Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (C) 2023 Intel Corporation */
   3
   4#include "idpf.h"
   5
   6/**
   7 * idpf_tx_singleq_csum - Enable tx checksum offloads
   8 * @skb: pointer to skb
   9 * @off: pointer to struct that holds offload parameters
  10 *
  11 * Returns 0 or error (negative) if checksum offload cannot be executed, 1
  12 * otherwise.
  13 */
  14static int idpf_tx_singleq_csum(struct sk_buff *skb,
  15				struct idpf_tx_offload_params *off)
  16{
  17	u32 l4_len, l3_len, l2_len;
  18	union {
  19		struct iphdr *v4;
  20		struct ipv6hdr *v6;
  21		unsigned char *hdr;
  22	} ip;
  23	union {
  24		struct tcphdr *tcp;
  25		unsigned char *hdr;
  26	} l4;
  27	u32 offset, cmd = 0;
  28	u8 l4_proto = 0;
  29	__be16 frag_off;
  30	bool is_tso;
  31
  32	if (skb->ip_summed != CHECKSUM_PARTIAL)
  33		return 0;
  34
  35	ip.hdr = skb_network_header(skb);
  36	l4.hdr = skb_transport_header(skb);
  37
  38	/* compute outer L2 header size */
  39	l2_len = ip.hdr - skb->data;
  40	offset = FIELD_PREP(0x3F << IDPF_TX_DESC_LEN_MACLEN_S, l2_len / 2);
  41	is_tso = !!(off->tx_flags & IDPF_TX_FLAGS_TSO);
  42	if (skb->encapsulation) {
  43		u32 tunnel = 0;
  44
  45		/* define outer network header type */
  46		if (off->tx_flags & IDPF_TX_FLAGS_IPV4) {
  47			/* The stack computes the IP header already, the only
  48			 * time we need the hardware to recompute it is in the
  49			 * case of TSO.
  50			 */
  51			tunnel |= is_tso ?
  52				  IDPF_TX_CTX_EXT_IP_IPV4 :
  53				  IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
  54
  55			l4_proto = ip.v4->protocol;
  56		} else if (off->tx_flags & IDPF_TX_FLAGS_IPV6) {
  57			tunnel |= IDPF_TX_CTX_EXT_IP_IPV6;
  58
  59			l4_proto = ip.v6->nexthdr;
  60			if (ipv6_ext_hdr(l4_proto))
  61				ipv6_skip_exthdr(skb, skb_network_offset(skb) +
  62						 sizeof(*ip.v6),
  63						 &l4_proto, &frag_off);
  64		}
  65
  66		/* define outer transport */
  67		switch (l4_proto) {
  68		case IPPROTO_UDP:
  69			tunnel |= IDPF_TXD_CTX_UDP_TUNNELING;
  70			break;
  71		case IPPROTO_GRE:
  72			tunnel |= IDPF_TXD_CTX_GRE_TUNNELING;
  73			break;
  74		case IPPROTO_IPIP:
  75		case IPPROTO_IPV6:
  76			l4.hdr = skb_inner_network_header(skb);
  77			break;
  78		default:
  79			if (is_tso)
  80				return -1;
  81
  82			skb_checksum_help(skb);
  83
  84			return 0;
  85		}
  86		off->tx_flags |= IDPF_TX_FLAGS_TUNNEL;
  87
  88		/* compute outer L3 header size */
  89		tunnel |= FIELD_PREP(IDPF_TXD_CTX_QW0_TUNN_EXT_IPLEN_M,
  90				     (l4.hdr - ip.hdr) / 4);
  91
  92		/* switch IP header pointer from outer to inner header */
  93		ip.hdr = skb_inner_network_header(skb);
  94
  95		/* compute tunnel header size */
  96		tunnel |= FIELD_PREP(IDPF_TXD_CTX_QW0_TUNN_NATLEN_M,
  97				     (ip.hdr - l4.hdr) / 2);
  98
  99		/* indicate if we need to offload outer UDP header */
 100		if (is_tso &&
 101		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
 102		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
 103			tunnel |= IDPF_TXD_CTX_QW0_TUNN_L4T_CS_M;
 104
 105		/* record tunnel offload values */
 106		off->cd_tunneling |= tunnel;
 107
 108		/* switch L4 header pointer from outer to inner */
 109		l4.hdr = skb_inner_transport_header(skb);
 110		l4_proto = 0;
 111
 112		/* reset type as we transition from outer to inner headers */
 113		off->tx_flags &= ~(IDPF_TX_FLAGS_IPV4 | IDPF_TX_FLAGS_IPV6);
 114		if (ip.v4->version == 4)
 115			off->tx_flags |= IDPF_TX_FLAGS_IPV4;
 116		if (ip.v6->version == 6)
 117			off->tx_flags |= IDPF_TX_FLAGS_IPV6;
 118	}
 119
 120	/* Enable IP checksum offloads */
 121	if (off->tx_flags & IDPF_TX_FLAGS_IPV4) {
 122		l4_proto = ip.v4->protocol;
 123		/* See comment above regarding need for HW to recompute IP
 124		 * header checksum in the case of TSO.
