Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/bio.h>
7#include <linux/slab.h>
8#include <linux/pagemap.h>
9#include <linux/highmem.h>
10#include <linux/sched/mm.h>
11#include <crypto/hash.h>
12#include "messages.h"
13#include "misc.h"
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
17#include "bio.h"
18#include "print-tree.h"
19#include "compression.h"
20#include "fs.h"
21#include "accessors.h"
22#include "file-item.h"
23#include "super.h"
24
25#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
26 sizeof(struct btrfs_item) * 2) / \
27 size) - 1))
28
29#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
30 PAGE_SIZE))
31
32/*
33 * Set inode's size according to filesystem options.
34 *
35 * @inode: inode we want to update the disk_i_size for
36 * @new_i_size: i_size we want to set to, 0 if we use i_size
37 *
38 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
39 * returns as it is perfectly fine with a file that has holes without hole file
40 * extent items.
41 *
42 * However without NO_HOLES we need to only return the area that is contiguous
43 * from the 0 offset of the file. Otherwise we could end up adjust i_size up
44 * to an extent that has a gap in between.
45 *
46 * Finally new_i_size should only be set in the case of truncate where we're not
47 * ready to use i_size_read() as the limiter yet.
48 */
49void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
50{
51 struct btrfs_fs_info *fs_info = inode->root->fs_info;
52 u64 start, end, i_size;
53 int ret;
54
55 spin_lock(&inode->lock);
56 i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
57 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
58 inode->disk_i_size = i_size;
59 goto out_unlock;
60 }
61
62 ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
63 &end, EXTENT_DIRTY);
64 if (!ret && start == 0)
65 i_size = min(i_size, end + 1);
66 else
67 i_size = 0;
68 inode->disk_i_size = i_size;
69out_unlock:
70 spin_unlock(&inode->lock);
71}
72
73/*
74 * Mark range within a file as having a new extent inserted.
75 *
76 * @inode: inode being modified
77 * @start: start file offset of the file extent we've inserted
78 * @len: logical length of the file extent item
79 *
80 * Call when we are inserting a new file extent where there was none before.
81 * Does not need to call this in the case where we're replacing an existing file
82 * extent, however if not sure it's fine to call this multiple times.
83 *
84 * The start and len must match the file extent item, so thus must be sectorsize
85 * aligned.
86 */
87int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
88 u64 len)
89{
90 if (len == 0)
91 return 0;
92
93 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
94
95 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
96 return 0;
97 return set_extent_bit(inode->file_extent_tree, start, start + len - 1,
98 EXTENT_DIRTY, NULL);
99}
100
101/*
102 * Mark an inode range as not having a backing extent.
103 *
104 * @inode: inode being modified
105 * @start: start file offset of the file extent we've inserted
106 * @len: logical length of the file extent item
107 *
108 * Called when we drop a file extent, for example when we truncate. Doesn't
109 * need to be called for cases where we're replacing a file extent, like when
110 * we've COWed a file extent.
111 *
112 * The start and len must match the file extent item, so thus must be sectorsize
113 * aligned.
114 */
115int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
116 u64 len)
117{
118 if (len == 0)
119 return 0;
120
121 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
122 len == (u64)-1);
123
124 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
125 return 0;
126 return clear_extent_bit(inode->file_extent_tree, start,
127 start + len - 1, EXTENT_DIRTY, NULL);
128}
129
130static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
131{
132 ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
133
134 return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
135}
136
137static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
138{
139 ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
140
141 return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
142}
143
144static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
145{
146 u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
147 fs_info->csum_size);
148
149 return csum_size_to_bytes(fs_info, max_csum_size);
150}
151
152/*
153 * Calculate the total size needed to allocate for an ordered sum structure
154 * spanning @bytes in the file.
155 */
156static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
157{
158 return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
159}
160
161int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
162 struct btrfs_root *root,
163 u64 objectid, u64 pos, u64 num_bytes)
164{
165 int ret = 0;
166 struct btrfs_file_extent_item *item;
167 struct btrfs_key file_key;
168 struct btrfs_path *path;
169 struct extent_buffer *leaf;
170
171 path = btrfs_alloc_path();
172 if (!path)
173 return -ENOMEM;
174 file_key.objectid = objectid;
175 file_key.offset = pos;
176 file_key.type = BTRFS_EXTENT_DATA_KEY;
177
178 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
179 sizeof(*item));
180 if (ret < 0)
181 goto out;
182 BUG_ON(ret); /* Can't happen */
183 leaf = path->nodes[0];
184 item = btrfs_item_ptr(leaf, path->slots[0],
185 struct btrfs_file_extent_item);
186 btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
187 btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
188 btrfs_set_file_extent_offset(leaf, item, 0);
189 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
190 btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
191 btrfs_set_file_extent_generation(leaf, item, trans->transid);
192 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
193 btrfs_set_file_extent_compression(leaf, item, 0);
194 btrfs_set_file_extent_encryption(leaf, item, 0);
195 btrfs_set_file_extent_other_encoding(leaf, item, 0);
196
197 btrfs_mark_buffer_dirty(trans, leaf);
198out:
199 btrfs_free_path(path);
200 return ret;
201}
202
203static struct btrfs_csum_item *
204btrfs_lookup_csum(struct btrfs_trans_handle *trans,
205 struct btrfs_root *root,
206 struct btrfs_path *path,
207 u64 bytenr, int cow)
208{
209 struct btrfs_fs_info *fs_info = root->fs_info;
210 int ret;
211 struct btrfs_key file_key;
212 struct btrfs_key found_key;
213 struct btrfs_csum_item *item;
214 struct extent_buffer *leaf;
215 u64 csum_offset = 0;
216 const u32 csum_size = fs_info->csum_size;
217 int csums_in_item;
218
219 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
220 file_key.offset = bytenr;
221 file_key.type = BTRFS_EXTENT_CSUM_KEY;
222 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
223 if (ret < 0)
224 goto fail;
225 leaf = path->nodes[0];
226 if (ret > 0) {
227 ret = 1;
228 if (path->slots[0] == 0)
229 goto fail;
230 path->slots[0]--;
231 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
232 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
233 goto fail;
234
235 csum_offset = (bytenr - found_key.offset) >>
236 fs_info->sectorsize_bits;
237 csums_in_item = btrfs_item_size(leaf, path->slots[0]);
238 csums_in_item /= csum_size;
239
240 if (csum_offset == csums_in_item) {
241 ret = -EFBIG;
242 goto fail;
243 } else if (csum_offset > csums_in_item) {
244 goto fail;
245 }
246 }
247 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
248 item = (struct btrfs_csum_item *)((unsigned char *)item +
249 csum_offset * csum_size);
250 return item;
251fail:
252 if (ret > 0)
253 ret = -ENOENT;
254 return ERR_PTR(ret);
255}
256
257int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
258 struct btrfs_root *root,
259 struct btrfs_path *path, u64 objectid,
260 u64 offset, int mod)
261{
262 struct btrfs_key file_key;
263 int ins_len = mod < 0 ? -1 : 0;
264 int cow = mod != 0;
265
266 file_key.objectid = objectid;
267 file_key.offset = offset;
268 file_key.type = BTRFS_EXTENT_DATA_KEY;
269
270 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
271}
272
273/*
274 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
275 * store the result to @dst.
276 *
277 * Return >0 for the number of sectors we found.
278 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
279 * for it. Caller may want to try next sector until one range is hit.
280 * Return <0 for fatal error.
281 */
282static int search_csum_tree(struct btrfs_fs_info *fs_info,
283 struct btrfs_path *path, u64 disk_bytenr,
284 u64 len, u8 *dst)
285{
286 struct btrfs_root *csum_root;
287 struct btrfs_csum_item *item = NULL;
288 struct btrfs_key key;
289 const u32 sectorsize = fs_info->sectorsize;
290 const u32 csum_size = fs_info->csum_size;
291 u32 itemsize;
292 int ret;
293 u64 csum_start;
294 u64 csum_len;
295
296 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
297 IS_ALIGNED(len, sectorsize));
298
299 /* Check if the current csum item covers disk_bytenr */
300 if (path->nodes[0]) {
301 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
302 struct btrfs_csum_item);
303 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
304 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
305
306 csum_start = key.offset;
307 csum_len = (itemsize / csum_size) * sectorsize;
308
309 if (in_range(disk_bytenr, csum_start, csum_len))
310 goto found;
311 }
312
313 /* Current item doesn't contain the desired range, search again */
314 btrfs_release_path(path);
315 csum_root = btrfs_csum_root(fs_info, disk_bytenr);
316 item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
317 if (IS_ERR(item)) {
318 ret = PTR_ERR(item);
319 goto out;
320 }
321 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
322 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
323
324 csum_start = key.offset;
325 csum_len = (itemsize / csum_size) * sectorsize;
326 ASSERT(in_range(disk_bytenr, csum_start, csum_len));
327
328found:
329 ret = (min(csum_start + csum_len, disk_bytenr + len) -
330 disk_bytenr) >> fs_info->sectorsize_bits;
331 read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
332 ret * csum_size);
333out:
334 if (ret == -ENOENT || ret == -EFBIG)
335 ret = 0;
336 return ret;
337}
338
339/*
340 * Lookup the checksum for the read bio in csum tree.
341 *
342 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
343 */
344blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
345{
346 struct btrfs_inode *inode = bbio->inode;
347 struct btrfs_fs_info *fs_info = inode->root->fs_info;
348 struct bio *bio = &bbio->bio;
349 struct btrfs_path *path;
350 const u32 sectorsize = fs_info->sectorsize;
351 const u32 csum_size = fs_info->csum_size;
352 u32 orig_len = bio->bi_iter.bi_size;
353 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
354 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
355 blk_status_t ret = BLK_STS_OK;
356 u32 bio_offset = 0;
357
358 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
359 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
360 return BLK_STS_OK;
361
362 /*
363 * This function is only called for read bio.
364 *
365 * This means two things:
366 * - All our csums should only be in csum tree
367 * No ordered extents csums, as ordered extents are only for write
368 * path.
369 * - No need to bother any other info from bvec
370 * Since we're looking up csums, the only important info is the
371 * disk_bytenr and the length, which can be extracted from bi_iter
372 * directly.
