_init - initialize a vm instance
2354 *
2355 * @adev: amdgpu_device pointer
2356 * @vm: requested vm
2357 * @xcp_id: GPU partition selection id
 
2358 *
2359 * Init @vm fields.
2360 *
2361 * Returns:
2362 * 0 for success, error for failure.
2363 */
2364int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2365		   int32_t xcp_id)
2366{
2367	struct amdgpu_bo *root_bo;
2368	struct amdgpu_bo_vm *root;
2369	int r, i;
2370
2371	vm->va = RB_ROOT_CACHED;
2372	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2373		vm->reserved_vmid[i] = NULL;
2374	INIT_LIST_HEAD(&vm->evicted);
2375	INIT_LIST_HEAD(&vm->evicted_user);
2376	INIT_LIST_HEAD(&vm->relocated);
2377	INIT_LIST_HEAD(&vm->moved);
2378	INIT_LIST_HEAD(&vm->idle);
2379	INIT_LIST_HEAD(&vm->invalidated);
2380	spin_lock_init(&vm->status_lock);
2381	INIT_LIST_HEAD(&vm->freed);
2382	INIT_LIST_HEAD(&vm->done);
2383	INIT_LIST_HEAD(&vm->pt_freed);
2384	INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work);
2385	INIT_KFIFO(vm->faults);
2386
2387	r = amdgpu_vm_init_entities(adev, vm);
 
 
 
 
2388	if (r)
2389		return r;
2390
 
 
 
 
 
 
 
2391	vm->is_compute_context = false;
2392
2393	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2394				    AMDGPU_VM_USE_CPU_FOR_GFX);
 
2395
 
 
 
 
 
 
2396	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2397			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2398	WARN_ONCE((vm->use_cpu_for_update &&
2399		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2400		  "CPU update of VM recommended only for large BAR system\n");
2401
2402	if (vm->use_cpu_for_update)
2403		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2404	else
2405		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2406
2407	vm->last_update = dma_fence_get_stub();
2408	vm->last_unlocked = dma_fence_get_stub();
2409	vm->last_tlb_flush = dma_fence_get_stub();
2410	vm->generation = 0;
2411
2412	mutex_init(&vm->eviction_lock);
2413	vm->evicting = false;
2414
2415	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2416				false, &root, xcp_id);
 
 
2417	if (r)
2418		goto error_free_delayed;
2419
2420	root_bo = amdgpu_bo_ref(&root->bo);
2421	r = amdgpu_bo_reserve(root_bo, true);
2422	if (r) {
2423		amdgpu_bo_unref(&root->shadow);
2424		amdgpu_bo_unref(&root_bo);
2425		goto error_free_delayed;
2426	}
2427
2428	amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2429	r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1);
2430	if (r)
2431		goto error_free_root;
2432
2433	r = amdgpu_vm_pt_clear(adev, vm, root, false);
2434	if (r)
2435		goto error_free_root;
 
 
2436
2437	r = amdgpu_vm_create_task_info(vm);
2438	if (r)
2439		DRM_DEBUG("Failed to create task info for VM\n");
 
 
2440
2441	amdgpu_bo_unreserve(vm->root.bo);
2442	amdgpu_bo_unref(&root_bo);
 
 
 
 
 
 
 
 
 
 
 
 
2443
2444	return 0;
2445
 
 
 
2446error_free_root:
2447	amdgpu_vm_pt_free_root(adev, vm);
2448	amdgpu_bo_unreserve(vm->root.bo);
2449	amdgpu_bo_unref(&root_bo);
2450
2451error_free_delayed:
2452	dma_fence_put(vm->last_tlb_flush);
2453	dma_fence_put(vm->last_unlocked);
2454	amdgpu_vm_fini_entities(vm);
 
 
 
2455
2456	return r;
2457}
2458
2459/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2460 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2461 *
2462 * @adev: amdgpu_device pointer
2463 * @vm: requested vm
 
2464 *
2465 * This only works on GFX VMs that don't have any BOs added and no
2466 * page tables allocated yet.
2467 *
2468 * Changes the following VM parameters:
2469 * - use_cpu_for_update
2470 * - pte_supports_ats
 
2471 *
2472 * Reinitializes the page directory to reflect the changed ATS
2473 * setting.
2474 *
2475 * Returns:
2476 * 0 for success, -errno for errors.
2477 */
2478int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
 
2479{
 
2480	int r;
2481
2482	r = amdgpu_bo_reserve(vm->root.bo, true);
2483	if (r)
2484		return r;
2485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2486	/* Update VM state */
2487	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2488				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2489	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2490			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2491	WARN_ONCE((vm->use_cpu_for_update &&
2492		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2493		  "CPU update of VM recommended only for large BAR system\n");
2494
2495	if (vm->use_cpu_for_update) {
2496		/* Sync with last SDMA update/clear before switching to CPU */
2497		r = amdgpu_bo_sync_wait(vm->root.bo,
2498					AMDGPU_FENCE_OWNER_UNDEFINED, true);
2499		if (r)
2500			goto unreserve_bo;
2501
2502		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2503		r = amdgpu_vm_pt_map_tables(adev, vm);
2504		if (r)
2505			goto unreserve_bo;
2506
2507	} else {
2508		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2509	}
2510
2511	dma_fence_put(vm->last_update);
2512	vm->last_update = dma_fence_get_stub();
2513	vm->is_compute_context = true;
2514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2515	/* Free the shadow bo for compute VM */
2516	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
 
 
 
2517
2518	goto unreserve_bo;
2519
 
 
 
 
 
 
 
 
2520unreserve_bo:
2521	amdgpu_bo_unreserve(vm->root.bo);
2522	return r;
2523}
2524
2525/**
2526 * amdgpu_vm_release_compute - release a compute vm
2527 * @adev: amdgpu_device pointer
2528 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
2529 *
2530 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
2531 * pasid from vm. Compute should stop use of vm after this call.
2532 */
2533void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2534{
2535	amdgpu_vm_set_pasid(adev, vm, 0);
 
 
 
 
 
 
 
2536	vm->is_compute_context = false;
2537}
2538
2539/**
2540 * amdgpu_vm_fini - tear down a vm instance
2541 *
2542 * @adev: amdgpu_device pointer
2543 * @vm: requested vm
2544 *
2545 * Tear down @vm.
2546 * Unbind the VM and remove all bos from the vm bo list
2547 */
2548void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2549{
2550	struct amdgpu_bo_va_mapping *mapping, *tmp;
2551	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2552	struct amdgpu_bo *root;
2553	unsigned long flags;
2554	int i;
2555
2556	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2557
2558	flush_work(&vm->pt_free_work);
2559
2560	root = amdgpu_bo_ref(vm->root.bo);
2561	amdgpu_bo_reserve(root, true);
2562	amdgpu_vm_put_task_info(vm->task_info);
2563	amdgpu_vm_set_pasid(adev, vm, 0);
 
 
 
 
 
 
 
2564	dma_fence_wait(vm->last_unlocked, false);
2565	dma_fence_put(vm->last_unlocked);
2566	dma_fence_wait(vm->last_tlb_flush, false);
2567	/* Make sure that all fence callbacks have completed */
2568	spin_lock_irqsave(vm->last_tlb_flush->lock, flags);
2569	spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags);
2570	dma_fence_put(vm->last_tlb_flush);
2571
2572	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2573		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2574			amdgpu_vm_prt_fini(adev, vm);
2575			prt_fini_needed = false;
2576		}
2577
2578		list_del(&mapping->list);
2579		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2580	}
2581
2582	amdgpu_vm_pt_free_root(adev, vm);
2583	amdgpu_bo_unreserve(root);
2584	amdgpu_bo_unref(&root);
2585	WARN_ON(vm->root.bo);
2586
2587	amdgpu_vm_fini_entities(vm);
 
2588
2589	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2590		dev_err(adev->dev, "still active bo inside vm\n");
2591	}
2592	rbtree_postorder_for_each_entry_safe(mapping, tmp,
2593					     &vm->va.rb_root, rb) {
2594		/* Don't remove the mapping here, we don't want to trigger a
2595		 * rebalance and the tree is about to be destroyed anyway.
2596		 */
2597		list_del(&mapping->list);
2598		kfree(mapping);
2599	}
2600
2601	dma_fence_put(vm->last_update);
2602
2603	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) {
2604		if (vm->reserved_vmid[i]) {
2605			amdgpu_vmid_free_reserved(adev, i);
2606			vm->reserved_vmid[i] = false;
2607		}
2608	}
2609
2610}
2611
2612/**
2613 * amdgpu_vm_manager_init - init the VM manager
2614 *
2615 * @adev: amdgpu_device pointer
2616 *
2617 * Initialize the VM manager structures
2618 */
2619void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2620{
2621	unsigned i;
2622
2623	/* Concurrent flushes are only possible starting with Vega10 and
2624	 * are broken on Navi10 and Navi14.
2625	 */
2626	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
2627					      adev->asic_type == CHIP_NAVI10 ||
2628					      adev->asic_type == CHIP_NAVI14);
2629	amdgpu_vmid_mgr_init(adev);
2630
2631	adev->vm_manager.fence_context =
2632		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2633	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2634		adev->vm_manager.seqno[i] = 0;
2635
2636	spin_lock_init(&adev->vm_manager.prt_lock);
2637	atomic_set(&adev->vm_manager.num_prt_users, 0);
2638
2639	/* If not overridden by the user, by default, only in large BAR systems
2640	 * Compute VM tables will be updated by CPU
2641	 */
2642#ifdef CONFIG_X86_64
2643	if (amdgpu_vm_update_mode == -1) {
2644		/* For asic with VF MMIO access protection
2645		 * avoid using CPU for VM table updates
2646		 */
2647		if (amdgpu_gmc_vram_full_visible(&adev->gmc) &&
2648		    !amdgpu_sriov_vf_mmio_access_protection(adev))
2649			adev->vm_manager.vm_update_mode =
2650				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2651		else
2652			adev->vm_manager.vm_update_mode = 0;
2653	} else
2654		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2655#else
2656	adev->vm_manager.vm_update_mode = 0;
2657#endif
2658
2659	xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
 
2660}
2661
2662/**
2663 * amdgpu_vm_manager_fini - cleanup VM manager
2664 *
2665 * @adev: amdgpu_device pointer
2666 *
2667 * Cleanup the VM manager and free resources.
2668 */
2669void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2670{
2671	WARN_ON(!xa_empty(&adev->vm_manager.pasids));
2672	xa_destroy(&adev->vm_manager.pasids);
2673
2674	amdgpu_vmid_mgr_fini(adev);
2675}
2676
2677/**
2678 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
2679 *
2680 * @dev: drm device pointer
2681 * @data: drm_amdgpu_vm
2682 * @filp: drm file pointer
2683 *
2684 * Returns:
2685 * 0 for success, -errno for errors.
2686 */
2687int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2688{
2689	union drm_amdgpu_vm *args = data;
2690	struct amdgpu_device *adev = drm_to_adev(dev);
2691	struct amdgpu_fpriv *fpriv = filp->driver_priv;
2692
2693	/* No valid flags defined yet */
2694	if (args->in.flags)
2695		return -EINVAL;
2696
2697	switch (args->in.op) {
2698	case AMDGPU_VM_OP_RESERVE_VMID:
2699		/* We only have requirement to reserve vmid from gfxhub */
2700		if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) {
2701			amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0));
2702			fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true;
2703		}
2704
2705		break;
2706	case AMDGPU_VM_OP_UNRESERVE_VMID:
2707		if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) {
2708			amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0));
2709			fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false;
2710		}
 
 
 
 
 
 
 
 
 
 
 
 
2711		break;
2712	default:
2713		return -EINVAL;
2714	}
2715
2716	return 0;
2717}
2718
2719/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2720 * amdgpu_vm_handle_fault - graceful handling of VM faults.
2721 * @adev: amdgpu device pointer
2722 * @pasid: PASID of the VM
2723 * @vmid: VMID, only used for GFX 9.4.3.
2724 * @node_id: Node_id received in IH cookie. Only applicable for
2725 *           GFX 9.4.3.
2726 * @addr: Address of the fault
2727 * @write_fault: true is write fault, false is read fault
2728 *
2729 * Try to gracefully handle a VM fault. Return true if the fault was handled and
2730 * shouldn't be reported any more.
2731 */
2732bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
2733			    u32 vmid, u32 node_id, uint64_t addr,
2734			    bool write_fault)
2735{
2736	bool is_compute_context = false;
2737	struct amdgpu_bo *root;
2738	unsigned long irqflags;
2739	uint64_t value, flags;
2740	struct amdgpu_vm *vm;
2741	int r;
2742
2743	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
2744	vm = xa_load(&adev->vm_manager.pasids, pasid);
2745	if (vm) {
2746		root = amdgpu_bo_ref(vm->root.bo);
2747		is_compute_context = vm->is_compute_context;
2748	} else {
2749		root = NULL;
2750	}
2751	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
2752
2753	if (!root)
2754		return false;
2755
2756	addr /= AMDGPU_GPU_PAGE_SIZE;
2757
2758	if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid,
2759	    node_id, addr, write_fault)) {
2760		amdgpu_bo_unref(&root);
2761		return true;
2762	}
2763
2764	r = amdgpu_bo_reserve(root, true);
2765	if (r)
2766		goto error_unref;
2767
2768	/* Double check that the VM still exists */
2769	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
2770	vm = xa_load(&adev->vm_manager.pasids, pasid);
2771	if (vm && vm->root.bo != root)
2772		vm = NULL;
2773	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
2774	if (!vm)
2775		goto error_unlock;
2776
 
2777	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
2778		AMDGPU_PTE_SYSTEM;
2779
2780	if (is_compute_context) {
2781		/* Intentionally setting invalid PTE flag
2782		 * combination to force a no-retry-fault
2783		 */
2784		flags = AMDGPU_VM_NORETRY_FLAGS;
 
2785		value = 0;
 
