Linux Audio

Check our new training course

Loading...
v6.9.4
   1/*
   2 * Copyright 2008 Advanced Micro Devices, Inc.
   3 * Copyright 2008 Red Hat Inc.
   4 * Copyright 2009 Jerome Glisse.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the "Software"),
   8 * to deal in the Software without restriction, including without limitation
   9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10 * and/or sell copies of the Software, and to permit persons to whom the
  11 * Software is furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  22 * OTHER DEALINGS IN THE SOFTWARE.
  23 *
  24 * Authors: Dave Airlie
  25 *          Alex Deucher
  26 *          Jerome Glisse
  27 */
  28
  29#include <linux/dma-fence-array.h>
  30#include <linux/interval_tree_generic.h>
  31#include <linux/idr.h>
  32#include <linux/dma-buf.h>
  33
  34#include <drm/amdgpu_drm.h>
  35#include <drm/drm_drv.h>
  36#include <drm/ttm/ttm_tt.h>
  37#include <drm/drm_exec.h>
  38#include "amdgpu.h"
  39#include "amdgpu_trace.h"
  40#include "amdgpu_amdkfd.h"
  41#include "amdgpu_gmc.h"
  42#include "amdgpu_xgmi.h"
  43#include "amdgpu_dma_buf.h"
  44#include "amdgpu_res_cursor.h"
  45#include "kfd_svm.h"
  46
  47/**
  48 * DOC: GPUVM
  49 *
  50 * GPUVM is the MMU functionality provided on the GPU.
  51 * GPUVM is similar to the legacy GART on older asics, however
  52 * rather than there being a single global GART table
  53 * for the entire GPU, there can be multiple GPUVM page tables active
  54 * at any given time.  The GPUVM page tables can contain a mix
  55 * VRAM pages and system pages (both memory and MMIO) and system pages
  56 * can be mapped as snooped (cached system pages) or unsnooped
  57 * (uncached system pages).
  58 *
  59 * Each active GPUVM has an ID associated with it and there is a page table
  60 * linked with each VMID.  When executing a command buffer,
  61 * the kernel tells the engine what VMID to use for that command
  62 * buffer.  VMIDs are allocated dynamically as commands are submitted.
  63 * The userspace drivers maintain their own address space and the kernel
  64 * sets up their pages tables accordingly when they submit their
  65 * command buffers and a VMID is assigned.
  66 * The hardware supports up to 16 active GPUVMs at any given time.
  67 *
  68 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending
  69 * on the ASIC family.  GPUVM supports RWX attributes on each page as well
  70 * as other features such as encryption and caching attributes.
  71 *
  72 * VMID 0 is special.  It is the GPUVM used for the kernel driver.  In
  73 * addition to an aperture managed by a page table, VMID 0 also has
  74 * several other apertures.  There is an aperture for direct access to VRAM
  75 * and there is a legacy AGP aperture which just forwards accesses directly
  76 * to the matching system physical addresses (or IOVAs when an IOMMU is
  77 * present).  These apertures provide direct access to these memories without
  78 * incurring the overhead of a page table.  VMID 0 is used by the kernel
  79 * driver for tasks like memory management.
  80 *
  81 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory.
  82 * For user applications, each application can have their own unique GPUVM
  83 * address space.  The application manages the address space and the kernel
  84 * driver manages the GPUVM page tables for each process.  If an GPU client
  85 * accesses an invalid page, it will generate a GPU page fault, similar to
  86 * accessing an invalid page on a CPU.
  87 */
  88
  89#define START(node) ((node)->start)
  90#define LAST(node) ((node)->last)
  91
  92INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
  93		     START, LAST, static, amdgpu_vm_it)
  94
  95#undef START
  96#undef LAST
  97
  98/**
  99 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
 100 */
 101struct amdgpu_prt_cb {
 102
 103	/**
 104	 * @adev: amdgpu device
 105	 */
 106	struct amdgpu_device *adev;
 107
 108	/**
 109	 * @cb: callback
 110	 */
 111	struct dma_fence_cb cb;
 112};
 113
 114/**
 115 * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence
 
 
 
 
 
 
 116 */
 117struct amdgpu_vm_tlb_seq_struct {
 118	/**
 119	 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on
 120	 */
 121	struct amdgpu_vm *vm;
 122
 123	/**
 124	 * @cb: callback
 125	 */
 126	struct dma_fence_cb cb;
 127};
 
 
 
 
 
 
 
 
 
 
 
 128
 129/**
 130 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
 131 *
 132 * @adev: amdgpu_device pointer
 133 * @vm: amdgpu_vm pointer
 134 * @pasid: the pasid the VM is using on this GPU
 135 *
 136 * Set the pasid this VM is using on this GPU, can also be used to remove the
 137 * pasid by passing in zero.
 138 *
 
 
 139 */
 140int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 141			u32 pasid)
 142{
 143	int r;
 
 144
 145	if (vm->pasid == pasid)
 146		return 0;
 147
 148	if (vm->pasid) {
 149		r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
 150		if (r < 0)
 151			return r;
 152
 153		vm->pasid = 0;
 154	}
 155
 156	if (pasid) {
 157		r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
 158					GFP_KERNEL));
 159		if (r < 0)
 160			return r;
 
 
 
 
 
 
 161
 162		vm->pasid = pasid;
 163	}
 
 164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165
 166	return 0;
 
 
 
 
 
 
 
 
 
 
 
 167}
 168
 169/**
 170 * amdgpu_vm_bo_evicted - vm_bo is evicted
 171 *
 172 * @vm_bo: vm_bo which is evicted
 173 *
 174 * State for PDs/PTs and per VM BOs which are not at the location they should
 175 * be.
 176 */
 177static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
 178{
 179	struct amdgpu_vm *vm = vm_bo->vm;
 180	struct amdgpu_bo *bo = vm_bo->bo;
 181
 182	vm_bo->moved = true;
 183	spin_lock(&vm_bo->vm->status_lock);
 184	if (bo->tbo.type == ttm_bo_type_kernel)
 185		list_move(&vm_bo->vm_status, &vm->evicted);
 186	else
 187		list_move_tail(&vm_bo->vm_status, &vm->evicted);
 188	spin_unlock(&vm_bo->vm->status_lock);
 189}
 
 
 
 
 
 
 
 
 
 
 
 
 
 190/**
 191 * amdgpu_vm_bo_moved - vm_bo is moved
 192 *
 193 * @vm_bo: vm_bo which is moved
 194 *
 195 * State for per VM BOs which are moved, but that change is not yet reflected
 196 * in the page tables.
 197 */
 198static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
 199{
 200	spin_lock(&vm_bo->vm->status_lock);
 201	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
 202	spin_unlock(&vm_bo->vm->status_lock);
 203}
 204
 205/**
 206 * amdgpu_vm_bo_idle - vm_bo is idle
 207 *
 208 * @vm_bo: vm_bo which is now idle
 209 *
 210 * State for PDs/PTs and per VM BOs which have gone through the state machine
 211 * and are now idle.
 212 */
 213static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
 214{
 215	spin_lock(&vm_bo->vm->status_lock);
 216	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
 217	spin_unlock(&vm_bo->vm->status_lock);
 218	vm_bo->moved = false;
 219}
 220
 221/**
 222 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
 223 *
 224 * @vm_bo: vm_bo which is now invalidated
 225 *
 226 * State for normal BOs which are invalidated and that change not yet reflected
 227 * in the PTs.
 228 */
 229static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
 230{
 231	spin_lock(&vm_bo->vm->status_lock);
 232	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
 233	spin_unlock(&vm_bo->vm->status_lock);
 234}
 235
 236/**
 237 * amdgpu_vm_bo_evicted_user - vm_bo is evicted
 238 *
 239 * @vm_bo: vm_bo which is evicted
 240 *
 241 * State for BOs used by user mode queues which are not at the location they
 242 * should be.
 243 */
 244static void amdgpu_vm_bo_evicted_user(struct amdgpu_vm_bo_base *vm_bo)
 245{
 246	vm_bo->moved = true;
 247	spin_lock(&vm_bo->vm->status_lock);
 248	list_move(&vm_bo->vm_status, &vm_bo->vm->evicted_user);
 249	spin_unlock(&vm_bo->vm->status_lock);
 250}
 251
 252/**
 253 * amdgpu_vm_bo_relocated - vm_bo is reloacted
 254 *
 255 * @vm_bo: vm_bo which is relocated
 256 *
 257 * State for PDs/PTs which needs to update their parent PD.
 258 * For the root PD, just move to idle state.
 259 */
 260static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
 261{
 262	if (vm_bo->bo->parent) {
 263		spin_lock(&vm_bo->vm->status_lock);
 264		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
 265		spin_unlock(&vm_bo->vm->status_lock);
 266	} else {
 267		amdgpu_vm_bo_idle(vm_bo);
 268	}
 269}
 270
 271/**
 272 * amdgpu_vm_bo_done - vm_bo is done
 273 *
 274 * @vm_bo: vm_bo which is now done
 275 *
 276 * State for normal BOs which are invalidated and that change has been updated
 277 * in the PTs.
 278 */
 279static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
 280{
 281	spin_lock(&vm_bo->vm->status_lock);
 282	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
 283	spin_unlock(&vm_bo->vm->status_lock);
 284}
 285
 286/**
 287 * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine
 288 * @vm: the VM which state machine to reset
 289 *
 290 * Move all vm_bo object in the VM into a state where they will be updated
 291 * again during validation.
 292 */
 293static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm)
 294{
 295	struct amdgpu_vm_bo_base *vm_bo, *tmp;
 296
 297	spin_lock(&vm->status_lock);
 298	list_splice_init(&vm->done, &vm->invalidated);
 299	list_for_each_entry(vm_bo, &vm->invalidated, vm_status)
 300		vm_bo->moved = true;
 301	list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) {
 302		struct amdgpu_bo *bo = vm_bo->bo;
 303
 304		vm_bo->moved = true;
 305		if (!bo || bo->tbo.type != ttm_bo_type_kernel)
 306			list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
 307		else if (bo->parent)
 308			list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
 309	}
 310	spin_unlock(&vm->status_lock);
 311}
 312
 313/**
 314 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
 315 *
 316 * @base: base structure for tracking BO usage in a VM
 317 * @vm: vm to which bo is to be added
 318 * @bo: amdgpu buffer object
 319 *
 320 * Initialize a bo_va_base structure and add it to the appropriate lists
 321 *
 322 */
 323void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
 324			    struct amdgpu_vm *vm, struct amdgpu_bo *bo)
 
 325{
 326	base->vm = vm;
 327	base->bo = bo;
 328	base->next = NULL;
 329	INIT_LIST_HEAD(&base->vm_status);
 330
 331	if (!bo)
 332		return;
 333	base->next = bo->vm_bo;
 334	bo->vm_bo = base;
 335
 336	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
 337		return;
 338
 339	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
 340
 341	ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move);
 342	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
 343		amdgpu_vm_bo_relocated(base);
 344	else
 345		amdgpu_vm_bo_idle(base);
 346
 347	if (bo->preferred_domains &
 348	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
 349		return;
 350
 351	/*
 352	 * we checked all the prerequisites, but it looks like this per vm bo
 353	 * is currently evicted. add the bo to the evicted list to make sure it
 354	 * is validated on next vm use to avoid fault.
 355	 * */
 356	amdgpu_vm_bo_evicted(base);
 357}
 358
 359/**
 360 * amdgpu_vm_lock_pd - lock PD in drm_exec
 361 *
 362 * @vm: vm providing the BOs
 363 * @exec: drm execution context
 364 * @num_fences: number of extra fences to reserve
 365 *
 366 * Lock the VM root PD in the DRM execution context.
 
 367 */
 368int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec,
 369		      unsigned int num_fences)
 370{
 371	/* We need at least two fences for the VM PD/PT updates */
 372	return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base,
 373				    2 + num_fences);
 
 
 
 374}
 375
 376/**
 377 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
 
 
 
 
 
 
 
 
 
 
 378 *
 379 * @adev: amdgpu device pointer
 380 * @vm: vm providing the BOs
 
 
 381 *
 382 * Move all BOs to the end of LRU and remember their positions to put them
 383 * together.
 384 */
 385void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
 386				struct amdgpu_vm *vm)
 
 387{
 388	spin_lock(&adev->mman.bdev.lru_lock);
 389	ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
 390	spin_unlock(&adev->mman.bdev.lru_lock);
 
 391}
 392
 393/* Create scheduler entities for page table updates */
 394static int amdgpu_vm_init_entities(struct amdgpu_device *adev,
 395				   struct amdgpu_vm *vm)
 
 
 
 
 
 
 
 
 
 396{
 397	int r;
 398
 399	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
 400				  adev->vm_manager.vm_pte_scheds,
 401				  adev->vm_manager.vm_pte_num_scheds, NULL);
 402	if (r)
 403		goto error;
 404
 405	return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
 406				     adev->vm_manager.vm_pte_scheds,
 407				     adev->vm_manager.vm_pte_num_scheds, NULL);
 
 
 
 
 
 
 
 408
 409error:
 410	drm_sched_entity_destroy(&vm->immediate);
 411	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412}
 413
 414/* Destroy the entities for page table updates again */
 415static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm)
 
 
 
 
 
 
 
 
 416{
 417	drm_sched_entity_destroy(&vm->immediate);
 418	drm_sched_entity_destroy(&vm->delayed);
 
 
 
 
 
 419}
 420
 421/**
 422 * amdgpu_vm_generation - return the page table re-generation counter
 423 * @adev: the amdgpu_device
 424 * @vm: optional VM to check, might be NULL
 
 425 *
 426 * Returns a page table re-generation token to allow checking if submissions
 427 * are still valid to use this VM. The VM parameter might be NULL in which case
 428 * just the VRAM lost counter will be used.
 429 */
 430uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm)
 
 431{
 432	uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32;
 
 
 433
 434	if (!vm)
 435		return result;
 
 
 
 
 
 
 
 436
 437	result += vm->generation;
 438	/* Add one if the page tables will be re-generated on next CS */
 439	if (drm_sched_entity_error(&vm->delayed))
 440		++result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441
 442	return result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 443}
 444
 445/**
 446 * amdgpu_vm_validate - validate evicted BOs tracked in the VM
 447 *
 448 * @adev: amdgpu device pointer
 449 * @vm: vm providing the BOs
 450 * @ticket: optional reservation ticket used to reserve the VM
 451 * @validate: callback to do the validation
 452 * @param: parameter for the validation callback
 453 *
 454 * Validate the page table BOs and per-VM BOs on command submission if
 455 * necessary. If a ticket is given, also try to validate evicted user queue
 456 * BOs. They must already be reserved with the given ticket.
 457 *
 458 * Returns:
 459 * Validation result.
 460 */
 461int amdgpu_vm_validate(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 462		       struct ww_acquire_ctx *ticket,
 463		       int (*validate)(void *p, struct amdgpu_bo *bo),
 464		       void *param)
 465{
 466	struct amdgpu_vm_bo_base *bo_base;
 467	struct amdgpu_bo *shadow;
 468	struct amdgpu_bo *bo;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 469	int r;
 470
 471	if (drm_sched_entity_error(&vm->delayed)) {
 472		++vm->generation;
 473		amdgpu_vm_bo_reset_state_machine(vm);
 474		amdgpu_vm_fini_entities(vm);
 475		r = amdgpu_vm_init_entities(adev, vm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476		if (r)
 477			return r;
 478	}
 479
 480	spin_lock(&vm->status_lock);
 481	while (!list_empty(&vm->evicted)) {
 482		bo_base = list_first_entry(&vm->evicted,
 483					   struct amdgpu_vm_bo_base,
 484					   vm_status);
 485		spin_unlock(&vm->status_lock);
 486
 487		bo = bo_base->bo;
 488		shadow = amdgpu_bo_shadowed(bo);
 
 489
 490		r = validate(param, bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 491		if (r)
 492			return r;
 493		if (shadow) {
 494			r = validate(param, shadow);
 495			if (r)
 496				return r;
 497		}
 498
 499		if (bo->tbo.type != ttm_bo_type_kernel) {
 500			amdgpu_vm_bo_moved(bo_base);
 501		} else {
 502			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
 503			amdgpu_vm_bo_relocated(bo_base);
 504		}
 505		spin_lock(&vm->status_lock);
 506	}
 507	while (ticket && !list_empty(&vm->evicted_user)) {
 508		bo_base = list_first_entry(&vm->evicted_user,
 509					   struct amdgpu_vm_bo_base,
 510					   vm_status);
 511		spin_unlock(&vm->status_lock);
 512
 513		bo = bo_base->bo;
 514
 515		if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) {
 516			struct amdgpu_task_info *ti = amdgpu_vm_get_task_info_vm(vm);
 517
 518			pr_warn_ratelimited("Evicted user BO is not reserved\n");
 519			if (ti) {
 520				pr_warn_ratelimited("pid %d\n", ti->pid);
 521				amdgpu_vm_put_task_info(ti);
 522			}
 523
 524			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 525		}
 526
 527		r = validate(param, bo);
 
 528		if (r)
 529			return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530
 531		amdgpu_vm_bo_invalidated(bo_base);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532
 533		spin_lock(&vm->status_lock);
 
 
 
 
 
 534	}
 535	spin_unlock(&vm->status_lock);
 536
 537	amdgpu_vm_eviction_lock(vm);
 538	vm->evicting = false;
 539	amdgpu_vm_eviction_unlock(vm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540
 541	return 0;
 
 
 
 
 
 542}
 543
 544/**
 545 * amdgpu_vm_ready - check VM is ready for updates
 546 *
 547 * @vm: VM to check
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548 *
 549 * Check if all VM PDs/PTs are ready for updates
 
 
 550 *
 551 * Returns:
 552 * True if VM is not evicting.
 553 */
 554bool amdgpu_vm_ready(struct amdgpu_vm *vm)
 
 
 555{
 556	bool empty;
 557	bool ret;
 
 
 558
 559	amdgpu_vm_eviction_lock(vm);
 560	ret = !vm->evicting;
 561	amdgpu_vm_eviction_unlock(vm);
 562
 563	spin_lock(&vm->status_lock);
 564	empty = list_empty(&vm->evicted);
 565	spin_unlock(&vm->status_lock);
 566
 567	return ret && empty;
 
 568}
 569
 570/**
 571 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
 572 *
 573 * @adev: amdgpu_device pointer
 574 */
 575void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
 576{
 577	const struct amdgpu_ip_block *ip_block;
 578	bool has_compute_vm_bug;
 579	struct amdgpu_ring *ring;
 580	int i;
 581
 582	has_compute_vm_bug = false;
 583
 584	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
 585	if (ip_block) {
 586		/* Compute has a VM bug for GFX version < 7.
 587		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
 588		if (ip_block->version->major <= 7)
 589			has_compute_vm_bug = true;
 590		else if (ip_block->version->major == 8)
 591			if (adev->gfx.mec_fw_version < 673)
 592				has_compute_vm_bug = true;
 593	}
 594
 595	for (i = 0; i < adev->num_rings; i++) {
 596		ring = adev->rings[i];
 597		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
 598			/* only compute rings */
 599			ring->has_compute_vm_bug = has_compute_vm_bug;
 600		else
 601			ring->has_compute_vm_bug = false;
 602	}
 603}
 604
 605/**
 606 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
 607 *
 608 * @ring: ring on which the job will be submitted
 609 * @job: job to submit
 610 *
 611 * Returns:
 612 * True if sync is needed.
 613 */
 614bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
 615				  struct amdgpu_job *job)
 616{
 617	struct amdgpu_device *adev = ring->adev;
 618	unsigned vmhub = ring->vm_hub;
 619	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
 
 
 
 620
 621	if (job->vmid == 0)
 622		return false;
 
 
 
 
 
 
 
 
 623
 624	if (job->vm_needs_flush || ring->has_compute_vm_bug)
 625		return true;
 626
 627	if (ring->funcs->emit_gds_switch && job->gds_switch_needed)
 628		return true;
 629
 630	if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid]))
 631		return true;
 632
 633	return false;
 634}
 635
 636/**
 637 * amdgpu_vm_flush - hardware flush the vm
 638 *
 639 * @ring: ring to use for flush
 640 * @job:  related job
 641 * @need_pipe_sync: is pipe sync needed
 642 *
 643 * Emit a VM flush when it is necessary.
 644 *
 645 * Returns:
 646 * 0 on success, errno otherwise.
 647 */
 648int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
 649		    bool need_pipe_sync)
 650{
 651	struct amdgpu_device *adev = ring->adev;
 652	unsigned vmhub = ring->vm_hub;
 653	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
 654	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
 655	bool spm_update_needed = job->spm_update_needed;
 656	bool gds_switch_needed = ring->funcs->emit_gds_switch &&
 657		job->gds_switch_needed;
 
 
 
 
 658	bool vm_flush_needed = job->vm_needs_flush;
 
 
 
