Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  NOHZ implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
  10 */
  11#include <linux/compiler.h>
  12#include <linux/cpu.h>
  13#include <linux/err.h>
  14#include <linux/hrtimer.h>
  15#include <linux/interrupt.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/percpu.h>
  18#include <linux/nmi.h>
  19#include <linux/profile.h>
  20#include <linux/sched/signal.h>
  21#include <linux/sched/clock.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/nohz.h>
  24#include <linux/sched/loadavg.h>
  25#include <linux/module.h>
  26#include <linux/irq_work.h>
  27#include <linux/posix-timers.h>
  28#include <linux/context_tracking.h>
  29#include <linux/mm.h>
  30
  31#include <asm/irq_regs.h>
  32
  33#include "tick-internal.h"
  34
  35#include <trace/events/timer.h>
  36
  37/*
  38 * Per-CPU nohz control structure
  39 */
  40static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  41
  42struct tick_sched *tick_get_tick_sched(int cpu)
  43{
  44	return &per_cpu(tick_cpu_sched, cpu);
  45}
  46
 
  47/*
  48 * The time when the last jiffy update happened. Write access must hold
  49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
  50 * consistent view of jiffies and last_jiffies_update.
  51 */
  52static ktime_t last_jiffies_update;
  53
  54/*
  55 * Must be called with interrupts disabled !
  56 */
  57static void tick_do_update_jiffies64(ktime_t now)
  58{
  59	unsigned long ticks = 1;
  60	ktime_t delta, nextp;
  61
  62	/*
  63	 * 64-bit can do a quick check without holding the jiffies lock and
  64	 * without looking at the sequence count. The smp_load_acquire()
  65	 * pairs with the update done later in this function.
  66	 *
  67	 * 32-bit cannot do that because the store of 'tick_next_period'
  68	 * consists of two 32-bit stores, and the first store could be
  69	 * moved by the CPU to a random point in the future.
  70	 */
  71	if (IS_ENABLED(CONFIG_64BIT)) {
  72		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
  73			return;
  74	} else {
  75		unsigned int seq;
  76
  77		/*
  78		 * Avoid contention on 'jiffies_lock' and protect the quick
  79		 * check with the sequence count.
  80		 */
  81		do {
  82			seq = read_seqcount_begin(&jiffies_seq);
  83			nextp = tick_next_period;
  84		} while (read_seqcount_retry(&jiffies_seq, seq));
  85
  86		if (ktime_before(now, nextp))
  87			return;
  88	}
  89
  90	/* Quick check failed, i.e. update is required. */
  91	raw_spin_lock(&jiffies_lock);
  92	/*
  93	 * Re-evaluate with the lock held. Another CPU might have done the
  94	 * update already.
  95	 */
  96	if (ktime_before(now, tick_next_period)) {
  97		raw_spin_unlock(&jiffies_lock);
  98		return;
  99	}
 100
 101	write_seqcount_begin(&jiffies_seq);
 102
 103	delta = ktime_sub(now, tick_next_period);
 104	if (unlikely(delta >= TICK_NSEC)) {
 105		/* Slow path for long idle sleep times */
 106		s64 incr = TICK_NSEC;
 107
 108		ticks += ktime_divns(delta, incr);
 109
 110		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 111						   incr * ticks);
 112	} else {
 113		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 114						   TICK_NSEC);
 115	}
 116
 117	/* Advance jiffies to complete the 'jiffies_seq' protected job */
 118	jiffies_64 += ticks;
 119
 120	/* Keep the tick_next_period variable up to date */
 
 
 121	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
 122
 123	if (IS_ENABLED(CONFIG_64BIT)) {
 124		/*
 125		 * Pairs with smp_load_acquire() in the lockless quick
 126		 * check above, and ensures that the update to 'jiffies_64' is
 127		 * not reordered vs. the store to 'tick_next_period', neither
 128		 * by the compiler nor by the CPU.
 129		 */
 130		smp_store_release(&tick_next_period, nextp);
 131	} else {
 132		/*
 133		 * A plain store is good enough on 32-bit, as the quick check
 134		 * above is protected by the sequence count.
 135		 */
 136		tick_next_period = nextp;
 137	}
 138
 139	/*
 140	 * Release the sequence count. calc_global_load() below is not
 141	 * protected by it, but 'jiffies_lock' needs to be held to prevent
 142	 * concurrent invocations.
 143	 */
 144	write_seqcount_end(&jiffies_seq);
 145
 146	calc_global_load();
 147
 148	raw_spin_unlock(&jiffies_lock);
 149	update_wall_time();
 150}
 151
 152/*
 153 * Initialize and return retrieve the jiffies update.
 154 */
 155static ktime_t tick_init_jiffy_update(void)
 156{
 157	ktime_t period;
 158
 159	raw_spin_lock(&jiffies_lock);
 160	write_seqcount_begin(&jiffies_seq);
 161
 162	/* Have we started the jiffies update yet ? */
 163	if (last_jiffies_update == 0) {
 164		u32 rem;
 165
 166		/*
 167		 * Ensure that the tick is aligned to a multiple of
 168		 * TICK_NSEC.
 169		 */
 170		div_u64_rem(tick_next_period, TICK_NSEC, &rem);
 171		if (rem)
 172			tick_next_period += TICK_NSEC - rem;
 173
 174		last_jiffies_update = tick_next_period;
 175	}
 176	period = last_jiffies_update;
 177
 178	write_seqcount_end(&jiffies_seq);
 179	raw_spin_unlock(&jiffies_lock);
 180
 181	return period;
 182}
 183
 184static inline int tick_sched_flag_test(struct tick_sched *ts,
 185				       unsigned long flag)
 186{
 187	return !!(ts->flags & flag);
 188}
 189
 190static inline void tick_sched_flag_set(struct tick_sched *ts,
 191				       unsigned long flag)
 192{
 193	lockdep_assert_irqs_disabled();
 194	ts->flags |= flag;
 195}
 196
 197static inline void tick_sched_flag_clear(struct tick_sched *ts,
 198					 unsigned long flag)
 199{
 200	lockdep_assert_irqs_disabled();
 201	ts->flags &= ~flag;
 202}
 203
 204#define MAX_STALLED_JIFFIES 5
 205
 206static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 207{
 208	int tick_cpu, cpu = smp_processor_id();
 209
 
 210	/*
 211	 * Check if the do_timer duty was dropped. We don't care about
 212	 * concurrency: This happens only when the CPU in charge went
 213	 * into a long sleep. If two CPUs happen to assign themselves to
 214	 * this duty, then the jiffies update is still serialized by
 215	 * 'jiffies_lock'.
 216	 *
 217	 * If nohz_full is enabled, this should not happen because the
 218	 * 'tick_do_timer_cpu' CPU never relinquishes.
 219	 */
 220	tick_cpu = READ_ONCE(tick_do_timer_cpu);
 221
 222	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) {
 223#ifdef CONFIG_NO_HZ_FULL
 224		WARN_ON_ONCE(tick_nohz_full_running);
 225#endif
 226		WRITE_ONCE(tick_do_timer_cpu, cpu);
 227		tick_cpu = cpu;
 228	}
 
 229
 230	/* Check if jiffies need an update */
 231	if (tick_cpu == cpu)
 232		tick_do_update_jiffies64(now);
 233
 234	/*
 235	 * If the jiffies update stalled for too long (timekeeper in stop_machine()
 236	 * or VMEXIT'ed for several msecs), force an update.
 237	 */
 238	if (ts->last_tick_jiffies != jiffies) {
 239		ts->stalled_jiffies = 0;
 240		ts->last_tick_jiffies = READ_ONCE(jiffies);
 241	} else {
 242		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
 243			tick_do_update_jiffies64(now);
 244			ts->stalled_jiffies = 0;
 245			ts->last_tick_jiffies = READ_ONCE(jiffies);
 246		}
 247	}
 248
 249	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
 250		ts->got_idle_tick = 1;
 251}
 252
 253static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 254{
 