2786	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
2787		/* Redirect the access to the dummy page */
2788		value = adev->dummy_page_addr;
2789		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
2790			AMDGPU_PTE_WRITEABLE;
2791
2792	} else {
2793		/* Let the hw retry silently on the PTE */
2794		value = 0;
2795	}
2796
2797	r = dma_resv_reserve_fences(root->tbo.base.resv, 1);
2798	if (r) {
2799		pr_debug("failed %d to reserve fence slot\n", r);
2800		goto error_unlock;
2801	}
2802
2803	r = amdgpu_vm_update_range(adev, vm, true, false, false, false,
2804				   NULL, addr, addr, flags, value, 0, NULL, NULL, NULL);
2805	if (r)
2806		goto error_unlock;
2807
2808	r = amdgpu_vm_update_pdes(adev, vm, true);
2809
2810error_unlock:
2811	amdgpu_bo_unreserve(root);
2812	if (r < 0)
2813		DRM_ERROR("Can't handle page fault (%d)\n", r);
2814
2815error_unref:
2816	amdgpu_bo_unref(&root);
2817
2818	return false;
2819}
2820
2821#if defined(CONFIG_DEBUG_FS)
2822/**
2823 * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
2824 *
2825 * @vm: Requested VM for printing BO info
2826 * @m: debugfs file
2827 *
2828 * Print BO information in debugfs file for the VM
2829 */
2830void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
2831{
2832	struct amdgpu_bo_va *bo_va, *tmp;
2833	u64 total_idle = 0;
2834	u64 total_evicted = 0;
2835	u64 total_relocated = 0;
2836	u64 total_moved = 0;
2837	u64 total_invalidated = 0;
2838	u64 total_done = 0;
2839	unsigned int total_idle_objs = 0;
2840	unsigned int total_evicted_objs = 0;
2841	unsigned int total_relocated_objs = 0;
2842	unsigned int total_moved_objs = 0;
2843	unsigned int total_invalidated_objs = 0;
2844	unsigned int total_done_objs = 0;
2845	unsigned int id = 0;
2846
2847	spin_lock(&vm->status_lock);
2848	seq_puts(m, "\tIdle BOs:\n");
2849	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
2850		if (!bo_va->base.bo)
2851			continue;
2852		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2853	}
2854	total_idle_objs = id;
2855	id = 0;
2856
2857	seq_puts(m, "\tEvicted BOs:\n");
2858	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
2859		if (!bo_va->base.bo)
2860			continue;
2861		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2862	}
2863	total_evicted_objs = id;
2864	id = 0;
2865
2866	seq_puts(m, "\tRelocated BOs:\n");
2867	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
2868		if (!bo_va->base.bo)
2869			continue;
2870		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2871	}
2872	total_relocated_objs = id;
2873	id = 0;
2874
2875	seq_puts(m, "\tMoved BOs:\n");
2876	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2877		if (!bo_va->base.bo)
2878			continue;
2879		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2880	}
2881	total_moved_objs = id;
2882	id = 0;
2883
2884	seq_puts(m, "\tInvalidated BOs:\n");
2885	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
2886		if (!bo_va->base.bo)
2887			continue;
2888		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
2889	}
2890	total_invalidated_objs = id;
2891	id = 0;
2892
2893	seq_puts(m, "\tDone BOs:\n");
2894	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
2895		if (!bo_va->base.bo)
2896			continue;
2897		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2898	}
2899	spin_unlock(&vm->status_lock);
2900	total_done_objs = id;
2901
2902	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
2903		   total_idle_objs);
2904	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
2905		   total_evicted_objs);
2906	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
2907		   total_relocated_objs);
2908	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
2909		   total_moved_objs);
2910	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
2911		   total_invalidated_objs);
2912	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
2913		   total_done_objs);
2914}
2915#endif
2916
2917/**
2918 * amdgpu_vm_update_fault_cache - update cached fault into.
2919 * @adev: amdgpu device pointer
2920 * @pasid: PASID of the VM
2921 * @addr: Address of the fault
2922 * @status: GPUVM fault status register
2923 * @vmhub: which vmhub got the fault
2924 *
2925 * Cache the fault info for later use by userspace in debugging.
2926 */
2927void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev,
2928				  unsigned int pasid,
2929				  uint64_t addr,
2930				  uint32_t status,
2931				  unsigned int vmhub)
2932{
2933	struct amdgpu_vm *vm;
2934	unsigned long flags;
2935
2936	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
2937
2938	vm = xa_load(&adev->vm_manager.pasids, pasid);
2939	/* Don't update the fault cache if status is 0.  In the multiple
2940	 * fault case, subsequent faults will return a 0 status which is
2941	 * useless for userspace and replaces the useful fault status, so
2942	 * only update if status is non-0.
2943	 */
2944	if (vm && status) {
2945		vm->fault_info.addr = addr;
2946		vm->fault_info.status = status;
2947		if (AMDGPU_IS_GFXHUB(vmhub)) {
2948			vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX;
2949			vm->fault_info.vmhub |=
2950				(vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT;
2951		} else if (AMDGPU_IS_MMHUB0(vmhub)) {
2952			vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0;
2953			vm->fault_info.vmhub |=
2954				(vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT;
2955		} else if (AMDGPU_IS_MMHUB1(vmhub)) {
2956			vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1;
2957			vm->fault_info.vmhub |=
2958				(vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT;
2959		} else {
2960			WARN_ONCE(1, "Invalid vmhub %u\n", vmhub);
2961		}
2962	}
2963	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
2964}
2965
v5.9
   1/*
   2 * Copyright 2008 Advanced Micro Devices, Inc.
   3 * Copyright 2008 Red Hat Inc.
   4 * Copyright 2009 Jerome Glisse.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the "Software"),
   8 * to deal in the Software without restriction, including without limitation
   9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10 * and/or sell copies of the Software, and to permit persons to whom the
  11 * Software is furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  22 * OTHER DEALINGS IN THE SOFTWARE.
  23 *
  24 * Authors: Dave Airlie
  25 *          Alex Deucher
  26 *          Jerome Glisse
  27 */
 
  28#include <linux/dma-fence-array.h>
  29#include <linux/interval_tree_generic.h>
  30#include <linux/idr.h>
 
  31
  32#include <drm/amdgpu_drm.h>
 
 
 
  33#include "amdgpu.h"
  34#include "amdgpu_trace.h"
  35#include "amdgpu_amdkfd.h"
  36#include "amdgpu_gmc.h"
  37#include "amdgpu_xgmi.h"
 
 
 
  38
  39/**
  40 * DOC: GPUVM
  41 *
  42 * GPUVM is similar to the legacy gart on older asics, however
  43 * rather than there being a single global gart table
  44 * for the entire GPU, there are multiple VM page tables active
  45 * at any given time.  The VM page tables can contain a mix
  46 * vram pages and system memory pages and system memory pages
 
  47 * can be mapped as snooped (cached system pages) or unsnooped
  48 * (uncached system pages).
  49 * Each VM has an ID associated with it and there is a page table
  50 * associated with each VMID.  When execting a command buffer,
  51 * the kernel tells the the ring what VMID to use for that command
 
  52 * buffer.  VMIDs are allocated dynamically as commands are submitted.
  53 * The userspace drivers maintain their own address space and the kernel
  54 * sets up their pages tables accordingly when they submit their
  55 * command buffers and a VMID is assigned.
  56 * Cayman/Trinity support up to 8 active VMs at any given time;
  57 * SI supports 16.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58 */
  59
  60#define START(node) ((node)->start)
  61#define LAST(node) ((node)->last)
  62
  63INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
  64		     START, LAST, static, amdgpu_vm_it)
  65
  66#undef START
  67#undef LAST
  68
  69/**
  70 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
  71 */
  72struct amdgpu_prt_cb {
  73
  74	/**
  75	 * @adev: amdgpu device
  76	 */
  77	struct amdgpu_device *adev;
  78
  79	/**
  80	 * @cb: callback
  81	 */
  82	struct dma_fence_cb cb;
  83};
  84
  85/*
  86 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
  87 * happens while holding this lock anywhere to prevent deadlocks when
  88 * an MMU notifier runs in reclaim-FS context.
  89 */
  90static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
  91{
  92	mutex_lock(&vm->eviction_lock);
  93	vm->saved_flags = memalloc_nofs_save();
  94}
  95
  96static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
  97{
  98	if (mutex_trylock(&vm->eviction_lock)) {
  99		vm->saved_flags = memalloc_nofs_save();
 100		return 1;
 101	}
 102	return 0;
 103}
 104
 105static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
 106{
 107	memalloc_nofs_restore(vm->saved_flags);
 108	mutex_unlock(&vm->eviction_lock);
 109}
 110
 111/**
 112 * amdgpu_vm_level_shift - return the addr shift for each level
 113 *
 114 * @adev: amdgpu_device pointer
 115 * @level: VMPT level
 
 
 
 
 116 *
 117 * Returns:
 118 * The number of bits the pfn needs to be right shifted for a level.
 119 */
 120static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
 121				      unsigned level)
 122{
 123	switch (level) {
 124	case AMDGPU_VM_PDB2:
 125	case AMDGPU_VM_PDB1:
 126	case AMDGPU_VM_PDB0:
 127		return 9 * (AMDGPU_VM_PDB0 - level) +
 128			adev->vm_manager.block_size;
 129	case AMDGPU_VM_PTB:
 130		return 0;
 131	default:
 132		return ~0;
 133	}
 134}
 135
 136/**
 137 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
 138 *
 139 * @adev: amdgpu_device pointer
 140 * @level: VMPT level
 141 *
 142 * Returns:
 143 * The number of entries in a page directory or page table.
 144 */
 145static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
 146				      unsigned level)
 147{
 148	unsigned shift = amdgpu_vm_level_shift(adev,
 149					       adev->vm_manager.root_level);
 150
 151	if (level == adev->vm_manager.root_level)
 152		/* For the root directory */
 153		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
 154			>> shift;
 155	else if (level != AMDGPU_VM_PTB)
 156		/* Everything in between */
 157		return 512;
 158	else
 159		/* For the page tables on the leaves */
 160		return AMDGPU_VM_PTE_COUNT(adev);
 161}
 162
 163/**
 164 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
 165 *
 166 * @adev: amdgpu_device pointer
 167 *
 168 * Returns:
 169 * The number of entries in the root page directory which needs the ATS setting.
 170 */
 171static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
 172{
 173	unsigned shift;
 174
 175	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
 176	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
 177}
 178
 179/**
 180 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
 181 *
 182 * @adev: amdgpu_device pointer
 183 * @level: VMPT level
 184 *
 185 * Returns:
 186 * The mask to extract the entry number of a PD/PT from an address.
 187 */
 188static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
 189				       unsigned int level)
 190{
 191	if (level <= adev->vm_manager.root_level)
 192		return 0xffffffff;
 193	else if (level != AMDGPU_VM_PTB)
 194		return 0x1ff;
 195	else
 196		return AMDGPU_VM_PTE_COUNT(adev) - 1;
 197}
 198
 199/**
 200 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
 201 *
 202 * @adev: amdgpu_device pointer
 203 * @level: VMPT level
 204 *
 205 * Returns:
 206 * The size of the BO for a page directory or page table in bytes.
 207 */
 208static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
 209{
 210	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
 211}
 212
 213/**
 214 * amdgpu_vm_bo_evicted - vm_bo is evicted
 215 *
 216 * @vm_bo: vm_bo which is evicted
 217 *
 218 * State for PDs/PTs and per VM BOs which are not at the location they should
 219 * be.
 220 */
 221static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
 222{
 223	struct amdgpu_vm *vm = vm_bo->vm;
 224	struct amdgpu_bo *bo = vm_bo->bo;
 225
 226	vm_bo->moved = true;
 
 227	if (bo->tbo.type == ttm_bo_type_kernel)
 228		list_move(&vm_bo->vm_status, &vm->evicted);
 229	else
 230		list_move_tail(&vm_bo->vm_status, &vm->evicted);
 
 231}
 232/**
 233 * amdgpu_vm_bo_moved - vm_bo is moved
 234 *
 235 * @vm_bo: vm_bo which is moved
 236 *
 237 * State for per VM BOs which are moved, but that change is not yet reflected
 238 * in the page tables.
 239 */
 240static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
 241{
 
 242	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
 
 243}
 244
 245/**
 246 * amdgpu_vm_bo_idle - vm_bo is idle
 247 *
 248 * @vm_bo: vm_bo which is now idle
 249 *
 250 * State for PDs/PTs and per VM BOs which have gone through the state machine
 251 * and are now idle.
 252 */
 253static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
 254{
 
 255	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
 
 256	vm_bo->moved = false;
 257}
 258
 259/**
 260 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
 261 *
 262 * @vm_bo: vm_bo which is now invalidated
 263 *
 264 * State for normal BOs which are invalidated and that change not yet reflected
 265 * in the PTs.
 266 */
 267static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
 268{
 269	spin_lock(&vm_bo->vm->invalidated_lock);
 270	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
 271	spin_unlock(&vm_bo->vm->invalidated_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 272}
 273
 274/**
 275 * amdgpu_vm_bo_relocated - vm_bo is reloacted
 276 *
 277 * @vm_bo: vm_bo which is relocated
 278 *
 279 * State for PDs/PTs which needs to update their parent PD.
 280 * For the root PD, just move to idle state.
 281 */
 282static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
 283{
 284	if (vm_bo->bo->parent)
 
 285		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
 286	else
 
 287		amdgpu_vm_bo_idle(vm_bo);
 
 288}
 289
 290/**
 291 * amdgpu_vm_bo_done - vm_bo is done
 292 *
 293 * @vm_bo: vm_bo which is now done
 294 *
 295 * State for normal BOs which are invalidated and that change has been updated
 296 * in the PTs.
 297 */
 298static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
 299{
 300	spin_lock(&vm_bo->vm->invalidated_lock);
 301	list_del_init(&vm_bo->vm_status);
 302	spin_unlock(&vm_bo->vm->invalidated_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 303}
 304
 305/**
 306 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
 307 *
 308 * @base: base structure for tracking BO usage in a VM
 309 * @vm: vm to which bo is to be added
 310 * @bo: amdgpu buffer object
 311 *
 312 * Initialize a bo_va_base structure and add it to the appropriate lists
 313 *
 314 */
 315static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
 316				   struct amdgpu_vm *vm,
 317				   struct amdgpu_bo *bo)
 318{
 319	base->vm = vm;
 320	base->bo = bo;
 321	base->next = NULL;
 322	INIT_LIST_HEAD(&base->vm_status);
 323
 324	if (!bo)
 325		return;
 326	base->next = bo->vm_bo;
 327	bo->vm_bo = base;
 328
 329	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
 330		return;
 331
 332	vm->bulk_moveable = false;
 
 
 333	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
 334		amdgpu_vm_bo_relocated(base);
 335	else
 336		amdgpu_vm_bo_idle(base);
 337
 338	if (bo->preferred_domains &
 339	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
 340		return;
 341
 342	/*
 343	 * we checked all the prerequisites, but it looks like this per vm bo
 344	 * is currently evicted. add the bo to the evicted list to make sure it
 345	 * is validated on next vm use to avoid fault.
 346	 * */
 347	amdgpu_vm_bo_evicted(base);
 348}
 349
 350/**
 351 * amdgpu_vm_pt_parent - get the parent page directory
 352 *
 353 * @pt: child page table
 
 
 354 *
 355 * Helper to get the parent entry for the child page table. NULL if we are at
 356 * the root page directory.
 357 */
 358static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
 
 359{
 360	struct amdgpu_bo *parent = pt->base.bo->parent;
 361
 362	if (!parent)
 363		return NULL;
 364
 365	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
 366}
 367
 368/*
 369 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
 370 */
 371struct amdgpu_vm_pt_cursor {
 372	uint64_t pfn;
 373	struct amdgpu_vm_pt *parent;
 374	struct amdgpu_vm_pt *entry;
 375	unsigned level;
 376};
 377
 378/**
 379 * amdgpu_vm_pt_start - start PD/PT walk
 380 *
 381 * @adev: amdgpu_device pointer
 382 * @vm: amdgpu_vm structure
 383 * @start: start address of the walk
 384 * @cursor: state to initialize
 385 *
 386 * Initialize a amdgpu_vm_pt_cursor to start a walk.
 
