Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * fs/mpage.c
  4 *
  5 * Copyright (C) 2002, Linus Torvalds.
  6 *
  7 * Contains functions related to preparing and submitting BIOs which contain
  8 * multiple pagecache pages.
  9 *
 10 * 15May2002	Andrew Morton
 11 *		Initial version
 12 * 27Jun2002	axboe@suse.de
 13 *		use bio_add_page() to build bio's just the right size
 14 */
 15
 16#include <linux/kernel.h>
 17#include <linux/export.h>
 18#include <linux/mm.h>
 19#include <linux/kdev_t.h>
 20#include <linux/gfp.h>
 21#include <linux/bio.h>
 22#include <linux/fs.h>
 23#include <linux/buffer_head.h>
 24#include <linux/blkdev.h>
 25#include <linux/highmem.h>
 26#include <linux/prefetch.h>
 27#include <linux/mpage.h>
 28#include <linux/mm_inline.h>
 29#include <linux/writeback.h>
 30#include <linux/backing-dev.h>
 31#include <linux/pagevec.h>
 32#include "internal.h"
 33
 34/*
 35 * I/O completion handler for multipage BIOs.
 36 *
 37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
 38 * If a page does not map to a contiguous run of blocks then it simply falls
 39 * back to block_read_full_folio().
 40 *
 41 * Why is this?  If a page's completion depends on a number of different BIOs
 42 * which can complete in any order (or at the same time) then determining the
 43 * status of that page is hard.  See end_buffer_async_read() for the details.
 44 * There is no point in duplicating all that complexity.
 45 */
 46static void mpage_read_end_io(struct bio *bio)
 47{
 48	struct folio_iter fi;
 49	int err = blk_status_to_errno(bio->bi_status);
 50
 51	bio_for_each_folio_all(fi, bio) {
 52		if (err)
 53			folio_set_error(fi.folio);
 54		else
 55			folio_mark_uptodate(fi.folio);
 56		folio_unlock(fi.folio);
 57	}
 58
 59	bio_put(bio);
 60}
 61
 62static void mpage_write_end_io(struct bio *bio)
 63{
 64	struct folio_iter fi;
 65	int err = blk_status_to_errno(bio->bi_status);
 66
 67	bio_for_each_folio_all(fi, bio) {
 68		if (err) {
 69			folio_set_error(fi.folio);
 70			mapping_set_error(fi.folio->mapping, err);
 71		}
 72		folio_end_writeback(fi.folio);
 73	}
 74
 75	bio_put(bio);
 76}
 77
 78static struct bio *mpage_bio_submit_read(struct bio *bio)
 79{
 80	bio->bi_end_io = mpage_read_end_io;
 81	guard_bio_eod(bio);
 82	submit_bio(bio);
 83	return NULL;
 84}
 85
 86static struct bio *mpage_bio_submit_write(struct bio *bio)
 87{
 88	bio->bi_end_io = mpage_write_end_io;
 89	guard_bio_eod(bio);
 90	submit_bio(bio);
 91	return NULL;
 92}
 93
 94/*
 95 * support function for mpage_readahead.  The fs supplied get_block might
 96 * return an up to date buffer.  This is used to map that buffer into
 97 * the page, which allows read_folio to avoid triggering a duplicate call
 98 * to get_block.
 99 *
100 * The idea is to avoid adding buffers to pages that don't already have
101 * them.  So when the buffer is up to date and the page size == block size,
102 * this marks the page up to date instead of adding new buffers.
103 */
104static void map_buffer_to_folio(struct folio *folio, struct buffer_head *bh,
105		int page_block)
106{
107	struct inode *inode = folio->mapping->host;
108	struct buffer_head *page_bh, *head;
109	int block = 0;
110
111	head = folio_buffers(folio);
112	if (!head) {
113		/*
114		 * don't make any buffers if there is only one buffer on
115		 * the folio and the folio just needs to be set up to date
116		 */
117		if (inode->i_blkbits == PAGE_SHIFT &&
118		    buffer_uptodate(bh)) {
119			folio_mark_uptodate(folio);
120			return;
121		}
122		head = create_empty_buffers(folio, i_blocksize(inode), 0);
123	}
124
125	page_bh = head;
126	do {
127		if (block == page_block) {
128			page_bh->b_state = bh->b_state;
129			page_bh->b_bdev = bh->b_bdev;
130			page_bh->b_blocknr = bh->b_blocknr;
131			break;
132		}
133		page_bh = page_bh->b_this_page;
134		block++;
135	} while (page_bh != head);
136}
137
138struct mpage_readpage_args {
139	struct bio *bio;
140	struct folio *folio;
141	unsigned int nr_pages;
142	bool is_readahead;
143	sector_t last_block_in_bio;
144	struct buffer_head map_bh;
145	unsigned long first_logical_block;
146	get_block_t *get_block;
147};
148
149/*
150 * This is the worker routine which does all the work of mapping the disk
151 * blocks and constructs largest possible bios, submits them for IO if the
152 * blocks are not contiguous on the disk.
153 *
154 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
155 * represent the validity of its disk mapping and to decide when to do the next
156 * get_block() call.
