Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.9.4
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
 
 
 
 
 
 
 
 
 
  28#include <linux/dma-fence-array.h>
  29#include <linux/kthread.h>
  30#include <linux/dma-resv.h>
  31#include <linux/shmem_fs.h>
  32#include <linux/slab.h>
  33#include <linux/stop_machine.h>
  34#include <linux/swap.h>
  35#include <linux/pci.h>
  36#include <linux/dma-buf.h>
  37#include <linux/mman.h>
  38
  39#include <drm/drm_cache.h>
  40#include <drm/drm_vma_manager.h>
 
  41
  42#include "display/intel_display.h"
 
 
 
 
  43
  44#include "gem/i915_gem_clflush.h"
  45#include "gem/i915_gem_context.h"
  46#include "gem/i915_gem_ioctls.h"
  47#include "gem/i915_gem_mman.h"
  48#include "gem/i915_gem_object_frontbuffer.h"
  49#include "gem/i915_gem_pm.h"
  50#include "gem/i915_gem_region.h"
  51#include "gt/intel_engine_user.h"
  52#include "gt/intel_gt.h"
  53#include "gt/intel_gt_pm.h"
  54#include "gt/intel_workarounds.h"
  55
  56#include "i915_drv.h"
  57#include "i915_file_private.h"
  58#include "i915_trace.h"
  59#include "i915_vgpu.h"
  60#include "intel_clock_gating.h"
  61
  62static int
  63insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
 
  64{
  65	int err;
 
 
 
 
 
 
  66
  67	err = mutex_lock_interruptible(&ggtt->vm.mutex);
  68	if (err)
  69		return err;
 
 
  70
  71	memset(node, 0, sizeof(*node));
  72	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
  73					  size, 0, I915_COLOR_UNEVICTABLE,
  74					  0, ggtt->mappable_end,
  75					  DRM_MM_INSERT_LOW);
 
 
 
 
 
 
 
 
 
 
 
 
 
  76
  77	mutex_unlock(&ggtt->vm.mutex);
 
 
 
  78
  79	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80}
  81
  82static void
  83remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
  84{
  85	mutex_lock(&ggtt->vm.mutex);
  86	drm_mm_remove_node(node);
  87	mutex_unlock(&ggtt->vm.mutex);
 
 
 
 
 
 
 
 
 
  88}
  89
  90int
  91i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  92			    struct drm_file *file)
  93{
  94	struct drm_i915_private *i915 = to_i915(dev);
  95	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
  96	struct drm_i915_gem_get_aperture *args = data;
  97	struct i915_vma *vma;
  98	u64 pinned;
  99
 100	if (mutex_lock_interruptible(&ggtt->vm.mutex))
 101		return -EINTR;
 102
 103	pinned = ggtt->vm.reserved;
 104	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
 
 105		if (i915_vma_is_pinned(vma))
 106			pinned += vma->node.size;
 
 
 
 
 107
 108	mutex_unlock(&ggtt->vm.mutex);
 109
 110	args->aper_size = ggtt->vm.total;
 111	args->aper_available_size = args->aper_size - pinned;
 112
 113	return 0;
 114}
 115
 116int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
 117			   unsigned long flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 118{
 119	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
 120	bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
 121	LIST_HEAD(still_in_list);
 122	intel_wakeref_t wakeref;
 123	struct i915_vma *vma;
 
 124	int ret;
 125
 126	assert_object_held(obj);
 127
 128	if (list_empty(&obj->vma.list))
 129		return 0;
 
 
 
 
 
 
 
 
 
 
 
 130
 131	/*
 132	 * As some machines use ACPI to handle runtime-resume callbacks, and
 133	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
 134	 * as they are required by the shrinker. Ergo, we wake the device up
 135	 * first just in case.
 136	 */
 137	wakeref = intel_runtime_pm_get(rpm);
 138
 139try_again:
 140	ret = 0;
 141	spin_lock(&obj->vma.lock);
 142	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
 143						       struct i915_vma,
 144						       obj_link))) {
 145		list_move_tail(&vma->obj_link, &still_in_list);
 146		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
 147			continue;
 148
 149		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
 150			ret = -EBUSY;
 
 
 
 
 151			break;
 152		}
 
 153
 154		/*
 155		 * Requiring the vm destructor to take the object lock
 156		 * before destroying a vma would help us eliminate the
 157		 * i915_vm_tryget() here, AND thus also the barrier stuff
 158		 * at the end. That's an easy fix, but sleeping locks in
 159		 * a kthread should generally be avoided.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160		 */
 161		ret = -EAGAIN;
 162		if (!i915_vm_tryget(vma->vm))
 163			break;
 
 164
 165		spin_unlock(&obj->vma.lock);
 
 166
 167		/*
 168		 * Since i915_vma_parked() takes the object lock
 169		 * before vma destruction, it won't race us here,
 170		 * and destroy the vma from under us.
 171		 */
 172
 173		ret = -EBUSY;
 174		if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
 175			assert_object_held(vma->obj);
 176			ret = i915_vma_unbind_async(vma, vm_trylock);
 177		}
 178
 179		if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
 180				      !i915_vma_is_active(vma))) {
 181			if (vm_trylock) {
 182				if (mutex_trylock(&vma->vm->mutex)) {
 183					ret = __i915_vma_unbind(vma);
 184					mutex_unlock(&vma->vm->mutex);
 185				}
 186			} else {
 187				ret = i915_vma_unbind(vma);
 188			}
 
 
 
 
 189		}
 190
 191		i915_vm_put(vma->vm);
 192		spin_lock(&obj->vma.lock);
 
 
 
 193	}
 194	list_splice_init(&still_in_list, &obj->vma.list);
 195	spin_unlock(&obj->vma.lock);
 196
 197	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
 198		rcu_barrier(); /* flush the i915_vm_release() */
 199		goto try_again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200	}
 201
 202	intel_runtime_pm_put(rpm, wakeref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 204	return ret;
 205}
 206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207static int
 208shmem_pread(struct page *page, int offset, int len, char __user *user_data,
 209	    bool needs_clflush)
 
 210{
 211	char *vaddr;
 212	int ret;
 213
 214	vaddr = kmap(page);
 215
 216	if (needs_clflush)
 217		drm_clflush_virt_range(vaddr + offset, len);
 218
 219	ret = __copy_to_user(user_data, vaddr + offset, len);
 220
 
 
 
 
 221	kunmap(page);
 222
 223	return ret ? -EFAULT : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224}
 225
 226static int
 227i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
 228		     struct drm_i915_gem_pread *args)
 229{
 230	unsigned int needs_clflush;
 231	char __user *user_data;
 232	unsigned long offset;
 233	pgoff_t idx;
 234	u64 remain;
 
 
 
 235	int ret;
 236
 237	ret = i915_gem_object_lock_interruptible(obj, NULL);
 238	if (ret)
 239		return ret;
 240
 241	ret = i915_gem_object_pin_pages(obj);
 242	if (ret)
 243		goto err_unlock;
 244
 245	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
 
 246	if (ret)
 247		goto err_unpin;
 248
 249	i915_gem_object_finish_access(obj);
 250	i915_gem_object_unlock(obj);
 251
 252	remain = args->size;
 253	user_data = u64_to_user_ptr(args->data_ptr);
 254	offset = offset_in_page(args->offset);
 255	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 256		struct page *page = i915_gem_object_get_page(obj, idx);
 257		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 
 
 
 
 258
 259		ret = shmem_pread(page, offset, length, user_data,
 
 260				  needs_clflush);
 261		if (ret)
 262			break;
 263
 264		remain -= length;
 265		user_data += length;
 266		offset = 0;
 267	}
 268
 269	i915_gem_object_unpin_pages(obj);
 270	return ret;
 271
 272err_unpin:
 273	i915_gem_object_unpin_pages(obj);
 274err_unlock:
 275	i915_gem_object_unlock(obj);
 276	return ret;
 277}
 278
 279static inline bool
 280gtt_user_read(struct io_mapping *mapping,
 281	      loff_t base, int offset,
 282	      char __user *user_data, int length)
 283{
 284	void __iomem *vaddr;
 285	unsigned long unwritten;
 286
 287	/* We can use the cpu mem copy function because this is X86. */
 288	vaddr = io_mapping_map_atomic_wc(mapping, base);
 289	unwritten = __copy_to_user_inatomic(user_data,
 290					    (void __force *)vaddr + offset,
 291					    length);
 292	io_mapping_unmap_atomic(vaddr);
 293	if (unwritten) {
 294		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 295		unwritten = copy_to_user(user_data,
 296					 (void __force *)vaddr + offset,
 297					 length);
 298		io_mapping_unmap(vaddr);
 299	}
 300	return unwritten;
 301}
 302
 303static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
 304					     struct drm_mm_node *node,
 305					     bool write)
 306{
 307	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 308	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 
 309	struct i915_vma *vma;
 310	struct i915_gem_ww_ctx ww;
 
 311	int ret;
 312
 313	i915_gem_ww_ctx_init(&ww, true);
 314retry:
 315	vma = ERR_PTR(-ENODEV);
 316	ret = i915_gem_object_lock(obj, &ww);
 317	if (ret)
 318		goto err_ww;
 319
 320	ret = i915_gem_object_set_to_gtt_domain(obj, write);
 321	if (ret)
 322		goto err_ww;
 323
 324	if (!i915_gem_object_is_tiled(obj))
 325		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
 326						  PIN_MAPPABLE |
 327						  PIN_NONBLOCK /* NOWARN */ |
 328						  PIN_NOEVICT);
 329	if (vma == ERR_PTR(-EDEADLK)) {
 330		ret = -EDEADLK;
 331		goto err_ww;
 332	} else if (!IS_ERR(vma)) {
 333		node->start = i915_ggtt_offset(vma);
 334		node->flags = 0;
 335	} else {
 336		ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
 337		if (ret)
 338			goto err_ww;
 339		GEM_BUG_ON(!drm_mm_node_allocated(node));
 340		vma = NULL;
 341	}
 342
 343	ret = i915_gem_object_pin_pages(obj);
 344	if (ret) {
 345		if (drm_mm_node_allocated(node)) {
 346			ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
 347			remove_mappable_node(ggtt, node);
 348		} else {
 
 
 349			i915_vma_unpin(vma);
 
 350		}
 351	}
 352
 353err_ww:
 354	if (ret == -EDEADLK) {
 355		ret = i915_gem_ww_ctx_backoff(&ww);
 356		if (!ret)
 357			goto retry;
 358	}
 359	i915_gem_ww_ctx_fini(&ww);
 360
 361	return ret ? ERR_PTR(ret) : vma;
 362}
 363
 364static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
 365				 struct drm_mm_node *node,
 366				 struct i915_vma *vma)
 367{
 368	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 369	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 370
 371	i915_gem_object_unpin_pages(obj);
 372	if (drm_mm_node_allocated(node)) {
 373		ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
 374		remove_mappable_node(ggtt, node);
 375	} else {
 376		i915_vma_unpin(vma);
 377	}
 378}
 379
 380static int
 381i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
 382		   const struct drm_i915_gem_pread *args)
 383{
 384	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 385	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 386	unsigned long remain, offset;
 387	intel_wakeref_t wakeref;
 388	struct drm_mm_node node;
 389	void __user *user_data;
 390	struct i915_vma *vma;
 391	int ret = 0;
 392
 393	if (overflows_type(args->size, remain) ||
 394	    overflows_type(args->offset, offset))
 395		return -EINVAL;
 396
 397	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
 398
 399	vma = i915_gem_gtt_prepare(obj, &node, false);
 400	if (IS_ERR(vma)) {
 401		ret = PTR_ERR(vma);
 402		goto out_rpm;
 403	}
 404
 405	user_data = u64_to_user_ptr(args->data_ptr);
 406	remain = args->size;
 407	offset = args->offset;
 408
 409	while (remain > 0) {
 410		/* Operation in this page
 411		 *
 412		 * page_base = page offset within aperture
 413		 * page_offset = offset within page
 414		 * page_length = bytes to copy for this page
 415		 */
 416		u32 page_base = node.start;
 417		unsigned page_offset = offset_in_page(offset);
 418		unsigned page_length = PAGE_SIZE - page_offset;
 419		page_length = remain < page_length ? remain : page_length;
 420		if (drm_mm_node_allocated(&node)) {
 421			ggtt->vm.insert_page(&ggtt->vm,
 422					     i915_gem_object_get_dma_address(obj,
 423									     offset >> PAGE_SHIFT),
 424					     node.start,
 425					     i915_gem_get_pat_index(i915,
 426								    I915_CACHE_NONE), 0);
 427		} else {
 428			page_base += offset & PAGE_MASK;
 429		}
 430
 431		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
 432				  user_data, page_length)) {
 433			ret = -EFAULT;
 434			break;
 435		}
 436
 437		remain -= page_length;
 438		user_data += page_length;
 439		offset += page_length;
 440	}
 441
 442	i915_gem_gtt_cleanup(obj, &node, vma);
 443out_rpm:
 444	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
 
 
 
 
 
 
 
 
 
 
 
 445	return ret;
 446}
 447
 448/**
 449 * i915_gem_pread_ioctl - Reads data from the object referenced by handle.
 450 * @dev: drm device pointer
 451 * @data: ioctl data blob
 452 * @file: drm file pointer
 453 *
 454 * On error, the contents of *data are undefined.
 455 */
 456int
 457i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 458		     struct drm_file *file)
 459{
 460	struct drm_i915_private *i915 = to_i915(dev);
 461	struct drm_i915_gem_pread *args = data;
 462	struct drm_i915_gem_object *obj;
 463	int ret;
 464
 465	/* PREAD is disallowed for all platforms after TGL-LP.  This also
 466	 * covers all platforms with local memory.
 467	 */
 468	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
 469		return -EOPNOTSUPP;
 470
 471	if (args->size == 0)
 472		return 0;
 473
 474	if (!access_ok(u64_to_user_ptr(args->data_ptr),
 
 475		       args->size))
 476		return -EFAULT;
 477
 478	obj = i915_gem_object_lookup(file, args->handle);
 479	if (!obj)
 480		return -ENOENT;
 481
 482	/* Bounds check source.  */
 483	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 
 484		ret = -EINVAL;
 485		goto out;
 486	}
 487
 488	trace_i915_gem_object_pread(obj, args->offset, args->size);
 489	ret = -ENODEV;
 490	if (obj->ops->pread)
 491		ret = obj->ops->pread(obj, args);
 492	if (ret != -ENODEV)
 493		goto out;
 494
 495	ret = i915_gem_object_wait(obj,
 496				   I915_WAIT_INTERRUPTIBLE,
 497				   MAX_SCHEDULE_TIMEOUT);
 
 
 
 
 
 498	if (ret)
 499		goto out;
 500
 501	ret = i915_gem_shmem_pread(obj, args);
 502	if (ret == -EFAULT || ret == -ENODEV)
 503		ret = i915_gem_gtt_pread(obj, args);
 504
 
 505out:
 506	i915_gem_object_put(obj);
 507	return ret;
 508}
 509
 510/* This is the fast write path which cannot handle
 511 * page faults in the source data
 512 */
 513
 514static inline bool
 515ggtt_write(struct io_mapping *mapping,
 516	   loff_t base, int offset,
 517	   char __user *user_data, int length)
 518{
 519	void __iomem *vaddr;
 520	unsigned long unwritten;
 521
 522	/* We can use the cpu mem copy function because this is X86. */
 523	vaddr = io_mapping_map_atomic_wc(mapping, base);
 524	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
 525						      user_data, length);
 526	io_mapping_unmap_atomic(vaddr);
 527	if (unwritten) {
 528		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 529		unwritten = copy_from_user((void __force *)vaddr + offset,
 530					   user_data, length);
 531		io_mapping_unmap(vaddr);
 532	}
 533
 534	return unwritten;
 535}
 536
 537/**
 538 * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the
 539 * user into the GTT, uncached.
 540 * @obj: i915 GEM object
 541 * @args: pwrite arguments structure
 542 */
 543static int
 544i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
 545			 const struct drm_i915_gem_pwrite *args)
 546{
 547	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 548	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 549	struct intel_runtime_pm *rpm = &i915->runtime_pm;
 550	unsigned long remain, offset;
 551	intel_wakeref_t wakeref;
 552	struct drm_mm_node node;
 553	struct i915_vma *vma;
 
 554	void __user *user_data;
 555	int ret = 0;
 556
 557	if (overflows_type(args->size, remain) ||
 558	    overflows_type(args->offset, offset))
 559		return -EINVAL;
 560
 561	if (i915_gem_object_has_struct_page(obj)) {
 562		/*
 563		 * Avoid waking the device up if we can fallback, as
 564		 * waking/resuming is very slow (worst-case 10-100 ms
 565		 * depending on PCI sleeps and our own resume time).
 566		 * This easily dwarfs any performance advantage from
 567		 * using the cache bypass of indirect GGTT access.
 568		 */
 569		wakeref = intel_runtime_pm_get_if_in_use(rpm);
 570		if (!wakeref)
 571			return -EFAULT;
 572	} else {
 573		/* No backing pages, no fallback, we must force GGTT access */
 574		wakeref = intel_runtime_pm_get(rpm);
 575	}
 576
 577	vma = i915_gem_gtt_prepare(obj, &node, true);
 578	if (IS_ERR(vma)) {
 579		ret = PTR_ERR(vma);
 580		goto out_rpm;
 
 
 581	}
 582
 583	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
 
 
 
 
 
 
 584
 585	user_data = u64_to_user_ptr(args->data_ptr);
 586	offset = args->offset;
 587	remain = args->size;
 588	while (remain) {
 589		/* Operation in this page
 590		 *
 591		 * page_base = page offset within aperture
 592		 * page_offset = offset within page
 593		 * page_length = bytes to copy for this page
 594		 */
 595		u32 page_base = node.start;
 596		unsigned int page_offset = offset_in_page(offset);
 597		unsigned int page_length = PAGE_SIZE - page_offset;
 598		page_length = remain < page_length ? remain : page_length;
 599		if (drm_mm_node_allocated(&node)) {
 600			/* flush the write before we modify the GGTT */
 601			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 602			ggtt->vm.insert_page(&ggtt->vm,
 603					     i915_gem_object_get_dma_address(obj,
 604									     offset >> PAGE_SHIFT),
 605					     node.start,
 606					     i915_gem_get_pat_index(i915,
 607								    I915_CACHE_NONE), 0);
 608			wmb(); /* flush modifications to the GGTT (insert_page) */
 609		} else {
 610			page_base += offset & PAGE_MASK;
 611		}
 612		/* If we get a fault while copying data, then (presumably) our
 613		 * source page isn't available.  Return the error and we'll
 614		 * retry in the slow path.
 615		 * If the object is non-shmem backed, we retry again with the
 616		 * path that handles page fault.
 617		 */
 618		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
 619			       user_data, page_length)) {
 620			ret = -EFAULT;
 621			break;
 622		}
 623
 624		remain -= page_length;
 625		user_data += page_length;
 626		offset += page_length;
 627	}
 
 628
 629	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 630	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 631
 632	i915_gem_gtt_cleanup(obj, &node, vma);
 633out_rpm:
 634	intel_runtime_pm_put(rpm, wakeref);
 
 
 
 
 
 
 
 635	return ret;
 636}
 637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638/* Per-page copy function for the shmem pwrite fastpath.
 639 * Flushes invalid cachelines before writing to the target if
 640 * needs_clflush_before is set and flushes out any written cachelines after
 641 * writing if needs_clflush is set.
 642 */
 643static int
 644shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
 
 645	     bool needs_clflush_before,
 646	     bool needs_clflush_after)
 647{
 648	char *vaddr;
 649	int ret;
 650
 651	vaddr = kmap(page);
 652
 653	if (needs_clflush_before)
 654		drm_clflush_virt_range(vaddr + offset, len);
 655
 656	ret = __copy_from_user(vaddr + offset, user_data, len);
 657	if (!ret && needs_clflush_after)
 658		drm_clflush_virt_range(vaddr + offset, len);
 
 
 659
 660	kunmap(page);
 
 
 
 661
 662	return ret ? -EFAULT : 0;
 
 
 
 663}
 664
 665static int
 666i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
 667		      const struct drm_i915_gem_pwrite *args)
 668{
 669	unsigned int partial_cacheline_write;
 670	unsigned int needs_clflush;
 671	void __user *user_data;
 672	unsigned long offset;
 673	pgoff_t idx;
 674	u64 remain;
 
 
 
 
 675	int ret;
 676
 677	ret = i915_gem_object_lock_interruptible(obj, NULL);
 678	if (ret)
 679		return ret;
 680
 681	ret = i915_gem_object_pin_pages(obj);
 
 682	if (ret)
 683		goto err_unlock;
 684
 685	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
 686	if (ret)
 687		goto err_unpin;
 688
 689	i915_gem_object_finish_access(obj);
 690	i915_gem_object_unlock(obj);
 
 691
 692	/* If we don't overwrite a cacheline completely we need to be
 693	 * careful to have up-to-date data by first clflushing. Don't
 694	 * overcomplicate things and flush the entire patch.
 695	 */
 696	partial_cacheline_write = 0;
 697	if (needs_clflush & CLFLUSH_BEFORE)
 698		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
 699
 700	user_data = u64_to_user_ptr(args->data_ptr);
 701	remain = args->size;
 702	offset = offset_in_page(args->offset);
 703	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 704		struct page *page = i915_gem_object_get_page(obj, idx);
 705		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 
 
 
 
 706
 707		ret = shmem_pwrite(page, offset, length, user_data,
 
 708				   (offset | length) & partial_cacheline_write,
 709				   needs_clflush & CLFLUSH_AFTER);
 710		if (ret)
 711			break;
 712
 713		remain -= length;
 714		user_data += length;
 715		offset = 0;
 716	}
 717
 718	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 719
 720	i915_gem_object_unpin_pages(obj);
 721	return ret;
 722
 723err_unpin:
 724	i915_gem_object_unpin_pages(obj);
 725err_unlock:
 726	i915_gem_object_unlock(obj);
 727	return ret;
 728}
 729
 730/**
 731 * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle.
 732 * @dev: drm device
 733 * @data: ioctl data blob
 734 * @file: drm file
 735 *
 736 * On error, the contents of the buffer that were to be modified are undefined.
 737 */
 738int
 739i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 740		      struct drm_file *file)
 741{
 742	struct drm_i915_private *i915 = to_i915(dev);
 743	struct drm_i915_gem_pwrite *args = data;
 744	struct drm_i915_gem_object *obj;
 745	int ret;
 746
 747	/* PWRITE is disallowed for all platforms after TGL-LP.  This also
 748	 * covers all platforms with local memory.
 749	 */
 750	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
 751		return -EOPNOTSUPP;
 752
 753	if (args->size == 0)
 754		return 0;
 755
 756	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
 
 
 757		return -EFAULT;
 758
 759	obj = i915_gem_object_lookup(file, args->handle);
 760	if (!obj)
 761		return -ENOENT;
 762
 763	/* Bounds check destination. */
 764	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 765		ret = -EINVAL;
 766		goto err;
 767	}
 768
 769	/* Writes not allowed into this read-only object */
 770	if (i915_gem_object_is_readonly(obj)) {
 771		ret = -EINVAL;
 772		goto err;
 773	}
 774
 775	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 776
 777	ret = -ENODEV;
 778	if (obj->ops->pwrite)
 779		ret = obj->ops->pwrite(obj, args);
 780	if (ret != -ENODEV)
 781		goto err;
 782
 783	ret = i915_gem_object_wait(obj,
 784				   I915_WAIT_INTERRUPTIBLE |
 785				   I915_WAIT_ALL,
 786				   MAX_SCHEDULE_TIMEOUT);
 
 
 
 
 
 787	if (ret)
 788		goto err;
 789
 790	ret = -EFAULT;
 791	/* We can only do the GTT pwrite on untiled buffers, as otherwise
 792	 * it would end up going through the fenced access, and we'll get
 793	 * different detiling behavior between reading and writing.
 794	 * pread/pwrite currently are reading and writing from the CPU
 795	 * perspective, requiring manual detiling by the client.
 796	 */
 797	if (!i915_gem_object_has_struct_page(obj) ||
 798	    i915_gem_cpu_write_needs_clflush(obj))
 799		/* Note that the gtt paths might fail with non-page-backed user
 800		 * pointers (e.g. gtt mappings when moving data between
 801		 * textures). Fallback to the shmem path in that case.
 802		 */
 803		ret = i915_gem_gtt_pwrite_fast(obj, args);
 804
 805	if (ret == -EFAULT || ret == -ENOSPC) {
 806		if (i915_gem_object_has_struct_page(obj))
 
