Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.9.4.
   1/*
   2 *  linux/fs/block_dev.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
   6 */
   7
   8#include <linux/init.h>
   9#include <linux/mm.h>
  10#include <linux/fcntl.h>
  11#include <linux/slab.h>
  12#include <linux/kmod.h>
  13#include <linux/major.h>
  14#include <linux/device_cgroup.h>
  15#include <linux/highmem.h>
  16#include <linux/blkdev.h>
  17#include <linux/backing-dev.h>
  18#include <linux/module.h>
  19#include <linux/blkpg.h>
  20#include <linux/magic.h>
  21#include <linux/dax.h>
  22#include <linux/buffer_head.h>
  23#include <linux/swap.h>
  24#include <linux/pagevec.h>
  25#include <linux/writeback.h>
  26#include <linux/mpage.h>
  27#include <linux/mount.h>
  28#include <linux/uio.h>
  29#include <linux/namei.h>
  30#include <linux/log2.h>
  31#include <linux/cleancache.h>
  32#include <linux/dax.h>
  33#include <linux/badblocks.h>
  34#include <linux/task_io_accounting_ops.h>
  35#include <linux/falloc.h>
  36#include <linux/uaccess.h>
  37#include "internal.h"
  38
  39struct bdev_inode {
  40	struct block_device bdev;
  41	struct inode vfs_inode;
  42};
  43
  44static const struct address_space_operations def_blk_aops;
  45
  46static inline struct bdev_inode *BDEV_I(struct inode *inode)
  47{
  48	return container_of(inode, struct bdev_inode, vfs_inode);
  49}
  50
  51struct block_device *I_BDEV(struct inode *inode)
  52{
  53	return &BDEV_I(inode)->bdev;
  54}
  55EXPORT_SYMBOL(I_BDEV);
  56
  57static void bdev_write_inode(struct block_device *bdev)
  58{
  59	struct inode *inode = bdev->bd_inode;
  60	int ret;
  61
  62	spin_lock(&inode->i_lock);
  63	while (inode->i_state & I_DIRTY) {
  64		spin_unlock(&inode->i_lock);
  65		ret = write_inode_now(inode, true);
  66		if (ret) {
  67			char name[BDEVNAME_SIZE];
  68			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
  69					    "for block device %s (err=%d).\n",
  70					    bdevname(bdev, name), ret);
  71		}
  72		spin_lock(&inode->i_lock);
  73	}
  74	spin_unlock(&inode->i_lock);
  75}
  76
  77/* Kill _all_ buffers and pagecache , dirty or not.. */
  78void kill_bdev(struct block_device *bdev)
  79{
  80	struct address_space *mapping = bdev->bd_inode->i_mapping;
  81
  82	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
  83		return;
  84
  85	invalidate_bh_lrus();
  86	truncate_inode_pages(mapping, 0);
  87}	
  88EXPORT_SYMBOL(kill_bdev);
  89
  90/* Invalidate clean unused buffers and pagecache. */
  91void invalidate_bdev(struct block_device *bdev)
  92{
  93	struct address_space *mapping = bdev->bd_inode->i_mapping;
  94
  95	if (mapping->nrpages) {
  96		invalidate_bh_lrus();
  97		lru_add_drain_all();	/* make sure all lru add caches are flushed */
  98		invalidate_mapping_pages(mapping, 0, -1);
  99	}
 100	/* 99% of the time, we don't need to flush the cleancache on the bdev.
 101	 * But, for the strange corners, lets be cautious
 102	 */
 103	cleancache_invalidate_inode(mapping);
 104}
 105EXPORT_SYMBOL(invalidate_bdev);
 106
 107int set_blocksize(struct block_device *bdev, int size)
 108{
 109	/* Size must be a power of two, and between 512 and PAGE_SIZE */
 110	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
 111		return -EINVAL;
 112
 113	/* Size cannot be smaller than the size supported by the device */
 114	if (size < bdev_logical_block_size(bdev))
 115		return -EINVAL;
 116
 117	/* Don't change the size if it is same as current */
 118	if (bdev->bd_block_size != size) {
 119		sync_blockdev(bdev);
 120		bdev->bd_block_size = size;
 121		bdev->bd_inode->i_blkbits = blksize_bits(size);
 122		kill_bdev(bdev);
 123	}
 124	return 0;
 125}
 126
 127EXPORT_SYMBOL(set_blocksize);
 128
 129int sb_set_blocksize(struct super_block *sb, int size)
 130{
 131	if (set_blocksize(sb->s_bdev, size))
 132		return 0;
 133	/* If we get here, we know size is power of two
 134	 * and it's value is between 512 and PAGE_SIZE */
 135	sb->s_blocksize = size;
 136	sb->s_blocksize_bits = blksize_bits(size);
 137	return sb->s_blocksize;
 138}
 139
 140EXPORT_SYMBOL(sb_set_blocksize);
 141
 142int sb_min_blocksize(struct super_block *sb, int size)
 143{
 144	int minsize = bdev_logical_block_size(sb->s_bdev);
 145	if (size < minsize)
 146		size = minsize;
 147	return sb_set_blocksize(sb, size);
 148}
 149
 150EXPORT_SYMBOL(sb_min_blocksize);
 151
 152static int
 153blkdev_get_block(struct inode *inode, sector_t iblock,
 154		struct buffer_head *bh, int create)
 155{
 156	bh->b_bdev = I_BDEV(inode);
 157	bh->b_blocknr = iblock;
 158	set_buffer_mapped(bh);
 159	return 0;
 160}
 161
 162static struct inode *bdev_file_inode(struct file *file)
 163{
 164	return file->f_mapping->host;
 165}
 166
 167static unsigned int dio_bio_write_op(struct kiocb *iocb)
 168{
 169	unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
 170
 171	/* avoid the need for a I/O completion work item */
 172	if (iocb->ki_flags & IOCB_DSYNC)
 173		op |= REQ_FUA;
 174	return op;
 175}
 176
 177#define DIO_INLINE_BIO_VECS 4
 178
 179static void blkdev_bio_end_io_simple(struct bio *bio)
 180{
 181	struct task_struct *waiter = bio->bi_private;
 182
 183	WRITE_ONCE(bio->bi_private, NULL);
 184	wake_up_process(waiter);
 185}
 186
 187static ssize_t
 188__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
 189		int nr_pages)
 190{
 191	struct file *file = iocb->ki_filp;
 192	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
 193	struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
 194	loff_t pos = iocb->ki_pos;
 195	bool should_dirty = false;
 196	struct bio bio;
 197	ssize_t ret;
 198	blk_qc_t qc;
 199	int i;
 200
 201	if ((pos | iov_iter_alignment(iter)) &
 202	    (bdev_logical_block_size(bdev) - 1))
 203		return -EINVAL;
 204
 205	if (nr_pages <= DIO_INLINE_BIO_VECS)
 206		vecs = inline_vecs;
 207	else {
 208		vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
 209		if (!vecs)
 210			return -ENOMEM;
 211	}
 212
 213	bio_init(&bio, vecs, nr_pages);
 214	bio_set_dev(&bio, bdev);
 215	bio.bi_iter.bi_sector = pos >> 9;
 216	bio.bi_write_hint = iocb->ki_hint;
 217	bio.bi_private = current;
 218	bio.bi_end_io = blkdev_bio_end_io_simple;
 219
 220	ret = bio_iov_iter_get_pages(&bio, iter);
 221	if (unlikely(ret))
 222		return ret;
 223	ret = bio.bi_iter.bi_size;
 224
 225	if (iov_iter_rw(iter) == READ) {
 226		bio.bi_opf = REQ_OP_READ;
 227		if (iter_is_iovec(iter))
 228			should_dirty = true;
 229	} else {
 230		bio.bi_opf = dio_bio_write_op(iocb);
 231		task_io_account_write(ret);
 232	}
 233
 234	qc = submit_bio(&bio);
 235	for (;;) {
 236		set_current_state(TASK_UNINTERRUPTIBLE);
 237		if (!READ_ONCE(bio.bi_private))
 238			break;
 239		if (!(iocb->ki_flags & IOCB_HIPRI) ||
 240		    !blk_poll(bdev_get_queue(bdev), qc))
 241			io_schedule();
 242	}
 243	__set_current_state(TASK_RUNNING);
 244
 245	bio_for_each_segment_all(bvec, &bio, i) {
