Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright 2020-2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 */

/**
 * DOC: Enclave lifetime management driver for Nitro Enclaves (NE).
 * Nitro is a hypervisor that has been developed by Amazon.
 */

#include <linux/anon_inodes.h>
#include <linux/capability.h>
#include <linux/cpu.h>
#include <linux/device.h>
#include <linux/file.h>
#include <linux/hugetlb.h>
#include <linux/limits.h>
#include <linux/list.h>
#include <linux/miscdevice.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/nitro_enclaves.h>
#include <linux/pci.h>
#include <linux/poll.h>
#include <linux/range.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <uapi/linux/vm_sockets.h>

#include "ne_misc_dev.h"
#include "ne_pci_dev.h"

/**
 * NE_CPUS_SIZE - Size for max 128 CPUs, for now, in a cpu-list string, comma
 *		  separated. The NE CPU pool includes CPUs from a single NUMA
 *		  node.
 */
#define NE_CPUS_SIZE		(512)

/**
 * NE_EIF_LOAD_OFFSET - The offset where to copy the Enclave Image Format (EIF)
 *			image in enclave memory.
 */
#define NE_EIF_LOAD_OFFSET	(8 * 1024UL * 1024UL)

/**
 * NE_MIN_ENCLAVE_MEM_SIZE - The minimum memory size an enclave can be launched
 *			     with.
 */
#define NE_MIN_ENCLAVE_MEM_SIZE	(64 * 1024UL * 1024UL)

/**
 * NE_MIN_MEM_REGION_SIZE - The minimum size of an enclave memory region.
 */
#define NE_MIN_MEM_REGION_SIZE	(2 * 1024UL * 1024UL)

/**
 * NE_PARENT_VM_CID - The CID for the vsock device of the primary / parent VM.
 */
#define NE_PARENT_VM_CID	(3)

static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg);

static const struct file_operations ne_fops = {
	.owner		= THIS_MODULE,
	.llseek		= noop_llseek,
	.unlocked_ioctl	= ne_ioctl,
};

static struct miscdevice ne_misc_dev = {
	.minor	= MISC_DYNAMIC_MINOR,
	.name	= "nitro_enclaves",
	.fops	= &ne_fops,
	.mode	= 0660,
};

struct ne_devs ne_devs = {
	.ne_misc_dev	= &ne_misc_dev,
};

/*
 * TODO: Update logic to create new sysfs entries instead of using
 * a kernel parameter e.g. if multiple sysfs files needed.
 */
static int ne_set_kernel_param(const char *val, const struct kernel_param *kp);

static const struct kernel_param_ops ne_cpu_pool_ops = {
	.get	= param_get_string,
	.set	= ne_set_kernel_param,
};

static char ne_cpus[NE_CPUS_SIZE];
static struct kparam_string ne_cpus_arg = {
	.maxlen	= sizeof(ne_cpus),
	.string	= ne_cpus,
};

module_param_cb(ne_cpus, &ne_cpu_pool_ops, &ne_cpus_arg, 0644);
/* https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists */
MODULE_PARM_DESC(ne_cpus, "<cpu-list> - CPU pool used for Nitro Enclaves");

/**
 * struct ne_cpu_pool - CPU pool used for Nitro Enclaves.
 * @avail_threads_per_core:	Available full CPU cores to be dedicated to
 *				enclave(s). The cpumasks from the array, indexed
 *				by core id, contain all the threads from the
 *				available cores, that are not set for created
 *				enclave(s). The full CPU cores are part of the
 *				NE CPU pool.
 * @mutex:			Mutex for the access to the NE CPU pool.
 * @nr_parent_vm_cores :	The size of the available threads per core array.
 *				The total number of CPU cores available on the
 *				primary / parent VM.
 * @nr_threads_per_core:	The number of threads that a full CPU core has.
 * @numa_node:			NUMA node of the CPUs in the pool.
 */
struct ne_cpu_pool {
	cpumask_var_t	*avail_threads_per_core;
	struct mutex	mutex;
	unsigned int	nr_parent_vm_cores;
	unsigned int	nr_threads_per_core;
	int		numa_node;
};

static struct ne_cpu_pool ne_cpu_pool;

/**
 * struct ne_phys_contig_mem_regions - Contiguous physical memory regions.
 * @num:	The number of regions that currently has.
 * @regions:	The array of physical memory regions.
 */
struct ne_phys_contig_mem_regions {
	unsigned long num;
	struct range  *regions;
};

/**
 * ne_check_enclaves_created() - Verify if at least one enclave has been created.
 * @void:	No parameters provided.
 *
 * Context: Process context.
 * Return:
 * * True if at least one enclave is created.
 * * False otherwise.
 */
static bool ne_check_enclaves_created(void)
{
	struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
	bool ret = false;

	if (!ne_pci_dev)
		return ret;

	mutex_lock(&ne_pci_dev->enclaves_list_mutex);

	if (!list_empty(&ne_pci_dev->enclaves_list))
		ret = true;

	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);

	return ret;
}

/**
 * ne_setup_cpu_pool() - Set the NE CPU pool after handling sanity checks such
 *			 as not sharing CPU cores with the primary / parent VM
 *			 or not using CPU 0, which should remain available for
 *			 the primary / parent VM. Offline the CPUs from the
 *			 pool after the checks passed.
 * @ne_cpu_list:	The CPU list used for setting NE CPU pool.
 *
 * Context: Process context.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_setup_cpu_pool(const char *ne_cpu_list)
{
	int core_id = -1;
	unsigned int cpu = 0;
	cpumask_var_t cpu_pool;
	unsigned int cpu_sibling = 0;
	unsigned int i = 0;
	int numa_node = -1;
	int rc = -EINVAL;

	if (!zalloc_cpumask_var(&cpu_pool, GFP_KERNEL))
		return -ENOMEM;

	mutex_lock(&ne_cpu_pool.mutex);

	rc = cpulist_parse(ne_cpu_list, cpu_pool);
	if (rc < 0) {
		pr_err("%s: Error in cpulist parse [rc=%d]\n", ne_misc_dev.name, rc);

		goto free_pool_cpumask;
	}

	cpu = cpumask_any(cpu_pool);
	if (cpu >= nr_cpu_ids) {
		pr_err("%s: No CPUs available in CPU pool\n", ne_misc_dev.name);

		rc = -EINVAL;

		goto free_pool_cpumask;
	}

	/*
	 * Check if the CPUs are online, to further get info about them
	 * e.g. numa node, core id, siblings.
	 */
	for_each_cpu(cpu, cpu_pool)
		if (cpu_is_offline(cpu)) {
			pr_err("%s: CPU %d is offline, has to be online to get its metadata\n",
			       ne_misc_dev.name, cpu);

