Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1/*
   2 * Copyright 2014-2018 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22#include "amdgpu.h"
  23#include "amdgpu_amdkfd.h"
  24#include "gc/gc_9_0_offset.h"
  25#include "gc/gc_9_0_sh_mask.h"
  26#include "vega10_enum.h"
  27#include "sdma0/sdma0_4_0_offset.h"
  28#include "sdma0/sdma0_4_0_sh_mask.h"
  29#include "sdma1/sdma1_4_0_offset.h"
  30#include "sdma1/sdma1_4_0_sh_mask.h"
  31#include "athub/athub_1_0_offset.h"
  32#include "athub/athub_1_0_sh_mask.h"
  33#include "oss/osssys_4_0_offset.h"
  34#include "oss/osssys_4_0_sh_mask.h"
  35#include "soc15_common.h"
  36#include "v9_structs.h"
  37#include "soc15.h"
  38#include "soc15d.h"
  39#include "gfx_v9_0.h"
  40#include "amdgpu_amdkfd_gfx_v9.h"
  41#include <uapi/linux/kfd_ioctl.h>
  42
  43enum hqd_dequeue_request_type {
  44	NO_ACTION = 0,
  45	DRAIN_PIPE,
  46	RESET_WAVES,
  47	SAVE_WAVES
  48};
  49
  50static void kgd_gfx_v9_lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
  51			uint32_t queue, uint32_t vmid, uint32_t inst)
  52{
  53	mutex_lock(&adev->srbm_mutex);
  54	soc15_grbm_select(adev, mec, pipe, queue, vmid, GET_INST(GC, inst));
  55}
  56
  57static void kgd_gfx_v9_unlock_srbm(struct amdgpu_device *adev, uint32_t inst)
  58{
  59	soc15_grbm_select(adev, 0, 0, 0, 0, GET_INST(GC, inst));
  60	mutex_unlock(&adev->srbm_mutex);
  61}
  62
  63void kgd_gfx_v9_acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
  64				uint32_t queue_id, uint32_t inst)
  65{
  66	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  67	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  68
  69	kgd_gfx_v9_lock_srbm(adev, mec, pipe, queue_id, 0, inst);
  70}
  71
  72uint64_t kgd_gfx_v9_get_queue_mask(struct amdgpu_device *adev,
  73			       uint32_t pipe_id, uint32_t queue_id)
  74{
  75	unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
  76			queue_id;
  77
  78	return 1ull << bit;
  79}
  80
  81void kgd_gfx_v9_release_queue(struct amdgpu_device *adev, uint32_t inst)
  82{
  83	kgd_gfx_v9_unlock_srbm(adev, inst);
  84}
  85
  86void kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
  87					uint32_t sh_mem_config,
  88					uint32_t sh_mem_ape1_base,
  89					uint32_t sh_mem_ape1_limit,
  90					uint32_t sh_mem_bases, uint32_t inst)
  91{
  92	kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst);
  93
  94	WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmSH_MEM_CONFIG, sh_mem_config);
  95	WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmSH_MEM_BASES, sh_mem_bases);
  96	/* APE1 no longer exists on GFX9 */
  97
  98	kgd_gfx_v9_unlock_srbm(adev, inst);
  99}
 100
 101int kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
 102					unsigned int vmid, uint32_t inst)
 103{
 104	/*
 105	 * We have to assume that there is no outstanding mapping.
 106	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
 107	 * a mapping is in progress or because a mapping finished
 108	 * and the SW cleared it.
 109	 * So the protocol is to always wait & clear.
 110	 */
 111	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
 112			ATC_VMID0_PASID_MAPPING__VALID_MASK;
 113
 114	/*
 115	 * need to do this twice, once for gfx and once for mmhub
 116	 * for ATC add 16 to VMID for mmhub, for IH different registers.
 117	 * ATC_VMID0..15 registers are separate from ATC_VMID16..31.