 125		 */
 126		if (is_tso)
 127			cmd |= IDPF_TX_DESC_CMD_IIPT_IPV4_CSUM;
 128		else
 129			cmd |= IDPF_TX_DESC_CMD_IIPT_IPV4;
 130
 131	} else if (off->tx_flags & IDPF_TX_FLAGS_IPV6) {
 132		cmd |= IDPF_TX_DESC_CMD_IIPT_IPV6;
 133		l4_proto = ip.v6->nexthdr;
 134		if (ipv6_ext_hdr(l4_proto))
 135			ipv6_skip_exthdr(skb, skb_network_offset(skb) +
 136					 sizeof(*ip.v6), &l4_proto,
 137					 &frag_off);
 138	} else {
 139		return -1;
 140	}
 141
 142	/* compute inner L3 header size */
 143	l3_len = l4.hdr - ip.hdr;
 144	offset |= (l3_len / 4) << IDPF_TX_DESC_LEN_IPLEN_S;
 145
 146	/* Enable L4 checksum offloads */
 147	switch (l4_proto) {
 148	case IPPROTO_TCP:
 149		/* enable checksum offloads */
 150		cmd |= IDPF_TX_DESC_CMD_L4T_EOFT_TCP;
 151		l4_len = l4.tcp->doff;
 152		break;
 153	case IPPROTO_UDP:
 154		/* enable UDP checksum offload */
 155		cmd |= IDPF_TX_DESC_CMD_L4T_EOFT_UDP;
 156		l4_len = sizeof(struct udphdr) >> 2;
 157		break;
 158	case IPPROTO_SCTP:
 159		/* enable SCTP checksum offload */
 160		cmd |= IDPF_TX_DESC_CMD_L4T_EOFT_SCTP;
 161		l4_len = sizeof(struct sctphdr) >> 2;
 162		break;
 163	default:
 164		if (is_tso)
 165			return -1;
 166
 167		skb_checksum_help(skb);
 168
 169		return 0;
 170	}
 171
 172	offset |= l4_len << IDPF_TX_DESC_LEN_L4_LEN_S;
 173	off->td_cmd |= cmd;
 174	off->hdr_offsets |= offset;
 175
 176	return 1;
 177}
 178
 179/**
 180 * idpf_tx_singleq_map - Build the Tx base descriptor
 181 * @tx_q: queue to send buffer on
 182 * @first: first buffer info buffer to use
 183 * @offloads: pointer to struct that holds offload parameters
 184 *
 185 * This function loops over the skb data pointed to by *first
 186 * and gets a physical address for each memory location and programs
 187 * it and the length into the transmit base mode descriptor.
 188 */
 189static void idpf_tx_singleq_map(struct idpf_queue *tx_q,
 190				struct idpf_tx_buf *first,
 191				struct idpf_tx_offload_params *offloads)
 192{
 193	u32 offsets = offloads->hdr_offsets;
 194	struct idpf_tx_buf *tx_buf = first;
 195	struct idpf_base_tx_desc *tx_desc;
 196	struct sk_buff *skb = first->skb;
 197	u64 td_cmd = offloads->td_cmd;
 198	unsigned int data_len, size;
 199	u16 i = tx_q->next_to_use;
 200	struct netdev_queue *nq;
 201	skb_frag_t *frag;
 202	dma_addr_t dma;
 203	u64 td_tag = 0;
 204
 205	data_len = skb->data_len;
 206	size = skb_headlen(skb);
 207
 208	tx_desc = IDPF_BASE_TX_DESC(tx_q, i);
 209
 210	dma = dma_map_single(tx_q->dev, skb->data, size, DMA_TO_DEVICE);
 211
 212	/* write each descriptor with CRC bit */
 213	if (tx_q->vport->crc_enable)
 214		td_cmd |= IDPF_TX_DESC_CMD_ICRC;
 215
 216	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 217		unsigned int max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED;
 218
 219		if (dma_mapping_error(tx_q->dev, dma))
 220			return idpf_tx_dma_map_error(tx_q, skb, first, i);
 221
 222		/* record length, and DMA address */
 223		dma_unmap_len_set(tx_buf, len, size);
 224		dma_unmap_addr_set(tx_buf, dma, dma);
 225
 226		/* align size to end of page */
 227		max_data += -dma & (IDPF_TX_MAX_READ_REQ_SIZE - 1);
 228		tx_desc->buf_addr = cpu_to_le64(dma);
 229
 230		/* account for data chunks larger than the hardware
 231		 * can handle
 232		 */
 233		while (unlikely(size > IDPF_TX_MAX_DESC_DATA)) {
 234			tx_desc->qw1 = idpf_tx_singleq_build_ctob(td_cmd,
 235								  offsets,
 236								  max_data,
 237								  td_tag);
 238			tx_desc++;
 239			i++;
 240
 241			if (i == tx_q->desc_count) {
 242				tx_desc = IDPF_BASE_TX_DESC(tx_q, 0);
 243				i = 0;
 244			}
 245
 246			dma += max_data;
 247			size -= max_data;
 248
 249			max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED;
 250			tx_desc->buf_addr = cpu_to_le64(dma);
 251		}
 252
 253		if (!data_len)
 254			break;
 255
 256		tx_desc->qw1 = idpf_tx_singleq_build_ctob(td_cmd, offsets,
 257							  size, td_tag);
 258		tx_desc++;
 259		i++;
 260
 261		if (i == tx_q->desc_count) {
 262			tx_desc = IDPF_BASE_TX_DESC(tx_q, 0);
 263			i = 0;
 264		}
 265
 266		size = skb_frag_size(frag);
 267		data_len -= size;
 268
 269		dma = skb_frag_dma_map(tx_q->dev, frag, 0, size,
 270				       DMA_TO_DEVICE);
 271
 272		tx_buf = &tx_q->tx_buf[i];
 273	}
 274
 275	skb_tx_timestamp(first->skb);
 276
 277	/* write last descriptor with RS and EOP bits */
 278	td_cmd |= (u64)(IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS);
 279
 280	tx_desc->qw1 = idpf_tx_singleq_build_ctob(td_cmd, offsets,
 281						  size, td_tag);
 282
 283	IDPF_SINGLEQ_BUMP_RING_IDX(tx_q, i);
 284
 285	/* set next_to_watch value indicating a packet is present */
 286	first->next_to_watch = tx_desc;
 287
 288	nq = netdev_get_tx_queue(tx_q->vport->netdev, tx_q->idx);
 289	netdev_tx_sent_queue(nq, first->bytecount);
 290
 291	idpf_tx_buf_hw_update(tx_q, i, netdev_xmit_more());
 292}
 293
 294/**
 295 * idpf_tx_singleq_get_ctx_desc - grab next desc and update buffer ring
 296 * @txq: queue to put context descriptor on
 297 *
 298 * Since the TX buffer rings mimics the descriptor ring, update the tx buffer
 299 * ring entry to reflect that this index is a context descriptor
 300 */
 301static struct idpf_base_tx_ctx_desc *
