Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  NOHZ implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
  10 */
  11#include <linux/compiler.h>
  12#include <linux/cpu.h>
  13#include <linux/err.h>
  14#include <linux/hrtimer.h>
  15#include <linux/interrupt.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/percpu.h>
  18#include <linux/nmi.h>
  19#include <linux/profile.h>
  20#include <linux/sched/signal.h>
  21#include <linux/sched/clock.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/nohz.h>
  24#include <linux/sched/loadavg.h>
  25#include <linux/module.h>
  26#include <linux/irq_work.h>
  27#include <linux/posix-timers.h>
  28#include <linux/context_tracking.h>
  29#include <linux/mm.h>
  30
  31#include <asm/irq_regs.h>
  32
  33#include "tick-internal.h"
  34
  35#include <trace/events/timer.h>
  36
  37/*
  38 * Per-CPU nohz control structure
  39 */
  40static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  41
  42struct tick_sched *tick_get_tick_sched(int cpu)
  43{
  44	return &per_cpu(tick_cpu_sched, cpu);
  45}
  46
  47/*
  48 * The time when the last jiffy update happened. Write access must hold
  49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
  50 * consistent view of jiffies and last_jiffies_update.
  51 */
  52static ktime_t last_jiffies_update;
  53
  54/*
  55 * Must be called with interrupts disabled !
  56 */
  57static void tick_do_update_jiffies64(ktime_t now)
  58{
  59	unsigned long ticks = 1;
  60	ktime_t delta, nextp;
  61
  62	/*
  63	 * 64-bit can do a quick check without holding the jiffies lock and
  64	 * without looking at the sequence count. The smp_load_acquire()
  65	 * pairs with the update done later in this function.
  66	 *
  67	 * 32-bit cannot do that because the store of 'tick_next_period'
  68	 * consists of two 32-bit stores, and the first store could be
  69	 * moved by the CPU to a random point in the future.
  70	 */
  71	if (IS_ENABLED(CONFIG_64BIT)) {
  72		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
  73			return;
  74	} else {
  75		unsigned int seq;
  76
  77		/*
  78		 * Avoid contention on 'jiffies_lock' and protect the quick
  79		 * check with the sequence count.
  80		 */
  81		do {
  82			seq = read_seqcount_begin(&jiffies_seq);
  83			nextp = tick_next_period;
  84		} while (read_seqcount_retry(&jiffies_seq, seq));
  85
  86		if (ktime_before(now, nextp))
  87			return;
  88	}
  89
  90	/* Quick check failed, i.e. update is required. */
  91	raw_spin_lock(&jiffies_lock);
  92	/*
  93	 * Re-evaluate with the lock held. Another CPU might have done the
  94	 * update already.
  95	 */
  96	if (ktime_before(now, tick_next_period)) {
  97		raw_spin_unlock(&jiffies_lock);
  98		return;
  99	}
 100
 101	write_seqcount_begin(&jiffies_seq);
 102
 103	delta = ktime_sub(now, tick_next_period);
 104	if (unlikely(delta >= TICK_NSEC)) {
 105		/* Slow path for long idle sleep times */
 106		s64 incr = TICK_NSEC;
 107
 108		ticks += ktime_divns(delta, incr);
 109
 110		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 111						   incr * ticks);
 112	} else {
 113		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 114						   TICK_NSEC);
 115	}
 116
 117	/* Advance jiffies to complete the 'jiffies_seq' protected job */
 118	jiffies_64 += ticks;
 119
 120	/* Keep the tick_next_period variable up to date */
 121	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
 122
 123	if (IS_ENABLED(CONFIG_64BIT)) {
 124		/*
 125		 * Pairs with smp_load_acquire() in the lockless quick
 126		 * check above, and ensures that the update to 'jiffies_64' is
 127		 * not reordered vs. the store to 'tick_next_period', neither
 128		 * by the compiler nor by the CPU.
 129		 */
 130		smp_store_release(&tick_next_period, nextp);
 131	} else {
 132		/*
 133		 * A plain store is good enough on 32-bit, as the quick check
 134		 * above is protected by the sequence count.
 135		 */
 136		tick_next_period = nextp;
 137	}
 138
 139	/*
 140	 * Release the sequence count. calc_global_load() below is not
 141	 * protected by it, but 'jiffies_lock' needs to be held to prevent
 142	 * concurrent invocations.
 143	 */
 144	write_seqcount_end(&jiffies_seq);
 145
 146	calc_global_load();
 147
 148	raw_spin_unlock(&jiffies_lock);
 149	update_wall_time();
 150}
 151
 152/*
 153 * Initialize and return retrieve the jiffies update.
 154 */
 155static ktime_t tick_init_jiffy_update(void)
 156{
 157	ktime_t period;
 158
 159	raw_spin_lock(&jiffies_lock);
 160	write_seqcount_begin(&jiffies_seq);
 161
 162	/* Have we started the jiffies update yet ? */
 163	if (last_jiffies_update == 0) {
 164		u32 rem;
 165
 166		/*
 167		 * Ensure that the tick is aligned to a multiple of
 168		 * TICK_NSEC.
 169		 */
 170		div_u64_rem(tick_next_period, TICK_NSEC, &rem);
 171		if (rem)
 172			tick_next_period += TICK_NSEC - rem;
 173
 174		last_jiffies_update = tick_next_period;
 175	}
 176	period = last_jiffies_update;
 177
 178	write_seqcount_end(&jiffies_seq);
 179	raw_spin_unlock(&jiffies_lock);
 180
 181	return period;
 182}
 183
 184static inline int tick_sched_flag_test(struct tick_sched *ts,
 185				       unsigned long flag)
 186{
 187	return !!(ts->flags & flag);
 188}
 189
 190static inline void tick_sched_flag_set(struct tick_sched *ts,
 191				       unsigned long flag)
 192{
 193	lockdep_assert_irqs_disabled();
 194	ts->flags |= flag;
 195}
 196
 197static inline void tick_sched_flag_clear(struct tick_sched *ts,
 198					 unsigned long flag)
 199{
 200	lockdep_assert_irqs_disabled();
 201	ts->flags &= ~flag;
 202}
 203
 204#define MAX_STALLED_JIFFIES 5
 205
 206static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 207{
 208	int tick_cpu, cpu = smp_processor_id();
 209
 210	/*
 211	 * Check if the do_timer duty was dropped. We don't care about
 212	 * concurrency: This happens only when the CPU in charge went
 213	 * into a long sleep. If two CPUs happen to assign themselves to
 214	 * this duty, then the jiffies update is still serialized by
 215	 * 'jiffies_lock'.
 216	 *
 217	 * If nohz_full is enabled, this should not happen because the
 218	 * 'tick_do_timer_cpu' CPU never relinquishes.
 219	 */
 220	tick_cpu = READ_ONCE(tick_do_timer_cpu);
 221
 222	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) {
 223#ifdef CONFIG_NO_HZ_FULL
 224		WARN_ON_ONCE(tick_nohz_full_running);
 225#endif
 226		WRITE_ONCE(tick_do_timer_cpu, cpu);
 227		tick_cpu = cpu;
 228	}
 229
 230	/* Check if jiffies need an update */
 231	if (tick_cpu == cpu)
 232		tick_do_update_jiffies64(now);
 233
 234	/*
 235	 * If the jiffies update stalled for too long (timekeeper in stop_machine()
 236	 * or VMEXIT'ed for several msecs), force an update.
 237	 */
 238	if (ts->last_tick_jiffies != jiffies) {
 239		ts->stalled_jiffies = 0;
 240		ts->last_tick_jiffies = READ_ONCE(jiffies);
 241	} else {
 242		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
 243			tick_do_update_jiffies64(now);
 244			ts->stalled_jiffies = 0;
 245			ts->last_tick_jiffies = READ_ONCE(jiffies);
 246		}
 247	}
 248
 249	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
 250		ts->got_idle_tick = 1;
 251}
 252
 253static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 254{
 255	/*
 256	 * When we are idle and the tick is stopped, we have to touch
 257	 * the watchdog as we might not schedule for a really long
 258	 * time. This happens on completely idle SMP systems while
 259	 * waiting on the login prompt. We also increment the "start of
 260	 * idle" jiffy stamp so the idle accounting adjustment we do
 261	 * when we go busy again does not account too many ticks.
 262	 */
 263	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
 264	    tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
 265		touch_softlockup_watchdog_sched();
 266		if (is_idle_task(current))
 267			ts->idle_jiffies++;
 268		/*
 269		 * In case the current tick fired too early past its expected
 270		 * expiration, make sure we don't bypass the next clock reprogramming
 271		 * to the same deadline.
 272		 */
 273		ts->next_tick = 0;
 274	}
 275
 276	update_process_times(user_mode(regs));
 277	profile_tick(CPU_PROFILING);
 278}
 279
 280/*
 281 * We rearm the timer until we get disabled by the idle code.
 282 * Called with interrupts disabled.
 283 */
 284static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
 285{
 286	struct tick_sched *ts =	container_of(timer, struct tick_sched, sched_timer);
 287	struct pt_regs *regs = get_irq_regs();
 288	ktime_t now = ktime_get();
 289
 290	tick_sched_do_timer(ts, now);
 291
 292	/*
 293	 * Do not call when we are not in IRQ context and have
 294	 * no valid 'regs' pointer
 295	 */
 296	if (regs)
 297		tick_sched_handle(ts, regs);
 298	else
 299		ts->next_tick = 0;
 300
 301	/*
 302	 * In dynticks mode, tick reprogram is deferred:
 303	 * - to the idle task if in dynticks-idle
 304	 * - to IRQ exit if in full-dynticks.
 305	 */
 306	if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
 307		return HRTIMER_NORESTART;
 308
 309	hrtimer_forward(timer, now, TICK_NSEC);
 310
 311	return HRTIMER_RESTART;
 312}
 313
 314static void tick_sched_timer_cancel(struct tick_sched *ts)
 315{
 316	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
 317		hrtimer_cancel(&ts->sched_timer);
 318	else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
 319		tick_program_event(KTIME_MAX, 1);
 320}
 321
 322#ifdef CONFIG_NO_HZ_FULL
 323cpumask_var_t tick_nohz_full_mask;
 324EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
 325bool tick_nohz_full_running;
 326EXPORT_SYMBOL_GPL(tick_nohz_full_running);
 327static atomic_t tick_dep_mask;
 328
 329static bool check_tick_dependency(atomic_t *dep)
 330{
 331	int val = atomic_read(dep);
 332
 333	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 334		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 335		return true;
 336	}
 337
 338	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 339		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 340		return true;
 341	}
 342
 343	if (val & TICK_DEP_MASK_SCHED) {
 344		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 345		return true;
 346	}
 347
 348	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 349		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 350		return true;
 351	}
 352
 353	if (val & TICK_DEP_MASK_RCU) {
 354		trace_tick_stop(0, TICK_DEP_MASK_RCU);
 355		return true;
 356	}
 357
 358	if (val & TICK_DEP_MASK_RCU_EXP) {
 359		trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
 360		return true;
 361	}
 362
 363	return false;
 364}
 365
 366static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 367{
 368	lockdep_assert_irqs_disabled();
 369
 370	if (unlikely(!cpu_online(cpu)))
 371		return false;
 372
 373	if (check_tick_dependency(&tick_dep_mask))
 374		return false;
 375
 376	if (check_tick_dependency(&ts->tick_dep_mask))
 377		return false;
 378
 379	if (check_tick_dependency(&current->tick_dep_mask))
 380		return false;
 381
 382	if (check_tick_dependency(&current->signal->tick_dep_mask))
 383		return false;
 384
 385	return true;
 386}
 387
 388static void nohz_full_kick_func(struct irq_work *work)
 389{
 390	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 391}
 392
 393static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
 394	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
 395
 396/*
 397 * Kick this CPU if it's full dynticks in order to force it to
 398 * re-evaluate its dependency on the tick and restart it if necessary.
 399 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 400 * is NMI safe.
 401 */
 402static void tick_nohz_full_kick(void)
 403{
 404	if (!tick_nohz_full_cpu(smp_processor_id()))
 405		return;
 406
 407	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 408}
 409
 410/*
 411 * Kick the CPU if it's full dynticks in order to force it to
 412 * re-evaluate its dependency on the tick and restart it if necessary.