 118	 */
 119
 120	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
 121	       pasid_mapping);
 122
 123	while (!(RREG32(SOC15_REG_OFFSET(
 124				ATHUB, 0,
 125				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
 126		 (1U << vmid)))
 127		cpu_relax();
 128
 129	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
 130				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
 131	       1U << vmid);
 132
 133	/* Mapping vmid to pasid also for IH block */
 134	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
 135	       pasid_mapping);
 136
 137	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid,
 138	       pasid_mapping);
 139
 140	while (!(RREG32(SOC15_REG_OFFSET(
 141				ATHUB, 0,
 142				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
 143		 (1U << (vmid + 16))))
 144		cpu_relax();
 145
 146	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
 147				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
 148	       1U << (vmid + 16));
 149
 150	/* Mapping vmid to pasid also for IH block */
 151	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid,
 152	       pasid_mapping);
 153	return 0;
 154}
 155
 156/* TODO - RING0 form of field is obsolete, seems to date back to SI
 157 * but still works
 158 */
 159
 160int kgd_gfx_v9_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id,
 161				uint32_t inst)
 162{
 163	uint32_t mec;
 164	uint32_t pipe;
 165
 166	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
 167	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
 168
 169	kgd_gfx_v9_lock_srbm(adev, mec, pipe, 0, 0, inst);
 170
 171	WREG32_SOC15(GC, GET_INST(GC, inst), mmCPC_INT_CNTL,
 172		CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
 173		CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
 174
 175	kgd_gfx_v9_unlock_srbm(adev, inst);
 176
 177	return 0;
 178}
 179
 180static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
 181				unsigned int engine_id,
 182				unsigned int queue_id)
 183{
 184	uint32_t sdma_engine_reg_base = 0;
 185	uint32_t sdma_rlc_reg_offset;
 186
 187	switch (engine_id) {
 188	default:
 189		dev_warn(adev->dev,
 190			 "Invalid sdma engine id (%d), using engine id 0\n",
 191			 engine_id);
 192		fallthrough;
 193	case 0:
 194		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
 195				mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
 196		break;
 197	case 1:
 198		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
 199				mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
 200		break;
 201	}
 202
 203	sdma_rlc_reg_offset = sdma_engine_reg_base
 204		+ queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
 205
 206	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
 207		 queue_id, sdma_rlc_reg_offset);
 208
 209	return sdma_rlc_reg_offset;
 210}
 211
 212static inline struct v9_mqd *get_mqd(void *mqd)
 213{
 214	return (struct v9_mqd *)mqd;
 215}
 216
 217static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
 218{
 219	return (struct v9_sdma_mqd *)mqd;
 220}
 221
 222int kgd_gfx_v9_hqd_load(struct amdgpu_device *adev, void *mqd,
 223			uint32_t pipe_id, uint32_t queue_id,
 224			uint32_t __user *wptr, uint32_t wptr_shift,
 225			uint32_t wptr_mask, struct mm_struct *mm,
 226			uint32_t inst)
 227{
 228	struct v9_mqd *m;
 229	uint32_t *mqd_hqd;
 230	uint32_t reg, hqd_base, data;
 231
 232	m = get_mqd(mqd);
 233
 234	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
 235
 236	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
 237	mqd_hqd = &m->cp_mqd_base_addr_lo;
 238	hqd_base = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR);
 239
 240	for (reg = hqd_base;
 241	     reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++)
 242		WREG32_XCC(reg, mqd_hqd[reg - hqd_base], inst);
 243
 244
 245	/* Activate doorbell logic before triggering WPTR poll. */
 246	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
 247			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
 248	WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_DOORBELL_CONTROL, data);
 249
 250	if (wptr) {
 251		/* Don't read wptr with get_user because the user
 252		 * context may not be accessible (if this function
 253		 * runs in a work queue). Instead trigger a one-shot
 254		 * polling read from memory in the CP. This assumes
 255		 * that wptr is GPU-accessible in the queue's VMID via
 256		 * ATC or SVM. WPTR==RPTR before starting the poll so
 257		 * the CP starts fetching new commands from the right
 258		 * place.
 259		 *
 260		 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
 261		 * tricky. Assume that the queue didn't overflow. The
 262		 * number of valid bits in the 32-bit RPTR depends on
 263		 * the queue size. The remaining bits are taken from
 264		 * the saved 64-bit WPTR. If the WPTR wrapped, add the
 265		 * queue size.
 266		 */
 267		uint32_t queue_size =
 268			2 << REG_GET_FIELD(m->cp_hqd_pq_control,
 269					   CP_HQD_PQ_CONTROL, QUEUE_SIZE);
 270		uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
 271
 272		if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
 273			guessed_wptr += queue_size;
 274		guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
 275		guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
 276
 277		WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_LO,
 278			lower_32_bits(guessed_wptr));
 279		WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI,
 280			upper_32_bits(guessed_wptr));
 281		WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR,
 282			lower_32_bits((uintptr_t)wptr));
 283		WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR_HI,
 284			upper_32_bits((uintptr_t)wptr));
 285		WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_PQ_WPTR_POLL_CNTL1,
 286			(uint32_t)kgd_gfx_v9_get_queue_mask(adev, pipe_id, queue_id));
 287	}
 288
 289	/* Start the EOP fetcher */
 290	WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_EOP_RPTR,
 291	       REG_SET_FIELD(m->cp_hqd_eop_rptr, CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
 292
