Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/reboot.h>
23#include <linux/regmap.h>
24#include <linux/regulator/of_regulator.h>
25#include <linux/regulator/consumer.h>
26#include <linux/regulator/coupler.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29#include <linux/module.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/regulator.h>
33
34#include "dummy.h"
35#include "internal.h"
36#include "regnl.h"
37
38static DEFINE_WW_CLASS(regulator_ww_class);
39static DEFINE_MUTEX(regulator_nesting_mutex);
40static DEFINE_MUTEX(regulator_list_mutex);
41static LIST_HEAD(regulator_map_list);
42static LIST_HEAD(regulator_ena_gpio_list);
43static LIST_HEAD(regulator_supply_alias_list);
44static LIST_HEAD(regulator_coupler_list);
45static bool has_full_constraints;
46
47static struct dentry *debugfs_root;
48
49/*
50 * struct regulator_map
51 *
52 * Used to provide symbolic supply names to devices.
53 */
54struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
59};
60
61/*
62 * struct regulator_enable_gpio
63 *
64 * Management for shared enable GPIO pin
65 */
66struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
71};
72
73/*
74 * struct regulator_supply_alias
75 *
76 * Used to map lookups for a supply onto an alternative device.
77 */
78struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
84};
85
86static int _regulator_is_enabled(struct regulator_dev *rdev);
87static int _regulator_disable(struct regulator *regulator);
88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89static int _regulator_get_current_limit(struct regulator_dev *rdev);
90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91static int _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95static int regulator_balance_voltage(struct regulator_dev *rdev,
96 suspend_state_t state);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100static void destroy_regulator(struct regulator *regulator);
101static void _regulator_put(struct regulator *regulator);
102
103const char *rdev_get_name(struct regulator_dev *rdev)
104{
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111}
112EXPORT_SYMBOL_GPL(rdev_get_name);
113
114static bool have_full_constraints(void)
115{
116 return has_full_constraints || of_have_populated_dt();
117}
118
119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120{
121 if (!rdev->constraints) {
122 rdev_err(rdev, "no constraints\n");
123 return false;
124 }
125
126 if (rdev->constraints->valid_ops_mask & ops)
127 return true;
128
129 return false;
130}
131
132/**
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
136 *
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
142 */
143static inline int regulator_lock_nested(struct regulator_dev *rdev,
144 struct ww_acquire_ctx *ww_ctx)
145{
146 bool lock = false;
147 int ret = 0;
148
149 mutex_lock(®ulator_nesting_mutex);
150
151 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
152 if (rdev->mutex_owner == current)
153 rdev->ref_cnt++;
154 else
155 lock = true;
156
157 if (lock) {
158 mutex_unlock(®ulator_nesting_mutex);
159 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
160 mutex_lock(®ulator_nesting_mutex);
161 }
162 } else {
163 lock = true;
164 }
165
166 if (lock && ret != -EDEADLK) {
167 rdev->ref_cnt++;
168 rdev->mutex_owner = current;
169 }
170
171 mutex_unlock(®ulator_nesting_mutex);
172
173 return ret;
174}
175
176/**
177 * regulator_lock - lock a single regulator
178 * @rdev: regulator source
179 *
180 * This function can be called many times by one task on
181 * a single regulator and its mutex will be locked only
182 * once. If a task, which is calling this function is other
183 * than the one, which initially locked the mutex, it will
184 * wait on mutex.
185 */
186static void regulator_lock(struct regulator_dev *rdev)
187{
188 regulator_lock_nested(rdev, NULL);
189}
190
191/**
192 * regulator_unlock - unlock a single regulator
193 * @rdev: regulator_source
194 *
195 * This function unlocks the mutex when the
196 * reference counter reaches 0.
197 */
198static void regulator_unlock(struct regulator_dev *rdev)
199{
200 mutex_lock(®ulator_nesting_mutex);
201
202 if (--rdev->ref_cnt == 0) {
203 rdev->mutex_owner = NULL;
204 ww_mutex_unlock(&rdev->mutex);
205 }
206
207 WARN_ON_ONCE(rdev->ref_cnt < 0);
208
209 mutex_unlock(®ulator_nesting_mutex);
210}
211
212/**
213 * regulator_lock_two - lock two regulators
214 * @rdev1: first regulator
215 * @rdev2: second regulator
216 * @ww_ctx: w/w mutex acquire context
217 *
218 * Locks both rdevs using the regulator_ww_class.
219 */
220static void regulator_lock_two(struct regulator_dev *rdev1,
221 struct regulator_dev *rdev2,
222 struct ww_acquire_ctx *ww_ctx)
223{
224 struct regulator_dev *held, *contended;
225 int ret;
226
227 ww_acquire_init(ww_ctx, ®ulator_ww_class);
228
229 /* Try to just grab both of them */
230 ret = regulator_lock_nested(rdev1, ww_ctx);
231 WARN_ON(ret);
232 ret = regulator_lock_nested(rdev2, ww_ctx);
233 if (ret != -EDEADLOCK) {
234 WARN_ON(ret);
235 goto exit;
236 }
237
238 held = rdev1;
239 contended = rdev2;
240 while (true) {
241 regulator_unlock(held);
242
243 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
244 contended->ref_cnt++;
245 contended->mutex_owner = current;
246 swap(held, contended);
247 ret = regulator_lock_nested(contended, ww_ctx);
248
249 if (ret != -EDEADLOCK) {
250 WARN_ON(ret);
251 break;
252 }
253 }
254
255exit:
256 ww_acquire_done(ww_ctx);
257}
258
259/**
260 * regulator_unlock_two - unlock two regulators
261 * @rdev1: first regulator
262 * @rdev2: second regulator
263 * @ww_ctx: w/w mutex acquire context
264 *
265 * The inverse of regulator_lock_two().
266 */
267
268static void regulator_unlock_two(struct regulator_dev *rdev1,
269 struct regulator_dev *rdev2,
270 struct ww_acquire_ctx *ww_ctx)
271{
272 regulator_unlock(rdev2);
273 regulator_unlock(rdev1);
274 ww_acquire_fini(ww_ctx);
275}
276
277static bool regulator_supply_is_couple(struct regulator_dev *rdev)
278{
279 struct regulator_dev *c_rdev;
280 int i;
281
282 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
283 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
284
285 if (rdev->supply->rdev == c_rdev)
286 return true;
287 }
288
289 return false;
290}
291
292static void regulator_unlock_recursive(struct regulator_dev *rdev,
293 unsigned int n_coupled)
294{
295 struct regulator_dev *c_rdev, *supply_rdev;
296 int i, supply_n_coupled;
297
298 for (i = n_coupled; i > 0; i--) {
299 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
300
301 if (!c_rdev)
302 continue;
303
304 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
305 supply_rdev = c_rdev->supply->rdev;
306 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
307
308 regulator_unlock_recursive(supply_rdev,
309 supply_n_coupled);
310 }
311
312 regulator_unlock(c_rdev);
313 }
314}
315
316static int regulator_lock_recursive(struct regulator_dev *rdev,
317 struct regulator_dev **new_contended_rdev,
318 struct regulator_dev **old_contended_rdev,
319 struct ww_acquire_ctx *ww_ctx)
320{
321 struct regulator_dev *c_rdev;
322 int i, err;
323
324 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
325 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
326
327 if (!c_rdev)
328 continue;
329
330 if (c_rdev != *old_contended_rdev) {
331 err = regulator_lock_nested(c_rdev, ww_ctx);
332 if (err) {
333 if (err == -EDEADLK) {
334 *new_contended_rdev = c_rdev;
335 goto err_unlock;
336 }
337
338 /* shouldn't happen */
339 WARN_ON_ONCE(err != -EALREADY);
340 }
341 } else {
342 *old_contended_rdev = NULL;
343 }
344
345 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
346 err = regulator_lock_recursive(c_rdev->supply->rdev,
347 new_contended_rdev,
348 old_contended_rdev,
349 ww_ctx);
350 if (err) {
351 regulator_unlock(c_rdev);
352 goto err_unlock;
353 }
354 }
355 }
356
357 return 0;
358
359err_unlock:
360 regulator_unlock_recursive(rdev, i);
361
362 return err;
363}
364
365/**
366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
367 * regulators
368 * @rdev: regulator source
369 * @ww_ctx: w/w mutex acquire context
370 *
371 * Unlock all regulators related with rdev by coupling or supplying.
372 */
373static void regulator_unlock_dependent(struct regulator_dev *rdev,
374 struct ww_acquire_ctx *ww_ctx)
375{
376 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
377 ww_acquire_fini(ww_ctx);
378}
379
380/**
381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
382 * @rdev: regulator source
383 * @ww_ctx: w/w mutex acquire context
384 *
385 * This function as a wrapper on regulator_lock_recursive(), which locks
386 * all regulators related with rdev by coupling or supplying.
387 */
388static void regulator_lock_dependent(struct regulator_dev *rdev,
389 struct ww_acquire_ctx *ww_ctx)
390{
391 struct regulator_dev *new_contended_rdev = NULL;
392 struct regulator_dev *old_contended_rdev = NULL;
393 int err;
394
395 mutex_lock(®ulator_list_mutex);
396
397 ww_acquire_init(ww_ctx, ®ulator_ww_class);
398
399 do {
400 if (new_contended_rdev) {
401 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
402 old_contended_rdev = new_contended_rdev;
403 old_contended_rdev->ref_cnt++;
404 old_contended_rdev->mutex_owner = current;
405 }
406
407 err = regulator_lock_recursive(rdev,
408 &new_contended_rdev,
409 &old_contended_rdev,
410 ww_ctx);
411
412 if (old_contended_rdev)
413 regulator_unlock(old_contended_rdev);
414
415 } while (err == -EDEADLK);
416
417 ww_acquire_done(ww_ctx);
418
419 mutex_unlock(®ulator_list_mutex);
420}
421
422/**
423 * of_get_child_regulator - get a child regulator device node
424 * based on supply name
425 * @parent: Parent device node
426 * @prop_name: Combination regulator supply name and "-supply"
427 *
428 * Traverse all child nodes.
429 * Extract the child regulator device node corresponding to the supply name.
430 * returns the device node corresponding to the regulator if found, else
431 * returns NULL.
432 */
433static struct device_node *of_get_child_regulator(struct device_node *parent,
434 const char *prop_name)
435{
436 struct device_node *regnode = NULL;
437 struct device_node *child = NULL;
438
439 for_each_child_of_node(parent, child) {
440 regnode = of_parse_phandle(child, prop_name, 0);
441
442 if (!regnode) {
443 regnode = of_get_child_regulator(child, prop_name);
444 if (regnode)
445 goto err_node_put;
446 } else {
447 goto err_node_put;
448 }
449 }
450 return NULL;
451
452err_node_put:
453 of_node_put(child);
454 return regnode;
455}
456
457/**
458 * of_get_regulator - get a regulator device node based on supply name
459 * @dev: Device pointer for the consumer (of regulator) device
460 * @supply: regulator supply name
461 *
462 * Extract the regulator device node corresponding to the supply name.
463 * returns the device node corresponding to the regulator if found, else
464 * returns NULL.
465 */
466static struct device_node *of_get_regulator(struct device *dev, const char *supply)
467{
468 struct device_node *regnode = NULL;
469 char prop_name[64]; /* 64 is max size of property name */
470
471 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
472
473 snprintf(prop_name, 64, "%s-supply", supply);
474 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
475
476 if (!regnode) {
477 regnode = of_get_child_regulator(dev->of_node, prop_name);
478 if (regnode)
479 return regnode;
480
481 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
482 prop_name, dev->of_node);
483 return NULL;
484 }
485 return regnode;
486}
487
488/* Platform voltage constraint check */
489int regulator_check_voltage(struct regulator_dev *rdev,
490 int *min_uV, int *max_uV)
491{
492 BUG_ON(*min_uV > *max_uV);
493
494 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
495 rdev_err(rdev, "voltage operation not allowed\n");
496 return -EPERM;
497 }
498
499 if (*max_uV > rdev->constraints->max_uV)
500 *max_uV = rdev->constraints->max_uV;
501 if (*min_uV < rdev->constraints->min_uV)
502 *min_uV = rdev->constraints->min_uV;
503
504 if (*min_uV > *max_uV) {
505 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
506 *min_uV, *max_uV);
507 return -EINVAL;
508 }
509
510 return 0;
511}
512
513/* return 0 if the state is valid */
514static int regulator_check_states(suspend_state_t state)
515{
516 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
517}
518
519/* Make sure we select a voltage that suits the needs of all
520 * regulator consumers
521 */
522int regulator_check_consumers(struct regulator_dev *rdev,
523 int *min_uV, int *max_uV,
524 suspend_state_t state)
525{
526 struct regulator *regulator;
527 struct regulator_voltage *voltage;
528
529 list_for_each_entry(regulator, &rdev->consumer_list, list) {
530 voltage = ®ulator->voltage[state];
531 /*
532 * Assume consumers that didn't say anything are OK
533 * with anything in the constraint range.
534 */
535 if (!voltage->min_uV && !voltage->max_uV)
536 continue;
537
538 if (*max_uV > voltage->max_uV)
539 *max_uV = voltage->max_uV;
540 if (*min_uV < voltage->min_uV)
541 *min_uV = voltage->min_uV;
542 }
543
544 if (*min_uV > *max_uV) {
545 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
546 *min_uV, *max_uV);
547 return -EINVAL;
548 }
549
550 return 0;
551}
552
553/* current constraint check */
554static int regulator_check_current_limit(struct regulator_dev *rdev,
555 int *min_uA, int *max_uA)
556{
557 BUG_ON(*min_uA > *max_uA);
558
559 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
560 rdev_err(rdev, "current operation not allowed\n");
561 return -EPERM;
562 }
563
564 if (*max_uA > rdev->constraints->max_uA)
565 *max_uA = rdev->constraints->max_uA;
566 if (*min_uA < rdev->constraints->min_uA)
567 *min_uA = rdev->constraints->min_uA;
568
569 if (*min_uA > *max_uA) {
570 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
571 *min_uA, *max_uA);
572 return -EINVAL;
573 }
574
575 return 0;
576}
577
578/* operating mode constraint check */
579static int regulator_mode_constrain(struct regulator_dev *rdev,
580 unsigned int *mode)
581{
582 switch (*mode) {
583 case REGULATOR_MODE_FAST:
584 case REGULATOR_MODE_NORMAL:
585 case REGULATOR_MODE_IDLE:
586 case REGULATOR_MODE_STANDBY:
587 break;
588 default:
589 rdev_err(rdev, "invalid mode %x specified\n", *mode);
590 return -EINVAL;
591 }
592
593 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
594 rdev_err(rdev, "mode operation not allowed\n");
595 return -EPERM;
596 }
597
598 /* The modes are bitmasks, the most power hungry modes having
599 * the lowest values. If the requested mode isn't supported
600 * try higher modes.
601 */
602 while (*mode) {
603 if (rdev->constraints->valid_modes_mask & *mode)
604 return 0;
605 *mode /= 2;
606 }
607
608 return -EINVAL;
609}
610
611static inline struct regulator_state *
612regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
613{
614 if (rdev->constraints == NULL)
615 return NULL;
616
617 switch (state) {
618 case PM_SUSPEND_STANDBY:
619 return &rdev->constraints->state_standby;
620 case PM_SUSPEND_MEM:
621 return &rdev->constraints->state_mem;
622 case PM_SUSPEND_MAX:
623 return &rdev->constraints->state_disk;
624 default:
625 return NULL;
626 }
627}
628
629static const struct regulator_state *
630regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
631{
632 const struct regulator_state *rstate;
633
634 rstate = regulator_get_suspend_state(rdev, state);
635 if (rstate == NULL)
636 return NULL;
637
638 /* If we have no suspend mode configuration don't set anything;
639 * only warn if the driver implements set_suspend_voltage or
640 * set_suspend_mode callback.
641 */
642 if (rstate->enabled != ENABLE_IN_SUSPEND &&
643 rstate->enabled != DISABLE_IN_SUSPEND) {
644 if (rdev->desc->ops->set_suspend_voltage ||
645 rdev->desc->ops->set_suspend_mode)
646 rdev_warn(rdev, "No configuration\n");
647 return NULL;
648 }
649
650 return rstate;
651}
652
653static ssize_t microvolts_show(struct device *dev,
654 struct device_attribute *attr, char *buf)
655{
656 struct regulator_dev *rdev = dev_get_drvdata(dev);
657 int uV;
658
659 regulator_lock(rdev);
660 uV = regulator_get_voltage_rdev(rdev);
661 regulator_unlock(rdev);
662
663 if (uV < 0)
664 return uV;
665 return sprintf(buf, "%d\n", uV);
666}
667static DEVICE_ATTR_RO(microvolts);
668
669static ssize_t microamps_show(struct device *dev,
670 struct device_attribute *attr, char *buf)
671{
672 struct regulator_dev *rdev = dev_get_drvdata(dev);
673
674 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
675}
676static DEVICE_ATTR_RO(microamps);
677
678static ssize_t name_show(struct device *dev, struct device_attribute *attr,
679 char *buf)
680{
681 struct regulator_dev *rdev = dev_get_drvdata(dev);
682
683 return sprintf(buf, "%s\n", rdev_get_name(rdev));
684}
685static DEVICE_ATTR_RO(name);
686
687static const char *regulator_opmode_to_str(int mode)
688{
689 switch (mode) {
690 case REGULATOR_MODE_FAST:
691 return "fast";
692 case REGULATOR_MODE_NORMAL:
693 return "normal";
694 case REGULATOR_MODE_IDLE:
695 return "idle";
696 case REGULATOR_MODE_STANDBY:
697 return "standby";
698 }
699 return "unknown";
700}
701
702static ssize_t regulator_print_opmode(char *buf, int mode)
703{
704 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
705}
706
707static ssize_t opmode_show(struct device *dev,
708 struct device_attribute *attr, char *buf)
709{
710 struct regulator_dev *rdev = dev_get_drvdata(dev);
711
712 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
713}
714static DEVICE_ATTR_RO(opmode);
715
716static ssize_t regulator_print_state(char *buf, int state)
717{
718 if (state > 0)
719 return sprintf(buf, "enabled\n");
720 else if (state == 0)
721 return sprintf(buf, "disabled\n");
722 else
723 return sprintf(buf, "unknown\n");
724}
725
726static ssize_t state_show(struct device *dev,
727 struct device_attribute *attr, char *buf)
728{
729 struct regulator_dev *rdev = dev_get_drvdata(dev);
730 ssize_t ret;
731
732 regulator_lock(rdev);
733 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
734 regulator_unlock(rdev);
735
736 return ret;
737}
738static DEVICE_ATTR_RO(state);
739
740static ssize_t status_show(struct device *dev,
741 struct device_attribute *attr, char *buf)
742{
743 struct regulator_dev *rdev = dev_get_drvdata(dev);
744 int status;
745 char *label;
746
747 status = rdev->desc->ops->get_status(rdev);
748 if (status < 0)
749 return status;
750
751 switch (status) {
752 case REGULATOR_STATUS_OFF:
753 label = "off";
754 break;
755 case REGULATOR_STATUS_ON:
756 label = "on";
757 break;
758 case REGULATOR_STATUS_ERROR:
759 label = "error";
760 break;
761 case REGULATOR_STATUS_FAST:
762 label = "fast";
763 break;
764 case REGULATOR_STATUS_NORMAL:
765 label = "normal";
766 break;
767 case REGULATOR_STATUS_IDLE:
768 label = "idle";
769 break;
770 case REGULATOR_STATUS_STANDBY:
771 label = "standby";
772 break;
773 case REGULATOR_STATUS_BYPASS:
774 label = "bypass";
775 break;
776 case REGULATOR_STATUS_UNDEFINED:
777 label = "undefined";
778 break;
779 default:
780 return -ERANGE;
781 }
782
783 return sprintf(buf, "%s\n", label);
784}
785static DEVICE_ATTR_RO(status);
786
787static ssize_t min_microamps_show(struct device *dev,
788 struct device_attribute *attr, char *buf)
789{
790 struct regulator_dev *rdev = dev_get_drvdata(dev);
791
792 if (!rdev->constraints)
793 return sprintf(buf, "constraint not defined\n");
794
795 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
796}
797static DEVICE_ATTR_RO(min_microamps);
798
799static ssize_t max_microamps_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
801{
802 struct regulator_dev *rdev = dev_get_drvdata(dev);
803
804 if (!rdev->constraints)
805 return sprintf(buf, "constraint not defined\n");
806
807 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
808}
809static DEVICE_ATTR_RO(max_microamps);
810
811static ssize_t min_microvolts_show(struct device *dev,
812 struct device_attribute *attr, char *buf)
813{
814 struct regulator_dev *rdev = dev_get_drvdata(dev);
815
816 if (!rdev->constraints)
817 return sprintf(buf, "constraint not defined\n");
818
819 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
820}
821static DEVICE_ATTR_RO(min_microvolts);
822
823static ssize_t max_microvolts_show(struct device *dev,
824 struct device_attribute *attr, char *buf)
825{
826 struct regulator_dev *rdev = dev_get_drvdata(dev);
827
828 if (!rdev->constraints)
829 return sprintf(buf, "constraint not defined\n");
830
831 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
832}
833static DEVICE_ATTR_RO(max_microvolts);
834
835static ssize_t requested_microamps_show(struct device *dev,
836 struct device_attribute *attr, char *buf)
837{
838 struct regulator_dev *rdev = dev_get_drvdata(dev);
839 struct regulator *regulator;
840 int uA = 0;
841
842 regulator_lock(rdev);
843 list_for_each_entry(regulator, &rdev->consumer_list, list) {
844 if (regulator->enable_count)
845 uA += regulator->uA_load;
846 }
847 regulator_unlock(rdev);
848 return sprintf(buf, "%d\n", uA);
849}
850static DEVICE_ATTR_RO(requested_microamps);
851
852static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
853 char *buf)
854{
855 struct regulator_dev *rdev = dev_get_drvdata(dev);
856 return sprintf(buf, "%d\n", rdev->use_count);
857}
858static DEVICE_ATTR_RO(num_users);
859
860static ssize_t type_show(struct device *dev, struct device_attribute *attr,
861 char *buf)
862{
863 struct regulator_dev *rdev = dev_get_drvdata(dev);
864
865 switch (rdev->desc->type) {
866 case REGULATOR_VOLTAGE:
867 return sprintf(buf, "voltage\n");
868 case REGULATOR_CURRENT:
869 return sprintf(buf, "current\n");
870 }
871 return sprintf(buf, "unknown\n");
872}
873static DEVICE_ATTR_RO(type);
874
875static ssize_t suspend_mem_microvolts_show(struct device *dev,
876 struct device_attribute *attr, char *buf)
877{
878 struct regulator_dev *rdev = dev_get_drvdata(dev);
879
880 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
881}
882static DEVICE_ATTR_RO(suspend_mem_microvolts);
883
884static ssize_t suspend_disk_microvolts_show(struct device *dev,
885 struct device_attribute *attr, char *buf)
886{
887 struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
890}
891static DEVICE_ATTR_RO(suspend_disk_microvolts);
892
893static ssize_t suspend_standby_microvolts_show(struct device *dev,
894 struct device_attribute *attr, char *buf)
895{
896 struct regulator_dev *rdev = dev_get_drvdata(dev);
897
898 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
899}
900static DEVICE_ATTR_RO(suspend_standby_microvolts);
901
902static ssize_t suspend_mem_mode_show(struct device *dev,
903 struct device_attribute *attr, char *buf)
904{
905 struct regulator_dev *rdev = dev_get_drvdata(dev);
906
907 return regulator_print_opmode(buf,
908 rdev->constraints->state_mem.mode);
909}
910static DEVICE_ATTR_RO(suspend_mem_mode);
911
912static ssize_t suspend_disk_mode_show(struct device *dev,
913 struct device_attribute *attr, char *buf)
914{
915 struct regulator_dev *rdev = dev_get_drvdata(dev);
916
917 return regulator_print_opmode(buf,
918 rdev->constraints->state_disk.mode);
919}
920static DEVICE_ATTR_RO(suspend_disk_mode);
921
922static ssize_t suspend_standby_mode_show(struct device *dev,
923 struct device_attribute *attr, char *buf)
924{
925 struct regulator_dev *rdev = dev_get_drvdata(dev);
926
927 return regulator_print_opmode(buf,
928 rdev->constraints->state_standby.mode);
929}
930static DEVICE_ATTR_RO(suspend_standby_mode);
931
932static ssize_t suspend_mem_state_show(struct device *dev,
933 struct device_attribute *attr, char *buf)
934{
935 struct regulator_dev *rdev = dev_get_drvdata(dev);
936
937 return regulator_print_state(buf,
938 rdev->constraints->state_mem.enabled);
939}
940static DEVICE_ATTR_RO(suspend_mem_state);
941
942static ssize_t suspend_disk_state_show(struct device *dev,
943 struct device_attribute *attr, char *buf)
944{
945 struct regulator_dev *rdev = dev_get_drvdata(dev);
946
947 return regulator_print_state(buf,
948 rdev->constraints->state_disk.enabled);
949}
950static DEVICE_ATTR_RO(suspend_disk_state);
951
952static ssize_t suspend_standby_state_show(struct device *dev,
953 struct device_attribute *attr, char *buf)
954{
955 struct regulator_dev *rdev = dev_get_drvdata(dev);
956
957 return regulator_print_state(buf,
958 rdev->constraints->state_standby.enabled);
959}
960static DEVICE_ATTR_RO(suspend_standby_state);
961
962static ssize_t bypass_show(struct device *dev,
963 struct device_attribute *attr, char *buf)
964{
965 struct regulator_dev *rdev = dev_get_drvdata(dev);
966 const char *report;
967 bool bypass;
968 int ret;
969
970 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
971
972 if (ret != 0)
973 report = "unknown";
974 else if (bypass)
975 report = "enabled";
976 else
977 report = "disabled";
978
979 return sprintf(buf, "%s\n", report);
980}
981static DEVICE_ATTR_RO(bypass);
982
983#define REGULATOR_ERROR_ATTR(name, bit) \
984 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
985 char *buf) \
986 { \
987 int ret; \
988 unsigned int flags; \
989 struct regulator_dev *rdev = dev_get_drvdata(dev); \
990 ret = _regulator_get_error_flags(rdev, &flags); \
991 if (ret) \
992 return ret; \
993 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
994 } \
995 static DEVICE_ATTR_RO(name)
996
997REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
998REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
999REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006
1007/* Calculate the new optimum regulator operating mode based on the new total
1008 * consumer load. All locks held by caller
1009 */
1010static int drms_uA_update(struct regulator_dev *rdev)
1011{
1012 struct regulator *sibling;
1013 int current_uA = 0, output_uV, input_uV, err;
1014 unsigned int mode;
1015
1016 /*
1017 * first check to see if we can set modes at all, otherwise just
1018 * tell the consumer everything is OK.
1019 */
1020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021 rdev_dbg(rdev, "DRMS operation not allowed\n");
1022 return 0;
1023 }
1024
1025 if (!rdev->desc->ops->get_optimum_mode &&
1026 !rdev->desc->ops->set_load)
1027 return 0;
1028
1029 if (!rdev->desc->ops->set_mode &&
1030 !rdev->desc->ops->set_load)
1031 return -EINVAL;
1032
1033 /* calc total requested load */
1034 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035 if (sibling->enable_count)
1036 current_uA += sibling->uA_load;
1037 }
1038
1039 current_uA += rdev->constraints->system_load;
1040
1041 if (rdev->desc->ops->set_load) {
1042 /* set the optimum mode for our new total regulator load */
1043 err = rdev->desc->ops->set_load(rdev, current_uA);
1044 if (err < 0)
1045 rdev_err(rdev, "failed to set load %d: %pe\n",
1046 current_uA, ERR_PTR(err));
1047 } else {
1048 /*
1049 * Unfortunately in some cases the constraints->valid_ops has
1050 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051 * That's not really legit but we won't consider it a fatal
1052 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053 * wasn't set.
1054 */
1055 if (!rdev->constraints->valid_modes_mask) {
1056 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057 return 0;
1058 }
1059
1060 /* get output voltage */
1061 output_uV = regulator_get_voltage_rdev(rdev);
1062
1063 /*
1064 * Don't return an error; if regulator driver cares about
1065 * output_uV then it's up to the driver to validate.
1066 */
1067 if (output_uV <= 0)
1068 rdev_dbg(rdev, "invalid output voltage found\n");
1069
1070 /* get input voltage */
1071 input_uV = 0;
1072 if (rdev->supply)
1073 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074 if (input_uV <= 0)
1075 input_uV = rdev->constraints->input_uV;
1076
1077 /*
1078 * Don't return an error; if regulator driver cares about
1079 * input_uV then it's up to the driver to validate.
1080 */
1081 if (input_uV <= 0)
1082 rdev_dbg(rdev, "invalid input voltage found\n");
1083
1084 /* now get the optimum mode for our new total regulator load */
1085 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086 output_uV, current_uA);
1087
1088 /* check the new mode is allowed */
1089 err = regulator_mode_constrain(rdev, &mode);
1090 if (err < 0) {
1091 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092 current_uA, input_uV, output_uV, ERR_PTR(err));
1093 return err;
1094 }
1095
1096 err = rdev->desc->ops->set_mode(rdev, mode);
1097 if (err < 0)
1098 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099 mode, ERR_PTR(err));
1100 }
1101
1102 return err;
1103}
1104
1105static int __suspend_set_state(struct regulator_dev *rdev,
1106 const struct regulator_state *rstate)
1107{
1108 int ret = 0;
1109
1110 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111 rdev->desc->ops->set_suspend_enable)
1112 ret = rdev->desc->ops->set_suspend_enable(rdev);
1113 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114 rdev->desc->ops->set_suspend_disable)
1115 ret = rdev->desc->ops->set_suspend_disable(rdev);
1116 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117 ret = 0;
1118
1119 if (ret < 0) {
1120 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121 return ret;
1122 }
1123
1124 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126 if (ret < 0) {
1127 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128 return ret;
1129 }
1130 }
1131
1132 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134 if (ret < 0) {
1135 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136 return ret;
1137 }
1138 }
1139
1140 return ret;
1141}
1142
1143static int suspend_set_initial_state(struct regulator_dev *rdev)
1144{
1145 const struct regulator_state *rstate;
1146
1147 rstate = regulator_get_suspend_state_check(rdev,
1148 rdev->constraints->initial_state);
1149 if (!rstate)
1150 return 0;
1151
1152 return __suspend_set_state(rdev, rstate);
1153}
1154
1155#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156static void print_constraints_debug(struct regulator_dev *rdev)
1157{
1158 struct regulation_constraints *constraints = rdev->constraints;
1159 char buf[160] = "";
1160 size_t len = sizeof(buf) - 1;
1161 int count = 0;
1162 int ret;
1163
1164 if (constraints->min_uV && constraints->max_uV) {
1165 if (constraints->min_uV == constraints->max_uV)
1166 count += scnprintf(buf + count, len - count, "%d mV ",
1167 constraints->min_uV / 1000);
1168 else
1169 count += scnprintf(buf + count, len - count,
1170 "%d <--> %d mV ",
1171 constraints->min_uV / 1000,
1172 constraints->max_uV / 1000);
1173 }
1174
1175 if (!constraints->min_uV ||
1176 constraints->min_uV != constraints->max_uV) {
1177 ret = regulator_get_voltage_rdev(rdev);
1178 if (ret > 0)
1179 count += scnprintf(buf + count, len - count,
1180 "at %d mV ", ret / 1000);
1181 }
1182
1183 if (constraints->uV_offset)
1184 count += scnprintf(buf + count, len - count, "%dmV offset ",
1185 constraints->uV_offset / 1000);
1186
1187 if (constraints->min_uA && constraints->max_uA) {
1188 if (constraints->min_uA == constraints->max_uA)
1189 count += scnprintf(buf + count, len - count, "%d mA ",
1190 constraints->min_uA / 1000);
1191 else
1192 count += scnprintf(buf + count, len - count,
1193 "%d <--> %d mA ",
1194 constraints->min_uA / 1000,
1195 constraints->max_uA / 1000);
1196 }
1197
1198 if (!constraints->min_uA ||
1199 constraints->min_uA != constraints->max_uA) {
1200 ret = _regulator_get_current_limit(rdev);
1201 if (ret > 0)
1202 count += scnprintf(buf + count, len - count,
1203 "at %d mA ", ret / 1000);
1204 }
1205
1206 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207 count += scnprintf(buf + count, len - count, "fast ");
1208 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209 count += scnprintf(buf + count, len - count, "normal ");
1210 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211 count += scnprintf(buf + count, len - count, "idle ");
1212 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213 count += scnprintf(buf + count, len - count, "standby ");
1214
1215 if (!count)
1216 count = scnprintf(buf, len, "no parameters");
1217 else
1218 --count;
1219
1220 count += scnprintf(buf + count, len - count, ", %s",
1221 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222
1223 rdev_dbg(rdev, "%s\n", buf);
1224}
1225#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228
1229static void print_constraints(struct regulator_dev *rdev)
1230{
1231 struct regulation_constraints *constraints = rdev->constraints;
1232
1233 print_constraints_debug(rdev);
1234
1235 if ((constraints->min_uV != constraints->max_uV) &&
1236 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237 rdev_warn(rdev,
1238 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239}
1240
1241static int machine_constraints_voltage(struct regulator_dev *rdev,
1242 struct regulation_constraints *constraints)
1243{
1244 const struct regulator_ops *ops = rdev->desc->ops;
1245 int ret;
1246
1247 /* do we need to apply the constraint voltage */
1248 if (rdev->constraints->apply_uV &&
1249 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250 int target_min, target_max;
1251 int current_uV = regulator_get_voltage_rdev(rdev);
1252
1253 if (current_uV == -ENOTRECOVERABLE) {
1254 /* This regulator can't be read and must be initialized */
1255 rdev_info(rdev, "Setting %d-%duV\n",
1256 rdev->constraints->min_uV,
1257 rdev->constraints->max_uV);
1258 _regulator_do_set_voltage(rdev,
1259 rdev->constraints->min_uV,
1260 rdev->constraints->max_uV);
1261 current_uV = regulator_get_voltage_rdev(rdev);
1262 }
1263
1264 if (current_uV < 0) {
1265 if (current_uV != -EPROBE_DEFER)
1266 rdev_err(rdev,
1267 "failed to get the current voltage: %pe\n",
1268 ERR_PTR(current_uV));
1269 return current_uV;
1270 }
1271
1272 /*
1273 * If we're below the minimum voltage move up to the
1274 * minimum voltage, if we're above the maximum voltage
1275 * then move down to the maximum.
1276 */
1277 target_min = current_uV;
1278 target_max = current_uV;
1279
1280 if (current_uV < rdev->constraints->min_uV) {
1281 target_min = rdev->constraints->min_uV;
1282 target_max = rdev->constraints->min_uV;
1283 }
1284
1285 if (current_uV > rdev->constraints->max_uV) {
1286 target_min = rdev->constraints->max_uV;
1287 target_max = rdev->constraints->max_uV;
1288 }
1289
1290 if (target_min != current_uV || target_max != current_uV) {
1291 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292 current_uV, target_min, target_max);
1293 ret = _regulator_do_set_voltage(
1294 rdev, target_min, target_max);
1295 if (ret < 0) {
1296 rdev_err(rdev,
1297 "failed to apply %d-%duV constraint: %pe\n",
1298 target_min, target_max, ERR_PTR(ret));
1299 return ret;
1300 }
1301 }
1302 }
1303
1304 /* constrain machine-level voltage specs to fit
1305 * the actual range supported by this regulator.
1306 */
1307 if (ops->list_voltage && rdev->desc->n_voltages) {
1308 int count = rdev->desc->n_voltages;
1309 int i;
1310 int min_uV = INT_MAX;
1311 int max_uV = INT_MIN;
1312 int cmin = constraints->min_uV;
1313 int cmax = constraints->max_uV;
1314
1315 /* it's safe to autoconfigure fixed-voltage supplies
1316 * and the constraints are used by list_voltage.
1317 */
1318 if (count == 1 && !cmin) {
1319 cmin = 1;
1320 cmax = INT_MAX;
1321 constraints->min_uV = cmin;
1322 constraints->max_uV = cmax;
1323 }
1324
1325 /* voltage constraints are optional */
1326 if ((cmin == 0) && (cmax == 0))
1327 return 0;
1328
1329 /* else require explicit machine-level constraints */
1330 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331 rdev_err(rdev, "invalid voltage constraints\n");
1332 return -EINVAL;
1333 }
1334
1335 /* no need to loop voltages if range is continuous */
1336 if (rdev->desc->continuous_voltage_range)
1337 return 0;
1338
1339 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340 for (i = 0; i < count; i++) {
1341 int value;
1342
1343 value = ops->list_voltage(rdev, i);
1344 if (value <= 0)
1345 continue;
1346
1347 /* maybe adjust [min_uV..max_uV] */
1348 if (value >= cmin && value < min_uV)
1349 min_uV = value;
1350 if (value <= cmax && value > max_uV)
1351 max_uV = value;
1352 }
1353
1354 /* final: [min_uV..max_uV] valid iff constraints valid */
1355 if (max_uV < min_uV) {
1356 rdev_err(rdev,
1357 "unsupportable voltage constraints %u-%uuV\n",
1358 min_uV, max_uV);
1359 return -EINVAL;
1360 }
1361
1362 /* use regulator's subset of machine constraints */
1363 if (constraints->min_uV < min_uV) {
1364 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365 constraints->min_uV, min_uV);
1366 constraints->min_uV = min_uV;
1367 }
1368 if (constraints->max_uV > max_uV) {
1369 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370 constraints->max_uV, max_uV);
1371 constraints->max_uV = max_uV;
1372 }
1373 }
1374
1375 return 0;
1376}
1377
1378static int machine_constraints_current(struct regulator_dev *rdev,
1379 struct regulation_constraints *constraints)
1380{
1381 const struct regulator_ops *ops = rdev->desc->ops;
1382 int ret;
1383
1384 if (!constraints->min_uA && !constraints->max_uA)
1385 return 0;
1386
1387 if (constraints->min_uA > constraints->max_uA) {
1388 rdev_err(rdev, "Invalid current constraints\n");
1389 return -EINVAL;
1390 }
1391
1392 if (!ops->set_current_limit || !ops->get_current_limit) {
1393 rdev_warn(rdev, "Operation of current configuration missing\n");
1394 return 0;
1395 }
1396
1397 /* Set regulator current in constraints range */
1398 ret = ops->set_current_limit(rdev, constraints->min_uA,
1399 constraints->max_uA);
1400 if (ret < 0) {
1401 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402 return ret;
1403 }
1404
1405 return 0;
1406}
1407
1408static int _regulator_do_enable(struct regulator_dev *rdev);
1409
1410static int notif_set_limit(struct regulator_dev *rdev,
1411 int (*set)(struct regulator_dev *, int, int, bool),
1412 int limit, int severity)
1413{
1414 bool enable;
1415
1416 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417 enable = false;
1418 limit = 0;
1419 } else {
1420 enable = true;
1421 }
1422
1423 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424 limit = 0;
1425
1426 return set(rdev, limit, severity, enable);
1427}
1428
1429static int handle_notify_limits(struct regulator_dev *rdev,
1430 int (*set)(struct regulator_dev *, int, int, bool),
1431 struct notification_limit *limits)
1432{
1433 int ret = 0;
1434
1435 if (!set)
1436 return -EOPNOTSUPP;
1437
1438 if (limits->prot)
1439 ret = notif_set_limit(rdev, set, limits->prot,
1440 REGULATOR_SEVERITY_PROT);
1441 if (ret)
1442 return ret;
1443
1444 if (limits->err)
1445 ret = notif_set_limit(rdev, set, limits->err,
1446 REGULATOR_SEVERITY_ERR);
1447 if (ret)
1448 return ret;
1449
1450 if (limits->warn)
1451 ret = notif_set_limit(rdev, set, limits->warn,
1452 REGULATOR_SEVERITY_WARN);
1453
1454 return ret;
1455}
1456/**
1457 * set_machine_constraints - sets regulator constraints
1458 * @rdev: regulator source
1459 *
1460 * Allows platform initialisation code to define and constrain
1461 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1462 * Constraints *must* be set by platform code in order for some
1463 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464 * set_mode.
1465 */
1466static int set_machine_constraints(struct regulator_dev *rdev)
1467{
1468 int ret = 0;
1469 const struct regulator_ops *ops = rdev->desc->ops;
1470
1471 ret = machine_constraints_voltage(rdev, rdev->constraints);
1472 if (ret != 0)
1473 return ret;
1474
1475 ret = machine_constraints_current(rdev, rdev->constraints);
1476 if (ret != 0)
1477 return ret;
1478
1479 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480 ret = ops->set_input_current_limit(rdev,
1481 rdev->constraints->ilim_uA);
1482 if (ret < 0) {
1483 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484 return ret;
1485 }
1486 }
1487
1488 /* do we need to setup our suspend state */
1489 if (rdev->constraints->initial_state) {
1490 ret = suspend_set_initial_state(rdev);
1491 if (ret < 0) {
1492 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493 return ret;
1494 }
1495 }
1496
1497 if (rdev->constraints->initial_mode) {
1498 if (!ops->set_mode) {
1499 rdev_err(rdev, "no set_mode operation\n");
1500 return -EINVAL;
1501 }
1502
1503 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504 if (ret < 0) {
1505 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506 return ret;
1507 }
1508 } else if (rdev->constraints->system_load) {
1509 /*
1510 * We'll only apply the initial system load if an
1511 * initial mode wasn't specified.
1512 */
1513 drms_uA_update(rdev);
1514 }
1515
1516 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517 && ops->set_ramp_delay) {
1518 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519 if (ret < 0) {
1520 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521 return ret;
1522 }
1523 }
1524
1525 if (rdev->constraints->pull_down && ops->set_pull_down) {
1526 ret = ops->set_pull_down(rdev);
1527 if (ret < 0) {
1528 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529 return ret;
1530 }
1531 }
1532
1533 if (rdev->constraints->soft_start && ops->set_soft_start) {
1534 ret = ops->set_soft_start(rdev);
1535 if (ret < 0) {
1536 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537 return ret;
1538 }
1539 }
1540
1541 /*
1542 * Existing logic does not warn if over_current_protection is given as
1543 * a constraint but driver does not support that. I think we should
1544 * warn about this type of issues as it is possible someone changes
1545 * PMIC on board to another type - and the another PMIC's driver does
1546 * not support setting protection. Board composer may happily believe
1547 * the DT limits are respected - especially if the new PMIC HW also
1548 * supports protection but the driver does not. I won't change the logic
1549 * without hearing more experienced opinion on this though.
1550 *
1551 * If warning is seen as a good idea then we can merge handling the
1552 * over-curret protection and detection and get rid of this special
1553 * handling.
1554 */
1555 if (rdev->constraints->over_current_protection
1556 && ops->set_over_current_protection) {
1557 int lim = rdev->constraints->over_curr_limits.prot;
1558
1559 ret = ops->set_over_current_protection(rdev, lim,
1560 REGULATOR_SEVERITY_PROT,
1561 true);
1562 if (ret < 0) {
1563 rdev_err(rdev, "failed to set over current protection: %pe\n",
1564 ERR_PTR(ret));
1565 return ret;
1566 }
1567 }
1568
1569 if (rdev->constraints->over_current_detection)
1570 ret = handle_notify_limits(rdev,
1571 ops->set_over_current_protection,
1572 &rdev->constraints->over_curr_limits);
1573 if (ret) {
1574 if (ret != -EOPNOTSUPP) {
1575 rdev_err(rdev, "failed to set over current limits: %pe\n",
1576 ERR_PTR(ret));
1577 return ret;
1578 }
1579 rdev_warn(rdev,
1580 "IC does not support requested over-current limits\n");
1581 }
1582
1583 if (rdev->constraints->over_voltage_detection)
1584 ret = handle_notify_limits(rdev,
1585 ops->set_over_voltage_protection,
1586 &rdev->constraints->over_voltage_limits);
1587 if (ret) {
1588 if (ret != -EOPNOTSUPP) {
1589 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590 ERR_PTR(ret));
1591 return ret;
1592 }
1593 rdev_warn(rdev,
1594 "IC does not support requested over voltage limits\n");
1595 }
1596
1597 if (rdev->constraints->under_voltage_detection)
1598 ret = handle_notify_limits(rdev,
1599 ops->set_under_voltage_protection,
1600 &rdev->constraints->under_voltage_limits);
1601 if (ret) {
1602 if (ret != -EOPNOTSUPP) {
1603 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604 ERR_PTR(ret));
1605 return ret;
1606 }
1607 rdev_warn(rdev,
1608 "IC does not support requested under voltage limits\n");
1609 }
1610
1611 if (rdev->constraints->over_temp_detection)
1612 ret = handle_notify_limits(rdev,
1613 ops->set_thermal_protection,
1614 &rdev->constraints->temp_limits);
1615 if (ret) {
1616 if (ret != -EOPNOTSUPP) {
1617 rdev_err(rdev, "failed to set temperature limits %pe\n",
1618 ERR_PTR(ret));
1619 return ret;
1620 }
1621 rdev_warn(rdev,
1622 "IC does not support requested temperature limits\n");
1623 }
1624
1625 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626 bool ad_state = (rdev->constraints->active_discharge ==
1627 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628
1629 ret = ops->set_active_discharge(rdev, ad_state);
1630 if (ret < 0) {
1631 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632 return ret;
1633 }
1634 }
1635
1636 /*
1637 * If there is no mechanism for controlling the regulator then
1638 * flag it as always_on so we don't end up duplicating checks
1639 * for this so much. Note that we could control the state of
1640 * a supply to control the output on a regulator that has no
1641 * direct control.
1642 */
1643 if (!rdev->ena_pin && !ops->enable) {
1644 if (rdev->supply_name && !rdev->supply)
1645 return -EPROBE_DEFER;
1646
1647 if (rdev->supply)
1648 rdev->constraints->always_on =
1649 rdev->supply->rdev->constraints->always_on;
1650 else
1651 rdev->constraints->always_on = true;
1652 }
1653
1654 /* If the constraints say the regulator should be on at this point
1655 * and we have control then make sure it is enabled.
1656 */
1657 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658 /* If we want to enable this regulator, make sure that we know
1659 * the supplying regulator.
1660 */
1661 if (rdev->supply_name && !rdev->supply)
1662 return -EPROBE_DEFER;
1663
1664 /* If supplying regulator has already been enabled,
1665 * it's not intended to have use_count increment
1666 * when rdev is only boot-on.