 413 */
 414void tick_nohz_full_kick_cpu(int cpu)
 415{
 416	if (!tick_nohz_full_cpu(cpu))
 417		return;
 418
 419	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 420}
 421
 422static void tick_nohz_kick_task(struct task_struct *tsk)
 423{
 424	int cpu;
 425
 426	/*
 427	 * If the task is not running, run_posix_cpu_timers()
 428	 * has nothing to elapse, and an IPI can then be optimized out.
 429	 *
 430	 * activate_task()                      STORE p->tick_dep_mask
 431	 *   STORE p->on_rq
 432	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
 433	 *   LOCK rq->lock                      LOAD p->on_rq
 434	 *   smp_mb__after_spin_lock()
 435	 *   tick_nohz_task_switch()
 436	 *     LOAD p->tick_dep_mask
 
 
 
 
 
 
 437	 */
 438	if (!sched_task_on_rq(tsk))
 439		return;
 440
 441	/*
 442	 * If the task concurrently migrates to another CPU,
 443	 * we guarantee it sees the new tick dependency upon
 444	 * schedule.
 445	 *
 446	 * set_task_cpu(p, cpu);
 447	 *   STORE p->cpu = @cpu
 448	 * __schedule() (switch to task 'p')
 449	 *   LOCK rq->lock
 450	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
 451	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
 452	 *      LOAD p->tick_dep_mask           LOAD p->cpu
 453	 */
 454	cpu = task_cpu(tsk);
 455
 456	preempt_disable();
 457	if (cpu_online(cpu))
 458		tick_nohz_full_kick_cpu(cpu);
 459	preempt_enable();
 460}
 461
 462/*
 463 * Kick all full dynticks CPUs in order to force these to re-evaluate
 464 * their dependency on the tick and restart it if necessary.
 465 */
 466static void tick_nohz_full_kick_all(void)
 467{
 468	int cpu;
 469
 470	if (!tick_nohz_full_running)
 471		return;
 472
 473	preempt_disable();
 474	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 475		tick_nohz_full_kick_cpu(cpu);
 476	preempt_enable();
 477}
 478
 479static void tick_nohz_dep_set_all(atomic_t *dep,
 480				  enum tick_dep_bits bit)
 481{
 482	int prev;
 483
 484	prev = atomic_fetch_or(BIT(bit), dep);
 485	if (!prev)
 486		tick_nohz_full_kick_all();
 487}
 488
 489/*
 490 * Set a global tick dependency. Used by perf events that rely on freq and
 491 * unstable clocks.
 492 */
 493void tick_nohz_dep_set(enum tick_dep_bits bit)
 494{
 495	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 496}
 497
 498void tick_nohz_dep_clear(enum tick_dep_bits bit)
 499{
 500	atomic_andnot(BIT(bit), &tick_dep_mask);
 501}
 502
 503/*
 504 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 505 * manage event-throttling.
 506 */
 507void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 508{
 509	int prev;
 510	struct tick_sched *ts;
 511
 512	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 513
 514	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 515	if (!prev) {
 516		preempt_disable();
 517		/* Perf needs local kick that is NMI safe */
 518		if (cpu == smp_processor_id()) {
 519			tick_nohz_full_kick();
 520		} else {
 521			/* Remote IRQ work not NMI-safe */
 522			if (!WARN_ON_ONCE(in_nmi()))
 523				tick_nohz_full_kick_cpu(cpu);
 524		}
 525		preempt_enable();
 526	}
 527}
 528EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
 529
 530void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 531{
 532	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 533
 534	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 535}
 536EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
 537
 538/*
 539 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
 540 * in order to elapse per task timers.
 541 */
 542void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 543{
 544	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
 545		tick_nohz_kick_task(tsk);
 546}
 547EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
 548
 549void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 550{
 551	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 552}
 553EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
 554
 555/*
 556 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 557 * per process timers.
 558 */
 559void tick_nohz_dep_set_signal(struct task_struct *tsk,
 560			      enum tick_dep_bits bit)
 561{
 562	int prev;
 563	struct signal_struct *sig = tsk->signal;
 564
 565	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
 566	if (!prev) {
 567		struct task_struct *t;
 568
 569		lockdep_assert_held(&tsk->sighand->siglock);
 570		__for_each_thread(sig, t)
 571			tick_nohz_kick_task(t);
 572	}
 573}
 574
 575void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 576{
 577	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 578}
 579
 580/*
 581 * Re-evaluate the need for the tick as we switch the current task.
 582 * It might need the tick due to per task/process properties:
 583 * perf events, posix CPU timers, ...
 584 */
 585void __tick_nohz_task_switch(void)
 586{
 587	struct tick_sched *ts;
 588
 589	if (!tick_nohz_full_cpu(smp_processor_id()))
 590		return;
 591
 592	ts = this_cpu_ptr(&tick_cpu_sched);
 593
 594	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
 595		if (atomic_read(&current->tick_dep_mask) ||
 596		    atomic_read(&current->signal->tick_dep_mask))
 597			tick_nohz_full_kick();
 598	}
 599}
 600
 601/* Get the boot-time nohz CPU list from the kernel parameters. */
 602void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 603{
 604	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 605	cpumask_copy(tick_nohz_full_mask, cpumask);
 606	tick_nohz_full_running = true;
 607}
 608
 609bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
 610{
 611	/*
 612	 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
 613	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 614	 * CPUs. It must remain online when nohz full is enabled.
 615	 */
 616	if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
 617		return false;
 618	return true;
 619}
 620
 621static int tick_nohz_cpu_down(unsigned int cpu)
 622{
 623	return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
 624}
 625
 626void __init tick_nohz_init(void)
 627{
 628	int cpu, ret;
 629
 630	if (!tick_nohz_full_running)
 631		return;
 632
 633	/*
 634	 * Full dynticks uses IRQ work to drive the tick rescheduling on safe
 635	 * locking contexts. But then we need IRQ work to raise its own
 636	 * interrupts to avoid circular dependency on the tick.
 637	 */
 638	if (!arch_irq_work_has_interrupt()) {
 639		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
 640		cpumask_clear(tick_nohz_full_mask);
 641		tick_nohz_full_running = false;
 642		return;
 643	}
 644
 645	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 646			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 647		cpu = smp_processor_id();
 648
 649		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 650			pr_warn("NO_HZ: Clearing %d from nohz_full range "
 651				"for timekeeping\n", cpu);
 652			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 653		}
 654	}
 655
 656	for_each_cpu(cpu, tick_nohz_full_mask)
 657		ct_cpu_track_user(cpu);
 658
 659	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 660					"kernel/nohz:predown", NULL,
 661					tick_nohz_cpu_down);
 662	WARN_ON(ret < 0);
 663	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 664		cpumask_pr_args(tick_nohz_full_mask));
 665}
 666#endif /* #ifdef CONFIG_NO_HZ_FULL */
 667
 668/*
 669 * NOHZ - aka dynamic tick functionality
 670 */
 671#ifdef CONFIG_NO_HZ_COMMON
 672/*
 673 * NO HZ enabled ?
 674 */
 675bool tick_nohz_enabled __read_mostly  = true;
 676unsigned long tick_nohz_active  __read_mostly;
 677/*
 678 * Enable / Disable tickless mode
 679 */
 680static int __init setup_tick_nohz(char *str)
 681{
 682	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 683}
 684
 685__setup("nohz=", setup_tick_nohz);
 686
 687bool tick_nohz_tick_stopped(void)
 688{
 689	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 690
 691	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
 692}
 693
 694bool tick_nohz_tick_stopped_cpu(int cpu)
 695{
 696	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 697
 698	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
 699}
 700
 701/**
 702 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 703 * @now: current ktime_t
 704 *
 705 * Called from interrupt entry when the CPU was idle
 706 *
 707 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 708 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 709 * value. We do this unconditionally on any CPU, as we don't know whether the
 710 * CPU, which has the update task assigned, is in a long sleep.
 711 */
 712static void tick_nohz_update_jiffies(ktime_t now)
 713{
 714	unsigned long flags;
 715
 716	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 717
 718	local_irq_save(flags);
 719	tick_do_update_jiffies64(now);
 720	local_irq_restore(flags);
 721
 722	touch_softlockup_watchdog_sched();
 723}
 724
 725static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 726{
 727	ktime_t delta;
 728
 729	if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
 730		return;
 731
 732	delta = ktime_sub(now, ts->idle_entrytime);
 733
 734	write_seqcount_begin(&ts->idle_sleeptime_seq);
 735	if (nr_iowait_cpu(smp_processor_id()) > 0)
 736		ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 737	else
 738		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 739
 740	ts->idle_entrytime = now;
 741	tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
 742	write_seqcount_end(&ts->idle_sleeptime_seq);
 743
 744	sched_clock_idle_wakeup_event();
 745}
 746
 747static void tick_nohz_start_idle(struct tick_sched *ts)
 748{
 749	write_seqcount_begin(&ts->idle_sleeptime_seq);
 750	ts->idle_entrytime = ktime_get();
 751	tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
 752	write_seqcount_end(&ts->idle_sleeptime_seq);
 753
 754	sched_clock_idle_sleep_event();
 755}
 756
 757static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
 758				 bool compute_delta, u64 *last_update_time)
 759{
 760	ktime_t now, idle;
 761	unsigned int seq;
 762
 763	if (!tick_nohz_active)
 764		return -1;
 765
 766	now = ktime_get();
 767	if (last_update_time)
 768		*last_update_time = ktime_to_us(now);
 769
 770	do {
 771		seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
 772
 773		if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
 774			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 775
 776			idle = ktime_add(*sleeptime, delta);
 777		} else {
 778			idle = *sleeptime;
 779		}
 780	} while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
 781
 782	return ktime_to_us(idle);
 783
 784}
 785
 786/**
 787 * get_cpu_idle_time_us - get the total idle time of a CPU
 788 * @cpu: CPU number to query
 789 * @last_update_time: variable to store update time in. Do not update
 790 * counters if NULL.
 791 *
 792 * Return the cumulative idle time (since boot) for a given
 793 * CPU, in microseconds. Note that this is partially broken due to
 794 * the counter of iowait tasks that can be remotely updated without
 795 * any synchronization. Therefore it is possible to observe backward
 796 * values within two consecutive reads.
 797 *
 798 * This time is measured via accounting rather than sampling,
 799 * and is as accurate as ktime_get() is.
 800 *
 801 * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
 802 */
 803u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 804{
 805	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 806
 807	return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
 808				     !nr_iowait_cpu(cpu), last_update_time);
 809}
 810EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 811
 812/**
 813 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 814 * @cpu: CPU number to query
 815 * @last_update_time: variable to store update time in. Do not update
 816 * counters if NULL.
 817 *
 818 * Return the cumulative iowait time (since boot) for a given
 819 * CPU, in microseconds. Note this is partially broken due to
 820 * the counter of iowait tasks that can be remotely updated without
 821 * any synchronization. Therefore it is possible to observe backward
 822 * values within two consecutive reads.
 823 *
 824 * This time is measured via accounting rather than sampling,
 825 * and is as accurate as ktime_get() is.
 826 *
 827 * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
 828 */
 829u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 830{
 831	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 832
 833	return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
 834				     nr_iowait_cpu(cpu), last_update_time);
 835}
 836EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 837
 838static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 839{
 840	hrtimer_cancel(&ts->sched_timer);
 841	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 842
 843	/* Forward the time to expire in the future */
 844	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
 845
 846	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
 847		hrtimer_start_expires(&ts->sched_timer,
 848				      HRTIMER_MODE_ABS_PINNED_HARD);
 849	} else {
 850		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 851	}
 852
 853	/*
 854	 * Reset to make sure the next tick stop doesn't get fooled by past
 855	 * cached clock deadline.