 659	struct dma_fence *fence = NULL;
 660	bool pasid_mapping_needed = false;
 661	unsigned int patch;
 662	int r;
 663
 664	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
 665		gds_switch_needed = true;
 666		vm_flush_needed = true;
 667		pasid_mapping_needed = true;
 668		spm_update_needed = true;
 669	}
 670
 671	mutex_lock(&id_mgr->lock);
 672	if (id->pasid != job->pasid || !id->pasid_mapping ||
 673	    !dma_fence_is_signaled(id->pasid_mapping))
 674		pasid_mapping_needed = true;
 675	mutex_unlock(&id_mgr->lock);
 676
 677	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
 678	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
 679			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
 680	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
 681		ring->funcs->emit_wreg;
 682
 683	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
 684		return 0;
 685
 686	amdgpu_ring_ib_begin(ring);
 687	if (ring->funcs->init_cond_exec)
 688		patch = amdgpu_ring_init_cond_exec(ring,
 689						   ring->cond_exe_gpu_addr);
 690
 691	if (need_pipe_sync)
 692		amdgpu_ring_emit_pipeline_sync(ring);
 693
 694	if (vm_flush_needed) {
 695		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
 696		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
 697	}
 698
 699	if (pasid_mapping_needed)
 700		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
 701
 702	if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid)
 703		adev->gfx.rlc.funcs->update_spm_vmid(adev, ring, job->vmid);
 704
 705	if (!ring->is_mes_queue && ring->funcs->emit_gds_switch &&
 706	    gds_switch_needed) {
 707		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
 708					    job->gds_size, job->gws_base,
 709					    job->gws_size, job->oa_base,
 710					    job->oa_size);
 711	}
 712
 713	if (vm_flush_needed || pasid_mapping_needed) {
 714		r = amdgpu_fence_emit(ring, &fence, NULL, 0);
 715		if (r)
 716			return r;
 717	}
 718
 719	if (vm_flush_needed) {
 720		mutex_lock(&id_mgr->lock);
 721		dma_fence_put(id->last_flush);
 722		id->last_flush = dma_fence_get(fence);
 723		id->current_gpu_reset_count =
 724			atomic_read(&adev->gpu_reset_counter);
 725		mutex_unlock(&id_mgr->lock);
 726	}
 727
 728	if (pasid_mapping_needed) {
 729		mutex_lock(&id_mgr->lock);
 730		id->pasid = job->pasid;
 731		dma_fence_put(id->pasid_mapping);
 732		id->pasid_mapping = dma_fence_get(fence);
 733		mutex_unlock(&id_mgr->lock);
 734	}
 735	dma_fence_put(fence);
 736
 737	amdgpu_ring_patch_cond_exec(ring, patch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738
 739	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
 740	if (ring->funcs->emit_switch_buffer) {
 741		amdgpu_ring_emit_switch_buffer(ring);
 742		amdgpu_ring_emit_switch_buffer(ring);
 743	}
 744	amdgpu_ring_ib_end(ring);
 745	return 0;
 746}
 747
 748/**
 749 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
 750 *
 751 * @vm: requested vm
 752 * @bo: requested buffer object
 753 *
 754 * Find @bo inside the requested vm.
 755 * Search inside the @bos vm list for the requested vm
 756 * Returns the found bo_va or NULL if none is found
 757 *
 758 * Object has to be reserved!
 759 *
 760 * Returns:
 761 * Found bo_va or NULL.
 762 */
 763struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
 764				       struct amdgpu_bo *bo)
 765{
 766	struct amdgpu_vm_bo_base *base;
 767
 768	for (base = bo->vm_bo; base; base = base->next) {
 769		if (base->vm != vm)
 770			continue;
 771
 772		return container_of(base, struct amdgpu_bo_va, base);
 773	}
 774	return NULL;
 775}
 776
 777/**
 778 * amdgpu_vm_map_gart - Resolve gart mapping of addr
 779 *
 780 * @pages_addr: optional DMA address to use for lookup
 781 * @addr: the unmapped addr
 782 *
 783 * Look up the physical address of the page that the pte resolves
 784 * to.
 785 *
 786 * Returns:
 787 * The pointer for the page table entry.
 788 */
 789uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
 790{
 791	uint64_t result;
 792
 793	/* page table offset */
 794	result = pages_addr[addr >> PAGE_SHIFT];
 795
 796	/* in case cpu page size != gpu page size*/
 797	result |= addr & (~PAGE_MASK);
 798
 799	result &= 0xFFFFFFFFFFFFF000ULL;
 800
 801	return result;
 802}
 803
 804/**
 805 * amdgpu_vm_update_pdes - make sure that all directories are valid
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806 *
 807 * @adev: amdgpu_device pointer
 808 * @vm: requested vm
 809 * @immediate: submit immediately to the paging queue
 810 *
 811 * Makes sure all directories are up to date.
 812 *
 813 * Returns:
 814 * 0 for success, error for failure.
 815 */
 816int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
 817			  struct amdgpu_vm *vm, bool immediate)
 818{
 819	struct amdgpu_vm_update_params params;
 820	struct amdgpu_vm_bo_base *entry;
 821	bool flush_tlb_needed = false;
 822	LIST_HEAD(relocated);
 823	int r, idx;
 824
 825	spin_lock(&vm->status_lock);
 826	list_splice_init(&vm->relocated, &relocated);
 827	spin_unlock(&vm->status_lock);
 828
 829	if (list_empty(&relocated))
 830		return 0;
 831
 832	if (!drm_dev_enter(adev_to_drm(adev), &idx))
 833		return -ENODEV;
 834
 835	memset(&params, 0, sizeof(params));
 836	params.adev = adev;
 837	params.vm = vm;
 838	params.immediate = immediate;
 839
 840	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
 841	if (r)
 842		goto error;
 843
 844	list_for_each_entry(entry, &relocated, vm_status) {
 845		/* vm_flush_needed after updating moved PDEs */
 846		flush_tlb_needed |= entry->moved;
 
 
 
 847
 848		r = amdgpu_vm_pde_update(&params, entry);
 849		if (r)
 850			goto error;
 851	}
 852
 853	r = vm->update_funcs->commit(&params, &vm->last_update);
 854	if (r)
 855		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856
 857	if (flush_tlb_needed)
 858		atomic64_inc(&vm->tlb_seq);
 
 859
 860	while (!list_empty(&relocated)) {
 861		entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base,
 862					 vm_status);
 863		amdgpu_vm_bo_idle(entry);
 864	}
 865
 866error:
 867	drm_dev_exit(idx);
 868	return r;
 869}
 870
 871/**
 872 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence
 873 * @fence: unused
 874 * @cb: the callback structure
 
 
 
 
 
 875 *
 876 * Increments the tlb sequence to make sure that future CS execute a VM flush.
 877 */
 878static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence,
 879				 struct dma_fence_cb *cb)
 
 880{
 881	struct amdgpu_vm_tlb_seq_struct *tlb_cb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882
 883	tlb_cb = container_of(cb, typeof(*tlb_cb), cb);
 884	atomic64_inc(&tlb_cb->vm->tlb_seq);
 885	kfree(tlb_cb);
 
 
 
 
 
 886}
 887
 888/**
 889 * amdgpu_vm_update_range - update a range in the vm page table
 
 
 
 
 
 
 890 *
 891 * @adev: amdgpu_device pointer to use for commands
 892 * @vm: the VM to update the range
 893 * @immediate: immediate submission in a page fault
 894 * @unlocked: unlocked invalidation during MM callback
 895 * @flush_tlb: trigger tlb invalidation after update completed
 896 * @allow_override: change MTYPE for local NUMA nodes
 897 * @resv: fences we need to sync to
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 898 * @start: start of mapped range
 899 * @last: last mapped entry
 900 * @flags: flags for the entries
 901 * @offset: offset into nodes and pages_addr
 902 * @vram_base: base for vram mappings
 903 * @res: ttm_resource to map
 904 * @pages_addr: DMA addresses to use for mapping
 905 * @fence: optional resulting fence
 906 *
 907 * Fill in the page table entries between @start and @last.
 908 *
 909 * Returns:
 910 * 0 for success, negative erro code for failure.
 911 */
 912int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 913			   bool immediate, bool unlocked, bool flush_tlb, bool allow_override,
 914			   struct dma_resv *resv, uint64_t start, uint64_t last,
 915			   uint64_t flags, uint64_t offset, uint64_t vram_base,
 916			   struct ttm_resource *res, dma_addr_t *pages_addr,
 917			   struct dma_fence **fence)
 
 918{
 919	struct amdgpu_vm_update_params params;
 920	struct amdgpu_vm_tlb_seq_struct *tlb_cb;
 921	struct amdgpu_res_cursor cursor;
 922	enum amdgpu_sync_mode sync_mode;
 923	int r, idx;
 924
 925	if (!drm_dev_enter(adev_to_drm(adev), &idx))
 926		return -ENODEV;
 927
 928	tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL);
 929	if (!tlb_cb) {
 930		r = -ENOMEM;
 931		goto error_unlock;
 932	}
 933
 934	/* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache,
 935	 * heavy-weight flush TLB unconditionally.
 936	 */
 937	flush_tlb |= adev->gmc.xgmi.num_physical_nodes &&
 938		     amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0);
 939
 940	/*
 941	 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB
 942	 */
 943	flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0);
 944
 945	memset(&params, 0, sizeof(params));
 946	params.adev = adev;
 947	params.vm = vm;
 948	params.immediate = immediate;
 949	params.pages_addr = pages_addr;
 950	params.unlocked = unlocked;
 951	params.allow_override = allow_override;
 952
 953	/* Implicitly sync to command submissions in the same VM before
 954	 * unmapping. Sync to moving fences before mapping.
 955	 */
 956	if (!(flags & AMDGPU_PTE_VALID))
 957		sync_mode = AMDGPU_SYNC_EQ_OWNER;
 958	else
 959		sync_mode = AMDGPU_SYNC_EXPLICIT;
 960
 961	amdgpu_vm_eviction_lock(vm);
 962	if (vm->evicting) {
 963		r = -EBUSY;
 964		goto error_free;
 965	}
 966
 967	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
 968		struct dma_fence *tmp = dma_fence_get_stub();
 969
 970		amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
 971		swap(vm->last_unlocked, tmp);
 972		dma_fence_put(tmp);
 973	}
 974
 975	r = vm->update_funcs->prepare(&params, resv, sync_mode);
 976	if (r)
 977		goto error_free;
 978
 979	amdgpu_res_first(pages_addr ? NULL : res, offset,
 980			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
 981	while (cursor.remaining) {
 982		uint64_t tmp, num_entries, addr;
 983
 984		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
 985		if (pages_addr) {
 986			bool contiguous = true;
 987
 988			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
 989				uint64_t pfn = cursor.start >> PAGE_SHIFT;
 990				uint64_t count;
 991
 992				contiguous = pages_addr[pfn + 1] ==
 993					pages_addr[pfn] + PAGE_SIZE;
 994
 995				tmp = num_entries /
 996					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
 997				for (count = 2; count < tmp; ++count) {
 998					uint64_t idx = pfn + count;
 999
1000					if (contiguous != (pages_addr[idx] ==
1001					    pages_addr[idx - 1] + PAGE_SIZE))
1002						break;
1003				}
1004				if (!contiguous)
1005					count--;
1006				num_entries = count *
1007					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1008			}
 
 
 
 
 
 
 
 
 
 
 
1009
1010			if (!contiguous) {
1011				addr = cursor.start;
1012				params.pages_addr = pages_addr;
1013			} else {
1014				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1015				params.pages_addr = NULL;
1016			}
 
 
 
 
 
 
 
 
 
 
 
1017
1018		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1019			addr = vram_base + cursor.start;
1020		} else {
1021			addr = 0;
 
 
 
1022		}
1023
1024		tmp = start + num_entries;
1025		r = amdgpu_vm_ptes_update(&params, start, tmp, addr, flags);
1026		if (r)
1027			goto error_free;
1028
1029		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1030		start = tmp;
1031	}
1032
1033	r = vm->update_funcs->commit(&params, fence);
1034
1035	if (flush_tlb || params.table_freed) {
1036		tlb_cb->vm = vm;
1037		if (fence && *fence &&
1038		    !dma_fence_add_callback(*fence, &tlb_cb->cb,
1039					   amdgpu_vm_tlb_seq_cb)) {
1040			dma_fence_put(vm->last_tlb_flush);
1041			vm->last_tlb_flush = dma_fence_get(*fence);
1042		} else {
1043			amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb);
1044		}
1045		tlb_cb = NULL;
1046	}
1047
1048error_free:
1049	kfree(tlb_cb);
1050
1051error_unlock:
1052	amdgpu_vm_eviction_unlock(vm);
1053	drm_dev_exit(idx);
1054	return r;
1055}
1056
1057static void amdgpu_vm_bo_get_memory(struct amdgpu_bo_va *bo_va,
1058				    struct amdgpu_mem_stats *stats)
1059{
1060	struct amdgpu_vm *vm = bo_va->base.vm;
1061	struct amdgpu_bo *bo = bo_va->base.bo;
1062
1063	if (!bo)
1064		return;
1065
1066	/*
1067	 * For now ignore BOs which are currently locked and potentially
1068	 * changing their location.
1069	 */
1070	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv &&
1071	    !dma_resv_trylock(bo->tbo.base.resv))
1072		return;
1073
1074	amdgpu_bo_get_memory(bo, stats);
1075	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
1076	    dma_resv_unlock(bo->tbo.base.resv);
1077}
1078
1079void amdgpu_vm_get_memory(struct amdgpu_vm *vm,
1080			  struct amdgpu_mem_stats *stats)
1081{
1082	struct amdgpu_bo_va *bo_va, *tmp;
 
 
 
 
 
1083
1084	spin_lock(&vm->status_lock);
1085	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status)
1086		amdgpu_vm_bo_get_memory(bo_va, stats);
 
 
 
 
1087
1088	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status)
1089		amdgpu_vm_bo_get_memory(bo_va, stats);
 
 
1090
1091	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status)
1092		amdgpu_vm_bo_get_memory(bo_va, stats);
 
 
 
 
1093
1094	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status)
1095		amdgpu_vm_bo_get_memory(bo_va, stats);
 
 
 
 
1096
1097	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status)
1098		amdgpu_vm_bo_get_memory(bo_va, stats);
1099
1100	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status)
1101		amdgpu_vm_bo_get_memory(bo_va, stats);
1102	spin_unlock(&vm->status_lock);
1103}
1104
1105/**
1106 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1107 *
1108 * @adev: amdgpu_device pointer
1109 * @bo_va: requested BO and VM object
1110 * @clear: if true clear the entries
1111 *
1112 * Fill in the page table entries for @bo_va.
1113 *
1114 * Returns:
1115 * 0 for success, -EINVAL for failure.
1116 */
1117int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
 
1118			bool clear)
1119{
1120	struct amdgpu_bo *bo = bo_va->base.bo;
1121	struct amdgpu_vm *vm = bo_va->base.vm;
1122	struct amdgpu_bo_va_mapping *mapping;
1123	dma_addr_t *pages_addr = NULL;
1124	struct ttm_resource *mem;
1125	struct dma_fence **last_update;
1126	bool flush_tlb = clear;
1127	bool uncached;
1128	struct dma_resv *resv;
1129	uint64_t vram_base;
1130	uint64_t flags;
 
1131	int r;
1132
1133	if (clear || !bo) {
1134		mem = NULL;
1135		resv = vm->root.bo->tbo.base.resv;
 
1136	} else {
1137		struct drm_gem_object *obj = &bo->tbo.base;
1138
1139		resv = bo->tbo.base.resv;
1140		if (obj->import_attach && bo_va->is_xgmi) {
1141			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1142			struct drm_gem_object *gobj = dma_buf->priv;
1143			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1144
1145			if (abo->tbo.resource &&
1146			    abo->tbo.resource->mem_type == TTM_PL_VRAM)
1147				bo = gem_to_amdgpu_bo(gobj);
1148		}
1149		mem = bo->tbo.resource;
1150		if (mem && (mem->mem_type == TTM_PL_TT ||
1151			    mem->mem_type == AMDGPU_PL_PREEMPT))
1152			pages_addr = bo->tbo.ttm->dma_address;
1153	}
1154
1155	if (bo) {
1156		struct amdgpu_device *bo_adev;
1157
1158		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1159
1160		if (amdgpu_bo_encrypted(bo))
1161			flags |= AMDGPU_PTE_TMZ;
1162
1163		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1164		vram_base = bo_adev->vm_manager.vram_base_offset;
1165		uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0;
1166	} else {
1167		flags = 0x0;
1168		vram_base = 0;
1169		uncached = false;
1170	}
1171
1172	if (clear || (bo && bo->tbo.base.resv ==
1173		      vm->root.bo->tbo.base.resv))
1174		last_update = &vm->last_update;
1175	else
1176		last_update = &bo_va->last_pt_update;
1177
1178	if (!clear && bo_va->base.moved) {
1179		flush_tlb = true;
1180		list_splice_init(&bo_va->valids, &bo_va->invalids);
1181
1182	} else if (bo_va->cleared != clear) {
1183		list_splice_init(&bo_va->valids, &bo_va->invalids);
1184	}
1185
1186	list_for_each_entry(mapping, &bo_va->invalids, list) {
1187		uint64_t update_flags = flags;
1188
1189		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1190		 * but in case of something, we filter the flags in first place
1191		 */
1192		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1193			update_flags &= ~AMDGPU_PTE_READABLE;
1194		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1195			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1196
1197		/* Apply ASIC specific mapping flags */
1198		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1199
1200		trace_amdgpu_vm_bo_update(mapping);
1201
1202		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb,
1203					   !uncached, resv, mapping->start, mapping->last,
1204					   update_flags, mapping->offset,
1205					   vram_base, mem, pages_addr,
1206					   last_update);
1207		if (r)
1208			return r;
1209	}
1210
 
 
 
 
 
 
1211	/* If the BO is not in its preferred location add it back to
1212	 * the evicted list so that it gets validated again on the
1213	 * next command submission.
1214	 */
1215	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1216		uint32_t mem_type = bo->tbo.resource->mem_type;
1217
1218		if (!(bo->preferred_domains &
1219		      amdgpu_mem_type_to_domain(mem_type)))
1220			amdgpu_vm_bo_evicted(&bo_va->base);
1221		else
1222			amdgpu_vm_bo_idle(&bo_va->base);
1223	} else {
1224		amdgpu_vm_bo_done(&bo_va->base);
1225	}
1226
1227	list_splice_init(&bo_va->invalids, &bo_va->valids);
1228	bo_va->cleared = clear;
1229	bo_va->base.moved = false;
1230
1231	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1232		list_for_each_entry(mapping, &bo_va->valids, list)
1233			trace_amdgpu_vm_bo_mapping(mapping);
1234	}
1235
1236	return 0;
1237}
1238
1239/**
1240 * amdgpu_vm_update_prt_state - update the global PRT state
1241 *
1242 * @adev: amdgpu_device pointer
1243 */
1244static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1245{
1246	unsigned long flags;
1247	bool enable;
1248
1249	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1250	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1251	adev->gmc.gmc_funcs->set_prt(adev, enable);
1252	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1253}
1254
1255/**
1256 * amdgpu_vm_prt_get - add a PRT user
1257 *
1258 * @adev: amdgpu_device pointer
1259 */
1260static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1261{
1262	if (!adev->gmc.gmc_funcs->set_prt)
1263		return;
1264
1265	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1266		amdgpu_vm_update_prt_state(adev);
1267}
1268
1269/**
1270 * amdgpu_vm_prt_put - drop a PRT user
1271 *
1272 * @adev: amdgpu_device pointer
1273 */
1274static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1275{
1276	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1277		amdgpu_vm_update_prt_state(adev);
1278}
1279
1280/**
1281 * amdgpu_vm_prt_cb - callback for updating the PRT status
1282 *
1283 * @fence: fence for the callback
1284 * @_cb: the callback function
1285 */
1286static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1287{
1288	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1289
1290	amdgpu_vm_prt_put(cb->adev);
1291	kfree(cb);
1292}
1293
1294/**
1295 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1296 *
1297 * @adev: amdgpu_device pointer
1298 * @fence: fence for the callback
1299 */
1300static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1301				 struct dma_fence *fence)
1302{
1303	struct amdgpu_prt_cb *cb;
1304
1305	if (!adev->gmc.gmc_funcs->set_prt)
1306		return;
1307
1308	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1309	if (!cb) {
1310		/* Last resort when we are OOM */
1311		if (fence)
1312			dma_fence_wait(fence, false);
1313
1314		amdgpu_vm_prt_put(adev);
1315	} else {
1316		cb->adev = adev;
1317		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1318						     amdgpu_vm_prt_cb))
1319			amdgpu_vm_prt_cb(fence, &cb->cb);
1320	}
1321}
1322
1323/**
1324 * amdgpu_vm_free_mapping - free a mapping
1325 *
1326 * @adev: amdgpu_device pointer
1327 * @vm: requested vm
1328 * @mapping: mapping to be freed
1329 * @fence: fence of the unmap operation
1330 *
1331 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1332 */
1333static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1334				   struct amdgpu_vm *vm,
1335				   struct amdgpu_bo_va_mapping *mapping,
1336				   struct dma_fence *fence)
1337{
1338	if (mapping->flags & AMDGPU_PTE_PRT)
1339		amdgpu_vm_add_prt_cb(adev, fence);
1340	kfree(mapping);
1341}
1342
1343/**
1344 * amdgpu_vm_prt_fini - finish all prt mappings
1345 *
1346 * @adev: amdgpu_device pointer
1347 * @vm: requested vm
1348 *
1349 * Register a cleanup callback to disable PRT support after VM dies.
1350 */
1351static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1352{
1353	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
1354	struct dma_resv_iter cursor;
1355	struct dma_fence *fence;
 
 
 
 
 
 
 
 
 
 
 
 
1356
1357	dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) {
1358		/* Add a callback for each fence in the reservation object */
 
 
 
1359		amdgpu_vm_prt_get(adev);
1360		amdgpu_vm_add_prt_cb(adev, fence);
1361	}
 
 
1362}
1363
1364/**
1365 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1366 *
1367 * @adev: amdgpu_device pointer
1368 * @vm: requested vm
1369 * @fence: optional resulting fence (unchanged if no work needed to be done
1370 * or if an error occurred)
1371 *
1372 * Make sure all freed BOs are cleared in the PT.
1373 * PTs have to be reserved and mutex must be locked!
1374 *
1375 * Returns:
1376 * 0 for success.
1377 *
1378 */
1379int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1380			  struct amdgpu_vm *vm,
1381			  struct dma_fence **fence)
1382{
1383	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
1384	struct amdgpu_bo_va_mapping *mapping;
1385	uint64_t init_pte_value = 0;
1386	struct dma_fence *f = NULL;
1387	int r;
1388
1389	while (!list_empty(&vm->freed)) {
1390		mapping = list_first_entry(&vm->freed,
1391			struct amdgpu_bo_va_mapping, list);
1392		list_del(&mapping->list);
1393
1394		r = amdgpu_vm_update_range(adev, vm, false, false, true, false,
1395					   resv, mapping->start, mapping->last,
1396					   init_pte_value, 0, 0, NULL, NULL,
1397					   &f);
 
 
 
1398		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1399		if (r) {
1400			dma_fence_put(f);
1401			return r;
1402		}
1403	}
1404
1405	if (fence && f) {
1406		dma_fence_put(*fence);
1407		*fence = f;
1408	} else {
1409		dma_fence_put(f);
1410	}
1411
1412	return 0;
1413
1414}
1415
1416/**
1417 * amdgpu_vm_handle_moved - handle moved BOs in the PT
1418 *
1419 * @adev: amdgpu_device pointer
1420 * @vm: requested vm
1421 * @ticket: optional reservation ticket used to reserve the VM
1422 *
1423 * Make sure all BOs which are moved are updated in the PTs.
1424 *
1425 * Returns:
1426 * 0 for success.
1427 *
1428 * PTs have to be reserved!
1429 */
1430int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1431			   struct amdgpu_vm *vm,
1432			   struct ww_acquire_ctx *ticket)
1433{
1434	struct amdgpu_bo_va *bo_va;
1435	struct dma_resv *resv;
1436	bool clear, unlock;
1437	int r;
1438
1439	spin_lock(&vm->status_lock);
1440	while (!list_empty(&vm->moved)) {
1441		bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va,
1442					 base.vm_status);
1443		spin_unlock(&vm->status_lock);
1444
1445		/* Per VM BOs never need to bo cleared in the page tables */
1446		r = amdgpu_vm_bo_update(adev, bo_va, false);
1447		if (r)
1448			return r;
1449		spin_lock(&vm->status_lock);
1450	}
1451
 
