Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright 2020-2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
   4 */
   5
   6/**
   7 * DOC: Enclave lifetime management driver for Nitro Enclaves (NE).
   8 * Nitro is a hypervisor that has been developed by Amazon.
   9 */
  10
  11#include <linux/anon_inodes.h>
  12#include <linux/capability.h>
  13#include <linux/cpu.h>
  14#include <linux/device.h>
  15#include <linux/file.h>
  16#include <linux/hugetlb.h>
  17#include <linux/limits.h>
  18#include <linux/list.h>
  19#include <linux/miscdevice.h>
  20#include <linux/mm.h>
  21#include <linux/mman.h>
  22#include <linux/module.h>
  23#include <linux/mutex.h>
  24#include <linux/nitro_enclaves.h>
  25#include <linux/pci.h>
  26#include <linux/poll.h>
  27#include <linux/range.h>
  28#include <linux/slab.h>
  29#include <linux/types.h>
  30#include <uapi/linux/vm_sockets.h>
  31
  32#include "ne_misc_dev.h"
  33#include "ne_pci_dev.h"
  34
  35/**
  36 * NE_CPUS_SIZE - Size for max 128 CPUs, for now, in a cpu-list string, comma
  37 *		  separated. The NE CPU pool includes CPUs from a single NUMA
  38 *		  node.
  39 */
  40#define NE_CPUS_SIZE		(512)
  41
  42/**
  43 * NE_EIF_LOAD_OFFSET - The offset where to copy the Enclave Image Format (EIF)
  44 *			image in enclave memory.
  45 */
  46#define NE_EIF_LOAD_OFFSET	(8 * 1024UL * 1024UL)
  47
  48/**
  49 * NE_MIN_ENCLAVE_MEM_SIZE - The minimum memory size an enclave can be launched
  50 *			     with.
  51 */
  52#define NE_MIN_ENCLAVE_MEM_SIZE	(64 * 1024UL * 1024UL)
  53
  54/**
  55 * NE_MIN_MEM_REGION_SIZE - The minimum size of an enclave memory region.
  56 */
  57#define NE_MIN_MEM_REGION_SIZE	(2 * 1024UL * 1024UL)
  58
  59/**
  60 * NE_PARENT_VM_CID - The CID for the vsock device of the primary / parent VM.
  61 */
  62#define NE_PARENT_VM_CID	(3)
  63
  64static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
  65
  66static const struct file_operations ne_fops = {
  67	.owner		= THIS_MODULE,
  68	.llseek		= noop_llseek,
  69	.unlocked_ioctl	= ne_ioctl,
  70};
  71
  72static struct miscdevice ne_misc_dev = {
  73	.minor	= MISC_DYNAMIC_MINOR,
  74	.name	= "nitro_enclaves",
  75	.fops	= &ne_fops,
  76	.mode	= 0660,
  77};
  78
  79struct ne_devs ne_devs = {
  80	.ne_misc_dev	= &ne_misc_dev,
  81};
  82
  83/*
  84 * TODO: Update logic to create new sysfs entries instead of using
  85 * a kernel parameter e.g. if multiple sysfs files needed.
  86 */
  87static int ne_set_kernel_param(const char *val, const struct kernel_param *kp);
  88
  89static const struct kernel_param_ops ne_cpu_pool_ops = {
  90	.get	= param_get_string,
  91	.set	= ne_set_kernel_param,
  92};
  93
  94static char ne_cpus[NE_CPUS_SIZE];
  95static struct kparam_string ne_cpus_arg = {
  96	.maxlen	= sizeof(ne_cpus),
  97	.string	= ne_cpus,
  98};
  99
 100module_param_cb(ne_cpus, &ne_cpu_pool_ops, &ne_cpus_arg, 0644);
 101/* https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists */
 102MODULE_PARM_DESC(ne_cpus, "<cpu-list> - CPU pool used for Nitro Enclaves");
 103
 104/**
 105 * struct ne_cpu_pool - CPU pool used for Nitro Enclaves.
 106 * @avail_threads_per_core:	Available full CPU cores to be dedicated to
 107 *				enclave(s). The cpumasks from the array, indexed
 108 *				by core id, contain all the threads from the
 109 *				available cores, that are not set for created
 110 *				enclave(s). The full CPU cores are part of the
 111 *				NE CPU pool.
 112 * @mutex:			Mutex for the access to the NE CPU pool.
 113 * @nr_parent_vm_cores :	The size of the available threads per core array.
 114 *				The total number of CPU cores available on the
 115 *				primary / parent VM.
 116 * @nr_threads_per_core:	The number of threads that a full CPU core has.
 117 * @numa_node:			NUMA node of the CPUs in the pool.
 118 */
 119struct ne_cpu_pool {
 120	cpumask_var_t	*avail_threads_per_core;
 121	struct mutex	mutex;
 122	unsigned int	nr_parent_vm_cores;
 123	unsigned int	nr_threads_per_core;
 124	int		numa_node;
 125};
 126
 127static struct ne_cpu_pool ne_cpu_pool;
 128
 129/**
 130 * struct ne_phys_contig_mem_regions - Contiguous physical memory regions.
 131 * @num:	The number of regions that currently has.
 132 * @regions:	The array of physical memory regions.
 133 */
 134struct ne_phys_contig_mem_regions {
 135	unsigned long num;
 136	struct range  *regions;
 137};
 138
 139/**
 140 * ne_check_enclaves_created() - Verify if at least one enclave has been created.
 141 * @void:	No parameters provided.
 142 *
 143 * Context: Process context.
 144 * Return:
 145 * * True if at least one enclave is created.
 146 * * False otherwise.
 147 */
 148static bool ne_check_enclaves_created(void)
 149{
 150	struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
 151	bool ret = false;
 152
 153	if (!ne_pci_dev)
 154		return ret;
 155
 156	mutex_lock(&ne_pci_dev->enclaves_list_mutex);
 157
 158	if (!list_empty(&ne_pci_dev->enclaves_list))
 159		ret = true;
 160
 161	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
 162
 163	return ret;
 164}
 165
 166/**
 167 * ne_setup_cpu_pool() - Set the NE CPU pool after handling sanity checks such
 168 *			 as not sharing CPU cores with the primary / parent VM
 169 *			 or not using CPU 0, which should remain available for
 170 *			 the primary / parent VM. Offline the CPUs from the
 171 *			 pool after the checks passed.
 172 * @ne_cpu_list:	The CPU list used for setting NE CPU pool.
 173 *
 174 * Context: Process context.
 175 * Return:
 176 * * 0 on success.
 177 * * Negative return value on failure.
 178 */
 179static int ne_setup_cpu_pool(const char *ne_cpu_list)
 180{
 181	int core_id = -1;
 182	unsigned int cpu = 0;
 183	cpumask_var_t cpu_pool;
 184	unsigned int cpu_sibling = 0;
 185	unsigned int i = 0;
 186	int numa_node = -1;
 187	int rc = -EINVAL;
 188
 189	if (!zalloc_cpumask_var(&cpu_pool, GFP_KERNEL))
 190		return -ENOMEM;
 191
 192	mutex_lock(&ne_cpu_pool.mutex);
 193
 194	rc = cpulist_parse(ne_cpu_list, cpu_pool);
 195	if (rc < 0) {
 196		pr_err("%s: Error in cpulist parse [rc=%d]\n", ne_misc_dev.name, rc);
 197
 198		goto free_pool_cpumask;
 199	}
 200
 201	cpu = cpumask_any(cpu_pool);
 202	if (cpu >= nr_cpu_ids) {
 203		pr_err("%s: No CPUs available in CPU pool\n", ne_misc_dev.name);
 204
 205		rc = -EINVAL;
 206
 207		goto free_pool_cpumask;
 208	}
 209
 210	/*
 211	 * Check if the CPUs are online, to further get info about them
 212	 * e.g. numa node, core id, siblings.
 213	 */
 214	for_each_cpu(cpu, cpu_pool)
 215		if (cpu_is_offline(cpu)) {
 216			pr_err("%s: CPU %d is offline, has to be online to get its metadata\n",
 217			       ne_misc_dev.name, cpu);
 218
 219			rc = -EINVAL;
 220
 221			goto free_pool_cpumask;
 222		}
 223
 224	/*
 225	 * Check if the CPUs from the NE CPU pool are from the same NUMA node.
 226	 */
 227	for_each_cpu(cpu, cpu_pool)
 228		if (numa_node < 0) {
 229			numa_node = cpu_to_node(cpu);
 230			if (numa_node < 0) {
 231				pr_err("%s: Invalid NUMA node %d\n",
 232				       ne_misc_dev.name, numa_node);
 233
 234				rc = -EINVAL;
 235
 236				goto free_pool_cpumask;
 237			}
 238		} else {
 239			if (numa_node != cpu_to_node(cpu)) {
 240				pr_err("%s: CPUs with different NUMA nodes\n",
 241				       ne_misc_dev.name);
 242
 243				rc = -EINVAL;
 244
 245				goto free_pool_cpumask;
 246			}
 247		}
 248
 249	/*
 250	 * Check if CPU 0 and its siblings are included in the provided CPU pool
 251	 * They should remain available for the primary / parent VM.
 252	 */
 253	if (cpumask_test_cpu(0, cpu_pool)) {
 254		pr_err("%s: CPU 0 has to remain available\n", ne_misc_dev.name);
 255
 256		rc = -EINVAL;
 257
 258		goto free_pool_cpumask;
 259	}
 260
 261	for_each_cpu(cpu_sibling, topology_sibling_cpumask(0)) {
 262		if (cpumask_test_cpu(cpu_sibling, cpu_pool)) {
 263			pr_err("%s: CPU sibling %d for CPU 0 is in CPU pool\n",
 264			       ne_misc_dev.name, cpu_sibling);
 265
 266			rc = -EINVAL;
 267
 268			goto free_pool_cpumask;
 269		}
 270	}
 271
 272	/*
 273	 * Check if CPU siblings are included in the provided CPU pool. The
 274	 * expectation is that full CPU cores are made available in the CPU pool
 275	 * for enclaves.
 276	 */
 277	for_each_cpu(cpu, cpu_pool) {
 278		for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) {
 279			if (!cpumask_test_cpu(cpu_sibling, cpu_pool)) {
 280				pr_err("%s: CPU %d is not in CPU pool\n",
 281				       ne_misc_dev.name, cpu_sibling);
 282
 283				rc = -EINVAL;
 284
 285				goto free_pool_cpumask;
 286			}
 287		}
 288	}
 289
 290	/* Calculate the number of threads from a full CPU core. */
 291	cpu = cpumask_any(cpu_pool);
 292	for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu))
 293		ne_cpu_pool.nr_threads_per_core++;
 294
 295	ne_cpu_pool.nr_parent_vm_cores = nr_cpu_ids / ne_cpu_pool.nr_threads_per_core;
 296
 297	ne_cpu_pool.avail_threads_per_core = kcalloc(ne_cpu_pool.nr_parent_vm_cores,
 298						     sizeof(*ne_cpu_pool.avail_threads_per_core),
 299						     GFP_KERNEL);
 300	if (!ne_cpu_pool.avail_threads_per_core) {
 301		rc = -ENOMEM;
 302
 303		goto free_pool_cpumask;
 304	}
 305
 306	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
 307		if (!zalloc_cpumask_var(&ne_cpu_pool.avail_threads_per_core[i], GFP_KERNEL)) {
 308			rc = -ENOMEM;
 309
 310			goto free_cores_cpumask;
 311		}
 312
 313	/*
 314	 * Split the NE CPU pool in threads per core to keep the CPU topology
 315	 * after offlining the CPUs.
 316	 */
 317	for_each_cpu(cpu, cpu_pool) {
 318		core_id = topology_core_id(cpu);
 319		if (core_id < 0 || core_id >= ne_cpu_pool.nr_parent_vm_cores) {
 320			pr_err("%s: Invalid core id  %d for CPU %d\n",
 321			       ne_misc_dev.name, core_id, cpu);
 322
 323			rc = -EINVAL;
 324
 325			goto clear_cpumask;
 326		}
 327
 328		cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]);
 329	}
 330
 331	/*
 332	 * CPUs that are given to enclave(s) should not be considered online
 333	 * by Linux anymore, as the hypervisor will degrade them to floating.
 334	 * The physical CPUs (full cores) are carved out of the primary / parent
 335	 * VM and given to the enclave VM. The same number of vCPUs would run
 336	 * on less pCPUs for the primary / parent VM.
 337	 *
 338	 * We offline them here, to not degrade performance and expose correct
 339	 * topology to Linux and user space.
 340	 */
 341	for_each_cpu(cpu, cpu_pool) {
 342		rc = remove_cpu(cpu);
 343		if (rc != 0) {
 344			pr_err("%s: CPU %d is not offlined [rc=%d]\n",
 345			       ne_misc_dev.name, cpu, rc);
 346
 347			goto online_cpus;
 348		}
 349	}
 350
 351	free_cpumask_var(cpu_pool);
 352
 353	ne_cpu_pool.numa_node = numa_node;
 354
 355	mutex_unlock(&ne_cpu_pool.mutex);
 356
 357	return 0;
 358
 359online_cpus:
 360	for_each_cpu(cpu, cpu_pool)
 361		add_cpu(cpu);
 362clear_cpumask:
 363	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
 364		cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
 365free_cores_cpumask:
 366	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
 367		free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
 368	kfree(ne_cpu_pool.avail_threads_per_core);
 369free_pool_cpumask:
 370	free_cpumask_var(cpu_pool);
 371	ne_cpu_pool.nr_parent_vm_cores = 0;
 372	ne_cpu_pool.nr_threads_per_core = 0;
 373	ne_cpu_pool.numa_node = -1;
 374	mutex_unlock(&ne_cpu_pool.mutex);
 375
 376	return rc;
 377}
 378
 379/**
 380 * ne_teardown_cpu_pool() - Online the CPUs from the NE CPU pool and cleanup the
 381 *			    CPU pool.
 382 * @void:	No parameters provided.
 383 *
 384 * Context: Process context.
 385 */
 386static void ne_teardown_cpu_pool(void)
 387{
 388	unsigned int cpu = 0;
 389	unsigned int i = 0;
 390	int rc = -EINVAL;
 391
 392	mutex_lock(&ne_cpu_pool.mutex);
 393
 394	if (!ne_cpu_pool.nr_parent_vm_cores) {
 395		mutex_unlock(&ne_cpu_pool.mutex);
 396
 397		return;
 398	}
 399
 400	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) {
 401		for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]) {
 402			rc = add_cpu(cpu);
 403			if (rc != 0)
 404				pr_err("%s: CPU %d is not onlined [rc=%d]\n",
 405				       ne_misc_dev.name, cpu, rc);
 406		}
 407
 408		cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
 409
 410		free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
 411	}
 412
 413	kfree(ne_cpu_pool.avail_threads_per_core);
 414	ne_cpu_pool.nr_parent_vm_cores = 0;
 415	ne_cpu_pool.nr_threads_per_core = 0;
 416	ne_cpu_pool.numa_node = -1;
 417
 418	mutex_unlock(&ne_cpu_pool.mutex);
 419}
 420
 421/**
 422 * ne_set_kernel_param() - Set the NE CPU pool value via the NE kernel parameter.
 423 * @val:	NE CPU pool string value.
 424 * @kp :	NE kernel parameter associated with the NE CPU pool.
 425 *
 426 * Context: Process context.
 427 * Return:
 428 * * 0 on success.
 429 * * Negative return value on failure.
 430 */
 431static int ne_set_kernel_param(const char *val, const struct kernel_param *kp)
 432{
 433	char error_val[] = "";
 434	int rc = -EINVAL;
 435
 436	if (!capable(CAP_SYS_ADMIN))
 437		return -EPERM;
 438
 439	if (ne_check_enclaves_created()) {
 440		pr_err("%s: The CPU pool is used by enclave(s)\n", ne_misc_dev.name);
 441
 442		return -EPERM;
 443	}
 444
 445	ne_teardown_cpu_pool();
 446
 447	rc = ne_setup_cpu_pool(val);
 448	if (rc < 0) {
 449		pr_err("%s: Error in setup CPU pool [rc=%d]\n", ne_misc_dev.name, rc);
 450
 451		param_set_copystring(error_val, kp);
 452
 453		return rc;
 454	}
 455
 456	rc = param_set_copystring(val, kp);
 457	if (rc < 0) {
 458		pr_err("%s: Error in param set copystring [rc=%d]\n", ne_misc_dev.name, rc);
 459
 460		ne_teardown_cpu_pool();
 461
 462		param_set_copystring(error_val, kp);
 463
 464		return rc;
 465	}
 466
 467	return 0;
 468}
 469
 470/**
 471 * ne_donated_cpu() - Check if the provided CPU is already used by the enclave.