 246		if (should_dirty && !PageCompound(bvec->bv_page))
 247			set_page_dirty_lock(bvec->bv_page);
 248		put_page(bvec->bv_page);
 249	}
 250
 251	if (vecs != inline_vecs)
 252		kfree(vecs);
 253
 254	if (unlikely(bio.bi_status))
 255		ret = blk_status_to_errno(bio.bi_status);
 256
 257	bio_uninit(&bio);
 258
 259	return ret;
 260}
 261
 262struct blkdev_dio {
 263	union {
 264		struct kiocb		*iocb;
 265		struct task_struct	*waiter;
 266	};
 267	size_t			size;
 268	atomic_t		ref;
 269	bool			multi_bio : 1;
 270	bool			should_dirty : 1;
 271	bool			is_sync : 1;
 272	struct bio		bio;
 273};
 274
 275static struct bio_set *blkdev_dio_pool __read_mostly;
 276
 277static void blkdev_bio_end_io(struct bio *bio)
 278{
 279	struct blkdev_dio *dio = bio->bi_private;
 280	bool should_dirty = dio->should_dirty;
 281
 282	if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
 283		if (bio->bi_status && !dio->bio.bi_status)
 284			dio->bio.bi_status = bio->bi_status;
 285	} else {
 286		if (!dio->is_sync) {
 287			struct kiocb *iocb = dio->iocb;
 288			ssize_t ret;
 289
 290			if (likely(!dio->bio.bi_status)) {
 291				ret = dio->size;
 292				iocb->ki_pos += ret;
 293			} else {
 294				ret = blk_status_to_errno(dio->bio.bi_status);
 295			}
 296
 297			dio->iocb->ki_complete(iocb, ret, 0);
 298			bio_put(&dio->bio);
 299		} else {
 300			struct task_struct *waiter = dio->waiter;
 301
 302			WRITE_ONCE(dio->waiter, NULL);
 303			wake_up_process(waiter);
 304		}
 305	}
 306
 307	if (should_dirty) {
 308		bio_check_pages_dirty(bio);
 309	} else {
 310		struct bio_vec *bvec;
 311		int i;
 312
 313		bio_for_each_segment_all(bvec, bio, i)
 314			put_page(bvec->bv_page);
 315		bio_put(bio);
 316	}
 317}
 318
 319static ssize_t
 320__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
 321{
 322	struct file *file = iocb->ki_filp;
 323	struct inode *inode = bdev_file_inode(file);
 324	struct block_device *bdev = I_BDEV(inode);
 325	struct blk_plug plug;
 326	struct blkdev_dio *dio;
 327	struct bio *bio;
 328	bool is_read = (iov_iter_rw(iter) == READ), is_sync;
 329	loff_t pos = iocb->ki_pos;
 330	blk_qc_t qc = BLK_QC_T_NONE;
 331	int ret = 0;
 332
 333	if ((pos | iov_iter_alignment(iter)) &
 334	    (bdev_logical_block_size(bdev) - 1))
 335		return -EINVAL;
 336
 337	bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool);
 338	bio_get(bio); /* extra ref for the completion handler */
 339
 340	dio = container_of(bio, struct blkdev_dio, bio);
 341	dio->is_sync = is_sync = is_sync_kiocb(iocb);
 342	if (dio->is_sync)
 343		dio->waiter = current;
 344	else
 345		dio->iocb = iocb;
 346
 347	dio->size = 0;
 348	dio->multi_bio = false;
 349	dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
 350
 351	blk_start_plug(&plug);
 352	for (;;) {
 353		bio_set_dev(bio, bdev);
 354		bio->bi_iter.bi_sector = pos >> 9;
 355		bio->bi_write_hint = iocb->ki_hint;
 356		bio->bi_private = dio;
 357		bio->bi_end_io = blkdev_bio_end_io;
 358
 359		ret = bio_iov_iter_get_pages(bio, iter);
 360		if (unlikely(ret)) {
 361			bio->bi_status = BLK_STS_IOERR;
 362			bio_endio(bio);
 363			break;
 364		}
 365
 366		if (is_read) {
 367			bio->bi_opf = REQ_OP_READ;
 368			if (dio->should_dirty)
 369				bio_set_pages_dirty(bio);
 370		} else {
 371			bio->bi_opf = dio_bio_write_op(iocb);
 372			task_io_account_write(bio->bi_iter.bi_size);
 373		}
 374
 375		dio->size += bio->bi_iter.bi_size;
 376		pos += bio->bi_iter.bi_size;
 377
 378		nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
 379		if (!nr_pages) {
 380			qc = submit_bio(bio);
 381			break;
 382		}
 383
 384		if (!dio->multi_bio) {
 385			dio->multi_bio = true;
 386			atomic_set(&dio->ref, 2);
 387		} else {
 388			atomic_inc(&dio->ref);
 389		}
 390
 391		submit_bio(bio);
 392		bio = bio_alloc(GFP_KERNEL, nr_pages);
 393	}
 394	blk_finish_plug(&plug);
 395
 396	if (!is_sync)
 397		return -EIOCBQUEUED;
 398
 399	for (;;) {
 400		set_current_state(TASK_UNINTERRUPTIBLE);
 401		if (!READ_ONCE(dio->waiter))
 402			break;
 403
 404		if (!(iocb->ki_flags & IOCB_HIPRI) ||
 405		    !blk_poll(bdev_get_queue(bdev), qc))
 406			io_schedule();
 407	}
 408	__set_current_state(TASK_RUNNING);
 409
 410	if (!ret)
 411		ret = blk_status_to_errno(dio->bio.bi_status);
 412	if (likely(!ret))
 413		ret = dio->size;
 414
 415	bio_put(&dio->bio);
 416	return ret;
 417}
 418
 419static ssize_t
 420blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 421{
 422	int nr_pages;
 423
 424	nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
 425	if (!nr_pages)
 426		return 0;
 427	if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
 428		return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
 429
 430	return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
 431}
 432
 433static __init int blkdev_init(void)
 434{
 435	blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
 436	if (!blkdev_dio_pool)
 437		return -ENOMEM;
 438	return 0;
 439}
 440module_init(blkdev_init);
 441
 442int __sync_blockdev(struct block_device *bdev, int wait)
 443{
 444	if (!bdev)
 445		return 0;
 446	if (!wait)
 447		return filemap_flush(bdev->bd_inode->i_mapping);
 448	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
 449}
 450
 451/*
 452 * Write out and wait upon all the dirty data associated with a block
 453 * device via its mapping.  Does not take the superblock lock.
 454 */
 455int sync_blockdev(struct block_device *bdev)
 456{
 457	return __sync_blockdev(bdev, 1);
 458}
 459EXPORT_SYMBOL(sync_blockdev);
 460
 461/*
 462 * Write out and wait upon all dirty data associated with this
 463 * device.   Filesystem data as well as the underlying block
 464 * device.  Takes the superblock lock.
 465 */
 466int fsync_bdev(struct block_device *bdev)
 467{
 468	struct super_block *sb = get_super(bdev);
 469	if (sb) {
 470		int res = sync_filesystem(sb);
 471		drop_super(sb);
 472		return res;
 473	}
 474	return sync_blockdev(bdev);
 475}
 476EXPORT_SYMBOL(fsync_bdev);
 477
 478/**
 479 * freeze_bdev  --  lock a filesystem and force it into a consistent state
 480 * @bdev:	blockdevice to lock
 481 *
 482 * If a superblock is found on this device, we take the s_umount semaphore
 483 * on it to make sure nobody unmounts until the snapshot creation is done.
 484 * The reference counter (bd_fsfreeze_count) guarantees that only the last
 485 * unfreeze process can unfreeze the frozen filesystem actually when multiple
 486 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
 487 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
 488 * actually.
 489 */
 490struct super_block *freeze_bdev(struct block_device *bdev)
 491{
 492	struct super_block *sb;
 493	int error = 0;
 494
 495	mutex_lock(&bdev->bd_fsfreeze_mutex);
 496	if (++bdev->bd_fsfreeze_count > 1) {
 497		/*
 498		 * We don't even need to grab a reference - the first call
 499		 * to freeze_bdev grab an active reference and only the last
 500		 * thaw_bdev drops it.