 302idpf_tx_singleq_get_ctx_desc(struct idpf_queue *txq)
 303{
 304	struct idpf_base_tx_ctx_desc *ctx_desc;
 305	int ntu = txq->next_to_use;
 306
 307	memset(&txq->tx_buf[ntu], 0, sizeof(struct idpf_tx_buf));
 308	txq->tx_buf[ntu].ctx_entry = true;
 309
 310	ctx_desc = IDPF_BASE_TX_CTX_DESC(txq, ntu);
 311
 312	IDPF_SINGLEQ_BUMP_RING_IDX(txq, ntu);
 313	txq->next_to_use = ntu;
 314
 315	return ctx_desc;
 316}
 317
 318/**
 319 * idpf_tx_singleq_build_ctx_desc - populate context descriptor
 320 * @txq: queue to send buffer on
 321 * @offload: offload parameter structure
 322 **/
 323static void idpf_tx_singleq_build_ctx_desc(struct idpf_queue *txq,
 324					   struct idpf_tx_offload_params *offload)
 325{
 326	struct idpf_base_tx_ctx_desc *desc = idpf_tx_singleq_get_ctx_desc(txq);
 327	u64 qw1 = (u64)IDPF_TX_DESC_DTYPE_CTX;
 328
 329	if (offload->tso_segs) {
 330		qw1 |= IDPF_TX_CTX_DESC_TSO << IDPF_TXD_CTX_QW1_CMD_S;
 331		qw1 |= FIELD_PREP(IDPF_TXD_CTX_QW1_TSO_LEN_M,
 332				  offload->tso_len);
 333		qw1 |= FIELD_PREP(IDPF_TXD_CTX_QW1_MSS_M, offload->mss);
 334
 335		u64_stats_update_begin(&txq->stats_sync);
 336		u64_stats_inc(&txq->q_stats.tx.lso_pkts);
 337		u64_stats_update_end(&txq->stats_sync);
 338	}
 339
 340	desc->qw0.tunneling_params = cpu_to_le32(offload->cd_tunneling);
 341
 342	desc->qw0.l2tag2 = 0;
 343	desc->qw0.rsvd1 = 0;
 344	desc->qw1 = cpu_to_le64(qw1);
 345}
 346
 347/**
 348 * idpf_tx_singleq_frame - Sends buffer on Tx ring using base descriptors
 349 * @skb: send buffer
 350 * @tx_q: queue to send buffer on
 351 *
 352 * Returns NETDEV_TX_OK if sent, else an error code
 353 */
 354static netdev_tx_t idpf_tx_singleq_frame(struct sk_buff *skb,
 355					 struct idpf_queue *tx_q)
 356{
 357	struct idpf_tx_offload_params offload = { };
 358	struct idpf_tx_buf *first;
 359	unsigned int count;
 360	__be16 protocol;
 361	int csum, tso;
 362
 363	count = idpf_tx_desc_count_required(tx_q, skb);
 364	if (unlikely(!count))
 365		return idpf_tx_drop_skb(tx_q, skb);
 366
 367	if (idpf_tx_maybe_stop_common(tx_q,
 368				      count + IDPF_TX_DESCS_PER_CACHE_LINE +
 369				      IDPF_TX_DESCS_FOR_CTX)) {
 370		idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false);
 371
 372		return NETDEV_TX_BUSY;
 373	}
 374
 375	protocol = vlan_get_protocol(skb);
 376	if (protocol == htons(ETH_P_IP))
 377		offload.tx_flags |= IDPF_TX_FLAGS_IPV4;
 378	else if (protocol == htons(ETH_P_IPV6))
 379		offload.tx_flags |= IDPF_TX_FLAGS_IPV6;
 380
 381	tso = idpf_tso(skb, &offload);
 382	if (tso < 0)
 383		goto out_drop;
 384
 385	csum = idpf_tx_singleq_csum(skb, &offload);
 386	if (csum < 0)
 387		goto out_drop;
 388
 389	if (tso || offload.cd_tunneling)
 390		idpf_tx_singleq_build_ctx_desc(tx_q, &offload);
 391
 392	/* record the location of the first descriptor for this packet */
 393	first = &tx_q->tx_buf[tx_q->next_to_use];
 394	first->skb = skb;
 395
 396	if (tso) {
 397		first->gso_segs = offload.tso_segs;
 398		first->bytecount = skb->len + ((first->gso_segs - 1) * offload.tso_hdr_len);
 399	} else {
 400		first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
 401		first->gso_segs = 1;
 402	}
 403	idpf_tx_singleq_map(tx_q, first, &offload);
 404
 405	return NETDEV_TX_OK;
 406
 407out_drop:
 408	return idpf_tx_drop_skb(tx_q, skb);
 409}
 410
 411/**
 412 * idpf_tx_singleq_start - Selects the right Tx queue to send buffer
 413 * @skb: send buffer
 414 * @netdev: network interface device structure
 415 *
 416 * Returns NETDEV_TX_OK if sent, else an error code
 417 */
 418netdev_tx_t idpf_tx_singleq_start(struct sk_buff *skb,
 419				  struct net_device *netdev)
 420{
 421	struct idpf_vport *vport = idpf_netdev_to_vport(netdev);
 422	struct idpf_queue *tx_q;
 423
 424	tx_q = vport->txqs[skb_get_queue_mapping(skb)];
 425
 426	/* hardware can't handle really short frames, hardware padding works
 427	 * beyond this point
 428	 */
 429	if (skb_put_padto(skb, IDPF_TX_MIN_PKT_LEN)) {
 430		idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false);
 431
 432		return NETDEV_TX_OK;
 433	}
 434
 435	return idpf_tx_singleq_frame(skb, tx_q);
 436}
 437
 438/**
 439 * idpf_tx_singleq_clean - Reclaim resources from queue
 440 * @tx_q: Tx queue to clean
 441 * @napi_budget: Used to determine if we are in netpoll
 442 * @cleaned: returns number of packets cleaned
 443 *
 444 */
 445static bool idpf_tx_singleq_clean(struct idpf_queue *tx_q, int napi_budget,
 446				  int *cleaned)
 447{
 448	unsigned int budget = tx_q->vport->compln_clean_budget;
 449	unsigned int total_bytes = 0, total_pkts = 0;
 450	struct idpf_base_tx_desc *tx_desc;
 451	s16 ntc = tx_q->next_to_clean;
 452	struct idpf_netdev_priv *np;
 453	struct idpf_tx_buf *tx_buf;
 454	struct idpf_vport *vport;
 455	struct netdev_queue *nq;
 456	bool dont_wake;
 457
 458	tx_desc = IDPF_BASE_TX_DESC(tx_q, ntc);
 459	tx_buf = &tx_q->tx_buf[ntc];
 460	ntc -= tx_q->desc_count;
 461
 462	do {
 463		struct idpf_base_tx_desc *eop_desc;
 464
 465		/* If this entry in the ring was used as a context descriptor,
 466		 * it's corresponding entry in the buffer ring will indicate as
 467		 * such. We can skip this descriptor since there is no buffer
 468		 * to clean.
