Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/bio.h>
7#include <linux/slab.h>
8#include <linux/pagemap.h>
9#include <linux/highmem.h>
10#include <linux/sched/mm.h>
11#include <crypto/hash.h>
12#include "messages.h"
13#include "misc.h"
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
17#include "bio.h"
18#include "print-tree.h"
19#include "compression.h"
20#include "fs.h"
21#include "accessors.h"
22#include "file-item.h"
23#include "super.h"
24
25#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
26 sizeof(struct btrfs_item) * 2) / \
27 size) - 1))
28
29#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
30 PAGE_SIZE))
31
32/*
33 * Set inode's size according to filesystem options.
34 *
35 * @inode: inode we want to update the disk_i_size for
36 * @new_i_size: i_size we want to set to, 0 if we use i_size
37 *
38 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
39 * returns as it is perfectly fine with a file that has holes without hole file
40 * extent items.
41 *
42 * However without NO_HOLES we need to only return the area that is contiguous
43 * from the 0 offset of the file. Otherwise we could end up adjust i_size up
44 * to an extent that has a gap in between.
45 *
46 * Finally new_i_size should only be set in the case of truncate where we're not
47 * ready to use i_size_read() as the limiter yet.
48 */
49void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
50{
51 struct btrfs_fs_info *fs_info = inode->root->fs_info;
52 u64 start, end, i_size;
53 int ret;
54
55 spin_lock(&inode->lock);
56 i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
57 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
58 inode->disk_i_size = i_size;
59 goto out_unlock;
60 }
61
62 ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
63 &end, EXTENT_DIRTY);
64 if (!ret && start == 0)
65 i_size = min(i_size, end + 1);
66 else
67 i_size = 0;
68 inode->disk_i_size = i_size;
69out_unlock:
70 spin_unlock(&inode->lock);
71}
72
73/*
74 * Mark range within a file as having a new extent inserted.
75 *
76 * @inode: inode being modified
77 * @start: start file offset of the file extent we've inserted
78 * @len: logical length of the file extent item
79 *
80 * Call when we are inserting a new file extent where there was none before.
81 * Does not need to call this in the case where we're replacing an existing file
82 * extent, however if not sure it's fine to call this multiple times.
83 *
84 * The start and len must match the file extent item, so thus must be sectorsize
85 * aligned.
86 */
87int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
88 u64 len)
89{
90 if (len == 0)
91 return 0;
92
93 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
94
95 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
96 return 0;
97 return set_extent_bit(inode->file_extent_tree, start, start + len - 1,
98 EXTENT_DIRTY, NULL);
99}
100
101/*
102 * Mark an inode range as not having a backing extent.
103 *
104 * @inode: inode being modified
105 * @start: start file offset of the file extent we've inserted
106 * @len: logical length of the file extent item
107 *
108 * Called when we drop a file extent, for example when we truncate. Doesn't
109 * need to be called for cases where we're replacing a file extent, like when
110 * we've COWed a file extent.
111 *
112 * The start and len must match the file extent item, so thus must be sectorsize
113 * aligned.
114 */
115int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
116 u64 len)
117{
118 if (len == 0)
119 return 0;
120
121 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
122 len == (u64)-1);
123
124 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
125 return 0;
126 return clear_extent_bit(inode->file_extent_tree, start,
127 start + len - 1, EXTENT_DIRTY, NULL);
128}
129
130static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
131{
132 ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
133
134 return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
135}
136
137static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
138{
139 ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
140
141 return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
142}
143
144static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
145{
146 u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
147 fs_info->csum_size);
148
149 return csum_size_to_bytes(fs_info, max_csum_size);
150}
151
152/*
153 * Calculate the total size needed to allocate for an ordered sum structure
154 * spanning @bytes in the file.
155 */
156static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
157{
158 return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
159}
160
161int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
162 struct btrfs_root *root,
163 u64 objectid, u64 pos, u64 num_bytes)
164{
165 int ret = 0;
166 struct btrfs_file_extent_item *item;
167 struct btrfs_key file_key;
168 struct btrfs_path *path;
169 struct extent_buffer *leaf;
170
171 path = btrfs_alloc_path();
172 if (!path)
173 return -ENOMEM;
174 file_key.objectid = objectid;
175 file_key.offset = pos;
176 file_key.type = BTRFS_EXTENT_DATA_KEY;
177
178 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
179 sizeof(*item));
180 if (ret < 0)
181 goto out;
182 BUG_ON(ret); /* Can't happen */
183 leaf = path->nodes[0];
184 item = btrfs_item_ptr(leaf, path->slots[0],
185 struct btrfs_file_extent_item);
186 btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
187 btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
188 btrfs_set_file_extent_offset(leaf, item, 0);
189 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
190 btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
191 btrfs_set_file_extent_generation(leaf, item, trans->transid);
192 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
193 btrfs_set_file_extent_compression(leaf, item, 0);
194 btrfs_set_file_extent_encryption(leaf, item, 0);
195 btrfs_set_file_extent_other_encoding(leaf, item, 0);
196
197 btrfs_mark_buffer_dirty(trans, leaf);
198out:
199 btrfs_free_path(path);
200 return ret;
201}
202
203static struct btrfs_csum_item *
204btrfs_lookup_csum(struct btrfs_trans_handle *trans,
205 struct btrfs_root *root,
206 struct btrfs_path *path,
207 u64 bytenr, int cow)
208{
209 struct btrfs_fs_info *fs_info = root->fs_info;
210 int ret;
211 struct btrfs_key file_key;
212 struct btrfs_key found_key;
213 struct btrfs_csum_item *item;
214 struct extent_buffer *leaf;
215 u64 csum_offset = 0;
216 const u32 csum_size = fs_info->csum_size;
217 int csums_in_item;
218
219 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
220 file_key.offset = bytenr;
221 file_key.type = BTRFS_EXTENT_CSUM_KEY;
222 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
223 if (ret < 0)
224 goto fail;
225 leaf = path->nodes[0];
226 if (ret > 0) {
227 ret = 1;
228 if (path->slots[0] == 0)
229 goto fail;
230 path->slots[0]--;
231 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
232 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
233 goto fail;
234
235 csum_offset = (bytenr - found_key.offset) >>
236 fs_info->sectorsize_bits;
237 csums_in_item = btrfs_item_size(leaf, path->slots[0]);
238 csums_in_item /= csum_size;
239
240 if (csum_offset == csums_in_item) {
241 ret = -EFBIG;
242 goto fail;
243 } else if (csum_offset > csums_in_item) {
244 goto fail;
245 }
246 }
247 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
248 item = (struct btrfs_csum_item *)((unsigned char *)item +
249 csum_offset * csum_size);
250 return item;
251fail:
252 if (ret > 0)
253 ret = -ENOENT;
254 return ERR_PTR(ret);
255}
256
257int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
258 struct btrfs_root *root,
259 struct btrfs_path *path, u64 objectid,
260 u64 offset, int mod)
261{
262 struct btrfs_key file_key;
263 int ins_len = mod < 0 ? -1 : 0;
264 int cow = mod != 0;
265
266 file_key.objectid = objectid;
267 file_key.offset = offset;
268 file_key.type = BTRFS_EXTENT_DATA_KEY;
269
270 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
271}
272
273/*
274 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
275 * store the result to @dst.
276 *
277 * Return >0 for the number of sectors we found.
278 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
279 * for it. Caller may want to try next sector until one range is hit.
280 * Return <0 for fatal error.
281 */
282static int search_csum_tree(struct btrfs_fs_info *fs_info,
283 struct btrfs_path *path, u64 disk_bytenr,
284 u64 len, u8 *dst)
285{
286 struct btrfs_root *csum_root;
287 struct btrfs_csum_item *item = NULL;
288 struct btrfs_key key;
289 const u32 sectorsize = fs_info->sectorsize;
290 const u32 csum_size = fs_info->csum_size;
291 u32 itemsize;
292 int ret;
293 u64 csum_start;
294 u64 csum_len;
295
296 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
297 IS_ALIGNED(len, sectorsize));
298
299 /* Check if the current csum item covers disk_bytenr */
300 if (path->nodes[0]) {
301 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
302 struct btrfs_csum_item);
303 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
304 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
305
306 csum_start = key.offset;
307 csum_len = (itemsize / csum_size) * sectorsize;
308
309 if (in_range(disk_bytenr, csum_start, csum_len))
310 goto found;
311 }
312
313 /* Current item doesn't contain the desired range, search again */
314 btrfs_release_path(path);
315 csum_root = btrfs_csum_root(fs_info, disk_bytenr);
316 item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
317 if (IS_ERR(item)) {
318 ret = PTR_ERR(item);
319 goto out;
320 }
321 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
322 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
323
324 csum_start = key.offset;
325 csum_len = (itemsize / csum_size) * sectorsize;
326 ASSERT(in_range(disk_bytenr, csum_start, csum_len));
327
328found:
329 ret = (min(csum_start + csum_len, disk_bytenr + len) -
330 disk_bytenr) >> fs_info->sectorsize_bits;
331 read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
332 ret * csum_size);
333out:
334 if (ret == -ENOENT || ret == -EFBIG)
335 ret = 0;
336 return ret;
337}
338
339/*
340 * Lookup the checksum for the read bio in csum tree.
341 *
342 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
343 */
344blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
345{
346 struct btrfs_inode *inode = bbio->inode;
347 struct btrfs_fs_info *fs_info = inode->root->fs_info;
348 struct bio *bio = &bbio->bio;
349 struct btrfs_path *path;
350 const u32 sectorsize = fs_info->sectorsize;
351 const u32 csum_size = fs_info->csum_size;
352 u32 orig_len = bio->bi_iter.bi_size;
353 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
354 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
355 blk_status_t ret = BLK_STS_OK;
356 u32 bio_offset = 0;
357
358 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
359 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
360 return BLK_STS_OK;
361
362 /*
363 * This function is only called for read bio.