373 */
374 ASSERT(bio_op(bio) == REQ_OP_READ);
375 path = btrfs_alloc_path();
376 if (!path)
377 return BLK_STS_RESOURCE;
378
379 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
380 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
381 if (!bbio->csum) {
382 btrfs_free_path(path);
383 return BLK_STS_RESOURCE;
384 }
385 } else {
386 bbio->csum = bbio->csum_inline;
387 }
388
389 /*
390 * If requested number of sectors is larger than one leaf can contain,
391 * kick the readahead for csum tree.
392 */
393 if (nblocks > fs_info->csums_per_leaf)
394 path->reada = READA_FORWARD;
395
396 /*
397 * the free space stuff is only read when it hasn't been
398 * updated in the current transaction. So, we can safely
399 * read from the commit root and sidestep a nasty deadlock
400 * between reading the free space cache and updating the csum tree.
401 */
402 if (btrfs_is_free_space_inode(inode)) {
403 path->search_commit_root = 1;
404 path->skip_locking = 1;
405 }
406
407 while (bio_offset < orig_len) {
408 int count;
409 u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
410 u8 *csum_dst = bbio->csum +
411 (bio_offset >> fs_info->sectorsize_bits) * csum_size;
412
413 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
414 orig_len - bio_offset, csum_dst);
415 if (count < 0) {
416 ret = errno_to_blk_status(count);
417 if (bbio->csum != bbio->csum_inline)
418 kfree(bbio->csum);
419 bbio->csum = NULL;
420 break;
421 }
422
423 /*
424 * We didn't find a csum for this range. We need to make sure
425 * we complain loudly about this, because we are not NODATASUM.
426 *
427 * However for the DATA_RELOC inode we could potentially be
428 * relocating data extents for a NODATASUM inode, so the inode
429 * itself won't be marked with NODATASUM, but the extent we're
430 * copying is in fact NODATASUM. If we don't find a csum we
431 * assume this is the case.
432 */
433 if (count == 0) {
434 memset(csum_dst, 0, csum_size);
435 count = 1;
436
437 if (inode->root->root_key.objectid ==
438 BTRFS_DATA_RELOC_TREE_OBJECTID) {
439 u64 file_offset = bbio->file_offset + bio_offset;
440
441 set_extent_bit(&inode->io_tree, file_offset,
442 file_offset + sectorsize - 1,
443 EXTENT_NODATASUM, NULL);
444 } else {
445 btrfs_warn_rl(fs_info,
446 "csum hole found for disk bytenr range [%llu, %llu)",
447 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
448 }
449 }
450 bio_offset += count * sectorsize;
451 }
452
453 btrfs_free_path(path);
454 return ret;
455}
456
457int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
458 struct list_head *list, int search_commit,
459 bool nowait)
460{
461 struct btrfs_fs_info *fs_info = root->fs_info;
462 struct btrfs_key key;
463 struct btrfs_path *path;
464 struct extent_buffer *leaf;
465 struct btrfs_ordered_sum *sums;
466 struct btrfs_csum_item *item;
467 LIST_HEAD(tmplist);
468 int ret;
469
470 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
471 IS_ALIGNED(end + 1, fs_info->sectorsize));
472
473 path = btrfs_alloc_path();
474 if (!path)
475 return -ENOMEM;
476
477 path->nowait = nowait;
478 if (search_commit) {
479 path->skip_locking = 1;
480 path->reada = READA_FORWARD;
481 path->search_commit_root = 1;
482 }
483
484 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
485 key.offset = start;
486 key.type = BTRFS_EXTENT_CSUM_KEY;
487
488 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
489 if (ret < 0)
490 goto fail;
491 if (ret > 0 && path->slots[0] > 0) {
492 leaf = path->nodes[0];
493 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
494
495 /*
496 * There are two cases we can hit here for the previous csum
497 * item:
498 *
499 * |<- search range ->|
500 * |<- csum item ->|
501 *
502 * Or
503 * |<- search range ->|
504 * |<- csum item ->|
505 *
506 * Check if the previous csum item covers the leading part of
507 * the search range. If so we have to start from previous csum
508 * item.
509 */
510 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
511 key.type == BTRFS_EXTENT_CSUM_KEY) {
512 if (bytes_to_csum_size(fs_info, start - key.offset) <
513 btrfs_item_size(leaf, path->slots[0] - 1))
514 path->slots[0]--;
515 }
516 }
517
518 while (start <= end) {
519 u64 csum_end;
520
521 leaf = path->nodes[0];
522 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
523 ret = btrfs_next_leaf(root, path);
524 if (ret < 0)
525 goto fail;
526 if (ret > 0)
527 break;
528 leaf = path->nodes[0];
529 }
530
531 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
532 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
533 key.type != BTRFS_EXTENT_CSUM_KEY ||
534 key.offset > end)
535 break;
536
537 if (key.offset > start)
538 start = key.offset;
539
540 csum_end = key.offset + csum_size_to_bytes(fs_info,
541 btrfs_item_size(leaf, path->slots[0]));
542 if (csum_end <= start) {
543 path->slots[0]++;
544 continue;
545 }
546
547 csum_end = min(csum_end, end + 1);
548 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
549 struct btrfs_csum_item);
550 while (start < csum_end) {
551 unsigned long offset;
552 size_t size;
553
554 size = min_t(size_t, csum_end - start,
555 max_ordered_sum_bytes(fs_info));
556 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
557 GFP_NOFS);
558 if (!sums) {
559 ret = -ENOMEM;
560 goto fail;
561 }
562
563 sums->logical = start;
564 sums->len = size;
565
566 offset = bytes_to_csum_size(fs_info, start - key.offset);
567
568 read_extent_buffer(path->nodes[0],
569 sums->sums,
570 ((unsigned long)item) + offset,
571 bytes_to_csum_size(fs_info, size));
572
573 start += size;
574 list_add_tail(&sums->list, &tmplist);
575 }
576 path->slots[0]++;
577 }
578 ret = 0;
579fail:
580 while (ret < 0 && !list_empty(&tmplist)) {
581 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
582 list_del(&sums->list);
583 kfree(sums);
584 }
585 list_splice_tail(&tmplist, list);
586
587 btrfs_free_path(path);
588 return ret;
589}
590
591/*
592 * Do the same work as btrfs_lookup_csums_list(), the difference is in how
593 * we return the result.
594 *
595 * This version will set the corresponding bits in @csum_bitmap to represent
596 * that there is a csum found.
597 * Each bit represents a sector. Thus caller should ensure @csum_buf passed
598 * in is large enough to contain all csums.
599 */
600int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
601 u64 start, u64 end, u8 *csum_buf,
602 unsigned long *csum_bitmap)
603{
604 struct btrfs_fs_info *fs_info = root->fs_info;
605 struct btrfs_key key;
606 struct extent_buffer *leaf;
607 struct btrfs_csum_item *item;
608 const u64 orig_start = start;
609 bool free_path = false;
610 int ret;
611
612 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
613 IS_ALIGNED(end + 1, fs_info->sectorsize));
614
615 if (!path) {
616 path = btrfs_alloc_path();
617 if (!path)
618 return -ENOMEM;
619 free_path = true;
620 }
621
622 /* Check if we can reuse the previous path. */
623 if (path->nodes[0]) {
624 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
625
626 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
627 key.type == BTRFS_EXTENT_CSUM_KEY &&
628 key.offset <= start)
629 goto search_forward;
630 btrfs_release_path(path);
631 }
632
633 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
634 key.type = BTRFS_EXTENT_CSUM_KEY;
635 key.offset = start;
636
637 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
638 if (ret < 0)
639 goto fail;
640 if (ret > 0 && path->slots[0] > 0) {
641 leaf = path->nodes[0];
642 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
643
644 /*
645 * There are two cases we can hit here for the previous csum
646 * item:
647 *
648 * |<- search range ->|
649 * |<- csum item ->|
650 *
651 * Or
652 * |<- search range ->|
653 * |<- csum item ->|
654 *
655 * Check if the previous csum item covers the leading part of
656 * the search range. If so we have to start from previous csum
657 * item.
658 */
659 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
660 key.type == BTRFS_EXTENT_CSUM_KEY) {
661 if (bytes_to_csum_size(fs_info, start - key.offset) <
662 btrfs_item_size(leaf, path->slots[0] - 1))
663 path->slots[0]--;
664 }
665 }
666
667search_forward:
668 while (start <= end) {
669 u64 csum_end;
670
671 leaf = path->nodes[0];
672 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
673 ret = btrfs_next_leaf(root, path);
674 if (ret < 0)
675 goto fail;
676 if (ret > 0)
677 break;
678 leaf = path->nodes[0];
679 }
680
681 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
682 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
683 key.type != BTRFS_EXTENT_CSUM_KEY ||
684 key.offset > end)
685 break;
686
687 if (key.offset > start)
688 start = key.offset;
689
690 csum_end = key.offset + csum_size_to_bytes(fs_info,
691 btrfs_item_size(leaf, path->slots[0]));
692 if (csum_end <= start) {
693 path->slots[0]++;
694 continue;
695 }
696
697 csum_end = min(csum_end, end + 1);
698 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
699 struct btrfs_csum_item);
700 while (start < csum_end) {
701 unsigned long offset;
702 size_t size;
703 u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
704 start - orig_start);
705
706 size = min_t(size_t, csum_end - start, end + 1 - start);
707
708 offset = bytes_to_csum_size(fs_info, start - key.offset);
709
710 read_extent_buffer(path->nodes[0], csum_dest,
711 ((unsigned long)item) + offset,
712 bytes_to_csum_size(fs_info, size));
713
714 bitmap_set(csum_bitmap,
715 (start - orig_start) >> fs_info->sectorsize_bits,
716 size >> fs_info->sectorsize_bits);
717
718 start += size;
719 }
720 path->slots[0]++;
721 }
722 ret = 0;
723fail:
724 if (free_path)
725 btrfs_free_path(path);
726 return ret;
727}
728
729/*
730 * Calculate checksums of the data contained inside a bio.