1452	while (!list_empty(&vm->invalidated)) {
1453		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
1454					 base.vm_status);
1455		resv = bo_va->base.bo->tbo.base.resv;
1456		spin_unlock(&vm->status_lock);
1457
1458		/* Try to reserve the BO to avoid clearing its ptes */
1459		if (!adev->debug_vm && dma_resv_trylock(resv)) {
1460			clear = false;
1461			unlock = true;
1462		/* The caller is already holding the reservation lock */
1463		} else if (ticket && dma_resv_locking_ctx(resv) == ticket) {
1464			clear = false;
1465			unlock = false;
1466		/* Somebody else is using the BO right now */
1467		} else {
1468			clear = true;
1469			unlock = false;
1470		}
1471
1472		r = amdgpu_vm_bo_update(adev, bo_va, clear);
1473
1474		if (unlock)
1475			dma_resv_unlock(resv);
1476		if (r)
1477			return r;
1478
1479		/* Remember evicted DMABuf imports in compute VMs for later
1480		 * validation
1481		 */
1482		if (vm->is_compute_context &&
1483		    bo_va->base.bo->tbo.base.import_attach &&
1484		    (!bo_va->base.bo->tbo.resource ||
1485		     bo_va->base.bo->tbo.resource->mem_type == TTM_PL_SYSTEM))
1486			amdgpu_vm_bo_evicted_user(&bo_va->base);
1487
1488		spin_lock(&vm->status_lock);
1489	}
1490	spin_unlock(&vm->status_lock);
1491
1492	return 0;
1493}
1494
1495/**
1496 * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM
1497 *
1498 * @adev: amdgpu_device pointer
1499 * @vm: requested vm
1500 * @flush_type: flush type
1501 * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush.
1502 *
1503 * Flush TLB if needed for a compute VM.
1504 *
1505 * Returns:
1506 * 0 for success.
1507 */
1508int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev,
1509				struct amdgpu_vm *vm,
1510				uint32_t flush_type,
1511				uint32_t xcc_mask)
1512{
1513	uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
1514	bool all_hub = false;
1515	int xcc = 0, r = 0;
1516
1517	WARN_ON_ONCE(!vm->is_compute_context);
1518
1519	/*
1520	 * It can be that we race and lose here, but that is extremely unlikely
1521	 * and the worst thing which could happen is that we flush the changes
1522	 * into the TLB once more which is harmless.
1523	 */
1524	if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq)
1525		return 0;
1526
1527	if (adev->family == AMDGPU_FAMILY_AI ||
1528	    adev->family == AMDGPU_FAMILY_RV)
1529		all_hub = true;
1530
1531	for_each_inst(xcc, xcc_mask) {
1532		r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type,
1533						   all_hub, xcc);
1534		if (r)
1535			break;
1536	}
1537	return r;
1538}
1539
1540/**
1541 * amdgpu_vm_bo_add - add a bo to a specific vm
1542 *
1543 * @adev: amdgpu_device pointer
1544 * @vm: requested vm
1545 * @bo: amdgpu buffer object
1546 *
1547 * Add @bo into the requested vm.
1548 * Add @bo to the list of bos associated with the vm
1549 *
1550 * Returns:
1551 * Newly added bo_va or NULL for failure
1552 *
1553 * Object has to be reserved!
1554 */
1555struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1556				      struct amdgpu_vm *vm,
1557				      struct amdgpu_bo *bo)
1558{
1559	struct amdgpu_bo_va *bo_va;
1560
1561	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1562	if (bo_va == NULL) {
1563		return NULL;
1564	}
1565	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
1566
1567	bo_va->ref_count = 1;
1568	bo_va->last_pt_update = dma_fence_get_stub();
1569	INIT_LIST_HEAD(&bo_va->valids);
1570	INIT_LIST_HEAD(&bo_va->invalids);
1571
1572	if (!bo)
1573		return bo_va;
1574
1575	dma_resv_assert_held(bo->tbo.base.resv);
1576	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
1577		bo_va->is_xgmi = true;
 
1578		/* Power up XGMI if it can be potentially used */
1579		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
 
 
1580	}
1581
1582	return bo_va;
1583}
1584
1585
1586/**
1587 * amdgpu_vm_bo_insert_map - insert a new mapping
1588 *
1589 * @adev: amdgpu_device pointer
1590 * @bo_va: bo_va to store the address
1591 * @mapping: the mapping to insert
1592 *
1593 * Insert a new mapping into all structures.
1594 */
1595static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
1596				    struct amdgpu_bo_va *bo_va,
1597				    struct amdgpu_bo_va_mapping *mapping)
1598{
1599	struct amdgpu_vm *vm = bo_va->base.vm;
1600	struct amdgpu_bo *bo = bo_va->base.bo;
1601
1602	mapping->bo_va = bo_va;
1603	list_add(&mapping->list, &bo_va->invalids);
1604	amdgpu_vm_it_insert(mapping, &vm->va);
1605
1606	if (mapping->flags & AMDGPU_PTE_PRT)
1607		amdgpu_vm_prt_get(adev);
1608
1609	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
1610	    !bo_va->base.moved) {
1611		amdgpu_vm_bo_moved(&bo_va->base);
1612	}
1613	trace_amdgpu_vm_bo_map(bo_va, mapping);
1614}
1615
1616/* Validate operation parameters to prevent potential abuse */
1617static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev,
1618					  struct amdgpu_bo *bo,
1619					  uint64_t saddr,
1620					  uint64_t offset,
1621					  uint64_t size)
1622{
1623	uint64_t tmp, lpfn;
1624
1625	if (saddr & AMDGPU_GPU_PAGE_MASK
1626	    || offset & AMDGPU_GPU_PAGE_MASK
1627	    || size & AMDGPU_GPU_PAGE_MASK)
1628		return -EINVAL;
1629
1630	if (check_add_overflow(saddr, size, &tmp)
1631	    || check_add_overflow(offset, size, &tmp)
1632	    || size == 0 /* which also leads to end < begin */)
1633		return -EINVAL;
1634
1635	/* make sure object fit at this offset */
1636	if (bo && offset + size > amdgpu_bo_size(bo))
1637		return -EINVAL;
1638
1639	/* Ensure last pfn not exceed max_pfn */
1640	lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT;
1641	if (lpfn >= adev->vm_manager.max_pfn)
1642		return -EINVAL;
1643
1644	return 0;
1645}
1646
1647/**
1648 * amdgpu_vm_bo_map - map bo inside a vm
1649 *
1650 * @adev: amdgpu_device pointer
1651 * @bo_va: bo_va to store the address
1652 * @saddr: where to map the BO
1653 * @offset: requested offset in the BO
1654 * @size: BO size in bytes
1655 * @flags: attributes of pages (read/write/valid/etc.)
1656 *
1657 * Add a mapping of the BO at the specefied addr into the VM.
1658 *
1659 * Returns:
1660 * 0 for success, error for failure.
1661 *
1662 * Object has to be reserved and unreserved outside!
1663 */
1664int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1665		     struct amdgpu_bo_va *bo_va,
1666		     uint64_t saddr, uint64_t offset,
1667		     uint64_t size, uint64_t flags)
1668{
1669	struct amdgpu_bo_va_mapping *mapping, *tmp;
1670	struct amdgpu_bo *bo = bo_va->base.bo;
1671	struct amdgpu_vm *vm = bo_va->base.vm;
1672	uint64_t eaddr;
1673	int r;
1674
1675	r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size);
1676	if (r)
1677		return r;
 
 
 
 
 
 
 
1678
1679	saddr /= AMDGPU_GPU_PAGE_SIZE;
1680	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
1681
1682	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1683	if (tmp) {
1684		/* bo and tmp overlap, invalid addr */
1685		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1686			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
1687			tmp->start, tmp->last + 1);
1688		return -EINVAL;
1689	}
1690
1691	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1692	if (!mapping)
1693		return -ENOMEM;
1694
1695	mapping->start = saddr;
1696	mapping->last = eaddr;
1697	mapping->offset = offset;
1698	mapping->flags = flags;
1699
1700	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1701
1702	return 0;
1703}
1704
1705/**
1706 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1707 *
1708 * @adev: amdgpu_device pointer
1709 * @bo_va: bo_va to store the address
1710 * @saddr: where to map the BO
1711 * @offset: requested offset in the BO
1712 * @size: BO size in bytes
1713 * @flags: attributes of pages (read/write/valid/etc.)
1714 *
1715 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1716 * mappings as we do so.
1717 *
1718 * Returns:
1719 * 0 for success, error for failure.
1720 *
1721 * Object has to be reserved and unreserved outside!
1722 */
1723int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1724			     struct amdgpu_bo_va *bo_va,
1725			     uint64_t saddr, uint64_t offset,
1726			     uint64_t size, uint64_t flags)
1727{
1728	struct amdgpu_bo_va_mapping *mapping;
1729	struct amdgpu_bo *bo = bo_va->base.bo;
1730	uint64_t eaddr;
1731	int r;
1732
1733	r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size);
1734	if (r)
1735		return r;
 
 
 
 
 
 
 
1736
1737	/* Allocate all the needed memory */
1738	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1739	if (!mapping)
1740		return -ENOMEM;
1741
1742	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
1743	if (r) {
1744		kfree(mapping);
1745		return r;
1746	}
1747
1748	saddr /= AMDGPU_GPU_PAGE_SIZE;
1749	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
1750
1751	mapping->start = saddr;
1752	mapping->last = eaddr;
1753	mapping->offset = offset;
1754	mapping->flags = flags;
1755
1756	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1757
1758	return 0;
1759}
1760
1761/**
1762 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1763 *
1764 * @adev: amdgpu_device pointer
1765 * @bo_va: bo_va to remove the address from
1766 * @saddr: where to the BO is mapped
1767 *
1768 * Remove a mapping of the BO at the specefied addr from the VM.
1769 *
1770 * Returns:
1771 * 0 for success, error for failure.
1772 *
1773 * Object has to be reserved and unreserved outside!
1774 */
1775int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1776		       struct amdgpu_bo_va *bo_va,
1777		       uint64_t saddr)
1778{
1779	struct amdgpu_bo_va_mapping *mapping;
1780	struct amdgpu_vm *vm = bo_va->base.vm;
1781	bool valid = true;
1782
1783	saddr /= AMDGPU_GPU_PAGE_SIZE;
1784
1785	list_for_each_entry(mapping, &bo_va->valids, list) {
1786		if (mapping->start == saddr)
1787			break;
1788	}
1789
1790	if (&mapping->list == &bo_va->valids) {
1791		valid = false;
1792
1793		list_for_each_entry(mapping, &bo_va->invalids, list) {
1794			if (mapping->start == saddr)
1795				break;
1796		}
1797
1798		if (&mapping->list == &bo_va->invalids)
1799			return -ENOENT;
1800	}
1801
1802	list_del(&mapping->list);
1803	amdgpu_vm_it_remove(mapping, &vm->va);
1804	mapping->bo_va = NULL;
1805	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1806
1807	if (valid)
1808		list_add(&mapping->list, &vm->freed);
1809	else
1810		amdgpu_vm_free_mapping(adev, vm, mapping,
1811				       bo_va->last_pt_update);
1812
1813	return 0;
1814}
1815
1816/**
1817 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
1818 *
1819 * @adev: amdgpu_device pointer
1820 * @vm: VM structure to use
1821 * @saddr: start of the range
1822 * @size: size of the range
1823 *
1824 * Remove all mappings in a range, split them as appropriate.
1825 *
1826 * Returns:
1827 * 0 for success, error for failure.
1828 */
1829int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
1830				struct amdgpu_vm *vm,
1831				uint64_t saddr, uint64_t size)
1832{
1833	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
1834	LIST_HEAD(removed);
1835	uint64_t eaddr;
1836	int r;
1837
1838	r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size);
1839	if (r)
1840		return r;
1841
 
1842	saddr /= AMDGPU_GPU_PAGE_SIZE;
1843	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
1844
1845	/* Allocate all the needed memory */
1846	before = kzalloc(sizeof(*before), GFP_KERNEL);
1847	if (!before)
1848		return -ENOMEM;
1849	INIT_LIST_HEAD(&before->list);
1850
1851	after = kzalloc(sizeof(*after), GFP_KERNEL);
1852	if (!after) {
1853		kfree(before);
1854		return -ENOMEM;
1855	}
1856	INIT_LIST_HEAD(&after->list);
1857
1858	/* Now gather all removed mappings */
1859	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1860	while (tmp) {
1861		/* Remember mapping split at the start */
1862		if (tmp->start < saddr) {
1863			before->start = tmp->start;
1864			before->last = saddr - 1;
1865			before->offset = tmp->offset;
1866			before->flags = tmp->flags;
1867			before->bo_va = tmp->bo_va;
1868			list_add(&before->list, &tmp->bo_va->invalids);
1869		}
1870
1871		/* Remember mapping split at the end */
1872		if (tmp->last > eaddr) {
1873			after->start = eaddr + 1;
1874			after->last = tmp->last;
1875			after->offset = tmp->offset;
1876			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
1877			after->flags = tmp->flags;
1878			after->bo_va = tmp->bo_va;
1879			list_add(&after->list, &tmp->bo_va->invalids);
1880		}
1881
1882		list_del(&tmp->list);
1883		list_add(&tmp->list, &removed);
1884
1885		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
1886	}
1887
1888	/* And free them up */
1889	list_for_each_entry_safe(tmp, next, &removed, list) {
1890		amdgpu_vm_it_remove(tmp, &vm->va);
1891		list_del(&tmp->list);
1892
1893		if (tmp->start < saddr)
1894		    tmp->start = saddr;
1895		if (tmp->last > eaddr)
1896		    tmp->last = eaddr;
1897
1898		tmp->bo_va = NULL;
1899		list_add(&tmp->list, &vm->freed);
1900		trace_amdgpu_vm_bo_unmap(NULL, tmp);
1901	}
1902
1903	/* Insert partial mapping before the range */
1904	if (!list_empty(&before->list)) {
1905		struct amdgpu_bo *bo = before->bo_va->base.bo;
1906
1907		amdgpu_vm_it_insert(before, &vm->va);
1908		if (before->flags & AMDGPU_PTE_PRT)
1909			amdgpu_vm_prt_get(adev);
1910
1911		if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
1912		    !before->bo_va->base.moved)
1913			amdgpu_vm_bo_moved(&before->bo_va->base);
1914	} else {
1915		kfree(before);
1916	}
1917
1918	/* Insert partial mapping after the range */
1919	if (!list_empty(&after->list)) {
1920		struct amdgpu_bo *bo = after->bo_va->base.bo;
1921
1922		amdgpu_vm_it_insert(after, &vm->va);
1923		if (after->flags & AMDGPU_PTE_PRT)
1924			amdgpu_vm_prt_get(adev);
1925
1926		if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
1927		    !after->bo_va->base.moved)
1928			amdgpu_vm_bo_moved(&after->bo_va->base);
1929	} else {
1930		kfree(after);
1931	}
1932
1933	return 0;
1934}
1935
1936/**
1937 * amdgpu_vm_bo_lookup_mapping - find mapping by address
1938 *
1939 * @vm: the requested VM
1940 * @addr: the address
1941 *
1942 * Find a mapping by it's address.
1943 *
1944 * Returns:
1945 * The amdgpu_bo_va_mapping matching for addr or NULL
1946 *
1947 */
1948struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
1949							 uint64_t addr)
1950{
1951	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
1952}
1953
1954/**
1955 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
1956 *
1957 * @vm: the requested vm
1958 * @ticket: CS ticket
1959 *
1960 * Trace all mappings of BOs reserved during a command submission.
1961 */
1962void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
1963{
1964	struct amdgpu_bo_va_mapping *mapping;
1965
1966	if (!trace_amdgpu_vm_bo_cs_enabled())
1967		return;
1968
1969	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
1970	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
1971		if (mapping->bo_va && mapping->bo_va->base.bo) {
1972			struct amdgpu_bo *bo;
1973
1974			bo = mapping->bo_va->base.bo;
1975			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
1976			    ticket)
1977				continue;
1978		}
1979
1980		trace_amdgpu_vm_bo_cs(mapping);
1981	}
1982}
1983
1984/**
1985 * amdgpu_vm_bo_del - remove a bo from a specific vm
1986 *
1987 * @adev: amdgpu_device pointer
1988 * @bo_va: requested bo_va
1989 *
1990 * Remove @bo_va->bo from the requested vm.
1991 *
1992 * Object have to be reserved!
1993 */
1994void amdgpu_vm_bo_del(struct amdgpu_device *adev,
1995		      struct amdgpu_bo_va *bo_va)
1996{
1997	struct amdgpu_bo_va_mapping *mapping, *next;
1998	struct amdgpu_bo *bo = bo_va->base.bo;
1999	struct amdgpu_vm *vm = bo_va->base.vm;
2000	struct amdgpu_vm_bo_base **base;
2001
2002	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
2003
2004	if (bo) {
2005		dma_resv_assert_held(bo->tbo.base.resv);
2006		if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2007			ttm_bo_set_bulk_move(&bo->tbo, NULL);
2008
2009		for (base = &bo_va->base.bo->vm_bo; *base;
2010		     base = &(*base)->next) {
2011			if (*base != &bo_va->base)
2012				continue;
2013
2014			*base = bo_va->base.next;
2015			break;
2016		}
2017	}
2018
2019	spin_lock(&vm->status_lock);
2020	list_del(&bo_va->base.vm_status);
2021	spin_unlock(&vm->status_lock);
2022
2023	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2024		list_del(&mapping->list);
2025		amdgpu_vm_it_remove(mapping, &vm->va);
2026		mapping->bo_va = NULL;
2027		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2028		list_add(&mapping->list, &vm->freed);
2029	}
2030	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2031		list_del(&mapping->list);
2032		amdgpu_vm_it_remove(mapping, &vm->va);
2033		amdgpu_vm_free_mapping(adev, vm, mapping,
2034				       bo_va->last_pt_update);
2035	}
2036
2037	dma_fence_put(bo_va->last_pt_update);
2038
2039	if (bo && bo_va->is_xgmi)
2040		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2041
2042	kfree(bo_va);
2043}
2044
2045/**
2046 * amdgpu_vm_evictable - check if we can evict a VM
2047 *
2048 * @bo: A page table of the VM.
2049 *
2050 * Check if it is possible to evict a VM.
2051 */
2052bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2053{
2054	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2055
2056	/* Page tables of a destroyed VM can go away immediately */
2057	if (!bo_base || !bo_base->vm)
2058		return true;
2059
2060	/* Don't evict VM page tables while they are busy */
2061	if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP))
2062		return false;
2063
2064	/* Try to block ongoing updates */
2065	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2066		return false;
2067
2068	/* Don't evict VM page tables while they are updated */
2069	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2070		amdgpu_vm_eviction_unlock(bo_base->vm);
2071		return false;
2072	}
2073
2074	bo_base->vm->evicting = true;
2075	amdgpu_vm_eviction_unlock(bo_base->vm);
2076	return true;
2077}
2078
2079/**
2080 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2081 *
2082 * @adev: amdgpu_device pointer
2083 * @bo: amdgpu buffer object
2084 * @evicted: is the BO evicted
2085 *
2086 * Mark @bo as invalid.
2087 */
2088void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2089			     struct amdgpu_bo *bo, bool evicted)
2090{
2091	struct amdgpu_vm_bo_base *bo_base;
2092
2093	/* shadow bo doesn't have bo base, its validation needs its parent */
2094	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2095		bo = bo->parent;
2096
2097	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2098		struct amdgpu_vm *vm = bo_base->vm;
2099
2100		if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
2101			amdgpu_vm_bo_evicted(bo_base);
2102			continue;
2103		}
2104
2105		if (bo_base->moved)
2106			continue;
2107		bo_base->moved = true;
2108
2109		if (bo->tbo.type == ttm_bo_type_kernel)
2110			amdgpu_vm_bo_relocated(bo_base);
2111		else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2112			amdgpu_vm_bo_moved(bo_base);
2113		else
2114			amdgpu_vm_bo_invalidated(bo_base);
2115	}
2116}
2117
2118/**
2119 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2120 *
2121 * @vm_size: VM size
2122 *
2123 * Returns:
2124 * VM page table as power of two
2125 */
2126static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2127{
2128	/* Total bits covered by PD + PTs */
2129	unsigned bits = ilog2(vm_size) + 18;
2130
2131	/* Make sure the PD is 4K in size up to 8GB address space.
2132	   Above that split equal between PD and PTs */
2133	if (vm_size <= 8)
2134		return (bits - 9);
2135	else
2136		return ((bits + 3) / 2);
2137}
2138
2139/**
2140 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2141 *
2142 * @adev: amdgpu_device pointer
2143 * @min_vm_size: the minimum vm size in GB if it's set auto
2144 * @fragment_size_default: Default PTE fragment size
2145 * @max_level: max VMPT level
2146 * @max_bits: max address space size in bits
2147 *
2148 */
2149void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2150			   uint32_t fragment_size_default, unsigned max_level,
2151			   unsigned max_bits)
2152{
2153	unsigned int max_size = 1 << (max_bits - 30);
2154	unsigned int vm_size;
2155	uint64_t tmp;
2156
2157	/* adjust vm size first */
2158	if (amdgpu_vm_size != -1) {
2159		vm_size = amdgpu_vm_size;
2160		if (vm_size > max_size) {
2161			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2162				 amdgpu_vm_size, max_size);
2163			vm_size = max_size;
2164		}
2165	} else {
2166		struct sysinfo si;
2167		unsigned int phys_ram_gb;
2168
2169		/* Optimal VM size depends on the amount of physical
2170		 * RAM available. Underlying requirements and
2171		 * assumptions:
2172		 *
2173		 *  - Need to map system memory and VRAM from all GPUs
2174		 *     - VRAM from other GPUs not known here
2175		 *     - Assume VRAM <= system memory
2176		 *  - On GFX8 and older, VM space can be segmented for
2177		 *    different MTYPEs
2178		 *  - Need to allow room for fragmentation, guard pages etc.
2179		 *
2180		 * This adds up to a rough guess of system memory x3.
2181		 * Round up to power of two to maximize the available
2182		 * VM size with the given page table size.
2183		 */
2184		si_meminfo(&si);
2185		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2186			       (1 << 30) - 1) >> 30;
2187		vm_size = roundup_pow_of_two(
2188			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2189	}
2190
2191	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2192
2193	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2194	if (amdgpu_vm_block_size != -1)
2195		tmp >>= amdgpu_vm_block_size - 9;
2196	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2197	adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp);
2198	switch (adev->vm_manager.num_level) {
2199	case 3:
2200		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2201		break;
2202	case 2:
2203		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2204		break;
2205	case 1:
2206		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2207		break;
2208	default:
2209		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2210	}
2211	/* block size depends on vm size and hw setup*/
2212	if (amdgpu_vm_block_size != -1)
2213		adev->vm_manager.block_size =
2214			min((unsigned)amdgpu_vm_block_size, max_bits
2215			    - AMDGPU_GPU_PAGE_SHIFT
2216			    - 9 * adev->vm_manager.num_level);
2217	else if (adev->vm_manager.num_level > 1)
2218		adev->vm_manager.block_size = 9;
2219	else
2220		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2221
2222	if (amdgpu_vm_fragment_size == -1)
2223		adev->vm_manager.fragment_size = fragment_size_default;
2224	else
2225		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2226
2227	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2228		 vm_size, adev->vm_manager.num_level + 1,
2229		 adev->vm_manager.block_size,
2230		 adev->vm_manager.fragment_size);
2231}
2232
2233/**
2234 * amdgpu_vm_wait_idle - wait for the VM to become idle
2235 *
2236 * @vm: VM object to wait for
2237 * @timeout: timeout to wait for VM to become idle
2238 */
2239long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2240{
2241	timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv,
2242					DMA_RESV_USAGE_BOOKKEEP,
2243					true, timeout);
2244	if (timeout <= 0)
2245		return timeout;
2246
2247	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2248}
2249
2250static void amdgpu_vm_destroy_task_info(struct kref *kref)
2251{
2252	struct amdgpu_task_info *ti = container_of(kref, struct amdgpu_task_info, refcount);
2253
2254	kfree(ti);
2255}
2256
2257static inline struct amdgpu_vm *
2258amdgpu_vm_get_vm_from_pasid(struct amdgpu_device *adev, u32 pasid)
2259{
2260	struct amdgpu_vm *vm;
2261	unsigned long flags;
2262
2263	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
2264	vm = xa_load(&adev->vm_manager.pasids, pasid);
2265	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
2266
2267	return vm;
2268}
2269
2270/**
2271 * amdgpu_vm_put_task_info - reference down the vm task_info ptr
2272 *
2273 * @task_info: task_info struct under discussion.
2274 *
2275 * frees the vm task_info ptr at the last put
2276 */
2277void amdgpu_vm_put_task_info(struct amdgpu_task_info *task_info)
2278{
2279	kref_put(&task_info->refcount, amdgpu_vm_destroy_task_info);
2280}
2281
2282/**
2283 * amdgpu_vm_get_task_info_vm - Extracts task info for a vm.
2284 *
2285 * @vm: VM to get info from
2286 *
2287 * Returns the reference counted task_info structure, which must be
2288 * referenced down with amdgpu_vm_put_task_info.
2289 */
2290struct amdgpu_task_info *
2291amdgpu_vm_get_task_info_vm(struct amdgpu_vm *vm)
2292{
2293	struct amdgpu_task_info *ti = NULL;
2294
2295	if (vm) {
2296		ti = vm->task_info;
2297		kref_get(&vm->task_info->refcount);
2298	}
2299
2300	return ti;
2301}
2302
2303/**
2304 * amdgpu_vm_get_task_info_pasid - Extracts task info for a PASID.
2305 *
2306 * @adev: drm device pointer
2307 * @pasid: PASID identifier for VM
2308 *
2309 * Returns the reference counted task_info structure, which must be
2310 * referenced down with amdgpu_vm_put_task_info.
2311 */
2312struct amdgpu_task_info *
2313amdgpu_vm_get_task_info_pasid(struct amdgpu_device *adev, u32 pasid)
2314{
2315	return amdgpu_vm_get_task_info_vm(
2316			amdgpu_vm_get_vm_from_pasid(adev, pasid));
2317}
2318
2319static int amdgpu_vm_create_task_info(struct amdgpu_vm *vm)
2320{
2321	vm->task_info = kzalloc(sizeof(struct amdgpu_task_info), GFP_KERNEL);
2322	if (!vm->task_info)
2323		return -ENOMEM;
2324
2325	kref_init(&vm->task_info->refcount);
2326	return 0;
2327}
2328
2329/**
2330 * amdgpu_vm_set_task_info - Sets VMs task info.
2331 *
2332 * @vm: vm for which to set the info
2333 */
2334void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
2335{
2336	if (!vm->task_info)
2337		return;
2338
2339	if (vm->task_info->pid == current->pid)
2340		return;
2341
2342	vm->task_info->pid = current->pid;
2343	get_task_comm(vm->task_info->task_name, current);
2344
2345	if (current->group_leader->mm != current->mm)
2346		return;
2347
2348	vm->task_info->tgid = current->group_leader->pid;
2349	get_task_comm(vm->task_info->process_name, current->group_leader);
2350}
2351
2352/**
2353 * amdgpu_vm_init - initialize a vm instance
2354 *
2355 * @adev: amdgpu_device pointer
2356 * @vm: requested vm
2357 * @xcp_id: GPU partition selection id
 