 856	 */
 857	ts->next_tick = 0;
 858}
 859
 860static inline bool local_timer_softirq_pending(void)
 861{
 862	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 863}
 864
 865/*
 866 * Read jiffies and the time when jiffies were updated last
 867 */
 868u64 get_jiffies_update(unsigned long *basej)
 869{
 870	unsigned long basejiff;
 871	unsigned int seq;
 872	u64 basemono;
 873
 874	do {
 875		seq = read_seqcount_begin(&jiffies_seq);
 876		basemono = last_jiffies_update;
 877		basejiff = jiffies;
 878	} while (read_seqcount_retry(&jiffies_seq, seq));
 879	*basej = basejiff;
 880	return basemono;
 881}
 882
 883/**
 884 * tick_nohz_next_event() - return the clock monotonic based next event
 885 * @ts:		pointer to tick_sched struct
 886 * @cpu:	CPU number
 887 *
 888 * Return:
 889 * *%0		- When the next event is a maximum of TICK_NSEC in the future
 890 *		  and the tick is not stopped yet
 891 * *%next_event	- Next event based on clock monotonic
 892 */
 893static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 894{
 895	u64 basemono, next_tick, delta, expires;
 896	unsigned long basejiff;
 897	int tick_cpu;
 898
 899	basemono = get_jiffies_update(&basejiff);
 900	ts->last_jiffies = basejiff;
 901	ts->timer_expires_base = basemono;
 902
 903	/*
 904	 * Keep the periodic tick, when RCU, architecture or irq_work
 905	 * requests it.
 906	 * Aside of that, check whether the local timer softirq is
 907	 * pending. If so, its a bad idea to call get_next_timer_interrupt(),
 908	 * because there is an already expired timer, so it will request
 909	 * immediate expiry, which rearms the hardware timer with a
 910	 * minimal delta, which brings us back to this place
 911	 * immediately. Lather, rinse and repeat...
 912	 */
 913	if (rcu_needs_cpu() || arch_needs_cpu() ||
 914	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 915		next_tick = basemono + TICK_NSEC;
 916	} else {
 917		/*
 918		 * Get the next pending timer. If high resolution
 919		 * timers are enabled this only takes the timer wheel
 920		 * timers into account. If high resolution timers are
 921		 * disabled this also looks at the next expiring
 922		 * hrtimer.
 923		 */
 924		next_tick = get_next_timer_interrupt(basejiff, basemono);
 925		ts->next_timer = next_tick;
 926	}
 927
 928	/* Make sure next_tick is never before basemono! */
 929	if (WARN_ON_ONCE(basemono > next_tick))
 930		next_tick = basemono;
 931
 932	/*
 933	 * If the tick is due in the next period, keep it ticking or
 934	 * force prod the timer.
 935	 */
 936	delta = next_tick - basemono;
 937	if (delta <= (u64)TICK_NSEC) {
 938		/*
 939		 * We've not stopped the tick yet, and there's a timer in the
 940		 * next period, so no point in stopping it either, bail.
 941		 */
 942		if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
 943			ts->timer_expires = 0;
 944			goto out;
 945		}
 946	}
 947
 948	/*
 949	 * If this CPU is the one which had the do_timer() duty last, we limit
 950	 * the sleep time to the timekeeping 'max_deferment' value.
 951	 * Otherwise we can sleep as long as we want.
 952	 */
 953	delta = timekeeping_max_deferment();
 954	tick_cpu = READ_ONCE(tick_do_timer_cpu);
 955	if (tick_cpu != cpu &&
 956	    (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
 957		delta = KTIME_MAX;
 958
 959	/* Calculate the next expiry time */
 960	if (delta < (KTIME_MAX - basemono))
 961		expires = basemono + delta;
 962	else
 963		expires = KTIME_MAX;
 964
 965	ts->timer_expires = min_t(u64, expires, next_tick);
 966
 967out:
 968	return ts->timer_expires;
 969}
 970
 971static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 972{
 973	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 974	unsigned long basejiff = ts->last_jiffies;
 975	u64 basemono = ts->timer_expires_base;
 976	bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
 977	int tick_cpu;
 978	u64 expires;
 979
 980	/* Make sure we won't be trying to stop it twice in a row. */
 981	ts->timer_expires_base = 0;
 982
 983	/*
 984	 * Now the tick should be stopped definitely - so the timer base needs
 985	 * to be marked idle as well to not miss a newly queued timer.
 986	 */
 987	expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
 988	if (expires > ts->timer_expires) {
 989		/*
 990		 * This path could only happen when the first timer was removed
 991		 * between calculating the possible sleep length and now (when
 992		 * high resolution mode is not active, timer could also be a
 993		 * hrtimer).
 994		 *
 995		 * We have to stick to the original calculated expiry value to
 996		 * not stop the tick for too long with a shallow C-state (which
 997		 * was programmed by cpuidle because of an early next expiration
 998		 * value).
 999		 */
1000		expires = ts->timer_expires;
1001	}
1002
1003	/* If the timer base is not idle, retain the not yet stopped tick. */
1004	if (!timer_idle)
1005		return;
1006
1007	/*
1008	 * If this CPU is the one which updates jiffies, then give up
1009	 * the assignment and let it be taken by the CPU which runs
1010	 * the tick timer next, which might be this CPU as well. If we
1011	 * don't drop this here, the jiffies might be stale and
1012	 * do_timer() never gets invoked. Keep track of the fact that it
1013	 * was the one which had the do_timer() duty last.
1014	 */
1015	tick_cpu = READ_ONCE(tick_do_timer_cpu);
1016	if (tick_cpu == cpu) {
1017		WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
1018		tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
1019	} else if (tick_cpu != TICK_DO_TIMER_NONE) {
1020		tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
1021	}
1022
1023	/* Skip reprogram of event if it's not changed */
1024	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
1025		/* Sanity check: make sure clockevent is actually programmed */
1026		if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
1027			return;
1028
1029		WARN_ON_ONCE(1);
1030		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
1031			    basemono, ts->next_tick, dev->next_event,
1032			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
1033	}
1034
1035	/*
1036	 * tick_nohz_stop_tick() can be called several times before
1037	 * tick_nohz_restart_sched_tick() is called. This happens when
1038	 * interrupts arrive which do not cause a reschedule. In the first
1039	 * call we save the current tick time, so we can restart the
1040	 * scheduler tick in tick_nohz_restart_sched_tick().
1041	 */
1042	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1043		calc_load_nohz_start();
1044		quiet_vmstat();
1045
1046		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
1047		tick_sched_flag_set(ts, TS_FLAG_STOPPED);
1048		trace_tick_stop(1, TICK_DEP_MASK_NONE);
1049	}
1050
1051	ts->next_tick = expires;
1052
1053	/*
1054	 * If the expiration time == KTIME_MAX, then we simply stop
1055	 * the tick timer.
1056	 */
1057	if (unlikely(expires == KTIME_MAX)) {
1058		tick_sched_timer_cancel(ts);
 
 
 
1059		return;
1060	}
1061
1062	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
1063		hrtimer_start(&ts->sched_timer, expires,
1064			      HRTIMER_MODE_ABS_PINNED_HARD);
1065	} else {
1066		hrtimer_set_expires(&ts->sched_timer, expires);
1067		tick_program_event(expires, 1);
1068	}
1069}
1070
1071static void tick_nohz_retain_tick(struct tick_sched *ts)
1072{
1073	ts->timer_expires_base = 0;
1074}
1075
1076#ifdef CONFIG_NO_HZ_FULL
1077static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
1078{
1079	if (tick_nohz_next_event(ts, cpu))
1080		tick_nohz_stop_tick(ts, cpu);
1081	else
1082		tick_nohz_retain_tick(ts);
1083}
1084#endif /* CONFIG_NO_HZ_FULL */
1085
1086static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
1087{
1088	/* Update jiffies first */
1089	tick_do_update_jiffies64(now);
1090
1091	/*
1092	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
1093	 * the clock forward checks in the enqueue path:
1094	 */
1095	timer_clear_idle();
1096
1097	calc_load_nohz_stop();
1098	touch_softlockup_watchdog_sched();
1099
1100	/* Cancel the scheduled timer and restore the tick: */
1101	tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
1102	tick_nohz_restart(ts, now);
1103}
1104
1105static void __tick_nohz_full_update_tick(struct tick_sched *ts,
1106					 ktime_t now)
1107{
1108#ifdef CONFIG_NO_HZ_FULL
1109	int cpu = smp_processor_id();
1110
1111	if (can_stop_full_tick(cpu, ts))
1112		tick_nohz_full_stop_tick(ts, cpu);
1113	else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1114		tick_nohz_restart_sched_tick(ts, now);
1115#endif
1116}
1117
1118static void tick_nohz_full_update_tick(struct tick_sched *ts)
1119{
1120	if (!tick_nohz_full_cpu(smp_processor_id()))
1121		return;
1122
1123	if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1124		return;
1125
1126	__tick_nohz_full_update_tick(ts, ktime_get());
1127}
1128
1129/*
1130 * A pending softirq outside an IRQ (or softirq disabled section) context
1131 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1132 * reach this code due to the need_resched() early check in can_stop_idle_tick().
1133 *
1134 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1135 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1136 * triggering the code below, since wakep_softirqd() is ignored.
1137 *
1138 */
1139static bool report_idle_softirq(void)
1140{
1141	static int ratelimit;
1142	unsigned int pending = local_softirq_pending();
1143
1144	if (likely(!pending))
1145		return false;
1146
1147	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1148	if (!cpu_active(smp_processor_id())) {
1149		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1150		if (!pending)
1151			return false;
1152	}
1153
1154	if (ratelimit >= 10)
1155		return false;
1156
1157	/* On RT, softirq handling may be waiting on some lock */
1158	if (local_bh_blocked())
1159		return false;
1160
1161	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1162		pending);
1163	ratelimit++;
1164
1165	return true;
1166}
1167
1168static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1169{
1170	WARN_ON_ONCE(cpu_is_offline(cpu));
1171
1172	if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
1173		return false;
1174
1175	if (need_resched())
1176		return false;
1177
1178	if (unlikely(report_idle_softirq()))
1179		return false;
1180
1181	if (tick_nohz_full_enabled()) {
1182		int tick_cpu = READ_ONCE(tick_do_timer_cpu);
1183
1184		/*
1185		 * Keep the tick alive to guarantee timekeeping progression
1186		 * if there are full dynticks CPUs around
1187		 */
1188		if (tick_cpu == cpu)
1189			return false;
1190
1191		/* Should not happen for nohz-full */
1192		if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE))
1193			return false;
1194	}
1195
1196	return true;
1197}
1198
1199/**
1200 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1201 *
1202 * When the next event is more than a tick into the future, stop the idle tick
1203 */
1204void tick_nohz_idle_stop_tick(void)
1205{
1206	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1207	int cpu = smp_processor_id();
1208	ktime_t expires;
1209
1210	/*
1211	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1212	 * tick timer expiration time is known already.
1213	 */
1214	if (ts->timer_expires_base)
1215		expires = ts->timer_expires;
1216	else if (can_stop_idle_tick(cpu, ts))
1217		expires = tick_nohz_next_event(ts, cpu);
1218	else
1219		return;
1220
1221	ts->idle_calls++;
1222
1223	if (expires > 0LL) {
1224		int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1225
1226		tick_nohz_stop_tick(ts, cpu);
1227
1228		ts->idle_sleeps++;
1229		ts->idle_expires = expires;
1230
1231		if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1232			ts->idle_jiffies = ts->last_jiffies;
1233			nohz_balance_enter_idle(cpu);
1234		}
1235	} else {
1236		tick_nohz_retain_tick(ts);
1237	}
1238}
1239
1240void tick_nohz_idle_retain_tick(void)
1241{
1242	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1243}
1244
1245/**
1246 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1247 *
1248 * Called when we start the idle loop.
1249 */
1250void tick_nohz_idle_enter(void)
1251{
1252	struct tick_sched *ts;
1253
1254	lockdep_assert_irqs_enabled();
1255
1256	local_irq_disable();
1257
1258	ts = this_cpu_ptr(&tick_cpu_sched);
1259
1260	WARN_ON_ONCE(ts->timer_expires_base);
1261
1262	tick_sched_flag_set(ts, TS_FLAG_INIDLE);
1263	tick_nohz_start_idle(ts);
1264
1265	local_irq_enable();
1266}
1267
1268/**
1269 * tick_nohz_irq_exit - Notify the tick about IRQ exit
1270 *
1271 * A timer may have been added/modified/deleted either by the current IRQ,
1272 * or by another place using this IRQ as a notification. This IRQ may have
1273 * also updated the RCU callback list. These events may require a
1274 * re-evaluation of the next tick. Depending on the context:
1275 *
1276 * 1) If the CPU is idle and no resched is pending, just proceed with idle
1277 *    time accounting. The next tick will be re-evaluated on the next idle
1278 *    loop iteration.