 501		 */
 502		sb = get_super(bdev);
 503		if (sb)
 504			drop_super(sb);
 505		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 506		return sb;
 507	}
 508
 509	sb = get_active_super(bdev);
 510	if (!sb)
 511		goto out;
 512	if (sb->s_op->freeze_super)
 513		error = sb->s_op->freeze_super(sb);
 514	else
 515		error = freeze_super(sb);
 516	if (error) {
 517		deactivate_super(sb);
 518		bdev->bd_fsfreeze_count--;
 519		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 520		return ERR_PTR(error);
 521	}
 522	deactivate_super(sb);
 523 out:
 524	sync_blockdev(bdev);
 525	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 526	return sb;	/* thaw_bdev releases s->s_umount */
 527}
 528EXPORT_SYMBOL(freeze_bdev);
 529
 530/**
 531 * thaw_bdev  -- unlock filesystem
 532 * @bdev:	blockdevice to unlock
 533 * @sb:		associated superblock
 534 *
 535 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
 536 */
 537int thaw_bdev(struct block_device *bdev, struct super_block *sb)
 538{
 539	int error = -EINVAL;
 540
 541	mutex_lock(&bdev->bd_fsfreeze_mutex);
 542	if (!bdev->bd_fsfreeze_count)
 543		goto out;
 544
 545	error = 0;
 546	if (--bdev->bd_fsfreeze_count > 0)
 547		goto out;
 548
 549	if (!sb)
 550		goto out;
 551
 552	if (sb->s_op->thaw_super)
 553		error = sb->s_op->thaw_super(sb);
 554	else
 555		error = thaw_super(sb);
 556	if (error)
 557		bdev->bd_fsfreeze_count++;
 558out:
 559	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 560	return error;
 561}
 562EXPORT_SYMBOL(thaw_bdev);
 563
 564static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
 565{
 566	return block_write_full_page(page, blkdev_get_block, wbc);
 567}
 568
 569static int blkdev_readpage(struct file * file, struct page * page)
 570{
 571	return block_read_full_page(page, blkdev_get_block);
 572}
 573
 574static int blkdev_readpages(struct file *file, struct address_space *mapping,
 575			struct list_head *pages, unsigned nr_pages)
 576{
 577	return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
 578}
 579
 580static int blkdev_write_begin(struct file *file, struct address_space *mapping,
 581			loff_t pos, unsigned len, unsigned flags,
 582			struct page **pagep, void **fsdata)
 583{
 584	return block_write_begin(mapping, pos, len, flags, pagep,
 585				 blkdev_get_block);
 586}
 587
 588static int blkdev_write_end(struct file *file, struct address_space *mapping,
 589			loff_t pos, unsigned len, unsigned copied,
 590			struct page *page, void *fsdata)
 591{
 592	int ret;
 593	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
 594
 595	unlock_page(page);
 596	put_page(page);
 597
 598	return ret;
 599}
 600
 601/*
 602 * private llseek:
 603 * for a block special file file_inode(file)->i_size is zero
 604 * so we compute the size by hand (just as in block_read/write above)
 605 */
 606static loff_t block_llseek(struct file *file, loff_t offset, int whence)
 607{
 608	struct inode *bd_inode = bdev_file_inode(file);
 609	loff_t retval;
 610
 611	inode_lock(bd_inode);
 612	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
 613	inode_unlock(bd_inode);
 614	return retval;
 615}
 616	
 617int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
 618{
 619	struct inode *bd_inode = bdev_file_inode(filp);
 620	struct block_device *bdev = I_BDEV(bd_inode);
 621	int error;
 622	
 623	error = file_write_and_wait_range(filp, start, end);
 624	if (error)
 625		return error;
 626
 627	/*
 628	 * There is no need to serialise calls to blkdev_issue_flush with
 629	 * i_mutex and doing so causes performance issues with concurrent
 630	 * O_SYNC writers to a block device.
 631	 */
 632	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
 633	if (error == -EOPNOTSUPP)
 634		error = 0;
 635
 636	return error;
 637}
 638EXPORT_SYMBOL(blkdev_fsync);
 639
 640/**
 641 * bdev_read_page() - Start reading a page from a block device
 642 * @bdev: The device to read the page from
 643 * @sector: The offset on the device to read the page to (need not be aligned)
 644 * @page: The page to read
 645 *
 646 * On entry, the page should be locked.  It will be unlocked when the page
 647 * has been read.  If the block driver implements rw_page synchronously,
 648 * that will be true on exit from this function, but it need not be.
 649 *
 650 * Errors returned by this function are usually "soft", eg out of memory, or
 651 * queue full; callers should try a different route to read this page rather
 652 * than propagate an error back up the stack.
 653 *
 654 * Return: negative errno if an error occurs, 0 if submission was successful.
 655 */
 656int bdev_read_page(struct block_device *bdev, sector_t sector,
 657			struct page *page)
 658{
 659	const struct block_device_operations *ops = bdev->bd_disk->fops;
 660	int result = -EOPNOTSUPP;
 661
 662	if (!ops->rw_page || bdev_get_integrity(bdev))
 663		return result;
 664
 665	result = blk_queue_enter(bdev->bd_queue, 0);
 666	if (result)
 667		return result;
 668	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
 669	blk_queue_exit(bdev->bd_queue);
 670	return result;
 671}
 672EXPORT_SYMBOL_GPL(bdev_read_page);
 673
 674/**
 675 * bdev_write_page() - Start writing a page to a block device
 676 * @bdev: The device to write the page to
 677 * @sector: The offset on the device to write the page to (need not be aligned)
 678 * @page: The page to write
 679 * @wbc: The writeback_control for the write
 680 *
 681 * On entry, the page should be locked and not currently under writeback.
 682 * On exit, if the write started successfully, the page will be unlocked and
 683 * under writeback.  If the write failed already (eg the driver failed to
 684 * queue the page to the device), the page will still be locked.  If the
 685 * caller is a ->writepage implementation, it will need to unlock the page.
 686 *
 687 * Errors returned by this function are usually "soft", eg out of memory, or
 688 * queue full; callers should try a different route to write this page rather
 689 * than propagate an error back up the stack.
 690 *
 691 * Return: negative errno if an error occurs, 0 if submission was successful.
 692 */
 693int bdev_write_page(struct block_device *bdev, sector_t sector,
 694			struct page *page, struct writeback_control *wbc)
 695{
 696	int result;
 697	const struct block_device_operations *ops = bdev->bd_disk->fops;
 698
 699	if (!ops->rw_page || bdev_get_integrity(bdev))
 700		return -EOPNOTSUPP;
 701	result = blk_queue_enter(bdev->bd_queue, 0);
 702	if (result)
 703		return result;
 704
 705	set_page_writeback(page);
 706	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
 707	if (result) {
 708		end_page_writeback(page);
 709	} else {
 710		clean_page_buffers(page);
 711		unlock_page(page);
 712	}
 713	blk_queue_exit(bdev->bd_queue);
 714	return result;
 715}
 716EXPORT_SYMBOL_GPL(bdev_write_page);
 717
 718/*
 719 * pseudo-fs
 720 */
 721
 722static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
 723static struct kmem_cache * bdev_cachep __read_mostly;
 724
 725static struct inode *bdev_alloc_inode(struct super_block *sb)
 726{
 727	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
 728	if (!ei)
 729		return NULL;
 730	return &ei->vfs_inode;
 731}
 732
 733static void bdev_i_callback(struct rcu_head *head)
 734{
 735	struct inode *inode = container_of(head, struct inode, i_rcu);
 736	struct bdev_inode *bdi = BDEV_I(inode);
 737
 738	kmem_cache_free(bdev_cachep, bdi);
 739}
 740
 741static void bdev_destroy_inode(struct inode *inode)
 742{
 743	call_rcu(&inode->i_rcu, bdev_i_callback);
 744}
 745
 746static void init_once(void *foo)
 747{
 748	struct bdev_inode *ei = (struct bdev_inode *) foo;
 749	struct block_device *bdev = &ei->bdev;
 750
 751	memset(bdev, 0, sizeof(*bdev));
 752	mutex_init(&bdev->bd_mutex);
 753	INIT_LIST_HEAD(&bdev->bd_list);
 754#ifdef CONFIG_SYSFS
 755	INIT_LIST_HEAD(&bdev->bd_holder_disks);
 756#endif
 757	bdev->bd_bdi = &noop_backing_dev_info;
 758	inode_init_once(&ei->vfs_inode);
 759	/* Initialize mutex for freeze. */
 760	mutex_init(&bdev->bd_fsfreeze_mutex);
 761}
 762
 763static void bdev_evict_inode(struct inode *inode)
 764{
 765	struct block_device *bdev = &BDEV_I(inode)->bdev;
 766	truncate_inode_pages_final(&inode->i_data);
 767	invalidate_inode_buffers(inode); /* is it needed here? */
 768	clear_inode(inode);
 769	spin_lock(&bdev_lock);
 770	list_del_init(&bdev->bd_list);
 771	spin_unlock(&bdev_lock);
 772	/* Detach inode from wb early as bdi_put() may free bdi->wb */
 773	inode_detach_wb(inode);
 774	if (bdev->bd_bdi != &noop_backing_dev_info) {
 775		bdi_put(bdev->bd_bdi);
 776		bdev->bd_bdi = &noop_backing_dev_info;
 777	}
 778}
 779
 780static const struct super_operations bdev_sops = {
 781	.statfs = simple_statfs,
 782	.alloc_inode = bdev_alloc_inode,
 783	.destroy_inode = bdev_destroy_inode,
 784	.drop_inode = generic_delete_inode,
 785	.evict_inode = bdev_evict_inode,
 786};
 787
 788static struct dentry *bd_mount(struct file_system_type *fs_type,
 789	int flags, const char *dev_name, void *data)
 790{
 791	struct dentry *dent;
 792	dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
 793	if (!IS_ERR(dent))
 794		dent->d_sb->s_iflags |= SB_I_CGROUPWB;
 795	return dent;
 796}
 797
 798static struct file_system_type bd_type = {
 799	.name		= "bdev",
 800	.mount		= bd_mount,
 801	.kill_sb	= kill_anon_super,
 802};
 803
 804struct super_block *blockdev_superblock __read_mostly;
 805EXPORT_SYMBOL_GPL(blockdev_superblock);
 806
 807void __init bdev_cache_init(void)
 808{
 809	int err;
 810	static struct vfsmount *bd_mnt;
 811
 812	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
 813			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
 814				SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
 815			init_once);
 816	err = register_filesystem(&bd_type);
 817	if (err)
 818		panic("Cannot register bdev pseudo-fs");
 819	bd_mnt = kern_mount(&bd_type);
 820	if (IS_ERR(bd_mnt))
 821		panic("Cannot create bdev pseudo-fs");
 822	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
 823}
 824
 825/*
 826 * Most likely _very_ bad one - but then it's hardly critical for small
 827 * /dev and can be fixed when somebody will need really large one.