2358 *
2359 * Init @vm fields.
2360 *
2361 * Returns:
2362 * 0 for success, error for failure.
2363 */
2364int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2365		   int32_t xcp_id)
2366{
2367	struct amdgpu_bo *root_bo;
2368	struct amdgpu_bo_vm *root;
2369	int r, i;
2370
2371	vm->va = RB_ROOT_CACHED;
2372	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2373		vm->reserved_vmid[i] = NULL;
2374	INIT_LIST_HEAD(&vm->evicted);
2375	INIT_LIST_HEAD(&vm->evicted_user);
2376	INIT_LIST_HEAD(&vm->relocated);
2377	INIT_LIST_HEAD(&vm->moved);
2378	INIT_LIST_HEAD(&vm->idle);
2379	INIT_LIST_HEAD(&vm->invalidated);
2380	spin_lock_init(&vm->status_lock);
2381	INIT_LIST_HEAD(&vm->freed);
2382	INIT_LIST_HEAD(&vm->done);
2383	INIT_LIST_HEAD(&vm->pt_freed);
2384	INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work);
2385	INIT_KFIFO(vm->faults);
2386
2387	r = amdgpu_vm_init_entities(adev, vm);
 
 
2388	if (r)
2389		return r;
2390
2391	vm->is_compute_context = false;
2392
2393	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2394				    AMDGPU_VM_USE_CPU_FOR_GFX);
 
2395
 
 
 
 
 
 
2396	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2397			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2398	WARN_ONCE((vm->use_cpu_for_update &&
2399		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2400		  "CPU update of VM recommended only for large BAR system\n");
2401
2402	if (vm->use_cpu_for_update)
2403		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2404	else
2405		vm->update_funcs = &amdgpu_vm_sdma_funcs;
 
2406
2407	vm->last_update = dma_fence_get_stub();
2408	vm->last_unlocked = dma_fence_get_stub();
2409	vm->last_tlb_flush = dma_fence_get_stub();
2410	vm->generation = 0;
2411
2412	mutex_init(&vm->eviction_lock);
2413	vm->evicting = false;
2414
2415	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2416				false, &root, xcp_id);
2417	if (r)
2418		goto error_free_delayed;
2419
2420	root_bo = amdgpu_bo_ref(&root->bo);
2421	r = amdgpu_bo_reserve(root_bo, true);
2422	if (r) {
2423		amdgpu_bo_unref(&root->shadow);
2424		amdgpu_bo_unref(&root_bo);
2425		goto error_free_delayed;
2426	}
2427
2428	amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2429	r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1);
2430	if (r)
2431		goto error_free_root;
2432
2433	r = amdgpu_vm_pt_clear(adev, vm, root, false);
2434	if (r)
2435		goto error_free_root;
2436
2437	r = amdgpu_vm_create_task_info(vm);
 
 
2438	if (r)
2439		DRM_DEBUG("Failed to create task info for VM\n");
 
 
 
 
 
 
 
 
 
 
 
 
2440
2441	amdgpu_bo_unreserve(vm->root.bo);
2442	amdgpu_bo_unref(&root_bo);
 
 
2443
2444	return 0;
2445
 
 
 
2446error_free_root:
2447	amdgpu_vm_pt_free_root(adev, vm);
2448	amdgpu_bo_unreserve(vm->root.bo);
2449	amdgpu_bo_unref(&root_bo);
2450
2451error_free_delayed:
2452	dma_fence_put(vm->last_tlb_flush);
2453	dma_fence_put(vm->last_unlocked);
2454	amdgpu_vm_fini_entities(vm);
2455
2456	return r;
2457}
2458
2459/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2460 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2461 *
2462 * @adev: amdgpu_device pointer
2463 * @vm: requested vm
2464 *
2465 * This only works on GFX VMs that don't have any BOs added and no
2466 * page tables allocated yet.
2467 *
2468 * Changes the following VM parameters:
2469 * - use_cpu_for_update
2470 * - pte_supports_ats
 
2471 *
2472 * Reinitializes the page directory to reflect the changed ATS
2473 * setting.
2474 *
2475 * Returns:
2476 * 0 for success, -errno for errors.
2477 */
2478int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2479{
 
2480	int r;
2481
2482	r = amdgpu_bo_reserve(vm->root.bo, true);
2483	if (r)
2484		return r;
2485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2486	/* Update VM state */
2487	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2488				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2489	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2490			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2491	WARN_ONCE((vm->use_cpu_for_update &&
2492		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2493		  "CPU update of VM recommended only for large BAR system\n");
2494
2495	if (vm->use_cpu_for_update) {
2496		/* Sync with last SDMA update/clear before switching to CPU */
2497		r = amdgpu_bo_sync_wait(vm->root.bo,
2498					AMDGPU_FENCE_OWNER_UNDEFINED, true);
2499		if (r)
2500			goto unreserve_bo;
2501
2502		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2503		r = amdgpu_vm_pt_map_tables(adev, vm);
2504		if (r)
2505			goto unreserve_bo;
2506
2507	} else {
2508		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2509	}
2510
2511	dma_fence_put(vm->last_update);
2512	vm->last_update = dma_fence_get_stub();
2513	vm->is_compute_context = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
2514
2515	/* Free the shadow bo for compute VM */
2516	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
 
 
 
2517
2518	goto unreserve_bo;
2519
 
 
 
 
 
 
 
 
2520unreserve_bo:
2521	amdgpu_bo_unreserve(vm->root.bo);
2522	return r;
2523}
2524
2525/**
2526 * amdgpu_vm_release_compute - release a compute vm
2527 * @adev: amdgpu_device pointer
2528 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
2529 *
2530 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
2531 * pasid from vm. Compute should stop use of vm after this call.
2532 */
2533void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2534{
2535	amdgpu_vm_set_pasid(adev, vm, 0);
2536	vm->is_compute_context = false;
 
 
 
 
 
 
2537}
2538
2539/**
2540 * amdgpu_vm_fini - tear down a vm instance
2541 *
2542 * @adev: amdgpu_device pointer
2543 * @vm: requested vm
2544 *
2545 * Tear down @vm.
2546 * Unbind the VM and remove all bos from the vm bo list
2547 */
2548void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2549{
2550	struct amdgpu_bo_va_mapping *mapping, *tmp;
2551	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2552	struct amdgpu_bo *root;
2553	unsigned long flags;
2554	int i;
2555
2556	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2557
2558	flush_work(&vm->pt_free_work);
2559
2560	root = amdgpu_bo_ref(vm->root.bo);
2561	amdgpu_bo_reserve(root, true);
2562	amdgpu_vm_put_task_info(vm->task_info);
2563	amdgpu_vm_set_pasid(adev, vm, 0);
2564	dma_fence_wait(vm->last_unlocked, false);
2565	dma_fence_put(vm->last_unlocked);
2566	dma_fence_wait(vm->last_tlb_flush, false);
2567	/* Make sure that all fence callbacks have completed */
2568	spin_lock_irqsave(vm->last_tlb_flush->lock, flags);
2569	spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags);
2570	dma_fence_put(vm->last_tlb_flush);
2571
2572	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2573		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2574			amdgpu_vm_prt_fini(adev, vm);
2575			prt_fini_needed = false;
2576		}
2577
2578		list_del(&mapping->list);
2579		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
 
2580	}
2581
2582	amdgpu_vm_pt_free_root(adev, vm);
2583	amdgpu_bo_unreserve(root);
2584	amdgpu_bo_unref(&root);
2585	WARN_ON(vm->root.bo);
2586
2587	amdgpu_vm_fini_entities(vm);
2588
2589	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2590		dev_err(adev->dev, "still active bo inside vm\n");
2591	}
2592	rbtree_postorder_for_each_entry_safe(mapping, tmp,
2593					     &vm->va.rb_root, rb) {
2594		/* Don't remove the mapping here, we don't want to trigger a
2595		 * rebalance and the tree is about to be destroyed anyway.
2596		 */
2597		list_del(&mapping->list);
2598		kfree(mapping);
2599	}
2600
2601	dma_fence_put(vm->last_update);
2602
2603	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) {
2604		if (vm->reserved_vmid[i]) {
2605			amdgpu_vmid_free_reserved(adev, i);
2606			vm->reserved_vmid[i] = false;
2607		}
 
 
 
2608	}
2609
 
 
 
 
 
 
 
 
 
 
 
 
 
2610}
2611
2612/**
2613 * amdgpu_vm_manager_init - init the VM manager
2614 *
2615 * @adev: amdgpu_device pointer
2616 *
2617 * Initialize the VM manager structures
2618 */
2619void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2620{
2621	unsigned i;
2622
2623	/* Concurrent flushes are only possible starting with Vega10 and
2624	 * are broken on Navi10 and Navi14.
2625	 */
2626	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
2627					      adev->asic_type == CHIP_NAVI10 ||
2628					      adev->asic_type == CHIP_NAVI14);
2629	amdgpu_vmid_mgr_init(adev);
2630
2631	adev->vm_manager.fence_context =
2632		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2633	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2634		adev->vm_manager.seqno[i] = 0;
2635
2636	spin_lock_init(&adev->vm_manager.prt_lock);
2637	atomic_set(&adev->vm_manager.num_prt_users, 0);
2638
2639	/* If not overridden by the user, by default, only in large BAR systems
2640	 * Compute VM tables will be updated by CPU
2641	 */
2642#ifdef CONFIG_X86_64
2643	if (amdgpu_vm_update_mode == -1) {
2644		/* For asic with VF MMIO access protection
2645		 * avoid using CPU for VM table updates
2646		 */
2647		if (amdgpu_gmc_vram_full_visible(&adev->gmc) &&
2648		    !amdgpu_sriov_vf_mmio_access_protection(adev))
2649			adev->vm_manager.vm_update_mode =
2650				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2651		else
2652			adev->vm_manager.vm_update_mode = 0;
2653	} else
2654		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2655#else
2656	adev->vm_manager.vm_update_mode = 0;
2657#endif
2658
2659	xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
 
 
 
 
2660}
2661
2662/**
2663 * amdgpu_vm_manager_fini - cleanup VM manager
2664 *
2665 * @adev: amdgpu_device pointer
2666 *
2667 * Cleanup the VM manager and free resources.
2668 */
2669void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2670{
2671	WARN_ON(!xa_empty(&adev->vm_manager.pasids));
2672	xa_destroy(&adev->vm_manager.pasids);
2673
2674	amdgpu_vmid_mgr_fini(adev);
2675}
2676
2677/**
2678 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
2679 *
2680 * @dev: drm device pointer
2681 * @data: drm_amdgpu_vm
2682 * @filp: drm file pointer
2683 *
2684 * Returns:
2685 * 0 for success, -errno for errors.
2686 */
2687int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2688{
2689	union drm_amdgpu_vm *args = data;
2690	struct amdgpu_device *adev = drm_to_adev(dev);
2691	struct amdgpu_fpriv *fpriv = filp->driver_priv;
2692
2693	/* No valid flags defined yet */
2694	if (args->in.flags)
2695		return -EINVAL;
2696
2697	switch (args->in.op) {
2698	case AMDGPU_VM_OP_RESERVE_VMID:
2699		/* We only have requirement to reserve vmid from gfxhub */
2700		if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) {
2701			amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0));
2702			fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true;
2703		}
2704
2705		break;
2706	case AMDGPU_VM_OP_UNRESERVE_VMID:
2707		if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) {
2708			amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0));
2709			fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false;
2710		}
2711		break;
2712	default:
2713		return -EINVAL;
2714	}
2715
2716	return 0;
2717}
2718
2719/**
2720 * amdgpu_vm_handle_fault - graceful handling of VM faults.
2721 * @adev: amdgpu device pointer
2722 * @pasid: PASID of the VM
2723 * @vmid: VMID, only used for GFX 9.4.3.
2724 * @node_id: Node_id received in IH cookie. Only applicable for
2725 *           GFX 9.4.3.
2726 * @addr: Address of the fault
2727 * @write_fault: true is write fault, false is read fault
2728 *
2729 * Try to gracefully handle a VM fault. Return true if the fault was handled and
2730 * shouldn't be reported any more.
2731 */
2732bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
2733			    u32 vmid, u32 node_id, uint64_t addr,
2734			    bool write_fault)
2735{
2736	bool is_compute_context = false;
2737	struct amdgpu_bo *root;
2738	unsigned long irqflags;
2739	uint64_t value, flags;
2740	struct amdgpu_vm *vm;
2741	int r;
2742
2743	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
2744	vm = xa_load(&adev->vm_manager.pasids, pasid);
2745	if (vm) {
2746		root = amdgpu_bo_ref(vm->root.bo);
2747		is_compute_context = vm->is_compute_context;
2748	} else {
2749		root = NULL;
2750	}
2751	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
2752
2753	if (!root)
2754		return false;
2755
2756	addr /= AMDGPU_GPU_PAGE_SIZE;
2757
2758	if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid,
2759	    node_id, addr, write_fault)) {
2760		amdgpu_bo_unref(&root);
2761		return true;
2762	}
2763
2764	r = amdgpu_bo_reserve(root, true);
2765	if (r)
2766		goto error_unref;
2767
2768	/* Double check that the VM still exists */
2769	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
2770	vm = xa_load(&adev->vm_manager.pasids, pasid);
2771	if (vm && vm->root.bo != root)
2772		vm = NULL;
2773	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
2774	if (!vm)
2775		goto error_unlock;
2776
2777	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
2778		AMDGPU_PTE_SYSTEM;
2779
2780	if (is_compute_context) {
2781		/* Intentionally setting invalid PTE flag
2782		 * combination to force a no-retry-fault
2783		 */
2784		flags = AMDGPU_VM_NORETRY_FLAGS;
2785		value = 0;
2786	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
2787		/* Redirect the access to the dummy page */
2788		value = adev->dummy_page_addr;
2789		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
2790			AMDGPU_PTE_WRITEABLE;
2791
2792	} else {
2793		/* Let the hw retry silently on the PTE */
2794		value = 0;
2795	}
2796
2797	r = dma_resv_reserve_fences(root->tbo.base.resv, 1);
2798	if (r) {
2799		pr_debug("failed %d to reserve fence slot\n", r);
2800		goto error_unlock;
2801	}
2802
2803	r = amdgpu_vm_update_range(adev, vm, true, false, false, false,
2804				   NULL, addr, addr, flags, value, 0, NULL, NULL, NULL);
2805	if (r)
2806		goto error_unlock;
2807
2808	r = amdgpu_vm_update_pdes(adev, vm, true);
2809
2810error_unlock:
2811	amdgpu_bo_unreserve(root);
2812	if (r < 0)
2813		DRM_ERROR("Can't handle page fault (%d)\n", r);
2814
2815error_unref:
2816	amdgpu_bo_unref(&root);
2817
2818	return false;
2819}
2820
2821#if defined(CONFIG_DEBUG_FS)
2822/**
2823 * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
2824 *
2825 * @vm: Requested VM for printing BO info
2826 * @m: debugfs file
2827 *
2828 * Print BO information in debugfs file for the VM
2829 */
2830void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
2831{
2832	struct amdgpu_bo_va *bo_va, *tmp;
2833	u64 total_idle = 0;
2834	u64 total_evicted = 0;
2835	u64 total_relocated = 0;
2836	u64 total_moved = 0;
2837	u64 total_invalidated = 0;
2838	u64 total_done = 0;
2839	unsigned int total_idle_objs = 0;
2840	unsigned int total_evicted_objs = 0;
2841	unsigned int total_relocated_objs = 0;
2842	unsigned int total_moved_objs = 0;
2843	unsigned int total_invalidated_objs = 0;
2844	unsigned int total_done_objs = 0;
2845	unsigned int id = 0;
2846
2847	spin_lock(&vm->status_lock);
2848	seq_puts(m, "\tIdle BOs:\n");
2849	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
2850		if (!bo_va->base.bo)
2851			continue;
2852		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2853	}
2854	total_idle_objs = id;
2855	id = 0;
2856
2857	seq_puts(m, "\tEvicted BOs:\n");
2858	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
2859		if (!bo_va->base.bo)
2860			continue;
2861		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2862	}
2863	total_evicted_objs = id;
2864	id = 0;
2865
2866	seq_puts(m, "\tRelocated BOs:\n");
2867	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
2868		if (!bo_va->base.bo)
2869			continue;
2870		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2871	}
2872	total_relocated_objs = id;
2873	id = 0;
2874
2875	seq_puts(m, "\tMoved BOs:\n");
2876	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2877		if (!bo_va->base.bo)
2878			continue;
2879		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2880	}
2881	total_moved_objs = id;
2882	id = 0;
2883
2884	seq_puts(m, "\tInvalidated BOs:\n");
2885	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
2886		if (!bo_va->base.bo)
2887			continue;
2888		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
2889	}
2890	total_invalidated_objs = id;
2891	id = 0;
2892
2893	seq_puts(m, "\tDone BOs:\n");
2894	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
2895		if (!bo_va->base.bo)
2896			continue;
2897		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2898	}
2899	spin_unlock(&vm->status_lock);
2900	total_done_objs = id;
2901
2902	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
2903		   total_idle_objs);
2904	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
2905		   total_evicted_objs);
2906	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
2907		   total_relocated_objs);
2908	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
2909		   total_moved_objs);
2910	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
2911		   total_invalidated_objs);
2912	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
2913		   total_done_objs);
2914}
2915#endif
2916
2917/**
2918 * amdgpu_vm_update_fault_cache - update cached fault into.
2919 * @adev: amdgpu device pointer
2920 * @pasid: PASID of the VM
2921 * @addr: Address of the fault
2922 * @status: GPUVM fault status register
2923 * @vmhub: which vmhub got the fault
2924 *
2925 * Cache the fault info for later use by userspace in debugging.
2926 */
2927void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev,
2928				  unsigned int pasid,
2929				  uint64_t addr,
2930				  uint32_t status,
2931				  unsigned int vmhub)
2932{
2933	struct amdgpu_vm *vm;
2934	unsigned long flags;
2935
2936	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
2937
2938	vm = xa_load(&adev->vm_manager.pasids, pasid);
2939	/* Don't update the fault cache if status is 0.  In the multiple
2940	 * fault case, subsequent faults will return a 0 status which is
2941	 * useless for userspace and replaces the useful fault status, so
2942	 * only update if status is non-0.
2943	 */
2944	if (vm && status) {
2945		vm->fault_info.addr = addr;
2946		vm->fault_info.status = status;
2947		if (AMDGPU_IS_GFXHUB(vmhub)) {
2948			vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX;
2949			vm->fault_info.vmhub |=
2950				(vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT;
2951		} else if (AMDGPU_IS_MMHUB0(vmhub)) {
2952			vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0;
2953			vm->fault_info.vmhub |=
2954				(vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT;
2955		} else if (AMDGPU_IS_MMHUB1(vmhub)) {
2956			vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1;
2957			vm->fault_info.vmhub |=
2958				(vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT;
2959		} else {
2960			WARN_ONCE(1, "Invalid vmhub %u\n", vmhub);
2961		}
2962	}
2963	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
2964}
2965
v5.4
   1/*
   2 * Copyright 2008 Advanced Micro Devices, Inc.
   3 * Copyright 2008 Red Hat Inc.
   4 * Copyright 2009 Jerome Glisse.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the "Software"),
   8 * to deal in the Software without restriction, including without limitation
   9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10 * and/or sell copies of the Software, and to permit persons to whom the
  11 * Software is furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  22 * OTHER DEALINGS IN THE SOFTWARE.
  23 *
  24 * Authors: Dave Airlie
  25 *          Alex Deucher
  26 *          Jerome Glisse
  27 */
 