1279 *
1280 * 2) If the CPU is nohz_full:
1281 *
1282 *    2.1) If there is any tick dependency, restart the tick if stopped.
1283 *
1284 *    2.2) If there is no tick dependency, (re-)evaluate the next tick and
1285 *         stop/update it accordingly.
1286 */
1287void tick_nohz_irq_exit(void)
1288{
1289	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1290
1291	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
1292		tick_nohz_start_idle(ts);
1293	else
1294		tick_nohz_full_update_tick(ts);
1295}
1296
1297/**
1298 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1299 *
1300 * Return: %true if the tick handler has run, otherwise %false
1301 */
1302bool tick_nohz_idle_got_tick(void)
1303{
1304	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1305
1306	if (ts->got_idle_tick) {
1307		ts->got_idle_tick = 0;
1308		return true;
1309	}
1310	return false;
1311}
1312
1313/**
1314 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1315 * or the tick, whichever expires first. Note that, if the tick has been
1316 * stopped, it returns the next hrtimer.
1317 *
1318 * Called from power state control code with interrupts disabled
1319 *
1320 * Return: the next expiration time
1321 */
1322ktime_t tick_nohz_get_next_hrtimer(void)
1323{
1324	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1325}
1326
1327/**
1328 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1329 * @delta_next: duration until the next event if the tick cannot be stopped
1330 *
1331 * Called from power state control code with interrupts disabled.
1332 *
1333 * The return value of this function and/or the value returned by it through the
1334 * @delta_next pointer can be negative which must be taken into account by its
1335 * callers.
1336 *
1337 * Return: the expected length of the current sleep
1338 */
1339ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1340{
1341	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1342	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1343	int cpu = smp_processor_id();
1344	/*
1345	 * The idle entry time is expected to be a sufficient approximation of
1346	 * the current time at this point.
1347	 */
1348	ktime_t now = ts->idle_entrytime;
1349	ktime_t next_event;
1350
1351	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1352
1353	*delta_next = ktime_sub(dev->next_event, now);
1354
1355	if (!can_stop_idle_tick(cpu, ts))
1356		return *delta_next;
1357
1358	next_event = tick_nohz_next_event(ts, cpu);
1359	if (!next_event)
1360		return *delta_next;
1361
1362	/*
1363	 * If the next highres timer to expire is earlier than 'next_event', the
1364	 * idle governor needs to know that.
1365	 */
1366	next_event = min_t(u64, next_event,
1367			   hrtimer_next_event_without(&ts->sched_timer));
1368
1369	return ktime_sub(next_event, now);
1370}
1371
1372/**
1373 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1374 * for a particular CPU.
1375 * @cpu: target CPU number
1376 *
1377 * Called from the schedutil frequency scaling governor in scheduler context.
1378 *
1379 * Return: the current idle calls counter value for @cpu
1380 */
1381unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1382{
1383	struct tick_sched *ts = tick_get_tick_sched(cpu);
1384
1385	return ts->idle_calls;
1386}
1387
1388/**
1389 * tick_nohz_get_idle_calls - return the current idle calls counter value
1390 *
1391 * Called from the schedutil frequency scaling governor in scheduler context.
1392 *
1393 * Return: the current idle calls counter value for the current CPU
1394 */
1395unsigned long tick_nohz_get_idle_calls(void)
1396{
1397	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1398
1399	return ts->idle_calls;
1400}
1401
1402static void tick_nohz_account_idle_time(struct tick_sched *ts,
1403					ktime_t now)
1404{
1405	unsigned long ticks;
1406
1407	ts->idle_exittime = now;
1408
1409	if (vtime_accounting_enabled_this_cpu())
1410		return;
1411	/*
1412	 * We stopped the tick in idle. update_process_times() would miss the
1413	 * time we slept, as it does only a 1 tick accounting.
1414	 * Enforce that this is accounted to idle !
1415	 */
1416	ticks = jiffies - ts->idle_jiffies;
1417	/*
1418	 * We might be one off. Do not randomly account a huge number of ticks!
1419	 */
1420	if (ticks && ticks < LONG_MAX)
1421		account_idle_ticks(ticks);
1422}
1423
1424void tick_nohz_idle_restart_tick(void)
1425{
1426	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1427
1428	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1429		ktime_t now = ktime_get();
1430		tick_nohz_restart_sched_tick(ts, now);
1431		tick_nohz_account_idle_time(ts, now);
1432	}
1433}
1434
1435static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1436{
1437	if (tick_nohz_full_cpu(smp_processor_id()))
1438		__tick_nohz_full_update_tick(ts, now);
1439	else
1440		tick_nohz_restart_sched_tick(ts, now);
1441
1442	tick_nohz_account_idle_time(ts, now);
1443}
1444
1445/**
1446 * tick_nohz_idle_exit - Update the tick upon idle task exit
1447 *
1448 * When the idle task exits, update the tick depending on the
1449 * following situations:
1450 *
1451 * 1) If the CPU is not in nohz_full mode (most cases), then
1452 *    restart the tick.
1453 *
1454 * 2) If the CPU is in nohz_full mode (corner case):
1455 *   2.1) If the tick can be kept stopped (no tick dependencies)
1456 *        then re-evaluate the next tick and try to keep it stopped
1457 *        as long as possible.
1458 *   2.2) If the tick has dependencies, restart the tick.
1459 *
1460 */
1461void tick_nohz_idle_exit(void)
1462{
1463	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1464	bool idle_active, tick_stopped;
1465	ktime_t now;
1466
1467	local_irq_disable();
1468
1469	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1470	WARN_ON_ONCE(ts->timer_expires_base);
1471
1472	tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
1473	idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
1474	tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1475
1476	if (idle_active || tick_stopped)
1477		now = ktime_get();
1478
1479	if (idle_active)
1480		tick_nohz_stop_idle(ts, now);
1481
1482	if (tick_stopped)
1483		tick_nohz_idle_update_tick(ts, now);
1484
1485	local_irq_enable();
1486}
1487
1488/*
1489 * In low-resolution mode, the tick handler must be implemented directly
1490 * at the clockevent level. hrtimer can't be used instead, because its
1491 * infrastructure actually relies on the tick itself as a backend in
1492 * low-resolution mode (see hrtimer_run_queues()).
1493 */
1494static void tick_nohz_lowres_handler(struct clock_event_device *dev)
1495{
1496	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1497
1498	dev->next_event = KTIME_MAX;
1499
1500	if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
1501		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1502}
1503
1504static inline void tick_nohz_activate(struct tick_sched *ts)
1505{
1506	if (!tick_nohz_enabled)
1507		return;
1508	tick_sched_flag_set(ts, TS_FLAG_NOHZ);
1509	/* One update is enough */
1510	if (!test_and_set_bit(0, &tick_nohz_active))
1511		timers_update_nohz();
1512}
1513
1514/**
1515 * tick_nohz_switch_to_nohz - switch to NOHZ mode
1516 */
1517static void tick_nohz_switch_to_nohz(void)
1518{
1519	if (!tick_nohz_enabled)
1520		return;
1521
1522	if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
1523		return;
1524
1525	/*
1526	 * Recycle the hrtimer in 'ts', so we can share the
1527	 * highres code.
1528	 */
1529	tick_setup_sched_timer(false);
1530}
1531
1532static inline void tick_nohz_irq_enter(void)
1533{
1534	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1535	ktime_t now;
1536
1537	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
1538		return;
1539	now = ktime_get();
1540	if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
1541		tick_nohz_stop_idle(ts, now);
1542	/*
1543	 * If all CPUs are idle we may need to update a stale jiffies value.
1544	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1545	 * alive but it might be busy looping with interrupts disabled in some
1546	 * rare case (typically stop machine). So we must make sure we have a
1547	 * last resort.
1548	 */
1549	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1550		tick_nohz_update_jiffies(now);
1551}
1552
1553#else
1554
1555static inline void tick_nohz_switch_to_nohz(void) { }
1556static inline void tick_nohz_irq_enter(void) { }
1557static inline void tick_nohz_activate(struct tick_sched *ts) { }
1558
1559#endif /* CONFIG_NO_HZ_COMMON */
1560
1561/*
1562 * Called from irq_enter() to notify about the possible interruption of idle()
1563 */
1564void tick_irq_enter(void)
1565{
1566	tick_check_oneshot_broadcast_this_cpu();
1567	tick_nohz_irq_enter();
1568}
1569
1570static int sched_skew_tick;
1571
1572static int __init skew_tick(char *str)
1573{
1574	get_option(&str, &sched_skew_tick);
1575
1576	return 0;
1577}
1578early_param("skew_tick", skew_tick);
1579
1580/**
1581 * tick_setup_sched_timer - setup the tick emulation timer
1582 * @hrtimer: whether to use the hrtimer or not
1583 */
1584void tick_setup_sched_timer(bool hrtimer)
1585{
1586	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1587
1588	/* Emulate tick processing via per-CPU hrtimers: */
1589	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1590
1591	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) {
1592		tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
1593		ts->sched_timer.function = tick_nohz_handler;
1594	}
1595
1596	/* Get the next period (per-CPU) */
1597	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1598
1599	/* Offset the tick to avert 'jiffies_lock' contention. */
1600	if (sched_skew_tick) {
1601		u64 offset = TICK_NSEC >> 1;
1602		do_div(offset, num_possible_cpus());
1603		offset *= smp_processor_id();
1604		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1605	}
1606
1607	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1608	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
1609		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1610	else
1611		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1612	tick_nohz_activate(ts);
1613}
1614
1615/*
1616 * Shut down the tick and make sure the CPU won't try to retake the timekeeping
1617 * duty before disabling IRQs in idle for the last time.
1618 */
1619void tick_sched_timer_dying(int cpu)
1620{
1621	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
1622	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1623	struct clock_event_device *dev = td->evtdev;
1624	ktime_t idle_sleeptime, iowait_sleeptime;
1625	unsigned long idle_calls, idle_sleeps;
1626
1627	/* This must happen before hrtimers are migrated! */
1628	tick_sched_timer_cancel(ts);
1629
1630	/*
1631	 * If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED,
1632	 * make sure not to call low-res tick handler.
1633	 */
1634	if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1635		dev->event_handler = clockevents_handle_noop;
1636
1637	idle_sleeptime = ts->idle_sleeptime;
1638	iowait_sleeptime = ts->iowait_sleeptime;
1639	idle_calls = ts->idle_calls;
1640	idle_sleeps = ts->idle_sleeps;
1641	memset(ts, 0, sizeof(*ts));
1642	ts->idle_sleeptime = idle_sleeptime;
1643	ts->iowait_sleeptime = iowait_sleeptime;
1644	ts->idle_calls = idle_calls;
1645	ts->idle_sleeps = idle_sleeps;
1646}
1647
1648/*
1649 * Async notification about clocksource changes
1650 */
1651void tick_clock_notify(void)
1652{
1653	int cpu;
1654
1655	for_each_possible_cpu(cpu)
1656		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1657}
1658
1659/*
1660 * Async notification about clock event changes
1661 */
1662void tick_oneshot_notify(void)
1663{
1664	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1665
1666	set_bit(0, &ts->check_clocks);
1667}
1668
1669/*
1670 * Check if a change happened, which makes oneshot possible.
1671 *
1672 * Called cyclically from the hrtimer softirq (driven by the timer
1673 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
1674 * mode, because high resolution timers are disabled (either compile
1675 * or runtime). Called with interrupts disabled.