 387 */
 388static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
 389			       struct amdgpu_vm *vm, uint64_t start,
 390			       struct amdgpu_vm_pt_cursor *cursor)
 391{
 392	cursor->pfn = start;
 393	cursor->parent = NULL;
 394	cursor->entry = &vm->root;
 395	cursor->level = adev->vm_manager.root_level;
 396}
 397
 398/**
 399 * amdgpu_vm_pt_descendant - go to child node
 400 *
 401 * @adev: amdgpu_device pointer
 402 * @cursor: current state
 403 *
 404 * Walk to the child node of the current node.
 405 * Returns:
 406 * True if the walk was possible, false otherwise.
 407 */
 408static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
 409				    struct amdgpu_vm_pt_cursor *cursor)
 410{
 411	unsigned mask, shift, idx;
 412
 413	if (!cursor->entry->entries)
 414		return false;
 415
 416	BUG_ON(!cursor->entry->base.bo);
 417	mask = amdgpu_vm_entries_mask(adev, cursor->level);
 418	shift = amdgpu_vm_level_shift(adev, cursor->level);
 419
 420	++cursor->level;
 421	idx = (cursor->pfn >> shift) & mask;
 422	cursor->parent = cursor->entry;
 423	cursor->entry = &cursor->entry->entries[idx];
 424	return true;
 425}
 426
 427/**
 428 * amdgpu_vm_pt_sibling - go to sibling node
 429 *
 430 * @adev: amdgpu_device pointer
 431 * @cursor: current state
 432 *
 433 * Walk to the sibling node of the current node.
 434 * Returns:
 435 * True if the walk was possible, false otherwise.
 436 */
 437static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
 438				 struct amdgpu_vm_pt_cursor *cursor)
 439{
 440	unsigned shift, num_entries;
 441
 442	/* Root doesn't have a sibling */
 443	if (!cursor->parent)
 444		return false;
 
 
 445
 446	/* Go to our parents and see if we got a sibling */
 447	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
 448	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
 449
 450	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
 451		return false;
 452
 453	cursor->pfn += 1ULL << shift;
 454	cursor->pfn &= ~((1ULL << shift) - 1);
 455	++cursor->entry;
 456	return true;
 457}
 458
 459/**
 460 * amdgpu_vm_pt_ancestor - go to parent node
 461 *
 462 * @cursor: current state
 463 *
 464 * Walk to the parent node of the current node.
 465 * Returns:
 466 * True if the walk was possible, false otherwise.
 467 */
 468static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
 469{
 470	if (!cursor->parent)
 471		return false;
 472
 473	--cursor->level;
 474	cursor->entry = cursor->parent;
 475	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
 476	return true;
 477}
 478
 479/**
 480 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
 
 
 481 *
 482 * @adev: amdgpu_device pointer
 483 * @cursor: current state
 484 *
 485 * Walk the PD/PT tree to the next node.
 486 */
 487static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
 488			      struct amdgpu_vm_pt_cursor *cursor)
 489{
 490	/* First try a newborn child */
 491	if (amdgpu_vm_pt_descendant(adev, cursor))
 492		return;
 493
 494	/* If that didn't worked try to find a sibling */
 495	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
 496		/* No sibling, go to our parents and grandparents */
 497		if (!amdgpu_vm_pt_ancestor(cursor)) {
 498			cursor->pfn = ~0ll;
 499			return;
 500		}
 501	}
 502}
 503
 504/**
 505 * amdgpu_vm_pt_first_dfs - start a deep first search
 506 *
 507 * @adev: amdgpu_device structure
 508 * @vm: amdgpu_vm structure
 509 * @start: optional cursor to start with
 510 * @cursor: state to initialize
 511 *
 512 * Starts a deep first traversal of the PD/PT tree.
 513 */
 514static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
 515				   struct amdgpu_vm *vm,
 516				   struct amdgpu_vm_pt_cursor *start,
 517				   struct amdgpu_vm_pt_cursor *cursor)
 518{
 519	if (start)
 520		*cursor = *start;
 521	else
 522		amdgpu_vm_pt_start(adev, vm, 0, cursor);
 523	while (amdgpu_vm_pt_descendant(adev, cursor));
 524}
 525
 526/**
 527 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
 528 *
 529 * @start: starting point for the search
 530 * @entry: current entry
 531 *
 532 * Returns:
 533 * True when the search should continue, false otherwise.
 534 */
 535static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
 536				      struct amdgpu_vm_pt *entry)
 537{
 538	return entry && (!start || entry != start->entry);
 539}
 540
 541/**
 542 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
 543 *
 544 * @adev: amdgpu_device structure
 545 * @cursor: current state
 546 *
 547 * Move the cursor to the next node in a deep first search.
 548 */
 549static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
 550				  struct amdgpu_vm_pt_cursor *cursor)
 551{
 552	if (!cursor->entry)
 553		return;
 554
 555	if (!cursor->parent)
 556		cursor->entry = NULL;
 557	else if (amdgpu_vm_pt_sibling(adev, cursor))
 558		while (amdgpu_vm_pt_descendant(adev, cursor));
 559	else
 560		amdgpu_vm_pt_ancestor(cursor);
 561}
 562
 563/*
 564 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
 565 */
 566#define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
 567	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
 568	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
 569	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
 570	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
 571
 572/**
 573 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
 574 *
 575 * @vm: vm providing the BOs
 576 * @validated: head of validation list
 577 * @entry: entry to add
 578 *
 579 * Add the page directory to the list of BOs to
 580 * validate for command submission.
 581 */
 582void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
 583			 struct list_head *validated,
 584			 struct amdgpu_bo_list_entry *entry)
 585{
 586	entry->priority = 0;
 587	entry->tv.bo = &vm->root.base.bo->tbo;
 588	/* Two for VM updates, one for TTM and one for the CS job */
 589	entry->tv.num_shared = 4;
 590	entry->user_pages = NULL;
 591	list_add(&entry->tv.head, validated);
 592}
 593
 594/**
 595 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
 596 *
 597 * @bo: BO which was removed from the LRU
 598 *
 599 * Make sure the bulk_moveable flag is updated when a BO is removed from the
 600 * LRU.
 601 */
 602void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
 603{
 604	struct amdgpu_bo *abo;
 605	struct amdgpu_vm_bo_base *bo_base;
 606
 607	if (!amdgpu_bo_is_amdgpu_bo(bo))
 608		return;
 609
 610	if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
 611		return;
 612
 613	abo = ttm_to_amdgpu_bo(bo);
 614	if (!abo->parent)
 615		return;
 616	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
 617		struct amdgpu_vm *vm = bo_base->vm;
 618
 619		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
 620			vm->bulk_moveable = false;
 621	}
 622
 623}
 624/**
 625 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
 626 *
 627 * @adev: amdgpu device pointer
 628 * @vm: vm providing the BOs
 629 *
 630 * Move all BOs to the end of LRU and remember their positions to put them
 631 * together.
 632 */
 633void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
 634				struct amdgpu_vm *vm)
 635{
 636	struct amdgpu_vm_bo_base *bo_base;
 637
 638	if (vm->bulk_moveable) {
 639		spin_lock(&ttm_bo_glob.lru_lock);
 640		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
 641		spin_unlock(&ttm_bo_glob.lru_lock);
 642		return;
 643	}
 644
 645	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
 646
 647	spin_lock(&ttm_bo_glob.lru_lock);
 648	list_for_each_entry(bo_base, &vm->idle, vm_status) {
 649		struct amdgpu_bo *bo = bo_base->bo;
 650
 651		if (!bo->parent)
 652			continue;
 653
 654		ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
 655		if (bo->shadow)
 656			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
 657						&vm->lru_bulk_move);
 658	}
 659	spin_unlock(&ttm_bo_glob.lru_lock);
 660
 661	vm->bulk_moveable = true;
 662}
 663
 664/**
 665 * amdgpu_vm_validate_pt_bos - validate the page table BOs
 666 *
 667 * @adev: amdgpu device pointer
 668 * @vm: vm providing the BOs
 
 669 * @validate: callback to do the validation
 670 * @param: parameter for the validation callback
 671 *
 672 * Validate the page table BOs on command submission if neccessary.
 
 
 673 *
 674 * Returns:
 675 * Validation result.
 676 */
 677int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 678			      int (*validate)(void *p, struct amdgpu_bo *bo),
 679			      void *param)
 
 680{
 681	struct amdgpu_vm_bo_base *bo_base, *tmp;
 
 
 682	int r;
 683
 684	vm->bulk_moveable &= list_empty(&vm->evicted);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 685
 686	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
 687		struct amdgpu_bo *bo = bo_base->bo;
 688
 689		r = validate(param, bo);
 690		if (r)
 691			return r;
 
 
 
 
 
 692
 693		if (bo->tbo.type != ttm_bo_type_kernel) {
 694			amdgpu_vm_bo_moved(bo_base);
 695		} else {
 696			vm->update_funcs->map_table(bo);
 697			amdgpu_vm_bo_relocated(bo_base);
 698		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699	}
 
 700
 701	amdgpu_vm_eviction_lock(vm);
 702	vm->evicting = false;
 703	amdgpu_vm_eviction_unlock(vm);
 704
 705	return 0;
 706}
 707
 708/**
 709 * amdgpu_vm_ready - check VM is ready for updates
 710 *
 711 * @vm: VM to check
 712 *
 713 * Check if all VM PDs/PTs are ready for updates
 714 *
 715 * Returns:
 716 * True if eviction list is empty.
 717 */
 718bool amdgpu_vm_ready(struct amdgpu_vm *vm)
 719{
 720	return list_empty(&vm->evicted);
 721}
 722
 723/**
 724 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
 725 *
 726 * @adev: amdgpu_device pointer
 727 * @vm: VM to clear BO from
 728 * @bo: BO to clear
 729 * @immediate: use an immediate update
 730 *
 731 * Root PD needs to be reserved when calling this.
 732 *
 733 * Returns:
 734 * 0 on success, errno otherwise.
 735 */
 736static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
 737			      struct amdgpu_vm *vm,
 738			      struct amdgpu_bo *bo,
 739			      bool immediate)
 740{
 741	struct ttm_operation_ctx ctx = { true, false };
 742	unsigned level = adev->vm_manager.root_level;
 743	struct amdgpu_vm_update_params params;
 744	struct amdgpu_bo *ancestor = bo;
 745	unsigned entries, ats_entries;
 746	uint64_t addr;
 747	int r;
 748
 749	/* Figure out our place in the hierarchy */
 750	if (ancestor->parent) {
 751		++level;
 752		while (ancestor->parent->parent) {
 753			++level;
 754			ancestor = ancestor->parent;
 755		}
 756	}
 757
 758	entries = amdgpu_bo_size(bo) / 8;
 759	if (!vm->pte_support_ats) {
 760		ats_entries = 0;
 761
 762	} else if (!bo->parent) {
 763		ats_entries = amdgpu_vm_num_ats_entries(adev);
 764		ats_entries = min(ats_entries, entries);
 765		entries -= ats_entries;
 766
 767	} else {
 768		struct amdgpu_vm_pt *pt;
 769
 770		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
 771		ats_entries = amdgpu_vm_num_ats_entries(adev);
 772		if ((pt - vm->root.entries) >= ats_entries) {
 773			ats_entries = 0;
 774		} else {
 775			ats_entries = entries;
 776			entries = 0;
 777		}
 778	}
 779
 780	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
 781	if (r)
 782		return r;
 783
 784	if (bo->shadow) {
 785		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
 786				    &ctx);
 787		if (r)
 788			return r;
 789	}
 790
 791	r = vm->update_funcs->map_table(bo);
 792	if (r)
 793		return r;
 794
 795	memset(&params, 0, sizeof(params));
 796	params.adev = adev;
 797	params.vm = vm;
 798	params.immediate = immediate;
 799
 800	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
 801	if (r)
 802		return r;
 803
 804	addr = 0;
 805	if (ats_entries) {
 806		uint64_t value = 0, flags;
 807
 808		flags = AMDGPU_PTE_DEFAULT_ATC;
 809		if (level != AMDGPU_VM_PTB) {
 810			/* Handle leaf PDEs as PTEs */
 811			flags |= AMDGPU_PDE_PTE;
 812			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
 813		}
 814
 815		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
 816					     value, flags);
 817		if (r)
 818			return r;
 819
 820		addr += ats_entries * 8;
 821	}
 822
 823	if (entries) {
 824		uint64_t value = 0, flags = 0;
 825
 826		if (adev->asic_type >= CHIP_VEGA10) {
 827			if (level != AMDGPU_VM_PTB) {
 828				/* Handle leaf PDEs as PTEs */
 829				flags |= AMDGPU_PDE_PTE;
 830				amdgpu_gmc_get_vm_pde(adev, level,
 831						      &value, &flags);
 832			} else {
 833				/* Workaround for fault priority problem on GMC9 */
 834				flags = AMDGPU_PTE_EXECUTABLE;
 835			}
 836		}
 837
 838		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
 839					     value, flags);
 840		if (r)
 841			return r;
 842	}
 843
 844	return vm->update_funcs->commit(&params, NULL);
 845}
 846
 847/**
 848 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
 849 *
 850 * @adev: amdgpu_device pointer
 851 * @vm: requesting vm
 852 * @level: the page table level
 853 * @immediate: use a immediate update
 854 * @bp: resulting BO allocation parameters
 855 */
 856static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 857			       int level, bool immediate,
 858			       struct amdgpu_bo_param *bp)
 859{
 860	memset(bp, 0, sizeof(*bp));
 861
 862	bp->size = amdgpu_vm_bo_size(adev, level);
 863	bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
 864	bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
 865	bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
 866	bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
 867		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
 868	if (vm->use_cpu_for_update)
 869		bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 870	else if (!vm->root.base.bo || vm->root.base.bo->shadow)
 871		bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
 872	bp->type = ttm_bo_type_kernel;
 873	bp->no_wait_gpu = immediate;
 874	if (vm->root.base.bo)
 875		bp->resv = vm->root.base.bo->tbo.base.resv;
 876}
 877
 878/**
 879 * amdgpu_vm_alloc_pts - Allocate a specific page table
 880 *
 881 * @adev: amdgpu_device pointer
 882 * @vm: VM to allocate page tables for
 883 * @cursor: Which page table to allocate
 884 * @immediate: use an immediate update
 885 *
 886 * Make sure a specific page table or directory is allocated.
 887 *
 888 * Returns:
 889 * 1 if page table needed to be allocated, 0 if page table was already
 890 * allocated, negative errno if an error occurred.
 891 */
 892static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
 893			       struct amdgpu_vm *vm,
 894			       struct amdgpu_vm_pt_cursor *cursor,
 895			       bool immediate)
 896{
 897	struct amdgpu_vm_pt *entry = cursor->entry;
 898	struct amdgpu_bo_param bp;
 899	struct amdgpu_bo *pt;
 900	int r;
 901
 902	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
 903		unsigned num_entries;
 904
 905		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
 906		entry->entries = kvmalloc_array(num_entries,
 907						sizeof(*entry->entries),
 908						GFP_KERNEL | __GFP_ZERO);
 909		if (!entry->entries)
 910			return -ENOMEM;
 911	}
 912
 913	if (entry->base.bo)
 914		return 0;
 915
 916	amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp);
 917
 918	r = amdgpu_bo_create(adev, &bp, &pt);
 919	if (r)
 920		return r;
 921
 922	/* Keep a reference to the root directory to avoid
 923	 * freeing them up in the wrong order.
 924	 */
 925	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
 926	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
 927
 928	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
 929	if (r)
 930		goto error_free_pt;
 931
 932	return 0;
 933
 934error_free_pt:
 935	amdgpu_bo_unref(&pt->shadow);
 936	amdgpu_bo_unref(&pt);
 937	return r;
 938}
 939
 940/**
 941 * amdgpu_vm_free_table - fre one PD/PT
 942 *
 943 * @entry: PDE to free
 944 */
 945static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
 946{
 947	if (entry->base.bo) {
 948		entry->base.bo->vm_bo = NULL;
 949		list_del(&entry->base.vm_status);
 950		amdgpu_bo_unref(&entry->base.bo->shadow);
 951		amdgpu_bo_unref(&entry->base.bo);
 952	}
 953	kvfree(entry->entries);
 954	entry->entries = NULL;
 955}
 956
 957/**
 958 * amdgpu_vm_free_pts - free PD/PT levels
 959 *
 960 * @adev: amdgpu device structure
 961 * @vm: amdgpu vm structure
 962 * @start: optional cursor where to start freeing PDs/PTs
 963 *
 964 * Free the page directory or page table level and all sub levels.
 965 */
 966static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
 967			       struct amdgpu_vm *vm,
 968			       struct amdgpu_vm_pt_cursor *start)
 969{
 970	struct amdgpu_vm_pt_cursor cursor;
 971	struct amdgpu_vm_pt *entry;
 972
 973	vm->bulk_moveable = false;
 974
 975	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
 976		amdgpu_vm_free_table(entry);
 977
 978	if (start)
 979		amdgpu_vm_free_table(start->entry);
 980}
 981
 982/**
 983 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
 984 *
 985 * @adev: amdgpu_device pointer
 986 */
 987void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
 988{
 989	const struct amdgpu_ip_block *ip_block;
 990	bool has_compute_vm_bug;
 991	struct amdgpu_ring *ring;
 992	int i;
 993
 994	has_compute_vm_bug = false;
 995
 996	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
 997	if (ip_block) {
 998		/* Compute has a VM bug for GFX version < 7.
 999		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1000		if (ip_block->version->major <= 7)
1001			has_compute_vm_bug = true;
1002		else if (ip_block->version->major == 8)
1003			if (adev->gfx.mec_fw_version < 673)
1004				has_compute_vm_bug = true;
1005	}
1006
1007	for (i = 0; i < adev->num_rings; i++) {
1008		ring = adev->rings[i];
1009		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1010			/* only compute rings */
1011			ring->has_compute_vm_bug = has_compute_vm_bug;
1012		else
1013			ring->has_compute_vm_bug = false;
1014	}
1015}
1016
1017/**
1018 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1019 *
1020 * @ring: ring on which the job will be submitted
1021 * @job: job to submit
1022 *
1023 * Returns:
1024 * True if sync is needed.
1025 */
1026bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1027				  struct amdgpu_job *job)
1028{
1029	struct amdgpu_device *adev = ring->adev;
1030	unsigned vmhub = ring->funcs->vmhub;
1031	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1032	struct amdgpu_vmid *id;
1033	bool gds_switch_needed;
1034	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1035
1036	if (job->vmid == 0)
1037		return false;
1038	id = &id_mgr->ids[job->vmid];
1039	gds_switch_needed = ring->funcs->emit_gds_switch && (
1040		id->gds_base != job->gds_base ||
1041		id->gds_size != job->gds_size ||
1042		id->gws_base != job->gws_base ||
1043		id->gws_size != job->gws_size ||
1044		id->oa_base != job->oa_base ||
1045		id->oa_size != job->oa_size);
1046
1047	if (amdgpu_vmid_had_gpu_reset(adev, id))
1048		return true;
1049
1050	return vm_flush_needed || gds_switch_needed;
 
