Linux Audio

Check our new training course

Loading...
v6.9.4
  1/*
  2 * Copyright 2014 Advanced Micro Devices, Inc.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice shall be included in
 12 * all copies or substantial portions of the Software.
 13 *
 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 20 * OTHER DEALINGS IN THE SOFTWARE.
 21 */
 22
 
 
 
 
 23#include "amdgpu.h"
 24#include "amdgpu_amdkfd.h"
 25#include "cikd.h"
 26#include "cik_sdma.h"
 27#include "gfx_v7_0.h"
 28#include "gca/gfx_7_2_d.h"
 29#include "gca/gfx_7_2_enum.h"
 30#include "gca/gfx_7_2_sh_mask.h"
 31#include "oss/oss_2_0_d.h"
 32#include "oss/oss_2_0_sh_mask.h"
 33#include "gmc/gmc_7_1_d.h"
 34#include "gmc/gmc_7_1_sh_mask.h"
 35#include "cik_structs.h"
 36
 37enum hqd_dequeue_request_type {
 38	NO_ACTION = 0,
 39	DRAIN_PIPE,
 40	RESET_WAVES
 41};
 42
 43enum {
 44	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
 45	MAX_WATCH_ADDRESSES = 4
 46};
 47
 48static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49			uint32_t queue, uint32_t vmid)
 50{
 
 51	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
 52
 53	mutex_lock(&adev->srbm_mutex);
 54	WREG32(mmSRBM_GFX_CNTL, value);
 55}
 56
 57static void unlock_srbm(struct amdgpu_device *adev)
 58{
 
 
 59	WREG32(mmSRBM_GFX_CNTL, 0);
 60	mutex_unlock(&adev->srbm_mutex);
 61}
 62
 63static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
 64				uint32_t queue_id)
 65{
 66	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
 67	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
 68
 69	lock_srbm(adev, mec, pipe, queue_id, 0);
 70}
 71
 72static void release_queue(struct amdgpu_device *adev)
 73{
 74	unlock_srbm(adev);
 75}
 76
 77static void kgd_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
 78					uint32_t sh_mem_config,
 79					uint32_t sh_mem_ape1_base,
 80					uint32_t sh_mem_ape1_limit,
 81					uint32_t sh_mem_bases, uint32_t inst)
 82{
 83	lock_srbm(adev, 0, 0, 0, vmid);
 
 
 84
 85	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
 86	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
 87	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
 88	WREG32(mmSH_MEM_BASES, sh_mem_bases);
 89
 90	unlock_srbm(adev);
 91}
 92
 93static int kgd_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
 94					unsigned int vmid, uint32_t inst)
 95{
 
 
 96	/*
 97	 * We have to assume that there is no outstanding mapping.
 98	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
 99	 * a mapping is in progress or because a mapping finished and the
100	 * SW cleared it. So the protocol is to always wait & clear.
101	 */
102	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
103			ATC_VMID0_PASID_MAPPING__VALID_MASK;
104
105	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
106
107	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
108		cpu_relax();
109	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
110
111	/* Mapping vmid to pasid also for IH block */
112	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
113
114	return 0;
115}
116
117static int kgd_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id,
118				uint32_t inst)
119{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120	uint32_t mec;
121	uint32_t pipe;
122
123	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
124	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
125
126	lock_srbm(adev, mec, pipe, 0, 0);
127
128	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
129			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
130
131	unlock_srbm(adev);
132
133	return 0;
134}
135
136static inline uint32_t get_sdma_rlc_reg_offset(struct cik_sdma_rlc_registers *m)
137{
138	uint32_t retval;
139
140	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
141			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
142
143	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
144			m->sdma_engine_id, m->sdma_queue_id, retval);
145
146	return retval;
147}
148
149static inline struct cik_mqd *get_mqd(void *mqd)
150{
151	return (struct cik_mqd *)mqd;
152}
153
154static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
155{
156	return (struct cik_sdma_rlc_registers *)mqd;
157}
158
159static int kgd_hqd_load(struct amdgpu_device *adev, void *mqd,
160			uint32_t pipe_id, uint32_t queue_id,
161			uint32_t __user *wptr, uint32_t wptr_shift,
162			uint32_t wptr_mask, struct mm_struct *mm, uint32_t inst)
163{
 
 
164	struct cik_mqd *m;
165	uint32_t *mqd_hqd;
166	uint32_t reg, wptr_val, data;
167	bool valid_wptr = false;
168
169	m = get_mqd(mqd);
170
171	acquire_queue(adev, pipe_id, queue_id);
172
173	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
174	mqd_hqd = &m->cp_mqd_base_addr_lo;
 