 
 807			ret = i915_gem_shmem_pwrite(obj, args);
 808	}
 809
 
 810err:
 811	i915_gem_object_put(obj);
 812	return ret;
 813}
 814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815/**
 816 * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer
 817 * @dev: drm device
 818 * @data: ioctl data blob
 819 * @file: drm file
 820 */
 821int
 822i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
 823			 struct drm_file *file)
 824{
 825	struct drm_i915_gem_sw_finish *args = data;
 826	struct drm_i915_gem_object *obj;
 
 827
 828	obj = i915_gem_object_lookup(file, args->handle);
 829	if (!obj)
 830		return -ENOENT;
 831
 832	/*
 833	 * Proxy objects are barred from CPU access, so there is no
 834	 * need to ban sw_finish as it is a nop.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835	 */
 
 
 
 
 836
 837	/* Pinned buffers may be scanout, so flush the cache */
 838	i915_gem_object_flush_if_display(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839	i915_gem_object_put(obj);
 
 
 
 
 840
 841	return 0;
 842}
 843
 844void i915_gem_runtime_suspend(struct drm_i915_private *i915)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845{
 846	struct drm_i915_gem_object *obj, *on;
 847	int i;
 848
 849	/*
 850	 * Only called during RPM suspend. All users of the userfault_list
 851	 * must be holding an RPM wakeref to ensure that this can not
 852	 * run concurrently with themselves (and use the struct_mutex for
 853	 * protection between themselves).
 854	 */
 855
 856	list_for_each_entry_safe(obj, on,
 857				 &to_gt(i915)->ggtt->userfault_list, userfault_link)
 858		__i915_gem_object_release_mmap_gtt(obj);
 859
 860	list_for_each_entry_safe(obj, on,
 861				 &i915->runtime_pm.lmem_userfault_list, userfault_link)
 862		i915_gem_object_runtime_pm_release_mmap_offset(obj);
 863
 864	/*
 865	 * The fence will be lost when the device powers down. If any were
 866	 * in use by hardware (i.e. they are pinned), we should not be powering
 867	 * down! All other fences will be reacquired by the user upon waking.
 868	 */
 869	for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
 870		struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
 871
 872		/*
 873		 * Ideally we want to assert that the fence register is not
 874		 * live at this point (i.e. that no piece of code will be
 875		 * trying to write through fence + GTT, as that both violates
 876		 * our tracking of activity and associated locking/barriers,
 877		 * but also is illegal given that the hw is powered down).
 878		 *
 879		 * Previously we used reg->pin_count as a "liveness" indicator.
 880		 * That is not sufficient, and we need a more fine-grained
 881		 * tool if we want to have a sanity check here.
 882		 */
 883
 884		if (!reg->vma)
 885			continue;
 886
 887		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
 888		reg->dirty = true;
 889	}
 890}
 891
 892static void discard_ggtt_vma(struct i915_vma *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 893{
 894	struct drm_i915_gem_object *obj = vma->obj;
 
 
 
 
 
 
 
 
 
 
 
 
 
 895
 896	spin_lock(&obj->vma.lock);
 897	if (!RB_EMPTY_NODE(&vma->obj_node)) {
 898		rb_erase(&vma->obj_node, &obj->vma.tree);
 899		RB_CLEAR_NODE(&vma->obj_node);
 
 
 
 
 
 
 
 
 
 900	}
 901	spin_unlock(&obj->vma.lock);
 
 
 
 
 
 902}
 903
 904struct i915_vma *
 905i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
 906			    struct i915_gem_ww_ctx *ww,
 907			    const struct i915_gtt_view *view,
 908			    u64 size, u64 alignment, u64 flags)
 909{
 910	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 911	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 912	struct i915_vma *vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913	int ret;
 
 914
 915	GEM_WARN_ON(!ww);
 
 
 
 
 
 916
 917	if (flags & PIN_MAPPABLE &&
 918	    (!view || view->type == I915_GTT_VIEW_NORMAL)) {
 919		/*
 920		 * If the required space is larger than the available
 921		 * aperture, we will not able to find a slot for the
 922		 * object and unbinding the object now will be in
 923		 * vain. Worse, doing so may cause us to ping-pong
 924		 * the object in and out of the Global GTT and
 925		 * waste a lot of cycles under the mutex.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926		 */
 927		if (obj->base.size > ggtt->mappable_end)
 928			return ERR_PTR(-E2BIG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929
 930		/*
 931		 * If NONBLOCK is set the caller is optimistically
 932		 * trying to cache the full object within the mappable
 933		 * aperture, and *must* have a fallback in place for
 934		 * situations where we cannot bind the object. We
 935		 * can be a little more lax here and use the fallback
 936		 * more often to avoid costly migrations of ourselves
 937		 * and other objects within the aperture.
 938		 *
 939		 * Half-the-aperture is used as a simple heuristic.
 940		 * More interesting would to do search for a free
 941		 * block prior to making the commitment to unbind.
 942		 * That caters for the self-harm case, and with a
 943		 * little more heuristics (e.g. NOFAULT, NOEVICT)
 944		 * we could try to minimise harm to others.
 945		 */
 946		if (flags & PIN_NONBLOCK &&
 947		    obj->base.size > ggtt->mappable_end / 2)
 948			return ERR_PTR(-ENOSPC);
 949	}
 950
 951new_vma:
 952	vma = i915_vma_instance(obj, &ggtt->vm, view);
 953	if (IS_ERR(vma))
 954		return vma;
 955
 956	if (i915_vma_misplaced(vma, size, alignment, flags)) {
 957		if (flags & PIN_NONBLOCK) {
 958			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
 959				return ERR_PTR(-ENOSPC);
 960
 961			/*
 962			 * If this misplaced vma is too big (i.e, at-least
 963			 * half the size of aperture) or hasn't been pinned
 964			 * mappable before, we ignore the misplacement when
 965			 * PIN_NONBLOCK is set in order to avoid the ping-pong
 966			 * issue described above. In other words, we try to
 967			 * avoid the costly operation of unbinding this vma
 968			 * from the GGTT and rebinding it back because there
 969			 * may not be enough space for this vma in the aperture.
 970			 */
 971			if (flags & PIN_MAPPABLE &&
 972			    (vma->fence_size > ggtt->mappable_end / 2 ||
 973			    !i915_vma_is_map_and_fenceable(vma)))
 974				return ERR_PTR(-ENOSPC);
 
 
 
 
 
 
 
 
 975		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976
 977		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
 978			discard_ggtt_vma(vma);
 979			goto new_vma;
 980		}
 981
 
 
 
 982		ret = i915_vma_unbind(vma);
 983		if (ret)
 984			return ERR_PTR(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985	}
 986
 987	ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988
 
 
 
 
 
 
 
 
 
 
 989	if (ret)
 990		return ERR_PTR(ret);
 991
 992	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
 993		mutex_lock(&ggtt->vm.mutex);
 994		i915_vma_revoke_fence(vma);
 995		mutex_unlock(&ggtt->vm.mutex);
 996	}
 997
 998	ret = i915_vma_wait_for_bind(vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 999	if (ret) {
1000		i915_vma_unpin(vma);
1001		return ERR_PTR(ret);
1002	}
1003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004	return vma;
1005}
1006
1007struct i915_vma * __must_check
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
1009			 const struct i915_gtt_view *view,
1010			 u64 size, u64 alignment, u64 flags)
 
 
1011{
1012	struct i915_gem_ww_ctx ww;
1013	struct i915_vma *ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1014	int err;
1015
1016	for_i915_gem_ww(&ww, err, true) {
1017		err = i915_gem_object_lock(obj, &ww);
1018		if (err)
1019			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1020
1021		ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1022						  alignment, flags);
1023		if (IS_ERR(ret))
1024			err = PTR_ERR(ret);
 
 
 
 
 
 
 
1025	}
1026
1027	return err ? ERR_PTR(err) : ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1028}
1029
1030int
1031i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1032		       struct drm_file *file_priv)
1033{
1034	struct drm_i915_private *i915 = to_i915(dev);
1035	struct drm_i915_gem_madvise *args = data;
1036	struct drm_i915_gem_object *obj;
1037	int err;
1038
1039	switch (args->madv) {
1040	case I915_MADV_DONTNEED:
1041	case I915_MADV_WILLNEED:
1042	    break;
1043	default:
1044	    return -EINVAL;
1045	}
1046
1047	obj = i915_gem_object_lookup(file_priv, args->handle);
1048	if (!obj)
1049		return -ENOENT;
1050
1051	err = i915_gem_object_lock_interruptible(obj, NULL);
1052	if (err)
1053		goto out;
1054
1055	if (i915_gem_object_has_pages(obj) &&
1056	    i915_gem_object_is_tiled(obj) &&
1057	    i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1058		if (obj->mm.madv == I915_MADV_WILLNEED) {
1059			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1060			i915_gem_object_clear_tiling_quirk(obj);
1061			i915_gem_object_make_shrinkable(obj);
1062		}
1063		if (args->madv == I915_MADV_WILLNEED) {
1064			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1065			i915_gem_object_make_unshrinkable(obj);
1066			i915_gem_object_set_tiling_quirk(obj);
1067		}
1068	}
1069
1070	if (obj->mm.madv != __I915_MADV_PURGED) {
1071		obj->mm.madv = args->madv;
1072		if (obj->ops->adjust_lru)
1073			obj->ops->adjust_lru(obj);
1074	}
1075
1076	if (i915_gem_object_has_pages(obj) ||
1077	    i915_gem_object_has_self_managed_shrink_list(obj)) {
1078		unsigned long flags;
1079
1080		spin_lock_irqsave(&i915->mm.obj_lock, flags);
1081		if (!list_empty(&obj->mm.link)) {
1082			struct list_head *list;
1083
1084			if (obj->mm.madv != I915_MADV_WILLNEED)
1085				list = &i915->mm.purge_list;
1086			else
1087				list = &i915->mm.shrink_list;
1088			list_move_tail(&obj->mm.link, list);
1089
1090		}
1091		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1092	}
1093
1094	/* if the object is no longer attached, discard its backing storage */
1095	if (obj->mm.madv == I915_MADV_DONTNEED &&
1096	    !i915_gem_object_has_pages(obj))
1097		i915_gem_object_truncate(obj);
1098
1099	args->retained = obj->mm.madv != __I915_MADV_PURGED;
 
1100
1101	i915_gem_object_unlock(obj);
1102out:
1103	i915_gem_object_put(obj);
1104	return err;
1105}
1106
1107/*
1108 * A single pass should suffice to release all the freed objects (along most
1109 * call paths), but be a little more paranoid in that freeing the objects does
1110 * take a little amount of time, during which the rcu callbacks could have added
1111 * new objects into the freed list, and armed the work again.
1112 */
1113void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1114{
1115	while (atomic_read(&i915->mm.free_count)) {
1116		flush_work(&i915->mm.free_work);
1117		drain_workqueue(i915->bdev.wq);
1118		rcu_barrier();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1119	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120}
1121
1122/*
1123 * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1124 * have workers that are armed by RCU and then rearm themselves in their
1125 * callbacks. To be paranoid, we need to drain the workqueue a second time after
1126 * waiting for the RCU grace period so that we catch work queued via RCU from
1127 * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1128 * result, we make an assumption that we only don't require more than 3 passes
1129 * to catch all _recursive_ RCU delayed work.
1130 */
1131void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1132{
1133	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134
1135	for (i = 0; i < 3; i++) {
1136		flush_workqueue(i915->wq);
1137		rcu_barrier();
1138		i915_gem_drain_freed_objects(i915);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1140
1141	drain_workqueue(i915->wq);
 
 
1142}
1143
1144int i915_gem_init(struct drm_i915_private *dev_priv)
1145{
1146	struct intel_gt *gt;
1147	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148	int ret;
1149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150	/*
1151	 * In the proccess of replacing cache_level with pat_index a tricky
1152	 * dependency is created on the definition of the enum i915_cache_level.
1153	 * in case this enum is changed, PTE encode would be broken.
1154	 * Add a WARNING here. And remove when we completely quit using this
1155	 * enum
1156	 */
1157	BUILD_BUG_ON(I915_CACHE_NONE != 0 ||
1158		     I915_CACHE_LLC != 1 ||
1159		     I915_CACHE_L3_LLC != 2 ||
1160		     I915_CACHE_WT != 3 ||
1161		     I915_MAX_CACHE_LEVEL != 4);
1162
1163	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1164	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1165		RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1166
1167	for_each_gt(gt, dev_priv, i) {
1168		intel_uc_fetch_firmwares(&gt->uc);
1169		intel_wopcm_init(&gt->wopcm);
1170		if (GRAPHICS_VER(dev_priv) >= 8)
1171			setup_private_pat(gt);
1172	}
1173
1174	ret = i915_init_ggtt(dev_priv);
1175	if (ret) {
1176		GEM_BUG_ON(ret == -EIO);
1177		goto err_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178	}
1179
 
 
1180	/*
1181	 * Despite its name intel_clock_gating_init applies both display
1182	 * clock gating workarounds; GT mmio workarounds and the occasional
1183	 * GT power context workaround. Worse, sometimes it includes a context
1184	 * register workaround which we need to apply before we record the
1185	 * default HW state for all contexts.
1186	 *
1187	 * FIXME: break up the workarounds and apply them at the right time!
1188	 */
1189	intel_clock_gating_init(dev_priv);
 
 
 
 
 
 
 
 
1190
1191	for_each_gt(gt, dev_priv, i) {
1192		ret = intel_gt_init(gt);
 
1193		if (ret)
1194			goto err_unlock;
1195	}
1196
1197	/*
1198	 * Register engines early to ensure the engine list is in its final
1199	 * rb-tree form, lowering the amount of code that has to deal with
1200	 * the intermediate llist state.
1201	 */
1202	intel_engines_driver_register(dev_priv);
1203
1204	return 0;
 
 
 
1205
1206	/*
1207	 * Unwinding is complicated by that we want to handle -EIO to mean
1208	 * disable GPU submission but keep KMS alive. We want to mark the
1209	 * HW as irrevisibly wedged, but keep enough state around that the
1210	 * driver doesn't explode during runtime.
1211	 */
1212err_unlock:
1213	i915_gem_drain_workqueue(dev_priv);
1214
1215	if (ret != -EIO) {
1216		for_each_gt(gt, dev_priv, i) {
1217			intel_gt_driver_remove(gt);
1218			intel_gt_driver_release(gt);
1219			intel_uc_cleanup_firmwares(&gt->uc);
1220		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1221	}
1222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223	if (ret == -EIO) {
1224		/*
1225		 * Allow engines or uC initialisation to fail by marking the GPU
1226		 * as wedged. But we only want to do this when the GPU is angry,
1227		 * for all other failure, such as an allocation failure, bail.
1228		 */
1229		for_each_gt(gt, dev_priv, i) {
1230			if (!intel_gt_is_wedged(gt)) {
1231				i915_probe_error(dev_priv,
1232						 "Failed to initialize GPU, declaring it wedged!\n");
1233				intel_gt_set_wedged(gt);
1234			}
1235		}
1236
1237		/* Minimal basic recovery for KMS */
1238		ret = i915_ggtt_enable_hw(dev_priv);
1239		i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1240		intel_clock_gating_init(dev_priv);
1241	}
1242
1243	i915_gem_drain_freed_objects(dev_priv);
 
 
1244
1245	return ret;
1246}
1247
1248void i915_gem_driver_register(struct drm_i915_private *i915)
 
1249{
1250	i915_gem_driver_register__shrinker(i915);
 
 
 
 
 
1251}
1252
1253void i915_gem_driver_unregister(struct drm_i915_private *i915)
 
1254{
1255	i915_gem_driver_unregister__shrinker(i915);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256}
1257
1258void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
 
1259{
1260	struct intel_gt *gt;
1261	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1262
1263	i915_gem_suspend_late(dev_priv);
1264	for_each_gt(gt, dev_priv, i)
1265		intel_gt_driver_remove(gt);
1266	dev_priv->uabi_engines = RB_ROOT;
 
1267
1268	/* Flush any outstanding unpin_work. */
1269	i915_gem_drain_workqueue(dev_priv);
 
 
 
 
 
 
 
 
1270}
1271
1272void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1273{
1274	struct intel_gt *gt;
1275	unsigned int i;
1276
1277	for_each_gt(gt, dev_priv, i) {
1278		intel_gt_driver_release(gt);
1279		intel_uc_cleanup_firmwares(&gt->uc);
1280	}
1281
1282	/* Flush any outstanding work, including i915_gem_context.release_work. */
1283	i915_gem_drain_workqueue(dev_priv);
 
 
 
 
 
 
 
1284
1285	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
 
1286}
1287
1288static void i915_gem_init__mm(struct drm_i915_private *i915)
1289{
1290	spin_lock_init(&i915->mm.obj_lock);
1291
1292	init_llist_head(&i915->mm.free_list);
 
 
1293
1294	INIT_LIST_HEAD(&i915->mm.purge_list);
1295	INIT_LIST_HEAD(&i915->mm.shrink_list);
1296
1297	i915_gem_init__objects(i915);
1298}
1299
1300void i915_gem_init_early(struct drm_i915_private *dev_priv)
1301{
1302	i915_gem_init__mm(dev_priv);
1303	i915_gem_init__contexts(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1304}
1305
1306void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1307{
1308	i915_gem_drain_workqueue(dev_priv);
1309	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1310	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1311	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
1312}
1313
1314int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1315{
1316	struct drm_i915_file_private *file_priv;
1317	struct i915_drm_client *client;
1318	int ret = -ENOMEM;
1319
1320	drm_dbg(&i915->drm, "\n");
1321
1322	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1323	if (!file_priv)
1324		goto err_alloc;
1325
1326	client = i915_drm_client_alloc();
1327	if (!client)
1328		goto err_client;
1329
1330	file->driver_priv = file_priv;
1331	file_priv->i915 = i915;
1332	file_priv->file = file;
1333	file_priv->client = client;
 
 
 
1334
1335	file_priv->bsd_engine = -1;
1336	file_priv->hang_timestamp = jiffies;
1337
1338	ret = i915_gem_context_open(i915, file);
1339	if (ret)
1340		goto err_context;
1341
1342	return 0;
1343
1344err_context:
1345	i915_drm_client_put(client);
1346err_client:
1347	kfree(file_priv);
1348err_alloc:
1349	return ret;
1350}
1351
1352#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1353#include "selftests/mock_gem_device.c"
1354#include "selftests/i915_gem.c"
1355#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v4.10.11
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drmP.h>
  29#include <drm/drm_vma_manager.h>
  30#include <drm/i915_drm.h>
  31#include "i915_drv.h"
  32#include "i915_vgpu.h"
  33#include "i915_trace.h"
  34#include "intel_drv.h"
  35#include "intel_frontbuffer.h"
  36#include "intel_mocs.h"
  37#include <linux/dma-fence-array.h>
  38#include <linux/reservation.h>
 
  39#include <linux/shmem_fs.h>
  40#include <linux/slab.h>
 
  41#include <linux/swap.h>
  42#include <linux/pci.h>
  43#include <linux/dma-buf.h>
 
  44
  45static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
  46static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  47static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  48
  49static bool cpu_cache_is_coherent(struct drm_device *dev,
  50				  enum i915_cache_level level)
  51{
  52	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
  53}
  54
  55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
  56{
  57	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  58		return false;
 
 
 
 
 
 
 
  59
  60	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  61		return true;
  62
  63	return obj->pin_display;
  64}
  65
  66static int
  67insert_mappable_node(struct i915_ggtt *ggtt,
  68                     struct drm_mm_node *node, u32 size)
  69{
  70	memset(node, 0, sizeof(*node));
  71	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
  72						   size, 0, -1,
  73						   0, ggtt->mappable_end,
  74						   DRM_MM_SEARCH_DEFAULT,
  75						   DRM_MM_CREATE_DEFAULT);
  76}
  77
  78static void
  79remove_mappable_node(struct drm_mm_node *node)
  80{
  81	drm_mm_remove_node(node);
  82}
  83
  84/* some bookkeeping */
  85static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  86				  u64 size)
  87{
  88	spin_lock(&dev_priv->mm.object_stat_lock);
  89	dev_priv->mm.object_count++;
  90	dev_priv->mm.object_memory += size;
  91	spin_unlock(&dev_priv->mm.object_stat_lock);
  92}
  93
  94static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  95				     u64 size)
  96{
  97	spin_lock(&dev_priv->mm.object_stat_lock);
  98	dev_priv->mm.object_count--;
  99	dev_priv->mm.object_memory -= size;
 100	spin_unlock(&dev_priv->mm.object_stat_lock);
 101}
 102
 103static int
 104i915_gem_wait_for_error(struct i915_gpu_error *error)
 105{
 106	int ret;
 107
 108	might_sleep();
 109
 110	if (!i915_reset_in_progress(error))
 111		return 0;
 112
 113	/*
 114	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
 115	 * userspace. If it takes that long something really bad is going on and
 116	 * we should simply try to bail out and fail as gracefully as possible.
 117	 */
 118	ret = wait_event_interruptible_timeout(error->reset_queue,
 119					       !i915_reset_in_progress(error),
 120					       I915_RESET_TIMEOUT);
 121	if (ret == 0) {
 122		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
 123		return -EIO;
 124	} else if (ret < 0) {
 125		return ret;
 126	} else {
 127		return 0;
 128	}
 129}
 130
 131int i915_mutex_lock_interruptible(struct drm_device *dev)
 
 132{
 133	struct drm_i915_private *dev_priv = to_i915(dev);
 134	int ret;
 135
 136	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
 137	if (ret)
 138		return ret;
 139
 140	ret = mutex_lock_interruptible(&dev->struct_mutex);
 141	if (ret)
 142		return ret;
 143
 144	return 0;
 145}
 146
 147int
 148i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 149			    struct drm_file *file)
 150{
 151	struct drm_i915_private *dev_priv = to_i915(dev);
 152	struct i915_ggtt *ggtt = &dev_priv->ggtt;
 153	struct drm_i915_gem_get_aperture *args = data;
 154	struct i915_vma *vma;
 155	size_t pinned;
 
 
 
 156
 157	pinned = 0;
 158	mutex_lock(&dev->struct_mutex);
 159	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
 160		if (i915_vma_is_pinned(vma))
 161			pinned += vma->node.size;
 162	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
 163		if (i915_vma_is_pinned(vma))
 164			pinned += vma->node.size;
 165	mutex_unlock(&dev->struct_mutex);
 166
 167	args->aper_size = ggtt->base.total;
 