157 */
158static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
159{
160	struct folio *folio = args->folio;
161	struct inode *inode = folio->mapping->host;
162	const unsigned blkbits = inode->i_blkbits;
163	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
164	const unsigned blocksize = 1 << blkbits;
165	struct buffer_head *map_bh = &args->map_bh;
166	sector_t block_in_file;
167	sector_t last_block;
168	sector_t last_block_in_file;
169	sector_t first_block;
170	unsigned page_block;
171	unsigned first_hole = blocks_per_page;
172	struct block_device *bdev = NULL;
173	int length;
174	int fully_mapped = 1;
175	blk_opf_t opf = REQ_OP_READ;
176	unsigned nblocks;
177	unsigned relative_block;
178	gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
179
180	/* MAX_BUF_PER_PAGE, for example */
181	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
182
183	if (args->is_readahead) {
184		opf |= REQ_RAHEAD;
185		gfp |= __GFP_NORETRY | __GFP_NOWARN;
186	}
187
188	if (folio_buffers(folio))
189		goto confused;
190
191	block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
192	last_block = block_in_file + args->nr_pages * blocks_per_page;
193	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
194	if (last_block > last_block_in_file)
195		last_block = last_block_in_file;
196	page_block = 0;
197
198	/*
199	 * Map blocks using the result from the previous get_blocks call first.
200	 */
201	nblocks = map_bh->b_size >> blkbits;
202	if (buffer_mapped(map_bh) &&
203			block_in_file > args->first_logical_block &&
204			block_in_file < (args->first_logical_block + nblocks)) {
205		unsigned map_offset = block_in_file - args->first_logical_block;
206		unsigned last = nblocks - map_offset;
207
208		first_block = map_bh->b_blocknr + map_offset;
209		for (relative_block = 0; ; relative_block++) {
210			if (relative_block == last) {
211				clear_buffer_mapped(map_bh);
212				break;
213			}
214			if (page_block == blocks_per_page)
215				break;
216			page_block++;
217			block_in_file++;
218		}
219		bdev = map_bh->b_bdev;
220	}
221
222	/*
223	 * Then do more get_blocks calls until we are done with this folio.
224	 */
225	map_bh->b_folio = folio;
226	while (page_block < blocks_per_page) {
227		map_bh->b_state = 0;
228		map_bh->b_size = 0;
229
230		if (block_in_file < last_block) {
231			map_bh->b_size = (last_block-block_in_file) << blkbits;
232			if (args->get_block(inode, block_in_file, map_bh, 0))
233				goto confused;
234			args->first_logical_block = block_in_file;
235		}
236
237		if (!buffer_mapped(map_bh)) {
238			fully_mapped = 0;
239			if (first_hole == blocks_per_page)
240				first_hole = page_block;
241			page_block++;
242			block_in_file++;
243			continue;
244		}
245
246		/* some filesystems will copy data into the page during
247		 * the get_block call, in which case we don't want to
248		 * read it again.  map_buffer_to_folio copies the data
249		 * we just collected from get_block into the folio's buffers
250		 * so read_folio doesn't have to repeat the get_block call
251		 */
252		if (buffer_uptodate(map_bh)) {
253			map_buffer_to_folio(folio, map_bh, page_block);
254			goto confused;
255		}
256	
257		if (first_hole != blocks_per_page)
258			goto confused;		/* hole -> non-hole */
259
260		/* Contiguous blocks? */
261		if (!page_block)
262			first_block = map_bh->b_blocknr;
263		else if (first_block + page_block != map_bh->b_blocknr)
264			goto confused;
265		nblocks = map_bh->b_size >> blkbits;
266		for (relative_block = 0; ; relative_block++) {
267			if (relative_block == nblocks) {
268				clear_buffer_mapped(map_bh);
269				break;
270			} else if (page_block == blocks_per_page)
271				break;
272			page_block++;
273			block_in_file++;
274		}
275		bdev = map_bh->b_bdev;
276	}
277
278	if (first_hole != blocks_per_page) {
279		folio_zero_segment(folio, first_hole << blkbits, PAGE_SIZE);
280		if (first_hole == 0) {
281			folio_mark_uptodate(folio);
282			folio_unlock(folio);
283			goto out;
284		}
285	} else if (fully_mapped) {
286		folio_set_mappedtodisk(folio);
287	}
288
289	/*
290	 * This folio will go to BIO.  Do we need to send this BIO off first?
291	 */
292	if (args->bio && (args->last_block_in_bio != first_block - 1))
293		args->bio = mpage_bio_submit_read(args->bio);
294
295alloc_new:
296	if (args->bio == NULL) {
297		args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), opf,
298				      gfp);
299		if (args->bio == NULL)
300			goto confused;
301		args->bio->bi_iter.bi_sector = first_block << (blkbits - 9);
302	}
303
304	length = first_hole << blkbits;
305	if (!bio_add_folio(args->bio, folio, length, 0)) {
306		args->bio = mpage_bio_submit_read(args->bio);
307		goto alloc_new;
308	}
309
310	relative_block = block_in_file - args->first_logical_block;
311	nblocks = map_bh->b_size >> blkbits;
312	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
313	    (first_hole != blocks_per_page))
314		args->bio = mpage_bio_submit_read(args->bio);
315	else
316		args->last_block_in_bio = first_block + blocks_per_page - 1;
317out:
318	return args->bio;
319
320confused:
321	if (args->bio)
322		args->bio = mpage_bio_submit_read(args->bio);
323	if (!folio_test_uptodate(folio))
324		block_read_full_folio(folio, args->get_block);
325	else
326		folio_unlock(folio);
327	goto out;
328}
329
330/**
331 * mpage_readahead - start reads against pages
332 * @rac: Describes which pages to read.
333 * @get_block: The filesystem's block mapper function.
334 *
335 * This function walks the pages and the blocks within each page, building and
336 * emitting large BIOs.
337 *
338 * If anything unusual happens, such as:
339 *
340 * - encountering a page which has buffers
341 * - encountering a page which has a non-hole after a hole
342 * - encountering a page with non-contiguous blocks
343 *
344 * then this code just gives up and calls the buffer_head-based read function.
