Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
Note: File does not exist in v6.9.4.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/block_dev.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
   7 */
   8
   9#include <linux/init.h>
  10#include <linux/mm.h>
  11#include <linux/fcntl.h>
  12#include <linux/slab.h>
  13#include <linux/kmod.h>
  14#include <linux/major.h>
  15#include <linux/device_cgroup.h>
  16#include <linux/highmem.h>
  17#include <linux/blkdev.h>
  18#include <linux/backing-dev.h>
  19#include <linux/module.h>
  20#include <linux/blkpg.h>
  21#include <linux/magic.h>
  22#include <linux/buffer_head.h>
  23#include <linux/swap.h>
  24#include <linux/pagevec.h>
  25#include <linux/writeback.h>
  26#include <linux/mpage.h>
  27#include <linux/mount.h>
  28#include <linux/pseudo_fs.h>
  29#include <linux/uio.h>
  30#include <linux/namei.h>
  31#include <linux/log2.h>
  32#include <linux/cleancache.h>
  33#include <linux/task_io_accounting_ops.h>
  34#include <linux/falloc.h>
  35#include <linux/uaccess.h>
  36#include <linux/suspend.h>
  37#include "internal.h"
  38
  39struct bdev_inode {
  40	struct block_device bdev;
  41	struct inode vfs_inode;
  42};
  43
  44static const struct address_space_operations def_blk_aops;
  45
  46static inline struct bdev_inode *BDEV_I(struct inode *inode)
  47{
  48	return container_of(inode, struct bdev_inode, vfs_inode);
  49}
  50
  51struct block_device *I_BDEV(struct inode *inode)
  52{
  53	return &BDEV_I(inode)->bdev;
  54}
  55EXPORT_SYMBOL(I_BDEV);
  56
  57static void bdev_write_inode(struct block_device *bdev)
  58{
  59	struct inode *inode = bdev->bd_inode;
  60	int ret;
  61
  62	spin_lock(&inode->i_lock);
  63	while (inode->i_state & I_DIRTY) {
  64		spin_unlock(&inode->i_lock);
  65		ret = write_inode_now(inode, true);
  66		if (ret) {
  67			char name[BDEVNAME_SIZE];
  68			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
  69					    "for block device %s (err=%d).\n",
  70					    bdevname(bdev, name), ret);
  71		}
  72		spin_lock(&inode->i_lock);
  73	}
  74	spin_unlock(&inode->i_lock);
  75}
  76
  77/* Kill _all_ buffers and pagecache , dirty or not.. */
  78static void kill_bdev(struct block_device *bdev)
  79{
  80	struct address_space *mapping = bdev->bd_inode->i_mapping;
  81
  82	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
  83		return;
  84
  85	invalidate_bh_lrus();
  86	truncate_inode_pages(mapping, 0);
  87}
  88
  89/* Invalidate clean unused buffers and pagecache. */
  90void invalidate_bdev(struct block_device *bdev)
  91{
  92	struct address_space *mapping = bdev->bd_inode->i_mapping;
  93
  94	if (mapping->nrpages) {
  95		invalidate_bh_lrus();
  96		lru_add_drain_all();	/* make sure all lru add caches are flushed */
  97		invalidate_mapping_pages(mapping, 0, -1);
  98	}
  99	/* 99% of the time, we don't need to flush the cleancache on the bdev.
 100	 * But, for the strange corners, lets be cautious
 101	 */
 102	cleancache_invalidate_inode(mapping);
 103}
 104EXPORT_SYMBOL(invalidate_bdev);
 105
 106static void set_init_blocksize(struct block_device *bdev)
 107{
 108	bdev->bd_inode->i_blkbits = blksize_bits(bdev_logical_block_size(bdev));
 109}
 110
 111int set_blocksize(struct block_device *bdev, int size)
 112{
 113	/* Size must be a power of two, and between 512 and PAGE_SIZE */
 114	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
 115		return -EINVAL;
 116
 117	/* Size cannot be smaller than the size supported by the device */
 118	if (size < bdev_logical_block_size(bdev))
 119		return -EINVAL;
 120
 121	/* Don't change the size if it is same as current */
 122	if (bdev->bd_inode->i_blkbits != blksize_bits(size)) {
 123		sync_blockdev(bdev);
 124		bdev->bd_inode->i_blkbits = blksize_bits(size);
 125		kill_bdev(bdev);
 126	}
 127	return 0;
 128}
 129
 130EXPORT_SYMBOL(set_blocksize);
 131
 132int sb_set_blocksize(struct super_block *sb, int size)
 133{
 134	if (set_blocksize(sb->s_bdev, size))
 135		return 0;
 136	/* If we get here, we know size is power of two
 137	 * and it's value is between 512 and PAGE_SIZE */
 138	sb->s_blocksize = size;
 139	sb->s_blocksize_bits = blksize_bits(size);
 140	return sb->s_blocksize;
 141}
 142
 143EXPORT_SYMBOL(sb_set_blocksize);
 144
 145int sb_min_blocksize(struct super_block *sb, int size)
 146{
 147	int minsize = bdev_logical_block_size(sb->s_bdev);
 148	if (size < minsize)
 149		size = minsize;
 150	return sb_set_blocksize(sb, size);
 151}
 152
 153EXPORT_SYMBOL(sb_min_blocksize);
 154
 155static int
 156blkdev_get_block(struct inode *inode, sector_t iblock,
 157		struct buffer_head *bh, int create)
 158{
 159	bh->b_bdev = I_BDEV(inode);
 160	bh->b_blocknr = iblock;
 161	set_buffer_mapped(bh);
 162	return 0;
 163}
 164
 165static struct inode *bdev_file_inode(struct file *file)
 166{
 167	return file->f_mapping->host;
 168}
 169
 170static unsigned int dio_bio_write_op(struct kiocb *iocb)
 171{
 172	unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
 173
 174	/* avoid the need for a I/O completion work item */
 175	if (iocb->ki_flags & IOCB_DSYNC)
 176		op |= REQ_FUA;
 177	return op;
 178}
 179
 180#define DIO_INLINE_BIO_VECS 4
 181
 182static void blkdev_bio_end_io_simple(struct bio *bio)
 183{
 184	struct task_struct *waiter = bio->bi_private;
 185
 186	WRITE_ONCE(bio->bi_private, NULL);
 187	blk_wake_io_task(waiter);
 188}
 189
 190static ssize_t
 191__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
 192		int nr_pages)
 193{
 194	struct file *file = iocb->ki_filp;
 195	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
 196	struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs;
 197	loff_t pos = iocb->ki_pos;
 198	bool should_dirty = false;
 199	struct bio bio;
 200	ssize_t ret;
 201	blk_qc_t qc;
 202
 203	if ((pos | iov_iter_alignment(iter)) &
 204	    (bdev_logical_block_size(bdev) - 1))
 205		return -EINVAL;
 206
 207	if (nr_pages <= DIO_INLINE_BIO_VECS)
 208		vecs = inline_vecs;
 209	else {
 210		vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
 211				     GFP_KERNEL);
 212		if (!vecs)
 213			return -ENOMEM;
 214	}
 215
 216	bio_init(&bio, vecs, nr_pages);
 217	bio_set_dev(&bio, bdev);
 218	bio.bi_iter.bi_sector = pos >> 9;
 219	bio.bi_write_hint = iocb->ki_hint;
 220	bio.bi_private = current;
 221	bio.bi_end_io = blkdev_bio_end_io_simple;
 222	bio.bi_ioprio = iocb->ki_ioprio;
 223
 224	ret = bio_iov_iter_get_pages(&bio, iter);
 225	if (unlikely(ret))
 226		goto out;
 227	ret = bio.bi_iter.bi_size;
 228
 229	if (iov_iter_rw(iter) == READ) {
 230		bio.bi_opf = REQ_OP_READ;
 231		if (iter_is_iovec(iter))
 232			should_dirty = true;
 233	} else {
 234		bio.bi_opf = dio_bio_write_op(iocb);
 235		task_io_account_write(ret);
 236	}
 237	if (iocb->ki_flags & IOCB_HIPRI)
 238		bio_set_polled(&bio, iocb);
 239
 240	qc = submit_bio(&bio);
 241	for (;;) {
 242		set_current_state(TASK_UNINTERRUPTIBLE);
 243		if (!READ_ONCE(bio.bi_private))
 244			break;
 245		if (!(iocb->ki_flags & IOCB_HIPRI) ||
 246		    !blk_poll(bdev_get_queue(bdev), qc, true))
 247			blk_io_schedule();
 248	}
 249	__set_current_state(TASK_RUNNING);
 250
 251	bio_release_pages(&bio, should_dirty);
 252	if (unlikely(bio.bi_status))
 253		ret = blk_status_to_errno(bio.bi_status);
 254
 255out:
 256	if (vecs != inline_vecs)
 257		kfree(vecs);
 258
 259	bio_uninit(&bio);
 260
 261	return ret;