731 */
732blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
733{
734 struct btrfs_ordered_extent *ordered = bbio->ordered;
735 struct btrfs_inode *inode = bbio->inode;
736 struct btrfs_fs_info *fs_info = inode->root->fs_info;
737 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
738 struct bio *bio = &bbio->bio;
739 struct btrfs_ordered_sum *sums;
740 char *data;
741 struct bvec_iter iter;
742 struct bio_vec bvec;
743 int index;
744 unsigned int blockcount;
745 int i;
746 unsigned nofs_flag;
747
748 nofs_flag = memalloc_nofs_save();
749 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
750 GFP_KERNEL);
751 memalloc_nofs_restore(nofs_flag);
752
753 if (!sums)
754 return BLK_STS_RESOURCE;
755
756 sums->len = bio->bi_iter.bi_size;
757 INIT_LIST_HEAD(&sums->list);
758
759 sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
760 index = 0;
761
762 shash->tfm = fs_info->csum_shash;
763
764 bio_for_each_segment(bvec, bio, iter) {
765 blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
766 bvec.bv_len + fs_info->sectorsize
767 - 1);
768
769 for (i = 0; i < blockcount; i++) {
770 data = bvec_kmap_local(&bvec);
771 crypto_shash_digest(shash,
772 data + (i * fs_info->sectorsize),
773 fs_info->sectorsize,
774 sums->sums + index);
775 kunmap_local(data);
776 index += fs_info->csum_size;
777 }
778
779 }
780
781 bbio->sums = sums;
782 btrfs_add_ordered_sum(ordered, sums);
783 return 0;
784}
785
786/*
787 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
788 * record the updated logical address on Zone Append completion.
789 * Allocate just the structure with an empty sums array here for that case.
790 */
791blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
792{
793 bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
794 if (!bbio->sums)
795 return BLK_STS_RESOURCE;
796 bbio->sums->len = bbio->bio.bi_iter.bi_size;
797 bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
798 btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
799 return 0;
800}
801
802/*
803 * Remove one checksum overlapping a range.
804 *
805 * This expects the key to describe the csum pointed to by the path, and it
806 * expects the csum to overlap the range [bytenr, len]
807 *
808 * The csum should not be entirely contained in the range and the range should
809 * not be entirely contained in the csum.
810 *
811 * This calls btrfs_truncate_item with the correct args based on the overlap,
812 * and fixes up the key as required.
813 */
814static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
815 struct btrfs_path *path,
816 struct btrfs_key *key,
817 u64 bytenr, u64 len)
818{
819 struct btrfs_fs_info *fs_info = trans->fs_info;
820 struct extent_buffer *leaf;
821 const u32 csum_size = fs_info->csum_size;
822 u64 csum_end;
823 u64 end_byte = bytenr + len;
824 u32 blocksize_bits = fs_info->sectorsize_bits;
825
826 leaf = path->nodes[0];
827 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
828 csum_end <<= blocksize_bits;
829 csum_end += key->offset;
830
831 if (key->offset < bytenr && csum_end <= end_byte) {
832 /*
833 * [ bytenr - len ]
834 * [ ]
835 * [csum ]
836 * A simple truncate off the end of the item
837 */
838 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
839 new_size *= csum_size;
840 btrfs_truncate_item(trans, path, new_size, 1);
841 } else if (key->offset >= bytenr && csum_end > end_byte &&
842 end_byte > key->offset) {
843 /*
844 * [ bytenr - len ]
845 * [ ]
846 * [csum ]
847 * we need to truncate from the beginning of the csum
848 */
849 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
850 new_size *= csum_size;
851
852 btrfs_truncate_item(trans, path, new_size, 0);
853
854 key->offset = end_byte;
855 btrfs_set_item_key_safe(trans, path, key);
856 } else {
857 BUG();
858 }
859}
860
861/*
862 * Delete the csum items from the csum tree for a given range of bytes.
863 */
864int btrfs_del_csums(struct btrfs_trans_handle *trans,
865 struct btrfs_root *root, u64 bytenr, u64 len)
866{
867 struct btrfs_fs_info *fs_info = trans->fs_info;
868 struct btrfs_path *path;
869 struct btrfs_key key;
870 u64 end_byte = bytenr + len;
871 u64 csum_end;
872 struct extent_buffer *leaf;
873 int ret = 0;
874 const u32 csum_size = fs_info->csum_size;
875 u32 blocksize_bits = fs_info->sectorsize_bits;
876
877 ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
878 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
879
880 path = btrfs_alloc_path();
881 if (!path)
882 return -ENOMEM;
883
884 while (1) {
885 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
886 key.offset = end_byte - 1;
887 key.type = BTRFS_EXTENT_CSUM_KEY;
888
889 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
890 if (ret > 0) {
891 ret = 0;
892 if (path->slots[0] == 0)
893 break;
894 path->slots[0]--;
895 } else if (ret < 0) {
896 break;
897 }
898
899 leaf = path->nodes[0];
900 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
901
902 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
903 key.type != BTRFS_EXTENT_CSUM_KEY) {
904 break;
905 }
906
907 if (key.offset >= end_byte)
908 break;
909
910 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
911 csum_end <<= blocksize_bits;
912 csum_end += key.offset;
913
914 /* this csum ends before we start, we're done */
915 if (csum_end <= bytenr)
916 break;
917
918 /* delete the entire item, it is inside our range */
919 if (key.offset >= bytenr && csum_end <= end_byte) {
920 int del_nr = 1;
921
922 /*
923 * Check how many csum items preceding this one in this
924 * leaf correspond to our range and then delete them all
925 * at once.
926 */
927 if (key.offset > bytenr && path->slots[0] > 0) {
928 int slot = path->slots[0] - 1;
929
930 while (slot >= 0) {
931 struct btrfs_key pk;
932
933 btrfs_item_key_to_cpu(leaf, &pk, slot);
934 if (pk.offset < bytenr ||
935 pk.type != BTRFS_EXTENT_CSUM_KEY ||
936 pk.objectid !=
937 BTRFS_EXTENT_CSUM_OBJECTID)
938 break;
939 path->slots[0] = slot;
940 del_nr++;
941 key.offset = pk.offset;
942 slot--;
943 }
944 }
945 ret = btrfs_del_items(trans, root, path,
946 path->slots[0], del_nr);
947 if (ret)
948 break;
949 if (key.offset == bytenr)
950 break;
951 } else if (key.offset < bytenr && csum_end > end_byte) {
952 unsigned long offset;
953 unsigned long shift_len;
954 unsigned long item_offset;
955 /*
956 * [ bytenr - len ]
957 * [csum ]
958 *
959 * Our bytes are in the middle of the csum,
960 * we need to split this item and insert a new one.
961 *
962 * But we can't drop the path because the
963 * csum could change, get removed, extended etc.
964 *
965 * The trick here is the max size of a csum item leaves
966 * enough room in the tree block for a single
967 * item header. So, we split the item in place,
968 * adding a new header pointing to the existing
969 * bytes. Then we loop around again and we have
970 * a nicely formed csum item that we can neatly
971 * truncate.
972 */
973 offset = (bytenr - key.offset) >> blocksize_bits;
974 offset *= csum_size;
975
976 shift_len = (len >> blocksize_bits) * csum_size;
977
978 item_offset = btrfs_item_ptr_offset(leaf,
979 path->slots[0]);
980
981 memzero_extent_buffer(leaf, item_offset + offset,
982 shift_len);
983 key.offset = bytenr;
984
985 /*
986 * btrfs_split_item returns -EAGAIN when the
987 * item changed size or key
988 */
989 ret = btrfs_split_item(trans, root, path, &key, offset);
990 if (ret && ret != -EAGAIN) {
991 btrfs_abort_transaction(trans, ret);
992 break;
993 }
994 ret = 0;
995
996 key.offset = end_byte - 1;
997 } else {
998 truncate_one_csum(trans, path, &key, bytenr, len);
999 if (key.offset < bytenr)
1000 break;
1001 }
1002 btrfs_release_path(path);
1003 }
1004 btrfs_free_path(path);
1005 return ret;
1006}
1007
1008static int find_next_csum_offset(struct btrfs_root *root,
1009 struct btrfs_path *path,
1010 u64 *next_offset)
1011{
1012 const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1013 struct btrfs_key found_key;
1014 int slot = path->slots[0] + 1;
1015 int ret;
1016
1017 if (nritems == 0 || slot >= nritems) {
1018 ret = btrfs_next_leaf(root, path);
1019 if (ret < 0) {
1020 return ret;
1021 } else if (ret > 0) {
1022 *next_offset = (u64)-1;
1023 return 0;
1024 }
1025 slot = path->slots[0];
1026 }
1027
1028 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1029
1030 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1031 found_key.type != BTRFS_EXTENT_CSUM_KEY)
1032 *next_offset = (u64)-1;
1033 else
1034 *next_offset = found_key.offset;
1035
1036 return 0;
1037}
1038
1039int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1040 struct btrfs_root *root,
1041 struct btrfs_ordered_sum *sums)
1042{
1043 struct btrfs_fs_info *fs_info = root->fs_info;
1044 struct btrfs_key file_key;
1045 struct btrfs_key found_key;
1046 struct btrfs_path *path;
1047 struct btrfs_csum_item *item;
1048 struct btrfs_csum_item *item_end;
1049 struct extent_buffer *leaf = NULL;
1050 u64 next_offset;
1051 u64 total_bytes = 0;
1052 u64 csum_offset;
1053 u64 bytenr;
1054 u32 ins_size;
1055 int index = 0;
1056 int found_next;
1057 int ret;
1058 const u32 csum_size = fs_info->csum_size;
1059
1060 path = btrfs_alloc_path();
1061 if (!path)
1062 return -ENOMEM;
1063again:
1064 next_offset = (u64)-1;
1065 found_next = 0;
1066 bytenr = sums->logical + total_bytes;
1067 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1068 file_key.offset = bytenr;
1069 file_key.type = BTRFS_EXTENT_CSUM_KEY;
1070
1071 item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1072 if (!IS_ERR(item)) {
1073 ret = 0;
1074 leaf = path->nodes[0];
1075 item_end = btrfs_item_ptr(leaf, path->slots[0],
1076 struct btrfs_csum_item);
1077 item_end = (struct btrfs_csum_item *)((char *)item_end +
1078 btrfs_item_size(leaf, path->slots[0]));
1079 goto found;
1080 }
1081 ret = PTR_ERR(item);
1082 if (ret != -EFBIG && ret != -ENOENT)
1083 goto out;
1084
1085 if (ret == -EFBIG) {
1086 u32 item_size;
1087 /* we found one, but it isn't big enough yet */
1088 leaf = path->nodes[0];
1089 item_size = btrfs_item_size(leaf, path->slots[0]);
1090 if ((item_size / csum_size) >=
1091 MAX_CSUM_ITEMS(fs_info, csum_size)) {
1092 /* already at max size, make a new one */
1093 goto insert;
1094 }
1095 } else {
1096 /* We didn't find a csum item, insert one. */
1097 ret = find_next_csum_offset(root, path, &next_offset);
1098 if (ret < 0)
1099 goto out;
1100 found_next = 1;
1101 goto insert;
1102 }
1103
1104 /*
1105 * At this point, we know the tree has a checksum item that ends at an
1106 * offset matching the start of the checksum range we want to insert.