			rc = -EINVAL;

			goto free_pool_cpumask;
		}

	/*
	 * Check if the CPUs from the NE CPU pool are from the same NUMA node.
	 */
	for_each_cpu(cpu, cpu_pool)
		if (numa_node < 0) {
			numa_node = cpu_to_node(cpu);
			if (numa_node < 0) {
				pr_err("%s: Invalid NUMA node %d\n",
				       ne_misc_dev.name, numa_node);

				rc = -EINVAL;

				goto free_pool_cpumask;
			}
		} else {
			if (numa_node != cpu_to_node(cpu)) {
				pr_err("%s: CPUs with different NUMA nodes\n",
				       ne_misc_dev.name);

				rc = -EINVAL;

				goto free_pool_cpumask;
			}
		}

	/*
	 * Check if CPU 0 and its siblings are included in the provided CPU pool
	 * They should remain available for the primary / parent VM.
	 */
	if (cpumask_test_cpu(0, cpu_pool)) {
		pr_err("%s: CPU 0 has to remain available\n", ne_misc_dev.name);

		rc = -EINVAL;

		goto free_pool_cpumask;
	}

	for_each_cpu(cpu_sibling, topology_sibling_cpumask(0)) {
		if (cpumask_test_cpu(cpu_sibling, cpu_pool)) {
			pr_err("%s: CPU sibling %d for CPU 0 is in CPU pool\n",
			       ne_misc_dev.name, cpu_sibling);

			rc = -EINVAL;

			goto free_pool_cpumask;
		}
	}

	/*
	 * Check if CPU siblings are included in the provided CPU pool. The
	 * expectation is that full CPU cores are made available in the CPU pool
	 * for enclaves.
	 */
	for_each_cpu(cpu, cpu_pool) {
		for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) {
			if (!cpumask_test_cpu(cpu_sibling, cpu_pool)) {
				pr_err("%s: CPU %d is not in CPU pool\n",
				       ne_misc_dev.name, cpu_sibling);

				rc = -EINVAL;

				goto free_pool_cpumask;
			}
		}
	}

	/* Calculate the number of threads from a full CPU core. */
	cpu = cpumask_any(cpu_pool);
	for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu))
		ne_cpu_pool.nr_threads_per_core++;

	ne_cpu_pool.nr_parent_vm_cores = nr_cpu_ids / ne_cpu_pool.nr_threads_per_core;

	ne_cpu_pool.avail_threads_per_core = kcalloc(ne_cpu_pool.nr_parent_vm_cores,
						     sizeof(*ne_cpu_pool.avail_threads_per_core),
						     GFP_KERNEL);
	if (!ne_cpu_pool.avail_threads_per_core) {
		rc = -ENOMEM;

		goto free_pool_cpumask;
	}

	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
		if (!zalloc_cpumask_var(&ne_cpu_pool.avail_threads_per_core[i], GFP_KERNEL)) {
			rc = -ENOMEM;

			goto free_cores_cpumask;
		}

	/*
	 * Split the NE CPU pool in threads per core to keep the CPU topology
	 * after offlining the CPUs.
	 */
	for_each_cpu(cpu, cpu_pool) {
		core_id = topology_core_id(cpu);
		if (core_id < 0 || core_id >= ne_cpu_pool.nr_parent_vm_cores) {
			pr_err("%s: Invalid core id  %d for CPU %d\n",
			       ne_misc_dev.name, core_id, cpu);

			rc = -EINVAL;

			goto clear_cpumask;
		}

		cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]);
	}

	/*
	 * CPUs that are given to enclave(s) should not be considered online
	 * by Linux anymore, as the hypervisor will degrade them to floating.
	 * The physical CPUs (full cores) are carved out of the primary / parent
	 * VM and given to the enclave VM. The same number of vCPUs would run
	 * on less pCPUs for the primary / parent VM.
	 *
	 * We offline them here, to not degrade performance and expose correct
	 * topology to Linux and user space.
	 */
	for_each_cpu(cpu, cpu_pool) {
		rc = remove_cpu(cpu);
		if (rc != 0) {
			pr_err("%s: CPU %d is not offlined [rc=%d]\n",
			       ne_misc_dev.name, cpu, rc);

			goto online_cpus;
		}
	}

	free_cpumask_var(cpu_pool);

	ne_cpu_pool.numa_node = numa_node;

	mutex_unlock(&ne_cpu_pool.mutex);

	return 0;

online_cpus:
	for_each_cpu(cpu, cpu_pool)
		add_cpu(cpu);
clear_cpumask:
	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
		cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
free_cores_cpumask:
	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
		free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
	kfree(ne_cpu_pool.avail_threads_per_core);
free_pool_cpumask:
	free_cpumask_var(cpu_pool);
	ne_cpu_pool.nr_parent_vm_cores = 0;
	ne_cpu_pool.nr_threads_per_core = 0;
	ne_cpu_pool.numa_node = -1;
	mutex_unlock(&ne_cpu_pool.mutex);

	return rc;
}

/**
 * ne_teardown_cpu_pool() - Online the CPUs from the NE CPU pool and cleanup the
 *			    CPU pool.
 * @void:	No parameters provided.
 *
 * Context: Process context.
 */
static void ne_teardown_cpu_pool(void)
{
	unsigned int cpu = 0;
	unsigned int i = 0;
	int rc = -EINVAL;

	mutex_lock(&ne_cpu_pool.mutex);

	if (!ne_cpu_pool.nr_parent_vm_cores) {
		mutex_unlock(&ne_cpu_pool.mutex);

		return;
	}

	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) {
		for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]) {
			rc = add_cpu(cpu);
			if (rc != 0)
				pr_err("%s: CPU %d is not onlined [rc=%d]\n",
				       ne_misc_dev.name, cpu, rc);
		}

		cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);

		free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
	}

	kfree(ne_cpu_pool.avail_threads_per_core);
	ne_cpu_pool.nr_parent_vm_cores = 0;
	ne_cpu_pool.nr_threads_per_core = 0;
	ne_cpu_pool.numa_node = -1;

	mutex_unlock(&ne_cpu_pool.mutex);
}

/**
 * ne_set_kernel_param() - Set the NE CPU pool value via the NE kernel parameter.
 * @val:	NE CPU pool string value.
 * @kp :	NE kernel parameter associated with the NE CPU pool.
 *
 * Context: Process context.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_set_kernel_param(const char *val, const struct kernel_param *kp)
{
	char error_val[] = "";
	int rc = -EINVAL;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	if (ne_check_enclaves_created()) {
		pr_err("%s: The CPU pool is used by enclave(s)\n", ne_misc_dev.name);

