Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/reboot.h>
23#include <linux/regmap.h>
24#include <linux/regulator/of_regulator.h>
25#include <linux/regulator/consumer.h>
26#include <linux/regulator/coupler.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29#include <linux/module.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/regulator.h>
33
34#include "dummy.h"
35#include "internal.h"
36#include "regnl.h"
37
38static DEFINE_WW_CLASS(regulator_ww_class);
39static DEFINE_MUTEX(regulator_nesting_mutex);
40static DEFINE_MUTEX(regulator_list_mutex);
41static LIST_HEAD(regulator_map_list);
42static LIST_HEAD(regulator_ena_gpio_list);
43static LIST_HEAD(regulator_supply_alias_list);
44static LIST_HEAD(regulator_coupler_list);
45static bool has_full_constraints;
46
47static struct dentry *debugfs_root;
48
49/*
50 * struct regulator_map
51 *
52 * Used to provide symbolic supply names to devices.
53 */
54struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
59};
60
61/*
62 * struct regulator_enable_gpio
63 *
64 * Management for shared enable GPIO pin
65 */
66struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
71};
72
73/*
74 * struct regulator_supply_alias
75 *
76 * Used to map lookups for a supply onto an alternative device.
77 */
78struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
84};
85
86static int _regulator_is_enabled(struct regulator_dev *rdev);
87static int _regulator_disable(struct regulator *regulator);
88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89static int _regulator_get_current_limit(struct regulator_dev *rdev);
90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91static int _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95static int regulator_balance_voltage(struct regulator_dev *rdev,
96 suspend_state_t state);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100static void destroy_regulator(struct regulator *regulator);
101static void _regulator_put(struct regulator *regulator);
102
103const char *rdev_get_name(struct regulator_dev *rdev)
104{
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111}
112EXPORT_SYMBOL_GPL(rdev_get_name);
113
114static bool have_full_constraints(void)
115{
116 return has_full_constraints || of_have_populated_dt();
117}
118
119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120{
121 if (!rdev->constraints) {
122 rdev_err(rdev, "no constraints\n");
123 return false;
124 }
125
126 if (rdev->constraints->valid_ops_mask & ops)
127 return true;
128
129 return false;
130}
131
132/**
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
136 *
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
142 */
143static inline int regulator_lock_nested(struct regulator_dev *rdev,
144 struct ww_acquire_ctx *ww_ctx)
145{
146 bool lock = false;
147 int ret = 0;
148
149 mutex_lock(®ulator_nesting_mutex);
150
151 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
152 if (rdev->mutex_owner == current)
153 rdev->ref_cnt++;
154 else
155 lock = true;
156
157 if (lock) {
158 mutex_unlock(®ulator_nesting_mutex);
159 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
160 mutex_lock(®ulator_nesting_mutex);
161 }
162 } else {
163 lock = true;
164 }
165
166 if (lock && ret != -EDEADLK) {
167 rdev->ref_cnt++;
168 rdev->mutex_owner = current;
169 }
170
171 mutex_unlock(®ulator_nesting_mutex);
172
173 return ret;
174}
175
176/**
177 * regulator_lock - lock a single regulator
178 * @rdev: regulator source
179 *
180 * This function can be called many times by one task on
181 * a single regulator and its mutex will be locked only
182 * once. If a task, which is calling this function is other
183 * than the one, which initially locked the mutex, it will
184 * wait on mutex.
185 */
186static void regulator_lock(struct regulator_dev *rdev)
187{
188 regulator_lock_nested(rdev, NULL);
189}
190
191/**
192 * regulator_unlock - unlock a single regulator
193 * @rdev: regulator_source
194 *
195 * This function unlocks the mutex when the
196 * reference counter reaches 0.
197 */
198static void regulator_unlock(struct regulator_dev *rdev)
199{
200 mutex_lock(®ulator_nesting_mutex);
201
202 if (--rdev->ref_cnt == 0) {
203 rdev->mutex_owner = NULL;
204 ww_mutex_unlock(&rdev->mutex);
205 }
206
207 WARN_ON_ONCE(rdev->ref_cnt < 0);
208
209 mutex_unlock(®ulator_nesting_mutex);
210}
211
212/**
213 * regulator_lock_two - lock two regulators
214 * @rdev1: first regulator
215 * @rdev2: second regulator
216 * @ww_ctx: w/w mutex acquire context
217 *
218 * Locks both rdevs using the regulator_ww_class.
219 */
220static void regulator_lock_two(struct regulator_dev *rdev1,
221 struct regulator_dev *rdev2,
222 struct ww_acquire_ctx *ww_ctx)
223{
224 struct regulator_dev *held, *contended;
225 int ret;
226
227 ww_acquire_init(ww_ctx, ®ulator_ww_class);
228
229 /* Try to just grab both of them */
230 ret = regulator_lock_nested(rdev1, ww_ctx);
231 WARN_ON(ret);
232 ret = regulator_lock_nested(rdev2, ww_ctx);
233 if (ret != -EDEADLOCK) {
234 WARN_ON(ret);
235 goto exit;
236 }
237
238 held = rdev1;
239 contended = rdev2;
240 while (true) {
241 regulator_unlock(held);
242
243 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
244 contended->ref_cnt++;
245 contended->mutex_owner = current;
246 swap(held, contended);
247 ret = regulator_lock_nested(contended, ww_ctx);
248
249 if (ret != -EDEADLOCK) {
250 WARN_ON(ret);
251 break;
252 }
253 }
254
255exit:
256 ww_acquire_done(ww_ctx);
257}
258
259/**
260 * regulator_unlock_two - unlock two regulators
261 * @rdev1: first regulator
262 * @rdev2: second regulator
263 * @ww_ctx: w/w mutex acquire context
264 *
265 * The inverse of regulator_lock_two().
266 */
267
268static void regulator_unlock_two(struct regulator_dev *rdev1,
269 struct regulator_dev *rdev2,
270 struct ww_acquire_ctx *ww_ctx)
271{
272 regulator_unlock(rdev2);
273 regulator_unlock(rdev1);
274 ww_acquire_fini(ww_ctx);
275}
276
277static bool regulator_supply_is_couple(struct regulator_dev *rdev)
278{
279 struct regulator_dev *c_rdev;
280 int i;
281
282 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
283 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
284
285 if (rdev->supply->rdev == c_rdev)
286 return true;
287 }
288
289 return false;
290}
291
292static void regulator_unlock_recursive(struct regulator_dev *rdev,
293 unsigned int n_coupled)
294{
295 struct regulator_dev *c_rdev, *supply_rdev;
296 int i, supply_n_coupled;
297
298 for (i = n_coupled; i > 0; i--) {
299 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
300
301 if (!c_rdev)
302 continue;
303
304 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
305 supply_rdev = c_rdev->supply->rdev;
306 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
307
308 regulator_unlock_recursive(supply_rdev,
309 supply_n_coupled);
310 }
311
312 regulator_unlock(c_rdev);
313 }
314}
315
316static int regulator_lock_recursive(struct regulator_dev *rdev,
317 struct regulator_dev **new_contended_rdev,
318 struct regulator_dev **old_contended_rdev,
319 struct ww_acquire_ctx *ww_ctx)
320{
321 struct regulator_dev *c_rdev;
322 int i, err;
323
324 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
325 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
326
327 if (!c_rdev)
328 continue;
329
330 if (c_rdev != *old_contended_rdev) {
331 err = regulator_lock_nested(c_rdev, ww_ctx);
332 if (err) {
333 if (err == -EDEADLK) {
334 *new_contended_rdev = c_rdev;
335 goto err_unlock;
336 }
337
338 /* shouldn't happen */
339 WARN_ON_ONCE(err != -EALREADY);
340 }
341 } else {
342 *old_contended_rdev = NULL;
343 }
344
345 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
346 err = regulator_lock_recursive(c_rdev->supply->rdev,
347 new_contended_rdev,
348 old_contended_rdev,
349 ww_ctx);
350 if (err) {
351 regulator_unlock(c_rdev);
352 goto err_unlock;
353 }
354 }
355 }
356
357 return 0;
358
359err_unlock:
360 regulator_unlock_recursive(rdev, i);
361
362 return err;
363}
364
365/**
366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
367 * regulators
368 * @rdev: regulator source
369 * @ww_ctx: w/w mutex acquire context
370 *
371 * Unlock all regulators related with rdev by coupling or supplying.
372 */
373static void regulator_unlock_dependent(struct regulator_dev *rdev,
374 struct ww_acquire_ctx *ww_ctx)
375{
376 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
377 ww_acquire_fini(ww_ctx);
378}
379
380/**
381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
382 * @rdev: regulator source
383 * @ww_ctx: w/w mutex acquire context
384 *
385 * This function as a wrapper on regulator_lock_recursive(), which locks
386 * all regulators related with rdev by coupling or supplying.
387 */
388static void regulator_lock_dependent(struct regulator_dev *rdev,
389 struct ww_acquire_ctx *ww_ctx)
390{
391 struct regulator_dev *new_contended_rdev = NULL;
392 struct regulator_dev *old_contended_rdev = NULL;
393 int err;
394
395 mutex_lock(®ulator_list_mutex);
396
397 ww_acquire_init(ww_ctx, ®ulator_ww_class);
398
399 do {
400 if (new_contended_rdev) {
401 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
402 old_contended_rdev = new_contended_rdev;
403 old_contended_rdev->ref_cnt++;
404 old_contended_rdev->mutex_owner = current;
405 }
406
407 err = regulator_lock_recursive(rdev,
408 &new_contended_rdev,
409 &old_contended_rdev,
410 ww_ctx);
411
412 if (old_contended_rdev)
413 regulator_unlock(old_contended_rdev);
414
415 } while (err == -EDEADLK);
416
417 ww_acquire_done(ww_ctx);
418
419 mutex_unlock(®ulator_list_mutex);
420}
421
422/**
423 * of_get_child_regulator - get a child regulator device node
424 * based on supply name
425 * @parent: Parent device node
426 * @prop_name: Combination regulator supply name and "-supply"
427 *
428 * Traverse all child nodes.
429 * Extract the child regulator device node corresponding to the supply name.
430 * returns the device node corresponding to the regulator if found, else
431 * returns NULL.
432 */
433static struct device_node *of_get_child_regulator(struct device_node *parent,
434 const char *prop_name)
435{
436 struct device_node *regnode = NULL;
437 struct device_node *child = NULL;
438
439 for_each_child_of_node(parent, child) {
440 regnode = of_parse_phandle(child, prop_name, 0);
441
442 if (!regnode) {
443 regnode = of_get_child_regulator(child, prop_name);
444 if (regnode)
445 goto err_node_put;
446 } else {
447 goto err_node_put;
448 }
449 }
450 return NULL;
451
452err_node_put:
453 of_node_put(child);
454 return regnode;
455}
456
457/**
458 * of_get_regulator - get a regulator device node based on supply name
459 * @dev: Device pointer for the consumer (of regulator) device
460 * @supply: regulator supply name
461 *
462 * Extract the regulator device node corresponding to the supply name.
463 * returns the device node corresponding to the regulator if found, else
464 * returns NULL.
465 */
466static struct device_node *of_get_regulator(struct device *dev, const char *supply)
467{
468 struct device_node *regnode = NULL;
469 char prop_name[64]; /* 64 is max size of property name */
470
471 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
472
473 snprintf(prop_name, 64, "%s-supply", supply);
474 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
475
476 if (!regnode) {
477 regnode = of_get_child_regulator(dev->of_node, prop_name);
478 if (regnode)
479 return regnode;
480
481 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
482 prop_name, dev->of_node);
483 return NULL;
484 }
485 return regnode;
486}
487
488/* Platform voltage constraint check */
489int regulator_check_voltage(struct regulator_dev *rdev,
490 int *min_uV, int *max_uV)
491{
492 BUG_ON(*min_uV > *max_uV);
493
494 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
495 rdev_err(rdev, "voltage operation not allowed\n");
496 return -EPERM;
497 }
498
499 if (*max_uV > rdev->constraints->max_uV)
500 *max_uV = rdev->constraints->max_uV;
501 if (*min_uV < rdev->constraints->min_uV)
502 *min_uV = rdev->constraints->min_uV;
503
504 if (*min_uV > *max_uV) {
505 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
506 *min_uV, *max_uV);
507 return -EINVAL;
508 }
509
510 return 0;
511}
512
513/* return 0 if the state is valid */
514static int regulator_check_states(suspend_state_t state)
515{
516 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
517}
518
519/* Make sure we select a voltage that suits the needs of all
520 * regulator consumers
521 */
522int regulator_check_consumers(struct regulator_dev *rdev,
523 int *min_uV, int *max_uV,
524 suspend_state_t state)
525{
526 struct regulator *regulator;
527 struct regulator_voltage *voltage;
528
529 list_for_each_entry(regulator, &rdev->consumer_list, list) {
530 voltage = ®ulator->voltage[state];
531 /*
532 * Assume consumers that didn't say anything are OK
533 * with anything in the constraint range.
534 */
535 if (!voltage->min_uV && !voltage->max_uV)
536 continue;
537
538 if (*max_uV > voltage->max_uV)
539 *max_uV = voltage->max_uV;
540 if (*min_uV < voltage->min_uV)
541 *min_uV = voltage->min_uV;
542 }
543
544 if (*min_uV > *max_uV) {
545 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
546 *min_uV, *max_uV);
547 return -EINVAL;
548 }
549
550 return 0;
551}
552
553/* current constraint check */
554static int regulator_check_current_limit(struct regulator_dev *rdev,
555 int *min_uA, int *max_uA)
556{
557 BUG_ON(*min_uA > *max_uA);
558
559 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
560 rdev_err(rdev, "current operation not allowed\n");
561 return -EPERM;
562 }
563
564 if (*max_uA > rdev->constraints->max_uA)
565 *max_uA = rdev->constraints->max_uA;
566 if (*min_uA < rdev->constraints->min_uA)
567 *min_uA = rdev->constraints->min_uA;
568
569 if (*min_uA > *max_uA) {
570 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
571 *min_uA, *max_uA);
572 return -EINVAL;
573 }
574
575 return 0;
576}
577
578/* operating mode constraint check */
579static int regulator_mode_constrain(struct regulator_dev *rdev,
580 unsigned int *mode)
581{
582 switch (*mode) {
583 case REGULATOR_MODE_FAST:
584 case REGULATOR_MODE_NORMAL:
585 case REGULATOR_MODE_IDLE:
586 case REGULATOR_MODE_STANDBY:
587 break;
588 default:
589 rdev_err(rdev, "invalid mode %x specified\n", *mode);
590 return -EINVAL;
591 }
592
593 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
594 rdev_err(rdev, "mode operation not allowed\n");
595 return -EPERM;
596 }
597
598 /* The modes are bitmasks, the most power hungry modes having
599 * the lowest values. If the requested mode isn't supported
600 * try higher modes.
601 */
602 while (*mode) {
603 if (rdev->constraints->valid_modes_mask & *mode)
604 return 0;
605 *mode /= 2;
606 }
607
608 return -EINVAL;
609}
610
611static inline struct regulator_state *
612regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
613{
614 if (rdev->constraints == NULL)
615 return NULL;
616
617 switch (state) {
618 case PM_SUSPEND_STANDBY:
619 return &rdev->constraints->state_standby;
620 case PM_SUSPEND_MEM:
621 return &rdev->constraints->state_mem;
622 case PM_SUSPEND_MAX:
623 return &rdev->constraints->state_disk;
624 default:
625 return NULL;
626 }
627}
628
629static const struct regulator_state *
630regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
631{
632 const struct regulator_state *rstate;
633
634 rstate = regulator_get_suspend_state(rdev, state);
635 if (rstate == NULL)
636 return NULL;
637
638 /* If we have no suspend mode configuration don't set anything;
639 * only warn if the driver implements set_suspend_voltage or
640 * set_suspend_mode callback.