 469		 */
 470		if (tx_buf->ctx_entry) {
 471			/* Clear this flag here to avoid stale flag values when
 472			 * this buffer is used for actual data in the future.
 473			 * There are cases where the tx_buf struct / the flags
 474			 * field will not be cleared before being reused.
 475			 */
 476			tx_buf->ctx_entry = false;
 477			goto fetch_next_txq_desc;
 478		}
 479
 480		/* if next_to_watch is not set then no work pending */
 481		eop_desc = (struct idpf_base_tx_desc *)tx_buf->next_to_watch;
 482		if (!eop_desc)
 483			break;
 484
 485		/* prevent any other reads prior to eop_desc */
 486		smp_rmb();
 487
 488		/* if the descriptor isn't done, no work yet to do */
 489		if (!(eop_desc->qw1 &
 490		      cpu_to_le64(IDPF_TX_DESC_DTYPE_DESC_DONE)))
 491			break;
 492
 493		/* clear next_to_watch to prevent false hangs */
 494		tx_buf->next_to_watch = NULL;
 495
 496		/* update the statistics for this packet */
 497		total_bytes += tx_buf->bytecount;
 498		total_pkts += tx_buf->gso_segs;
 499
 500		napi_consume_skb(tx_buf->skb, napi_budget);
 501
 502		/* unmap skb header data */
 503		dma_unmap_single(tx_q->dev,
 504				 dma_unmap_addr(tx_buf, dma),
 505				 dma_unmap_len(tx_buf, len),
 506				 DMA_TO_DEVICE);
 507
 508		/* clear tx_buf data */
 509		tx_buf->skb = NULL;
 510		dma_unmap_len_set(tx_buf, len, 0);
 511
 512		/* unmap remaining buffers */
 513		while (tx_desc != eop_desc) {
 514			tx_buf++;
 515			tx_desc++;
 516			ntc++;
 517			if (unlikely(!ntc)) {
 518				ntc -= tx_q->desc_count;
 519				tx_buf = tx_q->tx_buf;
 520				tx_desc = IDPF_BASE_TX_DESC(tx_q, 0);
 521			}
 522
 523			/* unmap any remaining paged data */
 524			if (dma_unmap_len(tx_buf, len)) {
 525				dma_unmap_page(tx_q->dev,
 526					       dma_unmap_addr(tx_buf, dma),
 527					       dma_unmap_len(tx_buf, len),
 528					       DMA_TO_DEVICE);
 529				dma_unmap_len_set(tx_buf, len, 0);
 530			}
 531		}
 532
 533		/* update budget only if we did something */
 534		budget--;
 535
 536fetch_next_txq_desc:
 537		tx_buf++;
 538		tx_desc++;
 539		ntc++;
 540		if (unlikely(!ntc)) {
 541			ntc -= tx_q->desc_count;
 542			tx_buf = tx_q->tx_buf;
 543			tx_desc = IDPF_BASE_TX_DESC(tx_q, 0);
 544		}
 545	} while (likely(budget));
 546
 547	ntc += tx_q->desc_count;
 548	tx_q->next_to_clean = ntc;
 549
 550	*cleaned += total_pkts;
 551
 552	u64_stats_update_begin(&tx_q->stats_sync);
 553	u64_stats_add(&tx_q->q_stats.tx.packets, total_pkts);
 554	u64_stats_add(&tx_q->q_stats.tx.bytes, total_bytes);
 555	u64_stats_update_end(&tx_q->stats_sync);
 556
 557	vport = tx_q->vport;
 558	np = netdev_priv(vport->netdev);
 559	nq = netdev_get_tx_queue(vport->netdev, tx_q->idx);
 560
 561	dont_wake = np->state != __IDPF_VPORT_UP ||
 562		    !netif_carrier_ok(vport->netdev);
 563	__netif_txq_completed_wake(nq, total_pkts, total_bytes,
 564				   IDPF_DESC_UNUSED(tx_q), IDPF_TX_WAKE_THRESH,
 565				   dont_wake);
 566
 567	return !!budget;
 568}
 569
 570/**
 571 * idpf_tx_singleq_clean_all - Clean all Tx queues
 572 * @q_vec: queue vector
 573 * @budget: Used to determine if we are in netpoll
 574 * @cleaned: returns number of packets cleaned
 575 *
 576 * Returns false if clean is not complete else returns true
 577 */
 578static bool idpf_tx_singleq_clean_all(struct idpf_q_vector *q_vec, int budget,
 579				      int *cleaned)
 580{
 581	u16 num_txq = q_vec->num_txq;
 582	bool clean_complete = true;
 583	int i, budget_per_q;
 584
 585	budget_per_q = num_txq ? max(budget / num_txq, 1) : 0;
 586	for (i = 0; i < num_txq; i++) {
 587		struct idpf_queue *q;
 588
 589		q = q_vec->tx[i];
 590		clean_complete &= idpf_tx_singleq_clean(q, budget_per_q,
 591							cleaned);
 592	}
 593
 594	return clean_complete;
 595}
 596
 597/**
 598 * idpf_rx_singleq_test_staterr - tests bits in Rx descriptor
 599 * status and error fields
 600 * @rx_desc: pointer to receive descriptor (in le64 format)
 601 * @stat_err_bits: value to mask
 602 *
 603 * This function does some fast chicanery in order to return the
 604 * value of the mask which is really only used for boolean tests.
 605 * The status_error_ptype_len doesn't need to be shifted because it begins
 606 * at offset zero.