345 * It does handle a page which has holes at the end - that is a common case:
346 * the end-of-file on blocksize < PAGE_SIZE setups.
347 *
348 * BH_Boundary explanation:
349 *
350 * There is a problem.  The mpage read code assembles several pages, gets all
351 * their disk mappings, and then submits them all.  That's fine, but obtaining
352 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
353 *
354 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
355 * submitted in the following order:
356 *
357 * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
358 *
359 * because the indirect block has to be read to get the mappings of blocks
360 * 13,14,15,16.  Obviously, this impacts performance.
361 *
362 * So what we do it to allow the filesystem's get_block() function to set
363 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
364 * after this one will require I/O against a block which is probably close to
365 * this one.  So you should push what I/O you have currently accumulated.
366 *
367 * This all causes the disk requests to be issued in the correct order.
368 */
369void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
370{
371	struct folio *folio;
372	struct mpage_readpage_args args = {
373		.get_block = get_block,
374		.is_readahead = true,
375	};
376
377	while ((folio = readahead_folio(rac))) {
378		prefetchw(&folio->flags);
379		args.folio = folio;
380		args.nr_pages = readahead_count(rac);
381		args.bio = do_mpage_readpage(&args);
382	}
383	if (args.bio)
384		mpage_bio_submit_read(args.bio);
385}
386EXPORT_SYMBOL(mpage_readahead);
387
388/*
389 * This isn't called much at all
390 */
391int mpage_read_folio(struct folio *folio, get_block_t get_block)
392{
393	struct mpage_readpage_args args = {
394		.folio = folio,
395		.nr_pages = 1,
396		.get_block = get_block,
397	};
398
399	args.bio = do_mpage_readpage(&args);
400	if (args.bio)
401		mpage_bio_submit_read(args.bio);
402	return 0;
403}
404EXPORT_SYMBOL(mpage_read_folio);
405
406/*
407 * Writing is not so simple.
408 *
409 * If the page has buffers then they will be used for obtaining the disk
410 * mapping.  We only support pages which are fully mapped-and-dirty, with a
411 * special case for pages which are unmapped at the end: end-of-file.
412 *
413 * If the page has no buffers (preferred) then the page is mapped here.
414 *
415 * If all blocks are found to be contiguous then the page can go into the
416 * BIO.  Otherwise fall back to the mapping's writepage().
417 * 
418 * FIXME: This code wants an estimate of how many pages are still to be
419 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
420 * just allocate full-size (16-page) BIOs.
421 */
422
423struct mpage_data {
424	struct bio *bio;
425	sector_t last_block_in_bio;
426	get_block_t *get_block;
427};
428
429/*
430 * We have our BIO, so we can now mark the buffers clean.  Make
431 * sure to only clean buffers which we know we'll be writing.
432 */
433static void clean_buffers(struct folio *folio, unsigned first_unmapped)
434{
435	unsigned buffer_counter = 0;
436	struct buffer_head *bh, *head = folio_buffers(folio);
437
438	if (!head)
439		return;
440	bh = head;
441
442	do {
443		if (buffer_counter++ == first_unmapped)
444			break;
445		clear_buffer_dirty(bh);
446		bh = bh->b_this_page;
447	} while (bh != head);
448
449	/*
450	 * we cannot drop the bh if the page is not uptodate or a concurrent
451	 * read_folio would fail to serialize with the bh and it would read from
452	 * disk before we reach the platter.
453	 */
454	if (buffer_heads_over_limit && folio_test_uptodate(folio))
455		try_to_free_buffers(folio);
456}
457
458static int __mpage_writepage(struct folio *folio, struct writeback_control *wbc,
459		      void *data)
460{
461	struct mpage_data *mpd = data;
462	struct bio *bio = mpd->bio;
463	struct address_space *mapping = folio->mapping;
464	struct inode *inode = mapping->host;
465	const unsigned blkbits = inode->i_blkbits;
466	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
467	sector_t last_block;
468	sector_t block_in_file;
469	sector_t first_block;
470	unsigned page_block;
471	unsigned first_unmapped = blocks_per_page;
472	struct block_device *bdev = NULL;
473	int boundary = 0;
474	sector_t boundary_block = 0;
475	struct block_device *boundary_bdev = NULL;
476	size_t length;
477	struct buffer_head map_bh;
478	loff_t i_size = i_size_read(inode);
479	int ret = 0;
480	struct buffer_head *head = folio_buffers(folio);
481
482	if (head) {
483		struct buffer_head *bh = head;
484
485		/* If they're all mapped and dirty, do it */
486		page_block = 0;
487		do {
488			BUG_ON(buffer_locked(bh));
489			if (!buffer_mapped(bh)) {
490				/*
491				 * unmapped dirty buffers are created by
492				 * block_dirty_folio -> mmapped data
493				 */
494				if (buffer_dirty(bh))
495					goto confused;
496				if (first_unmapped == blocks_per_page)
497					first_unmapped = page_block;
498				continue;
499			}
500
501			if (first_unmapped != blocks_per_page)
502				goto confused;	/* hole -> non-hole */
503
504			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
505				goto confused;
506			if (page_block) {
507				if (bh->b_blocknr != first_block + page_block)
508					goto confused;
509			} else {
510				first_block = bh->b_blocknr;
511			}
512			page_block++;
513			boundary = buffer_boundary(bh);
514			if (boundary) {
515				boundary_block = bh->b_blocknr;
516				boundary_bdev = bh->b_bdev;
517			}
518			bdev = bh->b_bdev;
519		} while ((bh = bh->b_this_page) != head);
520
521		if (first_unmapped)
522			goto page_is_mapped;
523
524		/*
525		 * Page has buffers, but they are all unmapped. The page was
526		 * created by pagein or read over a hole which was handled by
527		 * block_read_full_folio().  If this address_space is also
528		 * using mpage_readahead then this can rarely happen.