 262}
 263
 264struct blkdev_dio {
 265	union {
 266		struct kiocb		*iocb;
 267		struct task_struct	*waiter;
 268	};
 269	size_t			size;
 270	atomic_t		ref;
 271	bool			multi_bio : 1;
 272	bool			should_dirty : 1;
 273	bool			is_sync : 1;
 274	struct bio		bio;
 275};
 276
 277static struct bio_set blkdev_dio_pool;
 278
 279static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
 280{
 281	struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
 282	struct request_queue *q = bdev_get_queue(bdev);
 283
 284	return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
 285}
 286
 287static void blkdev_bio_end_io(struct bio *bio)
 288{
 289	struct blkdev_dio *dio = bio->bi_private;
 290	bool should_dirty = dio->should_dirty;
 291
 292	if (bio->bi_status && !dio->bio.bi_status)
 293		dio->bio.bi_status = bio->bi_status;
 294
 295	if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
 296		if (!dio->is_sync) {
 297			struct kiocb *iocb = dio->iocb;
 298			ssize_t ret;
 299
 300			if (likely(!dio->bio.bi_status)) {
 301				ret = dio->size;
 302				iocb->ki_pos += ret;
 303			} else {
 304				ret = blk_status_to_errno(dio->bio.bi_status);
 305			}
 306
 307			dio->iocb->ki_complete(iocb, ret, 0);
 308			if (dio->multi_bio)
 309				bio_put(&dio->bio);
 310		} else {
 311			struct task_struct *waiter = dio->waiter;
 312
 313			WRITE_ONCE(dio->waiter, NULL);
 314			blk_wake_io_task(waiter);
 315		}
 316	}
 317
 318	if (should_dirty) {
 319		bio_check_pages_dirty(bio);
 320	} else {
 321		bio_release_pages(bio, false);
 322		bio_put(bio);
 323	}
 324}
 325
 326static ssize_t
 327__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
 328{
 329	struct file *file = iocb->ki_filp;
 330	struct inode *inode = bdev_file_inode(file);
 331	struct block_device *bdev = I_BDEV(inode);
 332	struct blk_plug plug;
 333	struct blkdev_dio *dio;
 334	struct bio *bio;
 335	bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
 336	bool is_read = (iov_iter_rw(iter) == READ), is_sync;
 337	loff_t pos = iocb->ki_pos;
 338	blk_qc_t qc = BLK_QC_T_NONE;
 339	int ret = 0;
 340
 341	if ((pos | iov_iter_alignment(iter)) &
 342	    (bdev_logical_block_size(bdev) - 1))
 343		return -EINVAL;
 344
 345	bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
 346
 347	dio = container_of(bio, struct blkdev_dio, bio);
 348	dio->is_sync = is_sync = is_sync_kiocb(iocb);
 349	if (dio->is_sync) {
 350		dio->waiter = current;
 351		bio_get(bio);
 352	} else {
 353		dio->iocb = iocb;
 354	}
 355
 356	dio->size = 0;
 357	dio->multi_bio = false;
 358	dio->should_dirty = is_read && iter_is_iovec(iter);
 359
 360	/*
 361	 * Don't plug for HIPRI/polled IO, as those should go straight
 362	 * to issue
 363	 */
 364	if (!is_poll)
 365		blk_start_plug(&plug);
 366
 367	for (;;) {
 368		bio_set_dev(bio, bdev);
 369		bio->bi_iter.bi_sector = pos >> 9;
 370		bio->bi_write_hint = iocb->ki_hint;
 371		bio->bi_private = dio;
 372		bio->bi_end_io = blkdev_bio_end_io;
 373		bio->bi_ioprio = iocb->ki_ioprio;
 374
 375		ret = bio_iov_iter_get_pages(bio, iter);
 376		if (unlikely(ret)) {
 377			bio->bi_status = BLK_STS_IOERR;
 378			bio_endio(bio);
 379			break;
 380		}
 381
 382		if (is_read) {
 383			bio->bi_opf = REQ_OP_READ;
 384			if (dio->should_dirty)
 385				bio_set_pages_dirty(bio);
 386		} else {
 387			bio->bi_opf = dio_bio_write_op(iocb);
 388			task_io_account_write(bio->bi_iter.bi_size);
 389		}
 390
 391		dio->size += bio->bi_iter.bi_size;
 392		pos += bio->bi_iter.bi_size;
 393
 394		nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
 395		if (!nr_pages) {
 396			bool polled = false;
 397
 398			if (iocb->ki_flags & IOCB_HIPRI) {
 399				bio_set_polled(bio, iocb);
 400				polled = true;
 401			}
 402
 403			qc = submit_bio(bio);
 404
 405			if (polled)
 406				WRITE_ONCE(iocb->ki_cookie, qc);
 407			break;
 408		}
 409
 410		if (!dio->multi_bio) {
 411			/*
 412			 * AIO needs an extra reference to ensure the dio
 413			 * structure which is embedded into the first bio
 414			 * stays around.
 415			 */
 416			if (!is_sync)
 417				bio_get(bio);
 418			dio->multi_bio = true;
 419			atomic_set(&dio->ref, 2);
 420		} else {
 421			atomic_inc(&dio->ref);
 422		}
 423
 424		submit_bio(bio);
 425		bio = bio_alloc(GFP_KERNEL, nr_pages);
 426	}
 427
 428	if (!is_poll)
 429		blk_finish_plug(&plug);
 430
 431	if (!is_sync)
 432		return -EIOCBQUEUED;
 433
 434	for (;;) {
 435		set_current_state(TASK_UNINTERRUPTIBLE);
 436		if (!READ_ONCE(dio->waiter))
 437			break;
 438
 439		if (!(iocb->ki_flags & IOCB_HIPRI) ||
 440		    !blk_poll(bdev_get_queue(bdev), qc, true))
 441			blk_io_schedule();
 442	}
 443	__set_current_state(TASK_RUNNING);
 444
 445	if (!ret)
 446		ret = blk_status_to_errno(dio->bio.bi_status);
 447	if (likely(!ret))
 448		ret = dio->size;
 449
 450	bio_put(&dio->bio);
 451	return ret;
 452}
 453
 454static ssize_t
 455blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 456{
 457	int nr_pages;
 458
 459	nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
 460	if (!nr_pages)
 461		return 0;
 462	if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
 463		return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
 464
 465	return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
 466}
 467
 468static __init int blkdev_init(void)
 469{
 470	return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
 471}
 472module_init(blkdev_init);
 473
 474int __sync_blockdev(struct block_device *bdev, int wait)
 475{
 476	if (!bdev)
 477		return 0;
 478	if (!wait)
 479		return filemap_flush(bdev->bd_inode->i_mapping);
 480	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
 481}
 482
 483/*
 484 * Write out and wait upon all the dirty data associated with a block
 485 * device via its mapping.  Does not take the superblock lock.
 486 */
 487int sync_blockdev(struct block_device *bdev)
 488{
 489	return __sync_blockdev(bdev, 1);
 490}
 491EXPORT_SYMBOL(sync_blockdev);
 492
 493/*
 494 * Write out and wait upon all dirty data associated with this
 495 * device.   Filesystem data as well as the underlying block
 496 * device.  Takes the superblock lock.
 497 */
 498int fsync_bdev(struct block_device *bdev)
 499{
 500	struct super_block *sb = get_super(bdev);
 501	if (sb) {
 502		int res = sync_filesystem(sb);
 503		drop_super(sb);
 504		return res;
 505	}
 506	return sync_blockdev(bdev);
 507}
 508EXPORT_SYMBOL(fsync_bdev);
 509
 510/**
 511 * freeze_bdev  --  lock a filesystem and force it into a consistent state
 512 * @bdev:	blockdevice to lock
 513 *
 514 * If a superblock is found on this device, we take the s_umount semaphore
 515 * on it to make sure nobody unmounts until the snapshot creation is done.
 516 * The reference counter (bd_fsfreeze_count) guarantees that only the last
 517 * unfreeze process can unfreeze the frozen filesystem actually when multiple
 518 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
 519 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
 520 * actually.
 521 */
 522struct super_block *freeze_bdev(struct block_device *bdev)
 523{
 524	struct super_block *sb;
 525	int error = 0;
 526
 527	mutex_lock(&bdev->bd_fsfreeze_mutex);
 528	if (++bdev->bd_fsfreeze_count > 1) {
 529		/*
 530		 * We don't even need to grab a reference - the first call
 531		 * to freeze_bdev grab an active reference and only the last
 532		 * thaw_bdev drops it.
