Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/bitfield.h>
   5#include <linux/if_ether.h>
   6#include <linux/delay.h>
   7#include <linux/pci.h>
   8#include <linux/netdevice.h>
   9#include <linux/etherdevice.h>
  10
  11#include "e1000_mac.h"
  12
  13#include "igb.h"
  14
  15static s32 igb_set_default_fc(struct e1000_hw *hw);
  16static void igb_set_fc_watermarks(struct e1000_hw *hw);
  17
  18/**
  19 *  igb_get_bus_info_pcie - Get PCIe bus information
  20 *  @hw: pointer to the HW structure
  21 *
  22 *  Determines and stores the system bus information for a particular
  23 *  network interface.  The following bus information is determined and stored:
  24 *  bus speed, bus width, type (PCIe), and PCIe function.
  25 **/
  26s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
  27{
  28	struct e1000_bus_info *bus = &hw->bus;
  29	s32 ret_val;
  30	u32 reg;
  31	u16 pcie_link_status;
  32
  33	bus->type = e1000_bus_type_pci_express;
  34
  35	ret_val = igb_read_pcie_cap_reg(hw,
  36					PCI_EXP_LNKSTA,
  37					&pcie_link_status);
  38	if (ret_val) {
  39		bus->width = e1000_bus_width_unknown;
  40		bus->speed = e1000_bus_speed_unknown;
  41	} else {
  42		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
  43		case PCI_EXP_LNKSTA_CLS_2_5GB:
  44			bus->speed = e1000_bus_speed_2500;
  45			break;
  46		case PCI_EXP_LNKSTA_CLS_5_0GB:
  47			bus->speed = e1000_bus_speed_5000;
  48			break;
  49		default:
  50			bus->speed = e1000_bus_speed_unknown;
  51			break;
  52		}
  53
  54		bus->width = (enum e1000_bus_width)FIELD_GET(PCI_EXP_LNKSTA_NLW,
  55							     pcie_link_status);
 
  56	}
  57
  58	reg = rd32(E1000_STATUS);
  59	bus->func = FIELD_GET(E1000_STATUS_FUNC_MASK, reg);
  60
  61	return 0;
  62}
  63
  64/**
  65 *  igb_clear_vfta - Clear VLAN filter table
  66 *  @hw: pointer to the HW structure
  67 *
  68 *  Clears the register array which contains the VLAN filter table by
  69 *  setting all the values to 0.
  70 **/
  71void igb_clear_vfta(struct e1000_hw *hw)
  72{
  73	u32 offset;
  74
  75	for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
  76		hw->mac.ops.write_vfta(hw, offset, 0);
 
 
  77}
  78
  79/**
  80 *  igb_write_vfta - Write value to VLAN filter table
  81 *  @hw: pointer to the HW structure
  82 *  @offset: register offset in VLAN filter table
  83 *  @value: register value written to VLAN filter table
  84 *
  85 *  Writes value at the given offset in the register array which stores
  86 *  the VLAN filter table.
  87 **/
  88void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
  89{
  90	struct igb_adapter *adapter = hw->back;
  91
  92	array_wr32(E1000_VFTA, offset, value);
  93	wrfl();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94
  95	adapter->shadow_vfta[offset] = value;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96}
  97
  98/**
  99 *  igb_init_rx_addrs - Initialize receive address's
 100 *  @hw: pointer to the HW structure
 101 *  @rar_count: receive address registers
 102 *
 103 *  Setups the receive address registers by setting the base receive address
 104 *  register to the devices MAC address and clearing all the other receive
 105 *  address registers to 0.
 106 **/
 107void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 108{
 109	u32 i;
 110	u8 mac_addr[ETH_ALEN] = {0};
 111
 112	/* Setup the receive address */
 113	hw_dbg("Programming MAC Address into RAR[0]\n");
 114
 115	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 116
 117	/* Zero out the other (rar_entry_count - 1) receive addresses */
 118	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
 119	for (i = 1; i < rar_count; i++)
 120		hw->mac.ops.rar_set(hw, mac_addr, i);
 121}
 122
 123/**
 124 *  igb_find_vlvf_slot - find the VLAN id or the first empty slot
 125 *  @hw: pointer to hardware structure
 126 *  @vlan: VLAN id to write to VLAN filter
 127 *  @vlvf_bypass: skip VLVF if no match is found
 128 *
 129 *  return the VLVF index where this VLAN id should be placed
 130 *
 131 **/
 132static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
 133{
 134	s32 regindex, first_empty_slot;
 135	u32 bits;
 136
 137	/* short cut the special case */
 138	if (vlan == 0)
 139		return 0;
 140
 141	/* if vlvf_bypass is set we don't want to use an empty slot, we
 142	 * will simply bypass the VLVF if there are no entries present in the
 143	 * VLVF that contain our VLAN
 144	 */
 145	first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
 146
 147	/* Search for the VLAN id in the VLVF entries. Save off the first empty
 148	 * slot found along the way.
 149	 *
 150	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
 151	 */
 152	for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
 153		bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
 154		if (bits == vlan)
 155			return regindex;
 156		if (!first_empty_slot && !bits)
 157			first_empty_slot = regindex;
 158	}
 159
 160	return first_empty_slot ? : -E1000_ERR_NO_SPACE;
 161}
 162
 163/**
 164 *  igb_vfta_set - enable or disable vlan in VLAN filter table
 165 *  @hw: pointer to the HW structure
 166 *  @vlan: VLAN id to add or remove
 167 *  @vind: VMDq output index that maps queue to VLAN id
 168 *  @vlan_on: if true add filter, if false remove
 169 *  @vlvf_bypass: skip VLVF if no match is found
 170 *
 171 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
 172 *  and if we are adding or removing the filter
 173 **/
 174s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
 175		 bool vlan_on, bool vlvf_bypass)
 176{
 
 
 
 177	struct igb_adapter *adapter = hw->back;
 178	u32 regidx, vfta_delta, vfta, bits;
 179	s32 vlvf_index;
 180
 181	if ((vlan > 4095) || (vind > 7))
 182		return -E1000_ERR_PARAM;
 183
 184	/* this is a 2 part operation - first the VFTA, then the
 185	 * VLVF and VLVFB if VT Mode is set
 186	 * We don't write the VFTA until we know the VLVF part succeeded.
 187	 */
 188
 189	/* Part 1
 190	 * The VFTA is a bitstring made up of 128 32-bit registers
 191	 * that enable the particular VLAN id, much like the MTA:
 192	 *    bits[11-5]: which register
 193	 *    bits[4-0]:  which bit in the register
 194	 */
 195	regidx = vlan / 32;
 196	vfta_delta = BIT(vlan % 32);
 197	vfta = adapter->shadow_vfta[regidx];
 198
 199	/* vfta_delta represents the difference between the current value
 200	 * of vfta and the value we want in the register.  Since the diff
 201	 * is an XOR mask we can just update vfta using an XOR.
 202	 */
 203	vfta_delta &= vlan_on ? ~vfta : vfta;
 204	vfta ^= vfta_delta;
 205
 206	/* Part 2
 207	 * If VT Mode is set
 208	 *   Either vlan_on
 209	 *     make sure the VLAN is in VLVF
 210	 *     set the vind bit in the matching VLVFB
 211	 *   Or !vlan_on
 212	 *     clear the pool bit and possibly the vind
 213	 */
 214	if (!adapter->vfs_allocated_count)
 215		goto vfta_update;
 216
 217	vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
 218	if (vlvf_index < 0) {
 219		if (vlvf_bypass)
 220			goto vfta_update;
 221		return vlvf_index;
 222	}
 223
 224	bits = rd32(E1000_VLVF(vlvf_index));
 225
 226	/* set the pool bit */
 227	bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
 228	if (vlan_on)
 229		goto vlvf_update;
 230
 231	/* clear the pool bit */
 232	bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
 233
 234	if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
 235		/* Clear VFTA first, then disable VLVF.  Otherwise
 236		 * we run the risk of stray packets leaking into
 237		 * the PF via the default pool
 238		 */
 239		if (vfta_delta)
 240			hw->mac.ops.write_vfta(hw, regidx, vfta);
 241
 242		/* disable VLVF and clear remaining bit from pool */
 243		wr32(E1000_VLVF(vlvf_index), 0);
 244
 245		return 0;
 246	}
 247
 248	/* If there are still bits set in the VLVFB registers
 249	 * for the VLAN ID indicated we need to see if the
 250	 * caller is requesting that we clear the VFTA entry bit.
 251	 * If the caller has requested that we clear the VFTA
 252	 * entry bit but there are still pools/VFs using this VLAN
 253	 * ID entry then ignore the request.  We're not worried
 254	 * about the case where we're turning the VFTA VLAN ID
 255	 * entry bit on, only when requested to turn it off as
 256	 * there may be multiple pools and/or VFs using the
 257	 * VLAN ID entry.  In that case we cannot clear the
 258	 * VFTA bit until all pools/VFs using that VLAN ID have also
 259	 * been cleared.  This will be indicated by "bits" being
 260	 * zero.
 261	 */
 262	vfta_delta = 0;
 263
 264vlvf_update:
 265	/* record pool change and enable VLAN ID if not already enabled */
 266	wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
 267
 268vfta_update:
 269	/* bit was set/cleared before we started */
 270	if (vfta_delta)
 271		hw->mac.ops.write_vfta(hw, regidx, vfta);
 
 
 
 
 
 
 
 
 
 
 
 272
 273	return 0;
 274}
 275
 276/**
 277 *  igb_check_alt_mac_addr - Check for alternate MAC addr
 278 *  @hw: pointer to the HW structure
 279 *
 280 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 281 *  can be setup by pre-boot software and must be treated like a permanent
 282 *  address and must override the actual permanent MAC address.  If an
 283 *  alternate MAC address is found it is saved in the hw struct and
 284 *  programmed into RAR0 and the function returns success, otherwise the
 285 *  function returns an error.
 286 **/
 287s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
 288{
 289	u32 i;
 290	s32 ret_val = 0;
 291	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 292	u8 alt_mac_addr[ETH_ALEN];
 293
 294	/* Alternate MAC address is handled by the option ROM for 82580
 
 295	 * and newer. SW support not required.
 296	 */
 297	if (hw->mac.type >= e1000_82580)
 298		goto out;
 299
 300	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 301				 &nvm_alt_mac_addr_offset);
 302	if (ret_val) {
 303		hw_dbg("NVM Read Error\n");
 304		goto out;
 305	}
 306
 307	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 308	    (nvm_alt_mac_addr_offset == 0x0000))
 309		/* There is no Alternate MAC Address */
 310		goto out;
 311
 312	if (hw->bus.func == E1000_FUNC_1)
 313		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 314	if (hw->bus.func == E1000_FUNC_2)
 315		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
 316
 317	if (hw->bus.func == E1000_FUNC_3)
 318		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
 319	for (i = 0; i < ETH_ALEN; i += 2) {
 320		offset = nvm_alt_mac_addr_offset + (i >> 1);
 321		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
 322		if (ret_val) {
 323			hw_dbg("NVM Read Error\n");
 324			goto out;
 325		}
 326
 327		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 328		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 329	}
 330
 331	/* if multicast bit is set, the alternate address will not be used */
 332	if (is_multicast_ether_addr(alt_mac_addr)) {
 333		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 334		goto out;
 335	}
 336
 337	/* We have a valid alternate MAC address, and we want to treat it the
 
 338	 * same as the normal permanent MAC address stored by the HW into the
 339	 * RAR. Do this by mapping this address into RAR0.
 340	 */
 341	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 342
 343out:
 344	return ret_val;
 345}
 346
 347/**
 348 *  igb_rar_set - Set receive address register
 349 *  @hw: pointer to the HW structure
 350 *  @addr: pointer to the receive address
 351 *  @index: receive address array register
 352 *
 353 *  Sets the receive address array register at index to the address passed
 354 *  in by addr.
 355 **/
 356void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
 357{
 358	u32 rar_low, rar_high;
 359
 360	/* HW expects these in little endian so we reverse the byte order
 
 361	 * from network order (big endian) to little endian
 362	 */
 363	rar_low = ((u32) addr[0] |
 364		   ((u32) addr[1] << 8) |
 365		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
 366
 367	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
 368
 369	/* If MAC address zero, no need to set the AV bit */
 370	if (rar_low || rar_high)
 371		rar_high |= E1000_RAH_AV;
 372
 373	/* Some bridges will combine consecutive 32-bit writes into
 