 472 * @ne_enclave :	Private data associated with the current enclave.
 473 * @cpu:		CPU to check if already used.
 474 *
 475 * Context: Process context. This function is called with the ne_enclave mutex held.
 476 * Return:
 477 * * True if the provided CPU is already used by the enclave.
 478 * * False otherwise.
 479 */
 480static bool ne_donated_cpu(struct ne_enclave *ne_enclave, unsigned int cpu)
 481{
 482	if (cpumask_test_cpu(cpu, ne_enclave->vcpu_ids))
 483		return true;
 484
 485	return false;
 486}
 487
 488/**
 489 * ne_get_unused_core_from_cpu_pool() - Get the id of a full core from the
 490 *					NE CPU pool.
 491 * @void:	No parameters provided.
 492 *
 493 * Context: Process context. This function is called with the ne_enclave and
 494 *	    ne_cpu_pool mutexes held.
 495 * Return:
 496 * * Core id.
 497 * * -1 if no CPU core available in the pool.
 498 */
 499static int ne_get_unused_core_from_cpu_pool(void)
 500{
 501	int core_id = -1;
 502	unsigned int i = 0;
 503
 504	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
 505		if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) {
 506			core_id = i;
 507
 508			break;
 509		}
 510
 511	return core_id;
 512}
 513
 514/**
 515 * ne_set_enclave_threads_per_core() - Set the threads of the provided core in
 516 *				       the enclave data structure.
 517 * @ne_enclave :	Private data associated with the current enclave.
 518 * @core_id:		Core id to get its threads from the NE CPU pool.
 519 * @vcpu_id:		vCPU id part of the provided core.
 520 *
 521 * Context: Process context. This function is called with the ne_enclave and
 522 *	    ne_cpu_pool mutexes held.
 523 * Return:
 524 * * 0 on success.
 525 * * Negative return value on failure.
 526 */
 527static int ne_set_enclave_threads_per_core(struct ne_enclave *ne_enclave,
 528					   int core_id, u32 vcpu_id)
 529{
 530	unsigned int cpu = 0;
 531
 532	if (core_id < 0 && vcpu_id == 0) {
 533		dev_err_ratelimited(ne_misc_dev.this_device,
 534				    "No CPUs available in NE CPU pool\n");
 535
 536		return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
 537	}
 538
 539	if (core_id < 0) {
 540		dev_err_ratelimited(ne_misc_dev.this_device,
 541				    "CPU %d is not in NE CPU pool\n", vcpu_id);
 542
 543		return -NE_ERR_VCPU_NOT_IN_CPU_POOL;
 544	}
 545
 546	if (core_id >= ne_enclave->nr_parent_vm_cores) {
 547		dev_err_ratelimited(ne_misc_dev.this_device,
 548				    "Invalid core id %d - ne_enclave\n", core_id);
 549
 550		return -NE_ERR_VCPU_INVALID_CPU_CORE;
 551	}
 552
 553	for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id])
 554		cpumask_set_cpu(cpu, ne_enclave->threads_per_core[core_id]);
 555
 556	cpumask_clear(ne_cpu_pool.avail_threads_per_core[core_id]);
 557
 558	return 0;
 559}
 560
 561/**
 562 * ne_get_cpu_from_cpu_pool() - Get a CPU from the NE CPU pool, either from the
 563 *				remaining sibling(s) of a CPU core or the first
 564 *				sibling of a new CPU core.
 565 * @ne_enclave :	Private data associated with the current enclave.
 566 * @vcpu_id:		vCPU to get from the NE CPU pool.
 567 *
 568 * Context: Process context. This function is called with the ne_enclave mutex held.
 569 * Return:
 570 * * 0 on success.
 571 * * Negative return value on failure.
 572 */
 573static int ne_get_cpu_from_cpu_pool(struct ne_enclave *ne_enclave, u32 *vcpu_id)
 574{
 575	int core_id = -1;
 576	unsigned int cpu = 0;
 577	unsigned int i = 0;
 578	int rc = -EINVAL;
 579
 580	/*
 581	 * If previously allocated a thread of a core to this enclave, first
 582	 * check remaining sibling(s) for new CPU allocations, so that full
 583	 * CPU cores are used for the enclave.
 584	 */
 585	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
 586		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
 587			if (!ne_donated_cpu(ne_enclave, cpu)) {
 588				*vcpu_id = cpu;
 589
 590				return 0;
 591			}
 592
 593	mutex_lock(&ne_cpu_pool.mutex);
 594
 595	/*
 596	 * If no remaining siblings, get a core from the NE CPU pool and keep
 597	 * track of all the threads in the enclave threads per core data structure.
 598	 */
 599	core_id = ne_get_unused_core_from_cpu_pool();
 600
 601	rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, *vcpu_id);
 602	if (rc < 0)
 603		goto unlock_mutex;
 604
 605	*vcpu_id = cpumask_any(ne_enclave->threads_per_core[core_id]);
 606
 607	rc = 0;
 608
 609unlock_mutex:
 610	mutex_unlock(&ne_cpu_pool.mutex);
 611
 612	return rc;
 613}
 614
 615/**
 616 * ne_get_vcpu_core_from_cpu_pool() - Get from the NE CPU pool the id of the
 617 *				      core associated with the provided vCPU.
 618 * @vcpu_id:	Provided vCPU id to get its associated core id.
 619 *
 620 * Context: Process context. This function is called with the ne_enclave and
 621 *	    ne_cpu_pool mutexes held.
 622 * Return:
 623 * * Core id.
 624 * * -1 if the provided vCPU is not in the pool.
 625 */
 626static int ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id)
 627{
 628	int core_id = -1;
 629	unsigned int i = 0;
 630
 631	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
 632		if (cpumask_test_cpu(vcpu_id, ne_cpu_pool.avail_threads_per_core[i])) {
 633			core_id = i;
 634
 635			break;
 636	}
 637
 638	return core_id;
 639}
 640
 641/**
 642 * ne_check_cpu_in_cpu_pool() - Check if the given vCPU is in the available CPUs
 643 *				from the pool.
 644 * @ne_enclave :	Private data associated with the current enclave.
 645 * @vcpu_id:		ID of the vCPU to check if available in the NE CPU pool.
 646 *
 647 * Context: Process context. This function is called with the ne_enclave mutex held.
 648 * Return:
 649 * * 0 on success.
 650 * * Negative return value on failure.
 651 */
 652static int ne_check_cpu_in_cpu_pool(struct ne_enclave *ne_enclave, u32 vcpu_id)
 653{
 654	int core_id = -1;
 655	unsigned int i = 0;
 656	int rc = -EINVAL;
 657
 658	if (ne_donated_cpu(ne_enclave, vcpu_id)) {
 659		dev_err_ratelimited(ne_misc_dev.this_device,
 660				    "CPU %d already used\n", vcpu_id);
 661
 662		return -NE_ERR_VCPU_ALREADY_USED;
 663	}
 664
 665	/*
 666	 * If previously allocated a thread of a core to this enclave, but not
 667	 * the full core, first check remaining sibling(s).
 668	 */
 669	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
 670		if (cpumask_test_cpu(vcpu_id, ne_enclave->threads_per_core[i]))
 671			return 0;
 672
 673	mutex_lock(&ne_cpu_pool.mutex);
 674
 675	/*
 676	 * If no remaining siblings, get from the NE CPU pool the core
 677	 * associated with the vCPU and keep track of all the threads in the
 678	 * enclave threads per core data structure.
 679	 */
 680	core_id = ne_get_vcpu_core_from_cpu_pool(vcpu_id);
 681
 682	rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id);
 683	if (rc < 0)
 684		goto unlock_mutex;
 685
 686	rc = 0;
 687
 688unlock_mutex:
 689	mutex_unlock(&ne_cpu_pool.mutex);
 690
 691	return rc;
 692}
 693
 694/**
 695 * ne_add_vcpu_ioctl() - Add a vCPU to the slot associated with the current
 696 *			 enclave.
 697 * @ne_enclave :	Private data associated with the current enclave.
 698 * @vcpu_id:		ID of the CPU to be associated with the given slot,
 699 *			apic id on x86.
 700 *
 701 * Context: Process context. This function is called with the ne_enclave mutex held.
 702 * Return:
 703 * * 0 on success.
 704 * * Negative return value on failure.
 705 */
 706static int ne_add_vcpu_ioctl(struct ne_enclave *ne_enclave, u32 vcpu_id)
 707{
 708	struct ne_pci_dev_cmd_reply cmd_reply = {};
 709	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
 710	int rc = -EINVAL;
 711	struct slot_add_vcpu_req slot_add_vcpu_req = {};
 712
 713	if (ne_enclave->mm != current->mm)
 714		return -EIO;
 715
 716	slot_add_vcpu_req.slot_uid = ne_enclave->slot_uid;
 717	slot_add_vcpu_req.vcpu_id = vcpu_id;
 718
 719	rc = ne_do_request(pdev, SLOT_ADD_VCPU,
 720			   &slot_add_vcpu_req, sizeof(slot_add_vcpu_req),
 721			   &cmd_reply, sizeof(cmd_reply));
 722	if (rc < 0) {
 723		dev_err_ratelimited(ne_misc_dev.this_device,
 724				    "Error in slot add vCPU [rc=%d]\n", rc);
 725
 726		return rc;
 727	}
 728
 729	cpumask_set_cpu(vcpu_id, ne_enclave->vcpu_ids);
 730
 731	ne_enclave->nr_vcpus++;
 732
 733	return 0;
 734}
 735
 736/**
 737 * ne_sanity_check_user_mem_region() - Sanity check the user space memory
 738 *				       region received during the set user
 739 *				       memory region ioctl call.
 740 * @ne_enclave :	Private data associated with the current enclave.
 741 * @mem_region :	User space memory region to be sanity checked.
 742 *
 743 * Context: Process context. This function is called with the ne_enclave mutex held.
 744 * Return:
 745 * * 0 on success.
 746 * * Negative return value on failure.
 747 */
 748static int ne_sanity_check_user_mem_region(struct ne_enclave *ne_enclave,
 749					   struct ne_user_memory_region mem_region)
 750{
 751	struct ne_mem_region *ne_mem_region = NULL;
 752
 753	if (ne_enclave->mm != current->mm)
 754		return -EIO;
 755
 756	if (mem_region.memory_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
 757		dev_err_ratelimited(ne_misc_dev.this_device,
 758				    "User space memory size is not multiple of 2 MiB\n");
 759
 760		return -NE_ERR_INVALID_MEM_REGION_SIZE;
 761	}
 762
 763	if (!IS_ALIGNED(mem_region.userspace_addr, NE_MIN_MEM_REGION_SIZE)) {
 764		dev_err_ratelimited(ne_misc_dev.this_device,
 765				    "User space address is not 2 MiB aligned\n");
 766
 767		return -NE_ERR_UNALIGNED_MEM_REGION_ADDR;
 768	}
 769
 770	if ((mem_region.userspace_addr & (NE_MIN_MEM_REGION_SIZE - 1)) ||
 771	    !access_ok((void __user *)(unsigned long)mem_region.userspace_addr,
 772		       mem_region.memory_size)) {
 773		dev_err_ratelimited(ne_misc_dev.this_device,
 774				    "Invalid user space address range\n");
 775
 776		return -NE_ERR_INVALID_MEM_REGION_ADDR;
 777	}
 778
 779	list_for_each_entry(ne_mem_region, &ne_enclave->mem_regions_list,
 780			    mem_region_list_entry) {
 781		u64 memory_size = ne_mem_region->memory_size;
 782		u64 userspace_addr = ne_mem_region->userspace_addr;
 783
 784		if ((userspace_addr <= mem_region.userspace_addr &&
 785		     mem_region.userspace_addr < (userspace_addr + memory_size)) ||
 786		    (mem_region.userspace_addr <= userspace_addr &&
 787		    (mem_region.userspace_addr + mem_region.memory_size) > userspace_addr)) {
 788			dev_err_ratelimited(ne_misc_dev.this_device,
 789					    "User space memory region already used\n");
 790
 791			return -NE_ERR_MEM_REGION_ALREADY_USED;
 792		}
 793	}
 794
 795	return 0;
 796}
 797
 798/**
 799 * ne_sanity_check_user_mem_region_page() - Sanity check a page from the user space
 800 *					    memory region received during the set
 801 *					    user memory region ioctl call.
 802 * @ne_enclave :	Private data associated with the current enclave.
 803 * @mem_region_page:	Page from the user space memory region to be sanity checked.
 804 *
 805 * Context: Process context. This function is called with the ne_enclave mutex held.
 806 * Return:
 807 * * 0 on success.
 808 * * Negative return value on failure.
 809 */
 810static int ne_sanity_check_user_mem_region_page(struct ne_enclave *ne_enclave,
 811						struct page *mem_region_page)
 812{
 813	if (!PageHuge(mem_region_page)) {
 814		dev_err_ratelimited(ne_misc_dev.this_device,
 815				    "Not a hugetlbfs page\n");
 816
 817		return -NE_ERR_MEM_NOT_HUGE_PAGE;
 818	}
 819
 820	if (page_size(mem_region_page) & (NE_MIN_MEM_REGION_SIZE - 1)) {
 821		dev_err_ratelimited(ne_misc_dev.this_device,
 822				    "Page size not multiple of 2 MiB\n");
 823
 824		return -NE_ERR_INVALID_PAGE_SIZE;
 825	}
 826
 827	if (ne_enclave->numa_node != page_to_nid(mem_region_page)) {
 828		dev_err_ratelimited(ne_misc_dev.this_device,
 829				    "Page is not from NUMA node %d\n",
 830				    ne_enclave->numa_node);
 831
 832		return -NE_ERR_MEM_DIFFERENT_NUMA_NODE;
 833	}
 834
 835	return 0;
 836}
 837
 838/**
 839 * ne_sanity_check_phys_mem_region() - Sanity check the start address and the size
 840 *                                     of a physical memory region.
 841 * @phys_mem_region_paddr : Physical start address of the region to be sanity checked.
 842 * @phys_mem_region_size  : Length of the region to be sanity checked.
 843 *
 844 * Context: Process context. This function is called with the ne_enclave mutex held.
 845 * Return:
 846 * * 0 on success.
 847 * * Negative return value on failure.
 848 */
 849static int ne_sanity_check_phys_mem_region(u64 phys_mem_region_paddr,
 850					   u64 phys_mem_region_size)
 851{
 852	if (phys_mem_region_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
 853		dev_err_ratelimited(ne_misc_dev.this_device,
 854				    "Physical mem region size is not multiple of 2 MiB\n");
 855
 856		return -EINVAL;
 857	}
 858
 859	if (!IS_ALIGNED(phys_mem_region_paddr, NE_MIN_MEM_REGION_SIZE)) {
 860		dev_err_ratelimited(ne_misc_dev.this_device,
 861				    "Physical mem region address is not 2 MiB aligned\n");
 862
 863		return -EINVAL;
 864	}
 865
 866	return 0;
 867}
 868
 869/**
 870 * ne_merge_phys_contig_memory_regions() - Add a memory region and merge the adjacent
 871 *                                         regions if they are physically contiguous.
 872 * @phys_contig_regions : Private data associated with the contiguous physical memory regions.
 873 * @page_paddr :          Physical start address of the region to be added.
 874 * @page_size :           Length of the region to be added.
 875 *
 876 * Context: Process context. This function is called with the ne_enclave mutex held.
 877 * Return:
 878 * * 0 on success.
 879 * * Negative return value on failure.
 880 */
 881static int
 882ne_merge_phys_contig_memory_regions(struct ne_phys_contig_mem_regions *phys_contig_regions,
 883				    u64 page_paddr, u64 page_size)
 884{
 885	unsigned long num = phys_contig_regions->num;
 886	int rc = 0;
 887
 888	rc = ne_sanity_check_phys_mem_region(page_paddr, page_size);
 889	if (rc < 0)
 890		return rc;
 891
 892	/* Physically contiguous, just merge */
 893	if (num && (phys_contig_regions->regions[num - 1].end + 1) == page_paddr) {
 894		phys_contig_regions->regions[num - 1].end += page_size;
 895	} else {
 896		phys_contig_regions->regions[num].start = page_paddr;
 897		phys_contig_regions->regions[num].end = page_paddr + page_size - 1;
 898		phys_contig_regions->num++;
 899	}
 900
 901	return 0;
 902}
 903
 904/**
 905 * ne_set_user_memory_region_ioctl() - Add user space memory region to the slot
 906 *				       associated with the current enclave.
 907 * @ne_enclave :	Private data associated with the current enclave.
 908 * @mem_region :	User space memory region to be associated with the given slot.
 909 *
 910 * Context: Process context. This function is called with the ne_enclave mutex held.
 911 * Return:
 912 * * 0 on success.
 913 * * Negative return value on failure.
