Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
 
  28#include <linux/errno.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/task.h>
  31#include <linux/lsm_hooks.h>
  32#include <linux/xattr.h>
  33#include <linux/capability.h>
  34#include <linux/unistd.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/slab.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/swap.h>
  41#include <linux/spinlock.h>
  42#include <linux/syscalls.h>
  43#include <linux/dcache.h>
  44#include <linux/file.h>
  45#include <linux/fdtable.h>
  46#include <linux/namei.h>
  47#include <linux/mount.h>
  48#include <linux/fs_context.h>
  49#include <linux/fs_parser.h>
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/sctp.h>
  70#include <net/sctp/structs.h>
  71#include <linux/quota.h>
  72#include <linux/un.h>		/* for Unix socket types */
  73#include <net/af_unix.h>	/* for Unix socket types */
  74#include <linux/parser.h>
  75#include <linux/nfs_mount.h>
  76#include <net/ipv6.h>
  77#include <linux/hugetlb.h>
  78#include <linux/personality.h>
  79#include <linux/audit.h>
  80#include <linux/string.h>
  81#include <linux/mutex.h>
  82#include <linux/posix-timers.h>
  83#include <linux/syslog.h>
  84#include <linux/user_namespace.h>
  85#include <linux/export.h>
  86#include <linux/msg.h>
  87#include <linux/shm.h>
  88#include <uapi/linux/shm.h>
  89#include <linux/bpf.h>
  90#include <linux/kernfs.h>
  91#include <linux/stringhash.h>	/* for hashlen_string() */
  92#include <uapi/linux/mount.h>
  93#include <linux/fsnotify.h>
  94#include <linux/fanotify.h>
  95#include <linux/io_uring/cmd.h>
  96#include <uapi/linux/lsm.h>
  97
  98#include "avc.h"
  99#include "objsec.h"
 100#include "netif.h"
 101#include "netnode.h"
 102#include "netport.h"
 103#include "ibpkey.h"
 104#include "xfrm.h"
 105#include "netlabel.h"
 106#include "audit.h"
 107#include "avc_ss.h"
 108
 109#define SELINUX_INODE_INIT_XATTRS 1
 110
 111struct selinux_state selinux_state;
 112
 113/* SECMARK reference count */
 114static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 115
 116#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 117static int selinux_enforcing_boot __initdata;
 118
 119static int __init enforcing_setup(char *str)
 120{
 121	unsigned long enforcing;
 122	if (!kstrtoul(str, 0, &enforcing))
 123		selinux_enforcing_boot = enforcing ? 1 : 0;
 124	return 1;
 125}
 126__setup("enforcing=", enforcing_setup);
 127#else
 128#define selinux_enforcing_boot 1
 129#endif
 130
 131int selinux_enabled_boot __initdata = 1;
 132#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 133static int __init selinux_enabled_setup(char *str)
 134{
 135	unsigned long enabled;
 136	if (!kstrtoul(str, 0, &enabled))
 137		selinux_enabled_boot = enabled ? 1 : 0;
 138	return 1;
 139}
 140__setup("selinux=", selinux_enabled_setup);
 141#endif
 142
 
 
 
 143static int __init checkreqprot_setup(char *str)
 144{
 145	unsigned long checkreqprot;
 146
 147	if (!kstrtoul(str, 0, &checkreqprot)) {
 
 148		if (checkreqprot)
 149			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is no longer supported.\n");
 150	}
 151	return 1;
 152}
 153__setup("checkreqprot=", checkreqprot_setup);
 154
 155/**
 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 157 *
 158 * Description:
 159 * This function checks the SECMARK reference counter to see if any SECMARK
 160 * targets are currently configured, if the reference counter is greater than
 161 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 162 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 163 * policy capability is enabled, SECMARK is always considered enabled.
 164 *
 165 */
 166static int selinux_secmark_enabled(void)
 167{
 168	return (selinux_policycap_alwaysnetwork() ||
 169		atomic_read(&selinux_secmark_refcount));
 170}
 171
 172/**
 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 174 *
 175 * Description:
 176 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 177 * (1) if any are enabled or false (0) if neither are enabled.  If the
 178 * always_check_network policy capability is enabled, peer labeling
 179 * is always considered enabled.
 180 *
 181 */
 182static int selinux_peerlbl_enabled(void)
 183{
 184	return (selinux_policycap_alwaysnetwork() ||
 185		netlbl_enabled() || selinux_xfrm_enabled());
 186}
 187
 188static int selinux_netcache_avc_callback(u32 event)
 189{
 190	if (event == AVC_CALLBACK_RESET) {
 191		sel_netif_flush();
 192		sel_netnode_flush();
 193		sel_netport_flush();
 194		synchronize_net();
 195	}
 196	return 0;
 197}
 198
 199static int selinux_lsm_notifier_avc_callback(u32 event)
 200{
 201	if (event == AVC_CALLBACK_RESET) {
 202		sel_ib_pkey_flush();
 203		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 204	}
 205
 206	return 0;
 207}
 208
 209/*
 210 * initialise the security for the init task
 211 */
 212static void cred_init_security(void)
 213{
 
 214	struct task_security_struct *tsec;
 215
 216	tsec = selinux_cred(unrcu_pointer(current->real_cred));
 217	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 218}
 219
 220/*
 221 * get the security ID of a set of credentials
 222 */
 223static inline u32 cred_sid(const struct cred *cred)
 224{
 225	const struct task_security_struct *tsec;
 226
 227	tsec = selinux_cred(cred);
 228	return tsec->sid;
 229}
 230
 231static void __ad_net_init(struct common_audit_data *ad,
 232			  struct lsm_network_audit *net,
 233			  int ifindex, struct sock *sk, u16 family)
 234{
 235	ad->type = LSM_AUDIT_DATA_NET;
 236	ad->u.net = net;
 237	net->netif = ifindex;
 238	net->sk = sk;
 239	net->family = family;
 240}
 241
 242static void ad_net_init_from_sk(struct common_audit_data *ad,
 243				struct lsm_network_audit *net,
 244				struct sock *sk)
 245{
 246	__ad_net_init(ad, net, 0, sk, 0);
 247}
 248
 249static void ad_net_init_from_iif(struct common_audit_data *ad,
 250				 struct lsm_network_audit *net,
 251				 int ifindex, u16 family)
 252{
 253	__ad_net_init(ad, net, ifindex, NULL, family);
 254}
 255
 256/*
 257 * get the objective security ID of a task
 258 */
 259static inline u32 task_sid_obj(const struct task_struct *task)
 260{
 261	u32 sid;
 262
 263	rcu_read_lock();
 264	sid = cred_sid(__task_cred(task));
 265	rcu_read_unlock();
 266	return sid;
 267}
 268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 269static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 270
 271/*
 272 * Try reloading inode security labels that have been marked as invalid.  The
 273 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 274 * allowed; when set to false, returns -ECHILD when the label is
 275 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 276 */
 277static int __inode_security_revalidate(struct inode *inode,
 278				       struct dentry *dentry,
 279				       bool may_sleep)
 280{
 281	struct inode_security_struct *isec = selinux_inode(inode);
 282
 283	might_sleep_if(may_sleep);
 284
 285	if (selinux_initialized() &&
 286	    isec->initialized != LABEL_INITIALIZED) {
 287		if (!may_sleep)
 288			return -ECHILD;
 289
 290		/*
 291		 * Try reloading the inode security label.  This will fail if
 292		 * @opt_dentry is NULL and no dentry for this inode can be
 293		 * found; in that case, continue using the old label.
 294		 */
 295		inode_doinit_with_dentry(inode, dentry);
 296	}
 297	return 0;
 298}
 299
 300static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 301{
 302	return selinux_inode(inode);
 303}
 304
 305static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 306{
 307	int error;
 308
 309	error = __inode_security_revalidate(inode, NULL, !rcu);
 310	if (error)
 311		return ERR_PTR(error);
 312	return selinux_inode(inode);
 313}
 314
 315/*
 316 * Get the security label of an inode.
 317 */
 318static struct inode_security_struct *inode_security(struct inode *inode)
 319{
 320	__inode_security_revalidate(inode, NULL, true);
 321	return selinux_inode(inode);
 322}
 323
 324static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 325{
 326	struct inode *inode = d_backing_inode(dentry);
 327
 328	return selinux_inode(inode);
 329}
 330
 331/*
 332 * Get the security label of a dentry's backing inode.
 333 */
 334static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 335{
 336	struct inode *inode = d_backing_inode(dentry);
 337
 338	__inode_security_revalidate(inode, dentry, true);
 339	return selinux_inode(inode);
 340}
 341
 342static void inode_free_security(struct inode *inode)
 343{
 344	struct inode_security_struct *isec = selinux_inode(inode);
 345	struct superblock_security_struct *sbsec;
 346
 347	if (!isec)
 348		return;
 349	sbsec = selinux_superblock(inode->i_sb);
 350	/*
 351	 * As not all inode security structures are in a list, we check for
 352	 * empty list outside of the lock to make sure that we won't waste
 353	 * time taking a lock doing nothing.
 354	 *
 355	 * The list_del_init() function can be safely called more than once.
 356	 * It should not be possible for this function to be called with
 357	 * concurrent list_add(), but for better safety against future changes
 358	 * in the code, we use list_empty_careful() here.
 359	 */
 360	if (!list_empty_careful(&isec->list)) {
 361		spin_lock(&sbsec->isec_lock);
 362		list_del_init(&isec->list);
 363		spin_unlock(&sbsec->isec_lock);
 364	}
 365}
 366
 367struct selinux_mnt_opts {
 368	u32 fscontext_sid;
 369	u32 context_sid;
 370	u32 rootcontext_sid;
 371	u32 defcontext_sid;
 372};
 373
 374static void selinux_free_mnt_opts(void *mnt_opts)
 375{
 376	kfree(mnt_opts);
 
 
 
 
 
 377}
 378
 379enum {
 380	Opt_error = -1,
 381	Opt_context = 0,
 382	Opt_defcontext = 1,
 383	Opt_fscontext = 2,
 384	Opt_rootcontext = 3,
 385	Opt_seclabel = 4,
 386};
 387
 388#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 389static const struct {
 390	const char *name;
 391	int len;
 392	int opt;
 393	bool has_arg;
 394} tokens[] = {
 395	A(context, true),
 396	A(fscontext, true),
 397	A(defcontext, true),
 398	A(rootcontext, true),
 399	A(seclabel, false),
 400};
 401#undef A
 402
 403static int match_opt_prefix(char *s, int l, char **arg)
 404{
 405	int i;
 406
 407	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 408		size_t len = tokens[i].len;
 409		if (len > l || memcmp(s, tokens[i].name, len))
 410			continue;
 411		if (tokens[i].has_arg) {
 412			if (len == l || s[len] != '=')
 413				continue;
 414			*arg = s + len + 1;
 415		} else if (len != l)
 416			continue;
 417		return tokens[i].opt;
 418	}
 419	return Opt_error;
 420}
 421
 422#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 423
 424static int may_context_mount_sb_relabel(u32 sid,
 425			struct superblock_security_struct *sbsec,
 426			const struct cred *cred)
 427{
 428	const struct task_security_struct *tsec = selinux_cred(cred);
 429	int rc;
 430
 431	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 432			  FILESYSTEM__RELABELFROM, NULL);
 433	if (rc)
 434		return rc;
 435
 436	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 437			  FILESYSTEM__RELABELTO, NULL);
 438	return rc;
 439}
 440
 441static int may_context_mount_inode_relabel(u32 sid,
 442			struct superblock_security_struct *sbsec,
 443			const struct cred *cred)
 444{
 445	const struct task_security_struct *tsec = selinux_cred(cred);
 446	int rc;
 447	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 448			  FILESYSTEM__RELABELFROM, NULL);
 449	if (rc)
 450		return rc;
 451
 452	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 453			  FILESYSTEM__ASSOCIATE, NULL);
 454	return rc;
 455}
 456
 457static int selinux_is_genfs_special_handling(struct super_block *sb)
 458{
 459	/* Special handling. Genfs but also in-core setxattr handler */
 460	return	!strcmp(sb->s_type->name, "sysfs") ||
 461		!strcmp(sb->s_type->name, "pstore") ||
 462		!strcmp(sb->s_type->name, "debugfs") ||
 463		!strcmp(sb->s_type->name, "tracefs") ||
 464		!strcmp(sb->s_type->name, "rootfs") ||
 465		(selinux_policycap_cgroupseclabel() &&
 466		 (!strcmp(sb->s_type->name, "cgroup") ||
 467		  !strcmp(sb->s_type->name, "cgroup2")));
 468}
 469
 470static int selinux_is_sblabel_mnt(struct super_block *sb)
 471{
 472	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 473
 474	/*
 475	 * IMPORTANT: Double-check logic in this function when adding a new
 476	 * SECURITY_FS_USE_* definition!
 477	 */
 478	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 479
 480	switch (sbsec->behavior) {
 481	case SECURITY_FS_USE_XATTR:
 482	case SECURITY_FS_USE_TRANS:
 483	case SECURITY_FS_USE_TASK:
 484	case SECURITY_FS_USE_NATIVE:
 485		return 1;
 486
 487	case SECURITY_FS_USE_GENFS:
 488		return selinux_is_genfs_special_handling(sb);
 489
 490	/* Never allow relabeling on context mounts */
 491	case SECURITY_FS_USE_MNTPOINT:
 492	case SECURITY_FS_USE_NONE:
 493	default:
 494		return 0;
 495	}
 496}
 497
 498static int sb_check_xattr_support(struct super_block *sb)
 499{
 500	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 501	struct dentry *root = sb->s_root;
 502	struct inode *root_inode = d_backing_inode(root);
 503	u32 sid;
 504	int rc;
 505
 506	/*
 507	 * Make sure that the xattr handler exists and that no
 508	 * error other than -ENODATA is returned by getxattr on
 509	 * the root directory.  -ENODATA is ok, as this may be
 510	 * the first boot of the SELinux kernel before we have
 511	 * assigned xattr values to the filesystem.
 512	 */
 513	if (!(root_inode->i_opflags & IOP_XATTR)) {
 514		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
 515			sb->s_id, sb->s_type->name);
 516		goto fallback;
 517	}
 518
 519	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 520	if (rc < 0 && rc != -ENODATA) {
 521		if (rc == -EOPNOTSUPP) {
 522			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
 523				sb->s_id, sb->s_type->name);
 524			goto fallback;
 525		} else {
 526			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
 527				sb->s_id, sb->s_type->name, -rc);
 528			return rc;
 529		}
 530	}
 531	return 0;
 532
 533fallback:
 534	/* No xattr support - try to fallback to genfs if possible. */
 535	rc = security_genfs_sid(sb->s_type->name, "/",
 536				SECCLASS_DIR, &sid);
 537	if (rc)
 538		return -EOPNOTSUPP;
 539
 540	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
 541		sb->s_id, sb->s_type->name);
 542	sbsec->behavior = SECURITY_FS_USE_GENFS;
 543	sbsec->sid = sid;
 544	return 0;
 545}
 546
 547static int sb_finish_set_opts(struct super_block *sb)
 548{
 549	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 550	struct dentry *root = sb->s_root;
 551	struct inode *root_inode = d_backing_inode(root);
 552	int rc = 0;
 553
 554	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 555		rc = sb_check_xattr_support(sb);
 556		if (rc)
 557			return rc;
 558	}
 559
 560	sbsec->flags |= SE_SBINITIALIZED;
 561
 562	/*
 563	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 564	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 565	 * us a superblock that needs the flag to be cleared.
 566	 */
 567	if (selinux_is_sblabel_mnt(sb))
 568		sbsec->flags |= SBLABEL_MNT;
 569	else
 570		sbsec->flags &= ~SBLABEL_MNT;
 571
 572	/* Initialize the root inode. */
 573	rc = inode_doinit_with_dentry(root_inode, root);
 574
 575	/* Initialize any other inodes associated with the superblock, e.g.
 576	   inodes created prior to initial policy load or inodes created
 577	   during get_sb by a pseudo filesystem that directly
 578	   populates itself. */
 579	spin_lock(&sbsec->isec_lock);
 580	while (!list_empty(&sbsec->isec_head)) {
 581		struct inode_security_struct *isec =
 582				list_first_entry(&sbsec->isec_head,
 583					   struct inode_security_struct, list);
 584		struct inode *inode = isec->inode;
 585		list_del_init(&isec->list);
 586		spin_unlock(&sbsec->isec_lock);
 587		inode = igrab(inode);
 588		if (inode) {
 589			if (!IS_PRIVATE(inode))
 590				inode_doinit_with_dentry(inode, NULL);
 591			iput(inode);
 592		}
 593		spin_lock(&sbsec->isec_lock);
 594	}
 595	spin_unlock(&sbsec->isec_lock);
 596	return rc;
 597}
 598
 599static int bad_option(struct superblock_security_struct *sbsec, char flag,
 600		      u32 old_sid, u32 new_sid)
 601{
 602	char mnt_flags = sbsec->flags & SE_MNTMASK;
 603
 604	/* check if the old mount command had the same options */
 605	if (sbsec->flags & SE_SBINITIALIZED)
 606		if (!(sbsec->flags & flag) ||
 607		    (old_sid != new_sid))
 608			return 1;
 609
 610	/* check if we were passed the same options twice,
 611	 * aka someone passed context=a,context=b
 612	 */
 613	if (!(sbsec->flags & SE_SBINITIALIZED))
 614		if (mnt_flags & flag)
 615			return 1;
 616	return 0;
 617}
 618
 
 
 
 
 
 
 
 
 
 
 
 619/*
 620 * Allow filesystems with binary mount data to explicitly set mount point
 621 * labeling information.
 622 */
 623static int selinux_set_mnt_opts(struct super_block *sb,
 624				void *mnt_opts,
 625				unsigned long kern_flags,
 626				unsigned long *set_kern_flags)
 627{
 628	const struct cred *cred = current_cred();
 629	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 630	struct dentry *root = sb->s_root;
 631	struct selinux_mnt_opts *opts = mnt_opts;
 632	struct inode_security_struct *root_isec;
 633	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 634	u32 defcontext_sid = 0;
 635	int rc = 0;
 636
 637	/*
 638	 * Specifying internal flags without providing a place to
 639	 * place the results is not allowed
 640	 */
 641	if (kern_flags && !set_kern_flags)
 642		return -EINVAL;
 643
 644	mutex_lock(&sbsec->lock);
 645
 646	if (!selinux_initialized()) {
 647		if (!opts) {
 648			/* Defer initialization until selinux_complete_init,
 649			   after the initial policy is loaded and the security
 650			   server is ready to handle calls. */
 651			if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
 652				sbsec->flags |= SE_SBNATIVE;
 653				*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 654			}
 655			goto out;
 656		}
 657		rc = -EINVAL;
 658		pr_warn("SELinux: Unable to set superblock options "
 659			"before the security server is initialized\n");
 660		goto out;
 661	}
 
 
 
 
 
 
 662
 663	/*
 664	 * Binary mount data FS will come through this function twice.  Once
 665	 * from an explicit call and once from the generic calls from the vfs.
 666	 * Since the generic VFS calls will not contain any security mount data
 667	 * we need to skip the double mount verification.
 668	 *
 669	 * This does open a hole in which we will not notice if the first
 670	 * mount using this sb set explicit options and a second mount using
 671	 * this sb does not set any security options.  (The first options
 672	 * will be used for both mounts)
 673	 */
 674	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 675	    && !opts)
 676		goto out;
 677
 678	root_isec = backing_inode_security_novalidate(root);
 679
 680	/*
 681	 * parse the mount options, check if they are valid sids.
 682	 * also check if someone is trying to mount the same sb more
 683	 * than once with different security options.
 684	 */
 685	if (opts) {
 686		if (opts->fscontext_sid) {
 687			fscontext_sid = opts->fscontext_sid;
 
 
 688			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 689					fscontext_sid))
 690				goto out_double_mount;
 691			sbsec->flags |= FSCONTEXT_MNT;
 692		}
 693		if (opts->context_sid) {
 694			context_sid = opts->context_sid;
 
 
 695			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 696					context_sid))
 697				goto out_double_mount;
 698			sbsec->flags |= CONTEXT_MNT;
 699		}
 700		if (opts->rootcontext_sid) {
 701			rootcontext_sid = opts->rootcontext_sid;
 
 
 702			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 703					rootcontext_sid))
 704				goto out_double_mount;
 705			sbsec->flags |= ROOTCONTEXT_MNT;
 706		}
 707		if (opts->defcontext_sid) {
 708			defcontext_sid = opts->defcontext_sid;
 
 
 709			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 710					defcontext_sid))
 711				goto out_double_mount;
 712			sbsec->flags |= DEFCONTEXT_MNT;
 713		}
 714	}
 715
 716	if (sbsec->flags & SE_SBINITIALIZED) {
 717		/* previously mounted with options, but not on this attempt? */
 718		if ((sbsec->flags & SE_MNTMASK) && !opts)
 719			goto out_double_mount;
 720		rc = 0;
 721		goto out;
 722	}
 723
 724	if (strcmp(sb->s_type->name, "proc") == 0)
 725		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 726
 727	if (!strcmp(sb->s_type->name, "debugfs") ||
 728	    !strcmp(sb->s_type->name, "tracefs") ||
 729	    !strcmp(sb->s_type->name, "binder") ||
 730	    !strcmp(sb->s_type->name, "bpf") ||
 731	    !strcmp(sb->s_type->name, "pstore") ||
 732	    !strcmp(sb->s_type->name, "securityfs"))
 733		sbsec->flags |= SE_SBGENFS;
 734
 735	if (!strcmp(sb->s_type->name, "sysfs") ||
 736	    !strcmp(sb->s_type->name, "cgroup") ||
 737	    !strcmp(sb->s_type->name, "cgroup2"))
 738		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 739
 740	if (!sbsec->behavior) {
 741		/*
 742		 * Determine the labeling behavior to use for this
 743		 * filesystem type.
 744		 */
 745		rc = security_fs_use(sb);
 746		if (rc) {
 747			pr_warn("%s: security_fs_use(%s) returned %d\n",
 748					__func__, sb->s_type->name, rc);
 749			goto out;
 750		}
 751	}
 752
 753	/*
 754	 * If this is a user namespace mount and the filesystem type is not
 755	 * explicitly whitelisted, then no contexts are allowed on the command
 756	 * line and security labels must be ignored.
 757	 */
 758	if (sb->s_user_ns != &init_user_ns &&
 759	    strcmp(sb->s_type->name, "tmpfs") &&
 760	    strcmp(sb->s_type->name, "ramfs") &&
 761	    strcmp(sb->s_type->name, "devpts") &&
 762	    strcmp(sb->s_type->name, "overlay")) {
 763		if (context_sid || fscontext_sid || rootcontext_sid ||
 764		    defcontext_sid) {
 765			rc = -EACCES;
 766			goto out;
 767		}
 768		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 769			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 770			rc = security_transition_sid(current_sid(),
 
 771						     current_sid(),
 772						     SECCLASS_FILE, NULL,
 773						     &sbsec->mntpoint_sid);
 774			if (rc)
 775				goto out;
 776		}
 777		goto out_set_opts;
 778	}
 779
 780	/* sets the context of the superblock for the fs being mounted. */
 781	if (fscontext_sid) {
 782		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 783		if (rc)
 784			goto out;
 785
 786		sbsec->sid = fscontext_sid;
 787	}
 788
 789	/*
 790	 * Switch to using mount point labeling behavior.
 791	 * sets the label used on all file below the mountpoint, and will set
 792	 * the superblock context if not already set.
 793	 */
 794	if (sbsec->flags & SE_SBNATIVE) {
 795		/*
 796		 * This means we are initializing a superblock that has been
 797		 * mounted before the SELinux was initialized and the
 798		 * filesystem requested native labeling. We had already
 799		 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
 800		 * in the original mount attempt, so now we just need to set
 801		 * the SECURITY_FS_USE_NATIVE behavior.
 802		 */
 803		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 804	} else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 805		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 806		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 807	}
 808
 809	if (context_sid) {
 810		if (!fscontext_sid) {
 811			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 812							  cred);
 813			if (rc)
 814				goto out;
 815			sbsec->sid = context_sid;
 816		} else {
 817			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 818							     cred);
 819			if (rc)
 820				goto out;
 821		}
 822		if (!rootcontext_sid)
 823			rootcontext_sid = context_sid;
 824
 825		sbsec->mntpoint_sid = context_sid;
 826		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 827	}
 828
 829	if (rootcontext_sid) {
 830		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 831						     cred);
 832		if (rc)
 833			goto out;
 834
 835		root_isec->sid = rootcontext_sid;
 836		root_isec->initialized = LABEL_INITIALIZED;
 837	}
 838
 839	if (defcontext_sid) {
 840		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 841			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 842			rc = -EINVAL;
 843			pr_warn("SELinux: defcontext option is "
 844			       "invalid for this filesystem type\n");
 845			goto out;
 846		}
 847
 848		if (defcontext_sid != sbsec->def_sid) {
 849			rc = may_context_mount_inode_relabel(defcontext_sid,
 850							     sbsec, cred);
 851			if (rc)
 852				goto out;
 853		}
 854
 855		sbsec->def_sid = defcontext_sid;
 856	}
 857
 858out_set_opts:
 859	rc = sb_finish_set_opts(sb);
 860out:
 861	mutex_unlock(&sbsec->lock);
 862	return rc;
 863out_double_mount:
 864	rc = -EINVAL;
 865	pr_warn("SELinux: mount invalid.  Same superblock, different "
 866	       "security settings for (dev %s, type %s)\n", sb->s_id,
 867	       sb->s_type->name);
 868	goto out;
 869}
 870
 871static int selinux_cmp_sb_context(const struct super_block *oldsb,
 872				    const struct super_block *newsb)
 873{
 874	struct superblock_security_struct *old = selinux_superblock(oldsb);
 875	struct superblock_security_struct *new = selinux_superblock(newsb);
 876	char oldflags = old->flags & SE_MNTMASK;
 877	char newflags = new->flags & SE_MNTMASK;
 878
 879	if (oldflags != newflags)
 880		goto mismatch;
 881	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 882		goto mismatch;
 883	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 884		goto mismatch;
 885	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 886		goto mismatch;
 887	if (oldflags & ROOTCONTEXT_MNT) {
 888		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 889		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 890		if (oldroot->sid != newroot->sid)
 891			goto mismatch;
 892	}
 893	return 0;
 894mismatch:
 895	pr_warn("SELinux: mount invalid.  Same superblock, "
 896			    "different security settings for (dev %s, "
 897			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 898	return -EBUSY;
 899}
 900
 901static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 902					struct super_block *newsb,
 903					unsigned long kern_flags,
 904					unsigned long *set_kern_flags)
 905{
 906	int rc = 0;
 907	const struct superblock_security_struct *oldsbsec =
 908						selinux_superblock(oldsb);
 909	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
 910
 911	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 912	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 913	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 914
 915	/*
 
 
 
 
 
 
 
 916	 * Specifying internal flags without providing a place to
 917	 * place the results is not allowed.
 918	 */
 919	if (kern_flags && !set_kern_flags)
 920		return -EINVAL;
 921
 922	mutex_lock(&newsbsec->lock);
 923
 924	/*
 925	 * if the parent was able to be mounted it clearly had no special lsm
 926	 * mount options.  thus we can safely deal with this superblock later
 927	 */
 928	if (!selinux_initialized()) {
 929		if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
 930			newsbsec->flags |= SE_SBNATIVE;
 931			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 932		}
 933		goto out;
 934	}
 935
 936	/* how can we clone if the old one wasn't set up?? */
 937	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 938
 939	/* if fs is reusing a sb, make sure that the contexts match */
 940	if (newsbsec->flags & SE_SBINITIALIZED) {
 941		mutex_unlock(&newsbsec->lock);
 942		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 943			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 944		return selinux_cmp_sb_context(oldsb, newsb);
 945	}
 946
 
 
 947	newsbsec->flags = oldsbsec->flags;
 948
 949	newsbsec->sid = oldsbsec->sid;
 950	newsbsec->def_sid = oldsbsec->def_sid;
 951	newsbsec->behavior = oldsbsec->behavior;
 952
 953	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 954		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 955		rc = security_fs_use(newsb);
 956		if (rc)
 957			goto out;
 958	}
 959
 960	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 961		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 962		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 963	}
 964
 965	if (set_context) {
 966		u32 sid = oldsbsec->mntpoint_sid;
 967
 968		if (!set_fscontext)
 969			newsbsec->sid = sid;
 970		if (!set_rootcontext) {
 971			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 972			newisec->sid = sid;
 973		}
 974		newsbsec->mntpoint_sid = sid;
 975	}
 976	if (set_rootcontext) {
 977		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 978		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 979
 980		newisec->sid = oldisec->sid;
 981	}
 982
 983	sb_finish_set_opts(newsb);
 984out:
 985	mutex_unlock(&newsbsec->lock);
 986	return rc;
 987}
 988
 989/*
 990 * NOTE: the caller is responsible for freeing the memory even if on error.
 991 */
 992static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 993{
 994	struct selinux_mnt_opts *opts = *mnt_opts;
 995	u32 *dst_sid;
 996	int rc;
 997
 998	if (token == Opt_seclabel)
 999		/* eaten and completely ignored */
1000		return 0;
1001	if (!s)
1002		return -EINVAL;
1003
1004	if (!selinux_initialized()) {
1005		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1006		return -EINVAL;
1007	}
1008
1009	if (!opts) {
1010		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1011		if (!opts)
1012			return -ENOMEM;
1013		*mnt_opts = opts;
1014	}
1015
 
1016	switch (token) {
1017	case Opt_context:
1018		if (opts->context_sid || opts->defcontext_sid)
1019			goto err;
1020		dst_sid = &opts->context_sid;
1021		break;
1022	case Opt_fscontext:
1023		if (opts->fscontext_sid)
1024			goto err;
1025		dst_sid = &opts->fscontext_sid;
1026		break;
1027	case Opt_rootcontext:
1028		if (opts->rootcontext_sid)
1029			goto err;
1030		dst_sid = &opts->rootcontext_sid;
1031		break;
1032	case Opt_defcontext:
1033		if (opts->context_sid || opts->defcontext_sid)
1034			goto err;
1035		dst_sid = &opts->defcontext_sid;
1036		break;
1037	default:
1038		WARN_ON(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
1040	}
1041	rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1042	if (rc)
1043		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1044			s, rc);
1045	return rc;
1046
1047err:
1048	pr_warn(SEL_MOUNT_FAIL_MSG);
1049	return -EINVAL;
 
 
 
1050}
1051
1052static int show_sid(struct seq_file *m, u32 sid)
1053{
1054	char *context = NULL;
1055	u32 len;
1056	int rc;
1057
1058	rc = security_sid_to_context(sid, &context, &len);
 
1059	if (!rc) {
1060		bool has_comma = strchr(context, ',');
1061
1062		seq_putc(m, '=');
1063		if (has_comma)
1064			seq_putc(m, '\"');
1065		seq_escape(m, context, "\"\n\\");
1066		if (has_comma)
1067			seq_putc(m, '\"');
1068	}
1069	kfree(context);
1070	return rc;
1071}
1072
1073static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1074{
1075	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1076	int rc;
1077
1078	if (!(sbsec->flags & SE_SBINITIALIZED))
1079		return 0;
1080
1081	if (!selinux_initialized())
1082		return 0;
1083
1084	if (sbsec->flags & FSCONTEXT_MNT) {
1085		seq_putc(m, ',');
1086		seq_puts(m, FSCONTEXT_STR);
1087		rc = show_sid(m, sbsec->sid);
1088		if (rc)
1089			return rc;
1090	}
1091	if (sbsec->flags & CONTEXT_MNT) {
1092		seq_putc(m, ',');
1093		seq_puts(m, CONTEXT_STR);
1094		rc = show_sid(m, sbsec->mntpoint_sid);
1095		if (rc)
1096			return rc;
1097	}
1098	if (sbsec->flags & DEFCONTEXT_MNT) {
1099		seq_putc(m, ',');
1100		seq_puts(m, DEFCONTEXT_STR);
1101		rc = show_sid(m, sbsec->def_sid);
1102		if (rc)
1103			return rc;
1104	}
1105	if (sbsec->flags & ROOTCONTEXT_MNT) {
1106		struct dentry *root = sb->s_root;
1107		struct inode_security_struct *isec = backing_inode_security(root);
1108		seq_putc(m, ',');
1109		seq_puts(m, ROOTCONTEXT_STR);
1110		rc = show_sid(m, isec->sid);
1111		if (rc)
1112			return rc;
1113	}
1114	if (sbsec->flags & SBLABEL_MNT) {
1115		seq_putc(m, ',');
1116		seq_puts(m, SECLABEL_STR);
1117	}
1118	return 0;
1119}
1120
1121static inline u16 inode_mode_to_security_class(umode_t mode)
1122{
1123	switch (mode & S_IFMT) {
1124	case S_IFSOCK:
1125		return SECCLASS_SOCK_FILE;
1126	case S_IFLNK:
1127		return SECCLASS_LNK_FILE;
1128	case S_IFREG:
1129		return SECCLASS_FILE;
1130	case S_IFBLK:
1131		return SECCLASS_BLK_FILE;
1132	case S_IFDIR:
1133		return SECCLASS_DIR;
1134	case S_IFCHR:
1135		return SECCLASS_CHR_FILE;
1136	case S_IFIFO:
1137		return SECCLASS_FIFO_FILE;
1138
1139	}
1140
1141	return SECCLASS_FILE;
1142}
1143
1144static inline int default_protocol_stream(int protocol)
1145{
1146	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1147		protocol == IPPROTO_MPTCP);
1148}
1149
1150static inline int default_protocol_dgram(int protocol)
1151{
1152	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1153}
1154
1155static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1156{
1157	bool extsockclass = selinux_policycap_extsockclass();
1158
1159	switch (family) {
1160	case PF_UNIX:
1161		switch (type) {
1162		case SOCK_STREAM:
1163		case SOCK_SEQPACKET:
1164			return SECCLASS_UNIX_STREAM_SOCKET;
1165		case SOCK_DGRAM:
1166		case SOCK_RAW:
1167			return SECCLASS_UNIX_DGRAM_SOCKET;
1168		}
1169		break;
1170	case PF_INET:
1171	case PF_INET6:
1172		switch (type) {
1173		case SOCK_STREAM:
1174		case SOCK_SEQPACKET:
1175			if (default_protocol_stream(protocol))
1176				return SECCLASS_TCP_SOCKET;
1177			else if (extsockclass && protocol == IPPROTO_SCTP)
1178				return SECCLASS_SCTP_SOCKET;
1179			else
1180				return SECCLASS_RAWIP_SOCKET;
1181		case SOCK_DGRAM:
1182			if (default_protocol_dgram(protocol))
1183				return SECCLASS_UDP_SOCKET;
1184			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1185						  protocol == IPPROTO_ICMPV6))
1186				return SECCLASS_ICMP_SOCKET;
1187			else
1188				return SECCLASS_RAWIP_SOCKET;
1189		case SOCK_DCCP:
1190			return SECCLASS_DCCP_SOCKET;
1191		default:
1192			return SECCLASS_RAWIP_SOCKET;
1193		}
1194		break;
1195	case PF_NETLINK:
1196		switch (protocol) {
1197		case NETLINK_ROUTE:
1198			return SECCLASS_NETLINK_ROUTE_SOCKET;
1199		case NETLINK_SOCK_DIAG:
1200			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1201		case NETLINK_NFLOG:
1202			return SECCLASS_NETLINK_NFLOG_SOCKET;
1203		case NETLINK_XFRM:
1204			return SECCLASS_NETLINK_XFRM_SOCKET;
1205		case NETLINK_SELINUX:
1206			return SECCLASS_NETLINK_SELINUX_SOCKET;
1207		case NETLINK_ISCSI:
1208			return SECCLASS_NETLINK_ISCSI_SOCKET;
1209		case NETLINK_AUDIT:
1210			return SECCLASS_NETLINK_AUDIT_SOCKET;
1211		case NETLINK_FIB_LOOKUP:
1212			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1213		case NETLINK_CONNECTOR:
1214			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1215		case NETLINK_NETFILTER:
1216			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1217		case NETLINK_DNRTMSG:
1218			return SECCLASS_NETLINK_DNRT_SOCKET;
1219		case NETLINK_KOBJECT_UEVENT:
1220			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1221		case NETLINK_GENERIC:
1222			return SECCLASS_NETLINK_GENERIC_SOCKET;
1223		case NETLINK_SCSITRANSPORT:
1224			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1225		case NETLINK_RDMA:
1226			return SECCLASS_NETLINK_RDMA_SOCKET;
1227		case NETLINK_CRYPTO:
1228			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1229		default:
1230			return SECCLASS_NETLINK_SOCKET;
1231		}
1232	case PF_PACKET:
1233		return SECCLASS_PACKET_SOCKET;
1234	case PF_KEY:
1235		return SECCLASS_KEY_SOCKET;
1236	case PF_APPLETALK:
1237		return SECCLASS_APPLETALK_SOCKET;
1238	}
1239
1240	if (extsockclass) {
1241		switch (family) {
1242		case PF_AX25:
1243			return SECCLASS_AX25_SOCKET;
1244		case PF_IPX:
1245			return SECCLASS_IPX_SOCKET;
1246		case PF_NETROM:
1247			return SECCLASS_NETROM_SOCKET;
1248		case PF_ATMPVC:
1249			return SECCLASS_ATMPVC_SOCKET;
1250		case PF_X25:
1251			return SECCLASS_X25_SOCKET;
1252		case PF_ROSE:
1253			return SECCLASS_ROSE_SOCKET;
1254		case PF_DECnet:
1255			return SECCLASS_DECNET_SOCKET;
1256		case PF_ATMSVC:
1257			return SECCLASS_ATMSVC_SOCKET;
1258		case PF_RDS:
1259			return SECCLASS_RDS_SOCKET;
1260		case PF_IRDA:
1261			return SECCLASS_IRDA_SOCKET;
1262		case PF_PPPOX:
1263			return SECCLASS_PPPOX_SOCKET;
1264		case PF_LLC:
1265			return SECCLASS_LLC_SOCKET;
1266		case PF_CAN:
1267			return SECCLASS_CAN_SOCKET;
1268		case PF_TIPC:
1269			return SECCLASS_TIPC_SOCKET;
1270		case PF_BLUETOOTH:
1271			return SECCLASS_BLUETOOTH_SOCKET;
1272		case PF_IUCV:
1273			return SECCLASS_IUCV_SOCKET;
1274		case PF_RXRPC:
1275			return SECCLASS_RXRPC_SOCKET;
1276		case PF_ISDN:
1277			return SECCLASS_ISDN_SOCKET;
1278		case PF_PHONET:
1279			return SECCLASS_PHONET_SOCKET;
1280		case PF_IEEE802154:
1281			return SECCLASS_IEEE802154_SOCKET;
1282		case PF_CAIF:
1283			return SECCLASS_CAIF_SOCKET;
1284		case PF_ALG:
1285			return SECCLASS_ALG_SOCKET;
1286		case PF_NFC:
1287			return SECCLASS_NFC_SOCKET;
1288		case PF_VSOCK:
1289			return SECCLASS_VSOCK_SOCKET;
1290		case PF_KCM:
1291			return SECCLASS_KCM_SOCKET;
1292		case PF_QIPCRTR:
1293			return SECCLASS_QIPCRTR_SOCKET;
1294		case PF_SMC:
1295			return SECCLASS_SMC_SOCKET;
1296		case PF_XDP:
1297			return SECCLASS_XDP_SOCKET;
1298		case PF_MCTP:
1299			return SECCLASS_MCTP_SOCKET;
1300#if PF_MAX > 46
1301#error New address family defined, please update this function.
1302#endif
1303		}
1304	}
1305
1306	return SECCLASS_SOCKET;
1307}
1308
1309static int selinux_genfs_get_sid(struct dentry *dentry,
1310				 u16 tclass,
1311				 u16 flags,
1312				 u32 *sid)
1313{
1314	int rc;
1315	struct super_block *sb = dentry->d_sb;
1316	char *buffer, *path;
1317
1318	buffer = (char *)__get_free_page(GFP_KERNEL);
1319	if (!buffer)
1320		return -ENOMEM;
1321
1322	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1323	if (IS_ERR(path))
1324		rc = PTR_ERR(path);
1325	else {
1326		if (flags & SE_SBPROC) {
1327			/* each process gets a /proc/PID/ entry. Strip off the
1328			 * PID part to get a valid selinux labeling.
1329			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1330			while (path[1] >= '0' && path[1] <= '9') {
1331				path[1] = '/';
1332				path++;
1333			}
1334		}
1335		rc = security_genfs_sid(sb->s_type->name,
1336					path, tclass, sid);
1337		if (rc == -ENOENT) {
1338			/* No match in policy, mark as unlabeled. */
1339			*sid = SECINITSID_UNLABELED;
1340			rc = 0;
1341		}
1342	}
1343	free_page((unsigned long)buffer);
1344	return rc;
1345}
1346
1347static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1348				  u32 def_sid, u32 *sid)
1349{
1350#define INITCONTEXTLEN 255
1351	char *context;
1352	unsigned int len;
1353	int rc;
1354
1355	len = INITCONTEXTLEN;
1356	context = kmalloc(len + 1, GFP_NOFS);
1357	if (!context)
1358		return -ENOMEM;
1359
1360	context[len] = '\0';
1361	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1362	if (rc == -ERANGE) {
1363		kfree(context);
1364
1365		/* Need a larger buffer.  Query for the right size. */
1366		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1367		if (rc < 0)
1368			return rc;
1369
1370		len = rc;
1371		context = kmalloc(len + 1, GFP_NOFS);
1372		if (!context)
1373			return -ENOMEM;
1374
1375		context[len] = '\0';
1376		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1377				    context, len);
1378	}
1379	if (rc < 0) {
1380		kfree(context);
1381		if (rc != -ENODATA) {
1382			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1383				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1384			return rc;
1385		}
1386		*sid = def_sid;
1387		return 0;
1388	}
1389
1390	rc = security_context_to_sid_default(context, rc, sid,
1391					     def_sid, GFP_NOFS);
1392	if (rc) {
1393		char *dev = inode->i_sb->s_id;
1394		unsigned long ino = inode->i_ino;
1395
1396		if (rc == -EINVAL) {
1397			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1398					      ino, dev, context);
1399		} else {
1400			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1401				__func__, context, -rc, dev, ino);
1402		}
1403	}
1404	kfree(context);
1405	return 0;
1406}
1407
1408/* The inode's security attributes must be initialized before first use. */
1409static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1410{
1411	struct superblock_security_struct *sbsec = NULL;
1412	struct inode_security_struct *isec = selinux_inode(inode);
1413	u32 task_sid, sid = 0;
1414	u16 sclass;
1415	struct dentry *dentry;
1416	int rc = 0;
1417
1418	if (isec->initialized == LABEL_INITIALIZED)
1419		return 0;
1420
1421	spin_lock(&isec->lock);
1422	if (isec->initialized == LABEL_INITIALIZED)
1423		goto out_unlock;
1424
1425	if (isec->sclass == SECCLASS_FILE)
1426		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1427
1428	sbsec = selinux_superblock(inode->i_sb);
1429	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1430		/* Defer initialization until selinux_complete_init,
1431		   after the initial policy is loaded and the security
1432		   server is ready to handle calls. */
1433		spin_lock(&sbsec->isec_lock);
1434		if (list_empty(&isec->list))
1435			list_add(&isec->list, &sbsec->isec_head);
1436		spin_unlock(&sbsec->isec_lock);
1437		goto out_unlock;
1438	}
1439
1440	sclass = isec->sclass;
1441	task_sid = isec->task_sid;
1442	sid = isec->sid;
1443	isec->initialized = LABEL_PENDING;
1444	spin_unlock(&isec->lock);
1445
1446	switch (sbsec->behavior) {
1447	/*
1448	 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1449	 * via xattr when called from delayed_superblock_init().
1450	 */
1451	case SECURITY_FS_USE_NATIVE:
 
1452	case SECURITY_FS_USE_XATTR:
1453		if (!(inode->i_opflags & IOP_XATTR)) {
1454			sid = sbsec->def_sid;
1455			break;
1456		}
1457		/* Need a dentry, since the xattr API requires one.
1458		   Life would be simpler if we could just pass the inode. */
1459		if (opt_dentry) {
1460			/* Called from d_instantiate or d_splice_alias. */
1461			dentry = dget(opt_dentry);
1462		} else {
1463			/*
1464			 * Called from selinux_complete_init, try to find a dentry.
1465			 * Some filesystems really want a connected one, so try
1466			 * that first.  We could split SECURITY_FS_USE_XATTR in
1467			 * two, depending upon that...
1468			 */
1469			dentry = d_find_alias(inode);
1470			if (!dentry)
1471				dentry = d_find_any_alias(inode);
1472		}
1473		if (!dentry) {
1474			/*
1475			 * this is can be hit on boot when a file is accessed
1476			 * before the policy is loaded.  When we load policy we
1477			 * may find inodes that have no dentry on the
1478			 * sbsec->isec_head list.  No reason to complain as these
1479			 * will get fixed up the next time we go through
1480			 * inode_doinit with a dentry, before these inodes could
1481			 * be used again by userspace.
1482			 */
1483			goto out_invalid;
1484		}
1485
1486		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1487					    &sid);
1488		dput(dentry);
1489		if (rc)
1490			goto out;
1491		break;
1492	case SECURITY_FS_USE_TASK:
1493		sid = task_sid;
1494		break;
1495	case SECURITY_FS_USE_TRANS:
1496		/* Default to the fs SID. */
1497		sid = sbsec->sid;
1498
1499		/* Try to obtain a transition SID. */
1500		rc = security_transition_sid(task_sid, sid,
1501					     sclass, NULL, &sid);
1502		if (rc)
1503			goto out;
1504		break;
1505	case SECURITY_FS_USE_MNTPOINT:
1506		sid = sbsec->mntpoint_sid;
1507		break;
1508	default:
1509		/* Default to the fs superblock SID. */
1510		sid = sbsec->sid;
1511
1512		if ((sbsec->flags & SE_SBGENFS) &&
1513		     (!S_ISLNK(inode->i_mode) ||
1514		      selinux_policycap_genfs_seclabel_symlinks())) {
1515			/* We must have a dentry to determine the label on
1516			 * procfs inodes */
1517			if (opt_dentry) {
1518				/* Called from d_instantiate or
1519				 * d_splice_alias. */
1520				dentry = dget(opt_dentry);
1521			} else {
1522				/* Called from selinux_complete_init, try to
1523				 * find a dentry.  Some filesystems really want
1524				 * a connected one, so try that first.
1525				 */
1526				dentry = d_find_alias(inode);
1527				if (!dentry)
1528					dentry = d_find_any_alias(inode);
1529			}
1530			/*
1531			 * This can be hit on boot when a file is accessed
1532			 * before the policy is loaded.  When we load policy we
1533			 * may find inodes that have no dentry on the
1534			 * sbsec->isec_head list.  No reason to complain as
1535			 * these will get fixed up the next time we go through
1536			 * inode_doinit() with a dentry, before these inodes
1537			 * could be used again by userspace.
1538			 */
1539			if (!dentry)
1540				goto out_invalid;
1541			rc = selinux_genfs_get_sid(dentry, sclass,
1542						   sbsec->flags, &sid);
1543			if (rc) {
1544				dput(dentry);
1545				goto out;
1546			}
1547
1548			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1549			    (inode->i_opflags & IOP_XATTR)) {
1550				rc = inode_doinit_use_xattr(inode, dentry,
1551							    sid, &sid);
1552				if (rc) {
1553					dput(dentry);
1554					goto out;
1555				}
1556			}
1557			dput(dentry);
1558		}
1559		break;
1560	}
1561
1562out:
1563	spin_lock(&isec->lock);
1564	if (isec->initialized == LABEL_PENDING) {
1565		if (rc) {
1566			isec->initialized = LABEL_INVALID;
1567			goto out_unlock;
1568		}
1569		isec->initialized = LABEL_INITIALIZED;
1570		isec->sid = sid;
1571	}
1572
1573out_unlock:
1574	spin_unlock(&isec->lock);
1575	return rc;
1576
1577out_invalid:
1578	spin_lock(&isec->lock);
1579	if (isec->initialized == LABEL_PENDING) {
1580		isec->initialized = LABEL_INVALID;
1581		isec->sid = sid;
1582	}
1583	spin_unlock(&isec->lock);
1584	return 0;
1585}
1586
1587/* Convert a Linux signal to an access vector. */
1588static inline u32 signal_to_av(int sig)
1589{
1590	u32 perm = 0;
1591
1592	switch (sig) {
1593	case SIGCHLD:
1594		/* Commonly granted from child to parent. */
1595		perm = PROCESS__SIGCHLD;
1596		break;
1597	case SIGKILL:
1598		/* Cannot be caught or ignored */
1599		perm = PROCESS__SIGKILL;
1600		break;
1601	case SIGSTOP:
1602		/* Cannot be caught or ignored */
1603		perm = PROCESS__SIGSTOP;
1604		break;
1605	default:
1606		/* All other signals. */
1607		perm = PROCESS__SIGNAL;
1608		break;
1609	}
1610
1611	return perm;
1612}
1613
1614#if CAP_LAST_CAP > 63
1615#error Fix SELinux to handle capabilities > 63.
1616#endif
1617
1618/* Check whether a task is allowed to use a capability. */
1619static int cred_has_capability(const struct cred *cred,
1620			       int cap, unsigned int opts, bool initns)
1621{
1622	struct common_audit_data ad;
1623	struct av_decision avd;
1624	u16 sclass;
1625	u32 sid = cred_sid(cred);
1626	u32 av = CAP_TO_MASK(cap);
1627	int rc;
1628
1629	ad.type = LSM_AUDIT_DATA_CAP;
1630	ad.u.cap = cap;
1631
1632	switch (CAP_TO_INDEX(cap)) {
1633	case 0:
1634		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1635		break;
1636	case 1:
1637		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1638		break;
1639	default:
1640		pr_err("SELinux:  out of range capability %d\n", cap);
1641		BUG();
1642		return -EINVAL;
1643	}
1644
1645	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
 
1646	if (!(opts & CAP_OPT_NOAUDIT)) {
1647		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
 
1648		if (rc2)
1649			return rc2;
1650	}
1651	return rc;
1652}
1653
1654/* Check whether a task has a particular permission to an inode.
1655   The 'adp' parameter is optional and allows other audit
1656   data to be passed (e.g. the dentry). */
1657static int inode_has_perm(const struct cred *cred,
1658			  struct inode *inode,
1659			  u32 perms,
1660			  struct common_audit_data *adp)
1661{
1662	struct inode_security_struct *isec;
1663	u32 sid;
1664
 
 
1665	if (unlikely(IS_PRIVATE(inode)))
1666		return 0;
1667
1668	sid = cred_sid(cred);
1669	isec = selinux_inode(inode);
1670
1671	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
 
1672}
1673
1674/* Same as inode_has_perm, but pass explicit audit data containing
1675   the dentry to help the auditing code to more easily generate the
1676   pathname if needed. */
1677static inline int dentry_has_perm(const struct cred *cred,
1678				  struct dentry *dentry,
1679				  u32 av)
1680{
1681	struct inode *inode = d_backing_inode(dentry);
1682	struct common_audit_data ad;
1683
1684	ad.type = LSM_AUDIT_DATA_DENTRY;
1685	ad.u.dentry = dentry;
1686	__inode_security_revalidate(inode, dentry, true);
1687	return inode_has_perm(cred, inode, av, &ad);
1688}
1689
1690/* Same as inode_has_perm, but pass explicit audit data containing
1691   the path to help the auditing code to more easily generate the
1692   pathname if needed. */
1693static inline int path_has_perm(const struct cred *cred,
1694				const struct path *path,
1695				u32 av)
1696{
1697	struct inode *inode = d_backing_inode(path->dentry);
1698	struct common_audit_data ad;
1699
1700	ad.type = LSM_AUDIT_DATA_PATH;
1701	ad.u.path = *path;
1702	__inode_security_revalidate(inode, path->dentry, true);
1703	return inode_has_perm(cred, inode, av, &ad);
1704}
1705
1706/* Same as path_has_perm, but uses the inode from the file struct. */
1707static inline int file_path_has_perm(const struct cred *cred,
1708				     struct file *file,
1709				     u32 av)
1710{
1711	struct common_audit_data ad;
1712
1713	ad.type = LSM_AUDIT_DATA_FILE;
1714	ad.u.file = file;
1715	return inode_has_perm(cred, file_inode(file), av, &ad);
1716}
1717
1718#ifdef CONFIG_BPF_SYSCALL
1719static int bpf_fd_pass(const struct file *file, u32 sid);
1720#endif
1721
1722/* Check whether a task can use an open file descriptor to
1723   access an inode in a given way.  Check access to the
1724   descriptor itself, and then use dentry_has_perm to
1725   check a particular permission to the file.
1726   Access to the descriptor is implicitly granted if it
1727   has the same SID as the process.  If av is zero, then
1728   access to the file is not checked, e.g. for cases
1729   where only the descriptor is affected like seek. */
1730static int file_has_perm(const struct cred *cred,
1731			 struct file *file,
1732			 u32 av)
1733{
1734	struct file_security_struct *fsec = selinux_file(file);
1735	struct inode *inode = file_inode(file);
1736	struct common_audit_data ad;
1737	u32 sid = cred_sid(cred);
1738	int rc;
1739
1740	ad.type = LSM_AUDIT_DATA_FILE;
1741	ad.u.file = file;
1742
1743	if (sid != fsec->sid) {
1744		rc = avc_has_perm(sid, fsec->sid,
 
1745				  SECCLASS_FD,
1746				  FD__USE,
1747				  &ad);
1748		if (rc)
1749			goto out;
1750	}
1751
1752#ifdef CONFIG_BPF_SYSCALL
1753	rc = bpf_fd_pass(file, cred_sid(cred));
1754	if (rc)
1755		return rc;
1756#endif
1757
1758	/* av is zero if only checking access to the descriptor. */
1759	rc = 0;
1760	if (av)
1761		rc = inode_has_perm(cred, inode, av, &ad);
1762
1763out:
1764	return rc;
1765}
1766
1767/*
1768 * Determine the label for an inode that might be unioned.
1769 */
1770static int
1771selinux_determine_inode_label(const struct task_security_struct *tsec,
1772				 struct inode *dir,
1773				 const struct qstr *name, u16 tclass,
1774				 u32 *_new_isid)
1775{
1776	const struct superblock_security_struct *sbsec =
1777						selinux_superblock(dir->i_sb);
1778
1779	if ((sbsec->flags & SE_SBINITIALIZED) &&
1780	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1781		*_new_isid = sbsec->mntpoint_sid;
1782	} else if ((sbsec->flags & SBLABEL_MNT) &&
1783		   tsec->create_sid) {
1784		*_new_isid = tsec->create_sid;
1785	} else {
1786		const struct inode_security_struct *dsec = inode_security(dir);
1787		return security_transition_sid(tsec->sid,
1788					       dsec->sid, tclass,
1789					       name, _new_isid);
1790	}
1791
1792	return 0;
1793}
1794
1795/* Check whether a task can create a file. */
1796static int may_create(struct inode *dir,
1797		      struct dentry *dentry,
1798		      u16 tclass)
1799{
1800	const struct task_security_struct *tsec = selinux_cred(current_cred());
1801	struct inode_security_struct *dsec;
1802	struct superblock_security_struct *sbsec;
1803	u32 sid, newsid;
1804	struct common_audit_data ad;
1805	int rc;
1806
1807	dsec = inode_security(dir);
1808	sbsec = selinux_superblock(dir->i_sb);
1809
1810	sid = tsec->sid;
1811
1812	ad.type = LSM_AUDIT_DATA_DENTRY;
1813	ad.u.dentry = dentry;
1814
1815	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1816			  DIR__ADD_NAME | DIR__SEARCH,
1817			  &ad);
1818	if (rc)
1819		return rc;
1820
1821	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1822					   &newsid);
1823	if (rc)
1824		return rc;
1825
1826	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1827	if (rc)
1828		return rc;
1829
1830	return avc_has_perm(newsid, sbsec->sid,
 