 374	 * a single burst write, which will malfunction on some parts.
 375	 * The flushes avoid this.
 376	 */
 377	wr32(E1000_RAL(index), rar_low);
 378	wrfl();
 379	wr32(E1000_RAH(index), rar_high);
 380	wrfl();
 381}
 382
 383/**
 384 *  igb_mta_set - Set multicast filter table address
 385 *  @hw: pointer to the HW structure
 386 *  @hash_value: determines the MTA register and bit to set
 387 *
 388 *  The multicast table address is a register array of 32-bit registers.
 389 *  The hash_value is used to determine what register the bit is in, the
 390 *  current value is read, the new bit is OR'd in and the new value is
 391 *  written back into the register.
 392 **/
 393void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
 394{
 395	u32 hash_bit, hash_reg, mta;
 396
 397	/* The MTA is a register array of 32-bit registers. It is
 
 398	 * treated like an array of (32*mta_reg_count) bits.  We want to
 399	 * set bit BitArray[hash_value]. So we figure out what register
 400	 * the bit is in, read it, OR in the new bit, then write
 401	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
 402	 * mask to bits 31:5 of the hash value which gives us the
 403	 * register we're modifying.  The hash bit within that register
 404	 * is determined by the lower 5 bits of the hash value.
 405	 */
 406	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 407	hash_bit = hash_value & 0x1F;
 408
 409	mta = array_rd32(E1000_MTA, hash_reg);
 410
 411	mta |= BIT(hash_bit);
 412
 413	array_wr32(E1000_MTA, hash_reg, mta);
 414	wrfl();
 415}
 416
 417/**
 418 *  igb_hash_mc_addr - Generate a multicast hash value
 419 *  @hw: pointer to the HW structure
 420 *  @mc_addr: pointer to a multicast address
 421 *
 422 *  Generates a multicast address hash value which is used to determine
 423 *  the multicast filter table array address and new table value.  See
 424 *  igb_mta_set()
 425 **/
 426static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 427{
 428	u32 hash_value, hash_mask;
 429	u8 bit_shift = 1;
 430
 431	/* Register count multiplied by bits per register */
 432	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 433
 434	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
 
 435	 * where 0xFF would still fall within the hash mask.
 436	 */
 437	while (hash_mask >> bit_shift != 0xFF && bit_shift < 4)
 438		bit_shift++;
 439
 440	/* The portion of the address that is used for the hash table
 
 441	 * is determined by the mc_filter_type setting.
 442	 * The algorithm is such that there is a total of 8 bits of shifting.
 443	 * The bit_shift for a mc_filter_type of 0 represents the number of
 444	 * left-shifts where the MSB of mc_addr[5] would still fall within
 445	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
 446	 * of 8 bits of shifting, then mc_addr[4] will shift right the
 447	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 448	 * cases are a variation of this algorithm...essentially raising the
 449	 * number of bits to shift mc_addr[5] left, while still keeping the
 450	 * 8-bit shifting total.
 451	 *
 452	 * For example, given the following Destination MAC Address and an
 453	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 454	 * we can see that the bit_shift for case 0 is 4.  These are the hash
 455	 * values resulting from each mc_filter_type...
 456	 * [0] [1] [2] [3] [4] [5]
 457	 * 01  AA  00  12  34  56
 458	 * LSB                 MSB
 459	 *
 460	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 461	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 462	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 463	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 464	 */
 465	switch (hw->mac.mc_filter_type) {
 466	default:
 467	case 0:
 468		break;
 469	case 1:
 470		bit_shift += 1;
 471		break;
 472	case 2:
 473		bit_shift += 2;
 474		break;
 475	case 3:
 476		bit_shift += 4;
 477		break;
 478	}
 479
 480	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 481				  (((u16) mc_addr[5]) << bit_shift)));
 482
 483	return hash_value;
 484}
 485
 486/**
 487 * igb_i21x_hw_doublecheck - double checks potential HW issue in i21X
 488 * @hw: pointer to the HW structure
 489 *
 490 * Checks if multicast array is wrote correctly
 491 * If not then rewrites again to register
 492 **/
 493static void igb_i21x_hw_doublecheck(struct e1000_hw *hw)
 494{
 495	int failed_cnt = 3;
 496	bool is_failed;
 497	int i;
 498
 499	do {
 500		is_failed = false;
 501		for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) {
 502			if (array_rd32(E1000_MTA, i) != hw->mac.mta_shadow[i]) {
 503				is_failed = true;
 504				array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
 505				wrfl();
 506			}
 507		}
 508		if (is_failed && --failed_cnt <= 0) {
 509			hw_dbg("Failed to update MTA_REGISTER, too many retries");
 510			break;
 511		}
 512	} while (is_failed);
 513}
 514
 515/**
 516 *  igb_update_mc_addr_list - Update Multicast addresses
 517 *  @hw: pointer to the HW structure
 518 *  @mc_addr_list: array of multicast addresses to program
 519 *  @mc_addr_count: number of multicast addresses to program
 520 *
 521 *  Updates entire Multicast Table Array.
 522 *  The caller must have a packed mc_addr_list of multicast addresses.
 523 **/
 524void igb_update_mc_addr_list(struct e1000_hw *hw,
 525			     u8 *mc_addr_list, u32 mc_addr_count)
 526{
 527	u32 hash_value, hash_bit, hash_reg;
 528	int i;
 529
 530	/* clear mta_shadow */
 531	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 532
 533	/* update mta_shadow from mc_addr_list */
 534	for (i = 0; (u32) i < mc_addr_count; i++) {
 535		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
 536
 537		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 538		hash_bit = hash_value & 0x1F;
 539
 540		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
 541		mc_addr_list += (ETH_ALEN);
 542	}
 543
 544	/* replace the entire MTA table */
 545	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 546		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
 547	wrfl();
 548	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
 549		igb_i21x_hw_doublecheck(hw);
 550}
 551
 552/**
 553 *  igb_clear_hw_cntrs_base - Clear base hardware counters
 554 *  @hw: pointer to the HW structure
 555 *
 556 *  Clears the base hardware counters by reading the counter registers.
 557 **/
 558void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
 559{
 560	rd32(E1000_CRCERRS);
 561	rd32(E1000_SYMERRS);
 562	rd32(E1000_MPC);
 563	rd32(E1000_SCC);
 564	rd32(E1000_ECOL);
 565	rd32(E1000_MCC);
 566	rd32(E1000_LATECOL);
 567	rd32(E1000_COLC);
 568	rd32(E1000_DC);
 569	rd32(E1000_SEC);
 570	rd32(E1000_RLEC);
 571	rd32(E1000_XONRXC);
 572	rd32(E1000_XONTXC);
 573	rd32(E1000_XOFFRXC);
 574	rd32(E1000_XOFFTXC);
 575	rd32(E1000_FCRUC);
 576	rd32(E1000_GPRC);
 577	rd32(E1000_BPRC);
 578	rd32(E1000_MPRC);
 579	rd32(E1000_GPTC);
 580	rd32(E1000_GORCL);
 581	rd32(E1000_GORCH);
 582	rd32(E1000_GOTCL);
 583	rd32(E1000_GOTCH);
 584	rd32(E1000_RNBC);
 585	rd32(E1000_RUC);
 586	rd32(E1000_RFC);
 587	rd32(E1000_ROC);
 588	rd32(E1000_RJC);
 589	rd32(E1000_TORL);
 590	rd32(E1000_TORH);
 591	rd32(E1000_TOTL);
 592	rd32(E1000_TOTH);
 593	rd32(E1000_TPR);
 594	rd32(E1000_TPT);
 595	rd32(E1000_MPTC);
 596	rd32(E1000_BPTC);
 597}
 598
 599/**
 600 *  igb_check_for_copper_link - Check for link (Copper)
 601 *  @hw: pointer to the HW structure
 602 *
 603 *  Checks to see of the link status of the hardware has changed.  If a
 604 *  change in link status has been detected, then we read the PHY registers
 605 *  to get the current speed/duplex if link exists.
 606 **/
 607s32 igb_check_for_copper_link(struct e1000_hw *hw)
 608{
 609	struct e1000_mac_info *mac = &hw->mac;
 610	s32 ret_val;
 611	bool link;
 612
 613	/* We only want to go out to the PHY registers to see if Auto-Neg
 
 614	 * has completed and/or if our link status has changed.  The
 615	 * get_link_status flag is set upon receiving a Link Status
 616	 * Change or Rx Sequence Error interrupt.
 617	 */
 618	if (!mac->get_link_status) {
 619		ret_val = 0;
 620		goto out;
 621	}
 622
 623	/* First we want to see if the MII Status Register reports
 
 624	 * link.  If so, then we want to get the current speed/duplex
 625	 * of the PHY.
 626	 */
 627	ret_val = igb_phy_has_link(hw, 1, 0, &link);
 628	if (ret_val)
 629		goto out;
 630
 631	if (!link)
 632		goto out; /* No link detected */
 633
 634	mac->get_link_status = false;
 635
 636	/* Check if there was DownShift, must be checked
 
 637	 * immediately after link-up
 638	 */
 639	igb_check_downshift(hw);
 640
 641	/* If we are forcing speed/duplex, then we simply return since
 
 642	 * we have already determined whether we have link or not.
 643	 */
 644	if (!mac->autoneg) {
 645		ret_val = -E1000_ERR_CONFIG;
 646		goto out;
 647	}
 648
 649	/* Auto-Neg is enabled.  Auto Speed Detection takes care
 
 650	 * of MAC speed/duplex configuration.  So we only need to
 651	 * configure Collision Distance in the MAC.
 652	 */
 653	igb_config_collision_dist(hw);
 654
 655	/* Configure Flow Control now that Auto-Neg has completed.
 
 656	 * First, we need to restore the desired flow control
 657	 * settings because we may have had to re-autoneg with a
 658	 * different link partner.
 659	 */
 660	ret_val = igb_config_fc_after_link_up(hw);
 661	if (ret_val)
 662		hw_dbg("Error configuring flow control\n");
 663
 664out:
 665	return ret_val;
 666}
 667
 668/**
 669 *  igb_setup_link - Setup flow control and link settings
 670 *  @hw: pointer to the HW structure
 671 *
 672 *  Determines which flow control settings to use, then configures flow
 673 *  control.  Calls the appropriate media-specific link configuration
 674 *  function.  Assuming the adapter has a valid link partner, a valid link
 675 *  should be established.  Assumes the hardware has previously been reset
 676 *  and the transmitter and receiver are not enabled.
 677 **/
 678s32 igb_setup_link(struct e1000_hw *hw)
 679{
 680	s32 ret_val = 0;
 681
 682	/* In the case of the phy reset being blocked, we already have a link.
 
 683	 * We do not need to set it up again.
 684	 */
 685	if (igb_check_reset_block(hw))
 686		goto out;
 687
 688	/* If requested flow control is set to default, set flow control
 
 689	 * based on the EEPROM flow control settings.
 690	 */
 691	if (hw->fc.requested_mode == e1000_fc_default) {
 692		ret_val = igb_set_default_fc(hw);
 693		if (ret_val)
 694			goto out;
 695	}
 696
 697	/* We want to save off the original Flow Control configuration just
 
 698	 * in case we get disconnected and then reconnected into a different
 699	 * hub or switch with different Flow Control capabilities.
 700	 */
 701	hw->fc.current_mode = hw->fc.requested_mode;
 702
 703	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 704
 705	/* Call the necessary media_type subroutine to configure the link. */
 706	ret_val = hw->mac.ops.setup_physical_interface(hw);
 707	if (ret_val)
 708		goto out;
 709
 710	/* Initialize the flow control address, type, and PAUSE timer
 
 711	 * registers to their default values.  This is done even if flow
 712	 * control is disabled, because it does not hurt anything to
 713	 * initialize these registers.
 714	 */
 715	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
 716	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
 717	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 718	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
 719
 720	wr32(E1000_FCTTV, hw->fc.pause_time);
 721
 722	igb_set_fc_watermarks(hw);
 723
 724out:
 725
 726	return ret_val;
 727}
 728
 729/**
 730 *  igb_config_collision_dist - Configure collision distance
 731 *  @hw: pointer to the HW structure
 732 *
 733 *  Configures the collision distance to the default value and is used
 734 *  during link setup. Currently no func pointer exists and all
 735 *  implementations are handled in the generic version of this function.
 736 **/
 737void igb_config_collision_dist(struct e1000_hw *hw)
 738{
 739	u32 tctl;
 740
 741	tctl = rd32(E1000_TCTL);
 742
 743	tctl &= ~E1000_TCTL_COLD;
 744	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 745
 746	wr32(E1000_TCTL, tctl);
 747	wrfl();
 748}
 749
 750/**
 751 *  igb_set_fc_watermarks - Set flow control high/low watermarks
 752 *  @hw: pointer to the HW structure
 753 *
 754 *  Sets the flow control high/low threshold (watermark) registers.  If
 755 *  flow control XON frame transmission is enabled, then set XON frame
 756 *  tansmission as well.
 757 **/
 758static void igb_set_fc_watermarks(struct e1000_hw *hw)
 759{
 