 914 */
 915static int ne_set_user_memory_region_ioctl(struct ne_enclave *ne_enclave,
 916					   struct ne_user_memory_region mem_region)
 917{
 918	long gup_rc = 0;
 919	unsigned long i = 0;
 920	unsigned long max_nr_pages = 0;
 921	unsigned long memory_size = 0;
 922	struct ne_mem_region *ne_mem_region = NULL;
 923	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
 924	struct ne_phys_contig_mem_regions phys_contig_mem_regions = {};
 925	int rc = -EINVAL;
 926
 927	rc = ne_sanity_check_user_mem_region(ne_enclave, mem_region);
 928	if (rc < 0)
 929		return rc;
 930
 931	ne_mem_region = kzalloc(sizeof(*ne_mem_region), GFP_KERNEL);
 932	if (!ne_mem_region)
 933		return -ENOMEM;
 934
 935	max_nr_pages = mem_region.memory_size / NE_MIN_MEM_REGION_SIZE;
 936
 937	ne_mem_region->pages = kcalloc(max_nr_pages, sizeof(*ne_mem_region->pages),
 938				       GFP_KERNEL);
 939	if (!ne_mem_region->pages) {
 940		rc = -ENOMEM;
 941
 942		goto free_mem_region;
 943	}
 944
 945	phys_contig_mem_regions.regions = kcalloc(max_nr_pages,
 946						  sizeof(*phys_contig_mem_regions.regions),
 947						  GFP_KERNEL);
 948	if (!phys_contig_mem_regions.regions) {
 949		rc = -ENOMEM;
 950
 951		goto free_mem_region;
 952	}
 953
 954	do {
 955		i = ne_mem_region->nr_pages;
 956
 957		if (i == max_nr_pages) {
 958			dev_err_ratelimited(ne_misc_dev.this_device,
 959					    "Reached max nr of pages in the pages data struct\n");
 960
 961			rc = -ENOMEM;
 962
 963			goto put_pages;
 964		}
 965
 966		gup_rc = get_user_pages_unlocked(mem_region.userspace_addr + memory_size, 1,
 967						 ne_mem_region->pages + i, FOLL_GET);
 968
 969		if (gup_rc < 0) {
 970			rc = gup_rc;
 971
 972			dev_err_ratelimited(ne_misc_dev.this_device,
 973					    "Error in get user pages [rc=%d]\n", rc);
 974
 975			goto put_pages;
 976		}
 977
 978		rc = ne_sanity_check_user_mem_region_page(ne_enclave, ne_mem_region->pages[i]);
 979		if (rc < 0)
 980			goto put_pages;
 981
 982		rc = ne_merge_phys_contig_memory_regions(&phys_contig_mem_regions,
 983							 page_to_phys(ne_mem_region->pages[i]),
 984							 page_size(ne_mem_region->pages[i]));
 985		if (rc < 0)
 986			goto put_pages;
 987
 988		memory_size += page_size(ne_mem_region->pages[i]);
 989
 990		ne_mem_region->nr_pages++;
 991	} while (memory_size < mem_region.memory_size);
 992
 993	if ((ne_enclave->nr_mem_regions + phys_contig_mem_regions.num) >
 994	    ne_enclave->max_mem_regions) {
 995		dev_err_ratelimited(ne_misc_dev.this_device,
 996				    "Reached max memory regions %lld\n",
 997				    ne_enclave->max_mem_regions);
 998
 999		rc = -NE_ERR_MEM_MAX_REGIONS;
1000
1001		goto put_pages;
1002	}
1003
1004	for (i = 0; i < phys_contig_mem_regions.num; i++) {
1005		u64 phys_region_addr = phys_contig_mem_regions.regions[i].start;
1006		u64 phys_region_size = range_len(&phys_contig_mem_regions.regions[i]);
1007
1008		rc = ne_sanity_check_phys_mem_region(phys_region_addr, phys_region_size);
1009		if (rc < 0)
1010			goto put_pages;
1011	}
1012
1013	ne_mem_region->memory_size = mem_region.memory_size;
1014	ne_mem_region->userspace_addr = mem_region.userspace_addr;
1015
1016	list_add(&ne_mem_region->mem_region_list_entry, &ne_enclave->mem_regions_list);
1017
1018	for (i = 0; i < phys_contig_mem_regions.num; i++) {
1019		struct ne_pci_dev_cmd_reply cmd_reply = {};
1020		struct slot_add_mem_req slot_add_mem_req = {};
1021
1022		slot_add_mem_req.slot_uid = ne_enclave->slot_uid;
1023		slot_add_mem_req.paddr = phys_contig_mem_regions.regions[i].start;
1024		slot_add_mem_req.size = range_len(&phys_contig_mem_regions.regions[i]);
1025
1026		rc = ne_do_request(pdev, SLOT_ADD_MEM,
1027				   &slot_add_mem_req, sizeof(slot_add_mem_req),
1028				   &cmd_reply, sizeof(cmd_reply));
1029		if (rc < 0) {
1030			dev_err_ratelimited(ne_misc_dev.this_device,
1031					    "Error in slot add mem [rc=%d]\n", rc);
1032
1033			kfree(phys_contig_mem_regions.regions);
1034
1035			/*
1036			 * Exit here without put pages as memory regions may
1037			 * already been added.
1038			 */
1039			return rc;
1040		}
1041
1042		ne_enclave->mem_size += slot_add_mem_req.size;
1043		ne_enclave->nr_mem_regions++;
1044	}
1045
1046	kfree(phys_contig_mem_regions.regions);
1047
1048	return 0;
1049
1050put_pages:
1051	for (i = 0; i < ne_mem_region->nr_pages; i++)
1052		put_page(ne_mem_region->pages[i]);
1053free_mem_region:
1054	kfree(phys_contig_mem_regions.regions);
1055	kfree(ne_mem_region->pages);
1056	kfree(ne_mem_region);
1057
1058	return rc;
1059}
1060
1061/**
1062 * ne_start_enclave_ioctl() - Trigger enclave start after the enclave resources,
1063 *			      such as memory and CPU, have been set.
1064 * @ne_enclave :		Private data associated with the current enclave.
1065 * @enclave_start_info :	Enclave info that includes enclave cid and flags.
1066 *
1067 * Context: Process context. This function is called with the ne_enclave mutex held.
1068 * Return:
1069 * * 0 on success.
1070 * * Negative return value on failure.
1071 */
1072static int ne_start_enclave_ioctl(struct ne_enclave *ne_enclave,
1073				  struct ne_enclave_start_info *enclave_start_info)
1074{
1075	struct ne_pci_dev_cmd_reply cmd_reply = {};
1076	unsigned int cpu = 0;
1077	struct enclave_start_req enclave_start_req = {};
1078	unsigned int i = 0;
1079	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
1080	int rc = -EINVAL;
1081
1082	if (!ne_enclave->nr_mem_regions) {
1083		dev_err_ratelimited(ne_misc_dev.this_device,
1084				    "Enclave has no mem regions\n");
1085
1086		return -NE_ERR_NO_MEM_REGIONS_ADDED;
1087	}
1088
1089	if (ne_enclave->mem_size < NE_MIN_ENCLAVE_MEM_SIZE) {
1090		dev_err_ratelimited(ne_misc_dev.this_device,
1091				    "Enclave memory is less than %ld\n",
1092				    NE_MIN_ENCLAVE_MEM_SIZE);
1093
1094		return -NE_ERR_ENCLAVE_MEM_MIN_SIZE;
1095	}
1096
1097	if (!ne_enclave->nr_vcpus) {
1098		dev_err_ratelimited(ne_misc_dev.this_device,
1099				    "Enclave has no vCPUs\n");
1100
1101		return -NE_ERR_NO_VCPUS_ADDED;
1102	}
1103
1104	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1105		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
1106			if (!cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) {
1107				dev_err_ratelimited(ne_misc_dev.this_device,
1108						    "Full CPU cores not used\n");
1109
1110				return -NE_ERR_FULL_CORES_NOT_USED;
1111			}
1112
1113	enclave_start_req.enclave_cid = enclave_start_info->enclave_cid;
1114	enclave_start_req.flags = enclave_start_info->flags;
1115	enclave_start_req.slot_uid = ne_enclave->slot_uid;
1116
1117	rc = ne_do_request(pdev, ENCLAVE_START,
1118			   &enclave_start_req, sizeof(enclave_start_req),
1119			   &cmd_reply, sizeof(cmd_reply));
1120	if (rc < 0) {
1121		dev_err_ratelimited(ne_misc_dev.this_device,
1122				    "Error in enclave start [rc=%d]\n", rc);
1123
1124		return rc;
1125	}
1126
1127	ne_enclave->state = NE_STATE_RUNNING;
1128
1129	enclave_start_info->enclave_cid = cmd_reply.enclave_cid;
1130
1131	return 0;
1132}
1133
1134/**
1135 * ne_enclave_ioctl() - Ioctl function provided by the enclave file.
1136 * @file:	File associated with this ioctl function.
1137 * @cmd:	The command that is set for the ioctl call.
1138 * @arg:	The argument that is provided for the ioctl call.
1139 *
1140 * Context: Process context.
1141 * Return:
1142 * * 0 on success.
1143 * * Negative return value on failure.
1144 */
1145static long ne_enclave_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1146{
1147	struct ne_enclave *ne_enclave = file->private_data;
1148
1149	switch (cmd) {
1150	case NE_ADD_VCPU: {
1151		int rc = -EINVAL;
1152		u32 vcpu_id = 0;
1153
1154		if (copy_from_user(&vcpu_id, (void __user *)arg, sizeof(vcpu_id)))
1155			return -EFAULT;
1156
1157		mutex_lock(&ne_enclave->enclave_info_mutex);
1158
1159		if (ne_enclave->state != NE_STATE_INIT) {
1160			dev_err_ratelimited(ne_misc_dev.this_device,
1161					    "Enclave is not in init state\n");
1162
1163			mutex_unlock(&ne_enclave->enclave_info_mutex);
1164
1165			return -NE_ERR_NOT_IN_INIT_STATE;
1166		}
1167
1168		if (vcpu_id >= (ne_enclave->nr_parent_vm_cores *
1169		    ne_enclave->nr_threads_per_core)) {
1170			dev_err_ratelimited(ne_misc_dev.this_device,
1171					    "vCPU id higher than max CPU id\n");
1172
1173			mutex_unlock(&ne_enclave->enclave_info_mutex);
1174
1175			return -NE_ERR_INVALID_VCPU;
1176		}
1177
1178		if (!vcpu_id) {
1179			/* Use the CPU pool for choosing a CPU for the enclave. */
1180			rc = ne_get_cpu_from_cpu_pool(ne_enclave, &vcpu_id);
1181			if (rc < 0) {
1182				dev_err_ratelimited(ne_misc_dev.this_device,
1183						    "Error in get CPU from pool [rc=%d]\n",
1184						    rc);
1185
1186				mutex_unlock(&ne_enclave->enclave_info_mutex);
1187
1188				return rc;
1189			}
1190		} else {
1191			/* Check if the provided vCPU is available in the NE CPU pool. */
1192			rc = ne_check_cpu_in_cpu_pool(ne_enclave, vcpu_id);
1193			if (rc < 0) {
1194				dev_err_ratelimited(ne_misc_dev.this_device,
1195						    "Error in check CPU %d in pool [rc=%d]\n",
1196						    vcpu_id, rc);
1197
1198				mutex_unlock(&ne_enclave->enclave_info_mutex);
1199
1200				return rc;
1201			}
1202		}
1203
1204		rc = ne_add_vcpu_ioctl(ne_enclave, vcpu_id);
1205		if (rc < 0) {
1206			mutex_unlock(&ne_enclave->enclave_info_mutex);
1207
1208			return rc;
1209		}
1210
1211		mutex_unlock(&ne_enclave->enclave_info_mutex);
1212
1213		if (copy_to_user((void __user *)arg, &vcpu_id, sizeof(vcpu_id)))
1214			return -EFAULT;
1215
1216		return 0;
1217	}
1218
1219	case NE_GET_IMAGE_LOAD_INFO: {
1220		struct ne_image_load_info image_load_info = {};
1221
1222		if (copy_from_user(&image_load_info, (void __user *)arg, sizeof(image_load_info)))
1223			return -EFAULT;
1224
1225		mutex_lock(&ne_enclave->enclave_info_mutex);
1226
1227		if (ne_enclave->state != NE_STATE_INIT) {
1228			dev_err_ratelimited(ne_misc_dev.this_device,
1229					    "Enclave is not in init state\n");
1230
1231			mutex_unlock(&ne_enclave->enclave_info_mutex);
1232
1233			return -NE_ERR_NOT_IN_INIT_STATE;
1234		}
1235
1236		mutex_unlock(&ne_enclave->enclave_info_mutex);
1237
1238		if (!image_load_info.flags ||
1239		    image_load_info.flags >= NE_IMAGE_LOAD_MAX_FLAG_VAL) {
1240			dev_err_ratelimited(ne_misc_dev.this_device,
1241					    "Incorrect flag in enclave image load info\n");
1242
1243			return -NE_ERR_INVALID_FLAG_VALUE;
1244		}
1245
1246		if (image_load_info.flags == NE_EIF_IMAGE)
1247			image_load_info.memory_offset = NE_EIF_LOAD_OFFSET;
1248
1249		if (copy_to_user((void __user *)arg, &image_load_info, sizeof(image_load_info)))
1250			return -EFAULT;
1251
1252		return 0;
1253	}
1254
1255	case NE_SET_USER_MEMORY_REGION: {
1256		struct ne_user_memory_region mem_region = {};
1257		int rc = -EINVAL;
1258
1259		if (copy_from_user(&mem_region, (void __user *)arg, sizeof(mem_region)))
1260			return -EFAULT;
1261
1262		if (mem_region.flags >= NE_MEMORY_REGION_MAX_FLAG_VAL) {
1263			dev_err_ratelimited(ne_misc_dev.this_device,
1264					    "Incorrect flag for user memory region\n");
1265
1266			return -NE_ERR_INVALID_FLAG_VALUE;
1267		}
1268
1269		mutex_lock(&ne_enclave->enclave_info_mutex);
1270
1271		if (ne_enclave->state != NE_STATE_INIT) {
1272			dev_err_ratelimited(ne_misc_dev.this_device,
1273					    "Enclave is not in init state\n");
1274
1275			mutex_unlock(&ne_enclave->enclave_info_mutex);
1276
1277			return -NE_ERR_NOT_IN_INIT_STATE;
1278		}
1279
1280		rc = ne_set_user_memory_region_ioctl(ne_enclave, mem_region);
1281		if (rc < 0) {
1282			mutex_unlock(&ne_enclave->enclave_info_mutex);
1283
1284			return rc;
1285		}
1286
1287		mutex_unlock(&ne_enclave->enclave_info_mutex);
1288
1289		return 0;
1290	}
1291
1292	case NE_START_ENCLAVE: {
1293		struct ne_enclave_start_info enclave_start_info = {};
1294		int rc = -EINVAL;
1295
1296		if (copy_from_user(&enclave_start_info, (void __user *)arg,
1297				   sizeof(enclave_start_info)))
1298			return -EFAULT;
1299
1300		if (enclave_start_info.flags >= NE_ENCLAVE_START_MAX_FLAG_VAL) {
1301			dev_err_ratelimited(ne_misc_dev.this_device,
1302					    "Incorrect flag in enclave start info\n");
1303
1304			return -NE_ERR_INVALID_FLAG_VALUE;
1305		}
1306
1307		/*
1308		 * Do not use well-known CIDs - 0, 1, 2 - for enclaves.
1309		 * VMADDR_CID_ANY = -1U
1310		 * VMADDR_CID_HYPERVISOR = 0
1311		 * VMADDR_CID_LOCAL = 1
1312		 * VMADDR_CID_HOST = 2
1313		 * Note: 0 is used as a placeholder to auto-generate an enclave CID.
1314		 * http://man7.org/linux/man-pages/man7/vsock.7.html
1315		 */
1316		if (enclave_start_info.enclave_cid > 0 &&
1317		    enclave_start_info.enclave_cid <= VMADDR_CID_HOST) {
1318			dev_err_ratelimited(ne_misc_dev.this_device,
1319					    "Well-known CID value, not to be used for enclaves\n");
1320
1321			return -NE_ERR_INVALID_ENCLAVE_CID;
1322		}
1323
1324		if (enclave_start_info.enclave_cid == U32_MAX) {
1325			dev_err_ratelimited(ne_misc_dev.this_device,
1326					    "Well-known CID value, not to be used for enclaves\n");
1327
1328			return -NE_ERR_INVALID_ENCLAVE_CID;
1329		}
1330
1331		/*
1332		 * Do not use the CID of the primary / parent VM for enclaves.