1831			    SECCLASS_FILESYSTEM,
1832			    FILESYSTEM__ASSOCIATE, &ad);
1833}
1834
1835#define MAY_LINK	0
1836#define MAY_UNLINK	1
1837#define MAY_RMDIR	2
1838
1839/* Check whether a task can link, unlink, or rmdir a file/directory. */
1840static int may_link(struct inode *dir,
1841		    struct dentry *dentry,
1842		    int kind)
1843
1844{
1845	struct inode_security_struct *dsec, *isec;
1846	struct common_audit_data ad;
1847	u32 sid = current_sid();
1848	u32 av;
1849	int rc;
1850
1851	dsec = inode_security(dir);
1852	isec = backing_inode_security(dentry);
1853
1854	ad.type = LSM_AUDIT_DATA_DENTRY;
1855	ad.u.dentry = dentry;
1856
1857	av = DIR__SEARCH;
1858	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1859	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1860	if (rc)
1861		return rc;
1862
1863	switch (kind) {
1864	case MAY_LINK:
1865		av = FILE__LINK;
1866		break;
1867	case MAY_UNLINK:
1868		av = FILE__UNLINK;
1869		break;
1870	case MAY_RMDIR:
1871		av = DIR__RMDIR;
1872		break;
1873	default:
1874		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1875			__func__, kind);
1876		return 0;
1877	}
1878
1879	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1880	return rc;
1881}
1882
1883static inline int may_rename(struct inode *old_dir,
1884			     struct dentry *old_dentry,
1885			     struct inode *new_dir,
1886			     struct dentry *new_dentry)
1887{
1888	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1889	struct common_audit_data ad;
1890	u32 sid = current_sid();
1891	u32 av;
1892	int old_is_dir, new_is_dir;
1893	int rc;
1894
1895	old_dsec = inode_security(old_dir);
1896	old_isec = backing_inode_security(old_dentry);
1897	old_is_dir = d_is_dir(old_dentry);
1898	new_dsec = inode_security(new_dir);
1899
1900	ad.type = LSM_AUDIT_DATA_DENTRY;
1901
1902	ad.u.dentry = old_dentry;
1903	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1904			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1905	if (rc)
1906		return rc;
1907	rc = avc_has_perm(sid, old_isec->sid,
 
1908			  old_isec->sclass, FILE__RENAME, &ad);
1909	if (rc)
1910		return rc;
1911	if (old_is_dir && new_dir != old_dir) {
1912		rc = avc_has_perm(sid, old_isec->sid,
 
1913				  old_isec->sclass, DIR__REPARENT, &ad);
1914		if (rc)
1915			return rc;
1916	}
1917
1918	ad.u.dentry = new_dentry;
1919	av = DIR__ADD_NAME | DIR__SEARCH;
1920	if (d_is_positive(new_dentry))
1921		av |= DIR__REMOVE_NAME;
1922	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1923	if (rc)
1924		return rc;
1925	if (d_is_positive(new_dentry)) {
1926		new_isec = backing_inode_security(new_dentry);
1927		new_is_dir = d_is_dir(new_dentry);
1928		rc = avc_has_perm(sid, new_isec->sid,
 
1929				  new_isec->sclass,
1930				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1931		if (rc)
1932			return rc;
1933	}
1934
1935	return 0;
1936}
1937
1938/* Check whether a task can perform a filesystem operation. */
1939static int superblock_has_perm(const struct cred *cred,
1940			       const struct super_block *sb,
1941			       u32 perms,
1942			       struct common_audit_data *ad)
1943{
1944	struct superblock_security_struct *sbsec;
1945	u32 sid = cred_sid(cred);
1946
1947	sbsec = selinux_superblock(sb);
1948	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
1949}
1950
1951/* Convert a Linux mode and permission mask to an access vector. */
1952static inline u32 file_mask_to_av(int mode, int mask)
1953{
1954	u32 av = 0;
1955
1956	if (!S_ISDIR(mode)) {
1957		if (mask & MAY_EXEC)
1958			av |= FILE__EXECUTE;
1959		if (mask & MAY_READ)
1960			av |= FILE__READ;
1961
1962		if (mask & MAY_APPEND)
1963			av |= FILE__APPEND;
1964		else if (mask & MAY_WRITE)
1965			av |= FILE__WRITE;
1966
1967	} else {
1968		if (mask & MAY_EXEC)
1969			av |= DIR__SEARCH;
1970		if (mask & MAY_WRITE)
1971			av |= DIR__WRITE;
1972		if (mask & MAY_READ)
1973			av |= DIR__READ;
1974	}
1975
1976	return av;
1977}
1978
1979/* Convert a Linux file to an access vector. */
1980static inline u32 file_to_av(const struct file *file)
1981{
1982	u32 av = 0;
1983
1984	if (file->f_mode & FMODE_READ)
1985		av |= FILE__READ;
1986	if (file->f_mode & FMODE_WRITE) {
1987		if (file->f_flags & O_APPEND)
1988			av |= FILE__APPEND;
1989		else
1990			av |= FILE__WRITE;
1991	}
1992	if (!av) {
1993		/*
1994		 * Special file opened with flags 3 for ioctl-only use.
1995		 */
1996		av = FILE__IOCTL;
1997	}
1998
1999	return av;
2000}
2001
2002/*
2003 * Convert a file to an access vector and include the correct
2004 * open permission.
2005 */
2006static inline u32 open_file_to_av(struct file *file)
2007{
2008	u32 av = file_to_av(file);
2009	struct inode *inode = file_inode(file);
2010
2011	if (selinux_policycap_openperm() &&
2012	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2013		av |= FILE__OPEN;
2014
2015	return av;
2016}
2017
2018/* Hook functions begin here. */
2019
2020static int selinux_binder_set_context_mgr(const struct cred *mgr)
2021{
2022	return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
 
2023			    BINDER__SET_CONTEXT_MGR, NULL);
2024}
2025
2026static int selinux_binder_transaction(const struct cred *from,
2027				      const struct cred *to)
2028{
2029	u32 mysid = current_sid();
2030	u32 fromsid = cred_sid(from);
2031	u32 tosid = cred_sid(to);
2032	int rc;
2033
2034	if (mysid != fromsid) {
2035		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
 
2036				  BINDER__IMPERSONATE, NULL);
2037		if (rc)
2038			return rc;
2039	}
2040
2041	return avc_has_perm(fromsid, tosid,
2042			    SECCLASS_BINDER, BINDER__CALL, NULL);
2043}
2044
2045static int selinux_binder_transfer_binder(const struct cred *from,
2046					  const struct cred *to)
2047{
2048	return avc_has_perm(cred_sid(from), cred_sid(to),
 
2049			    SECCLASS_BINDER, BINDER__TRANSFER,
2050			    NULL);
2051}
2052
2053static int selinux_binder_transfer_file(const struct cred *from,
2054					const struct cred *to,
2055					const struct file *file)
2056{
2057	u32 sid = cred_sid(to);
2058	struct file_security_struct *fsec = selinux_file(file);
2059	struct dentry *dentry = file->f_path.dentry;
2060	struct inode_security_struct *isec;
2061	struct common_audit_data ad;
2062	int rc;
2063
2064	ad.type = LSM_AUDIT_DATA_PATH;
2065	ad.u.path = file->f_path;
2066
2067	if (sid != fsec->sid) {
2068		rc = avc_has_perm(sid, fsec->sid,
 
2069				  SECCLASS_FD,
2070				  FD__USE,
2071				  &ad);
2072		if (rc)
2073			return rc;
2074	}
2075
2076#ifdef CONFIG_BPF_SYSCALL
2077	rc = bpf_fd_pass(file, sid);
2078	if (rc)
2079		return rc;
2080#endif
2081
2082	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2083		return 0;
2084
2085	isec = backing_inode_security(dentry);
2086	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
 
2087			    &ad);
2088}
2089
2090static int selinux_ptrace_access_check(struct task_struct *child,
2091				       unsigned int mode)
2092{
2093	u32 sid = current_sid();
2094	u32 csid = task_sid_obj(child);
2095
2096	if (mode & PTRACE_MODE_READ)
2097		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2098				NULL);
2099
2100	return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2101			NULL);
2102}
2103
2104static int selinux_ptrace_traceme(struct task_struct *parent)
2105{
2106	return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
 
2107			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2108}
2109
2110static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2111			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2112{
2113	return avc_has_perm(current_sid(), task_sid_obj(target),
2114			SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
 
2115}
2116
2117static int selinux_capset(struct cred *new, const struct cred *old,
2118			  const kernel_cap_t *effective,
2119			  const kernel_cap_t *inheritable,
2120			  const kernel_cap_t *permitted)
2121{
2122	return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
 
2123			    PROCESS__SETCAP, NULL);
2124}
2125
2126/*
2127 * (This comment used to live with the selinux_task_setuid hook,
2128 * which was removed).
2129 *
2130 * Since setuid only affects the current process, and since the SELinux
2131 * controls are not based on the Linux identity attributes, SELinux does not
2132 * need to control this operation.  However, SELinux does control the use of
2133 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2134 */
2135
2136static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2137			   int cap, unsigned int opts)
2138{
2139	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2140}
2141
2142static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2143{
2144	const struct cred *cred = current_cred();
2145	int rc = 0;
2146
2147	if (!sb)
2148		return 0;
2149
2150	switch (cmds) {
2151	case Q_SYNC:
2152	case Q_QUOTAON:
2153	case Q_QUOTAOFF:
2154	case Q_SETINFO:
2155	case Q_SETQUOTA:
2156	case Q_XQUOTAOFF:
2157	case Q_XQUOTAON:
2158	case Q_XSETQLIM:
2159		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2160		break;
2161	case Q_GETFMT:
2162	case Q_GETINFO:
2163	case Q_GETQUOTA:
2164	case Q_XGETQUOTA:
2165	case Q_XGETQSTAT:
2166	case Q_XGETQSTATV:
2167	case Q_XGETNEXTQUOTA:
2168		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2169		break;
2170	default:
2171		rc = 0;  /* let the kernel handle invalid cmds */
2172		break;
2173	}
2174	return rc;
2175}
2176
2177static int selinux_quota_on(struct dentry *dentry)
2178{
2179	const struct cred *cred = current_cred();
2180
2181	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2182}
2183
2184static int selinux_syslog(int type)
2185{
2186	switch (type) {
2187	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2188	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2189		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
2190				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2191	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2192	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2193	/* Set level of messages printed to console */
2194	case SYSLOG_ACTION_CONSOLE_LEVEL:
2195		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
2196				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2197				    NULL);
2198	}
2199	/* All other syslog types */
2200	return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
2201			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2202}
2203
2204/*
2205 * Check that a process has enough memory to allocate a new virtual
2206 * mapping. 0 means there is enough memory for the allocation to
2207 * succeed and -ENOMEM implies there is not.
2208 *
2209 * Do not audit the selinux permission check, as this is applied to all
2210 * processes that allocate mappings.
2211 */
2212static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2213{
2214	int rc, cap_sys_admin = 0;
2215
2216	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2217				 CAP_OPT_NOAUDIT, true);
2218	if (rc == 0)
2219		cap_sys_admin = 1;
2220
2221	return cap_sys_admin;
2222}
2223
2224/* binprm security operations */
2225
2226static u32 ptrace_parent_sid(void)
2227{
2228	u32 sid = 0;
2229	struct task_struct *tracer;
2230
2231	rcu_read_lock();
2232	tracer = ptrace_parent(current);
2233	if (tracer)
2234		sid = task_sid_obj(tracer);
2235	rcu_read_unlock();
2236
2237	return sid;
2238}
2239
2240static int check_nnp_nosuid(const struct linux_binprm *bprm,
2241			    const struct task_security_struct *old_tsec,
2242			    const struct task_security_struct *new_tsec)
2243{
2244	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2245	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2246	int rc;
2247	u32 av;
2248
2249	if (!nnp && !nosuid)
2250		return 0; /* neither NNP nor nosuid */
2251
2252	if (new_tsec->sid == old_tsec->sid)
2253		return 0; /* No change in credentials */
2254
2255	/*
2256	 * If the policy enables the nnp_nosuid_transition policy capability,
2257	 * then we permit transitions under NNP or nosuid if the
2258	 * policy allows the corresponding permission between
2259	 * the old and new contexts.
2260	 */
2261	if (selinux_policycap_nnp_nosuid_transition()) {
2262		av = 0;
2263		if (nnp)
2264			av |= PROCESS2__NNP_TRANSITION;
2265		if (nosuid)
2266			av |= PROCESS2__NOSUID_TRANSITION;
2267		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2268				  SECCLASS_PROCESS2, av, NULL);
2269		if (!rc)
2270			return 0;
2271	}
2272
2273	/*
2274	 * We also permit NNP or nosuid transitions to bounded SIDs,
2275	 * i.e. SIDs that are guaranteed to only be allowed a subset
2276	 * of the permissions of the current SID.
2277	 */
2278	rc = security_bounded_transition(old_tsec->sid,
2279					 new_tsec->sid);
2280	if (!rc)
2281		return 0;
2282
2283	/*
2284	 * On failure, preserve the errno values for NNP vs nosuid.
2285	 * NNP:  Operation not permitted for caller.
2286	 * nosuid:  Permission denied to file.
2287	 */
2288	if (nnp)
2289		return -EPERM;
2290	return -EACCES;
2291}
2292
2293static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2294{
2295	const struct task_security_struct *old_tsec;
2296	struct task_security_struct *new_tsec;
2297	struct inode_security_struct *isec;
2298	struct common_audit_data ad;
2299	struct inode *inode = file_inode(bprm->file);
2300	int rc;
2301
2302	/* SELinux context only depends on initial program or script and not
2303	 * the script interpreter */
2304
2305	old_tsec = selinux_cred(current_cred());
2306	new_tsec = selinux_cred(bprm->cred);
2307	isec = inode_security(inode);
2308
2309	/* Default to the current task SID. */
2310	new_tsec->sid = old_tsec->sid;
2311	new_tsec->osid = old_tsec->sid;
2312
2313	/* Reset fs, key, and sock SIDs on execve. */
2314	new_tsec->create_sid = 0;
2315	new_tsec->keycreate_sid = 0;
2316	new_tsec->sockcreate_sid = 0;
2317
2318	/*
2319	 * Before policy is loaded, label any task outside kernel space
2320	 * as SECINITSID_INIT, so that any userspace tasks surviving from
2321	 * early boot end up with a label different from SECINITSID_KERNEL
2322	 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2323	 */
2324	if (!selinux_initialized()) {
2325		new_tsec->sid = SECINITSID_INIT;
2326		/* also clear the exec_sid just in case */
2327		new_tsec->exec_sid = 0;
2328		return 0;
2329	}
2330
2331	if (old_tsec->exec_sid) {
2332		new_tsec->sid = old_tsec->exec_sid;
2333		/* Reset exec SID on execve. */
2334		new_tsec->exec_sid = 0;
2335
2336		/* Fail on NNP or nosuid if not an allowed transition. */
2337		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2338		if (rc)
2339			return rc;
2340	} else {
2341		/* Check for a default transition on this program. */
2342		rc = security_transition_sid(old_tsec->sid,
2343					     isec->sid, SECCLASS_PROCESS, NULL,
2344					     &new_tsec->sid);
2345		if (rc)
2346			return rc;
2347
2348		/*
2349		 * Fallback to old SID on NNP or nosuid if not an allowed
2350		 * transition.
2351		 */
2352		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2353		if (rc)
2354			new_tsec->sid = old_tsec->sid;
2355	}
2356
2357	ad.type = LSM_AUDIT_DATA_FILE;
2358	ad.u.file = bprm->file;
2359
2360	if (new_tsec->sid == old_tsec->sid) {
2361		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2362				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2363		if (rc)
2364			return rc;
2365	} else {
2366		/* Check permissions for the transition. */
2367		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2368				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2369		if (rc)
2370			return rc;
2371
2372		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2373				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2374		if (rc)
2375			return rc;
2376
2377		/* Check for shared state */
2378		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2379			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2380					  SECCLASS_PROCESS, PROCESS__SHARE,
2381					  NULL);
2382			if (rc)
2383				return -EPERM;
2384		}
2385
2386		/* Make sure that anyone attempting to ptrace over a task that
2387		 * changes its SID has the appropriate permit */
2388		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2389			u32 ptsid = ptrace_parent_sid();
2390			if (ptsid != 0) {
2391				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2392						  SECCLASS_PROCESS,
2393						  PROCESS__PTRACE, NULL);
2394				if (rc)
2395					return -EPERM;
2396			}
2397		}
2398
2399		/* Clear any possibly unsafe personality bits on exec: */
2400		bprm->per_clear |= PER_CLEAR_ON_SETID;
2401
2402		/* Enable secure mode for SIDs transitions unless
2403		   the noatsecure permission is granted between
2404		   the two SIDs, i.e. ahp returns 0. */
2405		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2406				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2407				  NULL);
2408		bprm->secureexec |= !!rc;
2409	}
2410
2411	return 0;
2412}
2413
2414static int match_file(const void *p, struct file *file, unsigned fd)
2415{
2416	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2417}
2418
2419/* Derived from fs/exec.c:flush_old_files. */
2420static inline void flush_unauthorized_files(const struct cred *cred,
2421					    struct files_struct *files)
2422{
2423	struct file *file, *devnull = NULL;
2424	struct tty_struct *tty;
2425	int drop_tty = 0;
2426	unsigned n;
2427
2428	tty = get_current_tty();
2429	if (tty) {
2430		spin_lock(&tty->files_lock);
2431		if (!list_empty(&tty->tty_files)) {
2432			struct tty_file_private *file_priv;
2433
2434			/* Revalidate access to controlling tty.
2435			   Use file_path_has_perm on the tty path directly
2436			   rather than using file_has_perm, as this particular
2437			   open file may belong to another process and we are
2438			   only interested in the inode-based check here. */
2439			file_priv = list_first_entry(&tty->tty_files,
2440						struct tty_file_private, list);
2441			file = file_priv->file;
2442			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2443				drop_tty = 1;
2444		}
2445		spin_unlock(&tty->files_lock);
2446		tty_kref_put(tty);
2447	}
2448	/* Reset controlling tty. */
2449	if (drop_tty)
2450		no_tty();
2451
2452	/* Revalidate access to inherited open files. */
2453	n = iterate_fd(files, 0, match_file, cred);
2454	if (!n) /* none found? */
2455		return;
2456
2457	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2458	if (IS_ERR(devnull))
2459		devnull = NULL;
2460	/* replace all the matching ones with this */
2461	do {
2462		replace_fd(n - 1, devnull, 0);
2463	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2464	if (devnull)
2465		fput(devnull);
2466}
2467
2468/*
2469 * Prepare a process for imminent new credential changes due to exec
2470 */
2471static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2472{
2473	struct task_security_struct *new_tsec;
2474	struct rlimit *rlim, *initrlim;
2475	int rc, i;
2476
2477	new_tsec = selinux_cred(bprm->cred);
2478	if (new_tsec->sid == new_tsec->osid)
2479		return;
2480
2481	/* Close files for which the new task SID is not authorized. */
2482	flush_unauthorized_files(bprm->cred, current->files);
2483
2484	/* Always clear parent death signal on SID transitions. */
2485	current->pdeath_signal = 0;
2486
2487	/* Check whether the new SID can inherit resource limits from the old
2488	 * SID.  If not, reset all soft limits to the lower of the current
2489	 * task's hard limit and the init task's soft limit.
2490	 *
2491	 * Note that the setting of hard limits (even to lower them) can be
2492	 * controlled by the setrlimit check.  The inclusion of the init task's
2493	 * soft limit into the computation is to avoid resetting soft limits
2494	 * higher than the default soft limit for cases where the default is
2495	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2496	 */
2497	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2498			  PROCESS__RLIMITINH, NULL);
2499	if (rc) {
2500		/* protect against do_prlimit() */
2501		task_lock(current);
2502		for (i = 0; i < RLIM_NLIMITS; i++) {
2503			rlim = current->signal->rlim + i;
2504			initrlim = init_task.signal->rlim + i;
2505			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2506		}
2507		task_unlock(current);
2508		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2509			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2510	}
2511}
2512
2513/*
2514 * Clean up the process immediately after the installation of new credentials
2515 * due to exec
2516 */
2517static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2518{
2519	const struct task_security_struct *tsec = selinux_cred(current_cred());
2520	u32 osid, sid;
2521	int rc;
2522
2523	osid = tsec->osid;
2524	sid = tsec->sid;
2525
2526	if (sid == osid)
2527		return;
2528
2529	/* Check whether the new SID can inherit signal state from the old SID.
2530	 * If not, clear itimers to avoid subsequent signal generation and
2531	 * flush and unblock signals.
2532	 *
2533	 * This must occur _after_ the task SID has been updated so that any
2534	 * kill done after the flush will be checked against the new SID.
2535	 */
2536	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2537	if (rc) {
2538		clear_itimer();
2539
2540		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2541		if (!fatal_signal_pending(current)) {
2542			flush_sigqueue(&current->pending);
2543			flush_sigqueue(&current->signal->shared_pending);
2544			flush_signal_handlers(current, 1);
2545			sigemptyset(&current->blocked);
2546			recalc_sigpending();
2547		}
2548		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2549	}
2550
2551	/* Wake up the parent if it is waiting so that it can recheck
2552	 * wait permission to the new task SID. */
2553	read_lock(&tasklist_lock);
2554	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2555	read_unlock(&tasklist_lock);
2556}
2557
2558/* superblock security operations */
2559
2560static int selinux_sb_alloc_security(struct super_block *sb)
2561{
2562	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2563
2564	mutex_init(&sbsec->lock);
2565	INIT_LIST_HEAD(&sbsec->isec_head);
2566	spin_lock_init(&sbsec->isec_lock);
2567	sbsec->sid = SECINITSID_UNLABELED;
2568	sbsec->def_sid = SECINITSID_FILE;
2569	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2570
2571	return 0;
2572}
2573
2574static inline int opt_len(const char *s)
2575{
2576	bool open_quote = false;
2577	int len;
2578	char c;
2579
2580	for (len = 0; (c = s[len]) != '\0'; len++) {
2581		if (c == '"')
2582			open_quote = !open_quote;
2583		if (c == ',' && !open_quote)
2584			break;
2585	}
2586	return len;
2587}
2588
2589static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2590{
2591	char *from = options;
2592	char *to = options;
2593	bool first = true;
2594	int rc;
2595
2596	while (1) {
2597		int len = opt_len(from);
2598		int token;
2599		char *arg = NULL;
2600
2601		token = match_opt_prefix(from, len, &arg);
2602
2603		if (token != Opt_error) {
2604			char *p, *q;
2605
2606			/* strip quotes */
2607			if (arg) {
2608				for (p = q = arg; p < from + len; p++) {
2609					char c = *p;
2610					if (c != '"')
2611						*q++ = c;
2612				}
2613				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2614				if (!arg) {
2615					rc = -ENOMEM;
2616					goto free_opt;
2617				}
2618			}
2619			rc = selinux_add_opt(token, arg, mnt_opts);
2620			kfree(arg);
2621			arg = NULL;
2622			if (unlikely(rc)) {
 
2623				goto free_opt;
2624			}
2625		} else {
2626			if (!first) {	// copy with preceding comma
2627				from--;
2628				len++;
2629			}
2630			if (to != from)
2631				memmove(to, from, len);
2632			to += len;
2633			first = false;
2634		}
2635		if (!from[len])
2636			break;
2637		from += len + 1;
2638	}
2639	*to = '\0';
2640	return 0;
2641
2642free_opt:
2643	if (*mnt_opts) {
2644		selinux_free_mnt_opts(*mnt_opts);
2645		*mnt_opts = NULL;
2646	}
2647	return rc;
2648}
2649
2650static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2651{
2652	struct selinux_mnt_opts *opts = mnt_opts;
2653	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 
 
2654
2655	/*
2656	 * Superblock not initialized (i.e. no options) - reject if any
2657	 * options specified, otherwise accept.
2658	 */
2659	if (!(sbsec->flags & SE_SBINITIALIZED))
2660		return opts ? 1 : 0;
2661
2662	/*
2663	 * Superblock initialized and no options specified - reject if
2664	 * superblock has any options set, otherwise accept.
2665	 */
2666	if (!opts)
2667		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2668
2669	if (opts->fscontext_sid) {
2670		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2671			       opts->fscontext_sid))
 
 
2672			return 1;
2673	}
2674	if (opts->context_sid) {
2675		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2676			       opts->context_sid))
 
 
2677			return 1;
2678	}
2679	if (opts->rootcontext_sid) {
2680		struct inode_security_struct *root_isec;
2681
2682		root_isec = backing_inode_security(sb->s_root);
2683		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2684			       opts->rootcontext_sid))
 
 
2685			return 1;
2686	}
2687	if (opts->defcontext_sid) {
2688		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2689			       opts->defcontext_sid))
 
 
2690			return 1;
2691	}
2692	return 0;
2693}
2694
2695static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2696{
2697	struct selinux_mnt_opts *opts = mnt_opts;
2698	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 
 
2699
2700	if (!(sbsec->flags & SE_SBINITIALIZED))
2701		return 0;
2702
2703	if (!opts)
2704		return 0;
2705
2706	if (opts->fscontext_sid) {
2707		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2708			       opts->fscontext_sid))
 
 
2709			goto out_bad_option;
2710	}
2711	if (opts->context_sid) {
2712		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2713			       opts->context_sid))
 
 
2714			goto out_bad_option;
2715	}
2716	if (opts->rootcontext_sid) {
2717		struct inode_security_struct *root_isec;
2718		root_isec = backing_inode_security(sb->s_root);
2719		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2720			       opts->rootcontext_sid))
 
 
2721			goto out_bad_option;
2722	}
2723	if (opts->defcontext_sid) {
2724		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2725			       opts->defcontext_sid))
 
 
2726			goto out_bad_option;
2727	}
2728	return 0;
2729
2730out_bad_option:
2731	pr_warn("SELinux: unable to change security options "
2732	       "during remount (dev %s, type=%s)\n", sb->s_id,
2733	       sb->s_type->name);
2734	return -EINVAL;
2735}
2736
2737static int selinux_sb_kern_mount(const struct super_block *sb)
2738{
2739	const struct cred *cred = current_cred();
2740	struct common_audit_data ad;
2741
2742	ad.type = LSM_AUDIT_DATA_DENTRY;
2743	ad.u.dentry = sb->s_root;
2744	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2745}
2746
2747static int selinux_sb_statfs(struct dentry *dentry)
2748{
2749	const struct cred *cred = current_cred();
2750	struct common_audit_data ad;
2751
2752	ad.type = LSM_AUDIT_DATA_DENTRY;
2753	ad.u.dentry = dentry->d_sb->s_root;
2754	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2755}
2756
2757static int selinux_mount(const char *dev_name,
2758			 const struct path *path,
2759			 const char *type,
2760			 unsigned long flags,
2761			 void *data)
2762{
2763	const struct cred *cred = current_cred();
2764
2765	if (flags & MS_REMOUNT)
2766		return superblock_has_perm(cred, path->dentry->d_sb,
2767					   FILESYSTEM__REMOUNT, NULL);
2768	else
2769		return path_has_perm(cred, path, FILE__MOUNTON);
2770}
2771
2772static int selinux_move_mount(const struct path *from_path,
2773			      const struct path *to_path)
2774{
2775	const struct cred *cred = current_cred();
2776
2777	return path_has_perm(cred, to_path, FILE__MOUNTON);
2778}
2779
2780static int selinux_umount(struct vfsmount *mnt, int flags)
2781{
2782	const struct cred *cred = current_cred();
2783
2784	return superblock_has_perm(cred, mnt->mnt_sb,
2785				   FILESYSTEM__UNMOUNT, NULL);
2786}
2787
2788static int selinux_fs_context_submount(struct fs_context *fc,
2789				   struct super_block *reference)
2790{
2791	const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2792	struct selinux_mnt_opts *opts;
2793
2794	/*
2795	 * Ensure that fc->security remains NULL when no options are set
2796	 * as expected by selinux_set_mnt_opts().
2797	 */
2798	if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2799		return 0;
2800
2801	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2802	if (!opts)
2803		return -ENOMEM;
2804
2805	if (sbsec->flags & FSCONTEXT_MNT)
2806		opts->fscontext_sid = sbsec->sid;
2807	if (sbsec->flags & CONTEXT_MNT)
2808		opts->context_sid = sbsec->mntpoint_sid;
2809	if (sbsec->flags & DEFCONTEXT_MNT)
2810		opts->defcontext_sid = sbsec->def_sid;
2811	fc->security = opts;
2812	return 0;
2813}
2814
2815static int selinux_fs_context_dup(struct fs_context *fc,
2816				  struct fs_context *src_fc)
2817{
2818	const struct selinux_mnt_opts *src = src_fc->security;
 
2819
2820	if (!src)
2821		return 0;
2822
2823	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2824	return fc->security ? 0 : -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2825}
2826
2827static const struct fs_parameter_spec selinux_fs_parameters[] = {
2828	fsparam_string(CONTEXT_STR,	Opt_context),
2829	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2830	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2831	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2832	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2833	{}
2834};
2835
2836static int selinux_fs_context_parse_param(struct fs_context *fc,
2837					  struct fs_parameter *param)
2838{
2839	struct fs_parse_result result;
2840	int opt;
2841
2842	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2843	if (opt < 0)
2844		return opt;
2845
2846	return selinux_add_opt(opt, param->string, &fc->security);
 
 
 
 
 
2847}
2848
2849/* inode security operations */
2850
2851static int selinux_inode_alloc_security(struct inode *inode)
2852{
2853	struct inode_security_struct *isec = selinux_inode(inode);
2854	u32 sid = current_sid();
2855
2856	spin_lock_init(&isec->lock);
2857	INIT_LIST_HEAD(&isec->list);
2858	isec->inode = inode;
2859	isec->sid = SECINITSID_UNLABELED;
2860	isec->sclass = SECCLASS_FILE;
2861	isec->task_sid = sid;
2862	isec->initialized = LABEL_INVALID;
2863
2864	return 0;
2865}
2866
2867static void selinux_inode_free_security(struct inode *inode)
2868{
2869	inode_free_security(inode);
2870}
2871
2872static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2873					const struct qstr *name,
2874					const char **xattr_name, void **ctx,
2875					u32 *ctxlen)
2876{
2877	u32 newsid;
2878	int rc;
2879
2880	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2881					   d_inode(dentry->d_parent), name,
2882					   inode_mode_to_security_class(mode),
2883					   &newsid);
2884	if (rc)
2885		return rc;
2886
2887	if (xattr_name)
2888		*xattr_name = XATTR_NAME_SELINUX;
2889
2890	return security_sid_to_context(newsid, (char **)ctx,
2891				       ctxlen);
2892}
2893
2894static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2895					  struct qstr *name,
2896					  const struct cred *old,
2897					  struct cred *new)
2898{
2899	u32 newsid;
2900	int rc;
2901	struct task_security_struct *tsec;
2902
2903	rc = selinux_determine_inode_label(selinux_cred(old),
2904					   d_inode(dentry->d_parent), name,
2905					   inode_mode_to_security_class(mode),
2906					   &newsid);
2907	if (rc)
2908		return rc;
2909
2910	tsec = selinux_cred(new);
2911	tsec->create_sid = newsid;
2912	return 0;
2913}
2914
2915static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2916				       const struct qstr *qstr,
2917				       struct xattr *xattrs, int *xattr_count)
 
2918{
2919	const struct task_security_struct *tsec = selinux_cred(current_cred());
2920	struct superblock_security_struct *sbsec;
2921	struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2922	u32 newsid, clen;
2923	u16 newsclass;
2924	int rc;
2925	char *context;
2926
2927	sbsec = selinux_superblock(dir->i_sb);
2928
2929	newsid = tsec->create_sid;
2930	newsclass = inode_mode_to_security_class(inode->i_mode);
2931	rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
 
 
2932	if (rc)
2933		return rc;
2934
2935	/* Possibly defer initialization to selinux_complete_init. */
2936	if (sbsec->flags & SE_SBINITIALIZED) {
2937		struct inode_security_struct *isec = selinux_inode(inode);
2938		isec->sclass = newsclass;
2939		isec->sid = newsid;
2940		isec->initialized = LABEL_INITIALIZED;
2941	}
2942
2943	if (!selinux_initialized() ||
2944	    !(sbsec->flags & SBLABEL_MNT))
2945		return -EOPNOTSUPP;
2946
2947	if (xattr) {
2948		rc = security_sid_to_context_force(newsid,
 
 
 
2949						   &context, &clen);
2950		if (rc)
2951			return rc;
2952		xattr->value = context;
2953		xattr->value_len = clen;
2954		xattr->name = XATTR_SELINUX_SUFFIX;
2955	}
2956
2957	return 0;
2958}
2959
2960static int selinux_inode_init_security_anon(struct inode *inode,
2961					    const struct qstr *name,
2962					    const struct inode *context_inode)
2963{
2964	const struct task_security_struct *tsec = selinux_cred(current_cred());
2965	struct common_audit_data ad;
2966	struct inode_security_struct *isec;
2967	int rc;
2968
2969	if (unlikely(!selinux_initialized()))
2970		return 0;
2971
2972	isec = selinux_inode(inode);
2973
2974	/*
2975	 * We only get here once per ephemeral inode.  The inode has
2976	 * been initialized via inode_alloc_security but is otherwise
2977	 * untouched.
2978	 */
2979
2980	if (context_inode) {
2981		struct inode_security_struct *context_isec =
2982			selinux_inode(context_inode);
2983		if (context_isec->initialized != LABEL_INITIALIZED) {
2984			pr_err("SELinux:  context_inode is not initialized\n");
2985			return -EACCES;
2986		}
2987
2988		isec->sclass = context_isec->sclass;
2989		isec->sid = context_isec->sid;
2990	} else {
2991		isec->sclass = SECCLASS_ANON_INODE;
2992		rc = security_transition_sid(
2993			tsec->sid, tsec->sid,
2994			isec->sclass, name, &isec->sid);
2995		if (rc)
2996			return rc;
2997	}
2998
2999	isec->initialized = LABEL_INITIALIZED;
3000	/*
3001	 * Now that we've initialized security, check whether we're
3002	 * allowed to actually create this type of anonymous inode.
3003	 */
3004
3005	ad.type = LSM_AUDIT_DATA_ANONINODE;
3006	ad.u.anonclass = name ? (const char *)name->name : "?";
3007
3008	return avc_has_perm(tsec->sid,
 
3009			    isec->sid,
3010			    isec->sclass,
3011			    FILE__CREATE,
3012			    &ad);
3013}
3014
3015static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3016{
3017	return may_create(dir, dentry, SECCLASS_FILE);
3018}
3019
3020static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3021{
3022	return may_link(dir, old_dentry, MAY_LINK);
3023}
3024
3025static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3026{
3027	return may_link(dir, dentry, MAY_UNLINK);
3028}
3029
3030static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3031{
3032	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3033}
3034
3035static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3036{
3037	return may_create(dir, dentry, SECCLASS_DIR);
3038}
3039
3040static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3041{
3042	return may_link(dir, dentry, MAY_RMDIR);
3043}
3044
3045static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3046{
3047	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3048}
3049
3050static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3051				struct inode *new_inode, struct dentry *new_dentry)
3052{
3053	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3054}
3055
3056static int selinux_inode_readlink(struct dentry *dentry)
3057{
3058	const struct cred *cred = current_cred();
3059
3060	return dentry_has_perm(cred, dentry, FILE__READ);
3061}
3062
3063static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3064				     bool rcu)
3065{
3066	const struct cred *cred = current_cred();
3067	struct common_audit_data ad;
3068	struct inode_security_struct *isec;
3069	u32 sid;
3070
 
 
3071	ad.type = LSM_AUDIT_DATA_DENTRY;
3072	ad.u.dentry = dentry;
3073	sid = cred_sid(cred);
3074	isec = inode_security_rcu(inode, rcu);
3075	if (IS_ERR(isec))
3076		return PTR_ERR(isec);
3077
3078	return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
 
3079}
3080
3081static noinline int audit_inode_permission(struct inode *inode,
3082					   u32 perms, u32 audited, u32 denied,
3083					   int result)
3084{
3085	struct common_audit_data ad;
3086	struct inode_security_struct *isec = selinux_inode(inode);
3087
3088	ad.type = LSM_AUDIT_DATA_INODE;
3089	ad.u.inode = inode;
3090
3091	return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
 
3092			    audited, denied, result, &ad);
3093}
3094
3095static int selinux_inode_permission(struct inode *inode, int mask)
3096{
3097	const struct cred *cred = current_cred();
3098	u32 perms;
3099	bool from_access;
3100	bool no_block = mask & MAY_NOT_BLOCK;
3101	struct inode_security_struct *isec;
3102	u32 sid;
3103	struct av_decision avd;
3104	int rc, rc2;
3105	u32 audited, denied;
3106
3107	from_access = mask & MAY_ACCESS;
3108	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3109
3110	/* No permission to check.  Existence test. */
3111	if (!mask)
3112		return 0;
3113
 
 
3114	if (unlikely(IS_PRIVATE(inode)))
3115		return 0;
3116
3117	perms = file_mask_to_av(inode->i_mode, mask);
3118
3119	sid = cred_sid(cred);
3120	isec = inode_security_rcu(inode, no_block);
3121	if (IS_ERR(isec))
3122		return PTR_ERR(isec);
3123
3124	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
 
3125				  &avd);
3126	audited = avc_audit_required(perms, &avd, rc,
3127				     from_access ? FILE__AUDIT_ACCESS : 0,
3128				     &denied);
3129	if (likely(!audited))
3130		return rc;
3131
3132	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3133	if (rc2)
3134		return rc2;
3135	return rc;
3136}
3137
3138static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3139				 struct iattr *iattr)
3140{
3141	const struct cred *cred = current_cred();
3142	struct inode *inode = d_backing_inode(dentry);
3143	unsigned int ia_valid = iattr->ia_valid;
3144	__u32 av = FILE__WRITE;
3145
3146	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3147	if (ia_valid & ATTR_FORCE) {
3148		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3149			      ATTR_FORCE);
3150		if (!ia_valid)
3151			return 0;
3152	}
3153
3154	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3155			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3156		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3157
3158	if (selinux_policycap_openperm() &&
3159	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3160	    (ia_valid & ATTR_SIZE) &&
3161	    !(ia_valid & ATTR_FILE))
3162		av |= FILE__OPEN;
3163
3164	return dentry_has_perm(cred, dentry, av);
3165}
3166
3167static int selinux_inode_getattr(const struct path *path)
3168{
3169	return path_has_perm(current_cred(), path, FILE__GETATTR);
3170}
3171
3172static bool has_cap_mac_admin(bool audit)
3173{
3174	const struct cred *cred = current_cred();
3175	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3176
3177	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3178		return false;
3179	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3180		return false;
3181	return true;
3182}
3183
3184static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3185				  struct dentry *dentry, const char *name,
3186				  const void *value, size_t size, int flags)
3187{
3188	struct inode *inode = d_backing_inode(dentry);
3189	struct inode_security_struct *isec;
3190	struct superblock_security_struct *sbsec;
3191	struct common_audit_data ad;
3192	u32 newsid, sid = current_sid();
3193	int rc = 0;
3194
3195	if (strcmp(name, XATTR_NAME_SELINUX)) {
3196		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3197		if (rc)
3198			return rc;
3199
3200		/* Not an attribute we recognize, so just check the
3201		   ordinary setattr permission. */
3202		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3203	}
3204
3205	if (!selinux_initialized())
3206		return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3207
3208	sbsec = selinux_superblock(inode->i_sb);
3209	if (!(sbsec->flags & SBLABEL_MNT))
3210		return -EOPNOTSUPP;
3211
3212	if (!inode_owner_or_capable(idmap, inode))
3213		return -EPERM;
3214
3215	ad.type = LSM_AUDIT_DATA_DENTRY;
3216	ad.u.dentry = dentry;
3217
3218	isec = backing_inode_security(dentry);
3219	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
3220			  FILE__RELABELFROM, &ad);
3221	if (rc)
3222		return rc;
3223
3224	rc = security_context_to_sid(value, size, &newsid,
3225				     GFP_KERNEL);
3226	if (rc == -EINVAL) {
3227		if (!has_cap_mac_admin(true)) {
3228			struct audit_buffer *ab;
3229			size_t audit_size;
3230
3231			/* We strip a nul only if it is at the end, otherwise the
3232			 * context contains a nul and we should audit that */
3233			if (value) {
3234				const char *str = value;
3235
3236				if (str[size - 1] == '\0')
3237					audit_size = size - 1;
3238				else
3239					audit_size = size;
3240			} else {
3241				audit_size = 0;
3242			}
3243			ab = audit_log_start(audit_context(),
3244					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3245			if (!ab)
3246				return rc;
3247			audit_log_format(ab, "op=setxattr invalid_context=");
3248			audit_log_n_untrustedstring(ab, value, audit_size);
3249			audit_log_end(ab);
3250
3251			return rc;
3252		}
3253		rc = security_context_to_sid_force(value,
3254						   size, &newsid);
3255	}
3256	if (rc)
3257		return rc;
3258
3259	rc = avc_has_perm(sid, newsid, isec->sclass,
 
3260			  FILE__RELABELTO, &ad);
3261	if (rc)
3262		return rc;
3263
3264	rc = security_validate_transition(isec->sid, newsid,
3265					  sid, isec->sclass);
3266	if (rc)
3267		return rc;
3268
3269	return avc_has_perm(newsid,
 
3270			    sbsec->sid,
3271			    SECCLASS_FILESYSTEM,
3272			    FILESYSTEM__ASSOCIATE,
3273			    &ad);
3274}
3275
3276static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3277				 struct dentry *dentry, const char *acl_name,
3278				 struct posix_acl *kacl)
3279{
3280	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3281}
3282
3283static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3284				 struct dentry *dentry, const char *acl_name)
3285{
3286	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3287}
3288
3289static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3290				    struct dentry *dentry, const char *acl_name)
3291{
3292	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3293}
3294
3295static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3296					const void *value, size_t size,
3297					int flags)
3298{
3299	struct inode *inode = d_backing_inode(dentry);
3300	struct inode_security_struct *isec;
3301	u32 newsid;
3302	int rc;
3303
3304	if (strcmp(name, XATTR_NAME_SELINUX)) {
3305		/* Not an attribute we recognize, so nothing to do. */
3306		return;
3307	}
3308
3309	if (!selinux_initialized()) {
3310		/* If we haven't even been initialized, then we can't validate
3311		 * against a policy, so leave the label as invalid. It may
3312		 * resolve to a valid label on the next revalidation try if
3313		 * we've since initialized.
3314		 */
3315		return;
3316	}
3317
3318	rc = security_context_to_sid_force(value, size,
3319					   &newsid);
3320	if (rc) {
3321		pr_err("SELinux:  unable to map context to SID"
3322		       "for (%s, %lu), rc=%d\n",
3323		       inode->i_sb->s_id, inode->i_ino, -rc);
3324		return;
3325	}
3326
3327	isec = backing_inode_security(dentry);
3328	spin_lock(&isec->lock);
3329	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3330	isec->sid = newsid;
3331	isec->initialized = LABEL_INITIALIZED;
3332	spin_unlock(&isec->lock);
 
 
3333}
3334
3335static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3336{
3337	const struct cred *cred = current_cred();
3338
3339	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3340}
3341
3342static int selinux_inode_listxattr(struct dentry *dentry)
3343{
3344	const struct cred *cred = current_cred();
3345
3346	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3347}
3348
3349static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3350				     struct dentry *dentry, const char *name)
3351{
3352	if (strcmp(name, XATTR_NAME_SELINUX)) {
3353		int rc = cap_inode_removexattr(idmap, dentry, name);
3354		if (rc)
3355			return rc;
3356
3357		/* Not an attribute we recognize, so just check the
3358		   ordinary setattr permission. */
3359		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3360	}
3361
3362	if (!selinux_initialized())
3363		return 0;
3364
3365	/* No one is allowed to remove a SELinux security label.
3366	   You can change the label, but all data must be labeled. */
3367	return -EACCES;
3368}
3369
3370static int selinux_path_notify(const struct path *path, u64 mask,
3371						unsigned int obj_type)
3372{
3373	int ret;
3374	u32 perm;
3375
3376	struct common_audit_data ad;
3377
3378	ad.type = LSM_AUDIT_DATA_PATH;
3379	ad.u.path = *path;
3380
3381	/*
3382	 * Set permission needed based on the type of mark being set.
3383	 * Performs an additional check for sb watches.
3384	 */
3385	switch (obj_type) {
3386	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3387		perm = FILE__WATCH_MOUNT;
3388		break;
3389	case FSNOTIFY_OBJ_TYPE_SB:
3390		perm = FILE__WATCH_SB;
3391		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3392						FILESYSTEM__WATCH, &ad);
3393		if (ret)
3394			return ret;
3395		break;
3396	case FSNOTIFY_OBJ_TYPE_INODE:
3397		perm = FILE__WATCH;
3398		break;
3399	default:
3400		return -EINVAL;
3401	}
3402
3403	/* blocking watches require the file:watch_with_perm permission */
3404	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3405		perm |= FILE__WATCH_WITH_PERM;
3406
3407	/* watches on read-like events need the file:watch_reads permission */
3408	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3409		perm |= FILE__WATCH_READS;
3410
3411	return path_has_perm(current_cred(), path, perm);
3412}
3413
3414/*
3415 * Copy the inode security context value to the user.
3416 *
3417 * Permission check is handled by selinux_inode_getxattr hook.
3418 */
3419static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3420				     struct inode *inode, const char *name,
3421				     void **buffer, bool alloc)
3422{
3423	u32 size;
3424	int error;
3425	char *context = NULL;
3426	struct inode_security_struct *isec;
3427
3428	/*
3429	 * If we're not initialized yet, then we can't validate contexts, so
3430	 * just let vfs_getxattr fall back to using the on-disk xattr.
3431	 */
3432	if (!selinux_initialized() ||
3433	    strcmp(name, XATTR_SELINUX_SUFFIX))
3434		return -EOPNOTSUPP;
3435
3436	/*
3437	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3438	 * value even if it is not defined by current policy; otherwise,
3439	 * use the in-core value under current policy.
3440	 * Use the non-auditing forms of the permission checks since
3441	 * getxattr may be called by unprivileged processes commonly
3442	 * and lack of permission just means that we fall back to the
3443	 * in-core context value, not a denial.
3444	 */
3445	isec = inode_security(inode);
3446	if (has_cap_mac_admin(false))
3447		error = security_sid_to_context_force(isec->sid, &context,
 
3448						      &size);
3449	else
3450		error = security_sid_to_context(isec->sid,
3451						&context, &size);
3452	if (error)
3453		return error;
3454	error = size;
3455	if (alloc) {
3456		*buffer = context;
3457		goto out_nofree;
3458	}
3459	kfree(context);
3460out_nofree:
3461	return error;
3462}
3463
3464static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3465				     const void *value, size_t size, int flags)
3466{
3467	struct inode_security_struct *isec = inode_security_novalidate(inode);
3468	struct superblock_security_struct *sbsec;
3469	u32 newsid;
3470	int rc;
3471
3472	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3473		return -EOPNOTSUPP;
3474
3475	sbsec = selinux_superblock(inode->i_sb);
3476	if (!(sbsec->flags & SBLABEL_MNT))
3477		return -EOPNOTSUPP;
3478
3479	if (!value || !size)
3480		return -EACCES;
3481
3482	rc = security_context_to_sid(value, size, &newsid,
3483				     GFP_KERNEL);
3484	if (rc)
3485		return rc;
3486
3487	spin_lock(&isec->lock);
3488	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3489	isec->sid = newsid;
3490	isec->initialized = LABEL_INITIALIZED;
3491	spin_unlock(&isec->lock);
3492	return 0;
3493}
3494
3495static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3496{
3497	const int len = sizeof(XATTR_NAME_SELINUX);
3498
3499	if (!selinux_initialized())
3500		return 0;
3501
3502	if (buffer && len <= buffer_size)
3503		memcpy(buffer, XATTR_NAME_SELINUX, len);
3504	return len;
3505}
3506
3507static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3508{
3509	struct inode_security_struct *isec = inode_security_novalidate(inode);
3510	*secid = isec->sid;
3511}
3512
3513static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3514{
3515	u32 sid;
3516	struct task_security_struct *tsec;
3517	struct cred *new_creds = *new;
3518
3519	if (new_creds == NULL) {
3520		new_creds = prepare_creds();
3521		if (!new_creds)
3522			return -ENOMEM;
3523	}
3524
3525	tsec = selinux_cred(new_creds);
3526	/* Get label from overlay inode and set it in create_sid */
3527	selinux_inode_getsecid(d_inode(src), &sid);
3528	tsec->create_sid = sid;
3529	*new = new_creds;
3530	return 0;
3531}
3532
3533static int selinux_inode_copy_up_xattr(const char *name)
3534{
3535	/* The copy_up hook above sets the initial context on an inode, but we
3536	 * don't then want to overwrite it by blindly copying all the lower
3537	 * xattrs up.  Instead, filter out SELinux-related xattrs following
3538	 * policy load.
3539	 */
3540	if (selinux_initialized() && strcmp(name, XATTR_NAME_SELINUX) == 0)
3541		return 1; /* Discard */
3542	/*
3543	 * Any other attribute apart from SELINUX is not claimed, supported
3544	 * by selinux.
3545	 */
3546	return -EOPNOTSUPP;
3547}
3548
3549/* kernfs node operations */
3550
3551static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3552					struct kernfs_node *kn)
3553{
3554	const struct task_security_struct *tsec = selinux_cred(current_cred());
3555	u32 parent_sid, newsid, clen;
3556	int rc;
3557	char *context;
3558
3559	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3560	if (rc == -ENODATA)
3561		return 0;
3562	else if (rc < 0)
3563		return rc;
3564
3565	clen = (u32)rc;
3566	context = kmalloc(clen, GFP_KERNEL);
3567	if (!context)
3568		return -ENOMEM;
3569
3570	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3571	if (rc < 0) {
3572		kfree(context);
3573		return rc;
3574	}
3575
3576	rc = security_context_to_sid(context, clen, &parent_sid,
3577				     GFP_KERNEL);
3578	kfree(context);
3579	if (rc)
3580		return rc;
3581
3582	if (tsec->create_sid) {
3583		newsid = tsec->create_sid;
3584	} else {
3585		u16 secclass = inode_mode_to_security_class(kn->mode);
3586		struct qstr q;
3587
3588		q.name = kn->name;
3589		q.hash_len = hashlen_string(kn_dir, kn->name);
3590
3591		rc = security_transition_sid(tsec->sid,
3592					     parent_sid, secclass, &q,
3593					     &newsid);
3594		if (rc)
3595			return rc;
3596	}
3597
3598	rc = security_sid_to_context_force(newsid,
3599					   &context, &clen);
3600	if (rc)
3601		return rc;
3602
3603	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3604			      XATTR_CREATE);
3605	kfree(context);
3606	return rc;
3607}
3608
3609
3610/* file security operations */
3611
3612static int selinux_revalidate_file_permission(struct file *file, int mask)
3613{
3614	const struct cred *cred = current_cred();
3615	struct inode *inode = file_inode(file);
3616
3617	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3618	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3619		mask |= MAY_APPEND;
3620
3621	return file_has_perm(cred, file,
3622			     file_mask_to_av(inode->i_mode, mask));
3623}
3624
3625static int selinux_file_permission(struct file *file, int mask)
3626{
3627	struct inode *inode = file_inode(file);
3628	struct file_security_struct *fsec = selinux_file(file);
3629	struct inode_security_struct *isec;
3630	u32 sid = current_sid();
3631
3632	if (!mask)
3633		/* No permission to check.  Existence test. */
3634		return 0;
3635
3636	isec = inode_security(inode);
3637	if (sid == fsec->sid && fsec->isid == isec->sid &&
3638	    fsec->pseqno == avc_policy_seqno())
3639		/* No change since file_open check. */
3640		return 0;
3641
3642	return selinux_revalidate_file_permission(file, mask);
3643}
3644
3645static int selinux_file_alloc_security(struct file *file)
3646{
3647	struct file_security_struct *fsec = selinux_file(file);
3648	u32 sid = current_sid();
3649
3650	fsec->sid = sid;
3651	fsec->fown_sid = sid;
3652
3653	return 0;
3654}
3655
3656/*
3657 * Check whether a task has the ioctl permission and cmd
3658 * operation to an inode.
3659 */
3660static int ioctl_has_perm(const struct cred *cred, struct file *file,
3661		u32 requested, u16 cmd)
3662{
3663	struct common_audit_data ad;
3664	struct file_security_struct *fsec = selinux_file(file);
3665	struct inode *inode = file_inode(file);
3666	struct inode_security_struct *isec;
3667	struct lsm_ioctlop_audit ioctl;
3668	u32 ssid = cred_sid(cred);
3669	int rc;
3670	u8 driver = cmd >> 8;
3671	u8 xperm = cmd & 0xff;
3672
3673	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3674	ad.u.op = &ioctl;
3675	ad.u.op->cmd = cmd;
3676	ad.u.op->path = file->f_path;
3677
3678	if (ssid != fsec->sid) {
3679		rc = avc_has_perm(ssid, fsec->sid,
 
3680				SECCLASS_FD,
3681				FD__USE,
3682				&ad);
3683		if (rc)
3684			goto out;
3685	}
3686
3687	if (unlikely(IS_PRIVATE(inode)))
3688		return 0;
3689
3690	isec = inode_security(inode);
3691	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
 