1107 * We try to extend that item as much as possible and then add as many
1108 * checksums to it as they fit.
1109 *
1110 * First check if the leaf has enough free space for at least one
1111 * checksum. If it has go directly to the item extension code, otherwise
1112 * release the path and do a search for insertion before the extension.
1113 */
1114 if (btrfs_leaf_free_space(leaf) >= csum_size) {
1115 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1116 csum_offset = (bytenr - found_key.offset) >>
1117 fs_info->sectorsize_bits;
1118 goto extend_csum;
1119 }
1120
1121 btrfs_release_path(path);
1122 path->search_for_extension = 1;
1123 ret = btrfs_search_slot(trans, root, &file_key, path,
1124 csum_size, 1);
1125 path->search_for_extension = 0;
1126 if (ret < 0)
1127 goto out;
1128
1129 if (ret > 0) {
1130 if (path->slots[0] == 0)
1131 goto insert;
1132 path->slots[0]--;
1133 }
1134
1135 leaf = path->nodes[0];
1136 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1137 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1138
1139 if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1140 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1141 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1142 goto insert;
1143 }
1144
1145extend_csum:
1146 if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1147 csum_size) {
1148 int extend_nr;
1149 u64 tmp;
1150 u32 diff;
1151
1152 tmp = sums->len - total_bytes;
1153 tmp >>= fs_info->sectorsize_bits;
1154 WARN_ON(tmp < 1);
1155 extend_nr = max_t(int, 1, tmp);
1156
1157 /*
1158 * A log tree can already have checksum items with a subset of
1159 * the checksums we are trying to log. This can happen after
1160 * doing a sequence of partial writes into prealloc extents and
1161 * fsyncs in between, with a full fsync logging a larger subrange
1162 * of an extent for which a previous fast fsync logged a smaller
1163 * subrange. And this happens in particular due to merging file
1164 * extent items when we complete an ordered extent for a range
1165 * covered by a prealloc extent - this is done at
1166 * btrfs_mark_extent_written().
1167 *
1168 * So if we try to extend the previous checksum item, which has
1169 * a range that ends at the start of the range we want to insert,
1170 * make sure we don't extend beyond the start offset of the next
1171 * checksum item. If we are at the last item in the leaf, then
1172 * forget the optimization of extending and add a new checksum
1173 * item - it is not worth the complexity of releasing the path,
1174 * getting the first key for the next leaf, repeat the btree
1175 * search, etc, because log trees are temporary anyway and it
1176 * would only save a few bytes of leaf space.
1177 */
1178 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1179 if (path->slots[0] + 1 >=
1180 btrfs_header_nritems(path->nodes[0])) {
1181 ret = find_next_csum_offset(root, path, &next_offset);
1182 if (ret < 0)
1183 goto out;
1184 found_next = 1;
1185 goto insert;
1186 }
1187
1188 ret = find_next_csum_offset(root, path, &next_offset);
1189 if (ret < 0)
1190 goto out;
1191
1192 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1193 if (tmp <= INT_MAX)
1194 extend_nr = min_t(int, extend_nr, tmp);
1195 }
1196
1197 diff = (csum_offset + extend_nr) * csum_size;
1198 diff = min(diff,
1199 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1200
1201 diff = diff - btrfs_item_size(leaf, path->slots[0]);
1202 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1203 diff /= csum_size;
1204 diff *= csum_size;
1205
1206 btrfs_extend_item(trans, path, diff);
1207 ret = 0;
1208 goto csum;
1209 }
1210
1211insert:
1212 btrfs_release_path(path);
1213 csum_offset = 0;
1214 if (found_next) {
1215 u64 tmp;
1216
1217 tmp = sums->len - total_bytes;
1218 tmp >>= fs_info->sectorsize_bits;
1219 tmp = min(tmp, (next_offset - file_key.offset) >>
1220 fs_info->sectorsize_bits);
1221
1222 tmp = max_t(u64, 1, tmp);
1223 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1224 ins_size = csum_size * tmp;
1225 } else {
1226 ins_size = csum_size;
1227 }
1228 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1229 ins_size);
1230 if (ret < 0)
1231 goto out;
1232 if (WARN_ON(ret != 0))
1233 goto out;
1234 leaf = path->nodes[0];
1235csum:
1236 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1237 item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1238 btrfs_item_size(leaf, path->slots[0]));
1239 item = (struct btrfs_csum_item *)((unsigned char *)item +
1240 csum_offset * csum_size);
1241found:
1242 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1243 ins_size *= csum_size;
1244 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1245 ins_size);
1246 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1247 ins_size);
1248
1249 index += ins_size;
1250 ins_size /= csum_size;
1251 total_bytes += ins_size * fs_info->sectorsize;
1252
1253 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
1254 if (total_bytes < sums->len) {
1255 btrfs_release_path(path);
1256 cond_resched();
1257 goto again;
1258 }
1259out:
1260 btrfs_free_path(path);
1261 return ret;
1262}
1263
1264void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1265 const struct btrfs_path *path,
1266 struct btrfs_file_extent_item *fi,
1267 struct extent_map *em)
1268{
1269 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1270 struct btrfs_root *root = inode->root;
1271 struct extent_buffer *leaf = path->nodes[0];
1272 const int slot = path->slots[0];
1273 struct btrfs_key key;
1274 u64 extent_start, extent_end;
1275 u64 bytenr;
1276 u8 type = btrfs_file_extent_type(leaf, fi);
1277 int compress_type = btrfs_file_extent_compression(leaf, fi);
1278
1279 btrfs_item_key_to_cpu(leaf, &key, slot);
1280 extent_start = key.offset;
1281 extent_end = btrfs_file_extent_end(path);
1282 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1283 em->generation = btrfs_file_extent_generation(leaf, fi);
1284 if (type == BTRFS_FILE_EXTENT_REG ||
1285 type == BTRFS_FILE_EXTENT_PREALLOC) {
1286 em->start = extent_start;
1287 em->len = extent_end - extent_start;
1288 em->orig_start = extent_start -
1289 btrfs_file_extent_offset(leaf, fi);
1290 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1291 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1292 if (bytenr == 0) {
1293 em->block_start = EXTENT_MAP_HOLE;
1294 return;
1295 }
1296 if (compress_type != BTRFS_COMPRESS_NONE) {
1297 extent_map_set_compression(em, compress_type);
1298 em->block_start = bytenr;
1299 em->block_len = em->orig_block_len;
1300 } else {
1301 bytenr += btrfs_file_extent_offset(leaf, fi);
1302 em->block_start = bytenr;
1303 em->block_len = em->len;
1304 if (type == BTRFS_FILE_EXTENT_PREALLOC)
1305 em->flags |= EXTENT_FLAG_PREALLOC;
1306 }
1307 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1308 em->block_start = EXTENT_MAP_INLINE;
1309 em->start = extent_start;
1310 em->len = extent_end - extent_start;
1311 /*
1312 * Initialize orig_start and block_len with the same values
1313 * as in inode.c:btrfs_get_extent().
1314 */
1315 em->orig_start = EXTENT_MAP_HOLE;
1316 em->block_len = (u64)-1;
1317 extent_map_set_compression(em, compress_type);
1318 } else {
1319 btrfs_err(fs_info,
1320 "unknown file extent item type %d, inode %llu, offset %llu, "
1321 "root %llu", type, btrfs_ino(inode), extent_start,
1322 root->root_key.objectid);
1323 }
1324}
1325
1326/*
1327 * Returns the end offset (non inclusive) of the file extent item the given path
1328 * points to. If it points to an inline extent, the returned offset is rounded
1329 * up to the sector size.
1330 */
1331u64 btrfs_file_extent_end(const struct btrfs_path *path)
1332{
1333 const struct extent_buffer *leaf = path->nodes[0];
1334 const int slot = path->slots[0];
1335 struct btrfs_file_extent_item *fi;
1336 struct btrfs_key key;
1337 u64 end;
1338
1339 btrfs_item_key_to_cpu(leaf, &key, slot);
1340 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1341 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1342
1343 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1344 end = btrfs_file_extent_ram_bytes(leaf, fi);
1345 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1346 } else {
1347 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1348 }
1349
1350 return end;
1351}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/bio.h>
7#include <linux/slab.h>
8#include <linux/pagemap.h>
9#include <linux/highmem.h>
10#include <linux/sched/mm.h>
11#include <crypto/hash.h>
12#include "messages.h"
13#include "misc.h"
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
17#include "bio.h"
18#include "print-tree.h"
19#include "compression.h"
20#include "fs.h"
21#include "accessors.h"
22#include "file-item.h"
23#include "super.h"
24
25#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
26 sizeof(struct btrfs_item) * 2) / \
27 size) - 1))
28
29#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
30 PAGE_SIZE))
31
32/*
33 * Set inode's size according to filesystem options.
34 *
35 * @inode: inode we want to update the disk_i_size for
36 * @new_i_size: i_size we want to set to, 0 if we use i_size
37 *
38 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
39 * returns as it is perfectly fine with a file that has holes without hole file
40 * extent items.
41 *
42 * However without NO_HOLES we need to only return the area that is contiguous
43 * from the 0 offset of the file. Otherwise we could end up adjust i_size up
44 * to an extent that has a gap in between.
45 *
46 * Finally new_i_size should only be set in the case of truncate where we're not
47 * ready to use i_size_read() as the limiter yet.
48 */
49void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
50{
51 struct btrfs_fs_info *fs_info = inode->root->fs_info;
52 u64 start, end, i_size;
53 int ret;
54
55 i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
56 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
57 inode->disk_i_size = i_size;
58 return;
59 }
60
61 spin_lock(&inode->lock);
62 ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
63 &end, EXTENT_DIRTY);
64 if (!ret && start == 0)
65 i_size = min(i_size, end + 1);
66 else
67 i_size = 0;
68 inode->disk_i_size = i_size;
69 spin_unlock(&inode->lock);
70}
71
72/*
73 * Mark range within a file as having a new extent inserted.