641 */
642 if (rstate->enabled != ENABLE_IN_SUSPEND &&
643 rstate->enabled != DISABLE_IN_SUSPEND) {
644 if (rdev->desc->ops->set_suspend_voltage ||
645 rdev->desc->ops->set_suspend_mode)
646 rdev_warn(rdev, "No configuration\n");
647 return NULL;
648 }
649
650 return rstate;
651}
652
653static ssize_t microvolts_show(struct device *dev,
654 struct device_attribute *attr, char *buf)
655{
656 struct regulator_dev *rdev = dev_get_drvdata(dev);
657 int uV;
658
659 regulator_lock(rdev);
660 uV = regulator_get_voltage_rdev(rdev);
661 regulator_unlock(rdev);
662
663 if (uV < 0)
664 return uV;
665 return sprintf(buf, "%d\n", uV);
666}
667static DEVICE_ATTR_RO(microvolts);
668
669static ssize_t microamps_show(struct device *dev,
670 struct device_attribute *attr, char *buf)
671{
672 struct regulator_dev *rdev = dev_get_drvdata(dev);
673
674 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
675}
676static DEVICE_ATTR_RO(microamps);
677
678static ssize_t name_show(struct device *dev, struct device_attribute *attr,
679 char *buf)
680{
681 struct regulator_dev *rdev = dev_get_drvdata(dev);
682
683 return sprintf(buf, "%s\n", rdev_get_name(rdev));
684}
685static DEVICE_ATTR_RO(name);
686
687static const char *regulator_opmode_to_str(int mode)
688{
689 switch (mode) {
690 case REGULATOR_MODE_FAST:
691 return "fast";
692 case REGULATOR_MODE_NORMAL:
693 return "normal";
694 case REGULATOR_MODE_IDLE:
695 return "idle";
696 case REGULATOR_MODE_STANDBY:
697 return "standby";
698 }
699 return "unknown";
700}
701
702static ssize_t regulator_print_opmode(char *buf, int mode)
703{
704 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
705}
706
707static ssize_t opmode_show(struct device *dev,
708 struct device_attribute *attr, char *buf)
709{
710 struct regulator_dev *rdev = dev_get_drvdata(dev);
711
712 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
713}
714static DEVICE_ATTR_RO(opmode);
715
716static ssize_t regulator_print_state(char *buf, int state)
717{
718 if (state > 0)
719 return sprintf(buf, "enabled\n");
720 else if (state == 0)
721 return sprintf(buf, "disabled\n");
722 else
723 return sprintf(buf, "unknown\n");
724}
725
726static ssize_t state_show(struct device *dev,
727 struct device_attribute *attr, char *buf)
728{
729 struct regulator_dev *rdev = dev_get_drvdata(dev);
730 ssize_t ret;
731
732 regulator_lock(rdev);
733 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
734 regulator_unlock(rdev);
735
736 return ret;
737}
738static DEVICE_ATTR_RO(state);
739
740static ssize_t status_show(struct device *dev,
741 struct device_attribute *attr, char *buf)
742{
743 struct regulator_dev *rdev = dev_get_drvdata(dev);
744 int status;
745 char *label;
746
747 status = rdev->desc->ops->get_status(rdev);
748 if (status < 0)
749 return status;
750
751 switch (status) {
752 case REGULATOR_STATUS_OFF:
753 label = "off";
754 break;
755 case REGULATOR_STATUS_ON:
756 label = "on";
757 break;
758 case REGULATOR_STATUS_ERROR:
759 label = "error";
760 break;
761 case REGULATOR_STATUS_FAST:
762 label = "fast";
763 break;
764 case REGULATOR_STATUS_NORMAL:
765 label = "normal";
766 break;
767 case REGULATOR_STATUS_IDLE:
768 label = "idle";
769 break;
770 case REGULATOR_STATUS_STANDBY:
771 label = "standby";
772 break;
773 case REGULATOR_STATUS_BYPASS:
774 label = "bypass";
775 break;
776 case REGULATOR_STATUS_UNDEFINED:
777 label = "undefined";
778 break;
779 default:
780 return -ERANGE;
781 }
782
783 return sprintf(buf, "%s\n", label);
784}
785static DEVICE_ATTR_RO(status);
786
787static ssize_t min_microamps_show(struct device *dev,
788 struct device_attribute *attr, char *buf)
789{
790 struct regulator_dev *rdev = dev_get_drvdata(dev);
791
792 if (!rdev->constraints)
793 return sprintf(buf, "constraint not defined\n");
794
795 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
796}
797static DEVICE_ATTR_RO(min_microamps);
798
799static ssize_t max_microamps_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
801{
802 struct regulator_dev *rdev = dev_get_drvdata(dev);
803
804 if (!rdev->constraints)
805 return sprintf(buf, "constraint not defined\n");
806
807 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
808}
809static DEVICE_ATTR_RO(max_microamps);
810
811static ssize_t min_microvolts_show(struct device *dev,
812 struct device_attribute *attr, char *buf)
813{
814 struct regulator_dev *rdev = dev_get_drvdata(dev);
815
816 if (!rdev->constraints)
817 return sprintf(buf, "constraint not defined\n");
818
819 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
820}
821static DEVICE_ATTR_RO(min_microvolts);
822
823static ssize_t max_microvolts_show(struct device *dev,
824 struct device_attribute *attr, char *buf)
825{
826 struct regulator_dev *rdev = dev_get_drvdata(dev);
827
828 if (!rdev->constraints)
829 return sprintf(buf, "constraint not defined\n");
830
831 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
832}
833static DEVICE_ATTR_RO(max_microvolts);
834
835static ssize_t requested_microamps_show(struct device *dev,
836 struct device_attribute *attr, char *buf)
837{
838 struct regulator_dev *rdev = dev_get_drvdata(dev);
839 struct regulator *regulator;
840 int uA = 0;
841
842 regulator_lock(rdev);
843 list_for_each_entry(regulator, &rdev->consumer_list, list) {
844 if (regulator->enable_count)
845 uA += regulator->uA_load;
846 }
847 regulator_unlock(rdev);
848 return sprintf(buf, "%d\n", uA);
849}
850static DEVICE_ATTR_RO(requested_microamps);
851
852static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
853 char *buf)
854{
855 struct regulator_dev *rdev = dev_get_drvdata(dev);
856 return sprintf(buf, "%d\n", rdev->use_count);
857}
858static DEVICE_ATTR_RO(num_users);
859
860static ssize_t type_show(struct device *dev, struct device_attribute *attr,
861 char *buf)
862{
863 struct regulator_dev *rdev = dev_get_drvdata(dev);
864
865 switch (rdev->desc->type) {
866 case REGULATOR_VOLTAGE:
867 return sprintf(buf, "voltage\n");
868 case REGULATOR_CURRENT:
869 return sprintf(buf, "current\n");
870 }
871 return sprintf(buf, "unknown\n");
872}
873static DEVICE_ATTR_RO(type);
874
875static ssize_t suspend_mem_microvolts_show(struct device *dev,
876 struct device_attribute *attr, char *buf)
877{
878 struct regulator_dev *rdev = dev_get_drvdata(dev);
879
880 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
881}
882static DEVICE_ATTR_RO(suspend_mem_microvolts);
883
884static ssize_t suspend_disk_microvolts_show(struct device *dev,
885 struct device_attribute *attr, char *buf)
886{
887 struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
890}
891static DEVICE_ATTR_RO(suspend_disk_microvolts);
892
893static ssize_t suspend_standby_microvolts_show(struct device *dev,
894 struct device_attribute *attr, char *buf)
895{
896 struct regulator_dev *rdev = dev_get_drvdata(dev);
897
898 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
899}
900static DEVICE_ATTR_RO(suspend_standby_microvolts);
901
902static ssize_t suspend_mem_mode_show(struct device *dev,
903 struct device_attribute *attr, char *buf)
904{
905 struct regulator_dev *rdev = dev_get_drvdata(dev);
906
907 return regulator_print_opmode(buf,
908 rdev->constraints->state_mem.mode);
909}
910static DEVICE_ATTR_RO(suspend_mem_mode);
911
912static ssize_t suspend_disk_mode_show(struct device *dev,
913 struct device_attribute *attr, char *buf)
914{
915 struct regulator_dev *rdev = dev_get_drvdata(dev);
916
917 return regulator_print_opmode(buf,
918 rdev->constraints->state_disk.mode);
919}
920static DEVICE_ATTR_RO(suspend_disk_mode);
921
922static ssize_t suspend_standby_mode_show(struct device *dev,
923 struct device_attribute *attr, char *buf)
924{
925 struct regulator_dev *rdev = dev_get_drvdata(dev);
926
927 return regulator_print_opmode(buf,
928 rdev->constraints->state_standby.mode);
929}
930static DEVICE_ATTR_RO(suspend_standby_mode);
931
932static ssize_t suspend_mem_state_show(struct device *dev,
933 struct device_attribute *attr, char *buf)
934{
935 struct regulator_dev *rdev = dev_get_drvdata(dev);
936
937 return regulator_print_state(buf,
938 rdev->constraints->state_mem.enabled);
939}
940static DEVICE_ATTR_RO(suspend_mem_state);
941
942static ssize_t suspend_disk_state_show(struct device *dev,
943 struct device_attribute *attr, char *buf)
944{
945 struct regulator_dev *rdev = dev_get_drvdata(dev);
946
947 return regulator_print_state(buf,
948 rdev->constraints->state_disk.enabled);
949}
950static DEVICE_ATTR_RO(suspend_disk_state);
951
952static ssize_t suspend_standby_state_show(struct device *dev,
953 struct device_attribute *attr, char *buf)
954{
955 struct regulator_dev *rdev = dev_get_drvdata(dev);
956
957 return regulator_print_state(buf,
958 rdev->constraints->state_standby.enabled);
959}
960static DEVICE_ATTR_RO(suspend_standby_state);
961
962static ssize_t bypass_show(struct device *dev,
963 struct device_attribute *attr, char *buf)
964{
965 struct regulator_dev *rdev = dev_get_drvdata(dev);
966 const char *report;
967 bool bypass;
968 int ret;
969
970 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
971
972 if (ret != 0)
973 report = "unknown";
974 else if (bypass)
975 report = "enabled";
976 else
977 report = "disabled";
978
979 return sprintf(buf, "%s\n", report);
980}
981static DEVICE_ATTR_RO(bypass);
982
983#define REGULATOR_ERROR_ATTR(name, bit) \
984 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
985 char *buf) \
986 { \
987 int ret; \
988 unsigned int flags; \
989 struct regulator_dev *rdev = dev_get_drvdata(dev); \
990 ret = _regulator_get_error_flags(rdev, &flags); \
991 if (ret) \
992 return ret; \
993 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
994 } \
995 static DEVICE_ATTR_RO(name)
996
997REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
998REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
999REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006
1007/* Calculate the new optimum regulator operating mode based on the new total
1008 * consumer load. All locks held by caller
1009 */
1010static int drms_uA_update(struct regulator_dev *rdev)
1011{
1012 struct regulator *sibling;
1013 int current_uA = 0, output_uV, input_uV, err;
1014 unsigned int mode;
1015
1016 /*
1017 * first check to see if we can set modes at all, otherwise just
1018 * tell the consumer everything is OK.
1019 */
1020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021 rdev_dbg(rdev, "DRMS operation not allowed\n");
1022 return 0;
1023 }
1024
1025 if (!rdev->desc->ops->get_optimum_mode &&
1026 !rdev->desc->ops->set_load)
1027 return 0;
1028
1029 if (!rdev->desc->ops->set_mode &&
1030 !rdev->desc->ops->set_load)
1031 return -EINVAL;
1032
1033 /* calc total requested load */
1034 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035 if (sibling->enable_count)
1036 current_uA += sibling->uA_load;
1037 }
1038
1039 current_uA += rdev->constraints->system_load;
1040
1041 if (rdev->desc->ops->set_load) {
1042 /* set the optimum mode for our new total regulator load */
1043 err = rdev->desc->ops->set_load(rdev, current_uA);
1044 if (err < 0)
1045 rdev_err(rdev, "failed to set load %d: %pe\n",
1046 current_uA, ERR_PTR(err));
1047 } else {
1048 /*
1049 * Unfortunately in some cases the constraints->valid_ops has
1050 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051 * That's not really legit but we won't consider it a fatal
1052 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053 * wasn't set.
1054 */
1055 if (!rdev->constraints->valid_modes_mask) {
1056 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057 return 0;
1058 }
1059
1060 /* get output voltage */
1061 output_uV = regulator_get_voltage_rdev(rdev);
1062
1063 /*
1064 * Don't return an error; if regulator driver cares about
1065 * output_uV then it's up to the driver to validate.
1066 */
1067 if (output_uV <= 0)
1068 rdev_dbg(rdev, "invalid output voltage found\n");
1069
1070 /* get input voltage */
1071 input_uV = 0;
1072 if (rdev->supply)
1073 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074 if (input_uV <= 0)
1075 input_uV = rdev->constraints->input_uV;
1076
1077 /*
1078 * Don't return an error; if regulator driver cares about
1079 * input_uV then it's up to the driver to validate.
1080 */
1081 if (input_uV <= 0)
1082 rdev_dbg(rdev, "invalid input voltage found\n");
1083
1084 /* now get the optimum mode for our new total regulator load */
1085 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086 output_uV, current_uA);
1087
1088 /* check the new mode is allowed */
1089 err = regulator_mode_constrain(rdev, &mode);
1090 if (err < 0) {
1091 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092 current_uA, input_uV, output_uV, ERR_PTR(err));
1093 return err;
1094 }
1095
1096 err = rdev->desc->ops->set_mode(rdev, mode);
1097 if (err < 0)
1098 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099 mode, ERR_PTR(err));
1100 }
1101
1102 return err;
1103}
1104
1105static int __suspend_set_state(struct regulator_dev *rdev,
1106 const struct regulator_state *rstate)
1107{
1108 int ret = 0;
1109
1110 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111 rdev->desc->ops->set_suspend_enable)
1112 ret = rdev->desc->ops->set_suspend_enable(rdev);
1113 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114 rdev->desc->ops->set_suspend_disable)
1115 ret = rdev->desc->ops->set_suspend_disable(rdev);
1116 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117 ret = 0;
1118
1119 if (ret < 0) {
1120 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121 return ret;
1122 }
1123
1124 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126 if (ret < 0) {
1127 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128 return ret;
1129 }
1130 }
1131
1132 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134 if (ret < 0) {
1135 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136 return ret;
1137 }
1138 }
1139
1140 return ret;
1141}
1142
1143static int suspend_set_initial_state(struct regulator_dev *rdev)
1144{
1145 const struct regulator_state *rstate;
1146
1147 rstate = regulator_get_suspend_state_check(rdev,
1148 rdev->constraints->initial_state);
1149 if (!rstate)
1150 return 0;
1151
1152 return __suspend_set_state(rdev, rstate);
1153}
1154
1155#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156static void print_constraints_debug(struct regulator_dev *rdev)
1157{
1158 struct regulation_constraints *constraints = rdev->constraints;
1159 char buf[160] = "";
1160 size_t len = sizeof(buf) - 1;
1161 int count = 0;
1162 int ret;
1163
1164 if (constraints->min_uV && constraints->max_uV) {
1165 if (constraints->min_uV == constraints->max_uV)
1166 count += scnprintf(buf + count, len - count, "%d mV ",
1167 constraints->min_uV / 1000);
1168 else
1169 count += scnprintf(buf + count, len - count,
1170 "%d <--> %d mV ",
1171 constraints->min_uV / 1000,
1172 constraints->max_uV / 1000);
1173 }
1174
1175 if (!constraints->min_uV ||
1176 constraints->min_uV != constraints->max_uV) {
1177 ret = regulator_get_voltage_rdev(rdev);
1178 if (ret > 0)
1179 count += scnprintf(buf + count, len - count,
1180 "at %d mV ", ret / 1000);
1181 }
1182
1183 if (constraints->uV_offset)
1184 count += scnprintf(buf + count, len - count, "%dmV offset ",
1185 constraints->uV_offset / 1000);
1186
1187 if (constraints->min_uA && constraints->max_uA) {
1188 if (constraints->min_uA == constraints->max_uA)
1189 count += scnprintf(buf + count, len - count, "%d mA ",
1190 constraints->min_uA / 1000);
1191 else
1192 count += scnprintf(buf + count, len - count,
1193 "%d <--> %d mA ",
1194 constraints->min_uA / 1000,
1195 constraints->max_uA / 1000);
1196 }
1197
1198 if (!constraints->min_uA ||
1199 constraints->min_uA != constraints->max_uA) {
1200 ret = _regulator_get_current_limit(rdev);
1201 if (ret > 0)
1202 count += scnprintf(buf + count, len - count,
1203 "at %d mA ", ret / 1000);
1204 }
1205
1206 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207 count += scnprintf(buf + count, len - count, "fast ");
1208 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209 count += scnprintf(buf + count, len - count, "normal ");
1210 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211 count += scnprintf(buf + count, len - count, "idle ");
1212 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213 count += scnprintf(buf + count, len - count, "standby ");
1214
1215 if (!count)
1216 count = scnprintf(buf, len, "no parameters");
1217 else
1218 --count;
1219
1220 count += scnprintf(buf + count, len - count, ", %s",
1221 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222
1223 rdev_dbg(rdev, "%s\n", buf);
1224}
1225#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228
1229static void print_constraints(struct regulator_dev *rdev)
1230{
1231 struct regulation_constraints *constraints = rdev->constraints;
1232
1233 print_constraints_debug(rdev);
1234
1235 if ((constraints->min_uV != constraints->max_uV) &&
1236 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237 rdev_warn(rdev,
1238 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239}
1240
1241static int machine_constraints_voltage(struct regulator_dev *rdev,
1242 struct regulation_constraints *constraints)
1243{
1244 const struct regulator_ops *ops = rdev->desc->ops;
1245 int ret;
1246
1247 /* do we need to apply the constraint voltage */
1248 if (rdev->constraints->apply_uV &&
1249 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250 int target_min, target_max;
1251 int current_uV = regulator_get_voltage_rdev(rdev);
1252
1253 if (current_uV == -ENOTRECOVERABLE) {
1254 /* This regulator can't be read and must be initialized */
1255 rdev_info(rdev, "Setting %d-%duV\n",
1256 rdev->constraints->min_uV,
1257 rdev->constraints->max_uV);
1258 _regulator_do_set_voltage(rdev,
1259 rdev->constraints->min_uV,
1260 rdev->constraints->max_uV);
1261 current_uV = regulator_get_voltage_rdev(rdev);
1262 }
1263
1264 if (current_uV < 0) {
1265 if (current_uV != -EPROBE_DEFER)
1266 rdev_err(rdev,
1267 "failed to get the current voltage: %pe\n",
1268 ERR_PTR(current_uV));
1269 return current_uV;
1270 }
1271
1272 /*
1273 * If we're below the minimum voltage move up to the
1274 * minimum voltage, if we're above the maximum voltage
1275 * then move down to the maximum.