 
 168	args->aper_available_size = args->aper_size - pinned;
 169
 170	return 0;
 171}
 172
 173static struct sg_table *
 174i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
 175{
 176	struct address_space *mapping = obj->base.filp->f_mapping;
 177	drm_dma_handle_t *phys;
 178	struct sg_table *st;
 179	struct scatterlist *sg;
 180	char *vaddr;
 181	int i;
 182
 183	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
 184		return ERR_PTR(-EINVAL);
 185
 186	/* Always aligning to the object size, allows a single allocation
 187	 * to handle all possible callers, and given typical object sizes,
 188	 * the alignment of the buddy allocation will naturally match.
 189	 */
 190	phys = drm_pci_alloc(obj->base.dev,
 191			     obj->base.size,
 192			     roundup_pow_of_two(obj->base.size));
 193	if (!phys)
 194		return ERR_PTR(-ENOMEM);
 195
 196	vaddr = phys->vaddr;
 197	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 198		struct page *page;
 199		char *src;
 200
 201		page = shmem_read_mapping_page(mapping, i);
 202		if (IS_ERR(page)) {
 203			st = ERR_CAST(page);
 204			goto err_phys;
 205		}
 206
 207		src = kmap_atomic(page);
 208		memcpy(vaddr, src, PAGE_SIZE);
 209		drm_clflush_virt_range(vaddr, PAGE_SIZE);
 210		kunmap_atomic(src);
 211
 212		put_page(page);
 213		vaddr += PAGE_SIZE;
 214	}
 215
 216	i915_gem_chipset_flush(to_i915(obj->base.dev));
 217
 218	st = kmalloc(sizeof(*st), GFP_KERNEL);
 219	if (!st) {
 220		st = ERR_PTR(-ENOMEM);
 221		goto err_phys;
 222	}
 223
 224	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
 225		kfree(st);
 226		st = ERR_PTR(-ENOMEM);
 227		goto err_phys;
 228	}
 229
 230	sg = st->sgl;
 231	sg->offset = 0;
 232	sg->length = obj->base.size;
 233
 234	sg_dma_address(sg) = phys->busaddr;
 235	sg_dma_len(sg) = obj->base.size;
 236
 237	obj->phys_handle = phys;
 238	return st;
 239
 240err_phys:
 241	drm_pci_free(obj->base.dev, phys);
 242	return st;
 243}
 244
 245static void
 246__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
 247				struct sg_table *pages,
 248				bool needs_clflush)
 249{
 250	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
 251
 252	if (obj->mm.madv == I915_MADV_DONTNEED)
 253		obj->mm.dirty = false;
 254
 255	if (needs_clflush &&
 256	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
 257	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
 258		drm_clflush_sg(pages);
 259
 260	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
 261	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
 262}
 263
 264static void
 265i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
 266			       struct sg_table *pages)
 267{
 268	__i915_gem_object_release_shmem(obj, pages, false);
 269
 270	if (obj->mm.dirty) {
 271		struct address_space *mapping = obj->base.filp->f_mapping;
 272		char *vaddr = obj->phys_handle->vaddr;
 273		int i;
 274
 275		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 276			struct page *page;
 277			char *dst;
 278
 279			page = shmem_read_mapping_page(mapping, i);
 280			if (IS_ERR(page))
 281				continue;
 282
 283			dst = kmap_atomic(page);
 284			drm_clflush_virt_range(vaddr, PAGE_SIZE);
 285			memcpy(dst, vaddr, PAGE_SIZE);
 286			kunmap_atomic(dst);
 287
 288			set_page_dirty(page);
 289			if (obj->mm.madv == I915_MADV_WILLNEED)
 290				mark_page_accessed(page);
 291			put_page(page);
 292			vaddr += PAGE_SIZE;
 293		}
 294		obj->mm.dirty = false;
 295	}
 296
 297	sg_free_table(pages);
 298	kfree(pages);
 299
 300	drm_pci_free(obj->base.dev, obj->phys_handle);
 301}
 302
 303static void
 304i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
 305{
 306	i915_gem_object_unpin_pages(obj);
 307}
 308
 309static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
 310	.get_pages = i915_gem_object_get_pages_phys,
 311	.put_pages = i915_gem_object_put_pages_phys,
 312	.release = i915_gem_object_release_phys,
 313};
 314
 315int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
 316{
 
 
 
 
 317	struct i915_vma *vma;
 318	LIST_HEAD(still_in_list);
 319	int ret;
 320
 321	lockdep_assert_held(&obj->base.dev->struct_mutex);
 322
 323	/* Closed vma are removed from the obj->vma_list - but they may
 324	 * still have an active binding on the object. To remove those we
 325	 * must wait for all rendering to complete to the object (as unbinding
 326	 * must anyway), and retire the requests.
 327	 */
 328	ret = i915_gem_object_wait(obj,
 329				   I915_WAIT_INTERRUPTIBLE |
 330				   I915_WAIT_LOCKED |
 331				   I915_WAIT_ALL,
 332				   MAX_SCHEDULE_TIMEOUT,
 333				   NULL);
 334	if (ret)
 335		return ret;
 336
 337	i915_gem_retire_requests(to_i915(obj->base.dev));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338
 339	while ((vma = list_first_entry_or_null(&obj->vma_list,
 340					       struct i915_vma,
 341					       obj_link))) {
 342		list_move_tail(&vma->obj_link, &still_in_list);
 343		ret = i915_vma_unbind(vma);
 344		if (ret)
 345			break;
 346	}
 347	list_splice(&still_in_list, &obj->vma_list);
 348
 349	return ret;
 350}
 351
 352static long
 353i915_gem_object_wait_fence(struct dma_fence *fence,
 354			   unsigned int flags,
 355			   long timeout,
 356			   struct intel_rps_client *rps)
 357{
 358	struct drm_i915_gem_request *rq;
 359
 360	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
 361
 362	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
 363		return timeout;
 364
 365	if (!dma_fence_is_i915(fence))
 366		return dma_fence_wait_timeout(fence,
 367					      flags & I915_WAIT_INTERRUPTIBLE,
 368					      timeout);
 369
 370	rq = to_request(fence);
 371	if (i915_gem_request_completed(rq))
 372		goto out;
 373
 374	/* This client is about to stall waiting for the GPU. In many cases
 375	 * this is undesirable and limits the throughput of the system, as
 376	 * many clients cannot continue processing user input/output whilst
 377	 * blocked. RPS autotuning may take tens of milliseconds to respond
 378	 * to the GPU load and thus incurs additional latency for the client.
 379	 * We can circumvent that by promoting the GPU frequency to maximum
 380	 * before we wait. This makes the GPU throttle up much more quickly
 381	 * (good for benchmarks and user experience, e.g. window animations),
 382	 * but at a cost of spending more power processing the workload
 383	 * (bad for battery). Not all clients even want their results
 384	 * immediately and for them we should just let the GPU select its own
 385	 * frequency to maximise efficiency. To prevent a single client from
 386	 * forcing the clocks too high for the whole system, we only allow
 387	 * each client to waitboost once in a busy period.
 388	 */
 389	if (rps) {
 390		if (INTEL_GEN(rq->i915) >= 6)
 391			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
 392		else
 393			rps = NULL;
 394	}
 395
 396	timeout = i915_wait_request(rq, flags, timeout);
 397
 398out:
 399	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
 400		i915_gem_request_retire_upto(rq);
 401
 402	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
 403		/* The GPU is now idle and this client has stalled.
 404		 * Since no other client has submitted a request in the
 405		 * meantime, assume that this client is the only one
 406		 * supplying work to the GPU but is unable to keep that
 407		 * work supplied because it is waiting. Since the GPU is
 408		 * then never kept fully busy, RPS autoclocking will
 409		 * keep the clocks relatively low, causing further delays.
 410		 * Compensate by giving the synchronous client credit for
 411		 * a waitboost next time.
 412		 */
 413		spin_lock(&rq->i915->rps.client_lock);
 414		list_del_init(&rps->link);
 415		spin_unlock(&rq->i915->rps.client_lock);
 416	}
 417
 418	return timeout;
 419}
 420
 421static long
 422i915_gem_object_wait_reservation(struct reservation_object *resv,
 423				 unsigned int flags,
 424				 long timeout,
 425				 struct intel_rps_client *rps)
 426{
 427	struct dma_fence *excl;
 428
 429	if (flags & I915_WAIT_ALL) {
 430		struct dma_fence **shared;
 431		unsigned int count, i;
 432		int ret;
 433
 434		ret = reservation_object_get_fences_rcu(resv,
 435							&excl, &count, &shared);
 436		if (ret)
 437			return ret;
 438
 439		for (i = 0; i < count; i++) {
 440			timeout = i915_gem_object_wait_fence(shared[i],
 441							     flags, timeout,
 442							     rps);
 443			if (timeout < 0)
 444				break;
 445
 446			dma_fence_put(shared[i]);
 447		}
 448
 449		for (; i < count; i++)
 450			dma_fence_put(shared[i]);
 451		kfree(shared);
 452	} else {
 453		excl = reservation_object_get_excl_rcu(resv);
 454	}
 
 
 455
 456	if (excl && timeout >= 0)
 457		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
 458
 459	dma_fence_put(excl);
 460
 461	return timeout;
 462}
 463
 464static void __fence_set_priority(struct dma_fence *fence, int prio)
 465{
 466	struct drm_i915_gem_request *rq;
 467	struct intel_engine_cs *engine;
 468
 469	if (!dma_fence_is_i915(fence))
 470		return;
 471
 472	rq = to_request(fence);
 473	engine = rq->engine;
 474	if (!engine->schedule)
 475		return;
 476
 477	engine->schedule(rq, prio);
 478}
 479
 480static void fence_set_priority(struct dma_fence *fence, int prio)
 481{
 482	/* Recurse once into a fence-array */
 483	if (dma_fence_is_array(fence)) {
 484		struct dma_fence_array *array = to_dma_fence_array(fence);
 485		int i;
 486
 487		for (i = 0; i < array->num_fences; i++)
 488			__fence_set_priority(array->fences[i], prio);
 489	} else {
 490		__fence_set_priority(fence, prio);
 491	}
 492}
 493
 494int
 495i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
 496			      unsigned int flags,
 497			      int prio)
 498{
 499	struct dma_fence *excl;
 500
 501	if (flags & I915_WAIT_ALL) {
 502		struct dma_fence **shared;
 503		unsigned int count, i;
 504		int ret;
 505
 506		ret = reservation_object_get_fences_rcu(obj->resv,
 507							&excl, &count, &shared);
 508		if (ret)
 509			return ret;
 510
 511		for (i = 0; i < count; i++) {
 512			fence_set_priority(shared[i], prio);
 513			dma_fence_put(shared[i]);
 514		}
 515
 516		kfree(shared);
 517	} else {
 518		excl = reservation_object_get_excl_rcu(obj->resv);
 519	}
 520
 521	if (excl) {
 522		fence_set_priority(excl, prio);
 523		dma_fence_put(excl);
 524	}
 525	return 0;
 526}
 527
 528/**
 529 * Waits for rendering to the object to be completed
 530 * @obj: i915 gem object
 531 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 532 * @timeout: how long to wait
 533 * @rps: client (user process) to charge for any waitboosting
 534 */
 535int
 536i915_gem_object_wait(struct drm_i915_gem_object *obj,
 537		     unsigned int flags,
 538		     long timeout,
 539		     struct intel_rps_client *rps)
 540{
 541	might_sleep();
 542#if IS_ENABLED(CONFIG_LOCKDEP)
 543	GEM_BUG_ON(debug_locks &&
 544		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
 545		   !!(flags & I915_WAIT_LOCKED));
 546#endif
 547	GEM_BUG_ON(timeout < 0);
 548
 549	timeout = i915_gem_object_wait_reservation(obj->resv,
 550						   flags, timeout,
 551						   rps);
 552	return timeout < 0 ? timeout : 0;
 553}
 554
 555static struct intel_rps_client *to_rps_client(struct drm_file *file)
 556{
 557	struct drm_i915_file_private *fpriv = file->driver_priv;
 558
 559	return &fpriv->rps;
 560}
 561
 562int
 563i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
 564			    int align)
 565{
 566	int ret;
 567
 568	if (align > obj->base.size)
 569		return -EINVAL;
 570
 571	if (obj->ops == &i915_gem_phys_ops)
 572		return 0;
 573
 574	if (obj->mm.madv != I915_MADV_WILLNEED)
 575		return -EFAULT;
 576
 577	if (obj->base.filp == NULL)
 578		return -EINVAL;
 579
 580	ret = i915_gem_object_unbind(obj);
 581	if (ret)
 582		return ret;
 583
 584	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
 585	if (obj->mm.pages)
 586		return -EBUSY;
 587
 588	obj->ops = &i915_gem_phys_ops;
 589
 590	return i915_gem_object_pin_pages(obj);
 591}
 592
 593static int
 594i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
 595		     struct drm_i915_gem_pwrite *args,
 596		     struct drm_file *file)
 597{
 598	void *vaddr = obj->phys_handle->vaddr + args->offset;
 599	char __user *user_data = u64_to_user_ptr(args->data_ptr);
 600
 601	/* We manually control the domain here and pretend that it
 602	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
 603	 */
 604	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 605	if (copy_from_user(vaddr, user_data, args->size))
 606		return -EFAULT;
 607
 608	drm_clflush_virt_range(vaddr, args->size);
 609	i915_gem_chipset_flush(to_i915(obj->base.dev));
 610
 611	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
 612	return 0;
 613}
 614
 615void *i915_gem_object_alloc(struct drm_device *dev)
 616{
 617	struct drm_i915_private *dev_priv = to_i915(dev);
 618	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
 619}
 620
 621void i915_gem_object_free(struct drm_i915_gem_object *obj)
 622{
 623	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
 624	kmem_cache_free(dev_priv->objects, obj);
 625}
 626
 627static int
 628i915_gem_create(struct drm_file *file,
 629		struct drm_device *dev,
 630		uint64_t size,
 631		uint32_t *handle_p)
 632{
 633	struct drm_i915_gem_object *obj;
 634	int ret;
 635	u32 handle;
 636
 637	size = roundup(size, PAGE_SIZE);
 638	if (size == 0)
 639		return -EINVAL;
 640
 641	/* Allocate the new object */
 642	obj = i915_gem_object_create(dev, size);
 643	if (IS_ERR(obj))
 644		return PTR_ERR(obj);
 645
 646	ret = drm_gem_handle_create(file, &obj->base, &handle);
 647	/* drop reference from allocate - handle holds it now */
 648	i915_gem_object_put(obj);
 649	if (ret)
 650		return ret;
 651
 652	*handle_p = handle;
 653	return 0;
 654}
 655
 656int
 657i915_gem_dumb_create(struct drm_file *file,
 658		     struct drm_device *dev,
 659		     struct drm_mode_create_dumb *args)
 660{
 661	/* have to work out size/pitch and return them */
 662	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
 663	args->size = args->pitch * args->height;
 664	return i915_gem_create(file, dev,
 665			       args->size, &args->handle);
 666}
 667
 668/**
 669 * Creates a new mm object and returns a handle to it.
 670 * @dev: drm device pointer
 671 * @data: ioctl data blob
 672 * @file: drm file pointer
 673 */
 674int
 675i915_gem_create_ioctl(struct drm_device *dev, void *data,
 676		      struct drm_file *file)
 677{
 678	struct drm_i915_gem_create *args = data;
 679
 680	i915_gem_flush_free_objects(to_i915(dev));
 681
 682	return i915_gem_create(file, dev,
 683			       args->size, &args->handle);
 684}
 685
 686static inline int
 687__copy_to_user_swizzled(char __user *cpu_vaddr,
 688			const char *gpu_vaddr, int gpu_offset,
 689			int length)
 690{
 691	int ret, cpu_offset = 0;
 692
 693	while (length > 0) {
 694		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 695		int this_length = min(cacheline_end - gpu_offset, length);
 696		int swizzled_gpu_offset = gpu_offset ^ 64;
 697
 698		ret = __copy_to_user(cpu_vaddr + cpu_offset,
 699				     gpu_vaddr + swizzled_gpu_offset,
 700				     this_length);
 701		if (ret)
 702			return ret + length;
 703
 704		cpu_offset += this_length;
 705		gpu_offset += this_length;
 706		length -= this_length;
 707	}
 708
 709	return 0;
 710}
 711
 712static inline int
 713__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
 714			  const char __user *cpu_vaddr,
 715			  int length)
 716{
 717	int ret, cpu_offset = 0;
 718
 719	while (length > 0) {
 720		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 721		int this_length = min(cacheline_end - gpu_offset, length);
 722		int swizzled_gpu_offset = gpu_offset ^ 64;
 723
 724		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
 725				       cpu_vaddr + cpu_offset,
 726				       this_length);
 727		if (ret)
 728			return ret + length;
 729
 730		cpu_offset += this_length;
 731		gpu_offset += this_length;
 732		length -= this_length;
 733	}
 734
 735	return 0;
 736}
 737
 738/*
 739 * Pins the specified object's pages and synchronizes the object with
 740 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 741 * flush the object from the CPU cache.
 742 */
 743int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
 744				    unsigned int *needs_clflush)
 745{
 746	int ret;
 747
 748	lockdep_assert_held(&obj->base.dev->struct_mutex);
 749
 750	*needs_clflush = 0;
 751	if (!i915_gem_object_has_struct_page(obj))
 752		return -ENODEV;
 753
 754	ret = i915_gem_object_wait(obj,
 755				   I915_WAIT_INTERRUPTIBLE |
 756				   I915_WAIT_LOCKED,
 757				   MAX_SCHEDULE_TIMEOUT,
 758				   NULL);
 759	if (ret)
 760		return ret;
 761
 762	ret = i915_gem_object_pin_pages(obj);
 763	if (ret)
 764		return ret;
 765
 766	i915_gem_object_flush_gtt_write_domain(obj);
 767
 768	/* If we're not in the cpu read domain, set ourself into the gtt
 769	 * read domain and manually flush cachelines (if required). This
 770	 * optimizes for the case when the gpu will dirty the data
 771	 * anyway again before the next pread happens.
 772	 */
 773	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
 774		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
 775							obj->cache_level);
 776
 777	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 778		ret = i915_gem_object_set_to_cpu_domain(obj, false);
 779		if (ret)
 780			goto err_unpin;
 781
 782		*needs_clflush = 0;
 783	}
 784
 785	/* return with the pages pinned */
 786	return 0;
 787
 788err_unpin:
 789	i915_gem_object_unpin_pages(obj);
 790	return ret;
 791}
 792
 793int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
 794				     unsigned int *needs_clflush)
 795{
 796	int ret;
 797
 798	lockdep_assert_held(&obj->base.dev->struct_mutex);
 799
 800	*needs_clflush = 0;
 801	if (!i915_gem_object_has_struct_page(obj))
 802		return -ENODEV;
 803
 804	ret = i915_gem_object_wait(obj,
 805				   I915_WAIT_INTERRUPTIBLE |
 806				   I915_WAIT_LOCKED |
 807				   I915_WAIT_ALL,
 808				   MAX_SCHEDULE_TIMEOUT,
 809				   NULL);
 810	if (ret)
 811		return ret;
 812
 813	ret = i915_gem_object_pin_pages(obj);
 814	if (ret)
 815		return ret;
 816
 817	i915_gem_object_flush_gtt_write_domain(obj);
 818
 819	/* If we're not in the cpu write domain, set ourself into the
 820	 * gtt write domain and manually flush cachelines (as required).
 821	 * This optimizes for the case when the gpu will use the data
 822	 * right away and we therefore have to clflush anyway.
 823	 */
 824	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
 825		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;
 826
 827	/* Same trick applies to invalidate partially written cachelines read
 828	 * before writing.
 829	 */
 830	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
 831		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
 832							 obj->cache_level);
 833
 834	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 835		ret = i915_gem_object_set_to_cpu_domain(obj, true);
 836		if (ret)
 837			goto err_unpin;
 838
 839		*needs_clflush = 0;
 840	}
 841
 842	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
 843		obj->cache_dirty = true;
 844
 845	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 846	obj->mm.dirty = true;
 847	/* return with the pages pinned */
 848	return 0;
 849
 850err_unpin:
 851	i915_gem_object_unpin_pages(obj);
 852	return ret;
 853}
 854
 855static void
 856shmem_clflush_swizzled_range(char *addr, unsigned long length,
 857			     bool swizzled)
 858{
 859	if (unlikely(swizzled)) {
 860		unsigned long start = (unsigned long) addr;
 861		unsigned long end = (unsigned long) addr + length;
 862
 863		/* For swizzling simply ensure that we always flush both
 864		 * channels. Lame, but simple and it works. Swizzled
 865		 * pwrite/pread is far from a hotpath - current userspace
 866		 * doesn't use it at all. */
 867		start = round_down(start, 128);
 868		end = round_up(end, 128);
 869
 870		drm_clflush_virt_range((void *)start, end - start);
 871	} else {
 872		drm_clflush_virt_range(addr, length);
 873	}
 874
 875}
 876
 877/* Only difference to the fast-path function is that this can handle bit17
 878 * and uses non-atomic copy and kmap functions. */
 879static int
 880shmem_pread_slow(struct page *page, int offset, int length,
 881		 char __user *user_data,
 882		 bool page_do_bit17_swizzling, bool needs_clflush)
 883{
 884	char *vaddr;
 885	int ret;
 886
 887	vaddr = kmap(page);
 
 888	if (needs_clflush)
 889		shmem_clflush_swizzled_range(vaddr + offset, length,
 890					     page_do_bit17_swizzling);
 
 891
 892	if (page_do_bit17_swizzling)
 893		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
 894	else
 895		ret = __copy_to_user(user_data, vaddr + offset, length);
 896	kunmap(page);
 897
 898	return ret ? - EFAULT : 0;
 899}
 900
 901static int
 902shmem_pread(struct page *page, int offset, int length, char __user *user_data,
 903	    bool page_do_bit17_swizzling, bool needs_clflush)
 904{
 905	int ret;
 906
 907	ret = -ENODEV;
 908	if (!page_do_bit17_swizzling) {
 909		char *vaddr = kmap_atomic(page);
 910
 911		if (needs_clflush)
 912			drm_clflush_virt_range(vaddr + offset, length);
 913		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
 914		kunmap_atomic(vaddr);
 915	}
 916	if (ret == 0)
 917		return 0;
 918
 919	return shmem_pread_slow(page, offset, length, user_data,
 920				page_do_bit17_swizzling, needs_clflush);
 921}
 922
 923static int
 924i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
 925		     struct drm_i915_gem_pread *args)
 926{
 
 927	char __user *user_data;
 
 
 928	u64 remain;
 929	unsigned int obj_do_bit17_swizzling;
 930	unsigned int needs_clflush;
 931	unsigned int idx, offset;
 932	int ret;
 933
 934	obj_do_bit17_swizzling = 0;
 935	if (i915_gem_object_needs_bit17_swizzle(obj))
 936		obj_do_bit17_swizzling = BIT(17);
 937
 938	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
 939	if (ret)
 940		return ret;
 941
 942	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
 943	mutex_unlock(&obj->base.dev->struct_mutex);
 944	if (ret)
 945		return ret;
 
 
 
 946
 947	remain = args->size;
 948	user_data = u64_to_user_ptr(args->data_ptr);
 949	offset = offset_in_page(args->offset);
 950	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 951		struct page *page = i915_gem_object_get_page(obj, idx);
 952		int length;
 953
 954		length = remain;
 955		if (offset + length > PAGE_SIZE)
 956			length = PAGE_SIZE - offset;
 957
 958		ret = shmem_pread(page, offset, length, user_data,
 959				  page_to_phys(page) & obj_do_bit17_swizzling,
 960				  needs_clflush);
 961		if (ret)
 962			break;
 963
 964		remain -= length;
 965		user_data += length;
 966		offset = 0;
 967	}
 968
 969	i915_gem_obj_finish_shmem_access(obj);
 
 
 
 
 
 
 970	return ret;
 971}
 972
 973static inline bool
 974gtt_user_read(struct io_mapping *mapping,
 975	      loff_t base, int offset,
 976	      char __user *user_data, int length)
 977{
 978	void *vaddr;
 979	unsigned long unwritten;
 980
 981	/* We can use the cpu mem copy function because this is X86. */
 982	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
 983	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
 
 
 984	io_mapping_unmap_atomic(vaddr);
 985	if (unwritten) {
 986		vaddr = (void __force *)
 987			io_mapping_map_wc(mapping, base, PAGE_SIZE);
 988		unwritten = copy_to_user(user_data, vaddr + offset, length);
 
 989		io_mapping_unmap(vaddr);
 990	}
 991	return unwritten;
 992}
 993
 994static int
 995i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
 996		   const struct drm_i915_gem_pread *args)
 997{
 998	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 999	struct i915_ggtt *ggtt = &i915->ggtt;
1000	struct drm_mm_node node;
1001	struct i915_vma *vma;
1002	void __user *user_data;
1003	u64 remain, offset;
1004	int ret;
1005
1006	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
 
 
 
 
 
 
 
1007	if (ret)
1008		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009
1010	intel_runtime_pm_get(i915);
1011	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1012				       PIN_MAPPABLE | PIN_NONBLOCK);
1013	if (!IS_ERR(vma)) {
1014		node.start = i915_ggtt_offset(vma);
1015		node.allocated = false;
1016		ret = i915_vma_put_fence(vma);
1017		if (ret) {
1018			i915_vma_unpin(vma);
1019			vma = ERR_PTR(ret);
1020		}
1021	}
1022	if (IS_ERR(vma)) {
1023		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1024		if (ret)
1025			goto out_unlock;
1026		GEM_BUG_ON(!node.allocated);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027	}
 
1028
1029	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030	if (ret)
1031		goto out_unpin;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032
1033	mutex_unlock(&i915->drm.struct_mutex);
 
 
 