 
175
176	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
177		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
 
178
179	/* Copy userspace write pointer value to register.
180	 * Activate doorbell logic to monitor subsequent changes.
181	 */
182	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
183			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
184	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
185
186	/* read_user_ptr may take the mm->mmap_lock.
187	 * release srbm_mutex to avoid circular dependency between
188	 * srbm_mutex->mmap_lock->reservation_ww_class_mutex->srbm_mutex.
189	 */
190	release_queue(adev);
191	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
192	acquire_queue(adev, pipe_id, queue_id);
193	if (valid_wptr)
194		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
195
196	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
197	WREG32(mmCP_HQD_ACTIVE, data);
198
199	release_queue(adev);
 
 
200
201	return 0;
202}
 
 
203
204static int kgd_hqd_dump(struct amdgpu_device *adev,
205			uint32_t pipe_id, uint32_t queue_id,
206			uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst)
207{
208	uint32_t i = 0, reg;
209#define HQD_N_REGS (35+4)
210#define DUMP_REG(addr) do {				\
211		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
212			break;				\
213		(*dump)[i][0] = (addr) << 2;		\
214		(*dump)[i++][1] = RREG32(addr);		\
215	} while (0)
216
217	*dump = kmalloc_array(HQD_N_REGS, sizeof(**dump), GFP_KERNEL);
218	if (*dump == NULL)
219		return -ENOMEM;
220
221	acquire_queue(adev, pipe_id, queue_id);
222
223	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
224	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
225	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
226	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
227
228	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
229		DUMP_REG(reg);
230
231	release_queue(adev);
 
232
233	WARN_ON_ONCE(i != HQD_N_REGS);
234	*n_regs = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235
236	return 0;
237}
238
239static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
240			     uint32_t __user *wptr, struct mm_struct *mm)
241{
 
242	struct cik_sdma_rlc_registers *m;
243	unsigned long end_jiffies;
244	uint32_t sdma_rlc_reg_offset;
245	uint32_t data;
246
247	m = get_sdma_mqd(mqd);
248	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
249
250	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
251		m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
252
253	end_jiffies = msecs_to_jiffies(2000) + jiffies;
254	while (true) {
255		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
256		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
257			break;
258		if (time_after(jiffies, end_jiffies)) {
259			pr_err("SDMA RLC not idle in %s\n", __func__);
260			return -ETIME;
261		}
262		usleep_range(500, 1000);
263	}
264
265	data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
266			     ENABLE, 1);
267	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
268	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
269				m->sdma_rlc_rb_rptr);
270
271	if (read_user_wptr(mm, wptr, data))
272		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
273	else
274		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
275		       m->sdma_rlc_rb_rptr);
276
277	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
278				m->sdma_rlc_virtual_addr);
279	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
280	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
281			m->sdma_rlc_rb_base_hi);
282	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
283			m->sdma_rlc_rb_rptr_addr_lo);
284	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
285			m->sdma_rlc_rb_rptr_addr_hi);
286
287	data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
288			     RB_ENABLE, 1);
289	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
290
291	return 0;
292}
293
294static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
295			     uint32_t engine_id, uint32_t queue_id,
296			     uint32_t (**dump)[2], uint32_t *n_regs)
297{
298	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
299		queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
300	uint32_t i = 0, reg;
301#undef HQD_N_REGS
302#define HQD_N_REGS (19+4)
303
304	*dump = kmalloc_array(HQD_N_REGS, sizeof(**dump), GFP_KERNEL);
305	if (*dump == NULL)
306		return -ENOMEM;
307
308	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
309		DUMP_REG(sdma_offset + reg);
310	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
311	     reg++)
312		DUMP_REG(sdma_offset + reg);
313
314	WARN_ON_ONCE(i != HQD_N_REGS);
315	*n_regs = i;
316
317	return 0;
318}
319
320static bool kgd_hqd_is_occupied(struct amdgpu_device *adev,
321				uint64_t queue_address, uint32_t pipe_id,
322				uint32_t queue_id, uint32_t inst)
323{
 