74 *
75 * @inode: inode being modified
76 * @start: start file offset of the file extent we've inserted
77 * @len: logical length of the file extent item
78 *
79 * Call when we are inserting a new file extent where there was none before.
80 * Does not need to call this in the case where we're replacing an existing file
81 * extent, however if not sure it's fine to call this multiple times.
82 *
83 * The start and len must match the file extent item, so thus must be sectorsize
84 * aligned.
85 */
86int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
87 u64 len)
88{
89 if (len == 0)
90 return 0;
91
92 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
93
94 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
95 return 0;
96 return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
97 EXTENT_DIRTY);
98}
99
100/*
101 * Mark an inode range as not having a backing extent.
102 *
103 * @inode: inode being modified
104 * @start: start file offset of the file extent we've inserted
105 * @len: logical length of the file extent item
106 *
107 * Called when we drop a file extent, for example when we truncate. Doesn't
108 * need to be called for cases where we're replacing a file extent, like when
109 * we've COWed a file extent.
110 *
111 * The start and len must match the file extent item, so thus must be sectorsize
112 * aligned.
113 */
114int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
115 u64 len)
116{
117 if (len == 0)
118 return 0;
119
120 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
121 len == (u64)-1);
122
123 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
124 return 0;
125 return clear_extent_bit(&inode->file_extent_tree, start,
126 start + len - 1, EXTENT_DIRTY, NULL);
127}
128
129static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
130{
131 ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
132
133 return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
134}
135
136static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
137{
138 ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
139
140 return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
141}
142
143static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
144{
145 u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
146 fs_info->csum_size);
147
148 return csum_size_to_bytes(fs_info, max_csum_size);
149}
150
151/*
152 * Calculate the total size needed to allocate for an ordered sum structure
153 * spanning @bytes in the file.
154 */
155static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
156{
157 return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
158}
159
160int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
161 struct btrfs_root *root,
162 u64 objectid, u64 pos, u64 num_bytes)
163{
164 int ret = 0;
165 struct btrfs_file_extent_item *item;
166 struct btrfs_key file_key;
167 struct btrfs_path *path;
168 struct extent_buffer *leaf;
169
170 path = btrfs_alloc_path();
171 if (!path)
172 return -ENOMEM;
173 file_key.objectid = objectid;
174 file_key.offset = pos;
175 file_key.type = BTRFS_EXTENT_DATA_KEY;
176
177 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
178 sizeof(*item));
179 if (ret < 0)
180 goto out;
181 BUG_ON(ret); /* Can't happen */
182 leaf = path->nodes[0];
183 item = btrfs_item_ptr(leaf, path->slots[0],
184 struct btrfs_file_extent_item);
185 btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
186 btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
187 btrfs_set_file_extent_offset(leaf, item, 0);
188 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
189 btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
190 btrfs_set_file_extent_generation(leaf, item, trans->transid);
191 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
192 btrfs_set_file_extent_compression(leaf, item, 0);
193 btrfs_set_file_extent_encryption(leaf, item, 0);
194 btrfs_set_file_extent_other_encoding(leaf, item, 0);
195
196 btrfs_mark_buffer_dirty(leaf);
197out:
198 btrfs_free_path(path);
199 return ret;
200}
201
202static struct btrfs_csum_item *
203btrfs_lookup_csum(struct btrfs_trans_handle *trans,
204 struct btrfs_root *root,
205 struct btrfs_path *path,
206 u64 bytenr, int cow)
207{
208 struct btrfs_fs_info *fs_info = root->fs_info;
209 int ret;
210 struct btrfs_key file_key;
211 struct btrfs_key found_key;
212 struct btrfs_csum_item *item;
213 struct extent_buffer *leaf;
214 u64 csum_offset = 0;
215 const u32 csum_size = fs_info->csum_size;
216 int csums_in_item;
217
218 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
219 file_key.offset = bytenr;
220 file_key.type = BTRFS_EXTENT_CSUM_KEY;
221 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
222 if (ret < 0)
223 goto fail;
224 leaf = path->nodes[0];
225 if (ret > 0) {
226 ret = 1;
227 if (path->slots[0] == 0)
228 goto fail;
229 path->slots[0]--;
230 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
231 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
232 goto fail;
233
234 csum_offset = (bytenr - found_key.offset) >>
235 fs_info->sectorsize_bits;
236 csums_in_item = btrfs_item_size(leaf, path->slots[0]);
237 csums_in_item /= csum_size;
238
239 if (csum_offset == csums_in_item) {
240 ret = -EFBIG;
241 goto fail;
242 } else if (csum_offset > csums_in_item) {
243 goto fail;
244 }
245 }
246 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
247 item = (struct btrfs_csum_item *)((unsigned char *)item +
248 csum_offset * csum_size);
249 return item;
250fail:
251 if (ret > 0)
252 ret = -ENOENT;
253 return ERR_PTR(ret);
254}
255
256int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
257 struct btrfs_root *root,
258 struct btrfs_path *path, u64 objectid,
259 u64 offset, int mod)
260{
261 struct btrfs_key file_key;
262 int ins_len = mod < 0 ? -1 : 0;
263 int cow = mod != 0;
264
265 file_key.objectid = objectid;
266 file_key.offset = offset;
267 file_key.type = BTRFS_EXTENT_DATA_KEY;
268
269 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
270}
271
272/*
273 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
274 * store the result to @dst.
275 *
276 * Return >0 for the number of sectors we found.
277 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
278 * for it. Caller may want to try next sector until one range is hit.
279 * Return <0 for fatal error.
280 */
281static int search_csum_tree(struct btrfs_fs_info *fs_info,
282 struct btrfs_path *path, u64 disk_bytenr,
283 u64 len, u8 *dst)
284{
285 struct btrfs_root *csum_root;
286 struct btrfs_csum_item *item = NULL;
287 struct btrfs_key key;
288 const u32 sectorsize = fs_info->sectorsize;
289 const u32 csum_size = fs_info->csum_size;
290 u32 itemsize;
291 int ret;
292 u64 csum_start;
293 u64 csum_len;
294
295 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
296 IS_ALIGNED(len, sectorsize));
297
298 /* Check if the current csum item covers disk_bytenr */
299 if (path->nodes[0]) {
300 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
301 struct btrfs_csum_item);
302 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
303 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
304
305 csum_start = key.offset;
306 csum_len = (itemsize / csum_size) * sectorsize;
307
308 if (in_range(disk_bytenr, csum_start, csum_len))
309 goto found;
310 }
311
312 /* Current item doesn't contain the desired range, search again */
313 btrfs_release_path(path);
314 csum_root = btrfs_csum_root(fs_info, disk_bytenr);
315 item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
316 if (IS_ERR(item)) {
317 ret = PTR_ERR(item);
318 goto out;
319 }
320 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
321 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
322
323 csum_start = key.offset;
324 csum_len = (itemsize / csum_size) * sectorsize;
325 ASSERT(in_range(disk_bytenr, csum_start, csum_len));
326
327found:
328 ret = (min(csum_start + csum_len, disk_bytenr + len) -
329 disk_bytenr) >> fs_info->sectorsize_bits;
330 read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
331 ret * csum_size);
332out:
333 if (ret == -ENOENT || ret == -EFBIG)
334 ret = 0;
335 return ret;
336}
337
338/*
339 * Locate the file_offset of @cur_disk_bytenr of a @bio.
340 *
341 * Bio of btrfs represents read range of
342 * [bi_sector << 9, bi_sector << 9 + bi_size).
343 * Knowing this, we can iterate through each bvec to locate the page belong to
344 * @cur_disk_bytenr and get the file offset.
345 *
346 * @inode is used to determine if the bvec page really belongs to @inode.
347 *
348 * Return 0 if we can't find the file offset
349 * Return >0 if we find the file offset and restore it to @file_offset_ret
350 */
351static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
352 u64 disk_bytenr, u64 *file_offset_ret)
353{
354 struct bvec_iter iter;
355 struct bio_vec bvec;
356 u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
357 int ret = 0;
358
359 bio_for_each_segment(bvec, bio, iter) {
360 struct page *page = bvec.bv_page;
361
362 if (cur > disk_bytenr)
363 break;
364 if (cur + bvec.bv_len <= disk_bytenr) {
365 cur += bvec.bv_len;
366 continue;
367 }
368 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
369 if (page->mapping && page->mapping->host &&
370 page->mapping->host == inode) {
371 ret = 1;
372 *file_offset_ret = page_offset(page) + bvec.bv_offset +
373 disk_bytenr - cur;
374 break;
375 }
376 }
377 return ret;
378}
379
380/*
381 * Lookup the checksum for the read bio in csum tree.
382 *
383 * @inode: inode that the bio is for.
384 * @bio: bio to look up.
385 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
386 * checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
387 * NULL, the checksum buffer is allocated and returned in
388 * btrfs_bio(bio)->csum instead.
389 *
390 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
391 */
392blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
393{
394 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
395 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
396 struct btrfs_bio *bbio = NULL;
397 struct btrfs_path *path;
398 const u32 sectorsize = fs_info->sectorsize;
399 const u32 csum_size = fs_info->csum_size;
400 u32 orig_len = bio->bi_iter.bi_size;
401 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
402 u64 cur_disk_bytenr;
403 u8 *csum;
404 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
405 int count = 0;
406 blk_status_t ret = BLK_STS_OK;
407
408 if ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
409 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
410 return BLK_STS_OK;
411
412 /*
413 * This function is only called for read bio.
414 *
415 * This means two things:
416 * - All our csums should only be in csum tree
417 * No ordered extents csums, as ordered extents are only for write
418 * path.
419 * - No need to bother any other info from bvec
420 * Since we're looking up csums, the only important info is the
421 * disk_bytenr and the length, which can be extracted from bi_iter
422 * directly.
423 */
424 ASSERT(bio_op(bio) == REQ_OP_READ);
425 path = btrfs_alloc_path();
426 if (!path)
427 return BLK_STS_RESOURCE;
428
429 if (!dst) {
430 bbio = btrfs_bio(bio);
431
432 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
433 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
434 if (!bbio->csum) {
435 btrfs_free_path(path);
436 return BLK_STS_RESOURCE;
437 }
438 } else {
439 bbio->csum = bbio->csum_inline;
440 }
441 csum = bbio->csum;
442 } else {
443 csum = dst;
444 }
445
446 /*
447 * If requested number of sectors is larger than one leaf can contain,
448 * kick the readahead for csum tree.