1676 */
1677int tick_check_oneshot_change(int allow_nohz)
1678{
1679	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1680
1681	if (!test_and_clear_bit(0, &ts->check_clocks))
1682		return 0;
1683
1684	if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1685		return 0;
1686
1687	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1688		return 0;
1689
1690	if (!allow_nohz)
1691		return 1;
1692
1693	tick_nohz_switch_to_nohz();
1694	return 0;
1695}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  NOHZ implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
  10 */
  11#include <linux/compiler.h>
  12#include <linux/cpu.h>
  13#include <linux/err.h>
  14#include <linux/hrtimer.h>
  15#include <linux/interrupt.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/percpu.h>
  18#include <linux/nmi.h>
  19#include <linux/profile.h>
  20#include <linux/sched/signal.h>
  21#include <linux/sched/clock.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/nohz.h>
  24#include <linux/sched/loadavg.h>
  25#include <linux/module.h>
  26#include <linux/irq_work.h>
  27#include <linux/posix-timers.h>
  28#include <linux/context_tracking.h>
  29#include <linux/mm.h>
  30
  31#include <asm/irq_regs.h>
  32
  33#include "tick-internal.h"
  34
  35#include <trace/events/timer.h>
  36
  37/*
  38 * Per-CPU nohz control structure
  39 */
  40static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  41
  42struct tick_sched *tick_get_tick_sched(int cpu)
  43{
  44	return &per_cpu(tick_cpu_sched, cpu);
  45}
  46
  47/*
  48 * The time when the last jiffy update happened. Write access must hold
  49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
  50 * consistent view of jiffies and last_jiffies_update.
  51 */
  52static ktime_t last_jiffies_update;
  53
  54/*
  55 * Must be called with interrupts disabled !
  56 */
  57static void tick_do_update_jiffies64(ktime_t now)
  58{
  59	unsigned long ticks = 1;
  60	ktime_t delta, nextp;
  61
  62	/*
  63	 * 64-bit can do a quick check without holding the jiffies lock and
  64	 * without looking at the sequence count. The smp_load_acquire()
  65	 * pairs with the update done later in this function.
  66	 *
  67	 * 32-bit cannot do that because the store of 'tick_next_period'
  68	 * consists of two 32-bit stores, and the first store could be
  69	 * moved by the CPU to a random point in the future.
  70	 */
  71	if (IS_ENABLED(CONFIG_64BIT)) {
  72		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
  73			return;
  74	} else {
  75		unsigned int seq;
  76
  77		/*
  78		 * Avoid contention on 'jiffies_lock' and protect the quick
  79		 * check with the sequence count.
  80		 */
  81		do {
  82			seq = read_seqcount_begin(&jiffies_seq);
  83			nextp = tick_next_period;
  84		} while (read_seqcount_retry(&jiffies_seq, seq));
  85
  86		if (ktime_before(now, nextp))
  87			return;
  88	}
  89
  90	/* Quick check failed, i.e. update is required. */
  91	raw_spin_lock(&jiffies_lock);
  92	/*
  93	 * Re-evaluate with the lock held. Another CPU might have done the
  94	 * update already.
  95	 */
  96	if (ktime_before(now, tick_next_period)) {
  97		raw_spin_unlock(&jiffies_lock);
  98		return;
  99	}
 100
 101	write_seqcount_begin(&jiffies_seq);
 102
 103	delta = ktime_sub(now, tick_next_period);
 104	if (unlikely(delta >= TICK_NSEC)) {
 105		/* Slow path for long idle sleep times */
 106		s64 incr = TICK_NSEC;
 107
 108		ticks += ktime_divns(delta, incr);
 109
 110		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 111						   incr * ticks);
 112	} else {
 113		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 114						   TICK_NSEC);
 115	}
 116
 117	/* Advance jiffies to complete the 'jiffies_seq' protected job */
 118	jiffies_64 += ticks;
 119
 120	/* Keep the tick_next_period variable up to date */
 121	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
 122
 123	if (IS_ENABLED(CONFIG_64BIT)) {
 124		/*
 125		 * Pairs with smp_load_acquire() in the lockless quick
 126		 * check above, and ensures that the update to 'jiffies_64' is
 127		 * not reordered vs. the store to 'tick_next_period', neither
 128		 * by the compiler nor by the CPU.
 129		 */
 130		smp_store_release(&tick_next_period, nextp);
 131	} else {
 132		/*
 133		 * A plain store is good enough on 32-bit, as the quick check
 134		 * above is protected by the sequence count.
 135		 */
 136		tick_next_period = nextp;
 137	}
 138
 139	/*
 140	 * Release the sequence count. calc_global_load() below is not
 141	 * protected by it, but 'jiffies_lock' needs to be held to prevent
 142	 * concurrent invocations.
 143	 */
 144	write_seqcount_end(&jiffies_seq);
 145
 146	calc_global_load();
 147
 148	raw_spin_unlock(&jiffies_lock);
 149	update_wall_time();
 150}
 151
 152/*
 153 * Initialize and return retrieve the jiffies update.
 154 */
 155static ktime_t tick_init_jiffy_update(void)
 156{
 157	ktime_t period;
 158
 159	raw_spin_lock(&jiffies_lock);
 160	write_seqcount_begin(&jiffies_seq);
 161
 162	/* Have we started the jiffies update yet ? */
 163	if (last_jiffies_update == 0) {
 164		u32 rem;
 165
 166		/*
 167		 * Ensure that the tick is aligned to a multiple of
 168		 * TICK_NSEC.
 169		 */
 170		div_u64_rem(tick_next_period, TICK_NSEC, &rem);
 171		if (rem)
 172			tick_next_period += TICK_NSEC - rem;
 173
 174		last_jiffies_update = tick_next_period;
 175	}
 176	period = last_jiffies_update;
 177
 178	write_seqcount_end(&jiffies_seq);
 179	raw_spin_unlock(&jiffies_lock);
 180
 181	return period;
 182}
 183
 184static inline int tick_sched_flag_test(struct tick_sched *ts,
 185				       unsigned long flag)
 186{
 187	return !!(ts->flags & flag);
 188}
 189
 190static inline void tick_sched_flag_set(struct tick_sched *ts,
 191				       unsigned long flag)
 192{
 193	lockdep_assert_irqs_disabled();
 194	ts->flags |= flag;
 195}
 196
 197static inline void tick_sched_flag_clear(struct tick_sched *ts,
 198					 unsigned long flag)
 199{
 200	lockdep_assert_irqs_disabled();
 201	ts->flags &= ~flag;
 202}
 203
 204#define MAX_STALLED_JIFFIES 5
 205
 206static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 207{
 208	int tick_cpu, cpu = smp_processor_id();
 209
 210	/*
 211	 * Check if the do_timer duty was dropped. We don't care about
 212	 * concurrency: This happens only when the CPU in charge went
 213	 * into a long sleep. If two CPUs happen to assign themselves to
 214	 * this duty, then the jiffies update is still serialized by
 215	 * 'jiffies_lock'.
 216	 *
 217	 * If nohz_full is enabled, this should not happen because the
 218	 * 'tick_do_timer_cpu' CPU never relinquishes.
 219	 */
 220	tick_cpu = READ_ONCE(tick_do_timer_cpu);
 221
 222	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) {
 223#ifdef CONFIG_NO_HZ_FULL
 224		WARN_ON_ONCE(tick_nohz_full_running);
 225#endif
 226		WRITE_ONCE(tick_do_timer_cpu, cpu);
 227		tick_cpu = cpu;
 228	}
 229
 230	/* Check if jiffies need an update */
 231	if (tick_cpu == cpu)
 232		tick_do_update_jiffies64(now);
 233
 234	/*
 235	 * If the jiffies update stalled for too long (timekeeper in stop_machine()
 236	 * or VMEXIT'ed for several msecs), force an update.
 237	 */
 238	if (ts->last_tick_jiffies != jiffies) {
 239		ts->stalled_jiffies = 0;
 240		ts->last_tick_jiffies = READ_ONCE(jiffies);
 241	} else {
 242		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
 243			tick_do_update_jiffies64(now);
 244			ts->stalled_jiffies = 0;
 245			ts->last_tick_jiffies = READ_ONCE(jiffies);
 246		}
 247	}
 248
 249	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
 250		ts->got_idle_tick = 1;
 251}
 252
 253static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 254{
 255	/*
 256	 * When we are idle and the tick is stopped, we have to touch
 257	 * the watchdog as we might not schedule for a really long
 258	 * time. This happens on completely idle SMP systems while
 259	 * waiting on the login prompt. We also increment the "start of
 260	 * idle" jiffy stamp so the idle accounting adjustment we do
 261	 * when we go busy again does not account too many ticks.
 262	 */
 263	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
 264	    tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
 265		touch_softlockup_watchdog_sched();
 266		if (is_idle_task(current))
 267			ts->idle_jiffies++;
 268		/*
 269		 * In case the current tick fired too early past its expected
 270		 * expiration, make sure we don't bypass the next clock reprogramming
 271		 * to the same deadline.
 272		 */
 273		ts->next_tick = 0;
 274	}
 275
 276	update_process_times(user_mode(regs));
 277	profile_tick(CPU_PROFILING);
 278}
 279
 280/*
 281 * We rearm the timer until we get disabled by the idle code.
 282 * Called with interrupts disabled.
 283 */
 284static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
 285{
 286	struct tick_sched *ts =	container_of(timer, struct tick_sched, sched_timer);
 287	struct pt_regs *regs = get_irq_regs();
 288	ktime_t now = ktime_get();
 289
 290	tick_sched_do_timer(ts, now);
 291
 292	/*
 293	 * Do not call when we are not in IRQ context and have
 294	 * no valid 'regs' pointer
 295	 */
 296	if (regs)
 297		tick_sched_handle(ts, regs);
 298	else
 299		ts->next_tick = 0;
 300
 301	/*
 302	 * In dynticks mode, tick reprogram is deferred:
 303	 * - to the idle task if in dynticks-idle
 304	 * - to IRQ exit if in full-dynticks.
 305	 */
 306	if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
 307		return HRTIMER_NORESTART;
 308
 309	hrtimer_forward(timer, now, TICK_NSEC);
 310
 311	return HRTIMER_RESTART;
 312}
 313
 
 
 
 
 
 
 
 
 314#ifdef CONFIG_NO_HZ_FULL
 315cpumask_var_t tick_nohz_full_mask;
 316EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
 317bool tick_nohz_full_running;
 318EXPORT_SYMBOL_GPL(tick_nohz_full_running);
 319static atomic_t tick_dep_mask;
 320
 321static bool check_tick_dependency(atomic_t *dep)
 322{
 323	int val = atomic_read(dep);
 324
 325	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 326		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 327		return true;
 328	}
 329
 330	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 331		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 332		return true;
 333	}
 334
 335	if (val & TICK_DEP_MASK_SCHED) {
 336		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 337		return true;
 338	}
 339
 340	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 341		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 342		return true;
 343	}
 344
 345	if (val & TICK_DEP_MASK_RCU) {
 346		trace_tick_stop(0, TICK_DEP_MASK_RCU);
 347		return true;
 348	}
 349
 350	if (val & TICK_DEP_MASK_RCU_EXP) {
 351		trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
 352		return true;
 353	}
 354
 355	return false;
 356}
 357
 358static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 359{
 360	lockdep_assert_irqs_disabled();
 361
 362	if (unlikely(!cpu_online(cpu)))
 363		return false;
 364
 365	if (check_tick_dependency(&tick_dep_mask))
 366		return false;
 367
 368	if (check_tick_dependency(&ts->tick_dep_mask))
 369		return false;
 370
 371	if (check_tick_dependency(&current->tick_dep_mask))
 372		return false;
 373
 374	if (check_tick_dependency(&current->signal->tick_dep_mask))
 375		return false;
 376
 377	return true;
 378}
 379
 380static void nohz_full_kick_func(struct irq_work *work)
 381{
 382	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 383}
 384
 385static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
 386	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
 387
 388/*
 389 * Kick this CPU if it's full dynticks in order to force it to
 390 * re-evaluate its dependency on the tick and restart it if necessary.
 391 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 392 * is NMI safe.
 393 */
 394static void tick_nohz_full_kick(void)
 395{
 396	if (!tick_nohz_full_cpu(smp_processor_id()))
 397		return;
 398
 399	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 400}
 401
 402/*
 403 * Kick the CPU if it's full dynticks in order to force it to
 404 * re-evaluate its dependency on the tick and restart it if necessary.