 255	/*
 256	 * When we are idle and the tick is stopped, we have to touch
 257	 * the watchdog as we might not schedule for a really long
 258	 * time. This happens on completely idle SMP systems while
 259	 * waiting on the login prompt. We also increment the "start of
 260	 * idle" jiffy stamp so the idle accounting adjustment we do
 261	 * when we go busy again does not account too many ticks.
 262	 */
 263	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
 264	    tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
 265		touch_softlockup_watchdog_sched();
 266		if (is_idle_task(current))
 267			ts->idle_jiffies++;
 268		/*
 269		 * In case the current tick fired too early past its expected
 270		 * expiration, make sure we don't bypass the next clock reprogramming
 271		 * to the same deadline.
 272		 */
 273		ts->next_tick = 0;
 274	}
 275
 276	update_process_times(user_mode(regs));
 277	profile_tick(CPU_PROFILING);
 278}
 279
 280/*
 281 * We rearm the timer until we get disabled by the idle code.
 282 * Called with interrupts disabled.
 283 */
 284static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
 285{
 286	struct tick_sched *ts =	container_of(timer, struct tick_sched, sched_timer);
 287	struct pt_regs *regs = get_irq_regs();
 288	ktime_t now = ktime_get();
 289
 290	tick_sched_do_timer(ts, now);
 291
 292	/*
 293	 * Do not call when we are not in IRQ context and have
 294	 * no valid 'regs' pointer
 295	 */
 296	if (regs)
 297		tick_sched_handle(ts, regs);
 298	else
 299		ts->next_tick = 0;
 300
 301	/*
 302	 * In dynticks mode, tick reprogram is deferred:
 303	 * - to the idle task if in dynticks-idle
 304	 * - to IRQ exit if in full-dynticks.
 305	 */
 306	if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
 307		return HRTIMER_NORESTART;
 308
 309	hrtimer_forward(timer, now, TICK_NSEC);
 310
 311	return HRTIMER_RESTART;
 312}
 313
 314static void tick_sched_timer_cancel(struct tick_sched *ts)
 315{
 316	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
 317		hrtimer_cancel(&ts->sched_timer);
 318	else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
 319		tick_program_event(KTIME_MAX, 1);
 320}
 321
 322#ifdef CONFIG_NO_HZ_FULL
 323cpumask_var_t tick_nohz_full_mask;
 324EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
 325bool tick_nohz_full_running;
 326EXPORT_SYMBOL_GPL(tick_nohz_full_running);
 327static atomic_t tick_dep_mask;
 328
 329static bool check_tick_dependency(atomic_t *dep)
 330{
 331	int val = atomic_read(dep);
 332
 333	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 334		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 335		return true;
 336	}
 337
 338	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 339		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 340		return true;
 341	}
 342
 343	if (val & TICK_DEP_MASK_SCHED) {
 344		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 345		return true;
 346	}
 347
 348	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 349		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 350		return true;
 351	}
 352
 353	if (val & TICK_DEP_MASK_RCU) {
 354		trace_tick_stop(0, TICK_DEP_MASK_RCU);
 355		return true;
 356	}
 357
 358	if (val & TICK_DEP_MASK_RCU_EXP) {
 359		trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
 360		return true;
 361	}
 362
 363	return false;
 364}
 365
 366static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 367{
 368	lockdep_assert_irqs_disabled();
 369
 370	if (unlikely(!cpu_online(cpu)))
 371		return false;
 372
 373	if (check_tick_dependency(&tick_dep_mask))
 374		return false;
 375
 376	if (check_tick_dependency(&ts->tick_dep_mask))
 377		return false;
 378
 379	if (check_tick_dependency(&current->tick_dep_mask))
 380		return false;
 381
 382	if (check_tick_dependency(&current->signal->tick_dep_mask))
 383		return false;
 384
 385	return true;
 386}
 387
 388static void nohz_full_kick_func(struct irq_work *work)
 389{
 390	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 391}
 392
 393static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
 394	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
 395
 396/*
 397 * Kick this CPU if it's full dynticks in order to force it to
 398 * re-evaluate its dependency on the tick and restart it if necessary.
 399 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 400 * is NMI safe.
 401 */
 402static void tick_nohz_full_kick(void)
 403{
 404	if (!tick_nohz_full_cpu(smp_processor_id()))
 405		return;
 406
 407	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 408}
 409
 410/*
 411 * Kick the CPU if it's full dynticks in order to force it to
 412 * re-evaluate its dependency on the tick and restart it if necessary.
 413 */
 414void tick_nohz_full_kick_cpu(int cpu)
 415{
 416	if (!tick_nohz_full_cpu(cpu))
 417		return;
 418
 419	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 420}
 421
 422static void tick_nohz_kick_task(struct task_struct *tsk)
 423{
 424	int cpu;
 425
 426	/*
 427	 * If the task is not running, run_posix_cpu_timers()
 428	 * has nothing to elapse, and an IPI can then be optimized out.
 429	 *
 430	 * activate_task()                      STORE p->tick_dep_mask
 431	 *   STORE p->on_rq
 432	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
 433	 *   LOCK rq->lock                      LOAD p->on_rq
 434	 *   smp_mb__after_spin_lock()
 435	 *   tick_nohz_task_switch()
 436	 *     LOAD p->tick_dep_mask
 437	 */
 438	if (!sched_task_on_rq(tsk))
 439		return;
 440
 441	/*
 442	 * If the task concurrently migrates to another CPU,
 443	 * we guarantee it sees the new tick dependency upon
 444	 * schedule.
 445	 *
 446	 * set_task_cpu(p, cpu);
 447	 *   STORE p->cpu = @cpu
 448	 * __schedule() (switch to task 'p')
 449	 *   LOCK rq->lock
 450	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
 451	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
 452	 *      LOAD p->tick_dep_mask           LOAD p->cpu
 453	 */
 454	cpu = task_cpu(tsk);
 455
 456	preempt_disable();
 457	if (cpu_online(cpu))
 458		tick_nohz_full_kick_cpu(cpu);
 459	preempt_enable();
 460}
 461
 462/*
 463 * Kick all full dynticks CPUs in order to force these to re-evaluate
 464 * their dependency on the tick and restart it if necessary.
 465 */
 466static void tick_nohz_full_kick_all(void)
 467{
 468	int cpu;
 469
 470	if (!tick_nohz_full_running)
 471		return;
 472
 473	preempt_disable();
 474	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 475		tick_nohz_full_kick_cpu(cpu);
 476	preempt_enable();
 477}
 478
 479static void tick_nohz_dep_set_all(atomic_t *dep,
 480				  enum tick_dep_bits bit)
 481{
 482	int prev;
 483
 484	prev = atomic_fetch_or(BIT(bit), dep);
 485	if (!prev)
 486		tick_nohz_full_kick_all();
 487}
 488
 489/*
 490 * Set a global tick dependency. Used by perf events that rely on freq and
 491 * unstable clocks.
 492 */
 493void tick_nohz_dep_set(enum tick_dep_bits bit)
 494{
 495	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 496}
 497
 498void tick_nohz_dep_clear(enum tick_dep_bits bit)
 499{
 500	atomic_andnot(BIT(bit), &tick_dep_mask);
 501}
 502
 503/*
 504 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 505 * manage event-throttling.
 506 */
 507void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 508{
 509	int prev;
 510	struct tick_sched *ts;
 511
 512	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 513
 514	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 515	if (!prev) {
 516		preempt_disable();
 517		/* Perf needs local kick that is NMI safe */
 518		if (cpu == smp_processor_id()) {
 519			tick_nohz_full_kick();
 520		} else {
 521			/* Remote IRQ work not NMI-safe */
 522			if (!WARN_ON_ONCE(in_nmi()))
 523				tick_nohz_full_kick_cpu(cpu);
 524		}
 525		preempt_enable();
 526	}
 527}
 528EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
 529
 530void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 531{
 532	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 533
 534	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 535}
 536EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
 537
 538/*
 539 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
 540 * in order to elapse per task timers.
 541 */
 542void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 543{
 544	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
 545		tick_nohz_kick_task(tsk);
 546}
 547EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
 548
 549void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 550{
 551	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 552}
 553EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
 554
 555/*
 556 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 557 * per process timers.
 558 */
 559void tick_nohz_dep_set_signal(struct task_struct *tsk,
 560			      enum tick_dep_bits bit)
 561{
 562	int prev;
 563	struct signal_struct *sig = tsk->signal;
 564
 565	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
 566	if (!prev) {
 567		struct task_struct *t;
 568
 569		lockdep_assert_held(&tsk->sighand->siglock);
 570		__for_each_thread(sig, t)
 571			tick_nohz_kick_task(t);
 572	}
 573}
 574
 575void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 576{
 577	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 578}
 579
 580/*
 581 * Re-evaluate the need for the tick as we switch the current task.
 582 * It might need the tick due to per task/process properties:
 583 * perf events, posix CPU timers, ...
 584 */
 585void __tick_nohz_task_switch(void)
 586{
 587	struct tick_sched *ts;
 588
 589	if (!tick_nohz_full_cpu(smp_processor_id()))
 590		return;
 591
 592	ts = this_cpu_ptr(&tick_cpu_sched);
 593
 594	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
 595		if (atomic_read(&current->tick_dep_mask) ||
 596		    atomic_read(&current->signal->tick_dep_mask))
 597			tick_nohz_full_kick();
 598	}
 599}
 600
 601/* Get the boot-time nohz CPU list from the kernel parameters. */
 602void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 603{
 604	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 605	cpumask_copy(tick_nohz_full_mask, cpumask);
 606	tick_nohz_full_running = true;
 607}
 
 608
 609bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
 610{
 611	/*
 612	 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
 613	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 614	 * CPUs. It must remain online when nohz full is enabled.
 615	 */
 616	if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
 617		return false;
 618	return true;
 619}
 620
 621static int tick_nohz_cpu_down(unsigned int cpu)
 622{
 623	return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
 624}
 625
 626void __init tick_nohz_init(void)
 627{
 628	int cpu, ret;
 629
 630	if (!tick_nohz_full_running)
 631		return;
 632
 633	/*
 634	 * Full dynticks uses IRQ work to drive the tick rescheduling on safe
 635	 * locking contexts. But then we need IRQ work to raise its own
 636	 * interrupts to avoid circular dependency on the tick.
 637	 */
 638	if (!arch_irq_work_has_interrupt()) {
 639		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
 640		cpumask_clear(tick_nohz_full_mask);
 641		tick_nohz_full_running = false;
 642		return;
 643	}
 644
 645	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 646			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 647		cpu = smp_processor_id();
 648
 649		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 650			pr_warn("NO_HZ: Clearing %d from nohz_full range "
 651				"for timekeeping\n", cpu);
 652			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 653		}
 654	}
 655
 656	for_each_cpu(cpu, tick_nohz_full_mask)
 657		ct_cpu_track_user(cpu);
 658
 659	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 660					"kernel/nohz:predown", NULL,
 661					tick_nohz_cpu_down);
 662	WARN_ON(ret < 0);
 663	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 664		cpumask_pr_args(tick_nohz_full_mask));
 665}
 666#endif /* #ifdef CONFIG_NO_HZ_FULL */
 667
 668/*
 669 * NOHZ - aka dynamic tick functionality
 670 */
 671#ifdef CONFIG_NO_HZ_COMMON
 672/*
 673 * NO HZ enabled ?
 674 */
 675bool tick_nohz_enabled __read_mostly  = true;
 676unsigned long tick_nohz_active  __read_mostly;
 677/*
 678 * Enable / Disable tickless mode
 679 */
 680static int __init setup_tick_nohz(char *str)
 681{
 682	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 683}
 684
 685__setup("nohz=", setup_tick_nohz);
 686
 687bool tick_nohz_tick_stopped(void)
 688{
 689	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 690
 691	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
 692}
 693
 694bool tick_nohz_tick_stopped_cpu(int cpu)
 695{
 696	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 697
 698	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
 699}
 700
 701/**
 702 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 703 * @now: current ktime_t
 704 *
 705 * Called from interrupt entry when the CPU was idle
 706 *
 707 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 708 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 709 * value. We do this unconditionally on any CPU, as we don't know whether the
 710 * CPU, which has the update task assigned, is in a long sleep.
 711 */
 712static void tick_nohz_update_jiffies(ktime_t now)
 713{
 714	unsigned long flags;
 715
 716	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 717
 718	local_irq_save(flags);
 719	tick_do_update_jiffies64(now);
 720	local_irq_restore(flags);
 721
 722	touch_softlockup_watchdog_sched();
 723}
 724
 725static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 
 
 
 
 726{
 727	ktime_t delta;
 728
 729	if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
 730		return;
 
 
 
 
 
 
 731
 732	delta = ktime_sub(now, ts->idle_entrytime);
 
 733
 734	write_seqcount_begin(&ts->idle_sleeptime_seq);
 735	if (nr_iowait_cpu(smp_processor_id()) > 0)
 736		ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 737	else
 738		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 739
 740	ts->idle_entrytime = now;
 741	tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
 742	write_seqcount_end(&ts->idle_sleeptime_seq);
 
 743
 744	sched_clock_idle_wakeup_event();
 745}
 746
 747static void tick_nohz_start_idle(struct tick_sched *ts)
 748{
 749	write_seqcount_begin(&ts->idle_sleeptime_seq);
 750	ts->idle_entrytime = ktime_get();
 751	tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
 752	write_seqcount_end(&ts->idle_sleeptime_seq);
 753
 754	sched_clock_idle_sleep_event();
 755}
 756
 757static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
 758				 bool compute_delta, u64 *last_update_time)
 759{
 760	ktime_t now, idle;
 761	unsigned int seq;
 762
 763	if (!tick_nohz_active)
 764		return -1;
 765
 766	now = ktime_get();
 767	if (last_update_time)
 768		*last_update_time = ktime_to_us(now);
 769
 770	do {
 771		seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
 772
 773		if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
 774			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 775
 776			idle = ktime_add(*sleeptime, delta);
 777		} else {
 778			idle = *sleeptime;
 779		}
 780	} while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
 781
 782	return ktime_to_us(idle);
 783
 784}
 785
 786/**
 787 * get_cpu_idle_time_us - get the total idle time of a CPU
 788 * @cpu: CPU number to query
 789 * @last_update_time: variable to store update time in. Do not update
 790 * counters if NULL.
 791 *
 792 * Return the cumulative idle time (since boot) for a given
 793 * CPU, in microseconds. Note that this is partially broken due to
 794 * the counter of iowait tasks that can be remotely updated without
 795 * any synchronization. Therefore it is possible to observe backward
 796 * values within two consecutive reads.
 797 *
 798 * This time is measured via accounting rather than sampling,
 799 * and is as accurate as ktime_get() is.
 800 *
 801 * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
 802 */
 803u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 804{
 805	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806
 807	return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
 808				     !nr_iowait_cpu(cpu), last_update_time);
 809}
 810EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 811
 812/**
 813 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 814 * @cpu: CPU number to query
 815 * @last_update_time: variable to store update time in. Do not update
 816 * counters if NULL.
 817 *
 818 * Return the cumulative iowait time (since boot) for a given
 819 * CPU, in microseconds. Note this is partially broken due to
 820 * the counter of iowait tasks that can be remotely updated without
 821 * any synchronization. Therefore it is possible to observe backward
 822 * values within two consecutive reads.
 823 *
 824 * This time is measured via accounting rather than sampling,
 825 * and is as accurate as ktime_get() is.
 826 *
 827 * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
 828 */
 829u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 830{
 831	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 
 832
 833	return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
 834				     nr_iowait_cpu(cpu), last_update_time);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835}
 836EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 837
 838static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 839{
 840	hrtimer_cancel(&ts->sched_timer);
 841	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 842
 843	/* Forward the time to expire in the future */
 844	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
 845
 846	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
 847		hrtimer_start_expires(&ts->sched_timer,
 848				      HRTIMER_MODE_ABS_PINNED_HARD);
 849	} else {
 850		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 851	}
 852
 853	/*
 854	 * Reset to make sure the next tick stop doesn't get fooled by past
 855	 * cached clock deadline.
 856	 */
 857	ts->next_tick = 0;
 858}
 859
 860static inline bool local_timer_softirq_pending(void)
 861{
 862	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 863}
 864
 865/*
 866 * Read jiffies and the time when jiffies were updated last
 867 */
 868u64 get_jiffies_update(unsigned long *basej)
 869{
 