 
 
 
 
 
1051}
1052
1053/**
1054 * amdgpu_vm_flush - hardware flush the vm
1055 *
1056 * @ring: ring to use for flush
1057 * @job:  related job
1058 * @need_pipe_sync: is pipe sync needed
1059 *
1060 * Emit a VM flush when it is necessary.
1061 *
1062 * Returns:
1063 * 0 on success, errno otherwise.
1064 */
1065int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1066		    bool need_pipe_sync)
1067{
1068	struct amdgpu_device *adev = ring->adev;
1069	unsigned vmhub = ring->funcs->vmhub;
1070	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1071	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1072	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1073		id->gds_base != job->gds_base ||
1074		id->gds_size != job->gds_size ||
1075		id->gws_base != job->gws_base ||
1076		id->gws_size != job->gws_size ||
1077		id->oa_base != job->oa_base ||
1078		id->oa_size != job->oa_size);
1079	bool vm_flush_needed = job->vm_needs_flush;
1080	struct dma_fence *fence = NULL;
1081	bool pasid_mapping_needed = false;
1082	unsigned patch_offset = 0;
1083	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1084	int r;
1085
1086	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1087		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1088
1089	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1090		gds_switch_needed = true;
1091		vm_flush_needed = true;
1092		pasid_mapping_needed = true;
 
1093	}
1094
1095	mutex_lock(&id_mgr->lock);
1096	if (id->pasid != job->pasid || !id->pasid_mapping ||
1097	    !dma_fence_is_signaled(id->pasid_mapping))
1098		pasid_mapping_needed = true;
1099	mutex_unlock(&id_mgr->lock);
1100
1101	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1102	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1103			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1104	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1105		ring->funcs->emit_wreg;
1106
1107	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1108		return 0;
1109
 
1110	if (ring->funcs->init_cond_exec)
1111		patch_offset = amdgpu_ring_init_cond_exec(ring);
 
1112
1113	if (need_pipe_sync)
1114		amdgpu_ring_emit_pipeline_sync(ring);
1115
1116	if (vm_flush_needed) {
1117		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1118		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1119	}
1120
1121	if (pasid_mapping_needed)
1122		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1123
 
 
 
 
 
 
 
 
 
 
 
1124	if (vm_flush_needed || pasid_mapping_needed) {
1125		r = amdgpu_fence_emit(ring, &fence, 0);
1126		if (r)
1127			return r;
1128	}
1129
1130	if (vm_flush_needed) {
1131		mutex_lock(&id_mgr->lock);
1132		dma_fence_put(id->last_flush);
1133		id->last_flush = dma_fence_get(fence);
1134		id->current_gpu_reset_count =
1135			atomic_read(&adev->gpu_reset_counter);
1136		mutex_unlock(&id_mgr->lock);
1137	}
1138
1139	if (pasid_mapping_needed) {
1140		mutex_lock(&id_mgr->lock);
1141		id->pasid = job->pasid;
1142		dma_fence_put(id->pasid_mapping);
1143		id->pasid_mapping = dma_fence_get(fence);
1144		mutex_unlock(&id_mgr->lock);
1145	}
1146	dma_fence_put(fence);
1147
1148	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1149		id->gds_base = job->gds_base;
1150		id->gds_size = job->gds_size;
1151		id->gws_base = job->gws_base;
1152		id->gws_size = job->gws_size;
1153		id->oa_base = job->oa_base;
1154		id->oa_size = job->oa_size;
1155		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1156					    job->gds_size, job->gws_base,
1157					    job->gws_size, job->oa_base,
1158					    job->oa_size);
1159	}
1160
1161	if (ring->funcs->patch_cond_exec)
1162		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1163
1164	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1165	if (ring->funcs->emit_switch_buffer) {
1166		amdgpu_ring_emit_switch_buffer(ring);
1167		amdgpu_ring_emit_switch_buffer(ring);
1168	}
 
1169	return 0;
1170}
1171
1172/**
1173 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1174 *
1175 * @vm: requested vm
1176 * @bo: requested buffer object
1177 *
1178 * Find @bo inside the requested vm.
1179 * Search inside the @bos vm list for the requested vm
1180 * Returns the found bo_va or NULL if none is found
1181 *
1182 * Object has to be reserved!
1183 *
1184 * Returns:
1185 * Found bo_va or NULL.
1186 */
1187struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1188				       struct amdgpu_bo *bo)
1189{
1190	struct amdgpu_vm_bo_base *base;
1191
1192	for (base = bo->vm_bo; base; base = base->next) {
1193		if (base->vm != vm)
1194			continue;
1195
1196		return container_of(base, struct amdgpu_bo_va, base);
1197	}
1198	return NULL;
1199}
1200
1201/**
1202 * amdgpu_vm_map_gart - Resolve gart mapping of addr
1203 *
1204 * @pages_addr: optional DMA address to use for lookup
1205 * @addr: the unmapped addr
1206 *
1207 * Look up the physical address of the page that the pte resolves
1208 * to.
1209 *
1210 * Returns:
1211 * The pointer for the page table entry.
1212 */
1213uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1214{
1215	uint64_t result;
1216
1217	/* page table offset */
1218	result = pages_addr[addr >> PAGE_SHIFT];
1219
1220	/* in case cpu page size != gpu page size*/
1221	result |= addr & (~PAGE_MASK);
1222
1223	result &= 0xFFFFFFFFFFFFF000ULL;
1224
1225	return result;
1226}
1227
1228/**
1229 * amdgpu_vm_update_pde - update a single level in the hierarchy
1230 *
1231 * @params: parameters for the update
1232 * @vm: requested vm
1233 * @entry: entry to update
1234 *
1235 * Makes sure the requested entry in parent is up to date.
1236 */
1237static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1238				struct amdgpu_vm *vm,
1239				struct amdgpu_vm_pt *entry)
1240{
1241	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1242	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1243	uint64_t pde, pt, flags;
1244	unsigned level;
1245
1246	for (level = 0, pbo = bo->parent; pbo; ++level)
1247		pbo = pbo->parent;
1248
1249	level += params->adev->vm_manager.root_level;
1250	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1251	pde = (entry - parent->entries) * 8;
1252	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1253}
1254
1255/**
1256 * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1257 *
1258 * @adev: amdgpu_device pointer
1259 * @vm: related vm
1260 *
1261 * Mark all PD level as invalid after an error.
1262 */
1263static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1264				     struct amdgpu_vm *vm)
1265{
1266	struct amdgpu_vm_pt_cursor cursor;
1267	struct amdgpu_vm_pt *entry;
1268
1269	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1270		if (entry->base.bo && !entry->base.moved)
1271			amdgpu_vm_bo_relocated(&entry->base);
1272}
1273
1274/**
1275 * amdgpu_vm_update_pdes - make sure that all directories are valid
1276 *
1277 * @adev: amdgpu_device pointer
1278 * @vm: requested vm
1279 * @immediate: submit immediately to the paging queue
1280 *
1281 * Makes sure all directories are up to date.
1282 *
1283 * Returns:
1284 * 0 for success, error for failure.
1285 */
1286int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1287			  struct amdgpu_vm *vm, bool immediate)
1288{
1289	struct amdgpu_vm_update_params params;
1290	int r;
 
 
 
 
 
 
 
1291
1292	if (list_empty(&vm->relocated))
1293		return 0;
1294
 
 
 
1295	memset(&params, 0, sizeof(params));
1296	params.adev = adev;
1297	params.vm = vm;
1298	params.immediate = immediate;
1299
1300	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1301	if (r)
1302		return r;
1303
1304	while (!list_empty(&vm->relocated)) {
1305		struct amdgpu_vm_pt *entry;
1306
1307		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1308					 base.vm_status);
1309		amdgpu_vm_bo_idle(&entry->base);
1310
1311		r = amdgpu_vm_update_pde(&params, vm, entry);
1312		if (r)
1313			goto error;
1314	}
1315
1316	r = vm->update_funcs->commit(&params, &vm->last_update);
1317	if (r)
1318		goto error;
1319	return 0;
1320
1321error:
1322	amdgpu_vm_invalidate_pds(adev, vm);
1323	return r;
1324}
1325
1326/*
1327 * amdgpu_vm_update_flags - figure out flags for PTE updates
1328 *
1329 * Make sure to set the right flags for the PTEs at the desired level.
1330 */
1331static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1332				   struct amdgpu_bo *bo, unsigned level,
1333				   uint64_t pe, uint64_t addr,
1334				   unsigned count, uint32_t incr,
1335				   uint64_t flags)
1336
1337{
1338	if (level != AMDGPU_VM_PTB) {
1339		flags |= AMDGPU_PDE_PTE;
1340		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1341
1342	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1343		   !(flags & AMDGPU_PTE_VALID) &&
1344		   !(flags & AMDGPU_PTE_PRT)) {
1345
1346		/* Workaround for fault priority problem on GMC9 */
1347		flags |= AMDGPU_PTE_EXECUTABLE;
1348	}
1349
1350	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1351					 flags);
 