 293	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
 294	WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE, data);
 295
 296	kgd_gfx_v9_release_queue(adev, inst);
 297
 298	return 0;
 299}
 300
 301int kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device *adev, void *mqd,
 302			    uint32_t pipe_id, uint32_t queue_id,
 303			    uint32_t doorbell_off, uint32_t inst)
 304{
 305	struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[inst].ring;
 306	struct v9_mqd *m;
 307	uint32_t mec, pipe;
 308	int r;
 309
 310	m = get_mqd(mqd);
 311
 312	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
 313
 314	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
 315	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
 316
 317	pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
 318		 mec, pipe, queue_id);
 319
 320	spin_lock(&adev->gfx.kiq[inst].ring_lock);
 321	r = amdgpu_ring_alloc(kiq_ring, 7);
 322	if (r) {
 323		pr_err("Failed to alloc KIQ (%d).\n", r);
 324		goto out_unlock;
 325	}
 326
 327	amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
 328	amdgpu_ring_write(kiq_ring,
 329			  PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
 330			  PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
 331			  PACKET3_MAP_QUEUES_QUEUE(queue_id) |
 332			  PACKET3_MAP_QUEUES_PIPE(pipe) |
 333			  PACKET3_MAP_QUEUES_ME((mec - 1)) |
 334			  PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
 335			  PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
 336			  PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
 337			  PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
 338	amdgpu_ring_write(kiq_ring,
 339			  PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
 340	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
 341	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
 342	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
 343	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
 344	amdgpu_ring_commit(kiq_ring);
 345
 346out_unlock:
 347	spin_unlock(&adev->gfx.kiq[inst].ring_lock);
 348	kgd_gfx_v9_release_queue(adev, inst);
 349
 350	return r;
 351}
 352
 353int kgd_gfx_v9_hqd_dump(struct amdgpu_device *adev,
 354			uint32_t pipe_id, uint32_t queue_id,
 355			uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst)
 356{
 357	uint32_t i = 0, reg;
 358#define HQD_N_REGS 56
 359#define DUMP_REG(addr) do {				\
 360		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
 361			break;				\
 362		(*dump)[i][0] = (addr) << 2;		\
 363		(*dump)[i++][1] = RREG32(addr);		\
 364	} while (0)
 365
 366	*dump = kmalloc_array(HQD_N_REGS, sizeof(**dump), GFP_KERNEL);
 367	if (*dump == NULL)
 368		return -ENOMEM;
 369
 370	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
 371
 372	for (reg = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR);
 373	     reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++)
 374		DUMP_REG(reg);
 375
 376	kgd_gfx_v9_release_queue(adev, inst);
 377
 378	WARN_ON_ONCE(i != HQD_N_REGS);
 379	*n_regs = i;
 380
 381	return 0;
 382}
 383
 384static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
 385			     uint32_t __user *wptr, struct mm_struct *mm)
 386{
 387	struct v9_sdma_mqd *m;
 388	uint32_t sdma_rlc_reg_offset;
 389	unsigned long end_jiffies;
 390	uint32_t data;
 391	uint64_t data64;
 392	uint64_t __user *wptr64 = (uint64_t __user *)wptr;
 393
 394	m = get_sdma_mqd(mqd);
 395	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
 396					    m->sdma_queue_id);
 397
 398	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
 399		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
 400
 401	end_jiffies = msecs_to_jiffies(2000) + jiffies;
 402	while (true) {
 403		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
 404		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
 405			break;
 406		if (time_after(jiffies, end_jiffies)) {
 407			pr_err("SDMA RLC not idle in %s\n", __func__);
 408			return -ETIME;
 409		}
 410		usleep_range(500, 1000);
 411	}
 412
 413	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
 414	       m->sdmax_rlcx_doorbell_offset);
 415
 416	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
 417			     ENABLE, 1);
 418	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
 419	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
 420				m->sdmax_rlcx_rb_rptr);
 421	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
 422				m->sdmax_rlcx_rb_rptr_hi);
 423
 424	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
 425	if (read_user_wptr(mm, wptr64, data64)) {
 426		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
 427		       lower_32_bits(data64));
 428		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
 429		       upper_32_bits(data64));
 430	} else {
 431		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
 432		       m->sdmax_rlcx_rb_rptr);
 433		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
 434		       m->sdmax_rlcx_rb_rptr_hi);
 435	}
 436	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
 437
 438	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
 439	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
 440			m->sdmax_rlcx_rb_base_hi);
 441	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
 442			m->sdmax_rlcx_rb_rptr_addr_lo);
 443	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
 444			m->sdmax_rlcx_rb_rptr_addr_hi);
 445
 446	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
 447			     RB_ENABLE, 1);
 448	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
 449
 450	return 0;
 451}
 452
 453static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
 454			     uint32_t engine_id, uint32_t queue_id,
 455			     uint32_t (**dump)[2], uint32_t *n_regs)
 456{
 457	uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
 458			engine_id, queue_id);
 459	uint32_t i = 0, reg;
 460#undef HQD_N_REGS
 461#define HQD_N_REGS (19+6+7+10)
 462
 463	*dump = kmalloc_array(HQD_N_REGS, sizeof(**dump), GFP_KERNEL);
 464	if (*dump == NULL)
 465		return -ENOMEM;
 466
 467	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