 533		 */
 534		sb = get_super(bdev);
 535		if (sb)
 536			drop_super(sb);
 537		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 538		return sb;
 539	}
 540
 541	sb = get_active_super(bdev);
 542	if (!sb)
 543		goto out;
 544	if (sb->s_op->freeze_super)
 545		error = sb->s_op->freeze_super(sb);
 546	else
 547		error = freeze_super(sb);
 548	if (error) {
 549		deactivate_super(sb);
 550		bdev->bd_fsfreeze_count--;
 551		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 552		return ERR_PTR(error);
 553	}
 554	deactivate_super(sb);
 555 out:
 556	sync_blockdev(bdev);
 557	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 558	return sb;	/* thaw_bdev releases s->s_umount */
 559}
 560EXPORT_SYMBOL(freeze_bdev);
 561
 562/**
 563 * thaw_bdev  -- unlock filesystem
 564 * @bdev:	blockdevice to unlock
 565 * @sb:		associated superblock
 566 *
 567 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
 568 */
 569int thaw_bdev(struct block_device *bdev, struct super_block *sb)
 570{
 571	int error = -EINVAL;
 572
 573	mutex_lock(&bdev->bd_fsfreeze_mutex);
 574	if (!bdev->bd_fsfreeze_count)
 575		goto out;
 576
 577	error = 0;
 578	if (--bdev->bd_fsfreeze_count > 0)
 579		goto out;
 580
 581	if (!sb)
 582		goto out;
 583
 584	if (sb->s_op->thaw_super)
 585		error = sb->s_op->thaw_super(sb);
 586	else
 587		error = thaw_super(sb);
 588	if (error)
 589		bdev->bd_fsfreeze_count++;
 590out:
 591	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 592	return error;
 593}
 594EXPORT_SYMBOL(thaw_bdev);
 595
 596static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
 597{
 598	return block_write_full_page(page, blkdev_get_block, wbc);
 599}
 600
 601static int blkdev_readpage(struct file * file, struct page * page)
 602{
 603	return block_read_full_page(page, blkdev_get_block);
 604}
 605
 606static void blkdev_readahead(struct readahead_control *rac)
 607{
 608	mpage_readahead(rac, blkdev_get_block);
 609}
 610
 611static int blkdev_write_begin(struct file *file, struct address_space *mapping,
 612			loff_t pos, unsigned len, unsigned flags,
 613			struct page **pagep, void **fsdata)
 614{
 615	return block_write_begin(mapping, pos, len, flags, pagep,
 616				 blkdev_get_block);
 617}
 618
 619static int blkdev_write_end(struct file *file, struct address_space *mapping,
 620			loff_t pos, unsigned len, unsigned copied,
 621			struct page *page, void *fsdata)
 622{
 623	int ret;
 624	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
 625
 626	unlock_page(page);
 627	put_page(page);
 628
 629	return ret;
 630}
 631
 632/*
 633 * private llseek:
 634 * for a block special file file_inode(file)->i_size is zero
 635 * so we compute the size by hand (just as in block_read/write above)
 636 */
 637static loff_t block_llseek(struct file *file, loff_t offset, int whence)
 638{
 639	struct inode *bd_inode = bdev_file_inode(file);
 640	loff_t retval;
 641
 642	inode_lock(bd_inode);
 643	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
 644	inode_unlock(bd_inode);
 645	return retval;
 646}
 647	
 648int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
 649{
 650	struct inode *bd_inode = bdev_file_inode(filp);
 651	struct block_device *bdev = I_BDEV(bd_inode);
 652	int error;
 653	
 654	error = file_write_and_wait_range(filp, start, end);
 655	if (error)
 656		return error;
 657
 658	/*
 659	 * There is no need to serialise calls to blkdev_issue_flush with
 660	 * i_mutex and doing so causes performance issues with concurrent
 661	 * O_SYNC writers to a block device.
 662	 */
 663	error = blkdev_issue_flush(bdev, GFP_KERNEL);
 664	if (error == -EOPNOTSUPP)
 665		error = 0;
 666
 667	return error;
 668}
 669EXPORT_SYMBOL(blkdev_fsync);
 670
 671/**
 672 * bdev_read_page() - Start reading a page from a block device
 673 * @bdev: The device to read the page from
 674 * @sector: The offset on the device to read the page to (need not be aligned)
 675 * @page: The page to read
 676 *
 677 * On entry, the page should be locked.  It will be unlocked when the page
 678 * has been read.  If the block driver implements rw_page synchronously,
 679 * that will be true on exit from this function, but it need not be.
 680 *
 681 * Errors returned by this function are usually "soft", eg out of memory, or
 682 * queue full; callers should try a different route to read this page rather
 683 * than propagate an error back up the stack.
 684 *
 685 * Return: negative errno if an error occurs, 0 if submission was successful.
 686 */
 687int bdev_read_page(struct block_device *bdev, sector_t sector,
 688			struct page *page)
 689{
 690	const struct block_device_operations *ops = bdev->bd_disk->fops;
 691	int result = -EOPNOTSUPP;
 692
 693	if (!ops->rw_page || bdev_get_integrity(bdev))
 694		return result;
 695
 696	result = blk_queue_enter(bdev->bd_disk->queue, 0);
 697	if (result)
 698		return result;
 699	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
 700			      REQ_OP_READ);
 701	blk_queue_exit(bdev->bd_disk->queue);
 702	return result;
 703}
 704
 705/**
 706 * bdev_write_page() - Start writing a page to a block device
 707 * @bdev: The device to write the page to
 708 * @sector: The offset on the device to write the page to (need not be aligned)
 709 * @page: The page to write
 710 * @wbc: The writeback_control for the write
 711 *
 712 * On entry, the page should be locked and not currently under writeback.
 713 * On exit, if the write started successfully, the page will be unlocked and
 714 * under writeback.  If the write failed already (eg the driver failed to
 715 * queue the page to the device), the page will still be locked.  If the
 716 * caller is a ->writepage implementation, it will need to unlock the page.
 717 *
 718 * Errors returned by this function are usually "soft", eg out of memory, or
 719 * queue full; callers should try a different route to write this page rather
 720 * than propagate an error back up the stack.
 721 *
 722 * Return: negative errno if an error occurs, 0 if submission was successful.
 723 */
 724int bdev_write_page(struct block_device *bdev, sector_t sector,
 725			struct page *page, struct writeback_control *wbc)
 726{
 727	int result;
 728	const struct block_device_operations *ops = bdev->bd_disk->fops;
 729
 730	if (!ops->rw_page || bdev_get_integrity(bdev))
 731		return -EOPNOTSUPP;
 732	result = blk_queue_enter(bdev->bd_disk->queue, 0);
 733	if (result)
 734		return result;
 735
 736	set_page_writeback(page);
 737	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
 738			      REQ_OP_WRITE);
 739	if (result) {
 740		end_page_writeback(page);
 741	} else {
 742		clean_page_buffers(page);
 743		unlock_page(page);
 744	}
 745	blk_queue_exit(bdev->bd_disk->queue);
 746	return result;
 747}
 748
 749/*
 750 * pseudo-fs
 751 */
 752
 753static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
 754static struct kmem_cache * bdev_cachep __read_mostly;
 755
 756static struct inode *bdev_alloc_inode(struct super_block *sb)
 757{
 758	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
 759	if (!ei)
 760		return NULL;
 761	return &ei->vfs_inode;
 762}
 763
 764static void bdev_free_inode(struct inode *inode)
 765{
 766	kmem_cache_free(bdev_cachep, BDEV_I(inode));
 767}
 768
 769static void init_once(void *foo)
 770{
 771	struct bdev_inode *ei = (struct bdev_inode *) foo;
 772	struct block_device *bdev = &ei->bdev;
 773
 774	memset(bdev, 0, sizeof(*bdev));
 775	mutex_init(&bdev->bd_mutex);
 776#ifdef CONFIG_SYSFS
 777	INIT_LIST_HEAD(&bdev->bd_holder_disks);
 778#endif
 779	bdev->bd_bdi = &noop_backing_dev_info;
 780	inode_init_once(&ei->vfs_inode);
 781	/* Initialize mutex for freeze. */
 782	mutex_init(&bdev->bd_fsfreeze_mutex);
 783}
 784
 785static void bdev_evict_inode(struct inode *inode)
 786{
 787	struct block_device *bdev = &BDEV_I(inode)->bdev;
 788	truncate_inode_pages_final(&inode->i_data);
 789	invalidate_inode_buffers(inode); /* is it needed here? */
 790	clear_inode(inode);
 791	/* Detach inode from wb early as bdi_put() may free bdi->wb */
 792	inode_detach_wb(inode);
 793	if (bdev->bd_bdi != &noop_backing_dev_info) {
 794		bdi_put(bdev->bd_bdi);
 795		bdev->bd_bdi = &noop_backing_dev_info;
 796	}
 797}
 798
 799static const struct super_operations bdev_sops = {
 800	.statfs = simple_statfs,
 801	.alloc_inode = bdev_alloc_inode,
 802	.free_inode = bdev_free_inode,
 803	.drop_inode = generic_delete_inode,
 804	.evict_inode = bdev_evict_inode,
 805};
 806
 807static int bd_init_fs_context(struct fs_context *fc)
 808{
 809	struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
 810	if (!ctx)
 811		return -ENOMEM;
 812	fc->s_iflags |= SB_I_CGROUPWB;
 813	ctx->ops = &bdev_sops;
 814	return 0;
 815}
 816
 817static struct file_system_type bd_type = {
 818	.name		= "bdev",
 819	.init_fs_context = bd_init_fs_context,
 820	.kill_sb	= kill_anon_super,
 821};
 822
 823struct super_block *blockdev_superblock __read_mostly;
 824EXPORT_SYMBOL_GPL(blockdev_superblock);
 825
 826void __init bdev_cache_init(void)
 827{
 828	int err;
 829	static struct vfsmount *bd_mnt;
 830
 831	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
 832			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
 833				SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
 834			init_once);
 835	err = register_filesystem(&bd_type);
 836	if (err)
 837		panic("Cannot register bdev pseudo-fs");
 838	bd_mnt = kern_mount(&bd_type);
 839	if (IS_ERR(bd_mnt))
 840		panic("Cannot create bdev pseudo-fs");
 841	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
 842}
 843
 844/*
 845 * Most likely _very_ bad one - but then it's hardly critical for small
 846 * /dev and can be fixed when somebody will need really large one.