 870	unsigned long basejiff;
 871	unsigned int seq;
 872	u64 basemono;
 873
 
 874	do {
 875		seq = read_seqcount_begin(&jiffies_seq);
 876		basemono = last_jiffies_update;
 877		basejiff = jiffies;
 878	} while (read_seqcount_retry(&jiffies_seq, seq));
 879	*basej = basejiff;
 880	return basemono;
 881}
 882
 883/**
 884 * tick_nohz_next_event() - return the clock monotonic based next event
 885 * @ts:		pointer to tick_sched struct
 886 * @cpu:	CPU number
 887 *
 888 * Return:
 889 * *%0		- When the next event is a maximum of TICK_NSEC in the future
 890 *		  and the tick is not stopped yet
 891 * *%next_event	- Next event based on clock monotonic
 892 */
 893static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 894{
 895	u64 basemono, next_tick, delta, expires;
 896	unsigned long basejiff;
 897	int tick_cpu;
 898
 899	basemono = get_jiffies_update(&basejiff);
 900	ts->last_jiffies = basejiff;
 901	ts->timer_expires_base = basemono;
 902
 903	/*
 904	 * Keep the periodic tick, when RCU, architecture or irq_work
 905	 * requests it.
 906	 * Aside of that, check whether the local timer softirq is
 907	 * pending. If so, its a bad idea to call get_next_timer_interrupt(),
 908	 * because there is an already expired timer, so it will request
 909	 * immediate expiry, which rearms the hardware timer with a
 910	 * minimal delta, which brings us back to this place
 911	 * immediately. Lather, rinse and repeat...
 912	 */
 913	if (rcu_needs_cpu() || arch_needs_cpu() ||
 914	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 915		next_tick = basemono + TICK_NSEC;
 916	} else {
 917		/*
 918		 * Get the next pending timer. If high resolution
 919		 * timers are enabled this only takes the timer wheel
 920		 * timers into account. If high resolution timers are
 921		 * disabled this also looks at the next expiring
 922		 * hrtimer.
 923		 */
 924		next_tick = get_next_timer_interrupt(basejiff, basemono);
 925		ts->next_timer = next_tick;
 
 
 926	}
 927
 928	/* Make sure next_tick is never before basemono! */
 929	if (WARN_ON_ONCE(basemono > next_tick))
 930		next_tick = basemono;
 931
 932	/*
 933	 * If the tick is due in the next period, keep it ticking or
 934	 * force prod the timer.
 935	 */
 936	delta = next_tick - basemono;
 937	if (delta <= (u64)TICK_NSEC) {
 938		/*
 
 
 
 
 
 939		 * We've not stopped the tick yet, and there's a timer in the
 940		 * next period, so no point in stopping it either, bail.
 941		 */
 942		if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
 943			ts->timer_expires = 0;
 944			goto out;
 945		}
 946	}
 947
 948	/*
 949	 * If this CPU is the one which had the do_timer() duty last, we limit
 950	 * the sleep time to the timekeeping 'max_deferment' value.
 951	 * Otherwise we can sleep as long as we want.
 952	 */
 953	delta = timekeeping_max_deferment();
 954	tick_cpu = READ_ONCE(tick_do_timer_cpu);
 955	if (tick_cpu != cpu &&
 956	    (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
 957		delta = KTIME_MAX;
 958
 959	/* Calculate the next expiry time */
 960	if (delta < (KTIME_MAX - basemono))
 961		expires = basemono + delta;
 962	else
 963		expires = KTIME_MAX;
 964
 965	ts->timer_expires = min_t(u64, expires, next_tick);
 966
 967out:
 968	return ts->timer_expires;
 969}
 970
 971static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 972{
 973	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 974	unsigned long basejiff = ts->last_jiffies;
 975	u64 basemono = ts->timer_expires_base;
 976	bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
 977	int tick_cpu;
 978	u64 expires;
 979
 980	/* Make sure we won't be trying to stop it twice in a row. */
 981	ts->timer_expires_base = 0;
 982
 983	/*
 984	 * Now the tick should be stopped definitely - so the timer base needs
 985	 * to be marked idle as well to not miss a newly queued timer.
 986	 */
 987	expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
 988	if (expires > ts->timer_expires) {
 989		/*
 990		 * This path could only happen when the first timer was removed
 991		 * between calculating the possible sleep length and now (when
 992		 * high resolution mode is not active, timer could also be a
 993		 * hrtimer).
 994		 *
 995		 * We have to stick to the original calculated expiry value to
 996		 * not stop the tick for too long with a shallow C-state (which
 997		 * was programmed by cpuidle because of an early next expiration
 998		 * value).
 999		 */
1000		expires = ts->timer_expires;
1001	}
1002
1003	/* If the timer base is not idle, retain the not yet stopped tick. */
1004	if (!timer_idle)
1005		return;
1006
1007	/*
1008	 * If this CPU is the one which updates jiffies, then give up
1009	 * the assignment and let it be taken by the CPU which runs
1010	 * the tick timer next, which might be this CPU as well. If we
1011	 * don't drop this here, the jiffies might be stale and
1012	 * do_timer() never gets invoked. Keep track of the fact that it
1013	 * was the one which had the do_timer() duty last.
1014	 */
1015	tick_cpu = READ_ONCE(tick_do_timer_cpu);
1016	if (tick_cpu == cpu) {
1017		WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
1018		tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
1019	} else if (tick_cpu != TICK_DO_TIMER_NONE) {
1020		tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
1021	}
1022
1023	/* Skip reprogram of event if it's not changed */
1024	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
1025		/* Sanity check: make sure clockevent is actually programmed */
1026		if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
1027			return;
1028
1029		WARN_ON_ONCE(1);
1030		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
1031			    basemono, ts->next_tick, dev->next_event,
1032			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
1033	}
1034
1035	/*
1036	 * tick_nohz_stop_tick() can be called several times before
1037	 * tick_nohz_restart_sched_tick() is called. This happens when
1038	 * interrupts arrive which do not cause a reschedule. In the first
1039	 * call we save the current tick time, so we can restart the
1040	 * scheduler tick in tick_nohz_restart_sched_tick().
1041	 */
1042	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1043		calc_load_nohz_start();
1044		quiet_vmstat();
1045
1046		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
1047		tick_sched_flag_set(ts, TS_FLAG_STOPPED);
1048		trace_tick_stop(1, TICK_DEP_MASK_NONE);
1049	}
1050
1051	ts->next_tick = expires;
1052
1053	/*
1054	 * If the expiration time == KTIME_MAX, then we simply stop
1055	 * the tick timer.
1056	 */
1057	if (unlikely(expires == KTIME_MAX)) {
1058		tick_sched_timer_cancel(ts);
 
1059		return;
1060	}
1061
1062	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
1063		hrtimer_start(&ts->sched_timer, expires,
1064			      HRTIMER_MODE_ABS_PINNED_HARD);
1065	} else {
1066		hrtimer_set_expires(&ts->sched_timer, expires);
1067		tick_program_event(expires, 1);
1068	}
1069}
1070
1071static void tick_nohz_retain_tick(struct tick_sched *ts)
1072{
1073	ts->timer_expires_base = 0;
1074}
1075
1076#ifdef CONFIG_NO_HZ_FULL
1077static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
1078{
1079	if (tick_nohz_next_event(ts, cpu))
1080		tick_nohz_stop_tick(ts, cpu);
1081	else
1082		tick_nohz_retain_tick(ts);
1083}
1084#endif /* CONFIG_NO_HZ_FULL */
1085
1086static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
1087{
1088	/* Update jiffies first */
1089	tick_do_update_jiffies64(now);
1090
1091	/*
1092	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
1093	 * the clock forward checks in the enqueue path:
1094	 */
1095	timer_clear_idle();
1096
1097	calc_load_nohz_stop();
1098	touch_softlockup_watchdog_sched();
1099
1100	/* Cancel the scheduled timer and restore the tick: */
1101	tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
 
1102	tick_nohz_restart(ts, now);
1103}
1104
1105static void __tick_nohz_full_update_tick(struct tick_sched *ts,
1106					 ktime_t now)
1107{
1108#ifdef CONFIG_NO_HZ_FULL
1109	int cpu = smp_processor_id();
1110
1111	if (can_stop_full_tick(cpu, ts))
1112		tick_nohz_full_stop_tick(ts, cpu);
1113	else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1114		tick_nohz_restart_sched_tick(ts, now);
1115#endif
1116}
1117
1118static void tick_nohz_full_update_tick(struct tick_sched *ts)
1119{
1120	if (!tick_nohz_full_cpu(smp_processor_id()))
1121		return;
1122
1123	if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1124		return;
1125
1126	__tick_nohz_full_update_tick(ts, ktime_get());
1127}
1128
1129/*
1130 * A pending softirq outside an IRQ (or softirq disabled section) context
1131 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1132 * reach this code due to the need_resched() early check in can_stop_idle_tick().
1133 *
1134 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1135 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1136 * triggering the code below, since wakep_softirqd() is ignored.
1137 *
1138 */
1139static bool report_idle_softirq(void)
1140{
1141	static int ratelimit;
1142	unsigned int pending = local_softirq_pending();
1143
1144	if (likely(!pending))
 
 
 
 
 
 
 
 
 
 
 
1145		return false;
1146
1147	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1148	if (!cpu_active(smp_processor_id())) {
1149		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1150		if (!pending)
1151			return false;
1152	}
1153
1154	if (ratelimit >= 10)
1155		return false;
1156
1157	/* On RT, softirq handling may be waiting on some lock */
1158	if (local_bh_blocked())
1159		return false;
1160
1161	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1162		pending);
1163	ratelimit++;
1164
1165	return true;
1166}
1167
1168static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1169{
1170	WARN_ON_ONCE(cpu_is_offline(cpu));
1171
1172	if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
1173		return false;
1174
1175	if (need_resched())
1176		return false;
1177
1178	if (unlikely(report_idle_softirq()))
 
 
 
 
 
 
 
 
1179		return false;
 
1180
1181	if (tick_nohz_full_enabled()) {
1182		int tick_cpu = READ_ONCE(tick_do_timer_cpu);
1183
1184		/*
1185		 * Keep the tick alive to guarantee timekeeping progression
1186		 * if there are full dynticks CPUs around
1187		 */
1188		if (tick_cpu == cpu)
1189			return false;
1190
1191		/* Should not happen for nohz-full */
1192		if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE))
1193			return false;
1194	}
1195
1196	return true;
1197}
1198
1199/**
1200 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1201 *
1202 * When the next event is more than a tick into the future, stop the idle tick
1203 */
1204void tick_nohz_idle_stop_tick(void)
1205{
1206	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1207	int cpu = smp_processor_id();
1208	ktime_t expires;
 