 468		DUMP_REG(sdma_rlc_reg_offset + reg);
 469	for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
 470		DUMP_REG(sdma_rlc_reg_offset + reg);
 471	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
 472	     reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
 473		DUMP_REG(sdma_rlc_reg_offset + reg);
 474	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
 475	     reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
 476		DUMP_REG(sdma_rlc_reg_offset + reg);
 477
 478	WARN_ON_ONCE(i != HQD_N_REGS);
 479	*n_regs = i;
 480
 481	return 0;
 482}
 483
 484bool kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device *adev,
 485				uint64_t queue_address, uint32_t pipe_id,
 486				uint32_t queue_id, uint32_t inst)
 487{
 488	uint32_t act;
 489	bool retval = false;
 490	uint32_t low, high;
 491
 492	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
 493	act = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
 494	if (act) {
 495		low = lower_32_bits(queue_address >> 8);
 496		high = upper_32_bits(queue_address >> 8);
 497
 498		if (low == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE) &&
 499		   high == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE_HI))
 500			retval = true;
 501	}
 502	kgd_gfx_v9_release_queue(adev, inst);
 503	return retval;
 504}
 505
 506static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
 507{
 508	struct v9_sdma_mqd *m;
 509	uint32_t sdma_rlc_reg_offset;
 510	uint32_t sdma_rlc_rb_cntl;
 511
 512	m = get_sdma_mqd(mqd);
 513	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
 514					    m->sdma_queue_id);
 515
 516	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
 517
 518	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
 519		return true;
 520
 521	return false;
 522}
 523
 524int kgd_gfx_v9_hqd_destroy(struct amdgpu_device *adev, void *mqd,
 525				enum kfd_preempt_type reset_type,
 526				unsigned int utimeout, uint32_t pipe_id,
 527				uint32_t queue_id, uint32_t inst)
 528{
 529	enum hqd_dequeue_request_type type;
 530	unsigned long end_jiffies;
 531	uint32_t temp;
 532	struct v9_mqd *m = get_mqd(mqd);
 533
 534	if (amdgpu_in_reset(adev))
 535		return -EIO;
 536
 537	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
 538
 539	if (m->cp_hqd_vmid == 0)
 540		WREG32_FIELD15_RLC(GC, GET_INST(GC, inst), RLC_CP_SCHEDULERS, scheduler1, 0);
 541
 542	switch (reset_type) {
 543	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
 544		type = DRAIN_PIPE;
 545		break;
 546	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
 547		type = RESET_WAVES;
 548		break;
 549	case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
 550		type = SAVE_WAVES;
 551		break;
 552	default:
 553		type = DRAIN_PIPE;
 554		break;
 555	}
 556
 557	WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_DEQUEUE_REQUEST, type);
 558
 559	end_jiffies = (utimeout * HZ / 1000) + jiffies;
 560	while (true) {
 561		temp = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
 562		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
 563			break;
 564		if (time_after(jiffies, end_jiffies)) {
 565			pr_err("cp queue preemption time out.\n");
 566			kgd_gfx_v9_release_queue(adev, inst);
 567			return -ETIME;
 568		}
 569		usleep_range(500, 1000);
 570	}
 571
 572	kgd_gfx_v9_release_queue(adev, inst);
 573	return 0;
 574}
 575
 576static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
 577				unsigned int utimeout)
 578{
 579	struct v9_sdma_mqd *m;
 580	uint32_t sdma_rlc_reg_offset;
 581	uint32_t temp;
 582	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
 583
 584	m = get_sdma_mqd(mqd);
 585	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
 586					    m->sdma_queue_id);
 587
 588	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
 589	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
 590	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
 591
 592	while (true) {
 593		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
 594		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
 595			break;
 596		if (time_after(jiffies, end_jiffies)) {
 597			pr_err("SDMA RLC not idle in %s\n", __func__);
 598			return -ETIME;
 599		}
 600		usleep_range(500, 1000);
 601	}
 602
 603	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
 604	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
 605		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
 606		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
 607
 608	m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
 609	m->sdmax_rlcx_rb_rptr_hi =
 610		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
 611
 612	return 0;
 613}
 614
 615bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
 616					uint8_t vmid, uint16_t *p_pasid)
 617{
 618	uint32_t value;
 619
 620	value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
 621		     + vmid);
 622	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
 623
 624	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
 625}
 626
 627int kgd_gfx_v9_wave_control_execute(struct amdgpu_device *adev,
 628					uint32_t gfx_index_val,
 629					uint32_t sq_cmd, uint32_t inst)
 630{
 631	uint32_t data = 0;
 632
 633	mutex_lock(&adev->grbm_idx_mutex);
 634
 635	WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, gfx_index_val);
 636	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_CMD, sq_cmd);
 637
 638	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
 639		INSTANCE_BROADCAST_WRITES, 1);
 640	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
 641		SH_BROADCAST_WRITES, 1);
 642	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
 643		SE_BROADCAST_WRITES, 1);
 644
 645	WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, data);
 646	mutex_unlock(&adev->grbm_idx_mutex);
 647
 648	return 0;
 649}
 650
 651/*
 652 * GFX9 helper for wave launch stall requirements on debug trap setting.
 653 *
 654 * vmid:
 655 *   Target VMID to stall/unstall.
 656 *
 657 * stall:
 658 *   0-unstall wave launch (enable), 1-stall wave launch (disable).