 405 */
 406void tick_nohz_full_kick_cpu(int cpu)
 407{
 408	if (!tick_nohz_full_cpu(cpu))
 409		return;
 410
 411	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 412}
 413
 414static void tick_nohz_kick_task(struct task_struct *tsk)
 415{
 416	int cpu;
 417
 418	/*
 419	 * If the task is not running, run_posix_cpu_timers()
 420	 * has nothing to elapse, and an IPI can then be optimized out.
 421	 *
 422	 * activate_task()                      STORE p->tick_dep_mask
 423	 *   STORE p->on_rq
 424	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
 425	 *   LOCK rq->lock                      LOAD p->on_rq
 426	 *   smp_mb__after_spin_lock()
 427	 *   tick_nohz_task_switch()
 428	 *     LOAD p->tick_dep_mask
 429	 *
 430	 * XXX given a task picks up the dependency on schedule(), should we
 431	 * only care about tasks that are currently on the CPU instead of all
 432	 * that are on the runqueue?
 433	 *
 434	 * That is, does this want to be: task_on_cpu() / task_curr()?
 435	 */
 436	if (!sched_task_on_rq(tsk))
 437		return;
 438
 439	/*
 440	 * If the task concurrently migrates to another CPU,
 441	 * we guarantee it sees the new tick dependency upon
 442	 * schedule.
 443	 *
 444	 * set_task_cpu(p, cpu);
 445	 *   STORE p->cpu = @cpu
 446	 * __schedule() (switch to task 'p')
 447	 *   LOCK rq->lock
 448	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
 449	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
 450	 *      LOAD p->tick_dep_mask           LOAD p->cpu
 451	 */
 452	cpu = task_cpu(tsk);
 453
 454	preempt_disable();
 455	if (cpu_online(cpu))
 456		tick_nohz_full_kick_cpu(cpu);
 457	preempt_enable();
 458}
 459
 460/*
 461 * Kick all full dynticks CPUs in order to force these to re-evaluate
 462 * their dependency on the tick and restart it if necessary.
 463 */
 464static void tick_nohz_full_kick_all(void)
 465{
 466	int cpu;
 467
 468	if (!tick_nohz_full_running)
 469		return;
 470
 471	preempt_disable();
 472	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 473		tick_nohz_full_kick_cpu(cpu);
 474	preempt_enable();
 475}
 476
 477static void tick_nohz_dep_set_all(atomic_t *dep,
 478				  enum tick_dep_bits bit)
 479{
 480	int prev;
 481
 482	prev = atomic_fetch_or(BIT(bit), dep);
 483	if (!prev)
 484		tick_nohz_full_kick_all();
 485}
 486
 487/*
 488 * Set a global tick dependency. Used by perf events that rely on freq and
 489 * unstable clocks.
 490 */
 491void tick_nohz_dep_set(enum tick_dep_bits bit)
 492{
 493	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 494}
 495
 496void tick_nohz_dep_clear(enum tick_dep_bits bit)
 497{
 498	atomic_andnot(BIT(bit), &tick_dep_mask);
 499}
 500
 501/*
 502 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 503 * manage event-throttling.
 504 */
 505void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 506{
 507	int prev;
 508	struct tick_sched *ts;
 509
 510	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 511
 512	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 513	if (!prev) {
 514		preempt_disable();
 515		/* Perf needs local kick that is NMI safe */
 516		if (cpu == smp_processor_id()) {
 517			tick_nohz_full_kick();
 518		} else {
 519			/* Remote IRQ work not NMI-safe */
 520			if (!WARN_ON_ONCE(in_nmi()))
 521				tick_nohz_full_kick_cpu(cpu);
 522		}
 523		preempt_enable();
 524	}
 525}
 526EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
 527
 528void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 529{
 530	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 531
 532	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 533}
 534EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
 535
 536/*
 537 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
 538 * in order to elapse per task timers.
 539 */
 540void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 541{
 542	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
 543		tick_nohz_kick_task(tsk);
 544}
 545EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
 546
 547void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 548{
 549	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 550}
 551EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
 552
 553/*
 554 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 555 * per process timers.
 556 */
 557void tick_nohz_dep_set_signal(struct task_struct *tsk,
 558			      enum tick_dep_bits bit)
 559{
 560	int prev;
 561	struct signal_struct *sig = tsk->signal;
 562
 563	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
 564	if (!prev) {
 565		struct task_struct *t;
 566
 567		lockdep_assert_held(&tsk->sighand->siglock);
 568		__for_each_thread(sig, t)
 569			tick_nohz_kick_task(t);
 570	}
 571}
 572
 573void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 574{
 575	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 576}
 577
 578/*
 579 * Re-evaluate the need for the tick as we switch the current task.
 580 * It might need the tick due to per task/process properties:
 581 * perf events, posix CPU timers, ...
 582 */
 583void __tick_nohz_task_switch(void)
 584{
 585	struct tick_sched *ts;
 586
 587	if (!tick_nohz_full_cpu(smp_processor_id()))
 588		return;
 589
 590	ts = this_cpu_ptr(&tick_cpu_sched);
 591
 592	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
 593		if (atomic_read(&current->tick_dep_mask) ||
 594		    atomic_read(&current->signal->tick_dep_mask))
 595			tick_nohz_full_kick();
 596	}
 597}
 598
 599/* Get the boot-time nohz CPU list from the kernel parameters. */
 600void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 601{
 602	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 603	cpumask_copy(tick_nohz_full_mask, cpumask);
 604	tick_nohz_full_running = true;
 605}
 606
 607bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
 608{
 609	/*
 610	 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
 611	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 612	 * CPUs. It must remain online when nohz full is enabled.
 613	 */
 614	if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
 615		return false;
 616	return true;
 617}
 618
 619static int tick_nohz_cpu_down(unsigned int cpu)
 620{
 621	return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
 622}
 623
 624void __init tick_nohz_init(void)
 625{
 626	int cpu, ret;
 627
 628	if (!tick_nohz_full_running)
 629		return;
 630
 631	/*
 632	 * Full dynticks uses IRQ work to drive the tick rescheduling on safe
 633	 * locking contexts. But then we need IRQ work to raise its own
 634	 * interrupts to avoid circular dependency on the tick.
 635	 */
 636	if (!arch_irq_work_has_interrupt()) {
 637		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
 638		cpumask_clear(tick_nohz_full_mask);
 639		tick_nohz_full_running = false;
 640		return;
 641	}
 642
 643	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 644			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 645		cpu = smp_processor_id();
 646
 647		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 648			pr_warn("NO_HZ: Clearing %d from nohz_full range "
 649				"for timekeeping\n", cpu);
 650			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 651		}
 652	}
 653
 654	for_each_cpu(cpu, tick_nohz_full_mask)
 655		ct_cpu_track_user(cpu);
 656
 657	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 658					"kernel/nohz:predown", NULL,
 659					tick_nohz_cpu_down);
 660	WARN_ON(ret < 0);
 661	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 662		cpumask_pr_args(tick_nohz_full_mask));
 663}
 664#endif /* #ifdef CONFIG_NO_HZ_FULL */
 665
 666/*
 667 * NOHZ - aka dynamic tick functionality
 668 */
 669#ifdef CONFIG_NO_HZ_COMMON
 670/*
 671 * NO HZ enabled ?
 672 */
 673bool tick_nohz_enabled __read_mostly  = true;
 674unsigned long tick_nohz_active  __read_mostly;
 675/*
 676 * Enable / Disable tickless mode
 677 */
 678static int __init setup_tick_nohz(char *str)
 679{
 680	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 681}
 682
 683__setup("nohz=", setup_tick_nohz);
 684
 685bool tick_nohz_tick_stopped(void)
 686{
 687	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 688
 689	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
 690}
 691
 692bool tick_nohz_tick_stopped_cpu(int cpu)
 693{
 694	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 695
 696	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
 697}
 698
 699/**
 700 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 701 * @now: current ktime_t
 702 *
 703 * Called from interrupt entry when the CPU was idle
 704 *
 705 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 706 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 707 * value. We do this unconditionally on any CPU, as we don't know whether the
 708 * CPU, which has the update task assigned, is in a long sleep.
 709 */
 710static void tick_nohz_update_jiffies(ktime_t now)
 711{
 712	unsigned long flags;
 713
 714	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 715
 716	local_irq_save(flags);
 717	tick_do_update_jiffies64(now);
 718	local_irq_restore(flags);
 719
 720	touch_softlockup_watchdog_sched();
 721}
 722
 723static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 724{
 725	ktime_t delta;
 726
 727	if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
 728		return;
 729
 730	delta = ktime_sub(now, ts->idle_entrytime);
 731
 732	write_seqcount_begin(&ts->idle_sleeptime_seq);
 733	if (nr_iowait_cpu(smp_processor_id()) > 0)
 734		ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 735	else
 736		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 737
 738	ts->idle_entrytime = now;
 739	tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
 740	write_seqcount_end(&ts->idle_sleeptime_seq);
 741
 742	sched_clock_idle_wakeup_event();
 743}
 744
 745static void tick_nohz_start_idle(struct tick_sched *ts)
 746{
 747	write_seqcount_begin(&ts->idle_sleeptime_seq);
 748	ts->idle_entrytime = ktime_get();
 749	tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
 750	write_seqcount_end(&ts->idle_sleeptime_seq);
 751
 752	sched_clock_idle_sleep_event();
 753}
 754
 755static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
 756				 bool compute_delta, u64 *last_update_time)
 757{
 758	ktime_t now, idle;
 759	unsigned int seq;
 760
 761	if (!tick_nohz_active)
 762		return -1;
 763
 764	now = ktime_get();
 765	if (last_update_time)
 766		*last_update_time = ktime_to_us(now);
 767
 768	do {
 769		seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
 770
 771		if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
 772			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 773
 774			idle = ktime_add(*sleeptime, delta);
 775		} else {
 776			idle = *sleeptime;
 777		}
 778	} while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
 779
 780	return ktime_to_us(idle);
 781
 782}
 783
 784/**
 785 * get_cpu_idle_time_us - get the total idle time of a CPU
 786 * @cpu: CPU number to query
 787 * @last_update_time: variable to store update time in. Do not update
 788 * counters if NULL.
 789 *
 790 * Return the cumulative idle time (since boot) for a given
 791 * CPU, in microseconds. Note that this is partially broken due to
 792 * the counter of iowait tasks that can be remotely updated without
 793 * any synchronization. Therefore it is possible to observe backward
 794 * values within two consecutive reads.
 795 *
 796 * This time is measured via accounting rather than sampling,
 797 * and is as accurate as ktime_get() is.
 798 *
 799 * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
 800 */
 801u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 802{
 803	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 804
 805	return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
 806				     !nr_iowait_cpu(cpu), last_update_time);
 807}
 808EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 809
 810/**
 811 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 812 * @cpu: CPU number to query
 813 * @last_update_time: variable to store update time in. Do not update
 814 * counters if NULL.
 815 *
 816 * Return the cumulative iowait time (since boot) for a given
 817 * CPU, in microseconds. Note this is partially broken due to
 818 * the counter of iowait tasks that can be remotely updated without
 819 * any synchronization. Therefore it is possible to observe backward
 820 * values within two consecutive reads.
 821 *
 822 * This time is measured via accounting rather than sampling,
 823 * and is as accurate as ktime_get() is.
 824 *
 825 * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
 826 */
 827u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 828{
 829	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 830
 831	return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
 832				     nr_iowait_cpu(cpu), last_update_time);
 833}
 834EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 835
 836static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 837{
 838	hrtimer_cancel(&ts->sched_timer);
 839	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 840
 841	/* Forward the time to expire in the future */
 842	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
 843
 844	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
 845		hrtimer_start_expires(&ts->sched_timer,
 846				      HRTIMER_MODE_ABS_PINNED_HARD);
 847	} else {
 848		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 849	}
 850
 851	/*
 852	 * Reset to make sure the next tick stop doesn't get fooled by past
 853	 * cached clock deadline.