324	uint32_t act;
325	bool retval = false;
326	uint32_t low, high;
327
328	acquire_queue(adev, pipe_id, queue_id);
329	act = RREG32(mmCP_HQD_ACTIVE);
330	if (act) {
331		low = lower_32_bits(queue_address >> 8);
332		high = upper_32_bits(queue_address >> 8);
333
334		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
335				high == RREG32(mmCP_HQD_PQ_BASE_HI))
336			retval = true;
337	}
338	release_queue(adev);
339	return retval;
340}
341
342static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
343{
 
344	struct cik_sdma_rlc_registers *m;
345	uint32_t sdma_rlc_reg_offset;
346	uint32_t sdma_rlc_rb_cntl;
347
348	m = get_sdma_mqd(mqd);
349	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
350
351	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
352
353	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
354		return true;
355
356	return false;
357}
358
359static int kgd_hqd_destroy(struct amdgpu_device *adev, void *mqd,
360				enum kfd_preempt_type reset_type,
361				unsigned int utimeout, uint32_t pipe_id,
362				uint32_t queue_id, uint32_t inst)
363{
 
364	uint32_t temp;
365	enum hqd_dequeue_request_type type;
366	unsigned long flags, end_jiffies;
367	int retry;
368
369	if (amdgpu_in_reset(adev))
370		return -EIO;
371
372	acquire_queue(adev, pipe_id, queue_id);
373	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
374
375	switch (reset_type) {
376	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
377		type = DRAIN_PIPE;
378		break;
379	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
380		type = RESET_WAVES;
381		break;
382	default:
383		type = DRAIN_PIPE;
384		break;
385	}
386
387	/* Workaround: If IQ timer is active and the wait time is close to or
388	 * equal to 0, dequeueing is not safe. Wait until either the wait time
389	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
390	 * cleared before continuing. Also, ensure wait times are set to at
391	 * least 0x3.
392	 */
393	local_irq_save(flags);
394	preempt_disable();
395	retry = 5000; /* wait for 500 usecs at maximum */
396	while (true) {
397		temp = RREG32(mmCP_HQD_IQ_TIMER);
398		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
399			pr_debug("HW is processing IQ\n");
400			goto loop;
401		}
402		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
403			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
404					== 3) /* SEM-rearm is safe */
405				break;
406			/* Wait time 3 is safe for CP, but our MMIO read/write
407			 * time is close to 1 microsecond, so check for 10 to
408			 * leave more buffer room
409			 */
410			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
411					>= 10)
412				break;
413			pr_debug("IQ timer is active\n");
414		} else
415			break;
416loop:
417		if (!retry) {
418			pr_err("CP HQD IQ timer status time out\n");
419			break;
420		}
421		ndelay(100);
422		--retry;
423	}
424	retry = 1000;
425	while (true) {
426		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
427		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
428			break;
429		pr_debug("Dequeue request is pending\n");
430
431		if (!retry) {
432			pr_err("CP HQD dequeue request time out\n");
433			break;
434		}
435		ndelay(100);
436		--retry;
437	}
438	local_irq_restore(flags);
439	preempt_enable();
440
441	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
442
443	end_jiffies = (utimeout * HZ / 1000) + jiffies;
444	while (true) {
445		temp = RREG32(mmCP_HQD_ACTIVE);
446		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
447			break;
448		if (time_after(jiffies, end_jiffies)) {
449			pr_err("cp queue preemption time out\n");
450			release_queue(adev);
 
451			return -ETIME;
452		}
453		usleep_range(500, 1000);
 
454	}
455
456	release_queue(adev);
457	return 0;
458}
459
460static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
461				unsigned int utimeout)
462{
 
463	struct cik_sdma_rlc_registers *m;
464	uint32_t sdma_rlc_reg_offset;
465	uint32_t temp;
466	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
467
468	m = get_sdma_mqd(mqd);
469	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
470
471	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
472	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
473	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
474
475	while (true) {
476		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
477		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
478			break;
479		if (time_after(jiffies, end_jiffies)) {
480			pr_err("SDMA RLC not idle in %s\n", __func__);
481			return -ETIME;
482		}
483		usleep_range(500, 1000);
484	}
485
486	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
487	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
488		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
489		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
 
 
 
490
491	m->sdma_rlc_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
492
493	return 0;
494}
495
496static int kgd_wave_control_execute(struct amdgpu_device *adev,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
497					uint32_t gfx_index_val,
498					uint32_t sq_cmd, uint32_t inst)
499{
 