 659 *   After wavefront launch has been stalled, allocated waves must drain from
 660 *   SPI in order for debug trap settings to take effect on those waves.
 661 *   This is roughly a ~96 clock cycle wait on SPI where a read on
 662 *   SPI_GDBG_WAVE_CNTL translates to ~32 clock cycles.
 663 *   KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY indicates the number of reads required.
 664 *
 665 *   NOTE: We can afford to clear the entire STALL_VMID field on unstall
 666 *   because GFX9.4.1 cannot support multi-process debugging due to trap
 667 *   configuration and masking being limited to global scope.  Always assume
 668 *   single process conditions.
 669 */
 670#define KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY	3
 671void kgd_gfx_v9_set_wave_launch_stall(struct amdgpu_device *adev,
 672					uint32_t vmid,
 673					bool stall)
 674{
 675	int i;
 676	uint32_t data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
 677
 678	if (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 1))
 679		data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_VMID,
 680							stall ? 1 << vmid : 0);
 681	else
 682		data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA,
 683							stall ? 1 : 0);
 684
 685	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
 686
 687	if (!stall)
 688		return;
 689
 690	for (i = 0; i < KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY; i++)
 691		RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
 692}
 693
 694/*
 695 * restore_dbg_registers is ignored here but is a general interface requirement
 696 * for devices that support GFXOFF and where the RLC save/restore list
 697 * does not support hw registers for debugging i.e. the driver has to manually
 698 * initialize the debug mode registers after it has disabled GFX off during the
 699 * debug session.
 700 */
 701uint32_t kgd_gfx_v9_enable_debug_trap(struct amdgpu_device *adev,
 702				bool restore_dbg_registers,
 703				uint32_t vmid)
 704{
 705	mutex_lock(&adev->grbm_idx_mutex);
 706
 707	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
 708
 709	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
 710
 711	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
 712
 713	mutex_unlock(&adev->grbm_idx_mutex);
 714
 715	return 0;
 716}
 717
 718/*
 719 * keep_trap_enabled is ignored here but is a general interface requirement
 720 * for devices that support multi-process debugging where the performance
 721 * overhead from trap temporary setup needs to be bypassed when the debug
 722 * session has ended.
 723 */
 724uint32_t kgd_gfx_v9_disable_debug_trap(struct amdgpu_device *adev,
 725					bool keep_trap_enabled,
 726					uint32_t vmid)
 727{
 728	mutex_lock(&adev->grbm_idx_mutex);
 729
 730	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
 731
 732	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
 733
 734	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
 735
 736	mutex_unlock(&adev->grbm_idx_mutex);
 737
 738	return 0;
 739}
 740
 741int kgd_gfx_v9_validate_trap_override_request(struct amdgpu_device *adev,
 742					uint32_t trap_override,
 743					uint32_t *trap_mask_supported)
 744{
 745	*trap_mask_supported &= KFD_DBG_TRAP_MASK_DBG_ADDRESS_WATCH;
 746
 747	/* The SPI_GDBG_TRAP_MASK register is global and affects all
 748	 * processes. Only allow OR-ing the address-watch bit, since
 749	 * this only affects processes under the debugger. Other bits
 750	 * should stay 0 to avoid the debugger interfering with other
 751	 * processes.
 752	 */
 753	if (trap_override != KFD_DBG_TRAP_OVERRIDE_OR)
 754		return -EINVAL;
 755
 756	return 0;
 757}
 758
 759uint32_t kgd_gfx_v9_set_wave_launch_trap_override(struct amdgpu_device *adev,
 760					     uint32_t vmid,
 761					     uint32_t trap_override,
 762					     uint32_t trap_mask_bits,
 763					     uint32_t trap_mask_request,
 764					     uint32_t *trap_mask_prev,
 765					     uint32_t kfd_dbg_cntl_prev)
 766{
 767	uint32_t data, wave_cntl_prev;
 768
 769	mutex_lock(&adev->grbm_idx_mutex);
 770
 771	wave_cntl_prev = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
 772
 773	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
 774
 775	data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK));
 776	*trap_mask_prev = REG_GET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN);
 777
 778	trap_mask_bits = (trap_mask_bits & trap_mask_request) |
 779		(*trap_mask_prev & ~trap_mask_request);
 780
 781	data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN, trap_mask_bits);
 782	data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, REPLACE, trap_override);
 783	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data);
 784
 785	/* We need to preserve wave launch mode stall settings. */
 786	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), wave_cntl_prev);
 787