1667 */
1668 if (rdev->supply &&
1669 (rdev->constraints->always_on ||
1670 !regulator_is_enabled(rdev->supply))) {
1671 ret = regulator_enable(rdev->supply);
1672 if (ret < 0) {
1673 _regulator_put(rdev->supply);
1674 rdev->supply = NULL;
1675 return ret;
1676 }
1677 }
1678
1679 ret = _regulator_do_enable(rdev);
1680 if (ret < 0 && ret != -EINVAL) {
1681 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682 return ret;
1683 }
1684
1685 if (rdev->constraints->always_on)
1686 rdev->use_count++;
1687 } else if (rdev->desc->off_on_delay) {
1688 rdev->last_off = ktime_get();
1689 }
1690
1691 print_constraints(rdev);
1692 return 0;
1693}
1694
1695/**
1696 * set_supply - set regulator supply regulator
1697 * @rdev: regulator (locked)
1698 * @supply_rdev: supply regulator (locked))
1699 *
1700 * Called by platform initialisation code to set the supply regulator for this
1701 * regulator. This ensures that a regulators supply will also be enabled by the
1702 * core if it's child is enabled.
1703 */
1704static int set_supply(struct regulator_dev *rdev,
1705 struct regulator_dev *supply_rdev)
1706{
1707 int err;
1708
1709 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710
1711 if (!try_module_get(supply_rdev->owner))
1712 return -ENODEV;
1713
1714 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715 if (rdev->supply == NULL) {
1716 module_put(supply_rdev->owner);
1717 err = -ENOMEM;
1718 return err;
1719 }
1720 supply_rdev->open_count++;
1721
1722 return 0;
1723}
1724
1725/**
1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727 * @rdev: regulator source
1728 * @consumer_dev_name: dev_name() string for device supply applies to
1729 * @supply: symbolic name for supply
1730 *
1731 * Allows platform initialisation code to map physical regulator
1732 * sources to symbolic names for supplies for use by devices. Devices
1733 * should use these symbolic names to request regulators, avoiding the
1734 * need to provide board-specific regulator names as platform data.
1735 */
1736static int set_consumer_device_supply(struct regulator_dev *rdev,
1737 const char *consumer_dev_name,
1738 const char *supply)
1739{
1740 struct regulator_map *node, *new_node;
1741 int has_dev;
1742
1743 if (supply == NULL)
1744 return -EINVAL;
1745
1746 if (consumer_dev_name != NULL)
1747 has_dev = 1;
1748 else
1749 has_dev = 0;
1750
1751 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752 if (new_node == NULL)
1753 return -ENOMEM;
1754
1755 new_node->regulator = rdev;
1756 new_node->supply = supply;
1757
1758 if (has_dev) {
1759 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760 if (new_node->dev_name == NULL) {
1761 kfree(new_node);
1762 return -ENOMEM;
1763 }
1764 }
1765
1766 mutex_lock(®ulator_list_mutex);
1767 list_for_each_entry(node, ®ulator_map_list, list) {
1768 if (node->dev_name && consumer_dev_name) {
1769 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770 continue;
1771 } else if (node->dev_name || consumer_dev_name) {
1772 continue;
1773 }
1774
1775 if (strcmp(node->supply, supply) != 0)
1776 continue;
1777
1778 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779 consumer_dev_name,
1780 dev_name(&node->regulator->dev),
1781 node->regulator->desc->name,
1782 supply,
1783 dev_name(&rdev->dev), rdev_get_name(rdev));
1784 goto fail;
1785 }
1786
1787 list_add(&new_node->list, ®ulator_map_list);
1788 mutex_unlock(®ulator_list_mutex);
1789
1790 return 0;
1791
1792fail:
1793 mutex_unlock(®ulator_list_mutex);
1794 kfree(new_node->dev_name);
1795 kfree(new_node);
1796 return -EBUSY;
1797}
1798
1799static void unset_regulator_supplies(struct regulator_dev *rdev)
1800{
1801 struct regulator_map *node, *n;
1802
1803 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1804 if (rdev == node->regulator) {
1805 list_del(&node->list);
1806 kfree(node->dev_name);
1807 kfree(node);
1808 }
1809 }
1810}
1811
1812#ifdef CONFIG_DEBUG_FS
1813static ssize_t constraint_flags_read_file(struct file *file,
1814 char __user *user_buf,
1815 size_t count, loff_t *ppos)
1816{
1817 const struct regulator *regulator = file->private_data;
1818 const struct regulation_constraints *c = regulator->rdev->constraints;
1819 char *buf;
1820 ssize_t ret;
1821
1822 if (!c)
1823 return 0;
1824
1825 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826 if (!buf)
1827 return -ENOMEM;
1828
1829 ret = snprintf(buf, PAGE_SIZE,
1830 "always_on: %u\n"
1831 "boot_on: %u\n"
1832 "apply_uV: %u\n"
1833 "ramp_disable: %u\n"
1834 "soft_start: %u\n"
1835 "pull_down: %u\n"
1836 "over_current_protection: %u\n",
1837 c->always_on,
1838 c->boot_on,
1839 c->apply_uV,
1840 c->ramp_disable,
1841 c->soft_start,
1842 c->pull_down,
1843 c->over_current_protection);
1844
1845 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846 kfree(buf);
1847
1848 return ret;
1849}
1850
1851#endif
1852
1853static const struct file_operations constraint_flags_fops = {
1854#ifdef CONFIG_DEBUG_FS
1855 .open = simple_open,
1856 .read = constraint_flags_read_file,
1857 .llseek = default_llseek,
1858#endif
1859};
1860
1861#define REG_STR_SIZE 64
1862
1863static struct regulator *create_regulator(struct regulator_dev *rdev,
1864 struct device *dev,
1865 const char *supply_name)
1866{
1867 struct regulator *regulator;
1868 int err = 0;
1869
1870 lockdep_assert_held_once(&rdev->mutex.base);
1871
1872 if (dev) {
1873 char buf[REG_STR_SIZE];
1874 int size;
1875
1876 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877 dev->kobj.name, supply_name);
1878 if (size >= REG_STR_SIZE)
1879 return NULL;
1880
1881 supply_name = kstrdup(buf, GFP_KERNEL);
1882 if (supply_name == NULL)
1883 return NULL;
1884 } else {
1885 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886 if (supply_name == NULL)
1887 return NULL;
1888 }
1889
1890 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891 if (regulator == NULL) {
1892 kfree_const(supply_name);
1893 return NULL;
1894 }
1895
1896 regulator->rdev = rdev;
1897 regulator->supply_name = supply_name;
1898
1899 list_add(®ulator->list, &rdev->consumer_list);
1900
1901 if (dev) {
1902 regulator->dev = dev;
1903
1904 /* Add a link to the device sysfs entry */
1905 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906 supply_name);
1907 if (err) {
1908 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909 dev->kobj.name, ERR_PTR(err));
1910 /* non-fatal */
1911 }
1912 }
1913
1914 if (err != -EEXIST)
1915 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916 if (IS_ERR(regulator->debugfs))
1917 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918
1919 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1920 ®ulator->uA_load);
1921 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1922 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1923 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1924 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1925 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1926 regulator, &constraint_flags_fops);
1927
1928 /*
1929 * Check now if the regulator is an always on regulator - if
1930 * it is then we don't need to do nearly so much work for
1931 * enable/disable calls.
1932 */
1933 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1934 _regulator_is_enabled(rdev))
1935 regulator->always_on = true;
1936
1937 return regulator;
1938}
1939
1940static int _regulator_get_enable_time(struct regulator_dev *rdev)
1941{
1942 if (rdev->constraints && rdev->constraints->enable_time)
1943 return rdev->constraints->enable_time;
1944 if (rdev->desc->ops->enable_time)
1945 return rdev->desc->ops->enable_time(rdev);
1946 return rdev->desc->enable_time;
1947}
1948
1949static struct regulator_supply_alias *regulator_find_supply_alias(
1950 struct device *dev, const char *supply)
1951{
1952 struct regulator_supply_alias *map;
1953
1954 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1955 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1956 return map;
1957
1958 return NULL;
1959}
1960
1961static void regulator_supply_alias(struct device **dev, const char **supply)
1962{
1963 struct regulator_supply_alias *map;
1964
1965 map = regulator_find_supply_alias(*dev, *supply);
1966 if (map) {
1967 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1968 *supply, map->alias_supply,
1969 dev_name(map->alias_dev));
1970 *dev = map->alias_dev;
1971 *supply = map->alias_supply;
1972 }
1973}
1974
1975static int regulator_match(struct device *dev, const void *data)
1976{
1977 struct regulator_dev *r = dev_to_rdev(dev);
1978
1979 return strcmp(rdev_get_name(r), data) == 0;
1980}
1981
1982static struct regulator_dev *regulator_lookup_by_name(const char *name)
1983{
1984 struct device *dev;
1985
1986 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1987
1988 return dev ? dev_to_rdev(dev) : NULL;
1989}
1990
1991/**
1992 * regulator_dev_lookup - lookup a regulator device.
1993 * @dev: device for regulator "consumer".
1994 * @supply: Supply name or regulator ID.
1995 *
1996 * If successful, returns a struct regulator_dev that corresponds to the name
1997 * @supply and with the embedded struct device refcount incremented by one.
1998 * The refcount must be dropped by calling put_device().
1999 * On failure one of the following ERR-PTR-encoded values is returned:
2000 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2001 * in the future.
2002 */
2003static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2004 const char *supply)
2005{
2006 struct regulator_dev *r = NULL;
2007 struct device_node *node;
2008 struct regulator_map *map;
2009 const char *devname = NULL;
2010
2011 regulator_supply_alias(&dev, &supply);
2012
2013 /* first do a dt based lookup */
2014 if (dev && dev->of_node) {
2015 node = of_get_regulator(dev, supply);
2016 if (node) {
2017 r = of_find_regulator_by_node(node);
2018 of_node_put(node);
2019 if (r)
2020 return r;
2021
2022 /*
2023 * We have a node, but there is no device.
2024 * assume it has not registered yet.
2025 */
2026 return ERR_PTR(-EPROBE_DEFER);
2027 }
2028 }
2029
2030 /* if not found, try doing it non-dt way */
2031 if (dev)
2032 devname = dev_name(dev);
2033
2034 mutex_lock(®ulator_list_mutex);
2035 list_for_each_entry(map, ®ulator_map_list, list) {
2036 /* If the mapping has a device set up it must match */
2037 if (map->dev_name &&
2038 (!devname || strcmp(map->dev_name, devname)))
2039 continue;
2040
2041 if (strcmp(map->supply, supply) == 0 &&
2042 get_device(&map->regulator->dev)) {
2043 r = map->regulator;
2044 break;
2045 }
2046 }
2047 mutex_unlock(®ulator_list_mutex);
2048
2049 if (r)
2050 return r;
2051
2052 r = regulator_lookup_by_name(supply);
2053 if (r)
2054 return r;
2055
2056 return ERR_PTR(-ENODEV);
2057}
2058
2059static int regulator_resolve_supply(struct regulator_dev *rdev)
2060{
2061 struct regulator_dev *r;
2062 struct device *dev = rdev->dev.parent;
2063 struct ww_acquire_ctx ww_ctx;
2064 int ret = 0;
2065
2066 /* No supply to resolve? */
2067 if (!rdev->supply_name)
2068 return 0;
2069
2070 /* Supply already resolved? (fast-path without locking contention) */
2071 if (rdev->supply)
2072 return 0;
2073
2074 r = regulator_dev_lookup(dev, rdev->supply_name);
2075 if (IS_ERR(r)) {
2076 ret = PTR_ERR(r);
2077
2078 /* Did the lookup explicitly defer for us? */
2079 if (ret == -EPROBE_DEFER)
2080 goto out;
2081
2082 if (have_full_constraints()) {
2083 r = dummy_regulator_rdev;
2084 get_device(&r->dev);
2085 } else {
2086 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2087 rdev->supply_name, rdev->desc->name);
2088 ret = -EPROBE_DEFER;
2089 goto out;
2090 }
2091 }
2092
2093 if (r == rdev) {
2094 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2095 rdev->desc->name, rdev->supply_name);
2096 if (!have_full_constraints()) {
2097 ret = -EINVAL;
2098 goto out;
2099 }
2100 r = dummy_regulator_rdev;
2101 get_device(&r->dev);
2102 }
2103
2104 /*
2105 * If the supply's parent device is not the same as the
2106 * regulator's parent device, then ensure the parent device
2107 * is bound before we resolve the supply, in case the parent
2108 * device get probe deferred and unregisters the supply.
2109 */
2110 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2111 if (!device_is_bound(r->dev.parent)) {
2112 put_device(&r->dev);
2113 ret = -EPROBE_DEFER;
2114 goto out;
2115 }
2116 }
2117
2118 /* Recursively resolve the supply of the supply */
2119 ret = regulator_resolve_supply(r);
2120 if (ret < 0) {
2121 put_device(&r->dev);
2122 goto out;
2123 }
2124
2125 /*
2126 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2127 * between rdev->supply null check and setting rdev->supply in
2128 * set_supply() from concurrent tasks.
2129 */
2130 regulator_lock_two(rdev, r, &ww_ctx);
2131
2132 /* Supply just resolved by a concurrent task? */
2133 if (rdev->supply) {
2134 regulator_unlock_two(rdev, r, &ww_ctx);
2135 put_device(&r->dev);
2136 goto out;
2137 }
2138
2139 ret = set_supply(rdev, r);
2140 if (ret < 0) {
2141 regulator_unlock_two(rdev, r, &ww_ctx);
2142 put_device(&r->dev);
2143 goto out;
2144 }
2145
2146 regulator_unlock_two(rdev, r, &ww_ctx);
2147
2148 /*
2149 * In set_machine_constraints() we may have turned this regulator on
2150 * but we couldn't propagate to the supply if it hadn't been resolved
2151 * yet. Do it now.
2152 */
2153 if (rdev->use_count) {
2154 ret = regulator_enable(rdev->supply);
2155 if (ret < 0) {
2156 _regulator_put(rdev->supply);
2157 rdev->supply = NULL;
2158 goto out;
2159 }
2160 }
2161
2162out:
2163 return ret;
2164}
2165
2166/* Internal regulator request function */
2167struct regulator *_regulator_get(struct device *dev, const char *id,
2168 enum regulator_get_type get_type)
2169{
2170 struct regulator_dev *rdev;
2171 struct regulator *regulator;
2172 struct device_link *link;
2173 int ret;
2174
2175 if (get_type >= MAX_GET_TYPE) {
2176 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2177 return ERR_PTR(-EINVAL);
2178 }
2179
2180 if (id == NULL) {
2181 pr_err("get() with no identifier\n");
2182 return ERR_PTR(-EINVAL);
2183 }
2184
2185 rdev = regulator_dev_lookup(dev, id);
2186 if (IS_ERR(rdev)) {
2187 ret = PTR_ERR(rdev);
2188
2189 /*
2190 * If regulator_dev_lookup() fails with error other
2191 * than -ENODEV our job here is done, we simply return it.
2192 */
2193 if (ret != -ENODEV)
2194 return ERR_PTR(ret);
2195
2196 if (!have_full_constraints()) {
2197 dev_warn(dev,
2198 "incomplete constraints, dummy supplies not allowed\n");
2199 return ERR_PTR(-ENODEV);
2200 }
2201
2202 switch (get_type) {
2203 case NORMAL_GET:
2204 /*
2205 * Assume that a regulator is physically present and
2206 * enabled, even if it isn't hooked up, and just
2207 * provide a dummy.
2208 */
2209 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2210 rdev = dummy_regulator_rdev;
2211 get_device(&rdev->dev);
2212 break;
2213
2214 case EXCLUSIVE_GET:
2215 dev_warn(dev,
2216 "dummy supplies not allowed for exclusive requests\n");
2217 fallthrough;
2218
2219 default:
2220 return ERR_PTR(-ENODEV);
2221 }
2222 }
2223
2224 if (rdev->exclusive) {
2225 regulator = ERR_PTR(-EPERM);
2226 put_device(&rdev->dev);
2227 return regulator;
2228 }
2229
2230 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2231 regulator = ERR_PTR(-EBUSY);
2232 put_device(&rdev->dev);
2233 return regulator;
2234 }
2235
2236 mutex_lock(®ulator_list_mutex);
2237 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2238 mutex_unlock(®ulator_list_mutex);
2239
2240 if (ret != 0) {
2241 regulator = ERR_PTR(-EPROBE_DEFER);
2242 put_device(&rdev->dev);
2243 return regulator;
2244 }
2245
2246 ret = regulator_resolve_supply(rdev);
2247 if (ret < 0) {
2248 regulator = ERR_PTR(ret);
2249 put_device(&rdev->dev);
2250 return regulator;
2251 }
2252
2253 if (!try_module_get(rdev->owner)) {
2254 regulator = ERR_PTR(-EPROBE_DEFER);
2255 put_device(&rdev->dev);
2256 return regulator;
2257 }
2258
2259 regulator_lock(rdev);
2260 regulator = create_regulator(rdev, dev, id);
2261 regulator_unlock(rdev);
2262 if (regulator == NULL) {
2263 regulator = ERR_PTR(-ENOMEM);
2264 module_put(rdev->owner);
2265 put_device(&rdev->dev);
2266 return regulator;
2267 }
2268
2269 rdev->open_count++;
2270 if (get_type == EXCLUSIVE_GET) {
2271 rdev->exclusive = 1;
2272
2273 ret = _regulator_is_enabled(rdev);
2274 if (ret > 0) {
2275 rdev->use_count = 1;
2276 regulator->enable_count = 1;
2277 } else {
2278 rdev->use_count = 0;
2279 regulator->enable_count = 0;
2280 }
2281 }
2282
2283 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2284 if (!IS_ERR_OR_NULL(link))
2285 regulator->device_link = true;
2286
2287 return regulator;
2288}
2289
2290/**
2291 * regulator_get - lookup and obtain a reference to a regulator.
2292 * @dev: device for regulator "consumer"
2293 * @id: Supply name or regulator ID.
2294 *
2295 * Returns a struct regulator corresponding to the regulator producer,
2296 * or IS_ERR() condition containing errno.
2297 *
2298 * Use of supply names configured via set_consumer_device_supply() is
2299 * strongly encouraged. It is recommended that the supply name used
2300 * should match the name used for the supply and/or the relevant
2301 * device pins in the datasheet.
2302 */
2303struct regulator *regulator_get(struct device *dev, const char *id)
2304{
2305 return _regulator_get(dev, id, NORMAL_GET);
2306}
2307EXPORT_SYMBOL_GPL(regulator_get);
2308
2309/**
2310 * regulator_get_exclusive - obtain exclusive access to a regulator.
2311 * @dev: device for regulator "consumer"
2312 * @id: Supply name or regulator ID.
2313 *
2314 * Returns a struct regulator corresponding to the regulator producer,
2315 * or IS_ERR() condition containing errno. Other consumers will be
2316 * unable to obtain this regulator while this reference is held and the
2317 * use count for the regulator will be initialised to reflect the current
2318 * state of the regulator.
2319 *
2320 * This is intended for use by consumers which cannot tolerate shared
2321 * use of the regulator such as those which need to force the
2322 * regulator off for correct operation of the hardware they are
2323 * controlling.
2324 *
2325 * Use of supply names configured via set_consumer_device_supply() is
2326 * strongly encouraged. It is recommended that the supply name used
2327 * should match the name used for the supply and/or the relevant
2328 * device pins in the datasheet.
2329 */
2330struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2331{
2332 return _regulator_get(dev, id, EXCLUSIVE_GET);
2333}
2334EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2335
2336/**
2337 * regulator_get_optional - obtain optional access to a regulator.
2338 * @dev: device for regulator "consumer"
2339 * @id: Supply name or regulator ID.
2340 *
2341 * Returns a struct regulator corresponding to the regulator producer,
2342 * or IS_ERR() condition containing errno.
2343 *
2344 * This is intended for use by consumers for devices which can have
2345 * some supplies unconnected in normal use, such as some MMC devices.
2346 * It can allow the regulator core to provide stub supplies for other
2347 * supplies requested using normal regulator_get() calls without
2348 * disrupting the operation of drivers that can handle absent
2349 * supplies.
2350 *
2351 * Use of supply names configured via set_consumer_device_supply() is
2352 * strongly encouraged. It is recommended that the supply name used
2353 * should match the name used for the supply and/or the relevant
2354 * device pins in the datasheet.
2355 */
2356struct regulator *regulator_get_optional(struct device *dev, const char *id)
2357{
2358 return _regulator_get(dev, id, OPTIONAL_GET);
2359}
2360EXPORT_SYMBOL_GPL(regulator_get_optional);
2361
2362static void destroy_regulator(struct regulator *regulator)
2363{
2364 struct regulator_dev *rdev = regulator->rdev;
2365
2366 debugfs_remove_recursive(regulator->debugfs);
2367
2368 if (regulator->dev) {
2369 if (regulator->device_link)
2370 device_link_remove(regulator->dev, &rdev->dev);
2371
2372 /* remove any sysfs entries */
2373 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2374 }
2375
2376 regulator_lock(rdev);
2377 list_del(®ulator->list);
2378
2379 rdev->open_count--;
2380 rdev->exclusive = 0;
2381 regulator_unlock(rdev);
2382
2383 kfree_const(regulator->supply_name);
2384 kfree(regulator);
2385}
2386
2387/* regulator_list_mutex lock held by regulator_put() */
2388static void _regulator_put(struct regulator *regulator)
2389{
2390 struct regulator_dev *rdev;
2391
2392 if (IS_ERR_OR_NULL(regulator))
2393 return;
2394
2395 lockdep_assert_held_once(®ulator_list_mutex);
2396
2397 /* Docs say you must disable before calling regulator_put() */
2398 WARN_ON(regulator->enable_count);
2399
2400 rdev = regulator->rdev;
2401
2402 destroy_regulator(regulator);
2403
2404 module_put(rdev->owner);
2405 put_device(&rdev->dev);
2406}
2407
2408/**
2409 * regulator_put - "free" the regulator source
2410 * @regulator: regulator source
2411 *
2412 * Note: drivers must ensure that all regulator_enable calls made on this
2413 * regulator source are balanced by regulator_disable calls prior to calling
2414 * this function.
2415 */
2416void regulator_put(struct regulator *regulator)
2417{
2418 mutex_lock(®ulator_list_mutex);
2419 _regulator_put(regulator);
2420 mutex_unlock(®ulator_list_mutex);
2421}
2422EXPORT_SYMBOL_GPL(regulator_put);
2423
2424/**
2425 * regulator_register_supply_alias - Provide device alias for supply lookup
2426 *
2427 * @dev: device that will be given as the regulator "consumer"
2428 * @id: Supply name or regulator ID
2429 * @alias_dev: device that should be used to lookup the supply
2430 * @alias_id: Supply name or regulator ID that should be used to lookup the
2431 * supply
2432 *
2433 * All lookups for id on dev will instead be conducted for alias_id on
2434 * alias_dev.
2435 */
2436int regulator_register_supply_alias(struct device *dev, const char *id,
2437 struct device *alias_dev,
2438 const char *alias_id)
2439{
2440 struct regulator_supply_alias *map;
2441
2442 map = regulator_find_supply_alias(dev, id);
2443 if (map)
2444 return -EEXIST;
2445
2446 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2447 if (!map)
2448 return -ENOMEM;
2449
2450 map->src_dev = dev;
2451 map->src_supply = id;
2452 map->alias_dev = alias_dev;
2453 map->alias_supply = alias_id;
2454
2455 list_add(&map->list, ®ulator_supply_alias_list);
2456
2457 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2458 id, dev_name(dev), alias_id, dev_name(alias_dev));
2459
2460 return 0;
2461}
2462EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2463
2464/**
2465 * regulator_unregister_supply_alias - Remove device alias
2466 *
2467 * @dev: device that will be given as the regulator "consumer"
2468 * @id: Supply name or regulator ID
2469 *
2470 * Remove a lookup alias if one exists for id on dev.
2471 */
2472void regulator_unregister_supply_alias(struct device *dev, const char *id)
2473{
2474 struct regulator_supply_alias *map;
2475
2476 map = regulator_find_supply_alias(dev, id);
2477 if (map) {
2478 list_del(&map->list);
2479 kfree(map);
2480 }
2481}
2482EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2483
2484/**
2485 * regulator_bulk_register_supply_alias - register multiple aliases
2486 *
2487 * @dev: device that will be given as the regulator "consumer"
2488 * @id: List of supply names or regulator IDs
2489 * @alias_dev: device that should be used to lookup the supply
2490 * @alias_id: List of supply names or regulator IDs that should be used to
2491 * lookup the supply
2492 * @num_id: Number of aliases to register
2493 *
2494 * @return 0 on success, an errno on failure.
2495 *
2496 * This helper function allows drivers to register several supply
2497 * aliases in one operation. If any of the aliases cannot be
2498 * registered any aliases that were registered will be removed
2499 * before returning to the caller.
2500 */
2501int regulator_bulk_register_supply_alias(struct device *dev,
2502 const char *const *id,
2503 struct device *alias_dev,
2504 const char *const *alias_id,
2505 int num_id)
2506{
2507 int i;
2508 int ret;
2509
2510 for (i = 0; i < num_id; ++i) {
2511 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2512 alias_id[i]);
2513 if (ret < 0)
2514 goto err;
2515 }
2516
2517 return 0;
2518
2519err:
2520 dev_err(dev,
2521 "Failed to create supply alias %s,%s -> %s,%s\n",
2522 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2523
2524 while (--i >= 0)
2525 regulator_unregister_supply_alias(dev, id[i]);
2526
2527 return ret;
2528}
2529EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2530
2531/**
2532 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2533 *
2534 * @dev: device that will be given as the regulator "consumer"
2535 * @id: List of supply names or regulator IDs
2536 * @num_id: Number of aliases to unregister
2537 *
2538 * This helper function allows drivers to unregister several supply
2539 * aliases in one operation.
2540 */
2541void regulator_bulk_unregister_supply_alias(struct device *dev,
2542 const char *const *id,
2543 int num_id)
2544{
2545 int i;
2546
2547 for (i = 0; i < num_id; ++i)
2548 regulator_unregister_supply_alias(dev, id[i]);
2549}
2550EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2551
2552
2553/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2554static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2555 const struct regulator_config *config)
2556{
2557 struct regulator_enable_gpio *pin, *new_pin;
2558 struct gpio_desc *gpiod;
2559
2560 gpiod = config->ena_gpiod;
2561 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2562
2563 mutex_lock(®ulator_list_mutex);
2564
2565 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2566 if (pin->gpiod == gpiod) {
2567 rdev_dbg(rdev, "GPIO is already used\n");
2568 goto update_ena_gpio_to_rdev;
2569 }
2570 }
2571
2572 if (new_pin == NULL) {
2573 mutex_unlock(®ulator_list_mutex);
2574 return -ENOMEM;
2575 }
2576
2577 pin = new_pin;
2578 new_pin = NULL;
2579
2580 pin->gpiod = gpiod;
2581 list_add(&pin->list, ®ulator_ena_gpio_list);
2582
2583update_ena_gpio_to_rdev:
2584 pin->request_count++;
2585 rdev->ena_pin = pin;
2586
2587 mutex_unlock(®ulator_list_mutex);
2588 kfree(new_pin);
2589
2590 return 0;
2591}
2592
2593static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2594{
2595 struct regulator_enable_gpio *pin, *n;
2596
2597 if (!rdev->ena_pin)
2598 return;
2599
2600 /* Free the GPIO only in case of no use */
2601 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2602 if (pin != rdev->ena_pin)
2603 continue;
2604
2605 if (--pin->request_count)
2606 break;
2607
2608 gpiod_put(pin->gpiod);
2609 list_del(&pin->list);
2610 kfree(pin);
2611 break;
2612 }
2613
2614 rdev->ena_pin = NULL;
2615}
2616
2617/**
2618 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2619 * @rdev: regulator_dev structure
2620 * @enable: enable GPIO at initial use?
2621 *
2622 * GPIO is enabled in case of initial use. (enable_count is 0)
2623 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2624 */
2625static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2626{
2627 struct regulator_enable_gpio *pin = rdev->ena_pin;
2628
2629 if (!pin)
2630 return -EINVAL;
2631
2632 if (enable) {
2633 /* Enable GPIO at initial use */
2634 if (pin->enable_count == 0)
2635 gpiod_set_value_cansleep(pin->gpiod, 1);
2636
2637 pin->enable_count++;
2638 } else {
2639 if (pin->enable_count > 1) {
2640 pin->enable_count--;
2641 return 0;
2642 }
2643
2644 /* Disable GPIO if not used */
2645 if (pin->enable_count <= 1) {
2646 gpiod_set_value_cansleep(pin->gpiod, 0);
2647 pin->enable_count = 0;
2648 }
2649 }
2650
2651 return 0;
2652}
2653
2654/**
2655 * _regulator_delay_helper - a delay helper function
2656 * @delay: time to delay in microseconds
2657 *
2658 * Delay for the requested amount of time as per the guidelines in:
2659 *
2660 * Documentation/timers/timers-howto.rst
2661 *
2662 * The assumption here is that these regulator operations will never used in
2663 * atomic context and therefore sleeping functions can be used.
2664 */
2665static void _regulator_delay_helper(unsigned int delay)
2666{
2667 unsigned int ms = delay / 1000;
2668 unsigned int us = delay % 1000;
2669
2670 if (ms > 0) {
2671 /*
2672 * For small enough values, handle super-millisecond
2673 * delays in the usleep_range() call below.
2674 */
2675 if (ms < 20)
2676 us += ms * 1000;
2677 else
2678 msleep(ms);
2679 }
2680
2681 /*
2682 * Give the scheduler some room to coalesce with any other
2683 * wakeup sources. For delays shorter than 10 us, don't even
2684 * bother setting up high-resolution timers and just busy-
2685 * loop.
2686 */
2687 if (us >= 10)
2688 usleep_range(us, us + 100);
2689 else
2690 udelay(us);
2691}
2692
2693/**
2694 * _regulator_check_status_enabled
2695 *
2696 * A helper function to check if the regulator status can be interpreted
2697 * as 'regulator is enabled'.
2698 * @rdev: the regulator device to check
2699 *
2700 * Return:
2701 * * 1 - if status shows regulator is in enabled state
2702 * * 0 - if not enabled state
2703 * * Error Value - as received from ops->get_status()
2704 */
2705static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2706{
2707 int ret = rdev->desc->ops->get_status(rdev);
2708
2709 if (ret < 0) {
2710 rdev_info(rdev, "get_status returned error: %d\n", ret);
2711 return ret;
2712 }
2713
2714 switch (ret) {
2715 case REGULATOR_STATUS_OFF:
2716 case REGULATOR_STATUS_ERROR:
2717 case REGULATOR_STATUS_UNDEFINED:
2718 return 0;
2719 default:
2720 return 1;
2721 }
2722}
2723
2724static int _regulator_do_enable(struct regulator_dev *rdev)
2725{
2726 int ret, delay;
2727
2728 /* Query before enabling in case configuration dependent. */
2729 ret = _regulator_get_enable_time(rdev);
2730 if (ret >= 0) {
2731 delay = ret;
2732 } else {
2733 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2734 delay = 0;
2735 }
2736
2737 trace_regulator_enable(rdev_get_name(rdev));
2738
2739 if (rdev->desc->off_on_delay) {
2740 /* if needed, keep a distance of off_on_delay from last time
2741 * this regulator was disabled.
2742 */
2743 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2744 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2745
2746 if (remaining > 0)
2747 _regulator_delay_helper(remaining);
2748 }
2749
2750 if (rdev->ena_pin) {
2751 if (!rdev->ena_gpio_state) {
2752 ret = regulator_ena_gpio_ctrl(rdev, true);
2753 if (ret < 0)
2754 return ret;
2755 rdev->ena_gpio_state = 1;
2756 }
2757 } else if (rdev->desc->ops->enable) {
2758 ret = rdev->desc->ops->enable(rdev);
2759 if (ret < 0)
2760 return ret;
2761 } else {
2762 return -EINVAL;
2763 }
2764
2765 /* Allow the regulator to ramp; it would be useful to extend
2766 * this for bulk operations so that the regulators can ramp
2767 * together.
2768 */
2769 trace_regulator_enable_delay(rdev_get_name(rdev));
2770
2771 /* If poll_enabled_time is set, poll upto the delay calculated
2772 * above, delaying poll_enabled_time uS to check if the regulator
2773 * actually got enabled.
2774 * If the regulator isn't enabled after our delay helper has expired,
2775 * return -ETIMEDOUT.
2776 */
2777 if (rdev->desc->poll_enabled_time) {
2778 int time_remaining = delay;
2779
2780 while (time_remaining > 0) {
2781 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2782
2783 if (rdev->desc->ops->get_status) {
2784 ret = _regulator_check_status_enabled(rdev);
2785 if (ret < 0)
2786 return ret;
2787 else if (ret)
2788 break;
2789 } else if (rdev->desc->ops->is_enabled(rdev))
2790 break;
2791
2792 time_remaining -= rdev->desc->poll_enabled_time;
2793 }
2794
2795 if (time_remaining <= 0) {
2796 rdev_err(rdev, "Enabled check timed out\n");
2797 return -ETIMEDOUT;
2798 }
2799 } else {
2800 _regulator_delay_helper(delay);
2801 }
2802
2803 trace_regulator_enable_complete(rdev_get_name(rdev));
2804
2805 return 0;
2806}
2807
2808/**
2809 * _regulator_handle_consumer_enable - handle that a consumer enabled
2810 * @regulator: regulator source
2811 *
2812 * Some things on a regulator consumer (like the contribution towards total
2813 * load on the regulator) only have an effect when the consumer wants the
2814 * regulator enabled. Explained in example with two consumers of the same
2815 * regulator:
2816 * consumer A: set_load(100); => total load = 0
2817 * consumer A: regulator_enable(); => total load = 100
2818 * consumer B: set_load(1000); => total load = 100
2819 * consumer B: regulator_enable(); => total load = 1100
2820 * consumer A: regulator_disable(); => total_load = 1000
2821 *
2822 * This function (together with _regulator_handle_consumer_disable) is
2823 * responsible for keeping track of the refcount for a given regulator consumer
2824 * and applying / unapplying these things.
2825 *
2826 * Returns 0 upon no error; -error upon error.
2827 */
2828static int _regulator_handle_consumer_enable(struct regulator *regulator)
2829{
2830 int ret;
2831 struct regulator_dev *rdev = regulator->rdev;
2832
2833 lockdep_assert_held_once(&rdev->mutex.base);
2834
2835 regulator->enable_count++;
2836 if (regulator->uA_load && regulator->enable_count == 1) {
2837 ret = drms_uA_update(rdev);
2838 if (ret)
2839 regulator->enable_count--;
2840 return ret;
2841 }
2842
2843 return 0;
2844}
2845
2846/**
2847 * _regulator_handle_consumer_disable - handle that a consumer disabled
2848 * @regulator: regulator source
2849 *
2850 * The opposite of _regulator_handle_consumer_enable().
2851 *
2852 * Returns 0 upon no error; -error upon error.
2853 */
2854static int _regulator_handle_consumer_disable(struct regulator *regulator)
2855{
2856 struct regulator_dev *rdev = regulator->rdev;
2857
2858 lockdep_assert_held_once(&rdev->mutex.base);
2859
2860 if (!regulator->enable_count) {
2861 rdev_err(rdev, "Underflow of regulator enable count\n");
2862 return -EINVAL;
2863 }
2864
2865 regulator->enable_count--;
2866 if (regulator->uA_load && regulator->enable_count == 0)
2867 return drms_uA_update(rdev);
2868
2869 return 0;
2870}
2871
2872/* locks held by regulator_enable() */
2873static int _regulator_enable(struct regulator *regulator)
2874{
2875 struct regulator_dev *rdev = regulator->rdev;
2876 int ret;
2877
2878 lockdep_assert_held_once(&rdev->mutex.base);
2879
2880 if (rdev->use_count == 0 && rdev->supply) {
2881 ret = _regulator_enable(rdev->supply);
2882 if (ret < 0)
2883 return ret;
2884 }
2885
2886 /* balance only if there are regulators coupled */
2887 if (rdev->coupling_desc.n_coupled > 1) {
2888 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889 if (ret < 0)
2890 goto err_disable_supply;
2891 }
2892
2893 ret = _regulator_handle_consumer_enable(regulator);
2894 if (ret < 0)
2895 goto err_disable_supply;
2896
2897 if (rdev->use_count == 0) {
2898 /*
2899 * The regulator may already be enabled if it's not switchable
2900 * or was left on
2901 */
2902 ret = _regulator_is_enabled(rdev);
2903 if (ret == -EINVAL || ret == 0) {
2904 if (!regulator_ops_is_valid(rdev,
2905 REGULATOR_CHANGE_STATUS)) {
2906 ret = -EPERM;
2907 goto err_consumer_disable;
2908 }
2909
2910 ret = _regulator_do_enable(rdev);
2911 if (ret < 0)
2912 goto err_consumer_disable;
2913
2914 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2915 NULL);
2916 } else if (ret < 0) {
2917 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2918 goto err_consumer_disable;
2919 }
2920 /* Fallthrough on positive return values - already enabled */
2921 }
2922
2923 if (regulator->enable_count == 1)
2924 rdev->use_count++;
2925
2926 return 0;
2927
2928err_consumer_disable:
2929 _regulator_handle_consumer_disable(regulator);
2930
2931err_disable_supply:
2932 if (rdev->use_count == 0 && rdev->supply)
2933 _regulator_disable(rdev->supply);
2934
2935 return ret;
2936}
2937
2938/**
2939 * regulator_enable - enable regulator output
2940 * @regulator: regulator source
2941 *
2942 * Request that the regulator be enabled with the regulator output at
2943 * the predefined voltage or current value. Calls to regulator_enable()
2944 * must be balanced with calls to regulator_disable().
2945 *
2946 * NOTE: the output value can be set by other drivers, boot loader or may be
2947 * hardwired in the regulator.
2948 */
2949int regulator_enable(struct regulator *regulator)
2950{
2951 struct regulator_dev *rdev = regulator->rdev;
2952 struct ww_acquire_ctx ww_ctx;
2953 int ret;
2954
2955 regulator_lock_dependent(rdev, &ww_ctx);
2956 ret = _regulator_enable(regulator);
2957 regulator_unlock_dependent(rdev, &ww_ctx);
2958
2959 return ret;
2960}
2961EXPORT_SYMBOL_GPL(regulator_enable);
2962
2963static int _regulator_do_disable(struct regulator_dev *rdev)
2964{
2965 int ret;
2966
2967 trace_regulator_disable(rdev_get_name(rdev));
2968
2969 if (rdev->ena_pin) {
2970 if (rdev->ena_gpio_state) {
2971 ret = regulator_ena_gpio_ctrl(rdev, false);
2972 if (ret < 0)
2973 return ret;
2974 rdev->ena_gpio_state = 0;
2975 }
2976
2977 } else if (rdev->desc->ops->disable) {
2978 ret = rdev->desc->ops->disable(rdev);
2979 if (ret != 0)
2980 return ret;
2981 }
2982
2983 if (rdev->desc->off_on_delay)
2984 rdev->last_off = ktime_get_boottime();
2985
2986 trace_regulator_disable_complete(rdev_get_name(rdev));
2987
2988 return 0;
2989}
2990
2991/* locks held by regulator_disable() */
2992static int _regulator_disable(struct regulator *regulator)
2993{
2994 struct regulator_dev *rdev = regulator->rdev;
2995 int ret = 0;
2996
2997 lockdep_assert_held_once(&rdev->mutex.base);
2998
2999 if (WARN(regulator->enable_count == 0,
3000 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3001 return -EIO;
3002
3003 if (regulator->enable_count == 1) {
3004 /* disabling last enable_count from this regulator */
3005 /* are we the last user and permitted to disable ? */
3006 if (rdev->use_count == 1 &&
3007 (rdev->constraints && !rdev->constraints->always_on)) {
3008
3009 /* we are last user */
3010 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3011 ret = _notifier_call_chain(rdev,
3012 REGULATOR_EVENT_PRE_DISABLE,
3013 NULL);
3014 if (ret & NOTIFY_STOP_MASK)
3015 return -EINVAL;
3016
3017 ret = _regulator_do_disable(rdev);
3018 if (ret < 0) {
3019 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3020 _notifier_call_chain(rdev,
3021 REGULATOR_EVENT_ABORT_DISABLE,
3022 NULL);
3023 return ret;
3024 }
3025 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3026 NULL);
3027 }
3028
3029 rdev->use_count = 0;
3030 } else if (rdev->use_count > 1) {
3031 rdev->use_count--;
3032 }
3033 }
3034
3035 if (ret == 0)
3036 ret = _regulator_handle_consumer_disable(regulator);
3037
3038 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3039 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3040
3041 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3042 ret = _regulator_disable(rdev->supply);
3043
3044 return ret;
3045}
3046
3047/**
3048 * regulator_disable - disable regulator output
3049 * @regulator: regulator source
3050 *
3051 * Disable the regulator output voltage or current. Calls to
3052 * regulator_enable() must be balanced with calls to
3053 * regulator_disable().
3054 *
3055 * NOTE: this will only disable the regulator output if no other consumer
3056 * devices have it enabled, the regulator device supports disabling and
3057 * machine constraints permit this operation.
3058 */
3059int regulator_disable(struct regulator *regulator)
3060{
3061 struct regulator_dev *rdev = regulator->rdev;
3062 struct ww_acquire_ctx ww_ctx;
3063 int ret;
3064
3065 regulator_lock_dependent(rdev, &ww_ctx);
3066 ret = _regulator_disable(regulator);
3067 regulator_unlock_dependent(rdev, &ww_ctx);
3068
3069 return ret;
3070}
3071EXPORT_SYMBOL_GPL(regulator_disable);
3072
3073/* locks held by regulator_force_disable() */
3074static int _regulator_force_disable(struct regulator_dev *rdev)
3075{
3076 int ret = 0;
3077
3078 lockdep_assert_held_once(&rdev->mutex.base);
3079
3080 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3081 REGULATOR_EVENT_PRE_DISABLE, NULL);
3082 if (ret & NOTIFY_STOP_MASK)
3083 return -EINVAL;
3084
3085 ret = _regulator_do_disable(rdev);
3086 if (ret < 0) {
3087 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3088 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3089 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3090 return ret;
3091 }
3092
3093 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3094 REGULATOR_EVENT_DISABLE, NULL);
3095
3096 return 0;
3097}
3098
3099/**
3100 * regulator_force_disable - force disable regulator output
3101 * @regulator: regulator source
3102 *
3103 * Forcibly disable the regulator output voltage or current.
3104 * NOTE: this *will* disable the regulator output even if other consumer
3105 * devices have it enabled. This should be used for situations when device
3106 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3107 */
3108int regulator_force_disable(struct regulator *regulator)
3109{
3110 struct regulator_dev *rdev = regulator->rdev;
3111 struct ww_acquire_ctx ww_ctx;
3112 int ret;
3113
3114 regulator_lock_dependent(rdev, &ww_ctx);
3115
3116 ret = _regulator_force_disable(regulator->rdev);
3117
3118 if (rdev->coupling_desc.n_coupled > 1)
3119 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3120
3121 if (regulator->uA_load) {
3122 regulator->uA_load = 0;
3123 ret = drms_uA_update(rdev);
3124 }
3125
3126 if (rdev->use_count != 0 && rdev->supply)
3127 _regulator_disable(rdev->supply);
3128
3129 regulator_unlock_dependent(rdev, &ww_ctx);
3130
3131 return ret;
3132}
3133EXPORT_SYMBOL_GPL(regulator_force_disable);
3134
3135static void regulator_disable_work(struct work_struct *work)
3136{
3137 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3138 disable_work.work);
3139 struct ww_acquire_ctx ww_ctx;
3140 int count, i, ret;
3141 struct regulator *regulator;
3142 int total_count = 0;
3143
3144 regulator_lock_dependent(rdev, &ww_ctx);
3145
3146 /*
3147 * Workqueue functions queue the new work instance while the previous
3148 * work instance is being processed. Cancel the queued work instance
3149 * as the work instance under processing does the job of the queued
3150 * work instance.
3151 */
3152 cancel_delayed_work(&rdev->disable_work);
3153
3154 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3155 count = regulator->deferred_disables;
3156
3157 if (!count)
3158 continue;
3159
3160 total_count += count;
3161 regulator->deferred_disables = 0;
3162
3163 for (i = 0; i < count; i++) {
3164 ret = _regulator_disable(regulator);
3165 if (ret != 0)
3166 rdev_err(rdev, "Deferred disable failed: %pe\n",
3167 ERR_PTR(ret));
3168 }
3169 }
3170 WARN_ON(!total_count);
3171
3172 if (rdev->coupling_desc.n_coupled > 1)
3173 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3174
3175 regulator_unlock_dependent(rdev, &ww_ctx);
3176}
3177
3178/**
3179 * regulator_disable_deferred - disable regulator output with delay
3180 * @regulator: regulator source
3181 * @ms: milliseconds until the regulator is disabled
3182 *
3183 * Execute regulator_disable() on the regulator after a delay. This
3184 * is intended for use with devices that require some time to quiesce.
3185 *
3186 * NOTE: this will only disable the regulator output if no other consumer
3187 * devices have it enabled, the regulator device supports disabling and
3188 * machine constraints permit this operation.
3189 */
3190int regulator_disable_deferred(struct regulator *regulator, int ms)
3191{
3192 struct regulator_dev *rdev = regulator->rdev;
3193
3194 if (!ms)
3195 return regulator_disable(regulator);
3196
3197 regulator_lock(rdev);
3198 regulator->deferred_disables++;
3199 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3200 msecs_to_jiffies(ms));
3201 regulator_unlock(rdev);
3202
3203 return 0;
3204}
3205EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3206
3207static int _regulator_is_enabled(struct regulator_dev *rdev)
3208{
3209 /* A GPIO control always takes precedence */
3210 if (rdev->ena_pin)
3211 return rdev->ena_gpio_state;
3212
3213 /* If we don't know then assume that the regulator is always on */
3214 if (!rdev->desc->ops->is_enabled)
3215 return 1;
3216
3217 return rdev->desc->ops->is_enabled(rdev);
3218}
3219
3220static int _regulator_list_voltage(struct regulator_dev *rdev,
3221 unsigned selector, int lock)
3222{
3223 const struct regulator_ops *ops = rdev->desc->ops;
3224 int ret;
3225
3226 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3227 return rdev->desc->fixed_uV;
3228
3229 if (ops->list_voltage) {
3230 if (selector >= rdev->desc->n_voltages)
3231 return -EINVAL;
3232 if (selector < rdev->desc->linear_min_sel)
3233 return 0;
3234 if (lock)
3235 regulator_lock(rdev);
3236 ret = ops->list_voltage(rdev, selector);
3237 if (lock)
3238 regulator_unlock(rdev);
3239 } else if (rdev->is_switch && rdev->supply) {
3240 ret = _regulator_list_voltage(rdev->supply->rdev,
3241 selector, lock);
3242 } else {
3243 return -EINVAL;
3244 }
3245
3246 if (ret > 0) {
3247 if (ret < rdev->constraints->min_uV)
3248 ret = 0;
3249 else if (ret > rdev->constraints->max_uV)
3250 ret = 0;
3251 }
3252
3253 return ret;
3254}
3255
3256/**
3257 * regulator_is_enabled - is the regulator output enabled
3258 * @regulator: regulator source
3259 *
3260 * Returns positive if the regulator driver backing the source/client
3261 * has requested that the device be enabled, zero if it hasn't, else a
3262 * negative errno code.