1276 */
1277 target_min = current_uV;
1278 target_max = current_uV;
1279
1280 if (current_uV < rdev->constraints->min_uV) {
1281 target_min = rdev->constraints->min_uV;
1282 target_max = rdev->constraints->min_uV;
1283 }
1284
1285 if (current_uV > rdev->constraints->max_uV) {
1286 target_min = rdev->constraints->max_uV;
1287 target_max = rdev->constraints->max_uV;
1288 }
1289
1290 if (target_min != current_uV || target_max != current_uV) {
1291 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292 current_uV, target_min, target_max);
1293 ret = _regulator_do_set_voltage(
1294 rdev, target_min, target_max);
1295 if (ret < 0) {
1296 rdev_err(rdev,
1297 "failed to apply %d-%duV constraint: %pe\n",
1298 target_min, target_max, ERR_PTR(ret));
1299 return ret;
1300 }
1301 }
1302 }
1303
1304 /* constrain machine-level voltage specs to fit
1305 * the actual range supported by this regulator.
1306 */
1307 if (ops->list_voltage && rdev->desc->n_voltages) {
1308 int count = rdev->desc->n_voltages;
1309 int i;
1310 int min_uV = INT_MAX;
1311 int max_uV = INT_MIN;
1312 int cmin = constraints->min_uV;
1313 int cmax = constraints->max_uV;
1314
1315 /* it's safe to autoconfigure fixed-voltage supplies
1316 * and the constraints are used by list_voltage.
1317 */
1318 if (count == 1 && !cmin) {
1319 cmin = 1;
1320 cmax = INT_MAX;
1321 constraints->min_uV = cmin;
1322 constraints->max_uV = cmax;
1323 }
1324
1325 /* voltage constraints are optional */
1326 if ((cmin == 0) && (cmax == 0))
1327 return 0;
1328
1329 /* else require explicit machine-level constraints */
1330 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331 rdev_err(rdev, "invalid voltage constraints\n");
1332 return -EINVAL;
1333 }
1334
1335 /* no need to loop voltages if range is continuous */
1336 if (rdev->desc->continuous_voltage_range)
1337 return 0;
1338
1339 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340 for (i = 0; i < count; i++) {
1341 int value;
1342
1343 value = ops->list_voltage(rdev, i);
1344 if (value <= 0)
1345 continue;
1346
1347 /* maybe adjust [min_uV..max_uV] */
1348 if (value >= cmin && value < min_uV)
1349 min_uV = value;
1350 if (value <= cmax && value > max_uV)
1351 max_uV = value;
1352 }
1353
1354 /* final: [min_uV..max_uV] valid iff constraints valid */
1355 if (max_uV < min_uV) {
1356 rdev_err(rdev,
1357 "unsupportable voltage constraints %u-%uuV\n",
1358 min_uV, max_uV);
1359 return -EINVAL;
1360 }
1361
1362 /* use regulator's subset of machine constraints */
1363 if (constraints->min_uV < min_uV) {
1364 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365 constraints->min_uV, min_uV);
1366 constraints->min_uV = min_uV;
1367 }
1368 if (constraints->max_uV > max_uV) {
1369 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370 constraints->max_uV, max_uV);
1371 constraints->max_uV = max_uV;
1372 }
1373 }
1374
1375 return 0;
1376}
1377
1378static int machine_constraints_current(struct regulator_dev *rdev,
1379 struct regulation_constraints *constraints)
1380{
1381 const struct regulator_ops *ops = rdev->desc->ops;
1382 int ret;
1383
1384 if (!constraints->min_uA && !constraints->max_uA)
1385 return 0;
1386
1387 if (constraints->min_uA > constraints->max_uA) {
1388 rdev_err(rdev, "Invalid current constraints\n");
1389 return -EINVAL;
1390 }
1391
1392 if (!ops->set_current_limit || !ops->get_current_limit) {
1393 rdev_warn(rdev, "Operation of current configuration missing\n");
1394 return 0;
1395 }
1396
1397 /* Set regulator current in constraints range */
1398 ret = ops->set_current_limit(rdev, constraints->min_uA,
1399 constraints->max_uA);
1400 if (ret < 0) {
1401 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402 return ret;
1403 }
1404
1405 return 0;
1406}
1407
1408static int _regulator_do_enable(struct regulator_dev *rdev);
1409
1410static int notif_set_limit(struct regulator_dev *rdev,
1411 int (*set)(struct regulator_dev *, int, int, bool),
1412 int limit, int severity)
1413{
1414 bool enable;
1415
1416 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417 enable = false;
1418 limit = 0;
1419 } else {
1420 enable = true;
1421 }
1422
1423 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424 limit = 0;
1425
1426 return set(rdev, limit, severity, enable);
1427}
1428
1429static int handle_notify_limits(struct regulator_dev *rdev,
1430 int (*set)(struct regulator_dev *, int, int, bool),
1431 struct notification_limit *limits)
1432{
1433 int ret = 0;
1434
1435 if (!set)
1436 return -EOPNOTSUPP;
1437
1438 if (limits->prot)
1439 ret = notif_set_limit(rdev, set, limits->prot,
1440 REGULATOR_SEVERITY_PROT);
1441 if (ret)
1442 return ret;
1443
1444 if (limits->err)
1445 ret = notif_set_limit(rdev, set, limits->err,
1446 REGULATOR_SEVERITY_ERR);
1447 if (ret)
1448 return ret;
1449
1450 if (limits->warn)
1451 ret = notif_set_limit(rdev, set, limits->warn,
1452 REGULATOR_SEVERITY_WARN);
1453
1454 return ret;
1455}
1456/**
1457 * set_machine_constraints - sets regulator constraints
1458 * @rdev: regulator source
1459 *
1460 * Allows platform initialisation code to define and constrain
1461 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1462 * Constraints *must* be set by platform code in order for some
1463 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464 * set_mode.
1465 */
1466static int set_machine_constraints(struct regulator_dev *rdev)
1467{
1468 int ret = 0;
1469 const struct regulator_ops *ops = rdev->desc->ops;
1470
1471 ret = machine_constraints_voltage(rdev, rdev->constraints);
1472 if (ret != 0)
1473 return ret;
1474
1475 ret = machine_constraints_current(rdev, rdev->constraints);
1476 if (ret != 0)
1477 return ret;
1478
1479 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480 ret = ops->set_input_current_limit(rdev,
1481 rdev->constraints->ilim_uA);
1482 if (ret < 0) {
1483 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484 return ret;
1485 }
1486 }
1487
1488 /* do we need to setup our suspend state */
1489 if (rdev->constraints->initial_state) {
1490 ret = suspend_set_initial_state(rdev);
1491 if (ret < 0) {
1492 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493 return ret;
1494 }
1495 }
1496
1497 if (rdev->constraints->initial_mode) {
1498 if (!ops->set_mode) {
1499 rdev_err(rdev, "no set_mode operation\n");
1500 return -EINVAL;
1501 }
1502
1503 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504 if (ret < 0) {
1505 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506 return ret;
1507 }
1508 } else if (rdev->constraints->system_load) {
1509 /*
1510 * We'll only apply the initial system load if an
1511 * initial mode wasn't specified.
1512 */
1513 drms_uA_update(rdev);
1514 }
1515
1516 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517 && ops->set_ramp_delay) {
1518 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519 if (ret < 0) {
1520 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521 return ret;
1522 }
1523 }
1524
1525 if (rdev->constraints->pull_down && ops->set_pull_down) {
1526 ret = ops->set_pull_down(rdev);
1527 if (ret < 0) {
1528 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529 return ret;
1530 }
1531 }
1532
1533 if (rdev->constraints->soft_start && ops->set_soft_start) {
1534 ret = ops->set_soft_start(rdev);
1535 if (ret < 0) {
1536 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537 return ret;
1538 }
1539 }
1540
1541 /*
1542 * Existing logic does not warn if over_current_protection is given as
1543 * a constraint but driver does not support that. I think we should
1544 * warn about this type of issues as it is possible someone changes
1545 * PMIC on board to another type - and the another PMIC's driver does
1546 * not support setting protection. Board composer may happily believe
1547 * the DT limits are respected - especially if the new PMIC HW also
1548 * supports protection but the driver does not. I won't change the logic
1549 * without hearing more experienced opinion on this though.
1550 *
1551 * If warning is seen as a good idea then we can merge handling the
1552 * over-curret protection and detection and get rid of this special
1553 * handling.
1554 */
1555 if (rdev->constraints->over_current_protection
1556 && ops->set_over_current_protection) {
1557 int lim = rdev->constraints->over_curr_limits.prot;
1558
1559 ret = ops->set_over_current_protection(rdev, lim,
1560 REGULATOR_SEVERITY_PROT,
1561 true);
1562 if (ret < 0) {
1563 rdev_err(rdev, "failed to set over current protection: %pe\n",
1564 ERR_PTR(ret));
1565 return ret;
1566 }
1567 }
1568
1569 if (rdev->constraints->over_current_detection)
1570 ret = handle_notify_limits(rdev,
1571 ops->set_over_current_protection,
1572 &rdev->constraints->over_curr_limits);
1573 if (ret) {
1574 if (ret != -EOPNOTSUPP) {
1575 rdev_err(rdev, "failed to set over current limits: %pe\n",
1576 ERR_PTR(ret));
1577 return ret;
1578 }
1579 rdev_warn(rdev,
1580 "IC does not support requested over-current limits\n");
1581 }
1582
1583 if (rdev->constraints->over_voltage_detection)
1584 ret = handle_notify_limits(rdev,
1585 ops->set_over_voltage_protection,
1586 &rdev->constraints->over_voltage_limits);
1587 if (ret) {
1588 if (ret != -EOPNOTSUPP) {
1589 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590 ERR_PTR(ret));
1591 return ret;
1592 }
1593 rdev_warn(rdev,
1594 "IC does not support requested over voltage limits\n");
1595 }
1596
1597 if (rdev->constraints->under_voltage_detection)
1598 ret = handle_notify_limits(rdev,
1599 ops->set_under_voltage_protection,
1600 &rdev->constraints->under_voltage_limits);
1601 if (ret) {
1602 if (ret != -EOPNOTSUPP) {
1603 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604 ERR_PTR(ret));
1605 return ret;
1606 }
1607 rdev_warn(rdev,
1608 "IC does not support requested under voltage limits\n");
1609 }
1610
1611 if (rdev->constraints->over_temp_detection)
1612 ret = handle_notify_limits(rdev,
1613 ops->set_thermal_protection,
1614 &rdev->constraints->temp_limits);
1615 if (ret) {
1616 if (ret != -EOPNOTSUPP) {
1617 rdev_err(rdev, "failed to set temperature limits %pe\n",
1618 ERR_PTR(ret));
1619 return ret;
1620 }
1621 rdev_warn(rdev,
1622 "IC does not support requested temperature limits\n");
1623 }
1624
1625 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626 bool ad_state = (rdev->constraints->active_discharge ==
1627 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628
1629 ret = ops->set_active_discharge(rdev, ad_state);
1630 if (ret < 0) {
1631 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632 return ret;
1633 }
1634 }
1635
1636 /*
1637 * If there is no mechanism for controlling the regulator then
1638 * flag it as always_on so we don't end up duplicating checks
1639 * for this so much. Note that we could control the state of
1640 * a supply to control the output on a regulator that has no
1641 * direct control.
1642 */
1643 if (!rdev->ena_pin && !ops->enable) {
1644 if (rdev->supply_name && !rdev->supply)
1645 return -EPROBE_DEFER;
1646
1647 if (rdev->supply)
1648 rdev->constraints->always_on =
1649 rdev->supply->rdev->constraints->always_on;
1650 else
1651 rdev->constraints->always_on = true;
1652 }
1653
1654 /* If the constraints say the regulator should be on at this point
1655 * and we have control then make sure it is enabled.
1656 */
1657 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658 /* If we want to enable this regulator, make sure that we know
1659 * the supplying regulator.
1660 */
1661 if (rdev->supply_name && !rdev->supply)
1662 return -EPROBE_DEFER;
1663
1664 /* If supplying regulator has already been enabled,
1665 * it's not intended to have use_count increment
1666 * when rdev is only boot-on.
1667 */
1668 if (rdev->supply &&
1669 (rdev->constraints->always_on ||
1670 !regulator_is_enabled(rdev->supply))) {
1671 ret = regulator_enable(rdev->supply);
1672 if (ret < 0) {
1673 _regulator_put(rdev->supply);
1674 rdev->supply = NULL;
1675 return ret;
1676 }
1677 }
1678
1679 ret = _regulator_do_enable(rdev);
1680 if (ret < 0 && ret != -EINVAL) {
1681 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682 return ret;
1683 }
1684
1685 if (rdev->constraints->always_on)
1686 rdev->use_count++;
1687 } else if (rdev->desc->off_on_delay) {
1688 rdev->last_off = ktime_get();
1689 }
1690
1691 print_constraints(rdev);
1692 return 0;
1693}
1694
1695/**
1696 * set_supply - set regulator supply regulator
1697 * @rdev: regulator (locked)
1698 * @supply_rdev: supply regulator (locked))
1699 *
1700 * Called by platform initialisation code to set the supply regulator for this
1701 * regulator. This ensures that a regulators supply will also be enabled by the
1702 * core if it's child is enabled.