 854	 */
 855	ts->next_tick = 0;
 856}
 857
 858static inline bool local_timer_softirq_pending(void)
 859{
 860	return local_timers_pending() & BIT(TIMER_SOFTIRQ);
 861}
 862
 863/*
 864 * Read jiffies and the time when jiffies were updated last
 865 */
 866u64 get_jiffies_update(unsigned long *basej)
 867{
 868	unsigned long basejiff;
 869	unsigned int seq;
 870	u64 basemono;
 871
 872	do {
 873		seq = read_seqcount_begin(&jiffies_seq);
 874		basemono = last_jiffies_update;
 875		basejiff = jiffies;
 876	} while (read_seqcount_retry(&jiffies_seq, seq));
 877	*basej = basejiff;
 878	return basemono;
 879}
 880
 881/**
 882 * tick_nohz_next_event() - return the clock monotonic based next event
 883 * @ts:		pointer to tick_sched struct
 884 * @cpu:	CPU number
 885 *
 886 * Return:
 887 * *%0		- When the next event is a maximum of TICK_NSEC in the future
 888 *		  and the tick is not stopped yet
 889 * *%next_event	- Next event based on clock monotonic
 890 */
 891static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 892{
 893	u64 basemono, next_tick, delta, expires;
 894	unsigned long basejiff;
 895	int tick_cpu;
 896
 897	basemono = get_jiffies_update(&basejiff);
 898	ts->last_jiffies = basejiff;
 899	ts->timer_expires_base = basemono;
 900
 901	/*
 902	 * Keep the periodic tick, when RCU, architecture or irq_work
 903	 * requests it.
 904	 * Aside of that, check whether the local timer softirq is
 905	 * pending. If so, its a bad idea to call get_next_timer_interrupt(),
 906	 * because there is an already expired timer, so it will request
 907	 * immediate expiry, which rearms the hardware timer with a
 908	 * minimal delta, which brings us back to this place
 909	 * immediately. Lather, rinse and repeat...
 910	 */
 911	if (rcu_needs_cpu() || arch_needs_cpu() ||
 912	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 913		next_tick = basemono + TICK_NSEC;
 914	} else {
 915		/*
 916		 * Get the next pending timer. If high resolution
 917		 * timers are enabled this only takes the timer wheel
 918		 * timers into account. If high resolution timers are
 919		 * disabled this also looks at the next expiring
 920		 * hrtimer.
 921		 */
 922		next_tick = get_next_timer_interrupt(basejiff, basemono);
 923		ts->next_timer = next_tick;
 924	}
 925
 926	/* Make sure next_tick is never before basemono! */
 927	if (WARN_ON_ONCE(basemono > next_tick))
 928		next_tick = basemono;
 929
 930	/*
 931	 * If the tick is due in the next period, keep it ticking or
 932	 * force prod the timer.
 933	 */
 934	delta = next_tick - basemono;
 935	if (delta <= (u64)TICK_NSEC) {
 936		/*
 937		 * We've not stopped the tick yet, and there's a timer in the
 938		 * next period, so no point in stopping it either, bail.
 939		 */
 940		if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
 941			ts->timer_expires = 0;
 942			goto out;
 943		}
 944	}
 945
 946	/*
 947	 * If this CPU is the one which had the do_timer() duty last, we limit
 948	 * the sleep time to the timekeeping 'max_deferment' value.
 949	 * Otherwise we can sleep as long as we want.
 950	 */
 951	delta = timekeeping_max_deferment();
 952	tick_cpu = READ_ONCE(tick_do_timer_cpu);
 953	if (tick_cpu != cpu &&
 954	    (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
 955		delta = KTIME_MAX;
 956
 957	/* Calculate the next expiry time */
 958	if (delta < (KTIME_MAX - basemono))
 959		expires = basemono + delta;
 960	else
 961		expires = KTIME_MAX;
 962
 963	ts->timer_expires = min_t(u64, expires, next_tick);
 964
 965out:
 966	return ts->timer_expires;
 967}
 968
 969static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 970{
 971	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 972	unsigned long basejiff = ts->last_jiffies;
 973	u64 basemono = ts->timer_expires_base;
 974	bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
 975	int tick_cpu;
 976	u64 expires;
 977
 978	/* Make sure we won't be trying to stop it twice in a row. */
 979	ts->timer_expires_base = 0;
 980
 981	/*
 982	 * Now the tick should be stopped definitely - so the timer base needs
 983	 * to be marked idle as well to not miss a newly queued timer.
 984	 */
 985	expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
 986	if (expires > ts->timer_expires) {
 987		/*
 988		 * This path could only happen when the first timer was removed
 989		 * between calculating the possible sleep length and now (when
 990		 * high resolution mode is not active, timer could also be a
 991		 * hrtimer).
 992		 *
 993		 * We have to stick to the original calculated expiry value to
 994		 * not stop the tick for too long with a shallow C-state (which
 995		 * was programmed by cpuidle because of an early next expiration
 996		 * value).
 997		 */
 998		expires = ts->timer_expires;
 999	}
1000
1001	/* If the timer base is not idle, retain the not yet stopped tick. */
1002	if (!timer_idle)
1003		return;
1004
1005	/*
1006	 * If this CPU is the one which updates jiffies, then give up
1007	 * the assignment and let it be taken by the CPU which runs
1008	 * the tick timer next, which might be this CPU as well. If we
1009	 * don't drop this here, the jiffies might be stale and
1010	 * do_timer() never gets invoked. Keep track of the fact that it
1011	 * was the one which had the do_timer() duty last.
1012	 */
1013	tick_cpu = READ_ONCE(tick_do_timer_cpu);
1014	if (tick_cpu == cpu) {
1015		WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
1016		tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
1017	} else if (tick_cpu != TICK_DO_TIMER_NONE) {
1018		tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
1019	}
1020
1021	/* Skip reprogram of event if it's not changed */
1022	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
1023		/* Sanity check: make sure clockevent is actually programmed */
1024		if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
1025			return;
1026
1027		WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu "
1028			  "timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick,
1029			  dev->next_event, hrtimer_active(&ts->sched_timer),
1030			  hrtimer_get_expires(&ts->sched_timer));
1031	}
1032
1033	/*
1034	 * tick_nohz_stop_tick() can be called several times before
1035	 * tick_nohz_restart_sched_tick() is called. This happens when
1036	 * interrupts arrive which do not cause a reschedule. In the first
1037	 * call we save the current tick time, so we can restart the
1038	 * scheduler tick in tick_nohz_restart_sched_tick().
1039	 */
1040	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1041		calc_load_nohz_start();
1042		quiet_vmstat();
1043
1044		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
1045		tick_sched_flag_set(ts, TS_FLAG_STOPPED);
1046		trace_tick_stop(1, TICK_DEP_MASK_NONE);
1047	}
1048
1049	ts->next_tick = expires;
1050
1051	/*
1052	 * If the expiration time == KTIME_MAX, then we simply stop
1053	 * the tick timer.
1054	 */
1055	if (unlikely(expires == KTIME_MAX)) {
1056		if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
1057			hrtimer_cancel(&ts->sched_timer);
1058		else
1059			tick_program_event(KTIME_MAX, 1);
1060		return;
1061	}
1062
1063	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
1064		hrtimer_start(&ts->sched_timer, expires,
1065			      HRTIMER_MODE_ABS_PINNED_HARD);
1066	} else {
1067		hrtimer_set_expires(&ts->sched_timer, expires);
1068		tick_program_event(expires, 1);
1069	}
1070}
1071
1072static void tick_nohz_retain_tick(struct tick_sched *ts)
1073{
1074	ts->timer_expires_base = 0;
1075}
1076
1077#ifdef CONFIG_NO_HZ_FULL
1078static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
1079{
1080	if (tick_nohz_next_event(ts, cpu))
1081		tick_nohz_stop_tick(ts, cpu);
1082	else
1083		tick_nohz_retain_tick(ts);
1084}
1085#endif /* CONFIG_NO_HZ_FULL */
1086
1087static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
1088{
1089	/* Update jiffies first */
1090	tick_do_update_jiffies64(now);
1091
1092	/*
1093	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
1094	 * the clock forward checks in the enqueue path:
1095	 */
1096	timer_clear_idle();
1097
1098	calc_load_nohz_stop();
1099	touch_softlockup_watchdog_sched();
1100
1101	/* Cancel the scheduled timer and restore the tick: */
1102	tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
1103	tick_nohz_restart(ts, now);
1104}
1105
1106static void __tick_nohz_full_update_tick(struct tick_sched *ts,
1107					 ktime_t now)
1108{
1109#ifdef CONFIG_NO_HZ_FULL
1110	int cpu = smp_processor_id();
1111
1112	if (can_stop_full_tick(cpu, ts))
1113		tick_nohz_full_stop_tick(ts, cpu);
1114	else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1115		tick_nohz_restart_sched_tick(ts, now);
1116#endif
1117}
1118
1119static void tick_nohz_full_update_tick(struct tick_sched *ts)
1120{
1121	if (!tick_nohz_full_cpu(smp_processor_id()))
1122		return;
1123
1124	if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1125		return;
1126
1127	__tick_nohz_full_update_tick(ts, ktime_get());
1128}
1129
1130/*
1131 * A pending softirq outside an IRQ (or softirq disabled section) context
1132 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1133 * reach this code due to the need_resched() early check in can_stop_idle_tick().
1134 *
1135 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1136 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1137 * triggering the code below, since wakep_softirqd() is ignored.
1138 *
1139 */
1140static bool report_idle_softirq(void)
1141{
1142	static int ratelimit;
1143	unsigned int pending = local_softirq_pending();
1144
1145	if (likely(!pending))
1146		return false;
1147
1148	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1149	if (!cpu_active(smp_processor_id())) {
1150		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1151		if (!pending)
1152			return false;
1153	}
1154
1155	if (ratelimit >= 10)
1156		return false;
1157
1158	/* On RT, softirq handling may be waiting on some lock */
1159	if (local_bh_blocked())
1160		return false;
1161
1162	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1163		pending);
1164	ratelimit++;
1165
1166	return true;
1167}
1168
1169static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1170{
1171	WARN_ON_ONCE(cpu_is_offline(cpu));
1172
1173	if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
1174		return false;
1175
1176	if (need_resched())
1177		return false;
1178
1179	if (unlikely(report_idle_softirq()))
1180		return false;
1181
1182	if (tick_nohz_full_enabled()) {
1183		int tick_cpu = READ_ONCE(tick_do_timer_cpu);
1184
1185		/*
1186		 * Keep the tick alive to guarantee timekeeping progression
1187		 * if there are full dynticks CPUs around
1188		 */
1189		if (tick_cpu == cpu)
1190			return false;
1191
1192		/* Should not happen for nohz-full */
1193		if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE))
1194			return false;
1195	}
1196
1197	return true;
1198}
1199
1200/**
1201 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1202 *
1203 * When the next event is more than a tick into the future, stop the idle tick
1204 */
1205void tick_nohz_idle_stop_tick(void)
1206{
1207	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1208	int cpu = smp_processor_id();
1209	ktime_t expires;
1210
1211	/*
1212	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1213	 * tick timer expiration time is known already.
1214	 */
1215	if (ts->timer_expires_base)
1216		expires = ts->timer_expires;
1217	else if (can_stop_idle_tick(cpu, ts))
1218		expires = tick_nohz_next_event(ts, cpu);
1219	else
1220		return;
1221
1222	ts->idle_calls++;
1223
1224	if (expires > 0LL) {
1225		int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1226
1227		tick_nohz_stop_tick(ts, cpu);
1228
1229		ts->idle_sleeps++;
1230		ts->idle_expires = expires;
1231
1232		if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1233			ts->idle_jiffies = ts->last_jiffies;
1234			nohz_balance_enter_idle(cpu);
1235		}
1236	} else {
1237		tick_nohz_retain_tick(ts);
1238	}
1239}
1240
1241void tick_nohz_idle_retain_tick(void)
1242{
1243	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1244}
1245
1246/**
1247 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1248 *
1249 * Called when we start the idle loop.