3263 *
3264 * Note that the device backing this regulator handle can have multiple
3265 * users, so it might be enabled even if regulator_enable() was never
3266 * called for this particular source.
3267 */
3268int regulator_is_enabled(struct regulator *regulator)
3269{
3270 int ret;
3271
3272 if (regulator->always_on)
3273 return 1;
3274
3275 regulator_lock(regulator->rdev);
3276 ret = _regulator_is_enabled(regulator->rdev);
3277 regulator_unlock(regulator->rdev);
3278
3279 return ret;
3280}
3281EXPORT_SYMBOL_GPL(regulator_is_enabled);
3282
3283/**
3284 * regulator_count_voltages - count regulator_list_voltage() selectors
3285 * @regulator: regulator source
3286 *
3287 * Returns number of selectors, or negative errno. Selectors are
3288 * numbered starting at zero, and typically correspond to bitfields
3289 * in hardware registers.
3290 */
3291int regulator_count_voltages(struct regulator *regulator)
3292{
3293 struct regulator_dev *rdev = regulator->rdev;
3294
3295 if (rdev->desc->n_voltages)
3296 return rdev->desc->n_voltages;
3297
3298 if (!rdev->is_switch || !rdev->supply)
3299 return -EINVAL;
3300
3301 return regulator_count_voltages(rdev->supply);
3302}
3303EXPORT_SYMBOL_GPL(regulator_count_voltages);
3304
3305/**
3306 * regulator_list_voltage - enumerate supported voltages
3307 * @regulator: regulator source
3308 * @selector: identify voltage to list
3309 * Context: can sleep
3310 *
3311 * Returns a voltage that can be passed to @regulator_set_voltage(),
3312 * zero if this selector code can't be used on this system, or a
3313 * negative errno.
3314 */
3315int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3316{
3317 return _regulator_list_voltage(regulator->rdev, selector, 1);
3318}
3319EXPORT_SYMBOL_GPL(regulator_list_voltage);
3320
3321/**
3322 * regulator_get_regmap - get the regulator's register map
3323 * @regulator: regulator source
3324 *
3325 * Returns the register map for the given regulator, or an ERR_PTR value
3326 * if the regulator doesn't use regmap.
3327 */
3328struct regmap *regulator_get_regmap(struct regulator *regulator)
3329{
3330 struct regmap *map = regulator->rdev->regmap;
3331
3332 return map ? map : ERR_PTR(-EOPNOTSUPP);
3333}
3334
3335/**
3336 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3337 * @regulator: regulator source
3338 * @vsel_reg: voltage selector register, output parameter
3339 * @vsel_mask: mask for voltage selector bitfield, output parameter
3340 *
3341 * Returns the hardware register offset and bitmask used for setting the
3342 * regulator voltage. This might be useful when configuring voltage-scaling
3343 * hardware or firmware that can make I2C requests behind the kernel's back,
3344 * for example.
3345 *
3346 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3347 * and 0 is returned, otherwise a negative errno is returned.
3348 */
3349int regulator_get_hardware_vsel_register(struct regulator *regulator,
3350 unsigned *vsel_reg,
3351 unsigned *vsel_mask)
3352{
3353 struct regulator_dev *rdev = regulator->rdev;
3354 const struct regulator_ops *ops = rdev->desc->ops;
3355
3356 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3357 return -EOPNOTSUPP;
3358
3359 *vsel_reg = rdev->desc->vsel_reg;
3360 *vsel_mask = rdev->desc->vsel_mask;
3361
3362 return 0;
3363}
3364EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3365
3366/**
3367 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3368 * @regulator: regulator source
3369 * @selector: identify voltage to list
3370 *
3371 * Converts the selector to a hardware-specific voltage selector that can be
3372 * directly written to the regulator registers. The address of the voltage
3373 * register can be determined by calling @regulator_get_hardware_vsel_register.
3374 *
3375 * On error a negative errno is returned.
3376 */
3377int regulator_list_hardware_vsel(struct regulator *regulator,
3378 unsigned selector)
3379{
3380 struct regulator_dev *rdev = regulator->rdev;
3381 const struct regulator_ops *ops = rdev->desc->ops;
3382
3383 if (selector >= rdev->desc->n_voltages)
3384 return -EINVAL;
3385 if (selector < rdev->desc->linear_min_sel)
3386 return 0;
3387 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3388 return -EOPNOTSUPP;
3389
3390 return selector;
3391}
3392EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3393
3394/**
3395 * regulator_get_linear_step - return the voltage step size between VSEL values
3396 * @regulator: regulator source
3397 *
3398 * Returns the voltage step size between VSEL values for linear
3399 * regulators, or return 0 if the regulator isn't a linear regulator.
3400 */
3401unsigned int regulator_get_linear_step(struct regulator *regulator)
3402{
3403 struct regulator_dev *rdev = regulator->rdev;
3404
3405 return rdev->desc->uV_step;
3406}
3407EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3408
3409/**
3410 * regulator_is_supported_voltage - check if a voltage range can be supported
3411 *
3412 * @regulator: Regulator to check.
3413 * @min_uV: Minimum required voltage in uV.
3414 * @max_uV: Maximum required voltage in uV.
3415 *
3416 * Returns a boolean.
3417 */
3418int regulator_is_supported_voltage(struct regulator *regulator,
3419 int min_uV, int max_uV)
3420{
3421 struct regulator_dev *rdev = regulator->rdev;
3422 int i, voltages, ret;
3423
3424 /* If we can't change voltage check the current voltage */
3425 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3426 ret = regulator_get_voltage(regulator);
3427 if (ret >= 0)
3428 return min_uV <= ret && ret <= max_uV;
3429 else
3430 return ret;
3431 }
3432
3433 /* Any voltage within constrains range is fine? */
3434 if (rdev->desc->continuous_voltage_range)
3435 return min_uV >= rdev->constraints->min_uV &&
3436 max_uV <= rdev->constraints->max_uV;
3437
3438 ret = regulator_count_voltages(regulator);
3439 if (ret < 0)
3440 return 0;
3441 voltages = ret;
3442
3443 for (i = 0; i < voltages; i++) {
3444 ret = regulator_list_voltage(regulator, i);
3445
3446 if (ret >= min_uV && ret <= max_uV)
3447 return 1;
3448 }
3449
3450 return 0;
3451}
3452EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3453
3454static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3455 int max_uV)
3456{
3457 const struct regulator_desc *desc = rdev->desc;
3458
3459 if (desc->ops->map_voltage)
3460 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3461
3462 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3463 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3464
3465 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3466 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3467
3468 if (desc->ops->list_voltage ==
3469 regulator_list_voltage_pickable_linear_range)
3470 return regulator_map_voltage_pickable_linear_range(rdev,
3471 min_uV, max_uV);
3472
3473 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3474}
3475
3476static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3477 int min_uV, int max_uV,
3478 unsigned *selector)
3479{
3480 struct pre_voltage_change_data data;
3481 int ret;
3482
3483 data.old_uV = regulator_get_voltage_rdev(rdev);
3484 data.min_uV = min_uV;
3485 data.max_uV = max_uV;
3486 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3487 &data);
3488 if (ret & NOTIFY_STOP_MASK)
3489 return -EINVAL;
3490
3491 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3492 if (ret >= 0)
3493 return ret;
3494
3495 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3496 (void *)data.old_uV);
3497
3498 return ret;
3499}
3500
3501static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3502 int uV, unsigned selector)
3503{
3504 struct pre_voltage_change_data data;
3505 int ret;
3506
3507 data.old_uV = regulator_get_voltage_rdev(rdev);
3508 data.min_uV = uV;
3509 data.max_uV = uV;
3510 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3511 &data);
3512 if (ret & NOTIFY_STOP_MASK)
3513 return -EINVAL;
3514
3515 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3516 if (ret >= 0)
3517 return ret;
3518
3519 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3520 (void *)data.old_uV);
3521
3522 return ret;
3523}
3524
3525static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3526 int uV, int new_selector)
3527{
3528 const struct regulator_ops *ops = rdev->desc->ops;
3529 int diff, old_sel, curr_sel, ret;
3530
3531 /* Stepping is only needed if the regulator is enabled. */
3532 if (!_regulator_is_enabled(rdev))
3533 goto final_set;
3534
3535 if (!ops->get_voltage_sel)
3536 return -EINVAL;
3537
3538 old_sel = ops->get_voltage_sel(rdev);
3539 if (old_sel < 0)
3540 return old_sel;
3541
3542 diff = new_selector - old_sel;
3543 if (diff == 0)
3544 return 0; /* No change needed. */
3545
3546 if (diff > 0) {
3547 /* Stepping up. */
3548 for (curr_sel = old_sel + rdev->desc->vsel_step;
3549 curr_sel < new_selector;
3550 curr_sel += rdev->desc->vsel_step) {
3551 /*
3552 * Call the callback directly instead of using
3553 * _regulator_call_set_voltage_sel() as we don't
3554 * want to notify anyone yet. Same in the branch
3555 * below.
3556 */
3557 ret = ops->set_voltage_sel(rdev, curr_sel);
3558 if (ret)
3559 goto try_revert;
3560 }
3561 } else {
3562 /* Stepping down. */
3563 for (curr_sel = old_sel - rdev->desc->vsel_step;
3564 curr_sel > new_selector;
3565 curr_sel -= rdev->desc->vsel_step) {
3566 ret = ops->set_voltage_sel(rdev, curr_sel);
3567 if (ret)
3568 goto try_revert;
3569 }
3570 }
3571
3572final_set:
3573 /* The final selector will trigger the notifiers. */
3574 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3575
3576try_revert:
3577 /*
3578 * At least try to return to the previous voltage if setting a new
3579 * one failed.
3580 */
3581 (void)ops->set_voltage_sel(rdev, old_sel);
3582 return ret;
3583}
3584
3585static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3586 int old_uV, int new_uV)
3587{
3588 unsigned int ramp_delay = 0;
3589
3590 if (rdev->constraints->ramp_delay)
3591 ramp_delay = rdev->constraints->ramp_delay;
3592 else if (rdev->desc->ramp_delay)
3593 ramp_delay = rdev->desc->ramp_delay;
3594 else if (rdev->constraints->settling_time)
3595 return rdev->constraints->settling_time;
3596 else if (rdev->constraints->settling_time_up &&
3597 (new_uV > old_uV))
3598 return rdev->constraints->settling_time_up;
3599 else if (rdev->constraints->settling_time_down &&
3600 (new_uV < old_uV))
3601 return rdev->constraints->settling_time_down;
3602
3603 if (ramp_delay == 0)
3604 return 0;
3605
3606 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3607}
3608
3609static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3610 int min_uV, int max_uV)
3611{
3612 int ret;
3613 int delay = 0;
3614 int best_val = 0;
3615 unsigned int selector;
3616 int old_selector = -1;
3617 const struct regulator_ops *ops = rdev->desc->ops;
3618 int old_uV = regulator_get_voltage_rdev(rdev);
3619
3620 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3621
3622 min_uV += rdev->constraints->uV_offset;
3623 max_uV += rdev->constraints->uV_offset;
3624
3625 /*
3626 * If we can't obtain the old selector there is not enough
3627 * info to call set_voltage_time_sel().
3628 */
3629 if (_regulator_is_enabled(rdev) &&
3630 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3631 old_selector = ops->get_voltage_sel(rdev);
3632 if (old_selector < 0)
3633 return old_selector;
3634 }
3635
3636 if (ops->set_voltage) {
3637 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3638 &selector);
3639
3640 if (ret >= 0) {
3641 if (ops->list_voltage)
3642 best_val = ops->list_voltage(rdev,
3643 selector);
3644 else
3645 best_val = regulator_get_voltage_rdev(rdev);
3646 }
3647
3648 } else if (ops->set_voltage_sel) {
3649 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3650 if (ret >= 0) {
3651 best_val = ops->list_voltage(rdev, ret);
3652 if (min_uV <= best_val && max_uV >= best_val) {
3653 selector = ret;
3654 if (old_selector == selector)
3655 ret = 0;
3656 else if (rdev->desc->vsel_step)
3657 ret = _regulator_set_voltage_sel_step(
3658 rdev, best_val, selector);
3659 else
3660 ret = _regulator_call_set_voltage_sel(
3661 rdev, best_val, selector);
3662 } else {
3663 ret = -EINVAL;
3664 }
3665 }
3666 } else {
3667 ret = -EINVAL;
3668 }
3669
3670 if (ret)
3671 goto out;
3672
3673 if (ops->set_voltage_time_sel) {
3674 /*
3675 * Call set_voltage_time_sel if successfully obtained
3676 * old_selector
3677 */
3678 if (old_selector >= 0 && old_selector != selector)
3679 delay = ops->set_voltage_time_sel(rdev, old_selector,
3680 selector);
3681 } else {
3682 if (old_uV != best_val) {
3683 if (ops->set_voltage_time)
3684 delay = ops->set_voltage_time(rdev, old_uV,
3685 best_val);
3686 else
3687 delay = _regulator_set_voltage_time(rdev,
3688 old_uV,
3689 best_val);
3690 }
3691 }
3692
3693 if (delay < 0) {
3694 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3695 delay = 0;
3696 }
3697
3698 /* Insert any necessary delays */
3699 _regulator_delay_helper(delay);
3700
3701 if (best_val >= 0) {
3702 unsigned long data = best_val;
3703
3704 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3705 (void *)data);
3706 }
3707
3708out:
3709 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3710
3711 return ret;
3712}
3713
3714static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3715 int min_uV, int max_uV, suspend_state_t state)
3716{
3717 struct regulator_state *rstate;
3718 int uV, sel;
3719
3720 rstate = regulator_get_suspend_state(rdev, state);
3721 if (rstate == NULL)
3722 return -EINVAL;
3723
3724 if (min_uV < rstate->min_uV)
3725 min_uV = rstate->min_uV;
3726 if (max_uV > rstate->max_uV)
3727 max_uV = rstate->max_uV;
3728
3729 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3730 if (sel < 0)
3731 return sel;
3732
3733 uV = rdev->desc->ops->list_voltage(rdev, sel);
3734 if (uV >= min_uV && uV <= max_uV)
3735 rstate->uV = uV;
3736
3737 return 0;
3738}
3739
3740static int regulator_set_voltage_unlocked(struct regulator *regulator,
3741 int min_uV, int max_uV,
3742 suspend_state_t state)
3743{
3744 struct regulator_dev *rdev = regulator->rdev;
3745 struct regulator_voltage *voltage = ®ulator->voltage[state];
3746 int ret = 0;
3747 int old_min_uV, old_max_uV;
3748 int current_uV;
3749
3750 /* If we're setting the same range as last time the change
3751 * should be a noop (some cpufreq implementations use the same
3752 * voltage for multiple frequencies, for example).
3753 */
3754 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3755 goto out;
3756
3757 /* If we're trying to set a range that overlaps the current voltage,
3758 * return successfully even though the regulator does not support
3759 * changing the voltage.
3760 */
3761 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3762 current_uV = regulator_get_voltage_rdev(rdev);
3763 if (min_uV <= current_uV && current_uV <= max_uV) {
3764 voltage->min_uV = min_uV;
3765 voltage->max_uV = max_uV;
3766 goto out;
3767 }
3768 }
3769
3770 /* sanity check */
3771 if (!rdev->desc->ops->set_voltage &&
3772 !rdev->desc->ops->set_voltage_sel) {
3773 ret = -EINVAL;
3774 goto out;
3775 }
3776
3777 /* constraints check */
3778 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3779 if (ret < 0)
3780 goto out;
3781
3782 /* restore original values in case of error */
3783 old_min_uV = voltage->min_uV;
3784 old_max_uV = voltage->max_uV;
3785 voltage->min_uV = min_uV;
3786 voltage->max_uV = max_uV;
3787
3788 /* for not coupled regulators this will just set the voltage */
3789 ret = regulator_balance_voltage(rdev, state);
3790 if (ret < 0) {
3791 voltage->min_uV = old_min_uV;
3792 voltage->max_uV = old_max_uV;
3793 }
3794
3795out:
3796 return ret;
3797}
3798
3799int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3800 int max_uV, suspend_state_t state)
3801{
3802 int best_supply_uV = 0;
3803 int supply_change_uV = 0;
3804 int ret;
3805
3806 if (rdev->supply &&
3807 regulator_ops_is_valid(rdev->supply->rdev,
3808 REGULATOR_CHANGE_VOLTAGE) &&
3809 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3810 rdev->desc->ops->get_voltage_sel))) {
3811 int current_supply_uV;
3812 int selector;
3813
3814 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3815 if (selector < 0) {
3816 ret = selector;
3817 goto out;
3818 }
3819
3820 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3821 if (best_supply_uV < 0) {
3822 ret = best_supply_uV;
3823 goto out;
3824 }
3825
3826 best_supply_uV += rdev->desc->min_dropout_uV;
3827
3828 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3829 if (current_supply_uV < 0) {
3830 ret = current_supply_uV;
3831 goto out;
3832 }
3833
3834 supply_change_uV = best_supply_uV - current_supply_uV;
3835 }
3836
3837 if (supply_change_uV > 0) {
3838 ret = regulator_set_voltage_unlocked(rdev->supply,
3839 best_supply_uV, INT_MAX, state);
3840 if (ret) {
3841 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3842 ERR_PTR(ret));
3843 goto out;
3844 }
3845 }
3846
3847 if (state == PM_SUSPEND_ON)
3848 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3849 else
3850 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3851 max_uV, state);
3852 if (ret < 0)
3853 goto out;
3854
3855 if (supply_change_uV < 0) {
3856 ret = regulator_set_voltage_unlocked(rdev->supply,
3857 best_supply_uV, INT_MAX, state);
3858 if (ret)
3859 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3860 ERR_PTR(ret));
3861 /* No need to fail here */
3862 ret = 0;
3863 }
3864
3865out:
3866 return ret;
3867}
3868EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3869
3870static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3871 int *current_uV, int *min_uV)
3872{
3873 struct regulation_constraints *constraints = rdev->constraints;
3874
3875 /* Limit voltage change only if necessary */
3876 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3877 return 1;
3878
3879 if (*current_uV < 0) {
3880 *current_uV = regulator_get_voltage_rdev(rdev);
3881
3882 if (*current_uV < 0)
3883 return *current_uV;
3884 }
3885
3886 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3887 return 1;
3888
3889 /* Clamp target voltage within the given step */
3890 if (*current_uV < *min_uV)
3891 *min_uV = min(*current_uV + constraints->max_uV_step,
3892 *min_uV);
3893 else
3894 *min_uV = max(*current_uV - constraints->max_uV_step,
3895 *min_uV);
3896
3897 return 0;
3898}
3899
3900static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3901 int *current_uV,
3902 int *min_uV, int *max_uV,
3903 suspend_state_t state,
3904 int n_coupled)
3905{
3906 struct coupling_desc *c_desc = &rdev->coupling_desc;
3907 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3908 struct regulation_constraints *constraints = rdev->constraints;
3909 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3910 int max_current_uV = 0, min_current_uV = INT_MAX;
3911 int highest_min_uV = 0, target_uV, possible_uV;
3912 int i, ret, max_spread;
3913 bool done;
3914
3915 *current_uV = -1;
3916
3917 /*
3918 * If there are no coupled regulators, simply set the voltage
3919 * demanded by consumers.
3920 */
3921 if (n_coupled == 1) {
3922 /*
3923 * If consumers don't provide any demands, set voltage
3924 * to min_uV
3925 */
3926 desired_min_uV = constraints->min_uV;
3927 desired_max_uV = constraints->max_uV;
3928
3929 ret = regulator_check_consumers(rdev,
3930 &desired_min_uV,
3931 &desired_max_uV, state);
3932 if (ret < 0)
3933 return ret;
3934
3935 possible_uV = desired_min_uV;
3936 done = true;
3937
3938 goto finish;
3939 }
3940
3941 /* Find highest min desired voltage */
3942 for (i = 0; i < n_coupled; i++) {
3943 int tmp_min = 0;
3944 int tmp_max = INT_MAX;
3945
3946 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3947
3948 ret = regulator_check_consumers(c_rdevs[i],
3949 &tmp_min,
3950 &tmp_max, state);
3951 if (ret < 0)
3952 return ret;
3953
3954 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3955 if (ret < 0)
3956 return ret;
3957
3958 highest_min_uV = max(highest_min_uV, tmp_min);
3959
3960 if (i == 0) {
3961 desired_min_uV = tmp_min;
3962 desired_max_uV = tmp_max;
3963 }
3964 }
3965
3966 max_spread = constraints->max_spread[0];
3967
3968 /*
3969 * Let target_uV be equal to the desired one if possible.
3970 * If not, set it to minimum voltage, allowed by other coupled
3971 * regulators.
3972 */
3973 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3974
3975 /*
3976 * Find min and max voltages, which currently aren't violating
3977 * max_spread.
3978 */
3979 for (i = 1; i < n_coupled; i++) {
3980 int tmp_act;
3981
3982 if (!_regulator_is_enabled(c_rdevs[i]))
3983 continue;
3984
3985 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3986 if (tmp_act < 0)
3987 return tmp_act;
3988
3989 min_current_uV = min(tmp_act, min_current_uV);
3990 max_current_uV = max(tmp_act, max_current_uV);
3991 }
3992
3993 /* There aren't any other regulators enabled */
3994 if (max_current_uV == 0) {
3995 possible_uV = target_uV;
3996 } else {
3997 /*
3998 * Correct target voltage, so as it currently isn't
3999 * violating max_spread
4000 */
4001 possible_uV = max(target_uV, max_current_uV - max_spread);
4002 possible_uV = min(possible_uV, min_current_uV + max_spread);
4003 }
4004
4005 if (possible_uV > desired_max_uV)
4006 return -EINVAL;
4007
4008 done = (possible_uV == target_uV);
4009 desired_min_uV = possible_uV;
4010
4011finish:
4012 /* Apply max_uV_step constraint if necessary */
4013 if (state == PM_SUSPEND_ON) {
4014 ret = regulator_limit_voltage_step(rdev, current_uV,
4015 &desired_min_uV);
4016 if (ret < 0)
4017 return ret;
4018
4019 if (ret == 0)
4020 done = false;
4021 }
4022
4023 /* Set current_uV if wasn't done earlier in the code and if necessary */
4024 if (n_coupled > 1 && *current_uV == -1) {
4025
4026 if (_regulator_is_enabled(rdev)) {
4027 ret = regulator_get_voltage_rdev(rdev);
4028 if (ret < 0)
4029 return ret;
4030
4031 *current_uV = ret;
4032 } else {
4033 *current_uV = desired_min_uV;
4034 }
4035 }
4036
4037 *min_uV = desired_min_uV;
4038 *max_uV = desired_max_uV;
4039
4040 return done;
4041}
4042
4043int regulator_do_balance_voltage(struct regulator_dev *rdev,
4044 suspend_state_t state, bool skip_coupled)
4045{
4046 struct regulator_dev **c_rdevs;
4047 struct regulator_dev *best_rdev;
4048 struct coupling_desc *c_desc = &rdev->coupling_desc;
4049 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4050 unsigned int delta, best_delta;
4051 unsigned long c_rdev_done = 0;
4052 bool best_c_rdev_done;
4053
4054 c_rdevs = c_desc->coupled_rdevs;
4055 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4056
4057 /*
4058 * Find the best possible voltage change on each loop. Leave the loop
4059 * if there isn't any possible change.
4060 */
4061 do {
4062 best_c_rdev_done = false;
4063 best_delta = 0;
4064 best_min_uV = 0;
4065 best_max_uV = 0;
4066 best_c_rdev = 0;
4067 best_rdev = NULL;
4068
4069 /*
4070 * Find highest difference between optimal voltage
4071 * and current voltage.
4072 */
4073 for (i = 0; i < n_coupled; i++) {
4074 /*
4075 * optimal_uV is the best voltage that can be set for
4076 * i-th regulator at the moment without violating
4077 * max_spread constraint in order to balance
4078 * the coupled voltages.
4079 */
4080 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4081
4082 if (test_bit(i, &c_rdev_done))
4083 continue;
4084
4085 ret = regulator_get_optimal_voltage(c_rdevs[i],
4086 ¤t_uV,
4087 &optimal_uV,
4088 &optimal_max_uV,
4089 state, n_coupled);
4090 if (ret < 0)
4091 goto out;
4092
4093 delta = abs(optimal_uV - current_uV);
4094
4095 if (delta && best_delta <= delta) {
4096 best_c_rdev_done = ret;
4097 best_delta = delta;
4098 best_rdev = c_rdevs[i];
4099 best_min_uV = optimal_uV;
4100 best_max_uV = optimal_max_uV;
4101 best_c_rdev = i;
4102 }
4103 }
4104
4105 /* Nothing to change, return successfully */
4106 if (!best_rdev) {
4107 ret = 0;
4108 goto out;
4109 }
4110
4111 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4112 best_max_uV, state);
4113
4114 if (ret < 0)
4115 goto out;
4116
4117 if (best_c_rdev_done)
4118 set_bit(best_c_rdev, &c_rdev_done);
4119
4120 } while (n_coupled > 1);
4121
4122out:
4123 return ret;
4124}
4125
4126static int regulator_balance_voltage(struct regulator_dev *rdev,
4127 suspend_state_t state)
4128{
4129 struct coupling_desc *c_desc = &rdev->coupling_desc;
4130 struct regulator_coupler *coupler = c_desc->coupler;
4131 bool skip_coupled = false;
4132
4133 /*
4134 * If system is in a state other than PM_SUSPEND_ON, don't check
4135 * other coupled regulators.
4136 */
4137 if (state != PM_SUSPEND_ON)
4138 skip_coupled = true;
4139
4140 if (c_desc->n_resolved < c_desc->n_coupled) {
4141 rdev_err(rdev, "Not all coupled regulators registered\n");
4142 return -EPERM;
4143 }
4144
4145 /* Invoke custom balancer for customized couplers */
4146 if (coupler && coupler->balance_voltage)
4147 return coupler->balance_voltage(coupler, rdev, state);
4148
4149 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4150}
4151
4152/**
4153 * regulator_set_voltage - set regulator output voltage
4154 * @regulator: regulator source
4155 * @min_uV: Minimum required voltage in uV
4156 * @max_uV: Maximum acceptable voltage in uV
4157 *
4158 * Sets a voltage regulator to the desired output voltage. This can be set
4159 * during any regulator state. IOW, regulator can be disabled or enabled.
4160 *
4161 * If the regulator is enabled then the voltage will change to the new value
4162 * immediately otherwise if the regulator is disabled the regulator will
4163 * output at the new voltage when enabled.
4164 *
4165 * NOTE: If the regulator is shared between several devices then the lowest
4166 * request voltage that meets the system constraints will be used.
4167 * Regulator system constraints must be set for this regulator before
4168 * calling this function otherwise this call will fail.
4169 */
4170int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4171{
4172 struct ww_acquire_ctx ww_ctx;
4173 int ret;
4174
4175 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4176
4177 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4178 PM_SUSPEND_ON);
4179
4180 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4181
4182 return ret;
4183}
4184EXPORT_SYMBOL_GPL(regulator_set_voltage);
4185
4186static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4187 suspend_state_t state, bool en)
4188{
4189 struct regulator_state *rstate;
4190
4191 rstate = regulator_get_suspend_state(rdev, state);
4192 if (rstate == NULL)
4193 return -EINVAL;
4194
4195 if (!rstate->changeable)
4196 return -EPERM;
4197
4198 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4199
4200 return 0;
4201}
4202
4203int regulator_suspend_enable(struct regulator_dev *rdev,
4204 suspend_state_t state)
4205{
4206 return regulator_suspend_toggle(rdev, state, true);
4207}
4208EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4209
4210int regulator_suspend_disable(struct regulator_dev *rdev,
4211 suspend_state_t state)
4212{
4213 struct regulator *regulator;
4214 struct regulator_voltage *voltage;
4215
4216 /*
4217 * if any consumer wants this regulator device keeping on in
4218 * suspend states, don't set it as disabled.
4219 */
4220 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4221 voltage = ®ulator->voltage[state];
4222 if (voltage->min_uV || voltage->max_uV)
4223 return 0;
4224 }
4225
4226 return regulator_suspend_toggle(rdev, state, false);
4227}
4228EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4229
4230static int _regulator_set_suspend_voltage(struct regulator *regulator,
4231 int min_uV, int max_uV,
4232 suspend_state_t state)
4233{
4234 struct regulator_dev *rdev = regulator->rdev;
4235 struct regulator_state *rstate;
4236
4237 rstate = regulator_get_suspend_state(rdev, state);
4238 if (rstate == NULL)
4239 return -EINVAL;
4240
4241 if (rstate->min_uV == rstate->max_uV) {
4242 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4243 return -EPERM;
4244 }
4245
4246 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4247}
4248
4249int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4250 int max_uV, suspend_state_t state)
4251{
4252 struct ww_acquire_ctx ww_ctx;
4253 int ret;
4254
4255 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4256 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4257 return -EINVAL;
4258
4259 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4260
4261 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4262 max_uV, state);
4263
4264 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4265
4266 return ret;
4267}
4268EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4269
4270/**
4271 * regulator_set_voltage_time - get raise/fall time
4272 * @regulator: regulator source
4273 * @old_uV: starting voltage in microvolts
4274 * @new_uV: target voltage in microvolts
4275 *
4276 * Provided with the starting and ending voltage, this function attempts to
4277 * calculate the time in microseconds required to rise or fall to this new
4278 * voltage.
4279 */
4280int regulator_set_voltage_time(struct regulator *regulator,
4281 int old_uV, int new_uV)
4282{
4283 struct regulator_dev *rdev = regulator->rdev;
4284 const struct regulator_ops *ops = rdev->desc->ops;
4285 int old_sel = -1;
4286 int new_sel = -1;
4287 int voltage;
4288 int i;
4289
4290 if (ops->set_voltage_time)
4291 return ops->set_voltage_time(rdev, old_uV, new_uV);
4292 else if (!ops->set_voltage_time_sel)
4293 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4294
4295 /* Currently requires operations to do this */
4296 if (!ops->list_voltage || !rdev->desc->n_voltages)
4297 return -EINVAL;
4298
4299 for (i = 0; i < rdev->desc->n_voltages; i++) {
4300 /* We only look for exact voltage matches here */
4301 if (i < rdev->desc->linear_min_sel)
4302 continue;
4303
4304 if (old_sel >= 0 && new_sel >= 0)
4305 break;
4306
4307 voltage = regulator_list_voltage(regulator, i);
4308 if (voltage < 0)
4309 return -EINVAL;
4310 if (voltage == 0)
4311 continue;
4312 if (voltage == old_uV)
4313 old_sel = i;
4314 if (voltage == new_uV)
4315 new_sel = i;
4316 }
4317
4318 if (old_sel < 0 || new_sel < 0)
4319 return -EINVAL;
4320
4321 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4322}
4323EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4324
4325/**
4326 * regulator_set_voltage_time_sel - get raise/fall time
4327 * @rdev: regulator source device
4328 * @old_selector: selector for starting voltage
4329 * @new_selector: selector for target voltage
4330 *
4331 * Provided with the starting and target voltage selectors, this function
4332 * returns time in microseconds required to rise or fall to this new voltage
4333 *
4334 * Drivers providing ramp_delay in regulation_constraints can use this as their
4335 * set_voltage_time_sel() operation.
4336 */
4337int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4338 unsigned int old_selector,
4339 unsigned int new_selector)
4340{
4341 int old_volt, new_volt;
4342
4343 /* sanity check */
4344 if (!rdev->desc->ops->list_voltage)
4345 return -EINVAL;
4346
4347 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4348 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4349
4350 if (rdev->desc->ops->set_voltage_time)
4351 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4352 new_volt);
4353 else
4354 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4355}
4356EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4357
4358int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4359{
4360 int ret;
4361
4362 regulator_lock(rdev);
4363
4364 if (!rdev->desc->ops->set_voltage &&
4365 !rdev->desc->ops->set_voltage_sel) {
4366 ret = -EINVAL;
4367 goto out;
4368 }
4369
4370 /* balance only, if regulator is coupled */
4371 if (rdev->coupling_desc.n_coupled > 1)
4372 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4373 else
4374 ret = -EOPNOTSUPP;
4375
4376out:
4377 regulator_unlock(rdev);
4378 return ret;
4379}
4380
4381/**
4382 * regulator_sync_voltage - re-apply last regulator output voltage
4383 * @regulator: regulator source
4384 *
4385 * Re-apply the last configured voltage. This is intended to be used
4386 * where some external control source the consumer is cooperating with
4387 * has caused the configured voltage to change.
4388 */
4389int regulator_sync_voltage(struct regulator *regulator)
4390{
4391 struct regulator_dev *rdev = regulator->rdev;
4392 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4393 int ret, min_uV, max_uV;
4394
4395 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4396 return 0;
4397
4398 regulator_lock(rdev);
4399
4400 if (!rdev->desc->ops->set_voltage &&
4401 !rdev->desc->ops->set_voltage_sel) {
4402 ret = -EINVAL;
4403 goto out;
4404 }
4405
4406 /* This is only going to work if we've had a voltage configured. */
4407 if (!voltage->min_uV && !voltage->max_uV) {
4408 ret = -EINVAL;
4409 goto out;
4410 }
4411
4412 min_uV = voltage->min_uV;
4413 max_uV = voltage->max_uV;
4414
4415 /* This should be a paranoia check... */
4416 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4417 if (ret < 0)
4418 goto out;
4419
4420 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4421 if (ret < 0)
4422 goto out;
4423
4424 /* balance only, if regulator is coupled */
4425 if (rdev->coupling_desc.n_coupled > 1)
4426 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4427 else
4428 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4429
4430out:
4431 regulator_unlock(rdev);
4432 return ret;
4433}
4434EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4435
4436int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4437{
4438 int sel, ret;
4439 bool bypassed;
4440
4441 if (rdev->desc->ops->get_bypass) {
4442 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4443 if (ret < 0)
4444 return ret;
4445 if (bypassed) {
4446 /* if bypassed the regulator must have a supply */
4447 if (!rdev->supply) {
4448 rdev_err(rdev,
4449 "bypassed regulator has no supply!\n");
4450 return -EPROBE_DEFER;
4451 }
4452
4453 return regulator_get_voltage_rdev(rdev->supply->rdev);
4454 }
4455 }
4456
4457 if (rdev->desc->ops->get_voltage_sel) {
4458 sel = rdev->desc->ops->get_voltage_sel(rdev);
4459 if (sel < 0)
4460 return sel;
4461 ret = rdev->desc->ops->list_voltage(rdev, sel);
4462 } else if (rdev->desc->ops->get_voltage) {
4463 ret = rdev->desc->ops->get_voltage(rdev);
4464 } else if (rdev->desc->ops->list_voltage) {
4465 ret = rdev->desc->ops->list_voltage(rdev, 0);
4466 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4467 ret = rdev->desc->fixed_uV;
4468 } else if (rdev->supply) {
4469 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4470 } else if (rdev->supply_name) {
4471 return -EPROBE_DEFER;
4472 } else {
4473 return -EINVAL;
4474 }
4475
4476 if (ret < 0)
4477 return ret;
4478 return ret - rdev->constraints->uV_offset;
4479}
4480EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4481
4482/**
4483 * regulator_get_voltage - get regulator output voltage
4484 * @regulator: regulator source
4485 *
4486 * This returns the current regulator voltage in uV.
4487 *
4488 * NOTE: If the regulator is disabled it will return the voltage value. This
4489 * function should not be used to determine regulator state.
4490 */
4491int regulator_get_voltage(struct regulator *regulator)
4492{
4493 struct ww_acquire_ctx ww_ctx;
4494 int ret;
4495
4496 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4497 ret = regulator_get_voltage_rdev(regulator->rdev);
4498 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4499
4500 return ret;
4501}
4502EXPORT_SYMBOL_GPL(regulator_get_voltage);
4503
4504/**
4505 * regulator_set_current_limit - set regulator output current limit
4506 * @regulator: regulator source
4507 * @min_uA: Minimum supported current in uA
4508 * @max_uA: Maximum supported current in uA
4509 *
4510 * Sets current sink to the desired output current. This can be set during
4511 * any regulator state. IOW, regulator can be disabled or enabled.
4512 *
4513 * If the regulator is enabled then the current will change to the new value
4514 * immediately otherwise if the regulator is disabled the regulator will
4515 * output at the new current when enabled.
4516 *
4517 * NOTE: Regulator system constraints must be set for this regulator before
4518 * calling this function otherwise this call will fail.
4519 */
4520int regulator_set_current_limit(struct regulator *regulator,
4521 int min_uA, int max_uA)
4522{
4523 struct regulator_dev *rdev = regulator->rdev;
4524 int ret;
4525
4526 regulator_lock(rdev);
4527
4528 /* sanity check */
4529 if (!rdev->desc->ops->set_current_limit) {
4530 ret = -EINVAL;
4531 goto out;
4532 }
4533
4534 /* constraints check */
4535 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4536 if (ret < 0)
4537 goto out;
4538
4539 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4540out:
4541 regulator_unlock(rdev);
4542 return ret;
4543}
4544EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4545
4546static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4547{
4548 /* sanity check */
4549 if (!rdev->desc->ops->get_current_limit)
4550 return -EINVAL;
4551
4552 return rdev->desc->ops->get_current_limit(rdev);
4553}
4554
4555static int _regulator_get_current_limit(struct regulator_dev *rdev)
4556{
4557 int ret;
4558
4559 regulator_lock(rdev);
4560 ret = _regulator_get_current_limit_unlocked(rdev);
4561 regulator_unlock(rdev);
4562
4563 return ret;
4564}
4565
4566/**
4567 * regulator_get_current_limit - get regulator output current
4568 * @regulator: regulator source
4569 *
4570 * This returns the current supplied by the specified current sink in uA.
4571 *
4572 * NOTE: If the regulator is disabled it will return the current value. This
4573 * function should not be used to determine regulator state.
4574 */
4575int regulator_get_current_limit(struct regulator *regulator)
4576{
4577 return _regulator_get_current_limit(regulator->rdev);
4578}
4579EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4580
4581/**
4582 * regulator_set_mode - set regulator operating mode
4583 * @regulator: regulator source
4584 * @mode: operating mode - one of the REGULATOR_MODE constants
4585 *
4586 * Set regulator operating mode to increase regulator efficiency or improve
4587 * regulation performance.
4588 *
4589 * NOTE: Regulator system constraints must be set for this regulator before
4590 * calling this function otherwise this call will fail.
4591 */
4592int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4593{
4594 struct regulator_dev *rdev = regulator->rdev;
4595 int ret;
4596 int regulator_curr_mode;
4597
4598 regulator_lock(rdev);
4599
4600 /* sanity check */
4601 if (!rdev->desc->ops->set_mode) {
4602 ret = -EINVAL;
4603 goto out;
4604 }
4605
4606 /* return if the same mode is requested */
4607 if (rdev->desc->ops->get_mode) {
4608 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4609 if (regulator_curr_mode == mode) {
4610 ret = 0;
4611 goto out;
4612 }
4613 }
4614
4615 /* constraints check */
4616 ret = regulator_mode_constrain(rdev, &mode);
4617 if (ret < 0)
4618 goto out;
4619
4620 ret = rdev->desc->ops->set_mode(rdev, mode);
4621out:
4622 regulator_unlock(rdev);
4623 return ret;
4624}
4625EXPORT_SYMBOL_GPL(regulator_set_mode);
4626
4627static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4628{
4629 /* sanity check */
4630 if (!rdev->desc->ops->get_mode)
4631 return -EINVAL;
4632
4633 return rdev->desc->ops->get_mode(rdev);
4634}
4635
4636static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4637{
4638 int ret;
4639
4640 regulator_lock(rdev);
4641 ret = _regulator_get_mode_unlocked(rdev);
4642 regulator_unlock(rdev);
4643
4644 return ret;
4645}
4646
4647/**
4648 * regulator_get_mode - get regulator operating mode
4649 * @regulator: regulator source
4650 *
4651 * Get the current regulator operating mode.
4652 */
4653unsigned int regulator_get_mode(struct regulator *regulator)
4654{
4655 return _regulator_get_mode(regulator->rdev);
4656}
4657EXPORT_SYMBOL_GPL(regulator_get_mode);
4658
4659static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4660{
4661 int ret = 0;
4662
4663 if (rdev->use_cached_err) {
4664 spin_lock(&rdev->err_lock);
4665 ret = rdev->cached_err;
4666 spin_unlock(&rdev->err_lock);
4667 }
4668 return ret;
4669}
4670
4671static int _regulator_get_error_flags(struct regulator_dev *rdev,
4672 unsigned int *flags)
4673{
4674 int cached_flags, ret = 0;
4675
4676 regulator_lock(rdev);
4677
4678 cached_flags = rdev_get_cached_err_flags(rdev);
4679
4680 if (rdev->desc->ops->get_error_flags)
4681 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4682 else if (!rdev->use_cached_err)
4683 ret = -EINVAL;
4684
4685 *flags |= cached_flags;
4686
4687 regulator_unlock(rdev);
4688
4689 return ret;
4690}
4691
4692/**
4693 * regulator_get_error_flags - get regulator error information
4694 * @regulator: regulator source
4695 * @flags: pointer to store error flags
4696 *
4697 * Get the current regulator error information.
4698 */
4699int regulator_get_error_flags(struct regulator *regulator,
4700 unsigned int *flags)
4701{
4702 return _regulator_get_error_flags(regulator->rdev, flags);
4703}
4704EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4705
4706/**
4707 * regulator_set_load - set regulator load
4708 * @regulator: regulator source
4709 * @uA_load: load current
4710 *
4711 * Notifies the regulator core of a new device load. This is then used by
4712 * DRMS (if enabled by constraints) to set the most efficient regulator
4713 * operating mode for the new regulator loading.
4714 *
4715 * Consumer devices notify their supply regulator of the maximum power
4716 * they will require (can be taken from device datasheet in the power
4717 * consumption tables) when they change operational status and hence power
4718 * state. Examples of operational state changes that can affect power
4719 * consumption are :-
4720 *
4721 * o Device is opened / closed.
4722 * o Device I/O is about to begin or has just finished.
4723 * o Device is idling in between work.
4724 *
4725 * This information is also exported via sysfs to userspace.
4726 *
4727 * DRMS will sum the total requested load on the regulator and change
4728 * to the most efficient operating mode if platform constraints allow.
4729 *
4730 * NOTE: when a regulator consumer requests to have a regulator
4731 * disabled then any load that consumer requested no longer counts
4732 * toward the total requested load. If the regulator is re-enabled
4733 * then the previously requested load will start counting again.
4734 *
4735 * If a regulator is an always-on regulator then an individual consumer's
4736 * load will still be removed if that consumer is fully disabled.
4737 *
4738 * On error a negative errno is returned.
4739 */
4740int regulator_set_load(struct regulator *regulator, int uA_load)
4741{
4742 struct regulator_dev *rdev = regulator->rdev;
4743 int old_uA_load;
4744 int ret = 0;
4745
4746 regulator_lock(rdev);
4747 old_uA_load = regulator->uA_load;
4748 regulator->uA_load = uA_load;
4749 if (regulator->enable_count && old_uA_load != uA_load) {
4750 ret = drms_uA_update(rdev);
4751 if (ret < 0)
4752 regulator->uA_load = old_uA_load;
4753 }
4754 regulator_unlock(rdev);
4755
4756 return ret;
4757}
4758EXPORT_SYMBOL_GPL(regulator_set_load);
4759
4760/**
4761 * regulator_allow_bypass - allow the regulator to go into bypass mode
4762 *
4763 * @regulator: Regulator to configure
4764 * @enable: enable or disable bypass mode
4765 *
4766 * Allow the regulator to go into bypass mode if all other consumers
4767 * for the regulator also enable bypass mode and the machine
4768 * constraints allow this. Bypass mode means that the regulator is
4769 * simply passing the input directly to the output with no regulation.
4770 */
4771int regulator_allow_bypass(struct regulator *regulator, bool enable)
4772{
4773 struct regulator_dev *rdev = regulator->rdev;
4774 const char *name = rdev_get_name(rdev);
4775 int ret = 0;
4776
4777 if (!rdev->desc->ops->set_bypass)
4778 return 0;
4779
4780 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4781 return 0;
4782
4783 regulator_lock(rdev);
4784
4785 if (enable && !regulator->bypass) {
4786 rdev->bypass_count++;
4787
4788 if (rdev->bypass_count == rdev->open_count) {
4789 trace_regulator_bypass_enable(name);
4790
4791 ret = rdev->desc->ops->set_bypass(rdev, enable);
4792 if (ret != 0)
4793 rdev->bypass_count--;
4794 else
4795 trace_regulator_bypass_enable_complete(name);
4796 }
4797
4798 } else if (!enable && regulator->bypass) {
4799 rdev->bypass_count--;
4800
4801 if (rdev->bypass_count != rdev->open_count) {
4802 trace_regulator_bypass_disable(name);
4803
4804 ret = rdev->desc->ops->set_bypass(rdev, enable);
4805 if (ret != 0)
4806 rdev->bypass_count++;
4807 else
4808 trace_regulator_bypass_disable_complete(name);
4809 }
4810 }
4811
4812 if (ret == 0)
4813 regulator->bypass = enable;
4814
4815 regulator_unlock(rdev);
4816
4817 return ret;
4818}
4819EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4820
4821/**
4822 * regulator_register_notifier - register regulator event notifier
4823 * @regulator: regulator source
4824 * @nb: notifier block
4825 *
4826 * Register notifier block to receive regulator events.
4827 */
4828int regulator_register_notifier(struct regulator *regulator,
4829 struct notifier_block *nb)
4830{
4831 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4832 nb);
4833}
4834EXPORT_SYMBOL_GPL(regulator_register_notifier);
4835
4836/**
4837 * regulator_unregister_notifier - unregister regulator event notifier
4838 * @regulator: regulator source
4839 * @nb: notifier block
4840 *
4841 * Unregister regulator event notifier block.
4842 */
4843int regulator_unregister_notifier(struct regulator *regulator,
4844 struct notifier_block *nb)
4845{
4846 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4847 nb);
4848}
4849EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4850
4851/* notify regulator consumers and downstream regulator consumers.
4852 * Note mutex must be held by caller.