 788	mutex_unlock(&adev->grbm_idx_mutex);
 789
 790	return 0;
 791}
 792
 793uint32_t kgd_gfx_v9_set_wave_launch_mode(struct amdgpu_device *adev,
 794					uint8_t wave_launch_mode,
 795					uint32_t vmid)
 796{
 797	uint32_t data = 0;
 798	bool is_mode_set = !!wave_launch_mode;
 799
 800	mutex_lock(&adev->grbm_idx_mutex);
 801
 802	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
 803
 804	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
 805		VMID_MASK, is_mode_set ? 1 << vmid : 0);
 806	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
 807		MODE, is_mode_set ? wave_launch_mode : 0);
 808	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data);
 809
 810	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
 811
 812	mutex_unlock(&adev->grbm_idx_mutex);
 813
 814	return 0;
 815}
 816
 817#define TCP_WATCH_STRIDE (mmTCP_WATCH1_ADDR_H - mmTCP_WATCH0_ADDR_H)
 818uint32_t kgd_gfx_v9_set_address_watch(struct amdgpu_device *adev,
 819					uint64_t watch_address,
 820					uint32_t watch_address_mask,
 821					uint32_t watch_id,
 822					uint32_t watch_mode,
 823					uint32_t debug_vmid,
 824					uint32_t inst)
 825{
 826	uint32_t watch_address_high;
 827	uint32_t watch_address_low;
 828	uint32_t watch_address_cntl;
 829
 830	watch_address_cntl = 0;
 831
 832	watch_address_low = lower_32_bits(watch_address);
 833	watch_address_high = upper_32_bits(watch_address) & 0xffff;
 834
 835	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
 836			TCP_WATCH0_CNTL,
 837			VMID,
 838			debug_vmid);
 839	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
 840			TCP_WATCH0_CNTL,
 841			MODE,
 842			watch_mode);
 843	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
 844			TCP_WATCH0_CNTL,
 845			MASK,
 846			watch_address_mask >> 6);
 847
 848	/* Turning off this watch point until we set all the registers */
 849	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
 850			TCP_WATCH0_CNTL,
 851			VALID,
 852			0);
 853
 854	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
 855			(watch_id * TCP_WATCH_STRIDE)),
 856			watch_address_cntl);
 857
 858	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) +
 859			(watch_id * TCP_WATCH_STRIDE)),
 860			watch_address_high);
 861
 862	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_L) +
 863			(watch_id * TCP_WATCH_STRIDE)),
 864			watch_address_low);
 865
 866	/* Enable the watch point */
 867	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
 868			TCP_WATCH0_CNTL,
 869			VALID,
 870			1);
 871
 872	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
 873			(watch_id * TCP_WATCH_STRIDE)),
 874			watch_address_cntl);
 875
 876	return 0;
 877}
 878
 879uint32_t kgd_gfx_v9_clear_address_watch(struct amdgpu_device *adev,
 880					uint32_t watch_id)
 881{
 882	uint32_t watch_address_cntl;
 883
 884	watch_address_cntl = 0;
 885
 886	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
 887			(watch_id * TCP_WATCH_STRIDE)),
 888			watch_address_cntl);
 889
 890	return 0;
 891}
 892
 893/* kgd_gfx_v9_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values
 894 * The values read are:
 895 *     ib_offload_wait_time     -- Wait Count for Indirect Buffer Offloads.
 896 *     atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads.
 897 *     wrm_offload_wait_time    -- Wait Count for WAIT_REG_MEM Offloads.
 898 *     gws_wait_time            -- Wait Count for Global Wave Syncs.
 899 *     que_sleep_wait_time      -- Wait Count for Dequeue Retry.
 900 *     sch_wave_wait_time       -- Wait Count for Scheduling Wave Message.
 901 *     sem_rearm_wait_time      -- Wait Count for Semaphore re-arm.
 902 *     deq_retry_wait_time      -- Wait Count for Global Wave Syncs.
 903 */
 904void kgd_gfx_v9_get_iq_wait_times(struct amdgpu_device *adev,
 905					uint32_t *wait_times,
 906					uint32_t inst)
 907
 908{
 909	*wait_times = RREG32_SOC15_RLC(GC, GET_INST(GC, inst),
 910			mmCP_IQ_WAIT_TIME2);
 911}
 912
 913void kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device *adev,
 914			uint32_t vmid, uint64_t page_table_base)
 915{
 916	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
 917		pr_err("trying to set page table base for wrong VMID %u\n",
 918		       vmid);
 919		return;
 920	}
 921
 922	adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
 923
 924	adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
 925}
 926
 927static void lock_spi_csq_mutexes(struct amdgpu_device *adev)
 928{
 929	mutex_lock(&adev->srbm_mutex);
 930	mutex_lock(&adev->grbm_idx_mutex);
 931
 932}
 933
 934static void unlock_spi_csq_mutexes(struct amdgpu_device *adev)
 935{
 936	mutex_unlock(&adev->grbm_idx_mutex);
 937	mutex_unlock(&adev->srbm_mutex);
 938}
 939
 940/**
 941 * get_wave_count: Read device registers to get number of waves in flight for
 942 * a particular queue. The method also returns the VMID associated with the
 943 * queue.