		return -EPERM;
	}

	ne_teardown_cpu_pool();

	rc = ne_setup_cpu_pool(val);
	if (rc < 0) {
		pr_err("%s: Error in setup CPU pool [rc=%d]\n", ne_misc_dev.name, rc);

		param_set_copystring(error_val, kp);

		return rc;
	}

	rc = param_set_copystring(val, kp);
	if (rc < 0) {
		pr_err("%s: Error in param set copystring [rc=%d]\n", ne_misc_dev.name, rc);

		ne_teardown_cpu_pool();

		param_set_copystring(error_val, kp);

		return rc;
	}

	return 0;
}

/**
 * ne_donated_cpu() - Check if the provided CPU is already used by the enclave.
 * @ne_enclave :	Private data associated with the current enclave.
 * @cpu:		CPU to check if already used.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * True if the provided CPU is already used by the enclave.
 * * False otherwise.
 */
static bool ne_donated_cpu(struct ne_enclave *ne_enclave, unsigned int cpu)
{
	if (cpumask_test_cpu(cpu, ne_enclave->vcpu_ids))
		return true;

	return false;
}

/**
 * ne_get_unused_core_from_cpu_pool() - Get the id of a full core from the
 *					NE CPU pool.
 * @void:	No parameters provided.
 *
 * Context: Process context. This function is called with the ne_enclave and
 *	    ne_cpu_pool mutexes held.
 * Return:
 * * Core id.
 * * -1 if no CPU core available in the pool.
 */
static int ne_get_unused_core_from_cpu_pool(void)
{
	int core_id = -1;
	unsigned int i = 0;

	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
		if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) {
			core_id = i;

			break;
		}

	return core_id;
}

/**
 * ne_set_enclave_threads_per_core() - Set the threads of the provided core in
 *				       the enclave data structure.
 * @ne_enclave :	Private data associated with the current enclave.
 * @core_id:		Core id to get its threads from the NE CPU pool.
 * @vcpu_id:		vCPU id part of the provided core.
 *
 * Context: Process context. This function is called with the ne_enclave and
 *	    ne_cpu_pool mutexes held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_set_enclave_threads_per_core(struct ne_enclave *ne_enclave,
					   int core_id, u32 vcpu_id)
{
	unsigned int cpu = 0;

	if (core_id < 0 && vcpu_id == 0) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "No CPUs available in NE CPU pool\n");

		return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
	}

	if (core_id < 0) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "CPU %d is not in NE CPU pool\n", vcpu_id);

		return -NE_ERR_VCPU_NOT_IN_CPU_POOL;
	}

	if (core_id >= ne_enclave->nr_parent_vm_cores) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Invalid core id %d - ne_enclave\n", core_id);

		return -NE_ERR_VCPU_INVALID_CPU_CORE;
	}

	for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id])
		cpumask_set_cpu(cpu, ne_enclave->threads_per_core[core_id]);

	cpumask_clear(ne_cpu_pool.avail_threads_per_core[core_id]);

	return 0;
}

/**
 * ne_get_cpu_from_cpu_pool() - Get a CPU from the NE CPU pool, either from the
 *				remaining sibling(s) of a CPU core or the first
 *				sibling of a new CPU core.
 * @ne_enclave :	Private data associated with the current enclave.
 * @vcpu_id:		vCPU to get from the NE CPU pool.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_get_cpu_from_cpu_pool(struct ne_enclave *ne_enclave, u32 *vcpu_id)
{
	int core_id = -1;
	unsigned int cpu = 0;
	unsigned int i = 0;
	int rc = -EINVAL;

	/*
	 * If previously allocated a thread of a core to this enclave, first
	 * check remaining sibling(s) for new CPU allocations, so that full
	 * CPU cores are used for the enclave.
	 */
	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
			if (!ne_donated_cpu(ne_enclave, cpu)) {
				*vcpu_id = cpu;

				return 0;
			}

	mutex_lock(&ne_cpu_pool.mutex);

	/*
	 * If no remaining siblings, get a core from the NE CPU pool and keep
	 * track of all the threads in the enclave threads per core data structure.
	 */
	core_id = ne_get_unused_core_from_cpu_pool();

	rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, *vcpu_id);
	if (rc < 0)
		goto unlock_mutex;

	*vcpu_id = cpumask_any(ne_enclave->threads_per_core[core_id]);

	rc = 0;

unlock_mutex:
	mutex_unlock(&ne_cpu_pool.mutex);

	return rc;
}

/**
 * ne_get_vcpu_core_from_cpu_pool() - Get from the NE CPU pool the id of the
 *				      core associated with the provided vCPU.
 * @vcpu_id:	Provided vCPU id to get its associated core id.
 *
 * Context: Process context. This function is called with the ne_enclave and
 *	    ne_cpu_pool mutexes held.
 * Return:
 * * Core id.
 * * -1 if the provided vCPU is not in the pool.
 */
static int ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id)
{
	int core_id = -1;
	unsigned int i = 0;

	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
		if (cpumask_test_cpu(vcpu_id, ne_cpu_pool.avail_threads_per_core[i])) {
			core_id = i;

			break;
	}

	return core_id;
}

/**
 * ne_check_cpu_in_cpu_pool() - Check if the given vCPU is in the available CPUs
 *				from the pool.
 * @ne_enclave :	Private data associated with the current enclave.
 * @vcpu_id:		ID of the vCPU to check if available in the NE CPU pool.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_check_cpu_in_cpu_pool(struct ne_enclave *ne_enclave, u32 vcpu_id)
{
	int core_id = -1;
	unsigned int i = 0;
	int rc = -EINVAL;

	if (ne_donated_cpu(ne_enclave, vcpu_id)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "CPU %d already used\n", vcpu_id);

		return -NE_ERR_VCPU_ALREADY_USED;
	}

	/*
	 * If previously allocated a thread of a core to this enclave, but not
	 * the full core, first check remaining sibling(s).
	 */
	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
		if (cpumask_test_cpu(vcpu_id, ne_enclave->threads_per_core[i]))
			return 0;

	mutex_lock(&ne_cpu_pool.mutex);