529		 */
530		goto confused;
531	}
532
533	/*
534	 * The page has no buffers: map it to disk
535	 */
536	BUG_ON(!folio_test_uptodate(folio));
537	block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
538	/*
539	 * Whole page beyond EOF? Skip allocating blocks to avoid leaking
540	 * space.
541	 */
542	if (block_in_file >= (i_size + (1 << blkbits) - 1) >> blkbits)
543		goto page_is_mapped;
544	last_block = (i_size - 1) >> blkbits;
545	map_bh.b_folio = folio;
546	for (page_block = 0; page_block < blocks_per_page; ) {
547
548		map_bh.b_state = 0;
549		map_bh.b_size = 1 << blkbits;
550		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
551			goto confused;
552		if (!buffer_mapped(&map_bh))
553			goto confused;
554		if (buffer_new(&map_bh))
555			clean_bdev_bh_alias(&map_bh);
556		if (buffer_boundary(&map_bh)) {
557			boundary_block = map_bh.b_blocknr;
558			boundary_bdev = map_bh.b_bdev;
559		}
560		if (page_block) {
561			if (map_bh.b_blocknr != first_block + page_block)
562				goto confused;
563		} else {
564			first_block = map_bh.b_blocknr;
565		}
566		page_block++;
567		boundary = buffer_boundary(&map_bh);
568		bdev = map_bh.b_bdev;
569		if (block_in_file == last_block)
570			break;
571		block_in_file++;
572	}
573	BUG_ON(page_block == 0);
574
575	first_unmapped = page_block;
576
577page_is_mapped:
578	/* Don't bother writing beyond EOF, truncate will discard the folio */
579	if (folio_pos(folio) >= i_size)
580		goto confused;
581	length = folio_size(folio);
582	if (folio_pos(folio) + length > i_size) {
583		/*
584		 * The page straddles i_size.  It must be zeroed out on each
585		 * and every writepage invocation because it may be mmapped.
586		 * "A file is mapped in multiples of the page size.  For a file
587		 * that is not a multiple of the page size, the remaining memory
588		 * is zeroed when mapped, and writes to that region are not
589		 * written out to the file."
590		 */
591		length = i_size - folio_pos(folio);
592		folio_zero_segment(folio, length, folio_size(folio));
593	}
594
595	/*
596	 * This page will go to BIO.  Do we need to send this BIO off first?
597	 */
598	if (bio && mpd->last_block_in_bio != first_block - 1)
599		bio = mpage_bio_submit_write(bio);
600
601alloc_new:
602	if (bio == NULL) {
603		bio = bio_alloc(bdev, BIO_MAX_VECS,
604				REQ_OP_WRITE | wbc_to_write_flags(wbc),
605				GFP_NOFS);
606		bio->bi_iter.bi_sector = first_block << (blkbits - 9);
607		wbc_init_bio(wbc, bio);
608		bio->bi_write_hint = inode->i_write_hint;
609	}
610
611	/*
612	 * Must try to add the page before marking the buffer clean or
613	 * the confused fail path above (OOM) will be very confused when
614	 * it finds all bh marked clean (i.e. it will not write anything)
615	 */
616	wbc_account_cgroup_owner(wbc, &folio->page, folio_size(folio));
617	length = first_unmapped << blkbits;
618	if (!bio_add_folio(bio, folio, length, 0)) {
619		bio = mpage_bio_submit_write(bio);
620		goto alloc_new;
621	}
622
623	clean_buffers(folio, first_unmapped);
624
625	BUG_ON(folio_test_writeback(folio));
626	folio_start_writeback(folio);
627	folio_unlock(folio);
628	if (boundary || (first_unmapped != blocks_per_page)) {
629		bio = mpage_bio_submit_write(bio);
630		if (boundary_block) {
631			write_boundary_block(boundary_bdev,
632					boundary_block, 1 << blkbits);
633		}
634	} else {
635		mpd->last_block_in_bio = first_block + blocks_per_page - 1;
636	}
637	goto out;
638
639confused:
640	if (bio)
641		bio = mpage_bio_submit_write(bio);
642
643	/*
644	 * The caller has a ref on the inode, so *mapping is stable
645	 */
646	ret = block_write_full_folio(folio, wbc, mpd->get_block);
647	mapping_set_error(mapping, ret);
648out:
649	mpd->bio = bio;
650	return ret;
651}
652
653/**
654 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
655 * @mapping: address space structure to write
656 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
657 * @get_block: the filesystem's block mapper function.
658 *
659 * This is a library function, which implements the writepages()
660 * address_space_operation.
661 */
662int
663mpage_writepages(struct address_space *mapping,
664		struct writeback_control *wbc, get_block_t get_block)
665{
666	struct mpage_data mpd = {
667		.get_block	= get_block,
668	};
669	struct blk_plug plug;
670	int ret;
671
672	blk_start_plug(&plug);
673	ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
674	if (mpd.bio)
675		mpage_bio_submit_write(mpd.bio);
676	blk_finish_plug(&plug);
677	return ret;
678}
679EXPORT_SYMBOL(mpage_writepages);
  1/*
  2 * fs/mpage.c
  3 *
  4 * Copyright (C) 2002, Linus Torvalds.
  5 *
  6 * Contains functions related to preparing and submitting BIOs which contain
  7 * multiple pagecache pages.