 828 * Keep in mind that it will be fed through icache hash function too.
 829 */
 830static inline unsigned long hash(dev_t dev)
 831{
 832	return MAJOR(dev)+MINOR(dev);
 833}
 834
 835static int bdev_test(struct inode *inode, void *data)
 836{
 837	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
 838}
 839
 840static int bdev_set(struct inode *inode, void *data)
 841{
 842	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
 843	return 0;
 844}
 845
 846static LIST_HEAD(all_bdevs);
 847
 848/*
 849 * If there is a bdev inode for this device, unhash it so that it gets evicted
 850 * as soon as last inode reference is dropped.
 851 */
 852void bdev_unhash_inode(dev_t dev)
 853{
 854	struct inode *inode;
 855
 856	inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
 857	if (inode) {
 858		remove_inode_hash(inode);
 859		iput(inode);
 860	}
 861}
 862
 863struct block_device *bdget(dev_t dev)
 864{
 865	struct block_device *bdev;
 866	struct inode *inode;
 867
 868	inode = iget5_locked(blockdev_superblock, hash(dev),
 869			bdev_test, bdev_set, &dev);
 870
 871	if (!inode)
 872		return NULL;
 873
 874	bdev = &BDEV_I(inode)->bdev;
 875
 876	if (inode->i_state & I_NEW) {
 877		bdev->bd_contains = NULL;
 878		bdev->bd_super = NULL;
 879		bdev->bd_inode = inode;
 880		bdev->bd_block_size = i_blocksize(inode);
 881		bdev->bd_part_count = 0;
 882		bdev->bd_invalidated = 0;
 883		inode->i_mode = S_IFBLK;
 884		inode->i_rdev = dev;
 885		inode->i_bdev = bdev;
 886		inode->i_data.a_ops = &def_blk_aops;
 887		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
 888		spin_lock(&bdev_lock);
 889		list_add(&bdev->bd_list, &all_bdevs);
 890		spin_unlock(&bdev_lock);
 891		unlock_new_inode(inode);
 892	}
 893	return bdev;
 894}
 895
 896EXPORT_SYMBOL(bdget);
 897
 898/**
 899 * bdgrab -- Grab a reference to an already referenced block device
 900 * @bdev:	Block device to grab a reference to.
 901 */
 902struct block_device *bdgrab(struct block_device *bdev)
 903{
 904	ihold(bdev->bd_inode);
 905	return bdev;
 906}
 907EXPORT_SYMBOL(bdgrab);
 908
 909long nr_blockdev_pages(void)
 910{
 911	struct block_device *bdev;
 912	long ret = 0;
 913	spin_lock(&bdev_lock);
 914	list_for_each_entry(bdev, &all_bdevs, bd_list) {
 915		ret += bdev->bd_inode->i_mapping->nrpages;
 916	}
 917	spin_unlock(&bdev_lock);
 918	return ret;
 919}
 920
 921void bdput(struct block_device *bdev)
 922{
 923	iput(bdev->bd_inode);
 924}
 925
 926EXPORT_SYMBOL(bdput);
 927 
 928static struct block_device *bd_acquire(struct inode *inode)
 929{
 930	struct block_device *bdev;
 931
 932	spin_lock(&bdev_lock);
 933	bdev = inode->i_bdev;
 934	if (bdev && !inode_unhashed(bdev->bd_inode)) {
 935		bdgrab(bdev);
 936		spin_unlock(&bdev_lock);
 937		return bdev;
 938	}
 939	spin_unlock(&bdev_lock);
 940
 941	/*
 942	 * i_bdev references block device inode that was already shut down
 943	 * (corresponding device got removed).  Remove the reference and look
 944	 * up block device inode again just in case new device got
 945	 * reestablished under the same device number.
 946	 */
 947	if (bdev)
 948		bd_forget(inode);
 949
 950	bdev = bdget(inode->i_rdev);
 951	if (bdev) {
 952		spin_lock(&bdev_lock);
 953		if (!inode->i_bdev) {
 954			/*
 955			 * We take an additional reference to bd_inode,
 956			 * and it's released in clear_inode() of inode.
 957			 * So, we can access it via ->i_mapping always
 958			 * without igrab().
 959			 */
 960			bdgrab(bdev);
 961			inode->i_bdev = bdev;
 962			inode->i_mapping = bdev->bd_inode->i_mapping;
 963		}
 964		spin_unlock(&bdev_lock);
 965	}
 966	return bdev;
 967}
 968
 969/* Call when you free inode */
 970
 971void bd_forget(struct inode *inode)
 972{
 973	struct block_device *bdev = NULL;
 974
 975	spin_lock(&bdev_lock);
 976	if (!sb_is_blkdev_sb(inode->i_sb))
 977		bdev = inode->i_bdev;
 978	inode->i_bdev = NULL;
 979	inode->i_mapping = &inode->i_data;
 980	spin_unlock(&bdev_lock);
 981
 982	if (bdev)
 983		bdput(bdev);
 984}
 985
 986/**
 987 * bd_may_claim - test whether a block device can be claimed
 988 * @bdev: block device of interest
 989 * @whole: whole block device containing @bdev, may equal @bdev
 990 * @holder: holder trying to claim @bdev
 991 *
 992 * Test whether @bdev can be claimed by @holder.
 993 *
 994 * CONTEXT:
 995 * spin_lock(&bdev_lock).
 996 *
 997 * RETURNS:
 998 * %true if @bdev can be claimed, %false otherwise.
 999 */
1000static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1001			 void *holder)
1002{
1003	if (bdev->bd_holder == holder)
1004		return true;	 /* already a holder */
1005	else if (bdev->bd_holder != NULL)
1006		return false; 	 /* held by someone else */
1007	else if (whole == bdev)
1008		return true;  	 /* is a whole device which isn't held */
1009
1010	else if (whole->bd_holder == bd_may_claim)
1011		return true; 	 /* is a partition of a device that is being partitioned */
1012	else if (whole->bd_holder != NULL)
1013		return false;	 /* is a partition of a held device */
1014	else
1015		return true;	 /* is a partition of an un-held device */
1016}
1017
1018/**
1019 * bd_prepare_to_claim - prepare to claim a block device
1020 * @bdev: block device of interest
1021 * @whole: the whole device containing @bdev, may equal @bdev
1022 * @holder: holder trying to claim @bdev
1023 *
1024 * Prepare to claim @bdev.  This function fails if @bdev is already
1025 * claimed by another holder and waits if another claiming is in
1026 * progress.  This function doesn't actually claim.  On successful
1027 * return, the caller has ownership of bd_claiming and bd_holder[s].
1028 *
1029 * CONTEXT:
1030 * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
1031 * it multiple times.
1032 *
1033 * RETURNS:
1034 * 0 if @bdev can be claimed, -EBUSY otherwise.
1035 */
1036static int bd_prepare_to_claim(struct block_device *bdev,
1037			       struct block_device *whole, void *holder)
1038{
1039retry:
1040	/* if someone else claimed, fail */
1041	if (!bd_may_claim(bdev, whole, holder))
1042		return -EBUSY;
1043
1044	/* if claiming is already in progress, wait for it to finish */
1045	if (whole->bd_claiming) {
1046		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1047		DEFINE_WAIT(wait);
1048
1049		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1050		spin_unlock(&bdev_lock);
1051		schedule();
1052		finish_wait(wq, &wait);
1053		spin_lock(&bdev_lock);
1054		goto retry;
1055	}
1056
1057	/* yay, all mine */
1058	return 0;
1059}
1060
1061static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1062{
1063	struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1064
1065	if (!disk)
1066		return NULL;
1067	/*
1068	 * Now that we hold gendisk reference we make sure bdev we looked up is
1069	 * not stale. If it is, it means device got removed and created before
1070	 * we looked up gendisk and we fail open in such case. Associating
1071	 * unhashed bdev with newly created gendisk could lead to two bdevs
1072	 * (and thus two independent caches) being associated with one device
1073	 * which is bad.