3692				    requested, driver, xperm, &ad);
3693out:
3694	return rc;
3695}
3696
3697static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3698			      unsigned long arg)
3699{
3700	const struct cred *cred = current_cred();
3701	int error = 0;
3702
3703	switch (cmd) {
3704	case FIONREAD:
3705	case FIBMAP:
3706	case FIGETBSZ:
3707	case FS_IOC_GETFLAGS:
3708	case FS_IOC_GETVERSION:
3709		error = file_has_perm(cred, file, FILE__GETATTR);
3710		break;
3711
3712	case FS_IOC_SETFLAGS:
3713	case FS_IOC_SETVERSION:
3714		error = file_has_perm(cred, file, FILE__SETATTR);
3715		break;
3716
3717	/* sys_ioctl() checks */
3718	case FIONBIO:
3719	case FIOASYNC:
3720		error = file_has_perm(cred, file, 0);
3721		break;
3722
3723	case KDSKBENT:
3724	case KDSKBSENT:
3725		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3726					    CAP_OPT_NONE, true);
3727		break;
3728
3729	case FIOCLEX:
3730	case FIONCLEX:
3731		if (!selinux_policycap_ioctl_skip_cloexec())
3732			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3733		break;
3734
3735	/* default case assumes that the command will go
3736	 * to the file's ioctl() function.
3737	 */
3738	default:
3739		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3740	}
3741	return error;
3742}
3743
3744static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3745			      unsigned long arg)
3746{
3747	/*
3748	 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3749	 * make sure we don't compare 32-bit flags to 64-bit flags.
3750	 */
3751	switch (cmd) {
3752	case FS_IOC32_GETFLAGS:
3753		cmd = FS_IOC_GETFLAGS;
3754		break;
3755	case FS_IOC32_SETFLAGS:
3756		cmd = FS_IOC_SETFLAGS;
3757		break;
3758	case FS_IOC32_GETVERSION:
3759		cmd = FS_IOC_GETVERSION;
3760		break;
3761	case FS_IOC32_SETVERSION:
3762		cmd = FS_IOC_SETVERSION;
3763		break;
3764	default:
3765		break;
3766	}
3767
3768	return selinux_file_ioctl(file, cmd, arg);
3769}
3770
3771static int default_noexec __ro_after_init;
3772
3773static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3774{
3775	const struct cred *cred = current_cred();
3776	u32 sid = cred_sid(cred);
3777	int rc = 0;
3778
3779	if (default_noexec &&
3780	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3781				   (!shared && (prot & PROT_WRITE)))) {
3782		/*
3783		 * We are making executable an anonymous mapping or a
3784		 * private file mapping that will also be writable.
3785		 * This has an additional check.
3786		 */
3787		rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
 
3788				  PROCESS__EXECMEM, NULL);
3789		if (rc)
3790			goto error;
3791	}
3792
3793	if (file) {
3794		/* read access is always possible with a mapping */
3795		u32 av = FILE__READ;
3796
3797		/* write access only matters if the mapping is shared */
3798		if (shared && (prot & PROT_WRITE))
3799			av |= FILE__WRITE;
3800
3801		if (prot & PROT_EXEC)
3802			av |= FILE__EXECUTE;
3803
3804		return file_has_perm(cred, file, av);
3805	}
3806
3807error:
3808	return rc;
3809}
3810
3811static int selinux_mmap_addr(unsigned long addr)
3812{
3813	int rc = 0;
3814
3815	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3816		u32 sid = current_sid();
3817		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
3818				  MEMPROTECT__MMAP_ZERO, NULL);
3819	}
3820
3821	return rc;
3822}
3823
3824static int selinux_mmap_file(struct file *file,
3825			     unsigned long reqprot __always_unused,
3826			     unsigned long prot, unsigned long flags)
3827{
3828	struct common_audit_data ad;
3829	int rc;
3830
3831	if (file) {
3832		ad.type = LSM_AUDIT_DATA_FILE;
3833		ad.u.file = file;
3834		rc = inode_has_perm(current_cred(), file_inode(file),
3835				    FILE__MAP, &ad);
3836		if (rc)
3837			return rc;
3838	}
3839
 
 
 
3840	return file_map_prot_check(file, prot,
3841				   (flags & MAP_TYPE) == MAP_SHARED);
3842}
3843
3844static int selinux_file_mprotect(struct vm_area_struct *vma,
3845				 unsigned long reqprot __always_unused,
3846				 unsigned long prot)
3847{
3848	const struct cred *cred = current_cred();
3849	u32 sid = cred_sid(cred);
3850
 
 
 
3851	if (default_noexec &&
3852	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3853		int rc = 0;
3854		if (vma_is_initial_heap(vma)) {
3855			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
 
 
3856					  PROCESS__EXECHEAP, NULL);
3857		} else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
 
 
3858			    vma_is_stack_for_current(vma))) {
3859			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
 
3860					  PROCESS__EXECSTACK, NULL);
3861		} else if (vma->vm_file && vma->anon_vma) {
3862			/*
3863			 * We are making executable a file mapping that has
3864			 * had some COW done. Since pages might have been
3865			 * written, check ability to execute the possibly
3866			 * modified content.  This typically should only
3867			 * occur for text relocations.
3868			 */
3869			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3870		}
3871		if (rc)
3872			return rc;
3873	}
3874
3875	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3876}
3877
3878static int selinux_file_lock(struct file *file, unsigned int cmd)
3879{
3880	const struct cred *cred = current_cred();
3881
3882	return file_has_perm(cred, file, FILE__LOCK);
3883}
3884
3885static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3886			      unsigned long arg)
3887{
3888	const struct cred *cred = current_cred();
3889	int err = 0;
3890
3891	switch (cmd) {
3892	case F_SETFL:
3893		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3894			err = file_has_perm(cred, file, FILE__WRITE);
3895			break;
3896		}
3897		fallthrough;
3898	case F_SETOWN:
3899	case F_SETSIG:
3900	case F_GETFL:
3901	case F_GETOWN:
3902	case F_GETSIG:
3903	case F_GETOWNER_UIDS:
3904		/* Just check FD__USE permission */
3905		err = file_has_perm(cred, file, 0);
3906		break;
3907	case F_GETLK:
3908	case F_SETLK:
3909	case F_SETLKW:
3910	case F_OFD_GETLK:
3911	case F_OFD_SETLK:
3912	case F_OFD_SETLKW:
3913#if BITS_PER_LONG == 32
3914	case F_GETLK64:
3915	case F_SETLK64:
3916	case F_SETLKW64:
3917#endif
3918		err = file_has_perm(cred, file, FILE__LOCK);
3919		break;
3920	}
3921
3922	return err;
3923}
3924
3925static void selinux_file_set_fowner(struct file *file)
3926{
3927	struct file_security_struct *fsec;
3928
3929	fsec = selinux_file(file);
3930	fsec->fown_sid = current_sid();
3931}
3932
3933static int selinux_file_send_sigiotask(struct task_struct *tsk,
3934				       struct fown_struct *fown, int signum)
3935{
3936	struct file *file;
3937	u32 sid = task_sid_obj(tsk);
3938	u32 perm;
3939	struct file_security_struct *fsec;
3940
3941	/* struct fown_struct is never outside the context of a struct file */
3942	file = container_of(fown, struct file, f_owner);
3943
3944	fsec = selinux_file(file);
3945
3946	if (!signum)
3947		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3948	else
3949		perm = signal_to_av(signum);
3950
3951	return avc_has_perm(fsec->fown_sid, sid,
 
3952			    SECCLASS_PROCESS, perm, NULL);
3953}
3954
3955static int selinux_file_receive(struct file *file)
3956{
3957	const struct cred *cred = current_cred();
3958
3959	return file_has_perm(cred, file, file_to_av(file));
3960}
3961
3962static int selinux_file_open(struct file *file)
3963{
3964	struct file_security_struct *fsec;
3965	struct inode_security_struct *isec;
3966
3967	fsec = selinux_file(file);
3968	isec = inode_security(file_inode(file));
3969	/*
3970	 * Save inode label and policy sequence number
3971	 * at open-time so that selinux_file_permission
3972	 * can determine whether revalidation is necessary.
3973	 * Task label is already saved in the file security
3974	 * struct as its SID.
3975	 */
3976	fsec->isid = isec->sid;
3977	fsec->pseqno = avc_policy_seqno();
3978	/*
3979	 * Since the inode label or policy seqno may have changed
3980	 * between the selinux_inode_permission check and the saving
3981	 * of state above, recheck that access is still permitted.
3982	 * Otherwise, access might never be revalidated against the
3983	 * new inode label or new policy.
3984	 * This check is not redundant - do not remove.
3985	 */
3986	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3987}
3988
3989/* task security operations */
3990
3991static int selinux_task_alloc(struct task_struct *task,
3992			      unsigned long clone_flags)
3993{
3994	u32 sid = current_sid();
3995
3996	return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
 
3997}
3998
3999/*
4000 * prepare a new set of credentials for modification
4001 */
4002static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4003				gfp_t gfp)
4004{
4005	const struct task_security_struct *old_tsec = selinux_cred(old);
4006	struct task_security_struct *tsec = selinux_cred(new);
4007
4008	*tsec = *old_tsec;
4009	return 0;
4010}
4011
4012/*
4013 * transfer the SELinux data to a blank set of creds
4014 */
4015static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4016{
4017	const struct task_security_struct *old_tsec = selinux_cred(old);
4018	struct task_security_struct *tsec = selinux_cred(new);
4019
4020	*tsec = *old_tsec;
4021}
4022
4023static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4024{
4025	*secid = cred_sid(c);
4026}
4027
4028/*
4029 * set the security data for a kernel service
4030 * - all the creation contexts are set to unlabelled
4031 */
4032static int selinux_kernel_act_as(struct cred *new, u32 secid)
4033{
4034	struct task_security_struct *tsec = selinux_cred(new);
4035	u32 sid = current_sid();
4036	int ret;
4037
4038	ret = avc_has_perm(sid, secid,
 
4039			   SECCLASS_KERNEL_SERVICE,
4040			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4041			   NULL);
4042	if (ret == 0) {
4043		tsec->sid = secid;
4044		tsec->create_sid = 0;
4045		tsec->keycreate_sid = 0;
4046		tsec->sockcreate_sid = 0;
4047	}
4048	return ret;
4049}
4050
4051/*
4052 * set the file creation context in a security record to the same as the
4053 * objective context of the specified inode
4054 */
4055static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4056{
4057	struct inode_security_struct *isec = inode_security(inode);
4058	struct task_security_struct *tsec = selinux_cred(new);
4059	u32 sid = current_sid();
4060	int ret;
4061
4062	ret = avc_has_perm(sid, isec->sid,
 
4063			   SECCLASS_KERNEL_SERVICE,
4064			   KERNEL_SERVICE__CREATE_FILES_AS,
4065			   NULL);
4066
4067	if (ret == 0)
4068		tsec->create_sid = isec->sid;
4069	return ret;
4070}
4071
4072static int selinux_kernel_module_request(char *kmod_name)
4073{
4074	struct common_audit_data ad;
4075
4076	ad.type = LSM_AUDIT_DATA_KMOD;
4077	ad.u.kmod_name = kmod_name;
4078
4079	return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
4080			    SYSTEM__MODULE_REQUEST, &ad);
4081}
4082
4083static int selinux_kernel_module_from_file(struct file *file)
4084{
4085	struct common_audit_data ad;
4086	struct inode_security_struct *isec;
4087	struct file_security_struct *fsec;
4088	u32 sid = current_sid();
4089	int rc;
4090
4091	/* init_module */
4092	if (file == NULL)
4093		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
 
4094					SYSTEM__MODULE_LOAD, NULL);
4095
4096	/* finit_module */
4097
4098	ad.type = LSM_AUDIT_DATA_FILE;
4099	ad.u.file = file;
4100
4101	fsec = selinux_file(file);
4102	if (sid != fsec->sid) {
4103		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
 
4104		if (rc)
4105			return rc;
4106	}
4107
4108	isec = inode_security(file_inode(file));
4109	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
 
4110				SYSTEM__MODULE_LOAD, &ad);
4111}
4112
4113static int selinux_kernel_read_file(struct file *file,
4114				    enum kernel_read_file_id id,
4115				    bool contents)
4116{
4117	int rc = 0;
4118
4119	switch (id) {
4120	case READING_MODULE:
4121		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4122		break;
4123	default:
4124		break;
4125	}
4126
4127	return rc;
4128}
4129
4130static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4131{
4132	int rc = 0;
4133
4134	switch (id) {
4135	case LOADING_MODULE:
4136		rc = selinux_kernel_module_from_file(NULL);
4137		break;
4138	default:
4139		break;
4140	}
4141
4142	return rc;
4143}
4144
4145static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4146{
4147	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4148			    PROCESS__SETPGID, NULL);
4149}
4150
4151static int selinux_task_getpgid(struct task_struct *p)
4152{
4153	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4154			    PROCESS__GETPGID, NULL);
4155}
4156
4157static int selinux_task_getsid(struct task_struct *p)
4158{
4159	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4160			    PROCESS__GETSESSION, NULL);
4161}
4162
4163static void selinux_current_getsecid_subj(u32 *secid)
4164{
4165	*secid = current_sid();
4166}
4167
4168static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4169{
4170	*secid = task_sid_obj(p);
4171}
4172
4173static int selinux_task_setnice(struct task_struct *p, int nice)
4174{
4175	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4176			    PROCESS__SETSCHED, NULL);
4177}
4178
4179static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4180{
4181	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4182			    PROCESS__SETSCHED, NULL);
4183}
4184
4185static int selinux_task_getioprio(struct task_struct *p)
4186{
4187	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4188			    PROCESS__GETSCHED, NULL);
4189}
4190
4191static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4192				unsigned int flags)
4193{
4194	u32 av = 0;
4195
4196	if (!flags)
4197		return 0;
4198	if (flags & LSM_PRLIMIT_WRITE)
4199		av |= PROCESS__SETRLIMIT;
4200	if (flags & LSM_PRLIMIT_READ)
4201		av |= PROCESS__GETRLIMIT;
4202	return avc_has_perm(cred_sid(cred), cred_sid(tcred),
 
4203			    SECCLASS_PROCESS, av, NULL);
4204}
4205
4206static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4207		struct rlimit *new_rlim)
4208{
4209	struct rlimit *old_rlim = p->signal->rlim + resource;
4210
4211	/* Control the ability to change the hard limit (whether
4212	   lowering or raising it), so that the hard limit can
4213	   later be used as a safe reset point for the soft limit
4214	   upon context transitions.  See selinux_bprm_committing_creds. */
4215	if (old_rlim->rlim_max != new_rlim->rlim_max)
4216		return avc_has_perm(current_sid(), task_sid_obj(p),
 
4217				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4218
4219	return 0;
4220}
4221
4222static int selinux_task_setscheduler(struct task_struct *p)
4223{
4224	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4225			    PROCESS__SETSCHED, NULL);
4226}
4227
4228static int selinux_task_getscheduler(struct task_struct *p)
4229{
4230	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4231			    PROCESS__GETSCHED, NULL);
4232}
4233
4234static int selinux_task_movememory(struct task_struct *p)
4235{
4236	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4237			    PROCESS__SETSCHED, NULL);
4238}
4239
4240static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4241				int sig, const struct cred *cred)
4242{
4243	u32 secid;
4244	u32 perm;
4245
4246	if (!sig)
4247		perm = PROCESS__SIGNULL; /* null signal; existence test */
4248	else
4249		perm = signal_to_av(sig);
4250	if (!cred)
4251		secid = current_sid();
4252	else
4253		secid = cred_sid(cred);
4254	return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
 
4255}
4256
4257static void selinux_task_to_inode(struct task_struct *p,
4258				  struct inode *inode)
4259{
4260	struct inode_security_struct *isec = selinux_inode(inode);
4261	u32 sid = task_sid_obj(p);
4262
4263	spin_lock(&isec->lock);
4264	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4265	isec->sid = sid;
4266	isec->initialized = LABEL_INITIALIZED;
4267	spin_unlock(&isec->lock);
4268}
4269
4270static int selinux_userns_create(const struct cred *cred)
4271{
4272	u32 sid = current_sid();
4273
4274	return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4275			USER_NAMESPACE__CREATE, NULL);
4276}
4277
4278/* Returns error only if unable to parse addresses */
4279static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4280			struct common_audit_data *ad, u8 *proto)
4281{
4282	int offset, ihlen, ret = -EINVAL;
4283	struct iphdr _iph, *ih;
4284
4285	offset = skb_network_offset(skb);
4286	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4287	if (ih == NULL)
4288		goto out;
4289
4290	ihlen = ih->ihl * 4;
4291	if (ihlen < sizeof(_iph))
4292		goto out;
4293
4294	ad->u.net->v4info.saddr = ih->saddr;
4295	ad->u.net->v4info.daddr = ih->daddr;
4296	ret = 0;
4297
4298	if (proto)
4299		*proto = ih->protocol;
4300
4301	switch (ih->protocol) {
4302	case IPPROTO_TCP: {
4303		struct tcphdr _tcph, *th;
4304
4305		if (ntohs(ih->frag_off) & IP_OFFSET)
4306			break;
4307
4308		offset += ihlen;
4309		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4310		if (th == NULL)
4311			break;
4312
4313		ad->u.net->sport = th->source;
4314		ad->u.net->dport = th->dest;
4315		break;
4316	}
4317
4318	case IPPROTO_UDP: {
4319		struct udphdr _udph, *uh;
4320
4321		if (ntohs(ih->frag_off) & IP_OFFSET)
4322			break;
4323
4324		offset += ihlen;
4325		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4326		if (uh == NULL)
4327			break;
4328
4329		ad->u.net->sport = uh->source;
4330		ad->u.net->dport = uh->dest;
4331		break;
4332	}
4333
4334	case IPPROTO_DCCP: {
4335		struct dccp_hdr _dccph, *dh;
4336
4337		if (ntohs(ih->frag_off) & IP_OFFSET)
4338			break;
4339
4340		offset += ihlen;
4341		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4342		if (dh == NULL)
4343			break;
4344
4345		ad->u.net->sport = dh->dccph_sport;
4346		ad->u.net->dport = dh->dccph_dport;
4347		break;
4348	}
4349
4350#if IS_ENABLED(CONFIG_IP_SCTP)
4351	case IPPROTO_SCTP: {
4352		struct sctphdr _sctph, *sh;
4353
4354		if (ntohs(ih->frag_off) & IP_OFFSET)
4355			break;
4356
4357		offset += ihlen;
4358		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4359		if (sh == NULL)
4360			break;
4361
4362		ad->u.net->sport = sh->source;
4363		ad->u.net->dport = sh->dest;
4364		break;
4365	}
4366#endif
4367	default:
4368		break;
4369	}
4370out:
4371	return ret;
4372}
4373
4374#if IS_ENABLED(CONFIG_IPV6)
4375
4376/* Returns error only if unable to parse addresses */
4377static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4378			struct common_audit_data *ad, u8 *proto)
4379{
4380	u8 nexthdr;
4381	int ret = -EINVAL, offset;
4382	struct ipv6hdr _ipv6h, *ip6;
4383	__be16 frag_off;
4384
4385	offset = skb_network_offset(skb);
4386	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4387	if (ip6 == NULL)
4388		goto out;
4389
4390	ad->u.net->v6info.saddr = ip6->saddr;
4391	ad->u.net->v6info.daddr = ip6->daddr;
4392	ret = 0;
4393
4394	nexthdr = ip6->nexthdr;
4395	offset += sizeof(_ipv6h);
4396	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4397	if (offset < 0)
4398		goto out;
4399
4400	if (proto)
4401		*proto = nexthdr;
4402
4403	switch (nexthdr) {
4404	case IPPROTO_TCP: {
4405		struct tcphdr _tcph, *th;
4406
4407		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4408		if (th == NULL)
4409			break;
4410
4411		ad->u.net->sport = th->source;
4412		ad->u.net->dport = th->dest;
4413		break;
4414	}
4415
4416	case IPPROTO_UDP: {
4417		struct udphdr _udph, *uh;
4418
4419		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4420		if (uh == NULL)
4421			break;
4422
4423		ad->u.net->sport = uh->source;
4424		ad->u.net->dport = uh->dest;
4425		break;
4426	}
4427
4428	case IPPROTO_DCCP: {
4429		struct dccp_hdr _dccph, *dh;
4430
4431		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4432		if (dh == NULL)
4433			break;
4434
4435		ad->u.net->sport = dh->dccph_sport;
4436		ad->u.net->dport = dh->dccph_dport;
4437		break;
4438	}
4439
4440#if IS_ENABLED(CONFIG_IP_SCTP)
4441	case IPPROTO_SCTP: {
4442		struct sctphdr _sctph, *sh;
4443
4444		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4445		if (sh == NULL)
4446			break;
4447
4448		ad->u.net->sport = sh->source;
4449		ad->u.net->dport = sh->dest;
4450		break;
4451	}
4452#endif
4453	/* includes fragments */
4454	default:
4455		break;
4456	}
4457out:
4458	return ret;
4459}
4460
4461#endif /* IPV6 */
4462
4463static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4464			     char **_addrp, int src, u8 *proto)
4465{
4466	char *addrp;
4467	int ret;
4468
4469	switch (ad->u.net->family) {
4470	case PF_INET:
4471		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4472		if (ret)
4473			goto parse_error;
4474		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4475				       &ad->u.net->v4info.daddr);
4476		goto okay;
4477
4478#if IS_ENABLED(CONFIG_IPV6)
4479	case PF_INET6:
4480		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4481		if (ret)
4482			goto parse_error;
4483		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4484				       &ad->u.net->v6info.daddr);
4485		goto okay;
4486#endif	/* IPV6 */
4487	default:
4488		addrp = NULL;
4489		goto okay;
4490	}
4491
4492parse_error:
4493	pr_warn(
4494	       "SELinux: failure in selinux_parse_skb(),"
4495	       " unable to parse packet\n");
4496	return ret;
4497
4498okay:
4499	if (_addrp)
4500		*_addrp = addrp;
4501	return 0;
4502}
4503
4504/**
4505 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4506 * @skb: the packet
4507 * @family: protocol family
4508 * @sid: the packet's peer label SID
4509 *
4510 * Description:
4511 * Check the various different forms of network peer labeling and determine
4512 * the peer label/SID for the packet; most of the magic actually occurs in
4513 * the security server function security_net_peersid_cmp().  The function
4514 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4515 * or -EACCES if @sid is invalid due to inconsistencies with the different
4516 * peer labels.
4517 *
4518 */
4519static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4520{
4521	int err;
4522	u32 xfrm_sid;
4523	u32 nlbl_sid;
4524	u32 nlbl_type;
4525
4526	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4527	if (unlikely(err))
4528		return -EACCES;
4529	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4530	if (unlikely(err))
4531		return -EACCES;
4532
4533	err = security_net_peersid_resolve(nlbl_sid,
4534					   nlbl_type, xfrm_sid, sid);
4535	if (unlikely(err)) {
4536		pr_warn(
4537		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4538		       " unable to determine packet's peer label\n");
4539		return -EACCES;
4540	}
4541
4542	return 0;
4543}
4544
4545/**
4546 * selinux_conn_sid - Determine the child socket label for a connection
4547 * @sk_sid: the parent socket's SID
4548 * @skb_sid: the packet's SID
4549 * @conn_sid: the resulting connection SID
4550 *
4551 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4552 * combined with the MLS information from @skb_sid in order to create
4553 * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4554 * of @sk_sid.  Returns zero on success, negative values on failure.
4555 *
4556 */
4557static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4558{
4559	int err = 0;
4560
4561	if (skb_sid != SECSID_NULL)
4562		err = security_sid_mls_copy(sk_sid, skb_sid,
4563					    conn_sid);
4564	else
4565		*conn_sid = sk_sid;
4566
4567	return err;
4568}
4569
4570/* socket security operations */
4571
4572static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4573				 u16 secclass, u32 *socksid)
4574{
4575	if (tsec->sockcreate_sid > SECSID_NULL) {
4576		*socksid = tsec->sockcreate_sid;
4577		return 0;
4578	}
4579
4580	return security_transition_sid(tsec->sid, tsec->sid,
4581				       secclass, NULL, socksid);
4582}
4583
4584static int sock_has_perm(struct sock *sk, u32 perms)
4585{
4586	struct sk_security_struct *sksec = sk->sk_security;
4587	struct common_audit_data ad;
4588	struct lsm_network_audit net;
4589
4590	if (sksec->sid == SECINITSID_KERNEL)
4591		return 0;
4592
4593	/*
4594	 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4595	 * inherited the kernel context from early boot used to be skipped
4596	 * here, so preserve that behavior unless the capability is set.
4597	 *
4598	 * By setting the capability the policy signals that it is ready
4599	 * for this quirk to be fixed. Note that sockets created by a kernel
4600	 * thread or a usermode helper executed without a transition will
4601	 * still be skipped in this check regardless of the policycap
4602	 * setting.
4603	 */
4604	if (!selinux_policycap_userspace_initial_context() &&
4605	    sksec->sid == SECINITSID_INIT)
4606		return 0;
4607
4608	ad_net_init_from_sk(&ad, &net, sk);
4609
4610	return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4611			    &ad);
4612}
4613
4614static int selinux_socket_create(int family, int type,
4615				 int protocol, int kern)
4616{
4617	const struct task_security_struct *tsec = selinux_cred(current_cred());
4618	u32 newsid;
4619	u16 secclass;
4620	int rc;
4621
4622	if (kern)
4623		return 0;
4624
4625	secclass = socket_type_to_security_class(family, type, protocol);
4626	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4627	if (rc)
4628		return rc;
4629
4630	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
4631}
4632
4633static int selinux_socket_post_create(struct socket *sock, int family,
4634				      int type, int protocol, int kern)
4635{
4636	const struct task_security_struct *tsec = selinux_cred(current_cred());
4637	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4638	struct sk_security_struct *sksec;
4639	u16 sclass = socket_type_to_security_class(family, type, protocol);
4640	u32 sid = SECINITSID_KERNEL;
4641	int err = 0;
4642
4643	if (!kern) {
4644		err = socket_sockcreate_sid(tsec, sclass, &sid);
4645		if (err)
4646			return err;
4647	}
4648
4649	isec->sclass = sclass;
4650	isec->sid = sid;
4651	isec->initialized = LABEL_INITIALIZED;
4652
4653	if (sock->sk) {
4654		sksec = sock->sk->sk_security;
4655		sksec->sclass = sclass;
4656		sksec->sid = sid;
4657		/* Allows detection of the first association on this socket */
4658		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4659			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4660
4661		err = selinux_netlbl_socket_post_create(sock->sk, family);
4662	}
4663
4664	return err;
4665}
4666
4667static int selinux_socket_socketpair(struct socket *socka,
4668				     struct socket *sockb)
4669{
4670	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4671	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4672
4673	sksec_a->peer_sid = sksec_b->sid;
4674	sksec_b->peer_sid = sksec_a->sid;
4675
4676	return 0;
4677}
4678
4679/* Range of port numbers used to automatically bind.
4680   Need to determine whether we should perform a name_bind
4681   permission check between the socket and the port number. */
4682
4683static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4684{
4685	struct sock *sk = sock->sk;
4686	struct sk_security_struct *sksec = sk->sk_security;
4687	u16 family;
4688	int err;
4689
4690	err = sock_has_perm(sk, SOCKET__BIND);
4691	if (err)
4692		goto out;
4693
4694	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4695	family = sk->sk_family;
4696	if (family == PF_INET || family == PF_INET6) {
4697		char *addrp;
4698		struct common_audit_data ad;
4699		struct lsm_network_audit net = {0,};
4700		struct sockaddr_in *addr4 = NULL;
4701		struct sockaddr_in6 *addr6 = NULL;
4702		u16 family_sa;
4703		unsigned short snum;
4704		u32 sid, node_perm;
4705
4706		/*
4707		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4708		 * that validates multiple binding addresses. Because of this
4709		 * need to check address->sa_family as it is possible to have
4710		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4711		 */
4712		if (addrlen < offsetofend(struct sockaddr, sa_family))
4713			return -EINVAL;
4714		family_sa = address->sa_family;
4715		switch (family_sa) {
4716		case AF_UNSPEC:
4717		case AF_INET:
4718			if (addrlen < sizeof(struct sockaddr_in))
4719				return -EINVAL;
4720			addr4 = (struct sockaddr_in *)address;
4721			if (family_sa == AF_UNSPEC) {
4722				if (family == PF_INET6) {
4723					/* Length check from inet6_bind_sk() */
4724					if (addrlen < SIN6_LEN_RFC2133)
4725						return -EINVAL;
4726					/* Family check from __inet6_bind() */
4727					goto err_af;
4728				}
4729				/* see __inet_bind(), we only want to allow
4730				 * AF_UNSPEC if the address is INADDR_ANY
4731				 */
4732				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4733					goto err_af;
4734				family_sa = AF_INET;
4735			}
4736			snum = ntohs(addr4->sin_port);
4737			addrp = (char *)&addr4->sin_addr.s_addr;
4738			break;
4739		case AF_INET6:
4740			if (addrlen < SIN6_LEN_RFC2133)
4741				return -EINVAL;
4742			addr6 = (struct sockaddr_in6 *)address;
4743			snum = ntohs(addr6->sin6_port);
4744			addrp = (char *)&addr6->sin6_addr.s6_addr;
4745			break;
4746		default:
4747			goto err_af;
4748		}
4749
4750		ad.type = LSM_AUDIT_DATA_NET;
4751		ad.u.net = &net;
4752		ad.u.net->sport = htons(snum);
4753		ad.u.net->family = family_sa;
4754
4755		if (snum) {
4756			int low, high;
4757
4758			inet_get_local_port_range(sock_net(sk), &low, &high);
4759
4760			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4761			    snum < low || snum > high) {
4762				err = sel_netport_sid(sk->sk_protocol,
4763						      snum, &sid);
4764				if (err)
4765					goto out;
4766				err = avc_has_perm(sksec->sid, sid,
 
4767						   sksec->sclass,
4768						   SOCKET__NAME_BIND, &ad);
4769				if (err)
4770					goto out;
4771			}
4772		}
4773
4774		switch (sksec->sclass) {
4775		case SECCLASS_TCP_SOCKET:
4776			node_perm = TCP_SOCKET__NODE_BIND;
4777			break;
4778
4779		case SECCLASS_UDP_SOCKET:
4780			node_perm = UDP_SOCKET__NODE_BIND;
4781			break;
4782
4783		case SECCLASS_DCCP_SOCKET:
4784			node_perm = DCCP_SOCKET__NODE_BIND;
4785			break;
4786
4787		case SECCLASS_SCTP_SOCKET:
4788			node_perm = SCTP_SOCKET__NODE_BIND;
4789			break;
4790
4791		default:
4792			node_perm = RAWIP_SOCKET__NODE_BIND;
4793			break;
4794		}
4795
4796		err = sel_netnode_sid(addrp, family_sa, &sid);
4797		if (err)
4798			goto out;
4799
4800		if (family_sa == AF_INET)
4801			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4802		else
4803			ad.u.net->v6info.saddr = addr6->sin6_addr;
4804
4805		err = avc_has_perm(sksec->sid, sid,
 
4806				   sksec->sclass, node_perm, &ad);
4807		if (err)
4808			goto out;
4809	}
4810out:
4811	return err;
4812err_af:
4813	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4814	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4815		return -EINVAL;
4816	return -EAFNOSUPPORT;
4817}
4818
4819/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4820 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4821 */
4822static int selinux_socket_connect_helper(struct socket *sock,
4823					 struct sockaddr *address, int addrlen)
4824{
4825	struct sock *sk = sock->sk;
4826	struct sk_security_struct *sksec = sk->sk_security;
4827	int err;
4828
4829	err = sock_has_perm(sk, SOCKET__CONNECT);
4830	if (err)
4831		return err;
4832	if (addrlen < offsetofend(struct sockaddr, sa_family))
4833		return -EINVAL;
4834
4835	/* connect(AF_UNSPEC) has special handling, as it is a documented
4836	 * way to disconnect the socket
4837	 */
4838	if (address->sa_family == AF_UNSPEC)
4839		return 0;
4840
4841	/*
4842	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4843	 * for the port.
4844	 */
4845	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4846	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4847	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4848		struct common_audit_data ad;
4849		struct lsm_network_audit net = {0,};
4850		struct sockaddr_in *addr4 = NULL;
4851		struct sockaddr_in6 *addr6 = NULL;
4852		unsigned short snum;
4853		u32 sid, perm;
4854
4855		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4856		 * that validates multiple connect addresses. Because of this
4857		 * need to check address->sa_family as it is possible to have
4858		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4859		 */
4860		switch (address->sa_family) {
4861		case AF_INET:
4862			addr4 = (struct sockaddr_in *)address;
4863			if (addrlen < sizeof(struct sockaddr_in))
4864				return -EINVAL;
4865			snum = ntohs(addr4->sin_port);
4866			break;
4867		case AF_INET6:
4868			addr6 = (struct sockaddr_in6 *)address;
4869			if (addrlen < SIN6_LEN_RFC2133)
4870				return -EINVAL;
4871			snum = ntohs(addr6->sin6_port);
4872			break;
4873		default:
4874			/* Note that SCTP services expect -EINVAL, whereas
4875			 * others expect -EAFNOSUPPORT.
4876			 */
4877			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4878				return -EINVAL;
4879			else
4880				return -EAFNOSUPPORT;
4881		}
4882
4883		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4884		if (err)
4885			return err;
4886
4887		switch (sksec->sclass) {
4888		case SECCLASS_TCP_SOCKET:
4889			perm = TCP_SOCKET__NAME_CONNECT;
4890			break;
4891		case SECCLASS_DCCP_SOCKET:
4892			perm = DCCP_SOCKET__NAME_CONNECT;
4893			break;
4894		case SECCLASS_SCTP_SOCKET:
4895			perm = SCTP_SOCKET__NAME_CONNECT;
4896			break;
4897		}
4898
4899		ad.type = LSM_AUDIT_DATA_NET;
4900		ad.u.net = &net;
4901		ad.u.net->dport = htons(snum);
4902		ad.u.net->family = address->sa_family;
4903		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
4904		if (err)
4905			return err;
4906	}
4907
4908	return 0;
4909}
4910
4911/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4912static int selinux_socket_connect(struct socket *sock,
4913				  struct sockaddr *address, int addrlen)
4914{
4915	int err;
4916	struct sock *sk = sock->sk;
4917
4918	err = selinux_socket_connect_helper(sock, address, addrlen);
4919	if (err)
4920		return err;
4921
4922	return selinux_netlbl_socket_connect(sk, address);
4923}
4924
4925static int selinux_socket_listen(struct socket *sock, int backlog)
4926{
4927	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4928}
4929
4930static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4931{
4932	int err;
4933	struct inode_security_struct *isec;
4934	struct inode_security_struct *newisec;
4935	u16 sclass;
4936	u32 sid;
4937
4938	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4939	if (err)
4940		return err;
4941
4942	isec = inode_security_novalidate(SOCK_INODE(sock));
4943	spin_lock(&isec->lock);
4944	sclass = isec->sclass;
4945	sid = isec->sid;
4946	spin_unlock(&isec->lock);
4947
4948	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4949	newisec->sclass = sclass;
4950	newisec->sid = sid;
4951	newisec->initialized = LABEL_INITIALIZED;
4952
4953	return 0;
4954}
4955
4956static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4957				  int size)
4958{
4959	return sock_has_perm(sock->sk, SOCKET__WRITE);
4960}
4961
4962static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4963				  int size, int flags)
4964{
4965	return sock_has_perm(sock->sk, SOCKET__READ);
4966}
4967
4968static int selinux_socket_getsockname(struct socket *sock)
4969{
4970	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4971}
4972
4973static int selinux_socket_getpeername(struct socket *sock)
4974{
4975	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4976}
4977
4978static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4979{
4980	int err;
4981
4982	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4983	if (err)
4984		return err;
4985
4986	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4987}
4988
4989static int selinux_socket_getsockopt(struct socket *sock, int level,
4990				     int optname)
4991{
4992	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4993}
4994
4995static int selinux_socket_shutdown(struct socket *sock, int how)
4996{
4997	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4998}
4999
5000static int selinux_socket_unix_stream_connect(struct sock *sock,
5001					      struct sock *other,
5002					      struct sock *newsk)
5003{
5004	struct sk_security_struct *sksec_sock = sock->sk_security;
5005	struct sk_security_struct *sksec_other = other->sk_security;
5006	struct sk_security_struct *sksec_new = newsk->sk_security;
5007	struct common_audit_data ad;
5008	struct lsm_network_audit net;
5009	int err;
5010
5011	ad_net_init_from_sk(&ad, &net, other);
 
 
5012
5013	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
5014			   sksec_other->sclass,
5015			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5016	if (err)
5017		return err;
5018
5019	/* server child socket */
5020	sksec_new->peer_sid = sksec_sock->sid;
5021	err = security_sid_mls_copy(sksec_other->sid,
5022				    sksec_sock->sid, &sksec_new->sid);
5023	if (err)
5024		return err;
5025
5026	/* connecting socket */
5027	sksec_sock->peer_sid = sksec_new->sid;
5028
5029	return 0;
5030}
5031
5032static int selinux_socket_unix_may_send(struct socket *sock,
5033					struct socket *other)
5034{
5035	struct sk_security_struct *ssec = sock->sk->sk_security;
5036	struct sk_security_struct *osec = other->sk->sk_security;
5037	struct common_audit_data ad;
5038	struct lsm_network_audit net;
5039
5040	ad_net_init_from_sk(&ad, &net, other->sk);
 
 
5041
5042	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
5043			    &ad);
5044}
5045
5046static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5047				    char *addrp, u16 family, u32 peer_sid,
5048				    struct common_audit_data *ad)
5049{
5050	int err;
5051	u32 if_sid;
5052	u32 node_sid;
5053
5054	err = sel_netif_sid(ns, ifindex, &if_sid);
5055	if (err)
5056		return err;
5057	err = avc_has_perm(peer_sid, if_sid,
 
5058			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5059	if (err)
5060		return err;
5061
5062	err = sel_netnode_sid(addrp, family, &node_sid);
5063	if (err)
5064		return err;
5065	return avc_has_perm(peer_sid, node_sid,
 
5066			    SECCLASS_NODE, NODE__RECVFROM, ad);
5067}
5068
5069static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5070				       u16 family)
5071{
5072	int err = 0;
5073	struct sk_security_struct *sksec = sk->sk_security;
5074	u32 sk_sid = sksec->sid;
5075	struct common_audit_data ad;
5076	struct lsm_network_audit net;
5077	char *addrp;
5078
5079	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
 
 
 
5080	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5081	if (err)
5082		return err;
5083
5084	if (selinux_secmark_enabled()) {
5085		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
5086				   PACKET__RECV, &ad);
5087		if (err)
5088			return err;
5089	}
5090
5091	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5092	if (err)
5093		return err;
5094	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5095
5096	return err;
5097}
5098
5099static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5100{
5101	int err, peerlbl_active, secmark_active;
5102	struct sk_security_struct *sksec = sk->sk_security;
5103	u16 family = sk->sk_family;
5104	u32 sk_sid = sksec->sid;
5105	struct common_audit_data ad;
5106	struct lsm_network_audit net;
5107	char *addrp;
 
 
5108
5109	if (family != PF_INET && family != PF_INET6)
5110		return 0;
5111
5112	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5113	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5114		family = PF_INET;
5115
5116	/* If any sort of compatibility mode is enabled then handoff processing
5117	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5118	 * special handling.  We do this in an attempt to keep this function
5119	 * as fast and as clean as possible. */
5120	if (!selinux_policycap_netpeer())
5121		return selinux_sock_rcv_skb_compat(sk, skb, family);
5122
5123	secmark_active = selinux_secmark_enabled();
5124	peerlbl_active = selinux_peerlbl_enabled();
5125	if (!secmark_active && !peerlbl_active)
5126		return 0;
5127
5128	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
 
 
 
5129	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5130	if (err)
5131		return err;
5132
5133	if (peerlbl_active) {
5134		u32 peer_sid;
5135
5136		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5137		if (err)
5138			return err;
5139		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5140					       addrp, family, peer_sid, &ad);
5141		if (err) {
5142			selinux_netlbl_err(skb, family, err, 0);
5143			return err;
5144		}
5145		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
5146				   PEER__RECV, &ad);
5147		if (err) {
5148			selinux_netlbl_err(skb, family, err, 0);
5149			return err;
5150		}
5151	}
5152
5153	if (secmark_active) {
5154		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
5155				   PACKET__RECV, &ad);
5156		if (err)
5157			return err;
5158	}
5159
5160	return err;
5161}
5162
5163static int selinux_socket_getpeersec_stream(struct socket *sock,
5164					    sockptr_t optval, sockptr_t optlen,
5165					    unsigned int len)
5166{
5167	int err = 0;
5168	char *scontext = NULL;
5169	u32 scontext_len;
5170	struct sk_security_struct *sksec = sock->sk->sk_security;
5171	u32 peer_sid = SECSID_NULL;
5172
5173	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5174	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5175	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5176		peer_sid = sksec->peer_sid;
5177	if (peer_sid == SECSID_NULL)
5178		return -ENOPROTOOPT;
5179
5180	err = security_sid_to_context(peer_sid, &scontext,
5181				      &scontext_len);
5182	if (err)
5183		return err;
 
5184	if (scontext_len > len) {
5185		err = -ERANGE;
5186		goto out_len;
5187	}
5188
5189	if (copy_to_sockptr(optval, scontext, scontext_len))
5190		err = -EFAULT;
 
5191out_len:
5192	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5193		err = -EFAULT;
5194	kfree(scontext);
5195	return err;
5196}
5197
5198static int selinux_socket_getpeersec_dgram(struct socket *sock,
5199					   struct sk_buff *skb, u32 *secid)
5200{
5201	u32 peer_secid = SECSID_NULL;
5202	u16 family;
 
5203
5204	if (skb && skb->protocol == htons(ETH_P_IP))
5205		family = PF_INET;
5206	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5207		family = PF_INET6;
5208	else if (sock)
5209		family = sock->sk->sk_family;
5210	else {
5211		*secid = SECSID_NULL;
5212		return -EINVAL;
5213	}
5214
5215	if (sock && family == PF_UNIX) {
5216		struct inode_security_struct *isec;
5217		isec = inode_security_novalidate(SOCK_INODE(sock));
5218		peer_secid = isec->sid;
5219	} else if (skb)
5220		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5221
 
5222	*secid = peer_secid;
5223	if (peer_secid == SECSID_NULL)
5224		return -ENOPROTOOPT;
5225	return 0;
5226}
5227
5228static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5229{
5230	struct sk_security_struct *sksec;
5231
5232	sksec = kzalloc(sizeof(*sksec), priority);
5233	if (!sksec)
5234		return -ENOMEM;
5235
5236	sksec->peer_sid = SECINITSID_UNLABELED;
5237	sksec->sid = SECINITSID_UNLABELED;
5238	sksec->sclass = SECCLASS_SOCKET;
5239	selinux_netlbl_sk_security_reset(sksec);
5240	sk->sk_security = sksec;
5241
5242	return 0;
5243}
5244
5245static void selinux_sk_free_security(struct sock *sk)
5246{
5247	struct sk_security_struct *sksec = sk->sk_security;
5248
5249	sk->sk_security = NULL;
5250	selinux_netlbl_sk_security_free(sksec);
5251	kfree(sksec);
5252}
5253
5254static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5255{
5256	struct sk_security_struct *sksec = sk->sk_security;
5257	struct sk_security_struct *newsksec = newsk->sk_security;
5258
5259	newsksec->sid = sksec->sid;
5260	newsksec->peer_sid = sksec->peer_sid;
5261	newsksec->sclass = sksec->sclass;
5262
5263	selinux_netlbl_sk_security_reset(newsksec);
5264}
5265
5266static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5267{
5268	if (!sk)
5269		*secid = SECINITSID_ANY_SOCKET;
5270	else {
5271		const struct sk_security_struct *sksec = sk->sk_security;
5272
5273		*secid = sksec->sid;
5274	}
5275}
5276
5277static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5278{
5279	struct inode_security_struct *isec =
5280		inode_security_novalidate(SOCK_INODE(parent));
5281	struct sk_security_struct *sksec = sk->sk_security;
5282
5283	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5284	    sk->sk_family == PF_UNIX)
5285		isec->sid = sksec->sid;
5286	sksec->sclass = isec->sclass;
5287}
5288
5289/*
5290 * Determines peer_secid for the asoc and updates socket's peer label
5291 * if it's the first association on the socket.
5292 */
5293static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5294					  struct sk_buff *skb)
5295{
5296	struct sock *sk = asoc->base.sk;
5297	u16 family = sk->sk_family;
5298	struct sk_security_struct *sksec = sk->sk_security;
5299	struct common_audit_data ad;
5300	struct lsm_network_audit net;
5301	int err;
 
 
 
5302
5303	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5304	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5305		family = PF_INET;
5306
5307	if (selinux_peerlbl_enabled()) {
5308		asoc->peer_secid = SECSID_NULL;
5309
 
5310		/* This will return peer_sid = SECSID_NULL if there are
5311		 * no peer labels, see security_net_peersid_resolve().
5312		 */
5313		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
 
5314		if (err)
5315			return err;
5316
5317		if (asoc->peer_secid == SECSID_NULL)
5318			asoc->peer_secid = SECINITSID_UNLABELED;
5319	} else {
5320		asoc->peer_secid = SECINITSID_UNLABELED;
5321	}
5322
5323	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5324		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5325
5326		/* Here as first association on socket. As the peer SID
5327		 * was allowed by peer recv (and the netif/node checks),
5328		 * then it is approved by policy and used as the primary
5329		 * peer SID for getpeercon(3).
5330		 */
5331		sksec->peer_sid = asoc->peer_secid;
5332	} else if (sksec->peer_sid != asoc->peer_secid) {
5333		/* Other association peer SIDs are checked to enforce
5334		 * consistency among the peer SIDs.
5335		 */
5336		ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5337		err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5338				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5339				   &ad);
 
 
5340		if (err)
5341			return err;
5342	}
5343	return 0;
5344}
5345
5346/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5347 * happens on an incoming connect(2), sctp_connectx(3) or
5348 * sctp_sendmsg(3) (with no association already present).
5349 */
5350static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5351				      struct sk_buff *skb)
5352{
5353	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5354	u32 conn_sid;
5355	int err;
5356
5357	if (!selinux_policycap_extsockclass())
5358		return 0;
5359
5360	err = selinux_sctp_process_new_assoc(asoc, skb);
5361	if (err)
5362		return err;
5363
5364	/* Compute the MLS component for the connection and store
5365	 * the information in asoc. This will be used by SCTP TCP type
5366	 * sockets and peeled off connections as they cause a new
5367	 * socket to be generated. selinux_sctp_sk_clone() will then
5368	 * plug this into the new socket.
5369	 */
5370	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5371	if (err)
5372		return err;
5373
5374	asoc->secid = conn_sid;
 
5375
5376	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5377	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5378}
5379
5380/* Called when SCTP receives a COOKIE ACK chunk as the final
5381 * response to an association request (initited by us).
5382 */
5383static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5384					  struct sk_buff *skb)
5385{
5386	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5387
5388	if (!selinux_policycap_extsockclass())
5389		return 0;
5390
5391	/* Inherit secid from the parent socket - this will be picked up
5392	 * by selinux_sctp_sk_clone() if the association gets peeled off
5393	 * into a new socket.
5394	 */
5395	asoc->secid = sksec->sid;
5396
5397	return selinux_sctp_process_new_assoc(asoc, skb);
5398}
5399
5400/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5401 * based on their @optname.
5402 */
5403static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5404				     struct sockaddr *address,
5405				     int addrlen)
5406{
5407	int len, err = 0, walk_size = 0;
5408	void *addr_buf;
5409	struct sockaddr *addr;
5410	struct socket *sock;
5411
5412	if (!selinux_policycap_extsockclass())
5413		return 0;
5414
5415	/* Process one or more addresses that may be IPv4 or IPv6 */
5416	sock = sk->sk_socket;
5417	addr_buf = address;
5418
5419	while (walk_size < addrlen) {
5420		if (walk_size + sizeof(sa_family_t) > addrlen)
5421			return -EINVAL;
5422
5423		addr = addr_buf;
5424		switch (addr->sa_family) {
5425		case AF_UNSPEC:
5426		case AF_INET:
5427			len = sizeof(struct sockaddr_in);
5428			break;
5429		case AF_INET6:
5430			len = sizeof(struct sockaddr_in6);
5431			break;
5432		default:
5433			return -EINVAL;
5434		}
5435
5436		if (walk_size + len > addrlen)
5437			return -EINVAL;
5438
5439		err = -EINVAL;
5440		switch (optname) {
5441		/* Bind checks */
5442		case SCTP_PRIMARY_ADDR:
5443		case SCTP_SET_PEER_PRIMARY_ADDR:
5444		case SCTP_SOCKOPT_BINDX_ADD:
5445			err = selinux_socket_bind(sock, addr, len);
5446			break;
5447		/* Connect checks */
5448		case SCTP_SOCKOPT_CONNECTX:
5449		case SCTP_PARAM_SET_PRIMARY:
5450		case SCTP_PARAM_ADD_IP:
5451		case SCTP_SENDMSG_CONNECT:
5452			err = selinux_socket_connect_helper(sock, addr, len);
5453			if (err)
5454				return err;
5455
5456			/* As selinux_sctp_bind_connect() is called by the
5457			 * SCTP protocol layer, the socket is already locked,
5458			 * therefore selinux_netlbl_socket_connect_locked()
5459			 * is called here. The situations handled are:
5460			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5461			 * whenever a new IP address is added or when a new
5462			 * primary address is selected.
5463			 * Note that an SCTP connect(2) call happens before
5464			 * the SCTP protocol layer and is handled via
5465			 * selinux_socket_connect().
5466			 */
5467			err = selinux_netlbl_socket_connect_locked(sk, addr);
5468			break;
5469		}
5470
5471		if (err)
5472			return err;
5473
5474		addr_buf += len;
5475		walk_size += len;
5476	}
5477
5478	return 0;
5479}
5480
5481/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5482static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5483				  struct sock *newsk)
5484{
5485	struct sk_security_struct *sksec = sk->sk_security;
5486	struct sk_security_struct *newsksec = newsk->sk_security;
5487
5488	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5489	 * the non-sctp clone version.
5490	 */
5491	if (!selinux_policycap_extsockclass())
5492		return selinux_sk_clone_security(sk, newsk);
5493
5494	newsksec->sid = asoc->secid;
5495	newsksec->peer_sid = asoc->peer_secid;
5496	newsksec->sclass = sksec->sclass;
5497	selinux_netlbl_sctp_sk_clone(sk, newsk);
5498}
5499
5500static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5501{
5502	struct sk_security_struct *ssksec = ssk->sk_security;
5503	struct sk_security_struct *sksec = sk->sk_security;
5504
5505	ssksec->sclass = sksec->sclass;
5506	ssksec->sid = sksec->sid;
5507
5508	/* replace the existing subflow label deleting the existing one
5509	 * and re-recreating a new label using the updated context
5510	 */
5511	selinux_netlbl_sk_security_free(ssksec);
5512	return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5513}
5514
5515static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5516				     struct request_sock *req)
5517{
5518	struct sk_security_struct *sksec = sk->sk_security;
5519	int err;
5520	u16 family = req->rsk_ops->family;
5521	u32 connsid;
5522	u32 peersid;
5523
5524	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5525	if (err)
5526		return err;
5527	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5528	if (err)
5529		return err;
5530	req->secid = connsid;
5531	req->peer_secid = peersid;
5532
5533	return selinux_netlbl_inet_conn_request(req, family);
5534}
5535
5536static void selinux_inet_csk_clone(struct sock *newsk,
5537				   const struct request_sock *req)
5538{
5539	struct sk_security_struct *newsksec = newsk->sk_security;
5540
5541	newsksec->sid = req->secid;
5542	newsksec->peer_sid = req->peer_secid;
5543	/* NOTE: Ideally, we should also get the isec->sid for the
5544	   new socket in sync, but we don't have the isec available yet.
5545	   So we will wait until sock_graft to do it, by which
5546	   time it will have been created and available. */
5547
5548	/* We don't need to take any sort of lock here as we are the only
5549	 * thread with access to newsksec */
5550	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5551}
5552
5553static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5554{
5555	u16 family = sk->sk_family;
5556	struct sk_security_struct *sksec = sk->sk_security;
5557
5558	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5559	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5560		family = PF_INET;
5561
5562	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5563}
5564
5565static int selinux_secmark_relabel_packet(u32 sid)
5566{
5567	const struct task_security_struct *tsec;
5568	u32 tsid;
5569
5570	tsec = selinux_cred(current_cred());
5571	tsid = tsec->sid;
5572
5573	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
 
5574			    NULL);
5575}
5576
5577static void selinux_secmark_refcount_inc(void)
5578{
5579	atomic_inc(&selinux_secmark_refcount);
5580}
5581
5582static void selinux_secmark_refcount_dec(void)
5583{
5584	atomic_dec(&selinux_secmark_refcount);
5585}
5586
5587static void selinux_req_classify_flow(const struct request_sock *req,
5588				      struct flowi_common *flic)
5589{
5590	flic->flowic_secid = req->secid;
5591}
5592
5593static int selinux_tun_dev_alloc_security(void **security)
5594{
5595	struct tun_security_struct *tunsec;
5596
5597	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5598	if (!tunsec)
5599		return -ENOMEM;
5600	tunsec->sid = current_sid();
5601
5602	*security = tunsec;
5603	return 0;
5604}
5605
5606static void selinux_tun_dev_free_security(void *security)
5607{
5608	kfree(security);
5609}
5610
5611static int selinux_tun_dev_create(void)
5612{
5613	u32 sid = current_sid();
5614
5615	/* we aren't taking into account the "sockcreate" SID since the socket
5616	 * that is being created here is not a socket in the traditional sense,
5617	 * instead it is a private sock, accessible only to the kernel, and
5618	 * representing a wide range of network traffic spanning multiple
5619	 * connections unlike traditional sockets - check the TUN driver to
5620	 * get a better understanding of why this socket is special */
5621
5622	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
5623			    NULL);
5624}
5625
5626static int selinux_tun_dev_attach_queue(void *security)
5627{
5628	struct tun_security_struct *tunsec = security;
5629
5630	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
 
5631			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5632}
5633
5634static int selinux_tun_dev_attach(struct sock *sk, void *security)
5635{
5636	struct tun_security_struct *tunsec = security;
5637	struct sk_security_struct *sksec = sk->sk_security;
5638
5639	/* we don't currently perform any NetLabel based labeling here and it
5640	 * isn't clear that we would want to do so anyway; while we could apply
5641	 * labeling without the support of the TUN user the resulting labeled
5642	 * traffic from the other end of the connection would almost certainly
5643	 * cause confusion to the TUN user that had no idea network labeling
5644	 * protocols were being used */
5645
5646	sksec->sid = tunsec->sid;
5647	sksec->sclass = SECCLASS_TUN_SOCKET;
5648
5649	return 0;
5650}
5651
5652static int selinux_tun_dev_open(void *security)
5653{
5654	struct tun_security_struct *tunsec = security;
5655	u32 sid = current_sid();
5656	int err;
5657
5658	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
 
5659			   TUN_SOCKET__RELABELFROM, NULL);
5660	if (err)
5661		return err;
5662	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
5663			   TUN_SOCKET__RELABELTO, NULL);
5664	if (err)
5665		return err;
5666	tunsec->sid = sid;
5667
5668	return 0;
5669}
5670
5671#ifdef CONFIG_NETFILTER
5672
5673static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5674				       const struct nf_hook_state *state)
 
5675{
5676	int ifindex;
5677	u16 family;
5678	char *addrp;
5679	u32 peer_sid;
5680	struct common_audit_data ad;
5681	struct lsm_network_audit net;
5682	int secmark_active, peerlbl_active;
 
 
5683
5684	if (!selinux_policycap_netpeer())
5685		return NF_ACCEPT;
5686
5687	secmark_active = selinux_secmark_enabled();
 