 607 */
 608static bool idpf_rx_singleq_test_staterr(const union virtchnl2_rx_desc *rx_desc,
 609					 const u64 stat_err_bits)
 610{
 611	return !!(rx_desc->base_wb.qword1.status_error_ptype_len &
 612		  cpu_to_le64(stat_err_bits));
 613}
 614
 615/**
 616 * idpf_rx_singleq_is_non_eop - process handling of non-EOP buffers
 617 * @rxq: Rx ring being processed
 618 * @rx_desc: Rx descriptor for current buffer
 619 * @skb: Current socket buffer containing buffer in progress
 620 * @ntc: next to clean
 621 */
 622static bool idpf_rx_singleq_is_non_eop(struct idpf_queue *rxq,
 623				       union virtchnl2_rx_desc *rx_desc,
 624				       struct sk_buff *skb, u16 ntc)
 625{
 626	/* if we are the last buffer then there is nothing else to do */
 627	if (likely(idpf_rx_singleq_test_staterr(rx_desc, IDPF_RXD_EOF_SINGLEQ)))
 628		return false;
 629
 630	return true;
 631}
 632
 633/**
 634 * idpf_rx_singleq_csum - Indicate in skb if checksum is good
 635 * @rxq: Rx ring being processed
 636 * @skb: skb currently being received and modified
 637 * @csum_bits: checksum bits from descriptor
 638 * @ptype: the packet type decoded by hardware
 639 *
 640 * skb->protocol must be set before this function is called
 641 */
 642static void idpf_rx_singleq_csum(struct idpf_queue *rxq, struct sk_buff *skb,
 643				 struct idpf_rx_csum_decoded *csum_bits,
 644				 u16 ptype)
 645{
 646	struct idpf_rx_ptype_decoded decoded;
 647	bool ipv4, ipv6;
 648
 649	/* check if Rx checksum is enabled */
 650	if (unlikely(!(rxq->vport->netdev->features & NETIF_F_RXCSUM)))
 651		return;
 652
 653	/* check if HW has decoded the packet and checksum */
 654	if (unlikely(!(csum_bits->l3l4p)))
 655		return;
 656
 657	decoded = rxq->vport->rx_ptype_lkup[ptype];
 658	if (unlikely(!(decoded.known && decoded.outer_ip)))
 659		return;
 660
 661	ipv4 = IDPF_RX_PTYPE_TO_IPV(&decoded, IDPF_RX_PTYPE_OUTER_IPV4);
 662	ipv6 = IDPF_RX_PTYPE_TO_IPV(&decoded, IDPF_RX_PTYPE_OUTER_IPV6);
 663
 664	/* Check if there were any checksum errors */
 665	if (unlikely(ipv4 && (csum_bits->ipe || csum_bits->eipe)))
 666		goto checksum_fail;
 667
 668	/* Device could not do any checksum offload for certain extension
 669	 * headers as indicated by setting IPV6EXADD bit
 670	 */
 671	if (unlikely(ipv6 && csum_bits->ipv6exadd))
 672		return;
 673
 674	/* check for L4 errors and handle packets that were not able to be
 675	 * checksummed due to arrival speed
 676	 */
 677	if (unlikely(csum_bits->l4e))
 678		goto checksum_fail;
 679
 680	if (unlikely(csum_bits->nat && csum_bits->eudpe))
 681		goto checksum_fail;
 682
 683	/* Handle packets that were not able to be checksummed due to arrival
 684	 * speed, in this case the stack can compute the csum.
 685	 */
 686	if (unlikely(csum_bits->pprs))
 687		return;
 688
 689	/* If there is an outer header present that might contain a checksum
 690	 * we need to bump the checksum level by 1 to reflect the fact that
 691	 * we are indicating we validated the inner checksum.
 692	 */
 693	if (decoded.tunnel_type >= IDPF_RX_PTYPE_TUNNEL_IP_GRENAT)
 694		skb->csum_level = 1;
 695
 696	/* Only report checksum unnecessary for ICMP, TCP, UDP, or SCTP */
 697	switch (decoded.inner_prot) {
 698	case IDPF_RX_PTYPE_INNER_PROT_ICMP:
 699	case IDPF_RX_PTYPE_INNER_PROT_TCP:
 700	case IDPF_RX_PTYPE_INNER_PROT_UDP:
 701	case IDPF_RX_PTYPE_INNER_PROT_SCTP:
 702		skb->ip_summed = CHECKSUM_UNNECESSARY;
 703		return;
 704	default:
 705		return;
 706	}
 707
 708checksum_fail:
 709	u64_stats_update_begin(&rxq->stats_sync);
 710	u64_stats_inc(&rxq->q_stats.rx.hw_csum_err);
 711	u64_stats_update_end(&rxq->stats_sync);
 712}
 713
 714/**
 715 * idpf_rx_singleq_base_csum - Indicate in skb if hw indicated a good cksum
 716 * @rx_q: Rx completion queue
 717 * @skb: skb currently being received and modified
 718 * @rx_desc: the receive descriptor
 719 * @ptype: Rx packet type
 720 *
 721 * This function only operates on the VIRTCHNL2_RXDID_1_32B_BASE_M base 32byte
 722 * descriptor writeback format.
 723 **/
 724static void idpf_rx_singleq_base_csum(struct idpf_queue *rx_q,
 725				      struct sk_buff *skb,
 726				      union virtchnl2_rx_desc *rx_desc,
 727				      u16 ptype)
 728{
 729	struct idpf_rx_csum_decoded csum_bits;
 730	u32 rx_error, rx_status;
 731	u64 qword;
 732
 733	qword = le64_to_cpu(rx_desc->base_wb.qword1.status_error_ptype_len);
 734
 735	rx_status = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_QW1_STATUS_M, qword);
 736	rx_error = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_QW1_ERROR_M, qword);
 737
 738	csum_bits.ipe = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_ERROR_IPE_M, rx_error);
 739	csum_bits.eipe = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_ERROR_EIPE_M,
 740				   rx_error);
 741	csum_bits.l4e = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_ERROR_L4E_M, rx_error);
 742	csum_bits.pprs = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_ERROR_PPRS_M,
 743				   rx_error);
 744	csum_bits.l3l4p = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_STATUS_L3L4P_M,
 745				    rx_status);
 746	csum_bits.ipv6exadd = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_STATUS_IPV6EXADD_M,
 747					rx_status);
 748	csum_bits.nat = 0;
 749	csum_bits.eudpe = 0;
 750
 751	idpf_rx_singleq_csum(rx_q, skb, &csum_bits, ptype);
 752}
 753
 754/**
 755 * idpf_rx_singleq_flex_csum - Indicate in skb if hw indicated a good cksum
 756 * @rx_q: Rx completion queue
 757 * @skb: skb currently being received and modified
 758 * @rx_desc: the receive descriptor
 759 * @ptype: Rx packet type
 760 *
 761 * This function only operates on the VIRTCHNL2_RXDID_2_FLEX_SQ_NIC flexible
 762 * descriptor writeback format.