 
1034
1035	user_data = u64_to_user_ptr(args->data_ptr);
1036	remain = args->size;
1037	offset = args->offset;
1038
1039	while (remain > 0) {
1040		/* Operation in this page
1041		 *
1042		 * page_base = page offset within aperture
1043		 * page_offset = offset within page
1044		 * page_length = bytes to copy for this page
1045		 */
1046		u32 page_base = node.start;
1047		unsigned page_offset = offset_in_page(offset);
1048		unsigned page_length = PAGE_SIZE - page_offset;
1049		page_length = remain < page_length ? remain : page_length;
1050		if (node.allocated) {
1051			wmb();
1052			ggtt->base.insert_page(&ggtt->base,
1053					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1054					       node.start, I915_CACHE_NONE, 0);
1055			wmb();
 
1056		} else {
1057			page_base += offset & PAGE_MASK;
1058		}
1059
1060		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1061				  user_data, page_length)) {
1062			ret = -EFAULT;
1063			break;
1064		}
1065
1066		remain -= page_length;
1067		user_data += page_length;
1068		offset += page_length;
1069	}
1070
1071	mutex_lock(&i915->drm.struct_mutex);
1072out_unpin:
1073	if (node.allocated) {
1074		wmb();
1075		ggtt->base.clear_range(&ggtt->base,
1076				       node.start, node.size);
1077		remove_mappable_node(&node);
1078	} else {
1079		i915_vma_unpin(vma);
1080	}
1081out_unlock:
1082	intel_runtime_pm_put(i915);
1083	mutex_unlock(&i915->drm.struct_mutex);
1084
1085	return ret;
1086}
1087
1088/**
1089 * Reads data from the object referenced by handle.
1090 * @dev: drm device pointer
1091 * @data: ioctl data blob
1092 * @file: drm file pointer
1093 *
1094 * On error, the contents of *data are undefined.
1095 */
1096int
1097i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1098		     struct drm_file *file)
1099{
 
1100	struct drm_i915_gem_pread *args = data;
1101	struct drm_i915_gem_object *obj;
1102	int ret;
1103
 
 
 
 
 
 
1104	if (args->size == 0)
1105		return 0;
1106
1107	if (!access_ok(VERIFY_WRITE,
1108		       u64_to_user_ptr(args->data_ptr),
1109		       args->size))
1110		return -EFAULT;
1111
1112	obj = i915_gem_object_lookup(file, args->handle);
1113	if (!obj)
1114		return -ENOENT;
1115
1116	/* Bounds check source.  */
1117	if (args->offset > obj->base.size ||
1118	    args->size > obj->base.size - args->offset) {
1119		ret = -EINVAL;
1120		goto out;
1121	}
1122
1123	trace_i915_gem_object_pread(obj, args->offset, args->size);
 
 
 
 
 
1124
1125	ret = i915_gem_object_wait(obj,
1126				   I915_WAIT_INTERRUPTIBLE,
1127				   MAX_SCHEDULE_TIMEOUT,
1128				   to_rps_client(file));
1129	if (ret)
1130		goto out;
1131
1132	ret = i915_gem_object_pin_pages(obj);
1133	if (ret)
1134		goto out;
1135
1136	ret = i915_gem_shmem_pread(obj, args);
1137	if (ret == -EFAULT || ret == -ENODEV)
1138		ret = i915_gem_gtt_pread(obj, args);
1139
1140	i915_gem_object_unpin_pages(obj);
1141out:
1142	i915_gem_object_put(obj);
1143	return ret;
1144}
1145
1146/* This is the fast write path which cannot handle
1147 * page faults in the source data
1148 */
1149
1150static inline bool
1151ggtt_write(struct io_mapping *mapping,
1152	   loff_t base, int offset,
1153	   char __user *user_data, int length)
1154{
1155	void *vaddr;
1156	unsigned long unwritten;
1157
1158	/* We can use the cpu mem copy function because this is X86. */
1159	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1160	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1161						      user_data, length);
1162	io_mapping_unmap_atomic(vaddr);
1163	if (unwritten) {
1164		vaddr = (void __force *)
1165			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1166		unwritten = copy_from_user(vaddr + offset, user_data, length);
1167		io_mapping_unmap(vaddr);
1168	}
1169
1170	return unwritten;
1171}
1172
1173/**
1174 * This is the fast pwrite path, where we copy the data directly from the
1175 * user into the GTT, uncached.
1176 * @obj: i915 GEM object
1177 * @args: pwrite arguments structure
1178 */
1179static int
1180i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1181			 const struct drm_i915_gem_pwrite *args)
1182{
1183	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1184	struct i915_ggtt *ggtt = &i915->ggtt;
 
 
 
1185	struct drm_mm_node node;
1186	struct i915_vma *vma;
1187	u64 remain, offset;
1188	void __user *user_data;
1189	int ret;
1190
1191	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1192	if (ret)
1193		return ret;
1194
1195	intel_runtime_pm_get(i915);
1196	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1197				       PIN_MAPPABLE | PIN_NONBLOCK);
1198	if (!IS_ERR(vma)) {
1199		node.start = i915_ggtt_offset(vma);
1200		node.allocated = false;
1201		ret = i915_vma_put_fence(vma);
1202		if (ret) {
1203			i915_vma_unpin(vma);
1204			vma = ERR_PTR(ret);
1205		}
 
 
 
1206	}
 
 
1207	if (IS_ERR(vma)) {
1208		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1209		if (ret)
1210			goto out_unlock;
1211		GEM_BUG_ON(!node.allocated);
1212	}
1213
1214	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1215	if (ret)
1216		goto out_unpin;
1217
1218	mutex_unlock(&i915->drm.struct_mutex);
1219
1220	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1221
1222	user_data = u64_to_user_ptr(args->data_ptr);
1223	offset = args->offset;
1224	remain = args->size;
1225	while (remain) {
1226		/* Operation in this page
1227		 *
1228		 * page_base = page offset within aperture
1229		 * page_offset = offset within page
1230		 * page_length = bytes to copy for this page
1231		 */
1232		u32 page_base = node.start;
1233		unsigned int page_offset = offset_in_page(offset);
1234		unsigned int page_length = PAGE_SIZE - page_offset;
1235		page_length = remain < page_length ? remain : page_length;
1236		if (node.allocated) {
1237			wmb(); /* flush the write before we modify the GGTT */
1238			ggtt->base.insert_page(&ggtt->base,
1239					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1240					       node.start, I915_CACHE_NONE, 0);
 
 
 
 
1241			wmb(); /* flush modifications to the GGTT (insert_page) */
1242		} else {
1243			page_base += offset & PAGE_MASK;
1244		}
1245		/* If we get a fault while copying data, then (presumably) our
1246		 * source page isn't available.  Return the error and we'll
1247		 * retry in the slow path.
1248		 * If the object is non-shmem backed, we retry again with the
1249		 * path that handles page fault.
1250		 */
1251		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1252			       user_data, page_length)) {
1253			ret = -EFAULT;
1254			break;
1255		}
1256
1257		remain -= page_length;
1258		user_data += page_length;
1259		offset += page_length;
1260	}
1261	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1262
1263	mutex_lock(&i915->drm.struct_mutex);
1264out_unpin:
1265	if (node.allocated) {
1266		wmb();
1267		ggtt->base.clear_range(&ggtt->base,
1268				       node.start, node.size);
1269		remove_mappable_node(&node);
1270	} else {
1271		i915_vma_unpin(vma);
1272	}
1273out_unlock:
1274	intel_runtime_pm_put(i915);
1275	mutex_unlock(&i915->drm.struct_mutex);
1276	return ret;
1277}
1278
1279static int
1280shmem_pwrite_slow(struct page *page, int offset, int length,
1281		  char __user *user_data,
1282		  bool page_do_bit17_swizzling,
1283		  bool needs_clflush_before,
1284		  bool needs_clflush_after)
1285{
1286	char *vaddr;
1287	int ret;
1288
1289	vaddr = kmap(page);
1290	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1291		shmem_clflush_swizzled_range(vaddr + offset, length,
1292					     page_do_bit17_swizzling);
1293	if (page_do_bit17_swizzling)
1294		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1295						length);
1296	else
1297		ret = __copy_from_user(vaddr + offset, user_data, length);
1298	if (needs_clflush_after)
1299		shmem_clflush_swizzled_range(vaddr + offset, length,
1300					     page_do_bit17_swizzling);
1301	kunmap(page);
1302
1303	return ret ? -EFAULT : 0;
1304}
1305
1306/* Per-page copy function for the shmem pwrite fastpath.
1307 * Flushes invalid cachelines before writing to the target if
1308 * needs_clflush_before is set and flushes out any written cachelines after
1309 * writing if needs_clflush is set.
1310 */
1311static int
1312shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1313	     bool page_do_bit17_swizzling,
1314	     bool needs_clflush_before,
1315	     bool needs_clflush_after)
1316{
 
1317	int ret;
1318
1319	ret = -ENODEV;
1320	if (!page_do_bit17_swizzling) {
1321		char *vaddr = kmap_atomic(page);
 
1322
1323		if (needs_clflush_before)
1324			drm_clflush_virt_range(vaddr + offset, len);
1325		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1326		if (needs_clflush_after)
1327			drm_clflush_virt_range(vaddr + offset, len);
1328
1329		kunmap_atomic(vaddr);
1330	}
1331	if (ret == 0)
1332		return ret;
1333
1334	return shmem_pwrite_slow(page, offset, len, user_data,
1335				 page_do_bit17_swizzling,
1336				 needs_clflush_before,
1337				 needs_clflush_after);
1338}
1339
1340static int
1341i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1342		      const struct drm_i915_gem_pwrite *args)
1343{
1344	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 
1345	void __user *user_data;
 
 
1346	u64 remain;
1347	unsigned int obj_do_bit17_swizzling;
1348	unsigned int partial_cacheline_write;
1349	unsigned int needs_clflush;
1350	unsigned int offset, idx;
1351	int ret;
1352
1353	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1354	if (ret)
1355		return ret;
1356
1357	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1358	mutex_unlock(&i915->drm.struct_mutex);
1359	if (ret)
1360		return ret;
 
 
 
 
1361
1362	obj_do_bit17_swizzling = 0;
1363	if (i915_gem_object_needs_bit17_swizzle(obj))
1364		obj_do_bit17_swizzling = BIT(17);
1365
1366	/* If we don't overwrite a cacheline completely we need to be
1367	 * careful to have up-to-date data by first clflushing. Don't
1368	 * overcomplicate things and flush the entire patch.
1369	 */
1370	partial_cacheline_write = 0;
1371	if (needs_clflush & CLFLUSH_BEFORE)
1372		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1373
1374	user_data = u64_to_user_ptr(args->data_ptr);
1375	remain = args->size;
1376	offset = offset_in_page(args->offset);
1377	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1378		struct page *page = i915_gem_object_get_page(obj, idx);
1379		int length;
1380
1381		length = remain;
1382		if (offset + length > PAGE_SIZE)
1383			length = PAGE_SIZE - offset;
1384
1385		ret = shmem_pwrite(page, offset, length, user_data,
1386				   page_to_phys(page) & obj_do_bit17_swizzling,
1387				   (offset | length) & partial_cacheline_write,
1388				   needs_clflush & CLFLUSH_AFTER);
1389		if (ret)
1390			break;
1391
1392		remain -= length;
1393		user_data += length;
1394		offset = 0;
1395	}
1396
1397	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1398	i915_gem_obj_finish_shmem_access(obj);
 
 
 
 
 
 
 
1399	return ret;
1400}
1401
1402/**
1403 * Writes data to the object referenced by handle.
1404 * @dev: drm device
1405 * @data: ioctl data blob
1406 * @file: drm file
1407 *
1408 * On error, the contents of the buffer that were to be modified are undefined.
1409 */
1410int
1411i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1412		      struct drm_file *file)
1413{
 
1414	struct drm_i915_gem_pwrite *args = data;
1415	struct drm_i915_gem_object *obj;
1416	int ret;
1417
 
 
 
 
 
 
1418	if (args->size == 0)
1419		return 0;
1420
1421	if (!access_ok(VERIFY_READ,
1422		       u64_to_user_ptr(args->data_ptr),
1423		       args->size))
1424		return -EFAULT;
1425
1426	obj = i915_gem_object_lookup(file, args->handle);
1427	if (!obj)
1428		return -ENOENT;
1429
1430	/* Bounds check destination. */
1431	if (args->offset > obj->base.size ||
1432	    args->size > obj->base.size - args->offset) {
 
 
 
 
 
1433		ret = -EINVAL;
1434		goto err;
1435	}
1436
1437	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1438
 
 
 
 
 
 
1439	ret = i915_gem_object_wait(obj,
1440				   I915_WAIT_INTERRUPTIBLE |
1441				   I915_WAIT_ALL,
1442				   MAX_SCHEDULE_TIMEOUT,
1443				   to_rps_client(file));
1444	if (ret)
1445		goto err;
1446
1447	ret = i915_gem_object_pin_pages(obj);
1448	if (ret)
1449		goto err;
1450
1451	ret = -EFAULT;
1452	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1453	 * it would end up going through the fenced access, and we'll get
1454	 * different detiling behavior between reading and writing.
1455	 * pread/pwrite currently are reading and writing from the CPU
1456	 * perspective, requiring manual detiling by the client.
1457	 */
1458	if (!i915_gem_object_has_struct_page(obj) ||
1459	    cpu_write_needs_clflush(obj))
1460		/* Note that the gtt paths might fail with non-page-backed user
1461		 * pointers (e.g. gtt mappings when moving data between
1462		 * textures). Fallback to the shmem path in that case.
1463		 */
1464		ret = i915_gem_gtt_pwrite_fast(obj, args);
1465
1466	if (ret == -EFAULT || ret == -ENOSPC) {
1467		if (obj->phys_handle)
1468			ret = i915_gem_phys_pwrite(obj, args, file);
1469		else
1470			ret = i915_gem_shmem_pwrite(obj, args);
1471	}
1472
1473	i915_gem_object_unpin_pages(obj);
1474err:
1475	i915_gem_object_put(obj);
1476	return ret;
1477}
1478
1479static inline enum fb_op_origin
1480write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1481{
1482	return (domain == I915_GEM_DOMAIN_GTT ?
1483		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1484}
1485
1486static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1487{
1488	struct drm_i915_private *i915;
1489	struct list_head *list;
1490	struct i915_vma *vma;
1491
1492	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1493		if (!i915_vma_is_ggtt(vma))
1494			continue;
1495
1496		if (i915_vma_is_active(vma))
1497			continue;
1498
1499		if (!drm_mm_node_allocated(&vma->node))
1500			continue;
1501
1502		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1503	}
1504
1505	i915 = to_i915(obj->base.dev);
1506	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1507	list_move_tail(&obj->global_link, list);
1508}
1509
1510/**
1511 * Called when user space prepares to use an object with the CPU, either
1512 * through the mmap ioctl's mapping or a GTT mapping.
1513 * @dev: drm device
1514 * @data: ioctl data blob
1515 * @file: drm file
1516 */
1517int
1518i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1519			  struct drm_file *file)
1520{
1521	struct drm_i915_gem_set_domain *args = data;
1522	struct drm_i915_gem_object *obj;
1523	uint32_t read_domains = args->read_domains;
1524	uint32_t write_domain = args->write_domain;
1525	int err;
1526
1527	/* Only handle setting domains to types used by the CPU. */
1528	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1529		return -EINVAL;
1530
1531	/* Having something in the write domain implies it's in the read
1532	 * domain, and only that read domain.  Enforce that in the request.
1533	 */
1534	if (write_domain != 0 && read_domains != write_domain)
1535		return -EINVAL;
1536
1537	obj = i915_gem_object_lookup(file, args->handle);
1538	if (!obj)
1539		return -ENOENT;
1540
1541	/* Try to flush the object off the GPU without holding the lock.
1542	 * We will repeat the flush holding the lock in the normal manner
1543	 * to catch cases where we are gazumped.
1544	 */
1545	err = i915_gem_object_wait(obj,
1546				   I915_WAIT_INTERRUPTIBLE |
1547				   (write_domain ? I915_WAIT_ALL : 0),
1548				   MAX_SCHEDULE_TIMEOUT,
1549				   to_rps_client(file));
1550	if (err)
1551		goto out;
1552
1553	/* Flush and acquire obj->pages so that we are coherent through
1554	 * direct access in memory with previous cached writes through
1555	 * shmemfs and that our cache domain tracking remains valid.
1556	 * For example, if the obj->filp was moved to swap without us
1557	 * being notified and releasing the pages, we would mistakenly
1558	 * continue to assume that the obj remained out of the CPU cached
1559	 * domain.
1560	 */
1561	err = i915_gem_object_pin_pages(obj);
1562	if (err)
1563		goto out;
1564
1565	err = i915_mutex_lock_interruptible(dev);
1566	if (err)
1567		goto out_unpin;
1568
1569	if (read_domains & I915_GEM_DOMAIN_GTT)
1570		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1571	else
1572		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1573
1574	/* And bump the LRU for this access */
1575	i915_gem_object_bump_inactive_ggtt(obj);
1576
1577	mutex_unlock(&dev->struct_mutex);
1578
1579	if (write_domain != 0)
1580		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1581
1582out_unpin:
1583	i915_gem_object_unpin_pages(obj);
1584out:
1585	i915_gem_object_put(obj);
1586	return err;
1587}
1588
1589/**
1590 * Called when user space has done writes to this buffer
1591 * @dev: drm device
1592 * @data: ioctl data blob
1593 * @file: drm file
1594 */
1595int
1596i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1597			 struct drm_file *file)
1598{
1599	struct drm_i915_gem_sw_finish *args = data;
1600	struct drm_i915_gem_object *obj;
1601	int err = 0;
1602
1603	obj = i915_gem_object_lookup(file, args->handle);
1604	if (!obj)
1605		return -ENOENT;
1606
1607	/* Pinned buffers may be scanout, so flush the cache */
1608	if (READ_ONCE(obj->pin_display)) {
1609		err = i915_mutex_lock_interruptible(dev);
1610		if (!err) {
1611			i915_gem_object_flush_cpu_write_domain(obj);
1612			mutex_unlock(&dev->struct_mutex);
1613		}
1614	}
1615
1616	i915_gem_object_put(obj);
1617	return err;
1618}
1619
1620/**
1621 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1622 *			 it is mapped to.
1623 * @dev: drm device
1624 * @data: ioctl data blob
1625 * @file: drm file
1626 *
1627 * While the mapping holds a reference on the contents of the object, it doesn't
1628 * imply a ref on the object itself.
1629 *
1630 * IMPORTANT:
1631 *
1632 * DRM driver writers who look a this function as an example for how to do GEM
1633 * mmap support, please don't implement mmap support like here. The modern way
1634 * to implement DRM mmap support is with an mmap offset ioctl (like
1635 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1636 * That way debug tooling like valgrind will understand what's going on, hiding
1637 * the mmap call in a driver private ioctl will break that. The i915 driver only
1638 * does cpu mmaps this way because we didn't know better.
1639 */
1640int
1641i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1642		    struct drm_file *file)
1643{
1644	struct drm_i915_gem_mmap *args = data;
1645	struct drm_i915_gem_object *obj;
1646	unsigned long addr;
1647
1648	if (args->flags & ~(I915_MMAP_WC))
1649		return -EINVAL;
1650
1651	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1652		return -ENODEV;
1653
1654	obj = i915_gem_object_lookup(file, args->handle);
1655	if (!obj)
1656		return -ENOENT;
1657
1658	/* prime objects have no backing filp to GEM mmap
1659	 * pages from.
1660	 */
1661	if (!obj->base.filp) {
1662		i915_gem_object_put(obj);
1663		return -EINVAL;
1664	}
1665
1666	addr = vm_mmap(obj->base.filp, 0, args->size,
1667		       PROT_READ | PROT_WRITE, MAP_SHARED,
1668		       args->offset);
1669	if (args->flags & I915_MMAP_WC) {
1670		struct mm_struct *mm = current->mm;
1671		struct vm_area_struct *vma;
1672
1673		if (down_write_killable(&mm->mmap_sem)) {
1674			i915_gem_object_put(obj);
1675			return -EINTR;
1676		}
1677		vma = find_vma(mm, addr);
1678		if (vma)
1679			vma->vm_page_prot =
1680				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1681		else
1682			addr = -ENOMEM;
1683		up_write(&mm->mmap_sem);
1684
1685		/* This may race, but that's ok, it only gets set */
1686		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1687	}
1688	i915_gem_object_put(obj);
1689	if (IS_ERR((void *)addr))
1690		return addr;
1691
1692	args->addr_ptr = (uint64_t) addr;
1693
1694	return 0;
1695}
1696
1697static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1698{
1699	u64 size;
1700
1701	size = i915_gem_object_get_stride(obj);
1702	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1703
1704	return size >> PAGE_SHIFT;
1705}
1706
1707/**
1708 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1709 *
1710 * A history of the GTT mmap interface:
1711 *
1712 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1713 *     aligned and suitable for fencing, and still fit into the available
1714 *     mappable space left by the pinned display objects. A classic problem
1715 *     we called the page-fault-of-doom where we would ping-pong between
1716 *     two objects that could not fit inside the GTT and so the memcpy
1717 *     would page one object in at the expense of the other between every
1718 *     single byte.
1719 *
1720 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1721 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1722 *     object is too large for the available space (or simply too large
1723 *     for the mappable aperture!), a view is created instead and faulted
1724 *     into userspace. (This view is aligned and sized appropriately for
1725 *     fenced access.)
1726 *
1727 * Restrictions:
1728 *
1729 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1730 *    hangs on some architectures, corruption on others. An attempt to service
1731 *    a GTT page fault from a snoopable object will generate a SIGBUS.
1732 *
1733 *  * the object must be able to fit into RAM (physical memory, though no
1734 *    limited to the mappable aperture).
1735 *
1736 *
1737 * Caveats:
1738 *
1739 *  * a new GTT page fault will synchronize rendering from the GPU and flush
1740 *    all data to system memory. Subsequent access will not be synchronized.
1741 *
1742 *  * all mappings are revoked on runtime device suspend.
1743 *
1744 *  * there are only 8, 16 or 32 fence registers to share between all users
1745 *    (older machines require fence register for display and blitter access
1746 *    as well). Contention of the fence registers will cause the previous users
1747 *    to be unmapped and any new access will generate new page faults.
1748 *
1749 *  * running out of memory while servicing a fault may generate a SIGBUS,
1750 *    rather than the expected SIGSEGV.
1751 */
1752int i915_gem_mmap_gtt_version(void)
1753{
1754	return 1;
1755}
1756
1757/**
1758 * i915_gem_fault - fault a page into the GTT
1759 * @area: CPU VMA in question
1760 * @vmf: fault info
1761 *
1762 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1763 * from userspace.  The fault handler takes care of binding the object to
1764 * the GTT (if needed), allocating and programming a fence register (again,
1765 * only if needed based on whether the old reg is still valid or the object
1766 * is tiled) and inserting a new PTE into the faulting process.
1767 *
1768 * Note that the faulting process may involve evicting existing objects
1769 * from the GTT and/or fence registers to make room.  So performance may
1770 * suffer if the GTT working set is large or there are few fence registers
1771 * left.
1772 *
1773 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1774 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1775 */
1776int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1777{
1778#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1779	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1780	struct drm_device *dev = obj->base.dev;
1781	struct drm_i915_private *dev_priv = to_i915(dev);
1782	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1783	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1784	struct i915_vma *vma;
1785	pgoff_t page_offset;
1786	unsigned int flags;
1787	int ret;
1788
1789	/* We don't use vmf->pgoff since that has the fake offset */
1790	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1791
1792	trace_i915_gem_object_fault(obj, page_offset, true, write);
1793
1794	/* Try to flush the object off the GPU first without holding the lock.
1795	 * Upon acquiring the lock, we will perform our sanity checks and then
1796	 * repeat the flush holding the lock in the normal manner to catch cases
1797	 * where we are gazumped.
1798	 */
1799	ret = i915_gem_object_wait(obj,
1800				   I915_WAIT_INTERRUPTIBLE,
1801				   MAX_SCHEDULE_TIMEOUT,
1802				   NULL);
1803	if (ret)
1804		goto err;
1805
1806	ret = i915_gem_object_pin_pages(obj);
1807	if (ret)
1808		goto err;
1809
1810	intel_runtime_pm_get(dev_priv);
1811
1812	ret = i915_mutex_lock_interruptible(dev);
1813	if (ret)
1814		goto err_rpm;
1815
1816	/* Access to snoopable pages through the GTT is incoherent. */
1817	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1818		ret = -EFAULT;
1819		goto err_unlock;
1820	}
1821
1822	/* If the object is smaller than a couple of partial vma, it is
1823	 * not worth only creating a single partial vma - we may as well
1824	 * clear enough space for the full object.
1825	 */
1826	flags = PIN_MAPPABLE;
1827	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1828		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1829
1830	/* Now pin it into the GTT as needed */
1831	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1832	if (IS_ERR(vma)) {
1833		struct i915_ggtt_view view;
1834		unsigned int chunk_size;
1835
1836		/* Use a partial view if it is bigger than available space */
1837		chunk_size = MIN_CHUNK_PAGES;
1838		if (i915_gem_object_is_tiled(obj))
1839			chunk_size = roundup(chunk_size, tile_row_pages(obj));
1840
1841		memset(&view, 0, sizeof(view));
1842		view.type = I915_GGTT_VIEW_PARTIAL;
1843		view.params.partial.offset = rounddown(page_offset, chunk_size);
1844		view.params.partial.size =
1845			min_t(unsigned int, chunk_size,
1846			      vma_pages(area) - view.params.partial.offset);
1847
1848		/* If the partial covers the entire object, just create a
1849		 * normal VMA.
1850		 */
1851		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1852			view.type = I915_GGTT_VIEW_NORMAL;
1853
1854		/* Userspace is now writing through an untracked VMA, abandon
1855		 * all hope that the hardware is able to track future writes.
1856		 */
1857		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1858
1859		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1860	}
1861	if (IS_ERR(vma)) {
1862		ret = PTR_ERR(vma);
1863		goto err_unlock;
1864	}
1865
1866	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1867	if (ret)
1868		goto err_unpin;
1869
1870	ret = i915_vma_get_fence(vma);
1871	if (ret)
1872		goto err_unpin;
1873
1874	/* Mark as being mmapped into userspace for later revocation */
1875	assert_rpm_wakelock_held(dev_priv);
1876	if (list_empty(&obj->userfault_link))
1877		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1878
1879	/* Finally, remap it using the new GTT offset */
1880	ret = remap_io_mapping(area,
1881			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1882			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1883			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1884			       &ggtt->mappable);
1885
1886err_unpin:
1887	__i915_vma_unpin(vma);
1888err_unlock:
1889	mutex_unlock(&dev->struct_mutex);
1890err_rpm:
1891	intel_runtime_pm_put(dev_priv);
1892	i915_gem_object_unpin_pages(obj);
1893err:
1894	switch (ret) {
1895	case -EIO:
1896		/*
1897		 * We eat errors when the gpu is terminally wedged to avoid
1898		 * userspace unduly crashing (gl has no provisions for mmaps to
1899		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1900		 * and so needs to be reported.
1901		 */
1902		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1903			ret = VM_FAULT_SIGBUS;
1904			break;
1905		}
1906	case -EAGAIN:
1907		/*
1908		 * EAGAIN means the gpu is hung and we'll wait for the error
1909		 * handler to reset everything when re-faulting in
1910		 * i915_mutex_lock_interruptible.
1911		 */
1912	case 0:
1913	case -ERESTARTSYS:
1914	case -EINTR:
1915	case -EBUSY:
1916		/*
1917		 * EBUSY is ok: this just means that another thread
1918		 * already did the job.
1919		 */
1920		ret = VM_FAULT_NOPAGE;
1921		break;
1922	case -ENOMEM:
1923		ret = VM_FAULT_OOM;
1924		break;
1925	case -ENOSPC:
1926	case -EFAULT:
1927		ret = VM_FAULT_SIGBUS;
1928		break;
1929	default:
1930		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1931		ret = VM_FAULT_SIGBUS;
1932		break;
1933	}
1934	return ret;
1935}
1936
1937/**
1938 * i915_gem_release_mmap - remove physical page mappings
1939 * @obj: obj in question
1940 *
1941 * Preserve the reservation of the mmapping with the DRM core code, but
1942 * relinquish ownership of the pages back to the system.
1943 *
1944 * It is vital that we remove the page mapping if we have mapped a tiled
1945 * object through the GTT and then lose the fence register due to
1946 * resource pressure. Similarly if the object has been moved out of the
1947 * aperture, than pages mapped into userspace must be revoked. Removing the
1948 * mapping will then trigger a page fault on the next user access, allowing
1949 * fixup by i915_gem_fault().
1950 */
1951void
1952i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1953{
1954	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1955
1956	/* Serialisation between user GTT access and our code depends upon
1957	 * revoking the CPU's PTE whilst the mutex is held. The next user
1958	 * pagefault then has to wait until we release the mutex.
1959	 *
1960	 * Note that RPM complicates somewhat by adding an additional
1961	 * requirement that operations to the GGTT be made holding the RPM
1962	 * wakeref.
1963	 */
1964	lockdep_assert_held(&i915->drm.struct_mutex);
1965	intel_runtime_pm_get(i915);
1966
1967	if (list_empty(&obj->userfault_link))
1968		goto out;
1969
1970	list_del_init(&obj->userfault_link);
1971	drm_vma_node_unmap(&obj->base.vma_node,
1972			   obj->base.dev->anon_inode->i_mapping);
1973
1974	/* Ensure that the CPU's PTE are revoked and there are not outstanding
1975	 * memory transactions from userspace before we return. The TLB
1976	 * flushing implied above by changing the PTE above *should* be
1977	 * sufficient, an extra barrier here just provides us with a bit
1978	 * of paranoid documentation about our requirement to serialise
1979	 * memory writes before touching registers / GSM.
1980	 */
1981	wmb();
1982
1983out:
1984	intel_runtime_pm_put(i915);
1985}
1986
1987void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1988{
1989	struct drm_i915_gem_object *obj, *on;
1990	int i;
1991
1992	/*
1993	 * Only called during RPM suspend. All users of the userfault_list
1994	 * must be holding an RPM wakeref to ensure that this can not
1995	 * run concurrently with themselves (and use the struct_mutex for
1996	 * protection between themselves).
1997	 */
1998
1999	list_for_each_entry_safe(obj, on,
2000				 &dev_priv->mm.userfault_list, userfault_link) {
2001		list_del_init(&obj->userfault_link);
2002		drm_vma_node_unmap(&obj->base.vma_node,
2003				   obj->base.dev->anon_inode->i_mapping);
2004	}
 