1209
1210	/*
1211	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1212	 * tick timer expiration time is known already.
1213	 */
1214	if (ts->timer_expires_base)
1215		expires = ts->timer_expires;
1216	else if (can_stop_idle_tick(cpu, ts))
1217		expires = tick_nohz_next_event(ts, cpu);
1218	else
1219		return;
1220
1221	ts->idle_calls++;
1222
1223	if (expires > 0LL) {
1224		int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1225
1226		tick_nohz_stop_tick(ts, cpu);
1227
1228		ts->idle_sleeps++;
1229		ts->idle_expires = expires;
1230
1231		if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1232			ts->idle_jiffies = ts->last_jiffies;
1233			nohz_balance_enter_idle(cpu);
1234		}
1235	} else {
1236		tick_nohz_retain_tick(ts);
1237	}
1238}
1239
 
 
 
 
 
 
 
 
 
 
1240void tick_nohz_idle_retain_tick(void)
1241{
1242	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
 
 
 
 
 
1243}
1244
1245/**
1246 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1247 *
1248 * Called when we start the idle loop.
1249 */
1250void tick_nohz_idle_enter(void)
1251{
1252	struct tick_sched *ts;
1253
1254	lockdep_assert_irqs_enabled();
1255
1256	local_irq_disable();
1257
1258	ts = this_cpu_ptr(&tick_cpu_sched);
1259
1260	WARN_ON_ONCE(ts->timer_expires_base);
1261
1262	tick_sched_flag_set(ts, TS_FLAG_INIDLE);
1263	tick_nohz_start_idle(ts);
1264
1265	local_irq_enable();
1266}
1267
1268/**
1269 * tick_nohz_irq_exit - Notify the tick about IRQ exit
1270 *
1271 * A timer may have been added/modified/deleted either by the current IRQ,
1272 * or by another place using this IRQ as a notification. This IRQ may have
1273 * also updated the RCU callback list. These events may require a
1274 * re-evaluation of the next tick. Depending on the context:
1275 *
1276 * 1) If the CPU is idle and no resched is pending, just proceed with idle
1277 *    time accounting. The next tick will be re-evaluated on the next idle
1278 *    loop iteration.
1279 *
1280 * 2) If the CPU is nohz_full:
1281 *
1282 *    2.1) If there is any tick dependency, restart the tick if stopped.
1283 *
1284 *    2.2) If there is no tick dependency, (re-)evaluate the next tick and
1285 *         stop/update it accordingly.
1286 */
1287void tick_nohz_irq_exit(void)
1288{
1289	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1290
1291	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
1292		tick_nohz_start_idle(ts);
1293	else
1294		tick_nohz_full_update_tick(ts);
1295}
1296
1297/**
1298 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1299 *
1300 * Return: %true if the tick handler has run, otherwise %false
1301 */
1302bool tick_nohz_idle_got_tick(void)
1303{
1304	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1305
1306	if (ts->got_idle_tick) {
1307		ts->got_idle_tick = 0;
1308		return true;
1309	}
1310	return false;
1311}
1312
1313/**
1314 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1315 * or the tick, whichever expires first. Note that, if the tick has been
1316 * stopped, it returns the next hrtimer.
1317 *
1318 * Called from power state control code with interrupts disabled
1319 *
1320 * Return: the next expiration time
1321 */
1322ktime_t tick_nohz_get_next_hrtimer(void)
1323{
1324	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1325}
1326
1327/**
1328 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1329 * @delta_next: duration until the next event if the tick cannot be stopped
1330 *
1331 * Called from power state control code with interrupts disabled.
1332 *
1333 * The return value of this function and/or the value returned by it through the
1334 * @delta_next pointer can be negative which must be taken into account by its
1335 * callers.
1336 *
1337 * Return: the expected length of the current sleep
1338 */
1339ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1340{
1341	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1342	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1343	int cpu = smp_processor_id();
1344	/*
1345	 * The idle entry time is expected to be a sufficient approximation of
1346	 * the current time at this point.
1347	 */
1348	ktime_t now = ts->idle_entrytime;
1349	ktime_t next_event;
1350
1351	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1352
1353	*delta_next = ktime_sub(dev->next_event, now);
1354
1355	if (!can_stop_idle_tick(cpu, ts))
1356		return *delta_next;
1357
1358	next_event = tick_nohz_next_event(ts, cpu);
1359	if (!next_event)
1360		return *delta_next;
1361
1362	/*
1363	 * If the next highres timer to expire is earlier than 'next_event', the
1364	 * idle governor needs to know that.
1365	 */
1366	next_event = min_t(u64, next_event,
1367			   hrtimer_next_event_without(&ts->sched_timer));
1368
1369	return ktime_sub(next_event, now);
1370}
1371
1372/**
1373 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1374 * for a particular CPU.
1375 * @cpu: target CPU number
1376 *
1377 * Called from the schedutil frequency scaling governor in scheduler context.
1378 *
1379 * Return: the current idle calls counter value for @cpu
1380 */
1381unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1382{
1383	struct tick_sched *ts = tick_get_tick_sched(cpu);
1384
1385	return ts->idle_calls;
1386}
1387
1388/**
1389 * tick_nohz_get_idle_calls - return the current idle calls counter value
1390 *
1391 * Called from the schedutil frequency scaling governor in scheduler context.
1392 *
1393 * Return: the current idle calls counter value for the current CPU
1394 */
1395unsigned long tick_nohz_get_idle_calls(void)
1396{
1397	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1398
1399	return ts->idle_calls;
1400}
1401
1402static void tick_nohz_account_idle_time(struct tick_sched *ts,
1403					ktime_t now)
1404{
1405	unsigned long ticks;
1406
1407	ts->idle_exittime = now;
1408
1409	if (vtime_accounting_enabled_this_cpu())
1410		return;
1411	/*
1412	 * We stopped the tick in idle. update_process_times() would miss the
1413	 * time we slept, as it does only a 1 tick accounting.
1414	 * Enforce that this is accounted to idle !
1415	 */
1416	ticks = jiffies - ts->idle_jiffies;
1417	/*
1418	 * We might be one off. Do not randomly account a huge number of ticks!
1419	 */
1420	if (ticks && ticks < LONG_MAX)
1421		account_idle_ticks(ticks);
1422}
1423
1424void tick_nohz_idle_restart_tick(void)
1425{
1426	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1427
1428	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1429		ktime_t now = ktime_get();
1430		tick_nohz_restart_sched_tick(ts, now);
1431		tick_nohz_account_idle_time(ts, now);
1432	}
1433}
1434
1435static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1436{
1437	if (tick_nohz_full_cpu(smp_processor_id()))
1438		__tick_nohz_full_update_tick(ts, now);
1439	else
1440		tick_nohz_restart_sched_tick(ts, now);
1441
1442	tick_nohz_account_idle_time(ts, now);
1443}
1444
1445/**
1446 * tick_nohz_idle_exit - Update the tick upon idle task exit
1447 *
1448 * When the idle task exits, update the tick depending on the
1449 * following situations:
1450 *
1451 * 1) If the CPU is not in nohz_full mode (most cases), then
1452 *    restart the tick.
1453 *
1454 * 2) If the CPU is in nohz_full mode (corner case):
1455 *   2.1) If the tick can be kept stopped (no tick dependencies)
1456 *        then re-evaluate the next tick and try to keep it stopped
1457 *        as long as possible.
1458 *   2.2) If the tick has dependencies, restart the tick.
1459 *
 
 
 
1460 */
1461void tick_nohz_idle_exit(void)
1462{
1463	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1464	bool idle_active, tick_stopped;
1465	ktime_t now;
1466
1467	local_irq_disable();
1468
1469	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1470	WARN_ON_ONCE(ts->timer_expires_base);
1471
1472	tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
1473	idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
1474	tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1475
1476	if (idle_active || tick_stopped)
1477		now = ktime_get();
1478
1479	if (idle_active)
1480		tick_nohz_stop_idle(ts, now);
1481
1482	if (tick_stopped)
1483		tick_nohz_idle_update_tick(ts, now);
1484
1485	local_irq_enable();
1486}
1487
1488/*
1489 * In low-resolution mode, the tick handler must be implemented directly
1490 * at the clockevent level. hrtimer can't be used instead, because its
1491 * infrastructure actually relies on the tick itself as a backend in
1492 * low-resolution mode (see hrtimer_run_queues()).
1493 */
1494static void tick_nohz_lowres_handler(struct clock_event_device *dev)
1495{
1496	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
 
1497
1498	dev->next_event = KTIME_MAX;
1499
1500	if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
1501		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 
 
 
 
 
 
 
1502}
1503
1504static inline void tick_nohz_activate(struct tick_sched *ts)
1505{
1506	if (!tick_nohz_enabled)
1507		return;
1508	tick_sched_flag_set(ts, TS_FLAG_NOHZ);
1509	/* One update is enough */
1510	if (!test_and_set_bit(0, &tick_nohz_active))
1511		timers_update_nohz();
1512}
1513
1514/**
1515 * tick_nohz_switch_to_nohz - switch to NOHZ mode
1516 */
1517static void tick_nohz_switch_to_nohz(void)
1518{
 
 
 
1519	if (!tick_nohz_enabled)
1520		return;
1521
1522	if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
1523		return;
1524
1525	/*
1526	 * Recycle the hrtimer in 'ts', so we can share the
1527	 * highres code.
1528	 */
1529	tick_setup_sched_timer(false);
 
 
 
 
 
 
 
1530}
1531
1532static inline void tick_nohz_irq_enter(void)
1533{
1534	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1535	ktime_t now;
1536
1537	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
1538		return;
1539	now = ktime_get();
1540	if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
1541		tick_nohz_stop_idle(ts, now);
1542	/*
1543	 * If all CPUs are idle we may need to update a stale jiffies value.
1544	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1545	 * alive but it might be busy looping with interrupts disabled in some
1546	 * rare case (typically stop machine). So we must make sure we have a
1547	 * last resort.
1548	 */
1549	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1550		tick_nohz_update_jiffies(now);
1551}
1552
1553#else
1554
1555static inline void tick_nohz_switch_to_nohz(void) { }
1556static inline void tick_nohz_irq_enter(void) { }
1557static inline void tick_nohz_activate(struct tick_sched *ts) { }
1558
1559#endif /* CONFIG_NO_HZ_COMMON */
1560
1561/*
1562 * Called from irq_enter() to notify about the possible interruption of idle()
1563 */
1564void tick_irq_enter(void)
1565{
1566	tick_check_oneshot_broadcast_this_cpu();
1567	tick_nohz_irq_enter();
1568}
1569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570static int sched_skew_tick;
1571
1572static int __init skew_tick(char *str)
1573{
1574	get_option(&str, &sched_skew_tick);
1575
1576	return 0;
1577}
1578early_param("skew_tick", skew_tick);
1579
1580/**
1581 * tick_setup_sched_timer - setup the tick emulation timer
1582 * @hrtimer: whether to use the hrtimer or not
1583 */
1584void tick_setup_sched_timer(bool hrtimer)
1585{
1586	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
1587
1588	/* Emulate tick processing via per-CPU hrtimers: */
 