1703 */
1704static int set_supply(struct regulator_dev *rdev,
1705 struct regulator_dev *supply_rdev)
1706{
1707 int err;
1708
1709 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710
1711 if (!try_module_get(supply_rdev->owner))
1712 return -ENODEV;
1713
1714 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715 if (rdev->supply == NULL) {
1716 module_put(supply_rdev->owner);
1717 err = -ENOMEM;
1718 return err;
1719 }
1720 supply_rdev->open_count++;
1721
1722 return 0;
1723}
1724
1725/**
1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727 * @rdev: regulator source
1728 * @consumer_dev_name: dev_name() string for device supply applies to
1729 * @supply: symbolic name for supply
1730 *
1731 * Allows platform initialisation code to map physical regulator
1732 * sources to symbolic names for supplies for use by devices. Devices
1733 * should use these symbolic names to request regulators, avoiding the
1734 * need to provide board-specific regulator names as platform data.
1735 */
1736static int set_consumer_device_supply(struct regulator_dev *rdev,
1737 const char *consumer_dev_name,
1738 const char *supply)
1739{
1740 struct regulator_map *node, *new_node;
1741 int has_dev;
1742
1743 if (supply == NULL)
1744 return -EINVAL;
1745
1746 if (consumer_dev_name != NULL)
1747 has_dev = 1;
1748 else
1749 has_dev = 0;
1750
1751 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752 if (new_node == NULL)
1753 return -ENOMEM;
1754
1755 new_node->regulator = rdev;
1756 new_node->supply = supply;
1757
1758 if (has_dev) {
1759 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760 if (new_node->dev_name == NULL) {
1761 kfree(new_node);
1762 return -ENOMEM;
1763 }
1764 }
1765
1766 mutex_lock(®ulator_list_mutex);
1767 list_for_each_entry(node, ®ulator_map_list, list) {
1768 if (node->dev_name && consumer_dev_name) {
1769 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770 continue;
1771 } else if (node->dev_name || consumer_dev_name) {
1772 continue;
1773 }
1774
1775 if (strcmp(node->supply, supply) != 0)
1776 continue;
1777
1778 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779 consumer_dev_name,
1780 dev_name(&node->regulator->dev),
1781 node->regulator->desc->name,
1782 supply,
1783 dev_name(&rdev->dev), rdev_get_name(rdev));
1784 goto fail;
1785 }
1786
1787 list_add(&new_node->list, ®ulator_map_list);
1788 mutex_unlock(®ulator_list_mutex);
1789
1790 return 0;
1791
1792fail:
1793 mutex_unlock(®ulator_list_mutex);
1794 kfree(new_node->dev_name);
1795 kfree(new_node);
1796 return -EBUSY;
1797}
1798
1799static void unset_regulator_supplies(struct regulator_dev *rdev)
1800{
1801 struct regulator_map *node, *n;
1802
1803 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1804 if (rdev == node->regulator) {
1805 list_del(&node->list);
1806 kfree(node->dev_name);
1807 kfree(node);
1808 }
1809 }
1810}
1811
1812#ifdef CONFIG_DEBUG_FS
1813static ssize_t constraint_flags_read_file(struct file *file,
1814 char __user *user_buf,
1815 size_t count, loff_t *ppos)
1816{
1817 const struct regulator *regulator = file->private_data;
1818 const struct regulation_constraints *c = regulator->rdev->constraints;
1819 char *buf;
1820 ssize_t ret;
1821
1822 if (!c)
1823 return 0;
1824
1825 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826 if (!buf)
1827 return -ENOMEM;
1828
1829 ret = snprintf(buf, PAGE_SIZE,
1830 "always_on: %u\n"
1831 "boot_on: %u\n"
1832 "apply_uV: %u\n"
1833 "ramp_disable: %u\n"
1834 "soft_start: %u\n"
1835 "pull_down: %u\n"
1836 "over_current_protection: %u\n",
1837 c->always_on,
1838 c->boot_on,
1839 c->apply_uV,
1840 c->ramp_disable,
1841 c->soft_start,
1842 c->pull_down,
1843 c->over_current_protection);
1844
1845 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846 kfree(buf);
1847
1848 return ret;
1849}
1850
1851#endif
1852
1853static const struct file_operations constraint_flags_fops = {
1854#ifdef CONFIG_DEBUG_FS
1855 .open = simple_open,
1856 .read = constraint_flags_read_file,
1857 .llseek = default_llseek,
1858#endif
1859};
1860
1861#define REG_STR_SIZE 64
1862
1863static struct regulator *create_regulator(struct regulator_dev *rdev,
1864 struct device *dev,
1865 const char *supply_name)
1866{
1867 struct regulator *regulator;
1868 int err = 0;
1869
1870 lockdep_assert_held_once(&rdev->mutex.base);
1871
1872 if (dev) {
1873 char buf[REG_STR_SIZE];
1874 int size;
1875
1876 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877 dev->kobj.name, supply_name);
1878 if (size >= REG_STR_SIZE)
1879 return NULL;
1880
1881 supply_name = kstrdup(buf, GFP_KERNEL);
1882 if (supply_name == NULL)
1883 return NULL;
1884 } else {
1885 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886 if (supply_name == NULL)
1887 return NULL;
1888 }
1889
1890 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891 if (regulator == NULL) {
1892 kfree_const(supply_name);
1893 return NULL;
1894 }
1895
1896 regulator->rdev = rdev;
1897 regulator->supply_name = supply_name;
1898
1899 list_add(®ulator->list, &rdev->consumer_list);
1900
1901 if (dev) {
1902 regulator->dev = dev;
1903
1904 /* Add a link to the device sysfs entry */
1905 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906 supply_name);
1907 if (err) {
1908 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909 dev->kobj.name, ERR_PTR(err));
1910 /* non-fatal */
1911 }
1912 }
1913
1914 if (err != -EEXIST)
1915 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916 if (IS_ERR(regulator->debugfs))
1917 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918
1919 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1920 ®ulator->uA_load);
1921 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1922 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1923 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1924 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1925 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1926 regulator, &constraint_flags_fops);
1927
1928 /*
1929 * Check now if the regulator is an always on regulator - if
1930 * it is then we don't need to do nearly so much work for
1931 * enable/disable calls.
1932 */
1933 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1934 _regulator_is_enabled(rdev))
1935 regulator->always_on = true;
1936
1937 return regulator;
1938}
1939
1940static int _regulator_get_enable_time(struct regulator_dev *rdev)
1941{
1942 if (rdev->constraints && rdev->constraints->enable_time)
1943 return rdev->constraints->enable_time;
1944 if (rdev->desc->ops->enable_time)
1945 return rdev->desc->ops->enable_time(rdev);
1946 return rdev->desc->enable_time;
1947}
1948
1949static struct regulator_supply_alias *regulator_find_supply_alias(
1950 struct device *dev, const char *supply)
1951{
1952 struct regulator_supply_alias *map;
1953
1954 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1955 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1956 return map;
1957
1958 return NULL;
1959}
1960
1961static void regulator_supply_alias(struct device **dev, const char **supply)
1962{
1963 struct regulator_supply_alias *map;
1964
1965 map = regulator_find_supply_alias(*dev, *supply);
1966 if (map) {
1967 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1968 *supply, map->alias_supply,
1969 dev_name(map->alias_dev));
1970 *dev = map->alias_dev;
1971 *supply = map->alias_supply;
1972 }
1973}
1974
1975static int regulator_match(struct device *dev, const void *data)
1976{
1977 struct regulator_dev *r = dev_to_rdev(dev);
1978
1979 return strcmp(rdev_get_name(r), data) == 0;
1980}
1981
1982static struct regulator_dev *regulator_lookup_by_name(const char *name)
1983{
1984 struct device *dev;
1985
1986 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1987
1988 return dev ? dev_to_rdev(dev) : NULL;
1989}
1990
1991/**
1992 * regulator_dev_lookup - lookup a regulator device.
1993 * @dev: device for regulator "consumer".
1994 * @supply: Supply name or regulator ID.
1995 *
1996 * If successful, returns a struct regulator_dev that corresponds to the name
1997 * @supply and with the embedded struct device refcount incremented by one.
1998 * The refcount must be dropped by calling put_device().
1999 * On failure one of the following ERR-PTR-encoded values is returned:
2000 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2001 * in the future.
2002 */
2003static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2004 const char *supply)
2005{
2006 struct regulator_dev *r = NULL;
2007 struct device_node *node;
2008 struct regulator_map *map;
2009 const char *devname = NULL;
2010
2011 regulator_supply_alias(&dev, &supply);
2012
2013 /* first do a dt based lookup */
2014 if (dev && dev->of_node) {
2015 node = of_get_regulator(dev, supply);
2016 if (node) {
2017 r = of_find_regulator_by_node(node);
2018 of_node_put(node);
2019 if (r)
2020 return r;
2021
2022 /*
2023 * We have a node, but there is no device.
2024 * assume it has not registered yet.
2025 */
2026 return ERR_PTR(-EPROBE_DEFER);
2027 }
2028 }
2029
2030 /* if not found, try doing it non-dt way */
2031 if (dev)
2032 devname = dev_name(dev);
2033
2034 mutex_lock(®ulator_list_mutex);
2035 list_for_each_entry(map, ®ulator_map_list, list) {
2036 /* If the mapping has a device set up it must match */
2037 if (map->dev_name &&
2038 (!devname || strcmp(map->dev_name, devname)))
2039 continue;
2040
2041 if (strcmp(map->supply, supply) == 0 &&
2042 get_device(&map->regulator->dev)) {
2043 r = map->regulator;
2044 break;
2045 }
2046 }
2047 mutex_unlock(®ulator_list_mutex);
2048
2049 if (r)
2050 return r;
2051
2052 r = regulator_lookup_by_name(supply);
2053 if (r)
2054 return r;
2055
2056 return ERR_PTR(-ENODEV);
2057}
2058
2059static int regulator_resolve_supply(struct regulator_dev *rdev)
2060{
2061 struct regulator_dev *r;
2062 struct device *dev = rdev->dev.parent;
2063 struct ww_acquire_ctx ww_ctx;
2064 int ret = 0;
2065
2066 /* No supply to resolve? */
2067 if (!rdev->supply_name)
2068 return 0;
2069
2070 /* Supply already resolved? (fast-path without locking contention) */
2071 if (rdev->supply)
2072 return 0;
2073
2074 r = regulator_dev_lookup(dev, rdev->supply_name);
2075 if (IS_ERR(r)) {
2076 ret = PTR_ERR(r);
2077
2078 /* Did the lookup explicitly defer for us? */
2079 if (ret == -EPROBE_DEFER)
2080 goto out;
2081
2082 if (have_full_constraints()) {
2083 r = dummy_regulator_rdev;
2084 get_device(&r->dev);
2085 } else {
2086 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2087 rdev->supply_name, rdev->desc->name);
2088 ret = -EPROBE_DEFER;
2089 goto out;
2090 }
2091 }
2092
2093 if (r == rdev) {
2094 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2095 rdev->desc->name, rdev->supply_name);
2096 if (!have_full_constraints()) {
2097 ret = -EINVAL;
2098 goto out;
2099 }
2100 r = dummy_regulator_rdev;
2101 get_device(&r->dev);
2102 }
2103
2104 /*
2105 * If the supply's parent device is not the same as the
2106 * regulator's parent device, then ensure the parent device
2107 * is bound before we resolve the supply, in case the parent
2108 * device get probe deferred and unregisters the supply.
2109 */
2110 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2111 if (!device_is_bound(r->dev.parent)) {
2112 put_device(&r->dev);
2113 ret = -EPROBE_DEFER;
2114 goto out;
2115 }
2116 }
2117
2118 /* Recursively resolve the supply of the supply */
2119 ret = regulator_resolve_supply(r);
2120 if (ret < 0) {
2121 put_device(&r->dev);
2122 goto out;
2123 }
2124
2125 /*
2126 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2127 * between rdev->supply null check and setting rdev->supply in
2128 * set_supply() from concurrent tasks.
2129 */
2130 regulator_lock_two(rdev, r, &ww_ctx);
2131
2132 /* Supply just resolved by a concurrent task? */
2133 if (rdev->supply) {
2134 regulator_unlock_two(rdev, r, &ww_ctx);
2135 put_device(&r->dev);
2136 goto out;
2137 }
2138
2139 ret = set_supply(rdev, r);
2140 if (ret < 0) {
2141 regulator_unlock_two(rdev, r, &ww_ctx);
2142 put_device(&r->dev);
2143 goto out;
2144 }
2145
2146 regulator_unlock_two(rdev, r, &ww_ctx);
2147
2148 /*
2149 * In set_machine_constraints() we may have turned this regulator on
2150 * but we couldn't propagate to the supply if it hadn't been resolved
2151 * yet. Do it now.
2152 */
2153 if (rdev->use_count) {
2154 ret = regulator_enable(rdev->supply);
2155 if (ret < 0) {
2156 _regulator_put(rdev->supply);
2157 rdev->supply = NULL;
2158 goto out;
2159 }
2160 }
2161
2162out:
2163 return ret;
2164}
2165
2166/* Internal regulator request function */
2167struct regulator *_regulator_get(struct device *dev, const char *id,
2168 enum regulator_get_type get_type)
2169{
2170 struct regulator_dev *rdev;
2171 struct regulator *regulator;
2172 struct device_link *link;
2173 int ret;
2174
2175 if (get_type >= MAX_GET_TYPE) {
2176 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2177 return ERR_PTR(-EINVAL);
2178 }
2179
2180 if (id == NULL) {
2181 pr_err("get() with no identifier\n");
2182 return ERR_PTR(-EINVAL);
2183 }
2184
2185 rdev = regulator_dev_lookup(dev, id);
2186 if (IS_ERR(rdev)) {
2187 ret = PTR_ERR(rdev);
2188
2189 /*
2190 * If regulator_dev_lookup() fails with error other
2191 * than -ENODEV our job here is done, we simply return it.
2192 */
2193 if (ret != -ENODEV)
2194 return ERR_PTR(ret);
2195
2196 if (!have_full_constraints()) {
2197 dev_warn(dev,
2198 "incomplete constraints, dummy supplies not allowed\n");
2199 return ERR_PTR(-ENODEV);
2200 }
2201
2202 switch (get_type) {
2203 case NORMAL_GET:
2204 /*
2205 * Assume that a regulator is physically present and
2206 * enabled, even if it isn't hooked up, and just
2207 * provide a dummy.
2208 */
2209 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2210 rdev = dummy_regulator_rdev;
2211 get_device(&rdev->dev);
2212 break;
2213
2214 case EXCLUSIVE_GET:
2215 dev_warn(dev,
2216 "dummy supplies not allowed for exclusive requests\n");
2217 fallthrough;
2218
2219 default:
2220 return ERR_PTR(-ENODEV);
2221 }
2222 }
2223
2224 if (rdev->exclusive) {
2225 regulator = ERR_PTR(-EPERM);
2226 put_device(&rdev->dev);
2227 return regulator;
2228 }
2229
2230 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2231 regulator = ERR_PTR(-EBUSY);
2232 put_device(&rdev->dev);
2233 return regulator;
2234 }
2235
2236 mutex_lock(®ulator_list_mutex);
2237 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2238 mutex_unlock(®ulator_list_mutex);
2239
2240 if (ret != 0) {
2241 regulator = ERR_PTR(-EPROBE_DEFER);
2242 put_device(&rdev->dev);
2243 return regulator;
2244 }
2245
2246 ret = regulator_resolve_supply(rdev);
2247 if (ret < 0) {
2248 regulator = ERR_PTR(ret);
2249 put_device(&rdev->dev);
2250 return regulator;
2251 }
2252
2253 if (!try_module_get(rdev->owner)) {
2254 regulator = ERR_PTR(-EPROBE_DEFER);
2255 put_device(&rdev->dev);
2256 return regulator;
2257 }
2258
2259 regulator_lock(rdev);
2260 regulator = create_regulator(rdev, dev, id);
2261 regulator_unlock(rdev);
2262 if (regulator == NULL) {
2263 regulator = ERR_PTR(-ENOMEM);
2264 module_put(rdev->owner);
2265 put_device(&rdev->dev);
2266 return regulator;
2267 }
2268
2269 rdev->open_count++;
2270 if (get_type == EXCLUSIVE_GET) {
2271 rdev->exclusive = 1;
2272
2273 ret = _regulator_is_enabled(rdev);
2274 if (ret > 0) {
2275 rdev->use_count = 1;
2276 regulator->enable_count = 1;
2277 } else {
2278 rdev->use_count = 0;
2279 regulator->enable_count = 0;
2280 }
2281 }
2282
2283 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2284 if (!IS_ERR_OR_NULL(link))
2285 regulator->device_link = true;
2286
2287 return regulator;
2288}
2289
2290/**
2291 * regulator_get - lookup and obtain a reference to a regulator.