 847 * Keep in mind that it will be fed through icache hash function too.
 848 */
 849static inline unsigned long hash(dev_t dev)
 850{
 851	return MAJOR(dev)+MINOR(dev);
 852}
 853
 854static int bdev_test(struct inode *inode, void *data)
 855{
 856	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
 857}
 858
 859static int bdev_set(struct inode *inode, void *data)
 860{
 861	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
 862	return 0;
 863}
 864
 865struct block_device *bdget(dev_t dev)
 866{
 867	struct block_device *bdev;
 868	struct inode *inode;
 869
 870	inode = iget5_locked(blockdev_superblock, hash(dev),
 871			bdev_test, bdev_set, &dev);
 872
 873	if (!inode)
 874		return NULL;
 875
 876	bdev = &BDEV_I(inode)->bdev;
 877
 878	if (inode->i_state & I_NEW) {
 879		bdev->bd_contains = NULL;
 880		bdev->bd_super = NULL;
 881		bdev->bd_inode = inode;
 882		bdev->bd_part_count = 0;
 883		bdev->bd_invalidated = 0;
 884		inode->i_mode = S_IFBLK;
 885		inode->i_rdev = dev;
 886		inode->i_bdev = bdev;
 887		inode->i_data.a_ops = &def_blk_aops;
 888		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
 889		unlock_new_inode(inode);
 890	}
 891	return bdev;
 892}
 893
 894EXPORT_SYMBOL(bdget);
 895
 896/**
 897 * bdgrab -- Grab a reference to an already referenced block device
 898 * @bdev:	Block device to grab a reference to.
 899 */
 900struct block_device *bdgrab(struct block_device *bdev)
 901{
 902	ihold(bdev->bd_inode);
 903	return bdev;
 904}
 905EXPORT_SYMBOL(bdgrab);
 906
 907long nr_blockdev_pages(void)
 908{
 909	struct inode *inode;
 910	long ret = 0;
 911
 912	spin_lock(&blockdev_superblock->s_inode_list_lock);
 913	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list)
 914		ret += inode->i_mapping->nrpages;
 915	spin_unlock(&blockdev_superblock->s_inode_list_lock);
 916
 917	return ret;
 918}
 919
 920void bdput(struct block_device *bdev)
 921{
 922	iput(bdev->bd_inode);
 923}
 924
 925EXPORT_SYMBOL(bdput);
 926 
 927static struct block_device *bd_acquire(struct inode *inode)
 928{
 929	struct block_device *bdev;
 930
 931	spin_lock(&bdev_lock);
 932	bdev = inode->i_bdev;
 933	if (bdev && !inode_unhashed(bdev->bd_inode)) {
 934		bdgrab(bdev);
 935		spin_unlock(&bdev_lock);
 936		return bdev;
 937	}
 938	spin_unlock(&bdev_lock);
 939
 940	/*
 941	 * i_bdev references block device inode that was already shut down
 942	 * (corresponding device got removed).  Remove the reference and look
 943	 * up block device inode again just in case new device got
 944	 * reestablished under the same device number.
 945	 */
 946	if (bdev)
 947		bd_forget(inode);
 948
 949	bdev = bdget(inode->i_rdev);
 950	if (bdev) {
 951		spin_lock(&bdev_lock);
 952		if (!inode->i_bdev) {
 953			/*
 954			 * We take an additional reference to bd_inode,
 955			 * and it's released in clear_inode() of inode.
 956			 * So, we can access it via ->i_mapping always
 957			 * without igrab().
 958			 */
 959			bdgrab(bdev);
 960			inode->i_bdev = bdev;
 961			inode->i_mapping = bdev->bd_inode->i_mapping;
 962		}
 963		spin_unlock(&bdev_lock);
 964	}
 965	return bdev;
 966}
 967
 968/* Call when you free inode */
 969
 970void bd_forget(struct inode *inode)
 971{
 972	struct block_device *bdev = NULL;
 973
 974	spin_lock(&bdev_lock);
 975	if (!sb_is_blkdev_sb(inode->i_sb))
 976		bdev = inode->i_bdev;
 977	inode->i_bdev = NULL;
 978	inode->i_mapping = &inode->i_data;
 979	spin_unlock(&bdev_lock);
 980
 981	if (bdev)
 982		bdput(bdev);
 983}
 984
 985/**
 986 * bd_may_claim - test whether a block device can be claimed
 987 * @bdev: block device of interest
 988 * @whole: whole block device containing @bdev, may equal @bdev
 989 * @holder: holder trying to claim @bdev
 990 *
 991 * Test whether @bdev can be claimed by @holder.
 992 *
 993 * CONTEXT:
 994 * spin_lock(&bdev_lock).
 995 *
 996 * RETURNS:
 997 * %true if @bdev can be claimed, %false otherwise.
 998 */
 999static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1000			 void *holder)
1001{
1002	if (bdev->bd_holder == holder)
1003		return true;	 /* already a holder */
1004	else if (bdev->bd_holder != NULL)
1005		return false; 	 /* held by someone else */
1006	else if (whole == bdev)
1007		return true;  	 /* is a whole device which isn't held */
1008
1009	else if (whole->bd_holder == bd_may_claim)
1010		return true; 	 /* is a partition of a device that is being partitioned */
1011	else if (whole->bd_holder != NULL)
1012		return false;	 /* is a partition of a held device */
1013	else
1014		return true;	 /* is a partition of an un-held device */
1015}
1016
1017/**
1018 * bd_prepare_to_claim - claim a block device
1019 * @bdev: block device of interest
1020 * @whole: the whole device containing @bdev, may equal @bdev
1021 * @holder: holder trying to claim @bdev
1022 *
1023 * Claim @bdev.  This function fails if @bdev is already claimed by another
1024 * holder and waits if another claiming is in progress. return, the caller
1025 * has ownership of bd_claiming and bd_holder[s].
1026 *
1027 * RETURNS:
1028 * 0 if @bdev can be claimed, -EBUSY otherwise.
1029 */
1030int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole,
1031		void *holder)
1032{
1033retry:
1034	spin_lock(&bdev_lock);
1035	/* if someone else claimed, fail */
1036	if (!bd_may_claim(bdev, whole, holder)) {
1037		spin_unlock(&bdev_lock);
1038		return -EBUSY;
1039	}
1040
1041	/* if claiming is already in progress, wait for it to finish */
1042	if (whole->bd_claiming) {
1043		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1044		DEFINE_WAIT(wait);
1045
1046		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1047		spin_unlock(&bdev_lock);
1048		schedule();
1049		finish_wait(wq, &wait);
1050		goto retry;
1051	}
1052
1053	/* yay, all mine */
1054	whole->bd_claiming = holder;
1055	spin_unlock(&bdev_lock);
1056	return 0;
1057}
1058EXPORT_SYMBOL_GPL(bd_prepare_to_claim); /* only for the loop driver */
1059
1060static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1061{
1062	struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1063
1064	if (!disk)
1065		return NULL;
1066	/*
1067	 * Now that we hold gendisk reference we make sure bdev we looked up is
1068	 * not stale. If it is, it means device got removed and created before
1069	 * we looked up gendisk and we fail open in such case. Associating
1070	 * unhashed bdev with newly created gendisk could lead to two bdevs
1071	 * (and thus two independent caches) being associated with one device
1072	 * which is bad.