 944 *
 945 * @adev: Handle of device whose registers are to be read
 946 * @queue_idx: Index of queue in the queue-map bit-field
 947 * @wave_cnt: Output parameter updated with number of waves in flight
 948 * @vmid: Output parameter updated with VMID of queue whose wave count
 949 *        is being collected
 950 * @inst: xcc's instance number on a multi-XCC setup
 951 */
 952static void get_wave_count(struct amdgpu_device *adev, int queue_idx,
 953		int *wave_cnt, int *vmid, uint32_t inst)
 954{
 955	int pipe_idx;
 956	int queue_slot;
 957	unsigned int reg_val;
 958
 959	/*
 960	 * Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID
 961	 * parameters to read out waves in flight. Get VMID if there are
 962	 * non-zero waves in flight.
 963	 */
 964	*vmid = 0xFF;
 965	*wave_cnt = 0;
 966	pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe;
 967	queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe;
 968	soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0, inst);
 969	reg_val = RREG32_SOC15_IP(GC, SOC15_REG_OFFSET(GC, inst, mmSPI_CSQ_WF_ACTIVE_COUNT_0) +
 970			 queue_slot);
 971	*wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK;
 972	if (*wave_cnt != 0)
 973		*vmid = (RREG32_SOC15(GC, inst, mmCP_HQD_VMID) &
 974			 CP_HQD_VMID__VMID_MASK) >> CP_HQD_VMID__VMID__SHIFT;
 975}
 976
 977/**
 978 * kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each
 979 * shader engine and aggregates the number of waves that are in flight for the
 980 * process whose pasid is provided as a parameter. The process could have ZERO
 981 * or more queues running and submitting waves to compute units.
 982 *
 983 * @adev: Handle of device from which to get number of waves in flight
 984 * @pasid: Identifies the process for which this query call is invoked
 985 * @pasid_wave_cnt: Output parameter updated with number of waves in flight that
 986 *                  belong to process with given pasid
 987 * @max_waves_per_cu: Output parameter updated with maximum number of waves
 988 *                    possible per Compute Unit
 989 * @inst: xcc's instance number on a multi-XCC setup
 990 *
 991 * Note: It's possible that the device has too many queues (oversubscription)
 992 * in which case a VMID could be remapped to a different PASID. This could lead
 993 * to an inaccurate wave count. Following is a high-level sequence:
 994 *    Time T1: vmid = getVmid(); vmid is associated with Pasid P1
 995 *    Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2
 996 * In the sequence above wave count obtained from time T1 will be incorrectly
 997 * lost or added to total wave count.
 998 *
 999 * The registers that provide the waves in flight are:
1000 *
1001 *  SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a
1002 *  queue is slotted, OFF if there is no queue. A process could have ZERO or
1003 *  more queues slotted and submitting waves to be run on compute units. Even
1004 *  when there is a queue it is possible there could be zero wave fronts, this
1005 *  can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem
1006 *  command
1007 *
1008 *  For each bit that is ON from above:
1009 *
1010 *    Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the
1011 *    number of waves that are in flight for the queue at specified index. The
1012 *    index ranges from 0 to 7.
1013 *
1014 *    If non-zero waves are in flight, read CP_HQD_VMID register to obtain VMID
1015 *    of the wave(s).
1016 *
1017 *    Determine if VMID from above step maps to pasid provided as parameter. If
1018 *    it matches agrregate the wave count. That the VMID will not match pasid is
1019 *    a normal condition i.e. a device is expected to support multiple queues
1020 *    from multiple proceses.
1021 *
1022 *  Reading registers referenced above involves programming GRBM appropriately
1023 */
1024void kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device *adev, int pasid,
1025		int *pasid_wave_cnt, int *max_waves_per_cu, uint32_t inst)
1026{
1027	int qidx;
1028	int vmid;
1029	int se_idx;
1030	int sh_idx;
1031	int se_cnt;
1032	int sh_cnt;
1033	int wave_cnt;
1034	int queue_map;
1035	int pasid_tmp;
1036	int max_queue_cnt;
1037	int vmid_wave_cnt = 0;
1038	DECLARE_BITMAP(cp_queue_bitmap, AMDGPU_MAX_QUEUES);
1039
1040	lock_spi_csq_mutexes(adev);
1041	soc15_grbm_select(adev, 1, 0, 0, 0, inst);
1042
1043	/*
1044	 * Iterate through the shader engines and arrays of the device
1045	 * to get number of waves in flight
1046	 */
1047	bitmap_complement(cp_queue_bitmap, adev->gfx.mec_bitmap[0].queue_bitmap,
1048			  AMDGPU_MAX_QUEUES);
1049	max_queue_cnt = adev->gfx.mec.num_pipe_per_mec *
1050			adev->gfx.mec.num_queue_per_pipe;