 760	u32 fcrtl = 0, fcrth = 0;
 761
 762	/* Set the flow control receive threshold registers.  Normally,
 
 763	 * these registers will be set to a default threshold that may be
 764	 * adjusted later by the driver's runtime code.  However, if the
 765	 * ability to transmit pause frames is not enabled, then these
 766	 * registers will be set to 0.
 767	 */
 768	if (hw->fc.current_mode & e1000_fc_tx_pause) {
 769		/* We need to set up the Receive Threshold high and low water
 
 770		 * marks as well as (optionally) enabling the transmission of
 771		 * XON frames.
 772		 */
 773		fcrtl = hw->fc.low_water;
 774		if (hw->fc.send_xon)
 775			fcrtl |= E1000_FCRTL_XONE;
 776
 777		fcrth = hw->fc.high_water;
 778	}
 779	wr32(E1000_FCRTL, fcrtl);
 780	wr32(E1000_FCRTH, fcrth);
 
 
 781}
 782
 783/**
 784 *  igb_set_default_fc - Set flow control default values
 785 *  @hw: pointer to the HW structure
 786 *
 787 *  Read the EEPROM for the default values for flow control and store the
 788 *  values.
 789 **/
 790static s32 igb_set_default_fc(struct e1000_hw *hw)
 791{
 792	s32 ret_val = 0;
 793	u16 lan_offset;
 794	u16 nvm_data;
 795
 796	/* Read and store word 0x0F of the EEPROM. This word contains bits
 
 797	 * that determine the hardware's default PAUSE (flow control) mode,
 798	 * a bit that determines whether the HW defaults to enabling or
 799	 * disabling auto-negotiation, and the direction of the
 800	 * SW defined pins. If there is no SW over-ride of the flow
 801	 * control setting, then the variable hw->fc will
 802	 * be initialized based on a value in the EEPROM.
 803	 */
 804	if (hw->mac.type == e1000_i350)
 805		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
 806	else
 807		lan_offset = 0;
 808
 809	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG + lan_offset,
 810				   1, &nvm_data);
 811	if (ret_val) {
 812		hw_dbg("NVM Read Error\n");
 813		goto out;
 814	}
 815
 816	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
 817		hw->fc.requested_mode = e1000_fc_none;
 818	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
 
 819		hw->fc.requested_mode = e1000_fc_tx_pause;
 820	else
 821		hw->fc.requested_mode = e1000_fc_full;
 822
 823out:
 824	return ret_val;
 825}
 826
 827/**
 828 *  igb_force_mac_fc - Force the MAC's flow control settings
 829 *  @hw: pointer to the HW structure
 830 *
 831 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 832 *  device control register to reflect the adapter settings.  TFCE and RFCE
 833 *  need to be explicitly set by software when a copper PHY is used because
 834 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 835 *  also configure these bits when link is forced on a fiber connection.
 836 **/
 837s32 igb_force_mac_fc(struct e1000_hw *hw)
 838{
 839	u32 ctrl;
 840	s32 ret_val = 0;
 841
 842	ctrl = rd32(E1000_CTRL);
 843
 844	/* Because we didn't get link via the internal auto-negotiation
 
 845	 * mechanism (we either forced link or we got link via PHY
 846	 * auto-neg), we have to manually enable/disable transmit an
 847	 * receive flow control.
 848	 *
 849	 * The "Case" statement below enables/disable flow control
 850	 * according to the "hw->fc.current_mode" parameter.
 851	 *
 852	 * The possible values of the "fc" parameter are:
 853	 *      0:  Flow control is completely disabled
 854	 *      1:  Rx flow control is enabled (we can receive pause
 855	 *          frames but not send pause frames).
 856	 *      2:  Tx flow control is enabled (we can send pause frames
 857	 *          but we do not receive pause frames).
 858	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
 859	 *  other:  No other values should be possible at this point.
 860	 */
 861	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 862
 863	switch (hw->fc.current_mode) {
 864	case e1000_fc_none:
 865		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 866		break;
 867	case e1000_fc_rx_pause:
 868		ctrl &= (~E1000_CTRL_TFCE);
 869		ctrl |= E1000_CTRL_RFCE;
 870		break;
 871	case e1000_fc_tx_pause:
 872		ctrl &= (~E1000_CTRL_RFCE);
 873		ctrl |= E1000_CTRL_TFCE;
 874		break;
 875	case e1000_fc_full:
 876		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 877		break;
 878	default:
 879		hw_dbg("Flow control param set incorrectly\n");
 880		ret_val = -E1000_ERR_CONFIG;
 881		goto out;
 882	}
 883
 884	wr32(E1000_CTRL, ctrl);
 885
 886out:
 887	return ret_val;
 888}
 889
 890/**
 891 *  igb_config_fc_after_link_up - Configures flow control after link
 892 *  @hw: pointer to the HW structure
 893 *
 894 *  Checks the status of auto-negotiation after link up to ensure that the
 895 *  speed and duplex were not forced.  If the link needed to be forced, then
 896 *  flow control needs to be forced also.  If auto-negotiation is enabled
 897 *  and did not fail, then we configure flow control based on our link
 898 *  partner.
 899 **/
 900s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
 901{
 902	struct e1000_mac_info *mac = &hw->mac;
 903	s32 ret_val = 0;
 904	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
 905	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
 906	u16 speed, duplex;
 907
 908	/* Check for the case where we have fiber media and auto-neg failed
 
 909	 * so we had to force link.  In this case, we need to force the
 910	 * configuration of the MAC to match the "fc" parameter.
 911	 */
 912	if (mac->autoneg_failed) {
 913		if (hw->phy.media_type == e1000_media_type_internal_serdes)
 914			ret_val = igb_force_mac_fc(hw);
 915	} else {
 916		if (hw->phy.media_type == e1000_media_type_copper)
 917			ret_val = igb_force_mac_fc(hw);
 918	}
 919
 920	if (ret_val) {
 921		hw_dbg("Error forcing flow control settings\n");
 922		goto out;
 923	}
 924
 925	/* Check for the case where we have copper media and auto-neg is
 
 926	 * enabled.  In this case, we need to check and see if Auto-Neg
 927	 * has completed, and if so, how the PHY and link partner has
 928	 * flow control configured.
 929	 */
 930	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
 931		/* Read the MII Status Register and check to see if AutoNeg
 
 932		 * has completed.  We read this twice because this reg has
 933		 * some "sticky" (latched) bits.
 934		 */
 935		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 936						   &mii_status_reg);
 937		if (ret_val)
 938			goto out;
 939		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 940						   &mii_status_reg);
 941		if (ret_val)
 942			goto out;
 943
 944		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
 945			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
 
 946			goto out;
 947		}
 948
 949		/* The AutoNeg process has completed, so we now need to
 
 950		 * read both the Auto Negotiation Advertisement
 951		 * Register (Address 4) and the Auto_Negotiation Base
 952		 * Page Ability Register (Address 5) to determine how
 953		 * flow control was negotiated.
 954		 */
 955		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
 956					    &mii_nway_adv_reg);
 957		if (ret_val)
 958			goto out;
 959		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
 960					    &mii_nway_lp_ability_reg);
 961		if (ret_val)
 962			goto out;
 963
 964		/* Two bits in the Auto Negotiation Advertisement Register
 
 965		 * (Address 4) and two bits in the Auto Negotiation Base
 966		 * Page Ability Register (Address 5) determine flow control
 967		 * for both the PHY and the link partner.  The following
 968		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
 969		 * 1999, describes these PAUSE resolution bits and how flow
 970		 * control is determined based upon these settings.
 971		 * NOTE:  DC = Don't Care
 972		 *
 973		 *   LOCAL DEVICE  |   LINK PARTNER
 974		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
 975		 *-------|---------|-------|---------|--------------------
 976		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
 977		 *   0   |    1    |   0   |   DC    | e1000_fc_none
 978		 *   0   |    1    |   1   |    0    | e1000_fc_none
 979		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 980		 *   1   |    0    |   0   |   DC    | e1000_fc_none
 981		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
 982		 *   1   |    1    |   0   |    0    | e1000_fc_none
 983		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
 984		 *
 985		 * Are both PAUSE bits set to 1?  If so, this implies
 986		 * Symmetric Flow Control is enabled at both ends.  The
 987		 * ASM_DIR bits are irrelevant per the spec.
 988		 *
 989		 * For Symmetric Flow Control:
 990		 *
 991		 *   LOCAL DEVICE  |   LINK PARTNER
 992		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 993		 *-------|---------|-------|---------|--------------------
 994		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
 995		 *
 996		 */
 997		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 998		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
 999			/* Now we need to check if the user selected RX ONLY
 
1000			 * of pause frames.  In this case, we had to advertise
1001			 * FULL flow control because we could not advertise RX
1002			 * ONLY. Hence, we must now check to see if we need to
1003			 * turn OFF  the TRANSMISSION of PAUSE frames.
1004			 */
1005			if (hw->fc.requested_mode == e1000_fc_full) {
1006				hw->fc.current_mode = e1000_fc_full;
1007				hw_dbg("Flow Control = FULL.\n");
1008			} else {
1009				hw->fc.current_mode = e1000_fc_rx_pause;
1010				hw_dbg("Flow Control = RX PAUSE frames only.\n");
 
1011			}
1012		}
1013		/* For receiving PAUSE frames ONLY.
 
1014		 *
1015		 *   LOCAL DEVICE  |   LINK PARTNER
1016		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1017		 *-------|---------|-------|---------|--------------------
1018		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1019		 */
1020		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1021			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1022			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1023			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1024			hw->fc.current_mode = e1000_fc_tx_pause;
1025			hw_dbg("Flow Control = TX PAUSE frames only.\n");
1026		}
1027		/* For transmitting PAUSE frames ONLY.
 
1028		 *
1029		 *   LOCAL DEVICE  |   LINK PARTNER
1030		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1031		 *-------|---------|-------|---------|--------------------
1032		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1033		 */
1034		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1035			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1036			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1037			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1038			hw->fc.current_mode = e1000_fc_rx_pause;
1039			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1040		}
1041		/* Per the IEEE spec, at this point flow control should be
 
1042		 * disabled.  However, we want to consider that we could
1043		 * be connected to a legacy switch that doesn't advertise
1044		 * desired flow control, but can be forced on the link
1045		 * partner.  So if we advertised no flow control, that is
1046		 * what we will resolve to.  If we advertised some kind of
1047		 * receive capability (Rx Pause Only or Full Flow Control)
1048		 * and the link partner advertised none, we will configure
1049		 * ourselves to enable Rx Flow Control only.  We can do
1050		 * this safely for two reasons:  If the link partner really
1051		 * didn't want flow control enabled, and we enable Rx, no
1052		 * harm done since we won't be receiving any PAUSE frames
1053		 * anyway.  If the intent on the link partner was to have
1054		 * flow control enabled, then by us enabling RX only, we
1055		 * can at least receive pause frames and process them.
1056		 * This is a good idea because in most cases, since we are
1057		 * predominantly a server NIC, more times than not we will
1058		 * be asked to delay transmission of packets than asking
1059		 * our link partner to pause transmission of frames.
1060		 */
1061		else if ((hw->fc.requested_mode == e1000_fc_none) ||
1062			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
1063			 (hw->fc.strict_ieee)) {
1064			hw->fc.current_mode = e1000_fc_none;
1065			hw_dbg("Flow Control = NONE.\n");
1066		} else {
1067			hw->fc.current_mode = e1000_fc_rx_pause;
1068			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1069		}
1070
1071		/* Now we need to do one last check...  If we auto-
 
1072		 * negotiated to HALF DUPLEX, flow control should not be
1073		 * enabled per IEEE 802.3 spec.
1074		 */
1075		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1076		if (ret_val) {
1077			hw_dbg("Error getting link speed and duplex\n");
1078			goto out;
1079		}
1080
1081		if (duplex == HALF_DUPLEX)
1082			hw->fc.current_mode = e1000_fc_none;
1083
1084		/* Now we call a subroutine to actually force the MAC
 