1073	 */
1074	if (inode_unhashed(bdev->bd_inode)) {
1075		put_disk_and_module(disk);
1076		return NULL;
1077	}
1078	return disk;
1079}
1080
1081static void bd_clear_claiming(struct block_device *whole, void *holder)
1082{
1083	lockdep_assert_held(&bdev_lock);
1084	/* tell others that we're done */
1085	BUG_ON(whole->bd_claiming != holder);
1086	whole->bd_claiming = NULL;
1087	wake_up_bit(&whole->bd_claiming, 0);
1088}
1089
1090/**
1091 * bd_finish_claiming - finish claiming of a block device
1092 * @bdev: block device of interest
1093 * @whole: whole block device
1094 * @holder: holder that has claimed @bdev
1095 *
1096 * Finish exclusive open of a block device. Mark the device as exlusively
1097 * open by the holder and wake up all waiters for exclusive open to finish.
1098 */
1099static void bd_finish_claiming(struct block_device *bdev,
1100		struct block_device *whole, void *holder)
1101{
1102	spin_lock(&bdev_lock);
1103	BUG_ON(!bd_may_claim(bdev, whole, holder));
1104	/*
1105	 * Note that for a whole device bd_holders will be incremented twice,
1106	 * and bd_holder will be set to bd_may_claim before being set to holder
1107	 */
1108	whole->bd_holders++;
1109	whole->bd_holder = bd_may_claim;
1110	bdev->bd_holders++;
1111	bdev->bd_holder = holder;
1112	bd_clear_claiming(whole, holder);
1113	spin_unlock(&bdev_lock);
1114}
1115
1116/**
1117 * bd_abort_claiming - abort claiming of a block device
1118 * @bdev: block device of interest
1119 * @whole: whole block device
1120 * @holder: holder that has claimed @bdev
1121 *
1122 * Abort claiming of a block device when the exclusive open failed. This can be
1123 * also used when exclusive open is not actually desired and we just needed
1124 * to block other exclusive openers for a while.
1125 */
1126void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
1127		       void *holder)
1128{
1129	spin_lock(&bdev_lock);
1130	bd_clear_claiming(whole, holder);
1131	spin_unlock(&bdev_lock);
1132}
1133EXPORT_SYMBOL(bd_abort_claiming);
1134
1135#ifdef CONFIG_SYSFS
1136struct bd_holder_disk {
1137	struct list_head	list;
1138	struct gendisk		*disk;
1139	int			refcnt;
1140};
1141
1142static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1143						  struct gendisk *disk)
1144{
1145	struct bd_holder_disk *holder;
1146
1147	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1148		if (holder->disk == disk)
1149			return holder;
1150	return NULL;
1151}
1152
1153static int add_symlink(struct kobject *from, struct kobject *to)
1154{
1155	return sysfs_create_link(from, to, kobject_name(to));
1156}
1157
1158static void del_symlink(struct kobject *from, struct kobject *to)
1159{
1160	sysfs_remove_link(from, kobject_name(to));
1161}
1162
1163/**
1164 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1165 * @bdev: the claimed slave bdev
1166 * @disk: the holding disk
1167 *
1168 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1169 *
1170 * This functions creates the following sysfs symlinks.
1171 *
1172 * - from "slaves" directory of the holder @disk to the claimed @bdev
1173 * - from "holders" directory of the @bdev to the holder @disk
1174 *
1175 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1176 * passed to bd_link_disk_holder(), then:
1177 *
1178 *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
1179 *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1180 *
1181 * The caller must have claimed @bdev before calling this function and
1182 * ensure that both @bdev and @disk are valid during the creation and
1183 * lifetime of these symlinks.
1184 *
1185 * CONTEXT:
1186 * Might sleep.
1187 *
1188 * RETURNS:
1189 * 0 on success, -errno on failure.
1190 */
1191int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1192{
1193	struct bd_holder_disk *holder;
1194	int ret = 0;
1195
1196	mutex_lock(&bdev->bd_mutex);
1197
1198	WARN_ON_ONCE(!bdev->bd_holder);
1199
1200	/* FIXME: remove the following once add_disk() handles errors */
1201	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1202		goto out_unlock;
1203
1204	holder = bd_find_holder_disk(bdev, disk);
1205	if (holder) {
1206		holder->refcnt++;
1207		goto out_unlock;
1208	}
1209
1210	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1211	if (!holder) {
1212		ret = -ENOMEM;
1213		goto out_unlock;
1214	}
1215
1216	INIT_LIST_HEAD(&holder->list);
1217	holder->disk = disk;
1218	holder->refcnt = 1;
1219
1220	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1221	if (ret)
1222		goto out_free;
1223
1224	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1225	if (ret)
1226		goto out_del;
1227	/*
1228	 * bdev could be deleted beneath us which would implicitly destroy
1229	 * the holder directory.  Hold on to it.
1230	 */
1231	kobject_get(bdev->bd_part->holder_dir);
1232
1233	list_add(&holder->list, &bdev->bd_holder_disks);
1234	goto out_unlock;
1235
1236out_del:
1237	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1238out_free:
1239	kfree(holder);
1240out_unlock:
1241	mutex_unlock(&bdev->bd_mutex);
1242	return ret;
1243}
1244EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1245
1246/**
1247 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1248 * @bdev: the calimed slave bdev
1249 * @disk: the holding disk
1250 *
1251 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1252 *
1253 * CONTEXT:
1254 * Might sleep.
1255 */
1256void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1257{
1258	struct bd_holder_disk *holder;
1259
1260	mutex_lock(&bdev->bd_mutex);
1261
1262	holder = bd_find_holder_disk(bdev, disk);
1263
1264	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1265		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1266		del_symlink(bdev->bd_part->holder_dir,
1267			    &disk_to_dev(disk)->kobj);
1268		kobject_put(bdev->bd_part->holder_dir);
1269		list_del_init(&holder->list);
1270		kfree(holder);
1271	}
1272
1273	mutex_unlock(&bdev->bd_mutex);
1274}
1275EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1276#endif
1277
1278/**
1279 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1280 * @disk: struct gendisk to check
1281 * @bdev: struct bdev to adjust.
1282 * @verbose: if %true log a message about a size change if there is any
1283 *
1284 * This routine checks to see if the bdev size does not match the disk size
1285 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1286 * are freed.
1287 */
1288static void check_disk_size_change(struct gendisk *disk,
1289		struct block_device *bdev, bool verbose)
1290{
1291	loff_t disk_size, bdev_size;
1292
1293	disk_size = (loff_t)get_capacity(disk) << 9;
1294	bdev_size = i_size_read(bdev->bd_inode);
1295	if (disk_size != bdev_size) {
1296		if (verbose) {
1297			printk(KERN_INFO
1298			       "%s: detected capacity change from %lld to %lld\n",
1299			       disk->disk_name, bdev_size, disk_size);
1300		}
1301		i_size_write(bdev->bd_inode, disk_size);
1302		if (bdev_size > disk_size && __invalidate_device(bdev, false))
1303			pr_warn("VFS: busy inodes on resized disk %s\n",
1304				disk->disk_name);
1305	}
1306	bdev->bd_invalidated = 0;
1307}
1308
1309/**
1310 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1311 * @disk: struct gendisk to be revalidated
1312 *
1313 * This routine is a wrapper for lower-level driver's revalidate_disk
1314 * call-backs.  It is used to do common pre and post operations needed
1315 * for all revalidate_disk operations.
1316 */
1317int revalidate_disk(struct gendisk *disk)
1318{
1319	int ret = 0;
1320
1321	if (disk->fops->revalidate_disk)
1322		ret = disk->fops->revalidate_disk(disk);
1323
1324	/*
1325	 * Hidden disks don't have associated bdev so there's no point in
1326	 * revalidating it.
1327	 */
1328	if (!(disk->flags & GENHD_FL_HIDDEN)) {
1329		struct block_device *bdev = bdget_disk(disk, 0);
1330
1331		if (!bdev)
1332			return ret;
1333
1334		mutex_lock(&bdev->bd_mutex);
1335		check_disk_size_change(disk, bdev, ret == 0);
1336		mutex_unlock(&bdev->bd_mutex);
1337		bdput(bdev);
1338	}
1339	return ret;
1340}
1341EXPORT_SYMBOL(revalidate_disk);
1342
1343/*
1344 * This routine checks whether a removable media has been changed,
1345 * and invalidates all buffer-cache-entries in that case. This
1346 * is a relatively slow routine, so we have to try to minimize using
1347 * it. Thus it is called only upon a 'mount' or 'open'. This
1348 * is the best way of combining speed and utility, I think.