1333		 */
1334		if (enclave_start_info.enclave_cid == NE_PARENT_VM_CID) {
1335			dev_err_ratelimited(ne_misc_dev.this_device,
1336					    "CID of the parent VM, not to be used for enclaves\n");
1337
1338			return -NE_ERR_INVALID_ENCLAVE_CID;
1339		}
1340
1341		/* 64-bit CIDs are not yet supported for the vsock device. */
1342		if (enclave_start_info.enclave_cid > U32_MAX) {
1343			dev_err_ratelimited(ne_misc_dev.this_device,
1344					    "64-bit CIDs not yet supported for the vsock device\n");
1345
1346			return -NE_ERR_INVALID_ENCLAVE_CID;
1347		}
1348
1349		mutex_lock(&ne_enclave->enclave_info_mutex);
1350
1351		if (ne_enclave->state != NE_STATE_INIT) {
1352			dev_err_ratelimited(ne_misc_dev.this_device,
1353					    "Enclave is not in init state\n");
1354
1355			mutex_unlock(&ne_enclave->enclave_info_mutex);
1356
1357			return -NE_ERR_NOT_IN_INIT_STATE;
1358		}
1359
1360		rc = ne_start_enclave_ioctl(ne_enclave, &enclave_start_info);
1361		if (rc < 0) {
1362			mutex_unlock(&ne_enclave->enclave_info_mutex);
1363
1364			return rc;
1365		}
1366
1367		mutex_unlock(&ne_enclave->enclave_info_mutex);
1368
1369		if (copy_to_user((void __user *)arg, &enclave_start_info,
1370				 sizeof(enclave_start_info)))
1371			return -EFAULT;
1372
1373		return 0;
1374	}
1375
1376	default:
1377		return -ENOTTY;
1378	}
1379
1380	return 0;
1381}
1382
1383/**
1384 * ne_enclave_remove_all_mem_region_entries() - Remove all memory region entries
1385 *						from the enclave data structure.
1386 * @ne_enclave :	Private data associated with the current enclave.
1387 *
1388 * Context: Process context. This function is called with the ne_enclave mutex held.
1389 */
1390static void ne_enclave_remove_all_mem_region_entries(struct ne_enclave *ne_enclave)
1391{
1392	unsigned long i = 0;
1393	struct ne_mem_region *ne_mem_region = NULL;
1394	struct ne_mem_region *ne_mem_region_tmp = NULL;
1395
1396	list_for_each_entry_safe(ne_mem_region, ne_mem_region_tmp,
1397				 &ne_enclave->mem_regions_list,
1398				 mem_region_list_entry) {
1399		list_del(&ne_mem_region->mem_region_list_entry);
1400
1401		for (i = 0; i < ne_mem_region->nr_pages; i++)
1402			put_page(ne_mem_region->pages[i]);
1403
1404		kfree(ne_mem_region->pages);
1405
1406		kfree(ne_mem_region);
1407	}
1408}
1409
1410/**
1411 * ne_enclave_remove_all_vcpu_id_entries() - Remove all vCPU id entries from
1412 *					     the enclave data structure.
1413 * @ne_enclave :	Private data associated with the current enclave.
1414 *
1415 * Context: Process context. This function is called with the ne_enclave mutex held.
1416 */
1417static void ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave *ne_enclave)
1418{
1419	unsigned int cpu = 0;
1420	unsigned int i = 0;
1421
1422	mutex_lock(&ne_cpu_pool.mutex);
1423
1424	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) {
1425		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
1426			/* Update the available NE CPU pool. */
1427			cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]);
1428
1429		free_cpumask_var(ne_enclave->threads_per_core[i]);
1430	}
1431
1432	mutex_unlock(&ne_cpu_pool.mutex);
1433
1434	kfree(ne_enclave->threads_per_core);
1435
1436	free_cpumask_var(ne_enclave->vcpu_ids);
1437}
1438
1439/**
1440 * ne_pci_dev_remove_enclave_entry() - Remove the enclave entry from the data
1441 *				       structure that is part of the NE PCI
1442 *				       device private data.
1443 * @ne_enclave :	Private data associated with the current enclave.
1444 * @ne_pci_dev :	Private data associated with the PCI device.
1445 *
1446 * Context: Process context. This function is called with the ne_pci_dev enclave
1447 *	    mutex held.
1448 */
1449static void ne_pci_dev_remove_enclave_entry(struct ne_enclave *ne_enclave,
1450					    struct ne_pci_dev *ne_pci_dev)
1451{
1452	struct ne_enclave *ne_enclave_entry = NULL;
1453	struct ne_enclave *ne_enclave_entry_tmp = NULL;
1454
1455	list_for_each_entry_safe(ne_enclave_entry, ne_enclave_entry_tmp,
1456				 &ne_pci_dev->enclaves_list, enclave_list_entry) {
1457		if (ne_enclave_entry->slot_uid == ne_enclave->slot_uid) {
1458			list_del(&ne_enclave_entry->enclave_list_entry);
1459
1460			break;
1461		}
1462	}
1463}
1464
1465/**
1466 * ne_enclave_release() - Release function provided by the enclave file.
1467 * @inode:	Inode associated with this file release function.
1468 * @file:	File associated with this release function.
1469 *
1470 * Context: Process context.
1471 * Return:
1472 * * 0 on success.
1473 * * Negative return value on failure.
1474 */
1475static int ne_enclave_release(struct inode *inode, struct file *file)
1476{
1477	struct ne_pci_dev_cmd_reply cmd_reply = {};
1478	struct enclave_stop_req enclave_stop_request = {};
1479	struct ne_enclave *ne_enclave = file->private_data;
1480	struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
1481	struct pci_dev *pdev = ne_pci_dev->pdev;
1482	int rc = -EINVAL;
1483	struct slot_free_req slot_free_req = {};
1484
1485	if (!ne_enclave)
1486		return 0;
1487
1488	/*
1489	 * Early exit in case there is an error in the enclave creation logic
1490	 * and fput() is called on the cleanup path.
1491	 */
1492	if (!ne_enclave->slot_uid)
1493		return 0;
1494
1495	/*
1496	 * Acquire the enclave list mutex before the enclave mutex
1497	 * in order to avoid deadlocks with @ref ne_event_work_handler.
1498	 */
1499	mutex_lock(&ne_pci_dev->enclaves_list_mutex);
1500	mutex_lock(&ne_enclave->enclave_info_mutex);
1501
1502	if (ne_enclave->state != NE_STATE_INIT && ne_enclave->state != NE_STATE_STOPPED) {
1503		enclave_stop_request.slot_uid = ne_enclave->slot_uid;
1504
1505		rc = ne_do_request(pdev, ENCLAVE_STOP,
1506				   &enclave_stop_request, sizeof(enclave_stop_request),
1507				   &cmd_reply, sizeof(cmd_reply));
1508		if (rc < 0) {
1509			dev_err_ratelimited(ne_misc_dev.this_device,
1510					    "Error in enclave stop [rc=%d]\n", rc);
1511
1512			goto unlock_mutex;
1513		}
1514
1515		memset(&cmd_reply, 0, sizeof(cmd_reply));
1516	}
1517
1518	slot_free_req.slot_uid = ne_enclave->slot_uid;
1519
1520	rc = ne_do_request(pdev, SLOT_FREE,
1521			   &slot_free_req, sizeof(slot_free_req),
1522			   &cmd_reply, sizeof(cmd_reply));
1523	if (rc < 0) {
1524		dev_err_ratelimited(ne_misc_dev.this_device,
1525				    "Error in slot free [rc=%d]\n", rc);
1526
1527		goto unlock_mutex;
1528	}
1529
1530	ne_pci_dev_remove_enclave_entry(ne_enclave, ne_pci_dev);
1531	ne_enclave_remove_all_mem_region_entries(ne_enclave);
1532	ne_enclave_remove_all_vcpu_id_entries(ne_enclave);
1533
1534	mutex_unlock(&ne_enclave->enclave_info_mutex);
1535	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1536
1537	kfree(ne_enclave);
1538
1539	return 0;
1540
1541unlock_mutex:
1542	mutex_unlock(&ne_enclave->enclave_info_mutex);
1543	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1544
1545	return rc;
1546}
1547
1548/**
1549 * ne_enclave_poll() - Poll functionality used for enclave out-of-band events.
1550 * @file:	File associated with this poll function.
1551 * @wait:	Poll table data structure.
1552 *
1553 * Context: Process context.
1554 * Return:
1555 * * Poll mask.
1556 */
1557static __poll_t ne_enclave_poll(struct file *file, poll_table *wait)
1558{
1559	__poll_t mask = 0;
1560	struct ne_enclave *ne_enclave = file->private_data;
1561
1562	poll_wait(file, &ne_enclave->eventq, wait);
1563
1564	if (ne_enclave->has_event)
1565		mask |= EPOLLHUP;
1566
1567	return mask;
1568}
1569
1570static const struct file_operations ne_enclave_fops = {
1571	.owner		= THIS_MODULE,
1572	.llseek		= noop_llseek,
1573	.poll		= ne_enclave_poll,
1574	.unlocked_ioctl	= ne_enclave_ioctl,
1575	.release	= ne_enclave_release,
1576};
1577
1578/**
1579 * ne_create_vm_ioctl() - Alloc slot to be associated with an enclave. Create
1580 *			  enclave file descriptor to be further used for enclave
1581 *			  resources handling e.g. memory regions and CPUs.
1582 * @ne_pci_dev :	Private data associated with the PCI device.
1583 * @slot_uid:		User pointer to store the generated unique slot id
1584 *			associated with an enclave to.
1585 *
1586 * Context: Process context. This function is called with the ne_pci_dev enclave
1587 *	    mutex held.
1588 * Return:
1589 * * Enclave fd on success.
1590 * * Negative return value on failure.
1591 */
1592static int ne_create_vm_ioctl(struct ne_pci_dev *ne_pci_dev, u64 __user *slot_uid)
1593{
1594	struct ne_pci_dev_cmd_reply cmd_reply = {};
1595	int enclave_fd = -1;
1596	struct file *enclave_file = NULL;
1597	unsigned int i = 0;
1598	struct ne_enclave *ne_enclave = NULL;
1599	struct pci_dev *pdev = ne_pci_dev->pdev;
1600	int rc = -EINVAL;
1601	struct slot_alloc_req slot_alloc_req = {};
1602
1603	mutex_lock(&ne_cpu_pool.mutex);
1604
1605	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
1606		if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i]))
1607			break;
1608
1609	if (i == ne_cpu_pool.nr_parent_vm_cores) {
1610		dev_err_ratelimited(ne_misc_dev.this_device,
1611				    "No CPUs available in CPU pool\n");
1612
1613		mutex_unlock(&ne_cpu_pool.mutex);
1614
1615		return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
1616	}
1617
1618	mutex_unlock(&ne_cpu_pool.mutex);
1619
1620	ne_enclave = kzalloc(sizeof(*ne_enclave), GFP_KERNEL);
1621	if (!ne_enclave)
1622		return -ENOMEM;
1623
1624	mutex_lock(&ne_cpu_pool.mutex);
1625
1626	ne_enclave->nr_parent_vm_cores = ne_cpu_pool.nr_parent_vm_cores;
1627	ne_enclave->nr_threads_per_core = ne_cpu_pool.nr_threads_per_core;
1628	ne_enclave->numa_node = ne_cpu_pool.numa_node;
1629
1630	mutex_unlock(&ne_cpu_pool.mutex);
1631
1632	ne_enclave->threads_per_core = kcalloc(ne_enclave->nr_parent_vm_cores,
1633					       sizeof(*ne_enclave->threads_per_core),
1634					       GFP_KERNEL);
1635	if (!ne_enclave->threads_per_core) {
1636		rc = -ENOMEM;
1637
1638		goto free_ne_enclave;
1639	}
1640
1641	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1642		if (!zalloc_cpumask_var(&ne_enclave->threads_per_core[i], GFP_KERNEL)) {
1643			rc = -ENOMEM;
1644
1645			goto free_cpumask;
1646		}
1647
1648	if (!zalloc_cpumask_var(&ne_enclave->vcpu_ids, GFP_KERNEL)) {
1649		rc = -ENOMEM;
1650
1651		goto free_cpumask;
1652	}
1653
1654	enclave_fd = get_unused_fd_flags(O_CLOEXEC);
1655	if (enclave_fd < 0) {
1656		rc = enclave_fd;
1657
1658		dev_err_ratelimited(ne_misc_dev.this_device,
1659				    "Error in getting unused fd [rc=%d]\n", rc);
1660
1661		goto free_cpumask;
1662	}
1663
1664	enclave_file = anon_inode_getfile("ne-vm", &ne_enclave_fops, ne_enclave, O_RDWR);
1665	if (IS_ERR(enclave_file)) {
1666		rc = PTR_ERR(enclave_file);
1667
1668		dev_err_ratelimited(ne_misc_dev.this_device,
1669				    "Error in anon inode get file [rc=%d]\n", rc);
1670
1671		goto put_fd;
1672	}
1673
1674	rc = ne_do_request(pdev, SLOT_ALLOC,
1675			   &slot_alloc_req, sizeof(slot_alloc_req),
1676			   &cmd_reply, sizeof(cmd_reply));
1677	if (rc < 0) {
1678		dev_err_ratelimited(ne_misc_dev.this_device,
1679				    "Error in slot alloc [rc=%d]\n", rc);
1680
1681		goto put_file;
1682	}
1683
1684	init_waitqueue_head(&ne_enclave->eventq);
1685	ne_enclave->has_event = false;
1686	mutex_init(&ne_enclave->enclave_info_mutex);
1687	ne_enclave->max_mem_regions = cmd_reply.mem_regions;
1688	INIT_LIST_HEAD(&ne_enclave->mem_regions_list);
1689	ne_enclave->mm = current->mm;
1690	ne_enclave->slot_uid = cmd_reply.slot_uid;
1691	ne_enclave->state = NE_STATE_INIT;
1692
1693	list_add(&ne_enclave->enclave_list_entry, &ne_pci_dev->enclaves_list);
1694
1695	if (copy_to_user(slot_uid, &ne_enclave->slot_uid, sizeof(ne_enclave->slot_uid))) {
1696		/*
1697		 * As we're holding the only reference to 'enclave_file', fput()
1698		 * will call ne_enclave_release() which will do a proper cleanup
1699		 * of all so far allocated resources, leaving only the unused fd
1700		 * for us to free.
1701		 */
1702		fput(enclave_file);
1703		put_unused_fd(enclave_fd);
1704
1705		return -EFAULT;
1706	}
1707
1708	fd_install(enclave_fd, enclave_file);
1709
1710	return enclave_fd;
1711
1712put_file:
1713	fput(enclave_file);
1714put_fd:
1715	put_unused_fd(enclave_fd);
1716free_cpumask:
1717	free_cpumask_var(ne_enclave->vcpu_ids);
1718	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1719		free_cpumask_var(ne_enclave->threads_per_core[i]);
1720	kfree(ne_enclave->threads_per_core);
1721free_ne_enclave:
1722	kfree(ne_enclave);
1723
1724	return rc;
1725}
1726
1727/**
1728 * ne_ioctl() - Ioctl function provided by the NE misc device.
1729 * @file:	File associated with this ioctl function.
1730 * @cmd:	The command that is set for the ioctl call.
1731 * @arg:	The argument that is provided for the ioctl call.
1732 *
1733 * Context: Process context.
1734 * Return:
1735 * * Ioctl result (e.g. enclave file descriptor) on success.
1736 * * Negative return value on failure.
1737 */
1738static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1739{
1740	switch (cmd) {
1741	case NE_CREATE_VM: {
1742		int enclave_fd = -1;
1743		struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
1744		u64 __user *slot_uid = (void __user *)arg;
1745
1746		mutex_lock(&ne_pci_dev->enclaves_list_mutex);
1747		enclave_fd = ne_create_vm_ioctl(ne_pci_dev, slot_uid);
1748		mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1749
1750		return enclave_fd;
1751	}
1752
1753	default:
1754		return -ENOTTY;
1755	}
1756
1757	return 0;
1758}
1759
1760#if defined(CONFIG_NITRO_ENCLAVES_MISC_DEV_TEST)
1761#include "ne_misc_dev_test.c"
1762#endif
1763
1764static int __init ne_init(void)
1765{
1766	mutex_init(&ne_cpu_pool.mutex);
1767
1768	return pci_register_driver(&ne_pci_driver);
1769}
1770
1771static void __exit ne_exit(void)
1772{
1773	pci_unregister_driver(&ne_pci_driver);
1774
1775	ne_teardown_cpu_pool();
1776}
1777
1778module_init(ne_init);
1779module_exit(ne_exit);
1780
1781MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
1782MODULE_DESCRIPTION("Nitro Enclaves Driver");
1783MODULE_LICENSE("GPL v2");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright 2020-2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
   4 */
   5
   6/**
   7 * DOC: Enclave lifetime management driver for Nitro Enclaves (NE).