364 *
365 * This means two things:
366 * - All our csums should only be in csum tree
367 * No ordered extents csums, as ordered extents are only for write
368 * path.
369 * - No need to bother any other info from bvec
370 * Since we're looking up csums, the only important info is the
371 * disk_bytenr and the length, which can be extracted from bi_iter
372 * directly.
373 */
374 ASSERT(bio_op(bio) == REQ_OP_READ);
375 path = btrfs_alloc_path();
376 if (!path)
377 return BLK_STS_RESOURCE;
378
379 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
380 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
381 if (!bbio->csum) {
382 btrfs_free_path(path);
383 return BLK_STS_RESOURCE;
384 }
385 } else {
386 bbio->csum = bbio->csum_inline;
387 }
388
389 /*
390 * If requested number of sectors is larger than one leaf can contain,
391 * kick the readahead for csum tree.
392 */
393 if (nblocks > fs_info->csums_per_leaf)
394 path->reada = READA_FORWARD;
395
396 /*
397 * the free space stuff is only read when it hasn't been
398 * updated in the current transaction. So, we can safely
399 * read from the commit root and sidestep a nasty deadlock
400 * between reading the free space cache and updating the csum tree.
401 */
402 if (btrfs_is_free_space_inode(inode)) {
403 path->search_commit_root = 1;
404 path->skip_locking = 1;
405 }
406
407 while (bio_offset < orig_len) {
408 int count;
409 u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
410 u8 *csum_dst = bbio->csum +
411 (bio_offset >> fs_info->sectorsize_bits) * csum_size;
412
413 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
414 orig_len - bio_offset, csum_dst);
415 if (count < 0) {
416 ret = errno_to_blk_status(count);
417 if (bbio->csum != bbio->csum_inline)
418 kfree(bbio->csum);
419 bbio->csum = NULL;
420 break;
421 }
422
423 /*
424 * We didn't find a csum for this range. We need to make sure
425 * we complain loudly about this, because we are not NODATASUM.
426 *
427 * However for the DATA_RELOC inode we could potentially be
428 * relocating data extents for a NODATASUM inode, so the inode
429 * itself won't be marked with NODATASUM, but the extent we're
430 * copying is in fact NODATASUM. If we don't find a csum we
431 * assume this is the case.
432 */
433 if (count == 0) {
434 memset(csum_dst, 0, csum_size);
435 count = 1;
436
437 if (inode->root->root_key.objectid ==
438 BTRFS_DATA_RELOC_TREE_OBJECTID) {
439 u64 file_offset = bbio->file_offset + bio_offset;
440
441 set_extent_bit(&inode->io_tree, file_offset,
442 file_offset + sectorsize - 1,
443 EXTENT_NODATASUM, NULL);
444 } else {
445 btrfs_warn_rl(fs_info,
446 "csum hole found for disk bytenr range [%llu, %llu)",
447 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
448 }
449 }
450 bio_offset += count * sectorsize;
451 }
452
453 btrfs_free_path(path);
454 return ret;
455}
456
457int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
458 struct list_head *list, int search_commit,
459 bool nowait)
460{
461 struct btrfs_fs_info *fs_info = root->fs_info;
462 struct btrfs_key key;
463 struct btrfs_path *path;
464 struct extent_buffer *leaf;
465 struct btrfs_ordered_sum *sums;
466 struct btrfs_csum_item *item;
467 LIST_HEAD(tmplist);
468 int ret;
469
470 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
471 IS_ALIGNED(end + 1, fs_info->sectorsize));
472
473 path = btrfs_alloc_path();
474 if (!path)
475 return -ENOMEM;
476
477 path->nowait = nowait;
478 if (search_commit) {
479 path->skip_locking = 1;
480 path->reada = READA_FORWARD;
481 path->search_commit_root = 1;
482 }
483
484 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
485 key.offset = start;
486 key.type = BTRFS_EXTENT_CSUM_KEY;
487
488 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
489 if (ret < 0)
490 goto fail;
491 if (ret > 0 && path->slots[0] > 0) {
492 leaf = path->nodes[0];
493 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
494
495 /*
496 * There are two cases we can hit here for the previous csum
497 * item:
498 *
499 * |<- search range ->|
500 * |<- csum item ->|
501 *
502 * Or
503 * |<- search range ->|
504 * |<- csum item ->|
505 *
506 * Check if the previous csum item covers the leading part of
507 * the search range. If so we have to start from previous csum
508 * item.
509 */
510 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
511 key.type == BTRFS_EXTENT_CSUM_KEY) {
512 if (bytes_to_csum_size(fs_info, start - key.offset) <
513 btrfs_item_size(leaf, path->slots[0] - 1))
514 path->slots[0]--;
515 }
516 }
517
518 while (start <= end) {
519 u64 csum_end;
520
521 leaf = path->nodes[0];
522 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
523 ret = btrfs_next_leaf(root, path);
524 if (ret < 0)
525 goto fail;
526 if (ret > 0)
527 break;
528 leaf = path->nodes[0];
529 }
530
531 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
532 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
533 key.type != BTRFS_EXTENT_CSUM_KEY ||
534 key.offset > end)
535 break;
536
537 if (key.offset > start)
538 start = key.offset;
539
540 csum_end = key.offset + csum_size_to_bytes(fs_info,
541 btrfs_item_size(leaf, path->slots[0]));
542 if (csum_end <= start) {
543 path->slots[0]++;
544 continue;
545 }
546
547 csum_end = min(csum_end, end + 1);
548 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
549 struct btrfs_csum_item);
550 while (start < csum_end) {
551 unsigned long offset;
552 size_t size;
553
554 size = min_t(size_t, csum_end - start,
555 max_ordered_sum_bytes(fs_info));
556 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
557 GFP_NOFS);
558 if (!sums) {
559 ret = -ENOMEM;
560 goto fail;
561 }
562
563 sums->logical = start;
564 sums->len = size;
565
566 offset = bytes_to_csum_size(fs_info, start - key.offset);
567
568 read_extent_buffer(path->nodes[0],
569 sums->sums,
570 ((unsigned long)item) + offset,
571 bytes_to_csum_size(fs_info, size));
572
573 start += size;
574 list_add_tail(&sums->list, &tmplist);
575 }
576 path->slots[0]++;
577 }
578 ret = 0;
579fail:
580 while (ret < 0 && !list_empty(&tmplist)) {
581 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
582 list_del(&sums->list);
583 kfree(sums);
584 }
585 list_splice_tail(&tmplist, list);
586
587 btrfs_free_path(path);
588 return ret;
589}
590
591/*
592 * Do the same work as btrfs_lookup_csums_list(), the difference is in how
593 * we return the result.
594 *
595 * This version will set the corresponding bits in @csum_bitmap to represent
596 * that there is a csum found.
597 * Each bit represents a sector. Thus caller should ensure @csum_buf passed
598 * in is large enough to contain all csums.
599 */
600int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
601 u64 start, u64 end, u8 *csum_buf,
602 unsigned long *csum_bitmap)
603{
604 struct btrfs_fs_info *fs_info = root->fs_info;
605 struct btrfs_key key;
606 struct extent_buffer *leaf;
607 struct btrfs_csum_item *item;
608 const u64 orig_start = start;
609 bool free_path = false;
610 int ret;
611
612 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
613 IS_ALIGNED(end + 1, fs_info->sectorsize));
614
615 if (!path) {
616 path = btrfs_alloc_path();
617 if (!path)
618 return -ENOMEM;
619 free_path = true;
620 }
621
622 /* Check if we can reuse the previous path. */
623 if (path->nodes[0]) {
624 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
625
626 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
627 key.type == BTRFS_EXTENT_CSUM_KEY &&
628 key.offset <= start)
629 goto search_forward;
630 btrfs_release_path(path);
631 }
632
633 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
634 key.type = BTRFS_EXTENT_CSUM_KEY;
635 key.offset = start;
636
637 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
638 if (ret < 0)
639 goto fail;
640 if (ret > 0 && path->slots[0] > 0) {
641 leaf = path->nodes[0];
642 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
643
644 /*
645 * There are two cases we can hit here for the previous csum
646 * item:
647 *
648 * |<- search range ->|
649 * |<- csum item ->|
650 *
651 * Or
652 * |<- search range ->|
653 * |<- csum item ->|
654 *
655 * Check if the previous csum item covers the leading part of
656 * the search range. If so we have to start from previous csum
657 * item.
658 */
659 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
660 key.type == BTRFS_EXTENT_CSUM_KEY) {
661 if (bytes_to_csum_size(fs_info, start - key.offset) <
662 btrfs_item_size(leaf, path->slots[0] - 1))
663 path->slots[0]--;
664 }
665 }
666
667search_forward:
668 while (start <= end) {
669 u64 csum_end;
670
671 leaf = path->nodes[0];
672 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
673 ret = btrfs_next_leaf(root, path);
674 if (ret < 0)
675 goto fail;
676 if (ret > 0)
677 break;
678 leaf = path->nodes[0];
679 }
680
681 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
682 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
683 key.type != BTRFS_EXTENT_CSUM_KEY ||
684 key.offset > end)
685 break;
686
687 if (key.offset > start)
688 start = key.offset;
689
690 csum_end = key.offset + csum_size_to_bytes(fs_info,
691 btrfs_item_size(leaf, path->slots[0]));
692 if (csum_end <= start) {
693 path->slots[0]++;
694 continue;
695 }
696
697 csum_end = min(csum_end, end + 1);
698 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
699 struct btrfs_csum_item);
700 while (start < csum_end) {
701 unsigned long offset;
702 size_t size;
703 u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
704 start - orig_start);
705
706 size = min_t(size_t, csum_end - start, end + 1 - start);
707
708 offset = bytes_to_csum_size(fs_info, start - key.offset);
709
710 read_extent_buffer(path->nodes[0], csum_dest,
711 ((unsigned long)item) + offset,
712 bytes_to_csum_size(fs_info, size));
713
714 bitmap_set(csum_bitmap,
715 (start - orig_start) >> fs_info->sectorsize_bits,
716 size >> fs_info->sectorsize_bits);
717
718 start += size;
719 }
720 path->slots[0]++;
721 }
722 ret = 0;
723fail:
724 if (free_path)
725 btrfs_free_path(path);
726 return ret;
727}
728
729/*
730 * Calculate checksums of the data contained inside a bio.