 763 **/
 764static void idpf_rx_singleq_flex_csum(struct idpf_queue *rx_q,
 765				      struct sk_buff *skb,
 766				      union virtchnl2_rx_desc *rx_desc,
 767				      u16 ptype)
 768{
 769	struct idpf_rx_csum_decoded csum_bits;
 770	u16 rx_status0, rx_status1;
 771
 772	rx_status0 = le16_to_cpu(rx_desc->flex_nic_wb.status_error0);
 773	rx_status1 = le16_to_cpu(rx_desc->flex_nic_wb.status_error1);
 774
 775	csum_bits.ipe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_IPE_M,
 776				  rx_status0);
 777	csum_bits.eipe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_EIPE_M,
 778				   rx_status0);
 779	csum_bits.l4e = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_L4E_M,
 780				  rx_status0);
 781	csum_bits.eudpe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_M,
 782				    rx_status0);
 783	csum_bits.l3l4p = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_L3L4P_M,
 784				    rx_status0);
 785	csum_bits.ipv6exadd = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_IPV6EXADD_M,
 786					rx_status0);
 787	csum_bits.nat = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS1_NAT_M,
 788				  rx_status1);
 789	csum_bits.pprs = 0;
 790
 791	idpf_rx_singleq_csum(rx_q, skb, &csum_bits, ptype);
 792}
 793
 794/**
 795 * idpf_rx_singleq_base_hash - set the hash value in the skb
 796 * @rx_q: Rx completion queue
 797 * @skb: skb currently being received and modified
 798 * @rx_desc: specific descriptor
 799 * @decoded: Decoded Rx packet type related fields
 800 *
 801 * This function only operates on the VIRTCHNL2_RXDID_1_32B_BASE_M base 32byte
 802 * descriptor writeback format.
 803 **/
 804static void idpf_rx_singleq_base_hash(struct idpf_queue *rx_q,
 805				      struct sk_buff *skb,
 806				      union virtchnl2_rx_desc *rx_desc,
 807				      struct idpf_rx_ptype_decoded *decoded)
 808{
 809	u64 mask, qw1;
 810
 811	if (unlikely(!(rx_q->vport->netdev->features & NETIF_F_RXHASH)))
 812		return;
 813
 814	mask = VIRTCHNL2_RX_BASE_DESC_FLTSTAT_RSS_HASH_M;
 815	qw1 = le64_to_cpu(rx_desc->base_wb.qword1.status_error_ptype_len);
 816
 817	if (FIELD_GET(mask, qw1) == mask) {
 818		u32 hash = le32_to_cpu(rx_desc->base_wb.qword0.hi_dword.rss);
 819
 820		skb_set_hash(skb, hash, idpf_ptype_to_htype(decoded));
 821	}
 822}
 823
 824/**
 825 * idpf_rx_singleq_flex_hash - set the hash value in the skb
 826 * @rx_q: Rx completion queue
 827 * @skb: skb currently being received and modified
 828 * @rx_desc: specific descriptor
 829 * @decoded: Decoded Rx packet type related fields
 830 *
 831 * This function only operates on the VIRTCHNL2_RXDID_2_FLEX_SQ_NIC flexible
 832 * descriptor writeback format.
 833 **/
 834static void idpf_rx_singleq_flex_hash(struct idpf_queue *rx_q,
 835				      struct sk_buff *skb,
 836				      union virtchnl2_rx_desc *rx_desc,
 837				      struct idpf_rx_ptype_decoded *decoded)
 838{
 839	if (unlikely(!(rx_q->vport->netdev->features & NETIF_F_RXHASH)))
 840		return;
 841
 842	if (FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_RSS_VALID_M,
 843		      le16_to_cpu(rx_desc->flex_nic_wb.status_error0)))
 844		skb_set_hash(skb, le32_to_cpu(rx_desc->flex_nic_wb.rss_hash),
 845			     idpf_ptype_to_htype(decoded));
 846}
 847
 848/**
 849 * idpf_rx_singleq_process_skb_fields - Populate skb header fields from Rx
 850 * descriptor
 851 * @rx_q: Rx ring being processed
 852 * @skb: pointer to current skb being populated
 853 * @rx_desc: descriptor for skb
 854 * @ptype: packet type
 855 *
 856 * This function checks the ring, descriptor, and packet information in
 857 * order to populate the hash, checksum, VLAN, protocol, and
 858 * other fields within the skb.