	/*
	 * If no remaining siblings, get from the NE CPU pool the core
	 * associated with the vCPU and keep track of all the threads in the
	 * enclave threads per core data structure.
	 */
	core_id = ne_get_vcpu_core_from_cpu_pool(vcpu_id);

	rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id);
	if (rc < 0)
		goto unlock_mutex;

	rc = 0;

unlock_mutex:
	mutex_unlock(&ne_cpu_pool.mutex);

	return rc;
}

/**
 * ne_add_vcpu_ioctl() - Add a vCPU to the slot associated with the current
 *			 enclave.
 * @ne_enclave :	Private data associated with the current enclave.
 * @vcpu_id:		ID of the CPU to be associated with the given slot,
 *			apic id on x86.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_add_vcpu_ioctl(struct ne_enclave *ne_enclave, u32 vcpu_id)
{
	struct ne_pci_dev_cmd_reply cmd_reply = {};
	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
	int rc = -EINVAL;
	struct slot_add_vcpu_req slot_add_vcpu_req = {};

	if (ne_enclave->mm != current->mm)
		return -EIO;

	slot_add_vcpu_req.slot_uid = ne_enclave->slot_uid;
	slot_add_vcpu_req.vcpu_id = vcpu_id;

	rc = ne_do_request(pdev, SLOT_ADD_VCPU,
			   &slot_add_vcpu_req, sizeof(slot_add_vcpu_req),
			   &cmd_reply, sizeof(cmd_reply));
	if (rc < 0) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Error in slot add vCPU [rc=%d]\n", rc);

		return rc;
	}

	cpumask_set_cpu(vcpu_id, ne_enclave->vcpu_ids);

	ne_enclave->nr_vcpus++;

	return 0;
}

/**
 * ne_sanity_check_user_mem_region() - Sanity check the user space memory
 *				       region received during the set user
 *				       memory region ioctl call.
 * @ne_enclave :	Private data associated with the current enclave.
 * @mem_region :	User space memory region to be sanity checked.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_sanity_check_user_mem_region(struct ne_enclave *ne_enclave,
					   struct ne_user_memory_region mem_region)
{
	struct ne_mem_region *ne_mem_region = NULL;

	if (ne_enclave->mm != current->mm)
		return -EIO;

	if (mem_region.memory_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "User space memory size is not multiple of 2 MiB\n");

		return -NE_ERR_INVALID_MEM_REGION_SIZE;
	}

	if (!IS_ALIGNED(mem_region.userspace_addr, NE_MIN_MEM_REGION_SIZE)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "User space address is not 2 MiB aligned\n");

		return -NE_ERR_UNALIGNED_MEM_REGION_ADDR;
	}

	if ((mem_region.userspace_addr & (NE_MIN_MEM_REGION_SIZE - 1)) ||
	    !access_ok((void __user *)(unsigned long)mem_region.userspace_addr,
		       mem_region.memory_size)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Invalid user space address range\n");

		return -NE_ERR_INVALID_MEM_REGION_ADDR;
	}

	list_for_each_entry(ne_mem_region, &ne_enclave->mem_regions_list,
			    mem_region_list_entry) {
		u64 memory_size = ne_mem_region->memory_size;
		u64 userspace_addr = ne_mem_region->userspace_addr;

		if ((userspace_addr <= mem_region.userspace_addr &&
		     mem_region.userspace_addr < (userspace_addr + memory_size)) ||
		    (mem_region.userspace_addr <= userspace_addr &&
		    (mem_region.userspace_addr + mem_region.memory_size) > userspace_addr)) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "User space memory region already used\n");

			return -NE_ERR_MEM_REGION_ALREADY_USED;
		}
	}

	return 0;
}

/**
 * ne_sanity_check_user_mem_region_page() - Sanity check a page from the user space
 *					    memory region received during the set
 *					    user memory region ioctl call.
 * @ne_enclave :	Private data associated with the current enclave.
 * @mem_region_page:	Page from the user space memory region to be sanity checked.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_sanity_check_user_mem_region_page(struct ne_enclave *ne_enclave,
						struct page *mem_region_page)
{
	if (!PageHuge(mem_region_page)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Not a hugetlbfs page\n");

		return -NE_ERR_MEM_NOT_HUGE_PAGE;
	}

	if (page_size(mem_region_page) & (NE_MIN_MEM_REGION_SIZE - 1)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Page size not multiple of 2 MiB\n");

		return -NE_ERR_INVALID_PAGE_SIZE;
	}

	if (ne_enclave->numa_node != page_to_nid(mem_region_page)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Page is not from NUMA node %d\n",
				    ne_enclave->numa_node);

		return -NE_ERR_MEM_DIFFERENT_NUMA_NODE;
	}

	return 0;
}

/**
 * ne_sanity_check_phys_mem_region() - Sanity check the start address and the size
 *                                     of a physical memory region.
 * @phys_mem_region_paddr : Physical start address of the region to be sanity checked.
 * @phys_mem_region_size  : Length of the region to be sanity checked.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_sanity_check_phys_mem_region(u64 phys_mem_region_paddr,
					   u64 phys_mem_region_size)
{
	if (phys_mem_region_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Physical mem region size is not multiple of 2 MiB\n");

		return -EINVAL;
	}

	if (!IS_ALIGNED(phys_mem_region_paddr, NE_MIN_MEM_REGION_SIZE)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Physical mem region address is not 2 MiB aligned\n");

		return -EINVAL;
	}

	return 0;
}

/**
 * ne_merge_phys_contig_memory_regions() - Add a memory region and merge the adjacent
 *                                         regions if they are physically contiguous.
 * @phys_contig_regions : Private data associated with the contiguous physical memory regions.
 * @page_paddr :          Physical start address of the region to be added.
 * @page_size :           Length of the region to be added.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int
ne_merge_phys_contig_memory_regions(struct ne_phys_contig_mem_regions *phys_contig_regions,
				    u64 page_paddr, u64 page_size)
{
	unsigned long num = phys_contig_regions->num;
	int rc = 0;

	rc = ne_sanity_check_phys_mem_region(page_paddr, page_size);
	if (rc < 0)
		return rc;

	/* Physically contiguous, just merge */
	if (num && (phys_contig_regions->regions[num - 1].end + 1) == page_paddr) {
		phys_contig_regions->regions[num - 1].end += page_size;
	} else {
		phys_contig_regions->regions[num].start = page_paddr;
		phys_contig_regions->regions[num].end = page_paddr + page_size - 1;
		phys_contig_regions->num++;
	}

	return 0;
}

/**
 * ne_set_user_memory_region_ioctl() - Add user space memory region to the slot
 *				       associated with the current enclave.
 * @ne_enclave :	Private data associated with the current enclave.
 * @mem_region :	User space memory region to be associated with the given slot.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_set_user_memory_region_ioctl(struct ne_enclave *ne_enclave,
					   struct ne_user_memory_region mem_region)
{
	long gup_rc = 0;
	unsigned long i = 0;
	unsigned long max_nr_pages = 0;
	unsigned long memory_size = 0;
	struct ne_mem_region *ne_mem_region = NULL;
	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
	struct ne_phys_contig_mem_regions phys_contig_mem_regions = {};
	int rc = -EINVAL;