731 */
732blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
733{
734 struct btrfs_ordered_extent *ordered = bbio->ordered;
735 struct btrfs_inode *inode = bbio->inode;
736 struct btrfs_fs_info *fs_info = inode->root->fs_info;
737 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
738 struct bio *bio = &bbio->bio;
739 struct btrfs_ordered_sum *sums;
740 char *data;
741 struct bvec_iter iter;
742 struct bio_vec bvec;
743 int index;
744 unsigned int blockcount;
745 int i;
746 unsigned nofs_flag;
747
748 nofs_flag = memalloc_nofs_save();
749 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
750 GFP_KERNEL);
751 memalloc_nofs_restore(nofs_flag);
752
753 if (!sums)
754 return BLK_STS_RESOURCE;
755
756 sums->len = bio->bi_iter.bi_size;
757 INIT_LIST_HEAD(&sums->list);
758
759 sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
760 index = 0;
761
762 shash->tfm = fs_info->csum_shash;
763
764 bio_for_each_segment(bvec, bio, iter) {
765 blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
766 bvec.bv_len + fs_info->sectorsize
767 - 1);
768
769 for (i = 0; i < blockcount; i++) {
770 data = bvec_kmap_local(&bvec);
771 crypto_shash_digest(shash,
772 data + (i * fs_info->sectorsize),
773 fs_info->sectorsize,
774 sums->sums + index);
775 kunmap_local(data);
776 index += fs_info->csum_size;
777 }
778
779 }
780
781 bbio->sums = sums;
782 btrfs_add_ordered_sum(ordered, sums);
783 return 0;
784}
785
786/*
787 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
788 * record the updated logical address on Zone Append completion.
789 * Allocate just the structure with an empty sums array here for that case.
790 */
791blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
792{
793 bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
794 if (!bbio->sums)
795 return BLK_STS_RESOURCE;
796 bbio->sums->len = bbio->bio.bi_iter.bi_size;
797 bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
798 btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
799 return 0;
800}
801
802/*
803 * Remove one checksum overlapping a range.
804 *
805 * This expects the key to describe the csum pointed to by the path, and it
806 * expects the csum to overlap the range [bytenr, len]
807 *
808 * The csum should not be entirely contained in the range and the range should
809 * not be entirely contained in the csum.
810 *
811 * This calls btrfs_truncate_item with the correct args based on the overlap,
812 * and fixes up the key as required.
813 */
814static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
815 struct btrfs_path *path,
816 struct btrfs_key *key,
817 u64 bytenr, u64 len)
818{
819 struct btrfs_fs_info *fs_info = trans->fs_info;
820 struct extent_buffer *leaf;
821 const u32 csum_size = fs_info->csum_size;
822 u64 csum_end;
823 u64 end_byte = bytenr + len;
824 u32 blocksize_bits = fs_info->sectorsize_bits;
825
826 leaf = path->nodes[0];
827 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
828 csum_end <<= blocksize_bits;
829 csum_end += key->offset;
830
831 if (key->offset < bytenr && csum_end <= end_byte) {
832 /*
833 * [ bytenr - len ]
834 * [ ]
835 * [csum ]
836 * A simple truncate off the end of the item
837 */
838 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
839 new_size *= csum_size;
840 btrfs_truncate_item(trans, path, new_size, 1);
841 } else if (key->offset >= bytenr && csum_end > end_byte &&
842 end_byte > key->offset) {
843 /*
844 * [ bytenr - len ]
845 * [ ]
846 * [csum ]
847 * we need to truncate from the beginning of the csum
848 */
849 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
850 new_size *= csum_size;
851
852 btrfs_truncate_item(trans, path, new_size, 0);
853
854 key->offset = end_byte;
855 btrfs_set_item_key_safe(trans, path, key);
856 } else {
857 BUG();
858 }
859}
860
861/*
862 * Delete the csum items from the csum tree for a given range of bytes.
863 */
864int btrfs_del_csums(struct btrfs_trans_handle *trans,
865 struct btrfs_root *root, u64 bytenr, u64 len)
866{
867 struct btrfs_fs_info *fs_info = trans->fs_info;
868 struct btrfs_path *path;
869 struct btrfs_key key;
870 u64 end_byte = bytenr + len;
871 u64 csum_end;
872 struct extent_buffer *leaf;
873 int ret = 0;
874 const u32 csum_size = fs_info->csum_size;
875 u32 blocksize_bits = fs_info->sectorsize_bits;
876
877 ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
878 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
879
880 path = btrfs_alloc_path();
881 if (!path)
882 return -ENOMEM;
883
884 while (1) {
885 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
886 key.offset = end_byte - 1;
887 key.type = BTRFS_EXTENT_CSUM_KEY;
888
889 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
890 if (ret > 0) {
891 ret = 0;
892 if (path->slots[0] == 0)
893 break;
894 path->slots[0]--;
895 } else if (ret < 0) {
896 break;
897 }
898
899 leaf = path->nodes[0];
900 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
901
902 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
903 key.type != BTRFS_EXTENT_CSUM_KEY) {
904 break;
905 }
906
907 if (key.offset >= end_byte)
908 break;
909
910 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
911 csum_end <<= blocksize_bits;
912 csum_end += key.offset;
913
914 /* this csum ends before we start, we're done */
915 if (csum_end <= bytenr)
916 break;
917
918 /* delete the entire item, it is inside our range */
919 if (key.offset >= bytenr && csum_end <= end_byte) {
920 int del_nr = 1;
921
922 /*
923 * Check how many csum items preceding this one in this
924 * leaf correspond to our range and then delete them all
925 * at once.
926 */
927 if (key.offset > bytenr && path->slots[0] > 0) {
928 int slot = path->slots[0] - 1;
929
930 while (slot >= 0) {
931 struct btrfs_key pk;
932
933 btrfs_item_key_to_cpu(leaf, &pk, slot);
934 if (pk.offset < bytenr ||
935 pk.type != BTRFS_EXTENT_CSUM_KEY ||
936 pk.objectid !=
937 BTRFS_EXTENT_CSUM_OBJECTID)
938 break;
939 path->slots[0] = slot;
940 del_nr++;
941 key.offset = pk.offset;
942 slot--;
943 }
944 }
945 ret = btrfs_del_items(trans, root, path,
946 path->slots[0], del_nr);
947 if (ret)
948 break;
949 if (key.offset == bytenr)
950 break;
951 } else if (key.offset < bytenr && csum_end > end_byte) {
952 unsigned long offset;
953 unsigned long shift_len;
954 unsigned long item_offset;
955 /*
956 * [ bytenr - len ]
957 * [csum ]
958 *
959 * Our bytes are in the middle of the csum,
960 * we need to split this item and insert a new one.
961 *
962 * But we can't drop the path because the
963 * csum could change, get removed, extended etc.
964 *
965 * The trick here is the max size of a csum item leaves
966 * enough room in the tree block for a single
967 * item header. So, we split the item in place,
968 * adding a new header pointing to the existing
969 * bytes. Then we loop around again and we have
970 * a nicely formed csum item that we can neatly
971 * truncate.
972 */
973 offset = (bytenr - key.offset) >> blocksize_bits;
974 offset *= csum_size;
975
976 shift_len = (len >> blocksize_bits) * csum_size;
977
978 item_offset = btrfs_item_ptr_offset(leaf,
979 path->slots[0]);
980
981 memzero_extent_buffer(leaf, item_offset + offset,
982 shift_len);
983 key.offset = bytenr;
984
985 /*
986 * btrfs_split_item returns -EAGAIN when the
987 * item changed size or key
988 */
989 ret = btrfs_split_item(trans, root, path, &key, offset);
990 if (ret && ret != -EAGAIN) {
991 btrfs_abort_transaction(trans, ret);
992 break;
993 }
994 ret = 0;
995
996 key.offset = end_byte - 1;
997 } else {
998 truncate_one_csum(trans, path, &key, bytenr, len);
999 if (key.offset < bytenr)
1000 break;
1001 }
1002 btrfs_release_path(path);
1003 }
1004 btrfs_free_path(path);
1005 return ret;
1006}
1007
1008static int find_next_csum_offset(struct btrfs_root *root,
1009 struct btrfs_path *path,
1010 u64 *next_offset)
1011{
1012 const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1013 struct btrfs_key found_key;
1014 int slot = path->slots[0] + 1;
1015 int ret;
1016
1017 if (nritems == 0 || slot >= nritems) {
1018 ret = btrfs_next_leaf(root, path);
1019 if (ret < 0) {
1020 return ret;
1021 } else if (ret > 0) {
1022 *next_offset = (u64)-1;
1023 return 0;
1024 }
1025 slot = path->slots[0];
1026 }
1027
1028 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1029
1030 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1031 found_key.type != BTRFS_EXTENT_CSUM_KEY)
1032 *next_offset = (u64)-1;
1033 else
1034 *next_offset = found_key.offset;
1035
1036 return 0;
1037}
1038
1039int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1040 struct btrfs_root *root,
1041 struct btrfs_ordered_sum *sums)
1042{
1043 struct btrfs_fs_info *fs_info = root->fs_info;
1044 struct btrfs_key file_key;
1045 struct btrfs_key found_key;
1046 struct btrfs_path *path;
1047 struct btrfs_csum_item *item;
1048 struct btrfs_csum_item *item_end;
1049 struct extent_buffer *leaf = NULL;
1050 u64 next_offset;
1051 u64 total_bytes = 0;
1052 u64 csum_offset;
1053 u64 bytenr;
1054 u32 ins_size;
1055 int index = 0;
1056 int found_next;
1057 int ret;
1058 const u32 csum_size = fs_info->csum_size;
1059
1060 path = btrfs_alloc_path();
1061 if (!path)
1062 return -ENOMEM;
1063again:
1064 next_offset = (u64)-1;
1065 found_next = 0;
1066 bytenr = sums->logical + total_bytes;
1067 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1068 file_key.offset = bytenr;
1069 file_key.type = BTRFS_EXTENT_CSUM_KEY;
1070
1071 item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1072 if (!IS_ERR(item)) {
1073 ret = 0;
1074 leaf = path->nodes[0];
1075 item_end = btrfs_item_ptr(leaf, path->slots[0],
1076 struct btrfs_csum_item);
1077 item_end = (struct btrfs_csum_item *)((char *)item_end +
1078 btrfs_item_size(leaf, path->slots[0]));
1079 goto found;
1080 }
1081 ret = PTR_ERR(item);
1082 if (ret != -EFBIG && ret != -ENOENT)
1083 goto out;
1084
1085 if (ret == -EFBIG) {
1086 u32 item_size;
1087 /* we found one, but it isn't big enough yet */
1088 leaf = path->nodes[0];
1089 item_size = btrfs_item_size(leaf, path->slots[0]);
1090 if ((item_size / csum_size) >=
1091 MAX_CSUM_ITEMS(fs_info, csum_size)) {
1092 /* already at max size, make a new one */
1093 goto insert;
1094 }
1095 } else {
1096 /* We didn't find a csum item, insert one. */
1097 ret = find_next_csum_offset(root, path, &next_offset);
1098 if (ret < 0)
1099 goto out;
1100 found_next = 1;
1101 goto insert;
1102 }
1103
1104 /*
1105 * At this point, we know the tree has a checksum item that ends at an
1106 * offset matching the start of the checksum range we want to insert.