1352}
1353
1354/**
1355 * amdgpu_vm_fragment - get fragment for PTEs
1356 *
1357 * @params: see amdgpu_vm_update_params definition
1358 * @start: first PTE to handle
1359 * @end: last PTE to handle
1360 * @flags: hw mapping flags
1361 * @frag: resulting fragment size
1362 * @frag_end: end of this fragment
1363 *
1364 * Returns the first possible fragment for the start and end address.
1365 */
1366static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1367			       uint64_t start, uint64_t end, uint64_t flags,
1368			       unsigned int *frag, uint64_t *frag_end)
1369{
1370	/**
1371	 * The MC L1 TLB supports variable sized pages, based on a fragment
1372	 * field in the PTE. When this field is set to a non-zero value, page
1373	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1374	 * flags are considered valid for all PTEs within the fragment range
1375	 * and corresponding mappings are assumed to be physically contiguous.
1376	 *
1377	 * The L1 TLB can store a single PTE for the whole fragment,
1378	 * significantly increasing the space available for translation
1379	 * caching. This leads to large improvements in throughput when the
1380	 * TLB is under pressure.
1381	 *
1382	 * The L2 TLB distributes small and large fragments into two
1383	 * asymmetric partitions. The large fragment cache is significantly
1384	 * larger. Thus, we try to use large fragments wherever possible.
1385	 * Userspace can support this by aligning virtual base address and
1386	 * allocation size to the fragment size.
1387	 *
1388	 * Starting with Vega10 the fragment size only controls the L1. The L2
1389	 * is now directly feed with small/huge/giant pages from the walker.
1390	 */
1391	unsigned max_frag;
1392
1393	if (params->adev->asic_type < CHIP_VEGA10)
1394		max_frag = params->adev->vm_manager.fragment_size;
1395	else
1396		max_frag = 31;
1397
1398	/* system pages are non continuously */
1399	if (params->pages_addr) {
1400		*frag = 0;
1401		*frag_end = end;
1402		return;
1403	}
1404
1405	/* This intentionally wraps around if no bit is set */
1406	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1407	if (*frag >= max_frag) {
1408		*frag = max_frag;
1409		*frag_end = end & ~((1ULL << max_frag) - 1);
1410	} else {
1411		*frag_end = start + (1 << *frag);
1412	}
1413}
1414
1415/**
1416 * amdgpu_vm_update_ptes - make sure that page tables are valid
1417 *
1418 * @params: see amdgpu_vm_update_params definition
1419 * @start: start of GPU address range
1420 * @end: end of GPU address range
1421 * @dst: destination address to map to, the next dst inside the function
1422 * @flags: mapping flags
1423 *
1424 * Update the page tables in the range @start - @end.
1425 *
1426 * Returns:
1427 * 0 for success, -EINVAL for failure.
1428 */
1429static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1430				 uint64_t start, uint64_t end,
1431				 uint64_t dst, uint64_t flags)
1432{
1433	struct amdgpu_device *adev = params->adev;
1434	struct amdgpu_vm_pt_cursor cursor;
1435	uint64_t frag_start = start, frag_end;
1436	unsigned int frag;
1437	int r;
1438
1439	/* figure out the initial fragment */
1440	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1441
1442	/* walk over the address space and update the PTs */
1443	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1444	while (cursor.pfn < end) {
1445		unsigned shift, parent_shift, mask;
1446		uint64_t incr, entry_end, pe_start;
1447		struct amdgpu_bo *pt;
1448
1449		if (!params->unlocked) {
1450			/* make sure that the page tables covering the
1451			 * address range are actually allocated
1452			 */
1453			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1454						&cursor, params->immediate);
1455			if (r)
1456				return r;
1457		}
1458
1459		shift = amdgpu_vm_level_shift(adev, cursor.level);
1460		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1461		if (params->unlocked) {
1462			/* Unlocked updates are only allowed on the leaves */
1463			if (amdgpu_vm_pt_descendant(adev, &cursor))
1464				continue;
1465		} else if (adev->asic_type < CHIP_VEGA10 &&
1466			   (flags & AMDGPU_PTE_VALID)) {
1467			/* No huge page support before GMC v9 */
1468			if (cursor.level != AMDGPU_VM_PTB) {
1469				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1470					return -ENOENT;
1471				continue;
1472			}
1473		} else if (frag < shift) {
1474			/* We can't use this level when the fragment size is
1475			 * smaller than the address shift. Go to the next
1476			 * child entry and try again.
1477			 */
1478			if (amdgpu_vm_pt_descendant(adev, &cursor))
1479				continue;
1480		} else if (frag >= parent_shift) {
1481			/* If the fragment size is even larger than the parent
1482			 * shift we should go up one level and check it again.
1483			 */
1484			if (!amdgpu_vm_pt_ancestor(&cursor))
1485				return -EINVAL;
1486			continue;
1487		}
1488
1489		pt = cursor.entry->base.bo;
1490		if (!pt) {
1491			/* We need all PDs and PTs for mapping something, */
1492			if (flags & AMDGPU_PTE_VALID)
1493				return -ENOENT;
1494
1495			/* but unmapping something can happen at a higher
1496			 * level.
1497			 */
1498			if (!amdgpu_vm_pt_ancestor(&cursor))
1499				return -EINVAL;
1500
1501			pt = cursor.entry->base.bo;
1502			shift = parent_shift;
1503		}
1504
1505		/* Looks good so far, calculate parameters for the update */
1506		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1507		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1508		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1509		entry_end = ((uint64_t)mask + 1) << shift;
1510		entry_end += cursor.pfn & ~(entry_end - 1);
1511		entry_end = min(entry_end, end);
1512
1513		do {
1514			uint64_t upd_end = min(entry_end, frag_end);
1515			unsigned nptes = (upd_end - frag_start) >> shift;
1516
1517			/* This can happen when we set higher level PDs to
1518			 * silent to stop fault floods.
1519			 */
1520			nptes = max(nptes, 1u);
1521			amdgpu_vm_update_flags(params, pt, cursor.level,
1522					       pe_start, dst, nptes, incr,
1523					       flags | AMDGPU_PTE_FRAG(frag));
1524
1525			pe_start += nptes * 8;
1526			dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1527
1528			frag_start = upd_end;
1529			if (frag_start >= frag_end) {
1530				/* figure out the next fragment */
1531				amdgpu_vm_fragment(params, frag_start, end,
1532						   flags, &frag, &frag_end);
1533				if (frag < shift)
1534					break;
1535			}
1536		} while (frag_start < entry_end);
1537
1538		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1539			/* Free all child entries.
1540			 * Update the tables with the flags and addresses and free up subsequent
1541			 * tables in the case of huge pages or freed up areas.
1542			 * This is the maximum you can free, because all other page tables are not
1543			 * completely covered by the range and so potentially still in use.
1544			 */
1545			while (cursor.pfn < frag_start) {
1546				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1547				amdgpu_vm_pt_next(adev, &cursor);
1548			}
1549
1550		} else if (frag >= shift) {
1551			/* or just move on to the next on the same level. */
1552			amdgpu_vm_pt_next(adev, &cursor);
1553		}
1554	}
1555
1556	return 0;
1557}
1558
1559/**
1560 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1561 *
1562 * @adev: amdgpu_device pointer
1563 * @vm: requested vm
1564 * @immediate: immediate submission in a page fault
1565 * @unlocked: unlocked invalidation during MM callback
 
 
1566 * @resv: fences we need to sync to
1567 * @start: start of mapped range
1568 * @last: last mapped entry
1569 * @flags: flags for the entries
1570 * @addr: addr to set the area to
 
 
1571 * @pages_addr: DMA addresses to use for mapping
1572 * @fence: optional resulting fence
1573 *
1574 * Fill in the page table entries between @start and @last.
1575 *
1576 * Returns:
1577 * 0 for success, -EINVAL for failure.
1578 */
1579static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1580				       struct amdgpu_vm *vm, bool immediate,
1581				       bool unlocked, struct dma_resv *resv,
1582				       uint64_t start, uint64_t last,
1583				       uint64_t flags, uint64_t addr,
1584				       dma_addr_t *pages_addr,
1585				       struct dma_fence **fence)
1586{
1587	struct amdgpu_vm_update_params params;
 
 
1588	enum amdgpu_sync_mode sync_mode;
1589	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1590
1591	memset(&params, 0, sizeof(params));
1592	params.adev = adev;
1593	params.vm = vm;
1594	params.immediate = immediate;
1595	params.pages_addr = pages_addr;
1596	params.unlocked = unlocked;
 
1597
1598	/* Implicitly sync to command submissions in the same VM before
1599	 * unmapping. Sync to moving fences before mapping.
1600	 */
1601	if (!(flags & AMDGPU_PTE_VALID))
1602		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1603	else
1604		sync_mode = AMDGPU_SYNC_EXPLICIT;
1605
1606	amdgpu_vm_eviction_lock(vm);
1607	if (vm->evicting) {
1608		r = -EBUSY;
1609		goto error_unlock;
1610	}
1611
1612	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1613		struct dma_fence *tmp = dma_fence_get_stub();
1614
1615		amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1616		swap(vm->last_unlocked, tmp);
1617		dma_fence_put(tmp);
1618	}
1619
1620	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1621	if (r)
1622		goto error_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1623
1624	r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1625	if (r)
1626		goto error_unlock;
1627
1628	r = vm->update_funcs->commit(&params, fence);
1629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1630error_unlock:
1631	amdgpu_vm_eviction_unlock(vm);
 
1632	return r;
1633}
1634
1635/**
1636 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1637 *
1638 * @adev: amdgpu_device pointer
1639 * @resv: fences we need to sync to
1640 * @pages_addr: DMA addresses to use for mapping
1641 * @vm: requested vm
1642 * @mapping: mapped range and flags to use for the update
1643 * @flags: HW flags for the mapping
1644 * @bo_adev: amdgpu_device pointer that bo actually been allocated
1645 * @nodes: array of drm_mm_nodes with the MC addresses
1646 * @fence: optional resulting fence
1647 *
1648 * Split the mapping into smaller chunks so that each update fits
1649 * into a SDMA IB.
1650 *
1651 * Returns:
1652 * 0 for success, -EINVAL for failure.
1653 */
1654static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1655				      struct dma_resv *resv,
1656				      dma_addr_t *pages_addr,
1657				      struct amdgpu_vm *vm,
1658				      struct amdgpu_bo_va_mapping *mapping,
1659				      uint64_t flags,
1660				      struct amdgpu_device *bo_adev,
1661				      struct drm_mm_node *nodes,
1662				      struct dma_fence **fence)
1663{
1664	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1665	uint64_t pfn, start = mapping->start;
1666	int r;
 
 
1667
1668	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1669	 * but in case of something, we filter the flags in first place
 
1670	 */
1671	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1672		flags &= ~AMDGPU_PTE_READABLE;
1673	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1674		flags &= ~AMDGPU_PTE_WRITEABLE;
1675
1676	/* Apply ASIC specific mapping flags */
1677	amdgpu_gmc_get_vm_pte(adev, mapping, &flags);
1678
1679	trace_amdgpu_vm_bo_update(mapping);
1680
1681	pfn = mapping->offset >> PAGE_SHIFT;
1682	if (nodes) {
1683		while (pfn >= nodes->size) {
1684			pfn -= nodes->size;
1685			++nodes;
1686		}
1687	}
1688
1689	do {
1690		dma_addr_t *dma_addr = NULL;
1691		uint64_t max_entries;
1692		uint64_t addr, last;
1693
1694		if (nodes) {
1695			addr = nodes->start << PAGE_SHIFT;
1696			max_entries = (nodes->size - pfn) *
1697				AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1698		} else {
1699			addr = 0;
1700			max_entries = S64_MAX;
1701		}
1702
1703		if (pages_addr) {
1704			uint64_t count;
1705
1706			for (count = 1;
1707			     count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1708			     ++count) {
1709				uint64_t idx = pfn + count;
1710
1711				if (pages_addr[idx] !=
1712				    (pages_addr[idx - 1] + PAGE_SIZE))
1713					break;
1714			}
1715
1716			if (count < min_linear_pages) {
1717				addr = pfn << PAGE_SHIFT;
1718				dma_addr = pages_addr;
1719			} else {
1720				addr = pages_addr[pfn];
1721				max_entries = count *
1722					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1723			}
1724
1725		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1726			addr += bo_adev->vm_manager.vram_base_offset;
1727			addr += pfn << PAGE_SHIFT;
1728		}
1729
1730		last = min((uint64_t)mapping->last, start + max_entries - 1);
1731		r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
1732						start, last, flags, addr,
1733						dma_addr, fence);
1734		if (r)
1735			return r;
1736
1737		pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1738		if (nodes && nodes->size == pfn) {
1739			pfn = 0;
1740			++nodes;
1741		}
1742		start = last + 1;
1743
1744	} while (unlikely(start != mapping->last + 1));
 
1745
1746	return 0;
 
 
1747}
1748
1749/**
1750 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1751 *
1752 * @adev: amdgpu_device pointer
1753 * @bo_va: requested BO and VM object
1754 * @clear: if true clear the entries
1755 *
1756 * Fill in the page table entries for @bo_va.
1757 *
1758 * Returns:
1759 * 0 for success, -EINVAL for failure.
1760 */
1761int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1762			bool clear)
1763{
1764	struct amdgpu_bo *bo = bo_va->base.bo;
1765	struct amdgpu_vm *vm = bo_va->base.vm;
1766	struct amdgpu_bo_va_mapping *mapping;
1767	dma_addr_t *pages_addr = NULL;
1768	struct ttm_mem_reg *mem;
1769	struct drm_mm_node *nodes;
1770	struct dma_fence **last_update;
 
 
1771	struct dma_resv *resv;
 
1772	uint64_t flags;
1773	struct amdgpu_device *bo_adev = adev;
1774	int r;
1775
1776	if (clear || !bo) {
1777		mem = NULL;
1778		nodes = NULL;
1779		resv = vm->root.base.bo->tbo.base.resv;
1780	} else {
1781		struct ttm_dma_tt *ttm;
1782
1783		mem = &bo->tbo.mem;
1784		nodes = mem->mm_node;
1785		if (mem->mem_type == TTM_PL_TT) {
1786			ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1787			pages_addr = ttm->dma_address;
1788		}
1789		resv = bo->tbo.base.resv;
 
 
 
 
 
 
 
 
 
 
 
 
 
1790	}
1791
1792	if (bo) {
 
 
1793		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1794
1795		if (amdgpu_bo_encrypted(bo))
1796			flags |= AMDGPU_PTE_TMZ;
1797
1798		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
 
 
1799	} else {
1800		flags = 0x0;
 
 
1801	}
1802
1803	if (clear || (bo && bo->tbo.base.resv ==
1804		      vm->root.base.bo->tbo.base.resv))
1805		last_update = &vm->last_update;
1806	else
1807		last_update = &bo_va->last_pt_update;
1808
1809	if (!clear && bo_va->base.moved) {
1810		bo_va->base.moved = false;
1811		list_splice_init(&bo_va->valids, &bo_va->invalids);
1812
1813	} else if (bo_va->cleared != clear) {
1814		list_splice_init(&bo_va->valids, &bo_va->invalids);
1815	}
1816
1817	list_for_each_entry(mapping, &bo_va->invalids, list) {
1818		r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm,
1819					       mapping, flags, bo_adev, nodes,
1820					       last_update);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1821		if (r)
1822			return r;
1823	}
1824
1825	/* If the BO is not in its preferred location add it back to
1826	 * the evicted list so that it gets validated again on the
1827	 * next command submission.
1828	 */
1829	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1830		uint32_t mem_type = bo->tbo.mem.mem_type;
1831
1832		if (!(bo->preferred_domains &
1833		      amdgpu_mem_type_to_domain(mem_type)))
1834			amdgpu_vm_bo_evicted(&bo_va->base);
1835		else
1836			amdgpu_vm_bo_idle(&bo_va->base);
1837	} else {
1838		amdgpu_vm_bo_done(&bo_va->base);
1839	}
1840
1841	list_splice_init(&bo_va->invalids, &bo_va->valids);
1842	bo_va->cleared = clear;
 