4853 */
4854static int _notifier_call_chain(struct regulator_dev *rdev,
4855 unsigned long event, void *data)
4856{
4857 /* call rdev chain first */
4858 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data);
4859
4860 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4861 struct device *parent = rdev->dev.parent;
4862 const char *rname = rdev_get_name(rdev);
4863 char name[32];
4864
4865 /* Avoid duplicate debugfs directory names */
4866 if (parent && rname == rdev->desc->name) {
4867 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4868 rname);
4869 rname = name;
4870 }
4871 reg_generate_netlink_event(rname, event);
4872 }
4873
4874 return ret;
4875}
4876
4877int _regulator_bulk_get(struct device *dev, int num_consumers,
4878 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4879{
4880 int i;
4881 int ret;
4882
4883 for (i = 0; i < num_consumers; i++)
4884 consumers[i].consumer = NULL;
4885
4886 for (i = 0; i < num_consumers; i++) {
4887 consumers[i].consumer = _regulator_get(dev,
4888 consumers[i].supply, get_type);
4889 if (IS_ERR(consumers[i].consumer)) {
4890 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4891 "Failed to get supply '%s'",
4892 consumers[i].supply);
4893 consumers[i].consumer = NULL;
4894 goto err;
4895 }
4896
4897 if (consumers[i].init_load_uA > 0) {
4898 ret = regulator_set_load(consumers[i].consumer,
4899 consumers[i].init_load_uA);
4900 if (ret) {
4901 i++;
4902 goto err;
4903 }
4904 }
4905 }
4906
4907 return 0;
4908
4909err:
4910 while (--i >= 0)
4911 regulator_put(consumers[i].consumer);
4912
4913 return ret;
4914}
4915
4916/**
4917 * regulator_bulk_get - get multiple regulator consumers
4918 *
4919 * @dev: Device to supply
4920 * @num_consumers: Number of consumers to register
4921 * @consumers: Configuration of consumers; clients are stored here.
4922 *
4923 * @return 0 on success, an errno on failure.
4924 *
4925 * This helper function allows drivers to get several regulator
4926 * consumers in one operation. If any of the regulators cannot be
4927 * acquired then any regulators that were allocated will be freed
4928 * before returning to the caller.
4929 */
4930int regulator_bulk_get(struct device *dev, int num_consumers,
4931 struct regulator_bulk_data *consumers)
4932{
4933 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4934}
4935EXPORT_SYMBOL_GPL(regulator_bulk_get);
4936
4937static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4938{
4939 struct regulator_bulk_data *bulk = data;
4940
4941 bulk->ret = regulator_enable(bulk->consumer);
4942}
4943
4944/**
4945 * regulator_bulk_enable - enable multiple regulator consumers
4946 *
4947 * @num_consumers: Number of consumers
4948 * @consumers: Consumer data; clients are stored here.
4949 * @return 0 on success, an errno on failure
4950 *
4951 * This convenience API allows consumers to enable multiple regulator
4952 * clients in a single API call. If any consumers cannot be enabled
4953 * then any others that were enabled will be disabled again prior to
4954 * return.
4955 */
4956int regulator_bulk_enable(int num_consumers,
4957 struct regulator_bulk_data *consumers)
4958{
4959 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4960 int i;
4961 int ret = 0;
4962
4963 for (i = 0; i < num_consumers; i++) {
4964 async_schedule_domain(regulator_bulk_enable_async,
4965 &consumers[i], &async_domain);
4966 }
4967
4968 async_synchronize_full_domain(&async_domain);
4969
4970 /* If any consumer failed we need to unwind any that succeeded */
4971 for (i = 0; i < num_consumers; i++) {
4972 if (consumers[i].ret != 0) {
4973 ret = consumers[i].ret;
4974 goto err;
4975 }
4976 }
4977
4978 return 0;
4979
4980err:
4981 for (i = 0; i < num_consumers; i++) {
4982 if (consumers[i].ret < 0)
4983 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4984 ERR_PTR(consumers[i].ret));
4985 else
4986 regulator_disable(consumers[i].consumer);
4987 }
4988
4989 return ret;
4990}
4991EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4992
4993/**
4994 * regulator_bulk_disable - disable multiple regulator consumers
4995 *
4996 * @num_consumers: Number of consumers
4997 * @consumers: Consumer data; clients are stored here.
4998 * @return 0 on success, an errno on failure
4999 *
5000 * This convenience API allows consumers to disable multiple regulator
5001 * clients in a single API call. If any consumers cannot be disabled
5002 * then any others that were disabled will be enabled again prior to
5003 * return.
5004 */
5005int regulator_bulk_disable(int num_consumers,
5006 struct regulator_bulk_data *consumers)
5007{
5008 int i;
5009 int ret, r;
5010
5011 for (i = num_consumers - 1; i >= 0; --i) {
5012 ret = regulator_disable(consumers[i].consumer);
5013 if (ret != 0)
5014 goto err;
5015 }
5016
5017 return 0;
5018
5019err:
5020 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5021 for (++i; i < num_consumers; ++i) {
5022 r = regulator_enable(consumers[i].consumer);
5023 if (r != 0)
5024 pr_err("Failed to re-enable %s: %pe\n",
5025 consumers[i].supply, ERR_PTR(r));
5026 }
5027
5028 return ret;
5029}
5030EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5031
5032/**
5033 * regulator_bulk_force_disable - force disable multiple regulator consumers
5034 *
5035 * @num_consumers: Number of consumers
5036 * @consumers: Consumer data; clients are stored here.
5037 * @return 0 on success, an errno on failure
5038 *
5039 * This convenience API allows consumers to forcibly disable multiple regulator
5040 * clients in a single API call.
5041 * NOTE: This should be used for situations when device damage will
5042 * likely occur if the regulators are not disabled (e.g. over temp).
5043 * Although regulator_force_disable function call for some consumers can
5044 * return error numbers, the function is called for all consumers.
5045 */
5046int regulator_bulk_force_disable(int num_consumers,
5047 struct regulator_bulk_data *consumers)
5048{
5049 int i;
5050 int ret = 0;
5051
5052 for (i = 0; i < num_consumers; i++) {
5053 consumers[i].ret =
5054 regulator_force_disable(consumers[i].consumer);
5055
5056 /* Store first error for reporting */
5057 if (consumers[i].ret && !ret)
5058 ret = consumers[i].ret;
5059 }
5060
5061 return ret;
5062}
5063EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5064
5065/**
5066 * regulator_bulk_free - free multiple regulator consumers
5067 *
5068 * @num_consumers: Number of consumers
5069 * @consumers: Consumer data; clients are stored here.
5070 *
5071 * This convenience API allows consumers to free multiple regulator
5072 * clients in a single API call.
5073 */
5074void regulator_bulk_free(int num_consumers,
5075 struct regulator_bulk_data *consumers)
5076{
5077 int i;
5078
5079 for (i = 0; i < num_consumers; i++) {
5080 regulator_put(consumers[i].consumer);
5081 consumers[i].consumer = NULL;
5082 }
5083}
5084EXPORT_SYMBOL_GPL(regulator_bulk_free);
5085
5086/**
5087 * regulator_handle_critical - Handle events for system-critical regulators.
5088 * @rdev: The regulator device.
5089 * @event: The event being handled.
5090 *
5091 * This function handles critical events such as under-voltage, over-current,
5092 * and unknown errors for regulators deemed system-critical. On detecting such
5093 * events, it triggers a hardware protection shutdown with a defined timeout.
5094 */
5095static void regulator_handle_critical(struct regulator_dev *rdev,
5096 unsigned long event)
5097{
5098 const char *reason = NULL;
5099
5100 if (!rdev->constraints->system_critical)
5101 return;
5102
5103 switch (event) {
5104 case REGULATOR_EVENT_UNDER_VOLTAGE:
5105 reason = "System critical regulator: voltage drop detected";
5106 break;
5107 case REGULATOR_EVENT_OVER_CURRENT:
5108 reason = "System critical regulator: over-current detected";
5109 break;
5110 case REGULATOR_EVENT_FAIL:
5111 reason = "System critical regulator: unknown error";
5112 }
5113
5114 if (!reason)
5115 return;
5116
5117 hw_protection_shutdown(reason,
5118 rdev->constraints->uv_less_critical_window_ms);
5119}
5120
5121/**
5122 * regulator_notifier_call_chain - call regulator event notifier
5123 * @rdev: regulator source
5124 * @event: notifier block
5125 * @data: callback-specific data.
5126 *
5127 * Called by regulator drivers to notify clients a regulator event has
5128 * occurred.
5129 */
5130int regulator_notifier_call_chain(struct regulator_dev *rdev,
5131 unsigned long event, void *data)
5132{
5133 regulator_handle_critical(rdev, event);
5134
5135 _notifier_call_chain(rdev, event, data);
5136 return NOTIFY_DONE;
5137
5138}
5139EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5140
5141/**
5142 * regulator_mode_to_status - convert a regulator mode into a status
5143 *
5144 * @mode: Mode to convert
5145 *
5146 * Convert a regulator mode into a status.
5147 */
5148int regulator_mode_to_status(unsigned int mode)
5149{
5150 switch (mode) {
5151 case REGULATOR_MODE_FAST:
5152 return REGULATOR_STATUS_FAST;
5153 case REGULATOR_MODE_NORMAL:
5154 return REGULATOR_STATUS_NORMAL;
5155 case REGULATOR_MODE_IDLE:
5156 return REGULATOR_STATUS_IDLE;
5157 case REGULATOR_MODE_STANDBY:
5158 return REGULATOR_STATUS_STANDBY;
5159 default:
5160 return REGULATOR_STATUS_UNDEFINED;
5161 }
5162}
5163EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5164
5165static struct attribute *regulator_dev_attrs[] = {
5166 &dev_attr_name.attr,
5167 &dev_attr_num_users.attr,
5168 &dev_attr_type.attr,
5169 &dev_attr_microvolts.attr,
5170 &dev_attr_microamps.attr,
5171 &dev_attr_opmode.attr,
5172 &dev_attr_state.attr,
5173 &dev_attr_status.attr,
5174 &dev_attr_bypass.attr,
5175 &dev_attr_requested_microamps.attr,
5176 &dev_attr_min_microvolts.attr,
5177 &dev_attr_max_microvolts.attr,
5178 &dev_attr_min_microamps.attr,
5179 &dev_attr_max_microamps.attr,
5180 &dev_attr_under_voltage.attr,
5181 &dev_attr_over_current.attr,
5182 &dev_attr_regulation_out.attr,
5183 &dev_attr_fail.attr,
5184 &dev_attr_over_temp.attr,
5185 &dev_attr_under_voltage_warn.attr,
5186 &dev_attr_over_current_warn.attr,
5187 &dev_attr_over_voltage_warn.attr,
5188 &dev_attr_over_temp_warn.attr,
5189 &dev_attr_suspend_standby_state.attr,
5190 &dev_attr_suspend_mem_state.attr,
5191 &dev_attr_suspend_disk_state.attr,
5192 &dev_attr_suspend_standby_microvolts.attr,
5193 &dev_attr_suspend_mem_microvolts.attr,
5194 &dev_attr_suspend_disk_microvolts.attr,
5195 &dev_attr_suspend_standby_mode.attr,
5196 &dev_attr_suspend_mem_mode.attr,
5197 &dev_attr_suspend_disk_mode.attr,
5198 NULL
5199};
5200
5201/*
5202 * To avoid cluttering sysfs (and memory) with useless state, only
5203 * create attributes that can be meaningfully displayed.
5204 */
5205static umode_t regulator_attr_is_visible(struct kobject *kobj,
5206 struct attribute *attr, int idx)
5207{
5208 struct device *dev = kobj_to_dev(kobj);
5209 struct regulator_dev *rdev = dev_to_rdev(dev);
5210 const struct regulator_ops *ops = rdev->desc->ops;
5211 umode_t mode = attr->mode;
5212
5213 /* these three are always present */
5214 if (attr == &dev_attr_name.attr ||
5215 attr == &dev_attr_num_users.attr ||
5216 attr == &dev_attr_type.attr)
5217 return mode;
5218
5219 /* some attributes need specific methods to be displayed */
5220 if (attr == &dev_attr_microvolts.attr) {
5221 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5222 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5223 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5224 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5225 return mode;
5226 return 0;
5227 }
5228
5229 if (attr == &dev_attr_microamps.attr)
5230 return ops->get_current_limit ? mode : 0;
5231
5232 if (attr == &dev_attr_opmode.attr)
5233 return ops->get_mode ? mode : 0;
5234
5235 if (attr == &dev_attr_state.attr)
5236 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5237
5238 if (attr == &dev_attr_status.attr)
5239 return ops->get_status ? mode : 0;
5240
5241 if (attr == &dev_attr_bypass.attr)
5242 return ops->get_bypass ? mode : 0;
5243
5244 if (attr == &dev_attr_under_voltage.attr ||
5245 attr == &dev_attr_over_current.attr ||
5246 attr == &dev_attr_regulation_out.attr ||
5247 attr == &dev_attr_fail.attr ||
5248 attr == &dev_attr_over_temp.attr ||
5249 attr == &dev_attr_under_voltage_warn.attr ||
5250 attr == &dev_attr_over_current_warn.attr ||
5251 attr == &dev_attr_over_voltage_warn.attr ||
5252 attr == &dev_attr_over_temp_warn.attr)
5253 return ops->get_error_flags ? mode : 0;
5254
5255 /* constraints need specific supporting methods */
5256 if (attr == &dev_attr_min_microvolts.attr ||
5257 attr == &dev_attr_max_microvolts.attr)
5258 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5259
5260 if (attr == &dev_attr_min_microamps.attr ||
5261 attr == &dev_attr_max_microamps.attr)
5262 return ops->set_current_limit ? mode : 0;
5263
5264 if (attr == &dev_attr_suspend_standby_state.attr ||
5265 attr == &dev_attr_suspend_mem_state.attr ||
5266 attr == &dev_attr_suspend_disk_state.attr)
5267 return mode;
5268
5269 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5270 attr == &dev_attr_suspend_mem_microvolts.attr ||
5271 attr == &dev_attr_suspend_disk_microvolts.attr)
5272 return ops->set_suspend_voltage ? mode : 0;
5273
5274 if (attr == &dev_attr_suspend_standby_mode.attr ||
5275 attr == &dev_attr_suspend_mem_mode.attr ||
5276 attr == &dev_attr_suspend_disk_mode.attr)
5277 return ops->set_suspend_mode ? mode : 0;
5278
5279 return mode;
5280}
5281
5282static const struct attribute_group regulator_dev_group = {
5283 .attrs = regulator_dev_attrs,
5284 .is_visible = regulator_attr_is_visible,
5285};
5286
5287static const struct attribute_group *regulator_dev_groups[] = {
5288 ®ulator_dev_group,
5289 NULL
5290};
5291
5292static void regulator_dev_release(struct device *dev)
5293{
5294 struct regulator_dev *rdev = dev_get_drvdata(dev);
5295
5296 debugfs_remove_recursive(rdev->debugfs);
5297 kfree(rdev->constraints);
5298 of_node_put(rdev->dev.of_node);
5299 kfree(rdev);
5300}
5301
5302static void rdev_init_debugfs(struct regulator_dev *rdev)
5303{
5304 struct device *parent = rdev->dev.parent;
5305 const char *rname = rdev_get_name(rdev);
5306 char name[NAME_MAX];
5307
5308 /* Avoid duplicate debugfs directory names */
5309 if (parent && rname == rdev->desc->name) {
5310 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5311 rname);
5312 rname = name;
5313 }
5314
5315 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5316 if (IS_ERR(rdev->debugfs))
5317 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5318
5319 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5320 &rdev->use_count);
5321 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5322 &rdev->open_count);
5323 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5324 &rdev->bypass_count);
5325}
5326
5327static int regulator_register_resolve_supply(struct device *dev, void *data)
5328{
5329 struct regulator_dev *rdev = dev_to_rdev(dev);
5330
5331 if (regulator_resolve_supply(rdev))
5332 rdev_dbg(rdev, "unable to resolve supply\n");
5333
5334 return 0;
5335}
5336
5337int regulator_coupler_register(struct regulator_coupler *coupler)
5338{
5339 mutex_lock(®ulator_list_mutex);
5340 list_add_tail(&coupler->list, ®ulator_coupler_list);
5341 mutex_unlock(®ulator_list_mutex);
5342
5343 return 0;
5344}
5345
5346static struct regulator_coupler *
5347regulator_find_coupler(struct regulator_dev *rdev)
5348{
5349 struct regulator_coupler *coupler;
5350 int err;
5351
5352 /*
5353 * Note that regulators are appended to the list and the generic
5354 * coupler is registered first, hence it will be attached at last
5355 * if nobody cared.
5356 */
5357 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5358 err = coupler->attach_regulator(coupler, rdev);
5359 if (!err) {
5360 if (!coupler->balance_voltage &&
5361 rdev->coupling_desc.n_coupled > 2)
5362 goto err_unsupported;
5363
5364 return coupler;
5365 }
5366
5367 if (err < 0)
5368 return ERR_PTR(err);
5369
5370 if (err == 1)
5371 continue;
5372
5373 break;
5374 }
5375
5376 return ERR_PTR(-EINVAL);
5377
5378err_unsupported:
5379 if (coupler->detach_regulator)
5380 coupler->detach_regulator(coupler, rdev);
5381
5382 rdev_err(rdev,
5383 "Voltage balancing for multiple regulator couples is unimplemented\n");
5384
5385 return ERR_PTR(-EPERM);
5386}
5387
5388static void regulator_resolve_coupling(struct regulator_dev *rdev)
5389{
5390 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5391 struct coupling_desc *c_desc = &rdev->coupling_desc;
5392 int n_coupled = c_desc->n_coupled;
5393 struct regulator_dev *c_rdev;
5394 int i;
5395
5396 for (i = 1; i < n_coupled; i++) {
5397 /* already resolved */
5398 if (c_desc->coupled_rdevs[i])
5399 continue;
5400
5401 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5402
5403 if (!c_rdev)
5404 continue;
5405
5406 if (c_rdev->coupling_desc.coupler != coupler) {
5407 rdev_err(rdev, "coupler mismatch with %s\n",
5408 rdev_get_name(c_rdev));
5409 return;
5410 }
5411
5412 c_desc->coupled_rdevs[i] = c_rdev;
5413 c_desc->n_resolved++;
5414
5415 regulator_resolve_coupling(c_rdev);
5416 }
5417}
5418
5419static void regulator_remove_coupling(struct regulator_dev *rdev)
5420{
5421 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5422 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5423 struct regulator_dev *__c_rdev, *c_rdev;
5424 unsigned int __n_coupled, n_coupled;
5425 int i, k;
5426 int err;
5427
5428 n_coupled = c_desc->n_coupled;
5429
5430 for (i = 1; i < n_coupled; i++) {
5431 c_rdev = c_desc->coupled_rdevs[i];
5432
5433 if (!c_rdev)
5434 continue;
5435
5436 regulator_lock(c_rdev);
5437
5438 __c_desc = &c_rdev->coupling_desc;
5439 __n_coupled = __c_desc->n_coupled;
5440
5441 for (k = 1; k < __n_coupled; k++) {
5442 __c_rdev = __c_desc->coupled_rdevs[k];
5443
5444 if (__c_rdev == rdev) {
5445 __c_desc->coupled_rdevs[k] = NULL;
5446 __c_desc->n_resolved--;
5447 break;
5448 }
5449 }
5450
5451 regulator_unlock(c_rdev);
5452
5453 c_desc->coupled_rdevs[i] = NULL;
5454 c_desc->n_resolved--;
5455 }
5456
5457 if (coupler && coupler->detach_regulator) {
5458 err = coupler->detach_regulator(coupler, rdev);
5459 if (err)
5460 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5461 ERR_PTR(err));
5462 }
5463
5464 kfree(rdev->coupling_desc.coupled_rdevs);
5465 rdev->coupling_desc.coupled_rdevs = NULL;
5466}
5467
5468static int regulator_init_coupling(struct regulator_dev *rdev)
5469{
5470 struct regulator_dev **coupled;
5471 int err, n_phandles;
5472
5473 if (!IS_ENABLED(CONFIG_OF))
5474 n_phandles = 0;
5475 else
5476 n_phandles = of_get_n_coupled(rdev);
5477
5478 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5479 if (!coupled)
5480 return -ENOMEM;
5481
5482 rdev->coupling_desc.coupled_rdevs = coupled;
5483
5484 /*
5485 * Every regulator should always have coupling descriptor filled with
5486 * at least pointer to itself.
5487 */
5488 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5489 rdev->coupling_desc.n_coupled = n_phandles + 1;
5490 rdev->coupling_desc.n_resolved++;
5491
5492 /* regulator isn't coupled */
5493 if (n_phandles == 0)
5494 return 0;
5495
5496 if (!of_check_coupling_data(rdev))
5497 return -EPERM;
5498
5499 mutex_lock(®ulator_list_mutex);
5500 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5501 mutex_unlock(®ulator_list_mutex);
5502
5503 if (IS_ERR(rdev->coupling_desc.coupler)) {
5504 err = PTR_ERR(rdev->coupling_desc.coupler);
5505 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5506 return err;
5507 }
5508
5509 return 0;
5510}
5511
5512static int generic_coupler_attach(struct regulator_coupler *coupler,
5513 struct regulator_dev *rdev)
5514{
5515 if (rdev->coupling_desc.n_coupled > 2) {
5516 rdev_err(rdev,
5517 "Voltage balancing for multiple regulator couples is unimplemented\n");
5518 return -EPERM;
5519 }
5520
5521 if (!rdev->constraints->always_on) {
5522 rdev_err(rdev,
5523 "Coupling of a non always-on regulator is unimplemented\n");
5524 return -ENOTSUPP;
5525 }
5526
5527 return 0;
5528}
5529
5530static struct regulator_coupler generic_regulator_coupler = {
5531 .attach_regulator = generic_coupler_attach,
5532};
5533
5534/**
5535 * regulator_register - register regulator
5536 * @dev: the device that drive the regulator
5537 * @regulator_desc: regulator to register
5538 * @cfg: runtime configuration for regulator
5539 *
5540 * Called by regulator drivers to register a regulator.
5541 * Returns a valid pointer to struct regulator_dev on success
5542 * or an ERR_PTR() on error.
5543 */
5544struct regulator_dev *
5545regulator_register(struct device *dev,
5546 const struct regulator_desc *regulator_desc,
5547 const struct regulator_config *cfg)
5548{
5549 const struct regulator_init_data *init_data;
5550 struct regulator_config *config = NULL;
5551 static atomic_t regulator_no = ATOMIC_INIT(-1);
5552 struct regulator_dev *rdev;
5553 bool dangling_cfg_gpiod = false;
5554 bool dangling_of_gpiod = false;
5555 int ret, i;
5556 bool resolved_early = false;
5557
5558 if (cfg == NULL)
5559 return ERR_PTR(-EINVAL);
5560 if (cfg->ena_gpiod)
5561 dangling_cfg_gpiod = true;
5562 if (regulator_desc == NULL) {
5563 ret = -EINVAL;
5564 goto rinse;
5565 }
5566
5567 WARN_ON(!dev || !cfg->dev);
5568
5569 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5570 ret = -EINVAL;
5571 goto rinse;
5572 }
5573
5574 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5575 regulator_desc->type != REGULATOR_CURRENT) {
5576 ret = -EINVAL;
5577 goto rinse;
5578 }
5579
5580 /* Only one of each should be implemented */
5581 WARN_ON(regulator_desc->ops->get_voltage &&
5582 regulator_desc->ops->get_voltage_sel);
5583 WARN_ON(regulator_desc->ops->set_voltage &&
5584 regulator_desc->ops->set_voltage_sel);
5585
5586 /* If we're using selectors we must implement list_voltage. */
5587 if (regulator_desc->ops->get_voltage_sel &&
5588 !regulator_desc->ops->list_voltage) {
5589 ret = -EINVAL;
5590 goto rinse;
5591 }
5592 if (regulator_desc->ops->set_voltage_sel &&
5593 !regulator_desc->ops->list_voltage) {
5594 ret = -EINVAL;
5595 goto rinse;
5596 }
5597
5598 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5599 if (rdev == NULL) {
5600 ret = -ENOMEM;
5601 goto rinse;
5602 }
5603 device_initialize(&rdev->dev);
5604 dev_set_drvdata(&rdev->dev, rdev);
5605 rdev->dev.class = ®ulator_class;
5606 spin_lock_init(&rdev->err_lock);
5607
5608 /*
5609 * Duplicate the config so the driver could override it after
5610 * parsing init data.
5611 */
5612 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5613 if (config == NULL) {
5614 ret = -ENOMEM;
5615 goto clean;
5616 }
5617
5618 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5619 &rdev->dev.of_node);
5620
5621 /*
5622 * Sometimes not all resources are probed already so we need to take
5623 * that into account. This happens most the time if the ena_gpiod comes
5624 * from a gpio extender or something else.
5625 */
5626 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5627 ret = -EPROBE_DEFER;
5628 goto clean;
5629 }
5630
5631 /*
5632 * We need to keep track of any GPIO descriptor coming from the
5633 * device tree until we have handled it over to the core. If the
5634 * config that was passed in to this function DOES NOT contain
5635 * a descriptor, and the config after this call DOES contain
5636 * a descriptor, we definitely got one from parsing the device
5637 * tree.
5638 */
5639 if (!cfg->ena_gpiod && config->ena_gpiod)
5640 dangling_of_gpiod = true;
5641 if (!init_data) {
5642 init_data = config->init_data;
5643 rdev->dev.of_node = of_node_get(config->of_node);
5644 }
5645
5646 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5647 rdev->reg_data = config->driver_data;
5648 rdev->owner = regulator_desc->owner;
5649 rdev->desc = regulator_desc;
5650 if (config->regmap)
5651 rdev->regmap = config->regmap;
5652 else if (dev_get_regmap(dev, NULL))
5653 rdev->regmap = dev_get_regmap(dev, NULL);
5654 else if (dev->parent)
5655 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5656 INIT_LIST_HEAD(&rdev->consumer_list);
5657 INIT_LIST_HEAD(&rdev->list);
5658 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5659 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5660
5661 if (init_data && init_data->supply_regulator)
5662 rdev->supply_name = init_data->supply_regulator;
5663 else if (regulator_desc->supply_name)
5664 rdev->supply_name = regulator_desc->supply_name;
5665
5666 /* register with sysfs */
5667 rdev->dev.parent = config->dev;
5668 dev_set_name(&rdev->dev, "regulator.%lu",
5669 (unsigned long) atomic_inc_return(®ulator_no));
5670
5671 /* set regulator constraints */
5672 if (init_data)
5673 rdev->constraints = kmemdup(&init_data->constraints,
5674 sizeof(*rdev->constraints),
5675 GFP_KERNEL);
5676 else
5677 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5678 GFP_KERNEL);
5679 if (!rdev->constraints) {
5680 ret = -ENOMEM;
5681 goto wash;
5682 }
5683
5684 if ((rdev->supply_name && !rdev->supply) &&
5685 (rdev->constraints->always_on ||
5686 rdev->constraints->boot_on)) {
5687 ret = regulator_resolve_supply(rdev);
5688 if (ret)
5689 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5690 ERR_PTR(ret));
5691
5692 resolved_early = true;
5693 }
5694
5695 /* perform any regulator specific init */
5696 if (init_data && init_data->regulator_init) {
5697 ret = init_data->regulator_init(rdev->reg_data);
5698 if (ret < 0)
5699 goto wash;
5700 }
5701
5702 if (config->ena_gpiod) {
5703 ret = regulator_ena_gpio_request(rdev, config);
5704 if (ret != 0) {
5705 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5706 ERR_PTR(ret));
5707 goto wash;
5708 }
5709 /* The regulator core took over the GPIO descriptor */
5710 dangling_cfg_gpiod = false;
5711 dangling_of_gpiod = false;
5712 }
5713
5714 ret = set_machine_constraints(rdev);
5715 if (ret == -EPROBE_DEFER && !resolved_early) {
5716 /* Regulator might be in bypass mode and so needs its supply
5717 * to set the constraints
5718 */
5719 /* FIXME: this currently triggers a chicken-and-egg problem
5720 * when creating -SUPPLY symlink in sysfs to a regulator
5721 * that is just being created
5722 */
5723 rdev_dbg(rdev, "will resolve supply early: %s\n",
5724 rdev->supply_name);
5725 ret = regulator_resolve_supply(rdev);
5726 if (!ret)
5727 ret = set_machine_constraints(rdev);
5728 else
5729 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5730 ERR_PTR(ret));
5731 }
5732 if (ret < 0)
5733 goto wash;
5734
5735 ret = regulator_init_coupling(rdev);
5736 if (ret < 0)
5737 goto wash;
5738
5739 /* add consumers devices */
5740 if (init_data) {
5741 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5742 ret = set_consumer_device_supply(rdev,
5743 init_data->consumer_supplies[i].dev_name,
5744 init_data->consumer_supplies[i].supply);
5745 if (ret < 0) {
5746 dev_err(dev, "Failed to set supply %s\n",
5747 init_data->consumer_supplies[i].supply);
5748 goto unset_supplies;
5749 }
5750 }
5751 }
5752
5753 if (!rdev->desc->ops->get_voltage &&
5754 !rdev->desc->ops->list_voltage &&
5755 !rdev->desc->fixed_uV)
5756 rdev->is_switch = true;
5757
5758 ret = device_add(&rdev->dev);
5759 if (ret != 0)
5760 goto unset_supplies;
5761
5762 rdev_init_debugfs(rdev);
5763
5764 /* try to resolve regulators coupling since a new one was registered */
5765 mutex_lock(®ulator_list_mutex);
5766 regulator_resolve_coupling(rdev);
5767 mutex_unlock(®ulator_list_mutex);
5768
5769 /* try to resolve regulators supply since a new one was registered */
5770 class_for_each_device(®ulator_class, NULL, NULL,
5771 regulator_register_resolve_supply);
5772 kfree(config);
5773 return rdev;
5774
5775unset_supplies:
5776 mutex_lock(®ulator_list_mutex);
5777 unset_regulator_supplies(rdev);
5778 regulator_remove_coupling(rdev);
5779 mutex_unlock(®ulator_list_mutex);
5780wash:
5781 regulator_put(rdev->supply);
5782 kfree(rdev->coupling_desc.coupled_rdevs);
5783 mutex_lock(®ulator_list_mutex);
5784 regulator_ena_gpio_free(rdev);
5785 mutex_unlock(®ulator_list_mutex);
5786clean:
5787 if (dangling_of_gpiod)
5788 gpiod_put(config->ena_gpiod);
5789 kfree(config);
5790 put_device(&rdev->dev);
5791rinse:
5792 if (dangling_cfg_gpiod)
5793 gpiod_put(cfg->ena_gpiod);
5794 return ERR_PTR(ret);
5795}
5796EXPORT_SYMBOL_GPL(regulator_register);
5797
5798/**
5799 * regulator_unregister - unregister regulator
5800 * @rdev: regulator to unregister
5801 *
5802 * Called by regulator drivers to unregister a regulator.
5803 */
5804void regulator_unregister(struct regulator_dev *rdev)
5805{
5806 if (rdev == NULL)
5807 return;
5808
5809 if (rdev->supply) {
5810 while (rdev->use_count--)
5811 regulator_disable(rdev->supply);
5812 regulator_put(rdev->supply);
5813 }
5814
5815 flush_work(&rdev->disable_work.work);
5816
5817 mutex_lock(®ulator_list_mutex);
5818
5819 WARN_ON(rdev->open_count);
5820 regulator_remove_coupling(rdev);
5821 unset_regulator_supplies(rdev);
5822 list_del(&rdev->list);
5823 regulator_ena_gpio_free(rdev);
5824 device_unregister(&rdev->dev);
5825
5826 mutex_unlock(®ulator_list_mutex);
5827}
5828EXPORT_SYMBOL_GPL(regulator_unregister);
5829
5830#ifdef CONFIG_SUSPEND
5831/**
5832 * regulator_suspend - prepare regulators for system wide suspend
5833 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5834 *
5835 * Configure each regulator with it's suspend operating parameters for state.
5836 */
5837static int regulator_suspend(struct device *dev)
5838{
5839 struct regulator_dev *rdev = dev_to_rdev(dev);
5840 suspend_state_t state = pm_suspend_target_state;
5841 int ret;
5842 const struct regulator_state *rstate;
5843
5844 rstate = regulator_get_suspend_state_check(rdev, state);
5845 if (!rstate)
5846 return 0;
5847
5848 regulator_lock(rdev);
5849 ret = __suspend_set_state(rdev, rstate);
5850 regulator_unlock(rdev);
5851
5852 return ret;
5853}
5854
5855static int regulator_resume(struct device *dev)
5856{
5857 suspend_state_t state = pm_suspend_target_state;
5858 struct regulator_dev *rdev = dev_to_rdev(dev);
5859 struct regulator_state *rstate;
5860 int ret = 0;
5861
5862 rstate = regulator_get_suspend_state(rdev, state);
5863 if (rstate == NULL)
5864 return 0;
5865
5866 /* Avoid grabbing the lock if we don't need to */
5867 if (!rdev->desc->ops->resume)
5868 return 0;
5869
5870 regulator_lock(rdev);
5871
5872 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5873 rstate->enabled == DISABLE_IN_SUSPEND)
5874 ret = rdev->desc->ops->resume(rdev);
5875
5876 regulator_unlock(rdev);
5877
5878 return ret;
5879}
5880#else /* !CONFIG_SUSPEND */
5881
5882#define regulator_suspend NULL
5883#define regulator_resume NULL
5884
5885#endif /* !CONFIG_SUSPEND */
5886
5887#ifdef CONFIG_PM
5888static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5889 .suspend = regulator_suspend,
5890 .resume = regulator_resume,
5891};
5892#endif
5893
5894struct class regulator_class = {
5895 .name = "regulator",
5896 .dev_release = regulator_dev_release,
5897 .dev_groups = regulator_dev_groups,
5898#ifdef CONFIG_PM
5899 .pm = ®ulator_pm_ops,
5900#endif
5901};
5902/**
5903 * regulator_has_full_constraints - the system has fully specified constraints
5904 *
5905 * Calling this function will cause the regulator API to disable all
5906 * regulators which have a zero use count and don't have an always_on
5907 * constraint in a late_initcall.
5908 *
5909 * The intention is that this will become the default behaviour in a
5910 * future kernel release so users are encouraged to use this facility
5911 * now.
5912 */
5913void regulator_has_full_constraints(void)
5914{
5915 has_full_constraints = 1;
5916}
5917EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5918
5919/**
5920 * rdev_get_drvdata - get rdev regulator driver data
5921 * @rdev: regulator
5922 *
5923 * Get rdev regulator driver private data. This call can be used in the
5924 * regulator driver context.
5925 */
5926void *rdev_get_drvdata(struct regulator_dev *rdev)
5927{
5928 return rdev->reg_data;
5929}
5930EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5931
5932/**
5933 * regulator_get_drvdata - get regulator driver data
5934 * @regulator: regulator
5935 *
5936 * Get regulator driver private data. This call can be used in the consumer
5937 * driver context when non API regulator specific functions need to be called.
5938 */
5939void *regulator_get_drvdata(struct regulator *regulator)
5940{
5941 return regulator->rdev->reg_data;
5942}
5943EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5944
5945/**
5946 * regulator_set_drvdata - set regulator driver data
5947 * @regulator: regulator
5948 * @data: data
5949 */
5950void regulator_set_drvdata(struct regulator *regulator, void *data)
5951{
5952 regulator->rdev->reg_data = data;
5953}
5954EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5955
5956/**
5957 * rdev_get_id - get regulator ID
5958 * @rdev: regulator
5959 */
5960int rdev_get_id(struct regulator_dev *rdev)
5961{
5962 return rdev->desc->id;
5963}
5964EXPORT_SYMBOL_GPL(rdev_get_id);
5965
5966struct device *rdev_get_dev(struct regulator_dev *rdev)
5967{
5968 return &rdev->dev;
5969}
5970EXPORT_SYMBOL_GPL(rdev_get_dev);
5971
5972struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5973{
5974 return rdev->regmap;
5975}
5976EXPORT_SYMBOL_GPL(rdev_get_regmap);
5977
5978void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5979{
5980 return reg_init_data->driver_data;
5981}
5982EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5983
5984#ifdef CONFIG_DEBUG_FS
5985static int supply_map_show(struct seq_file *sf, void *data)
5986{
5987 struct regulator_map *map;
5988
5989 list_for_each_entry(map, ®ulator_map_list, list) {
5990 seq_printf(sf, "%s -> %s.%s\n",
5991 rdev_get_name(map->regulator), map->dev_name,
5992 map->supply);
5993 }
5994
5995 return 0;
5996}
5997DEFINE_SHOW_ATTRIBUTE(supply_map);
5998
5999struct summary_data {
6000 struct seq_file *s;
6001 struct regulator_dev *parent;
6002 int level;
6003};
6004
6005static void regulator_summary_show_subtree(struct seq_file *s,
6006 struct regulator_dev *rdev,
6007 int level);
6008
6009static int regulator_summary_show_children(struct device *dev, void *data)
6010{
6011 struct regulator_dev *rdev = dev_to_rdev(dev);
6012 struct summary_data *summary_data = data;
6013
6014 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6015 regulator_summary_show_subtree(summary_data->s, rdev,
6016 summary_data->level + 1);
6017
6018 return 0;
6019}
6020
6021static void regulator_summary_show_subtree(struct seq_file *s,
6022 struct regulator_dev *rdev,
6023 int level)
6024{
6025 struct regulation_constraints *c;
6026 struct regulator *consumer;
6027 struct summary_data summary_data;
6028 unsigned int opmode;
6029
6030 if (!rdev)
6031 return;
6032
6033 opmode = _regulator_get_mode_unlocked(rdev);
6034 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6035 level * 3 + 1, "",
6036 30 - level * 3, rdev_get_name(rdev),
6037 rdev->use_count, rdev->open_count, rdev->bypass_count,
6038 regulator_opmode_to_str(opmode));
6039
6040 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6041 seq_printf(s, "%5dmA ",
6042 _regulator_get_current_limit_unlocked(rdev) / 1000);
6043
6044 c = rdev->constraints;
6045 if (c) {
6046 switch (rdev->desc->type) {
6047 case REGULATOR_VOLTAGE:
6048 seq_printf(s, "%5dmV %5dmV ",
6049 c->min_uV / 1000, c->max_uV / 1000);
6050 break;
6051 case REGULATOR_CURRENT:
6052 seq_printf(s, "%5dmA %5dmA ",
6053 c->min_uA / 1000, c->max_uA / 1000);
6054 break;
6055 }
6056 }
6057
6058 seq_puts(s, "\n");
6059
6060 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6061 if (consumer->dev && consumer->dev->class == ®ulator_class)
6062 continue;
6063
6064 seq_printf(s, "%*s%-*s ",
6065 (level + 1) * 3 + 1, "",
6066 30 - (level + 1) * 3,
6067 consumer->supply_name ? consumer->supply_name :
6068 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6069
6070 switch (rdev->desc->type) {
6071 case REGULATOR_VOLTAGE:
6072 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6073 consumer->enable_count,
6074 consumer->uA_load / 1000,
6075 consumer->uA_load && !consumer->enable_count ?
6076 '*' : ' ',
6077 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6078 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6079 break;
6080 case REGULATOR_CURRENT:
6081 break;
6082 }
6083
6084 seq_puts(s, "\n");
6085 }
6086
6087 summary_data.s = s;
6088 summary_data.level = level;
6089 summary_data.parent = rdev;
6090
6091 class_for_each_device(®ulator_class, NULL, &summary_data,
6092 regulator_summary_show_children);
6093}
6094
6095struct summary_lock_data {
6096 struct ww_acquire_ctx *ww_ctx;
6097 struct regulator_dev **new_contended_rdev;
6098 struct regulator_dev **old_contended_rdev;
6099};
6100
6101static int regulator_summary_lock_one(struct device *dev, void *data)
6102{
6103 struct regulator_dev *rdev = dev_to_rdev(dev);
6104 struct summary_lock_data *lock_data = data;
6105 int ret = 0;
6106
6107 if (rdev != *lock_data->old_contended_rdev) {
6108 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6109
6110 if (ret == -EDEADLK)
6111 *lock_data->new_contended_rdev = rdev;
6112 else
6113 WARN_ON_ONCE(ret);
6114 } else {
6115 *lock_data->old_contended_rdev = NULL;
6116 }
6117
6118 return ret;
6119}
6120
6121static int regulator_summary_unlock_one(struct device *dev, void *data)
6122{
6123 struct regulator_dev *rdev = dev_to_rdev(dev);
6124 struct summary_lock_data *lock_data = data;
6125
6126 if (lock_data) {
6127 if (rdev == *lock_data->new_contended_rdev)
6128 return -EDEADLK;
6129 }
6130
6131 regulator_unlock(rdev);
6132
6133 return 0;
6134}
6135
6136static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6137 struct regulator_dev **new_contended_rdev,
6138 struct regulator_dev **old_contended_rdev)
6139{
6140 struct summary_lock_data lock_data;
6141 int ret;
6142
6143 lock_data.ww_ctx = ww_ctx;
6144 lock_data.new_contended_rdev = new_contended_rdev;
6145 lock_data.old_contended_rdev = old_contended_rdev;
6146
6147 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6148 regulator_summary_lock_one);
6149 if (ret)
6150 class_for_each_device(®ulator_class, NULL, &lock_data,
6151 regulator_summary_unlock_one);
6152
6153 return ret;
6154}
6155
6156static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6157{
6158 struct regulator_dev *new_contended_rdev = NULL;
6159 struct regulator_dev *old_contended_rdev = NULL;
6160 int err;
6161
6162 mutex_lock(®ulator_list_mutex);
6163
6164 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6165
6166 do {
6167 if (new_contended_rdev) {
6168 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6169 old_contended_rdev = new_contended_rdev;
6170 old_contended_rdev->ref_cnt++;
6171 old_contended_rdev->mutex_owner = current;
6172 }
6173
6174 err = regulator_summary_lock_all(ww_ctx,
6175 &new_contended_rdev,
6176 &old_contended_rdev);
6177
6178 if (old_contended_rdev)
6179 regulator_unlock(old_contended_rdev);
6180
6181 } while (err == -EDEADLK);
6182
6183 ww_acquire_done(ww_ctx);
6184}
6185
6186static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6187{
6188 class_for_each_device(®ulator_class, NULL, NULL,
6189 regulator_summary_unlock_one);
6190 ww_acquire_fini(ww_ctx);
6191
6192 mutex_unlock(®ulator_list_mutex);
6193}
6194
6195static int regulator_summary_show_roots(struct device *dev, void *data)
6196{
6197 struct regulator_dev *rdev = dev_to_rdev(dev);
6198 struct seq_file *s = data;
6199
6200 if (!rdev->supply)
6201 regulator_summary_show_subtree(s, rdev, 0);
6202
6203 return 0;
6204}
6205
6206static int regulator_summary_show(struct seq_file *s, void *data)
6207{
6208 struct ww_acquire_ctx ww_ctx;
6209
6210 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6211 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6212
6213 regulator_summary_lock(&ww_ctx);
6214
6215 class_for_each_device(®ulator_class, NULL, s,
6216 regulator_summary_show_roots);
6217
6218 regulator_summary_unlock(&ww_ctx);
6219
6220 return 0;
6221}
6222DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6223#endif /* CONFIG_DEBUG_FS */
6224
6225static int __init regulator_init(void)
6226{
6227 int ret;
6228
6229 ret = class_register(®ulator_class);
6230
6231 debugfs_root = debugfs_create_dir("regulator", NULL);
6232 if (IS_ERR(debugfs_root))
6233 pr_debug("regulator: Failed to create debugfs directory\n");
6234
6235#ifdef CONFIG_DEBUG_FS
6236 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6237 &supply_map_fops);
6238
6239 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6240 NULL, ®ulator_summary_fops);
6241#endif
6242 regulator_dummy_init();
6243
6244 regulator_coupler_register(&generic_regulator_coupler);
6245
6246 return ret;
6247}
6248
6249/* init early to allow our consumers to complete system booting */
6250core_initcall(regulator_init);
6251
6252static int regulator_late_cleanup(struct device *dev, void *data)
6253{
6254 struct regulator_dev *rdev = dev_to_rdev(dev);
6255 struct regulation_constraints *c = rdev->constraints;
6256 int ret;
6257
6258 if (c && c->always_on)
6259 return 0;
6260
6261 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6262 return 0;
6263
6264 regulator_lock(rdev);
6265
6266 if (rdev->use_count)
6267 goto unlock;
6268
6269 /* If reading the status failed, assume that it's off. */
6270 if (_regulator_is_enabled(rdev) <= 0)
6271 goto unlock;
6272
6273 if (have_full_constraints()) {
6274 /* We log since this may kill the system if it goes
6275 * wrong.
6276 */
6277 rdev_info(rdev, "disabling\n");
6278 ret = _regulator_do_disable(rdev);
6279 if (ret != 0)
6280 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6281 } else {
6282 /* The intention is that in future we will
6283 * assume that full constraints are provided
6284 * so warn even if we aren't going to do
6285 * anything here.
6286 */
6287 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6288 }
6289
6290unlock:
6291 regulator_unlock(rdev);
6292
6293 return 0;
6294}
6295
6296static bool regulator_ignore_unused;
6297static int __init regulator_ignore_unused_setup(char *__unused)
6298{
6299 regulator_ignore_unused = true;
6300 return 1;
6301}
6302__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6303
6304static void regulator_init_complete_work_function(struct work_struct *work)
6305{
6306 /*
6307 * Regulators may had failed to resolve their input supplies
6308 * when were registered, either because the input supply was
6309 * not registered yet or because its parent device was not
6310 * bound yet. So attempt to resolve the input supplies for
6311 * pending regulators before trying to disable unused ones.
6312 */
6313 class_for_each_device(®ulator_class, NULL, NULL,
6314 regulator_register_resolve_supply);
6315
6316 /*
6317 * For debugging purposes, it may be useful to prevent unused
6318 * regulators from being disabled.
6319 */
6320 if (regulator_ignore_unused) {
6321 pr_warn("regulator: Not disabling unused regulators\n");
6322 return;
6323 }
6324
6325 /* If we have a full configuration then disable any regulators
6326 * we have permission to change the status for and which are
6327 * not in use or always_on. This is effectively the default
6328 * for DT and ACPI as they have full constraints.
6329 */
6330 class_for_each_device(®ulator_class, NULL, NULL,
6331 regulator_late_cleanup);
6332}
6333
6334static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6335 regulator_init_complete_work_function);
6336
6337static int __init regulator_init_complete(void)
6338{
6339 /*
6340 * Since DT doesn't provide an idiomatic mechanism for
6341 * enabling full constraints and since it's much more natural
6342 * with DT to provide them just assume that a DT enabled
6343 * system has full constraints.
6344 */
6345 if (of_have_populated_dt())
6346 has_full_constraints = true;
6347
6348 /*
6349 * We punt completion for an arbitrary amount of time since
6350 * systems like distros will load many drivers from userspace
6351 * so consumers might not always be ready yet, this is
6352 * particularly an issue with laptops where this might bounce
6353 * the display off then on. Ideally we'd get a notification
6354 * from userspace when this happens but we don't so just wait
6355 * a bit and hope we waited long enough. It'd be better if
6356 * we'd only do this on systems that need it, and a kernel
6357 * command line option might be useful.