5688	peerlbl_active = selinux_peerlbl_enabled();
5689	if (!secmark_active && !peerlbl_active)
5690		return NF_ACCEPT;
5691
5692	family = state->pf;
5693	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5694		return NF_DROP;
5695
5696	ifindex = state->in->ifindex;
5697	ad_net_init_from_iif(&ad, &net, ifindex, family);
 
 
5698	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5699		return NF_DROP;
5700
5701	if (peerlbl_active) {
5702		int err;
5703
5704		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5705					       addrp, family, peer_sid, &ad);
5706		if (err) {
5707			selinux_netlbl_err(skb, family, err, 1);
5708			return NF_DROP;
5709		}
5710	}
5711
5712	if (secmark_active)
5713		if (avc_has_perm(peer_sid, skb->secmark,
 
5714				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5715			return NF_DROP;
5716
5717	if (netlbl_enabled())
5718		/* we do this in the FORWARD path and not the POST_ROUTING
5719		 * path because we want to make sure we apply the necessary
5720		 * labeling before IPsec is applied so we can leverage AH
5721		 * protection */
5722		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5723			return NF_DROP;
5724
5725	return NF_ACCEPT;
5726}
5727
5728static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5729				      const struct nf_hook_state *state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5730{
5731	struct sock *sk;
5732	u32 sid;
5733
5734	if (!netlbl_enabled())
5735		return NF_ACCEPT;
5736
5737	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5738	 * because we want to make sure we apply the necessary labeling
5739	 * before IPsec is applied so we can leverage AH protection */
5740	sk = skb->sk;
5741	if (sk) {
5742		struct sk_security_struct *sksec;
5743
5744		if (sk_listener(sk))
5745			/* if the socket is the listening state then this
5746			 * packet is a SYN-ACK packet which means it needs to
5747			 * be labeled based on the connection/request_sock and
5748			 * not the parent socket.  unfortunately, we can't
5749			 * lookup the request_sock yet as it isn't queued on
5750			 * the parent socket until after the SYN-ACK is sent.
5751			 * the "solution" is to simply pass the packet as-is
5752			 * as any IP option based labeling should be copied
5753			 * from the initial connection request (in the IP
5754			 * layer).  it is far from ideal, but until we get a
5755			 * security label in the packet itself this is the
5756			 * best we can do. */
5757			return NF_ACCEPT;
5758
5759		/* standard practice, label using the parent socket */
5760		sksec = sk->sk_security;
5761		sid = sksec->sid;
5762	} else
5763		sid = SECINITSID_KERNEL;
5764	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5765		return NF_DROP;
5766
5767	return NF_ACCEPT;
5768}
5769
 
 
 
 
 
 
5770
5771static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
 
 
5772					const struct nf_hook_state *state)
5773{
5774	struct sock *sk;
 
 
 
 
 
 
 
 
5775	struct sk_security_struct *sksec;
5776	struct common_audit_data ad;
5777	struct lsm_network_audit net;
5778	u8 proto = 0;
 
5779
5780	sk = skb_to_full_sk(skb);
5781	if (sk == NULL)
5782		return NF_ACCEPT;
5783	sksec = sk->sk_security;
5784
5785	ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5786	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
 
 
 
5787		return NF_DROP;
5788
5789	if (selinux_secmark_enabled())
5790		if (avc_has_perm(sksec->sid, skb->secmark,
 
5791				 SECCLASS_PACKET, PACKET__SEND, &ad))
5792			return NF_DROP_ERR(-ECONNREFUSED);
5793
5794	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5795		return NF_DROP_ERR(-ECONNREFUSED);
5796
5797	return NF_ACCEPT;
5798}
5799
5800static unsigned int selinux_ip_postroute(void *priv,
5801					 struct sk_buff *skb,
5802					 const struct nf_hook_state *state)
5803{
5804	u16 family;
5805	u32 secmark_perm;
5806	u32 peer_sid;
5807	int ifindex;
5808	struct sock *sk;
5809	struct common_audit_data ad;
5810	struct lsm_network_audit net;
5811	char *addrp;
5812	int secmark_active, peerlbl_active;
 
5813
5814	/* If any sort of compatibility mode is enabled then handoff processing
5815	 * to the selinux_ip_postroute_compat() function to deal with the
5816	 * special handling.  We do this in an attempt to keep this function
5817	 * as fast and as clean as possible. */
5818	if (!selinux_policycap_netpeer())
5819		return selinux_ip_postroute_compat(skb, state);
5820
5821	secmark_active = selinux_secmark_enabled();
5822	peerlbl_active = selinux_peerlbl_enabled();
5823	if (!secmark_active && !peerlbl_active)
5824		return NF_ACCEPT;
5825
5826	sk = skb_to_full_sk(skb);
5827
5828#ifdef CONFIG_XFRM
5829	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5830	 * packet transformation so allow the packet to pass without any checks
5831	 * since we'll have another chance to perform access control checks
5832	 * when the packet is on it's final way out.
5833	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5834	 *       is NULL, in this case go ahead and apply access control.
5835	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5836	 *       TCP listening state we cannot wait until the XFRM processing
5837	 *       is done as we will miss out on the SA label if we do;
5838	 *       unfortunately, this means more work, but it is only once per
5839	 *       connection. */
5840	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5841	    !(sk && sk_listener(sk)))
5842		return NF_ACCEPT;
5843#endif
5844
5845	family = state->pf;
5846	if (sk == NULL) {
5847		/* Without an associated socket the packet is either coming
5848		 * from the kernel or it is being forwarded; check the packet
5849		 * to determine which and if the packet is being forwarded
5850		 * query the packet directly to determine the security label. */
5851		if (skb->skb_iif) {
5852			secmark_perm = PACKET__FORWARD_OUT;
5853			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5854				return NF_DROP;
5855		} else {
5856			secmark_perm = PACKET__SEND;
5857			peer_sid = SECINITSID_KERNEL;
5858		}
5859	} else if (sk_listener(sk)) {
5860		/* Locally generated packet but the associated socket is in the
5861		 * listening state which means this is a SYN-ACK packet.  In
5862		 * this particular case the correct security label is assigned
5863		 * to the connection/request_sock but unfortunately we can't
5864		 * query the request_sock as it isn't queued on the parent
5865		 * socket until after the SYN-ACK packet is sent; the only
5866		 * viable choice is to regenerate the label like we do in
5867		 * selinux_inet_conn_request().  See also selinux_ip_output()
5868		 * for similar problems. */
5869		u32 skb_sid;
5870		struct sk_security_struct *sksec;
5871
5872		sksec = sk->sk_security;
5873		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5874			return NF_DROP;
5875		/* At this point, if the returned skb peerlbl is SECSID_NULL
5876		 * and the packet has been through at least one XFRM
5877		 * transformation then we must be dealing with the "final"
5878		 * form of labeled IPsec packet; since we've already applied
5879		 * all of our access controls on this packet we can safely
5880		 * pass the packet. */
5881		if (skb_sid == SECSID_NULL) {
5882			switch (family) {
5883			case PF_INET:
5884				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5885					return NF_ACCEPT;
5886				break;
5887			case PF_INET6:
5888				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5889					return NF_ACCEPT;
5890				break;
5891			default:
5892				return NF_DROP_ERR(-ECONNREFUSED);
5893			}
5894		}
5895		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5896			return NF_DROP;
5897		secmark_perm = PACKET__SEND;
5898	} else {
5899		/* Locally generated packet, fetch the security label from the
5900		 * associated socket. */
5901		struct sk_security_struct *sksec = sk->sk_security;
5902		peer_sid = sksec->sid;
5903		secmark_perm = PACKET__SEND;
5904	}
5905
5906	ifindex = state->out->ifindex;
5907	ad_net_init_from_iif(&ad, &net, ifindex, family);
 
 
5908	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5909		return NF_DROP;
5910
5911	if (secmark_active)
5912		if (avc_has_perm(peer_sid, skb->secmark,
 
5913				 SECCLASS_PACKET, secmark_perm, &ad))
5914			return NF_DROP_ERR(-ECONNREFUSED);
5915
5916	if (peerlbl_active) {
5917		u32 if_sid;
5918		u32 node_sid;
5919
5920		if (sel_netif_sid(state->net, ifindex, &if_sid))
5921			return NF_DROP;
5922		if (avc_has_perm(peer_sid, if_sid,
 
5923				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5924			return NF_DROP_ERR(-ECONNREFUSED);
5925
5926		if (sel_netnode_sid(addrp, family, &node_sid))
5927			return NF_DROP;
5928		if (avc_has_perm(peer_sid, node_sid,
 
5929				 SECCLASS_NODE, NODE__SENDTO, &ad))
5930			return NF_DROP_ERR(-ECONNREFUSED);
5931	}
5932
5933	return NF_ACCEPT;
5934}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5935#endif	/* CONFIG_NETFILTER */
5936
5937static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5938{
5939	int rc = 0;
5940	unsigned int msg_len;
5941	unsigned int data_len = skb->len;
5942	unsigned char *data = skb->data;
5943	struct nlmsghdr *nlh;
5944	struct sk_security_struct *sksec = sk->sk_security;
5945	u16 sclass = sksec->sclass;
5946	u32 perm;
5947
5948	while (data_len >= nlmsg_total_size(0)) {
5949		nlh = (struct nlmsghdr *)data;
5950
5951		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5952		 *       users which means we can't reject skb's with bogus
5953		 *       length fields; our solution is to follow what
5954		 *       netlink_rcv_skb() does and simply skip processing at
5955		 *       messages with length fields that are clearly junk
5956		 */
5957		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5958			return 0;
5959
5960		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5961		if (rc == 0) {
5962			rc = sock_has_perm(sk, perm);
5963			if (rc)
5964				return rc;
5965		} else if (rc == -EINVAL) {
5966			/* -EINVAL is a missing msg/perm mapping */
5967			pr_warn_ratelimited("SELinux: unrecognized netlink"
5968				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5969				" pid=%d comm=%s\n",
5970				sk->sk_protocol, nlh->nlmsg_type,
5971				secclass_map[sclass - 1].name,
5972				task_pid_nr(current), current->comm);
5973			if (enforcing_enabled() &&
5974			    !security_get_allow_unknown())
5975				return rc;
5976			rc = 0;
5977		} else if (rc == -ENOENT) {
5978			/* -ENOENT is a missing socket/class mapping, ignore */
5979			rc = 0;
5980		} else {
5981			return rc;
5982		}
5983
5984		/* move to the next message after applying netlink padding */
5985		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5986		if (msg_len >= data_len)
5987			return 0;
5988		data_len -= msg_len;
5989		data += msg_len;
5990	}
5991
5992	return rc;
5993}
5994
5995static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5996{
5997	isec->sclass = sclass;
5998	isec->sid = current_sid();
5999}
6000
6001static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6002			u32 perms)
6003{
6004	struct ipc_security_struct *isec;
6005	struct common_audit_data ad;
6006	u32 sid = current_sid();
6007
6008	isec = selinux_ipc(ipc_perms);
6009
6010	ad.type = LSM_AUDIT_DATA_IPC;
6011	ad.u.ipc_id = ipc_perms->key;
6012
6013	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
6014}
6015
6016static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6017{
6018	struct msg_security_struct *msec;
6019
6020	msec = selinux_msg_msg(msg);
6021	msec->sid = SECINITSID_UNLABELED;
6022
6023	return 0;
6024}
6025
6026/* message queue security operations */
6027static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6028{
6029	struct ipc_security_struct *isec;
6030	struct common_audit_data ad;
6031	u32 sid = current_sid();
 
6032
6033	isec = selinux_ipc(msq);
6034	ipc_init_security(isec, SECCLASS_MSGQ);
6035
6036	ad.type = LSM_AUDIT_DATA_IPC;
6037	ad.u.ipc_id = msq->key;
6038
6039	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6040			    MSGQ__CREATE, &ad);
 
 
6041}
6042
6043static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6044{
6045	struct ipc_security_struct *isec;
6046	struct common_audit_data ad;
6047	u32 sid = current_sid();
6048
6049	isec = selinux_ipc(msq);
6050
6051	ad.type = LSM_AUDIT_DATA_IPC;
6052	ad.u.ipc_id = msq->key;
6053
6054	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
6055			    MSGQ__ASSOCIATE, &ad);
6056}
6057
6058static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6059{
6060	u32 perms;
 
6061
6062	switch (cmd) {
6063	case IPC_INFO:
6064	case MSG_INFO:
6065		/* No specific object, just general system-wide information. */
6066		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
6067				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6068	case IPC_STAT:
6069	case MSG_STAT:
6070	case MSG_STAT_ANY:
6071		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6072		break;
6073	case IPC_SET:
6074		perms = MSGQ__SETATTR;
6075		break;
6076	case IPC_RMID:
6077		perms = MSGQ__DESTROY;
6078		break;
6079	default:
6080		return 0;
6081	}
6082
6083	return ipc_has_perm(msq, perms);
 
6084}
6085
6086static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6087{
6088	struct ipc_security_struct *isec;
6089	struct msg_security_struct *msec;
6090	struct common_audit_data ad;
6091	u32 sid = current_sid();
6092	int rc;
6093
6094	isec = selinux_ipc(msq);
6095	msec = selinux_msg_msg(msg);
6096
6097	/*
6098	 * First time through, need to assign label to the message
6099	 */
6100	if (msec->sid == SECINITSID_UNLABELED) {
6101		/*
6102		 * Compute new sid based on current process and
6103		 * message queue this message will be stored in
6104		 */
6105		rc = security_transition_sid(sid, isec->sid,
6106					     SECCLASS_MSG, NULL, &msec->sid);
6107		if (rc)
6108			return rc;
6109	}
6110
6111	ad.type = LSM_AUDIT_DATA_IPC;
6112	ad.u.ipc_id = msq->key;
6113
6114	/* Can this process write to the queue? */
6115	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
6116			  MSGQ__WRITE, &ad);
6117	if (!rc)
6118		/* Can this process send the message */
6119		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
6120				  MSG__SEND, &ad);
6121	if (!rc)
6122		/* Can the message be put in the queue? */
6123		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
6124				  MSGQ__ENQUEUE, &ad);
6125
6126	return rc;
6127}
6128
6129static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6130				    struct task_struct *target,
6131				    long type, int mode)
6132{
6133	struct ipc_security_struct *isec;
6134	struct msg_security_struct *msec;
6135	struct common_audit_data ad;
6136	u32 sid = task_sid_obj(target);
6137	int rc;
6138
6139	isec = selinux_ipc(msq);
6140	msec = selinux_msg_msg(msg);
6141
6142	ad.type = LSM_AUDIT_DATA_IPC;
6143	ad.u.ipc_id = msq->key;
6144
6145	rc = avc_has_perm(sid, isec->sid,
 
6146			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6147	if (!rc)
6148		rc = avc_has_perm(sid, msec->sid,
 
6149				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6150	return rc;
6151}
6152
6153/* Shared Memory security operations */
6154static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6155{
6156	struct ipc_security_struct *isec;
6157	struct common_audit_data ad;
6158	u32 sid = current_sid();
 
6159
6160	isec = selinux_ipc(shp);
6161	ipc_init_security(isec, SECCLASS_SHM);
6162
6163	ad.type = LSM_AUDIT_DATA_IPC;
6164	ad.u.ipc_id = shp->key;
6165
6166	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6167			    SHM__CREATE, &ad);
 
 
6168}
6169
6170static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6171{
6172	struct ipc_security_struct *isec;
6173	struct common_audit_data ad;
6174	u32 sid = current_sid();
6175
6176	isec = selinux_ipc(shp);
6177
6178	ad.type = LSM_AUDIT_DATA_IPC;
6179	ad.u.ipc_id = shp->key;
6180
6181	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
6182			    SHM__ASSOCIATE, &ad);
6183}
6184
6185/* Note, at this point, shp is locked down */
6186static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6187{
6188	u32 perms;
 
6189
6190	switch (cmd) {
6191	case IPC_INFO:
6192	case SHM_INFO:
6193		/* No specific object, just general system-wide information. */
6194		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
6195				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6196	case IPC_STAT:
6197	case SHM_STAT:
6198	case SHM_STAT_ANY:
6199		perms = SHM__GETATTR | SHM__ASSOCIATE;
6200		break;
6201	case IPC_SET:
6202		perms = SHM__SETATTR;
6203		break;
6204	case SHM_LOCK:
6205	case SHM_UNLOCK:
6206		perms = SHM__LOCK;
6207		break;
6208	case IPC_RMID:
6209		perms = SHM__DESTROY;
6210		break;
6211	default:
6212		return 0;
6213	}
6214
6215	return ipc_has_perm(shp, perms);
 
6216}
6217
6218static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6219			     char __user *shmaddr, int shmflg)
6220{
6221	u32 perms;
6222
6223	if (shmflg & SHM_RDONLY)
6224		perms = SHM__READ;
6225	else
6226		perms = SHM__READ | SHM__WRITE;
6227
6228	return ipc_has_perm(shp, perms);
6229}
6230
6231/* Semaphore security operations */
6232static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6233{
6234	struct ipc_security_struct *isec;
6235	struct common_audit_data ad;
6236	u32 sid = current_sid();
 
6237
6238	isec = selinux_ipc(sma);
6239	ipc_init_security(isec, SECCLASS_SEM);
6240
6241	ad.type = LSM_AUDIT_DATA_IPC;
6242	ad.u.ipc_id = sma->key;
6243
6244	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6245			    SEM__CREATE, &ad);
 
 
6246}
6247
6248static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6249{
6250	struct ipc_security_struct *isec;
6251	struct common_audit_data ad;
6252	u32 sid = current_sid();
6253
6254	isec = selinux_ipc(sma);
6255
6256	ad.type = LSM_AUDIT_DATA_IPC;
6257	ad.u.ipc_id = sma->key;
6258
6259	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
6260			    SEM__ASSOCIATE, &ad);
6261}
6262
6263/* Note, at this point, sma is locked down */
6264static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6265{
6266	int err;
6267	u32 perms;
6268
6269	switch (cmd) {
6270	case IPC_INFO:
6271	case SEM_INFO:
6272		/* No specific object, just general system-wide information. */
6273		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
6274				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6275	case GETPID:
6276	case GETNCNT:
6277	case GETZCNT:
6278		perms = SEM__GETATTR;
6279		break;
6280	case GETVAL:
6281	case GETALL:
6282		perms = SEM__READ;
6283		break;
6284	case SETVAL:
6285	case SETALL:
6286		perms = SEM__WRITE;
6287		break;
6288	case IPC_RMID:
6289		perms = SEM__DESTROY;
6290		break;
6291	case IPC_SET:
6292		perms = SEM__SETATTR;
6293		break;
6294	case IPC_STAT:
6295	case SEM_STAT:
6296	case SEM_STAT_ANY:
6297		perms = SEM__GETATTR | SEM__ASSOCIATE;
6298		break;
6299	default:
6300		return 0;
6301	}
6302
6303	err = ipc_has_perm(sma, perms);
6304	return err;
6305}
6306
6307static int selinux_sem_semop(struct kern_ipc_perm *sma,
6308			     struct sembuf *sops, unsigned nsops, int alter)
6309{
6310	u32 perms;
6311
6312	if (alter)
6313		perms = SEM__READ | SEM__WRITE;
6314	else
6315		perms = SEM__READ;
6316
6317	return ipc_has_perm(sma, perms);
6318}
6319
6320static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6321{
6322	u32 av = 0;
6323
6324	av = 0;
6325	if (flag & S_IRUGO)
6326		av |= IPC__UNIX_READ;
6327	if (flag & S_IWUGO)
6328		av |= IPC__UNIX_WRITE;
6329
6330	if (av == 0)
6331		return 0;
6332
6333	return ipc_has_perm(ipcp, av);
6334}
6335
6336static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6337{
6338	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6339	*secid = isec->sid;
6340}
6341
6342static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6343{
6344	if (inode)
6345		inode_doinit_with_dentry(inode, dentry);
6346}
6347
6348static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6349			       char **value)
6350{
6351	const struct task_security_struct *__tsec;
6352	u32 sid;
6353	int error;
6354	unsigned len;
6355
6356	rcu_read_lock();
6357	__tsec = selinux_cred(__task_cred(p));
6358
6359	if (current != p) {
6360		error = avc_has_perm(current_sid(), __tsec->sid,
 
6361				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6362		if (error)
6363			goto bad;
6364	}
6365
6366	switch (attr) {
6367	case LSM_ATTR_CURRENT:
6368		sid = __tsec->sid;
6369		break;
6370	case LSM_ATTR_PREV:
6371		sid = __tsec->osid;
6372		break;
6373	case LSM_ATTR_EXEC:
6374		sid = __tsec->exec_sid;
6375		break;
6376	case LSM_ATTR_FSCREATE:
6377		sid = __tsec->create_sid;
6378		break;
6379	case LSM_ATTR_KEYCREATE:
6380		sid = __tsec->keycreate_sid;
6381		break;
6382	case LSM_ATTR_SOCKCREATE:
6383		sid = __tsec->sockcreate_sid;
6384		break;
6385	default:
6386		error = -EOPNOTSUPP;
6387		goto bad;
6388	}
6389	rcu_read_unlock();
6390
6391	if (!sid)
6392		return 0;
6393
6394	error = security_sid_to_context(sid, value, &len);
6395	if (error)
6396		return error;
6397	return len;
6398
6399bad:
6400	rcu_read_unlock();
6401	return error;
6402}
6403
6404static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6405{
6406	struct task_security_struct *tsec;
6407	struct cred *new;
6408	u32 mysid = current_sid(), sid = 0, ptsid;
6409	int error;
6410	char *str = value;
6411
6412	/*
6413	 * Basic control over ability to set these attributes at all.
6414	 */
6415	switch (attr) {
6416	case LSM_ATTR_EXEC:
6417		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6418				     PROCESS__SETEXEC, NULL);
6419		break;
6420	case LSM_ATTR_FSCREATE:
6421		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6422				     PROCESS__SETFSCREATE, NULL);
6423		break;
6424	case LSM_ATTR_KEYCREATE:
6425		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6426				     PROCESS__SETKEYCREATE, NULL);
6427		break;
6428	case LSM_ATTR_SOCKCREATE:
6429		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6430				     PROCESS__SETSOCKCREATE, NULL);
6431		break;
6432	case LSM_ATTR_CURRENT:
6433		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6434				     PROCESS__SETCURRENT, NULL);
6435		break;
6436	default:
6437		error = -EOPNOTSUPP;
6438		break;
6439	}
6440	if (error)
6441		return error;
6442
6443	/* Obtain a SID for the context, if one was specified. */
6444	if (size && str[0] && str[0] != '\n') {
6445		if (str[size-1] == '\n') {
6446			str[size-1] = 0;
6447			size--;
6448		}
6449		error = security_context_to_sid(value, size,
6450						&sid, GFP_KERNEL);
6451		if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6452			if (!has_cap_mac_admin(true)) {
6453				struct audit_buffer *ab;
6454				size_t audit_size;
6455
6456				/* We strip a nul only if it is at the end,
6457				 * otherwise the context contains a nul and
6458				 * we should audit that */
6459				if (str[size - 1] == '\0')
6460					audit_size = size - 1;
6461				else
6462					audit_size = size;
6463				ab = audit_log_start(audit_context(),
6464						     GFP_ATOMIC,
6465						     AUDIT_SELINUX_ERR);
6466				if (!ab)
6467					return error;
6468				audit_log_format(ab, "op=fscreate invalid_context=");
6469				audit_log_n_untrustedstring(ab, value,
6470							    audit_size);
6471				audit_log_end(ab);
6472
6473				return error;
6474			}
6475			error = security_context_to_sid_force(value, size,
6476							&sid);
 
6477		}
6478		if (error)
6479			return error;
6480	}
6481
6482	new = prepare_creds();
6483	if (!new)
6484		return -ENOMEM;
6485
6486	/* Permission checking based on the specified context is
6487	   performed during the actual operation (execve,
6488	   open/mkdir/...), when we know the full context of the
6489	   operation.  See selinux_bprm_creds_for_exec for the execve
6490	   checks and may_create for the file creation checks. The
6491	   operation will then fail if the context is not permitted. */
6492	tsec = selinux_cred(new);
6493	if (attr == LSM_ATTR_EXEC) {
6494		tsec->exec_sid = sid;
6495	} else if (attr == LSM_ATTR_FSCREATE) {
6496		tsec->create_sid = sid;
6497	} else if (attr == LSM_ATTR_KEYCREATE) {
6498		if (sid) {
6499			error = avc_has_perm(mysid, sid,
6500					     SECCLASS_KEY, KEY__CREATE, NULL);
6501			if (error)
6502				goto abort_change;
6503		}
6504		tsec->keycreate_sid = sid;
6505	} else if (attr == LSM_ATTR_SOCKCREATE) {
6506		tsec->sockcreate_sid = sid;
6507	} else if (attr == LSM_ATTR_CURRENT) {
6508		error = -EINVAL;
6509		if (sid == 0)
6510			goto abort_change;
6511
 
 
6512		if (!current_is_single_threaded()) {
6513			error = security_bounded_transition(tsec->sid, sid);
 
6514			if (error)
6515				goto abort_change;
6516		}
6517
6518		/* Check permissions for the transition. */
6519		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
6520				     PROCESS__DYNTRANSITION, NULL);
6521		if (error)
6522			goto abort_change;
6523
6524		/* Check for ptracing, and update the task SID if ok.
6525		   Otherwise, leave SID unchanged and fail. */
6526		ptsid = ptrace_parent_sid();
6527		if (ptsid != 0) {
6528			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
 
6529					     PROCESS__PTRACE, NULL);
6530			if (error)
6531				goto abort_change;
6532		}
6533
6534		tsec->sid = sid;
6535	} else {
6536		error = -EINVAL;
6537		goto abort_change;
6538	}
6539
6540	commit_creds(new);
6541	return size;
6542
6543abort_change:
6544	abort_creds(new);
6545	return error;
6546}
6547
6548/**
6549 * selinux_getselfattr - Get SELinux current task attributes
6550 * @attr: the requested attribute
6551 * @ctx: buffer to receive the result
6552 * @size: buffer size (input), buffer size used (output)
6553 * @flags: unused
6554 *
6555 * Fill the passed user space @ctx with the details of the requested
6556 * attribute.
6557 *
6558 * Returns the number of attributes on success, an error code otherwise.
6559 * There will only ever be one attribute.
6560 */
6561static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6562			       u32 *size, u32 flags)
6563{
6564	int rc;
6565	char *val = NULL;
6566	int val_len;
6567
6568	val_len = selinux_lsm_getattr(attr, current, &val);
6569	if (val_len < 0)
6570		return val_len;
6571	rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6572	kfree(val);
6573	return (!rc ? 1 : rc);
6574}
6575
6576static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6577			       u32 size, u32 flags)
6578{
6579	int rc;
6580
6581	rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6582	if (rc > 0)
6583		return 0;
6584	return rc;
6585}
6586
6587static int selinux_getprocattr(struct task_struct *p,
6588			       const char *name, char **value)
6589{
6590	unsigned int attr = lsm_name_to_attr(name);
6591	int rc;
6592
6593	if (attr) {
6594		rc = selinux_lsm_getattr(attr, p, value);
6595		if (rc != -EOPNOTSUPP)
6596			return rc;
6597	}
6598
6599	return -EINVAL;
6600}
6601
6602static int selinux_setprocattr(const char *name, void *value, size_t size)
6603{
6604	int attr = lsm_name_to_attr(name);
6605
6606	if (attr)
6607		return selinux_lsm_setattr(attr, value, size);
6608	return -EINVAL;
6609}
6610
6611static int selinux_ismaclabel(const char *name)
6612{
6613	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6614}
6615
6616static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6617{
6618	return security_sid_to_context(secid,
6619				       secdata, seclen);
6620}
6621
6622static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6623{
6624	return security_context_to_sid(secdata, seclen,
6625				       secid, GFP_KERNEL);
6626}
6627
6628static void selinux_release_secctx(char *secdata, u32 seclen)
6629{
6630	kfree(secdata);
6631}
6632
6633static void selinux_inode_invalidate_secctx(struct inode *inode)
6634{
6635	struct inode_security_struct *isec = selinux_inode(inode);
6636
6637	spin_lock(&isec->lock);
6638	isec->initialized = LABEL_INVALID;
6639	spin_unlock(&isec->lock);
6640}
6641
6642/*
6643 *	called with inode->i_mutex locked
6644 */
6645static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6646{
6647	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6648					   ctx, ctxlen, 0);
6649	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6650	return rc == -EOPNOTSUPP ? 0 : rc;
6651}
6652
6653/*
6654 *	called with inode->i_mutex locked
6655 */
6656static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6657{
6658	return __vfs_setxattr_noperm(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6659				     ctx, ctxlen, 0);
6660}
6661
6662static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6663{
6664	int len = 0;
6665	len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6666					XATTR_SELINUX_SUFFIX, ctx, true);
6667	if (len < 0)
6668		return len;
6669	*ctxlen = len;
6670	return 0;
6671}
6672#ifdef CONFIG_KEYS
6673
6674static int selinux_key_alloc(struct key *k, const struct cred *cred,
6675			     unsigned long flags)
6676{
6677	const struct task_security_struct *tsec;
6678	struct key_security_struct *ksec;
6679
6680	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6681	if (!ksec)
6682		return -ENOMEM;
6683
6684	tsec = selinux_cred(cred);
6685	if (tsec->keycreate_sid)
6686		ksec->sid = tsec->keycreate_sid;
6687	else
6688		ksec->sid = tsec->sid;
6689
6690	k->security = ksec;
6691	return 0;
6692}
6693
6694static void selinux_key_free(struct key *k)
6695{
6696	struct key_security_struct *ksec = k->security;
6697
6698	k->security = NULL;
6699	kfree(ksec);
6700}
6701
6702static int selinux_key_permission(key_ref_t key_ref,
6703				  const struct cred *cred,
6704				  enum key_need_perm need_perm)
6705{
6706	struct key *key;
6707	struct key_security_struct *ksec;
6708	u32 perm, sid;
6709
6710	switch (need_perm) {
6711	case KEY_NEED_VIEW:
6712		perm = KEY__VIEW;
6713		break;
6714	case KEY_NEED_READ:
6715		perm = KEY__READ;
6716		break;
6717	case KEY_NEED_WRITE:
6718		perm = KEY__WRITE;
6719		break;
6720	case KEY_NEED_SEARCH:
6721		perm = KEY__SEARCH;
6722		break;
6723	case KEY_NEED_LINK:
6724		perm = KEY__LINK;
6725		break;
6726	case KEY_NEED_SETATTR:
6727		perm = KEY__SETATTR;
6728		break;
6729	case KEY_NEED_UNLINK:
6730	case KEY_SYSADMIN_OVERRIDE:
6731	case KEY_AUTHTOKEN_OVERRIDE:
6732	case KEY_DEFER_PERM_CHECK:
6733		return 0;
6734	default:
6735		WARN_ON(1);
6736		return -EPERM;
6737
6738	}
6739
6740	sid = cred_sid(cred);
6741	key = key_ref_to_ptr(key_ref);
6742	ksec = key->security;
6743
6744	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
6745}
6746
6747static int selinux_key_getsecurity(struct key *key, char **_buffer)
6748{
6749	struct key_security_struct *ksec = key->security;
6750	char *context = NULL;
6751	unsigned len;
6752	int rc;
6753
6754	rc = security_sid_to_context(ksec->sid,
6755				     &context, &len);
6756	if (!rc)
6757		rc = len;
6758	*_buffer = context;
6759	return rc;
6760}
6761
6762#ifdef CONFIG_KEY_NOTIFICATIONS
6763static int selinux_watch_key(struct key *key)
6764{
6765	struct key_security_struct *ksec = key->security;
6766	u32 sid = current_sid();
6767
6768	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
 
6769}
6770#endif
6771#endif
6772
6773#ifdef CONFIG_SECURITY_INFINIBAND
6774static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6775{
6776	struct common_audit_data ad;
6777	int err;
6778	u32 sid = 0;
6779	struct ib_security_struct *sec = ib_sec;
6780	struct lsm_ibpkey_audit ibpkey;
6781
6782	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6783	if (err)
6784		return err;
6785
6786	ad.type = LSM_AUDIT_DATA_IBPKEY;
6787	ibpkey.subnet_prefix = subnet_prefix;
6788	ibpkey.pkey = pkey_val;
6789	ad.u.ibpkey = &ibpkey;
6790	return avc_has_perm(sec->sid, sid,
 
6791			    SECCLASS_INFINIBAND_PKEY,
6792			    INFINIBAND_PKEY__ACCESS, &ad);
6793}
6794
6795static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6796					    u8 port_num)
6797{
6798	struct common_audit_data ad;
6799	int err;
6800	u32 sid = 0;
6801	struct ib_security_struct *sec = ib_sec;
6802	struct lsm_ibendport_audit ibendport;
6803
6804	err = security_ib_endport_sid(dev_name, port_num,
6805				      &sid);
6806
6807	if (err)
6808		return err;
6809
6810	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6811	ibendport.dev_name = dev_name;
6812	ibendport.port = port_num;
6813	ad.u.ibendport = &ibendport;
6814	return avc_has_perm(sec->sid, sid,
 
6815			    SECCLASS_INFINIBAND_ENDPORT,
6816			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6817}
6818
6819static int selinux_ib_alloc_security(void **ib_sec)
6820{
6821	struct ib_security_struct *sec;
6822
6823	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6824	if (!sec)
6825		return -ENOMEM;
6826	sec->sid = current_sid();
6827
6828	*ib_sec = sec;
6829	return 0;
6830}
6831
6832static void selinux_ib_free_security(void *ib_sec)
6833{
6834	kfree(ib_sec);
6835}
6836#endif
6837
6838#ifdef CONFIG_BPF_SYSCALL
6839static int selinux_bpf(int cmd, union bpf_attr *attr,
6840				     unsigned int size)
6841{
6842	u32 sid = current_sid();
6843	int ret;
6844
6845	switch (cmd) {
6846	case BPF_MAP_CREATE:
6847		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
 
6848				   NULL);
6849		break;
6850	case BPF_PROG_LOAD:
6851		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
 
6852				   NULL);
6853		break;
6854	default:
6855		ret = 0;
6856		break;
6857	}
6858
6859	return ret;
6860}
6861
6862static u32 bpf_map_fmode_to_av(fmode_t fmode)
6863{
6864	u32 av = 0;
6865
6866	if (fmode & FMODE_READ)
6867		av |= BPF__MAP_READ;
6868	if (fmode & FMODE_WRITE)
6869		av |= BPF__MAP_WRITE;
6870	return av;
6871}
6872
6873/* This function will check the file pass through unix socket or binder to see
6874 * if it is a bpf related object. And apply corresponding checks on the bpf
6875 * object based on the type. The bpf maps and programs, not like other files and
6876 * socket, are using a shared anonymous inode inside the kernel as their inode.
6877 * So checking that inode cannot identify if the process have privilege to
6878 * access the bpf object and that's why we have to add this additional check in
6879 * selinux_file_receive and selinux_binder_transfer_files.
6880 */
6881static int bpf_fd_pass(const struct file *file, u32 sid)
6882{
6883	struct bpf_security_struct *bpfsec;
6884	struct bpf_prog *prog;
6885	struct bpf_map *map;
6886	int ret;
6887
6888	if (file->f_op == &bpf_map_fops) {
6889		map = file->private_data;
6890		bpfsec = map->security;
6891		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
 
6892				   bpf_map_fmode_to_av(file->f_mode), NULL);
6893		if (ret)
6894			return ret;
6895	} else if (file->f_op == &bpf_prog_fops) {
6896		prog = file->private_data;
6897		bpfsec = prog->aux->security;
6898		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
 
6899				   BPF__PROG_RUN, NULL);
6900		if (ret)
6901			return ret;
6902	}
6903	return 0;
6904}
6905
6906static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6907{
6908	u32 sid = current_sid();
6909	struct bpf_security_struct *bpfsec;
6910
6911	bpfsec = map->security;
6912	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
 
6913			    bpf_map_fmode_to_av(fmode), NULL);
6914}
6915
6916static int selinux_bpf_prog(struct bpf_prog *prog)
6917{
6918	u32 sid = current_sid();
6919	struct bpf_security_struct *bpfsec;
6920
6921	bpfsec = prog->aux->security;
6922	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
 
6923			    BPF__PROG_RUN, NULL);
6924}
6925
6926static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6927				  struct bpf_token *token)
6928{
6929	struct bpf_security_struct *bpfsec;
6930
6931	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6932	if (!bpfsec)
6933		return -ENOMEM;
6934
6935	bpfsec->sid = current_sid();
6936	map->security = bpfsec;
6937
6938	return 0;
6939}
6940
6941static void selinux_bpf_map_free(struct bpf_map *map)
6942{
6943	struct bpf_security_struct *bpfsec = map->security;
6944
6945	map->security = NULL;
6946	kfree(bpfsec);
6947}
6948
6949static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6950				 struct bpf_token *token)
6951{
6952	struct bpf_security_struct *bpfsec;
6953
6954	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6955	if (!bpfsec)
6956		return -ENOMEM;
6957
6958	bpfsec->sid = current_sid();
6959	prog->aux->security = bpfsec;
6960
6961	return 0;
6962}
6963
6964static void selinux_bpf_prog_free(struct bpf_prog *prog)
6965{
6966	struct bpf_security_struct *bpfsec = prog->aux->security;
6967
6968	prog->aux->security = NULL;
6969	kfree(bpfsec);
6970}
 
6971
6972static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
6973				    struct path *path)
6974{
6975	struct bpf_security_struct *bpfsec;
6976
6977	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6978	if (!bpfsec)
6979		return -ENOMEM;
6980
6981	bpfsec->sid = current_sid();
6982	token->security = bpfsec;
6983
6984	return 0;
6985}
 
6986
6987static void selinux_bpf_token_free(struct bpf_token *token)
6988{
6989	struct bpf_security_struct *bpfsec = token->security;
6990
6991	token->security = NULL;
6992	kfree(bpfsec);
 
 
 
 
 
 
6993}
6994#endif
6995
6996struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
6997	.lbs_cred = sizeof(struct task_security_struct),
6998	.lbs_file = sizeof(struct file_security_struct),
6999	.lbs_inode = sizeof(struct inode_security_struct),
7000	.lbs_ipc = sizeof(struct ipc_security_struct),
7001	.lbs_msg_msg = sizeof(struct msg_security_struct),
7002	.lbs_superblock = sizeof(struct superblock_security_struct),
7003	.lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
7004};
7005
7006#ifdef CONFIG_PERF_EVENTS
7007static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7008{
7009	u32 requested, sid = current_sid();
7010
7011	if (type == PERF_SECURITY_OPEN)
7012		requested = PERF_EVENT__OPEN;
7013	else if (type == PERF_SECURITY_CPU)
7014		requested = PERF_EVENT__CPU;
7015	else if (type == PERF_SECURITY_KERNEL)
7016		requested = PERF_EVENT__KERNEL;
7017	else if (type == PERF_SECURITY_TRACEPOINT)
7018		requested = PERF_EVENT__TRACEPOINT;
7019	else
7020		return -EINVAL;
7021
7022	return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
7023			    requested, NULL);
7024}
7025
7026static int selinux_perf_event_alloc(struct perf_event *event)
7027{
7028	struct perf_event_security_struct *perfsec;
7029
7030	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7031	if (!perfsec)
7032		return -ENOMEM;
7033
7034	perfsec->sid = current_sid();
7035	event->security = perfsec;
7036
7037	return 0;
7038}
7039
7040static void selinux_perf_event_free(struct perf_event *event)
7041{
7042	struct perf_event_security_struct *perfsec = event->security;
7043
7044	event->security = NULL;
7045	kfree(perfsec);
7046}
7047
7048static int selinux_perf_event_read(struct perf_event *event)
7049{
7050	struct perf_event_security_struct *perfsec = event->security;
7051	u32 sid = current_sid();
7052
7053	return avc_has_perm(sid, perfsec->sid,
7054			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7055}
7056
7057static int selinux_perf_event_write(struct perf_event *event)
7058{
7059	struct perf_event_security_struct *perfsec = event->security;
7060	u32 sid = current_sid();
7061
7062	return avc_has_perm(sid, perfsec->sid,
7063			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7064}
7065#endif
7066
7067#ifdef CONFIG_IO_URING
7068/**
7069 * selinux_uring_override_creds - check the requested cred override
7070 * @new: the target creds
7071 *
7072 * Check to see if the current task is allowed to override it's credentials
7073 * to service an io_uring operation.
7074 */
7075static int selinux_uring_override_creds(const struct cred *new)
7076{
7077	return avc_has_perm(current_sid(), cred_sid(new),
7078			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7079}
7080
7081/**
7082 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7083 *
7084 * Check to see if the current task is allowed to create a new io_uring
7085 * kernel polling thread.
7086 */
7087static int selinux_uring_sqpoll(void)
7088{
7089	u32 sid = current_sid();
7090
7091	return avc_has_perm(sid, sid,
7092			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7093}
7094
7095/**
7096 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7097 * @ioucmd: the io_uring command structure
7098 *
7099 * Check to see if the current domain is allowed to execute an
7100 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7101 *
7102 */
7103static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7104{
7105	struct file *file = ioucmd->file;
7106	struct inode *inode = file_inode(file);
7107	struct inode_security_struct *isec = selinux_inode(inode);
7108	struct common_audit_data ad;
7109
7110	ad.type = LSM_AUDIT_DATA_FILE;
7111	ad.u.file = file;
7112
7113	return avc_has_perm(current_sid(), isec->sid,
7114			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7115}
7116#endif /* CONFIG_IO_URING */
7117
7118static const struct lsm_id selinux_lsmid = {
7119	.name = "selinux",
7120	.id = LSM_ID_SELINUX,
7121};
7122
7123/*
7124 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7125 * 1. any hooks that don't belong to (2.) or (3.) below,
7126 * 2. hooks that both access structures allocated by other hooks, and allocate
7127 *    structures that can be later accessed by other hooks (mostly "cloning"
7128 *    hooks),
7129 * 3. hooks that only allocate structures that can be later accessed by other
7130 *    hooks ("allocating" hooks).
7131 *
7132 * Please follow block comment delimiters in the list to keep this order.
 
 
 
 
7133 */
7134static struct security_hook_list selinux_hooks[] __ro_after_init = {
7135	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7136	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7137	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7138	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7139
7140	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7141	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7142	LSM_HOOK_INIT(capget, selinux_capget),
7143	LSM_HOOK_INIT(capset, selinux_capset),
7144	LSM_HOOK_INIT(capable, selinux_capable),
7145	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7146	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7147	LSM_HOOK_INIT(syslog, selinux_syslog),
7148	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7149
7150	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7151
7152	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7153	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7154	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7155
7156	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7157	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7158	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7159	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7160	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7161	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7162	LSM_HOOK_INIT(sb_mount, selinux_mount),
7163	LSM_HOOK_INIT(sb_umount, selinux_umount),
7164	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7165	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7166
7167	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7168
7169	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7170	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7171
7172	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7173	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7174	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7175	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7176	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7177	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7178	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7179	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7180	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7181	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7182	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7183	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7184	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7185	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7186	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7187	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7188	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7189	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7190	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7191	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7192	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7193	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7194	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7195	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7196	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7197	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7198	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7199	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7200	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7201	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7202	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7203
7204	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7205
7206	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7207	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7208	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7209	LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7210	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7211	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7212	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7213	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7214	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7215	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7216	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7217	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7218
7219	LSM_HOOK_INIT(file_open, selinux_file_open),
7220
7221	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7222	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7223	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7224	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7225	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7226	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7227	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7228	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7229	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7230	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7231	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7232	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7233	LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7234	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7235	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7236	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7237	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7238	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7239	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7240	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7241	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7242	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7243	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7244	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7245	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7246
7247	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7248	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7249
7250	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7251	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7252	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7253	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7254
7255	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7256	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7257	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7258
7259	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7260	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7261	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7262
7263	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7264
7265	LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7266	LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7267	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7268	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7269
7270	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7271	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7272	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7273	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7274	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7275	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7276
7277	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7278	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7279
7280	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7281	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7282	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7283	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7284	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7285	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7286	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7287	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7288	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7289	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7290	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7291	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7292	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7293	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7294	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7295	LSM_HOOK_INIT(socket_getpeersec_stream,
7296			selinux_socket_getpeersec_stream),
7297	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7298	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7299	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7300	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7301	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7302	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7303	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7304	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7305	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7306	LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7307	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7308	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7309	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7310	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7311	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7312	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7313	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7314	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7315	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7316	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7317	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7318	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7319#ifdef CONFIG_SECURITY_INFINIBAND
7320	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7321	LSM_HOOK_INIT(ib_endport_manage_subnet,
7322		      selinux_ib_endport_manage_subnet),
7323	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7324#endif
7325#ifdef CONFIG_SECURITY_NETWORK_XFRM
7326	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7327	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7328	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7329	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7330	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7331	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7332			selinux_xfrm_state_pol_flow_match),
7333	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7334#endif
7335
7336#ifdef CONFIG_KEYS
7337	LSM_HOOK_INIT(key_free, selinux_key_free),
7338	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7339	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7340#ifdef CONFIG_KEY_NOTIFICATIONS
7341	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7342#endif
7343#endif
7344
7345#ifdef CONFIG_AUDIT
7346	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7347	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7348	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7349#endif
7350
7351#ifdef CONFIG_BPF_SYSCALL
7352	LSM_HOOK_INIT(bpf, selinux_bpf),
7353	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7354	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7355	LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7356	LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7357	LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7358#endif
7359
7360#ifdef CONFIG_PERF_EVENTS
7361	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7362	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7363	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7364	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7365#endif
7366
7367#ifdef CONFIG_IO_URING
7368	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7369	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7370	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7371#endif
7372
7373	/*
7374	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7375	 */
7376	LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7377	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7378	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7379	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
 
7380#ifdef CONFIG_SECURITY_NETWORK_XFRM
7381	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7382#endif
7383
7384	/*
7385	 * PUT "ALLOCATING" HOOKS HERE
7386	 */
7387	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7388	LSM_HOOK_INIT(msg_queue_alloc_security,
7389		      selinux_msg_queue_alloc_security),
7390	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7391	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7392	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7393	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7394	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7395	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7396	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7397	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7398#ifdef CONFIG_SECURITY_INFINIBAND
7399	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7400#endif
7401#ifdef CONFIG_SECURITY_NETWORK_XFRM
7402	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7403	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7404	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7405		      selinux_xfrm_state_alloc_acquire),
7406#endif
7407#ifdef CONFIG_KEYS
7408	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7409#endif
7410#ifdef CONFIG_AUDIT
7411	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7412#endif
7413#ifdef CONFIG_BPF_SYSCALL
7414	LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7415	LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7416	LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7417#endif
7418#ifdef CONFIG_PERF_EVENTS
7419	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7420#endif
7421};
7422
7423static __init int selinux_init(void)
7424{
7425	pr_info("SELinux:  Initializing.\n");
7426
7427	memset(&selinux_state, 0, sizeof(selinux_state));
7428	enforcing_set(selinux_enforcing_boot);
7429	selinux_avc_init();
 
7430	mutex_init(&selinux_state.status_lock);
7431	mutex_init(&selinux_state.policy_mutex);
7432
7433	/* Set the security state for the initial task. */
7434	cred_init_security();
7435
7436	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7437	if (!default_noexec)
7438		pr_notice("SELinux:  virtual memory is executable by default\n");
7439
7440	avc_init();
7441
7442	avtab_cache_init();
7443
7444	ebitmap_cache_init();
7445
7446	hashtab_cache_init();
7447
7448	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7449			   &selinux_lsmid);
7450
7451	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7452		panic("SELinux: Unable to register AVC netcache callback\n");
7453
7454	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7455		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7456
7457	if (selinux_enforcing_boot)
7458		pr_debug("SELinux:  Starting in enforcing mode\n");
7459	else
7460		pr_debug("SELinux:  Starting in permissive mode\n");
7461
7462	fs_validate_description("selinux", selinux_fs_parameters);
7463
7464	return 0;
7465}
7466
7467static void delayed_superblock_init(struct super_block *sb, void *unused)
7468{
7469	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7470}
7471
7472void selinux_complete_init(void)
7473{
7474	pr_debug("SELinux:  Completing initialization.\n");
7475
7476	/* Set up any superblocks initialized prior to the policy load. */
7477	pr_debug("SELinux:  Setting up existing superblocks.\n");
7478	iterate_supers(delayed_superblock_init, NULL);
7479}
7480
7481/* SELinux requires early initialization in order to label
7482   all processes and objects when they are created. */
7483DEFINE_LSM(selinux) = {
7484	.name = "selinux",
7485	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7486	.enabled = &selinux_enabled_boot,
7487	.blobs = &selinux_blob_sizes,
7488	.init = selinux_init,
7489};
7490
7491#if defined(CONFIG_NETFILTER)
 
7492static const struct nf_hook_ops selinux_nf_ops[] = {
7493	{
7494		.hook =		selinux_ip_postroute,
7495		.pf =		NFPROTO_IPV4,
7496		.hooknum =	NF_INET_POST_ROUTING,
7497		.priority =	NF_IP_PRI_SELINUX_LAST,
7498	},
7499	{
7500		.hook =		selinux_ip_forward,
7501		.pf =		NFPROTO_IPV4,
7502		.hooknum =	NF_INET_FORWARD,
7503		.priority =	NF_IP_PRI_SELINUX_FIRST,
7504	},
7505	{
7506		.hook =		selinux_ip_output,
7507		.pf =		NFPROTO_IPV4,
7508		.hooknum =	NF_INET_LOCAL_OUT,
7509		.priority =	NF_IP_PRI_SELINUX_FIRST,
7510	},
7511#if IS_ENABLED(CONFIG_IPV6)
7512	{
7513		.hook =		selinux_ip_postroute,
7514		.pf =		NFPROTO_IPV6,
7515		.hooknum =	NF_INET_POST_ROUTING,
7516		.priority =	NF_IP6_PRI_SELINUX_LAST,
7517	},
7518	{
7519		.hook =		selinux_ip_forward,
7520		.pf =		NFPROTO_IPV6,
7521		.hooknum =	NF_INET_FORWARD,
7522		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7523	},
7524	{
7525		.hook =		selinux_ip_output,
7526		.pf =		NFPROTO_IPV6,
7527		.hooknum =	NF_INET_LOCAL_OUT,
7528		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7529	},
7530#endif	/* IPV6 */
7531};
7532
7533static int __net_init selinux_nf_register(struct net *net)
7534{
7535	return nf_register_net_hooks(net, selinux_nf_ops,
7536				     ARRAY_SIZE(selinux_nf_ops));
7537}
7538
7539static void __net_exit selinux_nf_unregister(struct net *net)
7540{
7541	nf_unregister_net_hooks(net, selinux_nf_ops,
7542				ARRAY_SIZE(selinux_nf_ops));
7543}
7544
7545static struct pernet_operations selinux_net_ops = {
7546	.init = selinux_nf_register,
7547	.exit = selinux_nf_unregister,
7548};
7549
7550static int __init selinux_nf_ip_init(void)
7551{
7552	int err;
7553
7554	if (!selinux_enabled_boot)
7555		return 0;
7556
7557	pr_debug("SELinux:  Registering netfilter hooks\n");
7558
7559	err = register_pernet_subsys(&selinux_net_ops);
7560	if (err)
7561		panic("SELinux: register_pernet_subsys: error %d\n", err);
7562
7563	return 0;
7564}
7565__initcall(selinux_nf_ip_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7566#endif /* CONFIG_NETFILTER */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/tracehook.h>
  29#include <linux/errno.h>
  30#include <linux/sched/signal.h>
  31#include <linux/sched/task.h>
  32#include <linux/lsm_hooks.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
  49#include <linux/fs_context.h>
  50#include <linux/fs_parser.h>
  51#include <linux/netfilter_ipv4.h>
  52#include <linux/netfilter_ipv6.h>
  53#include <linux/tty.h>
  54#include <net/icmp.h>
  55#include <net/ip.h>		/* for local_port_range[] */
  56#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  57#include <net/inet_connection_sock.h>
  58#include <net/net_namespace.h>
  59#include <net/netlabel.h>
  60#include <linux/uaccess.h>
  61#include <asm/ioctls.h>
  62#include <linux/atomic.h>
  63#include <linux/bitops.h>
  64#include <linux/interrupt.h>
  65#include <linux/netdevice.h>	/* for network interface checks */
  66#include <net/netlink.h>
  67#include <linux/tcp.h>
  68#include <linux/udp.h>
  69#include <linux/dccp.h>
  70#include <linux/sctp.h>
  71#include <net/sctp/structs.h>
  72#include <linux/quota.h>
  73#include <linux/un.h>		/* for Unix socket types */
  74#include <net/af_unix.h>	/* for Unix socket types */
  75#include <linux/parser.h>
  76#include <linux/nfs_mount.h>
  77#include <net/ipv6.h>
  78#include <linux/hugetlb.h>
  79#include <linux/personality.h>
  80#include <linux/audit.h>
  81#include <linux/string.h>
  82#include <linux/mutex.h>
  83#include <linux/posix-timers.h>
  84#include <linux/syslog.h>
  85#include <linux/user_namespace.h>
  86#include <linux/export.h>
  87#include <linux/msg.h>
  88#include <linux/shm.h>
 
  89#include <linux/bpf.h>
  90#include <linux/kernfs.h>
  91#include <linux/stringhash.h>	/* for hashlen_string() */
  92#include <uapi/linux/mount.h>
  93#include <linux/fsnotify.h>
  94#include <linux/fanotify.h>
 
 
  95
  96#include "avc.h"
  97#include "objsec.h"
  98#include "netif.h"
  99#include "netnode.h"
 100#include "netport.h"
 101#include "ibpkey.h"
 102#include "xfrm.h"
 103#include "netlabel.h"
 104#include "audit.h"
 105#include "avc_ss.h"
 106
 