500	uint32_t data;
501
502	mutex_lock(&adev->grbm_idx_mutex);
503
504	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
505	WREG32(mmSQ_CMD, sq_cmd);
506
507	/*  Restore the GRBM_GFX_INDEX register  */
508
509	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
510		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
511		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
512
513	WREG32(mmGRBM_GFX_INDEX, data);
514
515	mutex_unlock(&adev->grbm_idx_mutex);
516
517	return 0;
518}
519
520static bool get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
521					uint8_t vmid, uint16_t *p_pasid)
 
522{
523	uint32_t value;
 
524
525	value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
526	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
 
 
 
527
528	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
 
529}
530
531static void set_scratch_backing_va(struct amdgpu_device *adev,
532					uint64_t va, uint32_t vmid)
533{
534	lock_srbm(adev, 0, 0, 0, vmid);
535	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
536	unlock_srbm(adev);
 
 
537}
538
539static void set_vm_context_page_table_base(struct amdgpu_device *adev,
540			uint32_t vmid, uint64_t page_table_base)
541{
542	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
543		pr_err("trying to set page table base for wrong VMID\n");
544		return;
545	}
546	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
547		lower_32_bits(page_table_base));
548}
549
550 /**
551  * read_vmid_from_vmfault_reg - read vmid from register
552  *
553  * adev: amdgpu_device pointer
554  * @vmid: vmid pointer
555  * read vmid from register (CIK).
556  */
557static uint32_t read_vmid_from_vmfault_reg(struct amdgpu_device *adev)
558{
559	uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560
561	return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
 
 
 
 
 
 
 
 
 
 
 
 
 
562}
563
564const struct kfd2kgd_calls gfx_v7_kfd2kgd = {
565	.program_sh_mem_settings = kgd_program_sh_mem_settings,
566	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
567	.init_interrupts = kgd_init_interrupts,
568	.hqd_load = kgd_hqd_load,
569	.hqd_sdma_load = kgd_hqd_sdma_load,
570	.hqd_dump = kgd_hqd_dump,
571	.hqd_sdma_dump = kgd_hqd_sdma_dump,
572	.hqd_is_occupied = kgd_hqd_is_occupied,
573	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
574	.hqd_destroy = kgd_hqd_destroy,
575	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
576	.wave_control_execute = kgd_wave_control_execute,
577	.get_atc_vmid_pasid_mapping_info = get_atc_vmid_pasid_mapping_info,
578	.set_scratch_backing_va = set_scratch_backing_va,
579	.set_vm_context_page_table_base = set_vm_context_page_table_base,
580	.read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
581};
v4.6
  1/*
  2 * Copyright 2014 Advanced Micro Devices, Inc.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice shall be included in
 12 * all copies or substantial portions of the Software.
 13 *
 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 20 * OTHER DEALINGS IN THE SOFTWARE.
 21 */
 22
 23#include <linux/fdtable.h>
 24#include <linux/uaccess.h>
 25#include <linux/firmware.h>
 26#include <drm/drmP.h>
 27#include "amdgpu.h"
 28#include "amdgpu_amdkfd.h"
 29#include "cikd.h"
 30#include "cik_sdma.h"
 31#include "amdgpu_ucode.h"
 32#include "gca/gfx_7_2_d.h"
 33#include "gca/gfx_7_2_enum.h"
 34#include "gca/gfx_7_2_sh_mask.h"
 35#include "oss/oss_2_0_d.h"
 36#include "oss/oss_2_0_sh_mask.h"
 37#include "gmc/gmc_7_1_d.h"
 38#include "gmc/gmc_7_1_sh_mask.h"
 39#include "cik_structs.h"
 40
 41#define CIK_PIPE_PER_MEC	(4)
 
 
 