1349 * People changing diskettes in the middle of an operation deserve
1350 * to lose :-)
1351 */
1352int check_disk_change(struct block_device *bdev)
1353{
1354	struct gendisk *disk = bdev->bd_disk;
1355	const struct block_device_operations *bdops = disk->fops;
1356	unsigned int events;
1357
1358	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1359				   DISK_EVENT_EJECT_REQUEST);
1360	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1361		return 0;
1362
1363	if (__invalidate_device(bdev, true))
1364		pr_warn("VFS: busy inodes on changed media %s\n",
1365			disk->disk_name);
1366	bdev->bd_invalidated = 1;
1367	if (bdops->revalidate_disk)
1368		bdops->revalidate_disk(bdev->bd_disk);
1369	return 1;
1370}
1371
1372EXPORT_SYMBOL(check_disk_change);
1373
1374void bd_set_size(struct block_device *bdev, loff_t size)
1375{
1376	inode_lock(bdev->bd_inode);
1377	i_size_write(bdev->bd_inode, size);
1378	inode_unlock(bdev->bd_inode);
1379}
1380EXPORT_SYMBOL(bd_set_size);
1381
1382static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1383
1384int bdev_disk_changed(struct block_device *bdev, bool invalidate)
1385{
1386	struct gendisk *disk = bdev->bd_disk;
1387	int ret;
1388
1389	lockdep_assert_held(&bdev->bd_mutex);
1390
1391rescan:
1392	ret = blk_drop_partitions(bdev);
1393	if (ret)
1394		return ret;
1395
1396	/*
1397	 * Historically we only set the capacity to zero for devices that
1398	 * support partitions (independ of actually having partitions created).
1399	 * Doing that is rather inconsistent, but changing it broke legacy
1400	 * udisks polling for legacy ide-cdrom devices.  Use the crude check
1401	 * below to get the sane behavior for most device while not breaking
1402	 * userspace for this particular setup.
1403	 */
1404	if (invalidate) {
1405		if (disk_part_scan_enabled(disk) ||
1406		    !(disk->flags & GENHD_FL_REMOVABLE))
1407			set_capacity(disk, 0);
1408	} else {
1409		if (disk->fops->revalidate_disk)
1410			disk->fops->revalidate_disk(disk);
1411	}
1412
1413	check_disk_size_change(disk, bdev, !invalidate);
1414
1415	if (get_capacity(disk)) {
1416		ret = blk_add_partitions(disk, bdev);
1417		if (ret == -EAGAIN)
1418			goto rescan;
1419	} else if (invalidate) {
1420		/*
1421		 * Tell userspace that the media / partition table may have
1422		 * changed.
1423		 */
1424		kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
1425	}
1426
1427	return ret;
1428}
1429/*
1430 * Only exported for for loop and dasd for historic reasons.  Don't use in new
1431 * code!
1432 */
1433EXPORT_SYMBOL_GPL(bdev_disk_changed);
1434
1435/*
1436 * bd_mutex locking:
1437 *
1438 *  mutex_lock(part->bd_mutex)
1439 *    mutex_lock_nested(whole->bd_mutex, 1)
1440 */
1441
1442static int __blkdev_get(struct block_device *bdev, fmode_t mode, void *holder,
1443		int for_part)
1444{
1445	struct block_device *whole = NULL, *claiming = NULL;
1446	struct gendisk *disk;
1447	int ret;
1448	int partno;
1449	int perm = 0;
1450	bool first_open = false, unblock_events = true, need_restart;
1451
1452	if (mode & FMODE_READ)
1453		perm |= MAY_READ;
1454	if (mode & FMODE_WRITE)
1455		perm |= MAY_WRITE;
1456	/*
1457	 * hooks: /n/, see "layering violations".
1458	 */
1459	if (!for_part) {
1460		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1461		if (ret != 0)
1462			return ret;
1463	}
1464
1465 restart:
1466	need_restart = false;
1467	ret = -ENXIO;
1468	disk = bdev_get_gendisk(bdev, &partno);
1469	if (!disk)
1470		goto out;
1471
1472	if (partno) {
1473		whole = bdget_disk(disk, 0);
1474		if (!whole) {
1475			ret = -ENOMEM;
1476			goto out_put_disk;
1477		}
1478	}
1479
1480	if (!for_part && (mode & FMODE_EXCL)) {
1481		WARN_ON_ONCE(!holder);
1482		if (whole)
1483			claiming = whole;
1484		else
1485			claiming = bdev;
1486		ret = bd_prepare_to_claim(bdev, claiming, holder);
1487		if (ret)
1488			goto out_put_whole;
1489	}
1490
1491	disk_block_events(disk);
1492	mutex_lock_nested(&bdev->bd_mutex, for_part);
1493	if (!bdev->bd_openers) {
1494		first_open = true;
1495		bdev->bd_disk = disk;
1496		bdev->bd_contains = bdev;
1497		bdev->bd_partno = partno;
1498
1499		if (!partno) {
1500			ret = -ENXIO;
1501			bdev->bd_part = disk_get_part(disk, partno);
1502			if (!bdev->bd_part)
1503				goto out_clear;
1504
1505			ret = 0;
1506			if (disk->fops->open) {
1507				ret = disk->fops->open(bdev, mode);
1508				/*
1509				 * If we lost a race with 'disk' being deleted,
1510				 * try again.  See md.c
1511				 */
1512				if (ret == -ERESTARTSYS)
1513					need_restart = true;
1514			}
1515
1516			if (!ret) {
1517				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1518				set_init_blocksize(bdev);
1519			}
1520
1521			/*
1522			 * If the device is invalidated, rescan partition
1523			 * if open succeeded or failed with -ENOMEDIUM.
1524			 * The latter is necessary to prevent ghost
1525			 * partitions on a removed medium.
1526			 */
1527			if (bdev->bd_invalidated &&
1528			    (!ret || ret == -ENOMEDIUM))
1529				bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1530
1531			if (ret)
1532				goto out_clear;
1533		} else {
1534			BUG_ON(for_part);
1535			ret = __blkdev_get(whole, mode, NULL, 1);
1536			if (ret)
1537				goto out_clear;
1538			bdev->bd_contains = bdgrab(whole);
1539			bdev->bd_part = disk_get_part(disk, partno);
1540			if (!(disk->flags & GENHD_FL_UP) ||
1541			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1542				ret = -ENXIO;
1543				goto out_clear;
1544			}
1545			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1546			set_init_blocksize(bdev);
1547		}
1548
1549		if (bdev->bd_bdi == &noop_backing_dev_info)
1550			bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1551	} else {
1552		if (bdev->bd_contains == bdev) {
1553			ret = 0;
1554			if (bdev->bd_disk->fops->open)
1555				ret = bdev->bd_disk->fops->open(bdev, mode);
1556			/* the same as first opener case, read comment there */
1557			if (bdev->bd_invalidated &&
1558			    (!ret || ret == -ENOMEDIUM))
1559				bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1560			if (ret)
1561				goto out_unlock_bdev;
1562		}
1563	}
1564	bdev->bd_openers++;
1565	if (for_part)
1566		bdev->bd_part_count++;
1567	if (claiming)
1568		bd_finish_claiming(bdev, claiming, holder);
1569
1570	/*
1571	 * Block event polling for write claims if requested.  Any write holder
1572	 * makes the write_holder state stick until all are released.  This is
1573	 * good enough and tracking individual writeable reference is too
1574	 * fragile given the way @mode is used in blkdev_get/put().
1575	 */
1576	if (claiming && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1577	    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1578		bdev->bd_write_holder = true;
1579		unblock_events = false;
1580	}
1581	mutex_unlock(&bdev->bd_mutex);
1582
1583	if (unblock_events)
1584		disk_unblock_events(disk);
1585
1586	/* only one opener holds refs to the module and disk */
1587	if (!first_open)
1588		put_disk_and_module(disk);
1589	if (whole)
1590		bdput(whole);
1591	return 0;
1592
1593 out_clear:
1594	disk_put_part(bdev->bd_part);
1595	bdev->bd_disk = NULL;
1596	bdev->bd_part = NULL;
1597	if (bdev != bdev->bd_contains)
1598		__blkdev_put(bdev->bd_contains, mode, 1);
1599	bdev->bd_contains = NULL;
1600 out_unlock_bdev:
1601	if (claiming)
1602		bd_abort_claiming(bdev, claiming, holder);
1603	mutex_unlock(&bdev->bd_mutex);
1604	disk_unblock_events(disk);
1605 out_put_whole:
1606 	if (whole)
1607		bdput(whole);
1608 out_put_disk:
1609	put_disk_and_module(disk);
1610	if (need_restart)
1611		goto restart;
1612 out:
1613	return ret;
1614}
1615
1616/**
1617 * blkdev_get - open a block device
1618 * @bdev: block_device to open
1619 * @mode: FMODE_* mask
1620 * @holder: exclusive holder identifier
1621 *
1622 * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1623 * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1624 * @holder is invalid.  Exclusive opens may nest for the same @holder.