1085		 * controller to use the correct flow control settings.
1086		 */
1087		ret_val = igb_force_mac_fc(hw);
1088		if (ret_val) {
1089			hw_dbg("Error forcing flow control settings\n");
1090			goto out;
1091		}
1092	}
1093	/* Check for the case where we have SerDes media and auto-neg is
1094	 * enabled.  In this case, we need to check and see if Auto-Neg
1095	 * has completed, and if so, how the PHY and link partner has
1096	 * flow control configured.
1097	 */
1098	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1099		&& mac->autoneg) {
1100		/* Read the PCS_LSTS and check to see if AutoNeg
1101		 * has completed.
1102		 */
1103		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1104
1105		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1106			hw_dbg("PCS Auto Neg has not completed.\n");
1107			return ret_val;
1108		}
1109
1110		/* The AutoNeg process has completed, so we now need to
1111		 * read both the Auto Negotiation Advertisement
1112		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1113		 * Page Ability Register (PCS_LPAB) to determine how
1114		 * flow control was negotiated.
1115		 */
1116		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1117		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1118
1119		/* Two bits in the Auto Negotiation Advertisement Register
1120		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1121		 * Page Ability Register (PCS_LPAB) determine flow control
1122		 * for both the PHY and the link partner.  The following
1123		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1124		 * 1999, describes these PAUSE resolution bits and how flow
1125		 * control is determined based upon these settings.
1126		 * NOTE:  DC = Don't Care
1127		 *
1128		 *   LOCAL DEVICE  |   LINK PARTNER
1129		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1130		 *-------|---------|-------|---------|--------------------
1131		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1132		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1133		 *   0   |    1    |   1   |    0    | e1000_fc_none
1134		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1135		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1136		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1137		 *   1   |    1    |   0   |    0    | e1000_fc_none
1138		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1139		 *
1140		 * Are both PAUSE bits set to 1?  If so, this implies
1141		 * Symmetric Flow Control is enabled at both ends.  The
1142		 * ASM_DIR bits are irrelevant per the spec.
1143		 *
1144		 * For Symmetric Flow Control:
1145		 *
1146		 *   LOCAL DEVICE  |   LINK PARTNER
1147		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1148		 *-------|---------|-------|---------|--------------------
1149		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1150		 *
1151		 */
1152		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1153		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1154			/* Now we need to check if the user selected Rx ONLY
1155			 * of pause frames.  In this case, we had to advertise
1156			 * FULL flow control because we could not advertise Rx
1157			 * ONLY. Hence, we must now check to see if we need to
1158			 * turn OFF the TRANSMISSION of PAUSE frames.
1159			 */
1160			if (hw->fc.requested_mode == e1000_fc_full) {
1161				hw->fc.current_mode = e1000_fc_full;
1162				hw_dbg("Flow Control = FULL.\n");
1163			} else {
1164				hw->fc.current_mode = e1000_fc_rx_pause;
1165				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1166			}
1167		}
1168		/* For receiving PAUSE frames ONLY.
1169		 *
1170		 *   LOCAL DEVICE  |   LINK PARTNER
1171		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1172		 *-------|---------|-------|---------|--------------------
1173		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1174		 */
1175		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1176			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1177			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1178			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1179			hw->fc.current_mode = e1000_fc_tx_pause;
1180			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1181		}
1182		/* For transmitting PAUSE frames ONLY.
1183		 *
1184		 *   LOCAL DEVICE  |   LINK PARTNER
1185		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1186		 *-------|---------|-------|---------|--------------------
1187		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1188		 */
1189		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1190			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1191			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1192			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1193			hw->fc.current_mode = e1000_fc_rx_pause;
1194			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1195		} else {
1196			/* Per the IEEE spec, at this point flow control
1197			 * should be disabled.
1198			 */
1199			hw->fc.current_mode = e1000_fc_none;
1200			hw_dbg("Flow Control = NONE.\n");
1201		}
1202
1203		/* Now we call a subroutine to actually force the MAC
1204		 * controller to use the correct flow control settings.
1205		 */
1206		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1207		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1208		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1209
1210		ret_val = igb_force_mac_fc(hw);
1211		if (ret_val) {
1212			hw_dbg("Error forcing flow control settings\n");
1213			return ret_val;
1214		}
1215	}
1216
1217out:
1218	return ret_val;
1219}
1220
1221/**
1222 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1223 *  @hw: pointer to the HW structure
1224 *  @speed: stores the current speed
1225 *  @duplex: stores the current duplex
1226 *
1227 *  Read the status register for the current speed/duplex and store the current
1228 *  speed and duplex for copper connections.
1229 **/
1230s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1231				      u16 *duplex)
1232{
1233	u32 status;
1234
1235	status = rd32(E1000_STATUS);
1236	if (status & E1000_STATUS_SPEED_1000) {
1237		*speed = SPEED_1000;
1238		hw_dbg("1000 Mbs, ");
1239	} else if (status & E1000_STATUS_SPEED_100) {
1240		*speed = SPEED_100;
1241		hw_dbg("100 Mbs, ");
1242	} else {
1243		*speed = SPEED_10;
1244		hw_dbg("10 Mbs, ");
1245	}
1246
1247	if (status & E1000_STATUS_FD) {
1248		*duplex = FULL_DUPLEX;
1249		hw_dbg("Full Duplex\n");
1250	} else {
1251		*duplex = HALF_DUPLEX;
1252		hw_dbg("Half Duplex\n");
1253	}
1254
1255	return 0;
1256}
1257
1258/**
1259 *  igb_get_hw_semaphore - Acquire hardware semaphore
1260 *  @hw: pointer to the HW structure
1261 *
1262 *  Acquire the HW semaphore to access the PHY or NVM
1263 **/
1264s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1265{
1266	u32 swsm;
1267	s32 ret_val = 0;
1268	s32 timeout = hw->nvm.word_size + 1;
1269	s32 i = 0;
1270
1271	/* Get the SW semaphore */
1272	while (i < timeout) {
1273		swsm = rd32(E1000_SWSM);
1274		if (!(swsm & E1000_SWSM_SMBI))
1275			break;
1276
1277		udelay(50);
1278		i++;
1279	}
1280
1281	if (i == timeout) {
1282		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1283		ret_val = -E1000_ERR_NVM;
1284		goto out;
1285	}
1286
1287	/* Get the FW semaphore. */
1288	for (i = 0; i < timeout; i++) {
1289		swsm = rd32(E1000_SWSM);
1290		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1291
1292		/* Semaphore acquired if bit latched */
1293		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1294			break;
1295
1296		udelay(50);
1297	}
1298
1299	if (i == timeout) {
1300		/* Release semaphores */
1301		igb_put_hw_semaphore(hw);
1302		hw_dbg("Driver can't access the NVM\n");
1303		ret_val = -E1000_ERR_NVM;
1304		goto out;
1305	}
1306
1307out:
1308	return ret_val;
1309}
1310
1311/**
1312 *  igb_put_hw_semaphore - Release hardware semaphore
1313 *  @hw: pointer to the HW structure
1314 *
1315 *  Release hardware semaphore used to access the PHY or NVM
1316 **/
1317void igb_put_hw_semaphore(struct e1000_hw *hw)
1318{
1319	u32 swsm;
1320
1321	swsm = rd32(E1000_SWSM);
1322
1323	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1324
1325	wr32(E1000_SWSM, swsm);
1326}
1327
1328/**
1329 *  igb_get_auto_rd_done - Check for auto read completion
1330 *  @hw: pointer to the HW structure
1331 *
1332 *  Check EEPROM for Auto Read done bit.
1333 **/
1334s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1335{
1336	s32 i = 0;
1337	s32 ret_val = 0;
1338
1339
1340	while (i < AUTO_READ_DONE_TIMEOUT) {
1341		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1342			break;
1343		usleep_range(1000, 2000);
1344		i++;
1345	}
1346
1347	if (i == AUTO_READ_DONE_TIMEOUT) {
1348		hw_dbg("Auto read by HW from NVM has not completed.\n");
1349		ret_val = -E1000_ERR_RESET;
1350		goto out;
1351	}
1352
1353out:
1354	return ret_val;
1355}
1356
1357/**
1358 *  igb_valid_led_default - Verify a valid default LED config
1359 *  @hw: pointer to the HW structure
1360 *  @data: pointer to the NVM (EEPROM)
1361 *
1362 *  Read the EEPROM for the current default LED configuration.  If the
1363 *  LED configuration is not valid, set to a valid LED configuration.
1364 **/
1365static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1366{
1367	s32 ret_val;
1368
1369	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1370	if (ret_val) {
1371		hw_dbg("NVM Read Error\n");
1372		goto out;
1373	}
1374
1375	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1376		switch (hw->phy.media_type) {
1377		case e1000_media_type_internal_serdes:
1378			*data = ID_LED_DEFAULT_82575_SERDES;
1379			break;
1380		case e1000_media_type_copper:
1381		default:
1382			*data = ID_LED_DEFAULT;
1383			break;
1384		}
1385	}
1386out:
1387	return ret_val;
1388}
1389
1390/**
1391 *  igb_id_led_init -
1392 *  @hw: pointer to the HW structure
1393 *
1394 **/
1395s32 igb_id_led_init(struct e1000_hw *hw)
1396{
1397	struct e1000_mac_info *mac = &hw->mac;
1398	s32 ret_val;
1399	const u32 ledctl_mask = 0x000000FF;
1400	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1401	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1402	u16 data, i, temp;
1403	const u16 led_mask = 0x0F;
1404
1405	/* i210 and i211 devices have different LED mechanism */
1406	if ((hw->mac.type == e1000_i210) ||
1407	    (hw->mac.type == e1000_i211))
1408		ret_val = igb_valid_led_default_i210(hw, &data);
1409	else
1410		ret_val = igb_valid_led_default(hw, &data);
1411
1412	if (ret_val)
1413		goto out;
1414
1415	mac->ledctl_default = rd32(E1000_LEDCTL);
1416	mac->ledctl_mode1 = mac->ledctl_default;
1417	mac->ledctl_mode2 = mac->ledctl_default;
1418
1419	for (i = 0; i < 4; i++) {
1420		temp = (data >> (i << 2)) & led_mask;
1421		switch (temp) {
1422		case ID_LED_ON1_DEF2:
1423		case ID_LED_ON1_ON2:
1424		case ID_LED_ON1_OFF2:
1425			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1426			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1427			break;
1428		case ID_LED_OFF1_DEF2:
1429		case ID_LED_OFF1_ON2:
1430		case ID_LED_OFF1_OFF2:
1431			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1432			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1433			break;
1434		default:
1435			/* Do nothing */
1436			break;
1437		}
1438		switch (temp) {
1439		case ID_LED_DEF1_ON2:
1440		case ID_LED_ON1_ON2:
1441		case ID_LED_OFF1_ON2:
1442			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1443			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1444			break;
1445		case ID_LED_DEF1_OFF2:
1446		case ID_LED_ON1_OFF2:
1447		case ID_LED_OFF1_OFF2:
1448			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1449			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1450			break;
1451		default:
1452			/* Do nothing */
1453			break;
1454		}
1455	}
1456
1457out:
1458	return ret_val;
1459}
1460
1461/**
1462 *  igb_cleanup_led - Set LED config to default operation
1463 *  @hw: pointer to the HW structure
1464 *
1465 *  Remove the current LED configuration and set the LED configuration
1466 *  to the default value, saved from the EEPROM.
1467 **/
1468s32 igb_cleanup_led(struct e1000_hw *hw)
1469{
1470	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1471	return 0;
1472}
1473
1474/**
1475 *  igb_blink_led - Blink LED
1476 *  @hw: pointer to the HW structure
1477 *
1478 *  Blink the led's which are set to be on.
1479 **/
1480s32 igb_blink_led(struct e1000_hw *hw)
1481{
1482	u32 ledctl_blink = 0;
1483	u32 i;
1484
1485	if (hw->phy.media_type == e1000_media_type_fiber) {
1486		/* always blink LED0 for PCI-E fiber */
1487		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1488		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1489	} else {
1490		/* Set the blink bit for each LED that's "on" (0x0E)
1491		 * (or "off" if inverted) in ledctl_mode2.  The blink
1492		 * logic in hardware only works when mode is set to "on"
1493		 * so it must be changed accordingly when the mode is
1494		 * "off" and inverted.
1495		 */
1496		ledctl_blink = hw->mac.ledctl_mode2;
1497		for (i = 0; i < 32; i += 8) {
1498			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1499			    E1000_LEDCTL_LED0_MODE_MASK;
1500			u32 led_default = hw->mac.ledctl_default >> i;
1501
1502			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1503			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1504			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1505			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1506				ledctl_blink &=
1507				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1508				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1509						 E1000_LEDCTL_MODE_LED_ON) << i;
1510			}
1511		}
1512	}
1513
1514	wr32(E1000_LEDCTL, ledctl_blink);
1515
1516	return 0;
1517}
1518
1519/**
1520 *  igb_led_off - Turn LED off
1521 *  @hw: pointer to the HW structure
1522 *
1523 *  Turn LED off.
1524 **/
1525s32 igb_led_off(struct e1000_hw *hw)
1526{
1527	switch (hw->phy.media_type) {
1528	case e1000_media_type_copper:
1529		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1530		break;
1531	default:
1532		break;
1533	}
1534
1535	return 0;
1536}
1537
1538/**
1539 *  igb_disable_pcie_master - Disables PCI-express master access
1540 *  @hw: pointer to the HW structure
1541 *
1542 *  Returns 0 (0) if successful, else returns -10
1543 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1544 *  the master requests to be disabled.
1545 *
1546 *  Disables PCI-Express master access and verifies there are no pending
1547 *  requests.
1548 **/
1549s32 igb_disable_pcie_master(struct e1000_hw *hw)
1550{
1551	u32 ctrl;
1552	s32 timeout = MASTER_DISABLE_TIMEOUT;
1553	s32 ret_val = 0;
1554
1555	if (hw->bus.type != e1000_bus_type_pci_express)
1556		goto out;
1557
1558	ctrl = rd32(E1000_CTRL);
1559	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1560	wr32(E1000_CTRL, ctrl);
1561
1562	while (timeout) {
1563		if (!(rd32(E1000_STATUS) &
1564		      E1000_STATUS_GIO_MASTER_ENABLE))
1565			break;
1566		udelay(100);
1567		timeout--;
1568	}
1569
1570	if (!timeout) {
1571		hw_dbg("Master requests are pending.\n");
1572		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1573		goto out;
1574	}
1575
1576out:
1577	return ret_val;
1578}
1579
1580/**
1581 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1582 *  @hw: pointer to the HW structure
1583 *
1584 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1585 *  set, which is forced to MDI mode only.
1586 **/
1587s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1588{
1589	s32 ret_val = 0;
1590
1591	/* All MDI settings are supported on 82580 and newer. */
1592	if (hw->mac.type >= e1000_82580)
1593		goto out;
1594
1595	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1596		hw_dbg("Invalid MDI setting detected\n");
1597		hw->phy.mdix = 1;
1598		ret_val = -E1000_ERR_CONFIG;
1599		goto out;
1600	}
1601
1602out:
1603	return ret_val;
1604}
1605
1606/**
1607 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1608 *  @hw: pointer to the HW structure
1609 *  @reg: 32bit register offset such as E1000_SCTL
1610 *  @offset: register offset to write to
1611 *  @data: data to write at register offset
1612 *
1613 *  Writes an address/data control type register.  There are several of these
1614 *  and they all have the format address << 8 | data and bit 31 is polled for
1615 *  completion.
1616 **/
1617s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1618			      u32 offset, u8 data)
1619{
1620	u32 i, regvalue = 0;
1621	s32 ret_val = 0;
1622
1623	/* Set up the address and data */
1624	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1625	wr32(reg, regvalue);
1626
1627	/* Poll the ready bit to see if the MDI read completed */
1628	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1629		udelay(5);
1630		regvalue = rd32(reg);
1631		if (regvalue & E1000_GEN_CTL_READY)
1632			break;
1633	}
1634	if (!(regvalue & E1000_GEN_CTL_READY)) {
1635		hw_dbg("Reg %08x did not indicate ready\n", reg);
1636		ret_val = -E1000_ERR_PHY;
1637		goto out;
1638	}
1639
1640out:
1641	return ret_val;
1642}
1643
1644/**
1645 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1646 *  @hw: pointer to the HW structure
1647 *
1648 *  Verifies the hardware needs to leave interface enabled so that frames can
1649 *  be directed to and from the management interface.
1650 **/
1651bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1652{
1653	u32 manc;
1654	u32 fwsm, factps;
1655	bool ret_val = false;
1656
1657	if (!hw->mac.asf_firmware_present)
1658		goto out;
1659
1660	manc = rd32(E1000_MANC);
1661
1662	if (!(manc & E1000_MANC_RCV_TCO_EN))
1663		goto out;
1664
1665	if (hw->mac.arc_subsystem_valid) {
1666		fwsm = rd32(E1000_FWSM);
1667		factps = rd32(E1000_FACTPS);
1668
1669		if (!(factps & E1000_FACTPS_MNGCG) &&
1670		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1671		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1672			ret_val = true;
1673			goto out;
1674		}
1675	} else {
1676		if ((manc & E1000_MANC_SMBUS_EN) &&
1677		    !(manc & E1000_MANC_ASF_EN)) {
1678			ret_val = true;
1679			goto out;
1680		}
1681	}
1682
1683out:
1684	return ret_val;
1685}
v3.5.6
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
 