   8 * Nitro is a hypervisor that has been developed by Amazon.
   9 */
  10
  11#include <linux/anon_inodes.h>
  12#include <linux/capability.h>
  13#include <linux/cpu.h>
  14#include <linux/device.h>
  15#include <linux/file.h>
  16#include <linux/hugetlb.h>
  17#include <linux/limits.h>
  18#include <linux/list.h>
  19#include <linux/miscdevice.h>
  20#include <linux/mm.h>
  21#include <linux/mman.h>
  22#include <linux/module.h>
  23#include <linux/mutex.h>
  24#include <linux/nitro_enclaves.h>
  25#include <linux/pci.h>
  26#include <linux/poll.h>
  27#include <linux/range.h>
  28#include <linux/slab.h>
  29#include <linux/types.h>
  30#include <uapi/linux/vm_sockets.h>
  31
  32#include "ne_misc_dev.h"
  33#include "ne_pci_dev.h"
  34
  35/**
  36 * NE_CPUS_SIZE - Size for max 128 CPUs, for now, in a cpu-list string, comma
  37 *		  separated. The NE CPU pool includes CPUs from a single NUMA
  38 *		  node.
  39 */
  40#define NE_CPUS_SIZE		(512)
  41
  42/**
  43 * NE_EIF_LOAD_OFFSET - The offset where to copy the Enclave Image Format (EIF)
  44 *			image in enclave memory.
  45 */
  46#define NE_EIF_LOAD_OFFSET	(8 * 1024UL * 1024UL)
  47
  48/**
  49 * NE_MIN_ENCLAVE_MEM_SIZE - The minimum memory size an enclave can be launched
  50 *			     with.
  51 */
  52#define NE_MIN_ENCLAVE_MEM_SIZE	(64 * 1024UL * 1024UL)
  53
  54/**
  55 * NE_MIN_MEM_REGION_SIZE - The minimum size of an enclave memory region.
  56 */
  57#define NE_MIN_MEM_REGION_SIZE	(2 * 1024UL * 1024UL)
  58
  59/**
  60 * NE_PARENT_VM_CID - The CID for the vsock device of the primary / parent VM.
  61 */
  62#define NE_PARENT_VM_CID	(3)
  63
  64static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
  65
  66static const struct file_operations ne_fops = {
  67	.owner		= THIS_MODULE,
  68	.llseek		= noop_llseek,
  69	.unlocked_ioctl	= ne_ioctl,
  70};
  71
  72static struct miscdevice ne_misc_dev = {
  73	.minor	= MISC_DYNAMIC_MINOR,
  74	.name	= "nitro_enclaves",
  75	.fops	= &ne_fops,
  76	.mode	= 0660,
  77};
  78
  79struct ne_devs ne_devs = {
  80	.ne_misc_dev	= &ne_misc_dev,
  81};
  82
  83/*
  84 * TODO: Update logic to create new sysfs entries instead of using
  85 * a kernel parameter e.g. if multiple sysfs files needed.
  86 */
  87static int ne_set_kernel_param(const char *val, const struct kernel_param *kp);
  88
  89static const struct kernel_param_ops ne_cpu_pool_ops = {
  90	.get	= param_get_string,
  91	.set	= ne_set_kernel_param,
  92};
  93
  94static char ne_cpus[NE_CPUS_SIZE];
  95static struct kparam_string ne_cpus_arg = {
  96	.maxlen	= sizeof(ne_cpus),
  97	.string	= ne_cpus,
  98};
  99
 100module_param_cb(ne_cpus, &ne_cpu_pool_ops, &ne_cpus_arg, 0644);
 101/* https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists */
 102MODULE_PARM_DESC(ne_cpus, "<cpu-list> - CPU pool used for Nitro Enclaves");
 103
 104/**
 105 * struct ne_cpu_pool - CPU pool used for Nitro Enclaves.
 106 * @avail_threads_per_core:	Available full CPU cores to be dedicated to
 107 *				enclave(s). The cpumasks from the array, indexed
 108 *				by core id, contain all the threads from the
 109 *				available cores, that are not set for created
 110 *				enclave(s). The full CPU cores are part of the
 111 *				NE CPU pool.
 112 * @mutex:			Mutex for the access to the NE CPU pool.
 113 * @nr_parent_vm_cores :	The size of the available threads per core array.
 114 *				The total number of CPU cores available on the
 115 *				primary / parent VM.
 116 * @nr_threads_per_core:	The number of threads that a full CPU core has.
 117 * @numa_node:			NUMA node of the CPUs in the pool.
 118 */
 119struct ne_cpu_pool {
 120	cpumask_var_t	*avail_threads_per_core;
 121	struct mutex	mutex;
 122	unsigned int	nr_parent_vm_cores;
 123	unsigned int	nr_threads_per_core;
 124	int		numa_node;
 125};
 126
 127static struct ne_cpu_pool ne_cpu_pool;
 128
 129/**
 130 * struct ne_phys_contig_mem_regions - Contiguous physical memory regions.
 131 * @num:	The number of regions that currently has.
 132 * @regions:	The array of physical memory regions.
 133 */
 134struct ne_phys_contig_mem_regions {
 135	unsigned long num;
 136	struct range  *regions;
 137};
 138
 139/**
 140 * ne_check_enclaves_created() - Verify if at least one enclave has been created.
 141 * @void:	No parameters provided.
 142 *
 143 * Context: Process context.
 144 * Return:
 145 * * True if at least one enclave is created.
 146 * * False otherwise.
 147 */
 148static bool ne_check_enclaves_created(void)
 149{
 150	struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
 151	bool ret = false;
 152
 153	if (!ne_pci_dev)
 154		return ret;
 155
 156	mutex_lock(&ne_pci_dev->enclaves_list_mutex);
 157
 158	if (!list_empty(&ne_pci_dev->enclaves_list))
 159		ret = true;
 160
 161	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
 162
 163	return ret;
 164}
 165
 166/**
 167 * ne_setup_cpu_pool() - Set the NE CPU pool after handling sanity checks such
 168 *			 as not sharing CPU cores with the primary / parent VM
 169 *			 or not using CPU 0, which should remain available for
 170 *			 the primary / parent VM. Offline the CPUs from the
 171 *			 pool after the checks passed.
 172 * @ne_cpu_list:	The CPU list used for setting NE CPU pool.
 173 *
 174 * Context: Process context.
 175 * Return:
 176 * * 0 on success.
 177 * * Negative return value on failure.
 178 */
 179static int ne_setup_cpu_pool(const char *ne_cpu_list)
 180{
 181	int core_id = -1;
 182	unsigned int cpu = 0;
 183	cpumask_var_t cpu_pool;
 184	unsigned int cpu_sibling = 0;
 185	unsigned int i = 0;
 186	int numa_node = -1;
 187	int rc = -EINVAL;
 188
 189	if (!zalloc_cpumask_var(&cpu_pool, GFP_KERNEL))
 190		return -ENOMEM;
 191
 192	mutex_lock(&ne_cpu_pool.mutex);
 193
 194	rc = cpulist_parse(ne_cpu_list, cpu_pool);
 195	if (rc < 0) {
 196		pr_err("%s: Error in cpulist parse [rc=%d]\n", ne_misc_dev.name, rc);
 197
 198		goto free_pool_cpumask;
 199	}
 200
 201	cpu = cpumask_any(cpu_pool);
 202	if (cpu >= nr_cpu_ids) {
 203		pr_err("%s: No CPUs available in CPU pool\n", ne_misc_dev.name);
 204
 205		rc = -EINVAL;
 206
 207		goto free_pool_cpumask;
 208	}
 209
 210	/*
 211	 * Check if the CPUs are online, to further get info about them
 212	 * e.g. numa node, core id, siblings.
 213	 */
 214	for_each_cpu(cpu, cpu_pool)
 215		if (cpu_is_offline(cpu)) {
 216			pr_err("%s: CPU %d is offline, has to be online to get its metadata\n",
 217			       ne_misc_dev.name, cpu);
 218
 219			rc = -EINVAL;
 220
 221			goto free_pool_cpumask;
 222		}
 223
 224	/*
 225	 * Check if the CPUs from the NE CPU pool are from the same NUMA node.
 226	 */
 227	for_each_cpu(cpu, cpu_pool)
 228		if (numa_node < 0) {
 229			numa_node = cpu_to_node(cpu);
 230			if (numa_node < 0) {
 231				pr_err("%s: Invalid NUMA node %d\n",
 232				       ne_misc_dev.name, numa_node);
 233
 234				rc = -EINVAL;
 235
 236				goto free_pool_cpumask;
 237			}
 238		} else {
 239			if (numa_node != cpu_to_node(cpu)) {
 240				pr_err("%s: CPUs with different NUMA nodes\n",
 241				       ne_misc_dev.name);
 242
 243				rc = -EINVAL;
 244
 245				goto free_pool_cpumask;
 246			}
 247		}
 248
 249	/*
 250	 * Check if CPU 0 and its siblings are included in the provided CPU pool
 251	 * They should remain available for the primary / parent VM.
 252	 */
 253	if (cpumask_test_cpu(0, cpu_pool)) {
 254		pr_err("%s: CPU 0 has to remain available\n", ne_misc_dev.name);
 255
 256		rc = -EINVAL;
 257
 258		goto free_pool_cpumask;
 259	}
 260
 261	for_each_cpu(cpu_sibling, topology_sibling_cpumask(0)) {
 262		if (cpumask_test_cpu(cpu_sibling, cpu_pool)) {
 263			pr_err("%s: CPU sibling %d for CPU 0 is in CPU pool\n",
 264			       ne_misc_dev.name, cpu_sibling);
 265
 266			rc = -EINVAL;
 267
 268			goto free_pool_cpumask;
 269		}
 270	}
 271
 272	/*
 273	 * Check if CPU siblings are included in the provided CPU pool. The
 274	 * expectation is that full CPU cores are made available in the CPU pool
 275	 * for enclaves.
 276	 */
 277	for_each_cpu(cpu, cpu_pool) {
 278		for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) {
 279			if (!cpumask_test_cpu(cpu_sibling, cpu_pool)) {
 280				pr_err("%s: CPU %d is not in CPU pool\n",
 281				       ne_misc_dev.name, cpu_sibling);
 282
 283				rc = -EINVAL;
 284
 285				goto free_pool_cpumask;
 286			}
 287		}
 288	}
 289
 290	/* Calculate the number of threads from a full CPU core. */
 291	cpu = cpumask_any(cpu_pool);
 292	for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu))
 293		ne_cpu_pool.nr_threads_per_core++;
 294
 295	ne_cpu_pool.nr_parent_vm_cores = nr_cpu_ids / ne_cpu_pool.nr_threads_per_core;
 296
 297	ne_cpu_pool.avail_threads_per_core = kcalloc(ne_cpu_pool.nr_parent_vm_cores,
 298						     sizeof(*ne_cpu_pool.avail_threads_per_core),
 299						     GFP_KERNEL);
 300	if (!ne_cpu_pool.avail_threads_per_core) {
 301		rc = -ENOMEM;
 302
 303		goto free_pool_cpumask;
 304	}
 305
 306	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
 307		if (!zalloc_cpumask_var(&ne_cpu_pool.avail_threads_per_core[i], GFP_KERNEL)) {
 308			rc = -ENOMEM;
 309
 310			goto free_cores_cpumask;
 311		}
 312
 313	/*
 314	 * Split the NE CPU pool in threads per core to keep the CPU topology
 315	 * after offlining the CPUs.
 316	 */
 317	for_each_cpu(cpu, cpu_pool) {
 318		core_id = topology_core_id(cpu);
 319		if (core_id < 0 || core_id >= ne_cpu_pool.nr_parent_vm_cores) {
 320			pr_err("%s: Invalid core id  %d for CPU %d\n",
 321			       ne_misc_dev.name, core_id, cpu);
 322
 323			rc = -EINVAL;
 324
 325			goto clear_cpumask;
 326		}
 327
 328		cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]);
 329	}
 330
 331	/*
 332	 * CPUs that are given to enclave(s) should not be considered online
 333	 * by Linux anymore, as the hypervisor will degrade them to floating.
 334	 * The physical CPUs (full cores) are carved out of the primary / parent
 335	 * VM and given to the enclave VM. The same number of vCPUs would run
 336	 * on less pCPUs for the primary / parent VM.
 337	 *
 338	 * We offline them here, to not degrade performance and expose correct
 339	 * topology to Linux and user space.
 340	 */
 341	for_each_cpu(cpu, cpu_pool) {
 342		rc = remove_cpu(cpu);
 343		if (rc != 0) {
 344			pr_err("%s: CPU %d is not offlined [rc=%d]\n",
 345			       ne_misc_dev.name, cpu, rc);
 346
 347			goto online_cpus;
 348		}
 349	}
 350
 351	free_cpumask_var(cpu_pool);
 352
 353	ne_cpu_pool.numa_node = numa_node;
 354
 355	mutex_unlock(&ne_cpu_pool.mutex);
 356
 357	return 0;
 358
 359online_cpus:
 360	for_each_cpu(cpu, cpu_pool)
 361		add_cpu(cpu);
 362clear_cpumask:
 363	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
 364		cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
 365free_cores_cpumask:
 366	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
 367		free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
 368	kfree(ne_cpu_pool.avail_threads_per_core);
 369free_pool_cpumask:
 370	free_cpumask_var(cpu_pool);
 371	ne_cpu_pool.nr_parent_vm_cores = 0;
 372	ne_cpu_pool.nr_threads_per_core = 0;
 373	ne_cpu_pool.numa_node = -1;
 374	mutex_unlock(&ne_cpu_pool.mutex);
 375
 376	return rc;
 377}
 378
 379/**
 380 * ne_teardown_cpu_pool() - Online the CPUs from the NE CPU pool and cleanup the
 381 *			    CPU pool.
 382 * @void:	No parameters provided.
 383 *
 384 * Context: Process context.
 385 */
 386static void ne_teardown_cpu_pool(void)
 387{
 388	unsigned int cpu = 0;
 389	unsigned int i = 0;
 390	int rc = -EINVAL;
 391
 392	mutex_lock(&ne_cpu_pool.mutex);
 393
 394	if (!ne_cpu_pool.nr_parent_vm_cores) {
 395		mutex_unlock(&ne_cpu_pool.mutex);
 396
 397		return;
 398	}
 399
 400	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) {
 401		for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]) {
 402			rc = add_cpu(cpu);
 403			if (rc != 0)
 404				pr_err("%s: CPU %d is not onlined [rc=%d]\n",
 405				       ne_misc_dev.name, cpu, rc);
 406		}
 407
 408		cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
 409
 410		free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
 411	}
 412
 413	kfree(ne_cpu_pool.avail_threads_per_core);
 414	ne_cpu_pool.nr_parent_vm_cores = 0;
 415	ne_cpu_pool.nr_threads_per_core = 0;
 416	ne_cpu_pool.numa_node = -1;
 417
 418	mutex_unlock(&ne_cpu_pool.mutex);
 419}
 420
 421/**
 422 * ne_set_kernel_param() - Set the NE CPU pool value via the NE kernel parameter.
 423 * @val:	NE CPU pool string value.
 424 * @kp :	NE kernel parameter associated with the NE CPU pool.
 425 *
 426 * Context: Process context.
 427 * Return:
 428 * * 0 on success.
 429 * * Negative return value on failure.
 430 */
 431static int ne_set_kernel_param(const char *val, const struct kernel_param *kp)
 432{
 433	char error_val[] = "";
 434	int rc = -EINVAL;
 435
 436	if (!capable(CAP_SYS_ADMIN))
 437		return -EPERM;
 438
 439	if (ne_check_enclaves_created()) {
 440		pr_err("%s: The CPU pool is used by enclave(s)\n", ne_misc_dev.name);
 441
 442		return -EPERM;
 443	}
 444
 445	ne_teardown_cpu_pool();
 446
 447	rc = ne_setup_cpu_pool(val);
 448	if (rc < 0) {
 449		pr_err("%s: Error in setup CPU pool [rc=%d]\n", ne_misc_dev.name, rc);
 450
 451		param_set_copystring(error_val, kp);
 452
 453		return rc;
 454	}
 455
 456	rc = param_set_copystring(val, kp);
 457	if (rc < 0) {
 458		pr_err("%s: Error in param set copystring [rc=%d]\n", ne_misc_dev.name, rc);
 459
 460		ne_teardown_cpu_pool();
 461
 462		param_set_copystring(error_val, kp);
 463
 464		return rc;
 465	}
 466
 467	return 0;
 468}
 469
 470/**
 471 * ne_donated_cpu() - Check if the provided CPU is already used by the enclave.