 
 107struct selinux_state selinux_state;
 108
 109/* SECMARK reference count */
 110static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 111
 112#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 113static int selinux_enforcing_boot __initdata;
 114
 115static int __init enforcing_setup(char *str)
 116{
 117	unsigned long enforcing;
 118	if (!kstrtoul(str, 0, &enforcing))
 119		selinux_enforcing_boot = enforcing ? 1 : 0;
 120	return 1;
 121}
 122__setup("enforcing=", enforcing_setup);
 123#else
 124#define selinux_enforcing_boot 1
 125#endif
 126
 127int selinux_enabled_boot __initdata = 1;
 128#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 129static int __init selinux_enabled_setup(char *str)
 130{
 131	unsigned long enabled;
 132	if (!kstrtoul(str, 0, &enabled))
 133		selinux_enabled_boot = enabled ? 1 : 0;
 134	return 1;
 135}
 136__setup("selinux=", selinux_enabled_setup);
 137#endif
 138
 139static unsigned int selinux_checkreqprot_boot =
 140	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 141
 142static int __init checkreqprot_setup(char *str)
 143{
 144	unsigned long checkreqprot;
 145
 146	if (!kstrtoul(str, 0, &checkreqprot)) {
 147		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 148		if (checkreqprot)
 149			pr_warn("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
 150	}
 151	return 1;
 152}
 153__setup("checkreqprot=", checkreqprot_setup);
 154
 155/**
 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 157 *
 158 * Description:
 159 * This function checks the SECMARK reference counter to see if any SECMARK
 160 * targets are currently configured, if the reference counter is greater than
 161 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 162 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 163 * policy capability is enabled, SECMARK is always considered enabled.
 164 *
 165 */
 166static int selinux_secmark_enabled(void)
 167{
 168	return (selinux_policycap_alwaysnetwork() ||
 169		atomic_read(&selinux_secmark_refcount));
 170}
 171
 172/**
 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 174 *
 175 * Description:
 176 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 177 * (1) if any are enabled or false (0) if neither are enabled.  If the
 178 * always_check_network policy capability is enabled, peer labeling
 179 * is always considered enabled.
 180 *
 181 */
 182static int selinux_peerlbl_enabled(void)
 183{
 184	return (selinux_policycap_alwaysnetwork() ||
 185		netlbl_enabled() || selinux_xfrm_enabled());
 186}
 187
 188static int selinux_netcache_avc_callback(u32 event)
 189{
 190	if (event == AVC_CALLBACK_RESET) {
 191		sel_netif_flush();
 192		sel_netnode_flush();
 193		sel_netport_flush();
 194		synchronize_net();
 195	}
 196	return 0;
 197}
 198
 199static int selinux_lsm_notifier_avc_callback(u32 event)
 200{
 201	if (event == AVC_CALLBACK_RESET) {
 202		sel_ib_pkey_flush();
 203		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 204	}
 205
 206	return 0;
 207}
 208
 209/*
 210 * initialise the security for the init task
 211 */
 212static void cred_init_security(void)
 213{
 214	struct cred *cred = (struct cred *) current->real_cred;
 215	struct task_security_struct *tsec;
 216
 217	tsec = selinux_cred(cred);
 218	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 219}
 220
 221/*
 222 * get the security ID of a set of credentials
 223 */
 224static inline u32 cred_sid(const struct cred *cred)
 225{
 226	const struct task_security_struct *tsec;
 227
 228	tsec = selinux_cred(cred);
 229	return tsec->sid;
 230}
 231
 232/*
 233 * get the subjective security ID of a task
 234 */
 235static inline u32 task_sid_subj(const struct task_struct *task)
 
 
 
 
 
 
 
 
 
 
 236{
 237	u32 sid;
 
 238
 239	rcu_read_lock();
 240	sid = cred_sid(rcu_dereference(task->cred));
 241	rcu_read_unlock();
 242	return sid;
 
 243}
 244
 245/*
 246 * get the objective security ID of a task
 247 */
 248static inline u32 task_sid_obj(const struct task_struct *task)
 249{
 250	u32 sid;
 251
 252	rcu_read_lock();
 253	sid = cred_sid(__task_cred(task));
 254	rcu_read_unlock();
 255	return sid;
 256}
 257
 258/*
 259 * get the security ID of a task for use with binder
 260 */
 261static inline u32 task_sid_binder(const struct task_struct *task)
 262{
 263	/*
 264	 * In many case where this function is used we should be using the
 265	 * task's subjective SID, but we can't reliably access the subjective
 266	 * creds of a task other than our own so we must use the objective
 267	 * creds/SID, which are safe to access.  The downside is that if a task
 268	 * is temporarily overriding it's creds it will not be reflected here;
 269	 * however, it isn't clear that binder would handle that case well
 270	 * anyway.
 271	 *
 272	 * If this ever changes and we can safely reference the subjective
 273	 * creds/SID of another task, this function will make it easier to
 274	 * identify the various places where we make use of the task SIDs in
 275	 * the binder code.  It is also likely that we will need to adjust
 276	 * the main drivers/android binder code as well.
 277	 */
 278	return task_sid_obj(task);
 279}
 280
 281static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 282
 283/*
 284 * Try reloading inode security labels that have been marked as invalid.  The
 285 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 286 * allowed; when set to false, returns -ECHILD when the label is
 287 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 288 */
 289static int __inode_security_revalidate(struct inode *inode,
 290				       struct dentry *dentry,
 291				       bool may_sleep)
 292{
 293	struct inode_security_struct *isec = selinux_inode(inode);
 294
 295	might_sleep_if(may_sleep);
 296
 297	if (selinux_initialized(&selinux_state) &&
 298	    isec->initialized != LABEL_INITIALIZED) {
 299		if (!may_sleep)
 300			return -ECHILD;
 301
 302		/*
 303		 * Try reloading the inode security label.  This will fail if
 304		 * @opt_dentry is NULL and no dentry for this inode can be
 305		 * found; in that case, continue using the old label.
 306		 */
 307		inode_doinit_with_dentry(inode, dentry);
 308	}
 309	return 0;
 310}
 311
 312static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 313{
 314	return selinux_inode(inode);
 315}
 316
 317static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 318{
 319	int error;
 320
 321	error = __inode_security_revalidate(inode, NULL, !rcu);
 322	if (error)
 323		return ERR_PTR(error);
 324	return selinux_inode(inode);
 325}
 326
 327/*
 328 * Get the security label of an inode.
 329 */
 330static struct inode_security_struct *inode_security(struct inode *inode)
 331{
 332	__inode_security_revalidate(inode, NULL, true);
 333	return selinux_inode(inode);
 334}
 335
 336static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 337{
 338	struct inode *inode = d_backing_inode(dentry);
 339
 340	return selinux_inode(inode);
 341}
 342
 343/*
 344 * Get the security label of a dentry's backing inode.
 345 */
 346static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 347{
 348	struct inode *inode = d_backing_inode(dentry);
 349
 350	__inode_security_revalidate(inode, dentry, true);
 351	return selinux_inode(inode);
 352}
 353
 354static void inode_free_security(struct inode *inode)
 355{
 356	struct inode_security_struct *isec = selinux_inode(inode);
 357	struct superblock_security_struct *sbsec;
 358
 359	if (!isec)
 360		return;
 361	sbsec = selinux_superblock(inode->i_sb);
 362	/*
 363	 * As not all inode security structures are in a list, we check for
 364	 * empty list outside of the lock to make sure that we won't waste
 365	 * time taking a lock doing nothing.
 366	 *
 367	 * The list_del_init() function can be safely called more than once.
 368	 * It should not be possible for this function to be called with
 369	 * concurrent list_add(), but for better safety against future changes
 370	 * in the code, we use list_empty_careful() here.
 371	 */
 372	if (!list_empty_careful(&isec->list)) {
 373		spin_lock(&sbsec->isec_lock);
 374		list_del_init(&isec->list);
 375		spin_unlock(&sbsec->isec_lock);
 376	}
 377}
 378
 379struct selinux_mnt_opts {
 380	const char *fscontext, *context, *rootcontext, *defcontext;
 
 
 
 381};
 382
 383static void selinux_free_mnt_opts(void *mnt_opts)
 384{
 385	struct selinux_mnt_opts *opts = mnt_opts;
 386	kfree(opts->fscontext);
 387	kfree(opts->context);
 388	kfree(opts->rootcontext);
 389	kfree(opts->defcontext);
 390	kfree(opts);
 391}
 392
 393enum {
 394	Opt_error = -1,
 395	Opt_context = 0,
 396	Opt_defcontext = 1,
 397	Opt_fscontext = 2,
 398	Opt_rootcontext = 3,
 399	Opt_seclabel = 4,
 400};
 401
 402#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 403static struct {
 404	const char *name;
 405	int len;
 406	int opt;
 407	bool has_arg;
 408} tokens[] = {
 409	A(context, true),
 410	A(fscontext, true),
 411	A(defcontext, true),
 412	A(rootcontext, true),
 413	A(seclabel, false),
 414};
 415#undef A
 416
 417static int match_opt_prefix(char *s, int l, char **arg)
 418{
 419	int i;
 420
 421	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 422		size_t len = tokens[i].len;
 423		if (len > l || memcmp(s, tokens[i].name, len))
 424			continue;
 425		if (tokens[i].has_arg) {
 426			if (len == l || s[len] != '=')
 427				continue;
 428			*arg = s + len + 1;
 429		} else if (len != l)
 430			continue;
 431		return tokens[i].opt;
 432	}
 433	return Opt_error;
 434}
 435
 436#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 437
 438static int may_context_mount_sb_relabel(u32 sid,
 439			struct superblock_security_struct *sbsec,
 440			const struct cred *cred)
 441{
 442	const struct task_security_struct *tsec = selinux_cred(cred);
 443	int rc;
 444
 445	rc = avc_has_perm(&selinux_state,
 446			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 447			  FILESYSTEM__RELABELFROM, NULL);
 448	if (rc)
 449		return rc;
 450
 451	rc = avc_has_perm(&selinux_state,
 452			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 453			  FILESYSTEM__RELABELTO, NULL);
 454	return rc;
 455}
 456
 457static int may_context_mount_inode_relabel(u32 sid,
 458			struct superblock_security_struct *sbsec,
 459			const struct cred *cred)
 460{
 461	const struct task_security_struct *tsec = selinux_cred(cred);
 462	int rc;
 463	rc = avc_has_perm(&selinux_state,
 464			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 465			  FILESYSTEM__RELABELFROM, NULL);
 466	if (rc)
 467		return rc;
 468
 469	rc = avc_has_perm(&selinux_state,
 470			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 471			  FILESYSTEM__ASSOCIATE, NULL);
 472	return rc;
 473}
 474
 475static int selinux_is_genfs_special_handling(struct super_block *sb)
 476{
 477	/* Special handling. Genfs but also in-core setxattr handler */
 478	return	!strcmp(sb->s_type->name, "sysfs") ||
 479		!strcmp(sb->s_type->name, "pstore") ||
 480		!strcmp(sb->s_type->name, "debugfs") ||
 481		!strcmp(sb->s_type->name, "tracefs") ||
 482		!strcmp(sb->s_type->name, "rootfs") ||
 483		(selinux_policycap_cgroupseclabel() &&
 484		 (!strcmp(sb->s_type->name, "cgroup") ||
 485		  !strcmp(sb->s_type->name, "cgroup2")));
 486}
 487
 488static int selinux_is_sblabel_mnt(struct super_block *sb)
 489{
 490	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 491
 492	/*
 493	 * IMPORTANT: Double-check logic in this function when adding a new
 494	 * SECURITY_FS_USE_* definition!
 495	 */
 496	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 497
 498	switch (sbsec->behavior) {
 499	case SECURITY_FS_USE_XATTR:
 500	case SECURITY_FS_USE_TRANS:
 501	case SECURITY_FS_USE_TASK:
 502	case SECURITY_FS_USE_NATIVE:
 503		return 1;
 504
 505	case SECURITY_FS_USE_GENFS:
 506		return selinux_is_genfs_special_handling(sb);
 507
 508	/* Never allow relabeling on context mounts */
 509	case SECURITY_FS_USE_MNTPOINT:
 510	case SECURITY_FS_USE_NONE:
 511	default:
 512		return 0;
 513	}
 514}
 515
 516static int sb_check_xattr_support(struct super_block *sb)
 517{
 518	struct superblock_security_struct *sbsec = sb->s_security;
 519	struct dentry *root = sb->s_root;
 520	struct inode *root_inode = d_backing_inode(root);
 521	u32 sid;
 522	int rc;
 523
 524	/*
 525	 * Make sure that the xattr handler exists and that no
 526	 * error other than -ENODATA is returned by getxattr on
 527	 * the root directory.  -ENODATA is ok, as this may be
 528	 * the first boot of the SELinux kernel before we have
 529	 * assigned xattr values to the filesystem.
 530	 */
 531	if (!(root_inode->i_opflags & IOP_XATTR)) {
 532		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
 533			sb->s_id, sb->s_type->name);
 534		goto fallback;
 535	}
 536
 537	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 538	if (rc < 0 && rc != -ENODATA) {
 539		if (rc == -EOPNOTSUPP) {
 540			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
 541				sb->s_id, sb->s_type->name);
 542			goto fallback;
 543		} else {
 544			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
 545				sb->s_id, sb->s_type->name, -rc);
 546			return rc;
 547		}
 548	}
 549	return 0;
 550
 551fallback:
 552	/* No xattr support - try to fallback to genfs if possible. */
 553	rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
 554				SECCLASS_DIR, &sid);
 555	if (rc)
 556		return -EOPNOTSUPP;
 557
 558	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
 559		sb->s_id, sb->s_type->name);
 560	sbsec->behavior = SECURITY_FS_USE_GENFS;
 561	sbsec->sid = sid;
 562	return 0;
 563}
 564
 565static int sb_finish_set_opts(struct super_block *sb)
 566{
 567	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 568	struct dentry *root = sb->s_root;
 569	struct inode *root_inode = d_backing_inode(root);
 570	int rc = 0;
 571
 572	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 573		rc = sb_check_xattr_support(sb);
 574		if (rc)
 575			return rc;
 576	}
 577
 578	sbsec->flags |= SE_SBINITIALIZED;
 579
 580	/*
 581	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 582	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 583	 * us a superblock that needs the flag to be cleared.
 584	 */
 585	if (selinux_is_sblabel_mnt(sb))
 586		sbsec->flags |= SBLABEL_MNT;
 587	else
 588		sbsec->flags &= ~SBLABEL_MNT;
 589
 590	/* Initialize the root inode. */
 591	rc = inode_doinit_with_dentry(root_inode, root);
 592
 593	/* Initialize any other inodes associated with the superblock, e.g.
 594	   inodes created prior to initial policy load or inodes created
 595	   during get_sb by a pseudo filesystem that directly
 596	   populates itself. */
 597	spin_lock(&sbsec->isec_lock);
 598	while (!list_empty(&sbsec->isec_head)) {
 599		struct inode_security_struct *isec =
 600				list_first_entry(&sbsec->isec_head,
 601					   struct inode_security_struct, list);
 602		struct inode *inode = isec->inode;
 603		list_del_init(&isec->list);
 604		spin_unlock(&sbsec->isec_lock);
 605		inode = igrab(inode);
 606		if (inode) {
 607			if (!IS_PRIVATE(inode))
 608				inode_doinit_with_dentry(inode, NULL);
 609			iput(inode);
 610		}
 611		spin_lock(&sbsec->isec_lock);
 612	}
 613	spin_unlock(&sbsec->isec_lock);
 614	return rc;
 615}
 616
 617static int bad_option(struct superblock_security_struct *sbsec, char flag,
 618		      u32 old_sid, u32 new_sid)
 619{
 620	char mnt_flags = sbsec->flags & SE_MNTMASK;
 621
 622	/* check if the old mount command had the same options */
 623	if (sbsec->flags & SE_SBINITIALIZED)
 624		if (!(sbsec->flags & flag) ||
 625		    (old_sid != new_sid))
 626			return 1;
 627
 628	/* check if we were passed the same options twice,
 629	 * aka someone passed context=a,context=b
 630	 */
 631	if (!(sbsec->flags & SE_SBINITIALIZED))
 632		if (mnt_flags & flag)
 633			return 1;
 634	return 0;
 635}
 636
 637static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
 638{
 639	int rc = security_context_str_to_sid(&selinux_state, s,
 640					     sid, GFP_KERNEL);
 641	if (rc)
 642		pr_warn("SELinux: security_context_str_to_sid"
 643		       "(%s) failed for (dev %s, type %s) errno=%d\n",
 644		       s, sb->s_id, sb->s_type->name, rc);
 645	return rc;
 646}
 647
 648/*
 649 * Allow filesystems with binary mount data to explicitly set mount point
 650 * labeling information.
 651 */
 652static int selinux_set_mnt_opts(struct super_block *sb,
 653				void *mnt_opts,
 654				unsigned long kern_flags,
 655				unsigned long *set_kern_flags)
 656{
 657	const struct cred *cred = current_cred();
 658	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 659	struct dentry *root = sb->s_root;
 660	struct selinux_mnt_opts *opts = mnt_opts;
 661	struct inode_security_struct *root_isec;
 662	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 663	u32 defcontext_sid = 0;
 664	int rc = 0;
 665
 
 
 
 
 
 
 
 666	mutex_lock(&sbsec->lock);
 667
 668	if (!selinux_initialized(&selinux_state)) {
 669		if (!opts) {
 670			/* Defer initialization until selinux_complete_init,
 671			   after the initial policy is loaded and the security
 672			   server is ready to handle calls. */
 
 
 
 
 673			goto out;
 674		}
 675		rc = -EINVAL;
 676		pr_warn("SELinux: Unable to set superblock options "
 677			"before the security server is initialized\n");
 678		goto out;
 679	}
 680	if (kern_flags && !set_kern_flags) {
 681		/* Specifying internal flags without providing a place to
 682		 * place the results is not allowed */
 683		rc = -EINVAL;
 684		goto out;
 685	}
 686
 687	/*
 688	 * Binary mount data FS will come through this function twice.  Once
 689	 * from an explicit call and once from the generic calls from the vfs.
 690	 * Since the generic VFS calls will not contain any security mount data
 691	 * we need to skip the double mount verification.
 692	 *
 693	 * This does open a hole in which we will not notice if the first
 694	 * mount using this sb set explict options and a second mount using
 695	 * this sb does not set any security options.  (The first options
 696	 * will be used for both mounts)
 697	 */
 698	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 699	    && !opts)
 700		goto out;
 701
 702	root_isec = backing_inode_security_novalidate(root);
 703
 704	/*
 705	 * parse the mount options, check if they are valid sids.
 706	 * also check if someone is trying to mount the same sb more
 707	 * than once with different security options.
 708	 */
 709	if (opts) {
 710		if (opts->fscontext) {
 711			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
 712			if (rc)
 713				goto out;
 714			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 715					fscontext_sid))
 716				goto out_double_mount;
 717			sbsec->flags |= FSCONTEXT_MNT;
 718		}
 719		if (opts->context) {
 720			rc = parse_sid(sb, opts->context, &context_sid);
 721			if (rc)
 722				goto out;
 723			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 724					context_sid))
 725				goto out_double_mount;
 726			sbsec->flags |= CONTEXT_MNT;
 727		}
 728		if (opts->rootcontext) {
 729			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
 730			if (rc)
 731				goto out;
 732			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 733					rootcontext_sid))
 734				goto out_double_mount;
 735			sbsec->flags |= ROOTCONTEXT_MNT;
 736		}
 737		if (opts->defcontext) {
 738			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
 739			if (rc)
 740				goto out;
 741			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 742					defcontext_sid))
 743				goto out_double_mount;
 744			sbsec->flags |= DEFCONTEXT_MNT;
 745		}
 746	}
 747
 748	if (sbsec->flags & SE_SBINITIALIZED) {
 749		/* previously mounted with options, but not on this attempt? */
 750		if ((sbsec->flags & SE_MNTMASK) && !opts)
 751			goto out_double_mount;
 752		rc = 0;
 753		goto out;
 754	}
 755
 756	if (strcmp(sb->s_type->name, "proc") == 0)
 757		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 758
 759	if (!strcmp(sb->s_type->name, "debugfs") ||
 760	    !strcmp(sb->s_type->name, "tracefs") ||
 761	    !strcmp(sb->s_type->name, "binder") ||
 762	    !strcmp(sb->s_type->name, "bpf") ||
 763	    !strcmp(sb->s_type->name, "pstore"))
 
 764		sbsec->flags |= SE_SBGENFS;
 765
 766	if (!strcmp(sb->s_type->name, "sysfs") ||
 767	    !strcmp(sb->s_type->name, "cgroup") ||
 768	    !strcmp(sb->s_type->name, "cgroup2"))
 769		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 770
 771	if (!sbsec->behavior) {
 772		/*
 773		 * Determine the labeling behavior to use for this
 774		 * filesystem type.
 775		 */
 776		rc = security_fs_use(&selinux_state, sb);
 777		if (rc) {
 778			pr_warn("%s: security_fs_use(%s) returned %d\n",
 779					__func__, sb->s_type->name, rc);
 780			goto out;
 781		}
 782	}
 783
 784	/*
 785	 * If this is a user namespace mount and the filesystem type is not
 786	 * explicitly whitelisted, then no contexts are allowed on the command
 787	 * line and security labels must be ignored.
 788	 */
 789	if (sb->s_user_ns != &init_user_ns &&
 790	    strcmp(sb->s_type->name, "tmpfs") &&
 791	    strcmp(sb->s_type->name, "ramfs") &&
 792	    strcmp(sb->s_type->name, "devpts") &&
 793	    strcmp(sb->s_type->name, "overlay")) {
 794		if (context_sid || fscontext_sid || rootcontext_sid ||
 795		    defcontext_sid) {
 796			rc = -EACCES;
 797			goto out;
 798		}
 799		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 800			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 801			rc = security_transition_sid(&selinux_state,
 802						     current_sid(),
 803						     current_sid(),
 804						     SECCLASS_FILE, NULL,
 805						     &sbsec->mntpoint_sid);
 806			if (rc)
 807				goto out;
 808		}
 809		goto out_set_opts;
 810	}
 811
 812	/* sets the context of the superblock for the fs being mounted. */
 813	if (fscontext_sid) {
 814		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 815		if (rc)
 816			goto out;
 817
 818		sbsec->sid = fscontext_sid;
 819	}
 820
 821	/*
 822	 * Switch to using mount point labeling behavior.
 823	 * sets the label used on all file below the mountpoint, and will set
 824	 * the superblock context if not already set.
 825	 */
 826	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 
 
 
 
 
 
 
 
 
 
 827		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 828		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 829	}
 830
 831	if (context_sid) {
 832		if (!fscontext_sid) {
 833			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 834							  cred);
 835			if (rc)
 836				goto out;
 837			sbsec->sid = context_sid;
 838		} else {
 839			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 840							     cred);
 841			if (rc)
 842				goto out;
 843		}
 844		if (!rootcontext_sid)
 845			rootcontext_sid = context_sid;
 846
 847		sbsec->mntpoint_sid = context_sid;
 848		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 849	}
 850
 851	if (rootcontext_sid) {
 852		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 853						     cred);
 854		if (rc)
 855			goto out;
 856
 857		root_isec->sid = rootcontext_sid;
 858		root_isec->initialized = LABEL_INITIALIZED;
 859	}
 860
 861	if (defcontext_sid) {
 862		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 863			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 864			rc = -EINVAL;
 865			pr_warn("SELinux: defcontext option is "
 866			       "invalid for this filesystem type\n");
 867			goto out;
 868		}
 869
 870		if (defcontext_sid != sbsec->def_sid) {
 871			rc = may_context_mount_inode_relabel(defcontext_sid,
 872							     sbsec, cred);
 873			if (rc)
 874				goto out;
 875		}
 876
 877		sbsec->def_sid = defcontext_sid;
 878	}
 879
 880out_set_opts:
 881	rc = sb_finish_set_opts(sb);
 882out:
 883	mutex_unlock(&sbsec->lock);
 884	return rc;
 885out_double_mount:
 886	rc = -EINVAL;
 887	pr_warn("SELinux: mount invalid.  Same superblock, different "
 888	       "security settings for (dev %s, type %s)\n", sb->s_id,
 889	       sb->s_type->name);
 890	goto out;
 891}
 892
 893static int selinux_cmp_sb_context(const struct super_block *oldsb,
 894				    const struct super_block *newsb)
 895{
 896	struct superblock_security_struct *old = selinux_superblock(oldsb);
 897	struct superblock_security_struct *new = selinux_superblock(newsb);
 898	char oldflags = old->flags & SE_MNTMASK;
 899	char newflags = new->flags & SE_MNTMASK;
 900
 901	if (oldflags != newflags)
 902		goto mismatch;
 903	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 904		goto mismatch;
 905	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 906		goto mismatch;
 907	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 908		goto mismatch;
 909	if (oldflags & ROOTCONTEXT_MNT) {
 910		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 911		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 912		if (oldroot->sid != newroot->sid)
 913			goto mismatch;
 914	}
 915	return 0;
 916mismatch:
 917	pr_warn("SELinux: mount invalid.  Same superblock, "
 918			    "different security settings for (dev %s, "
 919			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 920	return -EBUSY;
 921}
 922
 923static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 924					struct super_block *newsb,
 925					unsigned long kern_flags,
 926					unsigned long *set_kern_flags)
 927{
 928	int rc = 0;
 929	const struct superblock_security_struct *oldsbsec =
 930						selinux_superblock(oldsb);
 931	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
 932
 933	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 934	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 935	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 936
 937	/*
 938	 * if the parent was able to be mounted it clearly had no special lsm
 939	 * mount options.  thus we can safely deal with this superblock later
 940	 */
 941	if (!selinux_initialized(&selinux_state))
 942		return 0;
 943
 944	/*
 945	 * Specifying internal flags without providing a place to
 946	 * place the results is not allowed.
 947	 */
 948	if (kern_flags && !set_kern_flags)
 949		return -EINVAL;
 950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 951	/* how can we clone if the old one wasn't set up?? */
 952	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 953
 954	/* if fs is reusing a sb, make sure that the contexts match */
 955	if (newsbsec->flags & SE_SBINITIALIZED) {
 
 956		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 957			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 958		return selinux_cmp_sb_context(oldsb, newsb);
 959	}
 960
 961	mutex_lock(&newsbsec->lock);
 962
 963	newsbsec->flags = oldsbsec->flags;
 964
 965	newsbsec->sid = oldsbsec->sid;
 966	newsbsec->def_sid = oldsbsec->def_sid;
 967	newsbsec->behavior = oldsbsec->behavior;
 968
 969	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 970		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 971		rc = security_fs_use(&selinux_state, newsb);
 972		if (rc)
 973			goto out;
 974	}
 975
 976	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 977		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 978		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 979	}
 980
 981	if (set_context) {
 982		u32 sid = oldsbsec->mntpoint_sid;
 983
 984		if (!set_fscontext)
 985			newsbsec->sid = sid;
 986		if (!set_rootcontext) {
 987			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 988			newisec->sid = sid;
 989		}
 990		newsbsec->mntpoint_sid = sid;
 991	}
 992	if (set_rootcontext) {
 993		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 994		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 995
 996		newisec->sid = oldisec->sid;
 997	}
 998
 999	sb_finish_set_opts(newsb);
1000out:
1001	mutex_unlock(&newsbsec->lock);
1002	return rc;
1003}
1004
 
 
 
1005static int selinux_add_opt(int token, const char *s, void **mnt_opts)
1006{
1007	struct selinux_mnt_opts *opts = *mnt_opts;
 
 
1008
1009	if (token == Opt_seclabel)	/* eaten and completely ignored */
 
1010		return 0;
 
 
 
 
 
 
 
1011
1012	if (!opts) {
1013		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1014		if (!opts)
1015			return -ENOMEM;
1016		*mnt_opts = opts;
1017	}
1018	if (!s)
1019		return -ENOMEM;
1020	switch (token) {
1021	case Opt_context:
1022		if (opts->context || opts->defcontext)
1023			goto Einval;
1024		opts->context = s;
1025		break;
1026	case Opt_fscontext:
1027		if (opts->fscontext)
1028			goto Einval;
1029		opts->fscontext = s;
1030		break;
1031	case Opt_rootcontext:
1032		if (opts->rootcontext)
1033			goto Einval;
1034		opts->rootcontext = s;
1035		break;
1036	case Opt_defcontext:
1037		if (opts->context || opts->defcontext)
1038			goto Einval;
1039		opts->defcontext = s;
1040		break;
1041	}
1042	return 0;
1043Einval:
1044	pr_warn(SEL_MOUNT_FAIL_MSG);
1045	return -EINVAL;
1046}
1047
1048static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1049			       void **mnt_opts)
1050{
1051	int token = Opt_error;
1052	int rc, i;
1053
1054	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1055		if (strcmp(option, tokens[i].name) == 0) {
1056			token = tokens[i].opt;
1057			break;
1058		}
1059	}
1060
1061	if (token == Opt_error)
1062		return -EINVAL;
1063
1064	if (token != Opt_seclabel) {
1065		val = kmemdup_nul(val, len, GFP_KERNEL);
1066		if (!val) {
1067			rc = -ENOMEM;
1068			goto free_opt;
1069		}
1070	}
1071	rc = selinux_add_opt(token, val, mnt_opts);
1072	if (unlikely(rc)) {
1073		kfree(val);
1074		goto free_opt;
1075	}
 
 
 
 
1076	return rc;
1077
1078free_opt:
1079	if (*mnt_opts) {
1080		selinux_free_mnt_opts(*mnt_opts);
1081		*mnt_opts = NULL;
1082	}
1083	return rc;
1084}
1085
1086static int show_sid(struct seq_file *m, u32 sid)
1087{
1088	char *context = NULL;
1089	u32 len;
1090	int rc;
1091
1092	rc = security_sid_to_context(&selinux_state, sid,
1093					     &context, &len);
1094	if (!rc) {
1095		bool has_comma = context && strchr(context, ',');
1096
1097		seq_putc(m, '=');
1098		if (has_comma)
1099			seq_putc(m, '\"');
1100		seq_escape(m, context, "\"\n\\");
1101		if (has_comma)
1102			seq_putc(m, '\"');
1103	}
1104	kfree(context);
1105	return rc;
1106}
1107
1108static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109{
1110	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1111	int rc;
1112
1113	if (!(sbsec->flags & SE_SBINITIALIZED))
1114		return 0;
1115
1116	if (!selinux_initialized(&selinux_state))
1117		return 0;
1118
1119	if (sbsec->flags & FSCONTEXT_MNT) {
1120		seq_putc(m, ',');
1121		seq_puts(m, FSCONTEXT_STR);
1122		rc = show_sid(m, sbsec->sid);
1123		if (rc)
1124			return rc;
1125	}
1126	if (sbsec->flags & CONTEXT_MNT) {
1127		seq_putc(m, ',');
1128		seq_puts(m, CONTEXT_STR);
1129		rc = show_sid(m, sbsec->mntpoint_sid);
1130		if (rc)
1131			return rc;
1132	}
1133	if (sbsec->flags & DEFCONTEXT_MNT) {
1134		seq_putc(m, ',');
1135		seq_puts(m, DEFCONTEXT_STR);
1136		rc = show_sid(m, sbsec->def_sid);
1137		if (rc)
1138			return rc;
1139	}
1140	if (sbsec->flags & ROOTCONTEXT_MNT) {
1141		struct dentry *root = sb->s_root;
1142		struct inode_security_struct *isec = backing_inode_security(root);
1143		seq_putc(m, ',');
1144		seq_puts(m, ROOTCONTEXT_STR);
1145		rc = show_sid(m, isec->sid);
1146		if (rc)
1147			return rc;
1148	}
1149	if (sbsec->flags & SBLABEL_MNT) {
1150		seq_putc(m, ',');
1151		seq_puts(m, SECLABEL_STR);
1152	}
1153	return 0;
1154}
1155
1156static inline u16 inode_mode_to_security_class(umode_t mode)
1157{
1158	switch (mode & S_IFMT) {
1159	case S_IFSOCK:
1160		return SECCLASS_SOCK_FILE;
1161	case S_IFLNK:
1162		return SECCLASS_LNK_FILE;
1163	case S_IFREG:
1164		return SECCLASS_FILE;
1165	case S_IFBLK:
1166		return SECCLASS_BLK_FILE;
1167	case S_IFDIR:
1168		return SECCLASS_DIR;
1169	case S_IFCHR:
1170		return SECCLASS_CHR_FILE;
1171	case S_IFIFO:
1172		return SECCLASS_FIFO_FILE;
1173
1174	}
1175
1176	return SECCLASS_FILE;
1177}
1178
1179static inline int default_protocol_stream(int protocol)
1180{
1181	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1182		protocol == IPPROTO_MPTCP);
1183}
1184
1185static inline int default_protocol_dgram(int protocol)
1186{
1187	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1188}
1189
1190static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1191{
1192	int extsockclass = selinux_policycap_extsockclass();
1193
1194	switch (family) {
1195	case PF_UNIX:
1196		switch (type) {
1197		case SOCK_STREAM:
1198		case SOCK_SEQPACKET:
1199			return SECCLASS_UNIX_STREAM_SOCKET;
1200		case SOCK_DGRAM:
1201		case SOCK_RAW:
1202			return SECCLASS_UNIX_DGRAM_SOCKET;
1203		}
1204		break;
1205	case PF_INET:
1206	case PF_INET6:
1207		switch (type) {
1208		case SOCK_STREAM:
1209		case SOCK_SEQPACKET:
1210			if (default_protocol_stream(protocol))
1211				return SECCLASS_TCP_SOCKET;
1212			else if (extsockclass && protocol == IPPROTO_SCTP)
1213				return SECCLASS_SCTP_SOCKET;
1214			else
1215				return SECCLASS_RAWIP_SOCKET;
1216		case SOCK_DGRAM:
1217			if (default_protocol_dgram(protocol))
1218				return SECCLASS_UDP_SOCKET;
1219			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1220						  protocol == IPPROTO_ICMPV6))
1221				return SECCLASS_ICMP_SOCKET;
1222			else
1223				return SECCLASS_RAWIP_SOCKET;
1224		case SOCK_DCCP:
1225			return SECCLASS_DCCP_SOCKET;
1226		default:
1227			return SECCLASS_RAWIP_SOCKET;
1228		}
1229		break;
1230	case PF_NETLINK:
1231		switch (protocol) {
1232		case NETLINK_ROUTE:
1233			return SECCLASS_NETLINK_ROUTE_SOCKET;
1234		case NETLINK_SOCK_DIAG:
1235			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1236		case NETLINK_NFLOG:
1237			return SECCLASS_NETLINK_NFLOG_SOCKET;
1238		case NETLINK_XFRM:
1239			return SECCLASS_NETLINK_XFRM_SOCKET;
1240		case NETLINK_SELINUX:
1241			return SECCLASS_NETLINK_SELINUX_SOCKET;
1242		case NETLINK_ISCSI:
1243			return SECCLASS_NETLINK_ISCSI_SOCKET;
1244		case NETLINK_AUDIT:
1245			return SECCLASS_NETLINK_AUDIT_SOCKET;
1246		case NETLINK_FIB_LOOKUP:
1247			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1248		case NETLINK_CONNECTOR:
1249			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1250		case NETLINK_NETFILTER:
1251			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1252		case NETLINK_DNRTMSG:
1253			return SECCLASS_NETLINK_DNRT_SOCKET;
1254		case NETLINK_KOBJECT_UEVENT:
1255			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1256		case NETLINK_GENERIC:
1257			return SECCLASS_NETLINK_GENERIC_SOCKET;
1258		case NETLINK_SCSITRANSPORT:
1259			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1260		case NETLINK_RDMA:
1261			return SECCLASS_NETLINK_RDMA_SOCKET;
1262		case NETLINK_CRYPTO:
1263			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1264		default:
1265			return SECCLASS_NETLINK_SOCKET;
1266		}
1267	case PF_PACKET:
1268		return SECCLASS_PACKET_SOCKET;
1269	case PF_KEY:
1270		return SECCLASS_KEY_SOCKET;
1271	case PF_APPLETALK:
1272		return SECCLASS_APPLETALK_SOCKET;
1273	}
1274
1275	if (extsockclass) {
1276		switch (family) {
1277		case PF_AX25:
1278			return SECCLASS_AX25_SOCKET;
1279		case PF_IPX:
1280			return SECCLASS_IPX_SOCKET;
1281		case PF_NETROM:
1282			return SECCLASS_NETROM_SOCKET;
1283		case PF_ATMPVC:
1284			return SECCLASS_ATMPVC_SOCKET;
1285		case PF_X25:
1286			return SECCLASS_X25_SOCKET;
1287		case PF_ROSE:
1288			return SECCLASS_ROSE_SOCKET;
1289		case PF_DECnet:
1290			return SECCLASS_DECNET_SOCKET;
1291		case PF_ATMSVC:
1292			return SECCLASS_ATMSVC_SOCKET;
1293		case PF_RDS:
1294			return SECCLASS_RDS_SOCKET;
1295		case PF_IRDA:
1296			return SECCLASS_IRDA_SOCKET;
1297		case PF_PPPOX:
1298			return SECCLASS_PPPOX_SOCKET;
1299		case PF_LLC:
1300			return SECCLASS_LLC_SOCKET;
1301		case PF_CAN:
1302			return SECCLASS_CAN_SOCKET;
1303		case PF_TIPC:
1304			return SECCLASS_TIPC_SOCKET;
1305		case PF_BLUETOOTH:
1306			return SECCLASS_BLUETOOTH_SOCKET;
1307		case PF_IUCV:
1308			return SECCLASS_IUCV_SOCKET;
1309		case PF_RXRPC:
1310			return SECCLASS_RXRPC_SOCKET;
1311		case PF_ISDN:
1312			return SECCLASS_ISDN_SOCKET;
1313		case PF_PHONET:
1314			return SECCLASS_PHONET_SOCKET;
1315		case PF_IEEE802154:
1316			return SECCLASS_IEEE802154_SOCKET;
1317		case PF_CAIF:
1318			return SECCLASS_CAIF_SOCKET;
1319		case PF_ALG:
1320			return SECCLASS_ALG_SOCKET;
1321		case PF_NFC:
1322			return SECCLASS_NFC_SOCKET;
1323		case PF_VSOCK:
1324			return SECCLASS_VSOCK_SOCKET;
1325		case PF_KCM:
1326			return SECCLASS_KCM_SOCKET;
1327		case PF_QIPCRTR:
1328			return SECCLASS_QIPCRTR_SOCKET;
1329		case PF_SMC:
1330			return SECCLASS_SMC_SOCKET;
1331		case PF_XDP:
1332			return SECCLASS_XDP_SOCKET;
1333#if PF_MAX > 45
 
 
1334#error New address family defined, please update this function.
1335#endif
1336		}
1337	}
1338
1339	return SECCLASS_SOCKET;
1340}
1341
1342static int selinux_genfs_get_sid(struct dentry *dentry,
1343				 u16 tclass,
1344				 u16 flags,
1345				 u32 *sid)
1346{
1347	int rc;
1348	struct super_block *sb = dentry->d_sb;
1349	char *buffer, *path;
1350
1351	buffer = (char *)__get_free_page(GFP_KERNEL);
1352	if (!buffer)
1353		return -ENOMEM;
1354
1355	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1356	if (IS_ERR(path))
1357		rc = PTR_ERR(path);
1358	else {
1359		if (flags & SE_SBPROC) {
1360			/* each process gets a /proc/PID/ entry. Strip off the
1361			 * PID part to get a valid selinux labeling.
1362			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1363			while (path[1] >= '0' && path[1] <= '9') {
1364				path[1] = '/';
1365				path++;
1366			}
1367		}
1368		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1369					path, tclass, sid);
1370		if (rc == -ENOENT) {
1371			/* No match in policy, mark as unlabeled. */
1372			*sid = SECINITSID_UNLABELED;
1373			rc = 0;
1374		}
1375	}
1376	free_page((unsigned long)buffer);
1377	return rc;
1378}
1379
1380static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1381				  u32 def_sid, u32 *sid)
1382{
1383#define INITCONTEXTLEN 255
1384	char *context;
1385	unsigned int len;
1386	int rc;
1387
1388	len = INITCONTEXTLEN;
1389	context = kmalloc(len + 1, GFP_NOFS);
1390	if (!context)
1391		return -ENOMEM;
1392
1393	context[len] = '\0';
1394	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1395	if (rc == -ERANGE) {
1396		kfree(context);
1397
1398		/* Need a larger buffer.  Query for the right size. */
1399		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1400		if (rc < 0)
1401			return rc;
1402
1403		len = rc;
1404		context = kmalloc(len + 1, GFP_NOFS);
1405		if (!context)
1406			return -ENOMEM;
1407
1408		context[len] = '\0';
1409		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1410				    context, len);
1411	}
1412	if (rc < 0) {
1413		kfree(context);
1414		if (rc != -ENODATA) {
1415			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1416				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1417			return rc;
1418		}
1419		*sid = def_sid;
1420		return 0;
1421	}
1422
1423	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1424					     def_sid, GFP_NOFS);
1425	if (rc) {
1426		char *dev = inode->i_sb->s_id;
1427		unsigned long ino = inode->i_ino;
1428
1429		if (rc == -EINVAL) {
1430			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1431					      ino, dev, context);
1432		} else {
1433			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1434				__func__, context, -rc, dev, ino);
1435		}
1436	}
1437	kfree(context);
1438	return 0;
1439}
1440
1441/* The inode's security attributes must be initialized before first use. */
1442static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1443{
1444	struct superblock_security_struct *sbsec = NULL;
1445	struct inode_security_struct *isec = selinux_inode(inode);
1446	u32 task_sid, sid = 0;
1447	u16 sclass;
1448	struct dentry *dentry;
1449	int rc = 0;
1450
1451	if (isec->initialized == LABEL_INITIALIZED)
1452		return 0;
1453
1454	spin_lock(&isec->lock);
1455	if (isec->initialized == LABEL_INITIALIZED)
1456		goto out_unlock;
1457
1458	if (isec->sclass == SECCLASS_FILE)
1459		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1460
1461	sbsec = selinux_superblock(inode->i_sb);
1462	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1463		/* Defer initialization until selinux_complete_init,
1464		   after the initial policy is loaded and the security
1465		   server is ready to handle calls. */
1466		spin_lock(&sbsec->isec_lock);
1467		if (list_empty(&isec->list))
1468			list_add(&isec->list, &sbsec->isec_head);
1469		spin_unlock(&sbsec->isec_lock);
1470		goto out_unlock;
1471	}
1472
1473	sclass = isec->sclass;
1474	task_sid = isec->task_sid;
1475	sid = isec->sid;
1476	isec->initialized = LABEL_PENDING;
1477	spin_unlock(&isec->lock);
1478
1479	switch (sbsec->behavior) {
 
 
 
 
1480	case SECURITY_FS_USE_NATIVE:
1481		break;
1482	case SECURITY_FS_USE_XATTR:
1483		if (!(inode->i_opflags & IOP_XATTR)) {
1484			sid = sbsec->def_sid;
1485			break;
1486		}
1487		/* Need a dentry, since the xattr API requires one.
1488		   Life would be simpler if we could just pass the inode. */
1489		if (opt_dentry) {
1490			/* Called from d_instantiate or d_splice_alias. */
1491			dentry = dget(opt_dentry);
1492		} else {
1493			/*
1494			 * Called from selinux_complete_init, try to find a dentry.
1495			 * Some filesystems really want a connected one, so try
1496			 * that first.  We could split SECURITY_FS_USE_XATTR in
1497			 * two, depending upon that...
1498			 */
1499			dentry = d_find_alias(inode);
1500			if (!dentry)
1501				dentry = d_find_any_alias(inode);
1502		}
1503		if (!dentry) {
1504			/*
1505			 * this is can be hit on boot when a file is accessed
1506			 * before the policy is loaded.  When we load policy we
1507			 * may find inodes that have no dentry on the
1508			 * sbsec->isec_head list.  No reason to complain as these
1509			 * will get fixed up the next time we go through
1510			 * inode_doinit with a dentry, before these inodes could
1511			 * be used again by userspace.
1512			 */
1513			goto out_invalid;
1514		}
1515
1516		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1517					    &sid);
1518		dput(dentry);
1519		if (rc)
1520			goto out;
1521		break;
1522	case SECURITY_FS_USE_TASK:
1523		sid = task_sid;
1524		break;
1525	case SECURITY_FS_USE_TRANS:
1526		/* Default to the fs SID. */
1527		sid = sbsec->sid;
1528
1529		/* Try to obtain a transition SID. */
1530		rc = security_transition_sid(&selinux_state, task_sid, sid,
1531					     sclass, NULL, &sid);
1532		if (rc)
1533			goto out;
1534		break;
1535	case SECURITY_FS_USE_MNTPOINT:
1536		sid = sbsec->mntpoint_sid;
1537		break;
1538	default:
1539		/* Default to the fs superblock SID. */
1540		sid = sbsec->sid;
1541
1542		if ((sbsec->flags & SE_SBGENFS) &&
1543		     (!S_ISLNK(inode->i_mode) ||
1544		      selinux_policycap_genfs_seclabel_symlinks())) {
1545			/* We must have a dentry to determine the label on
1546			 * procfs inodes */
1547			if (opt_dentry) {
1548				/* Called from d_instantiate or
1549				 * d_splice_alias. */
1550				dentry = dget(opt_dentry);
1551			} else {
1552				/* Called from selinux_complete_init, try to
1553				 * find a dentry.  Some filesystems really want
1554				 * a connected one, so try that first.
1555				 */
1556				dentry = d_find_alias(inode);
1557				if (!dentry)
1558					dentry = d_find_any_alias(inode);
1559			}
1560			/*
1561			 * This can be hit on boot when a file is accessed
1562			 * before the policy is loaded.  When we load policy we
1563			 * may find inodes that have no dentry on the
1564			 * sbsec->isec_head list.  No reason to complain as
1565			 * these will get fixed up the next time we go through
1566			 * inode_doinit() with a dentry, before these inodes
1567			 * could be used again by userspace.
1568			 */
1569			if (!dentry)
1570				goto out_invalid;
1571			rc = selinux_genfs_get_sid(dentry, sclass,
1572						   sbsec->flags, &sid);
1573			if (rc) {
1574				dput(dentry);
1575				goto out;
1576			}
1577
1578			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1579			    (inode->i_opflags & IOP_XATTR)) {
1580				rc = inode_doinit_use_xattr(inode, dentry,
1581							    sid, &sid);
1582				if (rc) {
1583					dput(dentry);
1584					goto out;
1585				}
1586			}
1587			dput(dentry);
1588		}
1589		break;
1590	}
1591
1592out:
1593	spin_lock(&isec->lock);
1594	if (isec->initialized == LABEL_PENDING) {
1595		if (rc) {
1596			isec->initialized = LABEL_INVALID;
1597			goto out_unlock;
1598		}
1599		isec->initialized = LABEL_INITIALIZED;
1600		isec->sid = sid;
1601	}
1602
1603out_unlock:
1604	spin_unlock(&isec->lock);
1605	return rc;
1606
1607out_invalid:
1608	spin_lock(&isec->lock);
1609	if (isec->initialized == LABEL_PENDING) {
1610		isec->initialized = LABEL_INVALID;
1611		isec->sid = sid;
1612	}
1613	spin_unlock(&isec->lock);
1614	return 0;
1615}
1616
1617/* Convert a Linux signal to an access vector. */
1618static inline u32 signal_to_av(int sig)
1619{
1620	u32 perm = 0;
1621
1622	switch (sig) {
1623	case SIGCHLD:
1624		/* Commonly granted from child to parent. */
1625		perm = PROCESS__SIGCHLD;
1626		break;
1627	case SIGKILL:
1628		/* Cannot be caught or ignored */
1629		perm = PROCESS__SIGKILL;
1630		break;
1631	case SIGSTOP:
1632		/* Cannot be caught or ignored */
1633		perm = PROCESS__SIGSTOP;
1634		break;
1635	default:
1636		/* All other signals. */
1637		perm = PROCESS__SIGNAL;
1638		break;
1639	}
1640
1641	return perm;
1642}
1643
1644#if CAP_LAST_CAP > 63
1645#error Fix SELinux to handle capabilities > 63.
1646#endif
1647
1648/* Check whether a task is allowed to use a capability. */
1649static int cred_has_capability(const struct cred *cred,
1650			       int cap, unsigned int opts, bool initns)
1651{
1652	struct common_audit_data ad;
1653	struct av_decision avd;
1654	u16 sclass;
1655	u32 sid = cred_sid(cred);
1656	u32 av = CAP_TO_MASK(cap);
1657	int rc;
1658
1659	ad.type = LSM_AUDIT_DATA_CAP;
1660	ad.u.cap = cap;
1661
1662	switch (CAP_TO_INDEX(cap)) {
1663	case 0:
1664		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1665		break;
1666	case 1:
1667		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1668		break;
1669	default:
1670		pr_err("SELinux:  out of range capability %d\n", cap);
1671		BUG();
1672		return -EINVAL;
1673	}
1674
1675	rc = avc_has_perm_noaudit(&selinux_state,
1676				  sid, sid, sclass, av, 0, &avd);
1677	if (!(opts & CAP_OPT_NOAUDIT)) {
1678		int rc2 = avc_audit(&selinux_state,
1679				    sid, sid, sclass, av, &avd, rc, &ad);
1680		if (rc2)
1681			return rc2;
1682	}
1683	return rc;
1684}
1685
1686/* Check whether a task has a particular permission to an inode.
1687   The 'adp' parameter is optional and allows other audit
1688   data to be passed (e.g. the dentry). */
1689static int inode_has_perm(const struct cred *cred,
1690			  struct inode *inode,
1691			  u32 perms,
1692			  struct common_audit_data *adp)
1693{
1694	struct inode_security_struct *isec;
1695	u32 sid;
1696
1697	validate_creds(cred);
1698
1699	if (unlikely(IS_PRIVATE(inode)))
1700		return 0;
1701
1702	sid = cred_sid(cred);
1703	isec = selinux_inode(inode);
1704
1705	return avc_has_perm(&selinux_state,
1706			    sid, isec->sid, isec->sclass, perms, adp);
1707}
1708
1709/* Same as inode_has_perm, but pass explicit audit data containing
1710   the dentry to help the auditing code to more easily generate the
1711   pathname if needed. */
1712static inline int dentry_has_perm(const struct cred *cred,
1713				  struct dentry *dentry,
1714				  u32 av)
1715{
1716	struct inode *inode = d_backing_inode(dentry);
1717	struct common_audit_data ad;
1718
1719	ad.type = LSM_AUDIT_DATA_DENTRY;
1720	ad.u.dentry = dentry;
1721	__inode_security_revalidate(inode, dentry, true);
1722	return inode_has_perm(cred, inode, av, &ad);
1723}
1724
1725/* Same as inode_has_perm, but pass explicit audit data containing
1726   the path to help the auditing code to more easily generate the
1727   pathname if needed. */
1728static inline int path_has_perm(const struct cred *cred,
1729				const struct path *path,
1730				u32 av)
1731{
1732	struct inode *inode = d_backing_inode(path->dentry);
1733	struct common_audit_data ad;
1734
1735	ad.type = LSM_AUDIT_DATA_PATH;
1736	ad.u.path = *path;
1737	__inode_security_revalidate(inode, path->dentry, true);
1738	return inode_has_perm(cred, inode, av, &ad);
1739}
1740
1741/* Same as path_has_perm, but uses the inode from the file struct. */
1742static inline int file_path_has_perm(const struct cred *cred,
1743				     struct file *file,
1744				     u32 av)
1745{
1746	struct common_audit_data ad;
1747
1748	ad.type = LSM_AUDIT_DATA_FILE;
1749	ad.u.file = file;
1750	return inode_has_perm(cred, file_inode(file), av, &ad);
1751}
1752
1753#ifdef CONFIG_BPF_SYSCALL
1754static int bpf_fd_pass(struct file *file, u32 sid);
1755#endif
1756
1757/* Check whether a task can use an open file descriptor to
1758   access an inode in a given way.  Check access to the
1759   descriptor itself, and then use dentry_has_perm to
1760   check a particular permission to the file.
1761   Access to the descriptor is implicitly granted if it
1762   has the same SID as the process.  If av is zero, then
1763   access to the file is not checked, e.g. for cases
1764   where only the descriptor is affected like seek. */
1765static int file_has_perm(const struct cred *cred,
1766			 struct file *file,
1767			 u32 av)
1768{
1769	struct file_security_struct *fsec = selinux_file(file);
1770	struct inode *inode = file_inode(file);
1771	struct common_audit_data ad;
1772	u32 sid = cred_sid(cred);
1773	int rc;
1774
1775	ad.type = LSM_AUDIT_DATA_FILE;
1776	ad.u.file = file;
1777
1778	if (sid != fsec->sid) {
1779		rc = avc_has_perm(&selinux_state,
1780				  sid, fsec->sid,
1781				  SECCLASS_FD,
1782				  FD__USE,
1783				  &ad);
1784		if (rc)
1785			goto out;
1786	}
1787
1788#ifdef CONFIG_BPF_SYSCALL
1789	rc = bpf_fd_pass(file, cred_sid(cred));
1790	if (rc)
1791		return rc;
1792#endif
1793
1794	/* av is zero if only checking access to the descriptor. */
1795	rc = 0;
1796	if (av)
1797		rc = inode_has_perm(cred, inode, av, &ad);
1798
1799out:
1800	return rc;
1801}
1802
1803/*
1804 * Determine the label for an inode that might be unioned.
1805 */
1806static int
1807selinux_determine_inode_label(const struct task_security_struct *tsec,
1808				 struct inode *dir,
1809				 const struct qstr *name, u16 tclass,
1810				 u32 *_new_isid)
1811{
1812	const struct superblock_security_struct *sbsec =
1813						selinux_superblock(dir->i_sb);
1814
1815	if ((sbsec->flags & SE_SBINITIALIZED) &&
1816	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1817		*_new_isid = sbsec->mntpoint_sid;
1818	} else if ((sbsec->flags & SBLABEL_MNT) &&
1819		   tsec->create_sid) {
1820		*_new_isid = tsec->create_sid;
1821	} else {
1822		const struct inode_security_struct *dsec = inode_security(dir);
1823		return security_transition_sid(&selinux_state, tsec->sid,
1824					       dsec->sid, tclass,
1825					       name, _new_isid);
1826	}
1827
1828	return 0;
1829}
1830
1831/* Check whether a task can create a file. */
1832static int may_create(struct inode *dir,
1833		      struct dentry *dentry,
1834		      u16 tclass)
1835{
1836	const struct task_security_struct *tsec = selinux_cred(current_cred());
1837	struct inode_security_struct *dsec;
1838	struct superblock_security_struct *sbsec;
1839	u32 sid, newsid;
1840	struct common_audit_data ad;
1841	int rc;
1842
1843	dsec = inode_security(dir);
1844	sbsec = selinux_superblock(dir->i_sb);
1845
1846	sid = tsec->sid;
1847
1848	ad.type = LSM_AUDIT_DATA_DENTRY;
1849	ad.u.dentry = dentry;
1850
1851	rc = avc_has_perm(&selinux_state,
1852			  sid, dsec->sid, SECCLASS_DIR,
1853			  DIR__ADD_NAME | DIR__SEARCH,
1854			  &ad);
1855	if (rc)
1856		return rc;
1857
1858	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1859					   &newsid);
1860	if (rc)
1861		return rc;
1862
1863	rc = avc_has_perm(&selinux_state,
1864			  sid, newsid, tclass, FILE__CREATE, &ad);
1865	if (rc)
1866		return rc;
1867
1868	return avc_has_perm(&selinux_state,
1869			    newsid, sbsec->sid,
1870			    SECCLASS_FILESYSTEM,
1871			    FILESYSTEM__ASSOCIATE, &ad);
1872}
1873
1874#define MAY_LINK	0
1875#define MAY_UNLINK	1
1876#define MAY_RMDIR	2
1877
1878/* Check whether a task can link, unlink, or rmdir a file/directory. */
1879static int may_link(struct inode *dir,
1880		    struct dentry *dentry,
1881		    int kind)
1882
1883{
1884	struct inode_security_struct *dsec, *isec;
1885	struct common_audit_data ad;
1886	u32 sid = current_sid();
1887	u32 av;
1888	int rc;
1889
1890	dsec = inode_security(dir);
1891	isec = backing_inode_security(dentry);
1892
1893	ad.type = LSM_AUDIT_DATA_DENTRY;
1894	ad.u.dentry = dentry;
1895
1896	av = DIR__SEARCH;
1897	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1898	rc = avc_has_perm(&selinux_state,
1899			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1900	if (rc)
1901		return rc;
1902
1903	switch (kind) {
1904	case MAY_LINK:
1905		av = FILE__LINK;
1906		break;
1907	case MAY_UNLINK:
1908		av = FILE__UNLINK;
1909		break;
1910	case MAY_RMDIR:
1911		av = DIR__RMDIR;
1912		break;
1913	default:
1914		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1915			__func__, kind);
1916		return 0;
1917	}
1918
1919	rc = avc_has_perm(&selinux_state,
1920			  sid, isec->sid, isec->sclass, av, &ad);
1921	return rc;
1922}
1923
1924static inline int may_rename(struct inode *old_dir,
1925			     struct dentry *old_dentry,
1926			     struct inode *new_dir,
1927			     struct dentry *new_dentry)
1928{
1929	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1930	struct common_audit_data ad;
1931	u32 sid = current_sid();
1932	u32 av;
1933	int old_is_dir, new_is_dir;
1934	int rc;
1935
1936	old_dsec = inode_security(old_dir);
1937	old_isec = backing_inode_security(old_dentry);
1938	old_is_dir = d_is_dir(old_dentry);
1939	new_dsec = inode_security(new_dir);
1940
1941	ad.type = LSM_AUDIT_DATA_DENTRY;
1942
1943	ad.u.dentry = old_dentry;
1944	rc = avc_has_perm(&selinux_state,
1945			  sid, old_dsec->sid, SECCLASS_DIR,
1946			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1947	if (rc)
1948		return rc;
1949	rc = avc_has_perm(&selinux_state,
1950			  sid, old_isec->sid,
1951			  old_isec->sclass, FILE__RENAME, &ad);
1952	if (rc)
1953		return rc;
1954	if (old_is_dir && new_dir != old_dir) {
1955		rc = avc_has_perm(&selinux_state,
1956				  sid, old_isec->sid,
1957				  old_isec->sclass, DIR__REPARENT, &ad);
1958		if (rc)
1959			return rc;
1960	}
1961
1962	ad.u.dentry = new_dentry;
1963	av = DIR__ADD_NAME | DIR__SEARCH;
1964	if (d_is_positive(new_dentry))
1965		av |= DIR__REMOVE_NAME;
1966	rc = avc_has_perm(&selinux_state,
1967			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1968	if (rc)
1969		return rc;
1970	if (d_is_positive(new_dentry)) {
1971		new_isec = backing_inode_security(new_dentry);
1972		new_is_dir = d_is_dir(new_dentry);
1973		rc = avc_has_perm(&selinux_state,
1974				  sid, new_isec->sid,
1975				  new_isec->sclass,
1976				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1977		if (rc)
1978			return rc;
1979	}
1980
1981	return 0;
1982}
1983
1984/* Check whether a task can perform a filesystem operation. */
1985static int superblock_has_perm(const struct cred *cred,
1986			       struct super_block *sb,
1987			       u32 perms,
1988			       struct common_audit_data *ad)
1989{
1990	struct superblock_security_struct *sbsec;
1991	u32 sid = cred_sid(cred);
1992
1993	sbsec = selinux_superblock(sb);
1994	return avc_has_perm(&selinux_state,
1995			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1996}
1997
1998/* Convert a Linux mode and permission mask to an access vector. */
1999static inline u32 file_mask_to_av(int mode, int mask)
2000{
2001	u32 av = 0;
2002
2003	if (!S_ISDIR(mode)) {
2004		if (mask & MAY_EXEC)
2005			av |= FILE__EXECUTE;
2006		if (mask & MAY_READ)
2007			av |= FILE__READ;
2008
2009		if (mask & MAY_APPEND)
2010			av |= FILE__APPEND;
2011		else if (mask & MAY_WRITE)
2012			av |= FILE__WRITE;
2013
2014	} else {
2015		if (mask & MAY_EXEC)
2016			av |= DIR__SEARCH;
2017		if (mask & MAY_WRITE)
2018			av |= DIR__WRITE;
2019		if (mask & MAY_READ)
2020			av |= DIR__READ;
2021	}
2022
2023	return av;
2024}
2025
2026/* Convert a Linux file to an access vector. */
2027static inline u32 file_to_av(struct file *file)
2028{
2029	u32 av = 0;
2030
2031	if (file->f_mode & FMODE_READ)
2032		av |= FILE__READ;
2033	if (file->f_mode & FMODE_WRITE) {
2034		if (file->f_flags & O_APPEND)
2035			av |= FILE__APPEND;
2036		else
2037			av |= FILE__WRITE;
2038	}
2039	if (!av) {
2040		/*
2041		 * Special file opened with flags 3 for ioctl-only use.
2042		 */
2043		av = FILE__IOCTL;
2044	}
2045
2046	return av;
2047}
2048
2049/*
2050 * Convert a file to an access vector and include the correct
2051 * open permission.
2052 */
2053static inline u32 open_file_to_av(struct file *file)
2054{
2055	u32 av = file_to_av(file);
2056	struct inode *inode = file_inode(file);
2057
2058	if (selinux_policycap_openperm() &&
2059	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2060		av |= FILE__OPEN;
2061
2062	return av;
2063}
2064
2065/* Hook functions begin here. */
2066
2067static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2068{
2069	return avc_has_perm(&selinux_state,
2070			    current_sid(), task_sid_binder(mgr), SECCLASS_BINDER,
2071			    BINDER__SET_CONTEXT_MGR, NULL);
2072}
2073
2074static int selinux_binder_transaction(struct task_struct *from,
2075				      struct task_struct *to)
2076{
2077	u32 mysid = current_sid();
2078	u32 fromsid = task_sid_binder(from);
 