449 */
450 if (nblocks > fs_info->csums_per_leaf)
451 path->reada = READA_FORWARD;
452
453 /*
454 * the free space stuff is only read when it hasn't been
455 * updated in the current transaction. So, we can safely
456 * read from the commit root and sidestep a nasty deadlock
457 * between reading the free space cache and updating the csum tree.
458 */
459 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
460 path->search_commit_root = 1;
461 path->skip_locking = 1;
462 }
463
464 for (cur_disk_bytenr = orig_disk_bytenr;
465 cur_disk_bytenr < orig_disk_bytenr + orig_len;
466 cur_disk_bytenr += (count * sectorsize)) {
467 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
468 unsigned int sector_offset;
469 u8 *csum_dst;
470
471 /*
472 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
473 * we're calculating the offset to the bio start.
474 *
475 * Bio size is limited to UINT_MAX, thus unsigned int is large
476 * enough to contain the raw result, not to mention the right
477 * shifted result.
478 */
479 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
480 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
481 fs_info->sectorsize_bits;
482 csum_dst = csum + sector_offset * csum_size;
483
484 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
485 search_len, csum_dst);
486 if (count < 0) {
487 ret = errno_to_blk_status(count);
488 if (bbio)
489 btrfs_bio_free_csum(bbio);
490 break;
491 }
492
493 /*
494 * We didn't find a csum for this range. We need to make sure
495 * we complain loudly about this, because we are not NODATASUM.
496 *
497 * However for the DATA_RELOC inode we could potentially be
498 * relocating data extents for a NODATASUM inode, so the inode
499 * itself won't be marked with NODATASUM, but the extent we're
500 * copying is in fact NODATASUM. If we don't find a csum we
501 * assume this is the case.
502 */
503 if (count == 0) {
504 memset(csum_dst, 0, csum_size);
505 count = 1;
506
507 if (BTRFS_I(inode)->root->root_key.objectid ==
508 BTRFS_DATA_RELOC_TREE_OBJECTID) {
509 u64 file_offset;
510 int ret;
511
512 ret = search_file_offset_in_bio(bio, inode,
513 cur_disk_bytenr, &file_offset);
514 if (ret)
515 set_extent_bits(io_tree, file_offset,
516 file_offset + sectorsize - 1,
517 EXTENT_NODATASUM);
518 } else {
519 btrfs_warn_rl(fs_info,
520 "csum hole found for disk bytenr range [%llu, %llu)",
521 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
522 }
523 }
524 }
525
526 btrfs_free_path(path);
527 return ret;
528}
529
530int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
531 struct list_head *list, int search_commit,
532 bool nowait)
533{
534 struct btrfs_fs_info *fs_info = root->fs_info;
535 struct btrfs_key key;
536 struct btrfs_path *path;
537 struct extent_buffer *leaf;
538 struct btrfs_ordered_sum *sums;
539 struct btrfs_csum_item *item;
540 LIST_HEAD(tmplist);
541 int ret;
542
543 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
544 IS_ALIGNED(end + 1, fs_info->sectorsize));
545
546 path = btrfs_alloc_path();
547 if (!path)
548 return -ENOMEM;
549
550 path->nowait = nowait;
551 if (search_commit) {
552 path->skip_locking = 1;
553 path->reada = READA_FORWARD;
554 path->search_commit_root = 1;
555 }
556
557 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
558 key.offset = start;
559 key.type = BTRFS_EXTENT_CSUM_KEY;
560
561 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
562 if (ret < 0)
563 goto fail;
564 if (ret > 0 && path->slots[0] > 0) {
565 leaf = path->nodes[0];
566 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
567
568 /*
569 * There are two cases we can hit here for the previous csum
570 * item:
571 *
572 * |<- search range ->|
573 * |<- csum item ->|
574 *
575 * Or
576 * |<- search range ->|
577 * |<- csum item ->|
578 *
579 * Check if the previous csum item covers the leading part of
580 * the search range. If so we have to start from previous csum
581 * item.
582 */
583 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
584 key.type == BTRFS_EXTENT_CSUM_KEY) {
585 if (bytes_to_csum_size(fs_info, start - key.offset) <
586 btrfs_item_size(leaf, path->slots[0] - 1))
587 path->slots[0]--;
588 }
589 }
590
591 while (start <= end) {
592 u64 csum_end;
593
594 leaf = path->nodes[0];
595 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
596 ret = btrfs_next_leaf(root, path);
597 if (ret < 0)
598 goto fail;
599 if (ret > 0)
600 break;
601 leaf = path->nodes[0];
602 }
603
604 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
605 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
606 key.type != BTRFS_EXTENT_CSUM_KEY ||
607 key.offset > end)
608 break;
609
610 if (key.offset > start)
611 start = key.offset;
612
613 csum_end = key.offset + csum_size_to_bytes(fs_info,
614 btrfs_item_size(leaf, path->slots[0]));
615 if (csum_end <= start) {
616 path->slots[0]++;
617 continue;
618 }
619
620 csum_end = min(csum_end, end + 1);
621 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
622 struct btrfs_csum_item);
623 while (start < csum_end) {
624 unsigned long offset;
625 size_t size;
626
627 size = min_t(size_t, csum_end - start,
628 max_ordered_sum_bytes(fs_info));
629 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
630 GFP_NOFS);
631 if (!sums) {
632 ret = -ENOMEM;
633 goto fail;
634 }
635
636 sums->bytenr = start;
637 sums->len = (int)size;
638
639 offset = bytes_to_csum_size(fs_info, start - key.offset);
640
641 read_extent_buffer(path->nodes[0],
642 sums->sums,
643 ((unsigned long)item) + offset,
644 bytes_to_csum_size(fs_info, size));
645
646 start += size;
647 list_add_tail(&sums->list, &tmplist);
648 }
649 path->slots[0]++;
650 }
651 ret = 0;
652fail:
653 while (ret < 0 && !list_empty(&tmplist)) {
654 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
655 list_del(&sums->list);
656 kfree(sums);
657 }
658 list_splice_tail(&tmplist, list);
659
660 btrfs_free_path(path);
661 return ret;
662}
663
664/*
665 * Do the same work as btrfs_lookup_csums_list(), the difference is in how
666 * we return the result.
667 *
668 * This version will set the corresponding bits in @csum_bitmap to represent
669 * that there is a csum found.
670 * Each bit represents a sector. Thus caller should ensure @csum_buf passed
671 * in is large enough to contain all csums.
672 */
673int btrfs_lookup_csums_bitmap(struct btrfs_root *root, u64 start, u64 end,
674 u8 *csum_buf, unsigned long *csum_bitmap)
675{
676 struct btrfs_fs_info *fs_info = root->fs_info;
677 struct btrfs_key key;
678 struct btrfs_path *path;
679 struct extent_buffer *leaf;
680 struct btrfs_csum_item *item;
681 const u64 orig_start = start;
682 int ret;
683
684 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
685 IS_ALIGNED(end + 1, fs_info->sectorsize));
686
687 path = btrfs_alloc_path();
688 if (!path)
689 return -ENOMEM;
690
691 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
692 key.type = BTRFS_EXTENT_CSUM_KEY;
693 key.offset = start;
694
695 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
696 if (ret < 0)
697 goto fail;
698 if (ret > 0 && path->slots[0] > 0) {
699 leaf = path->nodes[0];
700 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
701
702 /*
703 * There are two cases we can hit here for the previous csum
704 * item:
705 *
706 * |<- search range ->|
707 * |<- csum item ->|
708 *
709 * Or
710 * |<- search range ->|
711 * |<- csum item ->|
712 *
713 * Check if the previous csum item covers the leading part of
714 * the search range. If so we have to start from previous csum
715 * item.
716 */
717 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
718 key.type == BTRFS_EXTENT_CSUM_KEY) {
719 if (bytes_to_csum_size(fs_info, start - key.offset) <
720 btrfs_item_size(leaf, path->slots[0] - 1))
721 path->slots[0]--;
722 }
723 }
724
725 while (start <= end) {
726 u64 csum_end;
727
728 leaf = path->nodes[0];
729 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
730 ret = btrfs_next_leaf(root, path);
731 if (ret < 0)
732 goto fail;
733 if (ret > 0)
734 break;
735 leaf = path->nodes[0];
736 }
737
738 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
739 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
740 key.type != BTRFS_EXTENT_CSUM_KEY ||
741 key.offset > end)
742 break;
743
744 if (key.offset > start)
745 start = key.offset;
746
747 csum_end = key.offset + csum_size_to_bytes(fs_info,
748 btrfs_item_size(leaf, path->slots[0]));
749 if (csum_end <= start) {
750 path->slots[0]++;
751 continue;
752 }
753
754 csum_end = min(csum_end, end + 1);
755 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
756 struct btrfs_csum_item);
757 while (start < csum_end) {
758 unsigned long offset;
759 size_t size;
760 u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
761 start - orig_start);
762
763 size = min_t(size_t, csum_end - start, end + 1 - start);
764
765 offset = bytes_to_csum_size(fs_info, start - key.offset);
766
767 read_extent_buffer(path->nodes[0], csum_dest,
768 ((unsigned long)item) + offset,
769 bytes_to_csum_size(fs_info, size));
770
771 bitmap_set(csum_bitmap,
772 (start - orig_start) >> fs_info->sectorsize_bits,
773 size >> fs_info->sectorsize_bits);
774
775 start += size;
776 }
777 path->slots[0]++;
778 }
779 ret = 0;
780fail:
781 btrfs_free_path(path);
782 return ret;
783}
784
785/*
786 * Calculate checksums of the data contained inside a bio.
787 *
788 * @inode: Owner of the data inside the bio
789 * @bio: Contains the data to be checksummed
790 * @offset: If (u64)-1, @bio may contain discontiguous bio vecs, so the
791 * file offsets are determined from the page offsets in the bio.
792 * Otherwise, this is the starting file offset of the bio vecs in
793 * @bio, which must be contiguous.
794 * @one_ordered: If true, @bio only refers to one ordered extent.