  28#include <linux/dma-fence-array.h>
  29#include <linux/interval_tree_generic.h>
  30#include <linux/idr.h>
 
  31
  32#include <drm/amdgpu_drm.h>
 
 
 
  33#include "amdgpu.h"
  34#include "amdgpu_trace.h"
  35#include "amdgpu_amdkfd.h"
  36#include "amdgpu_gmc.h"
  37#include "amdgpu_xgmi.h"
 
 
 
  38
  39/**
  40 * DOC: GPUVM
  41 *
  42 * GPUVM is similar to the legacy gart on older asics, however
  43 * rather than there being a single global gart table
  44 * for the entire GPU, there are multiple VM page tables active
  45 * at any given time.  The VM page tables can contain a mix
  46 * vram pages and system memory pages and system memory pages
 
  47 * can be mapped as snooped (cached system pages) or unsnooped
  48 * (uncached system pages).
  49 * Each VM has an ID associated with it and there is a page table
  50 * associated with each VMID.  When execting a command buffer,
  51 * the kernel tells the the ring what VMID to use for that command
 
  52 * buffer.  VMIDs are allocated dynamically as commands are submitted.
  53 * The userspace drivers maintain their own address space and the kernel
  54 * sets up their pages tables accordingly when they submit their
  55 * command buffers and a VMID is assigned.
  56 * Cayman/Trinity support up to 8 active VMs at any given time;
  57 * SI supports 16.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58 */
  59
  60#define START(node) ((node)->start)
  61#define LAST(node) ((node)->last)
  62
  63INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
  64		     START, LAST, static, amdgpu_vm_it)
  65
  66#undef START
  67#undef LAST
  68
  69/**
  70 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
  71 */
  72struct amdgpu_prt_cb {
  73
  74	/**
  75	 * @adev: amdgpu device
  76	 */
  77	struct amdgpu_device *adev;
  78
  79	/**
  80	 * @cb: callback
  81	 */
  82	struct dma_fence_cb cb;
  83};
  84
  85/**
  86 * amdgpu_vm_level_shift - return the addr shift for each level
  87 *
  88 * @adev: amdgpu_device pointer
  89 * @level: VMPT level
  90 *
  91 * Returns:
  92 * The number of bits the pfn needs to be right shifted for a level.
  93 */
  94static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
  95				      unsigned level)
  96{
  97	unsigned shift = 0xff;
 
  98
  99	switch (level) {
 100	case AMDGPU_VM_PDB2:
 101	case AMDGPU_VM_PDB1:
 102	case AMDGPU_VM_PDB0:
 103		shift = 9 * (AMDGPU_VM_PDB0 - level) +
 104			adev->vm_manager.block_size;
 105		break;
 106	case AMDGPU_VM_PTB:
 107		shift = 0;
 108		break;
 109	default:
 110		dev_err(adev->dev, "the level%d isn't supported.\n", level);
 111	}
 112
 113	return shift;
 114}
 115
 116/**
 117 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
 118 *
 119 * @adev: amdgpu_device pointer
 120 * @level: VMPT level
 
 
 
 
 121 *
 122 * Returns:
 123 * The number of entries in a page directory or page table.
 124 */
 125static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
 126				      unsigned level)
 127{
 128	unsigned shift = amdgpu_vm_level_shift(adev,
 129					       adev->vm_manager.root_level);
 130
 131	if (level == adev->vm_manager.root_level)
 132		/* For the root directory */
 133		return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift;
 134	else if (level != AMDGPU_VM_PTB)
 135		/* Everything in between */
 136		return 512;
 137	else
 138		/* For the page tables on the leaves */
 139		return AMDGPU_VM_PTE_COUNT(adev);
 140}
 141
 142/**
 143 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
 144 *
 145 * @adev: amdgpu_device pointer
 146 *
 147 * Returns:
 148 * The number of entries in the root page directory which needs the ATS setting.
 149 */
 150static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
 151{
 152	unsigned shift;
 153
 154	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
 155	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
 156}
 157
 158/**
 159 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
 160 *
 161 * @adev: amdgpu_device pointer
 162 * @level: VMPT level
 163 *
 164 * Returns:
 165 * The mask to extract the entry number of a PD/PT from an address.
 166 */
 167static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
 168				       unsigned int level)
 169{
 170	if (level <= adev->vm_manager.root_level)
 171		return 0xffffffff;
 172	else if (level != AMDGPU_VM_PTB)
 173		return 0x1ff;
 174	else
 175		return AMDGPU_VM_PTE_COUNT(adev) - 1;
 176}
 177
 178/**
 179 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
 180 *
 181 * @adev: amdgpu_device pointer
 182 * @level: VMPT level
 183 *
 184 * Returns:
 185 * The size of the BO for a page directory or page table in bytes.
 186 */
 187static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
 188{
 189	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
 190}
 191
 192/**
 193 * amdgpu_vm_bo_evicted - vm_bo is evicted
 194 *
 195 * @vm_bo: vm_bo which is evicted
 196 *
 197 * State for PDs/PTs and per VM BOs which are not at the location they should
 198 * be.
 199 */
 200static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
 201{
 202	struct amdgpu_vm *vm = vm_bo->vm;
 203	struct amdgpu_bo *bo = vm_bo->bo;
 204
 205	vm_bo->moved = true;
 
 206	if (bo->tbo.type == ttm_bo_type_kernel)
 207		list_move(&vm_bo->vm_status, &vm->evicted);
 208	else
 209		list_move_tail(&vm_bo->vm_status, &vm->evicted);
 
 210}
 211
 212/**
 213 * amdgpu_vm_bo_relocated - vm_bo is reloacted
 214 *
 215 * @vm_bo: vm_bo which is relocated
 216 *
 217 * State for PDs/PTs which needs to update their parent PD.
 218 */
 219static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
 220{
 221	list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
 222}
 223
 224/**
 225 * amdgpu_vm_bo_moved - vm_bo is moved
 226 *
 227 * @vm_bo: vm_bo which is moved
 228 *
 229 * State for per VM BOs which are moved, but that change is not yet reflected
 230 * in the page tables.
 231 */
 232static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
 233{
 
 234	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
 
 235}
 236
 237/**
 238 * amdgpu_vm_bo_idle - vm_bo is idle
 239 *
 240 * @vm_bo: vm_bo which is now idle
 241 *
 242 * State for PDs/PTs and per VM BOs which have gone through the state machine
 243 * and are now idle.
 244 */
 245static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
 246{
 
 247	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
 
 248	vm_bo->moved = false;
 249}
 250
 251/**
 252 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
 253 *
 254 * @vm_bo: vm_bo which is now invalidated
 255 *
 256 * State for normal BOs which are invalidated and that change not yet reflected
 257 * in the PTs.
 258 */
 259static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
 260{
 261	spin_lock(&vm_bo->vm->invalidated_lock);
 262	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
 263	spin_unlock(&vm_bo->vm->invalidated_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 264}
 265
 266/**
 267 * amdgpu_vm_bo_done - vm_bo is done
 268 *
 269 * @vm_bo: vm_bo which is now done
 270 *
 271 * State for normal BOs which are invalidated and that change has been updated
 272 * in the PTs.
 273 */
 274static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
 275{
 276	spin_lock(&vm_bo->vm->invalidated_lock);
 277	list_del_init(&vm_bo->vm_status);
 278	spin_unlock(&vm_bo->vm->invalidated_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279}
 280
 281/**
 282 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
 283 *
 284 * @base: base structure for tracking BO usage in a VM
 285 * @vm: vm to which bo is to be added
 286 * @bo: amdgpu buffer object
 287 *
 288 * Initialize a bo_va_base structure and add it to the appropriate lists
 289 *
 290 */
 291static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
 292				   struct amdgpu_vm *vm,
 293				   struct amdgpu_bo *bo)
 294{
 295	base->vm = vm;
 296	base->bo = bo;
 297	base->next = NULL;
 298	INIT_LIST_HEAD(&base->vm_status);
 299
 300	if (!bo)
 301		return;
 302	base->next = bo->vm_bo;
 303	bo->vm_bo = base;
 304
 305	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
 306		return;
 307
 308	vm->bulk_moveable = false;
 
 
 309	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
 310		amdgpu_vm_bo_relocated(base);
 311	else
 312		amdgpu_vm_bo_idle(base);
 313
 314	if (bo->preferred_domains &
 315	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
 316		return;
 317
 318	/*
 319	 * we checked all the prerequisites, but it looks like this per vm bo
 320	 * is currently evicted. add the bo to the evicted list to make sure it
 321	 * is validated on next vm use to avoid fault.
 322	 * */
 323	amdgpu_vm_bo_evicted(base);
 324}
 325
 326/**
 327 * amdgpu_vm_pt_parent - get the parent page directory
 328 *
 329 * @pt: child page table
 
 
 330 *
 331 * Helper to get the parent entry for the child page table. NULL if we are at
 332 * the root page directory.
 333 */
 334static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
 
 335{
 336	struct amdgpu_bo *parent = pt->base.bo->parent;
 337
 338	if (!parent)
 339		return NULL;
 340
 341	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
 342}
 343
 344/**
 345 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
 346 */
 347struct amdgpu_vm_pt_cursor {
 348	uint64_t pfn;
 349	struct amdgpu_vm_pt *parent;
 350	struct amdgpu_vm_pt *entry;
 351	unsigned level;
 352};
 353
 354/**
 355 * amdgpu_vm_pt_start - start PD/PT walk
 356 *
 357 * @adev: amdgpu_device pointer
 358 * @vm: amdgpu_vm structure
 359 * @start: start address of the walk
 360 * @cursor: state to initialize
 361 *
 362 * Initialize a amdgpu_vm_pt_cursor to start a walk.
 
 363 */
 364static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
 365			       struct amdgpu_vm *vm, uint64_t start,
 366			       struct amdgpu_vm_pt_cursor *cursor)
 367{
 368	cursor->pfn = start;
 369	cursor->parent = NULL;
 370	cursor->entry = &vm->root;
 371	cursor->level = adev->vm_manager.root_level;
 372}
 373
 374/**
 375 * amdgpu_vm_pt_descendant - go to child node
 376 *
 377 * @adev: amdgpu_device pointer
 378 * @cursor: current state
 379 *
 380 * Walk to the child node of the current node.
 381 * Returns:
 382 * True if the walk was possible, false otherwise.
 383 */
 384static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
 385				    struct amdgpu_vm_pt_cursor *cursor)
 386{
 387	unsigned mask, shift, idx;
 388
 389	if (!cursor->entry->entries)
 390		return false;
 
 
 
 391
 392	BUG_ON(!cursor->entry->base.bo);
 393	mask = amdgpu_vm_entries_mask(adev, cursor->level);
 394	shift = amdgpu_vm_level_shift(adev, cursor->level);
 395
 396	++cursor->level;
 397	idx = (cursor->pfn >> shift) & mask;
 398	cursor->parent = cursor->entry;
 399	cursor->entry = &cursor->entry->entries[idx];
 400	return true;
 401}
 402
 403/**
 404 * amdgpu_vm_pt_sibling - go to sibling node
 405 *
 406 * @adev: amdgpu_device pointer
 407 * @cursor: current state
 408 *
 409 * Walk to the sibling node of the current node.
 410 * Returns:
 411 * True if the walk was possible, false otherwise.
 412 */
 413static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
 414				 struct amdgpu_vm_pt_cursor *cursor)
 415{
 416	unsigned shift, num_entries;
 417
 418	/* Root doesn't have a sibling */
 419	if (!cursor->parent)
 420		return false;
 421
 422	/* Go to our parents and see if we got a sibling */
 423	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
 424	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
 425
 426	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
 427		return false;
 428
 429	cursor->pfn += 1ULL << shift;
 430	cursor->pfn &= ~((1ULL << shift) - 1);
 431	++cursor->entry;
 432	return true;
 433}
 434
 435/**
 436 * amdgpu_vm_pt_ancestor - go to parent node
 437 *
 438 * @cursor: current state
 439 *
 440 * Walk to the parent node of the current node.
 441 * Returns:
 442 * True if the walk was possible, false otherwise.
 443 */
 444static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
 445{
 446	if (!cursor->parent)
 447		return false;
 448
 449	--cursor->level;
 450	cursor->entry = cursor->parent;
 451	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
 452	return true;
 453}
 454
 455/**
 456 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
 457 *
 458 * @adev: amdgpu_device pointer
 459 * @cursor: current state
 460 *
 461 * Walk the PD/PT tree to the next node.
 
 
 462 */
 463static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
 464			      struct amdgpu_vm_pt_cursor *cursor)
 465{
 466	/* First try a newborn child */
 467	if (amdgpu_vm_pt_descendant(adev, cursor))
 468		return;
 469
 470	/* If that didn't worked try to find a sibling */
 471	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
 472		/* No sibling, go to our parents and grandparents */
 473		if (!amdgpu_vm_pt_ancestor(cursor)) {
 474			cursor->pfn = ~0ll;
 475			return;
 476		}
 477	}
 478}
 479
 480/**
 481 * amdgpu_vm_pt_first_dfs - start a deep first search
 482 *
 483 * @adev: amdgpu_device structure
 484 * @vm: amdgpu_vm structure
 485 * @cursor: state to initialize
 486 *
 487 * Starts a deep first traversal of the PD/PT tree.
 488 */
 489static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
 490				   struct amdgpu_vm *vm,
 491				   struct amdgpu_vm_pt_cursor *start,
 492				   struct amdgpu_vm_pt_cursor *cursor)
 493{
 494	if (start)
 495		*cursor = *start;
 496	else
 497		amdgpu_vm_pt_start(adev, vm, 0, cursor);
 498	while (amdgpu_vm_pt_descendant(adev, cursor));
 499}
 500
 501/**
 502 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
 503 *
 504 * @start: starting point for the search
 505 * @entry: current entry
 506 *
 507 * Returns:
 508 * True when the search should continue, false otherwise.
 509 */
 510static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
 511				      struct amdgpu_vm_pt *entry)
 512{
 513	return entry && (!start || entry != start->entry);
 514}
 515
 516/**
 517 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
 518 *
 519 * @adev: amdgpu_device structure
 520 * @cursor: current state
 521 *
 522 * Move the cursor to the next node in a deep first search.
 523 */
 524static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
 525				  struct amdgpu_vm_pt_cursor *cursor)
 526{
 527	if (!cursor->entry)
 528		return;
 529
 530	if (!cursor->parent)
 531		cursor->entry = NULL;
 532	else if (amdgpu_vm_pt_sibling(adev, cursor))
 533		while (amdgpu_vm_pt_descendant(adev, cursor));
 534	else
 535		amdgpu_vm_pt_ancestor(cursor);
 536}
 537
 538/**
 539 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
 540 */
 541#define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
 542	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
 543	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
 544	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
 545	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
 546
 547/**
 548 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
 549 *
 550 * @vm: vm providing the BOs
 551 * @validated: head of validation list
 552 * @entry: entry to add
 553 *
 554 * Add the page directory to the list of BOs to
 555 * validate for command submission.
 556 */
 557void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
 558			 struct list_head *validated,
 559			 struct amdgpu_bo_list_entry *entry)
 560{
 561	entry->priority = 0;
 562	entry->tv.bo = &vm->root.base.bo->tbo;
 563	/* One for the VM updates, one for TTM and one for the CS job */
 564	entry->tv.num_shared = 3;
 565	entry->user_pages = NULL;
 566	list_add(&entry->tv.head, validated);
 567}
 568
 569void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
 570{
 571	struct amdgpu_bo *abo;
 572	struct amdgpu_vm_bo_base *bo_base;
 573
 574	if (!amdgpu_bo_is_amdgpu_bo(bo))
 575		return;
 576
 577	if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
 578		return;
 579
 580	abo = ttm_to_amdgpu_bo(bo);
 581	if (!abo->parent)
 582		return;
 583	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
 584		struct amdgpu_vm *vm = bo_base->vm;
 585
 586		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
 587			vm->bulk_moveable = false;
 588	}
 589
 590}
 591/**
 592 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
 593 *
 594 * @adev: amdgpu device pointer
 595 * @vm: vm providing the BOs
 596 *
 597 * Move all BOs to the end of LRU and remember their positions to put them
 598 * together.
 599 */
 600void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
 601				struct amdgpu_vm *vm)
 602{
 603	struct ttm_bo_global *glob = adev->mman.bdev.glob;
 604	struct amdgpu_vm_bo_base *bo_base;
 605
 606	if (vm->bulk_moveable) {
 607		spin_lock(&glob->lru_lock);
 608		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
 609		spin_unlock(&glob->lru_lock);
 610		return;
 611	}
 612
 613	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
 614
 615	spin_lock(&glob->lru_lock);
 616	list_for_each_entry(bo_base, &vm->idle, vm_status) {
 617		struct amdgpu_bo *bo = bo_base->bo;
 618
 619		if (!bo->parent)
 620			continue;
 621
 622		ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
 623		if (bo->shadow)
 624			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
 625						&vm->lru_bulk_move);
 626	}
 627	spin_unlock(&glob->lru_lock);
 628
 629	vm->bulk_moveable = true;
 630}
 631
 632/**
 633 * amdgpu_vm_validate_pt_bos - validate the page table BOs
 634 *
 635 * @adev: amdgpu device pointer
 636 * @vm: vm providing the BOs
 
 637 * @validate: callback to do the validation
 638 * @param: parameter for the validation callback
 639 *
 640 * Validate the page table BOs on command submission if neccessary.
 
 
 641 *
 642 * Returns:
 643 * Validation result.
 644 */
 645int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 646			      int (*validate)(void *p, struct amdgpu_bo *bo),
 647			      void *param)
 
 648{
 649	struct amdgpu_vm_bo_base *bo_base, *tmp;
 650	int r = 0;
 651
 652	vm->bulk_moveable &= list_empty(&vm->evicted);
 653
 654	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
 655		struct amdgpu_bo *bo = bo_base->bo;
 656
 657		r = validate(param, bo);
 658		if (r)
 659			break;
 660
 661		if (bo->tbo.type != ttm_bo_type_kernel) {
 662			amdgpu_vm_bo_moved(bo_base);
 663		} else {
 664			vm->update_funcs->map_table(bo);
 665			if (bo->parent)
 666				amdgpu_vm_bo_relocated(bo_base);
 667			else
 668				amdgpu_vm_bo_idle(bo_base);
 669		}
 670	}
 671
 672	return r;
 673}
 674
 675/**
 676 * amdgpu_vm_ready - check VM is ready for updates
 677 *
 678 * @vm: VM to check
 679 *
 680 * Check if all VM PDs/PTs are ready for updates
 681 *
 682 * Returns:
 683 * True if eviction list is empty.
 684 */
 685bool amdgpu_vm_ready(struct amdgpu_vm *vm)
 686{
 687	return list_empty(&vm->evicted);
 688}
 689
 690/**
 691 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
 692 *
 693 * @adev: amdgpu_device pointer
 694 * @vm: VM to clear BO from
 695 * @bo: BO to clear
 696 *
 697 * Root PD needs to be reserved when calling this.
 698 *
 699 * Returns:
 700 * 0 on success, errno otherwise.
 701 */
 702static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
 703			      struct amdgpu_vm *vm,
 704			      struct amdgpu_bo *bo)
 705{
 706	struct ttm_operation_ctx ctx = { true, false };
 707	unsigned level = adev->vm_manager.root_level;
 708	struct amdgpu_vm_update_params params;
 709	struct amdgpu_bo *ancestor = bo;
 710	unsigned entries, ats_entries;
 711	uint64_t addr;
 712	int r;
 713
 714	/* Figure out our place in the hierarchy */
 715	if (ancestor->parent) {
 716		++level;
 717		while (ancestor->parent->parent) {
 718			++level;
 719			ancestor = ancestor->parent;
 720		}
 721	}
 722
 723	entries = amdgpu_bo_size(bo) / 8;
 724	if (!vm->pte_support_ats) {
 725		ats_entries = 0;
 726
 727	} else if (!bo->parent) {
 728		ats_entries = amdgpu_vm_num_ats_entries(adev);
 729		ats_entries = min(ats_entries, entries);
 730		entries -= ats_entries;
 731
 732	} else {
 733		struct amdgpu_vm_pt *pt;
 734
 735		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
 736		ats_entries = amdgpu_vm_num_ats_entries(adev);
 737		if ((pt - vm->root.entries) >= ats_entries) {
 738			ats_entries = 0;
 739		} else {
 740			ats_entries = entries;
 741			entries = 0;
 742		}
 743	}
 744
 745	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
 746	if (r)
 747		return r;
 748
 749	if (bo->shadow) {
 750		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
 751				    &ctx);
 752		if (r)
 753			return r;
 754	}
 755
 756	r = vm->update_funcs->map_table(bo);
 757	if (r)
 758		return r;
 
 
 
 759
 760	memset(&params, 0, sizeof(params));
 761	params.adev = adev;
 762	params.vm = vm;
 763
 764	r = vm->update_funcs->prepare(&params, AMDGPU_FENCE_OWNER_KFD, NULL);
 765	if (r)
 766		return r;
 767
 768	addr = 0;
 769	if (ats_entries) {
 770		uint64_t value = 0, flags;
 771
 772		flags = AMDGPU_PTE_DEFAULT_ATC;
 773		if (level != AMDGPU_VM_PTB) {
 774			/* Handle leaf PDEs as PTEs */
 775			flags |= AMDGPU_PDE_PTE;
 776			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
 777		}
 778
 779		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
 780					     value, flags);
 781		if (r)
 782			return r;
 
 
 
 
 
 783
 784		addr += ats_entries * 8;
 
 
 
 
 
 
 785	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786
 787	if (entries) {
 788		uint64_t value = 0, flags = 0;
 789
 790		if (adev->asic_type >= CHIP_VEGA10) {
 791			if (level != AMDGPU_VM_PTB) {
 792				/* Handle leaf PDEs as PTEs */
 793				flags |= AMDGPU_PDE_PTE;
 794				amdgpu_gmc_get_vm_pde(adev, level,
 795						      &value, &flags);
 796			} else {
 797				/* Workaround for fault priority problem on GMC9 */
 798				flags = AMDGPU_PTE_EXECUTABLE;
 799			}
 800		}
 801
 802		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
 803					     value, flags);
 804		if (r)
 805			return r;
 806	}
 807
 808	return vm->update_funcs->commit(&params, NULL);
 809}
 810
 811/**
 812 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
 813 *
 814 * @adev: amdgpu_device pointer
 815 * @vm: requesting vm
 816 * @bp: resulting BO allocation parameters
 817 */
 818static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 819			       int level, struct amdgpu_bo_param *bp)
 820{
 821	memset(bp, 0, sizeof(*bp));
 822
 823	bp->size = amdgpu_vm_bo_size(adev, level);
 824	bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
 825	bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
 826	bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
 827	bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
 828		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
 829	if (vm->use_cpu_for_update)
 830		bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 831	else if (!vm->root.base.bo || vm->root.base.bo->shadow)
 832		bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
 833	bp->type = ttm_bo_type_kernel;
 834	if (vm->root.base.bo)
 835		bp->resv = vm->root.base.bo->tbo.base.resv;
 836}
 837
 838/**
 839 * amdgpu_vm_alloc_pts - Allocate a specific page table
 840 *
 841 * @adev: amdgpu_device pointer
 842 * @vm: VM to allocate page tables for
 843 * @cursor: Which page table to allocate
 844 *
 845 * Make sure a specific page table or directory is allocated.
 846 *
 847 * Returns:
 848 * 1 if page table needed to be allocated, 0 if page table was already
 849 * allocated, negative errno if an error occurred.
 850 */
 851static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
 852			       struct amdgpu_vm *vm,
 853			       struct amdgpu_vm_pt_cursor *cursor)
 854{
 855	struct amdgpu_vm_pt *entry = cursor->entry;
 856	struct amdgpu_bo_param bp;
 857	struct amdgpu_bo *pt;
 858	int r;
 859
 860	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
 861		unsigned num_entries;
 862
 863		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
 864		entry->entries = kvmalloc_array(num_entries,
 865						sizeof(*entry->entries),
 866						GFP_KERNEL | __GFP_ZERO);
 867		if (!entry->entries)
 868			return -ENOMEM;
 869	}
 
 870
 871	if (entry->base.bo)
 872		return 0;
 873
 874	amdgpu_vm_bo_param(adev, vm, cursor->level, &bp);
 875
 876	r = amdgpu_bo_create(adev, &bp, &pt);
 877	if (r)
 878		return r;
 879
 880	/* Keep a reference to the root directory to avoid
 881	 * freeing them up in the wrong order.
 882	 */
 883	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
 884	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
 885
 886	r = amdgpu_vm_clear_bo(adev, vm, pt);
 887	if (r)
 888		goto error_free_pt;
 889
 890	return 0;
 891
 892error_free_pt:
 893	amdgpu_bo_unref(&pt->shadow);
 894	amdgpu_bo_unref(&pt);
 895	return r;
 896}
 897
 898/**
 899 * amdgpu_vm_free_table - fre one PD/PT
 900 *
 901 * @entry: PDE to free
 902 */
 903static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
 904{
 905	if (entry->base.bo) {
 906		entry->base.bo->vm_bo = NULL;
 907		list_del(&entry->base.vm_status);
 908		amdgpu_bo_unref(&entry->base.bo->shadow);
 909		amdgpu_bo_unref(&entry->base.bo);
 910	}
 911	kvfree(entry->entries);
 912	entry->entries = NULL;
 913}
 914
 915/**
 916 * amdgpu_vm_free_pts - free PD/PT levels
 917 *
 918 * @adev: amdgpu device structure
 919 * @vm: amdgpu vm structure
 920 * @start: optional cursor where to start freeing PDs/PTs
 921 *
 922 * Free the page directory or page table level and all sub levels.
 