  8 *
  9 * 15May2002	Andrew Morton
 10 *		Initial version
 11 * 27Jun2002	axboe@suse.de
 12 *		use bio_add_page() to build bio's just the right size
 13 */
 14
 15#include <linux/kernel.h>
 16#include <linux/export.h>
 17#include <linux/mm.h>
 18#include <linux/kdev_t.h>
 19#include <linux/gfp.h>
 20#include <linux/bio.h>
 21#include <linux/fs.h>
 22#include <linux/buffer_head.h>
 23#include <linux/blkdev.h>
 24#include <linux/highmem.h>
 25#include <linux/prefetch.h>
 26#include <linux/mpage.h>
 27#include <linux/writeback.h>
 28#include <linux/backing-dev.h>
 29#include <linux/pagevec.h>
 30#include <linux/cleancache.h>
 31
 32/*
 33 * I/O completion handler for multipage BIOs.
 34 *
 35 * The mpage code never puts partial pages into a BIO (except for end-of-file).
 36 * If a page does not map to a contiguous run of blocks then it simply falls
 37 * back to block_read_full_page().
 38 *
 39 * Why is this?  If a page's completion depends on a number of different BIOs
 40 * which can complete in any order (or at the same time) then determining the
 41 * status of that page is hard.  See end_buffer_async_read() for the details.
 42 * There is no point in duplicating all that complexity.
 43 */
 44static void mpage_end_io(struct bio *bio, int err)
 45{
 46	struct bio_vec *bv;
 47	int i;
 48
 49	bio_for_each_segment_all(bv, bio, i) {
 50		struct page *page = bv->bv_page;
 51
 52		if (bio_data_dir(bio) == READ) {
 53			if (!err) {
 54				SetPageUptodate(page);
 55			} else {
 56				ClearPageUptodate(page);
 57				SetPageError(page);
 58			}
 59			unlock_page(page);
 60		} else { /* bio_data_dir(bio) == WRITE */
 61			if (err) {
 62				SetPageError(page);
 63				if (page->mapping)
 64					set_bit(AS_EIO, &page->mapping->flags);
 65			}
 66			end_page_writeback(page);
 67		}
 68	}
 69
 70	bio_put(bio);
 71}
 72
 73static struct bio *mpage_bio_submit(int rw, struct bio *bio)
 74{
 75	bio->bi_end_io = mpage_end_io;
 76	submit_bio(rw, bio);
 77	return NULL;
 78}
 79
 80static struct bio *
 81mpage_alloc(struct block_device *bdev,
 82		sector_t first_sector, int nr_vecs,
 83		gfp_t gfp_flags)
 84{
 85	struct bio *bio;
 86
 87	bio = bio_alloc(gfp_flags, nr_vecs);
 88
 89	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
 90		while (!bio && (nr_vecs /= 2))
 91			bio = bio_alloc(gfp_flags, nr_vecs);
 92	}
 93
 94	if (bio) {
 95		bio->bi_bdev = bdev;
 96		bio->bi_iter.bi_sector = first_sector;
 97	}
 98	return bio;
 99}
100
101/*
102 * support function for mpage_readpages.  The fs supplied get_block might
103 * return an up to date buffer.  This is used to map that buffer into
104 * the page, which allows readpage to avoid triggering a duplicate call
105 * to get_block.
106 *
107 * The idea is to avoid adding buffers to pages that don't already have
108 * them.  So when the buffer is up to date and the page size == block size,
109 * this marks the page up to date instead of adding new buffers.
110 */
111static void 
112map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
113{
114	struct inode *inode = page->mapping->host;
115	struct buffer_head *page_bh, *head;
116	int block = 0;
117
118	if (!page_has_buffers(page)) {
119		/*
120		 * don't make any buffers if there is only one buffer on
121		 * the page and the page just needs to be set up to date
122		 */
123		if (inode->i_blkbits == PAGE_CACHE_SHIFT && 
124		    buffer_uptodate(bh)) {
125			SetPageUptodate(page);    
126			return;
127		}
128		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
129	}
130	head = page_buffers(page);
131	page_bh = head;
132	do {
133		if (block == page_block) {
134			page_bh->b_state = bh->b_state;
135			page_bh->b_bdev = bh->b_bdev;
136			page_bh->b_blocknr = bh->b_blocknr;
137			break;
138		}
139		page_bh = page_bh->b_this_page;
140		block++;
141	} while (page_bh != head);
142}
143
144/*
145 * This is the worker routine which does all the work of mapping the disk
146 * blocks and constructs largest possible bios, submits them for IO if the
147 * blocks are not contiguous on the disk.
148 *
149 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
150 * represent the validity of its disk mapping and to decide when to do the next
151 * get_block() call.
152 */
153static struct bio *
154do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
155		sector_t *last_block_in_bio, struct buffer_head *map_bh,
156		unsigned long *first_logical_block, get_block_t get_block)
157{
158	struct inode *inode = page->mapping->host;
159	const unsigned blkbits = inode->i_blkbits;
160	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
161	const unsigned blocksize = 1 << blkbits;
162	sector_t block_in_file;
163	sector_t last_block;
164	sector_t last_block_in_file;
165	sector_t blocks[MAX_BUF_PER_PAGE];
166	unsigned page_block;
167	unsigned first_hole = blocks_per_page;
168	struct block_device *bdev = NULL;
169	int length;
170	int fully_mapped = 1;
171	unsigned nblocks;
172	unsigned relative_block;
173
174	if (page_has_buffers(page))
175		goto confused;
176
177	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
178	last_block = block_in_file + nr_pages * blocks_per_page;
179	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
180	if (last_block > last_block_in_file)
181		last_block = last_block_in_file;
182	page_block = 0;
183
184	/*
185	 * Map blocks using the result from the previous get_blocks call first.