1107 * We try to extend that item as much as possible and then add as many
1108 * checksums to it as they fit.
1109 *
1110 * First check if the leaf has enough free space for at least one
1111 * checksum. If it has go directly to the item extension code, otherwise
1112 * release the path and do a search for insertion before the extension.
1113 */
1114 if (btrfs_leaf_free_space(leaf) >= csum_size) {
1115 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1116 csum_offset = (bytenr - found_key.offset) >>
1117 fs_info->sectorsize_bits;
1118 goto extend_csum;
1119 }
1120
1121 btrfs_release_path(path);
1122 path->search_for_extension = 1;
1123 ret = btrfs_search_slot(trans, root, &file_key, path,
1124 csum_size, 1);
1125 path->search_for_extension = 0;
1126 if (ret < 0)
1127 goto out;
1128
1129 if (ret > 0) {
1130 if (path->slots[0] == 0)
1131 goto insert;
1132 path->slots[0]--;
1133 }
1134
1135 leaf = path->nodes[0];
1136 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1137 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1138
1139 if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1140 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1141 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1142 goto insert;
1143 }
1144
1145extend_csum:
1146 if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1147 csum_size) {
1148 int extend_nr;
1149 u64 tmp;
1150 u32 diff;
1151
1152 tmp = sums->len - total_bytes;
1153 tmp >>= fs_info->sectorsize_bits;
1154 WARN_ON(tmp < 1);
1155 extend_nr = max_t(int, 1, tmp);
1156
1157 /*
1158 * A log tree can already have checksum items with a subset of
1159 * the checksums we are trying to log. This can happen after
1160 * doing a sequence of partial writes into prealloc extents and
1161 * fsyncs in between, with a full fsync logging a larger subrange
1162 * of an extent for which a previous fast fsync logged a smaller
1163 * subrange. And this happens in particular due to merging file
1164 * extent items when we complete an ordered extent for a range
1165 * covered by a prealloc extent - this is done at
1166 * btrfs_mark_extent_written().
1167 *
1168 * So if we try to extend the previous checksum item, which has
1169 * a range that ends at the start of the range we want to insert,
1170 * make sure we don't extend beyond the start offset of the next
1171 * checksum item. If we are at the last item in the leaf, then
1172 * forget the optimization of extending and add a new checksum
1173 * item - it is not worth the complexity of releasing the path,
1174 * getting the first key for the next leaf, repeat the btree
1175 * search, etc, because log trees are temporary anyway and it
1176 * would only save a few bytes of leaf space.
1177 */
1178 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1179 if (path->slots[0] + 1 >=
1180 btrfs_header_nritems(path->nodes[0])) {
1181 ret = find_next_csum_offset(root, path, &next_offset);
1182 if (ret < 0)
1183 goto out;
1184 found_next = 1;
1185 goto insert;
1186 }
1187
1188 ret = find_next_csum_offset(root, path, &next_offset);
1189 if (ret < 0)
1190 goto out;
1191
1192 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1193 if (tmp <= INT_MAX)
1194 extend_nr = min_t(int, extend_nr, tmp);
1195 }
1196
1197 diff = (csum_offset + extend_nr) * csum_size;
1198 diff = min(diff,
1199 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1200
1201 diff = diff - btrfs_item_size(leaf, path->slots[0]);
1202 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1203 diff /= csum_size;
1204 diff *= csum_size;
1205
1206 btrfs_extend_item(trans, path, diff);
1207 ret = 0;
1208 goto csum;
1209 }
1210
1211insert:
1212 btrfs_release_path(path);
1213 csum_offset = 0;
1214 if (found_next) {
1215 u64 tmp;
1216
1217 tmp = sums->len - total_bytes;
1218 tmp >>= fs_info->sectorsize_bits;
1219 tmp = min(tmp, (next_offset - file_key.offset) >>
1220 fs_info->sectorsize_bits);
1221
1222 tmp = max_t(u64, 1, tmp);
1223 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1224 ins_size = csum_size * tmp;
1225 } else {
1226 ins_size = csum_size;
1227 }
1228 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1229 ins_size);
1230 if (ret < 0)
1231 goto out;
1232 if (WARN_ON(ret != 0))
1233 goto out;
1234 leaf = path->nodes[0];
1235csum:
1236 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1237 item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1238 btrfs_item_size(leaf, path->slots[0]));
1239 item = (struct btrfs_csum_item *)((unsigned char *)item +
1240 csum_offset * csum_size);
1241found:
1242 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1243 ins_size *= csum_size;
1244 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1245 ins_size);
1246 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1247 ins_size);
1248
1249 index += ins_size;
1250 ins_size /= csum_size;
1251 total_bytes += ins_size * fs_info->sectorsize;
1252
1253 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
1254 if (total_bytes < sums->len) {
1255 btrfs_release_path(path);
1256 cond_resched();
1257 goto again;
1258 }
1259out:
1260 btrfs_free_path(path);
1261 return ret;
1262}
1263
1264void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1265 const struct btrfs_path *path,
1266 struct btrfs_file_extent_item *fi,
1267 struct extent_map *em)
1268{
1269 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1270 struct btrfs_root *root = inode->root;
1271 struct extent_buffer *leaf = path->nodes[0];
1272 const int slot = path->slots[0];
1273 struct btrfs_key key;
1274 u64 extent_start, extent_end;
1275 u64 bytenr;
1276 u8 type = btrfs_file_extent_type(leaf, fi);
1277 int compress_type = btrfs_file_extent_compression(leaf, fi);
1278
1279 btrfs_item_key_to_cpu(leaf, &key, slot);
1280 extent_start = key.offset;
1281 extent_end = btrfs_file_extent_end(path);
1282 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1283 em->generation = btrfs_file_extent_generation(leaf, fi);
1284 if (type == BTRFS_FILE_EXTENT_REG ||
1285 type == BTRFS_FILE_EXTENT_PREALLOC) {
1286 em->start = extent_start;
1287 em->len = extent_end - extent_start;
1288 em->orig_start = extent_start -
1289 btrfs_file_extent_offset(leaf, fi);
1290 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1291 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1292 if (bytenr == 0) {
1293 em->block_start = EXTENT_MAP_HOLE;
1294 return;
1295 }
1296 if (compress_type != BTRFS_COMPRESS_NONE) {
1297 extent_map_set_compression(em, compress_type);
1298 em->block_start = bytenr;
1299 em->block_len = em->orig_block_len;
1300 } else {
1301 bytenr += btrfs_file_extent_offset(leaf, fi);
1302 em->block_start = bytenr;
1303 em->block_len = em->len;
1304 if (type == BTRFS_FILE_EXTENT_PREALLOC)
1305 em->flags |= EXTENT_FLAG_PREALLOC;
1306 }
1307 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1308 em->block_start = EXTENT_MAP_INLINE;
1309 em->start = extent_start;
1310 em->len = extent_end - extent_start;
1311 /*
1312 * Initialize orig_start and block_len with the same values
1313 * as in inode.c:btrfs_get_extent().
1314 */
1315 em->orig_start = EXTENT_MAP_HOLE;
1316 em->block_len = (u64)-1;
1317 extent_map_set_compression(em, compress_type);
1318 } else {
1319 btrfs_err(fs_info,
1320 "unknown file extent item type %d, inode %llu, offset %llu, "
1321 "root %llu", type, btrfs_ino(inode), extent_start,
1322 root->root_key.objectid);
1323 }
1324}
1325
1326/*
1327 * Returns the end offset (non inclusive) of the file extent item the given path
1328 * points to. If it points to an inline extent, the returned offset is rounded
1329 * up to the sector size.