  28#include <linux/if_ether.h>
  29#include <linux/delay.h>
  30#include <linux/pci.h>
  31#include <linux/netdevice.h>
  32#include <linux/etherdevice.h>
  33
  34#include "e1000_mac.h"
  35
  36#include "igb.h"
  37
  38static s32 igb_set_default_fc(struct e1000_hw *hw);
  39static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
  40
  41/**
  42 *  igb_get_bus_info_pcie - Get PCIe bus information
  43 *  @hw: pointer to the HW structure
  44 *
  45 *  Determines and stores the system bus information for a particular
  46 *  network interface.  The following bus information is determined and stored:
  47 *  bus speed, bus width, type (PCIe), and PCIe function.
  48 **/
  49s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
  50{
  51	struct e1000_bus_info *bus = &hw->bus;
  52	s32 ret_val;
  53	u32 reg;
  54	u16 pcie_link_status;
  55
  56	bus->type = e1000_bus_type_pci_express;
  57
  58	ret_val = igb_read_pcie_cap_reg(hw,
  59					PCI_EXP_LNKSTA,
  60					&pcie_link_status);
  61	if (ret_val) {
  62		bus->width = e1000_bus_width_unknown;
  63		bus->speed = e1000_bus_speed_unknown;
  64	} else {
  65		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
  66		case PCI_EXP_LNKSTA_CLS_2_5GB:
  67			bus->speed = e1000_bus_speed_2500;
  68			break;
  69		case PCI_EXP_LNKSTA_CLS_5_0GB:
  70			bus->speed = e1000_bus_speed_5000;
  71			break;
  72		default:
  73			bus->speed = e1000_bus_speed_unknown;
  74			break;
  75		}
  76
  77		bus->width = (enum e1000_bus_width)((pcie_link_status &
  78						     PCI_EXP_LNKSTA_NLW) >>
  79						     PCI_EXP_LNKSTA_NLW_SHIFT);
  80	}
  81
  82	reg = rd32(E1000_STATUS);
  83	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
  84
  85	return 0;
  86}
  87
  88/**
  89 *  igb_clear_vfta - Clear VLAN filter table
  90 *  @hw: pointer to the HW structure
  91 *
  92 *  Clears the register array which contains the VLAN filter table by
  93 *  setting all the values to 0.
  94 **/
  95void igb_clear_vfta(struct e1000_hw *hw)
  96{
  97	u32 offset;
  98
  99	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
 100		array_wr32(E1000_VFTA, offset, 0);
 101		wrfl();
 102	}
 103}
 104
 105/**
 106 *  igb_write_vfta - Write value to VLAN filter table
 107 *  @hw: pointer to the HW structure
 108 *  @offset: register offset in VLAN filter table
 109 *  @value: register value written to VLAN filter table
 110 *
 111 *  Writes value at the given offset in the register array which stores
 112 *  the VLAN filter table.
 113 **/
 114static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
 115{
 
 
 116	array_wr32(E1000_VFTA, offset, value);
 117	wrfl();
 118}
 119
 120/* Due to a hw errata, if the host tries to  configure the VFTA register
 121 * while performing queries from the BMC or DMA, then the VFTA in some
 122 * cases won't be written.
 123 */
 124
 125/**
 126 *  igb_clear_vfta_i350 - Clear VLAN filter table
 127 *  @hw: pointer to the HW structure
 128 *
 129 *  Clears the register array which contains the VLAN filter table by
 130 *  setting all the values to 0.
 131 **/
 132void igb_clear_vfta_i350(struct e1000_hw *hw)
 133{
 134	u32 offset;
 135	int i;
 136
 137	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
 138		for (i = 0; i < 10; i++)
 139			array_wr32(E1000_VFTA, offset, 0);
 140
 141		wrfl();
 142	}
 143}
 144
 145/**
 146 *  igb_write_vfta_i350 - Write value to VLAN filter table
 147 *  @hw: pointer to the HW structure
 148 *  @offset: register offset in VLAN filter table
 149 *  @value: register value written to VLAN filter table
 150 *
 151 *  Writes value at the given offset in the register array which stores
 152 *  the VLAN filter table.
 153 **/
 154static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
 155{
 156	int i;
 157
 158	for (i = 0; i < 10; i++)
 159		array_wr32(E1000_VFTA, offset, value);
 160
 161	wrfl();
 162}
 163
 164/**
 165 *  igb_init_rx_addrs - Initialize receive address's
 166 *  @hw: pointer to the HW structure
 167 *  @rar_count: receive address registers
 168 *
 169 *  Setups the receive address registers by setting the base receive address
 170 *  register to the devices MAC address and clearing all the other receive
 171 *  address registers to 0.
 172 **/
 173void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 174{
 175	u32 i;
 176	u8 mac_addr[ETH_ALEN] = {0};
 177
 178	/* Setup the receive address */
 179	hw_dbg("Programming MAC Address into RAR[0]\n");
 180
 181	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 182
 183	/* Zero out the other (rar_entry_count - 1) receive addresses */
 184	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
 185	for (i = 1; i < rar_count; i++)
 186		hw->mac.ops.rar_set(hw, mac_addr, i);
 187}
 188
 189/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190 *  igb_vfta_set - enable or disable vlan in VLAN filter table
 191 *  @hw: pointer to the HW structure
 192 *  @vid: VLAN id to add or remove
 193 *  @add: if true add filter, if false remove
 
 
 194 *
 195 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
 196 *  and if we are adding or removing the filter
 197 **/
 198s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
 
 199{
 200	u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
 201	u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
 202	u32 vfta;
 203	struct igb_adapter *adapter = hw->back;
 204	s32 ret_val = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205
 206	vfta = adapter->shadow_vfta[index];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207
 