1074	 */
1075	if (inode_unhashed(bdev->bd_inode)) {
1076		put_disk_and_module(disk);
1077		return NULL;
1078	}
1079	return disk;
1080}
1081
1082/**
1083 * bd_start_claiming - start claiming a block device
1084 * @bdev: block device of interest
1085 * @holder: holder trying to claim @bdev
1086 *
1087 * @bdev is about to be opened exclusively.  Check @bdev can be opened
1088 * exclusively and mark that an exclusive open is in progress.  Each
1089 * successful call to this function must be matched with a call to
1090 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1091 * fail).
1092 *
1093 * This function is used to gain exclusive access to the block device
1094 * without actually causing other exclusive open attempts to fail. It
1095 * should be used when the open sequence itself requires exclusive
1096 * access but may subsequently fail.
1097 *
1098 * CONTEXT:
1099 * Might sleep.
1100 *
1101 * RETURNS:
1102 * Pointer to the block device containing @bdev on success, ERR_PTR()
1103 * value on failure.
1104 */
1105static struct block_device *bd_start_claiming(struct block_device *bdev,
1106					      void *holder)
1107{
1108	struct gendisk *disk;
1109	struct block_device *whole;
1110	int partno, err;
1111
1112	might_sleep();
1113
1114	/*
1115	 * @bdev might not have been initialized properly yet, look up
1116	 * and grab the outer block device the hard way.
1117	 */
1118	disk = bdev_get_gendisk(bdev, &partno);
1119	if (!disk)
1120		return ERR_PTR(-ENXIO);
1121
1122	/*
1123	 * Normally, @bdev should equal what's returned from bdget_disk()
1124	 * if partno is 0; however, some drivers (floppy) use multiple
1125	 * bdev's for the same physical device and @bdev may be one of the
1126	 * aliases.  Keep @bdev if partno is 0.  This means claimer
1127	 * tracking is broken for those devices but it has always been that
1128	 * way.
1129	 */
1130	if (partno)
1131		whole = bdget_disk(disk, 0);
1132	else
1133		whole = bdgrab(bdev);
1134
1135	put_disk_and_module(disk);
1136	if (!whole)
1137		return ERR_PTR(-ENOMEM);
1138
1139	/* prepare to claim, if successful, mark claiming in progress */
1140	spin_lock(&bdev_lock);
1141
1142	err = bd_prepare_to_claim(bdev, whole, holder);
1143	if (err == 0) {
1144		whole->bd_claiming = holder;
1145		spin_unlock(&bdev_lock);
1146		return whole;
1147	} else {
1148		spin_unlock(&bdev_lock);
1149		bdput(whole);
1150		return ERR_PTR(err);
1151	}
1152}
1153
1154#ifdef CONFIG_SYSFS
1155struct bd_holder_disk {
1156	struct list_head	list;
1157	struct gendisk		*disk;
1158	int			refcnt;
1159};
1160
1161static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1162						  struct gendisk *disk)
1163{
1164	struct bd_holder_disk *holder;
1165
1166	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1167		if (holder->disk == disk)
1168			return holder;
1169	return NULL;
1170}
1171
1172static int add_symlink(struct kobject *from, struct kobject *to)
1173{
1174	return sysfs_create_link(from, to, kobject_name(to));
1175}
1176
1177static void del_symlink(struct kobject *from, struct kobject *to)
1178{
1179	sysfs_remove_link(from, kobject_name(to));
1180}
1181
1182/**
1183 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1184 * @bdev: the claimed slave bdev
1185 * @disk: the holding disk
1186 *
1187 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1188 *
1189 * This functions creates the following sysfs symlinks.
1190 *
1191 * - from "slaves" directory of the holder @disk to the claimed @bdev
1192 * - from "holders" directory of the @bdev to the holder @disk
1193 *
1194 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1195 * passed to bd_link_disk_holder(), then:
1196 *
1197 *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
1198 *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1199 *
1200 * The caller must have claimed @bdev before calling this function and
1201 * ensure that both @bdev and @disk are valid during the creation and
1202 * lifetime of these symlinks.
1203 *
1204 * CONTEXT:
1205 * Might sleep.
1206 *
1207 * RETURNS:
1208 * 0 on success, -errno on failure.
1209 */
1210int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1211{
1212	struct bd_holder_disk *holder;
1213	int ret = 0;
1214
1215	mutex_lock(&bdev->bd_mutex);
1216
1217	WARN_ON_ONCE(!bdev->bd_holder);
1218
1219	/* FIXME: remove the following once add_disk() handles errors */
1220	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1221		goto out_unlock;
1222
1223	holder = bd_find_holder_disk(bdev, disk);
1224	if (holder) {
1225		holder->refcnt++;
1226		goto out_unlock;
1227	}
1228
1229	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1230	if (!holder) {
1231		ret = -ENOMEM;
1232		goto out_unlock;
1233	}
1234
1235	INIT_LIST_HEAD(&holder->list);
1236	holder->disk = disk;
1237	holder->refcnt = 1;
1238
1239	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1240	if (ret)
1241		goto out_free;
1242
1243	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1244	if (ret)
1245		goto out_del;
1246	/*
1247	 * bdev could be deleted beneath us which would implicitly destroy
1248	 * the holder directory.  Hold on to it.
1249	 */
1250	kobject_get(bdev->bd_part->holder_dir);
1251
1252	list_add(&holder->list, &bdev->bd_holder_disks);
1253	goto out_unlock;
1254
1255out_del:
1256	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1257out_free:
1258	kfree(holder);
1259out_unlock:
1260	mutex_unlock(&bdev->bd_mutex);
1261	return ret;
1262}
1263EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1264
1265/**
1266 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1267 * @bdev: the calimed slave bdev
1268 * @disk: the holding disk
1269 *
1270 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1271 *
1272 * CONTEXT:
1273 * Might sleep.
1274 */
1275void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1276{
1277	struct bd_holder_disk *holder;
1278
1279	mutex_lock(&bdev->bd_mutex);
1280
1281	holder = bd_find_holder_disk(bdev, disk);
1282
1283	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1284		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1285		del_symlink(bdev->bd_part->holder_dir,
1286			    &disk_to_dev(disk)->kobj);
1287		kobject_put(bdev->bd_part->holder_dir);
1288		list_del_init(&holder->list);
1289		kfree(holder);
1290	}
1291
1292	mutex_unlock(&bdev->bd_mutex);
1293}
1294EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1295#endif
1296
1297/**
1298 * flush_disk - invalidates all buffer-cache entries on a disk
1299 *
1300 * @bdev:      struct block device to be flushed
1301 * @kill_dirty: flag to guide handling of dirty inodes
1302 *
1303 * Invalidates all buffer-cache entries on a disk. It should be called
1304 * when a disk has been changed -- either by a media change or online
1305 * resize.
1306 */
1307static void flush_disk(struct block_device *bdev, bool kill_dirty)
1308{
1309	if (__invalidate_device(bdev, kill_dirty)) {
1310		printk(KERN_WARNING "VFS: busy inodes on changed media or "
1311		       "resized disk %s\n",
1312		       bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1313	}
1314
1315	if (!bdev->bd_disk)
1316		return;
1317	if (disk_part_scan_enabled(bdev->bd_disk))
1318		bdev->bd_invalidated = 1;
1319}
1320
1321/**
1322 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1323 * @disk: struct gendisk to check
1324 * @bdev: struct bdev to adjust.
1325 *
1326 * This routine checks to see if the bdev size does not match the disk size
1327 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1328 * are freed.
1329 */
1330void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1331{
1332	loff_t disk_size, bdev_size;
1333
1334	disk_size = (loff_t)get_capacity(disk) << 9;
1335	bdev_size = i_size_read(bdev->bd_inode);
1336	if (disk_size != bdev_size) {
1337		printk(KERN_INFO
1338		       "%s: detected capacity change from %lld to %lld\n",
1339		       disk->disk_name, bdev_size, disk_size);
1340		i_size_write(bdev->bd_inode, disk_size);
1341		if (bdev_size > disk_size)
1342			flush_disk(bdev, false);
1343	}
1344}
1345EXPORT_SYMBOL(check_disk_size_change);
1346
1347/**
1348 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1349 * @disk: struct gendisk to be revalidated
1350 *
1351 * This routine is a wrapper for lower-level driver's revalidate_disk
1352 * call-backs.  It is used to do common pre and post operations needed
1353 * for all revalidate_disk operations.