 
1589	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1590
1591	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) {
1592		tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
1593		ts->sched_timer.function = tick_nohz_handler;
1594	}
1595
1596	/* Get the next period (per-CPU) */
1597	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1598
1599	/* Offset the tick to avert 'jiffies_lock' contention. */
1600	if (sched_skew_tick) {
1601		u64 offset = TICK_NSEC >> 1;
1602		do_div(offset, num_possible_cpus());
1603		offset *= smp_processor_id();
1604		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1605	}
1606
1607	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1608	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
1609		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1610	else
1611		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1612	tick_nohz_activate(ts);
1613}
 
1614
1615/*
1616 * Shut down the tick and make sure the CPU won't try to retake the timekeeping
1617 * duty before disabling IRQs in idle for the last time.
1618 */
1619void tick_sched_timer_dying(int cpu)
1620{
1621	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
1622	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1623	struct clock_event_device *dev = td->evtdev;
1624	ktime_t idle_sleeptime, iowait_sleeptime;
1625	unsigned long idle_calls, idle_sleeps;
1626
1627	/* This must happen before hrtimers are migrated! */
1628	tick_sched_timer_cancel(ts);
1629
1630	/*
1631	 * If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED,
1632	 * make sure not to call low-res tick handler.
1633	 */
1634	if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1635		dev->event_handler = clockevents_handle_noop;
1636
1637	idle_sleeptime = ts->idle_sleeptime;
1638	iowait_sleeptime = ts->iowait_sleeptime;
1639	idle_calls = ts->idle_calls;
1640	idle_sleeps = ts->idle_sleeps;
1641	memset(ts, 0, sizeof(*ts));
1642	ts->idle_sleeptime = idle_sleeptime;
1643	ts->iowait_sleeptime = iowait_sleeptime;
1644	ts->idle_calls = idle_calls;
1645	ts->idle_sleeps = idle_sleeps;
1646}
 
1647
1648/*
1649 * Async notification about clocksource changes
1650 */
1651void tick_clock_notify(void)
1652{
1653	int cpu;
1654
1655	for_each_possible_cpu(cpu)
1656		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1657}
1658
1659/*
1660 * Async notification about clock event changes
1661 */
1662void tick_oneshot_notify(void)
1663{
1664	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1665
1666	set_bit(0, &ts->check_clocks);
1667}
1668
1669/*
1670 * Check if a change happened, which makes oneshot possible.
1671 *
1672 * Called cyclically from the hrtimer softirq (driven by the timer
1673 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
1674 * mode, because high resolution timers are disabled (either compile
1675 * or runtime). Called with interrupts disabled.
1676 */
1677int tick_check_oneshot_change(int allow_nohz)
1678{
1679	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1680
1681	if (!test_and_clear_bit(0, &ts->check_clocks))
1682		return 0;
1683
1684	if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1685		return 0;
1686
1687	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1688		return 0;
1689
1690	if (!allow_nohz)
1691		return 1;
1692
1693	tick_nohz_switch_to_nohz();
1694	return 0;
1695}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  No idle tick implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
  10 */
 
  11#include <linux/cpu.h>
  12#include <linux/err.h>
  13#include <linux/hrtimer.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/percpu.h>
  17#include <linux/nmi.h>
  18#include <linux/profile.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/clock.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/nohz.h>
  23#include <linux/sched/loadavg.h>
  24#include <linux/module.h>
  25#include <linux/irq_work.h>
  26#include <linux/posix-timers.h>
  27#include <linux/context_tracking.h>
  28#include <linux/mm.h>
  29
  30#include <asm/irq_regs.h>
  31
  32#include "tick-internal.h"
  33
  34#include <trace/events/timer.h>
  35
  36/*
  37 * Per-CPU nohz control structure
  38 */
  39static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  40
  41struct tick_sched *tick_get_tick_sched(int cpu)
  42{
  43	return &per_cpu(tick_cpu_sched, cpu);
  44}
  45
  46#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  47/*
  48 * The time, when the last jiffy update happened. Write access must hold
  49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
  50 * consistent view of jiffies and last_jiffies_update.
  51 */
  52static ktime_t last_jiffies_update;
  53
  54/*
  55 * Must be called with interrupts disabled !
  56 */
  57static void tick_do_update_jiffies64(ktime_t now)
  58{
  59	unsigned long ticks = 1;
  60	ktime_t delta, nextp;
  61
  62	/*
  63	 * 64bit can do a quick check without holding jiffies lock and
  64	 * without looking at the sequence count. The smp_load_acquire()
  65	 * pairs with the update done later in this function.
  66	 *
  67	 * 32bit cannot do that because the store of tick_next_period
  68	 * consists of two 32bit stores and the first store could move it
  69	 * to a random point in the future.
  70	 */
  71	if (IS_ENABLED(CONFIG_64BIT)) {
  72		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
  73			return;
  74	} else {
  75		unsigned int seq;
  76
  77		/*
  78		 * Avoid contention on jiffies_lock and protect the quick
  79		 * check with the sequence count.
  80		 */
  81		do {
  82			seq = read_seqcount_begin(&jiffies_seq);
  83			nextp = tick_next_period;
  84		} while (read_seqcount_retry(&jiffies_seq, seq));
  85
  86		if (ktime_before(now, nextp))
  87			return;
  88	}
  89
  90	/* Quick check failed, i.e. update is required. */
  91	raw_spin_lock(&jiffies_lock);
  92	/*
  93	 * Reevaluate with the lock held. Another CPU might have done the
  94	 * update already.
  95	 */
  96	if (ktime_before(now, tick_next_period)) {
  97		raw_spin_unlock(&jiffies_lock);
  98		return;
  99	}
 100
 101	write_seqcount_begin(&jiffies_seq);
 102
 103	delta = ktime_sub(now, tick_next_period);
 104	if (unlikely(delta >= TICK_NSEC)) {
 105		/* Slow path for long idle sleep times */
 106		s64 incr = TICK_NSEC;
 107
 108		ticks += ktime_divns(delta, incr);
 109
 110		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 111						   incr * ticks);
 112	} else {
 113		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 114						   TICK_NSEC);
 115	}
 116
 117	/* Advance jiffies to complete the jiffies_seq protected job */
 118	jiffies_64 += ticks;
 119
 120	/*
 121	 * Keep the tick_next_period variable up to date.
 122	 */
 123	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
 124
 125	if (IS_ENABLED(CONFIG_64BIT)) {
 126		/*
 127		 * Pairs with smp_load_acquire() in the lockless quick
 128		 * check above and ensures that the update to jiffies_64 is
 129		 * not reordered vs. the store to tick_next_period, neither
 130		 * by the compiler nor by the CPU.
 131		 */
 132		smp_store_release(&tick_next_period, nextp);
 133	} else {
 134		/*
 135		 * A plain store is good enough on 32bit as the quick check
 136		 * above is protected by the sequence count.
 137		 */
 138		tick_next_period = nextp;
 139	}
 140
 141	/*
 142	 * Release the sequence count. calc_global_load() below is not
 143	 * protected by it, but jiffies_lock needs to be held to prevent
 144	 * concurrent invocations.
 145	 */
 146	write_seqcount_end(&jiffies_seq);
 147
 148	calc_global_load();
 149
 150	raw_spin_unlock(&jiffies_lock);
 151	update_wall_time();
 152}
 153
 154/*
 155 * Initialize and return retrieve the jiffies update.
 156 */
 157static ktime_t tick_init_jiffy_update(void)
 158{
 159	ktime_t period;
 160
 161	raw_spin_lock(&jiffies_lock);
 162	write_seqcount_begin(&jiffies_seq);
 163	/* Did we start the jiffies update yet ? */
 164	if (last_jiffies_update == 0)
 
 
 
 
 
 
 
 
 
 
 
 165		last_jiffies_update = tick_next_period;
 
 166	period = last_jiffies_update;
 
 167	write_seqcount_end(&jiffies_seq);
 168	raw_spin_unlock(&jiffies_lock);
 
 169	return period;
 170}
 171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 173{
 174	int cpu = smp_processor_id();
 175
 176#ifdef CONFIG_NO_HZ_COMMON
 177	/*
 178	 * Check if the do_timer duty was dropped. We don't care about
 179	 * concurrency: This happens only when the CPU in charge went
 180	 * into a long sleep. If two CPUs happen to assign themselves to
 181	 * this duty, then the jiffies update is still serialized by
 182	 * jiffies_lock.
 183	 *
 184	 * If nohz_full is enabled, this should not happen because the
 185	 * tick_do_timer_cpu never relinquishes.
 186	 */
 187	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
 
 
 188#ifdef CONFIG_NO_HZ_FULL
 189		WARN_ON(tick_nohz_full_running);
 190#endif
 191		tick_do_timer_cpu = cpu;
 
 192	}
 193#endif
 194
 195	/* Check, if the jiffies need an update */
 196	if (tick_do_timer_cpu == cpu)
 197		tick_do_update_jiffies64(now);
 198
 199	if (ts->inidle)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200		ts->got_idle_tick = 1;
 201}
 202
 203static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 204{
 205#ifdef CONFIG_NO_HZ_COMMON
 206	/*
 207	 * When we are idle and the tick is stopped, we have to touch
 208	 * the watchdog as we might not schedule for a really long
 209	 * time. This happens on complete idle SMP systems while
 210	 * waiting on the login prompt. We also increment the "start of
 211	 * idle" jiffy stamp so the idle accounting adjustment we do
 212	 * when we go busy again does not account too much ticks.
 213	 */
 214	if (ts->tick_stopped) {
 
 215		touch_softlockup_watchdog_sched();
 216		if (is_idle_task(current))
 217			ts->idle_jiffies++;
 218		/*
 219		 * In case the current tick fired too early past its expected
 220		 * expiration, make sure we don't bypass the next clock reprogramming
 221		 * to the same deadline.
 222		 */
 223		ts->next_tick = 0;
 224	}
 225#endif
 226	update_process_times(user_mode(regs));
 227	profile_tick(CPU_PROFILING);
 228}
 229#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230
 231#ifdef CONFIG_NO_HZ_FULL
 232cpumask_var_t tick_nohz_full_mask;
 233EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
 234bool tick_nohz_full_running;
 235EXPORT_SYMBOL_GPL(tick_nohz_full_running);
 236static atomic_t tick_dep_mask;
 237
 238static bool check_tick_dependency(atomic_t *dep)
 239{
 240	int val = atomic_read(dep);
 241
 242	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 243		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 244		return true;
 245	}
 246
 247	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 248		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 249		return true;
 250	}
 251
 252	if (val & TICK_DEP_MASK_SCHED) {
 253		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 254		return true;
 255	}
 256
 257	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 258		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 259		return true;
 260	}
 261
 262	if (val & TICK_DEP_MASK_RCU) {
 263		trace_tick_stop(0, TICK_DEP_MASK_RCU);
 264		return true;
 265	}
 266
 
 
 
 
 