 208	/* bit was set/cleared before we started */
 209	if ((!!(vfta & mask)) == add) {
 210		ret_val = -E1000_ERR_CONFIG;
 211	} else {
 212		if (add)
 213			vfta |= mask;
 214		else
 215			vfta &= ~mask;
 216	}
 217	if (hw->mac.type == e1000_i350)
 218		igb_write_vfta_i350(hw, index, vfta);
 219	else
 220		igb_write_vfta(hw, index, vfta);
 221	adapter->shadow_vfta[index] = vfta;
 222
 223	return ret_val;
 224}
 225
 226/**
 227 *  igb_check_alt_mac_addr - Check for alternate MAC addr
 228 *  @hw: pointer to the HW structure
 229 *
 230 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 231 *  can be setup by pre-boot software and must be treated like a permanent
 232 *  address and must override the actual permanent MAC address.  If an
 233 *  alternate MAC address is fopund it is saved in the hw struct and
 234 *  prgrammed into RAR0 and the cuntion returns success, otherwise the
 235 *  function returns an error.
 236 **/
 237s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
 238{
 239	u32 i;
 240	s32 ret_val = 0;
 241	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 242	u8 alt_mac_addr[ETH_ALEN];
 243
 244	/*
 245	 * Alternate MAC address is handled by the option ROM for 82580
 246	 * and newer. SW support not required.
 247	 */
 248	if (hw->mac.type >= e1000_82580)
 249		goto out;
 250
 251	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 252				 &nvm_alt_mac_addr_offset);
 253	if (ret_val) {
 254		hw_dbg("NVM Read Error\n");
 255		goto out;
 256	}
 257
 258	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 259	    (nvm_alt_mac_addr_offset == 0x0000))
 260		/* There is no Alternate MAC Address */
 261		goto out;
 262
 263	if (hw->bus.func == E1000_FUNC_1)
 264		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 265	if (hw->bus.func == E1000_FUNC_2)
 266		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
 267
 268	if (hw->bus.func == E1000_FUNC_3)
 269		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
 270	for (i = 0; i < ETH_ALEN; i += 2) {
 271		offset = nvm_alt_mac_addr_offset + (i >> 1);
 272		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
 273		if (ret_val) {
 274			hw_dbg("NVM Read Error\n");
 275			goto out;
 276		}
 277
 278		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 279		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 280	}
 281
 282	/* if multicast bit is set, the alternate address will not be used */
 283	if (is_multicast_ether_addr(alt_mac_addr)) {
 284		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 285		goto out;
 286	}
 287
 288	/*
 289	 * We have a valid alternate MAC address, and we want to treat it the
 290	 * same as the normal permanent MAC address stored by the HW into the
 291	 * RAR. Do this by mapping this address into RAR0.
 292	 */
 293	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 294
 295out:
 296	return ret_val;
 297}
 298
 299/**
 300 *  igb_rar_set - Set receive address register
 301 *  @hw: pointer to the HW structure
 302 *  @addr: pointer to the receive address
 303 *  @index: receive address array register
 304 *
 305 *  Sets the receive address array register at index to the address passed
 306 *  in by addr.
 307 **/
 308void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
 309{
 310	u32 rar_low, rar_high;
 311
 312	/*
 313	 * HW expects these in little endian so we reverse the byte order
 314	 * from network order (big endian) to little endian
 315	 */
 316	rar_low = ((u32) addr[0] |
 317		   ((u32) addr[1] << 8) |
 318		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
 319
 320	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
 321
 322	/* If MAC address zero, no need to set the AV bit */
 323	if (rar_low || rar_high)
 324		rar_high |= E1000_RAH_AV;
 325
 326	/*
 327	 * Some bridges will combine consecutive 32-bit writes into
 328	 * a single burst write, which will malfunction on some parts.
 329	 * The flushes avoid this.
 330	 */
 331	wr32(E1000_RAL(index), rar_low);
 332	wrfl();
 333	wr32(E1000_RAH(index), rar_high);
 334	wrfl();
 335}
 336
 337/**
 338 *  igb_mta_set - Set multicast filter table address
 339 *  @hw: pointer to the HW structure
 340 *  @hash_value: determines the MTA register and bit to set
 341 *
 342 *  The multicast table address is a register array of 32-bit registers.
 343 *  The hash_value is used to determine what register the bit is in, the
 344 *  current value is read, the new bit is OR'd in and the new value is
 345 *  written back into the register.
 346 **/
 347void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
 348{
 349	u32 hash_bit, hash_reg, mta;
 350
 351	/*
 352	 * The MTA is a register array of 32-bit registers. It is
 353	 * treated like an array of (32*mta_reg_count) bits.  We want to
 354	 * set bit BitArray[hash_value]. So we figure out what register
 355	 * the bit is in, read it, OR in the new bit, then write
 356	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
 357	 * mask to bits 31:5 of the hash value which gives us the
 358	 * register we're modifying.  The hash bit within that register
 359	 * is determined by the lower 5 bits of the hash value.
 360	 */
 361	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 362	hash_bit = hash_value & 0x1F;
 363
 364	mta = array_rd32(E1000_MTA, hash_reg);
 365
 366	mta |= (1 << hash_bit);
 367
 368	array_wr32(E1000_MTA, hash_reg, mta);
 369	wrfl();
 370}
 371
 372/**
 373 *  igb_hash_mc_addr - Generate a multicast hash value
 374 *  @hw: pointer to the HW structure
 375 *  @mc_addr: pointer to a multicast address
 376 *
 377 *  Generates a multicast address hash value which is used to determine
 378 *  the multicast filter table array address and new table value.  See
 379 *  igb_mta_set()
 380 **/
 381static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 382{
 383	u32 hash_value, hash_mask;
 384	u8 bit_shift = 0;
 385
 386	/* Register count multiplied by bits per register */
 387	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 388
 389	/*
 390	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
 391	 * where 0xFF would still fall within the hash mask.
 392	 */
 393	while (hash_mask >> bit_shift != 0xFF)
 394		bit_shift++;
 395
 396	/*
 397	 * The portion of the address that is used for the hash table
 398	 * is determined by the mc_filter_type setting.
 399	 * The algorithm is such that there is a total of 8 bits of shifting.
 400	 * The bit_shift for a mc_filter_type of 0 represents the number of
 401	 * left-shifts where the MSB of mc_addr[5] would still fall within
 402	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
 403	 * of 8 bits of shifting, then mc_addr[4] will shift right the
 404	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 405	 * cases are a variation of this algorithm...essentially raising the
 406	 * number of bits to shift mc_addr[5] left, while still keeping the
 407	 * 8-bit shifting total.
 408	 *
 409	 * For example, given the following Destination MAC Address and an
 410	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 411	 * we can see that the bit_shift for case 0 is 4.  These are the hash
 412	 * values resulting from each mc_filter_type...
 413	 * [0] [1] [2] [3] [4] [5]
 414	 * 01  AA  00  12  34  56
 415	 * LSB                 MSB
 416	 *
 417	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 418	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 419	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 420	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 421	 */
 422	switch (hw->mac.mc_filter_type) {
 423	default:
 424	case 0:
 425		break;
 426	case 1:
 427		bit_shift += 1;
 428		break;
 429	case 2:
 430		bit_shift += 2;
 431		break;
 432	case 3:
 433		bit_shift += 4;
 434		break;
 435	}
 436
 437	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 438				  (((u16) mc_addr[5]) << bit_shift)));
 439
 440	return hash_value;
 441}
 442
 443/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444 *  igb_update_mc_addr_list - Update Multicast addresses
 445 *  @hw: pointer to the HW structure
 446 *  @mc_addr_list: array of multicast addresses to program
 447 *  @mc_addr_count: number of multicast addresses to program
 448 *
 449 *  Updates entire Multicast Table Array.
 450 *  The caller must have a packed mc_addr_list of multicast addresses.
 451 **/
 452void igb_update_mc_addr_list(struct e1000_hw *hw,
 453                             u8 *mc_addr_list, u32 mc_addr_count)
 454{
 455	u32 hash_value, hash_bit, hash_reg;
 456	int i;
 457
 458	/* clear mta_shadow */
 459	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 460
 461	/* update mta_shadow from mc_addr_list */
 462	for (i = 0; (u32) i < mc_addr_count; i++) {
 463		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
 464
 465		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 466		hash_bit = hash_value & 0x1F;
 467
 468		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
 469		mc_addr_list += (ETH_ALEN);
 470	}
 471
 472	/* replace the entire MTA table */
 473	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 474		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
 475	wrfl();
 
 
 476}
 477
 478/**
 479 *  igb_clear_hw_cntrs_base - Clear base hardware counters
 480 *  @hw: pointer to the HW structure
 481 *
 482 *  Clears the base hardware counters by reading the counter registers.
 483 **/
 484void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
 485{
 486	rd32(E1000_CRCERRS);
 487	rd32(E1000_SYMERRS);
 488	rd32(E1000_MPC);
 489	rd32(E1000_SCC);
 490	rd32(E1000_ECOL);
 491	rd32(E1000_MCC);
 492	rd32(E1000_LATECOL);
 493	rd32(E1000_COLC);
 494	rd32(E1000_DC);
 495	rd32(E1000_SEC);
 496	rd32(E1000_RLEC);
 497	rd32(E1000_XONRXC);
 498	rd32(E1000_XONTXC);
 499	rd32(E1000_XOFFRXC);
 500	rd32(E1000_XOFFTXC);
 501	rd32(E1000_FCRUC);
 502	rd32(E1000_GPRC);
 503	rd32(E1000_BPRC);
 504	rd32(E1000_MPRC);
 505	rd32(E1000_GPTC);
 506	rd32(E1000_GORCL);
 507	rd32(E1000_GORCH);
 508	rd32(E1000_GOTCL);
 509	rd32(E1000_GOTCH);
 510	rd32(E1000_RNBC);
 511	rd32(E1000_RUC);
 512	rd32(E1000_RFC);
 513	rd32(E1000_ROC);
 514	rd32(E1000_RJC);
 515	rd32(E1000_TORL);
 516	rd32(E1000_TORH);
 517	rd32(E1000_TOTL);
 518	rd32(E1000_TOTH);
 519	rd32(E1000_TPR);
 520	rd32(E1000_TPT);
 521	rd32(E1000_MPTC);
 522	rd32(E1000_BPTC);
 523}
 524
 525/**
 526 *  igb_check_for_copper_link - Check for link (Copper)
 527 *  @hw: pointer to the HW structure
 528 *
 529 *  Checks to see of the link status of the hardware has changed.  If a
 530 *  change in link status has been detected, then we read the PHY registers
 531 *  to get the current speed/duplex if link exists.
 532 **/
 533s32 igb_check_for_copper_link(struct e1000_hw *hw)
 534{
 535	struct e1000_mac_info *mac = &hw->mac;
 536	s32 ret_val;
 537	bool link;
 538
 539	/*
 540	 * We only want to go out to the PHY registers to see if Auto-Neg
 541	 * has completed and/or if our link status has changed.  The
 542	 * get_link_status flag is set upon receiving a Link Status
 543	 * Change or Rx Sequence Error interrupt.
 544	 */
 545	if (!mac->get_link_status) {
 546		ret_val = 0;
 547		goto out;
 548	}
 549
 550	/*
 551	 * First we want to see if the MII Status Register reports
 552	 * link.  If so, then we want to get the current speed/duplex
 553	 * of the PHY.
 554	 */
 555	ret_val = igb_phy_has_link(hw, 1, 0, &link);
 556	if (ret_val)
 557		goto out;
 558
 559	if (!link)
 560		goto out; /* No link detected */
 561
 562	mac->get_link_status = false;
 563
 564	/*
 565	 * Check if there was DownShift, must be checked
 566	 * immediately after link-up
 567	 */
 568	igb_check_downshift(hw);
 569
 570	/*
 571	 * If we are forcing speed/duplex, then we simply return since
 572	 * we have already determined whether we have link or not.
 573	 */
 574	if (!mac->autoneg) {
 575		ret_val = -E1000_ERR_CONFIG;
 576		goto out;
 577	}
 578
 579	/*
 580	 * Auto-Neg is enabled.  Auto Speed Detection takes care
 581	 * of MAC speed/duplex configuration.  So we only need to
 582	 * configure Collision Distance in the MAC.
 583	 */
 584	igb_config_collision_dist(hw);
 585
 586	/*
 587	 * Configure Flow Control now that Auto-Neg has completed.
 588	 * First, we need to restore the desired flow control
 589	 * settings because we may have had to re-autoneg with a
 590	 * different link partner.
 591	 */
 592	ret_val = igb_config_fc_after_link_up(hw);
 593	if (ret_val)
 594		hw_dbg("Error configuring flow control\n");
 595
 596out:
 597	return ret_val;
 598}
 599
 600/**
 601 *  igb_setup_link - Setup flow control and link settings
 602 *  @hw: pointer to the HW structure
 603 *
 604 *  Determines which flow control settings to use, then configures flow
 605 *  control.  Calls the appropriate media-specific link configuration
 606 *  function.  Assuming the adapter has a valid link partner, a valid link
 607 *  should be established.  Assumes the hardware has previously been reset
 608 *  and the transmitter and receiver are not enabled.
 609 **/
 610s32 igb_setup_link(struct e1000_hw *hw)
 611{
 612	s32 ret_val = 0;
 613
 614	/*
 615	 * In the case of the phy reset being blocked, we already have a link.
 616	 * We do not need to set it up again.
 617	 */
 618	if (igb_check_reset_block(hw))
 619		goto out;
 620
 621	/*
 622	 * If requested flow control is set to default, set flow control
 623	 * based on the EEPROM flow control settings.
 624	 */
 625	if (hw->fc.requested_mode == e1000_fc_default) {
 626		ret_val = igb_set_default_fc(hw);
 627		if (ret_val)
 628			goto out;
 629	}
 630
 631	/*
 632	 * We want to save off the original Flow Control configuration just
 633	 * in case we get disconnected and then reconnected into a different
 634	 * hub or switch with different Flow Control capabilities.
 635	 */
 636	hw->fc.current_mode = hw->fc.requested_mode;
 637
 638	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 639
 640	/* Call the necessary media_type subroutine to configure the link. */
 641	ret_val = hw->mac.ops.setup_physical_interface(hw);
 642	if (ret_val)
 643		goto out;
 644
 645	/*
 646	 * Initialize the flow control address, type, and PAUSE timer
 647	 * registers to their default values.  This is done even if flow
 648	 * control is disabled, because it does not hurt anything to
 649	 * initialize these registers.
 650	 */
 651	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
 652	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
 653	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 654	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
 655
 656	wr32(E1000_FCTTV, hw->fc.pause_time);
 657
 658	ret_val = igb_set_fc_watermarks(hw);
 659
 660out:
 661
 662	return ret_val;
 663}
 664
 665/**
 666 *  igb_config_collision_dist - Configure collision distance
 667 *  @hw: pointer to the HW structure
 668 *
 669 *  Configures the collision distance to the default value and is used
 670 *  during link setup. Currently no func pointer exists and all
 671 *  implementations are handled in the generic version of this function.
 672 **/
 673void igb_config_collision_dist(struct e1000_hw *hw)
 674{
 675	u32 tctl;
 676
 677	tctl = rd32(E1000_TCTL);
 678
 679	tctl &= ~E1000_TCTL_COLD;
 680	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 681
 682	wr32(E1000_TCTL, tctl);
 683	wrfl();
 684}
 685
 686/**
 687 *  igb_set_fc_watermarks - Set flow control high/low watermarks
 688 *  @hw: pointer to the HW structure
 689 *
 690 *  Sets the flow control high/low threshold (watermark) registers.  If
 691 *  flow control XON frame transmission is enabled, then set XON frame
 692 *  tansmission as well.
 693 **/
 694static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
 695{
 696	s32 ret_val = 0;
 697	u32 fcrtl = 0, fcrth = 0;
 698
 699	/*
 700	 * Set the flow control receive threshold registers.  Normally,
 701	 * these registers will be set to a default threshold that may be
 702	 * adjusted later by the driver's runtime code.  However, if the
 703	 * ability to transmit pause frames is not enabled, then these
 704	 * registers will be set to 0.
 705	 */
 706	if (hw->fc.current_mode & e1000_fc_tx_pause) {
 707		/*
 708		 * We need to set up the Receive Threshold high and low water
 709		 * marks as well as (optionally) enabling the transmission of
 710		 * XON frames.
 711		 */
 712		fcrtl = hw->fc.low_water;
 713		if (hw->fc.send_xon)
 714			fcrtl |= E1000_FCRTL_XONE;
 715
 716		fcrth = hw->fc.high_water;
 717	}
 718	wr32(E1000_FCRTL, fcrtl);
 719	wr32(E1000_FCRTH, fcrth);
 720
 721	return ret_val;
 722}
 723
 724/**
 725 *  igb_set_default_fc - Set flow control default values
 726 *  @hw: pointer to the HW structure
 727 *
 728 *  Read the EEPROM for the default values for flow control and store the
 729 *  values.
 730 **/
 731static s32 igb_set_default_fc(struct e1000_hw *hw)
 732{
 733	s32 ret_val = 0;
 