2292 * @dev: device for regulator "consumer"
2293 * @id: Supply name or regulator ID.
2294 *
2295 * Returns a struct regulator corresponding to the regulator producer,
2296 * or IS_ERR() condition containing errno.
2297 *
2298 * Use of supply names configured via set_consumer_device_supply() is
2299 * strongly encouraged. It is recommended that the supply name used
2300 * should match the name used for the supply and/or the relevant
2301 * device pins in the datasheet.
2302 */
2303struct regulator *regulator_get(struct device *dev, const char *id)
2304{
2305 return _regulator_get(dev, id, NORMAL_GET);
2306}
2307EXPORT_SYMBOL_GPL(regulator_get);
2308
2309/**
2310 * regulator_get_exclusive - obtain exclusive access to a regulator.
2311 * @dev: device for regulator "consumer"
2312 * @id: Supply name or regulator ID.
2313 *
2314 * Returns a struct regulator corresponding to the regulator producer,
2315 * or IS_ERR() condition containing errno. Other consumers will be
2316 * unable to obtain this regulator while this reference is held and the
2317 * use count for the regulator will be initialised to reflect the current
2318 * state of the regulator.
2319 *
2320 * This is intended for use by consumers which cannot tolerate shared
2321 * use of the regulator such as those which need to force the
2322 * regulator off for correct operation of the hardware they are
2323 * controlling.
2324 *
2325 * Use of supply names configured via set_consumer_device_supply() is
2326 * strongly encouraged. It is recommended that the supply name used
2327 * should match the name used for the supply and/or the relevant
2328 * device pins in the datasheet.
2329 */
2330struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2331{
2332 return _regulator_get(dev, id, EXCLUSIVE_GET);
2333}
2334EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2335
2336/**
2337 * regulator_get_optional - obtain optional access to a regulator.
2338 * @dev: device for regulator "consumer"
2339 * @id: Supply name or regulator ID.
2340 *
2341 * Returns a struct regulator corresponding to the regulator producer,
2342 * or IS_ERR() condition containing errno.
2343 *
2344 * This is intended for use by consumers for devices which can have
2345 * some supplies unconnected in normal use, such as some MMC devices.
2346 * It can allow the regulator core to provide stub supplies for other
2347 * supplies requested using normal regulator_get() calls without
2348 * disrupting the operation of drivers that can handle absent
2349 * supplies.
2350 *
2351 * Use of supply names configured via set_consumer_device_supply() is
2352 * strongly encouraged. It is recommended that the supply name used
2353 * should match the name used for the supply and/or the relevant
2354 * device pins in the datasheet.
2355 */
2356struct regulator *regulator_get_optional(struct device *dev, const char *id)
2357{
2358 return _regulator_get(dev, id, OPTIONAL_GET);
2359}
2360EXPORT_SYMBOL_GPL(regulator_get_optional);
2361
2362static void destroy_regulator(struct regulator *regulator)
2363{
2364 struct regulator_dev *rdev = regulator->rdev;
2365
2366 debugfs_remove_recursive(regulator->debugfs);
2367
2368 if (regulator->dev) {
2369 if (regulator->device_link)
2370 device_link_remove(regulator->dev, &rdev->dev);
2371
2372 /* remove any sysfs entries */
2373 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2374 }
2375
2376 regulator_lock(rdev);
2377 list_del(®ulator->list);
2378
2379 rdev->open_count--;
2380 rdev->exclusive = 0;
2381 regulator_unlock(rdev);
2382
2383 kfree_const(regulator->supply_name);
2384 kfree(regulator);
2385}
2386
2387/* regulator_list_mutex lock held by regulator_put() */
2388static void _regulator_put(struct regulator *regulator)
2389{
2390 struct regulator_dev *rdev;
2391
2392 if (IS_ERR_OR_NULL(regulator))
2393 return;
2394
2395 lockdep_assert_held_once(®ulator_list_mutex);
2396
2397 /* Docs say you must disable before calling regulator_put() */
2398 WARN_ON(regulator->enable_count);
2399
2400 rdev = regulator->rdev;
2401
2402 destroy_regulator(regulator);
2403
2404 module_put(rdev->owner);
2405 put_device(&rdev->dev);
2406}
2407
2408/**
2409 * regulator_put - "free" the regulator source
2410 * @regulator: regulator source
2411 *
2412 * Note: drivers must ensure that all regulator_enable calls made on this
2413 * regulator source are balanced by regulator_disable calls prior to calling
2414 * this function.
2415 */
2416void regulator_put(struct regulator *regulator)
2417{
2418 mutex_lock(®ulator_list_mutex);
2419 _regulator_put(regulator);
2420 mutex_unlock(®ulator_list_mutex);
2421}
2422EXPORT_SYMBOL_GPL(regulator_put);
2423
2424/**
2425 * regulator_register_supply_alias - Provide device alias for supply lookup
2426 *
2427 * @dev: device that will be given as the regulator "consumer"
2428 * @id: Supply name or regulator ID
2429 * @alias_dev: device that should be used to lookup the supply
2430 * @alias_id: Supply name or regulator ID that should be used to lookup the
2431 * supply
2432 *
2433 * All lookups for id on dev will instead be conducted for alias_id on
2434 * alias_dev.
2435 */
2436int regulator_register_supply_alias(struct device *dev, const char *id,
2437 struct device *alias_dev,
2438 const char *alias_id)
2439{
2440 struct regulator_supply_alias *map;
2441
2442 map = regulator_find_supply_alias(dev, id);
2443 if (map)
2444 return -EEXIST;
2445
2446 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2447 if (!map)
2448 return -ENOMEM;
2449
2450 map->src_dev = dev;
2451 map->src_supply = id;
2452 map->alias_dev = alias_dev;
2453 map->alias_supply = alias_id;
2454
2455 list_add(&map->list, ®ulator_supply_alias_list);
2456
2457 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2458 id, dev_name(dev), alias_id, dev_name(alias_dev));
2459
2460 return 0;
2461}
2462EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2463
2464/**
2465 * regulator_unregister_supply_alias - Remove device alias
2466 *
2467 * @dev: device that will be given as the regulator "consumer"
2468 * @id: Supply name or regulator ID
2469 *
2470 * Remove a lookup alias if one exists for id on dev.
2471 */
2472void regulator_unregister_supply_alias(struct device *dev, const char *id)
2473{
2474 struct regulator_supply_alias *map;
2475
2476 map = regulator_find_supply_alias(dev, id);
2477 if (map) {
2478 list_del(&map->list);
2479 kfree(map);
2480 }
2481}
2482EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2483
2484/**
2485 * regulator_bulk_register_supply_alias - register multiple aliases
2486 *
2487 * @dev: device that will be given as the regulator "consumer"
2488 * @id: List of supply names or regulator IDs
2489 * @alias_dev: device that should be used to lookup the supply
2490 * @alias_id: List of supply names or regulator IDs that should be used to
2491 * lookup the supply
2492 * @num_id: Number of aliases to register
2493 *
2494 * @return 0 on success, an errno on failure.
2495 *
2496 * This helper function allows drivers to register several supply
2497 * aliases in one operation. If any of the aliases cannot be
2498 * registered any aliases that were registered will be removed
2499 * before returning to the caller.
2500 */
2501int regulator_bulk_register_supply_alias(struct device *dev,
2502 const char *const *id,
2503 struct device *alias_dev,
2504 const char *const *alias_id,
2505 int num_id)
2506{
2507 int i;
2508 int ret;
2509
2510 for (i = 0; i < num_id; ++i) {
2511 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2512 alias_id[i]);
2513 if (ret < 0)
2514 goto err;
2515 }
2516
2517 return 0;
2518
2519err:
2520 dev_err(dev,
2521 "Failed to create supply alias %s,%s -> %s,%s\n",
2522 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2523
2524 while (--i >= 0)
2525 regulator_unregister_supply_alias(dev, id[i]);
2526
2527 return ret;
2528}
2529EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2530
2531/**
2532 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2533 *
2534 * @dev: device that will be given as the regulator "consumer"
2535 * @id: List of supply names or regulator IDs
2536 * @num_id: Number of aliases to unregister
2537 *
2538 * This helper function allows drivers to unregister several supply
2539 * aliases in one operation.
2540 */
2541void regulator_bulk_unregister_supply_alias(struct device *dev,
2542 const char *const *id,
2543 int num_id)
2544{
2545 int i;
2546
2547 for (i = 0; i < num_id; ++i)
2548 regulator_unregister_supply_alias(dev, id[i]);
2549}
2550EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2551
2552
2553/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2554static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2555 const struct regulator_config *config)
2556{
2557 struct regulator_enable_gpio *pin, *new_pin;
2558 struct gpio_desc *gpiod;
2559
2560 gpiod = config->ena_gpiod;
2561 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2562
2563 mutex_lock(®ulator_list_mutex);
2564
2565 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2566 if (pin->gpiod == gpiod) {
2567 rdev_dbg(rdev, "GPIO is already used\n");
2568 goto update_ena_gpio_to_rdev;
2569 }
2570 }
2571
2572 if (new_pin == NULL) {
2573 mutex_unlock(®ulator_list_mutex);
2574 return -ENOMEM;
2575 }
2576
2577 pin = new_pin;
2578 new_pin = NULL;
2579
2580 pin->gpiod = gpiod;
2581 list_add(&pin->list, ®ulator_ena_gpio_list);
2582
2583update_ena_gpio_to_rdev:
2584 pin->request_count++;
2585 rdev->ena_pin = pin;
2586
2587 mutex_unlock(®ulator_list_mutex);
2588 kfree(new_pin);
2589
2590 return 0;
2591}
2592
2593static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2594{
2595 struct regulator_enable_gpio *pin, *n;
2596
2597 if (!rdev->ena_pin)
2598 return;
2599
2600 /* Free the GPIO only in case of no use */
2601 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2602 if (pin != rdev->ena_pin)
2603 continue;
2604
2605 if (--pin->request_count)
2606 break;
2607
2608 gpiod_put(pin->gpiod);
2609 list_del(&pin->list);
2610 kfree(pin);
2611 break;
2612 }
2613
2614 rdev->ena_pin = NULL;
2615}
2616
2617/**
2618 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2619 * @rdev: regulator_dev structure
2620 * @enable: enable GPIO at initial use?
2621 *
2622 * GPIO is enabled in case of initial use. (enable_count is 0)
2623 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2624 */
2625static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2626{
2627 struct regulator_enable_gpio *pin = rdev->ena_pin;
2628
2629 if (!pin)
2630 return -EINVAL;
2631
2632 if (enable) {
2633 /* Enable GPIO at initial use */
2634 if (pin->enable_count == 0)
2635 gpiod_set_value_cansleep(pin->gpiod, 1);
2636
2637 pin->enable_count++;
2638 } else {
2639 if (pin->enable_count > 1) {
2640 pin->enable_count--;
2641 return 0;
2642 }
2643
2644 /* Disable GPIO if not used */
2645 if (pin->enable_count <= 1) {
2646 gpiod_set_value_cansleep(pin->gpiod, 0);
2647 pin->enable_count = 0;
2648 }
2649 }
2650
2651 return 0;
2652}
2653
2654/**
2655 * _regulator_delay_helper - a delay helper function
2656 * @delay: time to delay in microseconds
2657 *
2658 * Delay for the requested amount of time as per the guidelines in:
2659 *
2660 * Documentation/timers/timers-howto.rst
2661 *
2662 * The assumption here is that these regulator operations will never used in
2663 * atomic context and therefore sleeping functions can be used.
2664 */
2665static void _regulator_delay_helper(unsigned int delay)
2666{
2667 unsigned int ms = delay / 1000;
2668 unsigned int us = delay % 1000;
2669
2670 if (ms > 0) {
2671 /*
2672 * For small enough values, handle super-millisecond
2673 * delays in the usleep_range() call below.
2674 */
2675 if (ms < 20)
2676 us += ms * 1000;
2677 else
2678 msleep(ms);
2679 }
2680
2681 /*
2682 * Give the scheduler some room to coalesce with any other
2683 * wakeup sources. For delays shorter than 10 us, don't even
2684 * bother setting up high-resolution timers and just busy-
2685 * loop.
2686 */
2687 if (us >= 10)
2688 usleep_range(us, us + 100);
2689 else
2690 udelay(us);
2691}
2692
2693/**
2694 * _regulator_check_status_enabled
2695 *
2696 * A helper function to check if the regulator status can be interpreted
2697 * as 'regulator is enabled'.
2698 * @rdev: the regulator device to check
2699 *
2700 * Return:
2701 * * 1 - if status shows regulator is in enabled state
2702 * * 0 - if not enabled state
2703 * * Error Value - as received from ops->get_status()
2704 */
2705static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2706{
2707 int ret = rdev->desc->ops->get_status(rdev);
2708
2709 if (ret < 0) {
2710 rdev_info(rdev, "get_status returned error: %d\n", ret);
2711 return ret;
2712 }
2713
2714 switch (ret) {
2715 case REGULATOR_STATUS_OFF:
2716 case REGULATOR_STATUS_ERROR:
2717 case REGULATOR_STATUS_UNDEFINED:
2718 return 0;
2719 default:
2720 return 1;
2721 }
2722}
2723
2724static int _regulator_do_enable(struct regulator_dev *rdev)
2725{
2726 int ret, delay;
2727
2728 /* Query before enabling in case configuration dependent. */
2729 ret = _regulator_get_enable_time(rdev);
2730 if (ret >= 0) {
2731 delay = ret;
2732 } else {
2733 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2734 delay = 0;
2735 }
2736
2737 trace_regulator_enable(rdev_get_name(rdev));
2738
2739 if (rdev->desc->off_on_delay) {
2740 /* if needed, keep a distance of off_on_delay from last time
2741 * this regulator was disabled.
2742 */
2743 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2744 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2745
2746 if (remaining > 0)
2747 _regulator_delay_helper(remaining);
2748 }
2749
2750 if (rdev->ena_pin) {
2751 if (!rdev->ena_gpio_state) {
2752 ret = regulator_ena_gpio_ctrl(rdev, true);
2753 if (ret < 0)
2754 return ret;
2755 rdev->ena_gpio_state = 1;
2756 }
2757 } else if (rdev->desc->ops->enable) {
2758 ret = rdev->desc->ops->enable(rdev);
2759 if (ret < 0)
2760 return ret;
2761 } else {
2762 return -EINVAL;
2763 }
2764
2765 /* Allow the regulator to ramp; it would be useful to extend
2766 * this for bulk operations so that the regulators can ramp
2767 * together.
2768 */
2769 trace_regulator_enable_delay(rdev_get_name(rdev));
2770
2771 /* If poll_enabled_time is set, poll upto the delay calculated
2772 * above, delaying poll_enabled_time uS to check if the regulator
2773 * actually got enabled.
2774 * If the regulator isn't enabled after our delay helper has expired,
2775 * return -ETIMEDOUT.
2776 */
2777 if (rdev->desc->poll_enabled_time) {
2778 int time_remaining = delay;
2779
2780 while (time_remaining > 0) {
2781 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2782
2783 if (rdev->desc->ops->get_status) {
2784 ret = _regulator_check_status_enabled(rdev);
2785 if (ret < 0)
2786 return ret;
2787 else if (ret)
2788 break;
2789 } else if (rdev->desc->ops->is_enabled(rdev))
2790 break;
2791
2792 time_remaining -= rdev->desc->poll_enabled_time;
2793 }
2794
2795 if (time_remaining <= 0) {
2796 rdev_err(rdev, "Enabled check timed out\n");
2797 return -ETIMEDOUT;
2798 }
2799 } else {
2800 _regulator_delay_helper(delay);
2801 }
2802
2803 trace_regulator_enable_complete(rdev_get_name(rdev));
2804
2805 return 0;
2806}
2807
2808/**
2809 * _regulator_handle_consumer_enable - handle that a consumer enabled
2810 * @regulator: regulator source
2811 *
2812 * Some things on a regulator consumer (like the contribution towards total
2813 * load on the regulator) only have an effect when the consumer wants the
2814 * regulator enabled. Explained in example with two consumers of the same
2815 * regulator:
2816 * consumer A: set_load(100); => total load = 0
2817 * consumer A: regulator_enable(); => total load = 100
2818 * consumer B: set_load(1000); => total load = 100
2819 * consumer B: regulator_enable(); => total load = 1100
2820 * consumer A: regulator_disable(); => total_load = 1000
2821 *
2822 * This function (together with _regulator_handle_consumer_disable) is
2823 * responsible for keeping track of the refcount for a given regulator consumer
2824 * and applying / unapplying these things.