1843
1844	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1845		list_for_each_entry(mapping, &bo_va->valids, list)
1846			trace_amdgpu_vm_bo_mapping(mapping);
1847	}
1848
1849	return 0;
1850}
1851
1852/**
1853 * amdgpu_vm_update_prt_state - update the global PRT state
1854 *
1855 * @adev: amdgpu_device pointer
1856 */
1857static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1858{
1859	unsigned long flags;
1860	bool enable;
1861
1862	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1863	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1864	adev->gmc.gmc_funcs->set_prt(adev, enable);
1865	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1866}
1867
1868/**
1869 * amdgpu_vm_prt_get - add a PRT user
1870 *
1871 * @adev: amdgpu_device pointer
1872 */
1873static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1874{
1875	if (!adev->gmc.gmc_funcs->set_prt)
1876		return;
1877
1878	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1879		amdgpu_vm_update_prt_state(adev);
1880}
1881
1882/**
1883 * amdgpu_vm_prt_put - drop a PRT user
1884 *
1885 * @adev: amdgpu_device pointer
1886 */
1887static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1888{
1889	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1890		amdgpu_vm_update_prt_state(adev);
1891}
1892
1893/**
1894 * amdgpu_vm_prt_cb - callback for updating the PRT status
1895 *
1896 * @fence: fence for the callback
1897 * @_cb: the callback function
1898 */
1899static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1900{
1901	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1902
1903	amdgpu_vm_prt_put(cb->adev);
1904	kfree(cb);
1905}
1906
1907/**
1908 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1909 *
1910 * @adev: amdgpu_device pointer
1911 * @fence: fence for the callback
1912 */
1913static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1914				 struct dma_fence *fence)
1915{
1916	struct amdgpu_prt_cb *cb;
1917
1918	if (!adev->gmc.gmc_funcs->set_prt)
1919		return;
1920
1921	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1922	if (!cb) {
1923		/* Last resort when we are OOM */
1924		if (fence)
1925			dma_fence_wait(fence, false);
1926
1927		amdgpu_vm_prt_put(adev);
1928	} else {
1929		cb->adev = adev;
1930		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1931						     amdgpu_vm_prt_cb))
1932			amdgpu_vm_prt_cb(fence, &cb->cb);
1933	}
1934}
1935
1936/**
1937 * amdgpu_vm_free_mapping - free a mapping
1938 *
1939 * @adev: amdgpu_device pointer
1940 * @vm: requested vm
1941 * @mapping: mapping to be freed
1942 * @fence: fence of the unmap operation
1943 *
1944 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1945 */
1946static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1947				   struct amdgpu_vm *vm,
1948				   struct amdgpu_bo_va_mapping *mapping,
1949				   struct dma_fence *fence)
1950{
1951	if (mapping->flags & AMDGPU_PTE_PRT)
1952		amdgpu_vm_add_prt_cb(adev, fence);
1953	kfree(mapping);
1954}
1955
1956/**
1957 * amdgpu_vm_prt_fini - finish all prt mappings
1958 *
1959 * @adev: amdgpu_device pointer
1960 * @vm: requested vm
1961 *
1962 * Register a cleanup callback to disable PRT support after VM dies.
1963 */
1964static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1965{
1966	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1967	struct dma_fence *excl, **shared;
1968	unsigned i, shared_count;
1969	int r;
1970
1971	r = dma_resv_get_fences_rcu(resv, &excl,
1972					      &shared_count, &shared);
1973	if (r) {
1974		/* Not enough memory to grab the fence list, as last resort
1975		 * block for all the fences to complete.
1976		 */
1977		dma_resv_wait_timeout_rcu(resv, true, false,
1978						    MAX_SCHEDULE_TIMEOUT);
1979		return;
1980	}
1981
1982	/* Add a callback for each fence in the reservation object */
1983	amdgpu_vm_prt_get(adev);
1984	amdgpu_vm_add_prt_cb(adev, excl);
1985
1986	for (i = 0; i < shared_count; ++i) {
1987		amdgpu_vm_prt_get(adev);
1988		amdgpu_vm_add_prt_cb(adev, shared[i]);
1989	}
1990
1991	kfree(shared);
1992}
1993
1994/**
1995 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1996 *
1997 * @adev: amdgpu_device pointer
1998 * @vm: requested vm
1999 * @fence: optional resulting fence (unchanged if no work needed to be done
2000 * or if an error occurred)
2001 *
2002 * Make sure all freed BOs are cleared in the PT.
2003 * PTs have to be reserved and mutex must be locked!
2004 *
2005 * Returns:
2006 * 0 for success.
2007 *
2008 */
2009int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2010			  struct amdgpu_vm *vm,
2011			  struct dma_fence **fence)
2012{
2013	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2014	struct amdgpu_bo_va_mapping *mapping;
2015	uint64_t init_pte_value = 0;
2016	struct dma_fence *f = NULL;
2017	int r;
2018
2019	while (!list_empty(&vm->freed)) {
2020		mapping = list_first_entry(&vm->freed,
2021			struct amdgpu_bo_va_mapping, list);
2022		list_del(&mapping->list);
2023
2024		if (vm->pte_support_ats &&
2025		    mapping->start < AMDGPU_GMC_HOLE_START)
2026			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2027
2028		r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
2029						mapping->start, mapping->last,
2030						init_pte_value, 0, NULL, &f);
2031		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2032		if (r) {
2033			dma_fence_put(f);
2034			return r;
2035		}
2036	}
2037
2038	if (fence && f) {
2039		dma_fence_put(*fence);
2040		*fence = f;
2041	} else {
2042		dma_fence_put(f);
2043	}
2044
2045	return 0;
2046
2047}
2048
2049/**
2050 * amdgpu_vm_handle_moved - handle moved BOs in the PT
2051 *
2052 * @adev: amdgpu_device pointer
2053 * @vm: requested vm
 
2054 *
2055 * Make sure all BOs which are moved are updated in the PTs.
2056 *
2057 * Returns:
2058 * 0 for success.
2059 *
2060 * PTs have to be reserved!
2061 */
2062int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2063			   struct amdgpu_vm *vm)
 
2064{
2065	struct amdgpu_bo_va *bo_va, *tmp;
2066	struct dma_resv *resv;
2067	bool clear;
2068	int r;
2069
2070	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
 
 
 
 
 
2071		/* Per VM BOs never need to bo cleared in the page tables */
2072		r = amdgpu_vm_bo_update(adev, bo_va, false);
2073		if (r)
2074			return r;
 
2075	}
2076
2077	spin_lock(&vm->invalidated_lock);
2078	while (!list_empty(&vm->invalidated)) {
2079		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2080					 base.vm_status);
2081		resv = bo_va->base.bo->tbo.base.resv;
2082		spin_unlock(&vm->invalidated_lock);
2083
2084		/* Try to reserve the BO to avoid clearing its ptes */
2085		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2086			clear = false;
 
 
 
 
 
2087		/* Somebody else is using the BO right now */
2088		else
2089			clear = true;
 
 
2090
2091		r = amdgpu_vm_bo_update(adev, bo_va, clear);
 
 
 
2092		if (r)
2093			return r;
2094
2095		if (!clear)
2096			dma_resv_unlock(resv);
2097		spin_lock(&vm->invalidated_lock);
 
 
 
 
 
 
 
2098	}
2099	spin_unlock(&vm->invalidated_lock);
2100
2101	return 0;
2102}
2103
2104/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2105 * amdgpu_vm_bo_add - add a bo to a specific vm
2106 *
2107 * @adev: amdgpu_device pointer
2108 * @vm: requested vm
2109 * @bo: amdgpu buffer object
2110 *
2111 * Add @bo into the requested vm.
2112 * Add @bo to the list of bos associated with the vm
2113 *
2114 * Returns:
2115 * Newly added bo_va or NULL for failure
2116 *
2117 * Object has to be reserved!
2118 */
2119struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2120				      struct amdgpu_vm *vm,
2121				      struct amdgpu_bo *bo)
2122{
2123	struct amdgpu_bo_va *bo_va;
2124
2125	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2126	if (bo_va == NULL) {
2127		return NULL;
2128	}
2129	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2130
2131	bo_va->ref_count = 1;
 
2132	INIT_LIST_HEAD(&bo_va->valids);
2133	INIT_LIST_HEAD(&bo_va->invalids);
2134
2135	if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) &&
2136	    (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) {
 
 
 
2137		bo_va->is_xgmi = true;
2138		/* Power up XGMI if it can be potentially used */
2139		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2140	}
2141
2142	return bo_va;
2143}
2144
2145
2146/**
2147 * amdgpu_vm_bo_insert_mapping - insert a new mapping
2148 *
2149 * @adev: amdgpu_device pointer
2150 * @bo_va: bo_va to store the address
2151 * @mapping: the mapping to insert
2152 *
2153 * Insert a new mapping into all structures.
2154 */
2155static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2156				    struct amdgpu_bo_va *bo_va,
2157				    struct amdgpu_bo_va_mapping *mapping)
2158{
2159	struct amdgpu_vm *vm = bo_va->base.vm;
2160	struct amdgpu_bo *bo = bo_va->base.bo;
2161
2162	mapping->bo_va = bo_va;
2163	list_add(&mapping->list, &bo_va->invalids);
2164	amdgpu_vm_it_insert(mapping, &vm->va);
2165
2166	if (mapping->flags & AMDGPU_PTE_PRT)
2167		amdgpu_vm_prt_get(adev);
2168
2169	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2170	    !bo_va->base.moved) {
2171		list_move(&bo_va->base.vm_status, &vm->moved);
2172	}
2173	trace_amdgpu_vm_bo_map(bo_va, mapping);
2174}
2175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2176/**
2177 * amdgpu_vm_bo_map - map bo inside a vm
2178 *
2179 * @adev: amdgpu_device pointer
2180 * @bo_va: bo_va to store the address
2181 * @saddr: where to map the BO
2182 * @offset: requested offset in the BO
2183 * @size: BO size in bytes
2184 * @flags: attributes of pages (read/write/valid/etc.)
2185 *
2186 * Add a mapping of the BO at the specefied addr into the VM.
2187 *
2188 * Returns:
2189 * 0 for success, error for failure.
2190 *
2191 * Object has to be reserved and unreserved outside!
2192 */
2193int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2194		     struct amdgpu_bo_va *bo_va,
2195		     uint64_t saddr, uint64_t offset,
2196		     uint64_t size, uint64_t flags)
2197{
2198	struct amdgpu_bo_va_mapping *mapping, *tmp;
2199	struct amdgpu_bo *bo = bo_va->base.bo;
2200	struct amdgpu_vm *vm = bo_va->base.vm;
2201	uint64_t eaddr;
 
2202
2203	/* validate the parameters */
2204	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2205	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2206		return -EINVAL;
2207
2208	/* make sure object fit at this offset */
2209	eaddr = saddr + size - 1;
2210	if (saddr >= eaddr ||
2211	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2212	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2213		return -EINVAL;
2214
2215	saddr /= AMDGPU_GPU_PAGE_SIZE;
2216	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2217
2218	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2219	if (tmp) {
2220		/* bo and tmp overlap, invalid addr */
2221		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2222			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2223			tmp->start, tmp->last + 1);
2224		return -EINVAL;
2225	}
2226
2227	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2228	if (!mapping)
2229		return -ENOMEM;
2230
2231	mapping->start = saddr;
2232	mapping->last = eaddr;
2233	mapping->offset = offset;
2234	mapping->flags = flags;
2235
2236	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2237
2238	return 0;
2239}
2240
2241/**
2242 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2243 *
2244 * @adev: amdgpu_device pointer
2245 * @bo_va: bo_va to store the address
2246 * @saddr: where to map the BO
2247 * @offset: requested offset in the BO
2248 * @size: BO size in bytes
2249 * @flags: attributes of pages (read/write/valid/etc.)
2250 *
2251 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2252 * mappings as we do so.
2253 *
2254 * Returns:
2255 * 0 for success, error for failure.
2256 *
2257 * Object has to be reserved and unreserved outside!
2258 */
2259int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2260			     struct amdgpu_bo_va *bo_va,
2261			     uint64_t saddr, uint64_t offset,
2262			     uint64_t size, uint64_t flags)
2263{
2264	struct amdgpu_bo_va_mapping *mapping;
2265	struct amdgpu_bo *bo = bo_va->base.bo;
2266	uint64_t eaddr;
2267	int r;
2268
2269	/* validate the parameters */
2270	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2271	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2272		return -EINVAL;
2273
2274	/* make sure object fit at this offset */
2275	eaddr = saddr + size - 1;
2276	if (saddr >= eaddr ||
2277	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2278	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2279		return -EINVAL;
2280
2281	/* Allocate all the needed memory */
2282	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2283	if (!mapping)
2284		return -ENOMEM;
2285
2286	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2287	if (r) {
2288		kfree(mapping);
2289		return r;
2290	}
2291
2292	saddr /= AMDGPU_GPU_PAGE_SIZE;
2293	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2294
2295	mapping->start = saddr;
2296	mapping->last = eaddr;
2297	mapping->offset = offset;
2298	mapping->flags = flags;
2299
2300	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2301
2302	return 0;
2303}
2304
2305/**
2306 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2307 *
2308 * @adev: amdgpu_device pointer
2309 * @bo_va: bo_va to remove the address from
2310 * @saddr: where to the BO is mapped
2311 *
2312 * Remove a mapping of the BO at the specefied addr from the VM.
2313 *
2314 * Returns:
2315 * 0 for success, error for failure.
2316 *
2317 * Object has to be reserved and unreserved outside!
2318 */
2319int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2320		       struct amdgpu_bo_va *bo_va,
2321		       uint64_t saddr)
2322{
2323	struct amdgpu_bo_va_mapping *mapping;
2324	struct amdgpu_vm *vm = bo_va->base.vm;
2325	bool valid = true;
2326
2327	saddr /= AMDGPU_GPU_PAGE_SIZE;
2328
2329	list_for_each_entry(mapping, &bo_va->valids, list) {
2330		if (mapping->start == saddr)
2331			break;
2332	}
2333
2334	if (&mapping->list == &bo_va->valids) {
2335		valid = false;
2336
2337		list_for_each_entry(mapping, &bo_va->invalids, list) {
2338			if (mapping->start == saddr)
2339				break;
2340		}
2341
2342		if (&mapping->list == &bo_va->invalids)
2343			return -ENOENT;
2344	}
2345
2346	list_del(&mapping->list);
2347	amdgpu_vm_it_remove(mapping, &vm->va);
2348	mapping->bo_va = NULL;
2349	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2350
2351	if (valid)
2352		list_add(&mapping->list, &vm->freed);
2353	else
2354		amdgpu_vm_free_mapping(adev, vm, mapping,
2355				       bo_va->last_pt_update);
2356
2357	return 0;
2358}
2359
2360/**
2361 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2362 *
2363 * @adev: amdgpu_device pointer
2364 * @vm: VM structure to use
2365 * @saddr: start of the range
2366 * @size: size of the range
2367 *
2368 * Remove all mappings in a range, split them as appropriate.
2369 *
2370 * Returns:
2371 * 0 for success, error for failure.
2372 */
2373int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2374				struct amdgpu_vm *vm,
2375				uint64_t saddr, uint64_t size)
2376{
2377	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2378	LIST_HEAD(removed);
2379	uint64_t eaddr;
 