 923 */
 924static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
 925			       struct amdgpu_vm *vm,
 926			       struct amdgpu_vm_pt_cursor *start)
 927{
 928	struct amdgpu_vm_pt_cursor cursor;
 929	struct amdgpu_vm_pt *entry;
 930
 931	vm->bulk_moveable = false;
 932
 933	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
 934		amdgpu_vm_free_table(entry);
 
 
 
 
 
 935
 936	if (start)
 937		amdgpu_vm_free_table(start->entry);
 938}
 939
 940/**
 941 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
 942 *
 943 * @adev: amdgpu_device pointer
 944 */
 945void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
 946{
 947	const struct amdgpu_ip_block *ip_block;
 948	bool has_compute_vm_bug;
 949	struct amdgpu_ring *ring;
 950	int i;
 951
 952	has_compute_vm_bug = false;
 953
 954	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
 955	if (ip_block) {
 956		/* Compute has a VM bug for GFX version < 7.
 957		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
 958		if (ip_block->version->major <= 7)
 959			has_compute_vm_bug = true;
 960		else if (ip_block->version->major == 8)
 961			if (adev->gfx.mec_fw_version < 673)
 962				has_compute_vm_bug = true;
 963	}
 964
 965	for (i = 0; i < adev->num_rings; i++) {
 966		ring = adev->rings[i];
 967		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
 968			/* only compute rings */
 969			ring->has_compute_vm_bug = has_compute_vm_bug;
 970		else
 971			ring->has_compute_vm_bug = false;
 972	}
 973}
 974
 975/**
 976 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
 977 *
 978 * @ring: ring on which the job will be submitted
 979 * @job: job to submit
 980 *
 981 * Returns:
 982 * True if sync is needed.
 983 */
 984bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
 985				  struct amdgpu_job *job)
 986{
 987	struct amdgpu_device *adev = ring->adev;
 988	unsigned vmhub = ring->funcs->vmhub;
 989	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
 990	struct amdgpu_vmid *id;
 991	bool gds_switch_needed;
 992	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
 993
 994	if (job->vmid == 0)
 995		return false;
 996	id = &id_mgr->ids[job->vmid];
 997	gds_switch_needed = ring->funcs->emit_gds_switch && (
 998		id->gds_base != job->gds_base ||
 999		id->gds_size != job->gds_size ||
1000		id->gws_base != job->gws_base ||
1001		id->gws_size != job->gws_size ||
1002		id->oa_base != job->oa_base ||
1003		id->oa_size != job->oa_size);
1004
1005	if (amdgpu_vmid_had_gpu_reset(adev, id))
1006		return true;
1007
1008	return vm_flush_needed || gds_switch_needed;
 
 
 
 
 
 
1009}
1010
1011/**
1012 * amdgpu_vm_flush - hardware flush the vm
1013 *
1014 * @ring: ring to use for flush
1015 * @job:  related job
1016 * @need_pipe_sync: is pipe sync needed
1017 *
1018 * Emit a VM flush when it is necessary.
1019 *
1020 * Returns:
1021 * 0 on success, errno otherwise.
1022 */
1023int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
 
1024{
1025	struct amdgpu_device *adev = ring->adev;
1026	unsigned vmhub = ring->funcs->vmhub;
1027	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1028	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1029	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1030		id->gds_base != job->gds_base ||
1031		id->gds_size != job->gds_size ||
1032		id->gws_base != job->gws_base ||
1033		id->gws_size != job->gws_size ||
1034		id->oa_base != job->oa_base ||
1035		id->oa_size != job->oa_size);
1036	bool vm_flush_needed = job->vm_needs_flush;
1037	bool pasid_mapping_needed = id->pasid != job->pasid ||
1038		!id->pasid_mapping ||
1039		!dma_fence_is_signaled(id->pasid_mapping);
1040	struct dma_fence *fence = NULL;
1041	unsigned patch_offset = 0;
 
1042	int r;
1043
1044	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1045		gds_switch_needed = true;
1046		vm_flush_needed = true;
1047		pasid_mapping_needed = true;
 
1048	}
1049
 
 
 
 
 
 
1050	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1051	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1052			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1053	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1054		ring->funcs->emit_wreg;
1055
1056	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1057		return 0;
1058
 
1059	if (ring->funcs->init_cond_exec)
1060		patch_offset = amdgpu_ring_init_cond_exec(ring);
 
1061
1062	if (need_pipe_sync)
1063		amdgpu_ring_emit_pipeline_sync(ring);
1064
1065	if (vm_flush_needed) {
1066		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1067		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1068	}
1069
1070	if (pasid_mapping_needed)
1071		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1072
 
 
 
 
 
 
 
 
 
 
 
1073	if (vm_flush_needed || pasid_mapping_needed) {
1074		r = amdgpu_fence_emit(ring, &fence, 0);
1075		if (r)
1076			return r;
1077	}
1078
1079	if (vm_flush_needed) {
1080		mutex_lock(&id_mgr->lock);
1081		dma_fence_put(id->last_flush);
1082		id->last_flush = dma_fence_get(fence);
1083		id->current_gpu_reset_count =
1084			atomic_read(&adev->gpu_reset_counter);
1085		mutex_unlock(&id_mgr->lock);
1086	}
1087
1088	if (pasid_mapping_needed) {
 
1089		id->pasid = job->pasid;
1090		dma_fence_put(id->pasid_mapping);
1091		id->pasid_mapping = dma_fence_get(fence);
 
1092	}
1093	dma_fence_put(fence);
1094
1095	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1096		id->gds_base = job->gds_base;
1097		id->gds_size = job->gds_size;
1098		id->gws_base = job->gws_base;
1099		id->gws_size = job->gws_size;
1100		id->oa_base = job->oa_base;
1101		id->oa_size = job->oa_size;
1102		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1103					    job->gds_size, job->gws_base,
1104					    job->gws_size, job->oa_base,
1105					    job->oa_size);
1106	}
1107
1108	if (ring->funcs->patch_cond_exec)
1109		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1110
1111	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1112	if (ring->funcs->emit_switch_buffer) {
1113		amdgpu_ring_emit_switch_buffer(ring);
1114		amdgpu_ring_emit_switch_buffer(ring);
1115	}
 
1116	return 0;
1117}
1118
1119/**
1120 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1121 *
1122 * @vm: requested vm
1123 * @bo: requested buffer object
1124 *
1125 * Find @bo inside the requested vm.
1126 * Search inside the @bos vm list for the requested vm
1127 * Returns the found bo_va or NULL if none is found
1128 *
1129 * Object has to be reserved!
1130 *
1131 * Returns:
1132 * Found bo_va or NULL.
1133 */
1134struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1135				       struct amdgpu_bo *bo)
1136{
1137	struct amdgpu_vm_bo_base *base;
1138
1139	for (base = bo->vm_bo; base; base = base->next) {
1140		if (base->vm != vm)
1141			continue;
1142
1143		return container_of(base, struct amdgpu_bo_va, base);
1144	}
1145	return NULL;
1146}
1147
1148/**
1149 * amdgpu_vm_map_gart - Resolve gart mapping of addr
1150 *
1151 * @pages_addr: optional DMA address to use for lookup
1152 * @addr: the unmapped addr
1153 *
1154 * Look up the physical address of the page that the pte resolves
1155 * to.
1156 *
1157 * Returns:
1158 * The pointer for the page table entry.
1159 */
1160uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1161{
1162	uint64_t result;
1163
1164	/* page table offset */
1165	result = pages_addr[addr >> PAGE_SHIFT];
1166
1167	/* in case cpu page size != gpu page size*/
1168	result |= addr & (~PAGE_MASK);
1169
1170	result &= 0xFFFFFFFFFFFFF000ULL;
1171
1172	return result;
1173}
1174
1175/*
1176 * amdgpu_vm_update_pde - update a single level in the hierarchy
1177 *
1178 * @param: parameters for the update
1179 * @vm: requested vm
1180 * @entry: entry to update
1181 *
1182 * Makes sure the requested entry in parent is up to date.
1183 */
1184static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1185				struct amdgpu_vm *vm,
1186				struct amdgpu_vm_pt *entry)
1187{
1188	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1189	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1190	uint64_t pde, pt, flags;
1191	unsigned level;
1192
1193	for (level = 0, pbo = bo->parent; pbo; ++level)
1194		pbo = pbo->parent;
1195
1196	level += params->adev->vm_manager.root_level;
1197	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1198	pde = (entry - parent->entries) * 8;
1199	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1200}
1201
1202/*
1203 * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1204 *
1205 * @adev: amdgpu_device pointer
1206 * @vm: related vm
1207 *
1208 * Mark all PD level as invalid after an error.
1209 */
1210static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1211				     struct amdgpu_vm *vm)
1212{
1213	struct amdgpu_vm_pt_cursor cursor;
1214	struct amdgpu_vm_pt *entry;
1215
1216	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1217		if (entry->base.bo && !entry->base.moved)
1218			amdgpu_vm_bo_relocated(&entry->base);
1219}
1220
1221/*
1222 * amdgpu_vm_update_directories - make sure that all directories are valid
1223 *
1224 * @adev: amdgpu_device pointer
1225 * @vm: requested vm
 
1226 *
1227 * Makes sure all directories are up to date.
1228 *
1229 * Returns:
1230 * 0 for success, error for failure.
1231 */
1232int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1233				 struct amdgpu_vm *vm)
1234{
1235	struct amdgpu_vm_update_params params;
1236	int r;
 
 
 
 
 
 
 
1237
1238	if (list_empty(&vm->relocated))
1239		return 0;
1240
 
 
 
1241	memset(&params, 0, sizeof(params));
1242	params.adev = adev;
1243	params.vm = vm;
 
1244
1245	r = vm->update_funcs->prepare(&params, AMDGPU_FENCE_OWNER_VM, NULL);
1246	if (r)
1247		return r;
1248
1249	while (!list_empty(&vm->relocated)) {
1250		struct amdgpu_vm_pt *entry;
1251
1252		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1253					 base.vm_status);
1254		amdgpu_vm_bo_idle(&entry->base);
1255
1256		r = amdgpu_vm_update_pde(&params, vm, entry);
1257		if (r)
1258			goto error;
1259	}
1260
1261	r = vm->update_funcs->commit(&params, &vm->last_update);
1262	if (r)
1263		goto error;
1264	return 0;
1265
1266error:
1267	amdgpu_vm_invalidate_pds(adev, vm);
1268	return r;
1269}
1270
1271/**
1272 * amdgpu_vm_update_flags - figure out flags for PTE updates
1273 *
1274 * Make sure to set the right flags for the PTEs at the desired level.
1275 */
1276static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1277				   struct amdgpu_bo *bo, unsigned level,
1278				   uint64_t pe, uint64_t addr,
1279				   unsigned count, uint32_t incr,
1280				   uint64_t flags)
1281
1282{
1283	if (level != AMDGPU_VM_PTB) {
1284		flags |= AMDGPU_PDE_PTE;
1285		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1286
1287	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1288		   !(flags & AMDGPU_PTE_VALID) &&
1289		   !(flags & AMDGPU_PTE_PRT)) {
1290
1291		/* Workaround for fault priority problem on GMC9 */
1292		flags |= AMDGPU_PTE_EXECUTABLE;
 
 
1293	}
1294
1295	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1296					 flags);
 
1297}
1298
1299/**
1300 * amdgpu_vm_fragment - get fragment for PTEs
1301 *
1302 * @params: see amdgpu_vm_update_params definition
1303 * @start: first PTE to handle
1304 * @end: last PTE to handle
1305 * @flags: hw mapping flags
1306 * @frag: resulting fragment size
1307 * @frag_end: end of this fragment
1308 *
1309 * Returns the first possible fragment for the start and end address.
1310 */
1311static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1312			       uint64_t start, uint64_t end, uint64_t flags,
1313			       unsigned int *frag, uint64_t *frag_end)
1314{
1315	/**
1316	 * The MC L1 TLB supports variable sized pages, based on a fragment
1317	 * field in the PTE. When this field is set to a non-zero value, page
1318	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1319	 * flags are considered valid for all PTEs within the fragment range
1320	 * and corresponding mappings are assumed to be physically contiguous.
1321	 *
1322	 * The L1 TLB can store a single PTE for the whole fragment,
1323	 * significantly increasing the space available for translation
1324	 * caching. This leads to large improvements in throughput when the
1325	 * TLB is under pressure.
1326	 *
1327	 * The L2 TLB distributes small and large fragments into two
1328	 * asymmetric partitions. The large fragment cache is significantly
1329	 * larger. Thus, we try to use large fragments wherever possible.
1330	 * Userspace can support this by aligning virtual base address and
1331	 * allocation size to the fragment size.
1332	 *
1333	 * Starting with Vega10 the fragment size only controls the L1. The L2
1334	 * is now directly feed with small/huge/giant pages from the walker.
1335	 */
1336	unsigned max_frag;
1337
1338	if (params->adev->asic_type < CHIP_VEGA10)
1339		max_frag = params->adev->vm_manager.fragment_size;
1340	else
1341		max_frag = 31;
1342
1343	/* system pages are non continuously */
1344	if (params->pages_addr) {
1345		*frag = 0;
1346		*frag_end = end;
1347		return;
1348	}
1349
1350	/* This intentionally wraps around if no bit is set */
1351	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1352	if (*frag >= max_frag) {
1353		*frag = max_frag;
1354		*frag_end = end & ~((1ULL << max_frag) - 1);
1355	} else {
1356		*frag_end = start + (1 << *frag);
1357	}
1358}
1359
1360/**
1361 * amdgpu_vm_update_ptes - make sure that page tables are valid
1362 *
1363 * @params: see amdgpu_vm_update_params definition
1364 * @start: start of GPU address range
1365 * @end: end of GPU address range
1366 * @dst: destination address to map to, the next dst inside the function
1367 * @flags: mapping flags
1368 *
1369 * Update the page tables in the range @start - @end.
1370 *
1371 * Returns:
1372 * 0 for success, -EINVAL for failure.
1373 */
1374static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1375				 uint64_t start, uint64_t end,
1376				 uint64_t dst, uint64_t flags)
1377{
1378	struct amdgpu_device *adev = params->adev;
1379	struct amdgpu_vm_pt_cursor cursor;
1380	uint64_t frag_start = start, frag_end;
1381	unsigned int frag;
1382	int r;
1383
1384	/* figure out the initial fragment */
1385	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1386
1387	/* walk over the address space and update the PTs */
1388	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1389	while (cursor.pfn < end) {
1390		unsigned shift, parent_shift, mask;
1391		uint64_t incr, entry_end, pe_start;
1392		struct amdgpu_bo *pt;
1393
1394		r = amdgpu_vm_alloc_pts(params->adev, params->vm, &cursor);
1395		if (r)
1396			return r;
1397
1398		pt = cursor.entry->base.bo;
1399
1400		/* The root level can't be a huge page */
1401		if (cursor.level == adev->vm_manager.root_level) {
1402			if (!amdgpu_vm_pt_descendant(adev, &cursor))
1403				return -ENOENT;
1404			continue;
1405		}
1406
1407		shift = amdgpu_vm_level_shift(adev, cursor.level);
1408		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1409		if (adev->asic_type < CHIP_VEGA10 &&
1410		    (flags & AMDGPU_PTE_VALID)) {
1411			/* No huge page support before GMC v9 */
1412			if (cursor.level != AMDGPU_VM_PTB) {
1413				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1414					return -ENOENT;
1415				continue;
1416			}
1417		} else if (frag < shift) {
1418			/* We can't use this level when the fragment size is
1419			 * smaller than the address shift. Go to the next
1420			 * child entry and try again.
1421			 */
1422			if (!amdgpu_vm_pt_descendant(adev, &cursor))
1423				return -ENOENT;
1424			continue;
1425		} else if (frag >= parent_shift &&
1426			   cursor.level - 1 != adev->vm_manager.root_level) {
1427			/* If the fragment size is even larger than the parent
1428			 * shift we should go up one level and check it again
1429			 * unless one level up is the root level.
1430			 */
1431			if (!amdgpu_vm_pt_ancestor(&cursor))
1432				return -ENOENT;
1433			continue;
1434		}
1435
1436		/* Looks good so far, calculate parameters for the update */
1437		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1438		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1439		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1440		entry_end = (uint64_t)(mask + 1) << shift;
1441		entry_end += cursor.pfn & ~(entry_end - 1);
1442		entry_end = min(entry_end, end);
1443
1444		do {
1445			uint64_t upd_end = min(entry_end, frag_end);
1446			unsigned nptes = (upd_end - frag_start) >> shift;
1447
1448			amdgpu_vm_update_flags(params, pt, cursor.level,
1449					       pe_start, dst, nptes, incr,
1450					       flags | AMDGPU_PTE_FRAG(frag));
1451
1452			pe_start += nptes * 8;
1453			dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1454
1455			frag_start = upd_end;
1456			if (frag_start >= frag_end) {
1457				/* figure out the next fragment */
1458				amdgpu_vm_fragment(params, frag_start, end,
1459						   flags, &frag, &frag_end);
1460				if (frag < shift)
1461					break;
1462			}
1463		} while (frag_start < entry_end);
1464
1465		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1466			/* Free all child entries */
1467			while (cursor.pfn < frag_start) {
1468				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1469				amdgpu_vm_pt_next(adev, &cursor);
1470			}
1471
1472		} else if (frag >= shift) {
1473			/* or just move on to the next on the same level. */
1474			amdgpu_vm_pt_next(adev, &cursor);
1475		}
1476	}
1477
1478	return 0;
1479}
1480
1481/**
1482 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1483 *
1484 * @adev: amdgpu_device pointer
1485 * @exclusive: fence we need to sync to
1486 * @pages_addr: DMA addresses to use for mapping
1487 * @vm: requested vm
1488 * @start: start of mapped range
1489 * @last: last mapped entry
1490 * @flags: flags for the entries
1491 * @addr: addr to set the area to
 
 
 
1492 * @fence: optional resulting fence
1493 *
1494 * Fill in the page table entries between @start and @last.
1495 *
1496 * Returns:
1497 * 0 for success, -EINVAL for failure.
1498 */
1499static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1500				       struct dma_fence *exclusive,
1501				       dma_addr_t *pages_addr,
1502				       struct amdgpu_vm *vm,
1503				       uint64_t start, uint64_t last,
1504				       uint64_t flags, uint64_t addr,
1505				       struct dma_fence **fence)
1506{
1507	struct amdgpu_vm_update_params params;
1508	void *owner = AMDGPU_FENCE_OWNER_VM;
1509	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510
1511	memset(&params, 0, sizeof(params));
1512	params.adev = adev;
1513	params.vm = vm;
 
1514	params.pages_addr = pages_addr;
 
 
1515
1516	/* sync to everything except eviction fences on unmapping */
 
 
1517	if (!(flags & AMDGPU_PTE_VALID))
1518		owner = AMDGPU_FENCE_OWNER_KFD;
 
 
 
 
 
 
 
 
 
 
 
1519
1520	r = vm->update_funcs->prepare(&params, owner, exclusive);
 
 
 
 
 
1521	if (r)
1522		return r;
1523
1524	r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1525	if (r)
1526		return r;
 