1330 */
1331u64 btrfs_file_extent_end(const struct btrfs_path *path)
1332{
1333 const struct extent_buffer *leaf = path->nodes[0];
1334 const int slot = path->slots[0];
1335 struct btrfs_file_extent_item *fi;
1336 struct btrfs_key key;
1337 u64 end;
1338
1339 btrfs_item_key_to_cpu(leaf, &key, slot);
1340 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1341 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1342
1343 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1344 end = btrfs_file_extent_ram_bytes(leaf, fi);
1345 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1346 } else {
1347 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1348 }
1349
1350 return end;
1351}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/bio.h>
7#include <linux/slab.h>
8#include <linux/pagemap.h>
9#include <linux/highmem.h>
10#include <linux/sched/mm.h>
11#include <crypto/hash.h>
12#include "messages.h"
13#include "ctree.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "bio.h"
17#include "compression.h"
18#include "fs.h"
19#include "accessors.h"
20#include "file-item.h"
21
22#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
23 sizeof(struct btrfs_item) * 2) / \
24 size) - 1))
25
26#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
27 PAGE_SIZE))
28
29/*
30 * Set inode's size according to filesystem options.
31 *
32 * @inode: inode we want to update the disk_i_size for
33 * @new_i_size: i_size we want to set to, 0 if we use i_size
34 *
35 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
36 * returns as it is perfectly fine with a file that has holes without hole file
37 * extent items.
38 *
39 * However without NO_HOLES we need to only return the area that is contiguous
40 * from the 0 offset of the file. Otherwise we could end up adjust i_size up
41 * to an extent that has a gap in between.
42 *
43 * Finally new_i_size should only be set in the case of truncate where we're not
44 * ready to use i_size_read() as the limiter yet.
45 */
46void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
47{
48 struct btrfs_fs_info *fs_info = inode->root->fs_info;
49 u64 start, end, i_size;
50 int ret;
51
52 spin_lock(&inode->lock);
53 i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
54 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
55 inode->disk_i_size = i_size;
56 goto out_unlock;
57 }
58
59 ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
60 &end, EXTENT_DIRTY);
61 if (!ret && start == 0)
62 i_size = min(i_size, end + 1);
63 else
64 i_size = 0;
65 inode->disk_i_size = i_size;
66out_unlock:
67 spin_unlock(&inode->lock);
68}
69
70/*
71 * Mark range within a file as having a new extent inserted.
72 *
73 * @inode: inode being modified
74 * @start: start file offset of the file extent we've inserted
75 * @len: logical length of the file extent item
76 *
77 * Call when we are inserting a new file extent where there was none before.
78 * Does not need to call this in the case where we're replacing an existing file
79 * extent, however if not sure it's fine to call this multiple times.
80 *
81 * The start and len must match the file extent item, so thus must be sectorsize
82 * aligned.
83 */
84int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
85 u64 len)
86{
87 if (len == 0)
88 return 0;
89
90 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
91
92 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
93 return 0;
94 return set_extent_bit(inode->file_extent_tree, start, start + len - 1,
95 EXTENT_DIRTY, NULL);
96}
97
98/*
99 * Mark an inode range as not having a backing extent.
100 *
101 * @inode: inode being modified
102 * @start: start file offset of the file extent we've inserted
103 * @len: logical length of the file extent item
104 *
105 * Called when we drop a file extent, for example when we truncate. Doesn't
106 * need to be called for cases where we're replacing a file extent, like when
107 * we've COWed a file extent.
108 *
109 * The start and len must match the file extent item, so thus must be sectorsize
110 * aligned.
111 */
112int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
113 u64 len)
114{
115 if (len == 0)
116 return 0;
117
118 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
119 len == (u64)-1);
120
121 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
122 return 0;
123 return clear_extent_bit(inode->file_extent_tree, start,
124 start + len - 1, EXTENT_DIRTY, NULL);
125}
126
127static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
128{
129 ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
130
131 return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
132}
133
134static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
135{
136 ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
137
138 return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
139}
140
141static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
142{
143 u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
144 fs_info->csum_size);
145
146 return csum_size_to_bytes(fs_info, max_csum_size);
147}
148
149/*
150 * Calculate the total size needed to allocate for an ordered sum structure
151 * spanning @bytes in the file.
152 */
153static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
154{
155 return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
156}
157
158int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
159 struct btrfs_root *root,
160 u64 objectid, u64 pos, u64 num_bytes)
161{
162 int ret = 0;
163 struct btrfs_file_extent_item *item;
164 struct btrfs_key file_key;
165 struct btrfs_path *path;
166 struct extent_buffer *leaf;
167
168 path = btrfs_alloc_path();
169 if (!path)
170 return -ENOMEM;
171 file_key.objectid = objectid;
172 file_key.offset = pos;
173 file_key.type = BTRFS_EXTENT_DATA_KEY;
174
175 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
176 sizeof(*item));
177 if (ret < 0)
178 goto out;
179 leaf = path->nodes[0];
180 item = btrfs_item_ptr(leaf, path->slots[0],
181 struct btrfs_file_extent_item);
182 btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
183 btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
184 btrfs_set_file_extent_offset(leaf, item, 0);
185 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
186 btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
187 btrfs_set_file_extent_generation(leaf, item, trans->transid);
188 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
189 btrfs_set_file_extent_compression(leaf, item, 0);
190 btrfs_set_file_extent_encryption(leaf, item, 0);
191 btrfs_set_file_extent_other_encoding(leaf, item, 0);
192
193 btrfs_mark_buffer_dirty(trans, leaf);
194out:
195 btrfs_free_path(path);
196 return ret;
197}
198
199static struct btrfs_csum_item *
200btrfs_lookup_csum(struct btrfs_trans_handle *trans,
201 struct btrfs_root *root,
202 struct btrfs_path *path,
203 u64 bytenr, int cow)
204{
205 struct btrfs_fs_info *fs_info = root->fs_info;
206 int ret;
207 struct btrfs_key file_key;
208 struct btrfs_key found_key;
209 struct btrfs_csum_item *item;
210 struct extent_buffer *leaf;
211 u64 csum_offset = 0;
212 const u32 csum_size = fs_info->csum_size;
213 int csums_in_item;
214
215 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
216 file_key.offset = bytenr;
217 file_key.type = BTRFS_EXTENT_CSUM_KEY;
218 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
219 if (ret < 0)
220 goto fail;
221 leaf = path->nodes[0];
222 if (ret > 0) {
223 ret = 1;
224 if (path->slots[0] == 0)
225 goto fail;
226 path->slots[0]--;
227 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
228 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
229 goto fail;
230
231 csum_offset = (bytenr - found_key.offset) >>
232 fs_info->sectorsize_bits;
233 csums_in_item = btrfs_item_size(leaf, path->slots[0]);
234 csums_in_item /= csum_size;
235
236 if (csum_offset == csums_in_item) {
237 ret = -EFBIG;
238 goto fail;
239 } else if (csum_offset > csums_in_item) {
240 goto fail;
241 }
242 }
243 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
244 item = (struct btrfs_csum_item *)((unsigned char *)item +
245 csum_offset * csum_size);
246 return item;
247fail:
248 if (ret > 0)
249 ret = -ENOENT;
250 return ERR_PTR(ret);
251}
252
253int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
254 struct btrfs_root *root,
255 struct btrfs_path *path, u64 objectid,
256 u64 offset, int mod)
257{
258 struct btrfs_key file_key;
259 int ins_len = mod < 0 ? -1 : 0;
260 int cow = mod != 0;
261
262 file_key.objectid = objectid;
263 file_key.offset = offset;
264 file_key.type = BTRFS_EXTENT_DATA_KEY;
265
266 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
267}
268
269/*
270 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
271 * store the result to @dst.
272 *
273 * Return >0 for the number of sectors we found.
274 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
275 * for it. Caller may want to try next sector until one range is hit.
276 * Return <0 for fatal error.
277 */
278static int search_csum_tree(struct btrfs_fs_info *fs_info,
279 struct btrfs_path *path, u64 disk_bytenr,
280 u64 len, u8 *dst)
281{
282 struct btrfs_root *csum_root;
283 struct btrfs_csum_item *item = NULL;
284 struct btrfs_key key;
285 const u32 sectorsize = fs_info->sectorsize;
286 const u32 csum_size = fs_info->csum_size;
287 u32 itemsize;
288 int ret;
289 u64 csum_start;
290 u64 csum_len;
291
292 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
293 IS_ALIGNED(len, sectorsize));
294
295 /* Check if the current csum item covers disk_bytenr */
296 if (path->nodes[0]) {
297 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
298 struct btrfs_csum_item);
299 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
300 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
301
302 csum_start = key.offset;
303 csum_len = (itemsize / csum_size) * sectorsize;
304
305 if (in_range(disk_bytenr, csum_start, csum_len))
306 goto found;
307 }
308
309 /* Current item doesn't contain the desired range, search again */
310 btrfs_release_path(path);
311 csum_root = btrfs_csum_root(fs_info, disk_bytenr);
312 item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
313 if (IS_ERR(item)) {
314 ret = PTR_ERR(item);
315 goto out;
316 }
317 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
318 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
319
320 csum_start = key.offset;
321 csum_len = (itemsize / csum_size) * sectorsize;
322 ASSERT(in_range(disk_bytenr, csum_start, csum_len));
323
324found:
325 ret = (min(csum_start + csum_len, disk_bytenr + len) -
326 disk_bytenr) >> fs_info->sectorsize_bits;
327 read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
328 ret * csum_size);
329out:
330 if (ret == -ENOENT || ret == -EFBIG)
331 ret = 0;
332 return ret;
333}
334
335/*
336 * Lookup the checksum for the read bio in csum tree.
337 *
338 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
339 */
340blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
341{
342 struct btrfs_inode *inode = bbio->inode;
343 struct btrfs_fs_info *fs_info = inode->root->fs_info;
344 struct bio *bio = &bbio->bio;
345 struct btrfs_path *path;
346 const u32 sectorsize = fs_info->sectorsize;
347 const u32 csum_size = fs_info->csum_size;
348 u32 orig_len = bio->bi_iter.bi_size;
349 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
350 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
351 blk_status_t ret = BLK_STS_OK;
352 u32 bio_offset = 0;
353
354 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
355 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
356 return BLK_STS_OK;
357
358 /*
359 * This function is only called for read bio.