 
 42
 43enum {
 44	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
 45	MAX_WATCH_ADDRESSES = 4
 46};
 47
 48enum {
 49	ADDRESS_WATCH_REG_ADDR_HI = 0,
 50	ADDRESS_WATCH_REG_ADDR_LO,
 51	ADDRESS_WATCH_REG_CNTL,
 52	ADDRESS_WATCH_REG_MAX
 53};
 54
 55/*  not defined in the CI/KV reg file  */
 56enum {
 57	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
 58	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
 59	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
 60	/* extend the mask to 26 bits to match the low address field */
 61	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
 62	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
 63};
 64
 65static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
 66	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
 67	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
 68	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
 69	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
 70};
 71
 72union TCP_WATCH_CNTL_BITS {
 73	struct {
 74		uint32_t mask:24;
 75		uint32_t vmid:4;
 76		uint32_t atc:1;
 77		uint32_t mode:2;
 78		uint32_t valid:1;
 79	} bitfields, bits;
 80	uint32_t u32All;
 81	signed int i32All;
 82	float f32All;
 83};
 84
 85/*
 86 * Register access functions
 87 */
 88
 89static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
 90		uint32_t sh_mem_config,	uint32_t sh_mem_ape1_base,
 91		uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
 92
 93static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
 94					unsigned int vmid);
 95
 96static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
 97				uint32_t hpd_size, uint64_t hpd_gpu_addr);
 98static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
 99static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
100			uint32_t queue_id, uint32_t __user *wptr);
101static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
102static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
103				uint32_t pipe_id, uint32_t queue_id);
104
105static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
106				unsigned int timeout, uint32_t pipe_id,
107				uint32_t queue_id);
108static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
109static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
110				unsigned int timeout);
111static int kgd_address_watch_disable(struct kgd_dev *kgd);
112static int kgd_address_watch_execute(struct kgd_dev *kgd,
113					unsigned int watch_point_id,
114					uint32_t cntl_val,
115					uint32_t addr_hi,
116					uint32_t addr_lo);
117static int kgd_wave_control_execute(struct kgd_dev *kgd,
118					uint32_t gfx_index_val,
119					uint32_t sq_cmd);
120static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
121					unsigned int watch_point_id,
122					unsigned int reg_offset);
123
124static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
125static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
126							uint8_t vmid);
127static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
128
129static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
130
131static const struct kfd2kgd_calls kfd2kgd = {
132	.init_gtt_mem_allocation = alloc_gtt_mem,
133	.free_gtt_mem = free_gtt_mem,
134	.get_vmem_size = get_vmem_size,
135	.get_gpu_clock_counter = get_gpu_clock_counter,
136	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
137	.program_sh_mem_settings = kgd_program_sh_mem_settings,
138	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
139	.init_pipeline = kgd_init_pipeline,
140	.init_interrupts = kgd_init_interrupts,
141	.hqd_load = kgd_hqd_load,
142	.hqd_sdma_load = kgd_hqd_sdma_load,
143	.hqd_is_occupied = kgd_hqd_is_occupied,
144	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
145	.hqd_destroy = kgd_hqd_destroy,
146	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
147	.address_watch_disable = kgd_address_watch_disable,
148	.address_watch_execute = kgd_address_watch_execute,
149	.wave_control_execute = kgd_wave_control_execute,
150	.address_watch_get_offset = kgd_address_watch_get_offset,
151	.get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
152	.get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
153	.write_vmid_invalidate_request = write_vmid_invalidate_request,
154	.get_fw_version = get_fw_version
155};
156
157struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
158{
159	return (struct kfd2kgd_calls *)&kfd2kgd;
160}
161
162static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
163{
164	return (struct amdgpu_device *)kgd;
165}
166
167static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
168			uint32_t queue, uint32_t vmid)
169{
170	struct amdgpu_device *adev = get_amdgpu_device(kgd);
171	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
172
173	mutex_lock(&adev->srbm_mutex);
174	WREG32(mmSRBM_GFX_CNTL, value);
175}
176
177static void unlock_srbm(struct kgd_dev *kgd)
178{
179	struct amdgpu_device *adev = get_amdgpu_device(kgd);
180
181	WREG32(mmSRBM_GFX_CNTL, 0);
182	mutex_unlock(&adev->srbm_mutex);
183}
184
185static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
186				uint32_t queue_id)
187{
188	uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
189	uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
190
191	lock_srbm(kgd, mec, pipe, queue_id, 0);
192}
193
194static void release_queue(struct kgd_dev *kgd)
195{
196	unlock_srbm(kgd);
197}
198
199static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
200					uint32_t sh_mem_config,
201					uint32_t sh_mem_ape1_base,
202					uint32_t sh_mem_ape1_limit,
203					uint32_t sh_mem_bases)
204{
205	struct amdgpu_device *adev = get_amdgpu_device(kgd);
206
207	lock_srbm(kgd, 0, 0, 0, vmid);
208
209	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
210	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
211	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
212	WREG32(mmSH_MEM_BASES, sh_mem_bases);
213
214	unlock_srbm(kgd);
215}
216
217static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
218					unsigned int vmid)
219{
220	struct amdgpu_device *adev = get_amdgpu_device(kgd);
221
222	/*
223	 * We have to assume that there is no outstanding mapping.
224	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
225	 * a mapping is in progress or because a mapping finished and the
226	 * SW cleared it. So the protocol is to always wait & clear.
227	 */
228	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
229			ATC_VMID0_PASID_MAPPING__VALID_MASK;
230
231	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
232
233	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
234		cpu_relax();
235	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
236
237	/* Mapping vmid to pasid also for IH block */
238	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
239
240	return 0;
241}
242
243static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
244				uint32_t hpd_size, uint64_t hpd_gpu_addr)
245{
246	struct amdgpu_device *adev = get_amdgpu_device(kgd);
247
248	uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
249	uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
250
251	lock_srbm(kgd, mec, pipe, 0, 0);
252	WREG32(mmCP_HPD_EOP_BASE_ADDR, lower_32_bits(hpd_gpu_addr >> 8));
253	WREG32(mmCP_HPD_EOP_BASE_ADDR_HI, upper_32_bits(hpd_gpu_addr >> 8));
254	WREG32(mmCP_HPD_EOP_VMID, 0);
255	WREG32(mmCP_HPD_EOP_CONTROL, hpd_size);
256	unlock_srbm(kgd);
257
258	return 0;
259}
260
261static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
262{
263	struct amdgpu_device *adev = get_amdgpu_device(kgd);
264	uint32_t mec;
265	uint32_t pipe;
266
267	mec = (pipe_id / CIK_PIPE_PER_MEC) + 1;
268	pipe = (pipe_id % CIK_PIPE_PER_MEC);
269
270	lock_srbm(kgd, mec, pipe, 0, 0);
271
272	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
273			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
274
275	unlock_srbm(kgd);
276
277	return 0;
278}
279
280static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
281{
282	uint32_t retval;
283
284	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
285			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
286
287	pr_debug("kfd: sdma base address: 0x%x\n", retval);
 