 267	return false;
 268}
 269
 270static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 271{
 272	lockdep_assert_irqs_disabled();
 273
 274	if (unlikely(!cpu_online(cpu)))
 275		return false;
 276
 277	if (check_tick_dependency(&tick_dep_mask))
 278		return false;
 279
 280	if (check_tick_dependency(&ts->tick_dep_mask))
 281		return false;
 282
 283	if (check_tick_dependency(&current->tick_dep_mask))
 284		return false;
 285
 286	if (check_tick_dependency(&current->signal->tick_dep_mask))
 287		return false;
 288
 289	return true;
 290}
 291
 292static void nohz_full_kick_func(struct irq_work *work)
 293{
 294	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 295}
 296
 297static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
 298	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
 299
 300/*
 301 * Kick this CPU if it's full dynticks in order to force it to
 302 * re-evaluate its dependency on the tick and restart it if necessary.
 303 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 304 * is NMI safe.
 305 */
 306static void tick_nohz_full_kick(void)
 307{
 308	if (!tick_nohz_full_cpu(smp_processor_id()))
 309		return;
 310
 311	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 312}
 313
 314/*
 315 * Kick the CPU if it's full dynticks in order to force it to
 316 * re-evaluate its dependency on the tick and restart it if necessary.
 317 */
 318void tick_nohz_full_kick_cpu(int cpu)
 319{
 320	if (!tick_nohz_full_cpu(cpu))
 321		return;
 322
 323	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 324}
 325
 326static void tick_nohz_kick_task(struct task_struct *tsk)
 327{
 328	int cpu;
 329
 330	/*
 331	 * If the task is not running, run_posix_cpu_timers()
 332	 * has nothing to elapse, IPI can then be spared.
 333	 *
 334	 * activate_task()                      STORE p->tick_dep_mask
 335	 *   STORE p->on_rq
 336	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
 337	 *   LOCK rq->lock                      LOAD p->on_rq
 338	 *   smp_mb__after_spin_lock()
 339	 *   tick_nohz_task_switch()
 340	 *     LOAD p->tick_dep_mask
 341	 */
 342	if (!sched_task_on_rq(tsk))
 343		return;
 344
 345	/*
 346	 * If the task concurrently migrates to another CPU,
 347	 * we guarantee it sees the new tick dependency upon
 348	 * schedule.
 349	 *
 350	 * set_task_cpu(p, cpu);
 351	 *   STORE p->cpu = @cpu
 352	 * __schedule() (switch to task 'p')
 353	 *   LOCK rq->lock
 354	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
 355	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
 356	 *      LOAD p->tick_dep_mask           LOAD p->cpu
 357	 */
 358	cpu = task_cpu(tsk);
 359
 360	preempt_disable();
 361	if (cpu_online(cpu))
 362		tick_nohz_full_kick_cpu(cpu);
 363	preempt_enable();
 364}
 365
 366/*
 367 * Kick all full dynticks CPUs in order to force these to re-evaluate
 368 * their dependency on the tick and restart it if necessary.
 369 */
 370static void tick_nohz_full_kick_all(void)
 371{
 372	int cpu;
 373
 374	if (!tick_nohz_full_running)
 375		return;
 376
 377	preempt_disable();
 378	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 379		tick_nohz_full_kick_cpu(cpu);
 380	preempt_enable();
 381}
 382
 383static void tick_nohz_dep_set_all(atomic_t *dep,
 384				  enum tick_dep_bits bit)
 385{
 386	int prev;
 387
 388	prev = atomic_fetch_or(BIT(bit), dep);
 389	if (!prev)
 390		tick_nohz_full_kick_all();
 391}
 392
 393/*
 394 * Set a global tick dependency. Used by perf events that rely on freq and
 395 * by unstable clock.
 396 */
 397void tick_nohz_dep_set(enum tick_dep_bits bit)
 398{
 399	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 400}
 401
 402void tick_nohz_dep_clear(enum tick_dep_bits bit)
 403{
 404	atomic_andnot(BIT(bit), &tick_dep_mask);
 405}
 406
 407/*
 408 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 409 * manage events throttling.
 410 */
 411void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 412{
 413	int prev;
 414	struct tick_sched *ts;
 415
 416	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 417
 418	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 419	if (!prev) {
 420		preempt_disable();
 421		/* Perf needs local kick that is NMI safe */
 422		if (cpu == smp_processor_id()) {
 423			tick_nohz_full_kick();
 424		} else {
 425			/* Remote irq work not NMI-safe */
 426			if (!WARN_ON_ONCE(in_nmi()))
 427				tick_nohz_full_kick_cpu(cpu);
 428		}
 429		preempt_enable();
 430	}
 431}
 432EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
 433
 434void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 435{
 436	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 437
 438	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 439}
 440EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
 441
 442/*
 443 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
 444 * in order to elapse per task timers.
 445 */
 446void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 447{
 448	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
 449		tick_nohz_kick_task(tsk);
 450}
 451EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
 452
 453void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 454{
 455	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 456}
 457EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
 458
 459/*
 460 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 461 * per process timers.
 462 */
 463void tick_nohz_dep_set_signal(struct task_struct *tsk,
 464			      enum tick_dep_bits bit)
 465{
 466	int prev;
 467	struct signal_struct *sig = tsk->signal;
 468
 469	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
 470	if (!prev) {
 471		struct task_struct *t;
 472
 473		lockdep_assert_held(&tsk->sighand->siglock);
 474		__for_each_thread(sig, t)
 475			tick_nohz_kick_task(t);
 476	}
 477}
 478
 479void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 480{
 481	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 482}
 483
 484/*
 485 * Re-evaluate the need for the tick as we switch the current task.
 486 * It might need the tick due to per task/process properties:
 487 * perf events, posix CPU timers, ...
 488 */
 489void __tick_nohz_task_switch(void)
 490{
 491	struct tick_sched *ts;
 492
 493	if (!tick_nohz_full_cpu(smp_processor_id()))
 494		return;
 495
 496	ts = this_cpu_ptr(&tick_cpu_sched);
 497
 498	if (ts->tick_stopped) {
 499		if (atomic_read(&current->tick_dep_mask) ||
 500		    atomic_read(&current->signal->tick_dep_mask))
 501			tick_nohz_full_kick();
 502	}
 503}
 504
 505/* Get the boot-time nohz CPU list from the kernel parameters. */
 506void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 507{
 508	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 509	cpumask_copy(tick_nohz_full_mask, cpumask);
 510	tick_nohz_full_running = true;
 511}
 512EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
 513
 514static int tick_nohz_cpu_down(unsigned int cpu)
 515{
 516	/*
 517	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
 518	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 519	 * CPUs. It must remain online when nohz full is enabled.
 520	 */
 521	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 522		return -EBUSY;
 523	return 0;
 
 
 
 
 
 524}
 525
 526void __init tick_nohz_init(void)
 527{
 528	int cpu, ret;
 529
 530	if (!tick_nohz_full_running)
 531		return;
 532
 533	/*
 534	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 535	 * locking contexts. But then we need irq work to raise its own
 536	 * interrupts to avoid circular dependency on the tick
 537	 */
 538	if (!arch_irq_work_has_interrupt()) {
 539		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 540		cpumask_clear(tick_nohz_full_mask);
 541		tick_nohz_full_running = false;
 542		return;
 543	}
 544
 545	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 546			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 547		cpu = smp_processor_id();
 548
 549		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 550			pr_warn("NO_HZ: Clearing %d from nohz_full range "
 551				"for timekeeping\n", cpu);
 552			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 553		}
 554	}
 555
 556	for_each_cpu(cpu, tick_nohz_full_mask)
 557		context_tracking_cpu_set(cpu);
 558
 559	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 560					"kernel/nohz:predown", NULL,
 561					tick_nohz_cpu_down);
 562	WARN_ON(ret < 0);
 563	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 564		cpumask_pr_args(tick_nohz_full_mask));
 565}
 566#endif
 567
 568/*
 569 * NOHZ - aka dynamic tick functionality
 570 */
 571#ifdef CONFIG_NO_HZ_COMMON
 572/*
 573 * NO HZ enabled ?
 574 */
 575bool tick_nohz_enabled __read_mostly  = true;
 576unsigned long tick_nohz_active  __read_mostly;
 577/*
 578 * Enable / Disable tickless mode
 579 */
 580static int __init setup_tick_nohz(char *str)
 581{
 582	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 583}
 584
 585__setup("nohz=", setup_tick_nohz);
 586
 587bool tick_nohz_tick_stopped(void)
 588{
 589	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 590
 591	return ts->tick_stopped;
 592}
 593
 594bool tick_nohz_tick_stopped_cpu(int cpu)
 595{
 596	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 597
 598	return ts->tick_stopped;
 599}
 600
 601/**
 602 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 
 603 *
 604 * Called from interrupt entry when the CPU was idle
 605 *
 606 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 607 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 608 * value. We do this unconditionally on any CPU, as we don't know whether the
 609 * CPU, which has the update task assigned is in a long sleep.
 610 */
 611static void tick_nohz_update_jiffies(ktime_t now)
 612{
 613	unsigned long flags;
 614
 615	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 616
 617	local_irq_save(flags);
 618	tick_do_update_jiffies64(now);
 619	local_irq_restore(flags);
 620
 621	touch_softlockup_watchdog_sched();
 622}
 623
 624/*
 625 * Updates the per-CPU time idle statistics counters
 626 */
 627static void
 628update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 629{
 630	ktime_t delta;
 631
 632	if (ts->idle_active) {
 633		delta = ktime_sub(now, ts->idle_entrytime);
 634		if (nr_iowait_cpu(cpu) > 0)
 635			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 636		else
 637			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 638		ts->idle_entrytime = now;
 639	}
 640
 641	if (last_update_time)
 642		*last_update_time = ktime_to_us(now);
 643
 644}
 
 
 
 
 645
 646static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 647{
 648	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 649	ts->idle_active = 0;
 650
 651	sched_clock_idle_wakeup_event();
 652}
 653
 654static void tick_nohz_start_idle(struct tick_sched *ts)
 655{
 
 656	ts->idle_entrytime = ktime_get();
 657	ts->idle_active = 1;
 
 
 658	sched_clock_idle_sleep_event();
 659}
 660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 661/**
 662 * get_cpu_idle_time_us - get the total idle time of a CPU
 663 * @cpu: CPU number to query
 664 * @last_update_time: variable to store update time in. Do not update
 665 * counters if NULL.
 666 *
 667 * Return the cumulative idle time (since boot) for a given
 668 * CPU, in microseconds.
 
 
 
 669 *
 670 * This time is measured via accounting rather than sampling,
 671 * and is as accurate as ktime_get() is.
 672 *
 673 * This function returns -1 if NOHZ is not enabled.
 674 */
 675u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 676{
 677	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 678	ktime_t now, idle;
 679
 680	if (!tick_nohz_active)
 681		return -1;
 682
 683	now = ktime_get();
 684	if (last_update_time) {
 685		update_ts_time_stats(cpu, ts, now, last_update_time);
 686		idle = ts->idle_sleeptime;
 687	} else {
 688		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 689			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 690
 691			idle = ktime_add(ts->idle_sleeptime, delta);
 692		} else {
 693			idle = ts->idle_sleeptime;
 694		}
 695	}
 696
 697	return ktime_to_us(idle);
 698
 
 
 699}
 700EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 701
 702/**
 703 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 704 * @cpu: CPU number to query
 705 * @last_update_time: variable to store update time in. Do not update
 706 * counters if NULL.
 707 *
 708 * Return the cumulative iowait time (since boot) for a given
 709 * CPU, in microseconds.
 