 
 
 
 
2380
2381	eaddr = saddr + size - 1;
2382	saddr /= AMDGPU_GPU_PAGE_SIZE;
2383	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2384
2385	/* Allocate all the needed memory */
2386	before = kzalloc(sizeof(*before), GFP_KERNEL);
2387	if (!before)
2388		return -ENOMEM;
2389	INIT_LIST_HEAD(&before->list);
2390
2391	after = kzalloc(sizeof(*after), GFP_KERNEL);
2392	if (!after) {
2393		kfree(before);
2394		return -ENOMEM;
2395	}
2396	INIT_LIST_HEAD(&after->list);
2397
2398	/* Now gather all removed mappings */
2399	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2400	while (tmp) {
2401		/* Remember mapping split at the start */
2402		if (tmp->start < saddr) {
2403			before->start = tmp->start;
2404			before->last = saddr - 1;
2405			before->offset = tmp->offset;
2406			before->flags = tmp->flags;
2407			before->bo_va = tmp->bo_va;
2408			list_add(&before->list, &tmp->bo_va->invalids);
2409		}
2410
2411		/* Remember mapping split at the end */
2412		if (tmp->last > eaddr) {
2413			after->start = eaddr + 1;
2414			after->last = tmp->last;
2415			after->offset = tmp->offset;
2416			after->offset += after->start - tmp->start;
2417			after->flags = tmp->flags;
2418			after->bo_va = tmp->bo_va;
2419			list_add(&after->list, &tmp->bo_va->invalids);
2420		}
2421
2422		list_del(&tmp->list);
2423		list_add(&tmp->list, &removed);
2424
2425		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2426	}
2427
2428	/* And free them up */
2429	list_for_each_entry_safe(tmp, next, &removed, list) {
2430		amdgpu_vm_it_remove(tmp, &vm->va);
2431		list_del(&tmp->list);
2432
2433		if (tmp->start < saddr)
2434		    tmp->start = saddr;
2435		if (tmp->last > eaddr)
2436		    tmp->last = eaddr;
2437
2438		tmp->bo_va = NULL;
2439		list_add(&tmp->list, &vm->freed);
2440		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2441	}
2442
2443	/* Insert partial mapping before the range */
2444	if (!list_empty(&before->list)) {
 
 
2445		amdgpu_vm_it_insert(before, &vm->va);
2446		if (before->flags & AMDGPU_PTE_PRT)
2447			amdgpu_vm_prt_get(adev);
 
 
 
 
2448	} else {
2449		kfree(before);
2450	}
2451
2452	/* Insert partial mapping after the range */
2453	if (!list_empty(&after->list)) {
 
 
2454		amdgpu_vm_it_insert(after, &vm->va);
2455		if (after->flags & AMDGPU_PTE_PRT)
2456			amdgpu_vm_prt_get(adev);
 
 
 
 
2457	} else {
2458		kfree(after);
2459	}
2460
2461	return 0;
2462}
2463
2464/**
2465 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2466 *
2467 * @vm: the requested VM
2468 * @addr: the address
2469 *
2470 * Find a mapping by it's address.
2471 *
2472 * Returns:
2473 * The amdgpu_bo_va_mapping matching for addr or NULL
2474 *
2475 */
2476struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2477							 uint64_t addr)
2478{
2479	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2480}
2481
2482/**
2483 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2484 *
2485 * @vm: the requested vm
2486 * @ticket: CS ticket
2487 *
2488 * Trace all mappings of BOs reserved during a command submission.
2489 */
2490void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2491{
2492	struct amdgpu_bo_va_mapping *mapping;
2493
2494	if (!trace_amdgpu_vm_bo_cs_enabled())
2495		return;
2496
2497	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2498	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2499		if (mapping->bo_va && mapping->bo_va->base.bo) {
2500			struct amdgpu_bo *bo;
2501
2502			bo = mapping->bo_va->base.bo;
2503			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2504			    ticket)
2505				continue;
2506		}
2507
2508		trace_amdgpu_vm_bo_cs(mapping);
2509	}
2510}
2511
2512/**
2513 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2514 *
2515 * @adev: amdgpu_device pointer
2516 * @bo_va: requested bo_va
2517 *
2518 * Remove @bo_va->bo from the requested vm.
2519 *
2520 * Object have to be reserved!
2521 */
2522void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2523		      struct amdgpu_bo_va *bo_va)
2524{
2525	struct amdgpu_bo_va_mapping *mapping, *next;
2526	struct amdgpu_bo *bo = bo_va->base.bo;
2527	struct amdgpu_vm *vm = bo_va->base.vm;
2528	struct amdgpu_vm_bo_base **base;
2529
 
 
2530	if (bo) {
2531		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2532			vm->bulk_moveable = false;
 
2533
2534		for (base = &bo_va->base.bo->vm_bo; *base;
2535		     base = &(*base)->next) {
2536			if (*base != &bo_va->base)
2537				continue;
2538
2539			*base = bo_va->base.next;
2540			break;
2541		}
2542	}
2543
2544	spin_lock(&vm->invalidated_lock);
2545	list_del(&bo_va->base.vm_status);
2546	spin_unlock(&vm->invalidated_lock);
2547
2548	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2549		list_del(&mapping->list);
2550		amdgpu_vm_it_remove(mapping, &vm->va);
2551		mapping->bo_va = NULL;
2552		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2553		list_add(&mapping->list, &vm->freed);
2554	}
2555	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2556		list_del(&mapping->list);
2557		amdgpu_vm_it_remove(mapping, &vm->va);
2558		amdgpu_vm_free_mapping(adev, vm, mapping,
2559				       bo_va->last_pt_update);
2560	}
2561
2562	dma_fence_put(bo_va->last_pt_update);
2563
2564	if (bo && bo_va->is_xgmi)
2565		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2566
2567	kfree(bo_va);
2568}
2569
2570/**
2571 * amdgpu_vm_evictable - check if we can evict a VM
2572 *
2573 * @bo: A page table of the VM.
2574 *
2575 * Check if it is possible to evict a VM.
2576 */
2577bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2578{
2579	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2580
2581	/* Page tables of a destroyed VM can go away immediately */
2582	if (!bo_base || !bo_base->vm)
2583		return true;
2584
2585	/* Don't evict VM page tables while they are busy */
2586	if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2587		return false;
2588
2589	/* Try to block ongoing updates */
2590	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2591		return false;
2592
2593	/* Don't evict VM page tables while they are updated */
2594	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2595		amdgpu_vm_eviction_unlock(bo_base->vm);
2596		return false;
2597	}
2598
2599	bo_base->vm->evicting = true;
2600	amdgpu_vm_eviction_unlock(bo_base->vm);
2601	return true;
2602}
2603
2604/**
2605 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2606 *
2607 * @adev: amdgpu_device pointer
2608 * @bo: amdgpu buffer object
2609 * @evicted: is the BO evicted
2610 *
2611 * Mark @bo as invalid.
2612 */
2613void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2614			     struct amdgpu_bo *bo, bool evicted)
2615{
2616	struct amdgpu_vm_bo_base *bo_base;
2617
2618	/* shadow bo doesn't have bo base, its validation needs its parent */
2619	if (bo->parent && bo->parent->shadow == bo)
2620		bo = bo->parent;
2621
2622	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2623		struct amdgpu_vm *vm = bo_base->vm;
2624
2625		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2626			amdgpu_vm_bo_evicted(bo_base);
2627			continue;
2628		}
2629
2630		if (bo_base->moved)
2631			continue;
2632		bo_base->moved = true;
2633
2634		if (bo->tbo.type == ttm_bo_type_kernel)
2635			amdgpu_vm_bo_relocated(bo_base);
2636		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2637			amdgpu_vm_bo_moved(bo_base);
2638		else
2639			amdgpu_vm_bo_invalidated(bo_base);
2640	}
2641}
2642
2643/**
2644 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2645 *
2646 * @vm_size: VM size
2647 *
2648 * Returns:
2649 * VM page table as power of two
2650 */
2651static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2652{
2653	/* Total bits covered by PD + PTs */
2654	unsigned bits = ilog2(vm_size) + 18;
2655
2656	/* Make sure the PD is 4K in size up to 8GB address space.
2657	   Above that split equal between PD and PTs */
2658	if (vm_size <= 8)
2659		return (bits - 9);
2660	else
2661		return ((bits + 3) / 2);
2662}
2663
2664/**
2665 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2666 *
2667 * @adev: amdgpu_device pointer
2668 * @min_vm_size: the minimum vm size in GB if it's set auto
2669 * @fragment_size_default: Default PTE fragment size
2670 * @max_level: max VMPT level
2671 * @max_bits: max address space size in bits
2672 *
2673 */
2674void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2675			   uint32_t fragment_size_default, unsigned max_level,
2676			   unsigned max_bits)
2677{
2678	unsigned int max_size = 1 << (max_bits - 30);
2679	unsigned int vm_size;
2680	uint64_t tmp;
2681
2682	/* adjust vm size first */
2683	if (amdgpu_vm_size != -1) {
2684		vm_size = amdgpu_vm_size;
2685		if (vm_size > max_size) {
2686			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2687				 amdgpu_vm_size, max_size);
2688			vm_size = max_size;
2689		}
2690	} else {
2691		struct sysinfo si;
2692		unsigned int phys_ram_gb;
2693
2694		/* Optimal VM size depends on the amount of physical
2695		 * RAM available. Underlying requirements and
2696		 * assumptions:
2697		 *
2698		 *  - Need to map system memory and VRAM from all GPUs
2699		 *     - VRAM from other GPUs not known here
2700		 *     - Assume VRAM <= system memory
2701		 *  - On GFX8 and older, VM space can be segmented for
2702		 *    different MTYPEs
2703		 *  - Need to allow room for fragmentation, guard pages etc.
2704		 *
2705		 * This adds up to a rough guess of system memory x3.
2706		 * Round up to power of two to maximize the available
2707		 * VM size with the given page table size.
2708		 */
2709		si_meminfo(&si);
2710		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2711			       (1 << 30) - 1) >> 30;
2712		vm_size = roundup_pow_of_two(
2713			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2714	}
2715
2716	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2717
2718	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2719	if (amdgpu_vm_block_size != -1)
2720		tmp >>= amdgpu_vm_block_size - 9;
2721	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2722	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2723	switch (adev->vm_manager.num_level) {
2724	case 3:
2725		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2726		break;
2727	case 2:
2728		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2729		break;
2730	case 1:
2731		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2732		break;
2733	default:
2734		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2735	}
2736	/* block size depends on vm size and hw setup*/
2737	if (amdgpu_vm_block_size != -1)
2738		adev->vm_manager.block_size =
2739			min((unsigned)amdgpu_vm_block_size, max_bits
2740			    - AMDGPU_GPU_PAGE_SHIFT
2741			    - 9 * adev->vm_manager.num_level);
2742	else if (adev->vm_manager.num_level > 1)
2743		adev->vm_manager.block_size = 9;
2744	else
2745		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2746
2747	if (amdgpu_vm_fragment_size == -1)
2748		adev->vm_manager.fragment_size = fragment_size_default;
2749	else
2750		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2751
2752	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2753		 vm_size, adev->vm_manager.num_level + 1,
2754		 adev->vm_manager.block_size,
2755		 adev->vm_manager.fragment_size);
2756}
2757
2758/**
2759 * amdgpu_vm_wait_idle - wait for the VM to become idle
2760 *
2761 * @vm: VM object to wait for
2762 * @timeout: timeout to wait for VM to become idle
2763 */
2764long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2765{
2766	timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2767					    true, true, timeout);
 
2768	if (timeout <= 0)
2769		return timeout;
2770
2771	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2772}
2773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2774/**
2775 * amdgpu_vm_init - initialize a vm instance
2776 *
2777 * @adev: amdgpu_device pointer
2778 * @vm: requested vm
2779 * @vm_context: Indicates if it GFX or Compute context
2780 * @pasid: Process address space identifier
2781 *
2782 * Init @vm fields.
2783 *
2784 * Returns:
2785 * 0 for success, error for failure.
2786 */
2787int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2788		   int vm_context, unsigned int pasid)
2789{
2790	struct amdgpu_bo_param bp;
2791	struct amdgpu_bo *root;
2792	int r, i;
2793
2794	vm->va = RB_ROOT_CACHED;
2795	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2796		vm->reserved_vmid[i] = NULL;
2797	INIT_LIST_HEAD(&vm->evicted);
 
2798	INIT_LIST_HEAD(&vm->relocated);
2799	INIT_LIST_HEAD(&vm->moved);
2800	INIT_LIST_HEAD(&vm->idle);
2801	INIT_LIST_HEAD(&vm->invalidated);
2802	spin_lock_init(&vm->invalidated_lock);
2803	INIT_LIST_HEAD(&vm->freed);
 
 
 
 
2804
2805
2806	/* create scheduler entities for page table updates */
2807	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2808				  adev->vm_manager.vm_pte_scheds,
2809				  adev->vm_manager.vm_pte_num_scheds, NULL);
2810	if (r)
2811		return r;
2812
2813	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2814				  adev->vm_manager.vm_pte_scheds,
2815				  adev->vm_manager.vm_pte_num_scheds, NULL);
2816	if (r)
2817		goto error_free_immediate;
2818
2819	vm->pte_support_ats = false;
2820	vm->is_compute_context = false;
2821
2822	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2823		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2824						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2825
2826		if (adev->asic_type == CHIP_RAVEN)
2827			vm->pte_support_ats = true;
2828	} else {
2829		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2830						AMDGPU_VM_USE_CPU_FOR_GFX);
2831	}
2832	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2833			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2834	WARN_ONCE((vm->use_cpu_for_update &&
2835		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2836		  "CPU update of VM recommended only for large BAR system\n");
2837
2838	if (vm->use_cpu_for_update)
2839		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2840	else
2841		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2842	vm->last_update = NULL;
 