360 *
361 * This means two things:
362 * - All our csums should only be in csum tree
363 * No ordered extents csums, as ordered extents are only for write
364 * path.
365 * - No need to bother any other info from bvec
366 * Since we're looking up csums, the only important info is the
367 * disk_bytenr and the length, which can be extracted from bi_iter
368 * directly.
369 */
370 ASSERT(bio_op(bio) == REQ_OP_READ);
371 path = btrfs_alloc_path();
372 if (!path)
373 return BLK_STS_RESOURCE;
374
375 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
376 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
377 if (!bbio->csum) {
378 btrfs_free_path(path);
379 return BLK_STS_RESOURCE;
380 }
381 } else {
382 bbio->csum = bbio->csum_inline;
383 }
384
385 /*
386 * If requested number of sectors is larger than one leaf can contain,
387 * kick the readahead for csum tree.
388 */
389 if (nblocks > fs_info->csums_per_leaf)
390 path->reada = READA_FORWARD;
391
392 /*
393 * the free space stuff is only read when it hasn't been
394 * updated in the current transaction. So, we can safely
395 * read from the commit root and sidestep a nasty deadlock
396 * between reading the free space cache and updating the csum tree.
397 */
398 if (btrfs_is_free_space_inode(inode)) {
399 path->search_commit_root = 1;
400 path->skip_locking = 1;
401 }
402
403 while (bio_offset < orig_len) {
404 int count;
405 u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
406 u8 *csum_dst = bbio->csum +
407 (bio_offset >> fs_info->sectorsize_bits) * csum_size;
408
409 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
410 orig_len - bio_offset, csum_dst);
411 if (count < 0) {
412 ret = errno_to_blk_status(count);
413 if (bbio->csum != bbio->csum_inline)
414 kfree(bbio->csum);
415 bbio->csum = NULL;
416 break;
417 }
418
419 /*
420 * We didn't find a csum for this range. We need to make sure
421 * we complain loudly about this, because we are not NODATASUM.
422 *
423 * However for the DATA_RELOC inode we could potentially be
424 * relocating data extents for a NODATASUM inode, so the inode
425 * itself won't be marked with NODATASUM, but the extent we're
426 * copying is in fact NODATASUM. If we don't find a csum we
427 * assume this is the case.
428 */
429 if (count == 0) {
430 memset(csum_dst, 0, csum_size);
431 count = 1;
432
433 if (inode->root->root_key.objectid ==
434 BTRFS_DATA_RELOC_TREE_OBJECTID) {
435 u64 file_offset = bbio->file_offset + bio_offset;
436
437 set_extent_bit(&inode->io_tree, file_offset,
438 file_offset + sectorsize - 1,
439 EXTENT_NODATASUM, NULL);
440 } else {
441 btrfs_warn_rl(fs_info,
442 "csum hole found for disk bytenr range [%llu, %llu)",
443 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
444 }
445 }
446 bio_offset += count * sectorsize;
447 }
448
449 btrfs_free_path(path);
450 return ret;
451}
452
453int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
454 struct list_head *list, int search_commit,
455 bool nowait)
456{
457 struct btrfs_fs_info *fs_info = root->fs_info;
458 struct btrfs_key key;
459 struct btrfs_path *path;
460 struct extent_buffer *leaf;
461 struct btrfs_ordered_sum *sums;
462 struct btrfs_csum_item *item;
463 LIST_HEAD(tmplist);
464 int ret;
465
466 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
467 IS_ALIGNED(end + 1, fs_info->sectorsize));
468
469 path = btrfs_alloc_path();
470 if (!path)
471 return -ENOMEM;
472
473 path->nowait = nowait;
474 if (search_commit) {
475 path->skip_locking = 1;
476 path->reada = READA_FORWARD;
477 path->search_commit_root = 1;
478 }
479
480 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
481 key.offset = start;
482 key.type = BTRFS_EXTENT_CSUM_KEY;
483
484 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
485 if (ret < 0)
486 goto fail;
487 if (ret > 0 && path->slots[0] > 0) {
488 leaf = path->nodes[0];
489 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
490
491 /*
492 * There are two cases we can hit here for the previous csum
493 * item:
494 *
495 * |<- search range ->|
496 * |<- csum item ->|
497 *
498 * Or
499 * |<- search range ->|
500 * |<- csum item ->|
501 *
502 * Check if the previous csum item covers the leading part of
503 * the search range. If so we have to start from previous csum
504 * item.
505 */
506 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
507 key.type == BTRFS_EXTENT_CSUM_KEY) {
508 if (bytes_to_csum_size(fs_info, start - key.offset) <
509 btrfs_item_size(leaf, path->slots[0] - 1))
510 path->slots[0]--;
511 }
512 }
513
514 while (start <= end) {
515 u64 csum_end;
516
517 leaf = path->nodes[0];
518 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
519 ret = btrfs_next_leaf(root, path);
520 if (ret < 0)
521 goto fail;
522 if (ret > 0)
523 break;
524 leaf = path->nodes[0];
525 }
526
527 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
528 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
529 key.type != BTRFS_EXTENT_CSUM_KEY ||
530 key.offset > end)
531 break;
532
533 if (key.offset > start)
534 start = key.offset;
535
536 csum_end = key.offset + csum_size_to_bytes(fs_info,
537 btrfs_item_size(leaf, path->slots[0]));
538 if (csum_end <= start) {
539 path->slots[0]++;
540 continue;
541 }
542
543 csum_end = min(csum_end, end + 1);
544 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
545 struct btrfs_csum_item);
546 while (start < csum_end) {
547 unsigned long offset;
548 size_t size;
549
550 size = min_t(size_t, csum_end - start,
551 max_ordered_sum_bytes(fs_info));
552 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
553 GFP_NOFS);
554 if (!sums) {
555 ret = -ENOMEM;
556 goto fail;
557 }
558
559 sums->logical = start;
560 sums->len = size;
561
562 offset = bytes_to_csum_size(fs_info, start - key.offset);
563
564 read_extent_buffer(path->nodes[0],
565 sums->sums,
566 ((unsigned long)item) + offset,
567 bytes_to_csum_size(fs_info, size));
568
569 start += size;
570 list_add_tail(&sums->list, &tmplist);
571 }
572 path->slots[0]++;
573 }
574 ret = 0;
575fail:
576 while (ret < 0 && !list_empty(&tmplist)) {
577 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
578 list_del(&sums->list);
579 kfree(sums);
580 }
581 list_splice_tail(&tmplist, list);
582
583 btrfs_free_path(path);
584 return ret;
585}
586
587/*
588 * Do the same work as btrfs_lookup_csums_list(), the difference is in how
589 * we return the result.
590 *
591 * This version will set the corresponding bits in @csum_bitmap to represent
592 * that there is a csum found.
593 * Each bit represents a sector. Thus caller should ensure @csum_buf passed
594 * in is large enough to contain all csums.
595 */
596int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
597 u64 start, u64 end, u8 *csum_buf,
598 unsigned long *csum_bitmap)
599{
600 struct btrfs_fs_info *fs_info = root->fs_info;
601 struct btrfs_key key;
602 struct extent_buffer *leaf;
603 struct btrfs_csum_item *item;
604 const u64 orig_start = start;
605 bool free_path = false;
606 int ret;
607
608 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
609 IS_ALIGNED(end + 1, fs_info->sectorsize));
610
611 if (!path) {
612 path = btrfs_alloc_path();
613 if (!path)
614 return -ENOMEM;
615 free_path = true;
616 }
617
618 /* Check if we can reuse the previous path. */
619 if (path->nodes[0]) {
620 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
621
622 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
623 key.type == BTRFS_EXTENT_CSUM_KEY &&
624 key.offset <= start)
625 goto search_forward;
626 btrfs_release_path(path);
627 }
628
629 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
630 key.type = BTRFS_EXTENT_CSUM_KEY;
631 key.offset = start;
632
633 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
634 if (ret < 0)
635 goto fail;
636 if (ret > 0 && path->slots[0] > 0) {
637 leaf = path->nodes[0];
638 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
639
640 /*
641 * There are two cases we can hit here for the previous csum
642 * item:
643 *
644 * |<- search range ->|
645 * |<- csum item ->|
646 *
647 * Or
648 * |<- search range ->|
649 * |<- csum item ->|
650 *
651 * Check if the previous csum item covers the leading part of
652 * the search range. If so we have to start from previous csum
653 * item.
654 */
655 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
656 key.type == BTRFS_EXTENT_CSUM_KEY) {
657 if (bytes_to_csum_size(fs_info, start - key.offset) <
658 btrfs_item_size(leaf, path->slots[0] - 1))
659 path->slots[0]--;
660 }
661 }
662
663search_forward:
664 while (start <= end) {
665 u64 csum_end;
666
667 leaf = path->nodes[0];
668 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
669 ret = btrfs_next_leaf(root, path);
670 if (ret < 0)
671 goto fail;
672 if (ret > 0)
673 break;
674 leaf = path->nodes[0];
675 }
676
677 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
678 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
679 key.type != BTRFS_EXTENT_CSUM_KEY ||
680 key.offset > end)
681 break;
682
683 if (key.offset > start)
684 start = key.offset;
685
686 csum_end = key.offset + csum_size_to_bytes(fs_info,
687 btrfs_item_size(leaf, path->slots[0]));
688 if (csum_end <= start) {
689 path->slots[0]++;
690 continue;
691 }
692
693 csum_end = min(csum_end, end + 1);
694 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
695 struct btrfs_csum_item);
696 while (start < csum_end) {
697 unsigned long offset;
698 size_t size;
699 u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
700 start - orig_start);
701
702 size = min_t(size_t, csum_end - start, end + 1 - start);
703
704 offset = bytes_to_csum_size(fs_info, start - key.offset);
705
706 read_extent_buffer(path->nodes[0], csum_dest,
707 ((unsigned long)item) + offset,
708 bytes_to_csum_size(fs_info, size));
709
710 bitmap_set(csum_bitmap,
711 (start - orig_start) >> fs_info->sectorsize_bits,
712 size >> fs_info->sectorsize_bits);
713
714 start += size;
715 }
716 path->slots[0]++;
717 }
718 ret = 0;
719fail:
720 if (free_path)
721 btrfs_free_path(path);
722 return ret;
723}
724
725/*
726 * Calculate checksums of the data contained inside a bio.