1625 *
1626 * On success, the reference count of @bdev is unchanged.  On failure,
1627 * @bdev is put.
1628 *
1629 * CONTEXT:
1630 * Might sleep.
1631 *
1632 * RETURNS:
1633 * 0 on success, -errno on failure.
1634 */
1635int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1636{
1637	int res;
1638
1639	res =__blkdev_get(bdev, mode, holder, 0);
1640	if (res)
1641		bdput(bdev);
1642	return res;
1643}
1644EXPORT_SYMBOL(blkdev_get);
1645
1646/**
1647 * blkdev_get_by_path - open a block device by name
1648 * @path: path to the block device to open
1649 * @mode: FMODE_* mask
1650 * @holder: exclusive holder identifier
1651 *
1652 * Open the blockdevice described by the device file at @path.  @mode
1653 * and @holder are identical to blkdev_get().
1654 *
1655 * On success, the returned block_device has reference count of one.
1656 *
1657 * CONTEXT:
1658 * Might sleep.
1659 *
1660 * RETURNS:
1661 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1662 */
1663struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1664					void *holder)
1665{
1666	struct block_device *bdev;
1667	int err;
1668
1669	bdev = lookup_bdev(path);
1670	if (IS_ERR(bdev))
1671		return bdev;
1672
1673	err = blkdev_get(bdev, mode, holder);
1674	if (err)
1675		return ERR_PTR(err);
1676
1677	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1678		blkdev_put(bdev, mode);
1679		return ERR_PTR(-EACCES);
1680	}
1681
1682	return bdev;
1683}
1684EXPORT_SYMBOL(blkdev_get_by_path);
1685
1686/**
1687 * blkdev_get_by_dev - open a block device by device number
1688 * @dev: device number of block device to open
1689 * @mode: FMODE_* mask
1690 * @holder: exclusive holder identifier
1691 *
1692 * Open the blockdevice described by device number @dev.  @mode and
1693 * @holder are identical to blkdev_get().
1694 *
1695 * Use it ONLY if you really do not have anything better - i.e. when
1696 * you are behind a truly sucky interface and all you are given is a
1697 * device number.  _Never_ to be used for internal purposes.  If you
1698 * ever need it - reconsider your API.
1699 *
1700 * On success, the returned block_device has reference count of one.
1701 *
1702 * CONTEXT:
1703 * Might sleep.
1704 *
1705 * RETURNS:
1706 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1707 */
1708struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1709{
1710	struct block_device *bdev;
1711	int err;
1712
1713	bdev = bdget(dev);
1714	if (!bdev)
1715		return ERR_PTR(-ENOMEM);
1716
1717	err = blkdev_get(bdev, mode, holder);
1718	if (err)
1719		return ERR_PTR(err);
1720
1721	return bdev;
1722}
1723EXPORT_SYMBOL(blkdev_get_by_dev);
1724
1725static int blkdev_open(struct inode * inode, struct file * filp)
1726{
1727	struct block_device *bdev;
1728
1729	/*
1730	 * Preserve backwards compatibility and allow large file access
1731	 * even if userspace doesn't ask for it explicitly. Some mkfs
1732	 * binary needs it. We might want to drop this workaround
1733	 * during an unstable branch.
1734	 */
1735	filp->f_flags |= O_LARGEFILE;
1736
1737	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1738
1739	if (filp->f_flags & O_NDELAY)
1740		filp->f_mode |= FMODE_NDELAY;
1741	if (filp->f_flags & O_EXCL)
1742		filp->f_mode |= FMODE_EXCL;
1743	if ((filp->f_flags & O_ACCMODE) == 3)
1744		filp->f_mode |= FMODE_WRITE_IOCTL;
1745
1746	bdev = bd_acquire(inode);
1747	if (bdev == NULL)
1748		return -ENOMEM;
1749
1750	filp->f_mapping = bdev->bd_inode->i_mapping;
1751	filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1752
1753	return blkdev_get(bdev, filp->f_mode, filp);
1754}
1755
1756static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1757{
1758	struct gendisk *disk = bdev->bd_disk;
1759	struct block_device *victim = NULL;
1760
1761	/*
1762	 * Sync early if it looks like we're the last one.  If someone else
1763	 * opens the block device between now and the decrement of bd_openers
1764	 * then we did a sync that we didn't need to, but that's not the end
1765	 * of the world and we want to avoid long (could be several minute)
1766	 * syncs while holding the mutex.
1767	 */
1768	if (bdev->bd_openers == 1)
1769		sync_blockdev(bdev);
1770
1771	mutex_lock_nested(&bdev->bd_mutex, for_part);
1772	if (for_part)
1773		bdev->bd_part_count--;
1774
1775	if (!--bdev->bd_openers) {
1776		WARN_ON_ONCE(bdev->bd_holders);
1777		sync_blockdev(bdev);
1778		kill_bdev(bdev);
1779
1780		bdev_write_inode(bdev);
1781	}
1782	if (bdev->bd_contains == bdev) {
1783		if (disk->fops->release)
1784			disk->fops->release(disk, mode);
1785	}
1786	if (!bdev->bd_openers) {
1787		disk_put_part(bdev->bd_part);
1788		bdev->bd_part = NULL;
1789		bdev->bd_disk = NULL;
1790		if (bdev != bdev->bd_contains)
1791			victim = bdev->bd_contains;
1792		bdev->bd_contains = NULL;
1793
1794		put_disk_and_module(disk);
1795	}
1796	mutex_unlock(&bdev->bd_mutex);
1797	bdput(bdev);
1798	if (victim)
1799		__blkdev_put(victim, mode, 1);
1800}
1801
1802void blkdev_put(struct block_device *bdev, fmode_t mode)
1803{
1804	mutex_lock(&bdev->bd_mutex);
1805
1806	if (mode & FMODE_EXCL) {
1807		bool bdev_free;
1808
1809		/*
1810		 * Release a claim on the device.  The holder fields
1811		 * are protected with bdev_lock.  bd_mutex is to
1812		 * synchronize disk_holder unlinking.
1813		 */
1814		spin_lock(&bdev_lock);
1815
1816		WARN_ON_ONCE(--bdev->bd_holders < 0);
1817		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1818
1819		/* bd_contains might point to self, check in a separate step */
1820		if ((bdev_free = !bdev->bd_holders))
1821			bdev->bd_holder = NULL;
1822		if (!bdev->bd_contains->bd_holders)
1823			bdev->bd_contains->bd_holder = NULL;
1824
1825		spin_unlock(&bdev_lock);
1826
1827		/*
1828		 * If this was the last claim, remove holder link and
1829		 * unblock evpoll if it was a write holder.
1830		 */
1831		if (bdev_free && bdev->bd_write_holder) {
1832			disk_unblock_events(bdev->bd_disk);
1833			bdev->bd_write_holder = false;
1834		}
1835	}
1836
1837	/*
1838	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1839	 * event.  This is to ensure detection of media removal commanded
1840	 * from userland - e.g. eject(1).
1841	 */
1842	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1843
1844	mutex_unlock(&bdev->bd_mutex);
1845
1846	__blkdev_put(bdev, mode, 0);
1847}
1848EXPORT_SYMBOL(blkdev_put);
1849
1850static int blkdev_close(struct inode * inode, struct file * filp)
1851{
1852	struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1853	blkdev_put(bdev, filp->f_mode);
1854	return 0;
1855}
1856
1857static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1858{
1859	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1860	fmode_t mode = file->f_mode;
1861
1862	/*
1863	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1864	 * to updated it before every ioctl.
1865	 */
1866	if (file->f_flags & O_NDELAY)
1867		mode |= FMODE_NDELAY;
1868	else
1869		mode &= ~FMODE_NDELAY;
1870
1871	return blkdev_ioctl(bdev, mode, cmd, arg);
1872}
1873
1874/*
1875 * Write data to the block device.  Only intended for the block device itself
1876 * and the raw driver which basically is a fake block device.
1877 *
1878 * Does not take i_mutex for the write and thus is not for general purpose
1879 * use.