186	 */
187	nblocks = map_bh->b_size >> blkbits;
188	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
189			block_in_file < (*first_logical_block + nblocks)) {
190		unsigned map_offset = block_in_file - *first_logical_block;
191		unsigned last = nblocks - map_offset;
192
193		for (relative_block = 0; ; relative_block++) {
194			if (relative_block == last) {
195				clear_buffer_mapped(map_bh);
196				break;
197			}
198			if (page_block == blocks_per_page)
199				break;
200			blocks[page_block] = map_bh->b_blocknr + map_offset +
201						relative_block;
202			page_block++;
203			block_in_file++;
204		}
205		bdev = map_bh->b_bdev;
206	}
207
208	/*
209	 * Then do more get_blocks calls until we are done with this page.
210	 */
211	map_bh->b_page = page;
212	while (page_block < blocks_per_page) {
213		map_bh->b_state = 0;
214		map_bh->b_size = 0;
215
216		if (block_in_file < last_block) {
217			map_bh->b_size = (last_block-block_in_file) << blkbits;
218			if (get_block(inode, block_in_file, map_bh, 0))
219				goto confused;
220			*first_logical_block = block_in_file;
221		}
222
223		if (!buffer_mapped(map_bh)) {
224			fully_mapped = 0;
225			if (first_hole == blocks_per_page)
226				first_hole = page_block;
227			page_block++;
228			block_in_file++;
229			continue;
230		}
231
232		/* some filesystems will copy data into the page during
233		 * the get_block call, in which case we don't want to
234		 * read it again.  map_buffer_to_page copies the data
235		 * we just collected from get_block into the page's buffers
236		 * so readpage doesn't have to repeat the get_block call
237		 */
238		if (buffer_uptodate(map_bh)) {
239			map_buffer_to_page(page, map_bh, page_block);
240			goto confused;
241		}
242	
243		if (first_hole != blocks_per_page)
244			goto confused;		/* hole -> non-hole */
245
246		/* Contiguous blocks? */
247		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
248			goto confused;
249		nblocks = map_bh->b_size >> blkbits;
250		for (relative_block = 0; ; relative_block++) {
251			if (relative_block == nblocks) {
252				clear_buffer_mapped(map_bh);
253				break;
254			} else if (page_block == blocks_per_page)
255				break;
256			blocks[page_block] = map_bh->b_blocknr+relative_block;
257			page_block++;
258			block_in_file++;
259		}
260		bdev = map_bh->b_bdev;
261	}
262
263	if (first_hole != blocks_per_page) {
264		zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
265		if (first_hole == 0) {
266			SetPageUptodate(page);
267			unlock_page(page);
268			goto out;
269		}
270	} else if (fully_mapped) {
271		SetPageMappedToDisk(page);
272	}
273
274	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
275	    cleancache_get_page(page) == 0) {
276		SetPageUptodate(page);
277		goto confused;
278	}
279
280	/*
281	 * This page will go to BIO.  Do we need to send this BIO off first?
282	 */
283	if (bio && (*last_block_in_bio != blocks[0] - 1))
284		bio = mpage_bio_submit(READ, bio);
285
286alloc_new:
287	if (bio == NULL) {
288		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
289			  	min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
290				GFP_KERNEL);
291		if (bio == NULL)
292			goto confused;
293	}
294
295	length = first_hole << blkbits;
296	if (bio_add_page(bio, page, length, 0) < length) {
297		bio = mpage_bio_submit(READ, bio);
298		goto alloc_new;
299	}
300
301	relative_block = block_in_file - *first_logical_block;
302	nblocks = map_bh->b_size >> blkbits;
303	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
304	    (first_hole != blocks_per_page))
305		bio = mpage_bio_submit(READ, bio);
306	else
307		*last_block_in_bio = blocks[blocks_per_page - 1];
308out:
309	return bio;
310
311confused:
312	if (bio)
313		bio = mpage_bio_submit(READ, bio);
314	if (!PageUptodate(page))
315	        block_read_full_page(page, get_block);
316	else
317		unlock_page(page);
318	goto out;
319}
320
321/**
322 * mpage_readpages - populate an address space with some pages & start reads against them
323 * @mapping: the address_space
324 * @pages: The address of a list_head which contains the target pages.  These
325 *   pages have their ->index populated and are otherwise uninitialised.
326 *   The page at @pages->prev has the lowest file offset, and reads should be
327 *   issued in @pages->prev to @pages->next order.
328 * @nr_pages: The number of pages at *@pages
329 * @get_block: The filesystem's block mapper function.
330 *
331 * This function walks the pages and the blocks within each page, building and
332 * emitting large BIOs.
333 *
334 * If anything unusual happens, such as:
335 *
336 * - encountering a page which has buffers
337 * - encountering a page which has a non-hole after a hole
338 * - encountering a page with non-contiguous blocks
339 *
340 * then this code just gives up and calls the buffer_head-based read function.
341 * It does handle a page which has holes at the end - that is a common case:
342 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
343 *
344 * BH_Boundary explanation:
345 *
346 * There is a problem.  The mpage read code assembles several pages, gets all
347 * their disk mappings, and then submits them all.  That's fine, but obtaining
348 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
349 *
350 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
351 * submitted in the following order:
352 * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
353 *
354 * because the indirect block has to be read to get the mappings of blocks
355 * 13,14,15,16.  Obviously, this impacts performance.