2079	int rc;
2080
2081	if (mysid != fromsid) {
2082		rc = avc_has_perm(&selinux_state,
2083				  mysid, fromsid, SECCLASS_BINDER,
2084				  BINDER__IMPERSONATE, NULL);
2085		if (rc)
2086			return rc;
2087	}
2088
2089	return avc_has_perm(&selinux_state, fromsid, task_sid_binder(to),
2090			    SECCLASS_BINDER, BINDER__CALL, NULL);
2091}
2092
2093static int selinux_binder_transfer_binder(struct task_struct *from,
2094					  struct task_struct *to)
2095{
2096	return avc_has_perm(&selinux_state,
2097			    task_sid_binder(from), task_sid_binder(to),
2098			    SECCLASS_BINDER, BINDER__TRANSFER,
2099			    NULL);
2100}
2101
2102static int selinux_binder_transfer_file(struct task_struct *from,
2103					struct task_struct *to,
2104					struct file *file)
2105{
2106	u32 sid = task_sid_binder(to);
2107	struct file_security_struct *fsec = selinux_file(file);
2108	struct dentry *dentry = file->f_path.dentry;
2109	struct inode_security_struct *isec;
2110	struct common_audit_data ad;
2111	int rc;
2112
2113	ad.type = LSM_AUDIT_DATA_PATH;
2114	ad.u.path = file->f_path;
2115
2116	if (sid != fsec->sid) {
2117		rc = avc_has_perm(&selinux_state,
2118				  sid, fsec->sid,
2119				  SECCLASS_FD,
2120				  FD__USE,
2121				  &ad);
2122		if (rc)
2123			return rc;
2124	}
2125
2126#ifdef CONFIG_BPF_SYSCALL
2127	rc = bpf_fd_pass(file, sid);
2128	if (rc)
2129		return rc;
2130#endif
2131
2132	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2133		return 0;
2134
2135	isec = backing_inode_security(dentry);
2136	return avc_has_perm(&selinux_state,
2137			    sid, isec->sid, isec->sclass, file_to_av(file),
2138			    &ad);
2139}
2140
2141static int selinux_ptrace_access_check(struct task_struct *child,
2142				       unsigned int mode)
2143{
2144	u32 sid = current_sid();
2145	u32 csid = task_sid_obj(child);
2146
2147	if (mode & PTRACE_MODE_READ)
2148		return avc_has_perm(&selinux_state,
2149				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150
2151	return avc_has_perm(&selinux_state,
2152			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2153}
2154
2155static int selinux_ptrace_traceme(struct task_struct *parent)
2156{
2157	return avc_has_perm(&selinux_state,
2158			    task_sid_obj(parent), task_sid_obj(current),
2159			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2160}
2161
2162static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2163			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2164{
2165	return avc_has_perm(&selinux_state,
2166			    current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2167			    PROCESS__GETCAP, NULL);
2168}
2169
2170static int selinux_capset(struct cred *new, const struct cred *old,
2171			  const kernel_cap_t *effective,
2172			  const kernel_cap_t *inheritable,
2173			  const kernel_cap_t *permitted)
2174{
2175	return avc_has_perm(&selinux_state,
2176			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2177			    PROCESS__SETCAP, NULL);
2178}
2179
2180/*
2181 * (This comment used to live with the selinux_task_setuid hook,
2182 * which was removed).
2183 *
2184 * Since setuid only affects the current process, and since the SELinux
2185 * controls are not based on the Linux identity attributes, SELinux does not
2186 * need to control this operation.  However, SELinux does control the use of
2187 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2188 */
2189
2190static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2191			   int cap, unsigned int opts)
2192{
2193	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2194}
2195
2196static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2197{
2198	const struct cred *cred = current_cred();
2199	int rc = 0;
2200
2201	if (!sb)
2202		return 0;
2203
2204	switch (cmds) {
2205	case Q_SYNC:
2206	case Q_QUOTAON:
2207	case Q_QUOTAOFF:
2208	case Q_SETINFO:
2209	case Q_SETQUOTA:
2210	case Q_XQUOTAOFF:
2211	case Q_XQUOTAON:
2212	case Q_XSETQLIM:
2213		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2214		break;
2215	case Q_GETFMT:
2216	case Q_GETINFO:
2217	case Q_GETQUOTA:
2218	case Q_XGETQUOTA:
2219	case Q_XGETQSTAT:
2220	case Q_XGETQSTATV:
2221	case Q_XGETNEXTQUOTA:
2222		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2223		break;
2224	default:
2225		rc = 0;  /* let the kernel handle invalid cmds */
2226		break;
2227	}
2228	return rc;
2229}
2230
2231static int selinux_quota_on(struct dentry *dentry)
2232{
2233	const struct cred *cred = current_cred();
2234
2235	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2236}
2237
2238static int selinux_syslog(int type)
2239{
2240	switch (type) {
2241	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2242	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2243		return avc_has_perm(&selinux_state,
2244				    current_sid(), SECINITSID_KERNEL,
2245				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2246	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2247	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2248	/* Set level of messages printed to console */
2249	case SYSLOG_ACTION_CONSOLE_LEVEL:
2250		return avc_has_perm(&selinux_state,
2251				    current_sid(), SECINITSID_KERNEL,
2252				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2253				    NULL);
2254	}
2255	/* All other syslog types */
2256	return avc_has_perm(&selinux_state,
2257			    current_sid(), SECINITSID_KERNEL,
2258			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2259}
2260
2261/*
2262 * Check that a process has enough memory to allocate a new virtual
2263 * mapping. 0 means there is enough memory for the allocation to
2264 * succeed and -ENOMEM implies there is not.
2265 *
2266 * Do not audit the selinux permission check, as this is applied to all
2267 * processes that allocate mappings.
2268 */
2269static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2270{
2271	int rc, cap_sys_admin = 0;
2272
2273	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2274				 CAP_OPT_NOAUDIT, true);
2275	if (rc == 0)
2276		cap_sys_admin = 1;
2277
2278	return cap_sys_admin;
2279}
2280
2281/* binprm security operations */
2282
2283static u32 ptrace_parent_sid(void)
2284{
2285	u32 sid = 0;
2286	struct task_struct *tracer;
2287
2288	rcu_read_lock();
2289	tracer = ptrace_parent(current);
2290	if (tracer)
2291		sid = task_sid_obj(tracer);
2292	rcu_read_unlock();
2293
2294	return sid;
2295}
2296
2297static int check_nnp_nosuid(const struct linux_binprm *bprm,
2298			    const struct task_security_struct *old_tsec,
2299			    const struct task_security_struct *new_tsec)
2300{
2301	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2302	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2303	int rc;
2304	u32 av;
2305
2306	if (!nnp && !nosuid)
2307		return 0; /* neither NNP nor nosuid */
2308
2309	if (new_tsec->sid == old_tsec->sid)
2310		return 0; /* No change in credentials */
2311
2312	/*
2313	 * If the policy enables the nnp_nosuid_transition policy capability,
2314	 * then we permit transitions under NNP or nosuid if the
2315	 * policy allows the corresponding permission between
2316	 * the old and new contexts.
2317	 */
2318	if (selinux_policycap_nnp_nosuid_transition()) {
2319		av = 0;
2320		if (nnp)
2321			av |= PROCESS2__NNP_TRANSITION;
2322		if (nosuid)
2323			av |= PROCESS2__NOSUID_TRANSITION;
2324		rc = avc_has_perm(&selinux_state,
2325				  old_tsec->sid, new_tsec->sid,
2326				  SECCLASS_PROCESS2, av, NULL);
2327		if (!rc)
2328			return 0;
2329	}
2330
2331	/*
2332	 * We also permit NNP or nosuid transitions to bounded SIDs,
2333	 * i.e. SIDs that are guaranteed to only be allowed a subset
2334	 * of the permissions of the current SID.
2335	 */
2336	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2337					 new_tsec->sid);
2338	if (!rc)
2339		return 0;
2340
2341	/*
2342	 * On failure, preserve the errno values for NNP vs nosuid.
2343	 * NNP:  Operation not permitted for caller.
2344	 * nosuid:  Permission denied to file.
2345	 */
2346	if (nnp)
2347		return -EPERM;
2348	return -EACCES;
2349}
2350
2351static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2352{
2353	const struct task_security_struct *old_tsec;
2354	struct task_security_struct *new_tsec;
2355	struct inode_security_struct *isec;
2356	struct common_audit_data ad;
2357	struct inode *inode = file_inode(bprm->file);
2358	int rc;
2359
2360	/* SELinux context only depends on initial program or script and not
2361	 * the script interpreter */
2362
2363	old_tsec = selinux_cred(current_cred());
2364	new_tsec = selinux_cred(bprm->cred);
2365	isec = inode_security(inode);
2366
2367	/* Default to the current task SID. */
2368	new_tsec->sid = old_tsec->sid;
2369	new_tsec->osid = old_tsec->sid;
2370
2371	/* Reset fs, key, and sock SIDs on execve. */
2372	new_tsec->create_sid = 0;
2373	new_tsec->keycreate_sid = 0;
2374	new_tsec->sockcreate_sid = 0;
2375
 
 
 
 
 
 
 
 
 
 
 
 
 
2376	if (old_tsec->exec_sid) {
2377		new_tsec->sid = old_tsec->exec_sid;
2378		/* Reset exec SID on execve. */
2379		new_tsec->exec_sid = 0;
2380
2381		/* Fail on NNP or nosuid if not an allowed transition. */
2382		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2383		if (rc)
2384			return rc;
2385	} else {
2386		/* Check for a default transition on this program. */
2387		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2388					     isec->sid, SECCLASS_PROCESS, NULL,
2389					     &new_tsec->sid);
2390		if (rc)
2391			return rc;
2392
2393		/*
2394		 * Fallback to old SID on NNP or nosuid if not an allowed
2395		 * transition.
2396		 */
2397		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2398		if (rc)
2399			new_tsec->sid = old_tsec->sid;
2400	}
2401
2402	ad.type = LSM_AUDIT_DATA_FILE;
2403	ad.u.file = bprm->file;
2404
2405	if (new_tsec->sid == old_tsec->sid) {
2406		rc = avc_has_perm(&selinux_state,
2407				  old_tsec->sid, isec->sid,
2408				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2409		if (rc)
2410			return rc;
2411	} else {
2412		/* Check permissions for the transition. */
2413		rc = avc_has_perm(&selinux_state,
2414				  old_tsec->sid, new_tsec->sid,
2415				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2416		if (rc)
2417			return rc;
2418
2419		rc = avc_has_perm(&selinux_state,
2420				  new_tsec->sid, isec->sid,
2421				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2422		if (rc)
2423			return rc;
2424
2425		/* Check for shared state */
2426		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2427			rc = avc_has_perm(&selinux_state,
2428					  old_tsec->sid, new_tsec->sid,
2429					  SECCLASS_PROCESS, PROCESS__SHARE,
2430					  NULL);
2431			if (rc)
2432				return -EPERM;
2433		}
2434
2435		/* Make sure that anyone attempting to ptrace over a task that
2436		 * changes its SID has the appropriate permit */
2437		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2438			u32 ptsid = ptrace_parent_sid();
2439			if (ptsid != 0) {
2440				rc = avc_has_perm(&selinux_state,
2441						  ptsid, new_tsec->sid,
2442						  SECCLASS_PROCESS,
2443						  PROCESS__PTRACE, NULL);
2444				if (rc)
2445					return -EPERM;
2446			}
2447		}
2448
2449		/* Clear any possibly unsafe personality bits on exec: */
2450		bprm->per_clear |= PER_CLEAR_ON_SETID;
2451
2452		/* Enable secure mode for SIDs transitions unless
2453		   the noatsecure permission is granted between
2454		   the two SIDs, i.e. ahp returns 0. */
2455		rc = avc_has_perm(&selinux_state,
2456				  old_tsec->sid, new_tsec->sid,
2457				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2458				  NULL);
2459		bprm->secureexec |= !!rc;
2460	}
2461
2462	return 0;
2463}
2464
2465static int match_file(const void *p, struct file *file, unsigned fd)
2466{
2467	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2468}
2469
2470/* Derived from fs/exec.c:flush_old_files. */
2471static inline void flush_unauthorized_files(const struct cred *cred,
2472					    struct files_struct *files)
2473{
2474	struct file *file, *devnull = NULL;
2475	struct tty_struct *tty;
2476	int drop_tty = 0;
2477	unsigned n;
2478
2479	tty = get_current_tty();
2480	if (tty) {
2481		spin_lock(&tty->files_lock);
2482		if (!list_empty(&tty->tty_files)) {
2483			struct tty_file_private *file_priv;
2484
2485			/* Revalidate access to controlling tty.
2486			   Use file_path_has_perm on the tty path directly
2487			   rather than using file_has_perm, as this particular
2488			   open file may belong to another process and we are
2489			   only interested in the inode-based check here. */
2490			file_priv = list_first_entry(&tty->tty_files,
2491						struct tty_file_private, list);
2492			file = file_priv->file;
2493			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2494				drop_tty = 1;
2495		}
2496		spin_unlock(&tty->files_lock);
2497		tty_kref_put(tty);
2498	}
2499	/* Reset controlling tty. */
2500	if (drop_tty)
2501		no_tty();
2502
2503	/* Revalidate access to inherited open files. */
2504	n = iterate_fd(files, 0, match_file, cred);
2505	if (!n) /* none found? */
2506		return;
2507
2508	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2509	if (IS_ERR(devnull))
2510		devnull = NULL;
2511	/* replace all the matching ones with this */
2512	do {
2513		replace_fd(n - 1, devnull, 0);
2514	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2515	if (devnull)
2516		fput(devnull);
2517}
2518
2519/*
2520 * Prepare a process for imminent new credential changes due to exec
2521 */
2522static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2523{
2524	struct task_security_struct *new_tsec;
2525	struct rlimit *rlim, *initrlim;
2526	int rc, i;
2527
2528	new_tsec = selinux_cred(bprm->cred);
2529	if (new_tsec->sid == new_tsec->osid)
2530		return;
2531
2532	/* Close files for which the new task SID is not authorized. */
2533	flush_unauthorized_files(bprm->cred, current->files);
2534
2535	/* Always clear parent death signal on SID transitions. */
2536	current->pdeath_signal = 0;
2537
2538	/* Check whether the new SID can inherit resource limits from the old
2539	 * SID.  If not, reset all soft limits to the lower of the current
2540	 * task's hard limit and the init task's soft limit.
2541	 *
2542	 * Note that the setting of hard limits (even to lower them) can be
2543	 * controlled by the setrlimit check.  The inclusion of the init task's
2544	 * soft limit into the computation is to avoid resetting soft limits
2545	 * higher than the default soft limit for cases where the default is
2546	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2547	 */
2548	rc = avc_has_perm(&selinux_state,
2549			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2550			  PROCESS__RLIMITINH, NULL);
2551	if (rc) {
2552		/* protect against do_prlimit() */
2553		task_lock(current);
2554		for (i = 0; i < RLIM_NLIMITS; i++) {
2555			rlim = current->signal->rlim + i;
2556			initrlim = init_task.signal->rlim + i;
2557			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2558		}
2559		task_unlock(current);
2560		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2561			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2562	}
2563}
2564
2565/*
2566 * Clean up the process immediately after the installation of new credentials
2567 * due to exec
2568 */
2569static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2570{
2571	const struct task_security_struct *tsec = selinux_cred(current_cred());
2572	u32 osid, sid;
2573	int rc;
2574
2575	osid = tsec->osid;
2576	sid = tsec->sid;
2577
2578	if (sid == osid)
2579		return;
2580
2581	/* Check whether the new SID can inherit signal state from the old SID.
2582	 * If not, clear itimers to avoid subsequent signal generation and
2583	 * flush and unblock signals.
2584	 *
2585	 * This must occur _after_ the task SID has been updated so that any
2586	 * kill done after the flush will be checked against the new SID.
2587	 */
2588	rc = avc_has_perm(&selinux_state,
2589			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2590	if (rc) {
2591		clear_itimer();
2592
2593		spin_lock_irq(&current->sighand->siglock);
2594		if (!fatal_signal_pending(current)) {
2595			flush_sigqueue(&current->pending);
2596			flush_sigqueue(&current->signal->shared_pending);
2597			flush_signal_handlers(current, 1);
2598			sigemptyset(&current->blocked);
2599			recalc_sigpending();
2600		}
2601		spin_unlock_irq(&current->sighand->siglock);
2602	}
2603
2604	/* Wake up the parent if it is waiting so that it can recheck
2605	 * wait permission to the new task SID. */
2606	read_lock(&tasklist_lock);
2607	__wake_up_parent(current, current->real_parent);
2608	read_unlock(&tasklist_lock);
2609}
2610
2611/* superblock security operations */
2612
2613static int selinux_sb_alloc_security(struct super_block *sb)
2614{
2615	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2616
2617	mutex_init(&sbsec->lock);
2618	INIT_LIST_HEAD(&sbsec->isec_head);
2619	spin_lock_init(&sbsec->isec_lock);
2620	sbsec->sid = SECINITSID_UNLABELED;
2621	sbsec->def_sid = SECINITSID_FILE;
2622	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2623
2624	return 0;
2625}
2626
2627static inline int opt_len(const char *s)
2628{
2629	bool open_quote = false;
2630	int len;
2631	char c;
2632
2633	for (len = 0; (c = s[len]) != '\0'; len++) {
2634		if (c == '"')
2635			open_quote = !open_quote;
2636		if (c == ',' && !open_quote)
2637			break;
2638	}
2639	return len;
2640}
2641
2642static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2643{
2644	char *from = options;
2645	char *to = options;
2646	bool first = true;
2647	int rc;
2648
2649	while (1) {
2650		int len = opt_len(from);
2651		int token;
2652		char *arg = NULL;
2653
2654		token = match_opt_prefix(from, len, &arg);
2655
2656		if (token != Opt_error) {
2657			char *p, *q;
2658
2659			/* strip quotes */
2660			if (arg) {
2661				for (p = q = arg; p < from + len; p++) {
2662					char c = *p;
2663					if (c != '"')
2664						*q++ = c;
2665				}
2666				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2667				if (!arg) {
2668					rc = -ENOMEM;
2669					goto free_opt;
2670				}
2671			}
2672			rc = selinux_add_opt(token, arg, mnt_opts);
 
 
2673			if (unlikely(rc)) {
2674				kfree(arg);
2675				goto free_opt;
2676			}
2677		} else {
2678			if (!first) {	// copy with preceding comma
2679				from--;
2680				len++;
2681			}
2682			if (to != from)
2683				memmove(to, from, len);
2684			to += len;
2685			first = false;
2686		}
2687		if (!from[len])
2688			break;
2689		from += len + 1;
2690	}
2691	*to = '\0';
2692	return 0;
2693
2694free_opt:
2695	if (*mnt_opts) {
2696		selinux_free_mnt_opts(*mnt_opts);
2697		*mnt_opts = NULL;
2698	}
2699	return rc;
2700}
2701
2702static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2703{
2704	struct selinux_mnt_opts *opts = mnt_opts;
2705	struct superblock_security_struct *sbsec = sb->s_security;
2706	u32 sid;
2707	int rc;
2708
2709	/*
2710	 * Superblock not initialized (i.e. no options) - reject if any
2711	 * options specified, otherwise accept.
2712	 */
2713	if (!(sbsec->flags & SE_SBINITIALIZED))
2714		return opts ? 1 : 0;
2715
2716	/*
2717	 * Superblock initialized and no options specified - reject if
2718	 * superblock has any options set, otherwise accept.
2719	 */
2720	if (!opts)
2721		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2722
2723	if (opts->fscontext) {
2724		rc = parse_sid(sb, opts->fscontext, &sid);
2725		if (rc)
2726			return 1;
2727		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2728			return 1;
2729	}
2730	if (opts->context) {
2731		rc = parse_sid(sb, opts->context, &sid);
2732		if (rc)
2733			return 1;
2734		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2735			return 1;
2736	}
2737	if (opts->rootcontext) {
2738		struct inode_security_struct *root_isec;
2739
2740		root_isec = backing_inode_security(sb->s_root);
2741		rc = parse_sid(sb, opts->rootcontext, &sid);
2742		if (rc)
2743			return 1;
2744		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2745			return 1;
2746	}
2747	if (opts->defcontext) {
2748		rc = parse_sid(sb, opts->defcontext, &sid);
2749		if (rc)
2750			return 1;
2751		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2752			return 1;
2753	}
2754	return 0;
2755}
2756
2757static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2758{
2759	struct selinux_mnt_opts *opts = mnt_opts;
2760	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2761	u32 sid;
2762	int rc;
2763
2764	if (!(sbsec->flags & SE_SBINITIALIZED))
2765		return 0;
2766
2767	if (!opts)
2768		return 0;
2769
2770	if (opts->fscontext) {
2771		rc = parse_sid(sb, opts->fscontext, &sid);
2772		if (rc)
2773			return rc;
2774		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2775			goto out_bad_option;
2776	}
2777	if (opts->context) {
2778		rc = parse_sid(sb, opts->context, &sid);
2779		if (rc)
2780			return rc;
2781		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2782			goto out_bad_option;
2783	}
2784	if (opts->rootcontext) {
2785		struct inode_security_struct *root_isec;
2786		root_isec = backing_inode_security(sb->s_root);
2787		rc = parse_sid(sb, opts->rootcontext, &sid);
2788		if (rc)
2789			return rc;
2790		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2791			goto out_bad_option;
2792	}
2793	if (opts->defcontext) {
2794		rc = parse_sid(sb, opts->defcontext, &sid);
2795		if (rc)
2796			return rc;
2797		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2798			goto out_bad_option;
2799	}
2800	return 0;
2801
2802out_bad_option:
2803	pr_warn("SELinux: unable to change security options "
2804	       "during remount (dev %s, type=%s)\n", sb->s_id,
2805	       sb->s_type->name);
2806	return -EINVAL;
2807}
2808
2809static int selinux_sb_kern_mount(struct super_block *sb)
2810{
2811	const struct cred *cred = current_cred();
2812	struct common_audit_data ad;
2813
2814	ad.type = LSM_AUDIT_DATA_DENTRY;
2815	ad.u.dentry = sb->s_root;
2816	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2817}
2818
2819static int selinux_sb_statfs(struct dentry *dentry)
2820{
2821	const struct cred *cred = current_cred();
2822	struct common_audit_data ad;
2823
2824	ad.type = LSM_AUDIT_DATA_DENTRY;
2825	ad.u.dentry = dentry->d_sb->s_root;
2826	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2827}
2828
2829static int selinux_mount(const char *dev_name,
2830			 const struct path *path,
2831			 const char *type,
2832			 unsigned long flags,
2833			 void *data)
2834{
2835	const struct cred *cred = current_cred();
2836
2837	if (flags & MS_REMOUNT)
2838		return superblock_has_perm(cred, path->dentry->d_sb,
2839					   FILESYSTEM__REMOUNT, NULL);
2840	else
2841		return path_has_perm(cred, path, FILE__MOUNTON);
2842}
2843
2844static int selinux_move_mount(const struct path *from_path,
2845			      const struct path *to_path)
2846{
2847	const struct cred *cred = current_cred();
2848
2849	return path_has_perm(cred, to_path, FILE__MOUNTON);
2850}
2851
2852static int selinux_umount(struct vfsmount *mnt, int flags)
2853{
2854	const struct cred *cred = current_cred();
2855
2856	return superblock_has_perm(cred, mnt->mnt_sb,
2857				   FILESYSTEM__UNMOUNT, NULL);
2858}
2859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2860static int selinux_fs_context_dup(struct fs_context *fc,
2861				  struct fs_context *src_fc)
2862{
2863	const struct selinux_mnt_opts *src = src_fc->security;
2864	struct selinux_mnt_opts *opts;
2865
2866	if (!src)
2867		return 0;
2868
2869	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2870	if (!fc->security)
2871		return -ENOMEM;
2872
2873	opts = fc->security;
2874
2875	if (src->fscontext) {
2876		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2877		if (!opts->fscontext)
2878			return -ENOMEM;
2879	}
2880	if (src->context) {
2881		opts->context = kstrdup(src->context, GFP_KERNEL);
2882		if (!opts->context)
2883			return -ENOMEM;
2884	}
2885	if (src->rootcontext) {
2886		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2887		if (!opts->rootcontext)
2888			return -ENOMEM;
2889	}
2890	if (src->defcontext) {
2891		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2892		if (!opts->defcontext)
2893			return -ENOMEM;
2894	}
2895	return 0;
2896}
2897
2898static const struct fs_parameter_spec selinux_fs_parameters[] = {
2899	fsparam_string(CONTEXT_STR,	Opt_context),
2900	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2901	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2902	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2903	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2904	{}
2905};
2906
2907static int selinux_fs_context_parse_param(struct fs_context *fc,
2908					  struct fs_parameter *param)
2909{
2910	struct fs_parse_result result;
2911	int opt, rc;
2912
2913	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2914	if (opt < 0)
2915		return opt;
2916
2917	rc = selinux_add_opt(opt, param->string, &fc->security);
2918	if (!rc) {
2919		param->string = NULL;
2920		rc = 1;
2921	}
2922	return rc;
2923}
2924
2925/* inode security operations */
2926
2927static int selinux_inode_alloc_security(struct inode *inode)
2928{
2929	struct inode_security_struct *isec = selinux_inode(inode);
2930	u32 sid = current_sid();
2931
2932	spin_lock_init(&isec->lock);
2933	INIT_LIST_HEAD(&isec->list);
2934	isec->inode = inode;
2935	isec->sid = SECINITSID_UNLABELED;
2936	isec->sclass = SECCLASS_FILE;
2937	isec->task_sid = sid;
2938	isec->initialized = LABEL_INVALID;
2939
2940	return 0;
2941}
2942
2943static void selinux_inode_free_security(struct inode *inode)
2944{
2945	inode_free_security(inode);
2946}
2947
2948static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2949					const struct qstr *name, void **ctx,
 
2950					u32 *ctxlen)
2951{
2952	u32 newsid;
2953	int rc;
2954
2955	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2956					   d_inode(dentry->d_parent), name,
2957					   inode_mode_to_security_class(mode),
2958					   &newsid);
2959	if (rc)
2960		return rc;
2961
2962	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
 
 
 
2963				       ctxlen);
2964}
2965
2966static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2967					  struct qstr *name,
2968					  const struct cred *old,
2969					  struct cred *new)
2970{
2971	u32 newsid;
2972	int rc;
2973	struct task_security_struct *tsec;
2974
2975	rc = selinux_determine_inode_label(selinux_cred(old),
2976					   d_inode(dentry->d_parent), name,
2977					   inode_mode_to_security_class(mode),
2978					   &newsid);
2979	if (rc)
2980		return rc;
2981
2982	tsec = selinux_cred(new);
2983	tsec->create_sid = newsid;
2984	return 0;
2985}
2986
2987static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2988				       const struct qstr *qstr,
2989				       const char **name,
2990				       void **value, size_t *len)
2991{
2992	const struct task_security_struct *tsec = selinux_cred(current_cred());
2993	struct superblock_security_struct *sbsec;
 
2994	u32 newsid, clen;
 
2995	int rc;
2996	char *context;
2997
2998	sbsec = selinux_superblock(dir->i_sb);
2999
3000	newsid = tsec->create_sid;
3001
3002	rc = selinux_determine_inode_label(tsec, dir, qstr,
3003		inode_mode_to_security_class(inode->i_mode),
3004		&newsid);
3005	if (rc)
3006		return rc;
3007
3008	/* Possibly defer initialization to selinux_complete_init. */
3009	if (sbsec->flags & SE_SBINITIALIZED) {
3010		struct inode_security_struct *isec = selinux_inode(inode);
3011		isec->sclass = inode_mode_to_security_class(inode->i_mode);
3012		isec->sid = newsid;
3013		isec->initialized = LABEL_INITIALIZED;
3014	}
3015
3016	if (!selinux_initialized(&selinux_state) ||
3017	    !(sbsec->flags & SBLABEL_MNT))
3018		return -EOPNOTSUPP;
3019
3020	if (name)
3021		*name = XATTR_SELINUX_SUFFIX;
3022
3023	if (value && len) {
3024		rc = security_sid_to_context_force(&selinux_state, newsid,
3025						   &context, &clen);
3026		if (rc)
3027			return rc;
3028		*value = context;
3029		*len = clen;
 
3030	}
3031
3032	return 0;
3033}
3034
3035static int selinux_inode_init_security_anon(struct inode *inode,
3036					    const struct qstr *name,
3037					    const struct inode *context_inode)
3038{
3039	const struct task_security_struct *tsec = selinux_cred(current_cred());
3040	struct common_audit_data ad;
3041	struct inode_security_struct *isec;
3042	int rc;
3043
3044	if (unlikely(!selinux_initialized(&selinux_state)))
3045		return 0;
3046
3047	isec = selinux_inode(inode);
3048
3049	/*
3050	 * We only get here once per ephemeral inode.  The inode has
3051	 * been initialized via inode_alloc_security but is otherwise
3052	 * untouched.
3053	 */
3054
3055	if (context_inode) {
3056		struct inode_security_struct *context_isec =
3057			selinux_inode(context_inode);
3058		if (context_isec->initialized != LABEL_INITIALIZED) {
3059			pr_err("SELinux:  context_inode is not initialized");
3060			return -EACCES;
3061		}
3062
3063		isec->sclass = context_isec->sclass;
3064		isec->sid = context_isec->sid;
3065	} else {
3066		isec->sclass = SECCLASS_ANON_INODE;
3067		rc = security_transition_sid(
3068			&selinux_state, tsec->sid, tsec->sid,
3069			isec->sclass, name, &isec->sid);
3070		if (rc)
3071			return rc;
3072	}
3073
3074	isec->initialized = LABEL_INITIALIZED;
3075	/*
3076	 * Now that we've initialized security, check whether we're
3077	 * allowed to actually create this type of anonymous inode.
3078	 */
3079
3080	ad.type = LSM_AUDIT_DATA_INODE;
3081	ad.u.inode = inode;
3082
3083	return avc_has_perm(&selinux_state,
3084			    tsec->sid,
3085			    isec->sid,
3086			    isec->sclass,
3087			    FILE__CREATE,
3088			    &ad);
3089}
3090
3091static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3092{
3093	return may_create(dir, dentry, SECCLASS_FILE);
3094}
3095
3096static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3097{
3098	return may_link(dir, old_dentry, MAY_LINK);
3099}
3100
3101static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3102{
3103	return may_link(dir, dentry, MAY_UNLINK);
3104}
3105
3106static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3107{
3108	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3109}
3110
3111static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3112{
3113	return may_create(dir, dentry, SECCLASS_DIR);
3114}
3115
3116static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3117{
3118	return may_link(dir, dentry, MAY_RMDIR);
3119}
3120
3121static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3122{
3123	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3124}
3125
3126static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3127				struct inode *new_inode, struct dentry *new_dentry)
3128{
3129	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3130}
3131
3132static int selinux_inode_readlink(struct dentry *dentry)
3133{
3134	const struct cred *cred = current_cred();
3135
3136	return dentry_has_perm(cred, dentry, FILE__READ);
3137}
3138
3139static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3140				     bool rcu)
3141{
3142	const struct cred *cred = current_cred();
3143	struct common_audit_data ad;
3144	struct inode_security_struct *isec;
3145	u32 sid;
3146
3147	validate_creds(cred);
3148
3149	ad.type = LSM_AUDIT_DATA_DENTRY;
3150	ad.u.dentry = dentry;
3151	sid = cred_sid(cred);
3152	isec = inode_security_rcu(inode, rcu);
3153	if (IS_ERR(isec))
3154		return PTR_ERR(isec);
3155
3156	return avc_has_perm(&selinux_state,
3157				  sid, isec->sid, isec->sclass, FILE__READ, &ad);
3158}
3159
3160static noinline int audit_inode_permission(struct inode *inode,
3161					   u32 perms, u32 audited, u32 denied,
3162					   int result)
3163{
3164	struct common_audit_data ad;
3165	struct inode_security_struct *isec = selinux_inode(inode);
3166
3167	ad.type = LSM_AUDIT_DATA_INODE;
3168	ad.u.inode = inode;
3169
3170	return slow_avc_audit(&selinux_state,
3171			    current_sid(), isec->sid, isec->sclass, perms,
3172			    audited, denied, result, &ad);
3173}
3174
3175static int selinux_inode_permission(struct inode *inode, int mask)
3176{
3177	const struct cred *cred = current_cred();
3178	u32 perms;
3179	bool from_access;
3180	bool no_block = mask & MAY_NOT_BLOCK;
3181	struct inode_security_struct *isec;
3182	u32 sid;
3183	struct av_decision avd;
3184	int rc, rc2;
3185	u32 audited, denied;
3186
3187	from_access = mask & MAY_ACCESS;
3188	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3189
3190	/* No permission to check.  Existence test. */
3191	if (!mask)
3192		return 0;
3193
3194	validate_creds(cred);
3195
3196	if (unlikely(IS_PRIVATE(inode)))
3197		return 0;
3198
3199	perms = file_mask_to_av(inode->i_mode, mask);
3200
3201	sid = cred_sid(cred);
3202	isec = inode_security_rcu(inode, no_block);
3203	if (IS_ERR(isec))
3204		return PTR_ERR(isec);
3205
3206	rc = avc_has_perm_noaudit(&selinux_state,
3207				  sid, isec->sid, isec->sclass, perms, 0,
3208				  &avd);
3209	audited = avc_audit_required(perms, &avd, rc,
3210				     from_access ? FILE__AUDIT_ACCESS : 0,
3211				     &denied);
3212	if (likely(!audited))
3213		return rc;
3214
3215	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3216	if (rc2)
3217		return rc2;
3218	return rc;
3219}
3220
3221static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
 
3222{
3223	const struct cred *cred = current_cred();
3224	struct inode *inode = d_backing_inode(dentry);
3225	unsigned int ia_valid = iattr->ia_valid;
3226	__u32 av = FILE__WRITE;
3227
3228	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3229	if (ia_valid & ATTR_FORCE) {
3230		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3231			      ATTR_FORCE);
3232		if (!ia_valid)
3233			return 0;
3234	}
3235
3236	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3237			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3238		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3239
3240	if (selinux_policycap_openperm() &&
3241	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3242	    (ia_valid & ATTR_SIZE) &&
3243	    !(ia_valid & ATTR_FILE))
3244		av |= FILE__OPEN;
3245
3246	return dentry_has_perm(cred, dentry, av);
3247}
3248
3249static int selinux_inode_getattr(const struct path *path)
3250{
3251	return path_has_perm(current_cred(), path, FILE__GETATTR);
3252}
3253
3254static bool has_cap_mac_admin(bool audit)
3255{
3256	const struct cred *cred = current_cred();
3257	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3258
3259	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3260		return false;
3261	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3262		return false;
3263	return true;
3264}
3265
3266static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3267				  struct dentry *dentry, const char *name,
3268				  const void *value, size_t size, int flags)
3269{
3270	struct inode *inode = d_backing_inode(dentry);
3271	struct inode_security_struct *isec;
3272	struct superblock_security_struct *sbsec;
3273	struct common_audit_data ad;
3274	u32 newsid, sid = current_sid();
3275	int rc = 0;
3276
3277	if (strcmp(name, XATTR_NAME_SELINUX)) {
3278		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3279		if (rc)
3280			return rc;
3281
3282		/* Not an attribute we recognize, so just check the
3283		   ordinary setattr permission. */
3284		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3285	}
3286
3287	if (!selinux_initialized(&selinux_state))
3288		return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3289
3290	sbsec = selinux_superblock(inode->i_sb);
3291	if (!(sbsec->flags & SBLABEL_MNT))
3292		return -EOPNOTSUPP;
3293
3294	if (!inode_owner_or_capable(mnt_userns, inode))
3295		return -EPERM;
3296
3297	ad.type = LSM_AUDIT_DATA_DENTRY;
3298	ad.u.dentry = dentry;
3299
3300	isec = backing_inode_security(dentry);
3301	rc = avc_has_perm(&selinux_state,
3302			  sid, isec->sid, isec->sclass,
3303			  FILE__RELABELFROM, &ad);
3304	if (rc)
3305		return rc;
3306
3307	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3308				     GFP_KERNEL);
3309	if (rc == -EINVAL) {
3310		if (!has_cap_mac_admin(true)) {
3311			struct audit_buffer *ab;
3312			size_t audit_size;
3313
3314			/* We strip a nul only if it is at the end, otherwise the
3315			 * context contains a nul and we should audit that */
3316			if (value) {
3317				const char *str = value;
3318
3319				if (str[size - 1] == '\0')
3320					audit_size = size - 1;
3321				else
3322					audit_size = size;
3323			} else {
3324				audit_size = 0;
3325			}
3326			ab = audit_log_start(audit_context(),
3327					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
3328			audit_log_format(ab, "op=setxattr invalid_context=");
3329			audit_log_n_untrustedstring(ab, value, audit_size);
3330			audit_log_end(ab);
3331
3332			return rc;
3333		}
3334		rc = security_context_to_sid_force(&selinux_state, value,
3335						   size, &newsid);
3336	}
3337	if (rc)
3338		return rc;
3339
3340	rc = avc_has_perm(&selinux_state,
3341			  sid, newsid, isec->sclass,
3342			  FILE__RELABELTO, &ad);
3343	if (rc)
3344		return rc;
3345
3346	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3347					  sid, isec->sclass);
3348	if (rc)
3349		return rc;
3350
3351	return avc_has_perm(&selinux_state,
3352			    newsid,
3353			    sbsec->sid,
3354			    SECCLASS_FILESYSTEM,
3355			    FILESYSTEM__ASSOCIATE,
3356			    &ad);
3357}
3358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3359static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3360					const void *value, size_t size,
3361					int flags)
3362{
3363	struct inode *inode = d_backing_inode(dentry);
3364	struct inode_security_struct *isec;
3365	u32 newsid;
3366	int rc;
3367
3368	if (strcmp(name, XATTR_NAME_SELINUX)) {
3369		/* Not an attribute we recognize, so nothing to do. */
3370		return;
3371	}
3372
3373	if (!selinux_initialized(&selinux_state)) {
3374		/* If we haven't even been initialized, then we can't validate
3375		 * against a policy, so leave the label as invalid. It may
3376		 * resolve to a valid label on the next revalidation try if
3377		 * we've since initialized.
3378		 */
3379		return;
3380	}
3381
3382	rc = security_context_to_sid_force(&selinux_state, value, size,
3383					   &newsid);
3384	if (rc) {
3385		pr_err("SELinux:  unable to map context to SID"
3386		       "for (%s, %lu), rc=%d\n",
3387		       inode->i_sb->s_id, inode->i_ino, -rc);
3388		return;
3389	}
3390
3391	isec = backing_inode_security(dentry);
3392	spin_lock(&isec->lock);
3393	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3394	isec->sid = newsid;
3395	isec->initialized = LABEL_INITIALIZED;
3396	spin_unlock(&isec->lock);
3397
3398	return;
3399}
3400
3401static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3402{
3403	const struct cred *cred = current_cred();
3404
3405	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3406}
3407
3408static int selinux_inode_listxattr(struct dentry *dentry)
3409{
3410	const struct cred *cred = current_cred();
3411
3412	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3413}
3414
3415static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3416				     struct dentry *dentry, const char *name)
3417{
3418	if (strcmp(name, XATTR_NAME_SELINUX)) {
3419		int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3420		if (rc)
3421			return rc;
3422
3423		/* Not an attribute we recognize, so just check the
3424		   ordinary setattr permission. */
3425		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3426	}
3427
3428	if (!selinux_initialized(&selinux_state))
3429		return 0;
3430
3431	/* No one is allowed to remove a SELinux security label.
3432	   You can change the label, but all data must be labeled. */
3433	return -EACCES;
3434}
3435
3436static int selinux_path_notify(const struct path *path, u64 mask,
3437						unsigned int obj_type)
3438{
3439	int ret;
3440	u32 perm;
3441
3442	struct common_audit_data ad;
3443
3444	ad.type = LSM_AUDIT_DATA_PATH;
3445	ad.u.path = *path;
3446
3447	/*
3448	 * Set permission needed based on the type of mark being set.
3449	 * Performs an additional check for sb watches.
3450	 */
3451	switch (obj_type) {
3452	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3453		perm = FILE__WATCH_MOUNT;
3454		break;
3455	case FSNOTIFY_OBJ_TYPE_SB:
3456		perm = FILE__WATCH_SB;
3457		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3458						FILESYSTEM__WATCH, &ad);
3459		if (ret)
3460			return ret;
3461		break;
3462	case FSNOTIFY_OBJ_TYPE_INODE:
3463		perm = FILE__WATCH;
3464		break;
3465	default:
3466		return -EINVAL;
3467	}
3468
3469	/* blocking watches require the file:watch_with_perm permission */
3470	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3471		perm |= FILE__WATCH_WITH_PERM;
3472
3473	/* watches on read-like events need the file:watch_reads permission */
3474	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3475		perm |= FILE__WATCH_READS;
3476
3477	return path_has_perm(current_cred(), path, perm);
3478}
3479
3480/*
3481 * Copy the inode security context value to the user.
3482 *
3483 * Permission check is handled by selinux_inode_getxattr hook.
3484 */
3485static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3486				     struct inode *inode, const char *name,
3487				     void **buffer, bool alloc)
3488{
3489	u32 size;
3490	int error;
3491	char *context = NULL;
3492	struct inode_security_struct *isec;
3493
3494	/*
3495	 * If we're not initialized yet, then we can't validate contexts, so
3496	 * just let vfs_getxattr fall back to using the on-disk xattr.
3497	 */
3498	if (!selinux_initialized(&selinux_state) ||
3499	    strcmp(name, XATTR_SELINUX_SUFFIX))
3500		return -EOPNOTSUPP;
3501
3502	/*
3503	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3504	 * value even if it is not defined by current policy; otherwise,
3505	 * use the in-core value under current policy.
3506	 * Use the non-auditing forms of the permission checks since
3507	 * getxattr may be called by unprivileged processes commonly
3508	 * and lack of permission just means that we fall back to the
3509	 * in-core context value, not a denial.
3510	 */
3511	isec = inode_security(inode);
3512	if (has_cap_mac_admin(false))
3513		error = security_sid_to_context_force(&selinux_state,
3514						      isec->sid, &context,
3515						      &size);
3516	else
3517		error = security_sid_to_context(&selinux_state, isec->sid,
3518						&context, &size);
3519	if (error)
3520		return error;
3521	error = size;
3522	if (alloc) {
3523		*buffer = context;
3524		goto out_nofree;
3525	}
3526	kfree(context);
3527out_nofree:
3528	return error;
3529}
3530
3531static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3532				     const void *value, size_t size, int flags)
3533{
3534	struct inode_security_struct *isec = inode_security_novalidate(inode);
3535	struct superblock_security_struct *sbsec;
3536	u32 newsid;
3537	int rc;
3538
3539	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3540		return -EOPNOTSUPP;
3541
3542	sbsec = selinux_superblock(inode->i_sb);
3543	if (!(sbsec->flags & SBLABEL_MNT))
3544		return -EOPNOTSUPP;
3545
3546	if (!value || !size)
3547		return -EACCES;
3548
3549	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3550				     GFP_KERNEL);
3551	if (rc)
3552		return rc;
3553
3554	spin_lock(&isec->lock);
3555	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3556	isec->sid = newsid;
3557	isec->initialized = LABEL_INITIALIZED;
3558	spin_unlock(&isec->lock);
3559	return 0;
3560}
3561
3562static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3563{
3564	const int len = sizeof(XATTR_NAME_SELINUX);
3565
3566	if (!selinux_initialized(&selinux_state))
3567		return 0;
3568
3569	if (buffer && len <= buffer_size)
3570		memcpy(buffer, XATTR_NAME_SELINUX, len);
3571	return len;
3572}
3573
3574static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3575{
3576	struct inode_security_struct *isec = inode_security_novalidate(inode);
3577	*secid = isec->sid;
3578}
3579
3580static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3581{
3582	u32 sid;
3583	struct task_security_struct *tsec;
3584	struct cred *new_creds = *new;
3585
3586	if (new_creds == NULL) {
3587		new_creds = prepare_creds();
3588		if (!new_creds)
3589			return -ENOMEM;
3590	}
3591
3592	tsec = selinux_cred(new_creds);
3593	/* Get label from overlay inode and set it in create_sid */
3594	selinux_inode_getsecid(d_inode(src), &sid);
3595	tsec->create_sid = sid;
3596	*new = new_creds;
3597	return 0;
3598}
3599
3600static int selinux_inode_copy_up_xattr(const char *name)
3601{
3602	/* The copy_up hook above sets the initial context on an inode, but we
3603	 * don't then want to overwrite it by blindly copying all the lower
3604	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
 
3605	 */
3606	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3607		return 1; /* Discard */
3608	/*
3609	 * Any other attribute apart from SELINUX is not claimed, supported
3610	 * by selinux.
3611	 */
3612	return -EOPNOTSUPP;
3613}
3614
3615/* kernfs node operations */
3616
3617static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3618					struct kernfs_node *kn)
3619{
3620	const struct task_security_struct *tsec = selinux_cred(current_cred());
3621	u32 parent_sid, newsid, clen;
3622	int rc;
3623	char *context;
3624
3625	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3626	if (rc == -ENODATA)
3627		return 0;
3628	else if (rc < 0)
3629		return rc;
3630
3631	clen = (u32)rc;
3632	context = kmalloc(clen, GFP_KERNEL);
3633	if (!context)
3634		return -ENOMEM;
3635
3636	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3637	if (rc < 0) {
3638		kfree(context);
3639		return rc;
3640	}
3641
3642	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3643				     GFP_KERNEL);
3644	kfree(context);
3645	if (rc)
3646		return rc;
3647
3648	if (tsec->create_sid) {
3649		newsid = tsec->create_sid;
3650	} else {
3651		u16 secclass = inode_mode_to_security_class(kn->mode);
3652		struct qstr q;
3653
3654		q.name = kn->name;
3655		q.hash_len = hashlen_string(kn_dir, kn->name);
3656
3657		rc = security_transition_sid(&selinux_state, tsec->sid,
3658					     parent_sid, secclass, &q,
3659					     &newsid);
3660		if (rc)
3661			return rc;
3662	}
3663
3664	rc = security_sid_to_context_force(&selinux_state, newsid,
3665					   &context, &clen);
3666	if (rc)
3667		return rc;
3668
3669	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3670			      XATTR_CREATE);
3671	kfree(context);
3672	return rc;
3673}
3674
3675
3676/* file security operations */
3677
3678static int selinux_revalidate_file_permission(struct file *file, int mask)
3679{
3680	const struct cred *cred = current_cred();
3681	struct inode *inode = file_inode(file);
3682
3683	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3684	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3685		mask |= MAY_APPEND;
3686
3687	return file_has_perm(cred, file,
3688			     file_mask_to_av(inode->i_mode, mask));
3689}
3690
3691static int selinux_file_permission(struct file *file, int mask)
3692{
3693	struct inode *inode = file_inode(file);
3694	struct file_security_struct *fsec = selinux_file(file);
3695	struct inode_security_struct *isec;
3696	u32 sid = current_sid();
3697
3698	if (!mask)
3699		/* No permission to check.  Existence test. */
3700		return 0;
3701
3702	isec = inode_security(inode);
3703	if (sid == fsec->sid && fsec->isid == isec->sid &&
3704	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3705		/* No change since file_open check. */
3706		return 0;
3707
3708	return selinux_revalidate_file_permission(file, mask);
3709}
3710
3711static int selinux_file_alloc_security(struct file *file)
3712{
3713	struct file_security_struct *fsec = selinux_file(file);
3714	u32 sid = current_sid();
3715
3716	fsec->sid = sid;
3717	fsec->fown_sid = sid;
3718
3719	return 0;
3720}
3721
3722/*
3723 * Check whether a task has the ioctl permission and cmd
3724 * operation to an inode.
3725 */
3726static int ioctl_has_perm(const struct cred *cred, struct file *file,
3727		u32 requested, u16 cmd)
3728{
3729	struct common_audit_data ad;
3730	struct file_security_struct *fsec = selinux_file(file);
3731	struct inode *inode = file_inode(file);
3732	struct inode_security_struct *isec;
3733	struct lsm_ioctlop_audit ioctl;
3734	u32 ssid = cred_sid(cred);
3735	int rc;
3736	u8 driver = cmd >> 8;
3737	u8 xperm = cmd & 0xff;
3738
3739	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3740	ad.u.op = &ioctl;
3741	ad.u.op->cmd = cmd;
3742	ad.u.op->path = file->f_path;
3743
3744	if (ssid != fsec->sid) {
3745		rc = avc_has_perm(&selinux_state,
3746				  ssid, fsec->sid,
3747				SECCLASS_FD,
3748				FD__USE,
3749				&ad);
3750		if (rc)
3751			goto out;
3752	}
3753
3754	if (unlikely(IS_PRIVATE(inode)))
3755		return 0;
3756
3757	isec = inode_security(inode);
3758	rc = avc_has_extended_perms(&selinux_state,
3759				    ssid, isec->sid, isec->sclass,
3760				    requested, driver, xperm, &ad);
3761out:
3762	return rc;
3763}
3764
3765static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3766			      unsigned long arg)
3767{
3768	const struct cred *cred = current_cred();
3769	int error = 0;
3770
3771	switch (cmd) {
3772	case FIONREAD:
3773	case FIBMAP:
3774	case FIGETBSZ:
3775	case FS_IOC_GETFLAGS:
3776	case FS_IOC_GETVERSION:
3777		error = file_has_perm(cred, file, FILE__GETATTR);
3778		break;
3779
3780	case FS_IOC_SETFLAGS:
3781	case FS_IOC_SETVERSION:
3782		error = file_has_perm(cred, file, FILE__SETATTR);
3783		break;
3784
3785	/* sys_ioctl() checks */
3786	case FIONBIO:
3787	case FIOASYNC:
3788		error = file_has_perm(cred, file, 0);
3789		break;
3790
3791	case KDSKBENT:
3792	case KDSKBSENT:
3793		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3794					    CAP_OPT_NONE, true);
3795		break;
3796
 