2005
2006	/* The fence will be lost when the device powers down. If any were
 
2007	 * in use by hardware (i.e. they are pinned), we should not be powering
2008	 * down! All other fences will be reacquired by the user upon waking.
2009	 */
2010	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2011		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2012
2013		/* Ideally we want to assert that the fence register is not
 
2014		 * live at this point (i.e. that no piece of code will be
2015		 * trying to write through fence + GTT, as that both violates
2016		 * our tracking of activity and associated locking/barriers,
2017		 * but also is illegal given that the hw is powered down).
2018		 *
2019		 * Previously we used reg->pin_count as a "liveness" indicator.
2020		 * That is not sufficient, and we need a more fine-grained
2021		 * tool if we want to have a sanity check here.
2022		 */
2023
2024		if (!reg->vma)
2025			continue;
2026
2027		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2028		reg->dirty = true;
2029	}
2030}
2031
2032/**
2033 * i915_gem_get_ggtt_size - return required global GTT size for an object
2034 * @dev_priv: i915 device
2035 * @size: object size
2036 * @tiling_mode: tiling mode
2037 *
2038 * Return the required global GTT size for an object, taking into account
2039 * potential fence register mapping.
2040 */
2041u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2042			   u64 size, int tiling_mode)
2043{
2044	u64 ggtt_size;
2045
2046	GEM_BUG_ON(size == 0);
2047
2048	if (INTEL_GEN(dev_priv) >= 4 ||
2049	    tiling_mode == I915_TILING_NONE)
2050		return size;
2051
2052	/* Previous chips need a power-of-two fence region when tiling */
2053	if (IS_GEN3(dev_priv))
2054		ggtt_size = 1024*1024;
2055	else
2056		ggtt_size = 512*1024;
2057
2058	while (ggtt_size < size)
2059		ggtt_size <<= 1;
2060
2061	return ggtt_size;
2062}
2063
2064/**
2065 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2066 * @dev_priv: i915 device
2067 * @size: object size
2068 * @tiling_mode: tiling mode
2069 * @fenced: is fenced alignment required or not
2070 *
2071 * Return the required global GTT alignment for an object, taking into account
2072 * potential fence register mapping.
2073 */
2074u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2075				int tiling_mode, bool fenced)
2076{
2077	GEM_BUG_ON(size == 0);
2078
2079	/*
2080	 * Minimum alignment is 4k (GTT page size), but might be greater
2081	 * if a fence register is needed for the object.
2082	 */
2083	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2084	    tiling_mode == I915_TILING_NONE)
2085		return 4096;
2086
2087	/*
2088	 * Previous chips need to be aligned to the size of the smallest
2089	 * fence register that can contain the object.
2090	 */
2091	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2092}
2093
2094static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2095{
2096	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2097	int err;
2098
2099	err = drm_gem_create_mmap_offset(&obj->base);
2100	if (!err)
2101		return 0;
2102
2103	/* We can idle the GPU locklessly to flush stale objects, but in order
2104	 * to claim that space for ourselves, we need to take the big
2105	 * struct_mutex to free the requests+objects and allocate our slot.
2106	 */
2107	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2108	if (err)
2109		return err;
2110
2111	err = i915_mutex_lock_interruptible(&dev_priv->drm);
2112	if (!err) {
2113		i915_gem_retire_requests(dev_priv);
2114		err = drm_gem_create_mmap_offset(&obj->base);
2115		mutex_unlock(&dev_priv->drm.struct_mutex);
2116	}
2117
2118	return err;
2119}
2120
2121static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2122{
2123	drm_gem_free_mmap_offset(&obj->base);
2124}
2125
2126int
2127i915_gem_mmap_gtt(struct drm_file *file,
2128		  struct drm_device *dev,
2129		  uint32_t handle,
2130		  uint64_t *offset)
2131{
2132	struct drm_i915_gem_object *obj;
2133	int ret;
2134
2135	obj = i915_gem_object_lookup(file, handle);
2136	if (!obj)
2137		return -ENOENT;
2138
2139	ret = i915_gem_object_create_mmap_offset(obj);
2140	if (ret == 0)
2141		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2142
2143	i915_gem_object_put(obj);
2144	return ret;
2145}
2146
2147/**
2148 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2149 * @dev: DRM device
2150 * @data: GTT mapping ioctl data
2151 * @file: GEM object info
2152 *
2153 * Simply returns the fake offset to userspace so it can mmap it.
2154 * The mmap call will end up in drm_gem_mmap(), which will set things
2155 * up so we can get faults in the handler above.
2156 *
2157 * The fault handler will take care of binding the object into the GTT
2158 * (since it may have been evicted to make room for something), allocating
2159 * a fence register, and mapping the appropriate aperture address into
2160 * userspace.
2161 */
2162int
2163i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2164			struct drm_file *file)
2165{
2166	struct drm_i915_gem_mmap_gtt *args = data;
2167
2168	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2169}
2170
2171/* Immediately discard the backing storage */
2172static void
2173i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2174{
2175	i915_gem_object_free_mmap_offset(obj);
2176
2177	if (obj->base.filp == NULL)
2178		return;
2179
2180	/* Our goal here is to return as much of the memory as
2181	 * is possible back to the system as we are called from OOM.
2182	 * To do this we must instruct the shmfs to drop all of its
2183	 * backing pages, *now*.
2184	 */
2185	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2186	obj->mm.madv = __I915_MADV_PURGED;
2187	obj->mm.pages = ERR_PTR(-EFAULT);
2188}
2189
2190/* Try to discard unwanted pages */
2191void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2192{
2193	struct address_space *mapping;
2194
2195	lockdep_assert_held(&obj->mm.lock);
2196	GEM_BUG_ON(obj->mm.pages);
2197
2198	switch (obj->mm.madv) {
2199	case I915_MADV_DONTNEED:
2200		i915_gem_object_truncate(obj);
2201	case __I915_MADV_PURGED:
2202		return;
2203	}
2204
2205	if (obj->base.filp == NULL)
2206		return;
2207
2208	mapping = obj->base.filp->f_mapping,
2209	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2210}
2211
2212static void
2213i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2214			      struct sg_table *pages)
 