356 *
357 * So what we do it to allow the filesystem's get_block() function to set
358 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
359 * after this one will require I/O against a block which is probably close to
360 * this one.  So you should push what I/O you have currently accumulated.
361 *
362 * This all causes the disk requests to be issued in the correct order.
363 */
364int
365mpage_readpages(struct address_space *mapping, struct list_head *pages,
366				unsigned nr_pages, get_block_t get_block)
367{
368	struct bio *bio = NULL;
369	unsigned page_idx;
370	sector_t last_block_in_bio = 0;
371	struct buffer_head map_bh;
372	unsigned long first_logical_block = 0;
373
374	map_bh.b_state = 0;
375	map_bh.b_size = 0;
376	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
377		struct page *page = list_entry(pages->prev, struct page, lru);
378
379		prefetchw(&page->flags);
380		list_del(&page->lru);
381		if (!add_to_page_cache_lru(page, mapping,
382					page->index, GFP_KERNEL)) {
383			bio = do_mpage_readpage(bio, page,
384					nr_pages - page_idx,
385					&last_block_in_bio, &map_bh,
386					&first_logical_block,
387					get_block);
388		}
389		page_cache_release(page);
390	}
391	BUG_ON(!list_empty(pages));
392	if (bio)
393		mpage_bio_submit(READ, bio);
394	return 0;
395}
396EXPORT_SYMBOL(mpage_readpages);
397
398/*
399 * This isn't called much at all
400 */
401int mpage_readpage(struct page *page, get_block_t get_block)
402{
403	struct bio *bio = NULL;
404	sector_t last_block_in_bio = 0;
405	struct buffer_head map_bh;
406	unsigned long first_logical_block = 0;
407
408	map_bh.b_state = 0;
409	map_bh.b_size = 0;
410	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
411			&map_bh, &first_logical_block, get_block);
412	if (bio)
413		mpage_bio_submit(READ, bio);
414	return 0;
415}
416EXPORT_SYMBOL(mpage_readpage);
417
418/*
419 * Writing is not so simple.
420 *
421 * If the page has buffers then they will be used for obtaining the disk
422 * mapping.  We only support pages which are fully mapped-and-dirty, with a
423 * special case for pages which are unmapped at the end: end-of-file.
424 *
425 * If the page has no buffers (preferred) then the page is mapped here.
426 *
427 * If all blocks are found to be contiguous then the page can go into the
428 * BIO.  Otherwise fall back to the mapping's writepage().
429 * 
430 * FIXME: This code wants an estimate of how many pages are still to be
431 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
432 * just allocate full-size (16-page) BIOs.
433 */
434
435struct mpage_data {
436	struct bio *bio;
437	sector_t last_block_in_bio;
438	get_block_t *get_block;
439	unsigned use_writepage;
440};
441
442static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
443		      void *data)
444{
445	struct mpage_data *mpd = data;
446	struct bio *bio = mpd->bio;
447	struct address_space *mapping = page->mapping;
448	struct inode *inode = page->mapping->host;
449	const unsigned blkbits = inode->i_blkbits;
450	unsigned long end_index;
451	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
452	sector_t last_block;
453	sector_t block_in_file;
454	sector_t blocks[MAX_BUF_PER_PAGE];
455	unsigned page_block;
456	unsigned first_unmapped = blocks_per_page;
457	struct block_device *bdev = NULL;
458	int boundary = 0;
459	sector_t boundary_block = 0;
460	struct block_device *boundary_bdev = NULL;
461	int length;
462	struct buffer_head map_bh;
463	loff_t i_size = i_size_read(inode);
464	int ret = 0;
465
466	if (page_has_buffers(page)) {
467		struct buffer_head *head = page_buffers(page);
468		struct buffer_head *bh = head;
469
470		/* If they're all mapped and dirty, do it */
471		page_block = 0;
472		do {
473			BUG_ON(buffer_locked(bh));
474			if (!buffer_mapped(bh)) {
475				/*
476				 * unmapped dirty buffers are created by
477				 * __set_page_dirty_buffers -> mmapped data
478				 */
479				if (buffer_dirty(bh))
480					goto confused;
481				if (first_unmapped == blocks_per_page)
482					first_unmapped = page_block;
483				continue;
484			}
485
486			if (first_unmapped != blocks_per_page)
487				goto confused;	/* hole -> non-hole */
488
489			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
490				goto confused;
491			if (page_block) {
492				if (bh->b_blocknr != blocks[page_block-1] + 1)
493					goto confused;
494			}
495			blocks[page_block++] = bh->b_blocknr;
496			boundary = buffer_boundary(bh);
497			if (boundary) {
498				boundary_block = bh->b_blocknr;
499				boundary_bdev = bh->b_bdev;
500			}
501			bdev = bh->b_bdev;
502		} while ((bh = bh->b_this_page) != head);
503
504		if (first_unmapped)
505			goto page_is_mapped;
506
507		/*
508		 * Page has buffers, but they are all unmapped. The page was
509		 * created by pagein or read over a hole which was handled by
510		 * block_read_full_page().  If this address_space is also
511		 * using mpage_readpages then this can rarely happen.