 472 * @ne_enclave :	Private data associated with the current enclave.
 473 * @cpu:		CPU to check if already used.
 474 *
 475 * Context: Process context. This function is called with the ne_enclave mutex held.
 476 * Return:
 477 * * True if the provided CPU is already used by the enclave.
 478 * * False otherwise.
 479 */
 480static bool ne_donated_cpu(struct ne_enclave *ne_enclave, unsigned int cpu)
 481{
 482	if (cpumask_test_cpu(cpu, ne_enclave->vcpu_ids))
 483		return true;
 484
 485	return false;
 486}
 487
 488/**
 489 * ne_get_unused_core_from_cpu_pool() - Get the id of a full core from the
 490 *					NE CPU pool.
 491 * @void:	No parameters provided.
 492 *
 493 * Context: Process context. This function is called with the ne_enclave and
 494 *	    ne_cpu_pool mutexes held.
 495 * Return:
 496 * * Core id.
 497 * * -1 if no CPU core available in the pool.
 498 */
 499static int ne_get_unused_core_from_cpu_pool(void)
 500{
 501	int core_id = -1;
 502	unsigned int i = 0;
 503
 504	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
 505		if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) {
 506			core_id = i;
 507
 508			break;
 509		}
 510
 511	return core_id;
 512}
 513
 514/**
 515 * ne_set_enclave_threads_per_core() - Set the threads of the provided core in
 516 *				       the enclave data structure.
 517 * @ne_enclave :	Private data associated with the current enclave.
 518 * @core_id:		Core id to get its threads from the NE CPU pool.
 519 * @vcpu_id:		vCPU id part of the provided core.
 520 *
 521 * Context: Process context. This function is called with the ne_enclave and
 522 *	    ne_cpu_pool mutexes held.
 523 * Return:
 524 * * 0 on success.
 525 * * Negative return value on failure.
 526 */
 527static int ne_set_enclave_threads_per_core(struct ne_enclave *ne_enclave,
 528					   int core_id, u32 vcpu_id)
 529{
 530	unsigned int cpu = 0;
 531
 532	if (core_id < 0 && vcpu_id == 0) {
 533		dev_err_ratelimited(ne_misc_dev.this_device,
 534				    "No CPUs available in NE CPU pool\n");
 535
 536		return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
 537	}
 538
 539	if (core_id < 0) {
 540		dev_err_ratelimited(ne_misc_dev.this_device,
 541				    "CPU %d is not in NE CPU pool\n", vcpu_id);
 542
 543		return -NE_ERR_VCPU_NOT_IN_CPU_POOL;
 544	}
 545
 546	if (core_id >= ne_enclave->nr_parent_vm_cores) {
 547		dev_err_ratelimited(ne_misc_dev.this_device,
 548				    "Invalid core id %d - ne_enclave\n", core_id);
 549
 550		return -NE_ERR_VCPU_INVALID_CPU_CORE;
 551	}
 552
 553	for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id])
 554		cpumask_set_cpu(cpu, ne_enclave->threads_per_core[core_id]);
 555
 556	cpumask_clear(ne_cpu_pool.avail_threads_per_core[core_id]);
 557
 558	return 0;
 559}
 560
 561/**
 562 * ne_get_cpu_from_cpu_pool() - Get a CPU from the NE CPU pool, either from the
 563 *				remaining sibling(s) of a CPU core or the first
 564 *				sibling of a new CPU core.
 565 * @ne_enclave :	Private data associated with the current enclave.
 566 * @vcpu_id:		vCPU to get from the NE CPU pool.
 567 *
 568 * Context: Process context. This function is called with the ne_enclave mutex held.
 569 * Return:
 570 * * 0 on success.
 571 * * Negative return value on failure.
 572 */
 573static int ne_get_cpu_from_cpu_pool(struct ne_enclave *ne_enclave, u32 *vcpu_id)
 574{
 575	int core_id = -1;
 576	unsigned int cpu = 0;
 577	unsigned int i = 0;
 578	int rc = -EINVAL;
 579
 580	/*
 581	 * If previously allocated a thread of a core to this enclave, first
 582	 * check remaining sibling(s) for new CPU allocations, so that full
 583	 * CPU cores are used for the enclave.
 584	 */
 585	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
 586		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
 587			if (!ne_donated_cpu(ne_enclave, cpu)) {
 588				*vcpu_id = cpu;
 589
 590				return 0;
 591			}
 592
 593	mutex_lock(&ne_cpu_pool.mutex);
 594
 595	/*
 596	 * If no remaining siblings, get a core from the NE CPU pool and keep
 597	 * track of all the threads in the enclave threads per core data structure.
 598	 */
 599	core_id = ne_get_unused_core_from_cpu_pool();
 600
 601	rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, *vcpu_id);
 602	if (rc < 0)
 603		goto unlock_mutex;
 604
 605	*vcpu_id = cpumask_any(ne_enclave->threads_per_core[core_id]);
 606
 607	rc = 0;
 608
 609unlock_mutex:
 610	mutex_unlock(&ne_cpu_pool.mutex);
 611
 612	return rc;
 613}
 614
 615/**
 616 * ne_get_vcpu_core_from_cpu_pool() - Get from the NE CPU pool the id of the
 617 *				      core associated with the provided vCPU.
 618 * @vcpu_id:	Provided vCPU id to get its associated core id.
 619 *
 620 * Context: Process context. This function is called with the ne_enclave and
 621 *	    ne_cpu_pool mutexes held.
 622 * Return:
 623 * * Core id.
 624 * * -1 if the provided vCPU is not in the pool.
 625 */
 626static int ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id)
 627{
 628	int core_id = -1;
 629	unsigned int i = 0;
 630
 631	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
 632		if (cpumask_test_cpu(vcpu_id, ne_cpu_pool.avail_threads_per_core[i])) {
 633			core_id = i;
 634
 635			break;
 636	}
 637
 638	return core_id;
 639}
 640
 641/**
 642 * ne_check_cpu_in_cpu_pool() - Check if the given vCPU is in the available CPUs
 643 *				from the pool.
 644 * @ne_enclave :	Private data associated with the current enclave.
 645 * @vcpu_id:		ID of the vCPU to check if available in the NE CPU pool.
 646 *
 647 * Context: Process context. This function is called with the ne_enclave mutex held.
 648 * Return:
 649 * * 0 on success.
 650 * * Negative return value on failure.
 651 */
 652static int ne_check_cpu_in_cpu_pool(struct ne_enclave *ne_enclave, u32 vcpu_id)
 653{
 654	int core_id = -1;
 655	unsigned int i = 0;
 656	int rc = -EINVAL;
 657
 658	if (ne_donated_cpu(ne_enclave, vcpu_id)) {
 659		dev_err_ratelimited(ne_misc_dev.this_device,
 660				    "CPU %d already used\n", vcpu_id);
 661
 662		return -NE_ERR_VCPU_ALREADY_USED;
 663	}
 664
 665	/*
 666	 * If previously allocated a thread of a core to this enclave, but not
 667	 * the full core, first check remaining sibling(s).
 668	 */
 669	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
 670		if (cpumask_test_cpu(vcpu_id, ne_enclave->threads_per_core[i]))
 671			return 0;
 672
 673	mutex_lock(&ne_cpu_pool.mutex);
 674
 675	/*
 676	 * If no remaining siblings, get from the NE CPU pool the core
 677	 * associated with the vCPU and keep track of all the threads in the
 678	 * enclave threads per core data structure.
 679	 */
 680	core_id = ne_get_vcpu_core_from_cpu_pool(vcpu_id);
 681
 682	rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id);
 683	if (rc < 0)
 684		goto unlock_mutex;
 685
 686	rc = 0;
 687
 688unlock_mutex:
 689	mutex_unlock(&ne_cpu_pool.mutex);
 690
 691	return rc;
 692}
 693
 694/**
 695 * ne_add_vcpu_ioctl() - Add a vCPU to the slot associated with the current
 696 *			 enclave.
 697 * @ne_enclave :	Private data associated with the current enclave.
 698 * @vcpu_id:		ID of the CPU to be associated with the given slot,
 699 *			apic id on x86.
 700 *
 701 * Context: Process context. This function is called with the ne_enclave mutex held.
 702 * Return:
 703 * * 0 on success.
 704 * * Negative return value on failure.
 705 */
 706static int ne_add_vcpu_ioctl(struct ne_enclave *ne_enclave, u32 vcpu_id)
 707{
 708	struct ne_pci_dev_cmd_reply cmd_reply = {};
 709	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
 710	int rc = -EINVAL;
 711	struct slot_add_vcpu_req slot_add_vcpu_req = {};
 712
 713	if (ne_enclave->mm != current->mm)
 714		return -EIO;
 715
 716	slot_add_vcpu_req.slot_uid = ne_enclave->slot_uid;
 717	slot_add_vcpu_req.vcpu_id = vcpu_id;
 718
 719	rc = ne_do_request(pdev, SLOT_ADD_VCPU,
 720			   &slot_add_vcpu_req, sizeof(slot_add_vcpu_req),
 721			   &cmd_reply, sizeof(cmd_reply));
 722	if (rc < 0) {
 723		dev_err_ratelimited(ne_misc_dev.this_device,
 724				    "Error in slot add vCPU [rc=%d]\n", rc);
 725
 726		return rc;
 727	}
 728
 729	cpumask_set_cpu(vcpu_id, ne_enclave->vcpu_ids);
 730
 731	ne_enclave->nr_vcpus++;
 732
 733	return 0;
 734}
 735
 736/**
 737 * ne_sanity_check_user_mem_region() - Sanity check the user space memory
 738 *				       region received during the set user
 739 *				       memory region ioctl call.
 740 * @ne_enclave :	Private data associated with the current enclave.
 741 * @mem_region :	User space memory region to be sanity checked.
 742 *
 743 * Context: Process context. This function is called with the ne_enclave mutex held.
 744 * Return:
 745 * * 0 on success.
 746 * * Negative return value on failure.
 747 */
 748static int ne_sanity_check_user_mem_region(struct ne_enclave *ne_enclave,
 749					   struct ne_user_memory_region mem_region)
 750{
 751	struct ne_mem_region *ne_mem_region = NULL;
 752
 753	if (ne_enclave->mm != current->mm)
 754		return -EIO;
 755
 756	if (mem_region.memory_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
 757		dev_err_ratelimited(ne_misc_dev.this_device,
 758				    "User space memory size is not multiple of 2 MiB\n");
 759
 760		return -NE_ERR_INVALID_MEM_REGION_SIZE;
 761	}
 762
 763	if (!IS_ALIGNED(mem_region.userspace_addr, NE_MIN_MEM_REGION_SIZE)) {
 764		dev_err_ratelimited(ne_misc_dev.this_device,
 765				    "User space address is not 2 MiB aligned\n");
 766
 767		return -NE_ERR_UNALIGNED_MEM_REGION_ADDR;
 768	}
 769
 770	if ((mem_region.userspace_addr & (NE_MIN_MEM_REGION_SIZE - 1)) ||
 771	    !access_ok((void __user *)(unsigned long)mem_region.userspace_addr,
 772		       mem_region.memory_size)) {
 773		dev_err_ratelimited(ne_misc_dev.this_device,
 774				    "Invalid user space address range\n");
 775
 776		return -NE_ERR_INVALID_MEM_REGION_ADDR;
 777	}
 778
 779	list_for_each_entry(ne_mem_region, &ne_enclave->mem_regions_list,
 780			    mem_region_list_entry) {
 781		u64 memory_size = ne_mem_region->memory_size;
 782		u64 userspace_addr = ne_mem_region->userspace_addr;
 783
 784		if ((userspace_addr <= mem_region.userspace_addr &&
 785		     mem_region.userspace_addr < (userspace_addr + memory_size)) ||
 786		    (mem_region.userspace_addr <= userspace_addr &&
 787		    (mem_region.userspace_addr + mem_region.memory_size) > userspace_addr)) {
 788			dev_err_ratelimited(ne_misc_dev.this_device,
 789					    "User space memory region already used\n");
 790
 791			return -NE_ERR_MEM_REGION_ALREADY_USED;
 792		}
 793	}
 794
 795	return 0;
 796}
 797
 798/**
 799 * ne_sanity_check_user_mem_region_page() - Sanity check a page from the user space
 800 *					    memory region received during the set
 801 *					    user memory region ioctl call.
 802 * @ne_enclave :	Private data associated with the current enclave.
 803 * @mem_region_page:	Page from the user space memory region to be sanity checked.
 804 *
 805 * Context: Process context. This function is called with the ne_enclave mutex held.
 806 * Return:
 807 * * 0 on success.
 808 * * Negative return value on failure.
 809 */
 810static int ne_sanity_check_user_mem_region_page(struct ne_enclave *ne_enclave,
 811						struct page *mem_region_page)
 812{
 813	if (!PageHuge(mem_region_page)) {
 814		dev_err_ratelimited(ne_misc_dev.this_device,
 815				    "Not a hugetlbfs page\n");
 816
 817		return -NE_ERR_MEM_NOT_HUGE_PAGE;
 818	}
 819
 820	if (page_size(mem_region_page) & (NE_MIN_MEM_REGION_SIZE - 1)) {
 821		dev_err_ratelimited(ne_misc_dev.this_device,
 822				    "Page size not multiple of 2 MiB\n");
 823
 824		return -NE_ERR_INVALID_PAGE_SIZE;
 825	}
 826
 827	if (ne_enclave->numa_node != page_to_nid(mem_region_page)) {
 828		dev_err_ratelimited(ne_misc_dev.this_device,
 829				    "Page is not from NUMA node %d\n",
 830				    ne_enclave->numa_node);
 831
 832		return -NE_ERR_MEM_DIFFERENT_NUMA_NODE;
 833	}
 834
 835	return 0;
 836}
 837
 838/**
 839 * ne_sanity_check_phys_mem_region() - Sanity check the start address and the size
 840 *                                     of a physical memory region.
 841 * @phys_mem_region_paddr : Physical start address of the region to be sanity checked.
 842 * @phys_mem_region_size  : Length of the region to be sanity checked.
 843 *
 844 * Context: Process context. This function is called with the ne_enclave mutex held.
 845 * Return:
 846 * * 0 on success.
 847 * * Negative return value on failure.
 848 */
 849static int ne_sanity_check_phys_mem_region(u64 phys_mem_region_paddr,
 850					   u64 phys_mem_region_size)
 851{
 852	if (phys_mem_region_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
 853		dev_err_ratelimited(ne_misc_dev.this_device,
 854				    "Physical mem region size is not multiple of 2 MiB\n");
 855
 856		return -EINVAL;
 857	}
 858
 859	if (!IS_ALIGNED(phys_mem_region_paddr, NE_MIN_MEM_REGION_SIZE)) {
 860		dev_err_ratelimited(ne_misc_dev.this_device,
 861				    "Physical mem region address is not 2 MiB aligned\n");
 862
 863		return -EINVAL;
 864	}
 865
 866	return 0;
 867}
 868
 869/**
 870 * ne_merge_phys_contig_memory_regions() - Add a memory region and merge the adjacent
 871 *                                         regions if they are physically contiguous.
 872 * @phys_contig_regions : Private data associated with the contiguous physical memory regions.
 873 * @page_paddr :          Physical start address of the region to be added.
 874 * @page_size :           Length of the region to be added.
 875 *
 876 * Context: Process context. This function is called with the ne_enclave mutex held.
 877 * Return:
 878 * * 0 on success.
 879 * * Negative return value on failure.
 880 */
 881static int
 882ne_merge_phys_contig_memory_regions(struct ne_phys_contig_mem_regions *phys_contig_regions,
 883				    u64 page_paddr, u64 page_size)
 884{
 885	unsigned long num = phys_contig_regions->num;
 886	int rc = 0;
 887
 888	rc = ne_sanity_check_phys_mem_region(page_paddr, page_size);
 889	if (rc < 0)
 890		return rc;
 891
 892	/* Physically contiguous, just merge */
 893	if (num && (phys_contig_regions->regions[num - 1].end + 1) == page_paddr) {
 894		phys_contig_regions->regions[num - 1].end += page_size;
 895	} else {
 896		phys_contig_regions->regions[num].start = page_paddr;
 897		phys_contig_regions->regions[num].end = page_paddr + page_size - 1;
 898		phys_contig_regions->num++;
 899	}
 900
 901	return 0;
 902}
 903
 904/**
 905 * ne_set_user_memory_region_ioctl() - Add user space memory region to the slot
 906 *				       associated with the current enclave.
 907 * @ne_enclave :	Private data associated with the current enclave.
 908 * @mem_region :	User space memory region to be associated with the given slot.
 909 *
 910 * Context: Process context. This function is called with the ne_enclave mutex held.
 911 * Return:
 912 * * 0 on success.
 913 * * Negative return value on failure.