	rc = ne_sanity_check_user_mem_region(ne_enclave, mem_region);
	if (rc < 0)
		return rc;

	ne_mem_region = kzalloc(sizeof(*ne_mem_region), GFP_KERNEL);
	if (!ne_mem_region)
		return -ENOMEM;

	max_nr_pages = mem_region.memory_size / NE_MIN_MEM_REGION_SIZE;

	ne_mem_region->pages = kcalloc(max_nr_pages, sizeof(*ne_mem_region->pages),
				       GFP_KERNEL);
	if (!ne_mem_region->pages) {
		rc = -ENOMEM;

		goto free_mem_region;
	}

	phys_contig_mem_regions.regions = kcalloc(max_nr_pages,
						  sizeof(*phys_contig_mem_regions.regions),
						  GFP_KERNEL);
	if (!phys_contig_mem_regions.regions) {
		rc = -ENOMEM;

		goto free_mem_region;
	}

	do {
		i = ne_mem_region->nr_pages;

		if (i == max_nr_pages) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Reached max nr of pages in the pages data struct\n");

			rc = -ENOMEM;

			goto put_pages;
		}

		gup_rc = get_user_pages_unlocked(mem_region.userspace_addr + memory_size, 1,
						 ne_mem_region->pages + i, FOLL_GET);

		if (gup_rc < 0) {
			rc = gup_rc;

			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Error in get user pages [rc=%d]\n", rc);

			goto put_pages;
		}

		rc = ne_sanity_check_user_mem_region_page(ne_enclave, ne_mem_region->pages[i]);
		if (rc < 0)
			goto put_pages;

		rc = ne_merge_phys_contig_memory_regions(&phys_contig_mem_regions,
							 page_to_phys(ne_mem_region->pages[i]),
							 page_size(ne_mem_region->pages[i]));
		if (rc < 0)
			goto put_pages;

		memory_size += page_size(ne_mem_region->pages[i]);

		ne_mem_region->nr_pages++;
	} while (memory_size < mem_region.memory_size);

	if ((ne_enclave->nr_mem_regions + phys_contig_mem_regions.num) >
	    ne_enclave->max_mem_regions) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Reached max memory regions %lld\n",
				    ne_enclave->max_mem_regions);

		rc = -NE_ERR_MEM_MAX_REGIONS;

		goto put_pages;
	}

	for (i = 0; i < phys_contig_mem_regions.num; i++) {
		u64 phys_region_addr = phys_contig_mem_regions.regions[i].start;
		u64 phys_region_size = range_len(&phys_contig_mem_regions.regions[i]);

		rc = ne_sanity_check_phys_mem_region(phys_region_addr, phys_region_size);
		if (rc < 0)
			goto put_pages;
	}

	ne_mem_region->memory_size = mem_region.memory_size;
	ne_mem_region->userspace_addr = mem_region.userspace_addr;

	list_add(&ne_mem_region->mem_region_list_entry, &ne_enclave->mem_regions_list);

	for (i = 0; i < phys_contig_mem_regions.num; i++) {
		struct ne_pci_dev_cmd_reply cmd_reply = {};
		struct slot_add_mem_req slot_add_mem_req = {};

		slot_add_mem_req.slot_uid = ne_enclave->slot_uid;
		slot_add_mem_req.paddr = phys_contig_mem_regions.regions[i].start;
		slot_add_mem_req.size = range_len(&phys_contig_mem_regions.regions[i]);

		rc = ne_do_request(pdev, SLOT_ADD_MEM,
				   &slot_add_mem_req, sizeof(slot_add_mem_req),
				   &cmd_reply, sizeof(cmd_reply));
		if (rc < 0) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Error in slot add mem [rc=%d]\n", rc);

			kfree(phys_contig_mem_regions.regions);

			/*
			 * Exit here without put pages as memory regions may
			 * already been added.
			 */
			return rc;
		}

		ne_enclave->mem_size += slot_add_mem_req.size;
		ne_enclave->nr_mem_regions++;
	}

	kfree(phys_contig_mem_regions.regions);

	return 0;

put_pages:
	for (i = 0; i < ne_mem_region->nr_pages; i++)
		put_page(ne_mem_region->pages[i]);
free_mem_region:
	kfree(phys_contig_mem_regions.regions);
	kfree(ne_mem_region->pages);
	kfree(ne_mem_region);

	return rc;
}

/**
 * ne_start_enclave_ioctl() - Trigger enclave start after the enclave resources,
 *			      such as memory and CPU, have been set.
 * @ne_enclave :		Private data associated with the current enclave.
 * @enclave_start_info :	Enclave info that includes enclave cid and flags.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_start_enclave_ioctl(struct ne_enclave *ne_enclave,
				  struct ne_enclave_start_info *enclave_start_info)
{
	struct ne_pci_dev_cmd_reply cmd_reply = {};
	unsigned int cpu = 0;
	struct enclave_start_req enclave_start_req = {};
	unsigned int i = 0;
	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
	int rc = -EINVAL;

	if (!ne_enclave->nr_mem_regions) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Enclave has no mem regions\n");

		return -NE_ERR_NO_MEM_REGIONS_ADDED;
	}

	if (ne_enclave->mem_size < NE_MIN_ENCLAVE_MEM_SIZE) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Enclave memory is less than %ld\n",
				    NE_MIN_ENCLAVE_MEM_SIZE);

		return -NE_ERR_ENCLAVE_MEM_MIN_SIZE;
	}

	if (!ne_enclave->nr_vcpus) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Enclave has no vCPUs\n");

		return -NE_ERR_NO_VCPUS_ADDED;
	}

	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
			if (!cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) {
				dev_err_ratelimited(ne_misc_dev.this_device,
						    "Full CPU cores not used\n");

				return -NE_ERR_FULL_CORES_NOT_USED;
			}

	enclave_start_req.enclave_cid = enclave_start_info->enclave_cid;
	enclave_start_req.flags = enclave_start_info->flags;
	enclave_start_req.slot_uid = ne_enclave->slot_uid;

	rc = ne_do_request(pdev, ENCLAVE_START,
			   &enclave_start_req, sizeof(enclave_start_req),
			   &cmd_reply, sizeof(cmd_reply));
	if (rc < 0) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Error in enclave start [rc=%d]\n", rc);

		return rc;
	}

	ne_enclave->state = NE_STATE_RUNNING;

	enclave_start_info->enclave_cid = cmd_reply.enclave_cid;