795 */
796blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
797 u64 offset, bool one_ordered)
798{
799 struct btrfs_fs_info *fs_info = inode->root->fs_info;
800 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
801 struct btrfs_ordered_sum *sums;
802 struct btrfs_ordered_extent *ordered = NULL;
803 const bool use_page_offsets = (offset == (u64)-1);
804 char *data;
805 struct bvec_iter iter;
806 struct bio_vec bvec;
807 int index;
808 unsigned int blockcount;
809 unsigned long total_bytes = 0;
810 unsigned long this_sum_bytes = 0;
811 int i;
812 unsigned nofs_flag;
813
814 nofs_flag = memalloc_nofs_save();
815 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
816 GFP_KERNEL);
817 memalloc_nofs_restore(nofs_flag);
818
819 if (!sums)
820 return BLK_STS_RESOURCE;
821
822 sums->len = bio->bi_iter.bi_size;
823 INIT_LIST_HEAD(&sums->list);
824
825 sums->bytenr = bio->bi_iter.bi_sector << 9;
826 index = 0;
827
828 shash->tfm = fs_info->csum_shash;
829
830 bio_for_each_segment(bvec, bio, iter) {
831 if (use_page_offsets)
832 offset = page_offset(bvec.bv_page) + bvec.bv_offset;
833
834 if (!ordered) {
835 ordered = btrfs_lookup_ordered_extent(inode, offset);
836 /*
837 * The bio range is not covered by any ordered extent,
838 * must be a code logic error.
839 */
840 if (unlikely(!ordered)) {
841 WARN(1, KERN_WARNING
842 "no ordered extent for root %llu ino %llu offset %llu\n",
843 inode->root->root_key.objectid,
844 btrfs_ino(inode), offset);
845 kvfree(sums);
846 return BLK_STS_IOERR;
847 }
848 }
849
850 blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
851 bvec.bv_len + fs_info->sectorsize
852 - 1);
853
854 for (i = 0; i < blockcount; i++) {
855 if (!one_ordered &&
856 !in_range(offset, ordered->file_offset,
857 ordered->num_bytes)) {
858 unsigned long bytes_left;
859
860 sums->len = this_sum_bytes;
861 this_sum_bytes = 0;
862 btrfs_add_ordered_sum(ordered, sums);
863 btrfs_put_ordered_extent(ordered);
864
865 bytes_left = bio->bi_iter.bi_size - total_bytes;
866
867 nofs_flag = memalloc_nofs_save();
868 sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
869 bytes_left), GFP_KERNEL);
870 memalloc_nofs_restore(nofs_flag);
871 BUG_ON(!sums); /* -ENOMEM */
872 sums->len = bytes_left;
873 ordered = btrfs_lookup_ordered_extent(inode,
874 offset);
875 ASSERT(ordered); /* Logic error */
876 sums->bytenr = (bio->bi_iter.bi_sector << 9)
877 + total_bytes;
878 index = 0;
879 }
880
881 data = bvec_kmap_local(&bvec);
882 crypto_shash_digest(shash,
883 data + (i * fs_info->sectorsize),
884 fs_info->sectorsize,
885 sums->sums + index);
886 kunmap_local(data);
887 index += fs_info->csum_size;
888 offset += fs_info->sectorsize;
889 this_sum_bytes += fs_info->sectorsize;
890 total_bytes += fs_info->sectorsize;
891 }
892
893 }
894 this_sum_bytes = 0;
895 btrfs_add_ordered_sum(ordered, sums);
896 btrfs_put_ordered_extent(ordered);
897 return 0;
898}
899
900/*
901 * Remove one checksum overlapping a range.
902 *
903 * This expects the key to describe the csum pointed to by the path, and it
904 * expects the csum to overlap the range [bytenr, len]
905 *
906 * The csum should not be entirely contained in the range and the range should
907 * not be entirely contained in the csum.
908 *
909 * This calls btrfs_truncate_item with the correct args based on the overlap,
910 * and fixes up the key as required.
911 */
912static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
913 struct btrfs_path *path,
914 struct btrfs_key *key,
915 u64 bytenr, u64 len)
916{
917 struct extent_buffer *leaf;
918 const u32 csum_size = fs_info->csum_size;
919 u64 csum_end;
920 u64 end_byte = bytenr + len;
921 u32 blocksize_bits = fs_info->sectorsize_bits;
922
923 leaf = path->nodes[0];
924 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
925 csum_end <<= blocksize_bits;
926 csum_end += key->offset;
927
928 if (key->offset < bytenr && csum_end <= end_byte) {
929 /*
930 * [ bytenr - len ]
931 * [ ]
932 * [csum ]
933 * A simple truncate off the end of the item
934 */
935 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
936 new_size *= csum_size;
937 btrfs_truncate_item(path, new_size, 1);
938 } else if (key->offset >= bytenr && csum_end > end_byte &&
939 end_byte > key->offset) {
940 /*
941 * [ bytenr - len ]
942 * [ ]
943 * [csum ]
944 * we need to truncate from the beginning of the csum
945 */
946 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
947 new_size *= csum_size;
948
949 btrfs_truncate_item(path, new_size, 0);
950
951 key->offset = end_byte;
952 btrfs_set_item_key_safe(fs_info, path, key);
953 } else {
954 BUG();
955 }
956}
957
958/*
959 * Delete the csum items from the csum tree for a given range of bytes.
960 */
961int btrfs_del_csums(struct btrfs_trans_handle *trans,
962 struct btrfs_root *root, u64 bytenr, u64 len)
963{
964 struct btrfs_fs_info *fs_info = trans->fs_info;
965 struct btrfs_path *path;
966 struct btrfs_key key;
967 u64 end_byte = bytenr + len;
968 u64 csum_end;
969 struct extent_buffer *leaf;
970 int ret = 0;
971 const u32 csum_size = fs_info->csum_size;
972 u32 blocksize_bits = fs_info->sectorsize_bits;
973
974 ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
975 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
976
977 path = btrfs_alloc_path();
978 if (!path)
979 return -ENOMEM;
980
981 while (1) {
982 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
983 key.offset = end_byte - 1;
984 key.type = BTRFS_EXTENT_CSUM_KEY;
985
986 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
987 if (ret > 0) {
988 ret = 0;
989 if (path->slots[0] == 0)
990 break;
991 path->slots[0]--;
992 } else if (ret < 0) {
993 break;
994 }
995
996 leaf = path->nodes[0];
997 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
998
999 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1000 key.type != BTRFS_EXTENT_CSUM_KEY) {
1001 break;
1002 }
1003
1004 if (key.offset >= end_byte)
1005 break;
1006
1007 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
1008 csum_end <<= blocksize_bits;
1009 csum_end += key.offset;
1010
1011 /* this csum ends before we start, we're done */
1012 if (csum_end <= bytenr)
1013 break;
1014
1015 /* delete the entire item, it is inside our range */
1016 if (key.offset >= bytenr && csum_end <= end_byte) {
1017 int del_nr = 1;
1018
1019 /*
1020 * Check how many csum items preceding this one in this
1021 * leaf correspond to our range and then delete them all
1022 * at once.
1023 */
1024 if (key.offset > bytenr && path->slots[0] > 0) {
1025 int slot = path->slots[0] - 1;
1026
1027 while (slot >= 0) {
1028 struct btrfs_key pk;
1029
1030 btrfs_item_key_to_cpu(leaf, &pk, slot);
1031 if (pk.offset < bytenr ||
1032 pk.type != BTRFS_EXTENT_CSUM_KEY ||
1033 pk.objectid !=
1034 BTRFS_EXTENT_CSUM_OBJECTID)
1035 break;
1036 path->slots[0] = slot;
1037 del_nr++;
1038 key.offset = pk.offset;
1039 slot--;
1040 }
1041 }
1042 ret = btrfs_del_items(trans, root, path,
1043 path->slots[0], del_nr);
1044 if (ret)
1045 break;
1046 if (key.offset == bytenr)
1047 break;
1048 } else if (key.offset < bytenr && csum_end > end_byte) {
1049 unsigned long offset;
1050 unsigned long shift_len;
1051 unsigned long item_offset;
1052 /*
1053 * [ bytenr - len ]
1054 * [csum ]
1055 *
1056 * Our bytes are in the middle of the csum,
1057 * we need to split this item and insert a new one.
1058 *
1059 * But we can't drop the path because the
1060 * csum could change, get removed, extended etc.
1061 *
1062 * The trick here is the max size of a csum item leaves
1063 * enough room in the tree block for a single
1064 * item header. So, we split the item in place,
1065 * adding a new header pointing to the existing
1066 * bytes. Then we loop around again and we have
1067 * a nicely formed csum item that we can neatly
1068 * truncate.