 
2215{
2216	struct sgt_iter sgt_iter;
2217	struct page *page;
2218
2219	__i915_gem_object_release_shmem(obj, pages, true);
2220
2221	i915_gem_gtt_finish_pages(obj, pages);
2222
2223	if (i915_gem_object_needs_bit17_swizzle(obj))
2224		i915_gem_object_save_bit_17_swizzle(obj, pages);
2225
2226	for_each_sgt_page(page, sgt_iter, pages) {
2227		if (obj->mm.dirty)
2228			set_page_dirty(page);
2229
2230		if (obj->mm.madv == I915_MADV_WILLNEED)
2231			mark_page_accessed(page);
2232
2233		put_page(page);
2234	}
2235	obj->mm.dirty = false;
2236
2237	sg_free_table(pages);
2238	kfree(pages);
2239}
2240
2241static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2242{
2243	struct radix_tree_iter iter;
2244	void **slot;
2245
2246	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2247		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2248}
2249
2250void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2251				 enum i915_mm_subclass subclass)
2252{
2253	struct sg_table *pages;
2254
2255	if (i915_gem_object_has_pinned_pages(obj))
2256		return;
2257
2258	GEM_BUG_ON(obj->bind_count);
2259	if (!READ_ONCE(obj->mm.pages))
2260		return;
2261
2262	/* May be called by shrinker from within get_pages() (on another bo) */
2263	mutex_lock_nested(&obj->mm.lock, subclass);
2264	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2265		goto unlock;
2266
2267	/* ->put_pages might need to allocate memory for the bit17 swizzle
2268	 * array, hence protect them from being reaped by removing them from gtt
2269	 * lists early. */
2270	pages = fetch_and_zero(&obj->mm.pages);
2271	GEM_BUG_ON(!pages);
2272
2273	if (obj->mm.mapping) {
2274		void *ptr;
2275
2276		ptr = ptr_mask_bits(obj->mm.mapping);
2277		if (is_vmalloc_addr(ptr))
2278			vunmap(ptr);
2279		else
2280			kunmap(kmap_to_page(ptr));
2281
2282		obj->mm.mapping = NULL;
2283	}
2284
2285	__i915_gem_object_reset_page_iter(obj);
2286
2287	if (!IS_ERR(pages))
2288		obj->ops->put_pages(obj, pages);
2289
2290unlock:
2291	mutex_unlock(&obj->mm.lock);
2292}
2293
2294static void i915_sg_trim(struct sg_table *orig_st)
2295{
2296	struct sg_table new_st;
2297	struct scatterlist *sg, *new_sg;
2298	unsigned int i;
2299
2300	if (orig_st->nents == orig_st->orig_nents)
2301		return;
2302
2303	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2304		return;
2305
2306	new_sg = new_st.sgl;
2307	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2308		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2309		/* called before being DMA mapped, no need to copy sg->dma_* */
2310		new_sg = sg_next(new_sg);
2311	}
2312
2313	sg_free_table(orig_st);
2314
2315	*orig_st = new_st;
2316}
2317
2318static struct sg_table *
2319i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2320{
2321	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2322	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2323	unsigned long i;
2324	struct address_space *mapping;
2325	struct sg_table *st;
2326	struct scatterlist *sg;
2327	struct sgt_iter sgt_iter;
2328	struct page *page;
2329	unsigned long last_pfn = 0;	/* suppress gcc warning */
2330	unsigned int max_segment;
2331	int ret;
2332	gfp_t gfp;
2333
2334	/* Assert that the object is not currently in any GPU domain. As it
2335	 * wasn't in the GTT, there shouldn't be any way it could have been in
2336	 * a GPU cache
2337	 */
2338	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2339	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2340
2341	max_segment = swiotlb_max_segment();
2342	if (!max_segment)
2343		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2344
2345	st = kmalloc(sizeof(*st), GFP_KERNEL);
2346	if (st == NULL)
2347		return ERR_PTR(-ENOMEM);
2348
2349rebuild_st:
2350	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2351		kfree(st);
2352		return ERR_PTR(-ENOMEM);
2353	}
2354
2355	/* Get the list of pages out of our struct file.  They'll be pinned
2356	 * at this point until we release them.
2357	 *
2358	 * Fail silently without starting the shrinker
2359	 */
2360	mapping = obj->base.filp->f_mapping;
2361	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2362	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2363	sg = st->sgl;
2364	st->nents = 0;
2365	for (i = 0; i < page_count; i++) {
2366		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2367		if (IS_ERR(page)) {
2368			i915_gem_shrink(dev_priv,
2369					page_count,
2370					I915_SHRINK_BOUND |
2371					I915_SHRINK_UNBOUND |
2372					I915_SHRINK_PURGEABLE);
2373			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2374		}
2375		if (IS_ERR(page)) {
2376			/* We've tried hard to allocate the memory by reaping
2377			 * our own buffer, now let the real VM do its job and
2378			 * go down in flames if truly OOM.
2379			 */
2380			page = shmem_read_mapping_page(mapping, i);
2381			if (IS_ERR(page)) {
2382				ret = PTR_ERR(page);
2383				goto err_sg;
2384			}
2385		}
2386		if (!i ||
2387		    sg->length >= max_segment ||
2388		    page_to_pfn(page) != last_pfn + 1) {
2389			if (i)
2390				sg = sg_next(sg);
2391			st->nents++;
2392			sg_set_page(sg, page, PAGE_SIZE, 0);
2393		} else {
2394			sg->length += PAGE_SIZE;
2395		}
2396		last_pfn = page_to_pfn(page);
2397
2398		/* Check that the i965g/gm workaround works. */
2399		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2400	}
2401	if (sg) /* loop terminated early; short sg table */
2402		sg_mark_end(sg);
2403
2404	/* Trim unused sg entries to avoid wasting memory. */
2405	i915_sg_trim(st);
2406
2407	ret = i915_gem_gtt_prepare_pages(obj, st);
2408	if (ret) {
2409		/* DMA remapping failed? One possible cause is that
2410		 * it could not reserve enough large entries, asking
2411		 * for PAGE_SIZE chunks instead may be helpful.
2412		 */
2413		if (max_segment > PAGE_SIZE) {
2414			for_each_sgt_page(page, sgt_iter, st)
2415				put_page(page);
2416			sg_free_table(st);
2417
2418			max_segment = PAGE_SIZE;
2419			goto rebuild_st;
2420		} else {
2421			dev_warn(&dev_priv->drm.pdev->dev,
2422				 "Failed to DMA remap %lu pages\n",
2423				 page_count);
2424			goto err_pages;
2425		}
2426	}
2427
2428	if (i915_gem_object_needs_bit17_swizzle(obj))
2429		i915_gem_object_do_bit_17_swizzle(obj, st);
2430
2431	return st;
2432
2433err_sg:
2434	sg_mark_end(sg);
2435err_pages:
2436	for_each_sgt_page(page, sgt_iter, st)
2437		put_page(page);
2438	sg_free_table(st);
2439	kfree(st);
2440
2441	/* shmemfs first checks if there is enough memory to allocate the page
2442	 * and reports ENOSPC should there be insufficient, along with the usual
2443	 * ENOMEM for a genuine allocation failure.
2444	 *
2445	 * We use ENOSPC in our driver to mean that we have run out of aperture
2446	 * space and so want to translate the error from shmemfs back to our
2447	 * usual understanding of ENOMEM.
2448	 */
2449	if (ret == -ENOSPC)
2450		ret = -ENOMEM;
2451
2452	return ERR_PTR(ret);
2453}
2454
2455void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2456				 struct sg_table *pages)
2457{
2458	lockdep_assert_held(&obj->mm.lock);
2459
2460	obj->mm.get_page.sg_pos = pages->sgl;
2461	obj->mm.get_page.sg_idx = 0;
2462
2463	obj->mm.pages = pages;
2464
2465	if (i915_gem_object_is_tiled(obj) &&
2466	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2467		GEM_BUG_ON(obj->mm.quirked);
2468		__i915_gem_object_pin_pages(obj);
2469		obj->mm.quirked = true;
2470	}
2471}
2472
2473static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2474{
2475	struct sg_table *pages;
2476
2477	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2478
2479	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2480		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2481		return -EFAULT;
2482	}
2483
2484	pages = obj->ops->get_pages(obj);
2485	if (unlikely(IS_ERR(pages)))
2486		return PTR_ERR(pages);
2487
2488	__i915_gem_object_set_pages(obj, pages);
2489	return 0;
2490}
2491
2492/* Ensure that the associated pages are gathered from the backing storage
2493 * and pinned into our object. i915_gem_object_pin_pages() may be called
2494 * multiple times before they are released by a single call to
2495 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2496 * either as a result of memory pressure (reaping pages under the shrinker)
2497 * or as the object is itself released.
2498 */
2499int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2500{
2501	int err;
2502
2503	err = mutex_lock_interruptible(&obj->mm.lock);
2504	if (err)
2505		return err;
2506
2507	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2508		err = ____i915_gem_object_get_pages(obj);
2509		if (err)
2510			goto unlock;
2511
2512		smp_mb__before_atomic();
2513	}
2514	atomic_inc(&obj->mm.pages_pin_count);
2515
2516unlock:
2517	mutex_unlock(&obj->mm.lock);
2518	return err;
2519}
2520
2521/* The 'mapping' part of i915_gem_object_pin_map() below */
2522static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2523				 enum i915_map_type type)
2524{
2525	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2526	struct sg_table *sgt = obj->mm.pages;
2527	struct sgt_iter sgt_iter;
2528	struct page *page;
2529	struct page *stack_pages[32];
2530	struct page **pages = stack_pages;
2531	unsigned long i = 0;
2532	pgprot_t pgprot;
2533	void *addr;
2534
2535	/* A single page can always be kmapped */
2536	if (n_pages == 1 && type == I915_MAP_WB)
2537		return kmap(sg_page(sgt->sgl));
2538
2539	if (n_pages > ARRAY_SIZE(stack_pages)) {
2540		/* Too big for stack -- allocate temporary array instead */
2541		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2542		if (!pages)
2543			return NULL;
2544	}
2545
2546	for_each_sgt_page(page, sgt_iter, sgt)
2547		pages[i++] = page;
2548
2549	/* Check that we have the expected number of pages */
2550	GEM_BUG_ON(i != n_pages);
2551
2552	switch (type) {
2553	case I915_MAP_WB:
2554		pgprot = PAGE_KERNEL;
2555		break;
2556	case I915_MAP_WC:
2557		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2558		break;
2559	}
2560	addr = vmap(pages, n_pages, 0, pgprot);
2561
2562	if (pages != stack_pages)
2563		drm_free_large(pages);
2564
2565	return addr;
2566}
2567
2568/* get, pin, and map the pages of the object into kernel space */
2569void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2570			      enum i915_map_type type)
2571{
2572	enum i915_map_type has_type;
2573	bool pinned;
2574	void *ptr;
2575	int ret;
2576
2577	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2578
2579	ret = mutex_lock_interruptible(&obj->mm.lock);
2580	if (ret)
2581		return ERR_PTR(ret);
2582
2583	pinned = true;
2584	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2585		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2586			ret = ____i915_gem_object_get_pages(obj);
2587			if (ret)
2588				goto err_unlock;
2589
2590			smp_mb__before_atomic();
2591		}
2592		atomic_inc(&obj->mm.pages_pin_count);
2593		pinned = false;
2594	}
2595	GEM_BUG_ON(!obj->mm.pages);
2596
2597	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2598	if (ptr && has_type != type) {
2599		if (pinned) {
2600			ret = -EBUSY;
2601			goto err_unpin;
2602		}
2603
2604		if (is_vmalloc_addr(ptr))
2605			vunmap(ptr);
2606		else
2607			kunmap(kmap_to_page(ptr));
2608
2609		ptr = obj->mm.mapping = NULL;
2610	}
2611
2612	if (!ptr) {
2613		ptr = i915_gem_object_map(obj, type);
2614		if (!ptr) {
2615			ret = -ENOMEM;
2616			goto err_unpin;
2617		}
2618
2619		obj->mm.mapping = ptr_pack_bits(ptr, type);
2620	}
2621
2622out_unlock:
2623	mutex_unlock(&obj->mm.lock);
2624	return ptr;
2625
2626err_unpin:
2627	atomic_dec(&obj->mm.pages_pin_count);
2628err_unlock:
2629	ptr = ERR_PTR(ret);
2630	goto out_unlock;
2631}
2632
2633static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2634{
2635	unsigned long elapsed;
2636
2637	if (ctx->hang_stats.banned)
2638		return true;
2639
2640	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2641	if (ctx->hang_stats.ban_period_seconds &&
2642	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2643		DRM_DEBUG("context hanging too fast, banning!\n");
2644		return true;
2645	}
2646
2647	return false;
2648}
2649
2650static void i915_set_reset_status(struct i915_gem_context *ctx,
2651				  const bool guilty)
2652{
2653	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2654
2655	if (guilty) {
2656		hs->banned = i915_context_is_banned(ctx);
2657		hs->batch_active++;
2658		hs->guilty_ts = get_seconds();
2659	} else {
2660		hs->batch_pending++;
2661	}
2662}
2663
2664struct drm_i915_gem_request *
2665i915_gem_find_active_request(struct intel_engine_cs *engine)
2666{
2667	struct drm_i915_gem_request *request;
2668
2669	/* We are called by the error capture and reset at a random
2670	 * point in time. In particular, note that neither is crucially
2671	 * ordered with an interrupt. After a hang, the GPU is dead and we
2672	 * assume that no more writes can happen (we waited long enough for
2673	 * all writes that were in transaction to be flushed) - adding an
2674	 * extra delay for a recent interrupt is pointless. Hence, we do
2675	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2676	 */
2677	list_for_each_entry(request, &engine->timeline->requests, link) {
2678		if (__i915_gem_request_completed(request))
2679			continue;
2680
2681		return request;
2682	}
2683
2684	return NULL;
2685}
2686
2687static void reset_request(struct drm_i915_gem_request *request)
2688{
2689	void *vaddr = request->ring->vaddr;
2690	u32 head;
2691
2692	/* As this request likely depends on state from the lost
2693	 * context, clear out all the user operations leaving the
2694	 * breadcrumb at the end (so we get the fence notifications).
2695	 */
2696	head = request->head;
2697	if (request->postfix < head) {
2698		memset(vaddr + head, 0, request->ring->size - head);
2699		head = 0;
2700	}
2701	memset(vaddr + head, 0, request->postfix - head);
2702}
2703
2704static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2705{
2706	struct drm_i915_gem_request *request;
2707	struct i915_gem_context *incomplete_ctx;
2708	struct intel_timeline *timeline;
2709	unsigned long flags;
2710	bool ring_hung;
2711
2712	if (engine->irq_seqno_barrier)
2713		engine->irq_seqno_barrier(engine);
2714
2715	request = i915_gem_find_active_request(engine);
2716	if (!request)
2717		return;
2718
2719	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2720	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2721		ring_hung = false;
2722
2723	i915_set_reset_status(request->ctx, ring_hung);
2724	if (!ring_hung)
2725		return;
2726
2727	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2728			 engine->name, request->global_seqno);
2729
2730	/* Setup the CS to resume from the breadcrumb of the hung request */
2731	engine->reset_hw(engine, request);
2732
2733	/* Users of the default context do not rely on logical state
2734	 * preserved between batches. They have to emit full state on
2735	 * every batch and so it is safe to execute queued requests following
2736	 * the hang.
2737	 *
2738	 * Other contexts preserve state, now corrupt. We want to skip all
2739	 * queued requests that reference the corrupt context.
2740	 */
2741	incomplete_ctx = request->ctx;
2742	if (i915_gem_context_is_default(incomplete_ctx))
2743		return;
2744
2745	timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2746
2747	spin_lock_irqsave(&engine->timeline->lock, flags);
2748	spin_lock(&timeline->lock);
2749
2750	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2751		if (request->ctx == incomplete_ctx)
2752			reset_request(request);
2753
2754	list_for_each_entry(request, &timeline->requests, link)
2755		reset_request(request);
2756
2757	spin_unlock(&timeline->lock);
2758	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2759}
2760
2761void i915_gem_reset(struct drm_i915_private *dev_priv)
2762{
2763	struct intel_engine_cs *engine;
2764	enum intel_engine_id id;
2765
2766	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2767
2768	i915_gem_retire_requests(dev_priv);
2769
2770	for_each_engine(engine, dev_priv, id)
2771		i915_gem_reset_engine(engine);
2772
2773	i915_gem_restore_fences(dev_priv);
2774
2775	if (dev_priv->gt.awake) {
2776		intel_sanitize_gt_powersave(dev_priv);
2777		intel_enable_gt_powersave(dev_priv);
2778		if (INTEL_GEN(dev_priv) >= 6)
2779			gen6_rps_busy(dev_priv);
2780	}
2781}
2782
2783static void nop_submit_request(struct drm_i915_gem_request *request)
2784{
2785	i915_gem_request_submit(request);
2786	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2787}
2788
2789static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2790{
2791	engine->submit_request = nop_submit_request;
2792
2793	/* Mark all pending requests as complete so that any concurrent
2794	 * (lockless) lookup doesn't try and wait upon the request as we
2795	 * reset it.
2796	 */
2797	intel_engine_init_global_seqno(engine,
2798				       intel_engine_last_submit(engine));
2799
2800	/*
2801	 * Clear the execlists queue up before freeing the requests, as those
2802	 * are the ones that keep the context and ringbuffer backing objects
2803	 * pinned in place.
2804	 */
2805
2806	if (i915.enable_execlists) {
2807		unsigned long flags;
2808
2809		spin_lock_irqsave(&engine->timeline->lock, flags);
2810
2811		i915_gem_request_put(engine->execlist_port[0].request);
2812		i915_gem_request_put(engine->execlist_port[1].request);
2813		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2814		engine->execlist_queue = RB_ROOT;
2815		engine->execlist_first = NULL;
2816
2817		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2818	}
2819}
2820
2821void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2822{
2823	struct intel_engine_cs *engine;
2824	enum intel_engine_id id;
2825
2826	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2827	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2828
2829	i915_gem_context_lost(dev_priv);
2830	for_each_engine(engine, dev_priv, id)
2831		i915_gem_cleanup_engine(engine);
2832	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2833
2834	i915_gem_retire_requests(dev_priv);
2835}
2836
2837static void
2838i915_gem_retire_work_handler(struct work_struct *work)
2839{
2840	struct drm_i915_private *dev_priv =
2841		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2842	struct drm_device *dev = &dev_priv->drm;
2843
2844	/* Come back later if the device is busy... */
2845	if (mutex_trylock(&dev->struct_mutex)) {
2846		i915_gem_retire_requests(dev_priv);
2847		mutex_unlock(&dev->struct_mutex);
2848	}
2849
2850	/* Keep the retire handler running until we are finally idle.
2851	 * We do not need to do this test under locking as in the worst-case
2852	 * we queue the retire worker once too often.
2853	 */
2854	if (READ_ONCE(dev_priv->gt.awake)) {
2855		i915_queue_hangcheck(dev_priv);
2856		queue_delayed_work(dev_priv->wq,
2857				   &dev_priv->gt.retire_work,
2858				   round_jiffies_up_relative(HZ));
2859	}
2860}
2861
2862static void
2863i915_gem_idle_work_handler(struct work_struct *work)
2864{
2865	struct drm_i915_private *dev_priv =
2866		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2867	struct drm_device *dev = &dev_priv->drm;
2868	struct intel_engine_cs *engine;
2869	enum intel_engine_id id;
2870	bool rearm_hangcheck;
2871
2872	if (!READ_ONCE(dev_priv->gt.awake))
2873		return;
2874
2875	/*
2876	 * Wait for last execlists context complete, but bail out in case a
2877	 * new request is submitted.
2878	 */
2879	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2880		 intel_execlists_idle(dev_priv), 10);
2881
2882	if (READ_ONCE(dev_priv->gt.active_requests))
2883		return;
2884
2885	rearm_hangcheck =
2886		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2887
2888	if (!mutex_trylock(&dev->struct_mutex)) {
2889		/* Currently busy, come back later */
2890		mod_delayed_work(dev_priv->wq,
2891				 &dev_priv->gt.idle_work,
2892				 msecs_to_jiffies(50));
2893		goto out_rearm;
2894	}
2895
2896	/*
2897	 * New request retired after this work handler started, extend active
2898	 * period until next instance of the work.
2899	 */
2900	if (work_pending(work))
2901		goto out_unlock;
2902
2903	if (dev_priv->gt.active_requests)
2904		goto out_unlock;
2905
2906	if (wait_for(intel_execlists_idle(dev_priv), 10))
2907		DRM_ERROR("Timeout waiting for engines to idle\n");
2908
2909	for_each_engine(engine, dev_priv, id)
2910		i915_gem_batch_pool_fini(&engine->batch_pool);
2911
2912	GEM_BUG_ON(!dev_priv->gt.awake);
2913	dev_priv->gt.awake = false;
2914	rearm_hangcheck = false;
2915
2916	if (INTEL_GEN(dev_priv) >= 6)
2917		gen6_rps_idle(dev_priv);
2918	intel_runtime_pm_put(dev_priv);
2919out_unlock:
2920	mutex_unlock(&dev->struct_mutex);
2921
2922out_rearm:
2923	if (rearm_hangcheck) {
2924		GEM_BUG_ON(!dev_priv->gt.awake);
2925		i915_queue_hangcheck(dev_priv);
2926	}
2927}
2928
2929void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2930{
2931	struct drm_i915_gem_object *obj = to_intel_bo(gem);
2932	struct drm_i915_file_private *fpriv = file->driver_priv;
2933	struct i915_vma *vma, *vn;
2934
2935	mutex_lock(&obj->base.dev->struct_mutex);
2936	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2937		if (vma->vm->file == fpriv)
2938			i915_vma_close(vma);
2939
2940	if (i915_gem_object_is_active(obj) &&
2941	    !i915_gem_object_has_active_reference(obj)) {
2942		i915_gem_object_set_active_reference(obj);
2943		i915_gem_object_get(obj);
2944	}
2945	mutex_unlock(&obj->base.dev->struct_mutex);
2946}
2947
2948static unsigned long to_wait_timeout(s64 timeout_ns)
2949{
2950	if (timeout_ns < 0)
2951		return MAX_SCHEDULE_TIMEOUT;
2952
2953	if (timeout_ns == 0)
2954		return 0;
2955
2956	return nsecs_to_jiffies_timeout(timeout_ns);
2957}
2958
2959/**
2960 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2961 * @dev: drm device pointer
2962 * @data: ioctl data blob
2963 * @file: drm file pointer
2964 *
2965 * Returns 0 if successful, else an error is returned with the remaining time in
2966 * the timeout parameter.
2967 *  -ETIME: object is still busy after timeout
2968 *  -ERESTARTSYS: signal interrupted the wait
2969 *  -ENONENT: object doesn't exist
2970 * Also possible, but rare:
2971 *  -EAGAIN: GPU wedged
2972 *  -ENOMEM: damn
2973 *  -ENODEV: Internal IRQ fail
2974 *  -E?: The add request failed
2975 *
2976 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2977 * non-zero timeout parameter the wait ioctl will wait for the given number of
2978 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2979 * without holding struct_mutex the object may become re-busied before this
2980 * function completes. A similar but shorter * race condition exists in the busy
2981 * ioctl
2982 */
2983int
2984i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2985{
2986	struct drm_i915_gem_wait *args = data;
2987	struct drm_i915_gem_object *obj;
2988	ktime_t start;
2989	long ret;
2990
2991	if (args->flags != 0)
2992		return -EINVAL;
2993
2994	obj = i915_gem_object_lookup(file, args->bo_handle);
2995	if (!obj)
2996		return -ENOENT;
2997
2998	start = ktime_get();
2999
3000	ret = i915_gem_object_wait(obj,
3001				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3002				   to_wait_timeout(args->timeout_ns),
3003				   to_rps_client(file));
3004
3005	if (args->timeout_ns > 0) {
3006		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3007		if (args->timeout_ns < 0)
3008			args->timeout_ns = 0;
3009
3010		/*
3011		 * Apparently ktime isn't accurate enough and occasionally has a
3012		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3013		 * things up to make the test happy. We allow up to 1 jiffy.
 
 
 
 
3014		 *
3015		 * This is a regression from the timespec->ktime conversion.
 
 
 
 
 
3016		 */
3017		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3018			args->timeout_ns = 0;
 
3019	}
3020
3021	i915_gem_object_put(obj);
3022	return ret;
3023}
 
3024
3025static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3026{
3027	int ret, i;
 