	return 0;
}

/**
 * ne_enclave_ioctl() - Ioctl function provided by the enclave file.
 * @file:	File associated with this ioctl function.
 * @cmd:	The command that is set for the ioctl call.
 * @arg:	The argument that is provided for the ioctl call.
 *
 * Context: Process context.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static long ne_enclave_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct ne_enclave *ne_enclave = file->private_data;

	switch (cmd) {
	case NE_ADD_VCPU: {
		int rc = -EINVAL;
		u32 vcpu_id = 0;

		if (copy_from_user(&vcpu_id, (void __user *)arg, sizeof(vcpu_id)))
			return -EFAULT;

		mutex_lock(&ne_enclave->enclave_info_mutex);

		if (ne_enclave->state != NE_STATE_INIT) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Enclave is not in init state\n");

			mutex_unlock(&ne_enclave->enclave_info_mutex);

			return -NE_ERR_NOT_IN_INIT_STATE;
		}

		if (vcpu_id >= (ne_enclave->nr_parent_vm_cores *
		    ne_enclave->nr_threads_per_core)) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "vCPU id higher than max CPU id\n");

			mutex_unlock(&ne_enclave->enclave_info_mutex);

			return -NE_ERR_INVALID_VCPU;
		}

		if (!vcpu_id) {
			/* Use the CPU pool for choosing a CPU for the enclave. */
			rc = ne_get_cpu_from_cpu_pool(ne_enclave, &vcpu_id);
			if (rc < 0) {
				dev_err_ratelimited(ne_misc_dev.this_device,
						    "Error in get CPU from pool [rc=%d]\n",
						    rc);

				mutex_unlock(&ne_enclave->enclave_info_mutex);

				return rc;
			}
		} else {
			/* Check if the provided vCPU is available in the NE CPU pool. */
			rc = ne_check_cpu_in_cpu_pool(ne_enclave, vcpu_id);
			if (rc < 0) {
				dev_err_ratelimited(ne_misc_dev.this_device,
						    "Error in check CPU %d in pool [rc=%d]\n",
						    vcpu_id, rc);

				mutex_unlock(&ne_enclave->enclave_info_mutex);

				return rc;
			}
		}

		rc = ne_add_vcpu_ioctl(ne_enclave, vcpu_id);
		if (rc < 0) {
			mutex_unlock(&ne_enclave->enclave_info_mutex);

			return rc;
		}

		mutex_unlock(&ne_enclave->enclave_info_mutex);

		if (copy_to_user((void __user *)arg, &vcpu_id, sizeof(vcpu_id)))
			return -EFAULT;

		return 0;
	}

	case NE_GET_IMAGE_LOAD_INFO: {
		struct ne_image_load_info image_load_info = {};

		if (copy_from_user(&image_load_info, (void __user *)arg, sizeof(image_load_info)))
			return -EFAULT;

		mutex_lock(&ne_enclave->enclave_info_mutex);

		if (ne_enclave->state != NE_STATE_INIT) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Enclave is not in init state\n");

			mutex_unlock(&ne_enclave->enclave_info_mutex);

			return -NE_ERR_NOT_IN_INIT_STATE;
		}

		mutex_unlock(&ne_enclave->enclave_info_mutex);

		if (!image_load_info.flags ||
		    image_load_info.flags >= NE_IMAGE_LOAD_MAX_FLAG_VAL) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Incorrect flag in enclave image load info\n");

			return -NE_ERR_INVALID_FLAG_VALUE;
		}

		if (image_load_info.flags == NE_EIF_IMAGE)
			image_load_info.memory_offset = NE_EIF_LOAD_OFFSET;

		if (copy_to_user((void __user *)arg, &image_load_info, sizeof(image_load_info)))
			return -EFAULT;

		return 0;
	}

	case NE_SET_USER_MEMORY_REGION: {
		struct ne_user_memory_region mem_region = {};
		int rc = -EINVAL;

		if (copy_from_user(&mem_region, (void __user *)arg, sizeof(mem_region)))
			return -EFAULT;

		if (mem_region.flags >= NE_MEMORY_REGION_MAX_FLAG_VAL) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Incorrect flag for user memory region\n");

			return -NE_ERR_INVALID_FLAG_VALUE;
		}

		mutex_lock(&ne_enclave->enclave_info_mutex);

		if (ne_enclave->state != NE_STATE_INIT) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Enclave is not in init state\n");

			mutex_unlock(&ne_enclave->enclave_info_mutex);

			return -NE_ERR_NOT_IN_INIT_STATE;
		}

		rc = ne_set_user_memory_region_ioctl(ne_enclave, mem_region);
		if (rc < 0) {
			mutex_unlock(&ne_enclave->enclave_info_mutex);

			return rc;
		}

		mutex_unlock(&ne_enclave->enclave_info_mutex);

		return 0;
	}

	case NE_START_ENCLAVE: {
		struct ne_enclave_start_info enclave_start_info = {};
		int rc = -EINVAL;

		if (copy_from_user(&enclave_start_info, (void __user *)arg,
				   sizeof(enclave_start_info)))
			return -EFAULT;

		if (enclave_start_info.flags >= NE_ENCLAVE_START_MAX_FLAG_VAL) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Incorrect flag in enclave start info\n");

			return -NE_ERR_INVALID_FLAG_VALUE;
		}

		/*
		 * Do not use well-known CIDs - 0, 1, 2 - for enclaves.
		 * VMADDR_CID_ANY = -1U
		 * VMADDR_CID_HYPERVISOR = 0
		 * VMADDR_CID_LOCAL = 1
		 * VMADDR_CID_HOST = 2
		 * Note: 0 is used as a placeholder to auto-generate an enclave CID.
		 * http://man7.org/linux/man-pages/man7/vsock.7.html
		 */
		if (enclave_start_info.enclave_cid > 0 &&
		    enclave_start_info.enclave_cid <= VMADDR_CID_HOST) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Well-known CID value, not to be used for enclaves\n");

			return -NE_ERR_INVALID_ENCLAVE_CID;
		}

		if (enclave_start_info.enclave_cid == U32_MAX) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Well-known CID value, not to be used for enclaves\n");

			return -NE_ERR_INVALID_ENCLAVE_CID;
		}

		/*
		 * Do not use the CID of the primary / parent VM for enclaves.
		 */
		if (enclave_start_info.enclave_cid == NE_PARENT_VM_CID) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "CID of the parent VM, not to be used for enclaves\n");

			return -NE_ERR_INVALID_ENCLAVE_CID;
		}

		/* 64-bit CIDs are not yet supported for the vsock device. */
		if (enclave_start_info.enclave_cid > U32_MAX) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "64-bit CIDs not yet supported for the vsock device\n");

			return -NE_ERR_INVALID_ENCLAVE_CID;
		}

		mutex_lock(&ne_enclave->enclave_info_mutex);