288
289	return retval;
290}
291
292static inline struct cik_mqd *get_mqd(void *mqd)
293{
294	return (struct cik_mqd *)mqd;
295}
296
297static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
298{
299	return (struct cik_sdma_rlc_registers *)mqd;
300}
301
302static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
303			uint32_t queue_id, uint32_t __user *wptr)
 
 
304{
305	struct amdgpu_device *adev = get_amdgpu_device(kgd);
306	uint32_t wptr_shadow, is_wptr_shadow_valid;
307	struct cik_mqd *m;
 
 
 
308
309	m = get_mqd(mqd);
310
311	is_wptr_shadow_valid = !get_user(wptr_shadow, wptr);
312
313	acquire_queue(kgd, pipe_id, queue_id);
314	WREG32(mmCP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo);
315	WREG32(mmCP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi);
316	WREG32(mmCP_MQD_CONTROL, m->cp_mqd_control);
317
318	WREG32(mmCP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo);
319	WREG32(mmCP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi);
320	WREG32(mmCP_HQD_PQ_CONTROL, m->cp_hqd_pq_control);
321
322	WREG32(mmCP_HQD_IB_CONTROL, m->cp_hqd_ib_control);
323	WREG32(mmCP_HQD_IB_BASE_ADDR, m->cp_hqd_ib_base_addr_lo);
324	WREG32(mmCP_HQD_IB_BASE_ADDR_HI, m->cp_hqd_ib_base_addr_hi);
 
 
 
 
 
 
 
 
 
 
 
 
 
325
326	WREG32(mmCP_HQD_IB_RPTR, m->cp_hqd_ib_rptr);
 
327
328	WREG32(mmCP_HQD_PERSISTENT_STATE, m->cp_hqd_persistent_state);
329	WREG32(mmCP_HQD_SEMA_CMD, m->cp_hqd_sema_cmd);
330	WREG32(mmCP_HQD_MSG_TYPE, m->cp_hqd_msg_type);
331
332	WREG32(mmCP_HQD_ATOMIC0_PREOP_LO, m->cp_hqd_atomic0_preop_lo);
333	WREG32(mmCP_HQD_ATOMIC0_PREOP_HI, m->cp_hqd_atomic0_preop_hi);
334	WREG32(mmCP_HQD_ATOMIC1_PREOP_LO, m->cp_hqd_atomic1_preop_lo);
335	WREG32(mmCP_HQD_ATOMIC1_PREOP_HI, m->cp_hqd_atomic1_preop_hi);
336
337	WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR, m->cp_hqd_pq_rptr_report_addr_lo);
338	WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR_HI,
339			m->cp_hqd_pq_rptr_report_addr_hi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340
341	WREG32(mmCP_HQD_PQ_RPTR, m->cp_hqd_pq_rptr);
 