1354 */
1355int revalidate_disk(struct gendisk *disk)
1356{
1357	struct block_device *bdev;
1358	int ret = 0;
1359
1360	if (disk->fops->revalidate_disk)
1361		ret = disk->fops->revalidate_disk(disk);
1362	bdev = bdget_disk(disk, 0);
1363	if (!bdev)
1364		return ret;
1365
1366	mutex_lock(&bdev->bd_mutex);
1367	check_disk_size_change(disk, bdev);
1368	bdev->bd_invalidated = 0;
1369	mutex_unlock(&bdev->bd_mutex);
1370	bdput(bdev);
1371	return ret;
1372}
1373EXPORT_SYMBOL(revalidate_disk);
1374
1375/*
1376 * This routine checks whether a removable media has been changed,
1377 * and invalidates all buffer-cache-entries in that case. This
1378 * is a relatively slow routine, so we have to try to minimize using
1379 * it. Thus it is called only upon a 'mount' or 'open'. This
1380 * is the best way of combining speed and utility, I think.
1381 * People changing diskettes in the middle of an operation deserve
1382 * to lose :-)
1383 */
1384int check_disk_change(struct block_device *bdev)
1385{
1386	struct gendisk *disk = bdev->bd_disk;
1387	const struct block_device_operations *bdops = disk->fops;
1388	unsigned int events;
1389
1390	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1391				   DISK_EVENT_EJECT_REQUEST);
1392	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1393		return 0;
1394
1395	flush_disk(bdev, true);
1396	if (bdops->revalidate_disk)
1397		bdops->revalidate_disk(bdev->bd_disk);
1398	return 1;
1399}
1400
1401EXPORT_SYMBOL(check_disk_change);
1402
1403void bd_set_size(struct block_device *bdev, loff_t size)
1404{
1405	unsigned bsize = bdev_logical_block_size(bdev);
1406
1407	inode_lock(bdev->bd_inode);
1408	i_size_write(bdev->bd_inode, size);
1409	inode_unlock(bdev->bd_inode);
1410	while (bsize < PAGE_SIZE) {
1411		if (size & bsize)
1412			break;
1413		bsize <<= 1;
1414	}
1415	bdev->bd_block_size = bsize;
1416	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1417}
1418EXPORT_SYMBOL(bd_set_size);
1419
1420static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1421
1422/*
1423 * bd_mutex locking:
1424 *
1425 *  mutex_lock(part->bd_mutex)
1426 *    mutex_lock_nested(whole->bd_mutex, 1)
1427 */
1428
1429static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1430{
1431	struct gendisk *disk;
1432	int ret;
1433	int partno;
1434	int perm = 0;
1435	bool first_open = false;
1436
1437	if (mode & FMODE_READ)
1438		perm |= MAY_READ;
1439	if (mode & FMODE_WRITE)
1440		perm |= MAY_WRITE;
1441	/*
1442	 * hooks: /n/, see "layering violations".
1443	 */
1444	if (!for_part) {
1445		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1446		if (ret != 0) {
1447			bdput(bdev);
1448			return ret;
1449		}
1450	}
1451
1452 restart:
1453
1454	ret = -ENXIO;
1455	disk = bdev_get_gendisk(bdev, &partno);
1456	if (!disk)
1457		goto out;
1458
1459	disk_block_events(disk);
1460	mutex_lock_nested(&bdev->bd_mutex, for_part);
1461	if (!bdev->bd_openers) {
1462		first_open = true;
1463		bdev->bd_disk = disk;
1464		bdev->bd_queue = disk->queue;
1465		bdev->bd_contains = bdev;
1466		bdev->bd_partno = partno;
1467
1468		if (!partno) {
1469			ret = -ENXIO;
1470			bdev->bd_part = disk_get_part(disk, partno);
1471			if (!bdev->bd_part)
1472				goto out_clear;
1473
1474			ret = 0;
1475			if (disk->fops->open) {
1476				ret = disk->fops->open(bdev, mode);
1477				if (ret == -ERESTARTSYS) {
1478					/* Lost a race with 'disk' being
1479					 * deleted, try again.
1480					 * See md.c
1481					 */
1482					disk_put_part(bdev->bd_part);
1483					bdev->bd_part = NULL;
1484					bdev->bd_disk = NULL;
1485					bdev->bd_queue = NULL;
1486					mutex_unlock(&bdev->bd_mutex);
1487					disk_unblock_events(disk);
1488					put_disk_and_module(disk);
1489					goto restart;
1490				}
1491			}
1492
1493			if (!ret)
1494				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1495
1496			/*
1497			 * If the device is invalidated, rescan partition
1498			 * if open succeeded or failed with -ENOMEDIUM.
1499			 * The latter is necessary to prevent ghost
1500			 * partitions on a removed medium.
1501			 */
1502			if (bdev->bd_invalidated) {
1503				if (!ret)
1504					rescan_partitions(disk, bdev);
1505				else if (ret == -ENOMEDIUM)
1506					invalidate_partitions(disk, bdev);
1507			}
1508
1509			if (ret)
1510				goto out_clear;
1511		} else {
1512			struct block_device *whole;
1513			whole = bdget_disk(disk, 0);
1514			ret = -ENOMEM;
1515			if (!whole)
1516				goto out_clear;
1517			BUG_ON(for_part);
1518			ret = __blkdev_get(whole, mode, 1);
1519			if (ret)
1520				goto out_clear;
1521			bdev->bd_contains = whole;
1522			bdev->bd_part = disk_get_part(disk, partno);
1523			if (!(disk->flags & GENHD_FL_UP) ||
1524			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1525				ret = -ENXIO;
1526				goto out_clear;
1527			}
1528			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1529		}
1530
1531		if (bdev->bd_bdi == &noop_backing_dev_info)
1532			bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1533	} else {
1534		if (bdev->bd_contains == bdev) {
1535			ret = 0;
1536			if (bdev->bd_disk->fops->open)
1537				ret = bdev->bd_disk->fops->open(bdev, mode);
1538			/* the same as first opener case, read comment there */
1539			if (bdev->bd_invalidated) {
1540				if (!ret)
1541					rescan_partitions(bdev->bd_disk, bdev);
1542				else if (ret == -ENOMEDIUM)
1543					invalidate_partitions(bdev->bd_disk, bdev);
1544			}
1545			if (ret)
1546				goto out_unlock_bdev;
1547		}
1548	}
1549	bdev->bd_openers++;
1550	if (for_part)
1551		bdev->bd_part_count++;
1552	mutex_unlock(&bdev->bd_mutex);
1553	disk_unblock_events(disk);
1554	/* only one opener holds refs to the module and disk */
1555	if (!first_open)
1556		put_disk_and_module(disk);
1557	return 0;
1558
1559 out_clear:
1560	disk_put_part(bdev->bd_part);
1561	bdev->bd_disk = NULL;
1562	bdev->bd_part = NULL;
1563	bdev->bd_queue = NULL;
1564	if (bdev != bdev->bd_contains)
1565		__blkdev_put(bdev->bd_contains, mode, 1);
1566	bdev->bd_contains = NULL;
1567 out_unlock_bdev:
1568	mutex_unlock(&bdev->bd_mutex);
1569	disk_unblock_events(disk);
1570	put_disk_and_module(disk);
1571 out:
1572	bdput(bdev);
1573
1574	return ret;
1575}
1576
1577/**
1578 * blkdev_get - open a block device
1579 * @bdev: block_device to open
1580 * @mode: FMODE_* mask
1581 * @holder: exclusive holder identifier
1582 *
1583 * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1584 * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1585 * @holder is invalid.  Exclusive opens may nest for the same @holder.
1586 *
1587 * On success, the reference count of @bdev is unchanged.  On failure,
1588 * @bdev is put.
1589 *
1590 * CONTEXT:
1591 * Might sleep.
1592 *
1593 * RETURNS:
1594 * 0 on success, -errno on failure.