 734	u16 nvm_data;
 735
 736	/*
 737	 * Read and store word 0x0F of the EEPROM. This word contains bits
 738	 * that determine the hardware's default PAUSE (flow control) mode,
 739	 * a bit that determines whether the HW defaults to enabling or
 740	 * disabling auto-negotiation, and the direction of the
 741	 * SW defined pins. If there is no SW over-ride of the flow
 742	 * control setting, then the variable hw->fc will
 743	 * be initialized based on a value in the EEPROM.
 744	 */
 745	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
 
 
 
 746
 
 
 747	if (ret_val) {
 748		hw_dbg("NVM Read Error\n");
 749		goto out;
 750	}
 751
 752	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
 753		hw->fc.requested_mode = e1000_fc_none;
 754	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
 755		 NVM_WORD0F_ASM_DIR)
 756		hw->fc.requested_mode = e1000_fc_tx_pause;
 757	else
 758		hw->fc.requested_mode = e1000_fc_full;
 759
 760out:
 761	return ret_val;
 762}
 763
 764/**
 765 *  igb_force_mac_fc - Force the MAC's flow control settings
 766 *  @hw: pointer to the HW structure
 767 *
 768 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 769 *  device control register to reflect the adapter settings.  TFCE and RFCE
 770 *  need to be explicitly set by software when a copper PHY is used because
 771 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 772 *  also configure these bits when link is forced on a fiber connection.
 773 **/
 774s32 igb_force_mac_fc(struct e1000_hw *hw)
 775{
 776	u32 ctrl;
 777	s32 ret_val = 0;
 778
 779	ctrl = rd32(E1000_CTRL);
 780
 781	/*
 782	 * Because we didn't get link via the internal auto-negotiation
 783	 * mechanism (we either forced link or we got link via PHY
 784	 * auto-neg), we have to manually enable/disable transmit an
 785	 * receive flow control.
 786	 *
 787	 * The "Case" statement below enables/disable flow control
 788	 * according to the "hw->fc.current_mode" parameter.
 789	 *
 790	 * The possible values of the "fc" parameter are:
 791	 *      0:  Flow control is completely disabled
 792	 *      1:  Rx flow control is enabled (we can receive pause
 793	 *          frames but not send pause frames).
 794	 *      2:  Tx flow control is enabled (we can send pause frames
 795	 *          frames but we do not receive pause frames).
 796	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
 797	 *  other:  No other values should be possible at this point.
 798	 */
 799	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 800
 801	switch (hw->fc.current_mode) {
 802	case e1000_fc_none:
 803		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 804		break;
 805	case e1000_fc_rx_pause:
 806		ctrl &= (~E1000_CTRL_TFCE);
 807		ctrl |= E1000_CTRL_RFCE;
 808		break;
 809	case e1000_fc_tx_pause:
 810		ctrl &= (~E1000_CTRL_RFCE);
 811		ctrl |= E1000_CTRL_TFCE;
 812		break;
 813	case e1000_fc_full:
 814		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 815		break;
 816	default:
 817		hw_dbg("Flow control param set incorrectly\n");
 818		ret_val = -E1000_ERR_CONFIG;
 819		goto out;
 820	}
 821
 822	wr32(E1000_CTRL, ctrl);
 823
 824out:
 825	return ret_val;
 826}
 827
 828/**
 829 *  igb_config_fc_after_link_up - Configures flow control after link
 830 *  @hw: pointer to the HW structure
 831 *
 832 *  Checks the status of auto-negotiation after link up to ensure that the
 833 *  speed and duplex were not forced.  If the link needed to be forced, then
 834 *  flow control needs to be forced also.  If auto-negotiation is enabled
 835 *  and did not fail, then we configure flow control based on our link
 836 *  partner.
 837 **/
 838s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
 839{
 840	struct e1000_mac_info *mac = &hw->mac;
 841	s32 ret_val = 0;
 
 842	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
 843	u16 speed, duplex;
 844
 845	/*
 846	 * Check for the case where we have fiber media and auto-neg failed
 847	 * so we had to force link.  In this case, we need to force the
 848	 * configuration of the MAC to match the "fc" parameter.
 849	 */
 850	if (mac->autoneg_failed) {
 851		if (hw->phy.media_type == e1000_media_type_internal_serdes)
 852			ret_val = igb_force_mac_fc(hw);
 853	} else {
 854		if (hw->phy.media_type == e1000_media_type_copper)
 855			ret_val = igb_force_mac_fc(hw);
 856	}
 857
 858	if (ret_val) {
 859		hw_dbg("Error forcing flow control settings\n");
 860		goto out;
 861	}
 862
 863	/*
 864	 * Check for the case where we have copper media and auto-neg is
 865	 * enabled.  In this case, we need to check and see if Auto-Neg
 866	 * has completed, and if so, how the PHY and link partner has
 867	 * flow control configured.
 868	 */
 869	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
 870		/*
 871		 * Read the MII Status Register and check to see if AutoNeg
 872		 * has completed.  We read this twice because this reg has
 873		 * some "sticky" (latched) bits.
 874		 */
 875		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 876						   &mii_status_reg);
 877		if (ret_val)
 878			goto out;
 879		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 880						   &mii_status_reg);
 881		if (ret_val)
 882			goto out;
 883
 884		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
 885			hw_dbg("Copper PHY and Auto Neg "
 886				 "has not completed.\n");
 887			goto out;
 888		}
 889
 890		/*
 891		 * The AutoNeg process has completed, so we now need to
 892		 * read both the Auto Negotiation Advertisement
 893		 * Register (Address 4) and the Auto_Negotiation Base
 894		 * Page Ability Register (Address 5) to determine how
 895		 * flow control was negotiated.
 896		 */
 897		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
 898					    &mii_nway_adv_reg);
 899		if (ret_val)
 900			goto out;
 901		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
 902					    &mii_nway_lp_ability_reg);
 903		if (ret_val)
 904			goto out;
 905
 906		/*
 907		 * Two bits in the Auto Negotiation Advertisement Register
 908		 * (Address 4) and two bits in the Auto Negotiation Base
 909		 * Page Ability Register (Address 5) determine flow control
 910		 * for both the PHY and the link partner.  The following
 911		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
 912		 * 1999, describes these PAUSE resolution bits and how flow
 913		 * control is determined based upon these settings.
 914		 * NOTE:  DC = Don't Care
 915		 *
 916		 *   LOCAL DEVICE  |   LINK PARTNER
 917		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
 918		 *-------|---------|-------|---------|--------------------
 919		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
 920		 *   0   |    1    |   0   |   DC    | e1000_fc_none
 921		 *   0   |    1    |   1   |    0    | e1000_fc_none
 922		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 923		 *   1   |    0    |   0   |   DC    | e1000_fc_none
 924		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
 925		 *   1   |    1    |   0   |    0    | e1000_fc_none
 926		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
 927		 *
 928		 * Are both PAUSE bits set to 1?  If so, this implies
 929		 * Symmetric Flow Control is enabled at both ends.  The
 930		 * ASM_DIR bits are irrelevant per the spec.
 931		 *
 932		 * For Symmetric Flow Control:
 933		 *
 934		 *   LOCAL DEVICE  |   LINK PARTNER
 935		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 936		 *-------|---------|-------|---------|--------------------
 937		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
 938		 *
 939		 */
 940		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 941		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
 942			/*
 943			 * Now we need to check if the user selected RX ONLY
 944			 * of pause frames.  In this case, we had to advertise
 945			 * FULL flow control because we could not advertise RX
 946			 * ONLY. Hence, we must now check to see if we need to
 947			 * turn OFF  the TRANSMISSION of PAUSE frames.
 948			 */
 949			if (hw->fc.requested_mode == e1000_fc_full) {
 950				hw->fc.current_mode = e1000_fc_full;
 951				hw_dbg("Flow Control = FULL.\r\n");
 952			} else {
 953				hw->fc.current_mode = e1000_fc_rx_pause;
 954				hw_dbg("Flow Control = "
 955				       "RX PAUSE frames only.\r\n");
 956			}
 957		}
 958		/*
 959		 * For receiving PAUSE frames ONLY.
 960		 *
 961		 *   LOCAL DEVICE  |   LINK PARTNER
 962		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 963		 *-------|---------|-------|---------|--------------------
 964		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 965		 */
 966		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 967			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
 968			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
 969			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
 970			hw->fc.current_mode = e1000_fc_tx_pause;
 971			hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
 972		}
 973		/*
 974		 * For transmitting PAUSE frames ONLY.
 975		 *
 976		 *   LOCAL DEVICE  |   LINK PARTNER
 977		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 978		 *-------|---------|-------|---------|--------------------
 979		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
 980		 */
 981		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 982			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
 983			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
 984			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
 985			hw->fc.current_mode = e1000_fc_rx_pause;
 986			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
 987		}
 988		/*
 989		 * Per the IEEE spec, at this point flow control should be
 990		 * disabled.  However, we want to consider that we could
 991		 * be connected to a legacy switch that doesn't advertise
 992		 * desired flow control, but can be forced on the link
 993		 * partner.  So if we advertised no flow control, that is
 994		 * what we will resolve to.  If we advertised some kind of
 995		 * receive capability (Rx Pause Only or Full Flow Control)
 996		 * and the link partner advertised none, we will configure
 997		 * ourselves to enable Rx Flow Control only.  We can do
 998		 * this safely for two reasons:  If the link partner really
 999		 * didn't want flow control enabled, and we enable Rx, no
1000		 * harm done since we won't be receiving any PAUSE frames
1001		 * anyway.  If the intent on the link partner was to have
1002		 * flow control enabled, then by us enabling RX only, we
1003		 * can at least receive pause frames and process them.
1004		 * This is a good idea because in most cases, since we are
1005		 * predominantly a server NIC, more times than not we will
1006		 * be asked to delay transmission of packets than asking
1007		 * our link partner to pause transmission of frames.
1008		 */
1009		else if ((hw->fc.requested_mode == e1000_fc_none ||
1010			  hw->fc.requested_mode == e1000_fc_tx_pause) ||
1011			 hw->fc.strict_ieee) {
1012			hw->fc.current_mode = e1000_fc_none;
1013			hw_dbg("Flow Control = NONE.\r\n");
1014		} else {
1015			hw->fc.current_mode = e1000_fc_rx_pause;
1016			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
1017		}
1018
1019		/*
1020		 * Now we need to do one last check...  If we auto-
1021		 * negotiated to HALF DUPLEX, flow control should not be
1022		 * enabled per IEEE 802.3 spec.
1023		 */
1024		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1025		if (ret_val) {
1026			hw_dbg("Error getting link speed and duplex\n");
1027			goto out;
1028		}
1029
1030		if (duplex == HALF_DUPLEX)
1031			hw->fc.current_mode = e1000_fc_none;
1032
1033		/*
1034		 * Now we call a subroutine to actually force the MAC
1035		 * controller to use the correct flow control settings.
1036		 */
1037		ret_val = igb_force_mac_fc(hw);
1038		if (ret_val) {
1039			hw_dbg("Error forcing flow control settings\n");
1040			goto out;
1041		}
1042	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043
1044out:
1045	return ret_val;
1046}
1047
1048/**
1049 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1050 *  @hw: pointer to the HW structure
1051 *  @speed: stores the current speed
1052 *  @duplex: stores the current duplex
1053 *
1054 *  Read the status register for the current speed/duplex and store the current
1055 *  speed and duplex for copper connections.
1056 **/
1057s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1058				      u16 *duplex)
1059{
1060	u32 status;
1061
1062	status = rd32(E1000_STATUS);
1063	if (status & E1000_STATUS_SPEED_1000) {
1064		*speed = SPEED_1000;
1065		hw_dbg("1000 Mbs, ");
1066	} else if (status & E1000_STATUS_SPEED_100) {
1067		*speed = SPEED_100;
1068		hw_dbg("100 Mbs, ");
1069	} else {
1070		*speed = SPEED_10;
1071		hw_dbg("10 Mbs, ");
1072	}
1073
1074	if (status & E1000_STATUS_FD) {
1075		*duplex = FULL_DUPLEX;
1076		hw_dbg("Full Duplex\n");
1077	} else {
1078		*duplex = HALF_DUPLEX;
1079		hw_dbg("Half Duplex\n");
1080	}
1081
1082	return 0;
1083}
1084
1085/**
1086 *  igb_get_hw_semaphore - Acquire hardware semaphore
1087 *  @hw: pointer to the HW structure
1088 *
1089 *  Acquire the HW semaphore to access the PHY or NVM
1090 **/
1091s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1092{
1093	u32 swsm;
1094	s32 ret_val = 0;
1095	s32 timeout = hw->nvm.word_size + 1;
1096	s32 i = 0;
1097
1098	/* Get the SW semaphore */
1099	while (i < timeout) {
1100		swsm = rd32(E1000_SWSM);
1101		if (!(swsm & E1000_SWSM_SMBI))
1102			break;
1103
1104		udelay(50);
1105		i++;
1106	}
1107
1108	if (i == timeout) {
1109		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1110		ret_val = -E1000_ERR_NVM;
1111		goto out;
1112	}
1113
1114	/* Get the FW semaphore. */
1115	for (i = 0; i < timeout; i++) {
1116		swsm = rd32(E1000_SWSM);
1117		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1118
1119		/* Semaphore acquired if bit latched */
1120		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1121			break;
1122
1123		udelay(50);
1124	}
1125
1126	if (i == timeout) {
1127		/* Release semaphores */
1128		igb_put_hw_semaphore(hw);
1129		hw_dbg("Driver can't access the NVM\n");
1130		ret_val = -E1000_ERR_NVM;
1131		goto out;
1132	}
1133
1134out:
1135	return ret_val;
1136}
1137
1138/**
1139 *  igb_put_hw_semaphore - Release hardware semaphore
1140 *  @hw: pointer to the HW structure
1141 *
1142 *  Release hardware semaphore used to access the PHY or NVM
1143 **/
1144void igb_put_hw_semaphore(struct e1000_hw *hw)
1145{
1146	u32 swsm;
1147
1148	swsm = rd32(E1000_SWSM);
1149
1150	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1151
1152	wr32(E1000_SWSM, swsm);
1153}
1154
1155/**
1156 *  igb_get_auto_rd_done - Check for auto read completion
1157 *  @hw: pointer to the HW structure
1158 *
1159 *  Check EEPROM for Auto Read done bit.
1160 **/
1161s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1162{
1163	s32 i = 0;
1164	s32 ret_val = 0;
1165
1166
1167	while (i < AUTO_READ_DONE_TIMEOUT) {
1168		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1169			break;
1170		msleep(1);
1171		i++;
1172	}
1173
1174	if (i == AUTO_READ_DONE_TIMEOUT) {
1175		hw_dbg("Auto read by HW from NVM has not completed.\n");
1176		ret_val = -E1000_ERR_RESET;
1177		goto out;
1178	}
1179
1180out:
1181	return ret_val;
1182}
1183
1184/**
1185 *  igb_valid_led_default - Verify a valid default LED config
1186 *  @hw: pointer to the HW structure
1187 *  @data: pointer to the NVM (EEPROM)
1188 *
1189 *  Read the EEPROM for the current default LED configuration.  If the
1190 *  LED configuration is not valid, set to a valid LED configuration.
1191 **/
1192static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1193{
1194	s32 ret_val;
1195
1196	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1197	if (ret_val) {
1198		hw_dbg("NVM Read Error\n");
1199		goto out;
1200	}
1201
1202	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1203		switch(hw->phy.media_type) {
1204		case e1000_media_type_internal_serdes:
1205			*data = ID_LED_DEFAULT_82575_SERDES;
1206			break;
1207		case e1000_media_type_copper:
1208		default:
1209			*data = ID_LED_DEFAULT;
1210			break;
1211		}
1212	}
1213out:
1214	return ret_val;
1215}
1216
1217/**
1218 *  igb_id_led_init -
1219 *  @hw: pointer to the HW structure
1220 *
1221 **/
1222s32 igb_id_led_init(struct e1000_hw *hw)
1223{
1224	struct e1000_mac_info *mac = &hw->mac;
1225	s32 ret_val;
1226	const u32 ledctl_mask = 0x000000FF;
1227	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1228	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1229	u16 data, i, temp;
1230	const u16 led_mask = 0x0F;
1231
1232	ret_val = igb_valid_led_default(hw, &data);
 