 914 */
 915static int ne_set_user_memory_region_ioctl(struct ne_enclave *ne_enclave,
 916					   struct ne_user_memory_region mem_region)
 917{
 918	long gup_rc = 0;
 919	unsigned long i = 0;
 920	unsigned long max_nr_pages = 0;
 921	unsigned long memory_size = 0;
 922	struct ne_mem_region *ne_mem_region = NULL;
 923	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
 924	struct ne_phys_contig_mem_regions phys_contig_mem_regions = {};
 925	int rc = -EINVAL;
 926
 927	rc = ne_sanity_check_user_mem_region(ne_enclave, mem_region);
 928	if (rc < 0)
 929		return rc;
 930
 931	ne_mem_region = kzalloc(sizeof(*ne_mem_region), GFP_KERNEL);
 932	if (!ne_mem_region)
 933		return -ENOMEM;
 934
 935	max_nr_pages = mem_region.memory_size / NE_MIN_MEM_REGION_SIZE;
 936
 937	ne_mem_region->pages = kcalloc(max_nr_pages, sizeof(*ne_mem_region->pages),
 938				       GFP_KERNEL);
 939	if (!ne_mem_region->pages) {
 940		rc = -ENOMEM;
 941
 942		goto free_mem_region;
 943	}
 944
 945	phys_contig_mem_regions.regions = kcalloc(max_nr_pages,
 946						  sizeof(*phys_contig_mem_regions.regions),
 947						  GFP_KERNEL);
 948	if (!phys_contig_mem_regions.regions) {
 949		rc = -ENOMEM;
 950
 951		goto free_mem_region;
 952	}
 953
 954	do {
 955		i = ne_mem_region->nr_pages;
 956
 957		if (i == max_nr_pages) {
 958			dev_err_ratelimited(ne_misc_dev.this_device,
 959					    "Reached max nr of pages in the pages data struct\n");
 960
 961			rc = -ENOMEM;
 962
 963			goto put_pages;
 964		}
 965
 966		gup_rc = get_user_pages_unlocked(mem_region.userspace_addr + memory_size, 1,
 967						 ne_mem_region->pages + i, FOLL_GET);
 968
 969		if (gup_rc < 0) {
 970			rc = gup_rc;
 971
 972			dev_err_ratelimited(ne_misc_dev.this_device,
 973					    "Error in get user pages [rc=%d]\n", rc);
 974
 975			goto put_pages;
 976		}
 977
 978		rc = ne_sanity_check_user_mem_region_page(ne_enclave, ne_mem_region->pages[i]);
 979		if (rc < 0)
 980			goto put_pages;
 981
 982		rc = ne_merge_phys_contig_memory_regions(&phys_contig_mem_regions,
 983							 page_to_phys(ne_mem_region->pages[i]),
 984							 page_size(ne_mem_region->pages[i]));
 985		if (rc < 0)
 986			goto put_pages;
 987
 988		memory_size += page_size(ne_mem_region->pages[i]);
 989
 990		ne_mem_region->nr_pages++;
 991	} while (memory_size < mem_region.memory_size);
 992
 993	if ((ne_enclave->nr_mem_regions + phys_contig_mem_regions.num) >
 994	    ne_enclave->max_mem_regions) {
 995		dev_err_ratelimited(ne_misc_dev.this_device,
 996				    "Reached max memory regions %lld\n",
 997				    ne_enclave->max_mem_regions);
 998
 999		rc = -NE_ERR_MEM_MAX_REGIONS;
1000
1001		goto put_pages;
1002	}
1003
1004	for (i = 0; i < phys_contig_mem_regions.num; i++) {
1005		u64 phys_region_addr = phys_contig_mem_regions.regions[i].start;
1006		u64 phys_region_size = range_len(&phys_contig_mem_regions.regions[i]);
1007
1008		rc = ne_sanity_check_phys_mem_region(phys_region_addr, phys_region_size);
1009		if (rc < 0)
1010			goto put_pages;
1011	}
1012
1013	ne_mem_region->memory_size = mem_region.memory_size;
1014	ne_mem_region->userspace_addr = mem_region.userspace_addr;
1015
1016	list_add(&ne_mem_region->mem_region_list_entry, &ne_enclave->mem_regions_list);
1017
1018	for (i = 0; i < phys_contig_mem_regions.num; i++) {
1019		struct ne_pci_dev_cmd_reply cmd_reply = {};
1020		struct slot_add_mem_req slot_add_mem_req = {};
1021
1022		slot_add_mem_req.slot_uid = ne_enclave->slot_uid;
1023		slot_add_mem_req.paddr = phys_contig_mem_regions.regions[i].start;
1024		slot_add_mem_req.size = range_len(&phys_contig_mem_regions.regions[i]);
1025
1026		rc = ne_do_request(pdev, SLOT_ADD_MEM,
1027				   &slot_add_mem_req, sizeof(slot_add_mem_req),
1028				   &cmd_reply, sizeof(cmd_reply));
1029		if (rc < 0) {
1030			dev_err_ratelimited(ne_misc_dev.this_device,
1031					    "Error in slot add mem [rc=%d]\n", rc);
1032
1033			kfree(phys_contig_mem_regions.regions);
1034
1035			/*
1036			 * Exit here without put pages as memory regions may
1037			 * already been added.
1038			 */
1039			return rc;
1040		}
1041
1042		ne_enclave->mem_size += slot_add_mem_req.size;
1043		ne_enclave->nr_mem_regions++;
1044	}
1045
1046	kfree(phys_contig_mem_regions.regions);
1047
1048	return 0;
1049
1050put_pages:
1051	for (i = 0; i < ne_mem_region->nr_pages; i++)
1052		put_page(ne_mem_region->pages[i]);
1053free_mem_region:
1054	kfree(phys_contig_mem_regions.regions);
1055	kfree(ne_mem_region->pages);
1056	kfree(ne_mem_region);
1057
1058	return rc;
1059}
1060
1061/**
1062 * ne_start_enclave_ioctl() - Trigger enclave start after the enclave resources,
1063 *			      such as memory and CPU, have been set.
1064 * @ne_enclave :		Private data associated with the current enclave.
1065 * @enclave_start_info :	Enclave info that includes enclave cid and flags.
1066 *
1067 * Context: Process context. This function is called with the ne_enclave mutex held.
1068 * Return:
1069 * * 0 on success.
1070 * * Negative return value on failure.
1071 */
1072static int ne_start_enclave_ioctl(struct ne_enclave *ne_enclave,
1073				  struct ne_enclave_start_info *enclave_start_info)
1074{
1075	struct ne_pci_dev_cmd_reply cmd_reply = {};
1076	unsigned int cpu = 0;
1077	struct enclave_start_req enclave_start_req = {};
1078	unsigned int i = 0;
1079	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
1080	int rc = -EINVAL;
1081
1082	if (!ne_enclave->nr_mem_regions) {
1083		dev_err_ratelimited(ne_misc_dev.this_device,
1084				    "Enclave has no mem regions\n");
1085
1086		return -NE_ERR_NO_MEM_REGIONS_ADDED;
1087	}
1088
1089	if (ne_enclave->mem_size < NE_MIN_ENCLAVE_MEM_SIZE) {
1090		dev_err_ratelimited(ne_misc_dev.this_device,
1091				    "Enclave memory is less than %ld\n",
1092				    NE_MIN_ENCLAVE_MEM_SIZE);
1093
1094		return -NE_ERR_ENCLAVE_MEM_MIN_SIZE;
1095	}
1096
1097	if (!ne_enclave->nr_vcpus) {
1098		dev_err_ratelimited(ne_misc_dev.this_device,
1099				    "Enclave has no vCPUs\n");
1100
1101		return -NE_ERR_NO_VCPUS_ADDED;
1102	}
1103
1104	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1105		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
1106			if (!cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) {
1107				dev_err_ratelimited(ne_misc_dev.this_device,
1108						    "Full CPU cores not used\n");
1109
1110				return -NE_ERR_FULL_CORES_NOT_USED;
1111			}
1112
1113	enclave_start_req.enclave_cid = enclave_start_info->enclave_cid;
1114	enclave_start_req.flags = enclave_start_info->flags;
1115	enclave_start_req.slot_uid = ne_enclave->slot_uid;
1116
1117	rc = ne_do_request(pdev, ENCLAVE_START,
1118			   &enclave_start_req, sizeof(enclave_start_req),
1119			   &cmd_reply, sizeof(cmd_reply));
1120	if (rc < 0) {
1121		dev_err_ratelimited(ne_misc_dev.this_device,
1122				    "Error in enclave start [rc=%d]\n", rc);
1123
1124		return rc;
1125	}
1126
1127	ne_enclave->state = NE_STATE_RUNNING;
1128
1129	enclave_start_info->enclave_cid = cmd_reply.enclave_cid;
1130
1131	return 0;
1132}
1133
1134/**
1135 * ne_enclave_ioctl() - Ioctl function provided by the enclave file.
1136 * @file:	File associated with this ioctl function.
1137 * @cmd:	The command that is set for the ioctl call.
1138 * @arg:	The argument that is provided for the ioctl call.
1139 *
1140 * Context: Process context.
1141 * Return:
1142 * * 0 on success.
1143 * * Negative return value on failure.
1144 */
1145static long ne_enclave_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1146{
1147	struct ne_enclave *ne_enclave = file->private_data;
1148
1149	switch (cmd) {
1150	case NE_ADD_VCPU: {
1151		int rc = -EINVAL;
1152		u32 vcpu_id = 0;
1153
1154		if (copy_from_user(&vcpu_id, (void __user *)arg, sizeof(vcpu_id)))
1155			return -EFAULT;
1156
1157		mutex_lock(&ne_enclave->enclave_info_mutex);
1158
1159		if (ne_enclave->state != NE_STATE_INIT) {
1160			dev_err_ratelimited(ne_misc_dev.this_device,
1161					    "Enclave is not in init state\n");
1162
1163			mutex_unlock(&ne_enclave->enclave_info_mutex);
1164
1165			return -NE_ERR_NOT_IN_INIT_STATE;
1166		}
1167
1168		if (vcpu_id >= (ne_enclave->nr_parent_vm_cores *
1169		    ne_enclave->nr_threads_per_core)) {
1170			dev_err_ratelimited(ne_misc_dev.this_device,
1171					    "vCPU id higher than max CPU id\n");
1172
1173			mutex_unlock(&ne_enclave->enclave_info_mutex);
1174
1175			return -NE_ERR_INVALID_VCPU;
1176		}
1177
1178		if (!vcpu_id) {
1179			/* Use the CPU pool for choosing a CPU for the enclave. */
1180			rc = ne_get_cpu_from_cpu_pool(ne_enclave, &vcpu_id);
1181			if (rc < 0) {
1182				dev_err_ratelimited(ne_misc_dev.this_device,
1183						    "Error in get CPU from pool [rc=%d]\n",
1184						    rc);
1185
1186				mutex_unlock(&ne_enclave->enclave_info_mutex);
1187
1188				return rc;
1189			}
1190		} else {
1191			/* Check if the provided vCPU is available in the NE CPU pool. */
1192			rc = ne_check_cpu_in_cpu_pool(ne_enclave, vcpu_id);
1193			if (rc < 0) {
1194				dev_err_ratelimited(ne_misc_dev.this_device,
1195						    "Error in check CPU %d in pool [rc=%d]\n",
1196						    vcpu_id, rc);
1197
1198				mutex_unlock(&ne_enclave->enclave_info_mutex);
1199
1200				return rc;
1201			}
1202		}
1203
1204		rc = ne_add_vcpu_ioctl(ne_enclave, vcpu_id);
1205		if (rc < 0) {
1206			mutex_unlock(&ne_enclave->enclave_info_mutex);
1207
1208			return rc;
1209		}
1210
1211		mutex_unlock(&ne_enclave->enclave_info_mutex);
1212
1213		if (copy_to_user((void __user *)arg, &vcpu_id, sizeof(vcpu_id)))
1214			return -EFAULT;
1215
1216		return 0;
1217	}
1218
1219	case NE_GET_IMAGE_LOAD_INFO: {
1220		struct ne_image_load_info image_load_info = {};
1221
1222		if (copy_from_user(&image_load_info, (void __user *)arg, sizeof(image_load_info)))
1223			return -EFAULT;
1224
1225		mutex_lock(&ne_enclave->enclave_info_mutex);
1226
1227		if (ne_enclave->state != NE_STATE_INIT) {
1228			dev_err_ratelimited(ne_misc_dev.this_device,
1229					    "Enclave is not in init state\n");
1230
1231			mutex_unlock(&ne_enclave->enclave_info_mutex);
1232
1233			return -NE_ERR_NOT_IN_INIT_STATE;
1234		}
1235
1236		mutex_unlock(&ne_enclave->enclave_info_mutex);
1237
1238		if (!image_load_info.flags ||
1239		    image_load_info.flags >= NE_IMAGE_LOAD_MAX_FLAG_VAL) {
1240			dev_err_ratelimited(ne_misc_dev.this_device,
1241					    "Incorrect flag in enclave image load info\n");
1242
1243			return -NE_ERR_INVALID_FLAG_VALUE;
1244		}
1245
1246		if (image_load_info.flags == NE_EIF_IMAGE)
1247			image_load_info.memory_offset = NE_EIF_LOAD_OFFSET;
1248
1249		if (copy_to_user((void __user *)arg, &image_load_info, sizeof(image_load_info)))
1250			return -EFAULT;
1251
1252		return 0;
1253	}
1254
1255	case NE_SET_USER_MEMORY_REGION: {
1256		struct ne_user_memory_region mem_region = {};
1257		int rc = -EINVAL;
1258
1259		if (copy_from_user(&mem_region, (void __user *)arg, sizeof(mem_region)))
1260			return -EFAULT;
1261
1262		if (mem_region.flags >= NE_MEMORY_REGION_MAX_FLAG_VAL) {
1263			dev_err_ratelimited(ne_misc_dev.this_device,
1264					    "Incorrect flag for user memory region\n");
1265
1266			return -NE_ERR_INVALID_FLAG_VALUE;
1267		}
1268
1269		mutex_lock(&ne_enclave->enclave_info_mutex);
1270
1271		if (ne_enclave->state != NE_STATE_INIT) {
1272			dev_err_ratelimited(ne_misc_dev.this_device,
1273					    "Enclave is not in init state\n");
1274
1275			mutex_unlock(&ne_enclave->enclave_info_mutex);
1276
1277			return -NE_ERR_NOT_IN_INIT_STATE;
1278		}
1279
1280		rc = ne_set_user_memory_region_ioctl(ne_enclave, mem_region);
1281		if (rc < 0) {
1282			mutex_unlock(&ne_enclave->enclave_info_mutex);
1283
1284			return rc;
1285		}
1286
1287		mutex_unlock(&ne_enclave->enclave_info_mutex);
1288
1289		return 0;
1290	}
1291
1292	case NE_START_ENCLAVE: {
1293		struct ne_enclave_start_info enclave_start_info = {};
1294		int rc = -EINVAL;
1295
1296		if (copy_from_user(&enclave_start_info, (void __user *)arg,
1297				   sizeof(enclave_start_info)))
1298			return -EFAULT;
1299
1300		if (enclave_start_info.flags >= NE_ENCLAVE_START_MAX_FLAG_VAL) {
1301			dev_err_ratelimited(ne_misc_dev.this_device,
1302					    "Incorrect flag in enclave start info\n");
1303
1304			return -NE_ERR_INVALID_FLAG_VALUE;
1305		}
1306
1307		/*
1308		 * Do not use well-known CIDs - 0, 1, 2 - for enclaves.
1309		 * VMADDR_CID_ANY = -1U
1310		 * VMADDR_CID_HYPERVISOR = 0
1311		 * VMADDR_CID_LOCAL = 1
1312		 * VMADDR_CID_HOST = 2
1313		 * Note: 0 is used as a placeholder to auto-generate an enclave CID.
1314		 * http://man7.org/linux/man-pages/man7/vsock.7.html
1315		 */
1316		if (enclave_start_info.enclave_cid > 0 &&
1317		    enclave_start_info.enclave_cid <= VMADDR_CID_HOST) {
1318			dev_err_ratelimited(ne_misc_dev.this_device,
1319					    "Well-known CID value, not to be used for enclaves\n");
1320
1321			return -NE_ERR_INVALID_ENCLAVE_CID;
1322		}
1323
1324		if (enclave_start_info.enclave_cid == U32_MAX) {
1325			dev_err_ratelimited(ne_misc_dev.this_device,
1326					    "Well-known CID value, not to be used for enclaves\n");
1327
1328			return -NE_ERR_INVALID_ENCLAVE_CID;
1329		}
1330
1331		/*
1332		 * Do not use the CID of the primary / parent VM for enclaves.