2825 *
2826 * Returns 0 upon no error; -error upon error.
2827 */
2828static int _regulator_handle_consumer_enable(struct regulator *regulator)
2829{
2830 int ret;
2831 struct regulator_dev *rdev = regulator->rdev;
2832
2833 lockdep_assert_held_once(&rdev->mutex.base);
2834
2835 regulator->enable_count++;
2836 if (regulator->uA_load && regulator->enable_count == 1) {
2837 ret = drms_uA_update(rdev);
2838 if (ret)
2839 regulator->enable_count--;
2840 return ret;
2841 }
2842
2843 return 0;
2844}
2845
2846/**
2847 * _regulator_handle_consumer_disable - handle that a consumer disabled
2848 * @regulator: regulator source
2849 *
2850 * The opposite of _regulator_handle_consumer_enable().
2851 *
2852 * Returns 0 upon no error; -error upon error.
2853 */
2854static int _regulator_handle_consumer_disable(struct regulator *regulator)
2855{
2856 struct regulator_dev *rdev = regulator->rdev;
2857
2858 lockdep_assert_held_once(&rdev->mutex.base);
2859
2860 if (!regulator->enable_count) {
2861 rdev_err(rdev, "Underflow of regulator enable count\n");
2862 return -EINVAL;
2863 }
2864
2865 regulator->enable_count--;
2866 if (regulator->uA_load && regulator->enable_count == 0)
2867 return drms_uA_update(rdev);
2868
2869 return 0;
2870}
2871
2872/* locks held by regulator_enable() */
2873static int _regulator_enable(struct regulator *regulator)
2874{
2875 struct regulator_dev *rdev = regulator->rdev;
2876 int ret;
2877
2878 lockdep_assert_held_once(&rdev->mutex.base);
2879
2880 if (rdev->use_count == 0 && rdev->supply) {
2881 ret = _regulator_enable(rdev->supply);
2882 if (ret < 0)
2883 return ret;
2884 }
2885
2886 /* balance only if there are regulators coupled */
2887 if (rdev->coupling_desc.n_coupled > 1) {
2888 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889 if (ret < 0)
2890 goto err_disable_supply;
2891 }
2892
2893 ret = _regulator_handle_consumer_enable(regulator);
2894 if (ret < 0)
2895 goto err_disable_supply;
2896
2897 if (rdev->use_count == 0) {
2898 /*
2899 * The regulator may already be enabled if it's not switchable
2900 * or was left on
2901 */
2902 ret = _regulator_is_enabled(rdev);
2903 if (ret == -EINVAL || ret == 0) {
2904 if (!regulator_ops_is_valid(rdev,
2905 REGULATOR_CHANGE_STATUS)) {
2906 ret = -EPERM;
2907 goto err_consumer_disable;
2908 }
2909
2910 ret = _regulator_do_enable(rdev);
2911 if (ret < 0)
2912 goto err_consumer_disable;
2913
2914 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2915 NULL);
2916 } else if (ret < 0) {
2917 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2918 goto err_consumer_disable;
2919 }
2920 /* Fallthrough on positive return values - already enabled */
2921 }
2922
2923 if (regulator->enable_count == 1)
2924 rdev->use_count++;
2925
2926 return 0;
2927
2928err_consumer_disable:
2929 _regulator_handle_consumer_disable(regulator);
2930
2931err_disable_supply:
2932 if (rdev->use_count == 0 && rdev->supply)
2933 _regulator_disable(rdev->supply);
2934
2935 return ret;
2936}
2937
2938/**
2939 * regulator_enable - enable regulator output
2940 * @regulator: regulator source
2941 *
2942 * Request that the regulator be enabled with the regulator output at
2943 * the predefined voltage or current value. Calls to regulator_enable()
2944 * must be balanced with calls to regulator_disable().
2945 *
2946 * NOTE: the output value can be set by other drivers, boot loader or may be
2947 * hardwired in the regulator.
2948 */
2949int regulator_enable(struct regulator *regulator)
2950{
2951 struct regulator_dev *rdev = regulator->rdev;
2952 struct ww_acquire_ctx ww_ctx;
2953 int ret;
2954
2955 regulator_lock_dependent(rdev, &ww_ctx);
2956 ret = _regulator_enable(regulator);
2957 regulator_unlock_dependent(rdev, &ww_ctx);
2958
2959 return ret;
2960}
2961EXPORT_SYMBOL_GPL(regulator_enable);
2962
2963static int _regulator_do_disable(struct regulator_dev *rdev)
2964{
2965 int ret;
2966
2967 trace_regulator_disable(rdev_get_name(rdev));
2968
2969 if (rdev->ena_pin) {
2970 if (rdev->ena_gpio_state) {
2971 ret = regulator_ena_gpio_ctrl(rdev, false);
2972 if (ret < 0)
2973 return ret;
2974 rdev->ena_gpio_state = 0;
2975 }
2976
2977 } else if (rdev->desc->ops->disable) {
2978 ret = rdev->desc->ops->disable(rdev);
2979 if (ret != 0)
2980 return ret;
2981 }
2982
2983 if (rdev->desc->off_on_delay)
2984 rdev->last_off = ktime_get_boottime();
2985
2986 trace_regulator_disable_complete(rdev_get_name(rdev));
2987
2988 return 0;
2989}
2990
2991/* locks held by regulator_disable() */
2992static int _regulator_disable(struct regulator *regulator)
2993{
2994 struct regulator_dev *rdev = regulator->rdev;
2995 int ret = 0;
2996
2997 lockdep_assert_held_once(&rdev->mutex.base);
2998
2999 if (WARN(regulator->enable_count == 0,
3000 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3001 return -EIO;
3002
3003 if (regulator->enable_count == 1) {
3004 /* disabling last enable_count from this regulator */
3005 /* are we the last user and permitted to disable ? */
3006 if (rdev->use_count == 1 &&
3007 (rdev->constraints && !rdev->constraints->always_on)) {
3008
3009 /* we are last user */
3010 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3011 ret = _notifier_call_chain(rdev,
3012 REGULATOR_EVENT_PRE_DISABLE,
3013 NULL);
3014 if (ret & NOTIFY_STOP_MASK)
3015 return -EINVAL;
3016
3017 ret = _regulator_do_disable(rdev);
3018 if (ret < 0) {
3019 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3020 _notifier_call_chain(rdev,
3021 REGULATOR_EVENT_ABORT_DISABLE,
3022 NULL);
3023 return ret;
3024 }
3025 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3026 NULL);
3027 }
3028
3029 rdev->use_count = 0;
3030 } else if (rdev->use_count > 1) {
3031 rdev->use_count--;
3032 }
3033 }
3034
3035 if (ret == 0)
3036 ret = _regulator_handle_consumer_disable(regulator);
3037
3038 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3039 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3040
3041 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3042 ret = _regulator_disable(rdev->supply);
3043
3044 return ret;
3045}
3046
3047/**
3048 * regulator_disable - disable regulator output
3049 * @regulator: regulator source
3050 *
3051 * Disable the regulator output voltage or current. Calls to
3052 * regulator_enable() must be balanced with calls to
3053 * regulator_disable().
3054 *
3055 * NOTE: this will only disable the regulator output if no other consumer
3056 * devices have it enabled, the regulator device supports disabling and
3057 * machine constraints permit this operation.
3058 */
3059int regulator_disable(struct regulator *regulator)
3060{
3061 struct regulator_dev *rdev = regulator->rdev;
3062 struct ww_acquire_ctx ww_ctx;
3063 int ret;
3064
3065 regulator_lock_dependent(rdev, &ww_ctx);
3066 ret = _regulator_disable(regulator);
3067 regulator_unlock_dependent(rdev, &ww_ctx);
3068
3069 return ret;
3070}
3071EXPORT_SYMBOL_GPL(regulator_disable);
3072
3073/* locks held by regulator_force_disable() */
3074static int _regulator_force_disable(struct regulator_dev *rdev)
3075{
3076 int ret = 0;
3077
3078 lockdep_assert_held_once(&rdev->mutex.base);
3079
3080 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3081 REGULATOR_EVENT_PRE_DISABLE, NULL);
3082 if (ret & NOTIFY_STOP_MASK)
3083 return -EINVAL;
3084
3085 ret = _regulator_do_disable(rdev);
3086 if (ret < 0) {
3087 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3088 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3089 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3090 return ret;
3091 }
3092
3093 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3094 REGULATOR_EVENT_DISABLE, NULL);
3095
3096 return 0;
3097}
3098
3099/**
3100 * regulator_force_disable - force disable regulator output
3101 * @regulator: regulator source
3102 *
3103 * Forcibly disable the regulator output voltage or current.
3104 * NOTE: this *will* disable the regulator output even if other consumer
3105 * devices have it enabled. This should be used for situations when device
3106 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3107 */
3108int regulator_force_disable(struct regulator *regulator)
3109{
3110 struct regulator_dev *rdev = regulator->rdev;
3111 struct ww_acquire_ctx ww_ctx;
3112 int ret;
3113
3114 regulator_lock_dependent(rdev, &ww_ctx);
3115
3116 ret = _regulator_force_disable(regulator->rdev);
3117
3118 if (rdev->coupling_desc.n_coupled > 1)
3119 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3120
3121 if (regulator->uA_load) {
3122 regulator->uA_load = 0;
3123 ret = drms_uA_update(rdev);
3124 }
3125
3126 if (rdev->use_count != 0 && rdev->supply)
3127 _regulator_disable(rdev->supply);
3128
3129 regulator_unlock_dependent(rdev, &ww_ctx);
3130
3131 return ret;
3132}
3133EXPORT_SYMBOL_GPL(regulator_force_disable);
3134
3135static void regulator_disable_work(struct work_struct *work)
3136{
3137 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3138 disable_work.work);
3139 struct ww_acquire_ctx ww_ctx;
3140 int count, i, ret;
3141 struct regulator *regulator;
3142 int total_count = 0;
3143
3144 regulator_lock_dependent(rdev, &ww_ctx);
3145
3146 /*
3147 * Workqueue functions queue the new work instance while the previous
3148 * work instance is being processed. Cancel the queued work instance
3149 * as the work instance under processing does the job of the queued
3150 * work instance.
3151 */
3152 cancel_delayed_work(&rdev->disable_work);
3153
3154 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3155 count = regulator->deferred_disables;
3156
3157 if (!count)
3158 continue;
3159
3160 total_count += count;
3161 regulator->deferred_disables = 0;
3162
3163 for (i = 0; i < count; i++) {
3164 ret = _regulator_disable(regulator);
3165 if (ret != 0)
3166 rdev_err(rdev, "Deferred disable failed: %pe\n",
3167 ERR_PTR(ret));
3168 }
3169 }
3170 WARN_ON(!total_count);
3171
3172 if (rdev->coupling_desc.n_coupled > 1)
3173 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3174
3175 regulator_unlock_dependent(rdev, &ww_ctx);
3176}
3177
3178/**
3179 * regulator_disable_deferred - disable regulator output with delay
3180 * @regulator: regulator source
3181 * @ms: milliseconds until the regulator is disabled
3182 *
3183 * Execute regulator_disable() on the regulator after a delay. This
3184 * is intended for use with devices that require some time to quiesce.
3185 *
3186 * NOTE: this will only disable the regulator output if no other consumer
3187 * devices have it enabled, the regulator device supports disabling and
3188 * machine constraints permit this operation.
3189 */
3190int regulator_disable_deferred(struct regulator *regulator, int ms)
3191{
3192 struct regulator_dev *rdev = regulator->rdev;
3193
3194 if (!ms)
3195 return regulator_disable(regulator);
3196
3197 regulator_lock(rdev);
3198 regulator->deferred_disables++;
3199 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3200 msecs_to_jiffies(ms));
3201 regulator_unlock(rdev);
3202
3203 return 0;
3204}
3205EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3206
3207static int _regulator_is_enabled(struct regulator_dev *rdev)
3208{
3209 /* A GPIO control always takes precedence */
3210 if (rdev->ena_pin)
3211 return rdev->ena_gpio_state;
3212
3213 /* If we don't know then assume that the regulator is always on */
3214 if (!rdev->desc->ops->is_enabled)
3215 return 1;
3216
3217 return rdev->desc->ops->is_enabled(rdev);
3218}
3219
3220static int _regulator_list_voltage(struct regulator_dev *rdev,
3221 unsigned selector, int lock)
3222{
3223 const struct regulator_ops *ops = rdev->desc->ops;
3224 int ret;
3225
3226 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3227 return rdev->desc->fixed_uV;
3228
3229 if (ops->list_voltage) {
3230 if (selector >= rdev->desc->n_voltages)
3231 return -EINVAL;
3232 if (selector < rdev->desc->linear_min_sel)
3233 return 0;
3234 if (lock)
3235 regulator_lock(rdev);
3236 ret = ops->list_voltage(rdev, selector);
3237 if (lock)
3238 regulator_unlock(rdev);
3239 } else if (rdev->is_switch && rdev->supply) {
3240 ret = _regulator_list_voltage(rdev->supply->rdev,
3241 selector, lock);
3242 } else {
3243 return -EINVAL;
3244 }
3245
3246 if (ret > 0) {
3247 if (ret < rdev->constraints->min_uV)
3248 ret = 0;
3249 else if (ret > rdev->constraints->max_uV)
3250 ret = 0;
3251 }
3252
3253 return ret;
3254}
3255
3256/**
3257 * regulator_is_enabled - is the regulator output enabled
3258 * @regulator: regulator source
3259 *
3260 * Returns positive if the regulator driver backing the source/client
3261 * has requested that the device be enabled, zero if it hasn't, else a
3262 * negative errno code.
3263 *
3264 * Note that the device backing this regulator handle can have multiple
3265 * users, so it might be enabled even if regulator_enable() was never
3266 * called for this particular source.
3267 */
3268int regulator_is_enabled(struct regulator *regulator)
3269{
3270 int ret;
3271
3272 if (regulator->always_on)
3273 return 1;
3274
3275 regulator_lock(regulator->rdev);
3276 ret = _regulator_is_enabled(regulator->rdev);
3277 regulator_unlock(regulator->rdev);
3278
3279 return ret;
3280}
3281EXPORT_SYMBOL_GPL(regulator_is_enabled);
3282
3283/**
3284 * regulator_count_voltages - count regulator_list_voltage() selectors
3285 * @regulator: regulator source
3286 *
3287 * Returns number of selectors, or negative errno. Selectors are
3288 * numbered starting at zero, and typically correspond to bitfields
3289 * in hardware registers.
3290 */
3291int regulator_count_voltages(struct regulator *regulator)
3292{
3293 struct regulator_dev *rdev = regulator->rdev;
3294
3295 if (rdev->desc->n_voltages)
3296 return rdev->desc->n_voltages;
3297
3298 if (!rdev->is_switch || !rdev->supply)
3299 return -EINVAL;
3300
3301 return regulator_count_voltages(rdev->supply);
3302}
3303EXPORT_SYMBOL_GPL(regulator_count_voltages);
3304
3305/**
3306 * regulator_list_voltage - enumerate supported voltages
3307 * @regulator: regulator source
3308 * @selector: identify voltage to list
3309 * Context: can sleep
3310 *
3311 * Returns a voltage that can be passed to @regulator_set_voltage(),
3312 * zero if this selector code can't be used on this system, or a
3313 * negative errno.
3314 */
3315int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3316{
3317 return _regulator_list_voltage(regulator->rdev, selector, 1);
3318}
3319EXPORT_SYMBOL_GPL(regulator_list_voltage);
3320
3321/**
3322 * regulator_get_regmap - get the regulator's register map
3323 * @regulator: regulator source
3324 *
3325 * Returns the register map for the given regulator, or an ERR_PTR value
3326 * if the regulator doesn't use regmap.