342
343	WREG32(mmCP_HQD_PQ_WPTR_POLL_ADDR, m->cp_hqd_pq_wptr_poll_addr_lo);
344	WREG32(mmCP_HQD_PQ_WPTR_POLL_ADDR_HI, m->cp_hqd_pq_wptr_poll_addr_hi);
345
346	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, m->cp_hqd_pq_doorbell_control);
347
348	WREG32(mmCP_HQD_VMID, m->cp_hqd_vmid);
349
350	WREG32(mmCP_HQD_QUANTUM, m->cp_hqd_quantum);
351
352	WREG32(mmCP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority);
353	WREG32(mmCP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority);
354
355	WREG32(mmCP_HQD_IQ_RPTR, m->cp_hqd_iq_rptr);
356
357	if (is_wptr_shadow_valid)
358		WREG32(mmCP_HQD_PQ_WPTR, wptr_shadow);
359
360	WREG32(mmCP_HQD_ACTIVE, m->cp_hqd_active);
361	release_queue(kgd);
362
363	return 0;
364}
365
366static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
 
367{
368	struct amdgpu_device *adev = get_amdgpu_device(kgd);
369	struct cik_sdma_rlc_registers *m;
370	uint32_t sdma_base_addr;
 
 
371
372	m = get_sdma_mqd(mqd);
373	sdma_base_addr = get_sdma_base_addr(m);
374
375	WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
376			m->sdma_rlc_virtual_addr);
377
378	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE,
379			m->sdma_rlc_rb_base);
 
 
 
 
 
 
 
 
 
380
381	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382			m->sdma_rlc_rb_base_hi);
 
 
 
 
383
384	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
385			m->sdma_rlc_rb_rptr_addr_lo);
 
386
387	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
388			m->sdma_rlc_rb_rptr_addr_hi);
389
390	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL,
391			m->sdma_rlc_doorbell);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
392
393	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
394			m->sdma_rlc_rb_cntl);
395
396	return 0;
397}
398
399static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
400				uint32_t pipe_id, uint32_t queue_id)
 
401{
402	struct amdgpu_device *adev = get_amdgpu_device(kgd);
403	uint32_t act;
404	bool retval = false;
405	uint32_t low, high;
406
407	acquire_queue(kgd, pipe_id, queue_id);
408	act = RREG32(mmCP_HQD_ACTIVE);
409	if (act) {
410		low = lower_32_bits(queue_address >> 8);
411		high = upper_32_bits(queue_address >> 8);
412
413		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
414				high == RREG32(mmCP_HQD_PQ_BASE_HI))
415			retval = true;
416	}
417	release_queue(kgd);
418	return retval;
419}
420
421static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
422{
423	struct amdgpu_device *adev = get_amdgpu_device(kgd);
424	struct cik_sdma_rlc_registers *m;
425	uint32_t sdma_base_addr;
426	uint32_t sdma_rlc_rb_cntl;
427
428	m = get_sdma_mqd(mqd);
429	sdma_base_addr = get_sdma_base_addr(m);
430
431	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
432
433	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
434		return true;
435
436	return false;
437}
438
439static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
440				unsigned int timeout, uint32_t pipe_id,
441				uint32_t queue_id)
 
442{
443	struct amdgpu_device *adev = get_amdgpu_device(kgd);
444	uint32_t temp;
 
 
 
445
446	acquire_queue(kgd, pipe_id, queue_id);
 
 
 
447	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
448
449	WREG32(mmCP_HQD_DEQUEUE_REQUEST, reset_type);
 
 
 
 
 
 
 
 
 
 
450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
451	while (true) {
452		temp = RREG32(mmCP_HQD_ACTIVE);
453		if (temp & CP_HQD_ACTIVE__ACTIVE_MASK)
454			break;
455		if (timeout == 0) {
456			pr_err("kfd: cp queue preemption time out (%dms)\n",
457				temp);
458			release_queue(kgd);
459			return -ETIME;
460		}
461		msleep(20);
462		timeout -= 20;
463	}
464
465	release_queue(kgd);
466	return 0;
467}
468
469static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
470				unsigned int timeout)
471{
472	struct amdgpu_device *adev = get_amdgpu_device(kgd);
473	struct cik_sdma_rlc_registers *m;
474	uint32_t sdma_base_addr;
475	uint32_t temp;
 