 859 */
 860static void idpf_rx_singleq_process_skb_fields(struct idpf_queue *rx_q,
 861					       struct sk_buff *skb,
 862					       union virtchnl2_rx_desc *rx_desc,
 863					       u16 ptype)
 864{
 865	struct idpf_rx_ptype_decoded decoded =
 866					rx_q->vport->rx_ptype_lkup[ptype];
 867
 868	/* modifies the skb - consumes the enet header */
 869	skb->protocol = eth_type_trans(skb, rx_q->vport->netdev);
 870
 871	/* Check if we're using base mode descriptor IDs */
 872	if (rx_q->rxdids == VIRTCHNL2_RXDID_1_32B_BASE_M) {
 873		idpf_rx_singleq_base_hash(rx_q, skb, rx_desc, &decoded);
 874		idpf_rx_singleq_base_csum(rx_q, skb, rx_desc, ptype);
 875	} else {
 876		idpf_rx_singleq_flex_hash(rx_q, skb, rx_desc, &decoded);
 877		idpf_rx_singleq_flex_csum(rx_q, skb, rx_desc, ptype);
 878	}
 879}
 880
 881/**
 882 * idpf_rx_singleq_buf_hw_alloc_all - Replace used receive buffers
 883 * @rx_q: queue for which the hw buffers are allocated
 884 * @cleaned_count: number of buffers to replace
 885 *
 886 * Returns false if all allocations were successful, true if any fail
 887 */
 888bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_queue *rx_q,
 889				      u16 cleaned_count)
 890{
 891	struct virtchnl2_singleq_rx_buf_desc *desc;
 892	u16 nta = rx_q->next_to_alloc;
 893	struct idpf_rx_buf *buf;
 894
 895	if (!cleaned_count)
 896		return false;
 897
 898	desc = IDPF_SINGLEQ_RX_BUF_DESC(rx_q, nta);
 899	buf = &rx_q->rx_buf.buf[nta];
 900
 901	do {
 902		dma_addr_t addr;
 903
 904		addr = idpf_alloc_page(rx_q->pp, buf, rx_q->rx_buf_size);
 905		if (unlikely(addr == DMA_MAPPING_ERROR))
 906			break;
 907
 908		/* Refresh the desc even if buffer_addrs didn't change
 909		 * because each write-back erases this info.
 910		 */
 911		desc->pkt_addr = cpu_to_le64(addr);
 912		desc->hdr_addr = 0;
 913		desc++;
 914
 915		buf++;
 916		nta++;
 917		if (unlikely(nta == rx_q->desc_count)) {
 918			desc = IDPF_SINGLEQ_RX_BUF_DESC(rx_q, 0);
 919			buf = rx_q->rx_buf.buf;
 920			nta = 0;
 921		}
 922
 923		cleaned_count--;
 924	} while (cleaned_count);
 925
 926	if (rx_q->next_to_alloc != nta) {
 927		idpf_rx_buf_hw_update(rx_q, nta);
 928		rx_q->next_to_alloc = nta;
 929	}
 930
 931	return !!cleaned_count;
 932}
 933
 934/**
 935 * idpf_rx_singleq_extract_base_fields - Extract fields from the Rx descriptor
 936 * @rx_q: Rx descriptor queue
 937 * @rx_desc: the descriptor to process
 938 * @fields: storage for extracted values
 939 *
 940 * Decode the Rx descriptor and extract relevant information including the
 941 * size and Rx packet type.
 942 *
 943 * This function only operates on the VIRTCHNL2_RXDID_1_32B_BASE_M base 32byte
 944 * descriptor writeback format.
 945 */
 946static void idpf_rx_singleq_extract_base_fields(struct idpf_queue *rx_q,
 947						union virtchnl2_rx_desc *rx_desc,
 948						struct idpf_rx_extracted *fields)
 949{
 950	u64 qword;
 951
 952	qword = le64_to_cpu(rx_desc->base_wb.qword1.status_error_ptype_len);
 953
 954	fields->size = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_QW1_LEN_PBUF_M, qword);
 955	fields->rx_ptype = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_QW1_PTYPE_M, qword);
 956}
 957
 958/**
 959 * idpf_rx_singleq_extract_flex_fields - Extract fields from the Rx descriptor
 960 * @rx_q: Rx descriptor queue
 961 * @rx_desc: the descriptor to process
 962 * @fields: storage for extracted values
 963 *
 964 * Decode the Rx descriptor and extract relevant information including the
 965 * size and Rx packet type.
 966 *
 967 * This function only operates on the VIRTCHNL2_RXDID_2_FLEX_SQ_NIC flexible
 968 * descriptor writeback format.
 969 */
 970static void idpf_rx_singleq_extract_flex_fields(struct idpf_queue *rx_q,
 971						union virtchnl2_rx_desc *rx_desc,
 972						struct idpf_rx_extracted *fields)
 973{
 974	fields->size = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_PKT_LEN_M,
 975				 le16_to_cpu(rx_desc->flex_nic_wb.pkt_len));
 976	fields->rx_ptype = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_PTYPE_M,
 977				     le16_to_cpu(rx_desc->flex_nic_wb.ptype_flex_flags0));
 978}
 979
 980/**
 981 * idpf_rx_singleq_extract_fields - Extract fields from the Rx descriptor
 982 * @rx_q: Rx descriptor queue
 983 * @rx_desc: the descriptor to process
 984 * @fields: storage for extracted values
 985 *
 986 */
 987static void idpf_rx_singleq_extract_fields(struct idpf_queue *rx_q,
 988					   union virtchnl2_rx_desc *rx_desc,
 989					   struct idpf_rx_extracted *fields)
 990{
 991	if (rx_q->rxdids == VIRTCHNL2_RXDID_1_32B_BASE_M)
 992		idpf_rx_singleq_extract_base_fields(rx_q, rx_desc, fields);
 993	else
 994		idpf_rx_singleq_extract_flex_fields(rx_q, rx_desc, fields);
 995}
 996
 997/**
 998 * idpf_rx_singleq_clean - Reclaim resources after receive completes
 999 * @rx_q: rx queue to clean
1000 * @budget: Total limit on number of packets to process
1001 *
1002 * Returns true if there's any budget left (e.g. the clean is finished)
1003 */
1004static int idpf_rx_singleq_clean(struct idpf_queue *rx_q, int budget)
1005{
1006	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1007	struct sk_buff *skb = rx_q->skb;
1008	u16 ntc = rx_q->next_to_clean;
1009	u16 cleaned_count = 0;
1010	bool failure = false;
1011
1012	/* Process Rx packets bounded by budget */