2843	vm->last_unlocked = dma_fence_get_stub();
 
 
2844
2845	mutex_init(&vm->eviction_lock);
2846	vm->evicting = false;
2847
2848	amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2849	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2850		bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2851	r = amdgpu_bo_create(adev, &bp, &root);
2852	if (r)
2853		goto error_free_delayed;
2854
2855	r = amdgpu_bo_reserve(root, true);
 
 
 
 
 
 
 
 
 
2856	if (r)
2857		goto error_free_root;
2858
2859	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2860	if (r)
2861		goto error_unreserve;
2862
2863	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2864
2865	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2866	if (r)
2867		goto error_unreserve;
2868
2869	amdgpu_bo_unreserve(vm->root.base.bo);
2870
2871	if (pasid) {
2872		unsigned long flags;
2873
2874		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2875		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2876			      GFP_ATOMIC);
2877		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2878		if (r < 0)
2879			goto error_free_root;
2880
2881		vm->pasid = pasid;
2882	}
2883
2884	INIT_KFIFO(vm->faults);
2885
2886	return 0;
2887
2888error_unreserve:
2889	amdgpu_bo_unreserve(vm->root.base.bo);
2890
2891error_free_root:
2892	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2893	amdgpu_bo_unref(&vm->root.base.bo);
2894	vm->root.base.bo = NULL;
2895
2896error_free_delayed:
 
2897	dma_fence_put(vm->last_unlocked);
2898	drm_sched_entity_destroy(&vm->delayed);
2899
2900error_free_immediate:
2901	drm_sched_entity_destroy(&vm->immediate);
2902
2903	return r;
2904}
2905
2906/**
2907 * amdgpu_vm_check_clean_reserved - check if a VM is clean
2908 *
2909 * @adev: amdgpu_device pointer
2910 * @vm: the VM to check
2911 *
2912 * check all entries of the root PD, if any subsequent PDs are allocated,
2913 * it means there are page table creating and filling, and is no a clean
2914 * VM
2915 *
2916 * Returns:
2917 *	0 if this VM is clean
2918 */
2919static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2920	struct amdgpu_vm *vm)
2921{
2922	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2923	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2924	unsigned int i = 0;
2925
2926	if (!(vm->root.entries))
2927		return 0;
2928
2929	for (i = 0; i < entries; i++) {
2930		if (vm->root.entries[i].base.bo)
2931			return -EINVAL;
2932	}
2933
2934	return 0;
2935}
2936
2937/**
2938 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2939 *
2940 * @adev: amdgpu_device pointer
2941 * @vm: requested vm
2942 * @pasid: pasid to use
2943 *
2944 * This only works on GFX VMs that don't have any BOs added and no
2945 * page tables allocated yet.
2946 *
2947 * Changes the following VM parameters:
2948 * - use_cpu_for_update
2949 * - pte_supports_ats
2950 * - pasid (old PASID is released, because compute manages its own PASIDs)
2951 *
2952 * Reinitializes the page directory to reflect the changed ATS
2953 * setting.
2954 *
2955 * Returns:
2956 * 0 for success, -errno for errors.
2957 */
2958int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2959			   unsigned int pasid)
2960{
2961	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2962	int r;
2963
2964	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2965	if (r)
2966		return r;
2967
2968	/* Sanity checks */
2969	r = amdgpu_vm_check_clean_reserved(adev, vm);
2970	if (r)
2971		goto unreserve_bo;
2972
2973	if (pasid) {
2974		unsigned long flags;
2975
2976		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2977		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2978			      GFP_ATOMIC);
2979		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2980
2981		if (r == -ENOSPC)
2982			goto unreserve_bo;
2983		r = 0;
2984	}
2985
2986	/* Check if PD needs to be reinitialized and do it before
2987	 * changing any other state, in case it fails.
2988	 */
2989	if (pte_support_ats != vm->pte_support_ats) {
2990		vm->pte_support_ats = pte_support_ats;
2991		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
2992		if (r)
2993			goto free_idr;
2994	}
2995
2996	/* Update VM state */
2997	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2998				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2999	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3000			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3001	WARN_ONCE((vm->use_cpu_for_update &&
3002		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3003		  "CPU update of VM recommended only for large BAR system\n");
3004
3005	if (vm->use_cpu_for_update) {
3006		/* Sync with last SDMA update/clear before switching to CPU */
3007		r = amdgpu_bo_sync_wait(vm->root.base.bo,
3008					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3009		if (r)
3010			goto free_idr;
3011
3012		vm->update_funcs = &amdgpu_vm_cpu_funcs;
 
 
 
 
3013	} else {
3014		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3015	}
 
3016	dma_fence_put(vm->last_update);
3017	vm->last_update = NULL;
3018	vm->is_compute_context = true;
3019
3020	if (vm->pasid) {
3021		unsigned long flags;
3022
3023		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3024		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3025		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3026
3027		/* Free the original amdgpu allocated pasid
3028		 * Will be replaced with kfd allocated pasid
3029		 */
3030		amdgpu_pasid_free(vm->pasid);
3031		vm->pasid = 0;
3032	}
3033
3034	/* Free the shadow bo for compute VM */
3035	amdgpu_bo_unref(&vm->root.base.bo->shadow);
3036
3037	if (pasid)
3038		vm->pasid = pasid;
3039
3040	goto unreserve_bo;
3041
3042free_idr:
3043	if (pasid) {
3044		unsigned long flags;
3045
3046		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3047		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3048		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3049	}
3050unreserve_bo:
3051	amdgpu_bo_unreserve(vm->root.base.bo);
3052	return r;
3053}
3054
3055/**
3056 * amdgpu_vm_release_compute - release a compute vm
3057 * @adev: amdgpu_device pointer
3058 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3059 *
3060 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3061 * pasid from vm. Compute should stop use of vm after this call.
3062 */
3063void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3064{
3065	if (vm->pasid) {
3066		unsigned long flags;
3067
3068		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3069		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3070		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3071	}
3072	vm->pasid = 0;
3073	vm->is_compute_context = false;
3074}
3075
3076/**
3077 * amdgpu_vm_fini - tear down a vm instance
3078 *
3079 * @adev: amdgpu_device pointer
3080 * @vm: requested vm
3081 *
3082 * Tear down @vm.
3083 * Unbind the VM and remove all bos from the vm bo list
3084 */
3085void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3086{
3087	struct amdgpu_bo_va_mapping *mapping, *tmp;
3088	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3089	struct amdgpu_bo *root;
 
3090	int i;
3091
3092	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3093
3094	root = amdgpu_bo_ref(vm->root.base.bo);
 
 
3095	amdgpu_bo_reserve(root, true);
3096	if (vm->pasid) {
3097		unsigned long flags;
3098
3099		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3100		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3101		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3102		vm->pasid = 0;
3103	}
3104
3105	dma_fence_wait(vm->last_unlocked, false);
3106	dma_fence_put(vm->last_unlocked);
 
 
 
 
 
3107
3108	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3109		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3110			amdgpu_vm_prt_fini(adev, vm);
3111			prt_fini_needed = false;
3112		}
3113
3114		list_del(&mapping->list);
3115		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3116	}
3117
3118	amdgpu_vm_free_pts(adev, vm, NULL);
3119	amdgpu_bo_unreserve(root);
3120	amdgpu_bo_unref(&root);
3121	WARN_ON(vm->root.base.bo);
3122
3123	drm_sched_entity_destroy(&vm->immediate);
3124	drm_sched_entity_destroy(&vm->delayed);
3125
3126	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3127		dev_err(adev->dev, "still active bo inside vm\n");
3128	}
3129	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3130					     &vm->va.rb_root, rb) {
3131		/* Don't remove the mapping here, we don't want to trigger a
3132		 * rebalance and the tree is about to be destroyed anyway.
3133		 */
3134		list_del(&mapping->list);
3135		kfree(mapping);
3136	}
3137
3138	dma_fence_put(vm->last_update);
3139	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3140		amdgpu_vmid_free_reserved(adev, vm, i);
 
 
 
 
 
 
3141}
3142
3143/**
3144 * amdgpu_vm_manager_init - init the VM manager
3145 *
3146 * @adev: amdgpu_device pointer
3147 *
3148 * Initialize the VM manager structures
3149 */
3150void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3151{
3152	unsigned i;
3153
 
 
 
 
 
 
3154	amdgpu_vmid_mgr_init(adev);
3155
3156	adev->vm_manager.fence_context =
3157		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3158	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3159		adev->vm_manager.seqno[i] = 0;
3160
3161	spin_lock_init(&adev->vm_manager.prt_lock);
3162	atomic_set(&adev->vm_manager.num_prt_users, 0);
3163
3164	/* If not overridden by the user, by default, only in large BAR systems
3165	 * Compute VM tables will be updated by CPU
3166	 */
3167#ifdef CONFIG_X86_64
3168	if (amdgpu_vm_update_mode == -1) {
3169		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
 
 
 
 
3170			adev->vm_manager.vm_update_mode =
3171				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3172		else
3173			adev->vm_manager.vm_update_mode = 0;
3174	} else
3175		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3176#else
3177	adev->vm_manager.vm_update_mode = 0;
3178#endif
3179
3180	idr_init(&adev->vm_manager.pasid_idr);
3181	spin_lock_init(&adev->vm_manager.pasid_lock);
3182}
3183
3184/**
3185 * amdgpu_vm_manager_fini - cleanup VM manager
3186 *
3187 * @adev: amdgpu_device pointer
3188 *
3189 * Cleanup the VM manager and free resources.
3190 */
3191void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3192{
3193	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3194	idr_destroy(&adev->vm_manager.pasid_idr);
3195
3196	amdgpu_vmid_mgr_fini(adev);
3197}
3198
3199/**
3200 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3201 *
3202 * @dev: drm device pointer
3203 * @data: drm_amdgpu_vm
3204 * @filp: drm file pointer
3205 *
3206 * Returns:
3207 * 0 for success, -errno for errors.
3208 */
3209int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3210{
3211	union drm_amdgpu_vm *args = data;
3212	struct amdgpu_device *adev = dev->dev_private;
3213	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3214	long timeout = msecs_to_jiffies(2000);
3215	int r;
 
 
3216
3217	switch (args->in.op) {
3218	case AMDGPU_VM_OP_RESERVE_VMID:
3219		/* We only have requirement to reserve vmid from gfxhub */
3220		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3221					       AMDGPU_GFXHUB_0);
3222		if (r)
3223			return r;
 
3224		break;
3225	case AMDGPU_VM_OP_UNRESERVE_VMID:
3226		if (amdgpu_sriov_runtime(adev))
3227			timeout = 8 * timeout;
3228
3229		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3230		 * not referenced anymore.
3231		 */
3232		r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3233		if (r)
3234			return r;
3235
3236		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3237		if (r < 0)
3238			return r;
3239
3240		amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3241		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3242		break;
3243	default:
3244		return -EINVAL;
3245	}
3246
3247	return 0;
3248}
3249
3250/**
3251 * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3252 *
3253 * @adev: drm device pointer
3254 * @pasid: PASID identifier for VM
3255 * @task_info: task_info to fill.
3256 */
3257void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3258			 struct amdgpu_task_info *task_info)
3259{
3260	struct amdgpu_vm *vm;
3261	unsigned long flags;
3262
3263	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3264
3265	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3266	if (vm)
3267		*task_info = vm->task_info;
3268
3269	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3270}
3271
3272/**
3273 * amdgpu_vm_set_task_info - Sets VMs task info.
3274 *
3275 * @vm: vm for which to set the info
3276 */
3277void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3278{
3279	if (vm->task_info.pid)
3280		return;
3281
3282	vm->task_info.pid = current->pid;
3283	get_task_comm(vm->task_info.task_name, current);
3284
3285	if (current->group_leader->mm != current->mm)
3286		return;
3287
3288	vm->task_info.tgid = current->group_leader->pid;
3289	get_task_comm(vm->task_info.process_name, current->group_leader);
3290}
3291
3292/**
3293 * amdgpu_vm_handle_fault - graceful handling of VM faults.
3294 * @adev: amdgpu device pointer
3295 * @pasid: PASID of the VM
 
 
 
3296 * @addr: Address of the fault
 
3297 *
3298 * Try to gracefully handle a VM fault. Return true if the fault was handled and
3299 * shouldn't be reported any more.
3300 */
3301bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, unsigned int pasid,
3302			    uint64_t addr)
 
3303{
 
3304	struct amdgpu_bo *root;
 
3305	uint64_t value, flags;
3306	struct amdgpu_vm *vm;
3307	long r;
3308
3309	spin_lock(&adev->vm_manager.pasid_lock);
3310	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3311	if (vm)
3312		root = amdgpu_bo_ref(vm->root.base.bo);
3313	else
 
3314		root = NULL;
3315	spin_unlock(&adev->vm_manager.pasid_lock);
 
3316
3317	if (!root)
3318		return false;
3319
 
 
 
 
 
 
 
 
3320	r = amdgpu_bo_reserve(root, true);
3321	if (r)
3322		goto error_unref;
3323
3324	/* Double check that the VM still exists */
3325	spin_lock(&adev->vm_manager.pasid_lock);
3326	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3327	if (vm && vm->root.base.bo != root)
3328		vm = NULL;
3329	spin_unlock(&adev->vm_manager.pasid_lock);
3330	if (!vm)
3331		goto error_unlock;
3332
3333	addr /= AMDGPU_GPU_PAGE_SIZE;
3334	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3335		AMDGPU_PTE_SYSTEM;
3336
3337	if (vm->is_compute_context) {
3338		/* Intentionally setting invalid PTE flag
3339		 * combination to force a no-retry-fault
3340		 */
3341		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3342			AMDGPU_PTE_TF;
3343		value = 0;
3344
3345	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3346		/* Redirect the access to the dummy page */
3347		value = adev->dummy_page_addr;
3348		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3349			AMDGPU_PTE_WRITEABLE;
3350
3351	} else {
3352		/* Let the hw retry silently on the PTE */
3353		value = 0;
3354	}
3355
3356	r = amdgpu_vm_bo_update_mapping(adev, vm, true, false, NULL, addr,
3357					addr + 1, flags, value, NULL, NULL);
 
 
 
 
 
 
3358	if (r)
3359		goto error_unlock;
3360
3361	r = amdgpu_vm_update_pdes(adev, vm, true);
3362
3363error_unlock:
3364	amdgpu_bo_unreserve(root);
3365	if (r < 0)
3366		DRM_ERROR("Can't handle page fault (%ld)\n", r);
3367
3368error_unref:
3369	amdgpu_bo_unref(&root);
3370
3371	return false;
3372}