 
 
 710 *
 711 * This time is measured via accounting rather than sampling,
 712 * and is as accurate as ktime_get() is.
 713 *
 714 * This function returns -1 if NOHZ is not enabled.
 715 */
 716u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 717{
 718	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 719	ktime_t now, iowait;
 720
 721	if (!tick_nohz_active)
 722		return -1;
 723
 724	now = ktime_get();
 725	if (last_update_time) {
 726		update_ts_time_stats(cpu, ts, now, last_update_time);
 727		iowait = ts->iowait_sleeptime;
 728	} else {
 729		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 730			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 731
 732			iowait = ktime_add(ts->iowait_sleeptime, delta);
 733		} else {
 734			iowait = ts->iowait_sleeptime;
 735		}
 736	}
 737
 738	return ktime_to_us(iowait);
 739}
 740EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 741
 742static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 743{
 744	hrtimer_cancel(&ts->sched_timer);
 745	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 746
 747	/* Forward the time to expire in the future */
 748	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
 749
 750	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 751		hrtimer_start_expires(&ts->sched_timer,
 752				      HRTIMER_MODE_ABS_PINNED_HARD);
 753	} else {
 754		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 755	}
 756
 757	/*
 758	 * Reset to make sure next tick stop doesn't get fooled by past
 759	 * cached clock deadline.
 760	 */
 761	ts->next_tick = 0;
 762}
 763
 764static inline bool local_timer_softirq_pending(void)
 765{
 766	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 767}
 768
 769static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 
 
 
 770{
 771	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 772	unsigned long basejiff;
 773	unsigned int seq;
 
 774
 775	/* Read jiffies and the time when jiffies were updated last */
 776	do {
 777		seq = read_seqcount_begin(&jiffies_seq);
 778		basemono = last_jiffies_update;
 779		basejiff = jiffies;
 780	} while (read_seqcount_retry(&jiffies_seq, seq));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781	ts->last_jiffies = basejiff;
 782	ts->timer_expires_base = basemono;
 783
 784	/*
 785	 * Keep the periodic tick, when RCU, architecture or irq_work
 786	 * requests it.
 787	 * Aside of that check whether the local timer softirq is
 788	 * pending. If so its a bad idea to call get_next_timer_interrupt()
 789	 * because there is an already expired timer, so it will request
 790	 * immediate expiry, which rearms the hardware timer with a
 791	 * minimal delta which brings us back to this place
 792	 * immediately. Lather, rinse and repeat...
 793	 */
 794	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
 795	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 796		next_tick = basemono + TICK_NSEC;
 797	} else {
 798		/*
 799		 * Get the next pending timer. If high resolution
 800		 * timers are enabled this only takes the timer wheel
 801		 * timers into account. If high resolution timers are
 802		 * disabled this also looks at the next expiring
 803		 * hrtimer.
 804		 */
 805		next_tmr = get_next_timer_interrupt(basejiff, basemono);
 806		ts->next_timer = next_tmr;
 807		/* Take the next rcu event into account */
 808		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 809	}
 810
 
 
 
 
 811	/*
 812	 * If the tick is due in the next period, keep it ticking or
 813	 * force prod the timer.
 814	 */
 815	delta = next_tick - basemono;
 816	if (delta <= (u64)TICK_NSEC) {
 817		/*
 818		 * Tell the timer code that the base is not idle, i.e. undo
 819		 * the effect of get_next_timer_interrupt():
 820		 */
 821		timer_clear_idle();
 822		/*
 823		 * We've not stopped the tick yet, and there's a timer in the
 824		 * next period, so no point in stopping it either, bail.
 825		 */
 826		if (!ts->tick_stopped) {
 827			ts->timer_expires = 0;
 828			goto out;
 829		}
 830	}
 831
 832	/*
 833	 * If this CPU is the one which had the do_timer() duty last, we limit
 834	 * the sleep time to the timekeeping max_deferment value.
 835	 * Otherwise we can sleep as long as we want.
 836	 */
 837	delta = timekeeping_max_deferment();
 838	if (cpu != tick_do_timer_cpu &&
 839	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 
 840		delta = KTIME_MAX;
 841
 842	/* Calculate the next expiry time */
 843	if (delta < (KTIME_MAX - basemono))
 844		expires = basemono + delta;
 845	else
 846		expires = KTIME_MAX;
 847
 848	ts->timer_expires = min_t(u64, expires, next_tick);
 849
 850out:
 851	return ts->timer_expires;
 852}
 853
 854static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 855{
 856	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 
 857	u64 basemono = ts->timer_expires_base;
 858	u64 expires = ts->timer_expires;
 859	ktime_t tick = expires;
 
 860
 861	/* Make sure we won't be trying to stop it twice in a row. */
 862	ts->timer_expires_base = 0;
 863
 864	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865	 * If this CPU is the one which updates jiffies, then give up
 866	 * the assignment and let it be taken by the CPU which runs
 867	 * the tick timer next, which might be this CPU as well. If we
 868	 * don't drop this here the jiffies might be stale and
 869	 * do_timer() never invoked. Keep track of the fact that it
 870	 * was the one which had the do_timer() duty last.
 871	 */
 872	if (cpu == tick_do_timer_cpu) {
 873		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 874		ts->do_timer_last = 1;
 875	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 876		ts->do_timer_last = 0;
 
 877	}
 878
 879	/* Skip reprogram of event if its not changed */
 880	if (ts->tick_stopped && (expires == ts->next_tick)) {
 881		/* Sanity check: make sure clockevent is actually programmed */
 882		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 883			return;
 884
 885		WARN_ON_ONCE(1);
 886		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 887			    basemono, ts->next_tick, dev->next_event,
 888			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 889	}
 890
 891	/*
 892	 * nohz_stop_sched_tick can be called several times before
 893	 * the nohz_restart_sched_tick is called. This happens when
 894	 * interrupts arrive which do not cause a reschedule. In the
 895	 * first call we save the current tick time, so we can restart
 896	 * the scheduler tick in nohz_restart_sched_tick.
 897	 */
 898	if (!ts->tick_stopped) {
 899		calc_load_nohz_start();
 900		quiet_vmstat();
 901
 902		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 903		ts->tick_stopped = 1;
 904		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 905	}
 906
 907	ts->next_tick = tick;
 908
 909	/*
 910	 * If the expiration time == KTIME_MAX, then we simply stop
 911	 * the tick timer.
 912	 */
 913	if (unlikely(expires == KTIME_MAX)) {
 914		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 915			hrtimer_cancel(&ts->sched_timer);
 916		return;
 917	}
 918
 919	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 920		hrtimer_start(&ts->sched_timer, tick,
 921			      HRTIMER_MODE_ABS_PINNED_HARD);
 922	} else {
 923		hrtimer_set_expires(&ts->sched_timer, tick);
 924		tick_program_event(tick, 1);
 925	}
 926}
 927
 928static void tick_nohz_retain_tick(struct tick_sched *ts)
 929{
 930	ts->timer_expires_base = 0;
 931}
 932
 933#ifdef CONFIG_NO_HZ_FULL
 934static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 935{
 936	if (tick_nohz_next_event(ts, cpu))
 937		tick_nohz_stop_tick(ts, cpu);
 938	else
 939		tick_nohz_retain_tick(ts);
 940}
 941#endif /* CONFIG_NO_HZ_FULL */
 942
 943static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 944{
 945	/* Update jiffies first */
 946	tick_do_update_jiffies64(now);
 947
 948	/*
 949	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 950	 * the clock forward checks in the enqueue path:
 951	 */
 952	timer_clear_idle();
 953
 954	calc_load_nohz_stop();
 955	touch_softlockup_watchdog_sched();
 956	/*
 957	 * Cancel the scheduled timer and restore the tick
 958	 */
 959	ts->tick_stopped  = 0;
 960	tick_nohz_restart(ts, now);
 961}
 962
 963static void __tick_nohz_full_update_tick(struct tick_sched *ts,
 964					 ktime_t now)
 965{
 966#ifdef CONFIG_NO_HZ_FULL
 967	int cpu = smp_processor_id();
 968
 969	if (can_stop_full_tick(cpu, ts))
 970		tick_nohz_stop_sched_tick(ts, cpu);
 971	else if (ts->tick_stopped)
 972		tick_nohz_restart_sched_tick(ts, now);
 973#endif
 974}
 975
 976static void tick_nohz_full_update_tick(struct tick_sched *ts)
 977{
 978	if (!tick_nohz_full_cpu(smp_processor_id()))
 979		return;
 980
 981	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 982		return;
 983
 984	__tick_nohz_full_update_tick(ts, ktime_get());
 985}
 986
 987static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 
 
 
 
 
 
 
 
 
 
 988{
 989	/*
 990	 * If this CPU is offline and it is the one which updates
 991	 * jiffies, then give up the assignment and let it be taken by
 992	 * the CPU which runs the tick timer next. If we don't drop
 993	 * this here the jiffies might be stale and do_timer() never
 994	 * invoked.
 995	 */
 996	if (unlikely(!cpu_online(cpu))) {
 997		if (cpu == tick_do_timer_cpu)
 998			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 999		/*
1000		 * Make sure the CPU doesn't get fooled by obsolete tick
1001		 * deadline if it comes back online later.
1002		 */
1003		ts->next_tick = 0;
1004		return false;
 
 
 
 
 
 
1005	}
1006
1007	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008		return false;
1009
1010	if (need_resched())
1011		return false;
1012
1013	if (unlikely(local_softirq_pending())) {
1014		static int ratelimit;
1015
1016		if (ratelimit < 10 && !local_bh_blocked() &&
1017		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
1018			pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
1019				(unsigned int) local_softirq_pending());
1020			ratelimit++;
1021		}
1022		return false;
1023	}
1024
1025	if (tick_nohz_full_enabled()) {
 
 
1026		/*
1027		 * Keep the tick alive to guarantee timekeeping progression
1028		 * if there are full dynticks CPUs around
1029		 */
1030		if (tick_do_timer_cpu == cpu)
1031			return false;
1032
1033		/* Should not happen for nohz-full */
1034		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1035			return false;
1036	}
1037
1038	return true;
1039}
1040
1041static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
 
 
 
 
 
1042{
 
 
1043	ktime_t expires;
1044	int cpu = smp_processor_id();
1045
1046	/*
1047	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1048	 * tick timer expiration time is known already.
1049	 */
1050	if (ts->timer_expires_base)
1051		expires = ts->timer_expires;
1052	else if (can_stop_idle_tick(cpu, ts))
1053		expires = tick_nohz_next_event(ts, cpu);
1054	else
1055		return;
1056
1057	ts->idle_calls++;
1058
1059	if (expires > 0LL) {
1060		int was_stopped = ts->tick_stopped;
1061
1062		tick_nohz_stop_tick(ts, cpu);
1063
1064		ts->idle_sleeps++;
1065		ts->idle_expires = expires;
1066
1067		if (!was_stopped && ts->tick_stopped) {
1068			ts->idle_jiffies = ts->last_jiffies;
1069			nohz_balance_enter_idle(cpu);
1070		}
1071	} else {
1072		tick_nohz_retain_tick(ts);
1073	}
1074}
1075
1076/**
1077 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1078 *
1079 * When the next event is more than a tick into the future, stop the idle tick
1080 */
1081void tick_nohz_idle_stop_tick(void)
1082{
1083	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1084}
1085
1086void tick_nohz_idle_retain_tick(void)
1087{
1088	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1089	/*
1090	 * Undo the effect of get_next_timer_interrupt() called from
1091	 * tick_nohz_next_event().
1092	 */
1093	timer_clear_idle();
1094}
1095
1096/**
1097 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1098 *
1099 * Called when we start the idle loop.
1100 */
1101void tick_nohz_idle_enter(void)
1102{
1103	struct tick_sched *ts;
1104
1105	lockdep_assert_irqs_enabled();
1106
1107	local_irq_disable();
1108
1109	ts = this_cpu_ptr(&tick_cpu_sched);
1110
1111	WARN_ON_ONCE(ts->timer_expires_base);
1112
1113	ts->inidle = 1;
1114	tick_nohz_start_idle(ts);
1115
1116	local_irq_enable();
1117}
1118
1119/**
1120 * tick_nohz_irq_exit - update next tick event from interrupt exit
 
 
 
 
 
 
 
 
 
1121 *
1122 * When an interrupt fires while we are idle and it doesn't cause
1123 * a reschedule, it may still add, modify or delete a timer, enqueue
1124 * an RCU callback, etc...
1125 * So we need to re-calculate and reprogram the next tick event.
 