1069 */
1070 offset = (bytenr - key.offset) >> blocksize_bits;
1071 offset *= csum_size;
1072
1073 shift_len = (len >> blocksize_bits) * csum_size;
1074
1075 item_offset = btrfs_item_ptr_offset(leaf,
1076 path->slots[0]);
1077
1078 memzero_extent_buffer(leaf, item_offset + offset,
1079 shift_len);
1080 key.offset = bytenr;
1081
1082 /*
1083 * btrfs_split_item returns -EAGAIN when the
1084 * item changed size or key
1085 */
1086 ret = btrfs_split_item(trans, root, path, &key, offset);
1087 if (ret && ret != -EAGAIN) {
1088 btrfs_abort_transaction(trans, ret);
1089 break;
1090 }
1091 ret = 0;
1092
1093 key.offset = end_byte - 1;
1094 } else {
1095 truncate_one_csum(fs_info, path, &key, bytenr, len);
1096 if (key.offset < bytenr)
1097 break;
1098 }
1099 btrfs_release_path(path);
1100 }
1101 btrfs_free_path(path);
1102 return ret;
1103}
1104
1105static int find_next_csum_offset(struct btrfs_root *root,
1106 struct btrfs_path *path,
1107 u64 *next_offset)
1108{
1109 const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1110 struct btrfs_key found_key;
1111 int slot = path->slots[0] + 1;
1112 int ret;
1113
1114 if (nritems == 0 || slot >= nritems) {
1115 ret = btrfs_next_leaf(root, path);
1116 if (ret < 0) {
1117 return ret;
1118 } else if (ret > 0) {
1119 *next_offset = (u64)-1;
1120 return 0;
1121 }
1122 slot = path->slots[0];
1123 }
1124
1125 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1126
1127 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1128 found_key.type != BTRFS_EXTENT_CSUM_KEY)
1129 *next_offset = (u64)-1;
1130 else
1131 *next_offset = found_key.offset;
1132
1133 return 0;
1134}
1135
1136int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1137 struct btrfs_root *root,
1138 struct btrfs_ordered_sum *sums)
1139{
1140 struct btrfs_fs_info *fs_info = root->fs_info;
1141 struct btrfs_key file_key;
1142 struct btrfs_key found_key;
1143 struct btrfs_path *path;
1144 struct btrfs_csum_item *item;
1145 struct btrfs_csum_item *item_end;
1146 struct extent_buffer *leaf = NULL;
1147 u64 next_offset;
1148 u64 total_bytes = 0;
1149 u64 csum_offset;
1150 u64 bytenr;
1151 u32 ins_size;
1152 int index = 0;
1153 int found_next;
1154 int ret;
1155 const u32 csum_size = fs_info->csum_size;
1156
1157 path = btrfs_alloc_path();
1158 if (!path)
1159 return -ENOMEM;
1160again:
1161 next_offset = (u64)-1;
1162 found_next = 0;
1163 bytenr = sums->bytenr + total_bytes;
1164 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1165 file_key.offset = bytenr;
1166 file_key.type = BTRFS_EXTENT_CSUM_KEY;
1167
1168 item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1169 if (!IS_ERR(item)) {
1170 ret = 0;
1171 leaf = path->nodes[0];
1172 item_end = btrfs_item_ptr(leaf, path->slots[0],
1173 struct btrfs_csum_item);
1174 item_end = (struct btrfs_csum_item *)((char *)item_end +
1175 btrfs_item_size(leaf, path->slots[0]));
1176 goto found;
1177 }
1178 ret = PTR_ERR(item);
1179 if (ret != -EFBIG && ret != -ENOENT)
1180 goto out;
1181
1182 if (ret == -EFBIG) {
1183 u32 item_size;
1184 /* we found one, but it isn't big enough yet */
1185 leaf = path->nodes[0];
1186 item_size = btrfs_item_size(leaf, path->slots[0]);
1187 if ((item_size / csum_size) >=
1188 MAX_CSUM_ITEMS(fs_info, csum_size)) {
1189 /* already at max size, make a new one */
1190 goto insert;
1191 }
1192 } else {
1193 /* We didn't find a csum item, insert one. */
1194 ret = find_next_csum_offset(root, path, &next_offset);
1195 if (ret < 0)
1196 goto out;
1197 found_next = 1;
1198 goto insert;
1199 }
1200
1201 /*
1202 * At this point, we know the tree has a checksum item that ends at an
1203 * offset matching the start of the checksum range we want to insert.
1204 * We try to extend that item as much as possible and then add as many
1205 * checksums to it as they fit.
1206 *
1207 * First check if the leaf has enough free space for at least one
1208 * checksum. If it has go directly to the item extension code, otherwise
1209 * release the path and do a search for insertion before the extension.
1210 */
1211 if (btrfs_leaf_free_space(leaf) >= csum_size) {
1212 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1213 csum_offset = (bytenr - found_key.offset) >>
1214 fs_info->sectorsize_bits;
1215 goto extend_csum;
1216 }
1217
1218 btrfs_release_path(path);
1219 path->search_for_extension = 1;
1220 ret = btrfs_search_slot(trans, root, &file_key, path,
1221 csum_size, 1);
1222 path->search_for_extension = 0;
1223 if (ret < 0)
1224 goto out;
1225
1226 if (ret > 0) {
1227 if (path->slots[0] == 0)
1228 goto insert;
1229 path->slots[0]--;
1230 }
1231
1232 leaf = path->nodes[0];
1233 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1234 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1235
1236 if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1237 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1238 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1239 goto insert;
1240 }
1241
1242extend_csum:
1243 if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1244 csum_size) {
1245 int extend_nr;
1246 u64 tmp;
1247 u32 diff;
1248
1249 tmp = sums->len - total_bytes;
1250 tmp >>= fs_info->sectorsize_bits;
1251 WARN_ON(tmp < 1);
1252 extend_nr = max_t(int, 1, tmp);
1253
1254 /*
1255 * A log tree can already have checksum items with a subset of
1256 * the checksums we are trying to log. This can happen after
1257 * doing a sequence of partial writes into prealloc extents and
1258 * fsyncs in between, with a full fsync logging a larger subrange
1259 * of an extent for which a previous fast fsync logged a smaller
1260 * subrange. And this happens in particular due to merging file
1261 * extent items when we complete an ordered extent for a range
1262 * covered by a prealloc extent - this is done at
1263 * btrfs_mark_extent_written().
1264 *
1265 * So if we try to extend the previous checksum item, which has
1266 * a range that ends at the start of the range we want to insert,
1267 * make sure we don't extend beyond the start offset of the next
1268 * checksum item. If we are at the last item in the leaf, then
1269 * forget the optimization of extending and add a new checksum
1270 * item - it is not worth the complexity of releasing the path,
1271 * getting the first key for the next leaf, repeat the btree
1272 * search, etc, because log trees are temporary anyway and it
1273 * would only save a few bytes of leaf space.
1274 */
1275 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1276 if (path->slots[0] + 1 >=
1277 btrfs_header_nritems(path->nodes[0])) {
1278 ret = find_next_csum_offset(root, path, &next_offset);
1279 if (ret < 0)
1280 goto out;
1281 found_next = 1;
1282 goto insert;
1283 }
1284
1285 ret = find_next_csum_offset(root, path, &next_offset);
1286 if (ret < 0)
1287 goto out;
1288
1289 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1290 if (tmp <= INT_MAX)
1291 extend_nr = min_t(int, extend_nr, tmp);
1292 }
1293
1294 diff = (csum_offset + extend_nr) * csum_size;
1295 diff = min(diff,
1296 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1297
1298 diff = diff - btrfs_item_size(leaf, path->slots[0]);
1299 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1300 diff /= csum_size;
1301 diff *= csum_size;
1302
1303 btrfs_extend_item(path, diff);
1304 ret = 0;
1305 goto csum;
1306 }
1307
1308insert:
1309 btrfs_release_path(path);
1310 csum_offset = 0;
1311 if (found_next) {
1312 u64 tmp;
1313
1314 tmp = sums->len - total_bytes;
1315 tmp >>= fs_info->sectorsize_bits;
1316 tmp = min(tmp, (next_offset - file_key.offset) >>
1317 fs_info->sectorsize_bits);
1318
1319 tmp = max_t(u64, 1, tmp);
1320 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1321 ins_size = csum_size * tmp;
1322 } else {
1323 ins_size = csum_size;
1324 }
1325 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1326 ins_size);
1327 if (ret < 0)
1328 goto out;
1329 if (WARN_ON(ret != 0))
1330 goto out;
1331 leaf = path->nodes[0];
1332csum:
1333 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1334 item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1335 btrfs_item_size(leaf, path->slots[0]));
1336 item = (struct btrfs_csum_item *)((unsigned char *)item +
1337 csum_offset * csum_size);
1338found:
1339 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1340 ins_size *= csum_size;
1341 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1342 ins_size);
1343 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1344 ins_size);
1345
1346 index += ins_size;
1347 ins_size /= csum_size;
1348 total_bytes += ins_size * fs_info->sectorsize;
1349
1350 btrfs_mark_buffer_dirty(path->nodes[0]);
1351 if (total_bytes < sums->len) {
1352 btrfs_release_path(path);
1353 cond_resched();
1354 goto again;
1355 }
1356out:
1357 btrfs_free_path(path);
1358 return ret;
1359}
1360
1361void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1362 const struct btrfs_path *path,
1363 struct btrfs_file_extent_item *fi,
1364 struct extent_map *em)
1365{
1366 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1367 struct btrfs_root *root = inode->root;
1368 struct extent_buffer *leaf = path->nodes[0];
1369 const int slot = path->slots[0];
1370 struct btrfs_key key;
1371 u64 extent_start, extent_end;
1372 u64 bytenr;
1373 u8 type = btrfs_file_extent_type(leaf, fi);
1374 int compress_type = btrfs_file_extent_compression(leaf, fi);
1375
1376 btrfs_item_key_to_cpu(leaf, &key, slot);
1377 extent_start = key.offset;
1378 extent_end = btrfs_file_extent_end(path);
1379 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1380 em->generation = btrfs_file_extent_generation(leaf, fi);
1381 if (type == BTRFS_FILE_EXTENT_REG ||
1382 type == BTRFS_FILE_EXTENT_PREALLOC) {
1383 em->start = extent_start;
1384 em->len = extent_end - extent_start;
1385 em->orig_start = extent_start -
1386 btrfs_file_extent_offset(leaf, fi);
1387 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1388 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1389 if (bytenr == 0) {
1390 em->block_start = EXTENT_MAP_HOLE;
1391 return;
1392 }
1393 if (compress_type != BTRFS_COMPRESS_NONE) {
1394 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1395 em->compress_type = compress_type;
1396 em->block_start = bytenr;
1397 em->block_len = em->orig_block_len;
1398 } else {
1399 bytenr += btrfs_file_extent_offset(leaf, fi);
1400 em->block_start = bytenr;
1401 em->block_len = em->len;
1402 if (type == BTRFS_FILE_EXTENT_PREALLOC)
1403 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1404 }
1405 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1406 em->block_start = EXTENT_MAP_INLINE;
1407 em->start = extent_start;
1408 em->len = extent_end - extent_start;
1409 /*
1410 * Initialize orig_start and block_len with the same values
1411 * as in inode.c:btrfs_get_extent().
1412 */
1413 em->orig_start = EXTENT_MAP_HOLE;
1414 em->block_len = (u64)-1;
1415 em->compress_type = compress_type;
1416 if (compress_type != BTRFS_COMPRESS_NONE)
1417 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1418 } else {
1419 btrfs_err(fs_info,
1420 "unknown file extent item type %d, inode %llu, offset %llu, "
1421 "root %llu", type, btrfs_ino(inode), extent_start,
1422 root->root_key.objectid);
1423 }
1424}
1425
1426/*
1427 * Returns the end offset (non inclusive) of the file extent item the given path
1428 * points to. If it points to an inline extent, the returned offset is rounded
1429 * up to the sector size.
1430 */
1431u64 btrfs_file_extent_end(const struct btrfs_path *path)
1432{
1433 const struct extent_buffer *leaf = path->nodes[0];
1434 const int slot = path->slots[0];
1435 struct btrfs_file_extent_item *fi;
1436 struct btrfs_key key;
1437 u64 end;
1438
1439 btrfs_item_key_to_cpu(leaf, &key, slot);
1440 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1441 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1442
1443 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1444 end = btrfs_file_extent_ram_bytes(leaf, fi);
1445 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1446 } else {
1447 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1448 }
1449
1450 return end;
1451}