1333		 */
1334		if (enclave_start_info.enclave_cid == NE_PARENT_VM_CID) {
1335			dev_err_ratelimited(ne_misc_dev.this_device,
1336					    "CID of the parent VM, not to be used for enclaves\n");
1337
1338			return -NE_ERR_INVALID_ENCLAVE_CID;
1339		}
1340
1341		/* 64-bit CIDs are not yet supported for the vsock device. */
1342		if (enclave_start_info.enclave_cid > U32_MAX) {
1343			dev_err_ratelimited(ne_misc_dev.this_device,
1344					    "64-bit CIDs not yet supported for the vsock device\n");
1345
1346			return -NE_ERR_INVALID_ENCLAVE_CID;
1347		}
1348
1349		mutex_lock(&ne_enclave->enclave_info_mutex);
1350
1351		if (ne_enclave->state != NE_STATE_INIT) {
1352			dev_err_ratelimited(ne_misc_dev.this_device,
1353					    "Enclave is not in init state\n");
1354
1355			mutex_unlock(&ne_enclave->enclave_info_mutex);
1356
1357			return -NE_ERR_NOT_IN_INIT_STATE;
1358		}
1359
1360		rc = ne_start_enclave_ioctl(ne_enclave, &enclave_start_info);
1361		if (rc < 0) {
1362			mutex_unlock(&ne_enclave->enclave_info_mutex);
1363
1364			return rc;
1365		}
1366
1367		mutex_unlock(&ne_enclave->enclave_info_mutex);
1368
1369		if (copy_to_user((void __user *)arg, &enclave_start_info,
1370				 sizeof(enclave_start_info)))
1371			return -EFAULT;
1372
1373		return 0;
1374	}
1375
1376	default:
1377		return -ENOTTY;
1378	}
1379
1380	return 0;
1381}
1382
1383/**
1384 * ne_enclave_remove_all_mem_region_entries() - Remove all memory region entries
1385 *						from the enclave data structure.
1386 * @ne_enclave :	Private data associated with the current enclave.
1387 *
1388 * Context: Process context. This function is called with the ne_enclave mutex held.
1389 */
1390static void ne_enclave_remove_all_mem_region_entries(struct ne_enclave *ne_enclave)
1391{
1392	unsigned long i = 0;
1393	struct ne_mem_region *ne_mem_region = NULL;
1394	struct ne_mem_region *ne_mem_region_tmp = NULL;
1395
1396	list_for_each_entry_safe(ne_mem_region, ne_mem_region_tmp,
1397				 &ne_enclave->mem_regions_list,
1398				 mem_region_list_entry) {
1399		list_del(&ne_mem_region->mem_region_list_entry);
1400
1401		for (i = 0; i < ne_mem_region->nr_pages; i++)
1402			put_page(ne_mem_region->pages[i]);
1403
1404		kfree(ne_mem_region->pages);
1405
1406		kfree(ne_mem_region);
1407	}
1408}
1409
1410/**
1411 * ne_enclave_remove_all_vcpu_id_entries() - Remove all vCPU id entries from
1412 *					     the enclave data structure.
1413 * @ne_enclave :	Private data associated with the current enclave.
1414 *
1415 * Context: Process context. This function is called with the ne_enclave mutex held.
1416 */
1417static void ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave *ne_enclave)
1418{
1419	unsigned int cpu = 0;
1420	unsigned int i = 0;
1421
1422	mutex_lock(&ne_cpu_pool.mutex);
1423
1424	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) {
1425		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
1426			/* Update the available NE CPU pool. */
1427			cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]);
1428
1429		free_cpumask_var(ne_enclave->threads_per_core[i]);
1430	}
1431
1432	mutex_unlock(&ne_cpu_pool.mutex);
1433
1434	kfree(ne_enclave->threads_per_core);
1435
1436	free_cpumask_var(ne_enclave->vcpu_ids);
1437}
1438
1439/**
1440 * ne_pci_dev_remove_enclave_entry() - Remove the enclave entry from the data
1441 *				       structure that is part of the NE PCI
1442 *				       device private data.
1443 * @ne_enclave :	Private data associated with the current enclave.
1444 * @ne_pci_dev :	Private data associated with the PCI device.
1445 *
1446 * Context: Process context. This function is called with the ne_pci_dev enclave
1447 *	    mutex held.
1448 */
1449static void ne_pci_dev_remove_enclave_entry(struct ne_enclave *ne_enclave,
1450					    struct ne_pci_dev *ne_pci_dev)
1451{
1452	struct ne_enclave *ne_enclave_entry = NULL;
1453	struct ne_enclave *ne_enclave_entry_tmp = NULL;
1454
1455	list_for_each_entry_safe(ne_enclave_entry, ne_enclave_entry_tmp,
1456				 &ne_pci_dev->enclaves_list, enclave_list_entry) {
1457		if (ne_enclave_entry->slot_uid == ne_enclave->slot_uid) {
1458			list_del(&ne_enclave_entry->enclave_list_entry);
1459
1460			break;
1461		}
1462	}
1463}
1464
1465/**
1466 * ne_enclave_release() - Release function provided by the enclave file.
1467 * @inode:	Inode associated with this file release function.
1468 * @file:	File associated with this release function.
1469 *
1470 * Context: Process context.
1471 * Return:
1472 * * 0 on success.
1473 * * Negative return value on failure.
1474 */
1475static int ne_enclave_release(struct inode *inode, struct file *file)
1476{
1477	struct ne_pci_dev_cmd_reply cmd_reply = {};
1478	struct enclave_stop_req enclave_stop_request = {};
1479	struct ne_enclave *ne_enclave = file->private_data;
1480	struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
1481	struct pci_dev *pdev = ne_pci_dev->pdev;
1482	int rc = -EINVAL;
1483	struct slot_free_req slot_free_req = {};
1484
1485	if (!ne_enclave)
1486		return 0;
1487
1488	/*
1489	 * Early exit in case there is an error in the enclave creation logic
1490	 * and fput() is called on the cleanup path.
1491	 */
1492	if (!ne_enclave->slot_uid)
1493		return 0;
1494
1495	/*
1496	 * Acquire the enclave list mutex before the enclave mutex
1497	 * in order to avoid deadlocks with @ref ne_event_work_handler.
1498	 */
1499	mutex_lock(&ne_pci_dev->enclaves_list_mutex);
1500	mutex_lock(&ne_enclave->enclave_info_mutex);
1501
1502	if (ne_enclave->state != NE_STATE_INIT && ne_enclave->state != NE_STATE_STOPPED) {
1503		enclave_stop_request.slot_uid = ne_enclave->slot_uid;
1504
1505		rc = ne_do_request(pdev, ENCLAVE_STOP,
1506				   &enclave_stop_request, sizeof(enclave_stop_request),
1507				   &cmd_reply, sizeof(cmd_reply));
1508		if (rc < 0) {
1509			dev_err_ratelimited(ne_misc_dev.this_device,
1510					    "Error in enclave stop [rc=%d]\n", rc);
1511
1512			goto unlock_mutex;
1513		}
1514
1515		memset(&cmd_reply, 0, sizeof(cmd_reply));
1516	}
1517
1518	slot_free_req.slot_uid = ne_enclave->slot_uid;
1519
1520	rc = ne_do_request(pdev, SLOT_FREE,
1521			   &slot_free_req, sizeof(slot_free_req),
1522			   &cmd_reply, sizeof(cmd_reply));
1523	if (rc < 0) {
1524		dev_err_ratelimited(ne_misc_dev.this_device,
1525				    "Error in slot free [rc=%d]\n", rc);
1526
1527		goto unlock_mutex;
1528	}
1529
1530	ne_pci_dev_remove_enclave_entry(ne_enclave, ne_pci_dev);
1531	ne_enclave_remove_all_mem_region_entries(ne_enclave);
1532	ne_enclave_remove_all_vcpu_id_entries(ne_enclave);
1533
1534	mutex_unlock(&ne_enclave->enclave_info_mutex);
1535	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1536
1537	kfree(ne_enclave);
1538
1539	return 0;
1540
1541unlock_mutex:
1542	mutex_unlock(&ne_enclave->enclave_info_mutex);
1543	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1544
1545	return rc;
1546}
1547
1548/**
1549 * ne_enclave_poll() - Poll functionality used for enclave out-of-band events.
1550 * @file:	File associated with this poll function.
1551 * @wait:	Poll table data structure.
1552 *
1553 * Context: Process context.
1554 * Return:
1555 * * Poll mask.
1556 */
1557static __poll_t ne_enclave_poll(struct file *file, poll_table *wait)
1558{
1559	__poll_t mask = 0;
1560	struct ne_enclave *ne_enclave = file->private_data;
1561
1562	poll_wait(file, &ne_enclave->eventq, wait);
1563
1564	if (ne_enclave->has_event)
1565		mask |= EPOLLHUP;
1566
1567	return mask;
1568}
1569
1570static const struct file_operations ne_enclave_fops = {
1571	.owner		= THIS_MODULE,
1572	.llseek		= noop_llseek,
1573	.poll		= ne_enclave_poll,
1574	.unlocked_ioctl	= ne_enclave_ioctl,
1575	.release	= ne_enclave_release,
1576};
1577
1578/**
1579 * ne_create_vm_ioctl() - Alloc slot to be associated with an enclave. Create
1580 *			  enclave file descriptor to be further used for enclave
1581 *			  resources handling e.g. memory regions and CPUs.
1582 * @ne_pci_dev :	Private data associated with the PCI device.
1583 * @slot_uid:		User pointer to store the generated unique slot id
1584 *			associated with an enclave to.
1585 *
1586 * Context: Process context. This function is called with the ne_pci_dev enclave
1587 *	    mutex held.
1588 * Return:
1589 * * Enclave fd on success.
1590 * * Negative return value on failure.
1591 */
1592static int ne_create_vm_ioctl(struct ne_pci_dev *ne_pci_dev, u64 __user *slot_uid)
1593{
1594	struct ne_pci_dev_cmd_reply cmd_reply = {};
1595	int enclave_fd = -1;
1596	struct file *enclave_file = NULL;
1597	unsigned int i = 0;
1598	struct ne_enclave *ne_enclave = NULL;
1599	struct pci_dev *pdev = ne_pci_dev->pdev;
1600	int rc = -EINVAL;
1601	struct slot_alloc_req slot_alloc_req = {};
1602
1603	mutex_lock(&ne_cpu_pool.mutex);
1604
1605	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
1606		if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i]))
1607			break;
1608
1609	if (i == ne_cpu_pool.nr_parent_vm_cores) {
1610		dev_err_ratelimited(ne_misc_dev.this_device,
1611				    "No CPUs available in CPU pool\n");
1612
1613		mutex_unlock(&ne_cpu_pool.mutex);
1614
1615		return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
1616	}
1617
1618	mutex_unlock(&ne_cpu_pool.mutex);
1619
1620	ne_enclave = kzalloc(sizeof(*ne_enclave), GFP_KERNEL);
1621	if (!ne_enclave)
1622		return -ENOMEM;
1623
1624	mutex_lock(&ne_cpu_pool.mutex);
1625
1626	ne_enclave->nr_parent_vm_cores = ne_cpu_pool.nr_parent_vm_cores;
1627	ne_enclave->nr_threads_per_core = ne_cpu_pool.nr_threads_per_core;
1628	ne_enclave->numa_node = ne_cpu_pool.numa_node;
1629
1630	mutex_unlock(&ne_cpu_pool.mutex);
1631
1632	ne_enclave->threads_per_core = kcalloc(ne_enclave->nr_parent_vm_cores,
1633					       sizeof(*ne_enclave->threads_per_core),
1634					       GFP_KERNEL);
1635	if (!ne_enclave->threads_per_core) {
1636		rc = -ENOMEM;
1637
1638		goto free_ne_enclave;
1639	}
1640
1641	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1642		if (!zalloc_cpumask_var(&ne_enclave->threads_per_core[i], GFP_KERNEL)) {
1643			rc = -ENOMEM;
1644
1645			goto free_cpumask;
1646		}
1647
1648	if (!zalloc_cpumask_var(&ne_enclave->vcpu_ids, GFP_KERNEL)) {
1649		rc = -ENOMEM;
1650
1651		goto free_cpumask;
1652	}
1653
1654	enclave_fd = get_unused_fd_flags(O_CLOEXEC);
1655	if (enclave_fd < 0) {
1656		rc = enclave_fd;
1657
1658		dev_err_ratelimited(ne_misc_dev.this_device,
1659				    "Error in getting unused fd [rc=%d]\n", rc);
1660
1661		goto free_cpumask;
1662	}
1663
1664	enclave_file = anon_inode_getfile("ne-vm", &ne_enclave_fops, ne_enclave, O_RDWR);
1665	if (IS_ERR(enclave_file)) {
1666		rc = PTR_ERR(enclave_file);
1667
1668		dev_err_ratelimited(ne_misc_dev.this_device,
1669				    "Error in anon inode get file [rc=%d]\n", rc);
1670
1671		goto put_fd;
1672	}
1673
1674	rc = ne_do_request(pdev, SLOT_ALLOC,
1675			   &slot_alloc_req, sizeof(slot_alloc_req),
1676			   &cmd_reply, sizeof(cmd_reply));
1677	if (rc < 0) {
1678		dev_err_ratelimited(ne_misc_dev.this_device,
1679				    "Error in slot alloc [rc=%d]\n", rc);
1680
1681		goto put_file;
1682	}
1683
1684	init_waitqueue_head(&ne_enclave->eventq);
1685	ne_enclave->has_event = false;
1686	mutex_init(&ne_enclave->enclave_info_mutex);
1687	ne_enclave->max_mem_regions = cmd_reply.mem_regions;
1688	INIT_LIST_HEAD(&ne_enclave->mem_regions_list);
1689	ne_enclave->mm = current->mm;
1690	ne_enclave->slot_uid = cmd_reply.slot_uid;
1691	ne_enclave->state = NE_STATE_INIT;
1692
1693	list_add(&ne_enclave->enclave_list_entry, &ne_pci_dev->enclaves_list);
1694
1695	if (copy_to_user(slot_uid, &ne_enclave->slot_uid, sizeof(ne_enclave->slot_uid))) {
1696		/*
1697		 * As we're holding the only reference to 'enclave_file', fput()
1698		 * will call ne_enclave_release() which will do a proper cleanup
1699		 * of all so far allocated resources, leaving only the unused fd
1700		 * for us to free.
1701		 */
1702		fput(enclave_file);
1703		put_unused_fd(enclave_fd);
1704
1705		return -EFAULT;
1706	}
1707
1708	fd_install(enclave_fd, enclave_file);
1709
1710	return enclave_fd;
1711
1712put_file:
1713	fput(enclave_file);
1714put_fd:
1715	put_unused_fd(enclave_fd);
1716free_cpumask:
1717	free_cpumask_var(ne_enclave->vcpu_ids);
1718	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1719		free_cpumask_var(ne_enclave->threads_per_core[i]);
1720	kfree(ne_enclave->threads_per_core);
1721free_ne_enclave:
1722	kfree(ne_enclave);
1723
1724	return rc;
1725}
1726
1727/**
1728 * ne_ioctl() - Ioctl function provided by the NE misc device.
1729 * @file:	File associated with this ioctl function.
1730 * @cmd:	The command that is set for the ioctl call.
1731 * @arg:	The argument that is provided for the ioctl call.
1732 *
1733 * Context: Process context.
1734 * Return:
1735 * * Ioctl result (e.g. enclave file descriptor) on success.
1736 * * Negative return value on failure.
1737 */
1738static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1739{
1740	switch (cmd) {
1741	case NE_CREATE_VM: {
1742		int enclave_fd = -1;
1743		struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
1744		u64 __user *slot_uid = (void __user *)arg;
1745
1746		mutex_lock(&ne_pci_dev->enclaves_list_mutex);
1747		enclave_fd = ne_create_vm_ioctl(ne_pci_dev, slot_uid);
1748		mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1749
1750		return enclave_fd;
1751	}
1752
1753	default:
1754		return -ENOTTY;
1755	}
1756
1757	return 0;
1758}
1759
1760#if defined(CONFIG_NITRO_ENCLAVES_MISC_DEV_TEST)
1761#include "ne_misc_dev_test.c"
1762#endif
1763
1764static int __init ne_init(void)
1765{
1766	mutex_init(&ne_cpu_pool.mutex);
1767
1768	return pci_register_driver(&ne_pci_driver);
1769}
1770
1771static void __exit ne_exit(void)
1772{
1773	pci_unregister_driver(&ne_pci_driver);
1774
1775	ne_teardown_cpu_pool();
1776}
1777
1778module_init(ne_init);
1779module_exit(ne_exit);
1780
1781MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
1782MODULE_DESCRIPTION("Nitro Enclaves Driver");
1783MODULE_LICENSE("GPL v2");