 
1126 */
1127void tick_nohz_irq_exit(void)
1128{
1129	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1130
1131	if (ts->inidle)
1132		tick_nohz_start_idle(ts);
1133	else
1134		tick_nohz_full_update_tick(ts);
1135}
1136
1137/**
1138 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
 
 
1139 */
1140bool tick_nohz_idle_got_tick(void)
1141{
1142	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1143
1144	if (ts->got_idle_tick) {
1145		ts->got_idle_tick = 0;
1146		return true;
1147	}
1148	return false;
1149}
1150
1151/**
1152 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1153 * or the tick, whatever that expires first. Note that, if the tick has been
1154 * stopped, it returns the next hrtimer.
1155 *
1156 * Called from power state control code with interrupts disabled
 
 
1157 */
1158ktime_t tick_nohz_get_next_hrtimer(void)
1159{
1160	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1161}
1162
1163/**
1164 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1165 * @delta_next: duration until the next event if the tick cannot be stopped
1166 *
1167 * Called from power state control code with interrupts disabled.
1168 *
1169 * The return value of this function and/or the value returned by it through the
1170 * @delta_next pointer can be negative which must be taken into account by its
1171 * callers.
 
 
1172 */
1173ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1174{
1175	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1176	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1177	int cpu = smp_processor_id();
1178	/*
1179	 * The idle entry time is expected to be a sufficient approximation of
1180	 * the current time at this point.
1181	 */
1182	ktime_t now = ts->idle_entrytime;
1183	ktime_t next_event;
1184
1185	WARN_ON_ONCE(!ts->inidle);
1186
1187	*delta_next = ktime_sub(dev->next_event, now);
1188
1189	if (!can_stop_idle_tick(cpu, ts))
1190		return *delta_next;
1191
1192	next_event = tick_nohz_next_event(ts, cpu);
1193	if (!next_event)
1194		return *delta_next;
1195
1196	/*
1197	 * If the next highres timer to expire is earlier than next_event, the
1198	 * idle governor needs to know that.
1199	 */
1200	next_event = min_t(u64, next_event,
1201			   hrtimer_next_event_without(&ts->sched_timer));
1202
1203	return ktime_sub(next_event, now);
1204}
1205
1206/**
1207 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1208 * for a particular CPU.
 
1209 *
1210 * Called from the schedutil frequency scaling governor in scheduler context.
 
 
1211 */
1212unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1213{
1214	struct tick_sched *ts = tick_get_tick_sched(cpu);
1215
1216	return ts->idle_calls;
1217}
1218
1219/**
1220 * tick_nohz_get_idle_calls - return the current idle calls counter value
1221 *
1222 * Called from the schedutil frequency scaling governor in scheduler context.
 
 
1223 */
1224unsigned long tick_nohz_get_idle_calls(void)
1225{
1226	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1227
1228	return ts->idle_calls;
1229}
1230
1231static void tick_nohz_account_idle_time(struct tick_sched *ts,
1232					ktime_t now)
1233{
1234	unsigned long ticks;
1235
1236	ts->idle_exittime = now;
1237
1238	if (vtime_accounting_enabled_this_cpu())
1239		return;
1240	/*
1241	 * We stopped the tick in idle. Update process times would miss the
1242	 * time we slept as update_process_times does only a 1 tick
1243	 * accounting. Enforce that this is accounted to idle !
1244	 */
1245	ticks = jiffies - ts->idle_jiffies;
1246	/*
1247	 * We might be one off. Do not randomly account a huge number of ticks!
1248	 */
1249	if (ticks && ticks < LONG_MAX)
1250		account_idle_ticks(ticks);
1251}
1252
1253void tick_nohz_idle_restart_tick(void)
1254{
1255	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1256
1257	if (ts->tick_stopped) {
1258		ktime_t now = ktime_get();
1259		tick_nohz_restart_sched_tick(ts, now);
1260		tick_nohz_account_idle_time(ts, now);
1261	}
1262}
1263
1264static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1265{
1266	if (tick_nohz_full_cpu(smp_processor_id()))
1267		__tick_nohz_full_update_tick(ts, now);
1268	else
1269		tick_nohz_restart_sched_tick(ts, now);
1270
1271	tick_nohz_account_idle_time(ts, now);
1272}
1273
1274/**
1275 * tick_nohz_idle_exit - restart the idle tick from the idle task
 
 
 
 
 
 
 
 
 
 
 
 
1276 *
1277 * Restart the idle tick when the CPU is woken up from idle
1278 * This also exit the RCU extended quiescent state. The CPU
1279 * can use RCU again after this function is called.
1280 */
1281void tick_nohz_idle_exit(void)
1282{
1283	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1284	bool idle_active, tick_stopped;
1285	ktime_t now;
1286
1287	local_irq_disable();
1288
1289	WARN_ON_ONCE(!ts->inidle);
1290	WARN_ON_ONCE(ts->timer_expires_base);
1291
1292	ts->inidle = 0;
1293	idle_active = ts->idle_active;
1294	tick_stopped = ts->tick_stopped;
1295
1296	if (idle_active || tick_stopped)
1297		now = ktime_get();
1298
1299	if (idle_active)
1300		tick_nohz_stop_idle(ts, now);
1301
1302	if (tick_stopped)
1303		tick_nohz_idle_update_tick(ts, now);
1304
1305	local_irq_enable();
1306}
1307
1308/*
1309 * The nohz low res interrupt handler
 
 
 
1310 */
1311static void tick_nohz_handler(struct clock_event_device *dev)
1312{
1313	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1314	struct pt_regs *regs = get_irq_regs();
1315	ktime_t now = ktime_get();
1316
1317	dev->next_event = KTIME_MAX;
1318
1319	tick_sched_do_timer(ts, now);
1320	tick_sched_handle(ts, regs);
1321
1322	/* No need to reprogram if we are running tickless  */
1323	if (unlikely(ts->tick_stopped))
1324		return;
1325
1326	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1327	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1328}
1329
1330static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1331{
1332	if (!tick_nohz_enabled)
1333		return;
1334	ts->nohz_mode = mode;
1335	/* One update is enough */
1336	if (!test_and_set_bit(0, &tick_nohz_active))
1337		timers_update_nohz();
1338}
1339
1340/**
1341 * tick_nohz_switch_to_nohz - switch to nohz mode
1342 */
1343static void tick_nohz_switch_to_nohz(void)
1344{
1345	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1346	ktime_t next;
1347
1348	if (!tick_nohz_enabled)
1349		return;
1350
1351	if (tick_switch_to_oneshot(tick_nohz_handler))
1352		return;
1353
1354	/*
1355	 * Recycle the hrtimer in ts, so we can share the
1356	 * hrtimer_forward with the highres code.
1357	 */
1358	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1359	/* Get the next period */
1360	next = tick_init_jiffy_update();
1361
1362	hrtimer_set_expires(&ts->sched_timer, next);
1363	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1364	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1365	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1366}
1367
1368static inline void tick_nohz_irq_enter(void)
1369{
1370	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1371	ktime_t now;
1372
1373	if (!ts->idle_active && !ts->tick_stopped)
1374		return;
1375	now = ktime_get();
1376	if (ts->idle_active)
1377		tick_nohz_stop_idle(ts, now);
1378	if (ts->tick_stopped)
 
 
 
 
 
 
 
1379		tick_nohz_update_jiffies(now);
1380}
1381
1382#else
1383
1384static inline void tick_nohz_switch_to_nohz(void) { }
1385static inline void tick_nohz_irq_enter(void) { }
1386static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1387
1388#endif /* CONFIG_NO_HZ_COMMON */
1389
1390/*
1391 * Called from irq_enter to notify about the possible interruption of idle()
1392 */
1393void tick_irq_enter(void)
1394{
1395	tick_check_oneshot_broadcast_this_cpu();
1396	tick_nohz_irq_enter();
1397}
1398
1399/*
1400 * High resolution timer specific code
1401 */
1402#ifdef CONFIG_HIGH_RES_TIMERS
1403/*
1404 * We rearm the timer until we get disabled by the idle code.
1405 * Called with interrupts disabled.
1406 */
1407static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1408{
1409	struct tick_sched *ts =
1410		container_of(timer, struct tick_sched, sched_timer);
1411	struct pt_regs *regs = get_irq_regs();
1412	ktime_t now = ktime_get();
1413
1414	tick_sched_do_timer(ts, now);
1415
1416	/*
1417	 * Do not call, when we are not in irq context and have
1418	 * no valid regs pointer
1419	 */
1420	if (regs)
1421		tick_sched_handle(ts, regs);
1422	else
1423		ts->next_tick = 0;
1424
1425	/* No need to reprogram if we are in idle or full dynticks mode */
1426	if (unlikely(ts->tick_stopped))
1427		return HRTIMER_NORESTART;
1428
1429	hrtimer_forward(timer, now, TICK_NSEC);
1430
1431	return HRTIMER_RESTART;
1432}
1433
1434static int sched_skew_tick;
1435
1436static int __init skew_tick(char *str)
1437{
1438	get_option(&str, &sched_skew_tick);
1439
1440	return 0;
1441}
1442early_param("skew_tick", skew_tick);
1443
1444/**
1445 * tick_setup_sched_timer - setup the tick emulation timer
 
1446 */
1447void tick_setup_sched_timer(void)
1448{
1449	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1450	ktime_t now = ktime_get();
1451
1452	/*
1453	 * Emulate tick processing via per-CPU hrtimers:
1454	 */
1455	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1456	ts->sched_timer.function = tick_sched_timer;
 
 
 
 
1457
1458	/* Get the next period (per-CPU) */
1459	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1460
1461	/* Offset the tick to avert jiffies_lock contention. */
1462	if (sched_skew_tick) {
1463		u64 offset = TICK_NSEC >> 1;
1464		do_div(offset, num_possible_cpus());
1465		offset *= smp_processor_id();
1466		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1467	}
1468
1469	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1470	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1471	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
 
 
 
1472}
1473#endif /* HIGH_RES_TIMERS */
1474
1475#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1476void tick_cancel_sched_timer(int cpu)
 
 
 
1477{
 
1478	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 
 
 
 
 
 
1479
1480# ifdef CONFIG_HIGH_RES_TIMERS
1481	if (ts->sched_timer.base)
1482		hrtimer_cancel(&ts->sched_timer);
1483# endif
 
 
1484
 
 
 
 
1485	memset(ts, 0, sizeof(*ts));
 
 
 
 
1486}
1487#endif
1488
1489/**
1490 * Async notification about clocksource changes
1491 */
1492void tick_clock_notify(void)
1493{
1494	int cpu;
1495
1496	for_each_possible_cpu(cpu)
1497		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1498}
1499
1500/*
1501 * Async notification about clock event changes
1502 */
1503void tick_oneshot_notify(void)
1504{
1505	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1506
1507	set_bit(0, &ts->check_clocks);
1508}
1509
1510/**
1511 * Check, if a change happened, which makes oneshot possible.
1512 *
1513 * Called cyclic from the hrtimer softirq (driven by the timer
1514 * softirq) allow_nohz signals, that we can switch into low-res nohz
1515 * mode, because high resolution timers are disabled (either compile
1516 * or runtime). Called with interrupts disabled.
1517 */
1518int tick_check_oneshot_change(int allow_nohz)
1519{
1520	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1521
1522	if (!test_and_clear_bit(0, &ts->check_clocks))
1523		return 0;
1524
1525	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1526		return 0;
1527
1528	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1529		return 0;
1530
1531	if (!allow_nohz)
1532		return 1;
1533
1534	tick_nohz_switch_to_nohz();
1535	return 0;
1536}