727 */
728blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
729{
730 struct btrfs_ordered_extent *ordered = bbio->ordered;
731 struct btrfs_inode *inode = bbio->inode;
732 struct btrfs_fs_info *fs_info = inode->root->fs_info;
733 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
734 struct bio *bio = &bbio->bio;
735 struct btrfs_ordered_sum *sums;
736 char *data;
737 struct bvec_iter iter;
738 struct bio_vec bvec;
739 int index;
740 unsigned int blockcount;
741 int i;
742 unsigned nofs_flag;
743
744 nofs_flag = memalloc_nofs_save();
745 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
746 GFP_KERNEL);
747 memalloc_nofs_restore(nofs_flag);
748
749 if (!sums)
750 return BLK_STS_RESOURCE;
751
752 sums->len = bio->bi_iter.bi_size;
753 INIT_LIST_HEAD(&sums->list);
754
755 sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
756 index = 0;
757
758 shash->tfm = fs_info->csum_shash;
759
760 bio_for_each_segment(bvec, bio, iter) {
761 blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
762 bvec.bv_len + fs_info->sectorsize
763 - 1);
764
765 for (i = 0; i < blockcount; i++) {
766 data = bvec_kmap_local(&bvec);
767 crypto_shash_digest(shash,
768 data + (i * fs_info->sectorsize),
769 fs_info->sectorsize,
770 sums->sums + index);
771 kunmap_local(data);
772 index += fs_info->csum_size;
773 }
774
775 }
776
777 bbio->sums = sums;
778 btrfs_add_ordered_sum(ordered, sums);
779 return 0;
780}
781
782/*
783 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
784 * record the updated logical address on Zone Append completion.
785 * Allocate just the structure with an empty sums array here for that case.
786 */
787blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
788{
789 bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
790 if (!bbio->sums)
791 return BLK_STS_RESOURCE;
792 bbio->sums->len = bbio->bio.bi_iter.bi_size;
793 bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
794 btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
795 return 0;
796}
797
798/*
799 * Remove one checksum overlapping a range.
800 *
801 * This expects the key to describe the csum pointed to by the path, and it
802 * expects the csum to overlap the range [bytenr, len]
803 *
804 * The csum should not be entirely contained in the range and the range should
805 * not be entirely contained in the csum.
806 *
807 * This calls btrfs_truncate_item with the correct args based on the overlap,
808 * and fixes up the key as required.
809 */
810static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
811 struct btrfs_path *path,
812 struct btrfs_key *key,
813 u64 bytenr, u64 len)
814{
815 struct btrfs_fs_info *fs_info = trans->fs_info;
816 struct extent_buffer *leaf;
817 const u32 csum_size = fs_info->csum_size;
818 u64 csum_end;
819 u64 end_byte = bytenr + len;
820 u32 blocksize_bits = fs_info->sectorsize_bits;
821
822 leaf = path->nodes[0];
823 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
824 csum_end <<= blocksize_bits;
825 csum_end += key->offset;
826
827 if (key->offset < bytenr && csum_end <= end_byte) {
828 /*
829 * [ bytenr - len ]
830 * [ ]
831 * [csum ]
832 * A simple truncate off the end of the item
833 */
834 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
835 new_size *= csum_size;
836 btrfs_truncate_item(trans, path, new_size, 1);
837 } else if (key->offset >= bytenr && csum_end > end_byte &&
838 end_byte > key->offset) {
839 /*
840 * [ bytenr - len ]
841 * [ ]
842 * [csum ]
843 * we need to truncate from the beginning of the csum
844 */
845 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
846 new_size *= csum_size;
847
848 btrfs_truncate_item(trans, path, new_size, 0);
849
850 key->offset = end_byte;
851 btrfs_set_item_key_safe(trans, path, key);
852 } else {
853 BUG();
854 }
855}
856
857/*
858 * Delete the csum items from the csum tree for a given range of bytes.
859 */
860int btrfs_del_csums(struct btrfs_trans_handle *trans,
861 struct btrfs_root *root, u64 bytenr, u64 len)
862{
863 struct btrfs_fs_info *fs_info = trans->fs_info;
864 struct btrfs_path *path;
865 struct btrfs_key key;
866 u64 end_byte = bytenr + len;
867 u64 csum_end;
868 struct extent_buffer *leaf;
869 int ret = 0;
870 const u32 csum_size = fs_info->csum_size;
871 u32 blocksize_bits = fs_info->sectorsize_bits;
872
873 ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
874 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
875
876 path = btrfs_alloc_path();
877 if (!path)
878 return -ENOMEM;
879
880 while (1) {
881 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
882 key.offset = end_byte - 1;
883 key.type = BTRFS_EXTENT_CSUM_KEY;
884
885 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
886 if (ret > 0) {
887 ret = 0;
888 if (path->slots[0] == 0)
889 break;
890 path->slots[0]--;
891 } else if (ret < 0) {
892 break;
893 }
894
895 leaf = path->nodes[0];
896 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
897
898 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
899 key.type != BTRFS_EXTENT_CSUM_KEY) {
900 break;
901 }
902
903 if (key.offset >= end_byte)
904 break;
905
906 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
907 csum_end <<= blocksize_bits;
908 csum_end += key.offset;
909
910 /* this csum ends before we start, we're done */
911 if (csum_end <= bytenr)
912 break;
913
914 /* delete the entire item, it is inside our range */
915 if (key.offset >= bytenr && csum_end <= end_byte) {
916 int del_nr = 1;
917
918 /*
919 * Check how many csum items preceding this one in this
920 * leaf correspond to our range and then delete them all
921 * at once.
922 */
923 if (key.offset > bytenr && path->slots[0] > 0) {
924 int slot = path->slots[0] - 1;
925
926 while (slot >= 0) {
927 struct btrfs_key pk;
928
929 btrfs_item_key_to_cpu(leaf, &pk, slot);
930 if (pk.offset < bytenr ||
931 pk.type != BTRFS_EXTENT_CSUM_KEY ||
932 pk.objectid !=
933 BTRFS_EXTENT_CSUM_OBJECTID)
934 break;
935 path->slots[0] = slot;
936 del_nr++;
937 key.offset = pk.offset;
938 slot--;
939 }
940 }
941 ret = btrfs_del_items(trans, root, path,
942 path->slots[0], del_nr);
943 if (ret)
944 break;
945 if (key.offset == bytenr)
946 break;
947 } else if (key.offset < bytenr && csum_end > end_byte) {
948 unsigned long offset;
949 unsigned long shift_len;
950 unsigned long item_offset;
951 /*
952 * [ bytenr - len ]
953 * [csum ]
954 *
955 * Our bytes are in the middle of the csum,
956 * we need to split this item and insert a new one.
957 *
958 * But we can't drop the path because the
959 * csum could change, get removed, extended etc.
960 *
961 * The trick here is the max size of a csum item leaves
962 * enough room in the tree block for a single
963 * item header. So, we split the item in place,
964 * adding a new header pointing to the existing
965 * bytes. Then we loop around again and we have
966 * a nicely formed csum item that we can neatly
967 * truncate.
968 */
969 offset = (bytenr - key.offset) >> blocksize_bits;
970 offset *= csum_size;
971
972 shift_len = (len >> blocksize_bits) * csum_size;
973
974 item_offset = btrfs_item_ptr_offset(leaf,
975 path->slots[0]);
976
977 memzero_extent_buffer(leaf, item_offset + offset,
978 shift_len);
979 key.offset = bytenr;
980
981 /*
982 * btrfs_split_item returns -EAGAIN when the
983 * item changed size or key
984 */
985 ret = btrfs_split_item(trans, root, path, &key, offset);
986 if (ret && ret != -EAGAIN) {
987 btrfs_abort_transaction(trans, ret);
988 break;
989 }
990 ret = 0;
991
992 key.offset = end_byte - 1;
993 } else {
994 truncate_one_csum(trans, path, &key, bytenr, len);
995 if (key.offset < bytenr)
996 break;
997 }
998 btrfs_release_path(path);
999 }
1000 btrfs_free_path(path);
1001 return ret;
1002}
1003
1004static int find_next_csum_offset(struct btrfs_root *root,
1005 struct btrfs_path *path,
1006 u64 *next_offset)
1007{
1008 const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1009 struct btrfs_key found_key;
1010 int slot = path->slots[0] + 1;
1011 int ret;
1012
1013 if (nritems == 0 || slot >= nritems) {
1014 ret = btrfs_next_leaf(root, path);
1015 if (ret < 0) {
1016 return ret;
1017 } else if (ret > 0) {
1018 *next_offset = (u64)-1;
1019 return 0;
1020 }
1021 slot = path->slots[0];
1022 }
1023
1024 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1025
1026 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1027 found_key.type != BTRFS_EXTENT_CSUM_KEY)
1028 *next_offset = (u64)-1;
1029 else
1030 *next_offset = found_key.offset;
1031
1032 return 0;
1033}
1034
1035int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1036 struct btrfs_root *root,
1037 struct btrfs_ordered_sum *sums)
1038{
1039 struct btrfs_fs_info *fs_info = root->fs_info;
1040 struct btrfs_key file_key;
1041 struct btrfs_key found_key;
1042 struct btrfs_path *path;
1043 struct btrfs_csum_item *item;
1044 struct btrfs_csum_item *item_end;
1045 struct extent_buffer *leaf = NULL;
1046 u64 next_offset;
1047 u64 total_bytes = 0;
1048 u64 csum_offset;
1049 u64 bytenr;
1050 u32 ins_size;
1051 int index = 0;
1052 int found_next;
1053 int ret;
1054 const u32 csum_size = fs_info->csum_size;
1055
1056 path = btrfs_alloc_path();
1057 if (!path)
1058 return -ENOMEM;
1059again:
1060 next_offset = (u64)-1;
1061 found_next = 0;
1062 bytenr = sums->logical + total_bytes;
1063 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1064 file_key.offset = bytenr;
1065 file_key.type = BTRFS_EXTENT_CSUM_KEY;
1066
1067 item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1068 if (!IS_ERR(item)) {
1069 ret = 0;
1070 leaf = path->nodes[0];
1071 item_end = btrfs_item_ptr(leaf, path->slots[0],
1072 struct btrfs_csum_item);
1073 item_end = (struct btrfs_csum_item *)((char *)item_end +
1074 btrfs_item_size(leaf, path->slots[0]));
1075 goto found;
1076 }
1077 ret = PTR_ERR(item);
1078 if (ret != -EFBIG && ret != -ENOENT)
1079 goto out;
1080
1081 if (ret == -EFBIG) {
1082 u32 item_size;
1083 /* we found one, but it isn't big enough yet */
1084 leaf = path->nodes[0];
1085 item_size = btrfs_item_size(leaf, path->slots[0]);
1086 if ((item_size / csum_size) >=
1087 MAX_CSUM_ITEMS(fs_info, csum_size)) {
1088 /* already at max size, make a new one */
1089 goto insert;
1090 }
1091 } else {
1092 /* We didn't find a csum item, insert one. */
1093 ret = find_next_csum_offset(root, path, &next_offset);
1094 if (ret < 0)
1095 goto out;
1096 found_next = 1;
1097 goto insert;
1098 }
1099
1100 /*
1101 * At this point, we know the tree has a checksum item that ends at an
1102 * offset matching the start of the checksum range we want to insert.