 
 
 
 
 
1233	if (ret_val)
1234		goto out;
1235
1236	mac->ledctl_default = rd32(E1000_LEDCTL);
1237	mac->ledctl_mode1 = mac->ledctl_default;
1238	mac->ledctl_mode2 = mac->ledctl_default;
1239
1240	for (i = 0; i < 4; i++) {
1241		temp = (data >> (i << 2)) & led_mask;
1242		switch (temp) {
1243		case ID_LED_ON1_DEF2:
1244		case ID_LED_ON1_ON2:
1245		case ID_LED_ON1_OFF2:
1246			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1247			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1248			break;
1249		case ID_LED_OFF1_DEF2:
1250		case ID_LED_OFF1_ON2:
1251		case ID_LED_OFF1_OFF2:
1252			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1253			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1254			break;
1255		default:
1256			/* Do nothing */
1257			break;
1258		}
1259		switch (temp) {
1260		case ID_LED_DEF1_ON2:
1261		case ID_LED_ON1_ON2:
1262		case ID_LED_OFF1_ON2:
1263			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1264			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1265			break;
1266		case ID_LED_DEF1_OFF2:
1267		case ID_LED_ON1_OFF2:
1268		case ID_LED_OFF1_OFF2:
1269			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1270			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1271			break;
1272		default:
1273			/* Do nothing */
1274			break;
1275		}
1276	}
1277
1278out:
1279	return ret_val;
1280}
1281
1282/**
1283 *  igb_cleanup_led - Set LED config to default operation
1284 *  @hw: pointer to the HW structure
1285 *
1286 *  Remove the current LED configuration and set the LED configuration
1287 *  to the default value, saved from the EEPROM.
1288 **/
1289s32 igb_cleanup_led(struct e1000_hw *hw)
1290{
1291	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1292	return 0;
1293}
1294
1295/**
1296 *  igb_blink_led - Blink LED
1297 *  @hw: pointer to the HW structure
1298 *
1299 *  Blink the led's which are set to be on.
1300 **/
1301s32 igb_blink_led(struct e1000_hw *hw)
1302{
1303	u32 ledctl_blink = 0;
1304	u32 i;
1305
1306	/*
1307	 * set the blink bit for each LED that's "on" (0x0E)
1308	 * in ledctl_mode2
1309	 */
1310	ledctl_blink = hw->mac.ledctl_mode2;
1311	for (i = 0; i < 4; i++)
1312		if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1313		    E1000_LEDCTL_MODE_LED_ON)
1314			ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1315					 (i * 8));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316
1317	wr32(E1000_LEDCTL, ledctl_blink);
1318
1319	return 0;
1320}
1321
1322/**
1323 *  igb_led_off - Turn LED off
1324 *  @hw: pointer to the HW structure
1325 *
1326 *  Turn LED off.
1327 **/
1328s32 igb_led_off(struct e1000_hw *hw)
1329{
1330	switch (hw->phy.media_type) {
1331	case e1000_media_type_copper:
1332		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1333		break;
1334	default:
1335		break;
1336	}
1337
1338	return 0;
1339}
1340
1341/**
1342 *  igb_disable_pcie_master - Disables PCI-express master access
1343 *  @hw: pointer to the HW structure
1344 *
1345 *  Returns 0 (0) if successful, else returns -10
1346 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1347 *  the master requests to be disabled.
1348 *
1349 *  Disables PCI-Express master access and verifies there are no pending
1350 *  requests.
1351 **/
1352s32 igb_disable_pcie_master(struct e1000_hw *hw)
1353{
1354	u32 ctrl;
1355	s32 timeout = MASTER_DISABLE_TIMEOUT;
1356	s32 ret_val = 0;
1357
1358	if (hw->bus.type != e1000_bus_type_pci_express)
1359		goto out;
1360
1361	ctrl = rd32(E1000_CTRL);
1362	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1363	wr32(E1000_CTRL, ctrl);
1364
1365	while (timeout) {
1366		if (!(rd32(E1000_STATUS) &
1367		      E1000_STATUS_GIO_MASTER_ENABLE))
1368			break;
1369		udelay(100);
1370		timeout--;
1371	}
1372
1373	if (!timeout) {
1374		hw_dbg("Master requests are pending.\n");
1375		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1376		goto out;
1377	}
1378
1379out:
1380	return ret_val;
1381}
1382
1383/**
1384 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1385 *  @hw: pointer to the HW structure
1386 *
1387 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1388 *  set, which is forced to MDI mode only.
1389 **/
1390s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1391{
1392	s32 ret_val = 0;
 
 
 
 
1393
1394	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1395		hw_dbg("Invalid MDI setting detected\n");
1396		hw->phy.mdix = 1;
1397		ret_val = -E1000_ERR_CONFIG;
1398		goto out;
1399	}
1400
1401out:
1402	return ret_val;
1403}
1404
1405/**
1406 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1407 *  @hw: pointer to the HW structure
1408 *  @reg: 32bit register offset such as E1000_SCTL
1409 *  @offset: register offset to write to
1410 *  @data: data to write at register offset
1411 *
1412 *  Writes an address/data control type register.  There are several of these
1413 *  and they all have the format address << 8 | data and bit 31 is polled for
1414 *  completion.
1415 **/
1416s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1417			      u32 offset, u8 data)
1418{
1419	u32 i, regvalue = 0;
1420	s32 ret_val = 0;
1421
1422	/* Set up the address and data */
1423	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1424	wr32(reg, regvalue);
1425
1426	/* Poll the ready bit to see if the MDI read completed */
1427	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1428		udelay(5);
1429		regvalue = rd32(reg);
1430		if (regvalue & E1000_GEN_CTL_READY)
1431			break;
1432	}
1433	if (!(regvalue & E1000_GEN_CTL_READY)) {
1434		hw_dbg("Reg %08x did not indicate ready\n", reg);
1435		ret_val = -E1000_ERR_PHY;
1436		goto out;
1437	}
1438
1439out:
1440	return ret_val;
1441}
1442
1443/**
1444 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1445 *  @hw: pointer to the HW structure
1446 *
1447 *  Verifies the hardware needs to leave interface enabled so that frames can
1448 *  be directed to and from the management interface.
1449 **/
1450bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1451{
1452	u32 manc;
1453	u32 fwsm, factps;
1454	bool ret_val = false;
1455
1456	if (!hw->mac.asf_firmware_present)
1457		goto out;
1458
1459	manc = rd32(E1000_MANC);
1460
1461	if (!(manc & E1000_MANC_RCV_TCO_EN))
1462		goto out;
1463
1464	if (hw->mac.arc_subsystem_valid) {
1465		fwsm = rd32(E1000_FWSM);
1466		factps = rd32(E1000_FACTPS);
1467
1468		if (!(factps & E1000_FACTPS_MNGCG) &&
1469		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1470		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1471			ret_val = true;
1472			goto out;
1473		}
1474	} else {
1475		if ((manc & E1000_MANC_SMBUS_EN) &&
1476		    !(manc & E1000_MANC_ASF_EN)) {
1477			ret_val = true;
1478			goto out;
1479		}
1480	}
1481
1482out:
1483	return ret_val;
1484}