3327 */
3328struct regmap *regulator_get_regmap(struct regulator *regulator)
3329{
3330 struct regmap *map = regulator->rdev->regmap;
3331
3332 return map ? map : ERR_PTR(-EOPNOTSUPP);
3333}
3334
3335/**
3336 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3337 * @regulator: regulator source
3338 * @vsel_reg: voltage selector register, output parameter
3339 * @vsel_mask: mask for voltage selector bitfield, output parameter
3340 *
3341 * Returns the hardware register offset and bitmask used for setting the
3342 * regulator voltage. This might be useful when configuring voltage-scaling
3343 * hardware or firmware that can make I2C requests behind the kernel's back,
3344 * for example.
3345 *
3346 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3347 * and 0 is returned, otherwise a negative errno is returned.
3348 */
3349int regulator_get_hardware_vsel_register(struct regulator *regulator,
3350 unsigned *vsel_reg,
3351 unsigned *vsel_mask)
3352{
3353 struct regulator_dev *rdev = regulator->rdev;
3354 const struct regulator_ops *ops = rdev->desc->ops;
3355
3356 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3357 return -EOPNOTSUPP;
3358
3359 *vsel_reg = rdev->desc->vsel_reg;
3360 *vsel_mask = rdev->desc->vsel_mask;
3361
3362 return 0;
3363}
3364EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3365
3366/**
3367 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3368 * @regulator: regulator source
3369 * @selector: identify voltage to list
3370 *
3371 * Converts the selector to a hardware-specific voltage selector that can be
3372 * directly written to the regulator registers. The address of the voltage
3373 * register can be determined by calling @regulator_get_hardware_vsel_register.
3374 *
3375 * On error a negative errno is returned.
3376 */
3377int regulator_list_hardware_vsel(struct regulator *regulator,
3378 unsigned selector)
3379{
3380 struct regulator_dev *rdev = regulator->rdev;
3381 const struct regulator_ops *ops = rdev->desc->ops;
3382
3383 if (selector >= rdev->desc->n_voltages)
3384 return -EINVAL;
3385 if (selector < rdev->desc->linear_min_sel)
3386 return 0;
3387 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3388 return -EOPNOTSUPP;
3389
3390 return selector;
3391}
3392EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3393
3394/**
3395 * regulator_get_linear_step - return the voltage step size between VSEL values
3396 * @regulator: regulator source
3397 *
3398 * Returns the voltage step size between VSEL values for linear
3399 * regulators, or return 0 if the regulator isn't a linear regulator.
3400 */
3401unsigned int regulator_get_linear_step(struct regulator *regulator)
3402{
3403 struct regulator_dev *rdev = regulator->rdev;
3404
3405 return rdev->desc->uV_step;
3406}
3407EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3408
3409/**
3410 * regulator_is_supported_voltage - check if a voltage range can be supported
3411 *
3412 * @regulator: Regulator to check.
3413 * @min_uV: Minimum required voltage in uV.
3414 * @max_uV: Maximum required voltage in uV.
3415 *
3416 * Returns a boolean.
3417 */
3418int regulator_is_supported_voltage(struct regulator *regulator,
3419 int min_uV, int max_uV)
3420{
3421 struct regulator_dev *rdev = regulator->rdev;
3422 int i, voltages, ret;
3423
3424 /* If we can't change voltage check the current voltage */
3425 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3426 ret = regulator_get_voltage(regulator);
3427 if (ret >= 0)
3428 return min_uV <= ret && ret <= max_uV;
3429 else
3430 return ret;
3431 }
3432
3433 /* Any voltage within constrains range is fine? */
3434 if (rdev->desc->continuous_voltage_range)
3435 return min_uV >= rdev->constraints->min_uV &&
3436 max_uV <= rdev->constraints->max_uV;
3437
3438 ret = regulator_count_voltages(regulator);
3439 if (ret < 0)
3440 return 0;
3441 voltages = ret;
3442
3443 for (i = 0; i < voltages; i++) {
3444 ret = regulator_list_voltage(regulator, i);
3445
3446 if (ret >= min_uV && ret <= max_uV)
3447 return 1;
3448 }
3449
3450 return 0;
3451}
3452EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3453
3454static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3455 int max_uV)
3456{
3457 const struct regulator_desc *desc = rdev->desc;
3458
3459 if (desc->ops->map_voltage)
3460 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3461
3462 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3463 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3464
3465 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3466 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3467
3468 if (desc->ops->list_voltage ==
3469 regulator_list_voltage_pickable_linear_range)
3470 return regulator_map_voltage_pickable_linear_range(rdev,
3471 min_uV, max_uV);
3472
3473 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3474}
3475
3476static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3477 int min_uV, int max_uV,
3478 unsigned *selector)
3479{
3480 struct pre_voltage_change_data data;
3481 int ret;
3482
3483 data.old_uV = regulator_get_voltage_rdev(rdev);
3484 data.min_uV = min_uV;
3485 data.max_uV = max_uV;
3486 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3487 &data);
3488 if (ret & NOTIFY_STOP_MASK)
3489 return -EINVAL;
3490
3491 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3492 if (ret >= 0)
3493 return ret;
3494
3495 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3496 (void *)data.old_uV);
3497
3498 return ret;
3499}
3500
3501static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3502 int uV, unsigned selector)
3503{
3504 struct pre_voltage_change_data data;
3505 int ret;
3506
3507 data.old_uV = regulator_get_voltage_rdev(rdev);
3508 data.min_uV = uV;
3509 data.max_uV = uV;
3510 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3511 &data);
3512 if (ret & NOTIFY_STOP_MASK)
3513 return -EINVAL;
3514
3515 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3516 if (ret >= 0)
3517 return ret;
3518
3519 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3520 (void *)data.old_uV);
3521
3522 return ret;
3523}
3524
3525static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3526 int uV, int new_selector)
3527{
3528 const struct regulator_ops *ops = rdev->desc->ops;
3529 int diff, old_sel, curr_sel, ret;
3530
3531 /* Stepping is only needed if the regulator is enabled. */
3532 if (!_regulator_is_enabled(rdev))
3533 goto final_set;
3534
3535 if (!ops->get_voltage_sel)
3536 return -EINVAL;
3537
3538 old_sel = ops->get_voltage_sel(rdev);
3539 if (old_sel < 0)
3540 return old_sel;
3541
3542 diff = new_selector - old_sel;
3543 if (diff == 0)
3544 return 0; /* No change needed. */
3545
3546 if (diff > 0) {
3547 /* Stepping up. */
3548 for (curr_sel = old_sel + rdev->desc->vsel_step;
3549 curr_sel < new_selector;
3550 curr_sel += rdev->desc->vsel_step) {
3551 /*
3552 * Call the callback directly instead of using
3553 * _regulator_call_set_voltage_sel() as we don't
3554 * want to notify anyone yet. Same in the branch
3555 * below.
3556 */
3557 ret = ops->set_voltage_sel(rdev, curr_sel);
3558 if (ret)
3559 goto try_revert;
3560 }
3561 } else {
3562 /* Stepping down. */
3563 for (curr_sel = old_sel - rdev->desc->vsel_step;
3564 curr_sel > new_selector;
3565 curr_sel -= rdev->desc->vsel_step) {
3566 ret = ops->set_voltage_sel(rdev, curr_sel);
3567 if (ret)
3568 goto try_revert;
3569 }
3570 }
3571
3572final_set:
3573 /* The final selector will trigger the notifiers. */
3574 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3575
3576try_revert:
3577 /*
3578 * At least try to return to the previous voltage if setting a new
3579 * one failed.
3580 */
3581 (void)ops->set_voltage_sel(rdev, old_sel);
3582 return ret;
3583}
3584
3585static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3586 int old_uV, int new_uV)
3587{
3588 unsigned int ramp_delay = 0;
3589
3590 if (rdev->constraints->ramp_delay)
3591 ramp_delay = rdev->constraints->ramp_delay;
3592 else if (rdev->desc->ramp_delay)
3593 ramp_delay = rdev->desc->ramp_delay;
3594 else if (rdev->constraints->settling_time)
3595 return rdev->constraints->settling_time;
3596 else if (rdev->constraints->settling_time_up &&
3597 (new_uV > old_uV))
3598 return rdev->constraints->settling_time_up;
3599 else if (rdev->constraints->settling_time_down &&
3600 (new_uV < old_uV))
3601 return rdev->constraints->settling_time_down;
3602
3603 if (ramp_delay == 0)
3604 return 0;
3605
3606 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3607}
3608
3609static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3610 int min_uV, int max_uV)
3611{
3612 int ret;
3613 int delay = 0;
3614 int best_val = 0;
3615 unsigned int selector;
3616 int old_selector = -1;
3617 const struct regulator_ops *ops = rdev->desc->ops;
3618 int old_uV = regulator_get_voltage_rdev(rdev);
3619
3620 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3621
3622 min_uV += rdev->constraints->uV_offset;
3623 max_uV += rdev->constraints->uV_offset;
3624
3625 /*
3626 * If we can't obtain the old selector there is not enough
3627 * info to call set_voltage_time_sel().
3628 */
3629 if (_regulator_is_enabled(rdev) &&
3630 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3631 old_selector = ops->get_voltage_sel(rdev);
3632 if (old_selector < 0)
3633 return old_selector;
3634 }
3635
3636 if (ops->set_voltage) {
3637 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3638 &selector);
3639
3640 if (ret >= 0) {
3641 if (ops->list_voltage)
3642 best_val = ops->list_voltage(rdev,
3643 selector);
3644 else
3645 best_val = regulator_get_voltage_rdev(rdev);
3646 }
3647
3648 } else if (ops->set_voltage_sel) {
3649 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3650 if (ret >= 0) {
3651 best_val = ops->list_voltage(rdev, ret);
3652 if (min_uV <= best_val && max_uV >= best_val) {
3653 selector = ret;
3654 if (old_selector == selector)
3655 ret = 0;
3656 else if (rdev->desc->vsel_step)
3657 ret = _regulator_set_voltage_sel_step(
3658 rdev, best_val, selector);
3659 else
3660 ret = _regulator_call_set_voltage_sel(
3661 rdev, best_val, selector);
3662 } else {
3663 ret = -EINVAL;
3664 }
3665 }
3666 } else {
3667 ret = -EINVAL;
3668 }
3669
3670 if (ret)
3671 goto out;
3672
3673 if (ops->set_voltage_time_sel) {
3674 /*
3675 * Call set_voltage_time_sel if successfully obtained
3676 * old_selector
3677 */
3678 if (old_selector >= 0 && old_selector != selector)
3679 delay = ops->set_voltage_time_sel(rdev, old_selector,
3680 selector);
3681 } else {
3682 if (old_uV != best_val) {
3683 if (ops->set_voltage_time)
3684 delay = ops->set_voltage_time(rdev, old_uV,
3685 best_val);
3686 else
3687 delay = _regulator_set_voltage_time(rdev,
3688 old_uV,
3689 best_val);
3690 }
3691 }
3692
3693 if (delay < 0) {
3694 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3695 delay = 0;
3696 }
3697
3698 /* Insert any necessary delays */
3699 _regulator_delay_helper(delay);
3700
3701 if (best_val >= 0) {
3702 unsigned long data = best_val;
3703
3704 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3705 (void *)data);
3706 }
3707
3708out:
3709 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3710
3711 return ret;
3712}
3713
3714static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3715 int min_uV, int max_uV, suspend_state_t state)
3716{
3717 struct regulator_state *rstate;
3718 int uV, sel;
3719
3720 rstate = regulator_get_suspend_state(rdev, state);
3721 if (rstate == NULL)
3722 return -EINVAL;
3723
3724 if (min_uV < rstate->min_uV)
3725 min_uV = rstate->min_uV;
3726 if (max_uV > rstate->max_uV)
3727 max_uV = rstate->max_uV;
3728
3729 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3730 if (sel < 0)
3731 return sel;
3732
3733 uV = rdev->desc->ops->list_voltage(rdev, sel);
3734 if (uV >= min_uV && uV <= max_uV)
3735 rstate->uV = uV;
3736
3737 return 0;
3738}
3739
3740static int regulator_set_voltage_unlocked(struct regulator *regulator,
3741 int min_uV, int max_uV,
3742 suspend_state_t state)
3743{
3744 struct regulator_dev *rdev = regulator->rdev;
3745 struct regulator_voltage *voltage = ®ulator->voltage[state];
3746 int ret = 0;
3747 int old_min_uV, old_max_uV;
3748 int current_uV;
3749
3750 /* If we're setting the same range as last time the change
3751 * should be a noop (some cpufreq implementations use the same
3752 * voltage for multiple frequencies, for example).
3753 */
3754 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3755 goto out;
3756
3757 /* If we're trying to set a range that overlaps the current voltage,
3758 * return successfully even though the regulator does not support
3759 * changing the voltage.
3760 */
3761 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3762 current_uV = regulator_get_voltage_rdev(rdev);
3763 if (min_uV <= current_uV && current_uV <= max_uV) {
3764 voltage->min_uV = min_uV;
3765 voltage->max_uV = max_uV;
3766 goto out;
3767 }
3768 }
3769
3770 /* sanity check */
3771 if (!rdev->desc->ops->set_voltage &&
3772 !rdev->desc->ops->set_voltage_sel) {
3773 ret = -EINVAL;
3774 goto out;
3775 }
3776
3777 /* constraints check */
3778 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3779 if (ret < 0)
3780 goto out;
3781
3782 /* restore original values in case of error */
3783 old_min_uV = voltage->min_uV;
3784 old_max_uV = voltage->max_uV;
3785 voltage->min_uV = min_uV;
3786 voltage->max_uV = max_uV;
3787
3788 /* for not coupled regulators this will just set the voltage */
3789 ret = regulator_balance_voltage(rdev, state);
3790 if (ret < 0) {
3791 voltage->min_uV = old_min_uV;
3792 voltage->max_uV = old_max_uV;
3793 }
3794
3795out:
3796 return ret;
3797}
3798
3799int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3800 int max_uV, suspend_state_t state)
3801{
3802 int best_supply_uV = 0;
3803 int supply_change_uV = 0;
3804 int ret;
3805
3806 if (rdev->supply &&
3807 regulator_ops_is_valid(rdev->supply->rdev,
3808 REGULATOR_CHANGE_VOLTAGE) &&
3809 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3810 rdev->desc->ops->get_voltage_sel))) {
3811 int current_supply_uV;
3812 int selector;
3813
3814 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3815 if (selector < 0) {
3816 ret = selector;
3817 goto out;
3818 }
3819
3820 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3821 if (best_supply_uV < 0) {
3822 ret = best_supply_uV;
3823 goto out;
3824 }
3825
3826 best_supply_uV += rdev->desc->min_dropout_uV;
3827
3828 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3829 if (current_supply_uV < 0) {
3830 ret = current_supply_uV;
3831 goto out;
3832 }
3833
3834 supply_change_uV = best_supply_uV - current_supply_uV;
3835 }
3836
3837 if (supply_change_uV > 0) {
3838 ret = regulator_set_voltage_unlocked(rdev->supply,
3839 best_supply_uV, INT_MAX, state);
3840 if (ret) {
3841 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3842 ERR_PTR(ret));
3843 goto out;
3844 }
3845 }
3846
3847 if (state == PM_SUSPEND_ON)
3848 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3849 else
3850 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3851 max_uV, state);
3852 if (ret < 0)
3853 goto out;
3854
3855 if (supply_change_uV < 0) {
3856 ret = regulator_set_voltage_unlocked(rdev->supply,
3857 best_supply_uV, INT_MAX, state);
3858 if (ret)
3859 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3860 ERR_PTR(ret));
3861 /* No need to fail here */
3862 ret = 0;
3863 }
3864
3865out:
3866 return ret;
3867}
3868EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3869
3870static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3871 int *current_uV, int *min_uV)
3872{
3873 struct regulation_constraints *constraints = rdev->constraints;
3874
3875 /* Limit voltage change only if necessary */
3876 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3877 return 1;
3878
3879 if (*current_uV < 0) {
3880 *current_uV = regulator_get_voltage_rdev(rdev);
3881
3882 if (*current_uV < 0)
3883 return *current_uV;
3884 }
3885
3886 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3887 return 1;
3888
3889 /* Clamp target voltage within the given step */
3890 if (*current_uV < *min_uV)
3891 *min_uV = min(*current_uV + constraints->max_uV_step,
3892 *min_uV);
3893 else
3894 *min_uV = max(*current_uV - constraints->max_uV_step,
3895 *min_uV);
3896
3897 return 0;
3898}
3899
3900static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3901 int *current_uV,
3902 int *min_uV, int *max_uV,
3903 suspend_state_t state,
3904 int n_coupled)
3905{
3906 struct coupling_desc *c_desc = &rdev->coupling_desc;
3907 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3908 struct regulation_constraints *constraints = rdev->constraints;
3909 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3910 int max_current_uV = 0, min_current_uV = INT_MAX;
3911 int highest_min_uV = 0, target_uV, possible_uV;
3912 int i, ret, max_spread;
3913 bool done;
3914
3915 *current_uV = -1;
3916
3917 /*
3918 * If there are no coupled regulators, simply set the voltage
3919 * demanded by consumers.