1103 * We try to extend that item as much as possible and then add as many
1104 * checksums to it as they fit.
1105 *
1106 * First check if the leaf has enough free space for at least one
1107 * checksum. If it has go directly to the item extension code, otherwise
1108 * release the path and do a search for insertion before the extension.
1109 */
1110 if (btrfs_leaf_free_space(leaf) >= csum_size) {
1111 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1112 csum_offset = (bytenr - found_key.offset) >>
1113 fs_info->sectorsize_bits;
1114 goto extend_csum;
1115 }
1116
1117 btrfs_release_path(path);
1118 path->search_for_extension = 1;
1119 ret = btrfs_search_slot(trans, root, &file_key, path,
1120 csum_size, 1);
1121 path->search_for_extension = 0;
1122 if (ret < 0)
1123 goto out;
1124
1125 if (ret > 0) {
1126 if (path->slots[0] == 0)
1127 goto insert;
1128 path->slots[0]--;
1129 }
1130
1131 leaf = path->nodes[0];
1132 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1133 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1134
1135 if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1136 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1137 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1138 goto insert;
1139 }
1140
1141extend_csum:
1142 if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1143 csum_size) {
1144 int extend_nr;
1145 u64 tmp;
1146 u32 diff;
1147
1148 tmp = sums->len - total_bytes;
1149 tmp >>= fs_info->sectorsize_bits;
1150 WARN_ON(tmp < 1);
1151 extend_nr = max_t(int, 1, tmp);
1152
1153 /*
1154 * A log tree can already have checksum items with a subset of
1155 * the checksums we are trying to log. This can happen after
1156 * doing a sequence of partial writes into prealloc extents and
1157 * fsyncs in between, with a full fsync logging a larger subrange
1158 * of an extent for which a previous fast fsync logged a smaller
1159 * subrange. And this happens in particular due to merging file
1160 * extent items when we complete an ordered extent for a range
1161 * covered by a prealloc extent - this is done at
1162 * btrfs_mark_extent_written().
1163 *
1164 * So if we try to extend the previous checksum item, which has
1165 * a range that ends at the start of the range we want to insert,
1166 * make sure we don't extend beyond the start offset of the next
1167 * checksum item. If we are at the last item in the leaf, then
1168 * forget the optimization of extending and add a new checksum
1169 * item - it is not worth the complexity of releasing the path,
1170 * getting the first key for the next leaf, repeat the btree
1171 * search, etc, because log trees are temporary anyway and it
1172 * would only save a few bytes of leaf space.
1173 */
1174 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1175 if (path->slots[0] + 1 >=
1176 btrfs_header_nritems(path->nodes[0])) {
1177 ret = find_next_csum_offset(root, path, &next_offset);
1178 if (ret < 0)
1179 goto out;
1180 found_next = 1;
1181 goto insert;
1182 }
1183
1184 ret = find_next_csum_offset(root, path, &next_offset);
1185 if (ret < 0)
1186 goto out;
1187
1188 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1189 if (tmp <= INT_MAX)
1190 extend_nr = min_t(int, extend_nr, tmp);
1191 }
1192
1193 diff = (csum_offset + extend_nr) * csum_size;
1194 diff = min(diff,
1195 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1196
1197 diff = diff - btrfs_item_size(leaf, path->slots[0]);
1198 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1199 diff /= csum_size;
1200 diff *= csum_size;
1201
1202 btrfs_extend_item(trans, path, diff);
1203 ret = 0;
1204 goto csum;
1205 }
1206
1207insert:
1208 btrfs_release_path(path);
1209 csum_offset = 0;
1210 if (found_next) {
1211 u64 tmp;
1212
1213 tmp = sums->len - total_bytes;
1214 tmp >>= fs_info->sectorsize_bits;
1215 tmp = min(tmp, (next_offset - file_key.offset) >>
1216 fs_info->sectorsize_bits);
1217
1218 tmp = max_t(u64, 1, tmp);
1219 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1220 ins_size = csum_size * tmp;
1221 } else {
1222 ins_size = csum_size;
1223 }
1224 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1225 ins_size);
1226 if (ret < 0)
1227 goto out;
1228 leaf = path->nodes[0];
1229csum:
1230 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1231 item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1232 btrfs_item_size(leaf, path->slots[0]));
1233 item = (struct btrfs_csum_item *)((unsigned char *)item +
1234 csum_offset * csum_size);
1235found:
1236 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1237 ins_size *= csum_size;
1238 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1239 ins_size);
1240 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1241 ins_size);
1242
1243 index += ins_size;
1244 ins_size /= csum_size;
1245 total_bytes += ins_size * fs_info->sectorsize;
1246
1247 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
1248 if (total_bytes < sums->len) {
1249 btrfs_release_path(path);
1250 cond_resched();
1251 goto again;
1252 }
1253out:
1254 btrfs_free_path(path);
1255 return ret;
1256}
1257
1258void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1259 const struct btrfs_path *path,
1260 struct btrfs_file_extent_item *fi,
1261 struct extent_map *em)
1262{
1263 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1264 struct btrfs_root *root = inode->root;
1265 struct extent_buffer *leaf = path->nodes[0];
1266 const int slot = path->slots[0];
1267 struct btrfs_key key;
1268 u64 extent_start, extent_end;
1269 u64 bytenr;
1270 u8 type = btrfs_file_extent_type(leaf, fi);
1271 int compress_type = btrfs_file_extent_compression(leaf, fi);
1272
1273 btrfs_item_key_to_cpu(leaf, &key, slot);
1274 extent_start = key.offset;
1275 extent_end = btrfs_file_extent_end(path);
1276 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1277 em->generation = btrfs_file_extent_generation(leaf, fi);
1278 if (type == BTRFS_FILE_EXTENT_REG ||
1279 type == BTRFS_FILE_EXTENT_PREALLOC) {
1280 em->start = extent_start;
1281 em->len = extent_end - extent_start;
1282 em->orig_start = extent_start -
1283 btrfs_file_extent_offset(leaf, fi);
1284 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1285 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1286 if (bytenr == 0) {
1287 em->block_start = EXTENT_MAP_HOLE;
1288 return;
1289 }
1290 if (compress_type != BTRFS_COMPRESS_NONE) {
1291 extent_map_set_compression(em, compress_type);
1292 em->block_start = bytenr;
1293 em->block_len = em->orig_block_len;
1294 } else {
1295 bytenr += btrfs_file_extent_offset(leaf, fi);
1296 em->block_start = bytenr;
1297 em->block_len = em->len;
1298 if (type == BTRFS_FILE_EXTENT_PREALLOC)
1299 em->flags |= EXTENT_FLAG_PREALLOC;
1300 }
1301 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1302 em->block_start = EXTENT_MAP_INLINE;
1303 em->start = extent_start;
1304 em->len = extent_end - extent_start;
1305 /*
1306 * Initialize orig_start and block_len with the same values
1307 * as in inode.c:btrfs_get_extent().
1308 */
1309 em->orig_start = EXTENT_MAP_HOLE;
1310 em->block_len = (u64)-1;
1311 extent_map_set_compression(em, compress_type);
1312 } else {
1313 btrfs_err(fs_info,
1314 "unknown file extent item type %d, inode %llu, offset %llu, "
1315 "root %llu", type, btrfs_ino(inode), extent_start,
1316 root->root_key.objectid);
1317 }
1318}
1319
1320/*
1321 * Returns the end offset (non inclusive) of the file extent item the given path
1322 * points to. If it points to an inline extent, the returned offset is rounded
1323 * up to the sector size.
1324 */
1325u64 btrfs_file_extent_end(const struct btrfs_path *path)
1326{
1327 const struct extent_buffer *leaf = path->nodes[0];
1328 const int slot = path->slots[0];
1329 struct btrfs_file_extent_item *fi;
1330 struct btrfs_key key;
1331 u64 end;
1332
1333 btrfs_item_key_to_cpu(leaf, &key, slot);
1334 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1335 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1336
1337 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1338 end = btrfs_file_extent_ram_bytes(leaf, fi);
1339 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1340 } else {
1341 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1342 }
1343
1344 return end;
1345}