 
 
 
 
 
3797	/* default case assumes that the command will go
3798	 * to the file's ioctl() function.
3799	 */
3800	default:
3801		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3802	}
3803	return error;
3804}
3805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3806static int default_noexec __ro_after_init;
3807
3808static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3809{
3810	const struct cred *cred = current_cred();
3811	u32 sid = cred_sid(cred);
3812	int rc = 0;
3813
3814	if (default_noexec &&
3815	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3816				   (!shared && (prot & PROT_WRITE)))) {
3817		/*
3818		 * We are making executable an anonymous mapping or a
3819		 * private file mapping that will also be writable.
3820		 * This has an additional check.
3821		 */
3822		rc = avc_has_perm(&selinux_state,
3823				  sid, sid, SECCLASS_PROCESS,
3824				  PROCESS__EXECMEM, NULL);
3825		if (rc)
3826			goto error;
3827	}
3828
3829	if (file) {
3830		/* read access is always possible with a mapping */
3831		u32 av = FILE__READ;
3832
3833		/* write access only matters if the mapping is shared */
3834		if (shared && (prot & PROT_WRITE))
3835			av |= FILE__WRITE;
3836
3837		if (prot & PROT_EXEC)
3838			av |= FILE__EXECUTE;
3839
3840		return file_has_perm(cred, file, av);
3841	}
3842
3843error:
3844	return rc;
3845}
3846
3847static int selinux_mmap_addr(unsigned long addr)
3848{
3849	int rc = 0;
3850
3851	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3852		u32 sid = current_sid();
3853		rc = avc_has_perm(&selinux_state,
3854				  sid, sid, SECCLASS_MEMPROTECT,
3855				  MEMPROTECT__MMAP_ZERO, NULL);
3856	}
3857
3858	return rc;
3859}
3860
3861static int selinux_mmap_file(struct file *file, unsigned long reqprot,
 
3862			     unsigned long prot, unsigned long flags)
3863{
3864	struct common_audit_data ad;
3865	int rc;
3866
3867	if (file) {
3868		ad.type = LSM_AUDIT_DATA_FILE;
3869		ad.u.file = file;
3870		rc = inode_has_perm(current_cred(), file_inode(file),
3871				    FILE__MAP, &ad);
3872		if (rc)
3873			return rc;
3874	}
3875
3876	if (checkreqprot_get(&selinux_state))
3877		prot = reqprot;
3878
3879	return file_map_prot_check(file, prot,
3880				   (flags & MAP_TYPE) == MAP_SHARED);
3881}
3882
3883static int selinux_file_mprotect(struct vm_area_struct *vma,
3884				 unsigned long reqprot,
3885				 unsigned long prot)
3886{
3887	const struct cred *cred = current_cred();
3888	u32 sid = cred_sid(cred);
3889
3890	if (checkreqprot_get(&selinux_state))
3891		prot = reqprot;
3892
3893	if (default_noexec &&
3894	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3895		int rc = 0;
3896		if (vma->vm_start >= vma->vm_mm->start_brk &&
3897		    vma->vm_end <= vma->vm_mm->brk) {
3898			rc = avc_has_perm(&selinux_state,
3899					  sid, sid, SECCLASS_PROCESS,
3900					  PROCESS__EXECHEAP, NULL);
3901		} else if (!vma->vm_file &&
3902			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3903			     vma->vm_end >= vma->vm_mm->start_stack) ||
3904			    vma_is_stack_for_current(vma))) {
3905			rc = avc_has_perm(&selinux_state,
3906					  sid, sid, SECCLASS_PROCESS,
3907					  PROCESS__EXECSTACK, NULL);
3908		} else if (vma->vm_file && vma->anon_vma) {
3909			/*
3910			 * We are making executable a file mapping that has
3911			 * had some COW done. Since pages might have been
3912			 * written, check ability to execute the possibly
3913			 * modified content.  This typically should only
3914			 * occur for text relocations.
3915			 */
3916			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3917		}
3918		if (rc)
3919			return rc;
3920	}
3921
3922	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3923}
3924
3925static int selinux_file_lock(struct file *file, unsigned int cmd)
3926{
3927	const struct cred *cred = current_cred();
3928
3929	return file_has_perm(cred, file, FILE__LOCK);
3930}
3931
3932static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3933			      unsigned long arg)
3934{
3935	const struct cred *cred = current_cred();
3936	int err = 0;
3937
3938	switch (cmd) {
3939	case F_SETFL:
3940		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3941			err = file_has_perm(cred, file, FILE__WRITE);
3942			break;
3943		}
3944		fallthrough;
3945	case F_SETOWN:
3946	case F_SETSIG:
3947	case F_GETFL:
3948	case F_GETOWN:
3949	case F_GETSIG:
3950	case F_GETOWNER_UIDS:
3951		/* Just check FD__USE permission */
3952		err = file_has_perm(cred, file, 0);
3953		break;
3954	case F_GETLK:
3955	case F_SETLK:
3956	case F_SETLKW:
3957	case F_OFD_GETLK:
3958	case F_OFD_SETLK:
3959	case F_OFD_SETLKW:
3960#if BITS_PER_LONG == 32
3961	case F_GETLK64:
3962	case F_SETLK64:
3963	case F_SETLKW64:
3964#endif
3965		err = file_has_perm(cred, file, FILE__LOCK);
3966		break;
3967	}
3968
3969	return err;
3970}
3971
3972static void selinux_file_set_fowner(struct file *file)
3973{
3974	struct file_security_struct *fsec;
3975
3976	fsec = selinux_file(file);
3977	fsec->fown_sid = current_sid();
3978}
3979
3980static int selinux_file_send_sigiotask(struct task_struct *tsk,
3981				       struct fown_struct *fown, int signum)
3982{
3983	struct file *file;
3984	u32 sid = task_sid_obj(tsk);
3985	u32 perm;
3986	struct file_security_struct *fsec;
3987
3988	/* struct fown_struct is never outside the context of a struct file */
3989	file = container_of(fown, struct file, f_owner);
3990
3991	fsec = selinux_file(file);
3992
3993	if (!signum)
3994		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3995	else
3996		perm = signal_to_av(signum);
3997
3998	return avc_has_perm(&selinux_state,
3999			    fsec->fown_sid, sid,
4000			    SECCLASS_PROCESS, perm, NULL);
4001}
4002
4003static int selinux_file_receive(struct file *file)
4004{
4005	const struct cred *cred = current_cred();
4006
4007	return file_has_perm(cred, file, file_to_av(file));
4008}
4009
4010static int selinux_file_open(struct file *file)
4011{
4012	struct file_security_struct *fsec;
4013	struct inode_security_struct *isec;
4014
4015	fsec = selinux_file(file);
4016	isec = inode_security(file_inode(file));
4017	/*
4018	 * Save inode label and policy sequence number
4019	 * at open-time so that selinux_file_permission
4020	 * can determine whether revalidation is necessary.
4021	 * Task label is already saved in the file security
4022	 * struct as its SID.
4023	 */
4024	fsec->isid = isec->sid;
4025	fsec->pseqno = avc_policy_seqno(&selinux_state);
4026	/*
4027	 * Since the inode label or policy seqno may have changed
4028	 * between the selinux_inode_permission check and the saving
4029	 * of state above, recheck that access is still permitted.
4030	 * Otherwise, access might never be revalidated against the
4031	 * new inode label or new policy.
4032	 * This check is not redundant - do not remove.
4033	 */
4034	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
4035}
4036
4037/* task security operations */
4038
4039static int selinux_task_alloc(struct task_struct *task,
4040			      unsigned long clone_flags)
4041{
4042	u32 sid = current_sid();
4043
4044	return avc_has_perm(&selinux_state,
4045			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
4046}
4047
4048/*
4049 * prepare a new set of credentials for modification
4050 */
4051static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4052				gfp_t gfp)
4053{
4054	const struct task_security_struct *old_tsec = selinux_cred(old);
4055	struct task_security_struct *tsec = selinux_cred(new);
4056
4057	*tsec = *old_tsec;
4058	return 0;
4059}
4060
4061/*
4062 * transfer the SELinux data to a blank set of creds
4063 */
4064static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4065{
4066	const struct task_security_struct *old_tsec = selinux_cred(old);
4067	struct task_security_struct *tsec = selinux_cred(new);
4068
4069	*tsec = *old_tsec;
4070}
4071
4072static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4073{
4074	*secid = cred_sid(c);
4075}
4076
4077/*
4078 * set the security data for a kernel service
4079 * - all the creation contexts are set to unlabelled
4080 */
4081static int selinux_kernel_act_as(struct cred *new, u32 secid)
4082{
4083	struct task_security_struct *tsec = selinux_cred(new);
4084	u32 sid = current_sid();
4085	int ret;
4086
4087	ret = avc_has_perm(&selinux_state,
4088			   sid, secid,
4089			   SECCLASS_KERNEL_SERVICE,
4090			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4091			   NULL);
4092	if (ret == 0) {
4093		tsec->sid = secid;
4094		tsec->create_sid = 0;
4095		tsec->keycreate_sid = 0;
4096		tsec->sockcreate_sid = 0;
4097	}
4098	return ret;
4099}
4100
4101/*
4102 * set the file creation context in a security record to the same as the
4103 * objective context of the specified inode
4104 */
4105static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4106{
4107	struct inode_security_struct *isec = inode_security(inode);
4108	struct task_security_struct *tsec = selinux_cred(new);
4109	u32 sid = current_sid();
4110	int ret;
4111
4112	ret = avc_has_perm(&selinux_state,
4113			   sid, isec->sid,
4114			   SECCLASS_KERNEL_SERVICE,
4115			   KERNEL_SERVICE__CREATE_FILES_AS,
4116			   NULL);
4117
4118	if (ret == 0)
4119		tsec->create_sid = isec->sid;
4120	return ret;
4121}
4122
4123static int selinux_kernel_module_request(char *kmod_name)
4124{
4125	struct common_audit_data ad;
4126
4127	ad.type = LSM_AUDIT_DATA_KMOD;
4128	ad.u.kmod_name = kmod_name;
4129
4130	return avc_has_perm(&selinux_state,
4131			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4132			    SYSTEM__MODULE_REQUEST, &ad);
4133}
4134
4135static int selinux_kernel_module_from_file(struct file *file)
4136{
4137	struct common_audit_data ad;
4138	struct inode_security_struct *isec;
4139	struct file_security_struct *fsec;
4140	u32 sid = current_sid();
4141	int rc;
4142
4143	/* init_module */
4144	if (file == NULL)
4145		return avc_has_perm(&selinux_state,
4146				    sid, sid, SECCLASS_SYSTEM,
4147					SYSTEM__MODULE_LOAD, NULL);
4148
4149	/* finit_module */
4150
4151	ad.type = LSM_AUDIT_DATA_FILE;
4152	ad.u.file = file;
4153
4154	fsec = selinux_file(file);
4155	if (sid != fsec->sid) {
4156		rc = avc_has_perm(&selinux_state,
4157				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4158		if (rc)
4159			return rc;
4160	}
4161
4162	isec = inode_security(file_inode(file));
4163	return avc_has_perm(&selinux_state,
4164			    sid, isec->sid, SECCLASS_SYSTEM,
4165				SYSTEM__MODULE_LOAD, &ad);
4166}
4167
4168static int selinux_kernel_read_file(struct file *file,
4169				    enum kernel_read_file_id id,
4170				    bool contents)
4171{
4172	int rc = 0;
4173
4174	switch (id) {
4175	case READING_MODULE:
4176		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4177		break;
4178	default:
4179		break;
4180	}
4181
4182	return rc;
4183}
4184
4185static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4186{
4187	int rc = 0;
4188
4189	switch (id) {
4190	case LOADING_MODULE:
4191		rc = selinux_kernel_module_from_file(NULL);
4192		break;
4193	default:
4194		break;
4195	}
4196
4197	return rc;
4198}
4199
4200static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4201{
4202	return avc_has_perm(&selinux_state,
4203			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4204			    PROCESS__SETPGID, NULL);
4205}
4206
4207static int selinux_task_getpgid(struct task_struct *p)
4208{
4209	return avc_has_perm(&selinux_state,
4210			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4211			    PROCESS__GETPGID, NULL);
4212}
4213
4214static int selinux_task_getsid(struct task_struct *p)
4215{
4216	return avc_has_perm(&selinux_state,
4217			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4218			    PROCESS__GETSESSION, NULL);
4219}
4220
4221static void selinux_task_getsecid_subj(struct task_struct *p, u32 *secid)
4222{
4223	*secid = task_sid_subj(p);
4224}
4225
4226static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4227{
4228	*secid = task_sid_obj(p);
4229}
4230
4231static int selinux_task_setnice(struct task_struct *p, int nice)
4232{
4233	return avc_has_perm(&selinux_state,
4234			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4235			    PROCESS__SETSCHED, NULL);
4236}
4237
4238static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4239{
4240	return avc_has_perm(&selinux_state,
4241			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4242			    PROCESS__SETSCHED, NULL);
4243}
4244
4245static int selinux_task_getioprio(struct task_struct *p)
4246{
4247	return avc_has_perm(&selinux_state,
4248			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4249			    PROCESS__GETSCHED, NULL);
4250}
4251
4252static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4253				unsigned int flags)
4254{
4255	u32 av = 0;
4256
4257	if (!flags)
4258		return 0;
4259	if (flags & LSM_PRLIMIT_WRITE)
4260		av |= PROCESS__SETRLIMIT;
4261	if (flags & LSM_PRLIMIT_READ)
4262		av |= PROCESS__GETRLIMIT;
4263	return avc_has_perm(&selinux_state,
4264			    cred_sid(cred), cred_sid(tcred),
4265			    SECCLASS_PROCESS, av, NULL);
4266}
4267
4268static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4269		struct rlimit *new_rlim)
4270{
4271	struct rlimit *old_rlim = p->signal->rlim + resource;
4272
4273	/* Control the ability to change the hard limit (whether
4274	   lowering or raising it), so that the hard limit can
4275	   later be used as a safe reset point for the soft limit
4276	   upon context transitions.  See selinux_bprm_committing_creds. */
4277	if (old_rlim->rlim_max != new_rlim->rlim_max)
4278		return avc_has_perm(&selinux_state,
4279				    current_sid(), task_sid_obj(p),
4280				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4281
4282	return 0;
4283}
4284
4285static int selinux_task_setscheduler(struct task_struct *p)
4286{
4287	return avc_has_perm(&selinux_state,
4288			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4289			    PROCESS__SETSCHED, NULL);
4290}
4291
4292static int selinux_task_getscheduler(struct task_struct *p)
4293{
4294	return avc_has_perm(&selinux_state,
4295			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4296			    PROCESS__GETSCHED, NULL);
4297}
4298
4299static int selinux_task_movememory(struct task_struct *p)
4300{
4301	return avc_has_perm(&selinux_state,
4302			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4303			    PROCESS__SETSCHED, NULL);
4304}
4305
4306static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4307				int sig, const struct cred *cred)
4308{
4309	u32 secid;
4310	u32 perm;
4311
4312	if (!sig)
4313		perm = PROCESS__SIGNULL; /* null signal; existence test */
4314	else
4315		perm = signal_to_av(sig);
4316	if (!cred)
4317		secid = current_sid();
4318	else
4319		secid = cred_sid(cred);
4320	return avc_has_perm(&selinux_state,
4321			    secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4322}
4323
4324static void selinux_task_to_inode(struct task_struct *p,
4325				  struct inode *inode)
4326{
4327	struct inode_security_struct *isec = selinux_inode(inode);
4328	u32 sid = task_sid_obj(p);
4329
4330	spin_lock(&isec->lock);
4331	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4332	isec->sid = sid;
4333	isec->initialized = LABEL_INITIALIZED;
4334	spin_unlock(&isec->lock);
4335}
4336
 
 
 
 
 
 
 
 
4337/* Returns error only if unable to parse addresses */
4338static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4339			struct common_audit_data *ad, u8 *proto)
4340{
4341	int offset, ihlen, ret = -EINVAL;
4342	struct iphdr _iph, *ih;
4343
4344	offset = skb_network_offset(skb);
4345	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4346	if (ih == NULL)
4347		goto out;
4348
4349	ihlen = ih->ihl * 4;
4350	if (ihlen < sizeof(_iph))
4351		goto out;
4352
4353	ad->u.net->v4info.saddr = ih->saddr;
4354	ad->u.net->v4info.daddr = ih->daddr;
4355	ret = 0;
4356
4357	if (proto)
4358		*proto = ih->protocol;
4359
4360	switch (ih->protocol) {
4361	case IPPROTO_TCP: {
4362		struct tcphdr _tcph, *th;
4363
4364		if (ntohs(ih->frag_off) & IP_OFFSET)
4365			break;
4366
4367		offset += ihlen;
4368		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4369		if (th == NULL)
4370			break;
4371
4372		ad->u.net->sport = th->source;
4373		ad->u.net->dport = th->dest;
4374		break;
4375	}
4376
4377	case IPPROTO_UDP: {
4378		struct udphdr _udph, *uh;
4379
4380		if (ntohs(ih->frag_off) & IP_OFFSET)
4381			break;
4382
4383		offset += ihlen;
4384		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4385		if (uh == NULL)
4386			break;
4387
4388		ad->u.net->sport = uh->source;
4389		ad->u.net->dport = uh->dest;
4390		break;
4391	}
4392
4393	case IPPROTO_DCCP: {
4394		struct dccp_hdr _dccph, *dh;
4395
4396		if (ntohs(ih->frag_off) & IP_OFFSET)
4397			break;
4398
4399		offset += ihlen;
4400		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4401		if (dh == NULL)
4402			break;
4403
4404		ad->u.net->sport = dh->dccph_sport;
4405		ad->u.net->dport = dh->dccph_dport;
4406		break;
4407	}
4408
4409#if IS_ENABLED(CONFIG_IP_SCTP)
4410	case IPPROTO_SCTP: {
4411		struct sctphdr _sctph, *sh;
4412
4413		if (ntohs(ih->frag_off) & IP_OFFSET)
4414			break;
4415
4416		offset += ihlen;
4417		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4418		if (sh == NULL)
4419			break;
4420
4421		ad->u.net->sport = sh->source;
4422		ad->u.net->dport = sh->dest;
4423		break;
4424	}
4425#endif
4426	default:
4427		break;
4428	}
4429out:
4430	return ret;
4431}
4432
4433#if IS_ENABLED(CONFIG_IPV6)
4434
4435/* Returns error only if unable to parse addresses */
4436static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4437			struct common_audit_data *ad, u8 *proto)
4438{
4439	u8 nexthdr;
4440	int ret = -EINVAL, offset;
4441	struct ipv6hdr _ipv6h, *ip6;
4442	__be16 frag_off;
4443
4444	offset = skb_network_offset(skb);
4445	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4446	if (ip6 == NULL)
4447		goto out;
4448
4449	ad->u.net->v6info.saddr = ip6->saddr;
4450	ad->u.net->v6info.daddr = ip6->daddr;
4451	ret = 0;
4452
4453	nexthdr = ip6->nexthdr;
4454	offset += sizeof(_ipv6h);
4455	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4456	if (offset < 0)
4457		goto out;
4458
4459	if (proto)
4460		*proto = nexthdr;
4461
4462	switch (nexthdr) {
4463	case IPPROTO_TCP: {
4464		struct tcphdr _tcph, *th;
4465
4466		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4467		if (th == NULL)
4468			break;
4469
4470		ad->u.net->sport = th->source;
4471		ad->u.net->dport = th->dest;
4472		break;
4473	}
4474
4475	case IPPROTO_UDP: {
4476		struct udphdr _udph, *uh;
4477
4478		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4479		if (uh == NULL)
4480			break;
4481
4482		ad->u.net->sport = uh->source;
4483		ad->u.net->dport = uh->dest;
4484		break;
4485	}
4486
4487	case IPPROTO_DCCP: {
4488		struct dccp_hdr _dccph, *dh;
4489
4490		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4491		if (dh == NULL)
4492			break;
4493
4494		ad->u.net->sport = dh->dccph_sport;
4495		ad->u.net->dport = dh->dccph_dport;
4496		break;
4497	}
4498
4499#if IS_ENABLED(CONFIG_IP_SCTP)
4500	case IPPROTO_SCTP: {
4501		struct sctphdr _sctph, *sh;
4502
4503		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4504		if (sh == NULL)
4505			break;
4506
4507		ad->u.net->sport = sh->source;
4508		ad->u.net->dport = sh->dest;
4509		break;
4510	}
4511#endif
4512	/* includes fragments */
4513	default:
4514		break;
4515	}
4516out:
4517	return ret;
4518}
4519
4520#endif /* IPV6 */
4521
4522static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4523			     char **_addrp, int src, u8 *proto)
4524{
4525	char *addrp;
4526	int ret;
4527
4528	switch (ad->u.net->family) {
4529	case PF_INET:
4530		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4531		if (ret)
4532			goto parse_error;
4533		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4534				       &ad->u.net->v4info.daddr);
4535		goto okay;
4536
4537#if IS_ENABLED(CONFIG_IPV6)
4538	case PF_INET6:
4539		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4540		if (ret)
4541			goto parse_error;
4542		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4543				       &ad->u.net->v6info.daddr);
4544		goto okay;
4545#endif	/* IPV6 */
4546	default:
4547		addrp = NULL;
4548		goto okay;
4549	}
4550
4551parse_error:
4552	pr_warn(
4553	       "SELinux: failure in selinux_parse_skb(),"
4554	       " unable to parse packet\n");
4555	return ret;
4556
4557okay:
4558	if (_addrp)
4559		*_addrp = addrp;
4560	return 0;
4561}
4562
4563/**
4564 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4565 * @skb: the packet
4566 * @family: protocol family
4567 * @sid: the packet's peer label SID
4568 *
4569 * Description:
4570 * Check the various different forms of network peer labeling and determine
4571 * the peer label/SID for the packet; most of the magic actually occurs in
4572 * the security server function security_net_peersid_cmp().  The function
4573 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4574 * or -EACCES if @sid is invalid due to inconsistencies with the different
4575 * peer labels.
4576 *
4577 */
4578static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4579{
4580	int err;
4581	u32 xfrm_sid;
4582	u32 nlbl_sid;
4583	u32 nlbl_type;
4584
4585	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4586	if (unlikely(err))
4587		return -EACCES;
4588	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4589	if (unlikely(err))
4590		return -EACCES;
4591
4592	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4593					   nlbl_type, xfrm_sid, sid);
4594	if (unlikely(err)) {
4595		pr_warn(
4596		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4597		       " unable to determine packet's peer label\n");
4598		return -EACCES;
4599	}
4600
4601	return 0;
4602}
4603
4604/**
4605 * selinux_conn_sid - Determine the child socket label for a connection
4606 * @sk_sid: the parent socket's SID
4607 * @skb_sid: the packet's SID
4608 * @conn_sid: the resulting connection SID
4609 *
4610 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4611 * combined with the MLS information from @skb_sid in order to create
4612 * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4613 * of @sk_sid.  Returns zero on success, negative values on failure.
4614 *
4615 */
4616static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4617{
4618	int err = 0;
4619
4620	if (skb_sid != SECSID_NULL)
4621		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4622					    conn_sid);
4623	else
4624		*conn_sid = sk_sid;
4625
4626	return err;
4627}
4628
4629/* socket security operations */
4630
4631static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4632				 u16 secclass, u32 *socksid)
4633{
4634	if (tsec->sockcreate_sid > SECSID_NULL) {
4635		*socksid = tsec->sockcreate_sid;
4636		return 0;
4637	}
4638
4639	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4640				       secclass, NULL, socksid);
4641}
4642
4643static int sock_has_perm(struct sock *sk, u32 perms)
4644{
4645	struct sk_security_struct *sksec = sk->sk_security;
4646	struct common_audit_data ad;
4647	struct lsm_network_audit net = {0,};
4648
4649	if (sksec->sid == SECINITSID_KERNEL)
4650		return 0;
4651
4652	ad.type = LSM_AUDIT_DATA_NET;
4653	ad.u.net = &net;
4654	ad.u.net->sk = sk;
 
 
 
 
 
 
 
 
 
 
 
4655
4656	return avc_has_perm(&selinux_state,
4657			    current_sid(), sksec->sid, sksec->sclass, perms,
 
4658			    &ad);
4659}
4660
4661static int selinux_socket_create(int family, int type,
4662				 int protocol, int kern)
4663{
4664	const struct task_security_struct *tsec = selinux_cred(current_cred());
4665	u32 newsid;
4666	u16 secclass;
4667	int rc;
4668
4669	if (kern)
4670		return 0;
4671
4672	secclass = socket_type_to_security_class(family, type, protocol);
4673	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4674	if (rc)
4675		return rc;
4676
4677	return avc_has_perm(&selinux_state,
4678			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4679}
4680
4681static int selinux_socket_post_create(struct socket *sock, int family,
4682				      int type, int protocol, int kern)
4683{
4684	const struct task_security_struct *tsec = selinux_cred(current_cred());
4685	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4686	struct sk_security_struct *sksec;
4687	u16 sclass = socket_type_to_security_class(family, type, protocol);
4688	u32 sid = SECINITSID_KERNEL;
4689	int err = 0;
4690
4691	if (!kern) {
4692		err = socket_sockcreate_sid(tsec, sclass, &sid);
4693		if (err)
4694			return err;
4695	}
4696
4697	isec->sclass = sclass;
4698	isec->sid = sid;
4699	isec->initialized = LABEL_INITIALIZED;
4700
4701	if (sock->sk) {
4702		sksec = sock->sk->sk_security;
4703		sksec->sclass = sclass;
4704		sksec->sid = sid;
4705		/* Allows detection of the first association on this socket */
4706		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4707			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4708
4709		err = selinux_netlbl_socket_post_create(sock->sk, family);
4710	}
4711
4712	return err;
4713}
4714
4715static int selinux_socket_socketpair(struct socket *socka,
4716				     struct socket *sockb)
4717{
4718	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4719	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4720
4721	sksec_a->peer_sid = sksec_b->sid;
4722	sksec_b->peer_sid = sksec_a->sid;
4723
4724	return 0;
4725}
4726
4727/* Range of port numbers used to automatically bind.
4728   Need to determine whether we should perform a name_bind
4729   permission check between the socket and the port number. */
4730
4731static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4732{
4733	struct sock *sk = sock->sk;
4734	struct sk_security_struct *sksec = sk->sk_security;
4735	u16 family;
4736	int err;
4737
4738	err = sock_has_perm(sk, SOCKET__BIND);
4739	if (err)
4740		goto out;
4741
4742	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4743	family = sk->sk_family;
4744	if (family == PF_INET || family == PF_INET6) {
4745		char *addrp;
4746		struct common_audit_data ad;
4747		struct lsm_network_audit net = {0,};
4748		struct sockaddr_in *addr4 = NULL;
4749		struct sockaddr_in6 *addr6 = NULL;
4750		u16 family_sa;
4751		unsigned short snum;
4752		u32 sid, node_perm;
4753
4754		/*
4755		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4756		 * that validates multiple binding addresses. Because of this
4757		 * need to check address->sa_family as it is possible to have
4758		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4759		 */
4760		if (addrlen < offsetofend(struct sockaddr, sa_family))
4761			return -EINVAL;
4762		family_sa = address->sa_family;
4763		switch (family_sa) {
4764		case AF_UNSPEC:
4765		case AF_INET:
4766			if (addrlen < sizeof(struct sockaddr_in))
4767				return -EINVAL;
4768			addr4 = (struct sockaddr_in *)address;
4769			if (family_sa == AF_UNSPEC) {
 
 
 
 
 
 
 
4770				/* see __inet_bind(), we only want to allow
4771				 * AF_UNSPEC if the address is INADDR_ANY
4772				 */
4773				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4774					goto err_af;
4775				family_sa = AF_INET;
4776			}
4777			snum = ntohs(addr4->sin_port);
4778			addrp = (char *)&addr4->sin_addr.s_addr;
4779			break;
4780		case AF_INET6:
4781			if (addrlen < SIN6_LEN_RFC2133)
4782				return -EINVAL;
4783			addr6 = (struct sockaddr_in6 *)address;
4784			snum = ntohs(addr6->sin6_port);
4785			addrp = (char *)&addr6->sin6_addr.s6_addr;
4786			break;
4787		default:
4788			goto err_af;
4789		}
4790
4791		ad.type = LSM_AUDIT_DATA_NET;
4792		ad.u.net = &net;
4793		ad.u.net->sport = htons(snum);
4794		ad.u.net->family = family_sa;
4795
4796		if (snum) {
4797			int low, high;
4798
4799			inet_get_local_port_range(sock_net(sk), &low, &high);
4800
4801			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4802			    snum < low || snum > high) {
4803				err = sel_netport_sid(sk->sk_protocol,
4804						      snum, &sid);
4805				if (err)
4806					goto out;
4807				err = avc_has_perm(&selinux_state,
4808						   sksec->sid, sid,
4809						   sksec->sclass,
4810						   SOCKET__NAME_BIND, &ad);
4811				if (err)
4812					goto out;
4813			}
4814		}
4815
4816		switch (sksec->sclass) {
4817		case SECCLASS_TCP_SOCKET:
4818			node_perm = TCP_SOCKET__NODE_BIND;
4819			break;
4820
4821		case SECCLASS_UDP_SOCKET:
4822			node_perm = UDP_SOCKET__NODE_BIND;
4823			break;
4824
4825		case SECCLASS_DCCP_SOCKET:
4826			node_perm = DCCP_SOCKET__NODE_BIND;
4827			break;
4828
4829		case SECCLASS_SCTP_SOCKET:
4830			node_perm = SCTP_SOCKET__NODE_BIND;
4831			break;
4832
4833		default:
4834			node_perm = RAWIP_SOCKET__NODE_BIND;
4835			break;
4836		}
4837
4838		err = sel_netnode_sid(addrp, family_sa, &sid);
4839		if (err)
4840			goto out;
4841
4842		if (family_sa == AF_INET)
4843			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4844		else
4845			ad.u.net->v6info.saddr = addr6->sin6_addr;
4846
4847		err = avc_has_perm(&selinux_state,
4848				   sksec->sid, sid,
4849				   sksec->sclass, node_perm, &ad);
4850		if (err)
4851			goto out;
4852	}
4853out:
4854	return err;
4855err_af:
4856	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4857	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4858		return -EINVAL;
4859	return -EAFNOSUPPORT;
4860}
4861
4862/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4863 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4864 */
4865static int selinux_socket_connect_helper(struct socket *sock,
4866					 struct sockaddr *address, int addrlen)
4867{
4868	struct sock *sk = sock->sk;
4869	struct sk_security_struct *sksec = sk->sk_security;
4870	int err;
4871
4872	err = sock_has_perm(sk, SOCKET__CONNECT);
4873	if (err)
4874		return err;
4875	if (addrlen < offsetofend(struct sockaddr, sa_family))
4876		return -EINVAL;
4877
4878	/* connect(AF_UNSPEC) has special handling, as it is a documented
4879	 * way to disconnect the socket
4880	 */
4881	if (address->sa_family == AF_UNSPEC)
4882		return 0;
4883
4884	/*
4885	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4886	 * for the port.
4887	 */
4888	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4889	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4890	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4891		struct common_audit_data ad;
4892		struct lsm_network_audit net = {0,};
4893		struct sockaddr_in *addr4 = NULL;
4894		struct sockaddr_in6 *addr6 = NULL;
4895		unsigned short snum;
4896		u32 sid, perm;
4897
4898		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4899		 * that validates multiple connect addresses. Because of this
4900		 * need to check address->sa_family as it is possible to have
4901		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4902		 */
4903		switch (address->sa_family) {
4904		case AF_INET:
4905			addr4 = (struct sockaddr_in *)address;
4906			if (addrlen < sizeof(struct sockaddr_in))
4907				return -EINVAL;
4908			snum = ntohs(addr4->sin_port);
4909			break;
4910		case AF_INET6:
4911			addr6 = (struct sockaddr_in6 *)address;
4912			if (addrlen < SIN6_LEN_RFC2133)
4913				return -EINVAL;
4914			snum = ntohs(addr6->sin6_port);
4915			break;
4916		default:
4917			/* Note that SCTP services expect -EINVAL, whereas
4918			 * others expect -EAFNOSUPPORT.
4919			 */
4920			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4921				return -EINVAL;
4922			else
4923				return -EAFNOSUPPORT;
4924		}
4925
4926		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4927		if (err)
4928			return err;
4929
4930		switch (sksec->sclass) {
4931		case SECCLASS_TCP_SOCKET:
4932			perm = TCP_SOCKET__NAME_CONNECT;
4933			break;
4934		case SECCLASS_DCCP_SOCKET:
4935			perm = DCCP_SOCKET__NAME_CONNECT;
4936			break;
4937		case SECCLASS_SCTP_SOCKET:
4938			perm = SCTP_SOCKET__NAME_CONNECT;
4939			break;
4940		}
4941
4942		ad.type = LSM_AUDIT_DATA_NET;
4943		ad.u.net = &net;
4944		ad.u.net->dport = htons(snum);
4945		ad.u.net->family = address->sa_family;
4946		err = avc_has_perm(&selinux_state,
4947				   sksec->sid, sid, sksec->sclass, perm, &ad);
4948		if (err)
4949			return err;
4950	}
4951
4952	return 0;
4953}
4954
4955/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4956static int selinux_socket_connect(struct socket *sock,
4957				  struct sockaddr *address, int addrlen)
4958{
4959	int err;
4960	struct sock *sk = sock->sk;
4961
4962	err = selinux_socket_connect_helper(sock, address, addrlen);
4963	if (err)
4964		return err;
4965
4966	return selinux_netlbl_socket_connect(sk, address);
4967}
4968
4969static int selinux_socket_listen(struct socket *sock, int backlog)
4970{
4971	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4972}
4973
4974static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4975{
4976	int err;
4977	struct inode_security_struct *isec;
4978	struct inode_security_struct *newisec;
4979	u16 sclass;
4980	u32 sid;
4981
4982	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4983	if (err)
4984		return err;
4985
4986	isec = inode_security_novalidate(SOCK_INODE(sock));
4987	spin_lock(&isec->lock);
4988	sclass = isec->sclass;
4989	sid = isec->sid;
4990	spin_unlock(&isec->lock);
4991
4992	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4993	newisec->sclass = sclass;
4994	newisec->sid = sid;
4995	newisec->initialized = LABEL_INITIALIZED;
4996
4997	return 0;
4998}
4999
5000static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
5001				  int size)
5002{
5003	return sock_has_perm(sock->sk, SOCKET__WRITE);
5004}
5005
5006static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
5007				  int size, int flags)
5008{
5009	return sock_has_perm(sock->sk, SOCKET__READ);
5010}
5011
5012static int selinux_socket_getsockname(struct socket *sock)
5013{
5014	return sock_has_perm(sock->sk, SOCKET__GETATTR);
5015}
5016
5017static int selinux_socket_getpeername(struct socket *sock)
5018{
5019	return sock_has_perm(sock->sk, SOCKET__GETATTR);
5020}
5021
5022static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5023{
5024	int err;
5025
5026	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5027	if (err)
5028		return err;
5029
5030	return selinux_netlbl_socket_setsockopt(sock, level, optname);
5031}
5032
5033static int selinux_socket_getsockopt(struct socket *sock, int level,
5034				     int optname)
5035{
5036	return sock_has_perm(sock->sk, SOCKET__GETOPT);
5037}
5038
5039static int selinux_socket_shutdown(struct socket *sock, int how)
5040{
5041	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5042}
5043
5044static int selinux_socket_unix_stream_connect(struct sock *sock,
5045					      struct sock *other,
5046					      struct sock *newsk)
5047{
5048	struct sk_security_struct *sksec_sock = sock->sk_security;
5049	struct sk_security_struct *sksec_other = other->sk_security;
5050	struct sk_security_struct *sksec_new = newsk->sk_security;
5051	struct common_audit_data ad;
5052	struct lsm_network_audit net = {0,};
5053	int err;
5054
5055	ad.type = LSM_AUDIT_DATA_NET;
5056	ad.u.net = &net;
5057	ad.u.net->sk = other;
5058
5059	err = avc_has_perm(&selinux_state,
5060			   sksec_sock->sid, sksec_other->sid,
5061			   sksec_other->sclass,
5062			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5063	if (err)
5064		return err;
5065
5066	/* server child socket */
5067	sksec_new->peer_sid = sksec_sock->sid;
5068	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
5069				    sksec_sock->sid, &sksec_new->sid);
5070	if (err)
5071		return err;
5072
5073	/* connecting socket */
5074	sksec_sock->peer_sid = sksec_new->sid;
5075
5076	return 0;
5077}
5078
5079static int selinux_socket_unix_may_send(struct socket *sock,
5080					struct socket *other)
5081{
5082	struct sk_security_struct *ssec = sock->sk->sk_security;
5083	struct sk_security_struct *osec = other->sk->sk_security;
5084	struct common_audit_data ad;
5085	struct lsm_network_audit net = {0,};
5086
5087	ad.type = LSM_AUDIT_DATA_NET;
5088	ad.u.net = &net;
5089	ad.u.net->sk = other->sk;
5090
5091	return avc_has_perm(&selinux_state,
5092			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5093			    &ad);
5094}
5095
5096static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5097				    char *addrp, u16 family, u32 peer_sid,
5098				    struct common_audit_data *ad)
5099{
5100	int err;
5101	u32 if_sid;
5102	u32 node_sid;
5103
5104	err = sel_netif_sid(ns, ifindex, &if_sid);
5105	if (err)
5106		return err;
5107	err = avc_has_perm(&selinux_state,
5108			   peer_sid, if_sid,
5109			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5110	if (err)
5111		return err;
5112
5113	err = sel_netnode_sid(addrp, family, &node_sid);
5114	if (err)
5115		return err;
5116	return avc_has_perm(&selinux_state,
5117			    peer_sid, node_sid,
5118			    SECCLASS_NODE, NODE__RECVFROM, ad);
5119}
5120
5121static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5122				       u16 family)
5123{
5124	int err = 0;
5125	struct sk_security_struct *sksec = sk->sk_security;
5126	u32 sk_sid = sksec->sid;
5127	struct common_audit_data ad;
5128	struct lsm_network_audit net = {0,};
5129	char *addrp;
5130
5131	ad.type = LSM_AUDIT_DATA_NET;
5132	ad.u.net = &net;
5133	ad.u.net->netif = skb->skb_iif;
5134	ad.u.net->family = family;
5135	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5136	if (err)
5137		return err;
5138
5139	if (selinux_secmark_enabled()) {
5140		err = avc_has_perm(&selinux_state,
5141				   sk_sid, skb->secmark, SECCLASS_PACKET,
5142				   PACKET__RECV, &ad);
5143		if (err)
5144			return err;
5145	}
5146
5147	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5148	if (err)
5149		return err;
5150	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5151
5152	return err;
5153}
5154
5155static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5156{
5157	int err;
5158	struct sk_security_struct *sksec = sk->sk_security;
5159	u16 family = sk->sk_family;
5160	u32 sk_sid = sksec->sid;
5161	struct common_audit_data ad;
5162	struct lsm_network_audit net = {0,};
5163	char *addrp;
5164	u8 secmark_active;
5165	u8 peerlbl_active;
5166
5167	if (family != PF_INET && family != PF_INET6)
5168		return 0;
5169
5170	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5171	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5172		family = PF_INET;
5173
5174	/* If any sort of compatibility mode is enabled then handoff processing
5175	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5176	 * special handling.  We do this in an attempt to keep this function
5177	 * as fast and as clean as possible. */
5178	if (!selinux_policycap_netpeer())
5179		return selinux_sock_rcv_skb_compat(sk, skb, family);
5180
5181	secmark_active = selinux_secmark_enabled();
5182	peerlbl_active = selinux_peerlbl_enabled();
5183	if (!secmark_active && !peerlbl_active)
5184		return 0;
5185
5186	ad.type = LSM_AUDIT_DATA_NET;
5187	ad.u.net = &net;
5188	ad.u.net->netif = skb->skb_iif;
5189	ad.u.net->family = family;
5190	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5191	if (err)
5192		return err;
5193
5194	if (peerlbl_active) {
5195		u32 peer_sid;
5196
5197		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5198		if (err)
5199			return err;
5200		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5201					       addrp, family, peer_sid, &ad);
5202		if (err) {
5203			selinux_netlbl_err(skb, family, err, 0);
5204			return err;
5205		}
5206		err = avc_has_perm(&selinux_state,
5207				   sk_sid, peer_sid, SECCLASS_PEER,
5208				   PEER__RECV, &ad);
5209		if (err) {
5210			selinux_netlbl_err(skb, family, err, 0);
5211			return err;
5212		}
5213	}
5214
5215	if (secmark_active) {
5216		err = avc_has_perm(&selinux_state,
5217				   sk_sid, skb->secmark, SECCLASS_PACKET,
5218				   PACKET__RECV, &ad);
5219		if (err)
5220			return err;
5221	}
5222
5223	return err;
5224}
5225
5226static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5227					    int __user *optlen, unsigned len)
 
5228{
5229	int err = 0;
5230	char *scontext;
5231	u32 scontext_len;
5232	struct sk_security_struct *sksec = sock->sk->sk_security;
5233	u32 peer_sid = SECSID_NULL;
5234
5235	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5236	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5237	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5238		peer_sid = sksec->peer_sid;
5239	if (peer_sid == SECSID_NULL)
5240		return -ENOPROTOOPT;
5241
5242	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5243				      &scontext_len);
5244	if (err)
5245		return err;
5246
5247	if (scontext_len > len) {
5248		err = -ERANGE;
5249		goto out_len;
5250	}
5251
5252	if (copy_to_user(optval, scontext, scontext_len))
5253		err = -EFAULT;
5254
5255out_len:
5256	if (put_user(scontext_len, optlen))
5257		err = -EFAULT;
5258	kfree(scontext);
5259	return err;
5260}
5261
5262static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
 
5263{
5264	u32 peer_secid = SECSID_NULL;
5265	u16 family;
5266	struct inode_security_struct *isec;
5267
5268	if (skb && skb->protocol == htons(ETH_P_IP))
5269		family = PF_INET;
5270	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5271		family = PF_INET6;
5272	else if (sock)
5273		family = sock->sk->sk_family;
5274	else
5275		goto out;
 
 
5276
5277	if (sock && family == PF_UNIX) {
 
5278		isec = inode_security_novalidate(SOCK_INODE(sock));
5279		peer_secid = isec->sid;
5280	} else if (skb)
5281		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5282
5283out:
5284	*secid = peer_secid;
5285	if (peer_secid == SECSID_NULL)
5286		return -EINVAL;
5287	return 0;
5288}
5289
5290static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5291{
5292	struct sk_security_struct *sksec;
5293
5294	sksec = kzalloc(sizeof(*sksec), priority);
5295	if (!sksec)
5296		return -ENOMEM;
5297
5298	sksec->peer_sid = SECINITSID_UNLABELED;
5299	sksec->sid = SECINITSID_UNLABELED;
5300	sksec->sclass = SECCLASS_SOCKET;
5301	selinux_netlbl_sk_security_reset(sksec);
5302	sk->sk_security = sksec;
5303
5304	return 0;
5305}
5306
5307static void selinux_sk_free_security(struct sock *sk)
5308{
5309	struct sk_security_struct *sksec = sk->sk_security;
5310
5311	sk->sk_security = NULL;
5312	selinux_netlbl_sk_security_free(sksec);
5313	kfree(sksec);
5314}
5315
5316static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5317{
5318	struct sk_security_struct *sksec = sk->sk_security;
5319	struct sk_security_struct *newsksec = newsk->sk_security;
5320
5321	newsksec->sid = sksec->sid;
5322	newsksec->peer_sid = sksec->peer_sid;
5323	newsksec->sclass = sksec->sclass;
5324
5325	selinux_netlbl_sk_security_reset(newsksec);
5326}
5327
5328static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5329{
5330	if (!sk)
5331		*secid = SECINITSID_ANY_SOCKET;
5332	else {
5333		struct sk_security_struct *sksec = sk->sk_security;
5334
5335		*secid = sksec->sid;
5336	}
5337}
5338
5339static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5340{
5341	struct inode_security_struct *isec =
5342		inode_security_novalidate(SOCK_INODE(parent));
5343	struct sk_security_struct *sksec = sk->sk_security;
5344
5345	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5346	    sk->sk_family == PF_UNIX)
5347		isec->sid = sksec->sid;
5348	sksec->sclass = isec->sclass;
5349}
5350
5351/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5352 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5353 * already present).
5354 */
5355static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5356				      struct sk_buff *skb)
5357{
5358	struct sk_security_struct *sksec = ep->base.sk->sk_security;
 
 
5359	struct common_audit_data ad;
5360	struct lsm_network_audit net = {0,};
5361	u8 peerlbl_active;
5362	u32 peer_sid = SECINITSID_UNLABELED;
5363	u32 conn_sid;
5364	int err = 0;
5365
5366	if (!selinux_policycap_extsockclass())
5367		return 0;
 
5368
5369	peerlbl_active = selinux_peerlbl_enabled();
 
5370
5371	if (peerlbl_active) {
5372		/* This will return peer_sid = SECSID_NULL if there are
5373		 * no peer labels, see security_net_peersid_resolve().
5374		 */
5375		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5376					      &peer_sid);
5377		if (err)
5378			return err;
5379
5380		if (peer_sid == SECSID_NULL)
5381			peer_sid = SECINITSID_UNLABELED;
 
 
5382	}
5383
5384	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5385		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5386
5387		/* Here as first association on socket. As the peer SID
5388		 * was allowed by peer recv (and the netif/node checks),
5389		 * then it is approved by policy and used as the primary
5390		 * peer SID for getpeercon(3).
5391		 */
5392		sksec->peer_sid = peer_sid;
5393	} else if  (sksec->peer_sid != peer_sid) {
5394		/* Other association peer SIDs are checked to enforce
5395		 * consistency among the peer SIDs.
5396		 */
5397		ad.type = LSM_AUDIT_DATA_NET;
5398		ad.u.net = &net;
5399		ad.u.net->sk = ep->base.sk;
5400		err = avc_has_perm(&selinux_state,
5401				   sksec->peer_sid, peer_sid, sksec->sclass,
5402				   SCTP_SOCKET__ASSOCIATION, &ad);
5403		if (err)
5404			return err;
5405	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5406
5407	/* Compute the MLS component for the connection and store
5408	 * the information in ep. This will be used by SCTP TCP type
5409	 * sockets and peeled off connections as they cause a new
5410	 * socket to be generated. selinux_sctp_sk_clone() will then
5411	 * plug this into the new socket.
5412	 */
5413	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5414	if (err)
5415		return err;
5416
5417	ep->secid = conn_sid;
5418	ep->peer_secid = peer_sid;
5419
5420	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5421	return selinux_netlbl_sctp_assoc_request(ep, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5422}
5423
5424/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5425 * based on their @optname.
5426 */
5427static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5428				     struct sockaddr *address,
5429				     int addrlen)
5430{
5431	int len, err = 0, walk_size = 0;
5432	void *addr_buf;
5433	struct sockaddr *addr;
5434	struct socket *sock;
5435
5436	if (!selinux_policycap_extsockclass())
5437		return 0;
5438
5439	/* Process one or more addresses that may be IPv4 or IPv6 */
5440	sock = sk->sk_socket;
5441	addr_buf = address;
5442
5443	while (walk_size < addrlen) {
5444		if (walk_size + sizeof(sa_family_t) > addrlen)
5445			return -EINVAL;
5446
5447		addr = addr_buf;
5448		switch (addr->sa_family) {
5449		case AF_UNSPEC:
5450		case AF_INET:
5451			len = sizeof(struct sockaddr_in);
5452			break;
5453		case AF_INET6:
5454			len = sizeof(struct sockaddr_in6);
5455			break;
5456		default:
5457			return -EINVAL;
5458		}
5459
5460		if (walk_size + len > addrlen)
5461			return -EINVAL;
5462
5463		err = -EINVAL;
5464		switch (optname) {
5465		/* Bind checks */
5466		case SCTP_PRIMARY_ADDR:
5467		case SCTP_SET_PEER_PRIMARY_ADDR:
5468		case SCTP_SOCKOPT_BINDX_ADD:
5469			err = selinux_socket_bind(sock, addr, len);
5470			break;
5471		/* Connect checks */
5472		case SCTP_SOCKOPT_CONNECTX:
5473		case SCTP_PARAM_SET_PRIMARY:
5474		case SCTP_PARAM_ADD_IP:
5475		case SCTP_SENDMSG_CONNECT:
5476			err = selinux_socket_connect_helper(sock, addr, len);
5477			if (err)
5478				return err;
5479
5480			/* As selinux_sctp_bind_connect() is called by the
5481			 * SCTP protocol layer, the socket is already locked,
5482			 * therefore selinux_netlbl_socket_connect_locked()
5483			 * is called here. The situations handled are:
5484			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5485			 * whenever a new IP address is added or when a new
5486			 * primary address is selected.
5487			 * Note that an SCTP connect(2) call happens before
5488			 * the SCTP protocol layer and is handled via
5489			 * selinux_socket_connect().
5490			 */
5491			err = selinux_netlbl_socket_connect_locked(sk, addr);
5492			break;
5493		}
5494
5495		if (err)
5496			return err;
5497
5498		addr_buf += len;
5499		walk_size += len;
5500	}
5501
5502	return 0;
5503}
5504
5505/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5506static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5507				  struct sock *newsk)
5508{
5509	struct sk_security_struct *sksec = sk->sk_security;
5510	struct sk_security_struct *newsksec = newsk->sk_security;
5511
5512	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5513	 * the non-sctp clone version.
5514	 */
5515	if (!selinux_policycap_extsockclass())
5516		return selinux_sk_clone_security(sk, newsk);
5517
5518	newsksec->sid = ep->secid;
5519	newsksec->peer_sid = ep->peer_secid;
5520	newsksec->sclass = sksec->sclass;
5521	selinux_netlbl_sctp_sk_clone(sk, newsk);
5522}
5523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5524static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5525				     struct request_sock *req)
5526{
5527	struct sk_security_struct *sksec = sk->sk_security;
5528	int err;
5529	u16 family = req->rsk_ops->family;
5530	u32 connsid;
5531	u32 peersid;
5532
5533	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5534	if (err)
5535		return err;
5536	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5537	if (err)
5538		return err;
5539	req->secid = connsid;
5540	req->peer_secid = peersid;
5541
5542	return selinux_netlbl_inet_conn_request(req, family);
5543}
5544
5545static void selinux_inet_csk_clone(struct sock *newsk,
5546				   const struct request_sock *req)
5547{
5548	struct sk_security_struct *newsksec = newsk->sk_security;
5549
5550	newsksec->sid = req->secid;
5551	newsksec->peer_sid = req->peer_secid;
5552	/* NOTE: Ideally, we should also get the isec->sid for the
5553	   new socket in sync, but we don't have the isec available yet.
5554	   So we will wait until sock_graft to do it, by which
5555	   time it will have been created and available. */
5556
5557	/* We don't need to take any sort of lock here as we are the only
5558	 * thread with access to newsksec */
5559	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5560}
5561
5562static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5563{
5564	u16 family = sk->sk_family;
5565	struct sk_security_struct *sksec = sk->sk_security;
5566
5567	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5568	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5569		family = PF_INET;
5570
5571	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5572}
5573
5574static int selinux_secmark_relabel_packet(u32 sid)
5575{
5576	const struct task_security_struct *__tsec;
5577	u32 tsid;
5578
5579	__tsec = selinux_cred(current_cred());
5580	tsid = __tsec->sid;
5581
5582	return avc_has_perm(&selinux_state,
5583			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5584			    NULL);
5585}
5586
5587static void selinux_secmark_refcount_inc(void)
5588{
5589	atomic_inc(&selinux_secmark_refcount);
5590}
5591
5592static void selinux_secmark_refcount_dec(void)
5593{
5594	atomic_dec(&selinux_secmark_refcount);
5595}
5596
5597static void selinux_req_classify_flow(const struct request_sock *req,
5598				      struct flowi_common *flic)
5599{
5600	flic->flowic_secid = req->secid;
5601}
5602
5603static int selinux_tun_dev_alloc_security(void **security)
5604{
5605	struct tun_security_struct *tunsec;
5606
5607	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5608	if (!tunsec)
5609		return -ENOMEM;
5610	tunsec->sid = current_sid();
5611
5612	*security = tunsec;
5613	return 0;
5614}
5615
5616static void selinux_tun_dev_free_security(void *security)
5617{
5618	kfree(security);
5619}
5620
5621static int selinux_tun_dev_create(void)
5622{
5623	u32 sid = current_sid();
5624
5625	/* we aren't taking into account the "sockcreate" SID since the socket
5626	 * that is being created here is not a socket in the traditional sense,
5627	 * instead it is a private sock, accessible only to the kernel, and
5628	 * representing a wide range of network traffic spanning multiple
5629	 * connections unlike traditional sockets - check the TUN driver to
5630	 * get a better understanding of why this socket is special */
5631
5632	return avc_has_perm(&selinux_state,
5633			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5634			    NULL);
5635}
5636
5637static int selinux_tun_dev_attach_queue(void *security)
5638{
5639	struct tun_security_struct *tunsec = security;
5640
5641	return avc_has_perm(&selinux_state,
5642			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5643			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5644}
5645
5646static int selinux_tun_dev_attach(struct sock *sk, void *security)
5647{
5648	struct tun_security_struct *tunsec = security;
5649	struct sk_security_struct *sksec = sk->sk_security;
5650
5651	/* we don't currently perform any NetLabel based labeling here and it
5652	 * isn't clear that we would want to do so anyway; while we could apply
5653	 * labeling without the support of the TUN user the resulting labeled
5654	 * traffic from the other end of the connection would almost certainly
5655	 * cause confusion to the TUN user that had no idea network labeling
5656	 * protocols were being used */
5657
5658	sksec->sid = tunsec->sid;
5659	sksec->sclass = SECCLASS_TUN_SOCKET;
5660
5661	return 0;
5662}
5663
5664static int selinux_tun_dev_open(void *security)
5665{
5666	struct tun_security_struct *tunsec = security;
5667	u32 sid = current_sid();
5668	int err;
5669
5670	err = avc_has_perm(&selinux_state,
5671			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5672			   TUN_SOCKET__RELABELFROM, NULL);
5673	if (err)
5674		return err;
5675	err = avc_has_perm(&selinux_state,
5676			   sid, sid, SECCLASS_TUN_SOCKET,
5677			   TUN_SOCKET__RELABELTO, NULL);
5678	if (err)
5679		return err;
5680	tunsec->sid = sid;
5681
5682	return 0;
5683}
5684
5685#ifdef CONFIG_NETFILTER
5686
5687static unsigned int selinux_ip_forward(struct sk_buff *skb,
5688				       const struct net_device *indev,
5689				       u16 family)
5690{
5691	int err;
 