1051	sh_cnt = adev->gfx.config.max_sh_per_se;
1052	se_cnt = adev->gfx.config.max_shader_engines;
1053	for (se_idx = 0; se_idx < se_cnt; se_idx++) {
1054		for (sh_idx = 0; sh_idx < sh_cnt; sh_idx++) {
1055
1056			amdgpu_gfx_select_se_sh(adev, se_idx, sh_idx, 0xffffffff, inst);
1057			queue_map = RREG32_SOC15(GC, inst, mmSPI_CSQ_WF_ACTIVE_STATUS);
1058
1059			/*
1060			 * Assumption: queue map encodes following schema: four
1061			 * pipes per each micro-engine, with each pipe mapping
1062			 * eight queues. This schema is true for GFX9 devices
1063			 * and must be verified for newer device families
1064			 */
1065			for (qidx = 0; qidx < max_queue_cnt; qidx++) {
1066
1067				/* Skip qeueus that are not associated with
1068				 * compute functions
1069				 */
1070				if (!test_bit(qidx, cp_queue_bitmap))
1071					continue;
1072
1073				if (!(queue_map & (1 << qidx)))
1074					continue;
1075
1076				/* Get number of waves in flight and aggregate them */
1077				get_wave_count(adev, qidx, &wave_cnt, &vmid,
1078						inst);
1079				if (wave_cnt != 0) {
1080					pasid_tmp =
1081					  RREG32(SOC15_REG_OFFSET(OSSSYS, inst,
1082						 mmIH_VMID_0_LUT) + vmid);
1083					if (pasid_tmp == pasid)
1084						vmid_wave_cnt += wave_cnt;
1085				}
1086			}
1087		}
1088	}
1089
1090	amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, inst);
1091	soc15_grbm_select(adev, 0, 0, 0, 0, inst);
1092	unlock_spi_csq_mutexes(adev);
1093
1094	/* Update the output parameters and return */
1095	*pasid_wave_cnt = vmid_wave_cnt;
1096	*max_waves_per_cu = adev->gfx.cu_info.simd_per_cu *
1097				adev->gfx.cu_info.max_waves_per_simd;
1098}
1099
1100void kgd_gfx_v9_build_grace_period_packet_info(struct amdgpu_device *adev,
1101		uint32_t wait_times,
1102		uint32_t grace_period,
1103		uint32_t *reg_offset,
1104		uint32_t *reg_data)
1105{
1106	*reg_data = wait_times;
1107
1108	/*
1109	 * The CP cannot handle a 0 grace period input and will result in
1110	 * an infinite grace period being set so set to 1 to prevent this.
1111	 */
1112	if (grace_period == 0)
1113		grace_period = 1;
1114
1115	*reg_data = REG_SET_FIELD(*reg_data,
1116			CP_IQ_WAIT_TIME2,
1117			SCH_WAVE,
1118			grace_period);
1119
1120	*reg_offset = SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2);
1121}
1122
1123void kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device *adev,
1124		uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr, uint32_t inst)
1125{
1126	kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst);
1127
1128	/*
1129	 * Program TBA registers
1130	 */
1131	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_LO,
1132			lower_32_bits(tba_addr >> 8));
1133	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_HI,
1134			upper_32_bits(tba_addr >> 8));
1135
1136	/*
1137	 * Program TMA registers
1138	 */
1139	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_LO,
1140			lower_32_bits(tma_addr >> 8));
1141	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_HI,
1142			upper_32_bits(tma_addr >> 8));
1143
1144	kgd_gfx_v9_unlock_srbm(adev, inst);
1145}
1146
1147const struct kfd2kgd_calls gfx_v9_kfd2kgd = {
1148	.program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings,
1149	.set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping,
1150	.init_interrupts = kgd_gfx_v9_init_interrupts,
1151	.hqd_load = kgd_gfx_v9_hqd_load,
1152	.hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load,
1153	.hqd_sdma_load = kgd_hqd_sdma_load,
1154	.hqd_dump = kgd_gfx_v9_hqd_dump,
1155	.hqd_sdma_dump = kgd_hqd_sdma_dump,
1156	.hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied,
1157	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
1158	.hqd_destroy = kgd_gfx_v9_hqd_destroy,
1159	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
1160	.wave_control_execute = kgd_gfx_v9_wave_control_execute,
1161	.get_atc_vmid_pasid_mapping_info =
1162			kgd_gfx_v9_get_atc_vmid_pasid_mapping_info,
1163	.set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base,
1164	.enable_debug_trap = kgd_gfx_v9_enable_debug_trap,
1165	.disable_debug_trap = kgd_gfx_v9_disable_debug_trap,
1166	.validate_trap_override_request = kgd_gfx_v9_validate_trap_override_request,
1167	.set_wave_launch_trap_override = kgd_gfx_v9_set_wave_launch_trap_override,
1168	.set_wave_launch_mode = kgd_gfx_v9_set_wave_launch_mode,
1169	.set_address_watch = kgd_gfx_v9_set_address_watch,
1170	.clear_address_watch = kgd_gfx_v9_clear_address_watch,
1171	.get_iq_wait_times = kgd_gfx_v9_get_iq_wait_times,
1172	.build_grace_period_packet_info = kgd_gfx_v9_build_grace_period_packet_info,
1173	.get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy,
1174	.program_trap_handler_settings = kgd_gfx_v9_program_trap_handler_settings,
1175};