1595 */
1596int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1597{
1598	struct block_device *whole = NULL;
1599	int res;
1600
1601	WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1602
1603	if ((mode & FMODE_EXCL) && holder) {
1604		whole = bd_start_claiming(bdev, holder);
1605		if (IS_ERR(whole)) {
1606			bdput(bdev);
1607			return PTR_ERR(whole);
1608		}
1609	}
1610
1611	res = __blkdev_get(bdev, mode, 0);
1612
1613	if (whole) {
1614		struct gendisk *disk = whole->bd_disk;
1615
1616		/* finish claiming */
1617		mutex_lock(&bdev->bd_mutex);
1618		spin_lock(&bdev_lock);
1619
1620		if (!res) {
1621			BUG_ON(!bd_may_claim(bdev, whole, holder));
1622			/*
1623			 * Note that for a whole device bd_holders
1624			 * will be incremented twice, and bd_holder
1625			 * will be set to bd_may_claim before being
1626			 * set to holder
1627			 */
1628			whole->bd_holders++;
1629			whole->bd_holder = bd_may_claim;
1630			bdev->bd_holders++;
1631			bdev->bd_holder = holder;
1632		}
1633
1634		/* tell others that we're done */
1635		BUG_ON(whole->bd_claiming != holder);
1636		whole->bd_claiming = NULL;
1637		wake_up_bit(&whole->bd_claiming, 0);
1638
1639		spin_unlock(&bdev_lock);
1640
1641		/*
1642		 * Block event polling for write claims if requested.  Any
1643		 * write holder makes the write_holder state stick until
1644		 * all are released.  This is good enough and tracking
1645		 * individual writeable reference is too fragile given the
1646		 * way @mode is used in blkdev_get/put().
1647		 */
1648		if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1649		    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1650			bdev->bd_write_holder = true;
1651			disk_block_events(disk);
1652		}
1653
1654		mutex_unlock(&bdev->bd_mutex);
1655		bdput(whole);
1656	}
1657
1658	return res;
1659}
1660EXPORT_SYMBOL(blkdev_get);
1661
1662/**
1663 * blkdev_get_by_path - open a block device by name
1664 * @path: path to the block device to open
1665 * @mode: FMODE_* mask
1666 * @holder: exclusive holder identifier
1667 *
1668 * Open the blockdevice described by the device file at @path.  @mode
1669 * and @holder are identical to blkdev_get().
1670 *
1671 * On success, the returned block_device has reference count of one.
1672 *
1673 * CONTEXT:
1674 * Might sleep.
1675 *
1676 * RETURNS:
1677 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1678 */
1679struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1680					void *holder)
1681{
1682	struct block_device *bdev;
1683	int err;
1684
1685	bdev = lookup_bdev(path);
1686	if (IS_ERR(bdev))
1687		return bdev;
1688
1689	err = blkdev_get(bdev, mode, holder);
1690	if (err)
1691		return ERR_PTR(err);
1692
1693	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1694		blkdev_put(bdev, mode);
1695		return ERR_PTR(-EACCES);
1696	}
1697
1698	return bdev;
1699}
1700EXPORT_SYMBOL(blkdev_get_by_path);
1701
1702/**
1703 * blkdev_get_by_dev - open a block device by device number
1704 * @dev: device number of block device to open
1705 * @mode: FMODE_* mask
1706 * @holder: exclusive holder identifier
1707 *
1708 * Open the blockdevice described by device number @dev.  @mode and
1709 * @holder are identical to blkdev_get().
1710 *
1711 * Use it ONLY if you really do not have anything better - i.e. when
1712 * you are behind a truly sucky interface and all you are given is a
1713 * device number.  _Never_ to be used for internal purposes.  If you
1714 * ever need it - reconsider your API.
1715 *
1716 * On success, the returned block_device has reference count of one.
1717 *
1718 * CONTEXT:
1719 * Might sleep.
1720 *
1721 * RETURNS:
1722 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1723 */
1724struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1725{
1726	struct block_device *bdev;
1727	int err;
1728
1729	bdev = bdget(dev);
1730	if (!bdev)
1731		return ERR_PTR(-ENOMEM);
1732
1733	err = blkdev_get(bdev, mode, holder);
1734	if (err)
1735		return ERR_PTR(err);
1736
1737	return bdev;
1738}
1739EXPORT_SYMBOL(blkdev_get_by_dev);
1740
1741static int blkdev_open(struct inode * inode, struct file * filp)
1742{
1743	struct block_device *bdev;
1744
1745	/*
1746	 * Preserve backwards compatibility and allow large file access
1747	 * even if userspace doesn't ask for it explicitly. Some mkfs
1748	 * binary needs it. We might want to drop this workaround
1749	 * during an unstable branch.
1750	 */
1751	filp->f_flags |= O_LARGEFILE;
1752
1753	filp->f_mode |= FMODE_NOWAIT;
1754
1755	if (filp->f_flags & O_NDELAY)
1756		filp->f_mode |= FMODE_NDELAY;
1757	if (filp->f_flags & O_EXCL)
1758		filp->f_mode |= FMODE_EXCL;
1759	if ((filp->f_flags & O_ACCMODE) == 3)
1760		filp->f_mode |= FMODE_WRITE_IOCTL;
1761
1762	bdev = bd_acquire(inode);
1763	if (bdev == NULL)
1764		return -ENOMEM;
1765
1766	filp->f_mapping = bdev->bd_inode->i_mapping;
1767	filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1768
1769	return blkdev_get(bdev, filp->f_mode, filp);
1770}
1771
1772static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1773{
1774	struct gendisk *disk = bdev->bd_disk;
1775	struct block_device *victim = NULL;
1776
1777	mutex_lock_nested(&bdev->bd_mutex, for_part);
1778	if (for_part)
1779		bdev->bd_part_count--;
1780
1781	if (!--bdev->bd_openers) {
1782		WARN_ON_ONCE(bdev->bd_holders);
1783		sync_blockdev(bdev);
1784		kill_bdev(bdev);
1785
1786		bdev_write_inode(bdev);
1787	}
1788	if (bdev->bd_contains == bdev) {
1789		if (disk->fops->release)
1790			disk->fops->release(disk, mode);
1791	}
1792	if (!bdev->bd_openers) {
1793		disk_put_part(bdev->bd_part);
1794		bdev->bd_part = NULL;
1795		bdev->bd_disk = NULL;
1796		if (bdev != bdev->bd_contains)
1797			victim = bdev->bd_contains;
1798		bdev->bd_contains = NULL;
1799
1800		put_disk_and_module(disk);
1801	}
1802	mutex_unlock(&bdev->bd_mutex);
1803	bdput(bdev);
1804	if (victim)
1805		__blkdev_put(victim, mode, 1);
1806}
1807
1808void blkdev_put(struct block_device *bdev, fmode_t mode)
1809{
1810	mutex_lock(&bdev->bd_mutex);
1811
1812	if (mode & FMODE_EXCL) {
1813		bool bdev_free;
1814
1815		/*
1816		 * Release a claim on the device.  The holder fields
1817		 * are protected with bdev_lock.  bd_mutex is to
1818		 * synchronize disk_holder unlinking.
1819		 */
1820		spin_lock(&bdev_lock);
1821
1822		WARN_ON_ONCE(--bdev->bd_holders < 0);
1823		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1824
1825		/* bd_contains might point to self, check in a separate step */
1826		if ((bdev_free = !bdev->bd_holders))
1827			bdev->bd_holder = NULL;
1828		if (!bdev->bd_contains->bd_holders)
1829			bdev->bd_contains->bd_holder = NULL;
1830
1831		spin_unlock(&bdev_lock);
1832
1833		/*
1834		 * If this was the last claim, remove holder link and
1835		 * unblock evpoll if it was a write holder.
1836		 */
1837		if (bdev_free && bdev->bd_write_holder) {
1838			disk_unblock_events(bdev->bd_disk);
1839			bdev->bd_write_holder = false;
1840		}
1841	}
1842
1843	/*
1844	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1845	 * event.  This is to ensure detection of media removal commanded
1846	 * from userland - e.g. eject(1).
1847	 */
1848	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1849
1850	mutex_unlock(&bdev->bd_mutex);
1851
1852	__blkdev_put(bdev, mode, 0);
1853}
1854EXPORT_SYMBOL(blkdev_put);
1855
1856static int blkdev_close(struct inode * inode, struct file * filp)
1857{
1858	struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1859	blkdev_put(bdev, filp->f_mode);
1860	return 0;
1861}
1862
1863static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1864{
1865	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1866	fmode_t mode = file->f_mode;
1867
1868	/*
1869	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1870	 * to updated it before every ioctl.
1871	 */
1872	if (file->f_flags & O_NDELAY)
1873		mode |= FMODE_NDELAY;
1874	else
1875		mode &= ~FMODE_NDELAY;
1876
1877	return blkdev_ioctl(bdev, mode, cmd, arg);
1878}
1879
1880/*
1881 * Write data to the block device.  Only intended for the block device itself
1882 * and the raw driver which basically is a fake block device.
1883 *
1884 * Does not take i_mutex for the write and thus is not for general purpose
1885 * use.