1013	while (likely(total_rx_pkts < (unsigned int)budget)) {
1014		struct idpf_rx_extracted fields = { };
1015		union virtchnl2_rx_desc *rx_desc;
1016		struct idpf_rx_buf *rx_buf;
1017
1018		/* get the Rx desc from Rx queue based on 'next_to_clean' */
1019		rx_desc = IDPF_RX_DESC(rx_q, ntc);
1020
1021		/* status_error_ptype_len will always be zero for unused
1022		 * descriptors because it's cleared in cleanup, and overlaps
1023		 * with hdr_addr which is always zero because packet split
1024		 * isn't used, if the hardware wrote DD then the length will be
1025		 * non-zero
1026		 */
1027#define IDPF_RXD_DD VIRTCHNL2_RX_BASE_DESC_STATUS_DD_M
1028		if (!idpf_rx_singleq_test_staterr(rx_desc,
1029						  IDPF_RXD_DD))
1030			break;
1031
1032		/* This memory barrier is needed to keep us from reading
1033		 * any other fields out of the rx_desc
1034		 */
1035		dma_rmb();
1036
1037		idpf_rx_singleq_extract_fields(rx_q, rx_desc, &fields);
1038
1039		rx_buf = &rx_q->rx_buf.buf[ntc];
1040		if (!fields.size) {
1041			idpf_rx_put_page(rx_buf);
1042			goto skip_data;
1043		}
1044
1045		idpf_rx_sync_for_cpu(rx_buf, fields.size);
1046		if (skb)
1047			idpf_rx_add_frag(rx_buf, skb, fields.size);
1048		else
1049			skb = idpf_rx_construct_skb(rx_q, rx_buf, fields.size);
1050
1051		/* exit if we failed to retrieve a buffer */
1052		if (!skb)
1053			break;
1054
1055skip_data:
1056		IDPF_SINGLEQ_BUMP_RING_IDX(rx_q, ntc);
1057
1058		cleaned_count++;
1059
1060		/* skip if it is non EOP desc */
1061		if (idpf_rx_singleq_is_non_eop(rx_q, rx_desc, skb, ntc))
1062			continue;
1063
1064#define IDPF_RXD_ERR_S FIELD_PREP(VIRTCHNL2_RX_BASE_DESC_QW1_ERROR_M, \
1065				  VIRTCHNL2_RX_BASE_DESC_ERROR_RXE_M)
1066		if (unlikely(idpf_rx_singleq_test_staterr(rx_desc,
1067							  IDPF_RXD_ERR_S))) {
1068			dev_kfree_skb_any(skb);
1069			skb = NULL;
1070			continue;
1071		}
1072
1073		/* pad skb if needed (to make valid ethernet frame) */
1074		if (eth_skb_pad(skb)) {
1075			skb = NULL;
1076			continue;
1077		}
1078
1079		/* probably a little skewed due to removing CRC */
1080		total_rx_bytes += skb->len;
1081
1082		/* protocol */
1083		idpf_rx_singleq_process_skb_fields(rx_q, skb,
1084						   rx_desc, fields.rx_ptype);
1085
1086		/* send completed skb up the stack */
1087		napi_gro_receive(&rx_q->q_vector->napi, skb);
1088		skb = NULL;
1089
1090		/* update budget accounting */
1091		total_rx_pkts++;
1092	}
1093
1094	rx_q->skb = skb;
1095
1096	rx_q->next_to_clean = ntc;
1097
1098	if (cleaned_count)
1099		failure = idpf_rx_singleq_buf_hw_alloc_all(rx_q, cleaned_count);
1100
1101	u64_stats_update_begin(&rx_q->stats_sync);
1102	u64_stats_add(&rx_q->q_stats.rx.packets, total_rx_pkts);
1103	u64_stats_add(&rx_q->q_stats.rx.bytes, total_rx_bytes);
1104	u64_stats_update_end(&rx_q->stats_sync);
1105
1106	/* guarantee a trip back through this routine if there was a failure */
1107	return failure ? budget : (int)total_rx_pkts;
1108}
1109
1110/**
1111 * idpf_rx_singleq_clean_all - Clean all Rx queues
1112 * @q_vec: queue vector
1113 * @budget: Used to determine if we are in netpoll
1114 * @cleaned: returns number of packets cleaned
1115 *
1116 * Returns false if clean is not complete else returns true
1117 */
1118static bool idpf_rx_singleq_clean_all(struct idpf_q_vector *q_vec, int budget,
1119				      int *cleaned)
1120{
1121	u16 num_rxq = q_vec->num_rxq;
1122	bool clean_complete = true;
1123	int budget_per_q, i;
1124
1125	/* We attempt to distribute budget to each Rx queue fairly, but don't
1126	 * allow the budget to go below 1 because that would exit polling early.
1127	 */
1128	budget_per_q = num_rxq ? max(budget / num_rxq, 1) : 0;
1129	for (i = 0; i < num_rxq; i++) {
1130		struct idpf_queue *rxq = q_vec->rx[i];
1131		int pkts_cleaned_per_q;
1132
1133		pkts_cleaned_per_q = idpf_rx_singleq_clean(rxq, budget_per_q);
1134
1135		/* if we clean as many as budgeted, we must not be done */
1136		if (pkts_cleaned_per_q >= budget_per_q)
1137			clean_complete = false;
1138		*cleaned += pkts_cleaned_per_q;
1139	}
1140
1141	return clean_complete;
1142}
1143
1144/**
1145 * idpf_vport_singleq_napi_poll - NAPI handler
1146 * @napi: struct from which you get q_vector
1147 * @budget: budget provided by stack
1148 */
1149int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget)
1150{
1151	struct idpf_q_vector *q_vector =
1152				container_of(napi, struct idpf_q_vector, napi);
1153	bool clean_complete;
1154	int work_done = 0;
1155
1156	/* Handle case where we are called by netpoll with a budget of 0 */
1157	if (budget <= 0) {
1158		idpf_tx_singleq_clean_all(q_vector, budget, &work_done);
1159
1160		return budget;
1161	}
1162
1163	clean_complete = idpf_rx_singleq_clean_all(q_vector, budget,
1164						   &work_done);
1165	clean_complete &= idpf_tx_singleq_clean_all(q_vector, budget,
1166						    &work_done);
1167
1168	/* If work not completed, return budget and polling will return */
1169	if (!clean_complete)
1170		return budget;
1171
1172	work_done = min_t(int, work_done, budget - 1);
1173
1174	/* Exit the polling mode, but don't re-enable interrupts if stack might
1175	 * poll us due to busy-polling
1176	 */
1177	if (likely(napi_complete_done(napi, work_done)))
1178		idpf_vport_intr_update_itr_ena_irq(q_vector);
1179
1180	return work_done;
1181}