5692	char *addrp;
5693	u32 peer_sid;
5694	struct common_audit_data ad;
5695	struct lsm_network_audit net = {0,};
5696	u8 secmark_active;
5697	u8 netlbl_active;
5698	u8 peerlbl_active;
5699
5700	if (!selinux_policycap_netpeer())
5701		return NF_ACCEPT;
5702
5703	secmark_active = selinux_secmark_enabled();
5704	netlbl_active = netlbl_enabled();
5705	peerlbl_active = selinux_peerlbl_enabled();
5706	if (!secmark_active && !peerlbl_active)
5707		return NF_ACCEPT;
5708
 
5709	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5710		return NF_DROP;
5711
5712	ad.type = LSM_AUDIT_DATA_NET;
5713	ad.u.net = &net;
5714	ad.u.net->netif = indev->ifindex;
5715	ad.u.net->family = family;
5716	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5717		return NF_DROP;
5718
5719	if (peerlbl_active) {
5720		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
 
 
5721					       addrp, family, peer_sid, &ad);
5722		if (err) {
5723			selinux_netlbl_err(skb, family, err, 1);
5724			return NF_DROP;
5725		}
5726	}
5727
5728	if (secmark_active)
5729		if (avc_has_perm(&selinux_state,
5730				 peer_sid, skb->secmark,
5731				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5732			return NF_DROP;
5733
5734	if (netlbl_active)
5735		/* we do this in the FORWARD path and not the POST_ROUTING
5736		 * path because we want to make sure we apply the necessary
5737		 * labeling before IPsec is applied so we can leverage AH
5738		 * protection */
5739		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5740			return NF_DROP;
5741
5742	return NF_ACCEPT;
5743}
5744
5745static unsigned int selinux_ipv4_forward(void *priv,
5746					 struct sk_buff *skb,
5747					 const struct nf_hook_state *state)
5748{
5749	return selinux_ip_forward(skb, state->in, PF_INET);
5750}
5751
5752#if IS_ENABLED(CONFIG_IPV6)
5753static unsigned int selinux_ipv6_forward(void *priv,
5754					 struct sk_buff *skb,
5755					 const struct nf_hook_state *state)
5756{
5757	return selinux_ip_forward(skb, state->in, PF_INET6);
5758}
5759#endif	/* IPV6 */
5760
5761static unsigned int selinux_ip_output(struct sk_buff *skb,
5762				      u16 family)
5763{
5764	struct sock *sk;
5765	u32 sid;
5766
5767	if (!netlbl_enabled())
5768		return NF_ACCEPT;
5769
5770	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5771	 * because we want to make sure we apply the necessary labeling
5772	 * before IPsec is applied so we can leverage AH protection */
5773	sk = skb->sk;
5774	if (sk) {
5775		struct sk_security_struct *sksec;
5776
5777		if (sk_listener(sk))
5778			/* if the socket is the listening state then this
5779			 * packet is a SYN-ACK packet which means it needs to
5780			 * be labeled based on the connection/request_sock and
5781			 * not the parent socket.  unfortunately, we can't
5782			 * lookup the request_sock yet as it isn't queued on
5783			 * the parent socket until after the SYN-ACK is sent.
5784			 * the "solution" is to simply pass the packet as-is
5785			 * as any IP option based labeling should be copied
5786			 * from the initial connection request (in the IP
5787			 * layer).  it is far from ideal, but until we get a
5788			 * security label in the packet itself this is the
5789			 * best we can do. */
5790			return NF_ACCEPT;
5791
5792		/* standard practice, label using the parent socket */
5793		sksec = sk->sk_security;
5794		sid = sksec->sid;
5795	} else
5796		sid = SECINITSID_KERNEL;
5797	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5798		return NF_DROP;
5799
5800	return NF_ACCEPT;
5801}
5802
5803static unsigned int selinux_ipv4_output(void *priv,
5804					struct sk_buff *skb,
5805					const struct nf_hook_state *state)
5806{
5807	return selinux_ip_output(skb, PF_INET);
5808}
5809
5810#if IS_ENABLED(CONFIG_IPV6)
5811static unsigned int selinux_ipv6_output(void *priv,
5812					struct sk_buff *skb,
5813					const struct nf_hook_state *state)
5814{
5815	return selinux_ip_output(skb, PF_INET6);
5816}
5817#endif	/* IPV6 */
5818
5819static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5820						int ifindex,
5821						u16 family)
5822{
5823	struct sock *sk = skb_to_full_sk(skb);
5824	struct sk_security_struct *sksec;
5825	struct common_audit_data ad;
5826	struct lsm_network_audit net = {0,};
5827	char *addrp;
5828	u8 proto;
5829
 
5830	if (sk == NULL)
5831		return NF_ACCEPT;
5832	sksec = sk->sk_security;
5833
5834	ad.type = LSM_AUDIT_DATA_NET;
5835	ad.u.net = &net;
5836	ad.u.net->netif = ifindex;
5837	ad.u.net->family = family;
5838	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5839		return NF_DROP;
5840
5841	if (selinux_secmark_enabled())
5842		if (avc_has_perm(&selinux_state,
5843				 sksec->sid, skb->secmark,
5844				 SECCLASS_PACKET, PACKET__SEND, &ad))
5845			return NF_DROP_ERR(-ECONNREFUSED);
5846
5847	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5848		return NF_DROP_ERR(-ECONNREFUSED);
5849
5850	return NF_ACCEPT;
5851}
5852
5853static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5854					 const struct net_device *outdev,
5855					 u16 family)
5856{
 
5857	u32 secmark_perm;
5858	u32 peer_sid;
5859	int ifindex = outdev->ifindex;
5860	struct sock *sk;
5861	struct common_audit_data ad;
5862	struct lsm_network_audit net = {0,};
5863	char *addrp;
5864	u8 secmark_active;
5865	u8 peerlbl_active;
5866
5867	/* If any sort of compatibility mode is enabled then handoff processing
5868	 * to the selinux_ip_postroute_compat() function to deal with the
5869	 * special handling.  We do this in an attempt to keep this function
5870	 * as fast and as clean as possible. */
5871	if (!selinux_policycap_netpeer())
5872		return selinux_ip_postroute_compat(skb, ifindex, family);
5873
5874	secmark_active = selinux_secmark_enabled();
5875	peerlbl_active = selinux_peerlbl_enabled();
5876	if (!secmark_active && !peerlbl_active)
5877		return NF_ACCEPT;
5878
5879	sk = skb_to_full_sk(skb);
5880
5881#ifdef CONFIG_XFRM
5882	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5883	 * packet transformation so allow the packet to pass without any checks
5884	 * since we'll have another chance to perform access control checks
5885	 * when the packet is on it's final way out.
5886	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5887	 *       is NULL, in this case go ahead and apply access control.
5888	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5889	 *       TCP listening state we cannot wait until the XFRM processing
5890	 *       is done as we will miss out on the SA label if we do;
5891	 *       unfortunately, this means more work, but it is only once per
5892	 *       connection. */
5893	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5894	    !(sk && sk_listener(sk)))
5895		return NF_ACCEPT;
5896#endif
5897
 
5898	if (sk == NULL) {
5899		/* Without an associated socket the packet is either coming
5900		 * from the kernel or it is being forwarded; check the packet
5901		 * to determine which and if the packet is being forwarded
5902		 * query the packet directly to determine the security label. */
5903		if (skb->skb_iif) {
5904			secmark_perm = PACKET__FORWARD_OUT;
5905			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5906				return NF_DROP;
5907		} else {
5908			secmark_perm = PACKET__SEND;
5909			peer_sid = SECINITSID_KERNEL;
5910		}
5911	} else if (sk_listener(sk)) {
5912		/* Locally generated packet but the associated socket is in the
5913		 * listening state which means this is a SYN-ACK packet.  In
5914		 * this particular case the correct security label is assigned
5915		 * to the connection/request_sock but unfortunately we can't
5916		 * query the request_sock as it isn't queued on the parent
5917		 * socket until after the SYN-ACK packet is sent; the only
5918		 * viable choice is to regenerate the label like we do in
5919		 * selinux_inet_conn_request().  See also selinux_ip_output()
5920		 * for similar problems. */
5921		u32 skb_sid;
5922		struct sk_security_struct *sksec;
5923
5924		sksec = sk->sk_security;
5925		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5926			return NF_DROP;
5927		/* At this point, if the returned skb peerlbl is SECSID_NULL
5928		 * and the packet has been through at least one XFRM
5929		 * transformation then we must be dealing with the "final"
5930		 * form of labeled IPsec packet; since we've already applied
5931		 * all of our access controls on this packet we can safely
5932		 * pass the packet. */
5933		if (skb_sid == SECSID_NULL) {
5934			switch (family) {
5935			case PF_INET:
5936				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5937					return NF_ACCEPT;
5938				break;
5939			case PF_INET6:
5940				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5941					return NF_ACCEPT;
5942				break;
5943			default:
5944				return NF_DROP_ERR(-ECONNREFUSED);
5945			}
5946		}
5947		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5948			return NF_DROP;
5949		secmark_perm = PACKET__SEND;
5950	} else {
5951		/* Locally generated packet, fetch the security label from the
5952		 * associated socket. */
5953		struct sk_security_struct *sksec = sk->sk_security;
5954		peer_sid = sksec->sid;
5955		secmark_perm = PACKET__SEND;
5956	}
5957
5958	ad.type = LSM_AUDIT_DATA_NET;
5959	ad.u.net = &net;
5960	ad.u.net->netif = ifindex;
5961	ad.u.net->family = family;
5962	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5963		return NF_DROP;
5964
5965	if (secmark_active)
5966		if (avc_has_perm(&selinux_state,
5967				 peer_sid, skb->secmark,
5968				 SECCLASS_PACKET, secmark_perm, &ad))
5969			return NF_DROP_ERR(-ECONNREFUSED);
5970
5971	if (peerlbl_active) {
5972		u32 if_sid;
5973		u32 node_sid;
5974
5975		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5976			return NF_DROP;
5977		if (avc_has_perm(&selinux_state,
5978				 peer_sid, if_sid,
5979				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5980			return NF_DROP_ERR(-ECONNREFUSED);
5981
5982		if (sel_netnode_sid(addrp, family, &node_sid))
5983			return NF_DROP;
5984		if (avc_has_perm(&selinux_state,
5985				 peer_sid, node_sid,
5986				 SECCLASS_NODE, NODE__SENDTO, &ad))
5987			return NF_DROP_ERR(-ECONNREFUSED);
5988	}
5989
5990	return NF_ACCEPT;
5991}
5992
5993static unsigned int selinux_ipv4_postroute(void *priv,
5994					   struct sk_buff *skb,
5995					   const struct nf_hook_state *state)
5996{
5997	return selinux_ip_postroute(skb, state->out, PF_INET);
5998}
5999
6000#if IS_ENABLED(CONFIG_IPV6)
6001static unsigned int selinux_ipv6_postroute(void *priv,
6002					   struct sk_buff *skb,
6003					   const struct nf_hook_state *state)
6004{
6005	return selinux_ip_postroute(skb, state->out, PF_INET6);
6006}
6007#endif	/* IPV6 */
6008
6009#endif	/* CONFIG_NETFILTER */
6010
6011static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
6012{
6013	int rc = 0;
6014	unsigned int msg_len;
6015	unsigned int data_len = skb->len;
6016	unsigned char *data = skb->data;
6017	struct nlmsghdr *nlh;
6018	struct sk_security_struct *sksec = sk->sk_security;
6019	u16 sclass = sksec->sclass;
6020	u32 perm;
6021
6022	while (data_len >= nlmsg_total_size(0)) {
6023		nlh = (struct nlmsghdr *)data;
6024
6025		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
6026		 *       users which means we can't reject skb's with bogus
6027		 *       length fields; our solution is to follow what
6028		 *       netlink_rcv_skb() does and simply skip processing at
6029		 *       messages with length fields that are clearly junk
6030		 */
6031		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
6032			return 0;
6033
6034		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
6035		if (rc == 0) {
6036			rc = sock_has_perm(sk, perm);
6037			if (rc)
6038				return rc;
6039		} else if (rc == -EINVAL) {
6040			/* -EINVAL is a missing msg/perm mapping */
6041			pr_warn_ratelimited("SELinux: unrecognized netlink"
6042				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
6043				" pid=%d comm=%s\n",
6044				sk->sk_protocol, nlh->nlmsg_type,
6045				secclass_map[sclass - 1].name,
6046				task_pid_nr(current), current->comm);
6047			if (enforcing_enabled(&selinux_state) &&
6048			    !security_get_allow_unknown(&selinux_state))
6049				return rc;
6050			rc = 0;
6051		} else if (rc == -ENOENT) {
6052			/* -ENOENT is a missing socket/class mapping, ignore */
6053			rc = 0;
6054		} else {
6055			return rc;
6056		}
6057
6058		/* move to the next message after applying netlink padding */
6059		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6060		if (msg_len >= data_len)
6061			return 0;
6062		data_len -= msg_len;
6063		data += msg_len;
6064	}
6065
6066	return rc;
6067}
6068
6069static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6070{
6071	isec->sclass = sclass;
6072	isec->sid = current_sid();
6073}
6074
6075static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6076			u32 perms)
6077{
6078	struct ipc_security_struct *isec;
6079	struct common_audit_data ad;
6080	u32 sid = current_sid();
6081
6082	isec = selinux_ipc(ipc_perms);
6083
6084	ad.type = LSM_AUDIT_DATA_IPC;
6085	ad.u.ipc_id = ipc_perms->key;
6086
6087	return avc_has_perm(&selinux_state,
6088			    sid, isec->sid, isec->sclass, perms, &ad);
6089}
6090
6091static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6092{
6093	struct msg_security_struct *msec;
6094
6095	msec = selinux_msg_msg(msg);
6096	msec->sid = SECINITSID_UNLABELED;
6097
6098	return 0;
6099}
6100
6101/* message queue security operations */
6102static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6103{
6104	struct ipc_security_struct *isec;
6105	struct common_audit_data ad;
6106	u32 sid = current_sid();
6107	int rc;
6108
6109	isec = selinux_ipc(msq);
6110	ipc_init_security(isec, SECCLASS_MSGQ);
6111
6112	ad.type = LSM_AUDIT_DATA_IPC;
6113	ad.u.ipc_id = msq->key;
6114
6115	rc = avc_has_perm(&selinux_state,
6116			  sid, isec->sid, SECCLASS_MSGQ,
6117			  MSGQ__CREATE, &ad);
6118	return rc;
6119}
6120
6121static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6122{
6123	struct ipc_security_struct *isec;
6124	struct common_audit_data ad;
6125	u32 sid = current_sid();
6126
6127	isec = selinux_ipc(msq);
6128
6129	ad.type = LSM_AUDIT_DATA_IPC;
6130	ad.u.ipc_id = msq->key;
6131
6132	return avc_has_perm(&selinux_state,
6133			    sid, isec->sid, SECCLASS_MSGQ,
6134			    MSGQ__ASSOCIATE, &ad);
6135}
6136
6137static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6138{
6139	int err;
6140	int perms;
6141
6142	switch (cmd) {
6143	case IPC_INFO:
6144	case MSG_INFO:
6145		/* No specific object, just general system-wide information. */
6146		return avc_has_perm(&selinux_state,
6147				    current_sid(), SECINITSID_KERNEL,
6148				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6149	case IPC_STAT:
6150	case MSG_STAT:
6151	case MSG_STAT_ANY:
6152		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6153		break;
6154	case IPC_SET:
6155		perms = MSGQ__SETATTR;
6156		break;
6157	case IPC_RMID:
6158		perms = MSGQ__DESTROY;
6159		break;
6160	default:
6161		return 0;
6162	}
6163
6164	err = ipc_has_perm(msq, perms);
6165	return err;
6166}
6167
6168static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6169{
6170	struct ipc_security_struct *isec;
6171	struct msg_security_struct *msec;
6172	struct common_audit_data ad;
6173	u32 sid = current_sid();
6174	int rc;
6175
6176	isec = selinux_ipc(msq);
6177	msec = selinux_msg_msg(msg);
6178
6179	/*
6180	 * First time through, need to assign label to the message
6181	 */
6182	if (msec->sid == SECINITSID_UNLABELED) {
6183		/*
6184		 * Compute new sid based on current process and
6185		 * message queue this message will be stored in
6186		 */
6187		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6188					     SECCLASS_MSG, NULL, &msec->sid);
6189		if (rc)
6190			return rc;
6191	}
6192
6193	ad.type = LSM_AUDIT_DATA_IPC;
6194	ad.u.ipc_id = msq->key;
6195
6196	/* Can this process write to the queue? */
6197	rc = avc_has_perm(&selinux_state,
6198			  sid, isec->sid, SECCLASS_MSGQ,
6199			  MSGQ__WRITE, &ad);
6200	if (!rc)
6201		/* Can this process send the message */
6202		rc = avc_has_perm(&selinux_state,
6203				  sid, msec->sid, SECCLASS_MSG,
6204				  MSG__SEND, &ad);
6205	if (!rc)
6206		/* Can the message be put in the queue? */
6207		rc = avc_has_perm(&selinux_state,
6208				  msec->sid, isec->sid, SECCLASS_MSGQ,
6209				  MSGQ__ENQUEUE, &ad);
6210
6211	return rc;
6212}
6213
6214static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6215				    struct task_struct *target,
6216				    long type, int mode)
6217{
6218	struct ipc_security_struct *isec;
6219	struct msg_security_struct *msec;
6220	struct common_audit_data ad;
6221	u32 sid = task_sid_obj(target);
6222	int rc;
6223
6224	isec = selinux_ipc(msq);
6225	msec = selinux_msg_msg(msg);
6226
6227	ad.type = LSM_AUDIT_DATA_IPC;
6228	ad.u.ipc_id = msq->key;
6229
6230	rc = avc_has_perm(&selinux_state,
6231			  sid, isec->sid,
6232			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6233	if (!rc)
6234		rc = avc_has_perm(&selinux_state,
6235				  sid, msec->sid,
6236				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6237	return rc;
6238}
6239
6240/* Shared Memory security operations */
6241static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6242{
6243	struct ipc_security_struct *isec;
6244	struct common_audit_data ad;
6245	u32 sid = current_sid();
6246	int rc;
6247
6248	isec = selinux_ipc(shp);
6249	ipc_init_security(isec, SECCLASS_SHM);
6250
6251	ad.type = LSM_AUDIT_DATA_IPC;
6252	ad.u.ipc_id = shp->key;
6253
6254	rc = avc_has_perm(&selinux_state,
6255			  sid, isec->sid, SECCLASS_SHM,
6256			  SHM__CREATE, &ad);
6257	return rc;
6258}
6259
6260static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6261{
6262	struct ipc_security_struct *isec;
6263	struct common_audit_data ad;
6264	u32 sid = current_sid();
6265
6266	isec = selinux_ipc(shp);
6267
6268	ad.type = LSM_AUDIT_DATA_IPC;
6269	ad.u.ipc_id = shp->key;
6270
6271	return avc_has_perm(&selinux_state,
6272			    sid, isec->sid, SECCLASS_SHM,
6273			    SHM__ASSOCIATE, &ad);
6274}
6275
6276/* Note, at this point, shp is locked down */
6277static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6278{
6279	int perms;
6280	int err;
6281
6282	switch (cmd) {
6283	case IPC_INFO:
6284	case SHM_INFO:
6285		/* No specific object, just general system-wide information. */
6286		return avc_has_perm(&selinux_state,
6287				    current_sid(), SECINITSID_KERNEL,
6288				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6289	case IPC_STAT:
6290	case SHM_STAT:
6291	case SHM_STAT_ANY:
6292		perms = SHM__GETATTR | SHM__ASSOCIATE;
6293		break;
6294	case IPC_SET:
6295		perms = SHM__SETATTR;
6296		break;
6297	case SHM_LOCK:
6298	case SHM_UNLOCK:
6299		perms = SHM__LOCK;
6300		break;
6301	case IPC_RMID:
6302		perms = SHM__DESTROY;
6303		break;
6304	default:
6305		return 0;
6306	}
6307
6308	err = ipc_has_perm(shp, perms);
6309	return err;
6310}
6311
6312static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6313			     char __user *shmaddr, int shmflg)
6314{
6315	u32 perms;
6316
6317	if (shmflg & SHM_RDONLY)
6318		perms = SHM__READ;
6319	else
6320		perms = SHM__READ | SHM__WRITE;
6321
6322	return ipc_has_perm(shp, perms);
6323}
6324
6325/* Semaphore security operations */
6326static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6327{
6328	struct ipc_security_struct *isec;
6329	struct common_audit_data ad;
6330	u32 sid = current_sid();
6331	int rc;
6332
6333	isec = selinux_ipc(sma);
6334	ipc_init_security(isec, SECCLASS_SEM);
6335
6336	ad.type = LSM_AUDIT_DATA_IPC;
6337	ad.u.ipc_id = sma->key;
6338
6339	rc = avc_has_perm(&selinux_state,
6340			  sid, isec->sid, SECCLASS_SEM,
6341			  SEM__CREATE, &ad);
6342	return rc;
6343}
6344
6345static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6346{
6347	struct ipc_security_struct *isec;
6348	struct common_audit_data ad;
6349	u32 sid = current_sid();
6350
6351	isec = selinux_ipc(sma);
6352
6353	ad.type = LSM_AUDIT_DATA_IPC;
6354	ad.u.ipc_id = sma->key;
6355
6356	return avc_has_perm(&selinux_state,
6357			    sid, isec->sid, SECCLASS_SEM,
6358			    SEM__ASSOCIATE, &ad);
6359}
6360
6361/* Note, at this point, sma is locked down */
6362static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6363{
6364	int err;
6365	u32 perms;
6366
6367	switch (cmd) {
6368	case IPC_INFO:
6369	case SEM_INFO:
6370		/* No specific object, just general system-wide information. */
6371		return avc_has_perm(&selinux_state,
6372				    current_sid(), SECINITSID_KERNEL,
6373				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6374	case GETPID:
6375	case GETNCNT:
6376	case GETZCNT:
6377		perms = SEM__GETATTR;
6378		break;
6379	case GETVAL:
6380	case GETALL:
6381		perms = SEM__READ;
6382		break;
6383	case SETVAL:
6384	case SETALL:
6385		perms = SEM__WRITE;
6386		break;
6387	case IPC_RMID:
6388		perms = SEM__DESTROY;
6389		break;
6390	case IPC_SET:
6391		perms = SEM__SETATTR;
6392		break;
6393	case IPC_STAT:
6394	case SEM_STAT:
6395	case SEM_STAT_ANY:
6396		perms = SEM__GETATTR | SEM__ASSOCIATE;
6397		break;
6398	default:
6399		return 0;
6400	}
6401
6402	err = ipc_has_perm(sma, perms);
6403	return err;
6404}
6405
6406static int selinux_sem_semop(struct kern_ipc_perm *sma,
6407			     struct sembuf *sops, unsigned nsops, int alter)
6408{
6409	u32 perms;
6410
6411	if (alter)
6412		perms = SEM__READ | SEM__WRITE;
6413	else
6414		perms = SEM__READ;
6415
6416	return ipc_has_perm(sma, perms);
6417}
6418
6419static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6420{
6421	u32 av = 0;
6422
6423	av = 0;
6424	if (flag & S_IRUGO)
6425		av |= IPC__UNIX_READ;
6426	if (flag & S_IWUGO)
6427		av |= IPC__UNIX_WRITE;
6428
6429	if (av == 0)
6430		return 0;
6431
6432	return ipc_has_perm(ipcp, av);
6433}
6434
6435static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6436{
6437	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6438	*secid = isec->sid;
6439}
6440
6441static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6442{
6443	if (inode)
6444		inode_doinit_with_dentry(inode, dentry);
6445}
6446
6447static int selinux_getprocattr(struct task_struct *p,
6448			       char *name, char **value)
6449{
6450	const struct task_security_struct *__tsec;
6451	u32 sid;
6452	int error;
6453	unsigned len;
6454
6455	rcu_read_lock();
6456	__tsec = selinux_cred(__task_cred(p));
6457
6458	if (current != p) {
6459		error = avc_has_perm(&selinux_state,
6460				     current_sid(), __tsec->sid,
6461				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6462		if (error)
6463			goto bad;
6464	}
6465
6466	if (!strcmp(name, "current"))
 
6467		sid = __tsec->sid;
6468	else if (!strcmp(name, "prev"))
 
6469		sid = __tsec->osid;
6470	else if (!strcmp(name, "exec"))
 
6471		sid = __tsec->exec_sid;
6472	else if (!strcmp(name, "fscreate"))
 
6473		sid = __tsec->create_sid;
6474	else if (!strcmp(name, "keycreate"))
 
6475		sid = __tsec->keycreate_sid;
6476	else if (!strcmp(name, "sockcreate"))
 
6477		sid = __tsec->sockcreate_sid;
6478	else {
6479		error = -EINVAL;
 
6480		goto bad;
6481	}
6482	rcu_read_unlock();
6483
6484	if (!sid)
6485		return 0;
6486
6487	error = security_sid_to_context(&selinux_state, sid, value, &len);
6488	if (error)
6489		return error;
6490	return len;
6491
6492bad:
6493	rcu_read_unlock();
6494	return error;
6495}
6496
6497static int selinux_setprocattr(const char *name, void *value, size_t size)
6498{
6499	struct task_security_struct *tsec;
6500	struct cred *new;
6501	u32 mysid = current_sid(), sid = 0, ptsid;
6502	int error;
6503	char *str = value;
6504
6505	/*
6506	 * Basic control over ability to set these attributes at all.
6507	 */
6508	if (!strcmp(name, "exec"))
6509		error = avc_has_perm(&selinux_state,
6510				     mysid, mysid, SECCLASS_PROCESS,
6511				     PROCESS__SETEXEC, NULL);
6512	else if (!strcmp(name, "fscreate"))
6513		error = avc_has_perm(&selinux_state,
6514				     mysid, mysid, SECCLASS_PROCESS,
6515				     PROCESS__SETFSCREATE, NULL);
6516	else if (!strcmp(name, "keycreate"))
6517		error = avc_has_perm(&selinux_state,
6518				     mysid, mysid, SECCLASS_PROCESS,
6519				     PROCESS__SETKEYCREATE, NULL);
6520	else if (!strcmp(name, "sockcreate"))
6521		error = avc_has_perm(&selinux_state,
6522				     mysid, mysid, SECCLASS_PROCESS,
6523				     PROCESS__SETSOCKCREATE, NULL);
6524	else if (!strcmp(name, "current"))
6525		error = avc_has_perm(&selinux_state,
6526				     mysid, mysid, SECCLASS_PROCESS,
6527				     PROCESS__SETCURRENT, NULL);
6528	else
6529		error = -EINVAL;
 
 
 
6530	if (error)
6531		return error;
6532
6533	/* Obtain a SID for the context, if one was specified. */
6534	if (size && str[0] && str[0] != '\n') {
6535		if (str[size-1] == '\n') {
6536			str[size-1] = 0;
6537			size--;
6538		}
6539		error = security_context_to_sid(&selinux_state, value, size,
6540						&sid, GFP_KERNEL);
6541		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6542			if (!has_cap_mac_admin(true)) {
6543				struct audit_buffer *ab;
6544				size_t audit_size;
6545
6546				/* We strip a nul only if it is at the end, otherwise the
6547				 * context contains a nul and we should audit that */
 
6548				if (str[size - 1] == '\0')
6549					audit_size = size - 1;
6550				else
6551					audit_size = size;
6552				ab = audit_log_start(audit_context(),
6553						     GFP_ATOMIC,
6554						     AUDIT_SELINUX_ERR);
 
 
6555				audit_log_format(ab, "op=fscreate invalid_context=");
6556				audit_log_n_untrustedstring(ab, value, audit_size);
 
6557				audit_log_end(ab);
6558
6559				return error;
6560			}
6561			error = security_context_to_sid_force(
6562						      &selinux_state,
6563						      value, size, &sid);
6564		}
6565		if (error)
6566			return error;
6567	}
6568
6569	new = prepare_creds();
6570	if (!new)
6571		return -ENOMEM;
6572
6573	/* Permission checking based on the specified context is
6574	   performed during the actual operation (execve,
6575	   open/mkdir/...), when we know the full context of the
6576	   operation.  See selinux_bprm_creds_for_exec for the execve
6577	   checks and may_create for the file creation checks. The
6578	   operation will then fail if the context is not permitted. */
6579	tsec = selinux_cred(new);
6580	if (!strcmp(name, "exec")) {
6581		tsec->exec_sid = sid;
6582	} else if (!strcmp(name, "fscreate")) {
6583		tsec->create_sid = sid;
6584	} else if (!strcmp(name, "keycreate")) {
6585		if (sid) {
6586			error = avc_has_perm(&selinux_state, mysid, sid,
6587					     SECCLASS_KEY, KEY__CREATE, NULL);
6588			if (error)
6589				goto abort_change;
6590		}
6591		tsec->keycreate_sid = sid;
6592	} else if (!strcmp(name, "sockcreate")) {
6593		tsec->sockcreate_sid = sid;
6594	} else if (!strcmp(name, "current")) {
6595		error = -EINVAL;
6596		if (sid == 0)
6597			goto abort_change;
6598
6599		/* Only allow single threaded processes to change context */
6600		error = -EPERM;
6601		if (!current_is_single_threaded()) {
6602			error = security_bounded_transition(&selinux_state,
6603							    tsec->sid, sid);
6604			if (error)
6605				goto abort_change;
6606		}
6607
6608		/* Check permissions for the transition. */
6609		error = avc_has_perm(&selinux_state,
6610				     tsec->sid, sid, SECCLASS_PROCESS,
6611				     PROCESS__DYNTRANSITION, NULL);
6612		if (error)
6613			goto abort_change;
6614
6615		/* Check for ptracing, and update the task SID if ok.
6616		   Otherwise, leave SID unchanged and fail. */
6617		ptsid = ptrace_parent_sid();
6618		if (ptsid != 0) {
6619			error = avc_has_perm(&selinux_state,
6620					     ptsid, sid, SECCLASS_PROCESS,
6621					     PROCESS__PTRACE, NULL);
6622			if (error)
6623				goto abort_change;
6624		}
6625
6626		tsec->sid = sid;
6627	} else {
6628		error = -EINVAL;
6629		goto abort_change;
6630	}
6631
6632	commit_creds(new);
6633	return size;
6634
6635abort_change:
6636	abort_creds(new);
6637	return error;
6638}
6639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6640static int selinux_ismaclabel(const char *name)
6641{
6642	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6643}
6644
6645static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6646{
6647	return security_sid_to_context(&selinux_state, secid,
6648				       secdata, seclen);
6649}
6650
6651static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6652{
6653	return security_context_to_sid(&selinux_state, secdata, seclen,
6654				       secid, GFP_KERNEL);
6655}
6656
6657static void selinux_release_secctx(char *secdata, u32 seclen)
6658{
6659	kfree(secdata);
6660}
6661
6662static void selinux_inode_invalidate_secctx(struct inode *inode)
6663{
6664	struct inode_security_struct *isec = selinux_inode(inode);
6665
6666	spin_lock(&isec->lock);
6667	isec->initialized = LABEL_INVALID;
6668	spin_unlock(&isec->lock);
6669}
6670
6671/*
6672 *	called with inode->i_mutex locked
6673 */
6674static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6675{
6676	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6677					   ctx, ctxlen, 0);
6678	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6679	return rc == -EOPNOTSUPP ? 0 : rc;
6680}
6681
6682/*
6683 *	called with inode->i_mutex locked
6684 */
6685static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6686{
6687	return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6688				     ctx, ctxlen, 0);
6689}
6690
6691static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6692{
6693	int len = 0;
6694	len = selinux_inode_getsecurity(&init_user_ns, inode,
6695					XATTR_SELINUX_SUFFIX, ctx, true);
6696	if (len < 0)
6697		return len;
6698	*ctxlen = len;
6699	return 0;
6700}
6701#ifdef CONFIG_KEYS
6702
6703static int selinux_key_alloc(struct key *k, const struct cred *cred,
6704			     unsigned long flags)
6705{
6706	const struct task_security_struct *tsec;
6707	struct key_security_struct *ksec;
6708
6709	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6710	if (!ksec)
6711		return -ENOMEM;
6712
6713	tsec = selinux_cred(cred);
6714	if (tsec->keycreate_sid)
6715		ksec->sid = tsec->keycreate_sid;
6716	else
6717		ksec->sid = tsec->sid;
6718
6719	k->security = ksec;
6720	return 0;
6721}
6722
6723static void selinux_key_free(struct key *k)
6724{
6725	struct key_security_struct *ksec = k->security;
6726
6727	k->security = NULL;
6728	kfree(ksec);
6729}
6730
6731static int selinux_key_permission(key_ref_t key_ref,
6732				  const struct cred *cred,
6733				  enum key_need_perm need_perm)
6734{
6735	struct key *key;
6736	struct key_security_struct *ksec;
6737	u32 perm, sid;
6738
6739	switch (need_perm) {
6740	case KEY_NEED_VIEW:
6741		perm = KEY__VIEW;
6742		break;
6743	case KEY_NEED_READ:
6744		perm = KEY__READ;
6745		break;
6746	case KEY_NEED_WRITE:
6747		perm = KEY__WRITE;
6748		break;
6749	case KEY_NEED_SEARCH:
6750		perm = KEY__SEARCH;
6751		break;
6752	case KEY_NEED_LINK:
6753		perm = KEY__LINK;
6754		break;
6755	case KEY_NEED_SETATTR:
6756		perm = KEY__SETATTR;
6757		break;
6758	case KEY_NEED_UNLINK:
6759	case KEY_SYSADMIN_OVERRIDE:
6760	case KEY_AUTHTOKEN_OVERRIDE:
6761	case KEY_DEFER_PERM_CHECK:
6762		return 0;
6763	default:
6764		WARN_ON(1);
6765		return -EPERM;
6766
6767	}
6768
6769	sid = cred_sid(cred);
6770	key = key_ref_to_ptr(key_ref);
6771	ksec = key->security;
6772
6773	return avc_has_perm(&selinux_state,
6774			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6775}
6776
6777static int selinux_key_getsecurity(struct key *key, char **_buffer)
6778{
6779	struct key_security_struct *ksec = key->security;
6780	char *context = NULL;
6781	unsigned len;
6782	int rc;
6783
6784	rc = security_sid_to_context(&selinux_state, ksec->sid,
6785				     &context, &len);
6786	if (!rc)
6787		rc = len;
6788	*_buffer = context;
6789	return rc;
6790}
6791
6792#ifdef CONFIG_KEY_NOTIFICATIONS
6793static int selinux_watch_key(struct key *key)
6794{
6795	struct key_security_struct *ksec = key->security;
6796	u32 sid = current_sid();
6797
6798	return avc_has_perm(&selinux_state,
6799			    sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6800}
6801#endif
6802#endif
6803
6804#ifdef CONFIG_SECURITY_INFINIBAND
6805static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6806{
6807	struct common_audit_data ad;
6808	int err;
6809	u32 sid = 0;
6810	struct ib_security_struct *sec = ib_sec;
6811	struct lsm_ibpkey_audit ibpkey;
6812
6813	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6814	if (err)
6815		return err;
6816
6817	ad.type = LSM_AUDIT_DATA_IBPKEY;
6818	ibpkey.subnet_prefix = subnet_prefix;
6819	ibpkey.pkey = pkey_val;
6820	ad.u.ibpkey = &ibpkey;
6821	return avc_has_perm(&selinux_state,
6822			    sec->sid, sid,
6823			    SECCLASS_INFINIBAND_PKEY,
6824			    INFINIBAND_PKEY__ACCESS, &ad);
6825}
6826
6827static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6828					    u8 port_num)
6829{
6830	struct common_audit_data ad;
6831	int err;
6832	u32 sid = 0;
6833	struct ib_security_struct *sec = ib_sec;
6834	struct lsm_ibendport_audit ibendport;
6835
6836	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6837				      &sid);
6838
6839	if (err)
6840		return err;
6841
6842	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6843	ibendport.dev_name = dev_name;
6844	ibendport.port = port_num;
6845	ad.u.ibendport = &ibendport;
6846	return avc_has_perm(&selinux_state,
6847			    sec->sid, sid,
6848			    SECCLASS_INFINIBAND_ENDPORT,
6849			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6850}
6851
6852static int selinux_ib_alloc_security(void **ib_sec)
6853{
6854	struct ib_security_struct *sec;
6855
6856	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6857	if (!sec)
6858		return -ENOMEM;
6859	sec->sid = current_sid();
6860
6861	*ib_sec = sec;
6862	return 0;
6863}
6864
6865static void selinux_ib_free_security(void *ib_sec)
6866{
6867	kfree(ib_sec);
6868}
6869#endif
6870
6871#ifdef CONFIG_BPF_SYSCALL
6872static int selinux_bpf(int cmd, union bpf_attr *attr,
6873				     unsigned int size)
6874{
6875	u32 sid = current_sid();
6876	int ret;
6877
6878	switch (cmd) {
6879	case BPF_MAP_CREATE:
6880		ret = avc_has_perm(&selinux_state,
6881				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6882				   NULL);
6883		break;
6884	case BPF_PROG_LOAD:
6885		ret = avc_has_perm(&selinux_state,
6886				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6887				   NULL);
6888		break;
6889	default:
6890		ret = 0;
6891		break;
6892	}
6893
6894	return ret;
6895}
6896
6897static u32 bpf_map_fmode_to_av(fmode_t fmode)
6898{
6899	u32 av = 0;
6900
6901	if (fmode & FMODE_READ)
6902		av |= BPF__MAP_READ;
6903	if (fmode & FMODE_WRITE)
6904		av |= BPF__MAP_WRITE;
6905	return av;
6906}
6907
6908/* This function will check the file pass through unix socket or binder to see
6909 * if it is a bpf related object. And apply correspinding checks on the bpf
6910 * object based on the type. The bpf maps and programs, not like other files and
6911 * socket, are using a shared anonymous inode inside the kernel as their inode.
6912 * So checking that inode cannot identify if the process have privilege to
6913 * access the bpf object and that's why we have to add this additional check in
6914 * selinux_file_receive and selinux_binder_transfer_files.
6915 */
6916static int bpf_fd_pass(struct file *file, u32 sid)
6917{
6918	struct bpf_security_struct *bpfsec;
6919	struct bpf_prog *prog;
6920	struct bpf_map *map;
6921	int ret;
6922
6923	if (file->f_op == &bpf_map_fops) {
6924		map = file->private_data;
6925		bpfsec = map->security;
6926		ret = avc_has_perm(&selinux_state,
6927				   sid, bpfsec->sid, SECCLASS_BPF,
6928				   bpf_map_fmode_to_av(file->f_mode), NULL);
6929		if (ret)
6930			return ret;
6931	} else if (file->f_op == &bpf_prog_fops) {
6932		prog = file->private_data;
6933		bpfsec = prog->aux->security;
6934		ret = avc_has_perm(&selinux_state,
6935				   sid, bpfsec->sid, SECCLASS_BPF,
6936				   BPF__PROG_RUN, NULL);
6937		if (ret)
6938			return ret;
6939	}
6940	return 0;
6941}
6942
6943static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6944{
6945	u32 sid = current_sid();
6946	struct bpf_security_struct *bpfsec;
6947
6948	bpfsec = map->security;
6949	return avc_has_perm(&selinux_state,
6950			    sid, bpfsec->sid, SECCLASS_BPF,
6951			    bpf_map_fmode_to_av(fmode), NULL);
6952}
6953
6954static int selinux_bpf_prog(struct bpf_prog *prog)
6955{
6956	u32 sid = current_sid();
6957	struct bpf_security_struct *bpfsec;
6958
6959	bpfsec = prog->aux->security;
6960	return avc_has_perm(&selinux_state,
6961			    sid, bpfsec->sid, SECCLASS_BPF,
6962			    BPF__PROG_RUN, NULL);
6963}
6964
6965static int selinux_bpf_map_alloc(struct bpf_map *map)
 
6966{
6967	struct bpf_security_struct *bpfsec;
6968
6969	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6970	if (!bpfsec)
6971		return -ENOMEM;
6972
6973	bpfsec->sid = current_sid();
6974	map->security = bpfsec;
6975
6976	return 0;
6977}
6978
6979static void selinux_bpf_map_free(struct bpf_map *map)
6980{
6981	struct bpf_security_struct *bpfsec = map->security;
6982
6983	map->security = NULL;
6984	kfree(bpfsec);
6985}
6986
6987static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
 
6988{
6989	struct bpf_security_struct *bpfsec;
6990
6991	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6992	if (!bpfsec)
6993		return -ENOMEM;
6994
6995	bpfsec->sid = current_sid();
6996	aux->security = bpfsec;
6997
6998	return 0;
6999}
7000
7001static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
7002{
7003	struct bpf_security_struct *bpfsec = aux->security;
7004
7005	aux->security = NULL;
7006	kfree(bpfsec);
7007}
7008#endif
7009
7010static int selinux_lockdown(enum lockdown_reason what)
 
7011{
7012	struct common_audit_data ad;
7013	u32 sid = current_sid();
7014	int invalid_reason = (what <= LOCKDOWN_NONE) ||
7015			     (what == LOCKDOWN_INTEGRITY_MAX) ||
7016			     (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
7017
7018	if (WARN(invalid_reason, "Invalid lockdown reason")) {
7019		audit_log(audit_context(),
7020			  GFP_ATOMIC, AUDIT_SELINUX_ERR,
7021			  "lockdown_reason=invalid");
7022		return -EINVAL;
7023	}
7024
7025	ad.type = LSM_AUDIT_DATA_LOCKDOWN;
7026	ad.u.reason = what;
 
7027
7028	if (what <= LOCKDOWN_INTEGRITY_MAX)
7029		return avc_has_perm(&selinux_state,
7030				    sid, sid, SECCLASS_LOCKDOWN,
7031				    LOCKDOWN__INTEGRITY, &ad);
7032	else
7033		return avc_has_perm(&selinux_state,
7034				    sid, sid, SECCLASS_LOCKDOWN,
7035				    LOCKDOWN__CONFIDENTIALITY, &ad);
7036}
 
7037
7038struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
7039	.lbs_cred = sizeof(struct task_security_struct),
7040	.lbs_file = sizeof(struct file_security_struct),
7041	.lbs_inode = sizeof(struct inode_security_struct),
7042	.lbs_ipc = sizeof(struct ipc_security_struct),
7043	.lbs_msg_msg = sizeof(struct msg_security_struct),
7044	.lbs_superblock = sizeof(struct superblock_security_struct),
 
7045};
7046
7047#ifdef CONFIG_PERF_EVENTS
7048static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7049{
7050	u32 requested, sid = current_sid();
7051
7052	if (type == PERF_SECURITY_OPEN)
7053		requested = PERF_EVENT__OPEN;
7054	else if (type == PERF_SECURITY_CPU)
7055		requested = PERF_EVENT__CPU;
7056	else if (type == PERF_SECURITY_KERNEL)
7057		requested = PERF_EVENT__KERNEL;
7058	else if (type == PERF_SECURITY_TRACEPOINT)
7059		requested = PERF_EVENT__TRACEPOINT;
7060	else
7061		return -EINVAL;
7062
7063	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
7064			    requested, NULL);
7065}
7066
7067static int selinux_perf_event_alloc(struct perf_event *event)
7068{
7069	struct perf_event_security_struct *perfsec;
7070
7071	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7072	if (!perfsec)
7073		return -ENOMEM;
7074
7075	perfsec->sid = current_sid();
7076	event->security = perfsec;
7077
7078	return 0;
7079}
7080
7081static void selinux_perf_event_free(struct perf_event *event)
7082{
7083	struct perf_event_security_struct *perfsec = event->security;
7084
7085	event->security = NULL;
7086	kfree(perfsec);
7087}
7088
7089static int selinux_perf_event_read(struct perf_event *event)
7090{
7091	struct perf_event_security_struct *perfsec = event->security;
7092	u32 sid = current_sid();
7093
7094	return avc_has_perm(&selinux_state, sid, perfsec->sid,
7095			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7096}
7097
7098static int selinux_perf_event_write(struct perf_event *event)
7099{
7100	struct perf_event_security_struct *perfsec = event->security;
7101	u32 sid = current_sid();
7102
7103	return avc_has_perm(&selinux_state, sid, perfsec->sid,
7104			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7105}
7106#endif
7107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7108/*
7109 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7110 * 1. any hooks that don't belong to (2.) or (3.) below,
7111 * 2. hooks that both access structures allocated by other hooks, and allocate
7112 *    structures that can be later accessed by other hooks (mostly "cloning"
7113 *    hooks),
7114 * 3. hooks that only allocate structures that can be later accessed by other
7115 *    hooks ("allocating" hooks).
7116 *
7117 * Please follow block comment delimiters in the list to keep this order.
7118 *
7119 * This ordering is needed for SELinux runtime disable to work at least somewhat
7120 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7121 * when disabling SELinux at runtime.
7122 */
7123static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7124	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7125	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7126	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7127	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7128
7129	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7130	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7131	LSM_HOOK_INIT(capget, selinux_capget),
7132	LSM_HOOK_INIT(capset, selinux_capset),
7133	LSM_HOOK_INIT(capable, selinux_capable),
7134	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7135	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7136	LSM_HOOK_INIT(syslog, selinux_syslog),
7137	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7138
7139	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7140
7141	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7142	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7143	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7144
7145	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7146	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7147	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7148	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7149	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7150	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7151	LSM_HOOK_INIT(sb_mount, selinux_mount),
7152	LSM_HOOK_INIT(sb_umount, selinux_umount),
7153	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7154	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7155
7156	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7157
7158	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7159	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7160
7161	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7162	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7163	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7164	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7165	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7166	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7167	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7168	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7169	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7170	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7171	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7172	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7173	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7174	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7175	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7176	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7177	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7178	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7179	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7180	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7181	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
 
 
 
7182	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7183	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7184	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7185	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7186	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7187	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7188	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7189
7190	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7191
7192	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7193	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7194	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
 
7195	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7196	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7197	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7198	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7199	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7200	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7201	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7202	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7203
7204	LSM_HOOK_INIT(file_open, selinux_file_open),
7205
7206	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7207	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7208	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7209	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7210	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7211	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7212	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7213	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7214	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7215	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7216	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7217	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7218	LSM_HOOK_INIT(task_getsecid_subj, selinux_task_getsecid_subj),
7219	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7220	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7221	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7222	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7223	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7224	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7225	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7226	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7227	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7228	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7229	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
 
7230
7231	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7232	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7233
7234	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7235	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7236	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7237	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7238
7239	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7240	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7241	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7242
7243	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7244	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7245	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7246
7247	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7248
 
 
7249	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7250	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7251
7252	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7253	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7254	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7255	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7256	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7257	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7258
7259	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7260	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7261
7262	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7263	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7264	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7265	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7266	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7267	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7268	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7269	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7270	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7271	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7272	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7273	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7274	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7275	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7276	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7277	LSM_HOOK_INIT(socket_getpeersec_stream,
7278			selinux_socket_getpeersec_stream),
7279	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7280	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7281	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7282	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7283	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7284	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7285	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7286	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
 
 
7287	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7288	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7289	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7290	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7291	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7292	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7293	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7294	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7295	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7296	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7297	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7298	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7299#ifdef CONFIG_SECURITY_INFINIBAND
7300	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7301	LSM_HOOK_INIT(ib_endport_manage_subnet,
7302		      selinux_ib_endport_manage_subnet),
7303	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7304#endif
7305#ifdef CONFIG_SECURITY_NETWORK_XFRM
7306	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7307	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7308	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7309	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7310	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7311	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7312			selinux_xfrm_state_pol_flow_match),
7313	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7314#endif
7315
7316#ifdef CONFIG_KEYS
7317	LSM_HOOK_INIT(key_free, selinux_key_free),
7318	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7319	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7320#ifdef CONFIG_KEY_NOTIFICATIONS
7321	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7322#endif
7323#endif
7324
7325#ifdef CONFIG_AUDIT
7326	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7327	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7328	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7329#endif
7330
7331#ifdef CONFIG_BPF_SYSCALL
7332	LSM_HOOK_INIT(bpf, selinux_bpf),
7333	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7334	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7335	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7336	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
 
7337#endif
7338
7339#ifdef CONFIG_PERF_EVENTS
7340	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7341	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7342	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7343	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7344#endif
7345
7346	LSM_HOOK_INIT(locked_down, selinux_lockdown),
 
 
 
 
7347
7348	/*
7349	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7350	 */
 
7351	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7352	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7353	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7354	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7355#ifdef CONFIG_SECURITY_NETWORK_XFRM
7356	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7357#endif
7358
7359	/*
7360	 * PUT "ALLOCATING" HOOKS HERE
7361	 */
7362	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7363	LSM_HOOK_INIT(msg_queue_alloc_security,
7364		      selinux_msg_queue_alloc_security),
7365	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7366	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7367	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7368	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7369	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7370	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7371	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7372	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7373#ifdef CONFIG_SECURITY_INFINIBAND
7374	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7375#endif
7376#ifdef CONFIG_SECURITY_NETWORK_XFRM
7377	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7378	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7379	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7380		      selinux_xfrm_state_alloc_acquire),
7381#endif
7382#ifdef CONFIG_KEYS
7383	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7384#endif
7385#ifdef CONFIG_AUDIT
7386	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7387#endif
7388#ifdef CONFIG_BPF_SYSCALL
7389	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7390	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
 
7391#endif
7392#ifdef CONFIG_PERF_EVENTS
7393	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7394#endif
7395};
7396
7397static __init int selinux_init(void)
7398{
7399	pr_info("SELinux:  Initializing.\n");
7400
7401	memset(&selinux_state, 0, sizeof(selinux_state));
7402	enforcing_set(&selinux_state, selinux_enforcing_boot);
7403	checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7404	selinux_avc_init(&selinux_state.avc);
7405	mutex_init(&selinux_state.status_lock);
7406	mutex_init(&selinux_state.policy_mutex);
7407
7408	/* Set the security state for the initial task. */
7409	cred_init_security();
7410
7411	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
 
 
7412
7413	avc_init();
7414
7415	avtab_cache_init();
7416
7417	ebitmap_cache_init();
7418
7419	hashtab_cache_init();
7420
7421	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
 
7422
7423	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7424		panic("SELinux: Unable to register AVC netcache callback\n");
7425
7426	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7427		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7428
7429	if (selinux_enforcing_boot)
7430		pr_debug("SELinux:  Starting in enforcing mode\n");
7431	else
7432		pr_debug("SELinux:  Starting in permissive mode\n");
7433
7434	fs_validate_description("selinux", selinux_fs_parameters);
7435
7436	return 0;
7437}
7438
7439static void delayed_superblock_init(struct super_block *sb, void *unused)
7440{
7441	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7442}
7443
7444void selinux_complete_init(void)
7445{
7446	pr_debug("SELinux:  Completing initialization.\n");
7447
7448	/* Set up any superblocks initialized prior to the policy load. */
7449	pr_debug("SELinux:  Setting up existing superblocks.\n");
7450	iterate_supers(delayed_superblock_init, NULL);
7451}
7452
7453/* SELinux requires early initialization in order to label
7454   all processes and objects when they are created. */
7455DEFINE_LSM(selinux) = {
7456	.name = "selinux",
7457	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7458	.enabled = &selinux_enabled_boot,
7459	.blobs = &selinux_blob_sizes,
7460	.init = selinux_init,
7461};
7462
7463#if defined(CONFIG_NETFILTER)
7464
7465static const struct nf_hook_ops selinux_nf_ops[] = {
7466	{
7467		.hook =		selinux_ipv4_postroute,
7468		.pf =		NFPROTO_IPV4,
7469		.hooknum =	NF_INET_POST_ROUTING,
7470		.priority =	NF_IP_PRI_SELINUX_LAST,
7471	},
7472	{
7473		.hook =		selinux_ipv4_forward,
7474		.pf =		NFPROTO_IPV4,
7475		.hooknum =	NF_INET_FORWARD,
7476		.priority =	NF_IP_PRI_SELINUX_FIRST,
7477	},
7478	{
7479		.hook =		selinux_ipv4_output,
7480		.pf =		NFPROTO_IPV4,
7481		.hooknum =	NF_INET_LOCAL_OUT,
7482		.priority =	NF_IP_PRI_SELINUX_FIRST,
7483	},
7484#if IS_ENABLED(CONFIG_IPV6)
7485	{
7486		.hook =		selinux_ipv6_postroute,
7487		.pf =		NFPROTO_IPV6,
7488		.hooknum =	NF_INET_POST_ROUTING,
7489		.priority =	NF_IP6_PRI_SELINUX_LAST,
7490	},
7491	{
7492		.hook =		selinux_ipv6_forward,
7493		.pf =		NFPROTO_IPV6,
7494		.hooknum =	NF_INET_FORWARD,
7495		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7496	},
7497	{
7498		.hook =		selinux_ipv6_output,
7499		.pf =		NFPROTO_IPV6,
7500		.hooknum =	NF_INET_LOCAL_OUT,
7501		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7502	},
7503#endif	/* IPV6 */
7504};
7505
7506static int __net_init selinux_nf_register(struct net *net)
7507{
7508	return nf_register_net_hooks(net, selinux_nf_ops,
7509				     ARRAY_SIZE(selinux_nf_ops));
7510}
7511
7512static void __net_exit selinux_nf_unregister(struct net *net)
7513{
7514	nf_unregister_net_hooks(net, selinux_nf_ops,
7515				ARRAY_SIZE(selinux_nf_ops));
7516}
7517
7518static struct pernet_operations selinux_net_ops = {
7519	.init = selinux_nf_register,
7520	.exit = selinux_nf_unregister,
7521};
7522
7523static int __init selinux_nf_ip_init(void)
7524{
7525	int err;
7526
7527	if (!selinux_enabled_boot)
7528		return 0;
7529
7530	pr_debug("SELinux:  Registering netfilter hooks\n");
7531
7532	err = register_pernet_subsys(&selinux_net_ops);
7533	if (err)
7534		panic("SELinux: register_pernet_subsys: error %d\n", err);
7535
7536	return 0;
7537}
7538__initcall(selinux_nf_ip_init);
7539
7540#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7541static void selinux_nf_ip_exit(void)
7542{
7543	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7544
7545	unregister_pernet_subsys(&selinux_net_ops);
7546}
7547#endif
7548
7549#else /* CONFIG_NETFILTER */
7550
7551#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7552#define selinux_nf_ip_exit()
7553#endif
7554
7555#endif /* CONFIG_NETFILTER */
7556
7557#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7558int selinux_disable(struct selinux_state *state)
7559{
7560	if (selinux_initialized(state)) {
7561		/* Not permitted after initial policy load. */
7562		return -EINVAL;
7563	}
7564
7565	if (selinux_disabled(state)) {
7566		/* Only do this once. */
7567		return -EINVAL;
7568	}
7569
7570	selinux_mark_disabled(state);
7571
7572	pr_info("SELinux:  Disabled at runtime.\n");
7573
7574	/*
7575	 * Unregister netfilter hooks.
7576	 * Must be done before security_delete_hooks() to avoid breaking
7577	 * runtime disable.
7578	 */
7579	selinux_nf_ip_exit();
7580
7581	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7582
7583	/* Try to destroy the avc node cache */
7584	avc_disable();
7585
7586	/* Unregister selinuxfs. */
7587	exit_sel_fs();
7588
7589	return 0;
7590}
7591#endif