1886 */
1887ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1888{
1889	struct file *file = iocb->ki_filp;
1890	struct inode *bd_inode = bdev_file_inode(file);
1891	loff_t size = i_size_read(bd_inode);
1892	struct blk_plug plug;
1893	ssize_t ret;
1894
1895	if (bdev_read_only(I_BDEV(bd_inode)))
1896		return -EPERM;
1897
1898	if (!iov_iter_count(from))
1899		return 0;
1900
1901	if (iocb->ki_pos >= size)
1902		return -ENOSPC;
1903
1904	if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1905		return -EOPNOTSUPP;
1906
1907	iov_iter_truncate(from, size - iocb->ki_pos);
1908
1909	blk_start_plug(&plug);
1910	ret = __generic_file_write_iter(iocb, from);
1911	if (ret > 0)
1912		ret = generic_write_sync(iocb, ret);
1913	blk_finish_plug(&plug);
1914	return ret;
1915}
1916EXPORT_SYMBOL_GPL(blkdev_write_iter);
1917
1918ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1919{
1920	struct file *file = iocb->ki_filp;
1921	struct inode *bd_inode = bdev_file_inode(file);
1922	loff_t size = i_size_read(bd_inode);
1923	loff_t pos = iocb->ki_pos;
1924
1925	if (pos >= size)
1926		return 0;
1927
1928	size -= pos;
1929	iov_iter_truncate(to, size);
1930	return generic_file_read_iter(iocb, to);
1931}
1932EXPORT_SYMBOL_GPL(blkdev_read_iter);
1933
1934/*
1935 * Try to release a page associated with block device when the system
1936 * is under memory pressure.
1937 */
1938static int blkdev_releasepage(struct page *page, gfp_t wait)
1939{
1940	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1941
1942	if (super && super->s_op->bdev_try_to_free_page)
1943		return super->s_op->bdev_try_to_free_page(super, page, wait);
1944
1945	return try_to_free_buffers(page);
1946}
1947
1948static int blkdev_writepages(struct address_space *mapping,
1949			     struct writeback_control *wbc)
1950{
1951	return generic_writepages(mapping, wbc);
1952}
1953
1954static const struct address_space_operations def_blk_aops = {
1955	.readpage	= blkdev_readpage,
1956	.readpages	= blkdev_readpages,
1957	.writepage	= blkdev_writepage,
1958	.write_begin	= blkdev_write_begin,
1959	.write_end	= blkdev_write_end,
1960	.writepages	= blkdev_writepages,
1961	.releasepage	= blkdev_releasepage,
1962	.direct_IO	= blkdev_direct_IO,
1963	.is_dirty_writeback = buffer_check_dirty_writeback,
1964};
1965
1966#define	BLKDEV_FALLOC_FL_SUPPORTED					\
1967		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
1968		 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1969
1970static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1971			     loff_t len)
1972{
1973	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1974	struct address_space *mapping;
1975	loff_t end = start + len - 1;
1976	loff_t isize;
1977	int error;
1978
1979	/* Fail if we don't recognize the flags. */
1980	if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1981		return -EOPNOTSUPP;
1982
1983	/* Don't go off the end of the device. */
1984	isize = i_size_read(bdev->bd_inode);
1985	if (start >= isize)
1986		return -EINVAL;
1987	if (end >= isize) {
1988		if (mode & FALLOC_FL_KEEP_SIZE) {
1989			len = isize - start;
1990			end = start + len - 1;
1991		} else
1992			return -EINVAL;
1993	}
1994
1995	/*
1996	 * Don't allow IO that isn't aligned to logical block size.
1997	 */
1998	if ((start | len) & (bdev_logical_block_size(bdev) - 1))
1999		return -EINVAL;
2000
2001	/* Invalidate the page cache, including dirty pages. */
2002	mapping = bdev->bd_inode->i_mapping;
2003	truncate_inode_pages_range(mapping, start, end);
2004
2005	switch (mode) {
2006	case FALLOC_FL_ZERO_RANGE:
2007	case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2008		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2009					    GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2010		break;
2011	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2012		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2013					     GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2014		break;
2015	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2016		error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2017					     GFP_KERNEL, 0);
2018		break;
2019	default:
2020		return -EOPNOTSUPP;
2021	}
2022	if (error)
2023		return error;
2024
2025	/*
2026	 * Invalidate again; if someone wandered in and dirtied a page,
2027	 * the caller will be given -EBUSY.  The third argument is
2028	 * inclusive, so the rounding here is safe.
2029	 */
2030	return invalidate_inode_pages2_range(mapping,
2031					     start >> PAGE_SHIFT,
2032					     end >> PAGE_SHIFT);
2033}
2034
2035const struct file_operations def_blk_fops = {
2036	.open		= blkdev_open,
2037	.release	= blkdev_close,
2038	.llseek		= block_llseek,
2039	.read_iter	= blkdev_read_iter,
2040	.write_iter	= blkdev_write_iter,
2041	.mmap		= generic_file_mmap,
2042	.fsync		= blkdev_fsync,
2043	.unlocked_ioctl	= block_ioctl,
2044#ifdef CONFIG_COMPAT
2045	.compat_ioctl	= compat_blkdev_ioctl,
2046#endif
2047	.splice_read	= generic_file_splice_read,
2048	.splice_write	= iter_file_splice_write,
2049	.fallocate	= blkdev_fallocate,
2050};
2051
2052int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2053{
2054	int res;
2055	mm_segment_t old_fs = get_fs();
2056	set_fs(KERNEL_DS);
2057	res = blkdev_ioctl(bdev, 0, cmd, arg);
2058	set_fs(old_fs);
2059	return res;
2060}
2061
2062EXPORT_SYMBOL(ioctl_by_bdev);
2063
2064/**
2065 * lookup_bdev  - lookup a struct block_device by name
2066 * @pathname:	special file representing the block device
2067 *
2068 * Get a reference to the blockdevice at @pathname in the current
2069 * namespace if possible and return it.  Return ERR_PTR(error)
2070 * otherwise.
2071 */
2072struct block_device *lookup_bdev(const char *pathname)
2073{
2074	struct block_device *bdev;
2075	struct inode *inode;
2076	struct path path;
2077	int error;
2078
2079	if (!pathname || !*pathname)
2080		return ERR_PTR(-EINVAL);
2081
2082	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2083	if (error)
2084		return ERR_PTR(error);
2085
2086	inode = d_backing_inode(path.dentry);
2087	error = -ENOTBLK;
2088	if (!S_ISBLK(inode->i_mode))
2089		goto fail;
2090	error = -EACCES;
2091	if (!may_open_dev(&path))
2092		goto fail;
2093	error = -ENOMEM;
2094	bdev = bd_acquire(inode);
2095	if (!bdev)
2096		goto fail;
2097out:
2098	path_put(&path);
2099	return bdev;
2100fail:
2101	bdev = ERR_PTR(error);
2102	goto out;
2103}
2104EXPORT_SYMBOL(lookup_bdev);
2105
2106int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2107{
2108	struct super_block *sb = get_super(bdev);
2109	int res = 0;
2110
2111	if (sb) {
2112		/*
2113		 * no need to lock the super, get_super holds the
2114		 * read mutex so the filesystem cannot go away
2115		 * under us (->put_super runs with the write lock
2116		 * hold).
2117		 */
2118		shrink_dcache_sb(sb);
2119		res = invalidate_inodes(sb, kill_dirty);
2120		drop_super(sb);
2121	}
2122	invalidate_bdev(bdev);
2123	return res;
2124}
2125EXPORT_SYMBOL(__invalidate_device);
2126
2127void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2128{
2129	struct inode *inode, *old_inode = NULL;
2130
2131	spin_lock(&blockdev_superblock->s_inode_list_lock);
2132	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2133		struct address_space *mapping = inode->i_mapping;
2134		struct block_device *bdev;
2135
2136		spin_lock(&inode->i_lock);
2137		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2138		    mapping->nrpages == 0) {
2139			spin_unlock(&inode->i_lock);
2140			continue;
2141		}
2142		__iget(inode);
2143		spin_unlock(&inode->i_lock);
2144		spin_unlock(&blockdev_superblock->s_inode_list_lock);
2145		/*
2146		 * We hold a reference to 'inode' so it couldn't have been
2147		 * removed from s_inodes list while we dropped the
2148		 * s_inode_list_lock  We cannot iput the inode now as we can
2149		 * be holding the last reference and we cannot iput it under
2150		 * s_inode_list_lock. So we keep the reference and iput it
2151		 * later.
2152		 */
2153		iput(old_inode);
2154		old_inode = inode;
2155		bdev = I_BDEV(inode);
2156
2157		mutex_lock(&bdev->bd_mutex);
2158		if (bdev->bd_openers)
2159			func(bdev, arg);
2160		mutex_unlock(&bdev->bd_mutex);
2161
2162		spin_lock(&blockdev_superblock->s_inode_list_lock);
2163	}
2164	spin_unlock(&blockdev_superblock->s_inode_list_lock);
2165	iput(old_inode);
2166}