		if (ne_enclave->state != NE_STATE_INIT) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Enclave is not in init state\n");

			mutex_unlock(&ne_enclave->enclave_info_mutex);

			return -NE_ERR_NOT_IN_INIT_STATE;
		}

		rc = ne_start_enclave_ioctl(ne_enclave, &enclave_start_info);
		if (rc < 0) {
			mutex_unlock(&ne_enclave->enclave_info_mutex);

			return rc;
		}

		mutex_unlock(&ne_enclave->enclave_info_mutex);

		if (copy_to_user((void __user *)arg, &enclave_start_info,
				 sizeof(enclave_start_info)))
			return -EFAULT;

		return 0;
	}

	default:
		return -ENOTTY;
	}

	return 0;
}

/**
 * ne_enclave_remove_all_mem_region_entries() - Remove all memory region entries
 *						from the enclave data structure.
 * @ne_enclave :	Private data associated with the current enclave.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 */
static void ne_enclave_remove_all_mem_region_entries(struct ne_enclave *ne_enclave)
{
	unsigned long i = 0;
	struct ne_mem_region *ne_mem_region = NULL;
	struct ne_mem_region *ne_mem_region_tmp = NULL;

	list_for_each_entry_safe(ne_mem_region, ne_mem_region_tmp,
				 &ne_enclave->mem_regions_list,
				 mem_region_list_entry) {
		list_del(&ne_mem_region->mem_region_list_entry);

		for (i = 0; i < ne_mem_region->nr_pages; i++)
			put_page(ne_mem_region->pages[i]);

		kfree(ne_mem_region->pages);

		kfree(ne_mem_region);
	}
}

/**
 * ne_enclave_remove_all_vcpu_id_entries() - Remove all vCPU id entries from
 *					     the enclave data structure.
 * @ne_enclave :	Private data associated with the current enclave.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 */
static void ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave *ne_enclave)
{
	unsigned int cpu = 0;
	unsigned int i = 0;

	mutex_lock(&ne_cpu_pool.mutex);

	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) {
		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
			/* Update the available NE CPU pool. */
			cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]);

		free_cpumask_var(ne_enclave->threads_per_core[i]);
	}

	mutex_unlock(&ne_cpu_pool.mutex);

	kfree(ne_enclave->threads_per_core);

	free_cpumask_var(ne_enclave->vcpu_ids);
}

/**
 * ne_pci_dev_remove_enclave_entry() - Remove the enclave entry from the data
 *				       structure that is part of the NE PCI
 *				       device private data.
 * @ne_enclave :	Private data associated with the current enclave.
 * @ne_pci_dev :	Private data associated with the PCI device.
 *
 * Context: Process context. This function is called with the ne_pci_dev enclave
 *	    mutex held.
 */
static void ne_pci_dev_remove_enclave_entry(struct ne_enclave *ne_enclave,
					    struct ne_pci_dev *ne_pci_dev)
{
	struct ne_enclave *ne_enclave_entry = NULL;
	struct ne_enclave *ne_enclave_entry_tmp = NULL;

	list_for_each_entry_safe(ne_enclave_entry, ne_enclave_entry_tmp,
				 &ne_pci_dev->enclaves_list, enclave_list_entry) {
		if (ne_enclave_entry->slot_uid == ne_enclave->slot_uid) {
			list_del(&ne_enclave_entry->enclave_list_entry);

			break;
		}
	}
}

/**
 * ne_enclave_release() - Release function provided by the enclave file.
 * @inode:	Inode associated with this file release function.
 * @file:	File associated with this release function.
 *
 * Context: Process context.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_enclave_release(struct inode *inode, struct file *file)
{
	struct ne_pci_dev_cmd_reply cmd_reply = {};
	struct enclave_stop_req enclave_stop_request = {};
	struct ne_enclave *ne_enclave = file->private_data;
	struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
	struct pci_dev *pdev = ne_pci_dev->pdev;
	int rc = -EINVAL;
	struct slot_free_req slot_free_req = {};

	if (!ne_enclave)
		return 0;

	/*
	 * Early exit in case there is an error in the enclave creation logic
	 * and fput() is called on the cleanup path.
	 */
	if (!ne_enclave->slot_uid)
		return 0;

	/*
	 * Acquire the enclave list mutex before the enclave mutex
	 * in order to avoid deadlocks with @ref ne_event_work_handler.
	 */
	mutex_lock(&ne_pci_dev->enclaves_list_mutex);
	mutex_lock(&ne_enclave->enclave_info_mutex);

	if (ne_enclave->state != NE_STATE_INIT && ne_enclave->state != NE_STATE_STOPPED) {
		enclave_stop_request.slot_uid = ne_enclave->slot_uid;

		rc = ne_do_request(pdev, ENCLAVE_STOP,
				   &enclave_stop_request, sizeof(enclave_stop_request),
				   &cmd_reply, sizeof(cmd_reply));
		if (rc < 0) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Error in enclave stop [rc=%d]\n", rc);

			goto unlock_mutex;
		}

		memset(&cmd_reply, 0, sizeof(cmd_reply));
	}

	slot_free_req.slot_uid = ne_enclave->slot_uid;

	rc = ne_do_request(pdev, SLOT_FREE,
			   &slot_free_req, sizeof(slot_free_req),
			   &cmd_reply, sizeof(cmd_reply));
	if (rc < 0) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Error in slot free [rc=%d]\n", rc);

		goto unlock_mutex;
	}

	ne_pci_dev_remove_enclave_entry(ne_enclave, ne_pci_dev);
	ne_enclave_remove_all_mem_region_entries(ne_enclave);
	ne_enclave_remove_all_vcpu_id_entries(ne_enclave);

	mutex_unlock(&ne_enclave->enclave_info_mutex);
	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);

	kfree(ne_enclave);

	return 0;

unlock_mutex:
	mutex_unlock(&ne_enclave->enclave_info_mutex);
	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);

	return rc;
}

/**
 * ne_enclave_poll() - Poll functionality used for enclave out-of-band events.
 * @file:	File associated with this poll function.
 * @wait:	Poll table data structure.
 *
 * Context: Process context.
 * Return:
 * * Poll mask.
 */
static __poll_t ne_enclave_poll(struct file *file, poll_table *wait)
{
	__poll_t mask = 0;
	struct ne_enclave *ne_enclave = file->private_data;

	poll_wait(file, &ne_enclave->eventq, wait);

	if (ne_enclave->has_event)
		mask |= EPOLLHUP;

	return mask;
}

static const struct file_operations ne_enclave_fops = {
	.owner		= THIS_MODULE,
	.llseek		= noop_llseek,
	.poll		= ne_enclave_poll,
	.unlocked_ioctl	= ne_enclave_ioctl,
	.release	= ne_enclave_release,
};