6358 */
6359 schedule_delayed_work(®ulator_init_complete_work,
6360 msecs_to_jiffies(30000));
6361
6362 return 0;
6363}
6364late_initcall_sync(regulator_init_complete);
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/reboot.h>
23#include <linux/regmap.h>
24#include <linux/regulator/of_regulator.h>
25#include <linux/regulator/consumer.h>
26#include <linux/regulator/coupler.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29#include <linux/module.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/regulator.h>
33
34#include "dummy.h"
35#include "internal.h"
36#include "regnl.h"
37
38static DEFINE_WW_CLASS(regulator_ww_class);
39static DEFINE_MUTEX(regulator_nesting_mutex);
40static DEFINE_MUTEX(regulator_list_mutex);
41static LIST_HEAD(regulator_map_list);
42static LIST_HEAD(regulator_ena_gpio_list);
43static LIST_HEAD(regulator_supply_alias_list);
44static LIST_HEAD(regulator_coupler_list);
45static bool has_full_constraints;
46
47static struct dentry *debugfs_root;
48
49/*
50 * struct regulator_map
51 *
52 * Used to provide symbolic supply names to devices.
53 */
54struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
59};
60
61/*
62 * struct regulator_enable_gpio
63 *
64 * Management for shared enable GPIO pin
65 */
66struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
71};
72
73/*
74 * struct regulator_supply_alias
75 *
76 * Used to map lookups for a supply onto an alternative device.
77 */
78struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
84};
85
86static int _regulator_is_enabled(struct regulator_dev *rdev);
87static int _regulator_disable(struct regulator *regulator);
88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89static int _regulator_get_current_limit(struct regulator_dev *rdev);
90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91static int _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95static int regulator_balance_voltage(struct regulator_dev *rdev,
96 suspend_state_t state);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100static void destroy_regulator(struct regulator *regulator);
101static void _regulator_put(struct regulator *regulator);
102
103const char *rdev_get_name(struct regulator_dev *rdev)
104{
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111}
112EXPORT_SYMBOL_GPL(rdev_get_name);
113
114static bool have_full_constraints(void)
115{
116 return has_full_constraints || of_have_populated_dt();
117}
118
119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120{
121 if (!rdev->constraints) {
122 rdev_err(rdev, "no constraints\n");
123 return false;
124 }
125
126 if (rdev->constraints->valid_ops_mask & ops)
127 return true;
128
129 return false;
130}
131
132/**
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
136 *
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
142 */
143static inline int regulator_lock_nested(struct regulator_dev *rdev,
144 struct ww_acquire_ctx *ww_ctx)
145{
146 bool lock = false;
147 int ret = 0;
148
149 mutex_lock(®ulator_nesting_mutex);
150
151 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
152 if (rdev->mutex_owner == current)
153 rdev->ref_cnt++;
154 else
155 lock = true;
156
157 if (lock) {
158 mutex_unlock(®ulator_nesting_mutex);
159 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
160 mutex_lock(®ulator_nesting_mutex);
161 }
162 } else {
163 lock = true;
164 }
165
166 if (lock && ret != -EDEADLK) {
167 rdev->ref_cnt++;
168 rdev->mutex_owner = current;
169 }
170
171 mutex_unlock(®ulator_nesting_mutex);
172
173 return ret;
174}
175
176/**
177 * regulator_lock - lock a single regulator
178 * @rdev: regulator source
179 *
180 * This function can be called many times by one task on
181 * a single regulator and its mutex will be locked only
182 * once. If a task, which is calling this function is other
183 * than the one, which initially locked the mutex, it will
184 * wait on mutex.
185 */
186static void regulator_lock(struct regulator_dev *rdev)
187{
188 regulator_lock_nested(rdev, NULL);
189}
190
191/**
192 * regulator_unlock - unlock a single regulator
193 * @rdev: regulator_source
194 *
195 * This function unlocks the mutex when the
196 * reference counter reaches 0.
197 */
198static void regulator_unlock(struct regulator_dev *rdev)
199{
200 mutex_lock(®ulator_nesting_mutex);
201
202 if (--rdev->ref_cnt == 0) {
203 rdev->mutex_owner = NULL;
204 ww_mutex_unlock(&rdev->mutex);
205 }
206
207 WARN_ON_ONCE(rdev->ref_cnt < 0);
208
209 mutex_unlock(®ulator_nesting_mutex);
210}
211
212/**
213 * regulator_lock_two - lock two regulators
214 * @rdev1: first regulator
215 * @rdev2: second regulator
216 * @ww_ctx: w/w mutex acquire context
217 *
218 * Locks both rdevs using the regulator_ww_class.
219 */
220static void regulator_lock_two(struct regulator_dev *rdev1,
221 struct regulator_dev *rdev2,
222 struct ww_acquire_ctx *ww_ctx)
223{
224 struct regulator_dev *held, *contended;
225 int ret;
226
227 ww_acquire_init(ww_ctx, ®ulator_ww_class);
228
229 /* Try to just grab both of them */
230 ret = regulator_lock_nested(rdev1, ww_ctx);
231 WARN_ON(ret);
232 ret = regulator_lock_nested(rdev2, ww_ctx);
233 if (ret != -EDEADLOCK) {
234 WARN_ON(ret);
235 goto exit;
236 }
237
238 held = rdev1;
239 contended = rdev2;
240 while (true) {
241 regulator_unlock(held);
242
243 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
244 contended->ref_cnt++;
245 contended->mutex_owner = current;
246 swap(held, contended);
247 ret = regulator_lock_nested(contended, ww_ctx);
248
249 if (ret != -EDEADLOCK) {
250 WARN_ON(ret);
251 break;
252 }
253 }
254
255exit:
256 ww_acquire_done(ww_ctx);
257}
258
259/**
260 * regulator_unlock_two - unlock two regulators
261 * @rdev1: first regulator
262 * @rdev2: second regulator
263 * @ww_ctx: w/w mutex acquire context
264 *
265 * The inverse of regulator_lock_two().
266 */
267
268static void regulator_unlock_two(struct regulator_dev *rdev1,
269 struct regulator_dev *rdev2,
270 struct ww_acquire_ctx *ww_ctx)
271{
272 regulator_unlock(rdev2);
273 regulator_unlock(rdev1);
274 ww_acquire_fini(ww_ctx);
275}
276
277static bool regulator_supply_is_couple(struct regulator_dev *rdev)
278{
279 struct regulator_dev *c_rdev;
280 int i;
281
282 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
283 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
284
285 if (rdev->supply->rdev == c_rdev)
286 return true;
287 }
288
289 return false;
290}
291
292static void regulator_unlock_recursive(struct regulator_dev *rdev,
293 unsigned int n_coupled)
294{
295 struct regulator_dev *c_rdev, *supply_rdev;
296 int i, supply_n_coupled;
297
298 for (i = n_coupled; i > 0; i--) {
299 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
300
301 if (!c_rdev)
302 continue;
303
304 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
305 supply_rdev = c_rdev->supply->rdev;
306 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
307
308 regulator_unlock_recursive(supply_rdev,
309 supply_n_coupled);
310 }
311
312 regulator_unlock(c_rdev);
313 }
314}
315
316static int regulator_lock_recursive(struct regulator_dev *rdev,
317 struct regulator_dev **new_contended_rdev,
318 struct regulator_dev **old_contended_rdev,
319 struct ww_acquire_ctx *ww_ctx)
320{
321 struct regulator_dev *c_rdev;
322 int i, err;
323
324 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
325 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
326
327 if (!c_rdev)
328 continue;
329
330 if (c_rdev != *old_contended_rdev) {
331 err = regulator_lock_nested(c_rdev, ww_ctx);
332 if (err) {
333 if (err == -EDEADLK) {
334 *new_contended_rdev = c_rdev;
335 goto err_unlock;
336 }
337
338 /* shouldn't happen */
339 WARN_ON_ONCE(err != -EALREADY);
340 }
341 } else {
342 *old_contended_rdev = NULL;
343 }
344
345 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
346 err = regulator_lock_recursive(c_rdev->supply->rdev,
347 new_contended_rdev,
348 old_contended_rdev,
349 ww_ctx);
350 if (err) {
351 regulator_unlock(c_rdev);
352 goto err_unlock;
353 }
354 }
355 }
356
357 return 0;
358
359err_unlock:
360 regulator_unlock_recursive(rdev, i);
361
362 return err;
363}
364
365/**
366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
367 * regulators
368 * @rdev: regulator source
369 * @ww_ctx: w/w mutex acquire context
370 *
371 * Unlock all regulators related with rdev by coupling or supplying.
372 */
373static void regulator_unlock_dependent(struct regulator_dev *rdev,
374 struct ww_acquire_ctx *ww_ctx)
375{
376 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
377 ww_acquire_fini(ww_ctx);
378}
379
380/**
381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
382 * @rdev: regulator source
383 * @ww_ctx: w/w mutex acquire context
384 *
385 * This function as a wrapper on regulator_lock_recursive(), which locks
386 * all regulators related with rdev by coupling or supplying.
387 */
388static void regulator_lock_dependent(struct regulator_dev *rdev,
389 struct ww_acquire_ctx *ww_ctx)
390{
391 struct regulator_dev *new_contended_rdev = NULL;
392 struct regulator_dev *old_contended_rdev = NULL;
393 int err;
394
395 mutex_lock(®ulator_list_mutex);
396
397 ww_acquire_init(ww_ctx, ®ulator_ww_class);
398
399 do {
400 if (new_contended_rdev) {
401 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
402 old_contended_rdev = new_contended_rdev;
403 old_contended_rdev->ref_cnt++;
404 old_contended_rdev->mutex_owner = current;
405 }
406
407 err = regulator_lock_recursive(rdev,
408 &new_contended_rdev,
409 &old_contended_rdev,
410 ww_ctx);
411
412 if (old_contended_rdev)
413 regulator_unlock(old_contended_rdev);
414
415 } while (err == -EDEADLK);
416
417 ww_acquire_done(ww_ctx);
418
419 mutex_unlock(®ulator_list_mutex);
420}
421
422/**
423 * of_get_child_regulator - get a child regulator device node
424 * based on supply name
425 * @parent: Parent device node
426 * @prop_name: Combination regulator supply name and "-supply"
427 *
428 * Traverse all child nodes.
429 * Extract the child regulator device node corresponding to the supply name.
430 * returns the device node corresponding to the regulator if found, else
431 * returns NULL.
432 */
433static struct device_node *of_get_child_regulator(struct device_node *parent,
434 const char *prop_name)
435{
436 struct device_node *regnode = NULL;
437 struct device_node *child = NULL;
438
439 for_each_child_of_node(parent, child) {
440 regnode = of_parse_phandle(child, prop_name, 0);
441
442 if (!regnode) {
443 regnode = of_get_child_regulator(child, prop_name);
444 if (regnode)
445 goto err_node_put;
446 } else {
447 goto err_node_put;
448 }
449 }
450 return NULL;
451
452err_node_put:
453 of_node_put(child);
454 return regnode;
455}
456
457/**
458 * of_get_regulator - get a regulator device node based on supply name
459 * @dev: Device pointer for the consumer (of regulator) device
460 * @supply: regulator supply name
461 *
462 * Extract the regulator device node corresponding to the supply name.
463 * returns the device node corresponding to the regulator if found, else
464 * returns NULL.
465 */
466static struct device_node *of_get_regulator(struct device *dev, const char *supply)
467{
468 struct device_node *regnode = NULL;
469 char prop_name[64]; /* 64 is max size of property name */
470
471 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
472
473 snprintf(prop_name, 64, "%s-supply", supply);
474 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
475
476 if (!regnode) {
477 regnode = of_get_child_regulator(dev->of_node, prop_name);
478 if (regnode)
479 return regnode;
480
481 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
482 prop_name, dev->of_node);
483 return NULL;
484 }
485 return regnode;
486}
487
488/* Platform voltage constraint check */
489int regulator_check_voltage(struct regulator_dev *rdev,
490 int *min_uV, int *max_uV)
491{
492 BUG_ON(*min_uV > *max_uV);
493
494 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
495 rdev_err(rdev, "voltage operation not allowed\n");
496 return -EPERM;
497 }
498
499 if (*max_uV > rdev->constraints->max_uV)
500 *max_uV = rdev->constraints->max_uV;
501 if (*min_uV < rdev->constraints->min_uV)
502 *min_uV = rdev->constraints->min_uV;
503
504 if (*min_uV > *max_uV) {
505 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
506 *min_uV, *max_uV);
507 return -EINVAL;
508 }
509
510 return 0;
511}
512
513/* return 0 if the state is valid */
514static int regulator_check_states(suspend_state_t state)
515{
516 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
517}
518
519/* Make sure we select a voltage that suits the needs of all
520 * regulator consumers
521 */
522int regulator_check_consumers(struct regulator_dev *rdev,
523 int *min_uV, int *max_uV,
524 suspend_state_t state)
525{
526 struct regulator *regulator;
527 struct regulator_voltage *voltage;
528
529 list_for_each_entry(regulator, &rdev->consumer_list, list) {
530 voltage = ®ulator->voltage[state];
531 /*
532 * Assume consumers that didn't say anything are OK
533 * with anything in the constraint range.
534 */
535 if (!voltage->min_uV && !voltage->max_uV)
536 continue;
537
538 if (*max_uV > voltage->max_uV)
539 *max_uV = voltage->max_uV;
540 if (*min_uV < voltage->min_uV)
541 *min_uV = voltage->min_uV;
542 }
543
544 if (*min_uV > *max_uV) {
545 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
546 *min_uV, *max_uV);
547 return -EINVAL;
548 }
549
550 return 0;
551}
552
553/* current constraint check */
554static int regulator_check_current_limit(struct regulator_dev *rdev,
555 int *min_uA, int *max_uA)
556{
557 BUG_ON(*min_uA > *max_uA);
558
559 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
560 rdev_err(rdev, "current operation not allowed\n");
561 return -EPERM;
562 }
563
564 if (*max_uA > rdev->constraints->max_uA)
565 *max_uA = rdev->constraints->max_uA;
566 if (*min_uA < rdev->constraints->min_uA)
567 *min_uA = rdev->constraints->min_uA;
568
569 if (*min_uA > *max_uA) {
570 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
571 *min_uA, *max_uA);
572 return -EINVAL;
573 }
574
575 return 0;
576}
577
578/* operating mode constraint check */
579static int regulator_mode_constrain(struct regulator_dev *rdev,
580 unsigned int *mode)
581{
582 switch (*mode) {
583 case REGULATOR_MODE_FAST:
584 case REGULATOR_MODE_NORMAL:
585 case REGULATOR_MODE_IDLE:
586 case REGULATOR_MODE_STANDBY:
587 break;
588 default:
589 rdev_err(rdev, "invalid mode %x specified\n", *mode);
590 return -EINVAL;
591 }
592
593 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
594 rdev_err(rdev, "mode operation not allowed\n");
595 return -EPERM;
596 }
597
598 /* The modes are bitmasks, the most power hungry modes having
599 * the lowest values. If the requested mode isn't supported
600 * try higher modes.
601 */
602 while (*mode) {
603 if (rdev->constraints->valid_modes_mask & *mode)
604 return 0;
605 *mode /= 2;
606 }
607
608 return -EINVAL;
609}
610
611static inline struct regulator_state *
612regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
613{
614 if (rdev->constraints == NULL)
615 return NULL;
616
617 switch (state) {
618 case PM_SUSPEND_STANDBY:
619 return &rdev->constraints->state_standby;
620 case PM_SUSPEND_MEM:
621 return &rdev->constraints->state_mem;
622 case PM_SUSPEND_MAX:
623 return &rdev->constraints->state_disk;
624 default:
625 return NULL;
626 }
627}
628
629static const struct regulator_state *
630regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
631{
632 const struct regulator_state *rstate;
633
634 rstate = regulator_get_suspend_state(rdev, state);
635 if (rstate == NULL)
636 return NULL;
637
638 /* If we have no suspend mode configuration don't set anything;
639 * only warn if the driver implements set_suspend_voltage or
640 * set_suspend_mode callback.
641 */
642 if (rstate->enabled != ENABLE_IN_SUSPEND &&
643 rstate->enabled != DISABLE_IN_SUSPEND) {
644 if (rdev->desc->ops->set_suspend_voltage ||
645 rdev->desc->ops->set_suspend_mode)
646 rdev_warn(rdev, "No configuration\n");
647 return NULL;
648 }
649
650 return rstate;
651}
652
653static ssize_t microvolts_show(struct device *dev,
654 struct device_attribute *attr, char *buf)
655{
656 struct regulator_dev *rdev = dev_get_drvdata(dev);
657 int uV;
658
659 regulator_lock(rdev);
660 uV = regulator_get_voltage_rdev(rdev);
661 regulator_unlock(rdev);
662
663 if (uV < 0)
664 return uV;
665 return sprintf(buf, "%d\n", uV);
666}
667static DEVICE_ATTR_RO(microvolts);
668
669static ssize_t microamps_show(struct device *dev,
670 struct device_attribute *attr, char *buf)
671{
672 struct regulator_dev *rdev = dev_get_drvdata(dev);
673
674 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
675}
676static DEVICE_ATTR_RO(microamps);
677
678static ssize_t name_show(struct device *dev, struct device_attribute *attr,
679 char *buf)
680{
681 struct regulator_dev *rdev = dev_get_drvdata(dev);
682
683 return sprintf(buf, "%s\n", rdev_get_name(rdev));
684}
685static DEVICE_ATTR_RO(name);
686
687static const char *regulator_opmode_to_str(int mode)
688{
689 switch (mode) {
690 case REGULATOR_MODE_FAST:
691 return "fast";
692 case REGULATOR_MODE_NORMAL:
693 return "normal";
694 case REGULATOR_MODE_IDLE:
695 return "idle";
696 case REGULATOR_MODE_STANDBY:
697 return "standby";
698 }
699 return "unknown";
700}
701
702static ssize_t regulator_print_opmode(char *buf, int mode)
703{
704 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
705}
706
707static ssize_t opmode_show(struct device *dev,
708 struct device_attribute *attr, char *buf)
709{
710 struct regulator_dev *rdev = dev_get_drvdata(dev);
711
712 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
713}
714static DEVICE_ATTR_RO(opmode);
715
716static ssize_t regulator_print_state(char *buf, int state)
717{
718 if (state > 0)
719 return sprintf(buf, "enabled\n");
720 else if (state == 0)
721 return sprintf(buf, "disabled\n");
722 else
723 return sprintf(buf, "unknown\n");
724}
725
726static ssize_t state_show(struct device *dev,
727 struct device_attribute *attr, char *buf)
728{
729 struct regulator_dev *rdev = dev_get_drvdata(dev);
730 ssize_t ret;
731
732 regulator_lock(rdev);
733 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
734 regulator_unlock(rdev);
735
736 return ret;
737}
738static DEVICE_ATTR_RO(state);
739
740static ssize_t status_show(struct device *dev,
741 struct device_attribute *attr, char *buf)
742{
743 struct regulator_dev *rdev = dev_get_drvdata(dev);
744 int status;
745 char *label;
746
747 status = rdev->desc->ops->get_status(rdev);
748 if (status < 0)
749 return status;
750
751 switch (status) {
752 case REGULATOR_STATUS_OFF:
753 label = "off";
754 break;
755 case REGULATOR_STATUS_ON:
756 label = "on";
757 break;
758 case REGULATOR_STATUS_ERROR:
759 label = "error";
760 break;
761 case REGULATOR_STATUS_FAST:
762 label = "fast";
763 break;
764 case REGULATOR_STATUS_NORMAL:
765 label = "normal";
766 break;
767 case REGULATOR_STATUS_IDLE:
768 label = "idle";
769 break;
770 case REGULATOR_STATUS_STANDBY:
771 label = "standby";
772 break;
773 case REGULATOR_STATUS_BYPASS:
774 label = "bypass";
775 break;
776 case REGULATOR_STATUS_UNDEFINED:
777 label = "undefined";
778 break;
779 default:
780 return -ERANGE;
781 }
782
783 return sprintf(buf, "%s\n", label);
784}
785static DEVICE_ATTR_RO(status);
786
787static ssize_t min_microamps_show(struct device *dev,
788 struct device_attribute *attr, char *buf)
789{
790 struct regulator_dev *rdev = dev_get_drvdata(dev);
791
792 if (!rdev->constraints)
793 return sprintf(buf, "constraint not defined\n");
794
795 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
796}
797static DEVICE_ATTR_RO(min_microamps);
798
799static ssize_t max_microamps_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
801{
802 struct regulator_dev *rdev = dev_get_drvdata(dev);
803
804 if (!rdev->constraints)
805 return sprintf(buf, "constraint not defined\n");
806
807 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
808}
809static DEVICE_ATTR_RO(max_microamps);
810
811static ssize_t min_microvolts_show(struct device *dev,
812 struct device_attribute *attr, char *buf)
813{
814 struct regulator_dev *rdev = dev_get_drvdata(dev);
815
816 if (!rdev->constraints)
817 return sprintf(buf, "constraint not defined\n");
818
819 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
820}
821static DEVICE_ATTR_RO(min_microvolts);
822
823static ssize_t max_microvolts_show(struct device *dev,
824 struct device_attribute *attr, char *buf)
825{
826 struct regulator_dev *rdev = dev_get_drvdata(dev);
827
828 if (!rdev->constraints)
829 return sprintf(buf, "constraint not defined\n");
830
831 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
832}
833static DEVICE_ATTR_RO(max_microvolts);
834
835static ssize_t requested_microamps_show(struct device *dev,
836 struct device_attribute *attr, char *buf)
837{
838 struct regulator_dev *rdev = dev_get_drvdata(dev);
839 struct regulator *regulator;
840 int uA = 0;
841
842 regulator_lock(rdev);
843 list_for_each_entry(regulator, &rdev->consumer_list, list) {
844 if (regulator->enable_count)
845 uA += regulator->uA_load;
846 }
847 regulator_unlock(rdev);
848 return sprintf(buf, "%d\n", uA);
849}
850static DEVICE_ATTR_RO(requested_microamps);
851
852static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
853 char *buf)
854{
855 struct regulator_dev *rdev = dev_get_drvdata(dev);
856 return sprintf(buf, "%d\n", rdev->use_count);
857}
858static DEVICE_ATTR_RO(num_users);
859
860static ssize_t type_show(struct device *dev, struct device_attribute *attr,
861 char *buf)
862{
863 struct regulator_dev *rdev = dev_get_drvdata(dev);
864
865 switch (rdev->desc->type) {
866 case REGULATOR_VOLTAGE:
867 return sprintf(buf, "voltage\n");
868 case REGULATOR_CURRENT:
869 return sprintf(buf, "current\n");
870 }
871 return sprintf(buf, "unknown\n");
872}
873static DEVICE_ATTR_RO(type);
874
875static ssize_t suspend_mem_microvolts_show(struct device *dev,
876 struct device_attribute *attr, char *buf)
877{
878 struct regulator_dev *rdev = dev_get_drvdata(dev);
879
880 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
881}
882static DEVICE_ATTR_RO(suspend_mem_microvolts);
883
884static ssize_t suspend_disk_microvolts_show(struct device *dev,
885 struct device_attribute *attr, char *buf)
886{
887 struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
890}
891static DEVICE_ATTR_RO(suspend_disk_microvolts);
892
893static ssize_t suspend_standby_microvolts_show(struct device *dev,
894 struct device_attribute *attr, char *buf)
895{
896 struct regulator_dev *rdev = dev_get_drvdata(dev);
897
898 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
899}
900static DEVICE_ATTR_RO(suspend_standby_microvolts);
901
902static ssize_t suspend_mem_mode_show(struct device *dev,
903 struct device_attribute *attr, char *buf)
904{
905 struct regulator_dev *rdev = dev_get_drvdata(dev);
906
907 return regulator_print_opmode(buf,
908 rdev->constraints->state_mem.mode);
909}
910static DEVICE_ATTR_RO(suspend_mem_mode);
911
912static ssize_t suspend_disk_mode_show(struct device *dev,
913 struct device_attribute *attr, char *buf)
914{
915 struct regulator_dev *rdev = dev_get_drvdata(dev);
916
917 return regulator_print_opmode(buf,
918 rdev->constraints->state_disk.mode);
919}
920static DEVICE_ATTR_RO(suspend_disk_mode);
921
922static ssize_t suspend_standby_mode_show(struct device *dev,
923 struct device_attribute *attr, char *buf)
924{
925 struct regulator_dev *rdev = dev_get_drvdata(dev);
926
927 return regulator_print_opmode(buf,
928 rdev->constraints->state_standby.mode);
929}
930static DEVICE_ATTR_RO(suspend_standby_mode);
931
932static ssize_t suspend_mem_state_show(struct device *dev,
933 struct device_attribute *attr, char *buf)
934{
935 struct regulator_dev *rdev = dev_get_drvdata(dev);
936
937 return regulator_print_state(buf,
938 rdev->constraints->state_mem.enabled);
939}
940static DEVICE_ATTR_RO(suspend_mem_state);
941
942static ssize_t suspend_disk_state_show(struct device *dev,
943 struct device_attribute *attr, char *buf)
944{
945 struct regulator_dev *rdev = dev_get_drvdata(dev);
946
947 return regulator_print_state(buf,
948 rdev->constraints->state_disk.enabled);
949}
950static DEVICE_ATTR_RO(suspend_disk_state);
951
952static ssize_t suspend_standby_state_show(struct device *dev,
953 struct device_attribute *attr, char *buf)
954{
955 struct regulator_dev *rdev = dev_get_drvdata(dev);
956
957 return regulator_print_state(buf,
958 rdev->constraints->state_standby.enabled);
959}
960static DEVICE_ATTR_RO(suspend_standby_state);
961
962static ssize_t bypass_show(struct device *dev,
963 struct device_attribute *attr, char *buf)
964{
965 struct regulator_dev *rdev = dev_get_drvdata(dev);
966 const char *report;
967 bool bypass;
968 int ret;
969
970 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
971
972 if (ret != 0)
973 report = "unknown";
974 else if (bypass)
975 report = "enabled";
976 else
977 report = "disabled";
978
979 return sprintf(buf, "%s\n", report);
980}
981static DEVICE_ATTR_RO(bypass);
982
983#define REGULATOR_ERROR_ATTR(name, bit) \
984 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
985 char *buf) \
986 { \
987 int ret; \
988 unsigned int flags; \
989 struct regulator_dev *rdev = dev_get_drvdata(dev); \
990 ret = _regulator_get_error_flags(rdev, &flags); \
991 if (ret) \
992 return ret; \
993 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
994 } \
995 static DEVICE_ATTR_RO(name)
996
997REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
998REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
999REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006
1007/* Calculate the new optimum regulator operating mode based on the new total
1008 * consumer load. All locks held by caller
1009 */
1010static int drms_uA_update(struct regulator_dev *rdev)
1011{
1012 struct regulator *sibling;
1013 int current_uA = 0, output_uV, input_uV, err;
1014 unsigned int mode;
1015
1016 /*
1017 * first check to see if we can set modes at all, otherwise just
1018 * tell the consumer everything is OK.
1019 */
1020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021 rdev_dbg(rdev, "DRMS operation not allowed\n");
1022 return 0;
1023 }
1024
1025 if (!rdev->desc->ops->get_optimum_mode &&
1026 !rdev->desc->ops->set_load)
1027 return 0;
1028
1029 if (!rdev->desc->ops->set_mode &&
1030 !rdev->desc->ops->set_load)
1031 return -EINVAL;
1032
1033 /* calc total requested load */
1034 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035 if (sibling->enable_count)
1036 current_uA += sibling->uA_load;
1037 }
1038
1039 current_uA += rdev->constraints->system_load;
1040
1041 if (rdev->desc->ops->set_load) {
1042 /* set the optimum mode for our new total regulator load */
1043 err = rdev->desc->ops->set_load(rdev, current_uA);
1044 if (err < 0)
1045 rdev_err(rdev, "failed to set load %d: %pe\n",
1046 current_uA, ERR_PTR(err));
1047 } else {
1048 /*
1049 * Unfortunately in some cases the constraints->valid_ops has
1050 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051 * That's not really legit but we won't consider it a fatal
1052 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053 * wasn't set.
1054 */
1055 if (!rdev->constraints->valid_modes_mask) {
1056 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057 return 0;
1058 }
1059
1060 /* get output voltage */
1061 output_uV = regulator_get_voltage_rdev(rdev);
1062
1063 /*
1064 * Don't return an error; if regulator driver cares about
1065 * output_uV then it's up to the driver to validate.
1066 */
1067 if (output_uV <= 0)
1068 rdev_dbg(rdev, "invalid output voltage found\n");
1069
1070 /* get input voltage */
1071 input_uV = 0;
1072 if (rdev->supply)
1073 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074 if (input_uV <= 0)
1075 input_uV = rdev->constraints->input_uV;
1076
1077 /*
1078 * Don't return an error; if regulator driver cares about
1079 * input_uV then it's up to the driver to validate.
1080 */
1081 if (input_uV <= 0)
1082 rdev_dbg(rdev, "invalid input voltage found\n");
1083
1084 /* now get the optimum mode for our new total regulator load */
1085 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086 output_uV, current_uA);
1087
1088 /* check the new mode is allowed */
1089 err = regulator_mode_constrain(rdev, &mode);
1090 if (err < 0) {
1091 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092 current_uA, input_uV, output_uV, ERR_PTR(err));
1093 return err;
1094 }
1095
1096 err = rdev->desc->ops->set_mode(rdev, mode);
1097 if (err < 0)
1098 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099 mode, ERR_PTR(err));
1100 }
1101
1102 return err;
1103}
1104
1105static int __suspend_set_state(struct regulator_dev *rdev,
1106 const struct regulator_state *rstate)
1107{
1108 int ret = 0;
1109
1110 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111 rdev->desc->ops->set_suspend_enable)
1112 ret = rdev->desc->ops->set_suspend_enable(rdev);
1113 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114 rdev->desc->ops->set_suspend_disable)
1115 ret = rdev->desc->ops->set_suspend_disable(rdev);
1116 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117 ret = 0;
1118
1119 if (ret < 0) {
1120 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121 return ret;
1122 }
1123
1124 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126 if (ret < 0) {
1127 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128 return ret;
1129 }
1130 }
1131
1132 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134 if (ret < 0) {
1135 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136 return ret;
1137 }
1138 }
1139
1140 return ret;
1141}
1142
1143static int suspend_set_initial_state(struct regulator_dev *rdev)
1144{
1145 const struct regulator_state *rstate;
1146
1147 rstate = regulator_get_suspend_state_check(rdev,
1148 rdev->constraints->initial_state);
1149 if (!rstate)
1150 return 0;
1151
1152 return __suspend_set_state(rdev, rstate);
1153}
1154
1155#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156static void print_constraints_debug(struct regulator_dev *rdev)
1157{
1158 struct regulation_constraints *constraints = rdev->constraints;
1159 char buf[160] = "";
1160 size_t len = sizeof(buf) - 1;
1161 int count = 0;
1162 int ret;
1163
1164 if (constraints->min_uV && constraints->max_uV) {
1165 if (constraints->min_uV == constraints->max_uV)
1166 count += scnprintf(buf + count, len - count, "%d mV ",
1167 constraints->min_uV / 1000);
1168 else
1169 count += scnprintf(buf + count, len - count,
1170 "%d <--> %d mV ",
1171 constraints->min_uV / 1000,
1172 constraints->max_uV / 1000);
1173 }
1174
1175 if (!constraints->min_uV ||
1176 constraints->min_uV != constraints->max_uV) {
1177 ret = regulator_get_voltage_rdev(rdev);
1178 if (ret > 0)
1179 count += scnprintf(buf + count, len - count,
1180 "at %d mV ", ret / 1000);
1181 }
1182
1183 if (constraints->uV_offset)
1184 count += scnprintf(buf + count, len - count, "%dmV offset ",
1185 constraints->uV_offset / 1000);
1186
1187 if (constraints->min_uA && constraints->max_uA) {
1188 if (constraints->min_uA == constraints->max_uA)
1189 count += scnprintf(buf + count, len - count, "%d mA ",
1190 constraints->min_uA / 1000);
1191 else
1192 count += scnprintf(buf + count, len - count,
1193 "%d <--> %d mA ",
1194 constraints->min_uA / 1000,
1195 constraints->max_uA / 1000);
1196 }
1197
1198 if (!constraints->min_uA ||
1199 constraints->min_uA != constraints->max_uA) {
1200 ret = _regulator_get_current_limit(rdev);
1201 if (ret > 0)
1202 count += scnprintf(buf + count, len - count,
1203 "at %d mA ", ret / 1000);
1204 }
1205
1206 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207 count += scnprintf(buf + count, len - count, "fast ");
1208 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209 count += scnprintf(buf + count, len - count, "normal ");
1210 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211 count += scnprintf(buf + count, len - count, "idle ");
1212 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213 count += scnprintf(buf + count, len - count, "standby ");
1214
1215 if (!count)
1216 count = scnprintf(buf, len, "no parameters");
1217 else
1218 --count;
1219
1220 count += scnprintf(buf + count, len - count, ", %s",
1221 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222
1223 rdev_dbg(rdev, "%s\n", buf);
1224}
1225#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228
1229static void print_constraints(struct regulator_dev *rdev)
1230{
1231 struct regulation_constraints *constraints = rdev->constraints;
1232
1233 print_constraints_debug(rdev);
1234
1235 if ((constraints->min_uV != constraints->max_uV) &&
1236 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237 rdev_warn(rdev,
1238 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239}
1240
1241static int machine_constraints_voltage(struct regulator_dev *rdev,
1242 struct regulation_constraints *constraints)
1243{
1244 const struct regulator_ops *ops = rdev->desc->ops;
1245 int ret;
1246
1247 /* do we need to apply the constraint voltage */
1248 if (rdev->constraints->apply_uV &&
1249 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250 int target_min, target_max;
1251 int current_uV = regulator_get_voltage_rdev(rdev);
1252
1253 if (current_uV == -ENOTRECOVERABLE) {
1254 /* This regulator can't be read and must be initialized */
1255 rdev_info(rdev, "Setting %d-%duV\n",
1256 rdev->constraints->min_uV,
1257 rdev->constraints->max_uV);
1258 _regulator_do_set_voltage(rdev,
1259 rdev->constraints->min_uV,
1260 rdev->constraints->max_uV);
1261 current_uV = regulator_get_voltage_rdev(rdev);
1262 }
1263
1264 if (current_uV < 0) {
1265 if (current_uV != -EPROBE_DEFER)
1266 rdev_err(rdev,
1267 "failed to get the current voltage: %pe\n",
1268 ERR_PTR(current_uV));
1269 return current_uV;
1270 }
1271
1272 /*
1273 * If we're below the minimum voltage move up to the
1274 * minimum voltage, if we're above the maximum voltage
1275 * then move down to the maximum.
1276 */
1277 target_min = current_uV;
1278 target_max = current_uV;
1279
1280 if (current_uV < rdev->constraints->min_uV) {
1281 target_min = rdev->constraints->min_uV;
1282 target_max = rdev->constraints->min_uV;
1283 }
1284
1285 if (current_uV > rdev->constraints->max_uV) {
1286 target_min = rdev->constraints->max_uV;
1287 target_max = rdev->constraints->max_uV;
1288 }
1289
1290 if (target_min != current_uV || target_max != current_uV) {
1291 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292 current_uV, target_min, target_max);
1293 ret = _regulator_do_set_voltage(
1294 rdev, target_min, target_max);
1295 if (ret < 0) {
1296 rdev_err(rdev,
1297 "failed to apply %d-%duV constraint: %pe\n",
1298 target_min, target_max, ERR_PTR(ret));
1299 return ret;
1300 }
1301 }
1302 }
1303
1304 /* constrain machine-level voltage specs to fit
1305 * the actual range supported by this regulator.
1306 */
1307 if (ops->list_voltage && rdev->desc->n_voltages) {
1308 int count = rdev->desc->n_voltages;
1309 int i;
1310 int min_uV = INT_MAX;
1311 int max_uV = INT_MIN;
1312 int cmin = constraints->min_uV;
1313 int cmax = constraints->max_uV;
1314
1315 /* it's safe to autoconfigure fixed-voltage supplies
1316 * and the constraints are used by list_voltage.
1317 */
1318 if (count == 1 && !cmin) {
1319 cmin = 1;
1320 cmax = INT_MAX;
1321 constraints->min_uV = cmin;
1322 constraints->max_uV = cmax;
1323 }
1324
1325 /* voltage constraints are optional */
1326 if ((cmin == 0) && (cmax == 0))
1327 return 0;
1328
1329 /* else require explicit machine-level constraints */
1330 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331 rdev_err(rdev, "invalid voltage constraints\n");
1332 return -EINVAL;
1333 }
1334
1335 /* no need to loop voltages if range is continuous */
1336 if (rdev->desc->continuous_voltage_range)
1337 return 0;
1338
1339 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340 for (i = 0; i < count; i++) {
1341 int value;
1342
1343 value = ops->list_voltage(rdev, i);
1344 if (value <= 0)
1345 continue;
1346
1347 /* maybe adjust [min_uV..max_uV] */
1348 if (value >= cmin && value < min_uV)
1349 min_uV = value;
1350 if (value <= cmax && value > max_uV)
1351 max_uV = value;
1352 }
1353
1354 /* final: [min_uV..max_uV] valid iff constraints valid */
1355 if (max_uV < min_uV) {
1356 rdev_err(rdev,
1357 "unsupportable voltage constraints %u-%uuV\n",
1358 min_uV, max_uV);
1359 return -EINVAL;
1360 }
1361
1362 /* use regulator's subset of machine constraints */
1363 if (constraints->min_uV < min_uV) {
1364 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365 constraints->min_uV, min_uV);
1366 constraints->min_uV = min_uV;
1367 }
1368 if (constraints->max_uV > max_uV) {
1369 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370 constraints->max_uV, max_uV);
1371 constraints->max_uV = max_uV;
1372 }
1373 }
1374
1375 return 0;
1376}
1377
1378static int machine_constraints_current(struct regulator_dev *rdev,
1379 struct regulation_constraints *constraints)
1380{
1381 const struct regulator_ops *ops = rdev->desc->ops;
1382 int ret;
1383
1384 if (!constraints->min_uA && !constraints->max_uA)
1385 return 0;
1386
1387 if (constraints->min_uA > constraints->max_uA) {
1388 rdev_err(rdev, "Invalid current constraints\n");
1389 return -EINVAL;
1390 }
1391
1392 if (!ops->set_current_limit || !ops->get_current_limit) {
1393 rdev_warn(rdev, "Operation of current configuration missing\n");
1394 return 0;
1395 }
1396
1397 /* Set regulator current in constraints range */
1398 ret = ops->set_current_limit(rdev, constraints->min_uA,
1399 constraints->max_uA);
1400 if (ret < 0) {
1401 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402 return ret;
1403 }
1404
1405 return 0;
1406}
1407
1408static int _regulator_do_enable(struct regulator_dev *rdev);
1409
1410static int notif_set_limit(struct regulator_dev *rdev,
1411 int (*set)(struct regulator_dev *, int, int, bool),
1412 int limit, int severity)
1413{
1414 bool enable;
1415
1416 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417 enable = false;
1418 limit = 0;
1419 } else {
1420 enable = true;
1421 }
1422
1423 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424 limit = 0;
1425
1426 return set(rdev, limit, severity, enable);
1427}
1428
1429static int handle_notify_limits(struct regulator_dev *rdev,
1430 int (*set)(struct regulator_dev *, int, int, bool),
1431 struct notification_limit *limits)
1432{
1433 int ret = 0;
1434
1435 if (!set)
1436 return -EOPNOTSUPP;
1437
1438 if (limits->prot)
1439 ret = notif_set_limit(rdev, set, limits->prot,
1440 REGULATOR_SEVERITY_PROT);
1441 if (ret)
1442 return ret;
1443
1444 if (limits->err)
1445 ret = notif_set_limit(rdev, set, limits->err,
1446 REGULATOR_SEVERITY_ERR);
1447 if (ret)
1448 return ret;
1449
1450 if (limits->warn)
1451 ret = notif_set_limit(rdev, set, limits->warn,
1452 REGULATOR_SEVERITY_WARN);
1453
1454 return ret;
1455}
1456/**
1457 * set_machine_constraints - sets regulator constraints
1458 * @rdev: regulator source
1459 *
1460 * Allows platform initialisation code to define and constrain
1461 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1462 * Constraints *must* be set by platform code in order for some
1463 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464 * set_mode.
1465 */
1466static int set_machine_constraints(struct regulator_dev *rdev)
1467{
1468 int ret = 0;
1469 const struct regulator_ops *ops = rdev->desc->ops;
1470
1471 ret = machine_constraints_voltage(rdev, rdev->constraints);
1472 if (ret != 0)
1473 return ret;
1474
1475 ret = machine_constraints_current(rdev, rdev->constraints);
1476 if (ret != 0)
1477 return ret;
1478
1479 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480 ret = ops->set_input_current_limit(rdev,
1481 rdev->constraints->ilim_uA);
1482 if (ret < 0) {
1483 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484 return ret;
1485 }
1486 }
1487
1488 /* do we need to setup our suspend state */
1489 if (rdev->constraints->initial_state) {
1490 ret = suspend_set_initial_state(rdev);
1491 if (ret < 0) {
1492 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493 return ret;
1494 }
1495 }
1496
1497 if (rdev->constraints->initial_mode) {
1498 if (!ops->set_mode) {
1499 rdev_err(rdev, "no set_mode operation\n");
1500 return -EINVAL;
1501 }
1502
1503 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504 if (ret < 0) {
1505 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506 return ret;
1507 }
1508 } else if (rdev->constraints->system_load) {
1509 /*
1510 * We'll only apply the initial system load if an
1511 * initial mode wasn't specified.
1512 */
1513 drms_uA_update(rdev);
1514 }
1515
1516 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517 && ops->set_ramp_delay) {
1518 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519 if (ret < 0) {
1520 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521 return ret;
1522 }
1523 }
1524
1525 if (rdev->constraints->pull_down && ops->set_pull_down) {
1526 ret = ops->set_pull_down(rdev);
1527 if (ret < 0) {
1528 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529 return ret;
1530 }
1531 }
1532
1533 if (rdev->constraints->soft_start && ops->set_soft_start) {
1534 ret = ops->set_soft_start(rdev);
1535 if (ret < 0) {
1536 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537 return ret;
1538 }
1539 }
1540
1541 /*
1542 * Existing logic does not warn if over_current_protection is given as
1543 * a constraint but driver does not support that. I think we should
1544 * warn about this type of issues as it is possible someone changes
1545 * PMIC on board to another type - and the another PMIC's driver does
1546 * not support setting protection. Board composer may happily believe
1547 * the DT limits are respected - especially if the new PMIC HW also
1548 * supports protection but the driver does not. I won't change the logic
1549 * without hearing more experienced opinion on this though.
1550 *
1551 * If warning is seen as a good idea then we can merge handling the
1552 * over-curret protection and detection and get rid of this special
1553 * handling.
1554 */
1555 if (rdev->constraints->over_current_protection
1556 && ops->set_over_current_protection) {
1557 int lim = rdev->constraints->over_curr_limits.prot;
1558
1559 ret = ops->set_over_current_protection(rdev, lim,
1560 REGULATOR_SEVERITY_PROT,
1561 true);
1562 if (ret < 0) {
1563 rdev_err(rdev, "failed to set over current protection: %pe\n",
1564 ERR_PTR(ret));
1565 return ret;
1566 }
1567 }
1568
1569 if (rdev->constraints->over_current_detection)
1570 ret = handle_notify_limits(rdev,
1571 ops->set_over_current_protection,
1572 &rdev->constraints->over_curr_limits);
1573 if (ret) {
1574 if (ret != -EOPNOTSUPP) {
1575 rdev_err(rdev, "failed to set over current limits: %pe\n",
1576 ERR_PTR(ret));
1577 return ret;
1578 }
1579 rdev_warn(rdev,
1580 "IC does not support requested over-current limits\n");
1581 }
1582
1583 if (rdev->constraints->over_voltage_detection)
1584 ret = handle_notify_limits(rdev,
1585 ops->set_over_voltage_protection,
1586 &rdev->constraints->over_voltage_limits);
1587 if (ret) {
1588 if (ret != -EOPNOTSUPP) {
1589 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590 ERR_PTR(ret));
1591 return ret;
1592 }
1593 rdev_warn(rdev,
1594 "IC does not support requested over voltage limits\n");
1595 }
1596
1597 if (rdev->constraints->under_voltage_detection)
1598 ret = handle_notify_limits(rdev,
1599 ops->set_under_voltage_protection,
1600 &rdev->constraints->under_voltage_limits);
1601 if (ret) {
1602 if (ret != -EOPNOTSUPP) {
1603 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604 ERR_PTR(ret));
1605 return ret;
1606 }
1607 rdev_warn(rdev,
1608 "IC does not support requested under voltage limits\n");
1609 }
1610
1611 if (rdev->constraints->over_temp_detection)
1612 ret = handle_notify_limits(rdev,
1613 ops->set_thermal_protection,
1614 &rdev->constraints->temp_limits);
1615 if (ret) {
1616 if (ret != -EOPNOTSUPP) {
1617 rdev_err(rdev, "failed to set temperature limits %pe\n",
1618 ERR_PTR(ret));
1619 return ret;
1620 }
1621 rdev_warn(rdev,
1622 "IC does not support requested temperature limits\n");
1623 }
1624
1625 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626 bool ad_state = (rdev->constraints->active_discharge ==
1627 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628
1629 ret = ops->set_active_discharge(rdev, ad_state);
1630 if (ret < 0) {
1631 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632 return ret;
1633 }
1634 }
1635
1636 /*
1637 * If there is no mechanism for controlling the regulator then
1638 * flag it as always_on so we don't end up duplicating checks
1639 * for this so much. Note that we could control the state of
1640 * a supply to control the output on a regulator that has no
1641 * direct control.
1642 */
1643 if (!rdev->ena_pin && !ops->enable) {
1644 if (rdev->supply_name && !rdev->supply)
1645 return -EPROBE_DEFER;
1646
1647 if (rdev->supply)
1648 rdev->constraints->always_on =
1649 rdev->supply->rdev->constraints->always_on;
1650 else
1651 rdev->constraints->always_on = true;
1652 }
1653
1654 /* If the constraints say the regulator should be on at this point
1655 * and we have control then make sure it is enabled.
1656 */
1657 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658 /* If we want to enable this regulator, make sure that we know
1659 * the supplying regulator.
1660 */
1661 if (rdev->supply_name && !rdev->supply)
1662 return -EPROBE_DEFER;
1663
1664 /* If supplying regulator has already been enabled,
1665 * it's not intended to have use_count increment
1666 * when rdev is only boot-on.
1667 */
1668 if (rdev->supply &&
1669 (rdev->constraints->always_on ||
1670 !regulator_is_enabled(rdev->supply))) {
1671 ret = regulator_enable(rdev->supply);
1672 if (ret < 0) {
1673 _regulator_put(rdev->supply);
1674 rdev->supply = NULL;
1675 return ret;
1676 }
1677 }
1678
1679 ret = _regulator_do_enable(rdev);
1680 if (ret < 0 && ret != -EINVAL) {
1681 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682 return ret;
1683 }
1684
1685 if (rdev->constraints->always_on)
1686 rdev->use_count++;
1687 } else if (rdev->desc->off_on_delay) {
1688 rdev->last_off = ktime_get();
1689 }
1690
1691 print_constraints(rdev);
1692 return 0;
1693}
1694
1695/**
1696 * set_supply - set regulator supply regulator
1697 * @rdev: regulator (locked)
1698 * @supply_rdev: supply regulator (locked))
1699 *
1700 * Called by platform initialisation code to set the supply regulator for this
1701 * regulator. This ensures that a regulators supply will also be enabled by the
1702 * core if it's child is enabled.