512		 */
513		goto confused;
514	}
515
516	/*
517	 * The page has no buffers: map it to disk
518	 */
519	BUG_ON(!PageUptodate(page));
520	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
521	last_block = (i_size - 1) >> blkbits;
522	map_bh.b_page = page;
523	for (page_block = 0; page_block < blocks_per_page; ) {
524
525		map_bh.b_state = 0;
526		map_bh.b_size = 1 << blkbits;
527		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
528			goto confused;
529		if (buffer_new(&map_bh))
530			unmap_underlying_metadata(map_bh.b_bdev,
531						map_bh.b_blocknr);
532		if (buffer_boundary(&map_bh)) {
533			boundary_block = map_bh.b_blocknr;
534			boundary_bdev = map_bh.b_bdev;
535		}
536		if (page_block) {
537			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
538				goto confused;
539		}
540		blocks[page_block++] = map_bh.b_blocknr;
541		boundary = buffer_boundary(&map_bh);
542		bdev = map_bh.b_bdev;
543		if (block_in_file == last_block)
544			break;
545		block_in_file++;
546	}
547	BUG_ON(page_block == 0);
548
549	first_unmapped = page_block;
550
551page_is_mapped:
552	end_index = i_size >> PAGE_CACHE_SHIFT;
553	if (page->index >= end_index) {
554		/*
555		 * The page straddles i_size.  It must be zeroed out on each
556		 * and every writepage invocation because it may be mmapped.
557		 * "A file is mapped in multiples of the page size.  For a file
558		 * that is not a multiple of the page size, the remaining memory
559		 * is zeroed when mapped, and writes to that region are not
560		 * written out to the file."
561		 */
562		unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
563
564		if (page->index > end_index || !offset)
565			goto confused;
566		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
567	}
568
569	/*
570	 * This page will go to BIO.  Do we need to send this BIO off first?
571	 */
572	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
573		bio = mpage_bio_submit(WRITE, bio);
574
575alloc_new:
576	if (bio == NULL) {
577		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
578				bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
579		if (bio == NULL)
580			goto confused;
581	}
582
583	/*
584	 * Must try to add the page before marking the buffer clean or
585	 * the confused fail path above (OOM) will be very confused when
586	 * it finds all bh marked clean (i.e. it will not write anything)
587	 */
588	length = first_unmapped << blkbits;
589	if (bio_add_page(bio, page, length, 0) < length) {
590		bio = mpage_bio_submit(WRITE, bio);
591		goto alloc_new;
592	}
593
594	/*
595	 * OK, we have our BIO, so we can now mark the buffers clean.  Make
596	 * sure to only clean buffers which we know we'll be writing.
597	 */
598	if (page_has_buffers(page)) {
599		struct buffer_head *head = page_buffers(page);
600		struct buffer_head *bh = head;
601		unsigned buffer_counter = 0;
602
603		do {
604			if (buffer_counter++ == first_unmapped)
605				break;
606			clear_buffer_dirty(bh);
607			bh = bh->b_this_page;
608		} while (bh != head);
609
610		/*
611		 * we cannot drop the bh if the page is not uptodate
612		 * or a concurrent readpage would fail to serialize with the bh
613		 * and it would read from disk before we reach the platter.
614		 */
615		if (buffer_heads_over_limit && PageUptodate(page))
616			try_to_free_buffers(page);
617	}
618
619	BUG_ON(PageWriteback(page));
620	set_page_writeback(page);
621	unlock_page(page);
622	if (boundary || (first_unmapped != blocks_per_page)) {
623		bio = mpage_bio_submit(WRITE, bio);
624		if (boundary_block) {
625			write_boundary_block(boundary_bdev,
626					boundary_block, 1 << blkbits);
627		}
628	} else {
629		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
630	}
631	goto out;
632
633confused:
634	if (bio)
635		bio = mpage_bio_submit(WRITE, bio);
636
637	if (mpd->use_writepage) {
638		ret = mapping->a_ops->writepage(page, wbc);
639	} else {
640		ret = -EAGAIN;
641		goto out;
642	}
643	/*
644	 * The caller has a ref on the inode, so *mapping is stable
645	 */
646	mapping_set_error(mapping, ret);
647out:
648	mpd->bio = bio;
649	return ret;
650}
651
652/**
653 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
654 * @mapping: address space structure to write
655 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
656 * @get_block: the filesystem's block mapper function.
657 *             If this is NULL then use a_ops->writepage.  Otherwise, go
658 *             direct-to-BIO.
659 *
660 * This is a library function, which implements the writepages()
661 * address_space_operation.
662 *
663 * If a page is already under I/O, generic_writepages() skips it, even
664 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
665 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
666 * and msync() need to guarantee that all the data which was dirty at the time
667 * the call was made get new I/O started against them.  If wbc->sync_mode is
668 * WB_SYNC_ALL then we were called for data integrity and we must wait for
669 * existing IO to complete.
670 */
671int
672mpage_writepages(struct address_space *mapping,
673		struct writeback_control *wbc, get_block_t get_block)
674{
675	struct blk_plug plug;
676	int ret;
677
678	blk_start_plug(&plug);
679
680	if (!get_block)
681		ret = generic_writepages(mapping, wbc);
682	else {
683		struct mpage_data mpd = {
684			.bio = NULL,
685			.last_block_in_bio = 0,
686			.get_block = get_block,
687			.use_writepage = 1,
688		};
689
690		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
691		if (mpd.bio)
692			mpage_bio_submit(WRITE, mpd.bio);
693	}
694	blk_finish_plug(&plug);
695	return ret;
696}
697EXPORT_SYMBOL(mpage_writepages);
698
699int mpage_writepage(struct page *page, get_block_t get_block,
700	struct writeback_control *wbc)
701{
702	struct mpage_data mpd = {
703		.bio = NULL,
704		.last_block_in_bio = 0,
705		.get_block = get_block,
706		.use_writepage = 0,
707	};
708	int ret = __mpage_writepage(page, wbc, &mpd);
709	if (mpd.bio)
710		mpage_bio_submit(WRITE, mpd.bio);
711	return ret;
712}
713EXPORT_SYMBOL(mpage_writepage);