/**
 * ne_create_vm_ioctl() - Alloc slot to be associated with an enclave. Create
 *			  enclave file descriptor to be further used for enclave
 *			  resources handling e.g. memory regions and CPUs.
 * @ne_pci_dev :	Private data associated with the PCI device.
 * @slot_uid:		User pointer to store the generated unique slot id
 *			associated with an enclave to.
 *
 * Context: Process context. This function is called with the ne_pci_dev enclave
 *	    mutex held.
 * Return:
 * * Enclave fd on success.
 * * Negative return value on failure.
 */
static int ne_create_vm_ioctl(struct ne_pci_dev *ne_pci_dev, u64 __user *slot_uid)
{
	struct ne_pci_dev_cmd_reply cmd_reply = {};
	int enclave_fd = -1;
	struct file *enclave_file = NULL;
	unsigned int i = 0;
	struct ne_enclave *ne_enclave = NULL;
	struct pci_dev *pdev = ne_pci_dev->pdev;
	int rc = -EINVAL;
	struct slot_alloc_req slot_alloc_req = {};

	mutex_lock(&ne_cpu_pool.mutex);

	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
		if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i]))
			break;

	if (i == ne_cpu_pool.nr_parent_vm_cores) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "No CPUs available in CPU pool\n");

		mutex_unlock(&ne_cpu_pool.mutex);

		return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
	}

	mutex_unlock(&ne_cpu_pool.mutex);

	ne_enclave = kzalloc(sizeof(*ne_enclave), GFP_KERNEL);
	if (!ne_enclave)
		return -ENOMEM;

	mutex_lock(&ne_cpu_pool.mutex);

	ne_enclave->nr_parent_vm_cores = ne_cpu_pool.nr_parent_vm_cores;
	ne_enclave->nr_threads_per_core = ne_cpu_pool.nr_threads_per_core;
	ne_enclave->numa_node = ne_cpu_pool.numa_node;

	mutex_unlock(&ne_cpu_pool.mutex);

	ne_enclave->threads_per_core = kcalloc(ne_enclave->nr_parent_vm_cores,
					       sizeof(*ne_enclave->threads_per_core),
					       GFP_KERNEL);
	if (!ne_enclave->threads_per_core) {
		rc = -ENOMEM;

		goto free_ne_enclave;
	}

	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
		if (!zalloc_cpumask_var(&ne_enclave->threads_per_core[i], GFP_KERNEL)) {
			rc = -ENOMEM;

			goto free_cpumask;
		}

	if (!zalloc_cpumask_var(&ne_enclave->vcpu_ids, GFP_KERNEL)) {
		rc = -ENOMEM;

		goto free_cpumask;
	}

	enclave_fd = get_unused_fd_flags(O_CLOEXEC);
	if (enclave_fd < 0) {
		rc = enclave_fd;

		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Error in getting unused fd [rc=%d]\n", rc);

		goto free_cpumask;
	}

	enclave_file = anon_inode_getfile("ne-vm", &ne_enclave_fops, ne_enclave, O_RDWR);
	if (IS_ERR(enclave_file)) {
		rc = PTR_ERR(enclave_file);

		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Error in anon inode get file [rc=%d]\n", rc);

		goto put_fd;
	}

	rc = ne_do_request(pdev, SLOT_ALLOC,
			   &slot_alloc_req, sizeof(slot_alloc_req),
			   &cmd_reply, sizeof(cmd_reply));
	if (rc < 0) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Error in slot alloc [rc=%d]\n", rc);

		goto put_file;
	}

	init_waitqueue_head(&ne_enclave->eventq);
	ne_enclave->has_event = false;
	mutex_init(&ne_enclave->enclave_info_mutex);
	ne_enclave->max_mem_regions = cmd_reply.mem_regions;
	INIT_LIST_HEAD(&ne_enclave->mem_regions_list);
	ne_enclave->mm = current->mm;
	ne_enclave->slot_uid = cmd_reply.slot_uid;
	ne_enclave->state = NE_STATE_INIT;

	list_add(&ne_enclave->enclave_list_entry, &ne_pci_dev->enclaves_list);

	if (copy_to_user(slot_uid, &ne_enclave->slot_uid, sizeof(ne_enclave->slot_uid))) {
		/*
		 * As we're holding the only reference to 'enclave_file', fput()
		 * will call ne_enclave_release() which will do a proper cleanup
		 * of all so far allocated resources, leaving only the unused fd
		 * for us to free.
		 */
		fput(enclave_file);
		put_unused_fd(enclave_fd);

		return -EFAULT;
	}

	fd_install(enclave_fd, enclave_file);

	return enclave_fd;

put_file:
	fput(enclave_file);
put_fd:
	put_unused_fd(enclave_fd);
free_cpumask:
	free_cpumask_var(ne_enclave->vcpu_ids);
	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
		free_cpumask_var(ne_enclave->threads_per_core[i]);
	kfree(ne_enclave->threads_per_core);
free_ne_enclave:
	kfree(ne_enclave);

	return rc;
}

/**
 * ne_ioctl() - Ioctl function provided by the NE misc device.
 * @file:	File associated with this ioctl function.
 * @cmd:	The command that is set for the ioctl call.
 * @arg:	The argument that is provided for the ioctl call.
 *
 * Context: Process context.
 * Return:
 * * Ioctl result (e.g. enclave file descriptor) on success.
 * * Negative return value on failure.
 */
static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case NE_CREATE_VM: {
		int enclave_fd = -1;
		struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
		u64 __user *slot_uid = (void __user *)arg;

		mutex_lock(&ne_pci_dev->enclaves_list_mutex);
		enclave_fd = ne_create_vm_ioctl(ne_pci_dev, slot_uid);
		mutex_unlock(&ne_pci_dev->enclaves_list_mutex);

		return enclave_fd;
	}

	default:
		return -ENOTTY;
	}

	return 0;
}

#if defined(CONFIG_NITRO_ENCLAVES_MISC_DEV_TEST)
#include "ne_misc_dev_test.c"
#endif

static int __init ne_init(void)
{
	mutex_init(&ne_cpu_pool.mutex);

	return pci_register_driver(&ne_pci_driver);
}

static void __exit ne_exit(void)
{
	pci_unregister_driver(&ne_pci_driver);

	ne_teardown_cpu_pool();
}

module_init(ne_init);
module_exit(ne_exit);

MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
MODULE_DESCRIPTION("Nitro Enclaves Driver");
MODULE_LICENSE("GPL v2");