1703 */
1704static int set_supply(struct regulator_dev *rdev,
1705 struct regulator_dev *supply_rdev)
1706{
1707 int err;
1708
1709 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710
1711 if (!try_module_get(supply_rdev->owner))
1712 return -ENODEV;
1713
1714 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715 if (rdev->supply == NULL) {
1716 module_put(supply_rdev->owner);
1717 err = -ENOMEM;
1718 return err;
1719 }
1720 supply_rdev->open_count++;
1721
1722 return 0;
1723}
1724
1725/**
1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727 * @rdev: regulator source
1728 * @consumer_dev_name: dev_name() string for device supply applies to
1729 * @supply: symbolic name for supply
1730 *
1731 * Allows platform initialisation code to map physical regulator
1732 * sources to symbolic names for supplies for use by devices. Devices
1733 * should use these symbolic names to request regulators, avoiding the
1734 * need to provide board-specific regulator names as platform data.
1735 */
1736static int set_consumer_device_supply(struct regulator_dev *rdev,
1737 const char *consumer_dev_name,
1738 const char *supply)
1739{
1740 struct regulator_map *node, *new_node;
1741 int has_dev;
1742
1743 if (supply == NULL)
1744 return -EINVAL;
1745
1746 if (consumer_dev_name != NULL)
1747 has_dev = 1;
1748 else
1749 has_dev = 0;
1750
1751 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752 if (new_node == NULL)
1753 return -ENOMEM;
1754
1755 new_node->regulator = rdev;
1756 new_node->supply = supply;
1757
1758 if (has_dev) {
1759 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760 if (new_node->dev_name == NULL) {
1761 kfree(new_node);
1762 return -ENOMEM;
1763 }
1764 }
1765
1766 mutex_lock(®ulator_list_mutex);
1767 list_for_each_entry(node, ®ulator_map_list, list) {
1768 if (node->dev_name && consumer_dev_name) {
1769 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770 continue;
1771 } else if (node->dev_name || consumer_dev_name) {
1772 continue;
1773 }
1774
1775 if (strcmp(node->supply, supply) != 0)
1776 continue;
1777
1778 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779 consumer_dev_name,
1780 dev_name(&node->regulator->dev),
1781 node->regulator->desc->name,
1782 supply,
1783 dev_name(&rdev->dev), rdev_get_name(rdev));
1784 goto fail;
1785 }
1786
1787 list_add(&new_node->list, ®ulator_map_list);
1788 mutex_unlock(®ulator_list_mutex);
1789
1790 return 0;
1791
1792fail:
1793 mutex_unlock(®ulator_list_mutex);
1794 kfree(new_node->dev_name);
1795 kfree(new_node);
1796 return -EBUSY;
1797}
1798
1799static void unset_regulator_supplies(struct regulator_dev *rdev)
1800{
1801 struct regulator_map *node, *n;
1802
1803 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1804 if (rdev == node->regulator) {
1805 list_del(&node->list);
1806 kfree(node->dev_name);
1807 kfree(node);
1808 }
1809 }
1810}
1811
1812#ifdef CONFIG_DEBUG_FS
1813static ssize_t constraint_flags_read_file(struct file *file,
1814 char __user *user_buf,
1815 size_t count, loff_t *ppos)
1816{
1817 const struct regulator *regulator = file->private_data;
1818 const struct regulation_constraints *c = regulator->rdev->constraints;
1819 char *buf;
1820 ssize_t ret;
1821
1822 if (!c)
1823 return 0;
1824
1825 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826 if (!buf)
1827 return -ENOMEM;
1828
1829 ret = snprintf(buf, PAGE_SIZE,
1830 "always_on: %u\n"
1831 "boot_on: %u\n"
1832 "apply_uV: %u\n"
1833 "ramp_disable: %u\n"
1834 "soft_start: %u\n"
1835 "pull_down: %u\n"
1836 "over_current_protection: %u\n",
1837 c->always_on,
1838 c->boot_on,
1839 c->apply_uV,
1840 c->ramp_disable,
1841 c->soft_start,
1842 c->pull_down,
1843 c->over_current_protection);
1844
1845 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846 kfree(buf);
1847
1848 return ret;
1849}
1850
1851#endif
1852
1853static const struct file_operations constraint_flags_fops = {
1854#ifdef CONFIG_DEBUG_FS
1855 .open = simple_open,
1856 .read = constraint_flags_read_file,
1857 .llseek = default_llseek,
1858#endif
1859};
1860
1861#define REG_STR_SIZE 64
1862
1863static struct regulator *create_regulator(struct regulator_dev *rdev,
1864 struct device *dev,
1865 const char *supply_name)
1866{
1867 struct regulator *regulator;
1868 int err = 0;
1869
1870 lockdep_assert_held_once(&rdev->mutex.base);
1871
1872 if (dev) {
1873 char buf[REG_STR_SIZE];
1874 int size;
1875
1876 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877 dev->kobj.name, supply_name);
1878 if (size >= REG_STR_SIZE)
1879 return NULL;
1880
1881 supply_name = kstrdup(buf, GFP_KERNEL);
1882 if (supply_name == NULL)
1883 return NULL;
1884 } else {
1885 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886 if (supply_name == NULL)
1887 return NULL;
1888 }
1889
1890 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891 if (regulator == NULL) {
1892 kfree_const(supply_name);
1893 return NULL;
1894 }
1895
1896 regulator->rdev = rdev;
1897 regulator->supply_name = supply_name;
1898
1899 list_add(®ulator->list, &rdev->consumer_list);
1900
1901 if (dev) {
1902 regulator->dev = dev;
1903
1904 /* Add a link to the device sysfs entry */
1905 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906 supply_name);
1907 if (err) {
1908 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909 dev->kobj.name, ERR_PTR(err));
1910 /* non-fatal */
1911 }
1912 }
1913
1914 if (err != -EEXIST) {
1915 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916 if (IS_ERR(regulator->debugfs)) {
1917 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918 regulator->debugfs = NULL;
1919 }
1920 }
1921
1922 if (regulator->debugfs) {
1923 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1924 ®ulator->uA_load);
1925 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1926 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1927 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1928 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1929 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1930 regulator, &constraint_flags_fops);
1931 }
1932
1933 /*
1934 * Check now if the regulator is an always on regulator - if
1935 * it is then we don't need to do nearly so much work for
1936 * enable/disable calls.
1937 */
1938 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1939 _regulator_is_enabled(rdev))
1940 regulator->always_on = true;
1941
1942 return regulator;
1943}
1944
1945static int _regulator_get_enable_time(struct regulator_dev *rdev)
1946{
1947 if (rdev->constraints && rdev->constraints->enable_time)
1948 return rdev->constraints->enable_time;
1949 if (rdev->desc->ops->enable_time)
1950 return rdev->desc->ops->enable_time(rdev);
1951 return rdev->desc->enable_time;
1952}
1953
1954static struct regulator_supply_alias *regulator_find_supply_alias(
1955 struct device *dev, const char *supply)
1956{
1957 struct regulator_supply_alias *map;
1958
1959 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1960 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1961 return map;
1962
1963 return NULL;
1964}
1965
1966static void regulator_supply_alias(struct device **dev, const char **supply)
1967{
1968 struct regulator_supply_alias *map;
1969
1970 map = regulator_find_supply_alias(*dev, *supply);
1971 if (map) {
1972 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1973 *supply, map->alias_supply,
1974 dev_name(map->alias_dev));
1975 *dev = map->alias_dev;
1976 *supply = map->alias_supply;
1977 }
1978}
1979
1980static int regulator_match(struct device *dev, const void *data)
1981{
1982 struct regulator_dev *r = dev_to_rdev(dev);
1983
1984 return strcmp(rdev_get_name(r), data) == 0;
1985}
1986
1987static struct regulator_dev *regulator_lookup_by_name(const char *name)
1988{
1989 struct device *dev;
1990
1991 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1992
1993 return dev ? dev_to_rdev(dev) : NULL;
1994}
1995
1996/**
1997 * regulator_dev_lookup - lookup a regulator device.
1998 * @dev: device for regulator "consumer".
1999 * @supply: Supply name or regulator ID.
2000 *
2001 * If successful, returns a struct regulator_dev that corresponds to the name
2002 * @supply and with the embedded struct device refcount incremented by one.
2003 * The refcount must be dropped by calling put_device().
2004 * On failure one of the following ERR-PTR-encoded values is returned:
2005 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2006 * in the future.
2007 */
2008static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2009 const char *supply)
2010{
2011 struct regulator_dev *r = NULL;
2012 struct device_node *node;
2013 struct regulator_map *map;
2014 const char *devname = NULL;
2015
2016 regulator_supply_alias(&dev, &supply);
2017
2018 /* first do a dt based lookup */
2019 if (dev && dev->of_node) {
2020 node = of_get_regulator(dev, supply);
2021 if (node) {
2022 r = of_find_regulator_by_node(node);
2023 of_node_put(node);
2024 if (r)
2025 return r;
2026
2027 /*
2028 * We have a node, but there is no device.
2029 * assume it has not registered yet.
2030 */
2031 return ERR_PTR(-EPROBE_DEFER);
2032 }
2033 }
2034
2035 /* if not found, try doing it non-dt way */
2036 if (dev)
2037 devname = dev_name(dev);
2038
2039 mutex_lock(®ulator_list_mutex);
2040 list_for_each_entry(map, ®ulator_map_list, list) {
2041 /* If the mapping has a device set up it must match */
2042 if (map->dev_name &&
2043 (!devname || strcmp(map->dev_name, devname)))
2044 continue;
2045
2046 if (strcmp(map->supply, supply) == 0 &&
2047 get_device(&map->regulator->dev)) {
2048 r = map->regulator;
2049 break;
2050 }
2051 }
2052 mutex_unlock(®ulator_list_mutex);
2053
2054 if (r)
2055 return r;
2056
2057 r = regulator_lookup_by_name(supply);
2058 if (r)
2059 return r;
2060
2061 return ERR_PTR(-ENODEV);
2062}
2063
2064static int regulator_resolve_supply(struct regulator_dev *rdev)
2065{
2066 struct regulator_dev *r;
2067 struct device *dev = rdev->dev.parent;
2068 struct ww_acquire_ctx ww_ctx;
2069 int ret = 0;
2070
2071 /* No supply to resolve? */
2072 if (!rdev->supply_name)
2073 return 0;
2074
2075 /* Supply already resolved? (fast-path without locking contention) */
2076 if (rdev->supply)
2077 return 0;
2078
2079 r = regulator_dev_lookup(dev, rdev->supply_name);
2080 if (IS_ERR(r)) {
2081 ret = PTR_ERR(r);
2082
2083 /* Did the lookup explicitly defer for us? */
2084 if (ret == -EPROBE_DEFER)
2085 goto out;
2086
2087 if (have_full_constraints()) {
2088 r = dummy_regulator_rdev;
2089 get_device(&r->dev);
2090 } else {
2091 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2092 rdev->supply_name, rdev->desc->name);
2093 ret = -EPROBE_DEFER;
2094 goto out;
2095 }
2096 }
2097
2098 if (r == rdev) {
2099 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2100 rdev->desc->name, rdev->supply_name);
2101 if (!have_full_constraints()) {
2102 ret = -EINVAL;
2103 goto out;
2104 }
2105 r = dummy_regulator_rdev;
2106 get_device(&r->dev);
2107 }
2108
2109 /*
2110 * If the supply's parent device is not the same as the
2111 * regulator's parent device, then ensure the parent device
2112 * is bound before we resolve the supply, in case the parent
2113 * device get probe deferred and unregisters the supply.
2114 */
2115 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2116 if (!device_is_bound(r->dev.parent)) {
2117 put_device(&r->dev);
2118 ret = -EPROBE_DEFER;
2119 goto out;
2120 }
2121 }
2122
2123 /* Recursively resolve the supply of the supply */
2124 ret = regulator_resolve_supply(r);
2125 if (ret < 0) {
2126 put_device(&r->dev);
2127 goto out;
2128 }
2129
2130 /*
2131 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2132 * between rdev->supply null check and setting rdev->supply in
2133 * set_supply() from concurrent tasks.
2134 */
2135 regulator_lock_two(rdev, r, &ww_ctx);
2136
2137 /* Supply just resolved by a concurrent task? */
2138 if (rdev->supply) {
2139 regulator_unlock_two(rdev, r, &ww_ctx);
2140 put_device(&r->dev);
2141 goto out;
2142 }
2143
2144 ret = set_supply(rdev, r);
2145 if (ret < 0) {
2146 regulator_unlock_two(rdev, r, &ww_ctx);
2147 put_device(&r->dev);
2148 goto out;
2149 }
2150
2151 regulator_unlock_two(rdev, r, &ww_ctx);
2152
2153 /*
2154 * In set_machine_constraints() we may have turned this regulator on
2155 * but we couldn't propagate to the supply if it hadn't been resolved
2156 * yet. Do it now.
2157 */
2158 if (rdev->use_count) {
2159 ret = regulator_enable(rdev->supply);
2160 if (ret < 0) {
2161 _regulator_put(rdev->supply);
2162 rdev->supply = NULL;
2163 goto out;
2164 }
2165 }
2166
2167out:
2168 return ret;
2169}
2170
2171/* Internal regulator request function */
2172struct regulator *_regulator_get(struct device *dev, const char *id,
2173 enum regulator_get_type get_type)
2174{
2175 struct regulator_dev *rdev;
2176 struct regulator *regulator;
2177 struct device_link *link;
2178 int ret;
2179
2180 if (get_type >= MAX_GET_TYPE) {
2181 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2182 return ERR_PTR(-EINVAL);
2183 }
2184
2185 if (id == NULL) {
2186 pr_err("get() with no identifier\n");
2187 return ERR_PTR(-EINVAL);
2188 }
2189
2190 rdev = regulator_dev_lookup(dev, id);
2191 if (IS_ERR(rdev)) {
2192 ret = PTR_ERR(rdev);
2193
2194 /*
2195 * If regulator_dev_lookup() fails with error other
2196 * than -ENODEV our job here is done, we simply return it.
2197 */
2198 if (ret != -ENODEV)
2199 return ERR_PTR(ret);
2200
2201 if (!have_full_constraints()) {
2202 dev_warn(dev,
2203 "incomplete constraints, dummy supplies not allowed\n");
2204 return ERR_PTR(-ENODEV);
2205 }
2206
2207 switch (get_type) {
2208 case NORMAL_GET:
2209 /*
2210 * Assume that a regulator is physically present and
2211 * enabled, even if it isn't hooked up, and just
2212 * provide a dummy.
2213 */
2214 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2215 rdev = dummy_regulator_rdev;
2216 get_device(&rdev->dev);
2217 break;
2218
2219 case EXCLUSIVE_GET:
2220 dev_warn(dev,
2221 "dummy supplies not allowed for exclusive requests\n");
2222 fallthrough;
2223
2224 default:
2225 return ERR_PTR(-ENODEV);
2226 }
2227 }
2228
2229 if (rdev->exclusive) {
2230 regulator = ERR_PTR(-EPERM);
2231 put_device(&rdev->dev);
2232 return regulator;
2233 }
2234
2235 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2236 regulator = ERR_PTR(-EBUSY);
2237 put_device(&rdev->dev);
2238 return regulator;
2239 }
2240
2241 mutex_lock(®ulator_list_mutex);
2242 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2243 mutex_unlock(®ulator_list_mutex);
2244
2245 if (ret != 0) {
2246 regulator = ERR_PTR(-EPROBE_DEFER);
2247 put_device(&rdev->dev);
2248 return regulator;
2249 }
2250
2251 ret = regulator_resolve_supply(rdev);
2252 if (ret < 0) {
2253 regulator = ERR_PTR(ret);
2254 put_device(&rdev->dev);
2255 return regulator;
2256 }
2257
2258 if (!try_module_get(rdev->owner)) {
2259 regulator = ERR_PTR(-EPROBE_DEFER);
2260 put_device(&rdev->dev);
2261 return regulator;
2262 }
2263
2264 regulator_lock(rdev);
2265 regulator = create_regulator(rdev, dev, id);
2266 regulator_unlock(rdev);
2267 if (regulator == NULL) {
2268 regulator = ERR_PTR(-ENOMEM);
2269 module_put(rdev->owner);
2270 put_device(&rdev->dev);
2271 return regulator;
2272 }
2273
2274 rdev->open_count++;
2275 if (get_type == EXCLUSIVE_GET) {
2276 rdev->exclusive = 1;
2277
2278 ret = _regulator_is_enabled(rdev);
2279 if (ret > 0) {
2280 rdev->use_count = 1;
2281 regulator->enable_count = 1;
2282
2283 /* Propagate the regulator state to its supply */
2284 if (rdev->supply) {
2285 ret = regulator_enable(rdev->supply);
2286 if (ret < 0) {
2287 destroy_regulator(regulator);
2288 module_put(rdev->owner);
2289 put_device(&rdev->dev);
2290 return ERR_PTR(ret);
2291 }
2292 }
2293 } else {
2294 rdev->use_count = 0;
2295 regulator->enable_count = 0;
2296 }
2297 }
2298
2299 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2300 if (!IS_ERR_OR_NULL(link))
2301 regulator->device_link = true;
2302
2303 return regulator;
2304}
2305
2306/**
2307 * regulator_get - lookup and obtain a reference to a regulator.
2308 * @dev: device for regulator "consumer"
2309 * @id: Supply name or regulator ID.
2310 *
2311 * Returns a struct regulator corresponding to the regulator producer,
2312 * or IS_ERR() condition containing errno.
2313 *
2314 * Use of supply names configured via set_consumer_device_supply() is
2315 * strongly encouraged. It is recommended that the supply name used
2316 * should match the name used for the supply and/or the relevant
2317 * device pins in the datasheet.
2318 */
2319struct regulator *regulator_get(struct device *dev, const char *id)
2320{
2321 return _regulator_get(dev, id, NORMAL_GET);
2322}
2323EXPORT_SYMBOL_GPL(regulator_get);
2324
2325/**
2326 * regulator_get_exclusive - obtain exclusive access to a regulator.
2327 * @dev: device for regulator "consumer"
2328 * @id: Supply name or regulator ID.
2329 *
2330 * Returns a struct regulator corresponding to the regulator producer,
2331 * or IS_ERR() condition containing errno. Other consumers will be
2332 * unable to obtain this regulator while this reference is held and the
2333 * use count for the regulator will be initialised to reflect the current
2334 * state of the regulator.
2335 *
2336 * This is intended for use by consumers which cannot tolerate shared
2337 * use of the regulator such as those which need to force the
2338 * regulator off for correct operation of the hardware they are
2339 * controlling.
2340 *
2341 * Use of supply names configured via set_consumer_device_supply() is
2342 * strongly encouraged. It is recommended that the supply name used
2343 * should match the name used for the supply and/or the relevant
2344 * device pins in the datasheet.
2345 */
2346struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2347{
2348 return _regulator_get(dev, id, EXCLUSIVE_GET);
2349}
2350EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2351
2352/**
2353 * regulator_get_optional - obtain optional access to a regulator.
2354 * @dev: device for regulator "consumer"
2355 * @id: Supply name or regulator ID.
2356 *
2357 * Returns a struct regulator corresponding to the regulator producer,
2358 * or IS_ERR() condition containing errno.
2359 *
2360 * This is intended for use by consumers for devices which can have
2361 * some supplies unconnected in normal use, such as some MMC devices.
2362 * It can allow the regulator core to provide stub supplies for other
2363 * supplies requested using normal regulator_get() calls without
2364 * disrupting the operation of drivers that can handle absent
2365 * supplies.
2366 *
2367 * Use of supply names configured via set_consumer_device_supply() is
2368 * strongly encouraged. It is recommended that the supply name used
2369 * should match the name used for the supply and/or the relevant
2370 * device pins in the datasheet.
2371 */
2372struct regulator *regulator_get_optional(struct device *dev, const char *id)
2373{
2374 return _regulator_get(dev, id, OPTIONAL_GET);
2375}
2376EXPORT_SYMBOL_GPL(regulator_get_optional);
2377
2378static void destroy_regulator(struct regulator *regulator)
2379{
2380 struct regulator_dev *rdev = regulator->rdev;
2381
2382 debugfs_remove_recursive(regulator->debugfs);
2383
2384 if (regulator->dev) {
2385 if (regulator->device_link)
2386 device_link_remove(regulator->dev, &rdev->dev);
2387
2388 /* remove any sysfs entries */
2389 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2390 }
2391
2392 regulator_lock(rdev);
2393 list_del(®ulator->list);
2394
2395 rdev->open_count--;
2396 rdev->exclusive = 0;
2397 regulator_unlock(rdev);
2398
2399 kfree_const(regulator->supply_name);
2400 kfree(regulator);
2401}
2402
2403/* regulator_list_mutex lock held by regulator_put() */
2404static void _regulator_put(struct regulator *regulator)
2405{
2406 struct regulator_dev *rdev;
2407
2408 if (IS_ERR_OR_NULL(regulator))
2409 return;
2410
2411 lockdep_assert_held_once(®ulator_list_mutex);
2412
2413 /* Docs say you must disable before calling regulator_put() */
2414 WARN_ON(regulator->enable_count);
2415
2416 rdev = regulator->rdev;
2417
2418 destroy_regulator(regulator);
2419
2420 module_put(rdev->owner);
2421 put_device(&rdev->dev);
2422}
2423
2424/**
2425 * regulator_put - "free" the regulator source
2426 * @regulator: regulator source
2427 *
2428 * Note: drivers must ensure that all regulator_enable calls made on this
2429 * regulator source are balanced by regulator_disable calls prior to calling
2430 * this function.
2431 */
2432void regulator_put(struct regulator *regulator)
2433{
2434 mutex_lock(®ulator_list_mutex);
2435 _regulator_put(regulator);
2436 mutex_unlock(®ulator_list_mutex);
2437}
2438EXPORT_SYMBOL_GPL(regulator_put);
2439
2440/**
2441 * regulator_register_supply_alias - Provide device alias for supply lookup
2442 *
2443 * @dev: device that will be given as the regulator "consumer"
2444 * @id: Supply name or regulator ID
2445 * @alias_dev: device that should be used to lookup the supply
2446 * @alias_id: Supply name or regulator ID that should be used to lookup the
2447 * supply
2448 *
2449 * All lookups for id on dev will instead be conducted for alias_id on
2450 * alias_dev.
2451 */
2452int regulator_register_supply_alias(struct device *dev, const char *id,
2453 struct device *alias_dev,
2454 const char *alias_id)
2455{
2456 struct regulator_supply_alias *map;
2457
2458 map = regulator_find_supply_alias(dev, id);
2459 if (map)
2460 return -EEXIST;
2461
2462 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2463 if (!map)
2464 return -ENOMEM;
2465
2466 map->src_dev = dev;
2467 map->src_supply = id;
2468 map->alias_dev = alias_dev;
2469 map->alias_supply = alias_id;
2470
2471 list_add(&map->list, ®ulator_supply_alias_list);
2472
2473 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2474 id, dev_name(dev), alias_id, dev_name(alias_dev));
2475
2476 return 0;
2477}
2478EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2479
2480/**
2481 * regulator_unregister_supply_alias - Remove device alias
2482 *
2483 * @dev: device that will be given as the regulator "consumer"
2484 * @id: Supply name or regulator ID
2485 *
2486 * Remove a lookup alias if one exists for id on dev.
2487 */
2488void regulator_unregister_supply_alias(struct device *dev, const char *id)
2489{
2490 struct regulator_supply_alias *map;
2491
2492 map = regulator_find_supply_alias(dev, id);
2493 if (map) {
2494 list_del(&map->list);
2495 kfree(map);
2496 }
2497}
2498EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2499
2500/**
2501 * regulator_bulk_register_supply_alias - register multiple aliases
2502 *
2503 * @dev: device that will be given as the regulator "consumer"
2504 * @id: List of supply names or regulator IDs
2505 * @alias_dev: device that should be used to lookup the supply
2506 * @alias_id: List of supply names or regulator IDs that should be used to
2507 * lookup the supply
2508 * @num_id: Number of aliases to register
2509 *
2510 * @return 0 on success, an errno on failure.
2511 *
2512 * This helper function allows drivers to register several supply
2513 * aliases in one operation. If any of the aliases cannot be
2514 * registered any aliases that were registered will be removed
2515 * before returning to the caller.
2516 */
2517int regulator_bulk_register_supply_alias(struct device *dev,
2518 const char *const *id,
2519 struct device *alias_dev,
2520 const char *const *alias_id,
2521 int num_id)
2522{
2523 int i;
2524 int ret;
2525
2526 for (i = 0; i < num_id; ++i) {
2527 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2528 alias_id[i]);
2529 if (ret < 0)
2530 goto err;
2531 }
2532
2533 return 0;
2534
2535err:
2536 dev_err(dev,
2537 "Failed to create supply alias %s,%s -> %s,%s\n",
2538 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2539
2540 while (--i >= 0)
2541 regulator_unregister_supply_alias(dev, id[i]);
2542
2543 return ret;
2544}
2545EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2546
2547/**
2548 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2549 *
2550 * @dev: device that will be given as the regulator "consumer"
2551 * @id: List of supply names or regulator IDs
2552 * @num_id: Number of aliases to unregister
2553 *
2554 * This helper function allows drivers to unregister several supply
2555 * aliases in one operation.
2556 */
2557void regulator_bulk_unregister_supply_alias(struct device *dev,
2558 const char *const *id,
2559 int num_id)
2560{
2561 int i;
2562
2563 for (i = 0; i < num_id; ++i)
2564 regulator_unregister_supply_alias(dev, id[i]);
2565}
2566EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2567
2568
2569/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2570static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2571 const struct regulator_config *config)
2572{
2573 struct regulator_enable_gpio *pin, *new_pin;
2574 struct gpio_desc *gpiod;
2575
2576 gpiod = config->ena_gpiod;
2577 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2578
2579 mutex_lock(®ulator_list_mutex);
2580
2581 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2582 if (pin->gpiod == gpiod) {
2583 rdev_dbg(rdev, "GPIO is already used\n");
2584 goto update_ena_gpio_to_rdev;
2585 }
2586 }
2587
2588 if (new_pin == NULL) {
2589 mutex_unlock(®ulator_list_mutex);
2590 return -ENOMEM;
2591 }
2592
2593 pin = new_pin;
2594 new_pin = NULL;
2595
2596 pin->gpiod = gpiod;
2597 list_add(&pin->list, ®ulator_ena_gpio_list);
2598
2599update_ena_gpio_to_rdev:
2600 pin->request_count++;
2601 rdev->ena_pin = pin;
2602
2603 mutex_unlock(®ulator_list_mutex);
2604 kfree(new_pin);
2605
2606 return 0;
2607}
2608
2609static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2610{
2611 struct regulator_enable_gpio *pin, *n;
2612
2613 if (!rdev->ena_pin)
2614 return;
2615
2616 /* Free the GPIO only in case of no use */
2617 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2618 if (pin != rdev->ena_pin)
2619 continue;
2620
2621 if (--pin->request_count)
2622 break;
2623
2624 gpiod_put(pin->gpiod);
2625 list_del(&pin->list);
2626 kfree(pin);
2627 break;
2628 }
2629
2630 rdev->ena_pin = NULL;
2631}
2632
2633/**
2634 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2635 * @rdev: regulator_dev structure
2636 * @enable: enable GPIO at initial use?
2637 *
2638 * GPIO is enabled in case of initial use. (enable_count is 0)
2639 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2640 */
2641static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2642{
2643 struct regulator_enable_gpio *pin = rdev->ena_pin;
2644
2645 if (!pin)
2646 return -EINVAL;
2647
2648 if (enable) {
2649 /* Enable GPIO at initial use */
2650 if (pin->enable_count == 0)
2651 gpiod_set_value_cansleep(pin->gpiod, 1);
2652
2653 pin->enable_count++;
2654 } else {
2655 if (pin->enable_count > 1) {
2656 pin->enable_count--;
2657 return 0;
2658 }
2659
2660 /* Disable GPIO if not used */
2661 if (pin->enable_count <= 1) {
2662 gpiod_set_value_cansleep(pin->gpiod, 0);
2663 pin->enable_count = 0;
2664 }
2665 }
2666
2667 return 0;
2668}
2669
2670/**
2671 * _regulator_delay_helper - a delay helper function
2672 * @delay: time to delay in microseconds
2673 *
2674 * Delay for the requested amount of time as per the guidelines in:
2675 *
2676 * Documentation/timers/timers-howto.rst
2677 *
2678 * The assumption here is that these regulator operations will never used in
2679 * atomic context and therefore sleeping functions can be used.
2680 */
2681static void _regulator_delay_helper(unsigned int delay)
2682{
2683 unsigned int ms = delay / 1000;
2684 unsigned int us = delay % 1000;
2685
2686 if (ms > 0) {
2687 /*
2688 * For small enough values, handle super-millisecond
2689 * delays in the usleep_range() call below.
2690 */
2691 if (ms < 20)
2692 us += ms * 1000;
2693 else
2694 msleep(ms);
2695 }
2696
2697 /*
2698 * Give the scheduler some room to coalesce with any other
2699 * wakeup sources. For delays shorter than 10 us, don't even
2700 * bother setting up high-resolution timers and just busy-
2701 * loop.
2702 */
2703 if (us >= 10)
2704 usleep_range(us, us + 100);
2705 else
2706 udelay(us);
2707}
2708
2709/**
2710 * _regulator_check_status_enabled
2711 *
2712 * A helper function to check if the regulator status can be interpreted
2713 * as 'regulator is enabled'.
2714 * @rdev: the regulator device to check
2715 *
2716 * Return:
2717 * * 1 - if status shows regulator is in enabled state
2718 * * 0 - if not enabled state
2719 * * Error Value - as received from ops->get_status()
2720 */
2721static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2722{
2723 int ret = rdev->desc->ops->get_status(rdev);
2724
2725 if (ret < 0) {
2726 rdev_info(rdev, "get_status returned error: %d\n", ret);
2727 return ret;
2728 }
2729
2730 switch (ret) {
2731 case REGULATOR_STATUS_OFF:
2732 case REGULATOR_STATUS_ERROR:
2733 case REGULATOR_STATUS_UNDEFINED:
2734 return 0;
2735 default:
2736 return 1;
2737 }
2738}
2739
2740static int _regulator_do_enable(struct regulator_dev *rdev)
2741{
2742 int ret, delay;
2743
2744 /* Query before enabling in case configuration dependent. */
2745 ret = _regulator_get_enable_time(rdev);
2746 if (ret >= 0) {
2747 delay = ret;
2748 } else {
2749 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2750 delay = 0;
2751 }
2752
2753 trace_regulator_enable(rdev_get_name(rdev));
2754
2755 if (rdev->desc->off_on_delay) {
2756 /* if needed, keep a distance of off_on_delay from last time
2757 * this regulator was disabled.
2758 */
2759 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2760 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2761
2762 if (remaining > 0)
2763 _regulator_delay_helper(remaining);
2764 }
2765
2766 if (rdev->ena_pin) {
2767 if (!rdev->ena_gpio_state) {
2768 ret = regulator_ena_gpio_ctrl(rdev, true);
2769 if (ret < 0)
2770 return ret;
2771 rdev->ena_gpio_state = 1;
2772 }
2773 } else if (rdev->desc->ops->enable) {
2774 ret = rdev->desc->ops->enable(rdev);
2775 if (ret < 0)
2776 return ret;
2777 } else {
2778 return -EINVAL;
2779 }
2780
2781 /* Allow the regulator to ramp; it would be useful to extend
2782 * this for bulk operations so that the regulators can ramp
2783 * together.
2784 */
2785 trace_regulator_enable_delay(rdev_get_name(rdev));
2786
2787 /* If poll_enabled_time is set, poll upto the delay calculated
2788 * above, delaying poll_enabled_time uS to check if the regulator
2789 * actually got enabled.
2790 * If the regulator isn't enabled after our delay helper has expired,
2791 * return -ETIMEDOUT.
2792 */
2793 if (rdev->desc->poll_enabled_time) {
2794 int time_remaining = delay;
2795
2796 while (time_remaining > 0) {
2797 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2798
2799 if (rdev->desc->ops->get_status) {
2800 ret = _regulator_check_status_enabled(rdev);
2801 if (ret < 0)
2802 return ret;
2803 else if (ret)
2804 break;
2805 } else if (rdev->desc->ops->is_enabled(rdev))
2806 break;
2807
2808 time_remaining -= rdev->desc->poll_enabled_time;
2809 }
2810
2811 if (time_remaining <= 0) {
2812 rdev_err(rdev, "Enabled check timed out\n");
2813 return -ETIMEDOUT;
2814 }
2815 } else {
2816 _regulator_delay_helper(delay);
2817 }
2818
2819 trace_regulator_enable_complete(rdev_get_name(rdev));
2820
2821 return 0;
2822}
2823
2824/**
2825 * _regulator_handle_consumer_enable - handle that a consumer enabled
2826 * @regulator: regulator source
2827 *
2828 * Some things on a regulator consumer (like the contribution towards total
2829 * load on the regulator) only have an effect when the consumer wants the
2830 * regulator enabled. Explained in example with two consumers of the same
2831 * regulator:
2832 * consumer A: set_load(100); => total load = 0
2833 * consumer A: regulator_enable(); => total load = 100
2834 * consumer B: set_load(1000); => total load = 100
2835 * consumer B: regulator_enable(); => total load = 1100
2836 * consumer A: regulator_disable(); => total_load = 1000
2837 *
2838 * This function (together with _regulator_handle_consumer_disable) is
2839 * responsible for keeping track of the refcount for a given regulator consumer
2840 * and applying / unapplying these things.
2841 *
2842 * Returns 0 upon no error; -error upon error.
2843 */
2844static int _regulator_handle_consumer_enable(struct regulator *regulator)
2845{
2846 int ret;
2847 struct regulator_dev *rdev = regulator->rdev;
2848
2849 lockdep_assert_held_once(&rdev->mutex.base);
2850
2851 regulator->enable_count++;
2852 if (regulator->uA_load && regulator->enable_count == 1) {
2853 ret = drms_uA_update(rdev);
2854 if (ret)
2855 regulator->enable_count--;
2856 return ret;
2857 }
2858
2859 return 0;
2860}
2861
2862/**
2863 * _regulator_handle_consumer_disable - handle that a consumer disabled
2864 * @regulator: regulator source
2865 *
2866 * The opposite of _regulator_handle_consumer_enable().
2867 *
2868 * Returns 0 upon no error; -error upon error.
2869 */
2870static int _regulator_handle_consumer_disable(struct regulator *regulator)
2871{
2872 struct regulator_dev *rdev = regulator->rdev;
2873
2874 lockdep_assert_held_once(&rdev->mutex.base);
2875
2876 if (!regulator->enable_count) {
2877 rdev_err(rdev, "Underflow of regulator enable count\n");
2878 return -EINVAL;
2879 }
2880
2881 regulator->enable_count--;
2882 if (regulator->uA_load && regulator->enable_count == 0)
2883 return drms_uA_update(rdev);
2884
2885 return 0;
2886}
2887
2888/* locks held by regulator_enable() */
2889static int _regulator_enable(struct regulator *regulator)
2890{
2891 struct regulator_dev *rdev = regulator->rdev;
2892 int ret;
2893
2894 lockdep_assert_held_once(&rdev->mutex.base);
2895
2896 if (rdev->use_count == 0 && rdev->supply) {
2897 ret = _regulator_enable(rdev->supply);
2898 if (ret < 0)
2899 return ret;
2900 }
2901
2902 /* balance only if there are regulators coupled */
2903 if (rdev->coupling_desc.n_coupled > 1) {
2904 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2905 if (ret < 0)
2906 goto err_disable_supply;
2907 }
2908
2909 ret = _regulator_handle_consumer_enable(regulator);
2910 if (ret < 0)
2911 goto err_disable_supply;
2912
2913 if (rdev->use_count == 0) {
2914 /*
2915 * The regulator may already be enabled if it's not switchable
2916 * or was left on
2917 */
2918 ret = _regulator_is_enabled(rdev);
2919 if (ret == -EINVAL || ret == 0) {
2920 if (!regulator_ops_is_valid(rdev,
2921 REGULATOR_CHANGE_STATUS)) {
2922 ret = -EPERM;
2923 goto err_consumer_disable;
2924 }
2925
2926 ret = _regulator_do_enable(rdev);
2927 if (ret < 0)
2928 goto err_consumer_disable;
2929
2930 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2931 NULL);
2932 } else if (ret < 0) {
2933 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2934 goto err_consumer_disable;
2935 }
2936 /* Fallthrough on positive return values - already enabled */
2937 }
2938
2939 if (regulator->enable_count == 1)
2940 rdev->use_count++;
2941
2942 return 0;
2943
2944err_consumer_disable:
2945 _regulator_handle_consumer_disable(regulator);
2946
2947err_disable_supply:
2948 if (rdev->use_count == 0 && rdev->supply)
2949 _regulator_disable(rdev->supply);
2950
2951 return ret;
2952}
2953
2954/**
2955 * regulator_enable - enable regulator output
2956 * @regulator: regulator source
2957 *
2958 * Request that the regulator be enabled with the regulator output at
2959 * the predefined voltage or current value. Calls to regulator_enable()
2960 * must be balanced with calls to regulator_disable().
2961 *
2962 * NOTE: the output value can be set by other drivers, boot loader or may be
2963 * hardwired in the regulator.
2964 */
2965int regulator_enable(struct regulator *regulator)
2966{
2967 struct regulator_dev *rdev = regulator->rdev;
2968 struct ww_acquire_ctx ww_ctx;
2969 int ret;
2970
2971 regulator_lock_dependent(rdev, &ww_ctx);
2972 ret = _regulator_enable(regulator);
2973 regulator_unlock_dependent(rdev, &ww_ctx);
2974
2975 return ret;
2976}
2977EXPORT_SYMBOL_GPL(regulator_enable);
2978
2979static int _regulator_do_disable(struct regulator_dev *rdev)
2980{
2981 int ret;
2982
2983 trace_regulator_disable(rdev_get_name(rdev));
2984
2985 if (rdev->ena_pin) {
2986 if (rdev->ena_gpio_state) {
2987 ret = regulator_ena_gpio_ctrl(rdev, false);
2988 if (ret < 0)
2989 return ret;
2990 rdev->ena_gpio_state = 0;
2991 }
2992
2993 } else if (rdev->desc->ops->disable) {
2994 ret = rdev->desc->ops->disable(rdev);
2995 if (ret != 0)
2996 return ret;
2997 }
2998
2999 if (rdev->desc->off_on_delay)
3000 rdev->last_off = ktime_get_boottime();
3001
3002 trace_regulator_disable_complete(rdev_get_name(rdev));
3003
3004 return 0;
3005}
3006
3007/* locks held by regulator_disable() */
3008static int _regulator_disable(struct regulator *regulator)
3009{
3010 struct regulator_dev *rdev = regulator->rdev;
3011 int ret = 0;
3012
3013 lockdep_assert_held_once(&rdev->mutex.base);
3014
3015 if (WARN(regulator->enable_count == 0,
3016 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3017 return -EIO;
3018
3019 if (regulator->enable_count == 1) {
3020 /* disabling last enable_count from this regulator */
3021 /* are we the last user and permitted to disable ? */
3022 if (rdev->use_count == 1 &&
3023 (rdev->constraints && !rdev->constraints->always_on)) {
3024
3025 /* we are last user */
3026 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3027 ret = _notifier_call_chain(rdev,
3028 REGULATOR_EVENT_PRE_DISABLE,
3029 NULL);
3030 if (ret & NOTIFY_STOP_MASK)
3031 return -EINVAL;
3032
3033 ret = _regulator_do_disable(rdev);
3034 if (ret < 0) {
3035 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3036 _notifier_call_chain(rdev,
3037 REGULATOR_EVENT_ABORT_DISABLE,
3038 NULL);
3039 return ret;
3040 }
3041 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3042 NULL);
3043 }
3044
3045 rdev->use_count = 0;
3046 } else if (rdev->use_count > 1) {
3047 rdev->use_count--;
3048 }
3049 }
3050
3051 if (ret == 0)
3052 ret = _regulator_handle_consumer_disable(regulator);
3053
3054 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3055 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3056
3057 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3058 ret = _regulator_disable(rdev->supply);
3059
3060 return ret;
3061}
3062
3063/**
3064 * regulator_disable - disable regulator output
3065 * @regulator: regulator source
3066 *
3067 * Disable the regulator output voltage or current. Calls to
3068 * regulator_enable() must be balanced with calls to
3069 * regulator_disable().
3070 *
3071 * NOTE: this will only disable the regulator output if no other consumer
3072 * devices have it enabled, the regulator device supports disabling and
3073 * machine constraints permit this operation.
3074 */
3075int regulator_disable(struct regulator *regulator)
3076{
3077 struct regulator_dev *rdev = regulator->rdev;
3078 struct ww_acquire_ctx ww_ctx;
3079 int ret;
3080
3081 regulator_lock_dependent(rdev, &ww_ctx);
3082 ret = _regulator_disable(regulator);
3083 regulator_unlock_dependent(rdev, &ww_ctx);
3084
3085 return ret;
3086}
3087EXPORT_SYMBOL_GPL(regulator_disable);
3088
3089/* locks held by regulator_force_disable() */
3090static int _regulator_force_disable(struct regulator_dev *rdev)
3091{
3092 int ret = 0;
3093
3094 lockdep_assert_held_once(&rdev->mutex.base);
3095
3096 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3097 REGULATOR_EVENT_PRE_DISABLE, NULL);
3098 if (ret & NOTIFY_STOP_MASK)
3099 return -EINVAL;
3100
3101 ret = _regulator_do_disable(rdev);
3102 if (ret < 0) {
3103 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3104 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3105 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3106 return ret;
3107 }
3108
3109 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3110 REGULATOR_EVENT_DISABLE, NULL);
3111
3112 return 0;
3113}
3114
3115/**
3116 * regulator_force_disable - force disable regulator output
3117 * @regulator: regulator source
3118 *
3119 * Forcibly disable the regulator output voltage or current.
3120 * NOTE: this *will* disable the regulator output even if other consumer
3121 * devices have it enabled. This should be used for situations when device
3122 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3123 */
3124int regulator_force_disable(struct regulator *regulator)
3125{
3126 struct regulator_dev *rdev = regulator->rdev;
3127 struct ww_acquire_ctx ww_ctx;
3128 int ret;
3129
3130 regulator_lock_dependent(rdev, &ww_ctx);
3131
3132 ret = _regulator_force_disable(regulator->rdev);
3133
3134 if (rdev->coupling_desc.n_coupled > 1)
3135 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3136
3137 if (regulator->uA_load) {
3138 regulator->uA_load = 0;
3139 ret = drms_uA_update(rdev);
3140 }
3141
3142 if (rdev->use_count != 0 && rdev->supply)
3143 _regulator_disable(rdev->supply);
3144
3145 regulator_unlock_dependent(rdev, &ww_ctx);
3146
3147 return ret;
3148}
3149EXPORT_SYMBOL_GPL(regulator_force_disable);
3150
3151static void regulator_disable_work(struct work_struct *work)
3152{
3153 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3154 disable_work.work);
3155 struct ww_acquire_ctx ww_ctx;
3156 int count, i, ret;
3157 struct regulator *regulator;
3158 int total_count = 0;
3159
3160 regulator_lock_dependent(rdev, &ww_ctx);
3161
3162 /*
3163 * Workqueue functions queue the new work instance while the previous
3164 * work instance is being processed. Cancel the queued work instance
3165 * as the work instance under processing does the job of the queued
3166 * work instance.
3167 */
3168 cancel_delayed_work(&rdev->disable_work);
3169
3170 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3171 count = regulator->deferred_disables;
3172
3173 if (!count)
3174 continue;
3175
3176 total_count += count;
3177 regulator->deferred_disables = 0;
3178
3179 for (i = 0; i < count; i++) {
3180 ret = _regulator_disable(regulator);
3181 if (ret != 0)
3182 rdev_err(rdev, "Deferred disable failed: %pe\n",
3183 ERR_PTR(ret));
3184 }
3185 }
3186 WARN_ON(!total_count);
3187
3188 if (rdev->coupling_desc.n_coupled > 1)
3189 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3190
3191 regulator_unlock_dependent(rdev, &ww_ctx);
3192}
3193
3194/**
3195 * regulator_disable_deferred - disable regulator output with delay
3196 * @regulator: regulator source
3197 * @ms: milliseconds until the regulator is disabled
3198 *
3199 * Execute regulator_disable() on the regulator after a delay. This
3200 * is intended for use with devices that require some time to quiesce.
3201 *
3202 * NOTE: this will only disable the regulator output if no other consumer
3203 * devices have it enabled, the regulator device supports disabling and
3204 * machine constraints permit this operation.
3205 */
3206int regulator_disable_deferred(struct regulator *regulator, int ms)
3207{
3208 struct regulator_dev *rdev = regulator->rdev;
3209
3210 if (!ms)
3211 return regulator_disable(regulator);
3212
3213 regulator_lock(rdev);
3214 regulator->deferred_disables++;
3215 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3216 msecs_to_jiffies(ms));
3217 regulator_unlock(rdev);
3218
3219 return 0;
3220}
3221EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3222
3223static int _regulator_is_enabled(struct regulator_dev *rdev)
3224{
3225 /* A GPIO control always takes precedence */
3226 if (rdev->ena_pin)
3227 return rdev->ena_gpio_state;
3228
3229 /* If we don't know then assume that the regulator is always on */
3230 if (!rdev->desc->ops->is_enabled)
3231 return 1;
3232
3233 return rdev->desc->ops->is_enabled(rdev);
3234}
3235
3236static int _regulator_list_voltage(struct regulator_dev *rdev,
3237 unsigned selector, int lock)
3238{
3239 const struct regulator_ops *ops = rdev->desc->ops;
3240 int ret;
3241
3242 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3243 return rdev->desc->fixed_uV;
3244
3245 if (ops->list_voltage) {
3246 if (selector >= rdev->desc->n_voltages)
3247 return -EINVAL;
3248 if (selector < rdev->desc->linear_min_sel)
3249 return 0;
3250 if (lock)
3251 regulator_lock(rdev);
3252 ret = ops->list_voltage(rdev, selector);
3253 if (lock)
3254 regulator_unlock(rdev);
3255 } else if (rdev->is_switch && rdev->supply) {
3256 ret = _regulator_list_voltage(rdev->supply->rdev,
3257 selector, lock);
3258 } else {
3259 return -EINVAL;
3260 }
3261
3262 if (ret > 0) {
3263 if (ret < rdev->constraints->min_uV)
3264 ret = 0;
3265 else if (ret > rdev->constraints->max_uV)
3266 ret = 0;
3267 }
3268
3269 return ret;
3270}
3271
3272/**
3273 * regulator_is_enabled - is the regulator output enabled
3274 * @regulator: regulator source
3275 *
3276 * Returns positive if the regulator driver backing the source/client
3277 * has requested that the device be enabled, zero if it hasn't, else a
3278 * negative errno code.