476
477	m = get_sdma_mqd(mqd);
478	sdma_base_addr = get_sdma_base_addr(m);
479
480	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
481	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
482	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
483
484	while (true) {
485		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
486		if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
487			break;
488		if (timeout == 0)
 
489			return -ETIME;
490		msleep(20);
491		timeout -= 20;
492	}
493
494	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
495	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
496	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
497	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0);
498
499	return 0;
500}
501
502static int kgd_address_watch_disable(struct kgd_dev *kgd)
503{
504	struct amdgpu_device *adev = get_amdgpu_device(kgd);
505	union TCP_WATCH_CNTL_BITS cntl;
506	unsigned int i;
507
508	cntl.u32All = 0;
509
510	cntl.bitfields.valid = 0;
511	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
512	cntl.bitfields.atc = 1;
513
514	/* Turning off this address until we set all the registers */
515	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
516		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
517			ADDRESS_WATCH_REG_CNTL], cntl.u32All);
518
519	return 0;
520}
521
522static int kgd_address_watch_execute(struct kgd_dev *kgd,
523					unsigned int watch_point_id,
524					uint32_t cntl_val,
525					uint32_t addr_hi,
526					uint32_t addr_lo)
527{
528	struct amdgpu_device *adev = get_amdgpu_device(kgd);
529	union TCP_WATCH_CNTL_BITS cntl;
530
531	cntl.u32All = cntl_val;
532
533	/* Turning off this watch point until we set all the registers */
534	cntl.bitfields.valid = 0;
535	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
536		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
537
538	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
539		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
540
541	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
542		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
543
544	/* Enable the watch point */
545	cntl.bitfields.valid = 1;
546
547	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
548		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
549
550	return 0;
551}
552
553static int kgd_wave_control_execute(struct kgd_dev *kgd,
554					uint32_t gfx_index_val,
555					uint32_t sq_cmd)
556{
557	struct amdgpu_device *adev = get_amdgpu_device(kgd);
558	uint32_t data;
559
560	mutex_lock(&adev->grbm_idx_mutex);
561
562	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
563	WREG32(mmSQ_CMD, sq_cmd);
564
565	/*  Restore the GRBM_GFX_INDEX register  */
566
567	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
568		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
569		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
570
571	WREG32(mmGRBM_GFX_INDEX, data);
572
573	mutex_unlock(&adev->grbm_idx_mutex);
574
575	return 0;
576}
577
578static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
579					unsigned int watch_point_id,
580					unsigned int reg_offset)
581{
582	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
583}
584
585static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
586							uint8_t vmid)
587{
588	uint32_t reg;
589	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
590
591	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
592	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
593}
594
595static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
596								uint8_t vmid)
597{
598	uint32_t reg;
599	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
600
601	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
602	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
603}
604
605static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
 
606{
607	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
608
609	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
 
 
 
610}
611
612static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
 
 
 
 
 
 
 
613{
614	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
615	const union amdgpu_firmware_header *hdr;
616
617	BUG_ON(kgd == NULL);
618
619	switch (type) {
620	case KGD_ENGINE_PFP:
621		hdr = (const union amdgpu_firmware_header *)
622							adev->gfx.pfp_fw->data;
623		break;
624
625	case KGD_ENGINE_ME:
626		hdr = (const union amdgpu_firmware_header *)
627							adev->gfx.me_fw->data;
628		break;
629
630	case KGD_ENGINE_CE:
631		hdr = (const union amdgpu_firmware_header *)
632							adev->gfx.ce_fw->data;
633		break;
634
635	case KGD_ENGINE_MEC1:
636		hdr = (const union amdgpu_firmware_header *)
637							adev->gfx.mec_fw->data;
638		break;
639
640	case KGD_ENGINE_MEC2:
641		hdr = (const union amdgpu_firmware_header *)
642							adev->gfx.mec2_fw->data;
643		break;
644
645	case KGD_ENGINE_RLC:
646		hdr = (const union amdgpu_firmware_header *)
647							adev->gfx.rlc_fw->data;
648		break;
649
650	case KGD_ENGINE_SDMA1:
651		hdr = (const union amdgpu_firmware_header *)
652							adev->sdma.instance[0].fw->data;
653		break;
654
655	case KGD_ENGINE_SDMA2:
656		hdr = (const union amdgpu_firmware_header *)
657							adev->sdma.instance[1].fw->data;
658		break;
659
660	default:
661		return 0;
662	}
663
664	if (hdr == NULL)
665		return 0;
666
667	/* Only 12 bit in use*/
668	return hdr->common.ucode_version;
669}
670