1527
1528	return vm->update_funcs->commit(&params, fence);
1529}
 
1530
1531/**
1532 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1533 *
1534 * @adev: amdgpu_device pointer
1535 * @exclusive: fence we need to sync to
1536 * @pages_addr: DMA addresses to use for mapping
1537 * @vm: requested vm
1538 * @mapping: mapped range and flags to use for the update
1539 * @flags: HW flags for the mapping
1540 * @bo_adev: amdgpu_device pointer that bo actually been allocated
1541 * @nodes: array of drm_mm_nodes with the MC addresses
1542 * @fence: optional resulting fence
1543 *
1544 * Split the mapping into smaller chunks so that each update fits
1545 * into a SDMA IB.
1546 *
1547 * Returns:
1548 * 0 for success, -EINVAL for failure.
1549 */
1550static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1551				      struct dma_fence *exclusive,
1552				      dma_addr_t *pages_addr,
1553				      struct amdgpu_vm *vm,
1554				      struct amdgpu_bo_va_mapping *mapping,
1555				      uint64_t flags,
1556				      struct amdgpu_device *bo_adev,
1557				      struct drm_mm_node *nodes,
1558				      struct dma_fence **fence)
1559{
1560	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1561	uint64_t pfn, start = mapping->start;
1562	int r;
1563
1564	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1565	 * but in case of something, we filter the flags in first place
1566	 */
1567	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1568		flags &= ~AMDGPU_PTE_READABLE;
1569	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1570		flags &= ~AMDGPU_PTE_WRITEABLE;
1571
1572	flags &= ~AMDGPU_PTE_EXECUTABLE;
1573	flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1574
1575	if (adev->asic_type >= CHIP_NAVI10) {
1576		flags &= ~AMDGPU_PTE_MTYPE_NV10_MASK;
1577		flags |= (mapping->flags & AMDGPU_PTE_MTYPE_NV10_MASK);
1578	} else {
1579		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1580		flags |= (mapping->flags & AMDGPU_PTE_MTYPE_VG10_MASK);
1581	}
1582
1583	if ((mapping->flags & AMDGPU_PTE_PRT) &&
1584	    (adev->asic_type >= CHIP_VEGA10)) {
1585		flags |= AMDGPU_PTE_PRT;
1586		if (adev->asic_type >= CHIP_NAVI10) {
1587			flags |= AMDGPU_PTE_SNOOPED;
1588			flags |= AMDGPU_PTE_LOG;
1589			flags |= AMDGPU_PTE_SYSTEM;
1590		}
1591		flags &= ~AMDGPU_PTE_VALID;
 
 
 
 
 
 
 
1592	}
1593
1594	trace_amdgpu_vm_bo_update(mapping);
1595
1596	pfn = mapping->offset >> PAGE_SHIFT;
1597	if (nodes) {
1598		while (pfn >= nodes->size) {
1599			pfn -= nodes->size;
1600			++nodes;
 
 
 
 
1601		}
 
1602	}
1603
1604	do {
1605		dma_addr_t *dma_addr = NULL;
1606		uint64_t max_entries;
1607		uint64_t addr, last;
1608
1609		if (nodes) {
1610			addr = nodes->start << PAGE_SHIFT;
1611			max_entries = (nodes->size - pfn) *
1612				AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1613		} else {
1614			addr = 0;
1615			max_entries = S64_MAX;
1616		}
 
 
 
 
 
 
 
 
 
 
 
 
1617
1618		if (pages_addr) {
1619			uint64_t count;
 
 
1620
1621			for (count = 1;
1622			     count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1623			     ++count) {
1624				uint64_t idx = pfn + count;
1625
1626				if (pages_addr[idx] !=
1627				    (pages_addr[idx - 1] + PAGE_SIZE))
1628					break;
1629			}
1630
1631			if (count < min_linear_pages) {
1632				addr = pfn << PAGE_SHIFT;
1633				dma_addr = pages_addr;
1634			} else {
1635				addr = pages_addr[pfn];
1636				max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1637			}
1638
1639		} else if (flags & AMDGPU_PTE_VALID) {
1640			addr += bo_adev->vm_manager.vram_base_offset;
1641			addr += pfn << PAGE_SHIFT;
1642		}
1643
1644		last = min((uint64_t)mapping->last, start + max_entries - 1);
1645		r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm,
1646						start, last, flags, addr,
1647						fence);
1648		if (r)
1649			return r;
1650
1651		pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1652		if (nodes && nodes->size == pfn) {
1653			pfn = 0;
1654			++nodes;
1655		}
1656		start = last + 1;
1657
1658	} while (unlikely(start != mapping->last + 1));
 
1659
1660	return 0;
 
 
1661}
1662
1663/**
1664 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1665 *
1666 * @adev: amdgpu_device pointer
1667 * @bo_va: requested BO and VM object
1668 * @clear: if true clear the entries
1669 *
1670 * Fill in the page table entries for @bo_va.
1671 *
1672 * Returns:
1673 * 0 for success, -EINVAL for failure.
1674 */
1675int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1676			struct amdgpu_bo_va *bo_va,
1677			bool clear)
1678{
1679	struct amdgpu_bo *bo = bo_va->base.bo;
1680	struct amdgpu_vm *vm = bo_va->base.vm;
1681	struct amdgpu_bo_va_mapping *mapping;
1682	dma_addr_t *pages_addr = NULL;
1683	struct ttm_mem_reg *mem;
1684	struct drm_mm_node *nodes;
1685	struct dma_fence *exclusive, **last_update;
 
 
 
1686	uint64_t flags;
1687	struct amdgpu_device *bo_adev = adev;
1688	int r;
1689
1690	if (clear || !bo) {
1691		mem = NULL;
1692		nodes = NULL;
1693		exclusive = NULL;
1694	} else {
1695		struct ttm_dma_tt *ttm;
1696
1697		mem = &bo->tbo.mem;
1698		nodes = mem->mm_node;
1699		if (mem->mem_type == TTM_PL_TT) {
1700			ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1701			pages_addr = ttm->dma_address;
1702		}
1703		exclusive = dma_resv_get_excl(bo->tbo.base.resv);
 
 
 
 
 
 
 
1704	}
1705
1706	if (bo) {
 
 
1707		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
 
 
 
 
1708		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
 
 
1709	} else {
1710		flags = 0x0;
 
 
1711	}
1712
1713	if (clear || (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv))
 
1714		last_update = &vm->last_update;
1715	else
1716		last_update = &bo_va->last_pt_update;
1717
1718	if (!clear && bo_va->base.moved) {
1719		bo_va->base.moved = false;
1720		list_splice_init(&bo_va->valids, &bo_va->invalids);
1721
1722	} else if (bo_va->cleared != clear) {
1723		list_splice_init(&bo_va->valids, &bo_va->invalids);
1724	}
1725
1726	list_for_each_entry(mapping, &bo_va->invalids, list) {
1727		r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1728					       mapping, flags, bo_adev, nodes,
1729					       last_update);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1730		if (r)
1731			return r;
1732	}
1733
1734	if (vm->use_cpu_for_update) {
1735		/* Flush HDP */
1736		mb();
1737		amdgpu_asic_flush_hdp(adev, NULL);
1738	}
1739
1740	/* If the BO is not in its preferred location add it back to
1741	 * the evicted list so that it gets validated again on the
1742	 * next command submission.
1743	 */
1744	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1745		uint32_t mem_type = bo->tbo.mem.mem_type;
1746
1747		if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type)))
 
1748			amdgpu_vm_bo_evicted(&bo_va->base);
1749		else
1750			amdgpu_vm_bo_idle(&bo_va->base);
1751	} else {
1752		amdgpu_vm_bo_done(&bo_va->base);
1753	}
1754
1755	list_splice_init(&bo_va->invalids, &bo_va->valids);
1756	bo_va->cleared = clear;
 
1757
1758	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1759		list_for_each_entry(mapping, &bo_va->valids, list)
1760			trace_amdgpu_vm_bo_mapping(mapping);
1761	}
1762
1763	return 0;
1764}
1765
1766/**
1767 * amdgpu_vm_update_prt_state - update the global PRT state
1768 *
1769 * @adev: amdgpu_device pointer
1770 */
1771static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1772{
1773	unsigned long flags;
1774	bool enable;
1775
1776	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1777	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1778	adev->gmc.gmc_funcs->set_prt(adev, enable);
1779	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1780}
1781
1782/**
1783 * amdgpu_vm_prt_get - add a PRT user
1784 *
1785 * @adev: amdgpu_device pointer
1786 */
1787static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1788{
1789	if (!adev->gmc.gmc_funcs->set_prt)
1790		return;
1791
1792	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1793		amdgpu_vm_update_prt_state(adev);
1794}
1795
1796/**
1797 * amdgpu_vm_prt_put - drop a PRT user
1798 *
1799 * @adev: amdgpu_device pointer
1800 */
1801static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1802{
1803	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1804		amdgpu_vm_update_prt_state(adev);
1805}
1806
1807/**
1808 * amdgpu_vm_prt_cb - callback for updating the PRT status
1809 *
1810 * @fence: fence for the callback
1811 * @_cb: the callback function
1812 */
1813static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1814{
1815	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1816
1817	amdgpu_vm_prt_put(cb->adev);
1818	kfree(cb);
1819}
1820
1821/**
1822 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1823 *
1824 * @adev: amdgpu_device pointer
1825 * @fence: fence for the callback
1826 */
1827static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1828				 struct dma_fence *fence)
1829{
1830	struct amdgpu_prt_cb *cb;
1831
1832	if (!adev->gmc.gmc_funcs->set_prt)
1833		return;
1834
1835	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1836	if (!cb) {
1837		/* Last resort when we are OOM */
1838		if (fence)
1839			dma_fence_wait(fence, false);
1840
1841		amdgpu_vm_prt_put(adev);
1842	} else {
1843		cb->adev = adev;
1844		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1845						     amdgpu_vm_prt_cb))
1846			amdgpu_vm_prt_cb(fence, &cb->cb);
1847	}
1848}
1849
1850/**
1851 * amdgpu_vm_free_mapping - free a mapping
1852 *
1853 * @adev: amdgpu_device pointer
1854 * @vm: requested vm
1855 * @mapping: mapping to be freed
1856 * @fence: fence of the unmap operation
1857 *
1858 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1859 */
1860static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1861				   struct amdgpu_vm *vm,
1862				   struct amdgpu_bo_va_mapping *mapping,
1863				   struct dma_fence *fence)
1864{
1865	if (mapping->flags & AMDGPU_PTE_PRT)
1866		amdgpu_vm_add_prt_cb(adev, fence);
1867	kfree(mapping);
1868}
1869
1870/**
1871 * amdgpu_vm_prt_fini - finish all prt mappings
1872 *
1873 * @adev: amdgpu_device pointer
1874 * @vm: requested vm
1875 *
1876 * Register a cleanup callback to disable PRT support after VM dies.
1877 */
1878static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1879{
1880	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1881	struct dma_fence *excl, **shared;
1882	unsigned i, shared_count;
1883	int r;
1884
1885	r = dma_resv_get_fences_rcu(resv, &excl,
1886					      &shared_count, &shared);
1887	if (r) {
1888		/* Not enough memory to grab the fence list, as last resort
1889		 * block for all the fences to complete.
1890		 */
1891		dma_resv_wait_timeout_rcu(resv, true, false,
1892						    MAX_SCHEDULE_TIMEOUT);
1893		return;
1894	}
1895
1896	/* Add a callback for each fence in the reservation object */
1897	amdgpu_vm_prt_get(adev);
1898	amdgpu_vm_add_prt_cb(adev, excl);
1899
1900	for (i = 0; i < shared_count; ++i) {
1901		amdgpu_vm_prt_get(adev);
1902		amdgpu_vm_add_prt_cb(adev, shared[i]);
1903	}
1904
1905	kfree(shared);
1906}
1907
1908/**
1909 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1910 *
1911 * @adev: amdgpu_device pointer
1912 * @vm: requested vm
1913 * @fence: optional resulting fence (unchanged if no work needed to be done
1914 * or if an error occurred)
1915 *
1916 * Make sure all freed BOs are cleared in the PT.
1917 * PTs have to be reserved and mutex must be locked!
1918 *
1919 * Returns:
1920 * 0 for success.
1921 *
1922 */
1923int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1924			  struct amdgpu_vm *vm,
1925			  struct dma_fence **fence)
1926{
 
1927	struct amdgpu_bo_va_mapping *mapping;
1928	uint64_t init_pte_value = 0;
1929	struct dma_fence *f = NULL;
1930	int r;
1931
1932	while (!list_empty(&vm->freed)) {
1933		mapping = list_first_entry(&vm->freed,
1934			struct amdgpu_bo_va_mapping, list);
1935		list_del(&mapping->list);
1936
1937		if (vm->pte_support_ats &&
1938		    mapping->start < AMDGPU_GMC_HOLE_START)
1939			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
1940
1941		r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
1942						mapping->start, mapping->last,
1943						init_pte_value, 0, &f);
1944		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1945		if (r) {
1946			dma_fence_put(f);
1947			return r;
1948		}
1949	}
1950
1951	if (fence && f) {
1952		dma_fence_put(*fence);
1953		*fence = f;
1954	} else {
1955		dma_fence_put(f);
1956	}
1957
1958	return 0;
1959
1960}
1961
1962/**
1963 * amdgpu_vm_handle_moved - handle moved BOs in the PT
1964 *
1965 * @adev: amdgpu_device pointer
1966 * @vm: requested vm
 
1967 *
1968 * Make sure all BOs which are moved are updated in the PTs.
1969 *
1970 * Returns:
1971 * 0 for success.
1972 *
1973 * PTs have to be reserved!
1974 */
1975int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1976			   struct amdgpu_vm *vm)
 
1977{
1978	struct amdgpu_bo_va *bo_va, *tmp;
1979	struct dma_resv *resv;
1980	bool clear;
1981	int r;
1982
1983	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
 
 
 
 
 
1984		/* Per VM BOs never need to bo cleared in the page tables */
1985		r = amdgpu_vm_bo_update(adev, bo_va, false);
1986		if (r)
1987			return r;
 
1988	}
1989
1990	spin_lock(&vm->invalidated_lock);
1991	while (!list_empty(&vm->invalidated)) {
1992		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
1993					 base.vm_status);
1994		resv = bo_va->base.bo->tbo.base.resv;
1995		spin_unlock(&vm->invalidated_lock);
1996
1997		/* Try to reserve the BO to avoid clearing its ptes */
1998		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
 
 
 
 
1999			clear = false;
 
2000		/* Somebody else is using the BO right now */
2001		else
2002			clear = true;
 
 
2003
2004		r = amdgpu_vm_bo_update(adev, bo_va, clear);
 
 
 
2005		if (r)
2006			return r;
2007
2008		if (!clear)
2009			dma_resv_unlock(resv);
2010		spin_lock(&vm->invalidated_lock);
 
 
 
 
 
 
 
2011	}
2012	spin_unlock(&vm->invalidated_lock);
2013
2014	return 0;
2015}
2016
2017/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2018 * amdgpu_vm_bo_add - add a bo to a specific vm
2019 *
2020 * @adev: amdgpu_device pointer
2021 * @vm: requested vm
2022 * @bo: amdgpu buffer object
2023 *
2024 * Add @bo into the requested vm.
2025 * Add @bo to the list of bos associated with the vm
2026 *
2027 * Returns:
2028 * Newly added bo_va or NULL for failure
2029 *
2030 * Object has to be reserved!
2031 */
2032struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2033				      struct amdgpu_vm *vm,
2034				      struct amdgpu_bo *bo)
2035{
2036	struct amdgpu_bo_va *bo_va;
2037
2038	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2039	if (bo_va == NULL) {
2040		return NULL;
2041	}
2042	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2043
2044	bo_va->ref_count = 1;
 
2045	INIT_LIST_HEAD(&bo_va->valids);
2046	INIT_LIST_HEAD(&bo_va->invalids);
2047
2048	if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) &&
2049	    (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) {
 
 
 
2050		bo_va->is_xgmi = true;
2051		mutex_lock(&adev->vm_manager.lock_pstate);
2052		/* Power up XGMI if it can be potentially used */
2053		if (++adev->vm_manager.xgmi_map_counter == 1)
2054			amdgpu_xgmi_set_pstate(adev, 1);
2055		mutex_unlock(&adev->vm_manager.lock_pstate);
2056	}
2057
2058	return bo_va;
2059}
2060
2061
2062/**
2063 * amdgpu_vm_bo_insert_mapping - insert a new mapping
2064 *
2065 * @adev: amdgpu_device pointer
2066 * @bo_va: bo_va to store the address
2067 * @mapping: the mapping to insert
2068 *
2069 * Insert a new mapping into all structures.
2070 */
2071static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2072				    struct amdgpu_bo_va *bo_va,
2073				    struct amdgpu_bo_va_mapping *mapping)
2074{
2075	struct amdgpu_vm *vm = bo_va->base.vm;
2076	struct amdgpu_bo *bo = bo_va->base.bo;
2077
2078	mapping->bo_va = bo_va;
2079	list_add(&mapping->list, &bo_va->invalids);
2080	amdgpu_vm_it_insert(mapping, &vm->va);
2081
2082	if (mapping->flags & AMDGPU_PTE_PRT)
2083		amdgpu_vm_prt_get(adev);
2084
2085	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2086	    !bo_va->base.moved) {
2087		list_move(&bo_va->base.vm_status, &vm->moved);
2088	}
2089	trace_amdgpu_vm_bo_map(bo_va, mapping);
2090}
2091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2092/**
2093 * amdgpu_vm_bo_map - map bo inside a vm
2094 *
2095 * @adev: amdgpu_device pointer
2096 * @bo_va: bo_va to store the address
2097 * @saddr: where to map the BO
2098 * @offset: requested offset in the BO
2099 * @size: BO size in bytes
2100 * @flags: attributes of pages (read/write/valid/etc.)
2101 *
2102 * Add a mapping of the BO at the specefied addr into the VM.
2103 *
2104 * Returns:
2105 * 0 for success, error for failure.
2106 *
2107 * Object has to be reserved and unreserved outside!
2108 */
2109int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2110		     struct amdgpu_bo_va *bo_va,
2111		     uint64_t saddr, uint64_t offset,
2112		     uint64_t size, uint64_t flags)
2113{
2114	struct amdgpu_bo_va_mapping *mapping, *tmp;
2115	struct amdgpu_bo *bo = bo_va->base.bo;
2116	struct amdgpu_vm *vm = bo_va->base.vm;
2117	uint64_t eaddr;
 
2118
2119	/* validate the parameters */
2120	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2121	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2122		return -EINVAL;
2123
2124	/* make sure object fit at this offset */
2125	eaddr = saddr + size - 1;
2126	if (saddr >= eaddr ||
2127	    (bo && offset + size > amdgpu_bo_size(bo)))
2128		return -EINVAL;
2129
2130	saddr /= AMDGPU_GPU_PAGE_SIZE;
2131	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2132
2133	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2134	if (tmp) {
2135		/* bo and tmp overlap, invalid addr */
2136		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2137			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2138			tmp->start, tmp->last + 1);
2139		return -EINVAL;
2140	}
2141
2142	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2143	if (!mapping)
2144		return -ENOMEM;
2145
2146	mapping->start = saddr;
2147	mapping->last = eaddr;
2148	mapping->offset = offset;
2149	mapping->flags = flags;
2150
2151	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2152
2153	return 0;
2154}
2155
2156/**
2157 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2158 *
2159 * @adev: amdgpu_device pointer
2160 * @bo_va: bo_va to store the address
2161 * @saddr: where to map the BO
2162 * @offset: requested offset in the BO
2163 * @size: BO size in bytes
2164 * @flags: attributes of pages (read/write/valid/etc.)
2165 *
2166 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2167 * mappings as we do so.
2168 *
2169 * Returns:
2170 * 0 for success, error for failure.
2171 *
2172 * Object has to be reserved and unreserved outside!
2173 */
2174int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2175			     struct amdgpu_bo_va *bo_va,
2176			     uint64_t saddr, uint64_t offset,
2177			     uint64_t size, uint64_t flags)
2178{
2179	struct amdgpu_bo_va_mapping *mapping;
2180	struct amdgpu_bo *bo = bo_va->base.bo;
2181	uint64_t eaddr;
2182	int r;
2183
2184	/* validate the parameters */
2185	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2186	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2187		return -EINVAL;
2188
2189	/* make sure object fit at this offset */
2190	eaddr = saddr + size - 1;
2191	if (saddr >= eaddr ||
2192	    (bo && offset + size > amdgpu_bo_size(bo)))
2193		return -EINVAL;
2194
2195	/* Allocate all the needed memory */
2196	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2197	if (!mapping)
2198		return -ENOMEM;
2199
2200	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2201	if (r) {
2202		kfree(mapping);
2203		return r;
2204	}
2205
2206	saddr /= AMDGPU_GPU_PAGE_SIZE;
2207	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2208
2209	mapping->start = saddr;
2210	mapping->last = eaddr;
2211	mapping->offset = offset;
2212	mapping->flags = flags;
2213
2214	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2215
2216	return 0;
2217}
2218
2219/**
2220 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2221 *
2222 * @adev: amdgpu_device pointer
2223 * @bo_va: bo_va to remove the address from
2224 * @saddr: where to the BO is mapped
2225 *
2226 * Remove a mapping of the BO at the specefied addr from the VM.
2227 *
2228 * Returns:
2229 * 0 for success, error for failure.
2230 *
2231 * Object has to be reserved and unreserved outside!
2232 */
2233int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2234		       struct amdgpu_bo_va *bo_va,
2235		       uint64_t saddr)
2236{
2237	struct amdgpu_bo_va_mapping *mapping;
2238	struct amdgpu_vm *vm = bo_va->base.vm;
2239	bool valid = true;
2240
2241	saddr /= AMDGPU_GPU_PAGE_SIZE;
2242
2243	list_for_each_entry(mapping, &bo_va->valids, list) {
2244		if (mapping->start == saddr)
2245			break;
2246	}
2247
2248	if (&mapping->list == &bo_va->valids) {
2249		valid = false;
2250
2251		list_for_each_entry(mapping, &bo_va->invalids, list) {
2252			if (mapping->start == saddr)
2253				break;
2254		}
2255
2256		if (&mapping->list == &bo_va->invalids)
2257			return -ENOENT;
2258	}
2259
2260	list_del(&mapping->list);
2261	amdgpu_vm_it_remove(mapping, &vm->va);
2262	mapping->bo_va = NULL;
2263	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2264
2265	if (valid)
2266		list_add(&mapping->list, &vm->freed);
2267	else
2268		amdgpu_vm_free_mapping(adev, vm, mapping,
2269				       bo_va->last_pt_update);
2270
2271	return 0;
2272}
2273
2274/**
2275 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2276 *
2277 * @adev: amdgpu_device pointer
2278 * @vm: VM structure to use
2279 * @saddr: start of the range
2280 * @size: size of the range
2281 *
2282 * Remove all mappings in a range, split them as appropriate.
2283 *
2284 * Returns:
2285 * 0 for success, error for failure.
2286 */
2287int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2288				struct amdgpu_vm *vm,
2289				uint64_t saddr, uint64_t size)
2290{
2291	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2292	LIST_HEAD(removed);
2293	uint64_t eaddr;
 
 
 
 
 