3279 *
3280 * Note that the device backing this regulator handle can have multiple
3281 * users, so it might be enabled even if regulator_enable() was never
3282 * called for this particular source.
3283 */
3284int regulator_is_enabled(struct regulator *regulator)
3285{
3286 int ret;
3287
3288 if (regulator->always_on)
3289 return 1;
3290
3291 regulator_lock(regulator->rdev);
3292 ret = _regulator_is_enabled(regulator->rdev);
3293 regulator_unlock(regulator->rdev);
3294
3295 return ret;
3296}
3297EXPORT_SYMBOL_GPL(regulator_is_enabled);
3298
3299/**
3300 * regulator_count_voltages - count regulator_list_voltage() selectors
3301 * @regulator: regulator source
3302 *
3303 * Returns number of selectors, or negative errno. Selectors are
3304 * numbered starting at zero, and typically correspond to bitfields
3305 * in hardware registers.
3306 */
3307int regulator_count_voltages(struct regulator *regulator)
3308{
3309 struct regulator_dev *rdev = regulator->rdev;
3310
3311 if (rdev->desc->n_voltages)
3312 return rdev->desc->n_voltages;
3313
3314 if (!rdev->is_switch || !rdev->supply)
3315 return -EINVAL;
3316
3317 return regulator_count_voltages(rdev->supply);
3318}
3319EXPORT_SYMBOL_GPL(regulator_count_voltages);
3320
3321/**
3322 * regulator_list_voltage - enumerate supported voltages
3323 * @regulator: regulator source
3324 * @selector: identify voltage to list
3325 * Context: can sleep
3326 *
3327 * Returns a voltage that can be passed to @regulator_set_voltage(),
3328 * zero if this selector code can't be used on this system, or a
3329 * negative errno.
3330 */
3331int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3332{
3333 return _regulator_list_voltage(regulator->rdev, selector, 1);
3334}
3335EXPORT_SYMBOL_GPL(regulator_list_voltage);
3336
3337/**
3338 * regulator_get_regmap - get the regulator's register map
3339 * @regulator: regulator source
3340 *
3341 * Returns the register map for the given regulator, or an ERR_PTR value
3342 * if the regulator doesn't use regmap.
3343 */
3344struct regmap *regulator_get_regmap(struct regulator *regulator)
3345{
3346 struct regmap *map = regulator->rdev->regmap;
3347
3348 return map ? map : ERR_PTR(-EOPNOTSUPP);
3349}
3350
3351/**
3352 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3353 * @regulator: regulator source
3354 * @vsel_reg: voltage selector register, output parameter
3355 * @vsel_mask: mask for voltage selector bitfield, output parameter
3356 *
3357 * Returns the hardware register offset and bitmask used for setting the
3358 * regulator voltage. This might be useful when configuring voltage-scaling
3359 * hardware or firmware that can make I2C requests behind the kernel's back,
3360 * for example.
3361 *
3362 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3363 * and 0 is returned, otherwise a negative errno is returned.
3364 */
3365int regulator_get_hardware_vsel_register(struct regulator *regulator,
3366 unsigned *vsel_reg,
3367 unsigned *vsel_mask)
3368{
3369 struct regulator_dev *rdev = regulator->rdev;
3370 const struct regulator_ops *ops = rdev->desc->ops;
3371
3372 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3373 return -EOPNOTSUPP;
3374
3375 *vsel_reg = rdev->desc->vsel_reg;
3376 *vsel_mask = rdev->desc->vsel_mask;
3377
3378 return 0;
3379}
3380EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3381
3382/**
3383 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3384 * @regulator: regulator source
3385 * @selector: identify voltage to list
3386 *
3387 * Converts the selector to a hardware-specific voltage selector that can be
3388 * directly written to the regulator registers. The address of the voltage
3389 * register can be determined by calling @regulator_get_hardware_vsel_register.
3390 *
3391 * On error a negative errno is returned.
3392 */
3393int regulator_list_hardware_vsel(struct regulator *regulator,
3394 unsigned selector)
3395{
3396 struct regulator_dev *rdev = regulator->rdev;
3397 const struct regulator_ops *ops = rdev->desc->ops;
3398
3399 if (selector >= rdev->desc->n_voltages)
3400 return -EINVAL;
3401 if (selector < rdev->desc->linear_min_sel)
3402 return 0;
3403 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3404 return -EOPNOTSUPP;
3405
3406 return selector;
3407}
3408EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3409
3410/**
3411 * regulator_get_linear_step - return the voltage step size between VSEL values
3412 * @regulator: regulator source
3413 *
3414 * Returns the voltage step size between VSEL values for linear
3415 * regulators, or return 0 if the regulator isn't a linear regulator.
3416 */
3417unsigned int regulator_get_linear_step(struct regulator *regulator)
3418{
3419 struct regulator_dev *rdev = regulator->rdev;
3420
3421 return rdev->desc->uV_step;
3422}
3423EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3424
3425/**
3426 * regulator_is_supported_voltage - check if a voltage range can be supported
3427 *
3428 * @regulator: Regulator to check.
3429 * @min_uV: Minimum required voltage in uV.
3430 * @max_uV: Maximum required voltage in uV.
3431 *
3432 * Returns a boolean.
3433 */
3434int regulator_is_supported_voltage(struct regulator *regulator,
3435 int min_uV, int max_uV)
3436{
3437 struct regulator_dev *rdev = regulator->rdev;
3438 int i, voltages, ret;
3439
3440 /* If we can't change voltage check the current voltage */
3441 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3442 ret = regulator_get_voltage(regulator);
3443 if (ret >= 0)
3444 return min_uV <= ret && ret <= max_uV;
3445 else
3446 return ret;
3447 }
3448
3449 /* Any voltage within constrains range is fine? */
3450 if (rdev->desc->continuous_voltage_range)
3451 return min_uV >= rdev->constraints->min_uV &&
3452 max_uV <= rdev->constraints->max_uV;
3453
3454 ret = regulator_count_voltages(regulator);
3455 if (ret < 0)
3456 return 0;
3457 voltages = ret;
3458
3459 for (i = 0; i < voltages; i++) {
3460 ret = regulator_list_voltage(regulator, i);
3461
3462 if (ret >= min_uV && ret <= max_uV)
3463 return 1;
3464 }
3465
3466 return 0;
3467}
3468EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3469
3470static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3471 int max_uV)
3472{
3473 const struct regulator_desc *desc = rdev->desc;
3474
3475 if (desc->ops->map_voltage)
3476 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3477
3478 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3479 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3480
3481 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3482 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3483
3484 if (desc->ops->list_voltage ==
3485 regulator_list_voltage_pickable_linear_range)
3486 return regulator_map_voltage_pickable_linear_range(rdev,
3487 min_uV, max_uV);
3488
3489 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3490}
3491
3492static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3493 int min_uV, int max_uV,
3494 unsigned *selector)
3495{
3496 struct pre_voltage_change_data data;
3497 int ret;
3498
3499 data.old_uV = regulator_get_voltage_rdev(rdev);
3500 data.min_uV = min_uV;
3501 data.max_uV = max_uV;
3502 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3503 &data);
3504 if (ret & NOTIFY_STOP_MASK)
3505 return -EINVAL;
3506
3507 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3508 if (ret >= 0)
3509 return ret;
3510
3511 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3512 (void *)data.old_uV);
3513
3514 return ret;
3515}
3516
3517static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3518 int uV, unsigned selector)
3519{
3520 struct pre_voltage_change_data data;
3521 int ret;
3522
3523 data.old_uV = regulator_get_voltage_rdev(rdev);
3524 data.min_uV = uV;
3525 data.max_uV = uV;
3526 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3527 &data);
3528 if (ret & NOTIFY_STOP_MASK)
3529 return -EINVAL;
3530
3531 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3532 if (ret >= 0)
3533 return ret;
3534
3535 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3536 (void *)data.old_uV);
3537
3538 return ret;
3539}
3540
3541static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3542 int uV, int new_selector)
3543{
3544 const struct regulator_ops *ops = rdev->desc->ops;
3545 int diff, old_sel, curr_sel, ret;
3546
3547 /* Stepping is only needed if the regulator is enabled. */
3548 if (!_regulator_is_enabled(rdev))
3549 goto final_set;
3550
3551 if (!ops->get_voltage_sel)
3552 return -EINVAL;
3553
3554 old_sel = ops->get_voltage_sel(rdev);
3555 if (old_sel < 0)
3556 return old_sel;
3557
3558 diff = new_selector - old_sel;
3559 if (diff == 0)
3560 return 0; /* No change needed. */
3561
3562 if (diff > 0) {
3563 /* Stepping up. */
3564 for (curr_sel = old_sel + rdev->desc->vsel_step;
3565 curr_sel < new_selector;
3566 curr_sel += rdev->desc->vsel_step) {
3567 /*
3568 * Call the callback directly instead of using
3569 * _regulator_call_set_voltage_sel() as we don't
3570 * want to notify anyone yet. Same in the branch
3571 * below.
3572 */
3573 ret = ops->set_voltage_sel(rdev, curr_sel);
3574 if (ret)
3575 goto try_revert;
3576 }
3577 } else {
3578 /* Stepping down. */
3579 for (curr_sel = old_sel - rdev->desc->vsel_step;
3580 curr_sel > new_selector;
3581 curr_sel -= rdev->desc->vsel_step) {
3582 ret = ops->set_voltage_sel(rdev, curr_sel);
3583 if (ret)
3584 goto try_revert;
3585 }
3586 }
3587
3588final_set:
3589 /* The final selector will trigger the notifiers. */
3590 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3591
3592try_revert:
3593 /*
3594 * At least try to return to the previous voltage if setting a new
3595 * one failed.
3596 */
3597 (void)ops->set_voltage_sel(rdev, old_sel);
3598 return ret;
3599}
3600
3601static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3602 int old_uV, int new_uV)
3603{
3604 unsigned int ramp_delay = 0;
3605
3606 if (rdev->constraints->ramp_delay)
3607 ramp_delay = rdev->constraints->ramp_delay;
3608 else if (rdev->desc->ramp_delay)
3609 ramp_delay = rdev->desc->ramp_delay;
3610 else if (rdev->constraints->settling_time)
3611 return rdev->constraints->settling_time;
3612 else if (rdev->constraints->settling_time_up &&
3613 (new_uV > old_uV))
3614 return rdev->constraints->settling_time_up;
3615 else if (rdev->constraints->settling_time_down &&
3616 (new_uV < old_uV))
3617 return rdev->constraints->settling_time_down;
3618
3619 if (ramp_delay == 0)
3620 return 0;
3621
3622 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3623}
3624
3625static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3626 int min_uV, int max_uV)
3627{
3628 int ret;
3629 int delay = 0;
3630 int best_val = 0;
3631 unsigned int selector;
3632 int old_selector = -1;
3633 const struct regulator_ops *ops = rdev->desc->ops;
3634 int old_uV = regulator_get_voltage_rdev(rdev);
3635
3636 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3637
3638 min_uV += rdev->constraints->uV_offset;
3639 max_uV += rdev->constraints->uV_offset;
3640
3641 /*
3642 * If we can't obtain the old selector there is not enough
3643 * info to call set_voltage_time_sel().
3644 */
3645 if (_regulator_is_enabled(rdev) &&
3646 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3647 old_selector = ops->get_voltage_sel(rdev);
3648 if (old_selector < 0)
3649 return old_selector;
3650 }
3651
3652 if (ops->set_voltage) {
3653 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3654 &selector);
3655
3656 if (ret >= 0) {
3657 if (ops->list_voltage)
3658 best_val = ops->list_voltage(rdev,
3659 selector);
3660 else
3661 best_val = regulator_get_voltage_rdev(rdev);
3662 }
3663
3664 } else if (ops->set_voltage_sel) {
3665 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3666 if (ret >= 0) {
3667 best_val = ops->list_voltage(rdev, ret);
3668 if (min_uV <= best_val && max_uV >= best_val) {
3669 selector = ret;
3670 if (old_selector == selector)
3671 ret = 0;
3672 else if (rdev->desc->vsel_step)
3673 ret = _regulator_set_voltage_sel_step(
3674 rdev, best_val, selector);
3675 else
3676 ret = _regulator_call_set_voltage_sel(
3677 rdev, best_val, selector);
3678 } else {
3679 ret = -EINVAL;
3680 }
3681 }
3682 } else {
3683 ret = -EINVAL;
3684 }
3685
3686 if (ret)
3687 goto out;
3688
3689 if (ops->set_voltage_time_sel) {
3690 /*
3691 * Call set_voltage_time_sel if successfully obtained
3692 * old_selector
3693 */
3694 if (old_selector >= 0 && old_selector != selector)
3695 delay = ops->set_voltage_time_sel(rdev, old_selector,
3696 selector);
3697 } else {
3698 if (old_uV != best_val) {
3699 if (ops->set_voltage_time)
3700 delay = ops->set_voltage_time(rdev, old_uV,
3701 best_val);
3702 else
3703 delay = _regulator_set_voltage_time(rdev,
3704 old_uV,
3705 best_val);
3706 }
3707 }
3708
3709 if (delay < 0) {
3710 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3711 delay = 0;
3712 }
3713
3714 /* Insert any necessary delays */
3715 _regulator_delay_helper(delay);
3716
3717 if (best_val >= 0) {
3718 unsigned long data = best_val;
3719
3720 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3721 (void *)data);
3722 }
3723
3724out:
3725 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3726
3727 return ret;
3728}
3729
3730static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3731 int min_uV, int max_uV, suspend_state_t state)
3732{
3733 struct regulator_state *rstate;
3734 int uV, sel;
3735
3736 rstate = regulator_get_suspend_state(rdev, state);
3737 if (rstate == NULL)
3738 return -EINVAL;
3739
3740 if (min_uV < rstate->min_uV)
3741 min_uV = rstate->min_uV;
3742 if (max_uV > rstate->max_uV)
3743 max_uV = rstate->max_uV;
3744
3745 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3746 if (sel < 0)
3747 return sel;
3748
3749 uV = rdev->desc->ops->list_voltage(rdev, sel);
3750 if (uV >= min_uV && uV <= max_uV)
3751 rstate->uV = uV;
3752
3753 return 0;
3754}
3755
3756static int regulator_set_voltage_unlocked(struct regulator *regulator,
3757 int min_uV, int max_uV,
3758 suspend_state_t state)
3759{
3760 struct regulator_dev *rdev = regulator->rdev;
3761 struct regulator_voltage *voltage = ®ulator->voltage[state];
3762 int ret = 0;
3763 int old_min_uV, old_max_uV;
3764 int current_uV;
3765
3766 /* If we're setting the same range as last time the change
3767 * should be a noop (some cpufreq implementations use the same
3768 * voltage for multiple frequencies, for example).
3769 */
3770 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3771 goto out;
3772
3773 /* If we're trying to set a range that overlaps the current voltage,
3774 * return successfully even though the regulator does not support
3775 * changing the voltage.
3776 */
3777 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3778 current_uV = regulator_get_voltage_rdev(rdev);
3779 if (min_uV <= current_uV && current_uV <= max_uV) {
3780 voltage->min_uV = min_uV;
3781 voltage->max_uV = max_uV;
3782 goto out;
3783 }
3784 }
3785
3786 /* sanity check */
3787 if (!rdev->desc->ops->set_voltage &&
3788 !rdev->desc->ops->set_voltage_sel) {
3789 ret = -EINVAL;
3790 goto out;
3791 }
3792
3793 /* constraints check */
3794 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3795 if (ret < 0)
3796 goto out;
3797
3798 /* restore original values in case of error */
3799 old_min_uV = voltage->min_uV;
3800 old_max_uV = voltage->max_uV;
3801 voltage->min_uV = min_uV;
3802 voltage->max_uV = max_uV;
3803
3804 /* for not coupled regulators this will just set the voltage */
3805 ret = regulator_balance_voltage(rdev, state);
3806 if (ret < 0) {
3807 voltage->min_uV = old_min_uV;
3808 voltage->max_uV = old_max_uV;
3809 }
3810
3811out:
3812 return ret;
3813}
3814
3815int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3816 int max_uV, suspend_state_t state)
3817{
3818 int best_supply_uV = 0;
3819 int supply_change_uV = 0;
3820 int ret;
3821
3822 if (rdev->supply &&
3823 regulator_ops_is_valid(rdev->supply->rdev,
3824 REGULATOR_CHANGE_VOLTAGE) &&
3825 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3826 rdev->desc->ops->get_voltage_sel))) {
3827 int current_supply_uV;
3828 int selector;
3829
3830 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3831 if (selector < 0) {
3832 ret = selector;
3833 goto out;
3834 }
3835
3836 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3837 if (best_supply_uV < 0) {
3838 ret = best_supply_uV;
3839 goto out;
3840 }
3841
3842 best_supply_uV += rdev->desc->min_dropout_uV;
3843
3844 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3845 if (current_supply_uV < 0) {
3846 ret = current_supply_uV;
3847 goto out;
3848 }
3849
3850 supply_change_uV = best_supply_uV - current_supply_uV;
3851 }
3852
3853 if (supply_change_uV > 0) {
3854 ret = regulator_set_voltage_unlocked(rdev->supply,
3855 best_supply_uV, INT_MAX, state);
3856 if (ret) {
3857 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3858 ERR_PTR(ret));
3859 goto out;
3860 }
3861 }
3862
3863 if (state == PM_SUSPEND_ON)
3864 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3865 else
3866 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3867 max_uV, state);
3868 if (ret < 0)
3869 goto out;
3870
3871 if (supply_change_uV < 0) {
3872 ret = regulator_set_voltage_unlocked(rdev->supply,
3873 best_supply_uV, INT_MAX, state);
3874 if (ret)
3875 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3876 ERR_PTR(ret));
3877 /* No need to fail here */
3878 ret = 0;
3879 }
3880
3881out:
3882 return ret;
3883}
3884EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3885
3886static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3887 int *current_uV, int *min_uV)
3888{
3889 struct regulation_constraints *constraints = rdev->constraints;
3890
3891 /* Limit voltage change only if necessary */
3892 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3893 return 1;
3894
3895 if (*current_uV < 0) {
3896 *current_uV = regulator_get_voltage_rdev(rdev);
3897
3898 if (*current_uV < 0)
3899 return *current_uV;
3900 }
3901
3902 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3903 return 1;
3904
3905 /* Clamp target voltage within the given step */
3906 if (*current_uV < *min_uV)
3907 *min_uV = min(*current_uV + constraints->max_uV_step,
3908 *min_uV);
3909 else
3910 *min_uV = max(*current_uV - constraints->max_uV_step,
3911 *min_uV);
3912
3913 return 0;
3914}
3915
3916static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3917 int *current_uV,
3918 int *min_uV, int *max_uV,
3919 suspend_state_t state,
3920 int n_coupled)
3921{
3922 struct coupling_desc *c_desc = &rdev->coupling_desc;
3923 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3924 struct regulation_constraints *constraints = rdev->constraints;
3925 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3926 int max_current_uV = 0, min_current_uV = INT_MAX;
3927 int highest_min_uV = 0, target_uV, possible_uV;
3928 int i, ret, max_spread;
3929 bool done;
3930
3931 *current_uV = -1;
3932
3933 /*
3934 * If there are no coupled regulators, simply set the voltage
3935 * demanded by consumers.
3936 */
3937 if (n_coupled == 1) {
3938 /*
3939 * If consumers don't provide any demands, set voltage
3940 * to min_uV
3941 */
3942 desired_min_uV = constraints->min_uV;
3943 desired_max_uV = constraints->max_uV;
3944
3945 ret = regulator_check_consumers(rdev,
3946 &desired_min_uV,
3947 &desired_max_uV, state);
3948 if (ret < 0)
3949 return ret;
3950
3951 done = true;
3952
3953 goto finish;
3954 }
3955
3956 /* Find highest min desired voltage */
3957 for (i = 0; i < n_coupled; i++) {
3958 int tmp_min = 0;
3959 int tmp_max = INT_MAX;
3960
3961 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3962
3963 ret = regulator_check_consumers(c_rdevs[i],
3964 &tmp_min,
3965 &tmp_max, state);
3966 if (ret < 0)
3967 return ret;
3968
3969 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3970 if (ret < 0)
3971 return ret;
3972
3973 highest_min_uV = max(highest_min_uV, tmp_min);
3974
3975 if (i == 0) {
3976 desired_min_uV = tmp_min;
3977 desired_max_uV = tmp_max;
3978 }
3979 }
3980
3981 max_spread = constraints->max_spread[0];
3982
3983 /*
3984 * Let target_uV be equal to the desired one if possible.
3985 * If not, set it to minimum voltage, allowed by other coupled
3986 * regulators.
3987 */
3988 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3989
3990 /*
3991 * Find min and max voltages, which currently aren't violating
3992 * max_spread.
3993 */
3994 for (i = 1; i < n_coupled; i++) {
3995 int tmp_act;
3996
3997 if (!_regulator_is_enabled(c_rdevs[i]))
3998 continue;
3999
4000 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
4001 if (tmp_act < 0)
4002 return tmp_act;
4003
4004 min_current_uV = min(tmp_act, min_current_uV);
4005 max_current_uV = max(tmp_act, max_current_uV);
4006 }
4007
4008 /* There aren't any other regulators enabled */
4009 if (max_current_uV == 0) {
4010 possible_uV = target_uV;
4011 } else {
4012 /*
4013 * Correct target voltage, so as it currently isn't
4014 * violating max_spread
4015 */
4016 possible_uV = max(target_uV, max_current_uV - max_spread);
4017 possible_uV = min(possible_uV, min_current_uV + max_spread);
4018 }
4019
4020 if (possible_uV > desired_max_uV)
4021 return -EINVAL;
4022
4023 done = (possible_uV == target_uV);
4024 desired_min_uV = possible_uV;
4025
4026finish:
4027 /* Apply max_uV_step constraint if necessary */
4028 if (state == PM_SUSPEND_ON) {
4029 ret = regulator_limit_voltage_step(rdev, current_uV,
4030 &desired_min_uV);
4031 if (ret < 0)
4032 return ret;
4033
4034 if (ret == 0)
4035 done = false;
4036 }
4037
4038 /* Set current_uV if wasn't done earlier in the code and if necessary */
4039 if (n_coupled > 1 && *current_uV == -1) {
4040
4041 if (_regulator_is_enabled(rdev)) {
4042 ret = regulator_get_voltage_rdev(rdev);
4043 if (ret < 0)
4044 return ret;
4045
4046 *current_uV = ret;
4047 } else {
4048 *current_uV = desired_min_uV;
4049 }
4050 }
4051
4052 *min_uV = desired_min_uV;
4053 *max_uV = desired_max_uV;
4054
4055 return done;
4056}
4057
4058int regulator_do_balance_voltage(struct regulator_dev *rdev,
4059 suspend_state_t state, bool skip_coupled)
4060{
4061 struct regulator_dev **c_rdevs;
4062 struct regulator_dev *best_rdev;
4063 struct coupling_desc *c_desc = &rdev->coupling_desc;
4064 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4065 unsigned int delta, best_delta;
4066 unsigned long c_rdev_done = 0;
4067 bool best_c_rdev_done;
4068
4069 c_rdevs = c_desc->coupled_rdevs;
4070 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4071
4072 /*
4073 * Find the best possible voltage change on each loop. Leave the loop
4074 * if there isn't any possible change.
4075 */
4076 do {
4077 best_c_rdev_done = false;
4078 best_delta = 0;
4079 best_min_uV = 0;
4080 best_max_uV = 0;
4081 best_c_rdev = 0;
4082 best_rdev = NULL;
4083
4084 /*
4085 * Find highest difference between optimal voltage
4086 * and current voltage.
4087 */
4088 for (i = 0; i < n_coupled; i++) {
4089 /*
4090 * optimal_uV is the best voltage that can be set for
4091 * i-th regulator at the moment without violating
4092 * max_spread constraint in order to balance
4093 * the coupled voltages.
4094 */
4095 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4096
4097 if (test_bit(i, &c_rdev_done))
4098 continue;
4099
4100 ret = regulator_get_optimal_voltage(c_rdevs[i],
4101 ¤t_uV,
4102 &optimal_uV,
4103 &optimal_max_uV,
4104 state, n_coupled);
4105 if (ret < 0)
4106 goto out;
4107
4108 delta = abs(optimal_uV - current_uV);
4109
4110 if (delta && best_delta <= delta) {
4111 best_c_rdev_done = ret;
4112 best_delta = delta;
4113 best_rdev = c_rdevs[i];
4114 best_min_uV = optimal_uV;
4115 best_max_uV = optimal_max_uV;
4116 best_c_rdev = i;
4117 }
4118 }
4119
4120 /* Nothing to change, return successfully */
4121 if (!best_rdev) {
4122 ret = 0;
4123 goto out;
4124 }
4125
4126 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4127 best_max_uV, state);
4128
4129 if (ret < 0)
4130 goto out;
4131
4132 if (best_c_rdev_done)
4133 set_bit(best_c_rdev, &c_rdev_done);
4134
4135 } while (n_coupled > 1);
4136
4137out:
4138 return ret;
4139}
4140
4141static int regulator_balance_voltage(struct regulator_dev *rdev,
4142 suspend_state_t state)
4143{
4144 struct coupling_desc *c_desc = &rdev->coupling_desc;
4145 struct regulator_coupler *coupler = c_desc->coupler;
4146 bool skip_coupled = false;
4147
4148 /*
4149 * If system is in a state other than PM_SUSPEND_ON, don't check
4150 * other coupled regulators.
4151 */
4152 if (state != PM_SUSPEND_ON)
4153 skip_coupled = true;
4154
4155 if (c_desc->n_resolved < c_desc->n_coupled) {
4156 rdev_err(rdev, "Not all coupled regulators registered\n");
4157 return -EPERM;
4158 }
4159
4160 /* Invoke custom balancer for customized couplers */
4161 if (coupler && coupler->balance_voltage)
4162 return coupler->balance_voltage(coupler, rdev, state);
4163
4164 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4165}
4166
4167/**
4168 * regulator_set_voltage - set regulator output voltage
4169 * @regulator: regulator source
4170 * @min_uV: Minimum required voltage in uV
4171 * @max_uV: Maximum acceptable voltage in uV
4172 *
4173 * Sets a voltage regulator to the desired output voltage. This can be set
4174 * during any regulator state. IOW, regulator can be disabled or enabled.
4175 *
4176 * If the regulator is enabled then the voltage will change to the new value
4177 * immediately otherwise if the regulator is disabled the regulator will
4178 * output at the new voltage when enabled.
4179 *
4180 * NOTE: If the regulator is shared between several devices then the lowest
4181 * request voltage that meets the system constraints will be used.
4182 * Regulator system constraints must be set for this regulator before
4183 * calling this function otherwise this call will fail.
4184 */
4185int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4186{
4187 struct ww_acquire_ctx ww_ctx;
4188 int ret;
4189
4190 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4191
4192 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4193 PM_SUSPEND_ON);
4194
4195 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4196
4197 return ret;
4198}
4199EXPORT_SYMBOL_GPL(regulator_set_voltage);
4200
4201static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4202 suspend_state_t state, bool en)
4203{
4204 struct regulator_state *rstate;
4205
4206 rstate = regulator_get_suspend_state(rdev, state);
4207 if (rstate == NULL)
4208 return -EINVAL;
4209
4210 if (!rstate->changeable)
4211 return -EPERM;
4212
4213 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4214
4215 return 0;
4216}
4217
4218int regulator_suspend_enable(struct regulator_dev *rdev,
4219 suspend_state_t state)
4220{
4221 return regulator_suspend_toggle(rdev, state, true);
4222}
4223EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4224
4225int regulator_suspend_disable(struct regulator_dev *rdev,
4226 suspend_state_t state)
4227{
4228 struct regulator *regulator;
4229 struct regulator_voltage *voltage;
4230
4231 /*
4232 * if any consumer wants this regulator device keeping on in
4233 * suspend states, don't set it as disabled.
4234 */
4235 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4236 voltage = ®ulator->voltage[state];
4237 if (voltage->min_uV || voltage->max_uV)
4238 return 0;
4239 }
4240
4241 return regulator_suspend_toggle(rdev, state, false);
4242}
4243EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4244
4245static int _regulator_set_suspend_voltage(struct regulator *regulator,
4246 int min_uV, int max_uV,
4247 suspend_state_t state)
4248{
4249 struct regulator_dev *rdev = regulator->rdev;
4250 struct regulator_state *rstate;
4251
4252 rstate = regulator_get_suspend_state(rdev, state);
4253 if (rstate == NULL)
4254 return -EINVAL;
4255
4256 if (rstate->min_uV == rstate->max_uV) {
4257 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4258 return -EPERM;
4259 }
4260
4261 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4262}
4263
4264int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4265 int max_uV, suspend_state_t state)
4266{
4267 struct ww_acquire_ctx ww_ctx;
4268 int ret;
4269
4270 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4271 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4272 return -EINVAL;
4273
4274 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4275
4276 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4277 max_uV, state);
4278
4279 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4280
4281 return ret;
4282}
4283EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4284
4285/**
4286 * regulator_set_voltage_time - get raise/fall time
4287 * @regulator: regulator source
4288 * @old_uV: starting voltage in microvolts
4289 * @new_uV: target voltage in microvolts
4290 *
4291 * Provided with the starting and ending voltage, this function attempts to
4292 * calculate the time in microseconds required to rise or fall to this new
4293 * voltage.
4294 */
4295int regulator_set_voltage_time(struct regulator *regulator,
4296 int old_uV, int new_uV)
4297{
4298 struct regulator_dev *rdev = regulator->rdev;
4299 const struct regulator_ops *ops = rdev->desc->ops;
4300 int old_sel = -1;
4301 int new_sel = -1;
4302 int voltage;
4303 int i;
4304
4305 if (ops->set_voltage_time)
4306 return ops->set_voltage_time(rdev, old_uV, new_uV);
4307 else if (!ops->set_voltage_time_sel)
4308 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4309
4310 /* Currently requires operations to do this */
4311 if (!ops->list_voltage || !rdev->desc->n_voltages)
4312 return -EINVAL;
4313
4314 for (i = 0; i < rdev->desc->n_voltages; i++) {
4315 /* We only look for exact voltage matches here */
4316 if (i < rdev->desc->linear_min_sel)
4317 continue;
4318
4319 if (old_sel >= 0 && new_sel >= 0)
4320 break;
4321
4322 voltage = regulator_list_voltage(regulator, i);
4323 if (voltage < 0)
4324 return -EINVAL;
4325 if (voltage == 0)
4326 continue;
4327 if (voltage == old_uV)
4328 old_sel = i;
4329 if (voltage == new_uV)
4330 new_sel = i;
4331 }
4332
4333 if (old_sel < 0 || new_sel < 0)
4334 return -EINVAL;
4335
4336 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4337}
4338EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4339
4340/**
4341 * regulator_set_voltage_time_sel - get raise/fall time
4342 * @rdev: regulator source device
4343 * @old_selector: selector for starting voltage
4344 * @new_selector: selector for target voltage
4345 *
4346 * Provided with the starting and target voltage selectors, this function
4347 * returns time in microseconds required to rise or fall to this new voltage
4348 *
4349 * Drivers providing ramp_delay in regulation_constraints can use this as their
4350 * set_voltage_time_sel() operation.
4351 */
4352int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4353 unsigned int old_selector,
4354 unsigned int new_selector)
4355{
4356 int old_volt, new_volt;
4357
4358 /* sanity check */
4359 if (!rdev->desc->ops->list_voltage)
4360 return -EINVAL;
4361
4362 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4363 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4364
4365 if (rdev->desc->ops->set_voltage_time)
4366 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4367 new_volt);
4368 else
4369 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4370}
4371EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4372
4373int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4374{
4375 int ret;
4376
4377 regulator_lock(rdev);
4378
4379 if (!rdev->desc->ops->set_voltage &&
4380 !rdev->desc->ops->set_voltage_sel) {
4381 ret = -EINVAL;
4382 goto out;
4383 }
4384
4385 /* balance only, if regulator is coupled */
4386 if (rdev->coupling_desc.n_coupled > 1)
4387 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4388 else
4389 ret = -EOPNOTSUPP;
4390
4391out:
4392 regulator_unlock(rdev);
4393 return ret;
4394}
4395
4396/**
4397 * regulator_sync_voltage - re-apply last regulator output voltage
4398 * @regulator: regulator source
4399 *
4400 * Re-apply the last configured voltage. This is intended to be used
4401 * where some external control source the consumer is cooperating with
4402 * has caused the configured voltage to change.
4403 */
4404int regulator_sync_voltage(struct regulator *regulator)
4405{
4406 struct regulator_dev *rdev = regulator->rdev;
4407 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4408 int ret, min_uV, max_uV;
4409
4410 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4411 return 0;
4412
4413 regulator_lock(rdev);
4414
4415 if (!rdev->desc->ops->set_voltage &&
4416 !rdev->desc->ops->set_voltage_sel) {
4417 ret = -EINVAL;
4418 goto out;
4419 }
4420
4421 /* This is only going to work if we've had a voltage configured. */
4422 if (!voltage->min_uV && !voltage->max_uV) {
4423 ret = -EINVAL;
4424 goto out;
4425 }
4426
4427 min_uV = voltage->min_uV;
4428 max_uV = voltage->max_uV;
4429
4430 /* This should be a paranoia check... */
4431 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4432 if (ret < 0)
4433 goto out;
4434
4435 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4436 if (ret < 0)
4437 goto out;
4438
4439 /* balance only, if regulator is coupled */
4440 if (rdev->coupling_desc.n_coupled > 1)
4441 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4442 else
4443 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4444
4445out:
4446 regulator_unlock(rdev);
4447 return ret;
4448}
4449EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4450
4451int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4452{
4453 int sel, ret;
4454 bool bypassed;
4455
4456 if (rdev->desc->ops->get_bypass) {
4457 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4458 if (ret < 0)
4459 return ret;
4460 if (bypassed) {
4461 /* if bypassed the regulator must have a supply */
4462 if (!rdev->supply) {
4463 rdev_err(rdev,
4464 "bypassed regulator has no supply!\n");
4465 return -EPROBE_DEFER;
4466 }
4467
4468 return regulator_get_voltage_rdev(rdev->supply->rdev);
4469 }
4470 }
4471
4472 if (rdev->desc->ops->get_voltage_sel) {
4473 sel = rdev->desc->ops->get_voltage_sel(rdev);
4474 if (sel < 0)
4475 return sel;
4476 ret = rdev->desc->ops->list_voltage(rdev, sel);
4477 } else if (rdev->desc->ops->get_voltage) {
4478 ret = rdev->desc->ops->get_voltage(rdev);
4479 } else if (rdev->desc->ops->list_voltage) {
4480 ret = rdev->desc->ops->list_voltage(rdev, 0);
4481 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4482 ret = rdev->desc->fixed_uV;
4483 } else if (rdev->supply) {
4484 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4485 } else if (rdev->supply_name) {
4486 return -EPROBE_DEFER;
4487 } else {
4488 return -EINVAL;
4489 }
4490
4491 if (ret < 0)
4492 return ret;
4493 return ret - rdev->constraints->uV_offset;
4494}
4495EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4496
4497/**
4498 * regulator_get_voltage - get regulator output voltage
4499 * @regulator: regulator source
4500 *
4501 * This returns the current regulator voltage in uV.
4502 *
4503 * NOTE: If the regulator is disabled it will return the voltage value. This
4504 * function should not be used to determine regulator state.
4505 */
4506int regulator_get_voltage(struct regulator *regulator)
4507{
4508 struct ww_acquire_ctx ww_ctx;
4509 int ret;
4510
4511 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4512 ret = regulator_get_voltage_rdev(regulator->rdev);
4513 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4514
4515 return ret;
4516}
4517EXPORT_SYMBOL_GPL(regulator_get_voltage);
4518
4519/**
4520 * regulator_set_current_limit - set regulator output current limit
4521 * @regulator: regulator source
4522 * @min_uA: Minimum supported current in uA
4523 * @max_uA: Maximum supported current in uA
4524 *
4525 * Sets current sink to the desired output current. This can be set during
4526 * any regulator state. IOW, regulator can be disabled or enabled.
4527 *
4528 * If the regulator is enabled then the current will change to the new value
4529 * immediately otherwise if the regulator is disabled the regulator will
4530 * output at the new current when enabled.
4531 *
4532 * NOTE: Regulator system constraints must be set for this regulator before
4533 * calling this function otherwise this call will fail.
4534 */
4535int regulator_set_current_limit(struct regulator *regulator,
4536 int min_uA, int max_uA)
4537{
4538 struct regulator_dev *rdev = regulator->rdev;
4539 int ret;
4540
4541 regulator_lock(rdev);
4542
4543 /* sanity check */
4544 if (!rdev->desc->ops->set_current_limit) {
4545 ret = -EINVAL;
4546 goto out;
4547 }
4548
4549 /* constraints check */
4550 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4551 if (ret < 0)
4552 goto out;
4553
4554 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4555out:
4556 regulator_unlock(rdev);
4557 return ret;
4558}
4559EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4560
4561static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4562{
4563 /* sanity check */
4564 if (!rdev->desc->ops->get_current_limit)
4565 return -EINVAL;
4566
4567 return rdev->desc->ops->get_current_limit(rdev);
4568}
4569
4570static int _regulator_get_current_limit(struct regulator_dev *rdev)
4571{
4572 int ret;
4573
4574 regulator_lock(rdev);
4575 ret = _regulator_get_current_limit_unlocked(rdev);
4576 regulator_unlock(rdev);
4577
4578 return ret;
4579}
4580
4581/**
4582 * regulator_get_current_limit - get regulator output current
4583 * @regulator: regulator source
4584 *
4585 * This returns the current supplied by the specified current sink in uA.
4586 *
4587 * NOTE: If the regulator is disabled it will return the current value. This
4588 * function should not be used to determine regulator state.
4589 */
4590int regulator_get_current_limit(struct regulator *regulator)
4591{
4592 return _regulator_get_current_limit(regulator->rdev);
4593}
4594EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4595
4596/**
4597 * regulator_set_mode - set regulator operating mode
4598 * @regulator: regulator source
4599 * @mode: operating mode - one of the REGULATOR_MODE constants
4600 *
4601 * Set regulator operating mode to increase regulator efficiency or improve
4602 * regulation performance.
4603 *
4604 * NOTE: Regulator system constraints must be set for this regulator before
4605 * calling this function otherwise this call will fail.
4606 */
4607int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4608{
4609 struct regulator_dev *rdev = regulator->rdev;
4610 int ret;
4611 int regulator_curr_mode;
4612
4613 regulator_lock(rdev);
4614
4615 /* sanity check */
4616 if (!rdev->desc->ops->set_mode) {
4617 ret = -EINVAL;
4618 goto out;
4619 }
4620
4621 /* return if the same mode is requested */
4622 if (rdev->desc->ops->get_mode) {
4623 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4624 if (regulator_curr_mode == mode) {
4625 ret = 0;
4626 goto out;
4627 }
4628 }
4629
4630 /* constraints check */
4631 ret = regulator_mode_constrain(rdev, &mode);
4632 if (ret < 0)
4633 goto out;
4634
4635 ret = rdev->desc->ops->set_mode(rdev, mode);
4636out:
4637 regulator_unlock(rdev);
4638 return ret;
4639}
4640EXPORT_SYMBOL_GPL(regulator_set_mode);
4641
4642static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4643{
4644 /* sanity check */
4645 if (!rdev->desc->ops->get_mode)
4646 return -EINVAL;
4647
4648 return rdev->desc->ops->get_mode(rdev);
4649}
4650
4651static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4652{
4653 int ret;
4654
4655 regulator_lock(rdev);
4656 ret = _regulator_get_mode_unlocked(rdev);
4657 regulator_unlock(rdev);
4658
4659 return ret;
4660}
4661
4662/**
4663 * regulator_get_mode - get regulator operating mode
4664 * @regulator: regulator source
4665 *
4666 * Get the current regulator operating mode.
4667 */
4668unsigned int regulator_get_mode(struct regulator *regulator)
4669{
4670 return _regulator_get_mode(regulator->rdev);
4671}
4672EXPORT_SYMBOL_GPL(regulator_get_mode);
4673
4674static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4675{
4676 int ret = 0;
4677
4678 if (rdev->use_cached_err) {
4679 spin_lock(&rdev->err_lock);
4680 ret = rdev->cached_err;
4681 spin_unlock(&rdev->err_lock);
4682 }
4683 return ret;
4684}
4685
4686static int _regulator_get_error_flags(struct regulator_dev *rdev,
4687 unsigned int *flags)
4688{
4689 int cached_flags, ret = 0;
4690
4691 regulator_lock(rdev);
4692
4693 cached_flags = rdev_get_cached_err_flags(rdev);
4694
4695 if (rdev->desc->ops->get_error_flags)
4696 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4697 else if (!rdev->use_cached_err)
4698 ret = -EINVAL;
4699
4700 *flags |= cached_flags;
4701
4702 regulator_unlock(rdev);
4703
4704 return ret;
4705}
4706
4707/**
4708 * regulator_get_error_flags - get regulator error information
4709 * @regulator: regulator source
4710 * @flags: pointer to store error flags
4711 *
4712 * Get the current regulator error information.
4713 */
4714int regulator_get_error_flags(struct regulator *regulator,
4715 unsigned int *flags)
4716{
4717 return _regulator_get_error_flags(regulator->rdev, flags);
4718}
4719EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4720
4721/**
4722 * regulator_set_load - set regulator load
4723 * @regulator: regulator source
4724 * @uA_load: load current
4725 *
4726 * Notifies the regulator core of a new device load. This is then used by
4727 * DRMS (if enabled by constraints) to set the most efficient regulator
4728 * operating mode for the new regulator loading.
4729 *
4730 * Consumer devices notify their supply regulator of the maximum power
4731 * they will require (can be taken from device datasheet in the power
4732 * consumption tables) when they change operational status and hence power
4733 * state. Examples of operational state changes that can affect power
4734 * consumption are :-
4735 *
4736 * o Device is opened / closed.
4737 * o Device I/O is about to begin or has just finished.
4738 * o Device is idling in between work.
4739 *
4740 * This information is also exported via sysfs to userspace.
4741 *
4742 * DRMS will sum the total requested load on the regulator and change
4743 * to the most efficient operating mode if platform constraints allow.
4744 *
4745 * NOTE: when a regulator consumer requests to have a regulator
4746 * disabled then any load that consumer requested no longer counts
4747 * toward the total requested load. If the regulator is re-enabled
4748 * then the previously requested load will start counting again.
4749 *
4750 * If a regulator is an always-on regulator then an individual consumer's
4751 * load will still be removed if that consumer is fully disabled.
4752 *
4753 * On error a negative errno is returned.
4754 */
4755int regulator_set_load(struct regulator *regulator, int uA_load)
4756{
4757 struct regulator_dev *rdev = regulator->rdev;
4758 int old_uA_load;
4759 int ret = 0;
4760
4761 regulator_lock(rdev);
4762 old_uA_load = regulator->uA_load;
4763 regulator->uA_load = uA_load;
4764 if (regulator->enable_count && old_uA_load != uA_load) {
4765 ret = drms_uA_update(rdev);
4766 if (ret < 0)
4767 regulator->uA_load = old_uA_load;
4768 }
4769 regulator_unlock(rdev);
4770
4771 return ret;
4772}
4773EXPORT_SYMBOL_GPL(regulator_set_load);
4774
4775/**
4776 * regulator_allow_bypass - allow the regulator to go into bypass mode
4777 *
4778 * @regulator: Regulator to configure
4779 * @enable: enable or disable bypass mode
4780 *
4781 * Allow the regulator to go into bypass mode if all other consumers
4782 * for the regulator also enable bypass mode and the machine
4783 * constraints allow this. Bypass mode means that the regulator is
4784 * simply passing the input directly to the output with no regulation.
4785 */
4786int regulator_allow_bypass(struct regulator *regulator, bool enable)
4787{
4788 struct regulator_dev *rdev = regulator->rdev;
4789 const char *name = rdev_get_name(rdev);
4790 int ret = 0;
4791
4792 if (!rdev->desc->ops->set_bypass)
4793 return 0;
4794
4795 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4796 return 0;
4797
4798 regulator_lock(rdev);
4799
4800 if (enable && !regulator->bypass) {
4801 rdev->bypass_count++;
4802
4803 if (rdev->bypass_count == rdev->open_count) {
4804 trace_regulator_bypass_enable(name);
4805
4806 ret = rdev->desc->ops->set_bypass(rdev, enable);
4807 if (ret != 0)
4808 rdev->bypass_count--;
4809 else
4810 trace_regulator_bypass_enable_complete(name);
4811 }
4812
4813 } else if (!enable && regulator->bypass) {
4814 rdev->bypass_count--;
4815
4816 if (rdev->bypass_count != rdev->open_count) {
4817 trace_regulator_bypass_disable(name);
4818
4819 ret = rdev->desc->ops->set_bypass(rdev, enable);
4820 if (ret != 0)
4821 rdev->bypass_count++;
4822 else
4823 trace_regulator_bypass_disable_complete(name);
4824 }
4825 }
4826
4827 if (ret == 0)
4828 regulator->bypass = enable;
4829
4830 regulator_unlock(rdev);
4831
4832 return ret;
4833}
4834EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4835
4836/**
4837 * regulator_register_notifier - register regulator event notifier
4838 * @regulator: regulator source
4839 * @nb: notifier block
4840 *
4841 * Register notifier block to receive regulator events.
4842 */
4843int regulator_register_notifier(struct regulator *regulator,
4844 struct notifier_block *nb)
4845{
4846 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4847 nb);
4848}
4849EXPORT_SYMBOL_GPL(regulator_register_notifier);
4850
4851/**
4852 * regulator_unregister_notifier - unregister regulator event notifier
4853 * @regulator: regulator source
4854 * @nb: notifier block
4855 *
4856 * Unregister regulator event notifier block.
4857 */
4858int regulator_unregister_notifier(struct regulator *regulator,
4859 struct notifier_block *nb)
4860{
4861 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4862 nb);
4863}
4864EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4865
4866/* notify regulator consumers and downstream regulator consumers.
4867 * Note mutex must be held by caller.