3028
3029	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3030		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3031		if (ret)
3032			return ret;
3033	}
3034
3035	return 0;
3036}
3037
3038int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3039{
3040	int ret;
3041
3042	if (flags & I915_WAIT_LOCKED) {
3043		struct i915_gem_timeline *tl;
3044
3045		lockdep_assert_held(&i915->drm.struct_mutex);
3046
3047		list_for_each_entry(tl, &i915->gt.timelines, link) {
3048			ret = wait_for_timeline(tl, flags);
3049			if (ret)
3050				return ret;
3051		}
3052	} else {
3053		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3054		if (ret)
3055			return ret;
3056	}
3057
3058	return 0;
3059}
3060
3061void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3062			     bool force)
3063{
3064	/* If we don't have a page list set up, then we're not pinned
3065	 * to GPU, and we can ignore the cache flush because it'll happen
3066	 * again at bind time.
3067	 */
3068	if (!obj->mm.pages)
3069		return;
3070
3071	/*
3072	 * Stolen memory is always coherent with the GPU as it is explicitly
3073	 * marked as wc by the system, or the system is cache-coherent.
3074	 */
3075	if (obj->stolen || obj->phys_handle)
3076		return;
3077
3078	/* If the GPU is snooping the contents of the CPU cache,
3079	 * we do not need to manually clear the CPU cache lines.  However,
3080	 * the caches are only snooped when the render cache is
3081	 * flushed/invalidated.  As we always have to emit invalidations
3082	 * and flushes when moving into and out of the RENDER domain, correct
3083	 * snooping behaviour occurs naturally as the result of our domain
3084	 * tracking.
3085	 */
3086	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3087		obj->cache_dirty = true;
3088		return;
3089	}
3090
3091	trace_i915_gem_object_clflush(obj);
3092	drm_clflush_sg(obj->mm.pages);
3093	obj->cache_dirty = false;
3094}
3095
3096/** Flushes the GTT write domain for the object if it's dirty. */
3097static void
3098i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3099{
3100	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3101
3102	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3103		return;
3104
3105	/* No actual flushing is required for the GTT write domain.  Writes
3106	 * to it "immediately" go to main memory as far as we know, so there's
3107	 * no chipset flush.  It also doesn't land in render cache.
3108	 *
3109	 * However, we do have to enforce the order so that all writes through
3110	 * the GTT land before any writes to the device, such as updates to
3111	 * the GATT itself.
3112	 *
3113	 * We also have to wait a bit for the writes to land from the GTT.
3114	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3115	 * timing. This issue has only been observed when switching quickly
3116	 * between GTT writes and CPU reads from inside the kernel on recent hw,
3117	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3118	 * system agents we cannot reproduce this behaviour).
3119	 */
3120	wmb();
3121	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3122		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3123
3124	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3125
3126	obj->base.write_domain = 0;
3127	trace_i915_gem_object_change_domain(obj,
3128					    obj->base.read_domains,
3129					    I915_GEM_DOMAIN_GTT);
3130}
3131
3132/** Flushes the CPU write domain for the object if it's dirty. */
3133static void
3134i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3135{
3136	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3137		return;
3138
3139	i915_gem_clflush_object(obj, obj->pin_display);
3140	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3141
3142	obj->base.write_domain = 0;
3143	trace_i915_gem_object_change_domain(obj,
3144					    obj->base.read_domains,
3145					    I915_GEM_DOMAIN_CPU);
3146}
3147
3148/**
3149 * Moves a single object to the GTT read, and possibly write domain.
3150 * @obj: object to act on
3151 * @write: ask for write access or read only
3152 *
3153 * This function returns when the move is complete, including waiting on
3154 * flushes to occur.
3155 */
3156int
3157i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3158{
3159	uint32_t old_write_domain, old_read_domains;
3160	int ret;
3161
3162	lockdep_assert_held(&obj->base.dev->struct_mutex);
3163
3164	ret = i915_gem_object_wait(obj,
3165				   I915_WAIT_INTERRUPTIBLE |
3166				   I915_WAIT_LOCKED |
3167				   (write ? I915_WAIT_ALL : 0),
3168				   MAX_SCHEDULE_TIMEOUT,
3169				   NULL);
3170	if (ret)
3171		return ret;
3172
3173	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3174		return 0;
3175
3176	/* Flush and acquire obj->pages so that we are coherent through
3177	 * direct access in memory with previous cached writes through
3178	 * shmemfs and that our cache domain tracking remains valid.
3179	 * For example, if the obj->filp was moved to swap without us
3180	 * being notified and releasing the pages, we would mistakenly
3181	 * continue to assume that the obj remained out of the CPU cached
3182	 * domain.
3183	 */
3184	ret = i915_gem_object_pin_pages(obj);
3185	if (ret)
3186		return ret;
3187
3188	i915_gem_object_flush_cpu_write_domain(obj);
3189
3190	/* Serialise direct access to this object with the barriers for
3191	 * coherent writes from the GPU, by effectively invalidating the
3192	 * GTT domain upon first access.
3193	 */
3194	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3195		mb();
3196
3197	old_write_domain = obj->base.write_domain;
3198	old_read_domains = obj->base.read_domains;
3199
3200	/* It should now be out of any other write domains, and we can update
3201	 * the domain values for our changes.
3202	 */
3203	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3204	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3205	if (write) {
3206		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3207		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3208		obj->mm.dirty = true;
3209	}
3210
3211	trace_i915_gem_object_change_domain(obj,
3212					    old_read_domains,
3213					    old_write_domain);
3214
3215	i915_gem_object_unpin_pages(obj);
3216	return 0;
3217}
3218
3219/**
3220 * Changes the cache-level of an object across all VMA.
3221 * @obj: object to act on
3222 * @cache_level: new cache level to set for the object
3223 *
3224 * After this function returns, the object will be in the new cache-level
3225 * across all GTT and the contents of the backing storage will be coherent,
3226 * with respect to the new cache-level. In order to keep the backing storage
3227 * coherent for all users, we only allow a single cache level to be set
3228 * globally on the object and prevent it from being changed whilst the
3229 * hardware is reading from the object. That is if the object is currently
3230 * on the scanout it will be set to uncached (or equivalent display
3231 * cache coherency) and all non-MOCS GPU access will also be uncached so
3232 * that all direct access to the scanout remains coherent.
3233 */
3234int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3235				    enum i915_cache_level cache_level)
3236{
3237	struct i915_vma *vma;
3238	int ret;
3239
3240	lockdep_assert_held(&obj->base.dev->struct_mutex);
3241
3242	if (obj->cache_level == cache_level)
3243		return 0;
3244
3245	/* Inspect the list of currently bound VMA and unbind any that would
3246	 * be invalid given the new cache-level. This is principally to
3247	 * catch the issue of the CS prefetch crossing page boundaries and
3248	 * reading an invalid PTE on older architectures.
3249	 */
3250restart:
3251	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3252		if (!drm_mm_node_allocated(&vma->node))
3253			continue;
3254
3255		if (i915_vma_is_pinned(vma)) {
3256			DRM_DEBUG("can not change the cache level of pinned objects\n");
3257			return -EBUSY;
3258		}
3259
3260		if (i915_gem_valid_gtt_space(vma, cache_level))
3261			continue;
3262
3263		ret = i915_vma_unbind(vma);
3264		if (ret)
3265			return ret;
3266
3267		/* As unbinding may affect other elements in the
3268		 * obj->vma_list (due to side-effects from retiring
3269		 * an active vma), play safe and restart the iterator.
3270		 */
3271		goto restart;
3272	}
3273
3274	/* We can reuse the existing drm_mm nodes but need to change the
3275	 * cache-level on the PTE. We could simply unbind them all and
3276	 * rebind with the correct cache-level on next use. However since
3277	 * we already have a valid slot, dma mapping, pages etc, we may as
3278	 * rewrite the PTE in the belief that doing so tramples upon less
3279	 * state and so involves less work.
3280	 */
3281	if (obj->bind_count) {
3282		/* Before we change the PTE, the GPU must not be accessing it.
3283		 * If we wait upon the object, we know that all the bound
3284		 * VMA are no longer active.
3285		 */
3286		ret = i915_gem_object_wait(obj,
3287					   I915_WAIT_INTERRUPTIBLE |
3288					   I915_WAIT_LOCKED |
3289					   I915_WAIT_ALL,
3290					   MAX_SCHEDULE_TIMEOUT,
3291					   NULL);
3292		if (ret)
3293			return ret;
3294
3295		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3296		    cache_level != I915_CACHE_NONE) {
3297			/* Access to snoopable pages through the GTT is
3298			 * incoherent and on some machines causes a hard
3299			 * lockup. Relinquish the CPU mmaping to force
3300			 * userspace to refault in the pages and we can
3301			 * then double check if the GTT mapping is still
3302			 * valid for that pointer access.
3303			 */
3304			i915_gem_release_mmap(obj);
3305
3306			/* As we no longer need a fence for GTT access,
3307			 * we can relinquish it now (and so prevent having
3308			 * to steal a fence from someone else on the next
3309			 * fence request). Note GPU activity would have
3310			 * dropped the fence as all snoopable access is
3311			 * supposed to be linear.
3312			 */
3313			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3314				ret = i915_vma_put_fence(vma);
3315				if (ret)
3316					return ret;
3317			}
3318		} else {
3319			/* We either have incoherent backing store and
3320			 * so no GTT access or the architecture is fully
3321			 * coherent. In such cases, existing GTT mmaps
3322			 * ignore the cache bit in the PTE and we can
3323			 * rewrite it without confusing the GPU or having
3324			 * to force userspace to fault back in its mmaps.
3325			 */
3326		}
3327
3328		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3329			if (!drm_mm_node_allocated(&vma->node))
3330				continue;
3331
3332			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3333			if (ret)
3334				return ret;
3335		}
3336	}
3337
3338	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3339	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3340		obj->cache_dirty = true;
3341
3342	list_for_each_entry(vma, &obj->vma_list, obj_link)
3343		vma->node.color = cache_level;
3344	obj->cache_level = cache_level;
3345
3346	return 0;
3347}
3348
3349int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3350			       struct drm_file *file)
3351{
3352	struct drm_i915_gem_caching *args = data;
3353	struct drm_i915_gem_object *obj;
3354	int err = 0;
3355
3356	rcu_read_lock();
3357	obj = i915_gem_object_lookup_rcu(file, args->handle);
3358	if (!obj) {
3359		err = -ENOENT;
3360		goto out;
3361	}
3362
3363	switch (obj->cache_level) {
3364	case I915_CACHE_LLC:
3365	case I915_CACHE_L3_LLC:
3366		args->caching = I915_CACHING_CACHED;
3367		break;
3368
3369	case I915_CACHE_WT:
3370		args->caching = I915_CACHING_DISPLAY;
3371		break;
3372
3373	default:
3374		args->caching = I915_CACHING_NONE;
3375		break;
3376	}
3377out:
3378	rcu_read_unlock();
3379	return err;
3380}
3381
3382int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3383			       struct drm_file *file)
3384{
3385	struct drm_i915_private *i915 = to_i915(dev);
3386	struct drm_i915_gem_caching *args = data;
3387	struct drm_i915_gem_object *obj;
3388	enum i915_cache_level level;
3389	int ret;
3390
3391	switch (args->caching) {
3392	case I915_CACHING_NONE:
3393		level = I915_CACHE_NONE;
3394		break;
3395	case I915_CACHING_CACHED:
3396		/*
3397		 * Due to a HW issue on BXT A stepping, GPU stores via a
3398		 * snooped mapping may leave stale data in a corresponding CPU
3399		 * cacheline, whereas normally such cachelines would get
3400		 * invalidated.
3401		 */
3402		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3403			return -ENODEV;
3404
3405		level = I915_CACHE_LLC;
3406		break;
3407	case I915_CACHING_DISPLAY:
3408		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3409		break;
3410	default:
3411		return -EINVAL;
3412	}
3413
3414	ret = i915_mutex_lock_interruptible(dev);
3415	if (ret)
3416		return ret;
3417
3418	obj = i915_gem_object_lookup(file, args->handle);
3419	if (!obj) {
3420		ret = -ENOENT;
3421		goto unlock;
3422	}
3423
3424	ret = i915_gem_object_set_cache_level(obj, level);
3425	i915_gem_object_put(obj);
3426unlock:
3427	mutex_unlock(&dev->struct_mutex);
3428	return ret;
3429}
3430
3431/*
3432 * Prepare buffer for display plane (scanout, cursors, etc).
3433 * Can be called from an uninterruptible phase (modesetting) and allows
3434 * any flushes to be pipelined (for pageflips).
3435 */
3436struct i915_vma *
3437i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3438				     u32 alignment,
3439				     const struct i915_ggtt_view *view)
3440{
3441	struct i915_vma *vma;
3442	u32 old_read_domains, old_write_domain;
3443	int ret;
3444
3445	lockdep_assert_held(&obj->base.dev->struct_mutex);
3446
3447	/* Mark the pin_display early so that we account for the
3448	 * display coherency whilst setting up the cache domains.
3449	 */
3450	obj->pin_display++;
3451
3452	/* The display engine is not coherent with the LLC cache on gen6.  As
3453	 * a result, we make sure that the pinning that is about to occur is
3454	 * done with uncached PTEs. This is lowest common denominator for all
3455	 * chipsets.
3456	 *
3457	 * However for gen6+, we could do better by using the GFDT bit instead
3458	 * of uncaching, which would allow us to flush all the LLC-cached data
3459	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3460	 */
3461	ret = i915_gem_object_set_cache_level(obj,
3462					      HAS_WT(to_i915(obj->base.dev)) ?
3463					      I915_CACHE_WT : I915_CACHE_NONE);
3464	if (ret) {
3465		vma = ERR_PTR(ret);
3466		goto err_unpin_display;
3467	}
3468
3469	/* As the user may map the buffer once pinned in the display plane
3470	 * (e.g. libkms for the bootup splash), we have to ensure that we
3471	 * always use map_and_fenceable for all scanout buffers. However,
3472	 * it may simply be too big to fit into mappable, in which case
3473	 * put it anyway and hope that userspace can cope (but always first
3474	 * try to preserve the existing ABI).
3475	 */
3476	vma = ERR_PTR(-ENOSPC);
3477	if (view->type == I915_GGTT_VIEW_NORMAL)
3478		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3479					       PIN_MAPPABLE | PIN_NONBLOCK);
3480	if (IS_ERR(vma)) {
3481		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3482		unsigned int flags;
3483
3484		/* Valleyview is definitely limited to scanning out the first
3485		 * 512MiB. Lets presume this behaviour was inherited from the
3486		 * g4x display engine and that all earlier gen are similarly
3487		 * limited. Testing suggests that it is a little more
3488		 * complicated than this. For example, Cherryview appears quite
3489		 * happy to scanout from anywhere within its global aperture.
3490		 */
3491		flags = 0;
3492		if (HAS_GMCH_DISPLAY(i915))
3493			flags = PIN_MAPPABLE;
3494		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3495	}
3496	if (IS_ERR(vma))
3497		goto err_unpin_display;
3498
3499	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3500
3501	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3502	if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3503		i915_gem_clflush_object(obj, true);
3504		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3505	}
3506
3507	old_write_domain = obj->base.write_domain;
3508	old_read_domains = obj->base.read_domains;
3509
3510	/* It should now be out of any other write domains, and we can update
3511	 * the domain values for our changes.
3512	 */
3513	obj->base.write_domain = 0;
3514	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3515
3516	trace_i915_gem_object_change_domain(obj,
3517					    old_read_domains,
3518					    old_write_domain);
3519
3520	return vma;
3521
3522err_unpin_display:
3523	obj->pin_display--;
3524	return vma;
3525}
3526
3527void
3528i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3529{
3530	lockdep_assert_held(&vma->vm->dev->struct_mutex);
3531
3532	if (WARN_ON(vma->obj->pin_display == 0))
3533		return;
3534
3535	if (--vma->obj->pin_display == 0)
3536		vma->display_alignment = 0;
3537
3538	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3539	if (!i915_vma_is_active(vma))
3540		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3541
3542	i915_vma_unpin(vma);
3543}
3544
3545/**
3546 * Moves a single object to the CPU read, and possibly write domain.
3547 * @obj: object to act on
3548 * @write: requesting write or read-only access
3549 *
3550 * This function returns when the move is complete, including waiting on
3551 * flushes to occur.
3552 */
3553int
3554i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3555{
3556	uint32_t old_write_domain, old_read_domains;
3557	int ret;
3558
3559	lockdep_assert_held(&obj->base.dev->struct_mutex);
3560
3561	ret = i915_gem_object_wait(obj,
3562				   I915_WAIT_INTERRUPTIBLE |
3563				   I915_WAIT_LOCKED |
3564				   (write ? I915_WAIT_ALL : 0),
3565				   MAX_SCHEDULE_TIMEOUT,
3566				   NULL);
3567	if (ret)
3568		return ret;
3569
3570	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3571		return 0;
3572
3573	i915_gem_object_flush_gtt_write_domain(obj);
3574
3575	old_write_domain = obj->base.write_domain;
3576	old_read_domains = obj->base.read_domains;
3577
3578	/* Flush the CPU cache if it's still invalid. */
3579	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3580		i915_gem_clflush_object(obj, false);
3581
3582		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3583	}
3584
3585	/* It should now be out of any other write domains, and we can update
3586	 * the domain values for our changes.
3587	 */
3588	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3589
3590	/* If we're writing through the CPU, then the GPU read domains will
3591	 * need to be invalidated at next use.
3592	 */
3593	if (write) {
3594		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3595		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3596	}
3597
3598	trace_i915_gem_object_change_domain(obj,
3599					    old_read_domains,
3600					    old_write_domain);
3601
3602	return 0;
3603}
3604
3605/* Throttle our rendering by waiting until the ring has completed our requests
3606 * emitted over 20 msec ago.
3607 *
3608 * Note that if we were to use the current jiffies each time around the loop,
3609 * we wouldn't escape the function with any frames outstanding if the time to
3610 * render a frame was over 20ms.
3611 *
3612 * This should get us reasonable parallelism between CPU and GPU but also
3613 * relatively low latency when blocking on a particular request to finish.
3614 */
3615static int
3616i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3617{
3618	struct drm_i915_private *dev_priv = to_i915(dev);
3619	struct drm_i915_file_private *file_priv = file->driver_priv;
3620	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3621	struct drm_i915_gem_request *request, *target = NULL;
3622	long ret;
3623
3624	/* ABI: return -EIO if already wedged */
3625	if (i915_terminally_wedged(&dev_priv->gpu_error))
3626		return -EIO;
3627
3628	spin_lock(&file_priv->mm.lock);
3629	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3630		if (time_after_eq(request->emitted_jiffies, recent_enough))
3631			break;
3632
3633		/*
3634		 * Note that the request might not have been submitted yet.
3635		 * In which case emitted_jiffies will be zero.
3636		 */
3637		if (!request->emitted_jiffies)
3638			continue;
3639
3640		target = request;
3641	}
3642	if (target)
3643		i915_gem_request_get(target);
3644	spin_unlock(&file_priv->mm.lock);
3645
3646	if (target == NULL)
3647		return 0;
3648
3649	ret = i915_wait_request(target,
3650				I915_WAIT_INTERRUPTIBLE,
3651				MAX_SCHEDULE_TIMEOUT);
3652	i915_gem_request_put(target);
3653
3654	return ret < 0 ? ret : 0;
3655}
3656
3657struct i915_vma *
3658i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3659			 const struct i915_ggtt_view *view,
3660			 u64 size,
3661			 u64 alignment,
3662			 u64 flags)
3663{
3664	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3665	struct i915_address_space *vm = &dev_priv->ggtt.base;
3666	struct i915_vma *vma;
3667	int ret;
3668
3669	lockdep_assert_held(&obj->base.dev->struct_mutex);
3670
3671	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3672	if (IS_ERR(vma))
3673		return vma;
3674
3675	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3676		if (flags & PIN_NONBLOCK &&
3677		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3678			return ERR_PTR(-ENOSPC);
3679
3680		if (flags & PIN_MAPPABLE) {
3681			u32 fence_size;
3682
3683			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3684							    i915_gem_object_get_tiling(obj));
3685			/* If the required space is larger than the available
3686			 * aperture, we will not able to find a slot for the
3687			 * object and unbinding the object now will be in
3688			 * vain. Worse, doing so may cause us to ping-pong
3689			 * the object in and out of the Global GTT and
3690			 * waste a lot of cycles under the mutex.
3691			 */
3692			if (fence_size > dev_priv->ggtt.mappable_end)
3693				return ERR_PTR(-E2BIG);
3694
3695			/* If NONBLOCK is set the caller is optimistically
3696			 * trying to cache the full object within the mappable
3697			 * aperture, and *must* have a fallback in place for
3698			 * situations where we cannot bind the object. We
3699			 * can be a little more lax here and use the fallback
3700			 * more often to avoid costly migrations of ourselves
3701			 * and other objects within the aperture.
3702			 *
3703			 * Half-the-aperture is used as a simple heuristic.
3704			 * More interesting would to do search for a free
3705			 * block prior to making the commitment to unbind.
3706			 * That caters for the self-harm case, and with a
3707			 * little more heuristics (e.g. NOFAULT, NOEVICT)
3708			 * we could try to minimise harm to others.
3709			 */
3710			if (flags & PIN_NONBLOCK &&
3711			    fence_size > dev_priv->ggtt.mappable_end / 2)
3712				return ERR_PTR(-ENOSPC);
3713		}
3714
3715		WARN(i915_vma_is_pinned(vma),
3716		     "bo is already pinned in ggtt with incorrect alignment:"
3717		     " offset=%08x, req.alignment=%llx,"
3718		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3719		     i915_ggtt_offset(vma), alignment,
3720		     !!(flags & PIN_MAPPABLE),
3721		     i915_vma_is_map_and_fenceable(vma));
3722		ret = i915_vma_unbind(vma);
3723		if (ret)
3724			return ERR_PTR(ret);
3725	}
3726
3727	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3728	if (ret)
3729		return ERR_PTR(ret);
3730
3731	return vma;
3732}
3733
3734static __always_inline unsigned int __busy_read_flag(unsigned int id)
3735{
3736	/* Note that we could alias engines in the execbuf API, but
3737	 * that would be very unwise as it prevents userspace from
3738	 * fine control over engine selection. Ahem.
3739	 *
3740	 * This should be something like EXEC_MAX_ENGINE instead of
3741	 * I915_NUM_ENGINES.
3742	 */
3743	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3744	return 0x10000 << id;
3745}
3746
3747static __always_inline unsigned int __busy_write_id(unsigned int id)
3748{
3749	/* The uABI guarantees an active writer is also amongst the read
3750	 * engines. This would be true if we accessed the activity tracking
3751	 * under the lock, but as we perform the lookup of the object and
3752	 * its activity locklessly we can not guarantee that the last_write
3753	 * being active implies that we have set the same engine flag from
3754	 * last_read - hence we always set both read and write busy for
3755	 * last_write.
3756	 */
3757	return id | __busy_read_flag(id);
3758}
3759
3760static __always_inline unsigned int
3761__busy_set_if_active(const struct dma_fence *fence,
3762		     unsigned int (*flag)(unsigned int id))
3763{
3764	struct drm_i915_gem_request *rq;
3765
3766	/* We have to check the current hw status of the fence as the uABI
3767	 * guarantees forward progress. We could rely on the idle worker
3768	 * to eventually flush us, but to minimise latency just ask the
3769	 * hardware.
3770	 *
3771	 * Note we only report on the status of native fences.
3772	 */
3773	if (!dma_fence_is_i915(fence))
3774		return 0;
3775
3776	/* opencode to_request() in order to avoid const warnings */
3777	rq = container_of(fence, struct drm_i915_gem_request, fence);
3778	if (i915_gem_request_completed(rq))
3779		return 0;
3780
3781	return flag(rq->engine->exec_id);
3782}
3783
3784static __always_inline unsigned int
3785busy_check_reader(const struct dma_fence *fence)
3786{
3787	return __busy_set_if_active(fence, __busy_read_flag);
3788}
3789
3790static __always_inline unsigned int
3791busy_check_writer(const struct dma_fence *fence)
3792{
3793	if (!fence)
3794		return 0;
3795
3796	return __busy_set_if_active(fence, __busy_write_id);
3797}
3798
3799int
3800i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3801		    struct drm_file *file)
3802{
3803	struct drm_i915_gem_busy *args = data;
3804	struct drm_i915_gem_object *obj;
3805	struct reservation_object_list *list;
3806	unsigned int seq;
3807	int err;
3808
3809	err = -ENOENT;
3810	rcu_read_lock();
3811	obj = i915_gem_object_lookup_rcu(file, args->handle);
3812	if (!obj)
3813		goto out;
3814
3815	/* A discrepancy here is that we do not report the status of
3816	 * non-i915 fences, i.e. even though we may report the object as idle,
3817	 * a call to set-domain may still stall waiting for foreign rendering.
3818	 * This also means that wait-ioctl may report an object as busy,
3819	 * where busy-ioctl considers it idle.
3820	 *
3821	 * We trade the ability to warn of foreign fences to report on which
3822	 * i915 engines are active for the object.
3823	 *
3824	 * Alternatively, we can trade that extra information on read/write
3825	 * activity with
3826	 *	args->busy =
3827	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
3828	 * to report the overall busyness. This is what the wait-ioctl does.
3829	 *
3830	 */
3831retry:
3832	seq = raw_read_seqcount(&obj->resv->seq);
3833
3834	/* Translate the exclusive fence to the READ *and* WRITE engine */
3835	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3836
3837	/* Translate shared fences to READ set of engines */
3838	list = rcu_dereference(obj->resv->fence);
3839	if (list) {
3840		unsigned int shared_count = list->shared_count, i;
3841
3842		for (i = 0; i < shared_count; ++i) {
3843			struct dma_fence *fence =
3844				rcu_dereference(list->shared[i]);
3845
3846			args->busy |= busy_check_reader(fence);
3847		}
3848	}
3849
3850	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3851		goto retry;
3852
3853	err = 0;
3854out:
3855	rcu_read_unlock();
3856	return err;
3857}
3858
3859int
3860i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3861			struct drm_file *file_priv)
3862{
3863	return i915_gem_ring_throttle(dev, file_priv);
3864}
3865
3866int
3867i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3868		       struct drm_file *file_priv)
3869{
3870	struct drm_i915_private *dev_priv = to_i915(dev);
3871	struct drm_i915_gem_madvise *args = data;
3872	struct drm_i915_gem_object *obj;
3873	int err;
3874
3875	switch (args->madv) {
3876	case I915_MADV_DONTNEED:
3877	case I915_MADV_WILLNEED:
3878	    break;
3879	default:
3880	    return -EINVAL;
3881	}
3882
3883	obj = i915_gem_object_lookup(file_priv, args->handle);
3884	if (!obj)
3885		return -ENOENT;
3886
3887	err = mutex_lock_interruptible(&obj->mm.lock);
3888	if (err)
3889		goto out;
3890
3891	if (obj->mm.pages &&
3892	    i915_gem_object_is_tiled(obj) &&
3893	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3894		if (obj->mm.madv == I915_MADV_WILLNEED) {
3895			GEM_BUG_ON(!obj->mm.quirked);
3896			__i915_gem_object_unpin_pages(obj);
3897			obj->mm.quirked = false;
3898		}
3899		if (args->madv == I915_MADV_WILLNEED) {
3900			GEM_BUG_ON(obj->mm.quirked);
3901			__i915_gem_object_pin_pages(obj);
3902			obj->mm.quirked = true;
3903		}
3904	}
3905
3906	if (obj->mm.madv != __I915_MADV_PURGED)
3907		obj->mm.madv = args->madv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3908
3909	/* if the object is no longer attached, discard its backing storage */
3910	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
 
3911		i915_gem_object_truncate(obj);
3912
3913	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3914	mutex_unlock(&obj->mm.lock);
3915
 
3916out:
3917	i915_gem_object_put(obj);
3918	return err;
3919}
3920
3921static void
3922frontbuffer_retire(struct i915_gem_active *active,
3923		   struct drm_i915_gem_request *request)
3924{
3925	struct drm_i915_gem_object *obj =
3926		container_of(active, typeof(*obj), frontbuffer_write);
3927
3928	intel_fb_obj_flush(obj, true, ORIGIN_CS);
3929}
3930
3931void i915_gem_object_init(struct drm_i915_gem_object *obj,
3932			  const struct drm_i915_gem_object_ops *ops)
3933{
3934	mutex_init(&obj->mm.lock);
3935
3936	INIT_LIST_HEAD(&obj->global_link);
3937	INIT_LIST_HEAD(&obj->userfault_link);
3938	INIT_LIST_HEAD(&obj->obj_exec_link);
3939	INIT_LIST_HEAD(&obj->vma_list);
3940	INIT_LIST_HEAD(&obj->batch_pool_link);
3941
3942	obj->ops = ops;
3943
3944	reservation_object_init(&obj->__builtin_resv);
3945	obj->resv = &obj->__builtin_resv;
3946
3947	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3948	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3949
3950	obj->mm.madv = I915_MADV_WILLNEED;
3951	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3952	mutex_init(&obj->mm.get_page.lock);
3953
3954	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3955}
3956
3957static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3958	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3959		 I915_GEM_OBJECT_IS_SHRINKABLE,
3960	.get_pages = i915_gem_object_get_pages_gtt,
3961	.put_pages = i915_gem_object_put_pages_gtt,
3962};
3963
3964/* Note we don't consider signbits :| */
3965#define overflows_type(x, T) \
3966	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
3967
3968struct drm_i915_gem_object *
3969i915_gem_object_create(struct drm_device *dev, u64 size)
3970{
3971	struct drm_i915_private *dev_priv = to_i915(dev);
3972	struct drm_i915_gem_object *obj;
3973	struct address_space *mapping;
3974	gfp_t mask;
3975	int ret;
3976
3977	/* There is a prevalence of the assumption that we fit the object's
3978	 * page count inside a 32bit _signed_ variable. Let's document this and
3979	 * catch if we ever need to fix it. In the meantime, if you do spot
3980	 * such a local variable, please consider fixing!
3981	 */
3982	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3983		return ERR_PTR(-E2BIG);
3984
3985	if (overflows_type(size, obj->base.size))
3986		return ERR_PTR(-E2BIG);
3987
3988	obj = i915_gem_object_alloc(dev);
3989	if (obj == NULL)
3990		return ERR_PTR(-ENOMEM);
3991
3992	ret = drm_gem_object_init(dev, &obj->base, size);
3993	if (ret)
3994		goto fail;
3995
3996	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3997	if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
3998		/* 965gm cannot relocate objects above 4GiB. */
3999		mask &= ~__GFP_HIGHMEM;
4000		mask |= __GFP_DMA32;
4001	}
4002
4003	mapping = obj->base.filp->f_mapping;
4004	mapping_set_gfp_mask(mapping, mask);
4005
4006	i915_gem_object_init(obj, &i915_gem_object_ops);
4007
4008	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4009	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4010
4011	if (HAS_LLC(dev_priv)) {
4012		/* On some devices, we can have the GPU use the LLC (the CPU
4013		 * cache) for about a 10% performance improvement
4014		 * compared to uncached.  Graphics requests other than
4015		 * display scanout are coherent with the CPU in
4016		 * accessing this cache.  This means in this mode we
4017		 * don't need to clflush on the CPU side, and on the
4018		 * GPU side we only need to flush internal caches to
4019		 * get data visible to the CPU.
4020		 *
4021		 * However, we maintain the display planes as UC, and so
4022		 * need to rebind when first used as such.
4023		 */
4024		obj->cache_level = I915_CACHE_LLC;
4025	} else
4026		obj->cache_level = I915_CACHE_NONE;
4027
4028	trace_i915_gem_object_create(obj);
4029
4030	return obj;
4031
4032fail:
4033	i915_gem_object_free(obj);
4034	return ERR_PTR(ret);
4035}
4036
4037static bool discard_backing_storage(struct drm_i915_gem_object *obj)
 
 
 
 
 
 
 
 
 