2294
2295	eaddr = saddr + size - 1;
2296	saddr /= AMDGPU_GPU_PAGE_SIZE;
2297	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2298
2299	/* Allocate all the needed memory */
2300	before = kzalloc(sizeof(*before), GFP_KERNEL);
2301	if (!before)
2302		return -ENOMEM;
2303	INIT_LIST_HEAD(&before->list);
2304
2305	after = kzalloc(sizeof(*after), GFP_KERNEL);
2306	if (!after) {
2307		kfree(before);
2308		return -ENOMEM;
2309	}
2310	INIT_LIST_HEAD(&after->list);
2311
2312	/* Now gather all removed mappings */
2313	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2314	while (tmp) {
2315		/* Remember mapping split at the start */
2316		if (tmp->start < saddr) {
2317			before->start = tmp->start;
2318			before->last = saddr - 1;
2319			before->offset = tmp->offset;
2320			before->flags = tmp->flags;
2321			before->bo_va = tmp->bo_va;
2322			list_add(&before->list, &tmp->bo_va->invalids);
2323		}
2324
2325		/* Remember mapping split at the end */
2326		if (tmp->last > eaddr) {
2327			after->start = eaddr + 1;
2328			after->last = tmp->last;
2329			after->offset = tmp->offset;
2330			after->offset += after->start - tmp->start;
2331			after->flags = tmp->flags;
2332			after->bo_va = tmp->bo_va;
2333			list_add(&after->list, &tmp->bo_va->invalids);
2334		}
2335
2336		list_del(&tmp->list);
2337		list_add(&tmp->list, &removed);
2338
2339		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2340	}
2341
2342	/* And free them up */
2343	list_for_each_entry_safe(tmp, next, &removed, list) {
2344		amdgpu_vm_it_remove(tmp, &vm->va);
2345		list_del(&tmp->list);
2346
2347		if (tmp->start < saddr)
2348		    tmp->start = saddr;
2349		if (tmp->last > eaddr)
2350		    tmp->last = eaddr;
2351
2352		tmp->bo_va = NULL;
2353		list_add(&tmp->list, &vm->freed);
2354		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2355	}
2356
2357	/* Insert partial mapping before the range */
2358	if (!list_empty(&before->list)) {
 
 
2359		amdgpu_vm_it_insert(before, &vm->va);
2360		if (before->flags & AMDGPU_PTE_PRT)
2361			amdgpu_vm_prt_get(adev);
 
 
 
 
2362	} else {
2363		kfree(before);
2364	}
2365
2366	/* Insert partial mapping after the range */
2367	if (!list_empty(&after->list)) {
 
 
2368		amdgpu_vm_it_insert(after, &vm->va);
2369		if (after->flags & AMDGPU_PTE_PRT)
2370			amdgpu_vm_prt_get(adev);
 
 
 
 
2371	} else {
2372		kfree(after);
2373	}
2374
2375	return 0;
2376}
2377
2378/**
2379 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2380 *
2381 * @vm: the requested VM
2382 * @addr: the address
2383 *
2384 * Find a mapping by it's address.
2385 *
2386 * Returns:
2387 * The amdgpu_bo_va_mapping matching for addr or NULL
2388 *
2389 */
2390struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2391							 uint64_t addr)
2392{
2393	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2394}
2395
2396/**
2397 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2398 *
2399 * @vm: the requested vm
2400 * @ticket: CS ticket
2401 *
2402 * Trace all mappings of BOs reserved during a command submission.
2403 */
2404void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2405{
2406	struct amdgpu_bo_va_mapping *mapping;
2407
2408	if (!trace_amdgpu_vm_bo_cs_enabled())
2409		return;
2410
2411	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2412	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2413		if (mapping->bo_va && mapping->bo_va->base.bo) {
2414			struct amdgpu_bo *bo;
2415
2416			bo = mapping->bo_va->base.bo;
2417			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2418			    ticket)
2419				continue;
2420		}
2421
2422		trace_amdgpu_vm_bo_cs(mapping);
2423	}
2424}
2425
2426/**
2427 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2428 *
2429 * @adev: amdgpu_device pointer
2430 * @bo_va: requested bo_va
2431 *
2432 * Remove @bo_va->bo from the requested vm.
2433 *
2434 * Object have to be reserved!
2435 */
2436void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2437		      struct amdgpu_bo_va *bo_va)
2438{
2439	struct amdgpu_bo_va_mapping *mapping, *next;
2440	struct amdgpu_bo *bo = bo_va->base.bo;
2441	struct amdgpu_vm *vm = bo_va->base.vm;
2442	struct amdgpu_vm_bo_base **base;
2443
 
 
2444	if (bo) {
2445		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2446			vm->bulk_moveable = false;
 
2447
2448		for (base = &bo_va->base.bo->vm_bo; *base;
2449		     base = &(*base)->next) {
2450			if (*base != &bo_va->base)
2451				continue;
2452
2453			*base = bo_va->base.next;
2454			break;
2455		}
2456	}
2457
2458	spin_lock(&vm->invalidated_lock);
2459	list_del(&bo_va->base.vm_status);
2460	spin_unlock(&vm->invalidated_lock);
2461
2462	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2463		list_del(&mapping->list);
2464		amdgpu_vm_it_remove(mapping, &vm->va);
2465		mapping->bo_va = NULL;
2466		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2467		list_add(&mapping->list, &vm->freed);
2468	}
2469	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2470		list_del(&mapping->list);
2471		amdgpu_vm_it_remove(mapping, &vm->va);
2472		amdgpu_vm_free_mapping(adev, vm, mapping,
2473				       bo_va->last_pt_update);
2474	}
2475
2476	dma_fence_put(bo_va->last_pt_update);
2477
2478	if (bo && bo_va->is_xgmi) {
2479		mutex_lock(&adev->vm_manager.lock_pstate);
2480		if (--adev->vm_manager.xgmi_map_counter == 0)
2481			amdgpu_xgmi_set_pstate(adev, 0);
2482		mutex_unlock(&adev->vm_manager.lock_pstate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2483	}
2484
2485	kfree(bo_va);
 
 
2486}
2487
2488/**
2489 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2490 *
2491 * @adev: amdgpu_device pointer
2492 * @bo: amdgpu buffer object
2493 * @evicted: is the BO evicted
2494 *
2495 * Mark @bo as invalid.
2496 */
2497void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2498			     struct amdgpu_bo *bo, bool evicted)
2499{
2500	struct amdgpu_vm_bo_base *bo_base;
2501
2502	/* shadow bo doesn't have bo base, its validation needs its parent */
2503	if (bo->parent && bo->parent->shadow == bo)
2504		bo = bo->parent;
2505
2506	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2507		struct amdgpu_vm *vm = bo_base->vm;
2508
2509		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2510			amdgpu_vm_bo_evicted(bo_base);
2511			continue;
2512		}
2513
2514		if (bo_base->moved)
2515			continue;
2516		bo_base->moved = true;
2517
2518		if (bo->tbo.type == ttm_bo_type_kernel)
2519			amdgpu_vm_bo_relocated(bo_base);
2520		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2521			amdgpu_vm_bo_moved(bo_base);
2522		else
2523			amdgpu_vm_bo_invalidated(bo_base);
2524	}
2525}
2526
2527/**
2528 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2529 *
2530 * @vm_size: VM size
2531 *
2532 * Returns:
2533 * VM page table as power of two
2534 */
2535static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2536{
2537	/* Total bits covered by PD + PTs */
2538	unsigned bits = ilog2(vm_size) + 18;
2539
2540	/* Make sure the PD is 4K in size up to 8GB address space.
2541	   Above that split equal between PD and PTs */
2542	if (vm_size <= 8)
2543		return (bits - 9);
2544	else
2545		return ((bits + 3) / 2);
2546}
2547
2548/**
2549 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2550 *
2551 * @adev: amdgpu_device pointer
2552 * @min_vm_size: the minimum vm size in GB if it's set auto
2553 * @fragment_size_default: Default PTE fragment size
2554 * @max_level: max VMPT level
2555 * @max_bits: max address space size in bits
2556 *
2557 */
2558void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2559			   uint32_t fragment_size_default, unsigned max_level,
2560			   unsigned max_bits)
2561{
2562	unsigned int max_size = 1 << (max_bits - 30);
2563	unsigned int vm_size;
2564	uint64_t tmp;
2565
2566	/* adjust vm size first */
2567	if (amdgpu_vm_size != -1) {
2568		vm_size = amdgpu_vm_size;
2569		if (vm_size > max_size) {
2570			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2571				 amdgpu_vm_size, max_size);
2572			vm_size = max_size;
2573		}
2574	} else {
2575		struct sysinfo si;
2576		unsigned int phys_ram_gb;
2577
2578		/* Optimal VM size depends on the amount of physical
2579		 * RAM available. Underlying requirements and
2580		 * assumptions:
2581		 *
2582		 *  - Need to map system memory and VRAM from all GPUs
2583		 *     - VRAM from other GPUs not known here
2584		 *     - Assume VRAM <= system memory
2585		 *  - On GFX8 and older, VM space can be segmented for
2586		 *    different MTYPEs
2587		 *  - Need to allow room for fragmentation, guard pages etc.
2588		 *
2589		 * This adds up to a rough guess of system memory x3.
2590		 * Round up to power of two to maximize the available
2591		 * VM size with the given page table size.
2592		 */
2593		si_meminfo(&si);
2594		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2595			       (1 << 30) - 1) >> 30;
2596		vm_size = roundup_pow_of_two(
2597			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2598	}
2599
2600	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2601
2602	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2603	if (amdgpu_vm_block_size != -1)
2604		tmp >>= amdgpu_vm_block_size - 9;
2605	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2606	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2607	switch (adev->vm_manager.num_level) {
2608	case 3:
2609		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2610		break;
2611	case 2:
2612		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2613		break;
2614	case 1:
2615		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2616		break;
2617	default:
2618		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2619	}
2620	/* block size depends on vm size and hw setup*/
2621	if (amdgpu_vm_block_size != -1)
2622		adev->vm_manager.block_size =
2623			min((unsigned)amdgpu_vm_block_size, max_bits
2624			    - AMDGPU_GPU_PAGE_SHIFT
2625			    - 9 * adev->vm_manager.num_level);
2626	else if (adev->vm_manager.num_level > 1)
2627		adev->vm_manager.block_size = 9;
2628	else
2629		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2630
2631	if (amdgpu_vm_fragment_size == -1)
2632		adev->vm_manager.fragment_size = fragment_size_default;
2633	else
2634		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2635
2636	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2637		 vm_size, adev->vm_manager.num_level + 1,
2638		 adev->vm_manager.block_size,
2639		 adev->vm_manager.fragment_size);
2640}
2641
2642/**
2643 * amdgpu_vm_wait_idle - wait for the VM to become idle
2644 *
2645 * @vm: VM object to wait for
2646 * @timeout: timeout to wait for VM to become idle
2647 */
2648long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2649{
2650	return dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2651						   true, true, timeout);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2652}
2653
2654/**
2655 * amdgpu_vm_init - initialize a vm instance
2656 *
2657 * @adev: amdgpu_device pointer
2658 * @vm: requested vm
2659 * @vm_context: Indicates if it GFX or Compute context
2660 * @pasid: Process address space identifier
2661 *
2662 * Init @vm fields.
2663 *
2664 * Returns:
2665 * 0 for success, error for failure.
2666 */
2667int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2668		   int vm_context, unsigned int pasid)
2669{
2670	struct amdgpu_bo_param bp;
2671	struct amdgpu_bo *root;
2672	int r, i;
2673
2674	vm->va = RB_ROOT_CACHED;
2675	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2676		vm->reserved_vmid[i] = NULL;
2677	INIT_LIST_HEAD(&vm->evicted);
 
2678	INIT_LIST_HEAD(&vm->relocated);
2679	INIT_LIST_HEAD(&vm->moved);
2680	INIT_LIST_HEAD(&vm->idle);
2681	INIT_LIST_HEAD(&vm->invalidated);
2682	spin_lock_init(&vm->invalidated_lock);
2683	INIT_LIST_HEAD(&vm->freed);
 
 
 
 
2684
2685	/* create scheduler entity for page table updates */
2686	r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs,
2687				  adev->vm_manager.vm_pte_num_rqs, NULL);
2688	if (r)
2689		return r;
2690
2691	vm->pte_support_ats = false;
2692
2693	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2694		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2695						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2696
2697		if (adev->asic_type == CHIP_RAVEN)
2698			vm->pte_support_ats = true;
2699	} else {
2700		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2701						AMDGPU_VM_USE_CPU_FOR_GFX);
2702	}
2703	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2704			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2705	WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
 
2706		  "CPU update of VM recommended only for large BAR system\n");
2707
2708	if (vm->use_cpu_for_update)
2709		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2710	else
2711		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2712	vm->last_update = NULL;
2713
2714	amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp);
2715	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2716		bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2717	r = amdgpu_bo_create(adev, &bp, &root);
 
 
 
 
 
 
2718	if (r)
2719		goto error_free_sched_entity;
 
 
 
 
 
 
 
 
2720
2721	r = amdgpu_bo_reserve(root, true);
 
2722	if (r)
2723		goto error_free_root;
2724
2725	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2726	if (r)
2727		goto error_unreserve;
2728
2729	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2730
2731	r = amdgpu_vm_clear_bo(adev, vm, root);
2732	if (r)
2733		goto error_unreserve;
2734
2735	amdgpu_bo_unreserve(vm->root.base.bo);
2736
2737	if (pasid) {
2738		unsigned long flags;
2739
2740		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2741		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2742			      GFP_ATOMIC);
2743		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2744		if (r < 0)
2745			goto error_free_root;
2746
2747		vm->pasid = pasid;
2748	}
2749
2750	INIT_KFIFO(vm->faults);
2751
2752	return 0;
2753
2754error_unreserve:
2755	amdgpu_bo_unreserve(vm->root.base.bo);
2756
2757error_free_root:
2758	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2759	amdgpu_bo_unref(&vm->root.base.bo);
2760	vm->root.base.bo = NULL;
2761
2762error_free_sched_entity:
2763	drm_sched_entity_destroy(&vm->entity);
 
 
2764
2765	return r;
2766}
2767
2768/**
2769 * amdgpu_vm_check_clean_reserved - check if a VM is clean
2770 *
2771 * @adev: amdgpu_device pointer
2772 * @vm: the VM to check
2773 *
2774 * check all entries of the root PD, if any subsequent PDs are allocated,
2775 * it means there are page table creating and filling, and is no a clean
2776 * VM
2777 *
2778 * Returns:
2779 *	0 if this VM is clean
2780 */
2781static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2782	struct amdgpu_vm *vm)
2783{
2784	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2785	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2786	unsigned int i = 0;
2787
2788	if (!(vm->root.entries))
2789		return 0;
2790
2791	for (i = 0; i < entries; i++) {
2792		if (vm->root.entries[i].base.bo)
2793			return -EINVAL;
2794	}
2795
2796	return 0;
2797}
2798
2799/**
2800 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2801 *
2802 * @adev: amdgpu_device pointer
2803 * @vm: requested vm
2804 *
2805 * This only works on GFX VMs that don't have any BOs added and no
2806 * page tables allocated yet.
2807 *
2808 * Changes the following VM parameters:
2809 * - use_cpu_for_update
2810 * - pte_supports_ats
2811 * - pasid (old PASID is released, because compute manages its own PASIDs)
2812 *
2813 * Reinitializes the page directory to reflect the changed ATS
2814 * setting.
2815 *
2816 * Returns:
2817 * 0 for success, -errno for errors.
2818 */
2819int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid)
2820{
2821	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2822	int r;
2823
2824	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2825	if (r)
2826		return r;
2827
2828	/* Sanity checks */
2829	r = amdgpu_vm_check_clean_reserved(adev, vm);
2830	if (r)
2831		goto unreserve_bo;
2832
2833	if (pasid) {
2834		unsigned long flags;
2835
2836		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2837		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2838			      GFP_ATOMIC);
2839		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2840
2841		if (r == -ENOSPC)
2842			goto unreserve_bo;
2843		r = 0;
2844	}
2845
2846	/* Check if PD needs to be reinitialized and do it before
2847	 * changing any other state, in case it fails.
2848	 */
2849	if (pte_support_ats != vm->pte_support_ats) {
2850		vm->pte_support_ats = pte_support_ats;
2851		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo);
2852		if (r)
2853			goto free_idr;
2854	}
2855
2856	/* Update VM state */
2857	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2858				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2859	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2860			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2861	WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
 
2862		  "CPU update of VM recommended only for large BAR system\n");
2863
2864	if (vm->use_cpu_for_update)
 
 
 
 
 
 
2865		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2866	else
 
 
 
 
2867		vm->update_funcs = &amdgpu_vm_sdma_funcs;
 
 
2868	dma_fence_put(vm->last_update);
2869	vm->last_update = NULL;
2870
2871	if (vm->pasid) {
2872		unsigned long flags;
2873
2874		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2875		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2876		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2877
2878		/* Free the original amdgpu allocated pasid
2879		 * Will be replaced with kfd allocated pasid
2880		 */
2881		amdgpu_pasid_free(vm->pasid);
2882		vm->pasid = 0;
2883	}
2884
2885	/* Free the shadow bo for compute VM */
2886	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2887
2888	if (pasid)
2889		vm->pasid = pasid;
2890
2891	goto unreserve_bo;
2892
2893free_idr:
2894	if (pasid) {
2895		unsigned long flags;
2896
2897		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2898		idr_remove(&adev->vm_manager.pasid_idr, pasid);
2899		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2900	}
2901unreserve_bo:
2902	amdgpu_bo_unreserve(vm->root.base.bo);
2903	return r;
2904}
2905
2906/**
2907 * amdgpu_vm_release_compute - release a compute vm
2908 * @adev: amdgpu_device pointer
2909 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
2910 *
2911 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
2912 * pasid from vm. Compute should stop use of vm after this call.
2913 */
2914void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2915{
2916	if (vm->pasid) {
2917		unsigned long flags;
2918
2919		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2920		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2921		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2922	}
2923	vm->pasid = 0;
2924}
2925
2926/**
2927 * amdgpu_vm_fini - tear down a vm instance
2928 *
2929 * @adev: amdgpu_device pointer
2930 * @vm: requested vm
2931 *
2932 * Tear down @vm.
2933 * Unbind the VM and remove all bos from the vm bo list
2934 */
2935void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2936{
2937	struct amdgpu_bo_va_mapping *mapping, *tmp;
2938	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2939	struct amdgpu_bo *root;
2940	int i, r;
 
2941
2942	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2943
2944	if (vm->pasid) {
2945		unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2946
2947		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2948		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2949		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2950	}
2951
2952	drm_sched_entity_destroy(&vm->entity);
 
 
 
 
 
2953
2954	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2955		dev_err(adev->dev, "still active bo inside vm\n");
2956	}
2957	rbtree_postorder_for_each_entry_safe(mapping, tmp,
2958					     &vm->va.rb_root, rb) {
2959		/* Don't remove the mapping here, we don't want to trigger a
2960		 * rebalance and the tree is about to be destroyed anyway.
2961		 */
2962		list_del(&mapping->list);
2963		kfree(mapping);
2964	}
2965	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2966		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2967			amdgpu_vm_prt_fini(adev, vm);
2968			prt_fini_needed = false;
 
 
 
2969		}
2970
2971		list_del(&mapping->list);
2972		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2973	}
2974
2975	root = amdgpu_bo_ref(vm->root.base.bo);
2976	r = amdgpu_bo_reserve(root, true);
2977	if (r) {
2978		dev_err(adev->dev, "Leaking page tables because BO reservation failed\n");
2979	} else {
2980		amdgpu_vm_free_pts(adev, vm, NULL);
2981		amdgpu_bo_unreserve(root);
2982	}
2983	amdgpu_bo_unref(&root);
2984	WARN_ON(vm->root.base.bo);
2985	dma_fence_put(vm->last_update);
2986	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2987		amdgpu_vmid_free_reserved(adev, vm, i);
2988}
2989
2990/**
2991 * amdgpu_vm_manager_init - init the VM manager
2992 *
2993 * @adev: amdgpu_device pointer
2994 *
2995 * Initialize the VM manager structures
2996 */
2997void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2998{
2999	unsigned i;
3000
 
 
 
 
 
 
3001	amdgpu_vmid_mgr_init(adev);
3002
3003	adev->vm_manager.fence_context =
3004		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3005	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3006		adev->vm_manager.seqno[i] = 0;
3007
3008	spin_lock_init(&adev->vm_manager.prt_lock);
3009	atomic_set(&adev->vm_manager.num_prt_users, 0);
3010
3011	/* If not overridden by the user, by default, only in large BAR systems
3012	 * Compute VM tables will be updated by CPU
3013	 */
3014#ifdef CONFIG_X86_64
3015	if (amdgpu_vm_update_mode == -1) {
3016		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
 
 
 
 
3017			adev->vm_manager.vm_update_mode =
3018				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3019		else
3020			adev->vm_manager.vm_update_mode = 0;
3021	} else
3022		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3023#else
3024	adev->vm_manager.vm_update_mode = 0;
3025#endif
3026
3027	idr_init(&adev->vm_manager.pasid_idr);
3028	spin_lock_init(&adev->vm_manager.pasid_lock);
3029
3030	adev->vm_manager.xgmi_map_counter = 0;
3031	mutex_init(&adev->vm_manager.lock_pstate);
3032}
3033
3034/**
3035 * amdgpu_vm_manager_fini - cleanup VM manager
3036 *
3037 * @adev: amdgpu_device pointer
3038 *
3039 * Cleanup the VM manager and free resources.
3040 */
3041void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3042{
3043	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3044	idr_destroy(&adev->vm_manager.pasid_idr);
3045
3046	amdgpu_vmid_mgr_fini(adev);
3047}
3048
3049/**
3050 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3051 *
3052 * @dev: drm device pointer
3053 * @data: drm_amdgpu_vm
3054 * @filp: drm file pointer
3055 *
3056 * Returns:
3057 * 0 for success, -errno for errors.
3058 */
3059int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3060{
3061	union drm_amdgpu_vm *args = data;
3062	struct amdgpu_device *adev = dev->dev_private;
3063	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3064	int r;
 
 
 
3065
3066	switch (args->in.op) {
3067	case AMDGPU_VM_OP_RESERVE_VMID:
3068		/* current, we only have requirement to reserve vmid from gfxhub */
3069		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3070		if (r)
3071			return r;
 
 
3072		break;
3073	case AMDGPU_VM_OP_UNRESERVE_VMID:
3074		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
 
 
 
3075		break;
3076	default:
3077		return -EINVAL;
3078	}
3079
3080	return 0;
3081}
3082
3083/**
3084 * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3085 *
3086 * @adev: drm device pointer
3087 * @pasid: PASID identifier for VM
3088 * @task_info: task_info to fill.
3089 */
3090void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3091			 struct amdgpu_task_info *task_info)
 
 
 
 
 
 
 
3092{
 
 
 
 
3093	struct amdgpu_vm *vm;
3094	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3095
3096	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3097
3098	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3099	if (vm)
3100		*task_info = vm->task_info;
 
3101
3102	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
 
 
 
3103}
3104
 
3105/**
3106 * amdgpu_vm_set_task_info - Sets VMs task info.
 
 
 
3107 *
3108 * @vm: vm for which to set the info
3109 */
3110void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3111{
3112	if (!vm->task_info.pid) {
3113		vm->task_info.pid = current->pid;
3114		get_task_comm(vm->task_info.task_name, current);
3115
3116		if (current->group_leader->mm == current->mm) {
3117			vm->task_info.tgid = current->group_leader->pid;
3118			get_task_comm(vm->task_info.process_name, current->group_leader);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3119		}
3120	}
 
3121}