4868 */
4869static int _notifier_call_chain(struct regulator_dev *rdev,
4870 unsigned long event, void *data)
4871{
4872 /* call rdev chain first */
4873 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data);
4874
4875 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4876 struct device *parent = rdev->dev.parent;
4877 const char *rname = rdev_get_name(rdev);
4878 char name[32];
4879
4880 /* Avoid duplicate debugfs directory names */
4881 if (parent && rname == rdev->desc->name) {
4882 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4883 rname);
4884 rname = name;
4885 }
4886 reg_generate_netlink_event(rname, event);
4887 }
4888
4889 return ret;
4890}
4891
4892int _regulator_bulk_get(struct device *dev, int num_consumers,
4893 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4894{
4895 int i;
4896 int ret;
4897
4898 for (i = 0; i < num_consumers; i++)
4899 consumers[i].consumer = NULL;
4900
4901 for (i = 0; i < num_consumers; i++) {
4902 consumers[i].consumer = _regulator_get(dev,
4903 consumers[i].supply, get_type);
4904 if (IS_ERR(consumers[i].consumer)) {
4905 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4906 "Failed to get supply '%s'",
4907 consumers[i].supply);
4908 consumers[i].consumer = NULL;
4909 goto err;
4910 }
4911
4912 if (consumers[i].init_load_uA > 0) {
4913 ret = regulator_set_load(consumers[i].consumer,
4914 consumers[i].init_load_uA);
4915 if (ret) {
4916 i++;
4917 goto err;
4918 }
4919 }
4920 }
4921
4922 return 0;
4923
4924err:
4925 while (--i >= 0)
4926 regulator_put(consumers[i].consumer);
4927
4928 return ret;
4929}
4930
4931/**
4932 * regulator_bulk_get - get multiple regulator consumers
4933 *
4934 * @dev: Device to supply
4935 * @num_consumers: Number of consumers to register
4936 * @consumers: Configuration of consumers; clients are stored here.
4937 *
4938 * @return 0 on success, an errno on failure.
4939 *
4940 * This helper function allows drivers to get several regulator
4941 * consumers in one operation. If any of the regulators cannot be
4942 * acquired then any regulators that were allocated will be freed
4943 * before returning to the caller.
4944 */
4945int regulator_bulk_get(struct device *dev, int num_consumers,
4946 struct regulator_bulk_data *consumers)
4947{
4948 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4949}
4950EXPORT_SYMBOL_GPL(regulator_bulk_get);
4951
4952static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4953{
4954 struct regulator_bulk_data *bulk = data;
4955
4956 bulk->ret = regulator_enable(bulk->consumer);
4957}
4958
4959/**
4960 * regulator_bulk_enable - enable multiple regulator consumers
4961 *
4962 * @num_consumers: Number of consumers
4963 * @consumers: Consumer data; clients are stored here.
4964 * @return 0 on success, an errno on failure
4965 *
4966 * This convenience API allows consumers to enable multiple regulator
4967 * clients in a single API call. If any consumers cannot be enabled
4968 * then any others that were enabled will be disabled again prior to
4969 * return.
4970 */
4971int regulator_bulk_enable(int num_consumers,
4972 struct regulator_bulk_data *consumers)
4973{
4974 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4975 int i;
4976 int ret = 0;
4977
4978 for (i = 0; i < num_consumers; i++) {
4979 async_schedule_domain(regulator_bulk_enable_async,
4980 &consumers[i], &async_domain);
4981 }
4982
4983 async_synchronize_full_domain(&async_domain);
4984
4985 /* If any consumer failed we need to unwind any that succeeded */
4986 for (i = 0; i < num_consumers; i++) {
4987 if (consumers[i].ret != 0) {
4988 ret = consumers[i].ret;
4989 goto err;
4990 }
4991 }
4992
4993 return 0;
4994
4995err:
4996 for (i = 0; i < num_consumers; i++) {
4997 if (consumers[i].ret < 0)
4998 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4999 ERR_PTR(consumers[i].ret));
5000 else
5001 regulator_disable(consumers[i].consumer);
5002 }
5003
5004 return ret;
5005}
5006EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5007
5008/**
5009 * regulator_bulk_disable - disable multiple regulator consumers
5010 *
5011 * @num_consumers: Number of consumers
5012 * @consumers: Consumer data; clients are stored here.
5013 * @return 0 on success, an errno on failure
5014 *
5015 * This convenience API allows consumers to disable multiple regulator
5016 * clients in a single API call. If any consumers cannot be disabled
5017 * then any others that were disabled will be enabled again prior to
5018 * return.
5019 */
5020int regulator_bulk_disable(int num_consumers,
5021 struct regulator_bulk_data *consumers)
5022{
5023 int i;
5024 int ret, r;
5025
5026 for (i = num_consumers - 1; i >= 0; --i) {
5027 ret = regulator_disable(consumers[i].consumer);
5028 if (ret != 0)
5029 goto err;
5030 }
5031
5032 return 0;
5033
5034err:
5035 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5036 for (++i; i < num_consumers; ++i) {
5037 r = regulator_enable(consumers[i].consumer);
5038 if (r != 0)
5039 pr_err("Failed to re-enable %s: %pe\n",
5040 consumers[i].supply, ERR_PTR(r));
5041 }
5042
5043 return ret;
5044}
5045EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5046
5047/**
5048 * regulator_bulk_force_disable - force disable multiple regulator consumers
5049 *
5050 * @num_consumers: Number of consumers
5051 * @consumers: Consumer data; clients are stored here.
5052 * @return 0 on success, an errno on failure
5053 *
5054 * This convenience API allows consumers to forcibly disable multiple regulator
5055 * clients in a single API call.
5056 * NOTE: This should be used for situations when device damage will
5057 * likely occur if the regulators are not disabled (e.g. over temp).
5058 * Although regulator_force_disable function call for some consumers can
5059 * return error numbers, the function is called for all consumers.
5060 */
5061int regulator_bulk_force_disable(int num_consumers,
5062 struct regulator_bulk_data *consumers)
5063{
5064 int i;
5065 int ret = 0;
5066
5067 for (i = 0; i < num_consumers; i++) {
5068 consumers[i].ret =
5069 regulator_force_disable(consumers[i].consumer);
5070
5071 /* Store first error for reporting */
5072 if (consumers[i].ret && !ret)
5073 ret = consumers[i].ret;
5074 }
5075
5076 return ret;
5077}
5078EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5079
5080/**
5081 * regulator_bulk_free - free multiple regulator consumers
5082 *
5083 * @num_consumers: Number of consumers
5084 * @consumers: Consumer data; clients are stored here.
5085 *
5086 * This convenience API allows consumers to free multiple regulator
5087 * clients in a single API call.
5088 */
5089void regulator_bulk_free(int num_consumers,
5090 struct regulator_bulk_data *consumers)
5091{
5092 int i;
5093
5094 for (i = 0; i < num_consumers; i++) {
5095 regulator_put(consumers[i].consumer);
5096 consumers[i].consumer = NULL;
5097 }
5098}
5099EXPORT_SYMBOL_GPL(regulator_bulk_free);
5100
5101/**
5102 * regulator_handle_critical - Handle events for system-critical regulators.
5103 * @rdev: The regulator device.
5104 * @event: The event being handled.
5105 *
5106 * This function handles critical events such as under-voltage, over-current,
5107 * and unknown errors for regulators deemed system-critical. On detecting such
5108 * events, it triggers a hardware protection shutdown with a defined timeout.
5109 */
5110static void regulator_handle_critical(struct regulator_dev *rdev,
5111 unsigned long event)
5112{
5113 const char *reason = NULL;
5114
5115 if (!rdev->constraints->system_critical)
5116 return;
5117
5118 switch (event) {
5119 case REGULATOR_EVENT_UNDER_VOLTAGE:
5120 reason = "System critical regulator: voltage drop detected";
5121 break;
5122 case REGULATOR_EVENT_OVER_CURRENT:
5123 reason = "System critical regulator: over-current detected";
5124 break;
5125 case REGULATOR_EVENT_FAIL:
5126 reason = "System critical regulator: unknown error";
5127 }
5128
5129 if (!reason)
5130 return;
5131
5132 hw_protection_shutdown(reason,
5133 rdev->constraints->uv_less_critical_window_ms);
5134}
5135
5136/**
5137 * regulator_notifier_call_chain - call regulator event notifier
5138 * @rdev: regulator source
5139 * @event: notifier block
5140 * @data: callback-specific data.
5141 *
5142 * Called by regulator drivers to notify clients a regulator event has
5143 * occurred.
5144 */
5145int regulator_notifier_call_chain(struct regulator_dev *rdev,
5146 unsigned long event, void *data)
5147{
5148 regulator_handle_critical(rdev, event);
5149
5150 _notifier_call_chain(rdev, event, data);
5151 return NOTIFY_DONE;
5152
5153}
5154EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5155
5156/**
5157 * regulator_mode_to_status - convert a regulator mode into a status
5158 *
5159 * @mode: Mode to convert
5160 *
5161 * Convert a regulator mode into a status.
5162 */
5163int regulator_mode_to_status(unsigned int mode)
5164{
5165 switch (mode) {
5166 case REGULATOR_MODE_FAST:
5167 return REGULATOR_STATUS_FAST;
5168 case REGULATOR_MODE_NORMAL:
5169 return REGULATOR_STATUS_NORMAL;
5170 case REGULATOR_MODE_IDLE:
5171 return REGULATOR_STATUS_IDLE;
5172 case REGULATOR_MODE_STANDBY:
5173 return REGULATOR_STATUS_STANDBY;
5174 default:
5175 return REGULATOR_STATUS_UNDEFINED;
5176 }
5177}
5178EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5179
5180static struct attribute *regulator_dev_attrs[] = {
5181 &dev_attr_name.attr,
5182 &dev_attr_num_users.attr,
5183 &dev_attr_type.attr,
5184 &dev_attr_microvolts.attr,
5185 &dev_attr_microamps.attr,
5186 &dev_attr_opmode.attr,
5187 &dev_attr_state.attr,
5188 &dev_attr_status.attr,
5189 &dev_attr_bypass.attr,
5190 &dev_attr_requested_microamps.attr,
5191 &dev_attr_min_microvolts.attr,
5192 &dev_attr_max_microvolts.attr,
5193 &dev_attr_min_microamps.attr,
5194 &dev_attr_max_microamps.attr,
5195 &dev_attr_under_voltage.attr,
5196 &dev_attr_over_current.attr,
5197 &dev_attr_regulation_out.attr,
5198 &dev_attr_fail.attr,
5199 &dev_attr_over_temp.attr,
5200 &dev_attr_under_voltage_warn.attr,
5201 &dev_attr_over_current_warn.attr,
5202 &dev_attr_over_voltage_warn.attr,
5203 &dev_attr_over_temp_warn.attr,
5204 &dev_attr_suspend_standby_state.attr,
5205 &dev_attr_suspend_mem_state.attr,
5206 &dev_attr_suspend_disk_state.attr,
5207 &dev_attr_suspend_standby_microvolts.attr,
5208 &dev_attr_suspend_mem_microvolts.attr,
5209 &dev_attr_suspend_disk_microvolts.attr,
5210 &dev_attr_suspend_standby_mode.attr,
5211 &dev_attr_suspend_mem_mode.attr,
5212 &dev_attr_suspend_disk_mode.attr,
5213 NULL
5214};
5215
5216/*
5217 * To avoid cluttering sysfs (and memory) with useless state, only
5218 * create attributes that can be meaningfully displayed.
5219 */
5220static umode_t regulator_attr_is_visible(struct kobject *kobj,
5221 struct attribute *attr, int idx)
5222{
5223 struct device *dev = kobj_to_dev(kobj);
5224 struct regulator_dev *rdev = dev_to_rdev(dev);
5225 const struct regulator_ops *ops = rdev->desc->ops;
5226 umode_t mode = attr->mode;
5227
5228 /* these three are always present */
5229 if (attr == &dev_attr_name.attr ||
5230 attr == &dev_attr_num_users.attr ||
5231 attr == &dev_attr_type.attr)
5232 return mode;
5233
5234 /* some attributes need specific methods to be displayed */
5235 if (attr == &dev_attr_microvolts.attr) {
5236 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5237 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5238 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5239 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5240 return mode;
5241 return 0;
5242 }
5243
5244 if (attr == &dev_attr_microamps.attr)
5245 return ops->get_current_limit ? mode : 0;
5246
5247 if (attr == &dev_attr_opmode.attr)
5248 return ops->get_mode ? mode : 0;
5249
5250 if (attr == &dev_attr_state.attr)
5251 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5252
5253 if (attr == &dev_attr_status.attr)
5254 return ops->get_status ? mode : 0;
5255
5256 if (attr == &dev_attr_bypass.attr)
5257 return ops->get_bypass ? mode : 0;
5258
5259 if (attr == &dev_attr_under_voltage.attr ||
5260 attr == &dev_attr_over_current.attr ||
5261 attr == &dev_attr_regulation_out.attr ||
5262 attr == &dev_attr_fail.attr ||
5263 attr == &dev_attr_over_temp.attr ||
5264 attr == &dev_attr_under_voltage_warn.attr ||
5265 attr == &dev_attr_over_current_warn.attr ||
5266 attr == &dev_attr_over_voltage_warn.attr ||
5267 attr == &dev_attr_over_temp_warn.attr)
5268 return ops->get_error_flags ? mode : 0;
5269
5270 /* constraints need specific supporting methods */
5271 if (attr == &dev_attr_min_microvolts.attr ||
5272 attr == &dev_attr_max_microvolts.attr)
5273 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5274
5275 if (attr == &dev_attr_min_microamps.attr ||
5276 attr == &dev_attr_max_microamps.attr)
5277 return ops->set_current_limit ? mode : 0;
5278
5279 if (attr == &dev_attr_suspend_standby_state.attr ||
5280 attr == &dev_attr_suspend_mem_state.attr ||
5281 attr == &dev_attr_suspend_disk_state.attr)
5282 return mode;
5283
5284 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5285 attr == &dev_attr_suspend_mem_microvolts.attr ||
5286 attr == &dev_attr_suspend_disk_microvolts.attr)
5287 return ops->set_suspend_voltage ? mode : 0;
5288
5289 if (attr == &dev_attr_suspend_standby_mode.attr ||
5290 attr == &dev_attr_suspend_mem_mode.attr ||
5291 attr == &dev_attr_suspend_disk_mode.attr)
5292 return ops->set_suspend_mode ? mode : 0;
5293
5294 return mode;
5295}
5296
5297static const struct attribute_group regulator_dev_group = {
5298 .attrs = regulator_dev_attrs,
5299 .is_visible = regulator_attr_is_visible,
5300};
5301
5302static const struct attribute_group *regulator_dev_groups[] = {
5303 ®ulator_dev_group,
5304 NULL
5305};
5306
5307static void regulator_dev_release(struct device *dev)
5308{
5309 struct regulator_dev *rdev = dev_get_drvdata(dev);
5310
5311 debugfs_remove_recursive(rdev->debugfs);
5312 kfree(rdev->constraints);
5313 of_node_put(rdev->dev.of_node);
5314 kfree(rdev);
5315}
5316
5317static void rdev_init_debugfs(struct regulator_dev *rdev)
5318{
5319 struct device *parent = rdev->dev.parent;
5320 const char *rname = rdev_get_name(rdev);
5321 char name[NAME_MAX];
5322
5323 /* Avoid duplicate debugfs directory names */
5324 if (parent && rname == rdev->desc->name) {
5325 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5326 rname);
5327 rname = name;
5328 }
5329
5330 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5331 if (IS_ERR(rdev->debugfs))
5332 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5333
5334 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5335 &rdev->use_count);
5336 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5337 &rdev->open_count);
5338 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5339 &rdev->bypass_count);
5340}
5341
5342static int regulator_register_resolve_supply(struct device *dev, void *data)
5343{
5344 struct regulator_dev *rdev = dev_to_rdev(dev);
5345
5346 if (regulator_resolve_supply(rdev))
5347 rdev_dbg(rdev, "unable to resolve supply\n");
5348
5349 return 0;
5350}
5351
5352int regulator_coupler_register(struct regulator_coupler *coupler)
5353{
5354 mutex_lock(®ulator_list_mutex);
5355 list_add_tail(&coupler->list, ®ulator_coupler_list);
5356 mutex_unlock(®ulator_list_mutex);
5357
5358 return 0;
5359}
5360
5361static struct regulator_coupler *
5362regulator_find_coupler(struct regulator_dev *rdev)
5363{
5364 struct regulator_coupler *coupler;
5365 int err;
5366
5367 /*
5368 * Note that regulators are appended to the list and the generic
5369 * coupler is registered first, hence it will be attached at last
5370 * if nobody cared.
5371 */
5372 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5373 err = coupler->attach_regulator(coupler, rdev);
5374 if (!err) {
5375 if (!coupler->balance_voltage &&
5376 rdev->coupling_desc.n_coupled > 2)
5377 goto err_unsupported;
5378
5379 return coupler;
5380 }
5381
5382 if (err < 0)
5383 return ERR_PTR(err);
5384
5385 if (err == 1)
5386 continue;
5387
5388 break;
5389 }
5390
5391 return ERR_PTR(-EINVAL);
5392
5393err_unsupported:
5394 if (coupler->detach_regulator)
5395 coupler->detach_regulator(coupler, rdev);
5396
5397 rdev_err(rdev,
5398 "Voltage balancing for multiple regulator couples is unimplemented\n");
5399
5400 return ERR_PTR(-EPERM);
5401}
5402
5403static void regulator_resolve_coupling(struct regulator_dev *rdev)
5404{
5405 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5406 struct coupling_desc *c_desc = &rdev->coupling_desc;
5407 int n_coupled = c_desc->n_coupled;
5408 struct regulator_dev *c_rdev;
5409 int i;
5410
5411 for (i = 1; i < n_coupled; i++) {
5412 /* already resolved */
5413 if (c_desc->coupled_rdevs[i])
5414 continue;
5415
5416 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5417
5418 if (!c_rdev)
5419 continue;
5420
5421 if (c_rdev->coupling_desc.coupler != coupler) {
5422 rdev_err(rdev, "coupler mismatch with %s\n",
5423 rdev_get_name(c_rdev));
5424 return;
5425 }
5426
5427 c_desc->coupled_rdevs[i] = c_rdev;
5428 c_desc->n_resolved++;
5429
5430 regulator_resolve_coupling(c_rdev);
5431 }
5432}
5433
5434static void regulator_remove_coupling(struct regulator_dev *rdev)
5435{
5436 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5437 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5438 struct regulator_dev *__c_rdev, *c_rdev;
5439 unsigned int __n_coupled, n_coupled;
5440 int i, k;
5441 int err;
5442
5443 n_coupled = c_desc->n_coupled;
5444
5445 for (i = 1; i < n_coupled; i++) {
5446 c_rdev = c_desc->coupled_rdevs[i];
5447
5448 if (!c_rdev)
5449 continue;
5450
5451 regulator_lock(c_rdev);
5452
5453 __c_desc = &c_rdev->coupling_desc;
5454 __n_coupled = __c_desc->n_coupled;
5455
5456 for (k = 1; k < __n_coupled; k++) {
5457 __c_rdev = __c_desc->coupled_rdevs[k];
5458
5459 if (__c_rdev == rdev) {
5460 __c_desc->coupled_rdevs[k] = NULL;
5461 __c_desc->n_resolved--;
5462 break;
5463 }
5464 }
5465
5466 regulator_unlock(c_rdev);
5467
5468 c_desc->coupled_rdevs[i] = NULL;
5469 c_desc->n_resolved--;
5470 }
5471
5472 if (coupler && coupler->detach_regulator) {
5473 err = coupler->detach_regulator(coupler, rdev);
5474 if (err)
5475 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5476 ERR_PTR(err));
5477 }
5478
5479 kfree(rdev->coupling_desc.coupled_rdevs);
5480 rdev->coupling_desc.coupled_rdevs = NULL;
5481}
5482
5483static int regulator_init_coupling(struct regulator_dev *rdev)
5484{
5485 struct regulator_dev **coupled;
5486 int err, n_phandles;
5487
5488 if (!IS_ENABLED(CONFIG_OF))
5489 n_phandles = 0;
5490 else
5491 n_phandles = of_get_n_coupled(rdev);
5492
5493 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5494 if (!coupled)
5495 return -ENOMEM;
5496
5497 rdev->coupling_desc.coupled_rdevs = coupled;
5498
5499 /*
5500 * Every regulator should always have coupling descriptor filled with
5501 * at least pointer to itself.
5502 */
5503 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5504 rdev->coupling_desc.n_coupled = n_phandles + 1;
5505 rdev->coupling_desc.n_resolved++;
5506
5507 /* regulator isn't coupled */
5508 if (n_phandles == 0)
5509 return 0;
5510
5511 if (!of_check_coupling_data(rdev))
5512 return -EPERM;
5513
5514 mutex_lock(®ulator_list_mutex);
5515 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5516 mutex_unlock(®ulator_list_mutex);
5517
5518 if (IS_ERR(rdev->coupling_desc.coupler)) {
5519 err = PTR_ERR(rdev->coupling_desc.coupler);
5520 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5521 return err;
5522 }
5523
5524 return 0;
5525}
5526
5527static int generic_coupler_attach(struct regulator_coupler *coupler,
5528 struct regulator_dev *rdev)
5529{
5530 if (rdev->coupling_desc.n_coupled > 2) {
5531 rdev_err(rdev,
5532 "Voltage balancing for multiple regulator couples is unimplemented\n");
5533 return -EPERM;
5534 }
5535
5536 if (!rdev->constraints->always_on) {
5537 rdev_err(rdev,
5538 "Coupling of a non always-on regulator is unimplemented\n");
5539 return -ENOTSUPP;
5540 }
5541
5542 return 0;
5543}
5544
5545static struct regulator_coupler generic_regulator_coupler = {
5546 .attach_regulator = generic_coupler_attach,
5547};
5548
5549/**
5550 * regulator_register - register regulator
5551 * @dev: the device that drive the regulator
5552 * @regulator_desc: regulator to register
5553 * @cfg: runtime configuration for regulator
5554 *
5555 * Called by regulator drivers to register a regulator.
5556 * Returns a valid pointer to struct regulator_dev on success
5557 * or an ERR_PTR() on error.
5558 */
5559struct regulator_dev *
5560regulator_register(struct device *dev,
5561 const struct regulator_desc *regulator_desc,
5562 const struct regulator_config *cfg)
5563{
5564 const struct regulator_init_data *init_data;
5565 struct regulator_config *config = NULL;
5566 static atomic_t regulator_no = ATOMIC_INIT(-1);
5567 struct regulator_dev *rdev;
5568 bool dangling_cfg_gpiod = false;
5569 bool dangling_of_gpiod = false;
5570 int ret, i;
5571 bool resolved_early = false;
5572
5573 if (cfg == NULL)
5574 return ERR_PTR(-EINVAL);
5575 if (cfg->ena_gpiod)
5576 dangling_cfg_gpiod = true;
5577 if (regulator_desc == NULL) {
5578 ret = -EINVAL;
5579 goto rinse;
5580 }
5581
5582 WARN_ON(!dev || !cfg->dev);
5583
5584 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5585 ret = -EINVAL;
5586 goto rinse;
5587 }
5588
5589 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5590 regulator_desc->type != REGULATOR_CURRENT) {
5591 ret = -EINVAL;
5592 goto rinse;
5593 }
5594
5595 /* Only one of each should be implemented */
5596 WARN_ON(regulator_desc->ops->get_voltage &&
5597 regulator_desc->ops->get_voltage_sel);
5598 WARN_ON(regulator_desc->ops->set_voltage &&
5599 regulator_desc->ops->set_voltage_sel);
5600
5601 /* If we're using selectors we must implement list_voltage. */
5602 if (regulator_desc->ops->get_voltage_sel &&
5603 !regulator_desc->ops->list_voltage) {
5604 ret = -EINVAL;
5605 goto rinse;
5606 }
5607 if (regulator_desc->ops->set_voltage_sel &&
5608 !regulator_desc->ops->list_voltage) {
5609 ret = -EINVAL;
5610 goto rinse;
5611 }
5612
5613 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5614 if (rdev == NULL) {
5615 ret = -ENOMEM;
5616 goto rinse;
5617 }
5618 device_initialize(&rdev->dev);
5619 dev_set_drvdata(&rdev->dev, rdev);
5620 rdev->dev.class = ®ulator_class;
5621 spin_lock_init(&rdev->err_lock);
5622
5623 /*
5624 * Duplicate the config so the driver could override it after
5625 * parsing init data.
5626 */
5627 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5628 if (config == NULL) {
5629 ret = -ENOMEM;
5630 goto clean;
5631 }
5632
5633 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5634 &rdev->dev.of_node);
5635
5636 /*
5637 * Sometimes not all resources are probed already so we need to take
5638 * that into account. This happens most the time if the ena_gpiod comes
5639 * from a gpio extender or something else.
5640 */
5641 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5642 ret = -EPROBE_DEFER;
5643 goto clean;
5644 }
5645
5646 /*
5647 * We need to keep track of any GPIO descriptor coming from the
5648 * device tree until we have handled it over to the core. If the
5649 * config that was passed in to this function DOES NOT contain
5650 * a descriptor, and the config after this call DOES contain
5651 * a descriptor, we definitely got one from parsing the device
5652 * tree.
5653 */
5654 if (!cfg->ena_gpiod && config->ena_gpiod)
5655 dangling_of_gpiod = true;
5656 if (!init_data) {
5657 init_data = config->init_data;
5658 rdev->dev.of_node = of_node_get(config->of_node);
5659 }
5660
5661 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5662 rdev->reg_data = config->driver_data;
5663 rdev->owner = regulator_desc->owner;
5664 rdev->desc = regulator_desc;
5665 if (config->regmap)
5666 rdev->regmap = config->regmap;
5667 else if (dev_get_regmap(dev, NULL))
5668 rdev->regmap = dev_get_regmap(dev, NULL);
5669 else if (dev->parent)
5670 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5671 INIT_LIST_HEAD(&rdev->consumer_list);
5672 INIT_LIST_HEAD(&rdev->list);
5673 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5674 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5675
5676 if (init_data && init_data->supply_regulator)
5677 rdev->supply_name = init_data->supply_regulator;
5678 else if (regulator_desc->supply_name)
5679 rdev->supply_name = regulator_desc->supply_name;
5680
5681 /* register with sysfs */
5682 rdev->dev.parent = config->dev;
5683 dev_set_name(&rdev->dev, "regulator.%lu",
5684 (unsigned long) atomic_inc_return(®ulator_no));
5685
5686 /* set regulator constraints */
5687 if (init_data)
5688 rdev->constraints = kmemdup(&init_data->constraints,
5689 sizeof(*rdev->constraints),
5690 GFP_KERNEL);
5691 else
5692 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5693 GFP_KERNEL);
5694 if (!rdev->constraints) {
5695 ret = -ENOMEM;
5696 goto wash;
5697 }
5698
5699 if ((rdev->supply_name && !rdev->supply) &&
5700 (rdev->constraints->always_on ||
5701 rdev->constraints->boot_on)) {
5702 ret = regulator_resolve_supply(rdev);
5703 if (ret)
5704 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5705 ERR_PTR(ret));
5706
5707 resolved_early = true;
5708 }
5709
5710 /* perform any regulator specific init */
5711 if (init_data && init_data->regulator_init) {
5712 ret = init_data->regulator_init(rdev->reg_data);
5713 if (ret < 0)
5714 goto wash;
5715 }
5716
5717 if (config->ena_gpiod) {
5718 ret = regulator_ena_gpio_request(rdev, config);
5719 if (ret != 0) {
5720 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5721 ERR_PTR(ret));
5722 goto wash;
5723 }
5724 /* The regulator core took over the GPIO descriptor */
5725 dangling_cfg_gpiod = false;
5726 dangling_of_gpiod = false;
5727 }
5728
5729 ret = set_machine_constraints(rdev);
5730 if (ret == -EPROBE_DEFER && !resolved_early) {
5731 /* Regulator might be in bypass mode and so needs its supply
5732 * to set the constraints
5733 */
5734 /* FIXME: this currently triggers a chicken-and-egg problem
5735 * when creating -SUPPLY symlink in sysfs to a regulator
5736 * that is just being created
5737 */
5738 rdev_dbg(rdev, "will resolve supply early: %s\n",
5739 rdev->supply_name);
5740 ret = regulator_resolve_supply(rdev);
5741 if (!ret)
5742 ret = set_machine_constraints(rdev);
5743 else
5744 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5745 ERR_PTR(ret));
5746 }
5747 if (ret < 0)
5748 goto wash;
5749
5750 ret = regulator_init_coupling(rdev);
5751 if (ret < 0)
5752 goto wash;
5753
5754 /* add consumers devices */
5755 if (init_data) {
5756 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5757 ret = set_consumer_device_supply(rdev,
5758 init_data->consumer_supplies[i].dev_name,
5759 init_data->consumer_supplies[i].supply);
5760 if (ret < 0) {
5761 dev_err(dev, "Failed to set supply %s\n",
5762 init_data->consumer_supplies[i].supply);
5763 goto unset_supplies;
5764 }
5765 }
5766 }
5767
5768 if (!rdev->desc->ops->get_voltage &&
5769 !rdev->desc->ops->list_voltage &&
5770 !rdev->desc->fixed_uV)
5771 rdev->is_switch = true;
5772
5773 ret = device_add(&rdev->dev);
5774 if (ret != 0)
5775 goto unset_supplies;
5776
5777 rdev_init_debugfs(rdev);
5778
5779 /* try to resolve regulators coupling since a new one was registered */
5780 mutex_lock(®ulator_list_mutex);
5781 regulator_resolve_coupling(rdev);
5782 mutex_unlock(®ulator_list_mutex);
5783
5784 /* try to resolve regulators supply since a new one was registered */
5785 class_for_each_device(®ulator_class, NULL, NULL,
5786 regulator_register_resolve_supply);
5787 kfree(config);
5788 return rdev;
5789
5790unset_supplies:
5791 mutex_lock(®ulator_list_mutex);
5792 unset_regulator_supplies(rdev);
5793 regulator_remove_coupling(rdev);
5794 mutex_unlock(®ulator_list_mutex);
5795wash:
5796 regulator_put(rdev->supply);
5797 kfree(rdev->coupling_desc.coupled_rdevs);
5798 mutex_lock(®ulator_list_mutex);
5799 regulator_ena_gpio_free(rdev);
5800 mutex_unlock(®ulator_list_mutex);
5801clean:
5802 if (dangling_of_gpiod)
5803 gpiod_put(config->ena_gpiod);
5804 kfree(config);
5805 put_device(&rdev->dev);
5806rinse:
5807 if (dangling_cfg_gpiod)
5808 gpiod_put(cfg->ena_gpiod);
5809 return ERR_PTR(ret);
5810}
5811EXPORT_SYMBOL_GPL(regulator_register);
5812
5813/**
5814 * regulator_unregister - unregister regulator
5815 * @rdev: regulator to unregister
5816 *
5817 * Called by regulator drivers to unregister a regulator.
5818 */
5819void regulator_unregister(struct regulator_dev *rdev)
5820{
5821 if (rdev == NULL)
5822 return;
5823
5824 if (rdev->supply) {
5825 while (rdev->use_count--)
5826 regulator_disable(rdev->supply);
5827 regulator_put(rdev->supply);
5828 }
5829
5830 flush_work(&rdev->disable_work.work);
5831
5832 mutex_lock(®ulator_list_mutex);
5833
5834 WARN_ON(rdev->open_count);
5835 regulator_remove_coupling(rdev);
5836 unset_regulator_supplies(rdev);
5837 list_del(&rdev->list);
5838 regulator_ena_gpio_free(rdev);
5839 device_unregister(&rdev->dev);
5840
5841 mutex_unlock(®ulator_list_mutex);
5842}
5843EXPORT_SYMBOL_GPL(regulator_unregister);
5844
5845#ifdef CONFIG_SUSPEND
5846/**
5847 * regulator_suspend - prepare regulators for system wide suspend
5848 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5849 *
5850 * Configure each regulator with it's suspend operating parameters for state.
5851 */
5852static int regulator_suspend(struct device *dev)
5853{
5854 struct regulator_dev *rdev = dev_to_rdev(dev);
5855 suspend_state_t state = pm_suspend_target_state;
5856 int ret;
5857 const struct regulator_state *rstate;
5858
5859 rstate = regulator_get_suspend_state_check(rdev, state);
5860 if (!rstate)
5861 return 0;
5862
5863 regulator_lock(rdev);
5864 ret = __suspend_set_state(rdev, rstate);
5865 regulator_unlock(rdev);
5866
5867 return ret;
5868}
5869
5870static int regulator_resume(struct device *dev)
5871{
5872 suspend_state_t state = pm_suspend_target_state;
5873 struct regulator_dev *rdev = dev_to_rdev(dev);
5874 struct regulator_state *rstate;
5875 int ret = 0;
5876
5877 rstate = regulator_get_suspend_state(rdev, state);
5878 if (rstate == NULL)
5879 return 0;
5880
5881 /* Avoid grabbing the lock if we don't need to */
5882 if (!rdev->desc->ops->resume)
5883 return 0;
5884
5885 regulator_lock(rdev);
5886
5887 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5888 rstate->enabled == DISABLE_IN_SUSPEND)
5889 ret = rdev->desc->ops->resume(rdev);
5890
5891 regulator_unlock(rdev);
5892
5893 return ret;
5894}
5895#else /* !CONFIG_SUSPEND */
5896
5897#define regulator_suspend NULL
5898#define regulator_resume NULL
5899
5900#endif /* !CONFIG_SUSPEND */
5901
5902#ifdef CONFIG_PM
5903static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5904 .suspend = regulator_suspend,
5905 .resume = regulator_resume,
5906};
5907#endif
5908
5909const struct class regulator_class = {
5910 .name = "regulator",
5911 .dev_release = regulator_dev_release,
5912 .dev_groups = regulator_dev_groups,
5913#ifdef CONFIG_PM
5914 .pm = ®ulator_pm_ops,
5915#endif
5916};
5917/**
5918 * regulator_has_full_constraints - the system has fully specified constraints
5919 *
5920 * Calling this function will cause the regulator API to disable all
5921 * regulators which have a zero use count and don't have an always_on
5922 * constraint in a late_initcall.
5923 *
5924 * The intention is that this will become the default behaviour in a
5925 * future kernel release so users are encouraged to use this facility
5926 * now.
5927 */
5928void regulator_has_full_constraints(void)
5929{
5930 has_full_constraints = 1;
5931}
5932EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5933
5934/**
5935 * rdev_get_drvdata - get rdev regulator driver data
5936 * @rdev: regulator
5937 *
5938 * Get rdev regulator driver private data. This call can be used in the
5939 * regulator driver context.
5940 */
5941void *rdev_get_drvdata(struct regulator_dev *rdev)
5942{
5943 return rdev->reg_data;
5944}
5945EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5946
5947/**
5948 * regulator_get_drvdata - get regulator driver data
5949 * @regulator: regulator
5950 *
5951 * Get regulator driver private data. This call can be used in the consumer
5952 * driver context when non API regulator specific functions need to be called.
5953 */
5954void *regulator_get_drvdata(struct regulator *regulator)
5955{
5956 return regulator->rdev->reg_data;
5957}
5958EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5959
5960/**
5961 * regulator_set_drvdata - set regulator driver data
5962 * @regulator: regulator
5963 * @data: data
5964 */
5965void regulator_set_drvdata(struct regulator *regulator, void *data)
5966{
5967 regulator->rdev->reg_data = data;
5968}
5969EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5970
5971/**
5972 * rdev_get_id - get regulator ID
5973 * @rdev: regulator
5974 */
5975int rdev_get_id(struct regulator_dev *rdev)
5976{
5977 return rdev->desc->id;
5978}
5979EXPORT_SYMBOL_GPL(rdev_get_id);
5980
5981struct device *rdev_get_dev(struct regulator_dev *rdev)
5982{
5983 return &rdev->dev;
5984}
5985EXPORT_SYMBOL_GPL(rdev_get_dev);
5986
5987struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5988{
5989 return rdev->regmap;
5990}
5991EXPORT_SYMBOL_GPL(rdev_get_regmap);
5992
5993void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5994{
5995 return reg_init_data->driver_data;
5996}
5997EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5998
5999#ifdef CONFIG_DEBUG_FS
6000static int supply_map_show(struct seq_file *sf, void *data)
6001{
6002 struct regulator_map *map;
6003
6004 list_for_each_entry(map, ®ulator_map_list, list) {
6005 seq_printf(sf, "%s -> %s.%s\n",
6006 rdev_get_name(map->regulator), map->dev_name,
6007 map->supply);
6008 }
6009
6010 return 0;
6011}
6012DEFINE_SHOW_ATTRIBUTE(supply_map);
6013
6014struct summary_data {
6015 struct seq_file *s;
6016 struct regulator_dev *parent;
6017 int level;
6018};
6019
6020static void regulator_summary_show_subtree(struct seq_file *s,
6021 struct regulator_dev *rdev,
6022 int level);
6023
6024static int regulator_summary_show_children(struct device *dev, void *data)
6025{
6026 struct regulator_dev *rdev = dev_to_rdev(dev);
6027 struct summary_data *summary_data = data;
6028
6029 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6030 regulator_summary_show_subtree(summary_data->s, rdev,
6031 summary_data->level + 1);
6032
6033 return 0;
6034}
6035
6036static void regulator_summary_show_subtree(struct seq_file *s,
6037 struct regulator_dev *rdev,
6038 int level)
6039{
6040 struct regulation_constraints *c;
6041 struct regulator *consumer;
6042 struct summary_data summary_data;
6043 unsigned int opmode;
6044
6045 if (!rdev)
6046 return;
6047
6048 opmode = _regulator_get_mode_unlocked(rdev);
6049 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6050 level * 3 + 1, "",
6051 30 - level * 3, rdev_get_name(rdev),
6052 rdev->use_count, rdev->open_count, rdev->bypass_count,
6053 regulator_opmode_to_str(opmode));
6054
6055 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6056 seq_printf(s, "%5dmA ",
6057 _regulator_get_current_limit_unlocked(rdev) / 1000);
6058
6059 c = rdev->constraints;
6060 if (c) {
6061 switch (rdev->desc->type) {
6062 case REGULATOR_VOLTAGE:
6063 seq_printf(s, "%5dmV %5dmV ",
6064 c->min_uV / 1000, c->max_uV / 1000);
6065 break;
6066 case REGULATOR_CURRENT:
6067 seq_printf(s, "%5dmA %5dmA ",
6068 c->min_uA / 1000, c->max_uA / 1000);
6069 break;
6070 }
6071 }
6072
6073 seq_puts(s, "\n");
6074
6075 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6076 if (consumer->dev && consumer->dev->class == ®ulator_class)
6077 continue;
6078
6079 seq_printf(s, "%*s%-*s ",
6080 (level + 1) * 3 + 1, "",
6081 30 - (level + 1) * 3,
6082 consumer->supply_name ? consumer->supply_name :
6083 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6084
6085 switch (rdev->desc->type) {
6086 case REGULATOR_VOLTAGE:
6087 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6088 consumer->enable_count,
6089 consumer->uA_load / 1000,
6090 consumer->uA_load && !consumer->enable_count ?
6091 '*' : ' ',
6092 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6093 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6094 break;
6095 case REGULATOR_CURRENT:
6096 break;
6097 }
6098
6099 seq_puts(s, "\n");
6100 }
6101
6102 summary_data.s = s;
6103 summary_data.level = level;
6104 summary_data.parent = rdev;
6105
6106 class_for_each_device(®ulator_class, NULL, &summary_data,
6107 regulator_summary_show_children);
6108}
6109
6110struct summary_lock_data {
6111 struct ww_acquire_ctx *ww_ctx;
6112 struct regulator_dev **new_contended_rdev;
6113 struct regulator_dev **old_contended_rdev;
6114};
6115
6116static int regulator_summary_lock_one(struct device *dev, void *data)
6117{
6118 struct regulator_dev *rdev = dev_to_rdev(dev);
6119 struct summary_lock_data *lock_data = data;
6120 int ret = 0;
6121
6122 if (rdev != *lock_data->old_contended_rdev) {
6123 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6124
6125 if (ret == -EDEADLK)
6126 *lock_data->new_contended_rdev = rdev;
6127 else
6128 WARN_ON_ONCE(ret);
6129 } else {
6130 *lock_data->old_contended_rdev = NULL;
6131 }
6132
6133 return ret;
6134}
6135
6136static int regulator_summary_unlock_one(struct device *dev, void *data)
6137{
6138 struct regulator_dev *rdev = dev_to_rdev(dev);
6139 struct summary_lock_data *lock_data = data;
6140
6141 if (lock_data) {
6142 if (rdev == *lock_data->new_contended_rdev)
6143 return -EDEADLK;
6144 }
6145
6146 regulator_unlock(rdev);
6147
6148 return 0;
6149}
6150
6151static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6152 struct regulator_dev **new_contended_rdev,
6153 struct regulator_dev **old_contended_rdev)
6154{
6155 struct summary_lock_data lock_data;
6156 int ret;
6157
6158 lock_data.ww_ctx = ww_ctx;
6159 lock_data.new_contended_rdev = new_contended_rdev;
6160 lock_data.old_contended_rdev = old_contended_rdev;
6161
6162 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6163 regulator_summary_lock_one);
6164 if (ret)
6165 class_for_each_device(®ulator_class, NULL, &lock_data,
6166 regulator_summary_unlock_one);
6167
6168 return ret;
6169}
6170
6171static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6172{
6173 struct regulator_dev *new_contended_rdev = NULL;
6174 struct regulator_dev *old_contended_rdev = NULL;
6175 int err;
6176
6177 mutex_lock(®ulator_list_mutex);
6178
6179 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6180
6181 do {
6182 if (new_contended_rdev) {
6183 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6184 old_contended_rdev = new_contended_rdev;
6185 old_contended_rdev->ref_cnt++;
6186 old_contended_rdev->mutex_owner = current;
6187 }
6188
6189 err = regulator_summary_lock_all(ww_ctx,
6190 &new_contended_rdev,
6191 &old_contended_rdev);
6192
6193 if (old_contended_rdev)
6194 regulator_unlock(old_contended_rdev);
6195
6196 } while (err == -EDEADLK);
6197
6198 ww_acquire_done(ww_ctx);
6199}
6200
6201static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6202{
6203 class_for_each_device(®ulator_class, NULL, NULL,
6204 regulator_summary_unlock_one);
6205 ww_acquire_fini(ww_ctx);
6206
6207 mutex_unlock(®ulator_list_mutex);
6208}
6209
6210static int regulator_summary_show_roots(struct device *dev, void *data)
6211{
6212 struct regulator_dev *rdev = dev_to_rdev(dev);
6213 struct seq_file *s = data;
6214
6215 if (!rdev->supply)
6216 regulator_summary_show_subtree(s, rdev, 0);
6217
6218 return 0;
6219}
6220
6221static int regulator_summary_show(struct seq_file *s, void *data)
6222{
6223 struct ww_acquire_ctx ww_ctx;
6224
6225 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6226 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6227
6228 regulator_summary_lock(&ww_ctx);
6229
6230 class_for_each_device(®ulator_class, NULL, s,
6231 regulator_summary_show_roots);
6232
6233 regulator_summary_unlock(&ww_ctx);
6234
6235 return 0;
6236}
6237DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6238#endif /* CONFIG_DEBUG_FS */
6239
6240static int __init regulator_init(void)
6241{
6242 int ret;
6243
6244 ret = class_register(®ulator_class);
6245
6246 debugfs_root = debugfs_create_dir("regulator", NULL);
6247 if (IS_ERR(debugfs_root))
6248 pr_debug("regulator: Failed to create debugfs directory\n");
6249
6250#ifdef CONFIG_DEBUG_FS
6251 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6252 &supply_map_fops);
6253
6254 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6255 NULL, ®ulator_summary_fops);
6256#endif
6257 regulator_dummy_init();
6258
6259 regulator_coupler_register(&generic_regulator_coupler);
6260
6261 return ret;
6262}
6263
6264/* init early to allow our consumers to complete system booting */
6265core_initcall(regulator_init);
6266
6267static int regulator_late_cleanup(struct device *dev, void *data)
6268{
6269 struct regulator_dev *rdev = dev_to_rdev(dev);
6270 struct regulation_constraints *c = rdev->constraints;
6271 int ret;
6272
6273 if (c && c->always_on)
6274 return 0;
6275
6276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6277 return 0;
6278
6279 regulator_lock(rdev);
6280
6281 if (rdev->use_count)
6282 goto unlock;
6283
6284 /* If reading the status failed, assume that it's off. */
6285 if (_regulator_is_enabled(rdev) <= 0)
6286 goto unlock;
6287
6288 if (have_full_constraints()) {
6289 /* We log since this may kill the system if it goes
6290 * wrong.
6291 */
6292 rdev_info(rdev, "disabling\n");
6293 ret = _regulator_do_disable(rdev);
6294 if (ret != 0)
6295 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6296 } else {
6297 /* The intention is that in future we will
6298 * assume that full constraints are provided
6299 * so warn even if we aren't going to do
6300 * anything here.
6301 */
6302 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6303 }
6304
6305unlock:
6306 regulator_unlock(rdev);
6307
6308 return 0;
6309}
6310
6311static bool regulator_ignore_unused;
6312static int __init regulator_ignore_unused_setup(char *__unused)
6313{
6314 regulator_ignore_unused = true;
6315 return 1;
6316}
6317__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6318
6319static void regulator_init_complete_work_function(struct work_struct *work)
6320{
6321 /*
6322 * Regulators may had failed to resolve their input supplies
6323 * when were registered, either because the input supply was
6324 * not registered yet or because its parent device was not
6325 * bound yet. So attempt to resolve the input supplies for
6326 * pending regulators before trying to disable unused ones.
6327 */
6328 class_for_each_device(®ulator_class, NULL, NULL,
6329 regulator_register_resolve_supply);
6330
6331 /*
6332 * For debugging purposes, it may be useful to prevent unused
6333 * regulators from being disabled.
6334 */
6335 if (regulator_ignore_unused) {
6336 pr_warn("regulator: Not disabling unused regulators\n");
6337 return;
6338 }
6339
6340 /* If we have a full configuration then disable any regulators
6341 * we have permission to change the status for and which are
6342 * not in use or always_on. This is effectively the default
6343 * for DT and ACPI as they have full constraints.
6344 */
6345 class_for_each_device(®ulator_class, NULL, NULL,
6346 regulator_late_cleanup);
6347}
6348
6349static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6350 regulator_init_complete_work_function);
6351
6352static int __init regulator_init_complete(void)
6353{
6354 /*
6355 * Since DT doesn't provide an idiomatic mechanism for
6356 * enabling full constraints and since it's much more natural
6357 * with DT to provide them just assume that a DT enabled
6358 * system has full constraints.
6359 */
6360 if (of_have_populated_dt())
6361 has_full_constraints = true;
6362
6363 /*
6364 * We punt completion for an arbitrary amount of time since
6365 * systems like distros will load many drivers from userspace
6366 * so consumers might not always be ready yet, this is
6367 * particularly an issue with laptops where this might bounce
6368 * the display off then on. Ideally we'd get a notification
6369 * from userspace when this happens but we don't so just wait
6370 * a bit and hope we waited long enough. It'd be better if
6371 * we'd only do this on systems that need it, and a kernel
6372 * command line option might be useful.
6373 */
6374 schedule_delayed_work(®ulator_init_complete_work,
6375 msecs_to_jiffies(30000));
6376
6377 return 0;
6378}
6379late_initcall_sync(regulator_init_complete);