4038{
4039	/* If we are the last user of the backing storage (be it shmemfs
4040	 * pages or stolen etc), we know that the pages are going to be
4041	 * immediately released. In this case, we can then skip copying
4042	 * back the contents from the GPU.
4043	 */
4044
4045	if (obj->mm.madv != I915_MADV_WILLNEED)
4046		return false;
4047
4048	if (obj->base.filp == NULL)
4049		return true;
4050
4051	/* At first glance, this looks racy, but then again so would be
4052	 * userspace racing mmap against close. However, the first external
4053	 * reference to the filp can only be obtained through the
4054	 * i915_gem_mmap_ioctl() which safeguards us against the user
4055	 * acquiring such a reference whilst we are in the middle of
4056	 * freeing the object.
4057	 */
4058	return atomic_long_read(&obj->base.filp->f_count) == 1;
4059}
4060
4061static void __i915_gem_free_objects(struct drm_i915_private *i915,
4062				    struct llist_node *freed)
4063{
4064	struct drm_i915_gem_object *obj, *on;
4065
4066	mutex_lock(&i915->drm.struct_mutex);
4067	intel_runtime_pm_get(i915);
4068	llist_for_each_entry(obj, freed, freed) {
4069		struct i915_vma *vma, *vn;
4070
4071		trace_i915_gem_object_destroy(obj);
4072
4073		GEM_BUG_ON(i915_gem_object_is_active(obj));
4074		list_for_each_entry_safe(vma, vn,
4075					 &obj->vma_list, obj_link) {
4076			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4077			GEM_BUG_ON(i915_vma_is_active(vma));
4078			vma->flags &= ~I915_VMA_PIN_MASK;
4079			i915_vma_close(vma);
4080		}
4081		GEM_BUG_ON(!list_empty(&obj->vma_list));
4082		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4083
4084		list_del(&obj->global_link);
4085	}
4086	intel_runtime_pm_put(i915);
4087	mutex_unlock(&i915->drm.struct_mutex);
4088
4089	llist_for_each_entry_safe(obj, on, freed, freed) {
4090		GEM_BUG_ON(obj->bind_count);
4091		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4092
4093		if (obj->ops->release)
4094			obj->ops->release(obj);
4095
4096		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4097			atomic_set(&obj->mm.pages_pin_count, 0);
4098		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4099		GEM_BUG_ON(obj->mm.pages);
4100
4101		if (obj->base.import_attach)
4102			drm_prime_gem_destroy(&obj->base, NULL);
4103
4104		reservation_object_fini(&obj->__builtin_resv);
4105		drm_gem_object_release(&obj->base);
4106		i915_gem_info_remove_obj(i915, obj->base.size);
4107
4108		kfree(obj->bit_17);
4109		i915_gem_object_free(obj);
4110	}
4111}
4112
4113static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4114{
4115	struct llist_node *freed;
4116
4117	freed = llist_del_all(&i915->mm.free_list);
4118	if (unlikely(freed))
4119		__i915_gem_free_objects(i915, freed);
4120}
4121
4122static void __i915_gem_free_work(struct work_struct *work)
4123{
4124	struct drm_i915_private *i915 =
4125		container_of(work, struct drm_i915_private, mm.free_work);
4126	struct llist_node *freed;
4127
4128	/* All file-owned VMA should have been released by this point through
4129	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4130	 * However, the object may also be bound into the global GTT (e.g.
4131	 * older GPUs without per-process support, or for direct access through
4132	 * the GTT either for the user or for scanout). Those VMA still need to
4133	 * unbound now.
4134	 */
4135
4136	while ((freed = llist_del_all(&i915->mm.free_list)))
4137		__i915_gem_free_objects(i915, freed);
4138}
4139
4140static void __i915_gem_free_object_rcu(struct rcu_head *head)
4141{
4142	struct drm_i915_gem_object *obj =
4143		container_of(head, typeof(*obj), rcu);
4144	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4145
4146	/* We can't simply use call_rcu() from i915_gem_free_object()
4147	 * as we need to block whilst unbinding, and the call_rcu
4148	 * task may be called from softirq context. So we take a
4149	 * detour through a worker.
4150	 */
4151	if (llist_add(&obj->freed, &i915->mm.free_list))
4152		schedule_work(&i915->mm.free_work);
4153}
4154
4155void i915_gem_free_object(struct drm_gem_object *gem_obj)
4156{
4157	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4158
4159	if (obj->mm.quirked)
4160		__i915_gem_object_unpin_pages(obj);
4161
4162	if (discard_backing_storage(obj))
4163		obj->mm.madv = I915_MADV_DONTNEED;
4164
4165	/* Before we free the object, make sure any pure RCU-only
4166	 * read-side critical sections are complete, e.g.
4167	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4168	 * lookup see i915_gem_object_lookup_rcu().
4169	 */
4170	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4171}
4172
4173void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4174{
4175	lockdep_assert_held(&obj->base.dev->struct_mutex);
4176
4177	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4178	if (i915_gem_object_is_active(obj))
4179		i915_gem_object_set_active_reference(obj);
4180	else
4181		i915_gem_object_put(obj);
4182}
4183
4184static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4185{
4186	struct intel_engine_cs *engine;
4187	enum intel_engine_id id;
4188
4189	for_each_engine(engine, dev_priv, id)
4190		GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4191}
4192
4193int i915_gem_suspend(struct drm_device *dev)
4194{
4195	struct drm_i915_private *dev_priv = to_i915(dev);
4196	int ret;
4197
4198	intel_suspend_gt_powersave(dev_priv);
4199
4200	mutex_lock(&dev->struct_mutex);
4201
4202	/* We have to flush all the executing contexts to main memory so
4203	 * that they can saved in the hibernation image. To ensure the last
4204	 * context image is coherent, we have to switch away from it. That
4205	 * leaves the dev_priv->kernel_context still active when
4206	 * we actually suspend, and its image in memory may not match the GPU
4207	 * state. Fortunately, the kernel_context is disposable and we do
4208	 * not rely on its state.
4209	 */
4210	ret = i915_gem_switch_to_kernel_context(dev_priv);
4211	if (ret)
4212		goto err;
4213
4214	ret = i915_gem_wait_for_idle(dev_priv,
4215				     I915_WAIT_INTERRUPTIBLE |
4216				     I915_WAIT_LOCKED);
4217	if (ret)
4218		goto err;
4219
4220	i915_gem_retire_requests(dev_priv);
4221	GEM_BUG_ON(dev_priv->gt.active_requests);
4222
4223	assert_kernel_context_is_current(dev_priv);
4224	i915_gem_context_lost(dev_priv);
4225	mutex_unlock(&dev->struct_mutex);
4226
4227	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4228	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4229	flush_delayed_work(&dev_priv->gt.idle_work);
4230	flush_work(&dev_priv->mm.free_work);
4231
4232	/* Assert that we sucessfully flushed all the work and
4233	 * reset the GPU back to its idle, low power state.
4234	 */
4235	WARN_ON(dev_priv->gt.awake);
4236	WARN_ON(!intel_execlists_idle(dev_priv));
4237
4238	/*
4239	 * Neither the BIOS, ourselves or any other kernel
4240	 * expects the system to be in execlists mode on startup,
4241	 * so we need to reset the GPU back to legacy mode. And the only
4242	 * known way to disable logical contexts is through a GPU reset.
4243	 *
4244	 * So in order to leave the system in a known default configuration,
4245	 * always reset the GPU upon unload and suspend. Afterwards we then
4246	 * clean up the GEM state tracking, flushing off the requests and
4247	 * leaving the system in a known idle state.
4248	 *
4249	 * Note that is of the upmost importance that the GPU is idle and
4250	 * all stray writes are flushed *before* we dismantle the backing
4251	 * storage for the pinned objects.
4252	 *
4253	 * However, since we are uncertain that resetting the GPU on older
4254	 * machines is a good idea, we don't - just in case it leaves the
4255	 * machine in an unusable condition.
4256	 */
4257	if (HAS_HW_CONTEXTS(dev_priv)) {
4258		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4259		WARN_ON(reset && reset != -ENODEV);
4260	}
4261
4262	return 0;
4263
4264err:
4265	mutex_unlock(&dev->struct_mutex);
4266	return ret;
4267}
4268
4269void i915_gem_resume(struct drm_device *dev)
4270{
4271	struct drm_i915_private *dev_priv = to_i915(dev);
4272
4273	WARN_ON(dev_priv->gt.awake);
4274
4275	mutex_lock(&dev->struct_mutex);
4276	i915_gem_restore_gtt_mappings(dev_priv);
4277
4278	/* As we didn't flush the kernel context before suspend, we cannot
4279	 * guarantee that the context image is complete. So let's just reset
4280	 * it and start again.
4281	 */
4282	dev_priv->gt.resume(dev_priv);
4283
4284	mutex_unlock(&dev->struct_mutex);
4285}
4286
4287void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4288{
4289	if (INTEL_GEN(dev_priv) < 5 ||
4290	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4291		return;
4292
4293	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4294				 DISP_TILE_SURFACE_SWIZZLING);
4295
4296	if (IS_GEN5(dev_priv))
4297		return;
4298
4299	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4300	if (IS_GEN6(dev_priv))
4301		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4302	else if (IS_GEN7(dev_priv))
4303		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4304	else if (IS_GEN8(dev_priv))
4305		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4306	else
4307		BUG();
4308}
4309
4310static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4311{
4312	I915_WRITE(RING_CTL(base), 0);
4313	I915_WRITE(RING_HEAD(base), 0);
4314	I915_WRITE(RING_TAIL(base), 0);
4315	I915_WRITE(RING_START(base), 0);
4316}
4317
4318static void init_unused_rings(struct drm_i915_private *dev_priv)
4319{
4320	if (IS_I830(dev_priv)) {
4321		init_unused_ring(dev_priv, PRB1_BASE);
4322		init_unused_ring(dev_priv, SRB0_BASE);
4323		init_unused_ring(dev_priv, SRB1_BASE);
4324		init_unused_ring(dev_priv, SRB2_BASE);
4325		init_unused_ring(dev_priv, SRB3_BASE);
4326	} else if (IS_GEN2(dev_priv)) {
4327		init_unused_ring(dev_priv, SRB0_BASE);
4328		init_unused_ring(dev_priv, SRB1_BASE);
4329	} else if (IS_GEN3(dev_priv)) {
4330		init_unused_ring(dev_priv, PRB1_BASE);
4331		init_unused_ring(dev_priv, PRB2_BASE);
4332	}
4333}
4334
4335int
4336i915_gem_init_hw(struct drm_device *dev)
4337{
4338	struct drm_i915_private *dev_priv = to_i915(dev);
4339	struct intel_engine_cs *engine;
4340	enum intel_engine_id id;
4341	int ret;
4342
4343	dev_priv->gt.last_init_time = ktime_get();
4344
4345	/* Double layer security blanket, see i915_gem_init() */
4346	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4347
4348	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4349		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4350
4351	if (IS_HASWELL(dev_priv))
4352		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4353			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4354
4355	if (HAS_PCH_NOP(dev_priv)) {
4356		if (IS_IVYBRIDGE(dev_priv)) {
4357			u32 temp = I915_READ(GEN7_MSG_CTL);
4358			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4359			I915_WRITE(GEN7_MSG_CTL, temp);
4360		} else if (INTEL_GEN(dev_priv) >= 7) {
4361			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4362			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4363			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4364		}
4365	}
4366
4367	i915_gem_init_swizzling(dev_priv);
4368
4369	/*
4370	 * At least 830 can leave some of the unused rings
4371	 * "active" (ie. head != tail) after resume which
4372	 * will prevent c3 entry. Makes sure all unused rings
4373	 * are totally idle.
 
 
 
4374	 */
4375	init_unused_rings(dev_priv);
4376
4377	BUG_ON(!dev_priv->kernel_context);
4378
4379	ret = i915_ppgtt_init_hw(dev_priv);
4380	if (ret) {
4381		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4382		goto out;
4383	}
4384
4385	/* Need to do basic initialisation of all rings first: */
4386	for_each_engine(engine, dev_priv, id) {
4387		ret = engine->init_hw(engine);
4388		if (ret)
4389			goto out;
4390	}
4391
4392	intel_mocs_init_l3cc_table(dev);
 
 
 
 
 
4393
4394	/* We can't enable contexts until all firmware is loaded */
4395	ret = intel_guc_setup(dev);
4396	if (ret)
4397		goto out;
4398
4399out:
4400	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4401	return ret;
4402}
 
 
 
 
4403
4404bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4405{
4406	if (INTEL_INFO(dev_priv)->gen < 6)
4407		return false;
4408
4409	/* TODO: make semaphores and Execlists play nicely together */
4410	if (i915.enable_execlists)
4411		return false;
4412
4413	if (value >= 0)
4414		return value;
4415
4416#ifdef CONFIG_INTEL_IOMMU
4417	/* Enable semaphores on SNB when IO remapping is off */
4418	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4419		return false;
4420#endif
4421
4422	return true;
4423}
4424
4425int i915_gem_init(struct drm_device *dev)
4426{
4427	struct drm_i915_private *dev_priv = to_i915(dev);
4428	int ret;
4429
4430	mutex_lock(&dev->struct_mutex);
4431
4432	if (!i915.enable_execlists) {
4433		dev_priv->gt.resume = intel_legacy_submission_resume;
4434		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4435	} else {
4436		dev_priv->gt.resume = intel_lr_context_resume;
4437		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4438	}
4439
4440	/* This is just a security blanket to placate dragons.
4441	 * On some systems, we very sporadically observe that the first TLBs
4442	 * used by the CS may be stale, despite us poking the TLB reset. If
4443	 * we hold the forcewake during initialisation these problems
4444	 * just magically go away.
4445	 */
4446	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4447
4448	i915_gem_init_userptr(dev_priv);
4449
4450	ret = i915_gem_init_ggtt(dev_priv);
4451	if (ret)
4452		goto out_unlock;
4453
4454	ret = i915_gem_context_init(dev);
4455	if (ret)
4456		goto out_unlock;
4457
4458	ret = intel_engines_init(dev);
4459	if (ret)
4460		goto out_unlock;
4461
4462	ret = i915_gem_init_hw(dev);
4463	if (ret == -EIO) {
4464		/* Allow engine initialisation to fail by marking the GPU as
4465		 * wedged. But we only want to do this where the GPU is angry,
 
4466		 * for all other failure, such as an allocation failure, bail.
4467		 */
4468		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4469		i915_gem_set_wedged(dev_priv);
4470		ret = 0;
 
 
 
 
 
 
 
 
 
4471	}
4472
4473out_unlock:
4474	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4475	mutex_unlock(&dev->struct_mutex);
4476
4477	return ret;
4478}
4479
4480void
4481i915_gem_cleanup_engines(struct drm_device *dev)
4482{
4483	struct drm_i915_private *dev_priv = to_i915(dev);
4484	struct intel_engine_cs *engine;
4485	enum intel_engine_id id;
4486
4487	for_each_engine(engine, dev_priv, id)
4488		dev_priv->gt.cleanup_engine(engine);
4489}
4490
4491void
4492i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4493{
4494	int i;
4495
4496	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4497	    !IS_CHERRYVIEW(dev_priv))
4498		dev_priv->num_fence_regs = 32;
4499	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4500		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4501		dev_priv->num_fence_regs = 16;
4502	else
4503		dev_priv->num_fence_regs = 8;
4504
4505	if (intel_vgpu_active(dev_priv))
4506		dev_priv->num_fence_regs =
4507				I915_READ(vgtif_reg(avail_rs.fence_num));
4508
4509	/* Initialize fence registers to zero */
4510	for (i = 0; i < dev_priv->num_fence_regs; i++) {
4511		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4512
4513		fence->i915 = dev_priv;
4514		fence->id = i;
4515		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4516	}
4517	i915_gem_restore_fences(dev_priv);
4518
4519	i915_gem_detect_bit_6_swizzle(dev_priv);
4520}
4521
4522int
4523i915_gem_load_init(struct drm_device *dev)
4524{
4525	struct drm_i915_private *dev_priv = to_i915(dev);
4526	int err = -ENOMEM;
4527
4528	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4529	if (!dev_priv->objects)
4530		goto err_out;
4531
4532	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4533	if (!dev_priv->vmas)
4534		goto err_objects;
4535
4536	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4537					SLAB_HWCACHE_ALIGN |
4538					SLAB_RECLAIM_ACCOUNT |
4539					SLAB_DESTROY_BY_RCU);
4540	if (!dev_priv->requests)
4541		goto err_vmas;
4542
4543	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4544					    SLAB_HWCACHE_ALIGN |
4545					    SLAB_RECLAIM_ACCOUNT);
4546	if (!dev_priv->dependencies)
4547		goto err_requests;
4548
4549	mutex_lock(&dev_priv->drm.struct_mutex);
4550	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4551	err = i915_gem_timeline_init__global(dev_priv);
4552	mutex_unlock(&dev_priv->drm.struct_mutex);
4553	if (err)
4554		goto err_dependencies;
4555
4556	INIT_LIST_HEAD(&dev_priv->context_list);
4557	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4558	init_llist_head(&dev_priv->mm.free_list);
4559	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4560	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4561	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4562	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4563	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4564			  i915_gem_retire_work_handler);
4565	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4566			  i915_gem_idle_work_handler);
4567	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4568	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4569
4570	init_waitqueue_head(&dev_priv->pending_flip_queue);
4571
4572	dev_priv->mm.interruptible = true;
4573
4574	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4575
4576	spin_lock_init(&dev_priv->fb_tracking.lock);
4577
4578	return 0;
4579
4580err_dependencies:
4581	kmem_cache_destroy(dev_priv->dependencies);
4582err_requests:
4583	kmem_cache_destroy(dev_priv->requests);
4584err_vmas:
4585	kmem_cache_destroy(dev_priv->vmas);
4586err_objects:
4587	kmem_cache_destroy(dev_priv->objects);
4588err_out:
4589	return err;
4590}
4591
4592void i915_gem_load_cleanup(struct drm_device *dev)
4593{
4594	struct drm_i915_private *dev_priv = to_i915(dev);
 
4595
4596	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
 
 
 
4597
4598	mutex_lock(&dev_priv->drm.struct_mutex);
4599	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4600	WARN_ON(!list_empty(&dev_priv->gt.timelines));
4601	mutex_unlock(&dev_priv->drm.struct_mutex);
4602
4603	kmem_cache_destroy(dev_priv->dependencies);
4604	kmem_cache_destroy(dev_priv->requests);
4605	kmem_cache_destroy(dev_priv->vmas);
4606	kmem_cache_destroy(dev_priv->objects);
4607
4608	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4609	rcu_barrier();
4610}
4611
4612int i915_gem_freeze(struct drm_i915_private *dev_priv)
4613{
4614	intel_runtime_pm_get(dev_priv);
4615
4616	mutex_lock(&dev_priv->drm.struct_mutex);
4617	i915_gem_shrink_all(dev_priv);
4618	mutex_unlock(&dev_priv->drm.struct_mutex);
4619
4620	intel_runtime_pm_put(dev_priv);
 
4621
4622	return 0;
4623}
4624
4625int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4626{
4627	struct drm_i915_gem_object *obj;
4628	struct list_head *phases[] = {
4629		&dev_priv->mm.unbound_list,
4630		&dev_priv->mm.bound_list,
4631		NULL
4632	}, **p;
4633
4634	/* Called just before we write the hibernation image.
4635	 *
4636	 * We need to update the domain tracking to reflect that the CPU
4637	 * will be accessing all the pages to create and restore from the
4638	 * hibernation, and so upon restoration those pages will be in the
4639	 * CPU domain.
4640	 *
4641	 * To make sure the hibernation image contains the latest state,
4642	 * we update that state just before writing out the image.
4643	 *
4644	 * To try and reduce the hibernation image, we manually shrink
4645	 * the objects as well.
4646	 */
4647
4648	mutex_lock(&dev_priv->drm.struct_mutex);
4649	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4650
4651	for (p = phases; *p; p++) {
4652		list_for_each_entry(obj, *p, global_link) {
4653			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4654			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4655		}
4656	}
4657	mutex_unlock(&dev_priv->drm.struct_mutex);
4658
4659	return 0;
4660}
4661
4662void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4663{
4664	struct drm_i915_file_private *file_priv = file->driver_priv;
4665	struct drm_i915_gem_request *request;
4666
4667	/* Clean up our request list when the client is going away, so that
4668	 * later retire_requests won't dereference our soon-to-be-gone
4669	 * file_priv.
4670	 */
4671	spin_lock(&file_priv->mm.lock);
4672	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4673		request->file_priv = NULL;
4674	spin_unlock(&file_priv->mm.lock);
4675
4676	if (!list_empty(&file_priv->rps.link)) {
4677		spin_lock(&to_i915(dev)->rps.client_lock);
4678		list_del(&file_priv->rps.link);
4679		spin_unlock(&to_i915(dev)->rps.client_lock);
4680	}
4681}
4682
4683int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4684{
4685	struct drm_i915_file_private *file_priv;
4686	int ret;
 
4687
4688	DRM_DEBUG("\n");
4689
4690	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4691	if (!file_priv)
4692		return -ENOMEM;
 
 
 
 
4693
4694	file->driver_priv = file_priv;
4695	file_priv->dev_priv = to_i915(dev);
4696	file_priv->file = file;
4697	INIT_LIST_HEAD(&file_priv->rps.link);
4698
4699	spin_lock_init(&file_priv->mm.lock);
4700	INIT_LIST_HEAD(&file_priv->mm.request_list);
4701
4702	file_priv->bsd_engine = -1;
 
4703
4704	ret = i915_gem_context_open(dev, file);
4705	if (ret)
4706		kfree(file_priv);
4707
 
 
 
 
 
 
 
4708	return ret;
4709}
4710
4711/**
4712 * i915_gem_track_fb - update frontbuffer tracking
4713 * @old: current GEM buffer for the frontbuffer slots
4714 * @new: new GEM buffer for the frontbuffer slots
4715 * @frontbuffer_bits: bitmask of frontbuffer slots
4716 *
4717 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4718 * from @old and setting them in @new. Both @old and @new can be NULL.
4719 */
4720void i915_gem_track_fb(struct drm_i915_gem_object *old,
4721		       struct drm_i915_gem_object *new,
4722		       unsigned frontbuffer_bits)
4723{
4724	/* Control of individual bits within the mask are guarded by
4725	 * the owning plane->mutex, i.e. we can never see concurrent
4726	 * manipulation of individual bits. But since the bitfield as a whole
4727	 * is updated using RMW, we need to use atomics in order to update
4728	 * the bits.
4729	 */
4730	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4731		     sizeof(atomic_t) * BITS_PER_BYTE);
4732
4733	if (old) {
4734		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4735		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4736	}
4737
4738	if (new) {
4739		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4740		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4741	}
4742}
4743
4744/* Allocate a new GEM object and fill it with the supplied data */
4745struct drm_i915_gem_object *
4746i915_gem_object_create_from_data(struct drm_device *dev,
4747			         const void *data, size_t size)
4748{
4749	struct drm_i915_gem_object *obj;
4750	struct sg_table *sg;
4751	size_t bytes;
4752	int ret;
4753
4754	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4755	if (IS_ERR(obj))
4756		return obj;
4757
4758	ret = i915_gem_object_set_to_cpu_domain(obj, true);
4759	if (ret)
4760		goto fail;
4761
4762	ret = i915_gem_object_pin_pages(obj);
4763	if (ret)
4764		goto fail;
4765
4766	sg = obj->mm.pages;
4767	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4768	obj->mm.dirty = true; /* Backing store is now out of date */
4769	i915_gem_object_unpin_pages(obj);
4770
4771	if (WARN_ON(bytes != size)) {
4772		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4773		ret = -EFAULT;
4774		goto fail;
4775	}
4776
4777	return obj;
4778
4779fail:
4780	i915_gem_object_put(obj);
4781	return ERR_PTR(ret);
4782}
4783
4784struct scatterlist *
4785i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4786		       unsigned int n,
4787		       unsigned int *offset)
4788{
4789	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4790	struct scatterlist *sg;
4791	unsigned int idx, count;
4792
4793	might_sleep();
4794	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4795	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4796
4797	/* As we iterate forward through the sg, we record each entry in a
4798	 * radixtree for quick repeated (backwards) lookups. If we have seen
4799	 * this index previously, we will have an entry for it.
4800	 *
4801	 * Initial lookup is O(N), but this is amortized to O(1) for
4802	 * sequential page access (where each new request is consecutive
4803	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4804	 * i.e. O(1) with a large constant!
4805	 */
4806	if (n < READ_ONCE(iter->sg_idx))
4807		goto lookup;
4808
4809	mutex_lock(&iter->lock);
4810
4811	/* We prefer to reuse the last sg so that repeated lookup of this
4812	 * (or the subsequent) sg are fast - comparing against the last
4813	 * sg is faster than going through the radixtree.
4814	 */
4815
4816	sg = iter->sg_pos;
4817	idx = iter->sg_idx;
4818	count = __sg_page_count(sg);
4819
4820	while (idx + count <= n) {
4821		unsigned long exception, i;
4822		int ret;
4823
4824		/* If we cannot allocate and insert this entry, or the
4825		 * individual pages from this range, cancel updating the
4826		 * sg_idx so that on this lookup we are forced to linearly
4827		 * scan onwards, but on future lookups we will try the
4828		 * insertion again (in which case we need to be careful of
4829		 * the error return reporting that we have already inserted
4830		 * this index).
4831		 */
4832		ret = radix_tree_insert(&iter->radix, idx, sg);
4833		if (ret && ret != -EEXIST)
4834			goto scan;
4835
4836		exception =
4837			RADIX_TREE_EXCEPTIONAL_ENTRY |
4838			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4839		for (i = 1; i < count; i++) {
4840			ret = radix_tree_insert(&iter->radix, idx + i,
4841						(void *)exception);
4842			if (ret && ret != -EEXIST)
4843				goto scan;
4844		}
4845
4846		idx += count;
4847		sg = ____sg_next(sg);
4848		count = __sg_page_count(sg);
4849	}
4850
4851scan:
4852	iter->sg_pos = sg;
4853	iter->sg_idx = idx;
4854
4855	mutex_unlock(&iter->lock);
4856
4857	if (unlikely(n < idx)) /* insertion completed by another thread */
4858		goto lookup;
4859
4860	/* In case we failed to insert the entry into the radixtree, we need
4861	 * to look beyond the current sg.
4862	 */
4863	while (idx + count <= n) {
4864		idx += count;
4865		sg = ____sg_next(sg);
4866		count = __sg_page_count(sg);
4867	}
4868
4869	*offset = n - idx;
4870	return sg;
4871
4872lookup:
4873	rcu_read_lock();
4874
4875	sg = radix_tree_lookup(&iter->radix, n);
4876	GEM_BUG_ON(!sg);
4877
4878	/* If this index is in the middle of multi-page sg entry,
4879	 * the radixtree will contain an exceptional entry that points
4880	 * to the start of that range. We will return the pointer to
4881	 * the base page and the offset of this page within the
4882	 * sg entry's range.
4883	 */
4884	*offset = 0;
4885	if (unlikely(radix_tree_exception(sg))) {
4886		unsigned long base =
4887			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4888
4889		sg = radix_tree_lookup(&iter->radix, base);
4890		GEM_BUG_ON(!sg);
4891
4892		*offset = n - base;
4893	}
4894
4895	rcu_read_unlock();
4896
4897	return sg;
4898}
4899
4900struct page *
4901i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4902{
4903	struct scatterlist *sg;
4904	unsigned int offset;
4905
4906	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4907
4908	sg = i915_gem_object_get_sg(obj, n, &offset);
4909	return nth_page(sg_page(sg), offset);
4910}
4911
4912/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4913struct page *
4914i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4915			       unsigned int n)
4916{
4917	struct page *page;
4918
4919	page = i915_gem_object_get_page(obj, n);
4920	if (!obj->mm.dirty)
4921		set_page_dirty(page);
4922
4923	return page;
4924}
4925
4926dma_addr_t
4927i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4928				unsigned long n)
4929{
4930	struct scatterlist *sg;
4931	unsigned int offset;
4932
4933	sg = i915_gem_object_get_sg(obj, n, &offset);
4934	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4935}