1880 */
1881ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1882{
1883	struct file *file = iocb->ki_filp;
1884	struct inode *bd_inode = bdev_file_inode(file);
1885	loff_t size = i_size_read(bd_inode);
1886	struct blk_plug plug;
1887	ssize_t ret;
1888
1889	if (bdev_read_only(I_BDEV(bd_inode)))
1890		return -EPERM;
1891
1892	if (IS_SWAPFILE(bd_inode) && !is_hibernate_resume_dev(bd_inode))
1893		return -ETXTBSY;
1894
1895	if (!iov_iter_count(from))
1896		return 0;
1897
1898	if (iocb->ki_pos >= size)
1899		return -ENOSPC;
1900
1901	if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1902		return -EOPNOTSUPP;
1903
1904	iov_iter_truncate(from, size - iocb->ki_pos);
1905
1906	blk_start_plug(&plug);
1907	ret = __generic_file_write_iter(iocb, from);
1908	if (ret > 0)
1909		ret = generic_write_sync(iocb, ret);
1910	blk_finish_plug(&plug);
1911	return ret;
1912}
1913EXPORT_SYMBOL_GPL(blkdev_write_iter);
1914
1915ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1916{
1917	struct file *file = iocb->ki_filp;
1918	struct inode *bd_inode = bdev_file_inode(file);
1919	loff_t size = i_size_read(bd_inode);
1920	loff_t pos = iocb->ki_pos;
1921
1922	if (pos >= size)
1923		return 0;
1924
1925	size -= pos;
1926	iov_iter_truncate(to, size);
1927	return generic_file_read_iter(iocb, to);
1928}
1929EXPORT_SYMBOL_GPL(blkdev_read_iter);
1930
1931/*
1932 * Try to release a page associated with block device when the system
1933 * is under memory pressure.
1934 */
1935static int blkdev_releasepage(struct page *page, gfp_t wait)
1936{
1937	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1938
1939	if (super && super->s_op->bdev_try_to_free_page)
1940		return super->s_op->bdev_try_to_free_page(super, page, wait);
1941
1942	return try_to_free_buffers(page);
1943}
1944
1945static int blkdev_writepages(struct address_space *mapping,
1946			     struct writeback_control *wbc)
1947{
1948	return generic_writepages(mapping, wbc);
1949}
1950
1951static const struct address_space_operations def_blk_aops = {
1952	.readpage	= blkdev_readpage,
1953	.readahead	= blkdev_readahead,
1954	.writepage	= blkdev_writepage,
1955	.write_begin	= blkdev_write_begin,
1956	.write_end	= blkdev_write_end,
1957	.writepages	= blkdev_writepages,
1958	.releasepage	= blkdev_releasepage,
1959	.direct_IO	= blkdev_direct_IO,
1960	.migratepage	= buffer_migrate_page_norefs,
1961	.is_dirty_writeback = buffer_check_dirty_writeback,
1962};
1963
1964#define	BLKDEV_FALLOC_FL_SUPPORTED					\
1965		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
1966		 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1967
1968static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1969			     loff_t len)
1970{
1971	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1972	struct address_space *mapping;
1973	loff_t end = start + len - 1;
1974	loff_t isize;
1975	int error;
1976
1977	/* Fail if we don't recognize the flags. */
1978	if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1979		return -EOPNOTSUPP;
1980
1981	/* Don't go off the end of the device. */
1982	isize = i_size_read(bdev->bd_inode);
1983	if (start >= isize)
1984		return -EINVAL;
1985	if (end >= isize) {
1986		if (mode & FALLOC_FL_KEEP_SIZE) {
1987			len = isize - start;
1988			end = start + len - 1;
1989		} else
1990			return -EINVAL;
1991	}
1992
1993	/*
1994	 * Don't allow IO that isn't aligned to logical block size.
1995	 */
1996	if ((start | len) & (bdev_logical_block_size(bdev) - 1))
1997		return -EINVAL;
1998
1999	/* Invalidate the page cache, including dirty pages. */
2000	mapping = bdev->bd_inode->i_mapping;
2001	truncate_inode_pages_range(mapping, start, end);
2002
2003	switch (mode) {
2004	case FALLOC_FL_ZERO_RANGE:
2005	case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2006		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2007					    GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2008		break;
2009	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2010		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2011					     GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2012		break;
2013	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2014		error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2015					     GFP_KERNEL, 0);
2016		break;
2017	default:
2018		return -EOPNOTSUPP;
2019	}
2020	if (error)
2021		return error;
2022
2023	/*
2024	 * Invalidate again; if someone wandered in and dirtied a page,
2025	 * the caller will be given -EBUSY.  The third argument is
2026	 * inclusive, so the rounding here is safe.
2027	 */
2028	return invalidate_inode_pages2_range(mapping,
2029					     start >> PAGE_SHIFT,
2030					     end >> PAGE_SHIFT);
2031}
2032
2033const struct file_operations def_blk_fops = {
2034	.open		= blkdev_open,
2035	.release	= blkdev_close,
2036	.llseek		= block_llseek,
2037	.read_iter	= blkdev_read_iter,
2038	.write_iter	= blkdev_write_iter,
2039	.iopoll		= blkdev_iopoll,
2040	.mmap		= generic_file_mmap,
2041	.fsync		= blkdev_fsync,
2042	.unlocked_ioctl	= block_ioctl,
2043#ifdef CONFIG_COMPAT
2044	.compat_ioctl	= compat_blkdev_ioctl,
2045#endif
2046	.splice_read	= generic_file_splice_read,
2047	.splice_write	= iter_file_splice_write,
2048	.fallocate	= blkdev_fallocate,
2049};
2050
2051/**
2052 * lookup_bdev  - lookup a struct block_device by name
2053 * @pathname:	special file representing the block device
2054 *
2055 * Get a reference to the blockdevice at @pathname in the current
2056 * namespace if possible and return it.  Return ERR_PTR(error)
2057 * otherwise.
2058 */
2059struct block_device *lookup_bdev(const char *pathname)
2060{
2061	struct block_device *bdev;
2062	struct inode *inode;
2063	struct path path;
2064	int error;
2065
2066	if (!pathname || !*pathname)
2067		return ERR_PTR(-EINVAL);
2068
2069	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2070	if (error)
2071		return ERR_PTR(error);
2072
2073	inode = d_backing_inode(path.dentry);
2074	error = -ENOTBLK;
2075	if (!S_ISBLK(inode->i_mode))
2076		goto fail;
2077	error = -EACCES;
2078	if (!may_open_dev(&path))
2079		goto fail;
2080	error = -ENOMEM;
2081	bdev = bd_acquire(inode);
2082	if (!bdev)
2083		goto fail;
2084out:
2085	path_put(&path);
2086	return bdev;
2087fail:
2088	bdev = ERR_PTR(error);
2089	goto out;
2090}
2091EXPORT_SYMBOL(lookup_bdev);
2092
2093int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2094{
2095	struct super_block *sb = get_super(bdev);
2096	int res = 0;
2097
2098	if (sb) {
2099		/*
2100		 * no need to lock the super, get_super holds the
2101		 * read mutex so the filesystem cannot go away
2102		 * under us (->put_super runs with the write lock
2103		 * hold).
2104		 */
2105		shrink_dcache_sb(sb);
2106		res = invalidate_inodes(sb, kill_dirty);
2107		drop_super(sb);
2108	}
2109	invalidate_bdev(bdev);
2110	return res;
2111}
2112EXPORT_SYMBOL(__invalidate_device);
2113
2114void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2115{
2116	struct inode *inode, *old_inode = NULL;
2117
2118	spin_lock(&blockdev_superblock->s_inode_list_lock);
2119	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2120		struct address_space *mapping = inode->i_mapping;
2121		struct block_device *bdev;
2122
2123		spin_lock(&inode->i_lock);
2124		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2125		    mapping->nrpages == 0) {
2126			spin_unlock(&inode->i_lock);
2127			continue;
2128		}
2129		__iget(inode);
2130		spin_unlock(&inode->i_lock);
2131		spin_unlock(&blockdev_superblock->s_inode_list_lock);
2132		/*
2133		 * We hold a reference to 'inode' so it couldn't have been
2134		 * removed from s_inodes list while we dropped the
2135		 * s_inode_list_lock  We cannot iput the inode now as we can
2136		 * be holding the last reference and we cannot iput it under
2137		 * s_inode_list_lock. So we keep the reference and iput it
2138		 * later.
2139		 */
2140		iput(old_inode);
2141		old_inode = inode;
2142		bdev = I_BDEV(inode);
2143
2144		mutex_lock(&bdev->bd_mutex);
2145		if (bdev->bd_openers)
2146			func(bdev, arg);
2147		mutex_unlock(&bdev->bd_mutex);
2148
2149		spin_lock(&blockdev_superblock->s_inode_list_lock);
2150	}
2151	spin_unlock(&blockdev_superblock->s_inode_list_lock);
2152	iput(old_inode);
2153}