1250 */
1251void tick_nohz_idle_enter(void)
1252{
1253	struct tick_sched *ts;
1254
1255	lockdep_assert_irqs_enabled();
1256
1257	local_irq_disable();
1258
1259	ts = this_cpu_ptr(&tick_cpu_sched);
1260
1261	WARN_ON_ONCE(ts->timer_expires_base);
1262
1263	tick_sched_flag_set(ts, TS_FLAG_INIDLE);
1264	tick_nohz_start_idle(ts);
1265
1266	local_irq_enable();
1267}
1268
1269/**
1270 * tick_nohz_irq_exit - Notify the tick about IRQ exit
1271 *
1272 * A timer may have been added/modified/deleted either by the current IRQ,
1273 * or by another place using this IRQ as a notification. This IRQ may have
1274 * also updated the RCU callback list. These events may require a
1275 * re-evaluation of the next tick. Depending on the context:
1276 *
1277 * 1) If the CPU is idle and no resched is pending, just proceed with idle
1278 *    time accounting. The next tick will be re-evaluated on the next idle
1279 *    loop iteration.
1280 *
1281 * 2) If the CPU is nohz_full:
1282 *
1283 *    2.1) If there is any tick dependency, restart the tick if stopped.
1284 *
1285 *    2.2) If there is no tick dependency, (re-)evaluate the next tick and
1286 *         stop/update it accordingly.
1287 */
1288void tick_nohz_irq_exit(void)
1289{
1290	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1291
1292	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
1293		tick_nohz_start_idle(ts);
1294	else
1295		tick_nohz_full_update_tick(ts);
1296}
1297
1298/**
1299 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1300 *
1301 * Return: %true if the tick handler has run, otherwise %false
1302 */
1303bool tick_nohz_idle_got_tick(void)
1304{
1305	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1306
1307	if (ts->got_idle_tick) {
1308		ts->got_idle_tick = 0;
1309		return true;
1310	}
1311	return false;
1312}
1313
1314/**
1315 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1316 * or the tick, whichever expires first. Note that, if the tick has been
1317 * stopped, it returns the next hrtimer.
1318 *
1319 * Called from power state control code with interrupts disabled
1320 *
1321 * Return: the next expiration time
1322 */
1323ktime_t tick_nohz_get_next_hrtimer(void)
1324{
1325	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1326}
1327
1328/**
1329 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1330 * @delta_next: duration until the next event if the tick cannot be stopped
1331 *
1332 * Called from power state control code with interrupts disabled.
1333 *
1334 * The return value of this function and/or the value returned by it through the
1335 * @delta_next pointer can be negative which must be taken into account by its
1336 * callers.
1337 *
1338 * Return: the expected length of the current sleep
1339 */
1340ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1341{
1342	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1343	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1344	int cpu = smp_processor_id();
1345	/*
1346	 * The idle entry time is expected to be a sufficient approximation of
1347	 * the current time at this point.
1348	 */
1349	ktime_t now = ts->idle_entrytime;
1350	ktime_t next_event;
1351
1352	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1353
1354	*delta_next = ktime_sub(dev->next_event, now);
1355
1356	if (!can_stop_idle_tick(cpu, ts))
1357		return *delta_next;
1358
1359	next_event = tick_nohz_next_event(ts, cpu);
1360	if (!next_event)
1361		return *delta_next;
1362
1363	/*
1364	 * If the next highres timer to expire is earlier than 'next_event', the
1365	 * idle governor needs to know that.
1366	 */
1367	next_event = min_t(u64, next_event,
1368			   hrtimer_next_event_without(&ts->sched_timer));
1369
1370	return ktime_sub(next_event, now);
1371}
1372
1373/**
1374 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1375 * for a particular CPU.
1376 * @cpu: target CPU number
1377 *
1378 * Called from the schedutil frequency scaling governor in scheduler context.
1379 *
1380 * Return: the current idle calls counter value for @cpu
1381 */
1382unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1383{
1384	struct tick_sched *ts = tick_get_tick_sched(cpu);
1385
1386	return ts->idle_calls;
1387}
1388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1389static void tick_nohz_account_idle_time(struct tick_sched *ts,
1390					ktime_t now)
1391{
1392	unsigned long ticks;
1393
1394	ts->idle_exittime = now;
1395
1396	if (vtime_accounting_enabled_this_cpu())
1397		return;
1398	/*
1399	 * We stopped the tick in idle. update_process_times() would miss the
1400	 * time we slept, as it does only a 1 tick accounting.
1401	 * Enforce that this is accounted to idle !
1402	 */
1403	ticks = jiffies - ts->idle_jiffies;
1404	/*
1405	 * We might be one off. Do not randomly account a huge number of ticks!
1406	 */
1407	if (ticks && ticks < LONG_MAX)
1408		account_idle_ticks(ticks);
1409}
1410
1411void tick_nohz_idle_restart_tick(void)
1412{
1413	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1414
1415	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1416		ktime_t now = ktime_get();
1417		tick_nohz_restart_sched_tick(ts, now);
1418		tick_nohz_account_idle_time(ts, now);
1419	}
1420}
1421
1422static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1423{
1424	if (tick_nohz_full_cpu(smp_processor_id()))
1425		__tick_nohz_full_update_tick(ts, now);
1426	else
1427		tick_nohz_restart_sched_tick(ts, now);
1428
1429	tick_nohz_account_idle_time(ts, now);
1430}
1431
1432/**
1433 * tick_nohz_idle_exit - Update the tick upon idle task exit
1434 *
1435 * When the idle task exits, update the tick depending on the
1436 * following situations:
1437 *
1438 * 1) If the CPU is not in nohz_full mode (most cases), then
1439 *    restart the tick.
1440 *
1441 * 2) If the CPU is in nohz_full mode (corner case):
1442 *   2.1) If the tick can be kept stopped (no tick dependencies)
1443 *        then re-evaluate the next tick and try to keep it stopped
1444 *        as long as possible.
1445 *   2.2) If the tick has dependencies, restart the tick.
1446 *
1447 */
1448void tick_nohz_idle_exit(void)
1449{
1450	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1451	bool idle_active, tick_stopped;
1452	ktime_t now;
1453
1454	local_irq_disable();
1455
1456	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1457	WARN_ON_ONCE(ts->timer_expires_base);
1458
1459	tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
1460	idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
1461	tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1462
1463	if (idle_active || tick_stopped)
1464		now = ktime_get();
1465
1466	if (idle_active)
1467		tick_nohz_stop_idle(ts, now);
1468
1469	if (tick_stopped)
1470		tick_nohz_idle_update_tick(ts, now);
1471
1472	local_irq_enable();
1473}
1474
1475/*
1476 * In low-resolution mode, the tick handler must be implemented directly
1477 * at the clockevent level. hrtimer can't be used instead, because its
1478 * infrastructure actually relies on the tick itself as a backend in
1479 * low-resolution mode (see hrtimer_run_queues()).
1480 */
1481static void tick_nohz_lowres_handler(struct clock_event_device *dev)
1482{
1483	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1484
1485	dev->next_event = KTIME_MAX;
1486
1487	if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
1488		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1489}
1490
1491static inline void tick_nohz_activate(struct tick_sched *ts)
1492{
1493	if (!tick_nohz_enabled)
1494		return;
1495	tick_sched_flag_set(ts, TS_FLAG_NOHZ);
1496	/* One update is enough */
1497	if (!test_and_set_bit(0, &tick_nohz_active))
1498		timers_update_nohz();
1499}
1500
1501/**
1502 * tick_nohz_switch_to_nohz - switch to NOHZ mode
1503 */
1504static void tick_nohz_switch_to_nohz(void)
1505{
1506	if (!tick_nohz_enabled)
1507		return;
1508
1509	if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
1510		return;
1511
1512	/*
1513	 * Recycle the hrtimer in 'ts', so we can share the
1514	 * highres code.
1515	 */
1516	tick_setup_sched_timer(false);
1517}
1518
1519static inline void tick_nohz_irq_enter(void)
1520{
1521	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1522	ktime_t now;
1523
1524	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
1525		return;
1526	now = ktime_get();
1527	if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
1528		tick_nohz_stop_idle(ts, now);
1529	/*
1530	 * If all CPUs are idle we may need to update a stale jiffies value.
1531	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1532	 * alive but it might be busy looping with interrupts disabled in some
1533	 * rare case (typically stop machine). So we must make sure we have a
1534	 * last resort.
1535	 */
1536	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1537		tick_nohz_update_jiffies(now);
1538}
1539
1540#else
1541
1542static inline void tick_nohz_switch_to_nohz(void) { }
1543static inline void tick_nohz_irq_enter(void) { }
1544static inline void tick_nohz_activate(struct tick_sched *ts) { }
1545
1546#endif /* CONFIG_NO_HZ_COMMON */
1547
1548/*
1549 * Called from irq_enter() to notify about the possible interruption of idle()
1550 */
1551void tick_irq_enter(void)
1552{
1553	tick_check_oneshot_broadcast_this_cpu();
1554	tick_nohz_irq_enter();
1555}
1556
1557static int sched_skew_tick;
1558
1559static int __init skew_tick(char *str)
1560{
1561	get_option(&str, &sched_skew_tick);
1562
1563	return 0;
1564}
1565early_param("skew_tick", skew_tick);
1566
1567/**
1568 * tick_setup_sched_timer - setup the tick emulation timer
1569 * @hrtimer: whether to use the hrtimer or not
1570 */
1571void tick_setup_sched_timer(bool hrtimer)
1572{
1573	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1574
1575	/* Emulate tick processing via per-CPU hrtimers: */
1576	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1577
1578	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) {
1579		tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
1580		ts->sched_timer.function = tick_nohz_handler;
1581	}
1582
1583	/* Get the next period (per-CPU) */
1584	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1585
1586	/* Offset the tick to avert 'jiffies_lock' contention. */
1587	if (sched_skew_tick) {
1588		u64 offset = TICK_NSEC >> 1;
1589		do_div(offset, num_possible_cpus());
1590		offset *= smp_processor_id();
1591		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1592	}
1593
1594	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1595	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
1596		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1597	else
1598		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1599	tick_nohz_activate(ts);
1600}
1601
1602/*
1603 * Shut down the tick and make sure the CPU won't try to retake the timekeeping
1604 * duty before disabling IRQs in idle for the last time.
1605 */
1606void tick_sched_timer_dying(int cpu)
1607{
 
1608	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 
1609	ktime_t idle_sleeptime, iowait_sleeptime;
1610	unsigned long idle_calls, idle_sleeps;
1611
1612	/* This must happen before hrtimers are migrated! */
1613	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
1614		hrtimer_cancel(&ts->sched_timer);
 
 
 
 
 
 
1615
1616	idle_sleeptime = ts->idle_sleeptime;
1617	iowait_sleeptime = ts->iowait_sleeptime;
1618	idle_calls = ts->idle_calls;
1619	idle_sleeps = ts->idle_sleeps;
1620	memset(ts, 0, sizeof(*ts));
1621	ts->idle_sleeptime = idle_sleeptime;
1622	ts->iowait_sleeptime = iowait_sleeptime;
1623	ts->idle_calls = idle_calls;
1624	ts->idle_sleeps = idle_sleeps;
1625}
1626
1627/*
1628 * Async notification about clocksource changes
1629 */
1630void tick_clock_notify(void)
1631{
1632	int cpu;
1633
1634	for_each_possible_cpu(cpu)
1635		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1636}
1637
1638/*
1639 * Async notification about clock event changes
1640 */
1641void tick_oneshot_notify(void)
1642{
1643	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1644
1645	set_bit(0, &ts->check_clocks);
1646}
1647
1648/*
1649 * Check if a change happened, which makes oneshot possible.
1650 *
1651 * Called cyclically from the hrtimer softirq (driven by the timer
1652 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
1653 * mode, because high resolution timers are disabled (either compile
1654 * or runtime). Called with interrupts disabled.
1655 */
1656int tick_check_oneshot_change(int allow_nohz)
1657{
1658	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1659
1660	if (!test_and_clear_bit(0, &ts->check_clocks))
1661		return 0;
1662
1663	if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1664		return 0;
1665
1666	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1667		return 0;
1668
1669	if (!allow_nohz)
1670		return 1;
1671
1672	tick_nohz_switch_to_nohz();
1673	return 0;
1674}