3920 */
3921 if (n_coupled == 1) {
3922 /*
3923 * If consumers don't provide any demands, set voltage
3924 * to min_uV
3925 */
3926 desired_min_uV = constraints->min_uV;
3927 desired_max_uV = constraints->max_uV;
3928
3929 ret = regulator_check_consumers(rdev,
3930 &desired_min_uV,
3931 &desired_max_uV, state);
3932 if (ret < 0)
3933 return ret;
3934
3935 possible_uV = desired_min_uV;
3936 done = true;
3937
3938 goto finish;
3939 }
3940
3941 /* Find highest min desired voltage */
3942 for (i = 0; i < n_coupled; i++) {
3943 int tmp_min = 0;
3944 int tmp_max = INT_MAX;
3945
3946 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3947
3948 ret = regulator_check_consumers(c_rdevs[i],
3949 &tmp_min,
3950 &tmp_max, state);
3951 if (ret < 0)
3952 return ret;
3953
3954 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3955 if (ret < 0)
3956 return ret;
3957
3958 highest_min_uV = max(highest_min_uV, tmp_min);
3959
3960 if (i == 0) {
3961 desired_min_uV = tmp_min;
3962 desired_max_uV = tmp_max;
3963 }
3964 }
3965
3966 max_spread = constraints->max_spread[0];
3967
3968 /*
3969 * Let target_uV be equal to the desired one if possible.
3970 * If not, set it to minimum voltage, allowed by other coupled
3971 * regulators.
3972 */
3973 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3974
3975 /*
3976 * Find min and max voltages, which currently aren't violating
3977 * max_spread.
3978 */
3979 for (i = 1; i < n_coupled; i++) {
3980 int tmp_act;
3981
3982 if (!_regulator_is_enabled(c_rdevs[i]))
3983 continue;
3984
3985 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3986 if (tmp_act < 0)
3987 return tmp_act;
3988
3989 min_current_uV = min(tmp_act, min_current_uV);
3990 max_current_uV = max(tmp_act, max_current_uV);
3991 }
3992
3993 /* There aren't any other regulators enabled */
3994 if (max_current_uV == 0) {
3995 possible_uV = target_uV;
3996 } else {
3997 /*
3998 * Correct target voltage, so as it currently isn't
3999 * violating max_spread
4000 */
4001 possible_uV = max(target_uV, max_current_uV - max_spread);
4002 possible_uV = min(possible_uV, min_current_uV + max_spread);
4003 }
4004
4005 if (possible_uV > desired_max_uV)
4006 return -EINVAL;
4007
4008 done = (possible_uV == target_uV);
4009 desired_min_uV = possible_uV;
4010
4011finish:
4012 /* Apply max_uV_step constraint if necessary */
4013 if (state == PM_SUSPEND_ON) {
4014 ret = regulator_limit_voltage_step(rdev, current_uV,
4015 &desired_min_uV);
4016 if (ret < 0)
4017 return ret;
4018
4019 if (ret == 0)
4020 done = false;
4021 }
4022
4023 /* Set current_uV if wasn't done earlier in the code and if necessary */
4024 if (n_coupled > 1 && *current_uV == -1) {
4025
4026 if (_regulator_is_enabled(rdev)) {
4027 ret = regulator_get_voltage_rdev(rdev);
4028 if (ret < 0)
4029 return ret;
4030
4031 *current_uV = ret;
4032 } else {
4033 *current_uV = desired_min_uV;
4034 }
4035 }
4036
4037 *min_uV = desired_min_uV;
4038 *max_uV = desired_max_uV;
4039
4040 return done;
4041}
4042
4043int regulator_do_balance_voltage(struct regulator_dev *rdev,
4044 suspend_state_t state, bool skip_coupled)
4045{
4046 struct regulator_dev **c_rdevs;
4047 struct regulator_dev *best_rdev;
4048 struct coupling_desc *c_desc = &rdev->coupling_desc;
4049 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4050 unsigned int delta, best_delta;
4051 unsigned long c_rdev_done = 0;
4052 bool best_c_rdev_done;
4053
4054 c_rdevs = c_desc->coupled_rdevs;
4055 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4056
4057 /*
4058 * Find the best possible voltage change on each loop. Leave the loop
4059 * if there isn't any possible change.
4060 */
4061 do {
4062 best_c_rdev_done = false;
4063 best_delta = 0;
4064 best_min_uV = 0;
4065 best_max_uV = 0;
4066 best_c_rdev = 0;
4067 best_rdev = NULL;
4068
4069 /*
4070 * Find highest difference between optimal voltage
4071 * and current voltage.
4072 */
4073 for (i = 0; i < n_coupled; i++) {
4074 /*
4075 * optimal_uV is the best voltage that can be set for
4076 * i-th regulator at the moment without violating
4077 * max_spread constraint in order to balance
4078 * the coupled voltages.
4079 */
4080 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4081
4082 if (test_bit(i, &c_rdev_done))
4083 continue;
4084
4085 ret = regulator_get_optimal_voltage(c_rdevs[i],
4086 ¤t_uV,
4087 &optimal_uV,
4088 &optimal_max_uV,
4089 state, n_coupled);
4090 if (ret < 0)
4091 goto out;
4092
4093 delta = abs(optimal_uV - current_uV);
4094
4095 if (delta && best_delta <= delta) {
4096 best_c_rdev_done = ret;
4097 best_delta = delta;
4098 best_rdev = c_rdevs[i];
4099 best_min_uV = optimal_uV;
4100 best_max_uV = optimal_max_uV;
4101 best_c_rdev = i;
4102 }
4103 }
4104
4105 /* Nothing to change, return successfully */
4106 if (!best_rdev) {
4107 ret = 0;
4108 goto out;
4109 }
4110
4111 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4112 best_max_uV, state);
4113
4114 if (ret < 0)
4115 goto out;
4116
4117 if (best_c_rdev_done)
4118 set_bit(best_c_rdev, &c_rdev_done);
4119
4120 } while (n_coupled > 1);
4121
4122out:
4123 return ret;
4124}
4125
4126static int regulator_balance_voltage(struct regulator_dev *rdev,
4127 suspend_state_t state)
4128{
4129 struct coupling_desc *c_desc = &rdev->coupling_desc;
4130 struct regulator_coupler *coupler = c_desc->coupler;
4131 bool skip_coupled = false;
4132
4133 /*
4134 * If system is in a state other than PM_SUSPEND_ON, don't check
4135 * other coupled regulators.
4136 */
4137 if (state != PM_SUSPEND_ON)
4138 skip_coupled = true;
4139
4140 if (c_desc->n_resolved < c_desc->n_coupled) {
4141 rdev_err(rdev, "Not all coupled regulators registered\n");
4142 return -EPERM;
4143 }
4144
4145 /* Invoke custom balancer for customized couplers */
4146 if (coupler && coupler->balance_voltage)
4147 return coupler->balance_voltage(coupler, rdev, state);
4148
4149 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4150}
4151
4152/**
4153 * regulator_set_voltage - set regulator output voltage
4154 * @regulator: regulator source
4155 * @min_uV: Minimum required voltage in uV
4156 * @max_uV: Maximum acceptable voltage in uV
4157 *
4158 * Sets a voltage regulator to the desired output voltage. This can be set
4159 * during any regulator state. IOW, regulator can be disabled or enabled.
4160 *
4161 * If the regulator is enabled then the voltage will change to the new value
4162 * immediately otherwise if the regulator is disabled the regulator will
4163 * output at the new voltage when enabled.
4164 *
4165 * NOTE: If the regulator is shared between several devices then the lowest
4166 * request voltage that meets the system constraints will be used.
4167 * Regulator system constraints must be set for this regulator before
4168 * calling this function otherwise this call will fail.
4169 */
4170int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4171{
4172 struct ww_acquire_ctx ww_ctx;
4173 int ret;
4174
4175 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4176
4177 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4178 PM_SUSPEND_ON);
4179
4180 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4181
4182 return ret;
4183}
4184EXPORT_SYMBOL_GPL(regulator_set_voltage);
4185
4186static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4187 suspend_state_t state, bool en)
4188{
4189 struct regulator_state *rstate;
4190
4191 rstate = regulator_get_suspend_state(rdev, state);
4192 if (rstate == NULL)
4193 return -EINVAL;
4194
4195 if (!rstate->changeable)
4196 return -EPERM;
4197
4198 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4199
4200 return 0;
4201}
4202
4203int regulator_suspend_enable(struct regulator_dev *rdev,
4204 suspend_state_t state)
4205{
4206 return regulator_suspend_toggle(rdev, state, true);
4207}
4208EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4209
4210int regulator_suspend_disable(struct regulator_dev *rdev,
4211 suspend_state_t state)
4212{
4213 struct regulator *regulator;
4214 struct regulator_voltage *voltage;
4215
4216 /*
4217 * if any consumer wants this regulator device keeping on in
4218 * suspend states, don't set it as disabled.
4219 */
4220 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4221 voltage = ®ulator->voltage[state];
4222 if (voltage->min_uV || voltage->max_uV)
4223 return 0;
4224 }
4225
4226 return regulator_suspend_toggle(rdev, state, false);
4227}
4228EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4229
4230static int _regulator_set_suspend_voltage(struct regulator *regulator,
4231 int min_uV, int max_uV,
4232 suspend_state_t state)
4233{
4234 struct regulator_dev *rdev = regulator->rdev;
4235 struct regulator_state *rstate;
4236
4237 rstate = regulator_get_suspend_state(rdev, state);
4238 if (rstate == NULL)
4239 return -EINVAL;
4240
4241 if (rstate->min_uV == rstate->max_uV) {
4242 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4243 return -EPERM;
4244 }
4245
4246 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4247}
4248
4249int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4250 int max_uV, suspend_state_t state)
4251{
4252 struct ww_acquire_ctx ww_ctx;
4253 int ret;
4254
4255 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4256 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4257 return -EINVAL;
4258
4259 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4260
4261 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4262 max_uV, state);
4263
4264 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4265
4266 return ret;
4267}
4268EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4269
4270/**
4271 * regulator_set_voltage_time - get raise/fall time
4272 * @regulator: regulator source
4273 * @old_uV: starting voltage in microvolts
4274 * @new_uV: target voltage in microvolts
4275 *
4276 * Provided with the starting and ending voltage, this function attempts to
4277 * calculate the time in microseconds required to rise or fall to this new
4278 * voltage.
4279 */
4280int regulator_set_voltage_time(struct regulator *regulator,
4281 int old_uV, int new_uV)
4282{
4283 struct regulator_dev *rdev = regulator->rdev;
4284 const struct regulator_ops *ops = rdev->desc->ops;
4285 int old_sel = -1;
4286 int new_sel = -1;
4287 int voltage;
4288 int i;
4289
4290 if (ops->set_voltage_time)
4291 return ops->set_voltage_time(rdev, old_uV, new_uV);
4292 else if (!ops->set_voltage_time_sel)
4293 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4294
4295 /* Currently requires operations to do this */
4296 if (!ops->list_voltage || !rdev->desc->n_voltages)
4297 return -EINVAL;
4298
4299 for (i = 0; i < rdev->desc->n_voltages; i++) {
4300 /* We only look for exact voltage matches here */
4301 if (i < rdev->desc->linear_min_sel)
4302 continue;
4303
4304 if (old_sel >= 0 && new_sel >= 0)
4305 break;
4306
4307 voltage = regulator_list_voltage(regulator, i);
4308 if (voltage < 0)
4309 return -EINVAL;
4310 if (voltage == 0)
4311 continue;
4312 if (voltage == old_uV)
4313 old_sel = i;
4314 if (voltage == new_uV)
4315 new_sel = i;
4316 }
4317
4318 if (old_sel < 0 || new_sel < 0)
4319 return -EINVAL;
4320
4321 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4322}
4323EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4324
4325/**
4326 * regulator_set_voltage_time_sel - get raise/fall time
4327 * @rdev: regulator source device
4328 * @old_selector: selector for starting voltage
4329 * @new_selector: selector for target voltage
4330 *
4331 * Provided with the starting and target voltage selectors, this function
4332 * returns time in microseconds required to rise or fall to this new voltage
4333 *
4334 * Drivers providing ramp_delay in regulation_constraints can use this as their
4335 * set_voltage_time_sel() operation.
4336 */
4337int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4338 unsigned int old_selector,
4339 unsigned int new_selector)
4340{
4341 int old_volt, new_volt;
4342
4343 /* sanity check */
4344 if (!rdev->desc->ops->list_voltage)
4345 return -EINVAL;
4346
4347 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4348 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4349
4350 if (rdev->desc->ops->set_voltage_time)
4351 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4352 new_volt);
4353 else
4354 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4355}
4356EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4357
4358int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4359{
4360 int ret;
4361
4362 regulator_lock(rdev);
4363
4364 if (!rdev->desc->ops->set_voltage &&
4365 !rdev->desc->ops->set_voltage_sel) {
4366 ret = -EINVAL;
4367 goto out;
4368 }
4369
4370 /* balance only, if regulator is coupled */
4371 if (rdev->coupling_desc.n_coupled > 1)
4372 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4373 else
4374 ret = -EOPNOTSUPP;
4375
4376out:
4377 regulator_unlock(rdev);
4378 return ret;
4379}
4380
4381/**
4382 * regulator_sync_voltage - re-apply last regulator output voltage
4383 * @regulator: regulator source
4384 *
4385 * Re-apply the last configured voltage. This is intended to be used
4386 * where some external control source the consumer is cooperating with
4387 * has caused the configured voltage to change.
4388 */
4389int regulator_sync_voltage(struct regulator *regulator)
4390{
4391 struct regulator_dev *rdev = regulator->rdev;
4392 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4393 int ret, min_uV, max_uV;
4394
4395 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4396 return 0;
4397
4398 regulator_lock(rdev);
4399
4400 if (!rdev->desc->ops->set_voltage &&
4401 !rdev->desc->ops->set_voltage_sel) {
4402 ret = -EINVAL;
4403 goto out;
4404 }
4405
4406 /* This is only going to work if we've had a voltage configured. */
4407 if (!voltage->min_uV && !voltage->max_uV) {
4408 ret = -EINVAL;
4409 goto out;
4410 }
4411
4412 min_uV = voltage->min_uV;
4413 max_uV = voltage->max_uV;
4414
4415 /* This should be a paranoia check... */
4416 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4417 if (ret < 0)
4418 goto out;
4419
4420 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4421 if (ret < 0)
4422 goto out;
4423
4424 /* balance only, if regulator is coupled */
4425 if (rdev->coupling_desc.n_coupled > 1)
4426 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4427 else
4428 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4429
4430out:
4431 regulator_unlock(rdev);
4432 return ret;
4433}
4434EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4435
4436int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4437{
4438 int sel, ret;
4439 bool bypassed;
4440
4441 if (rdev->desc->ops->get_bypass) {
4442 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4443 if (ret < 0)
4444 return ret;
4445 if (bypassed) {
4446 /* if bypassed the regulator must have a supply */
4447 if (!rdev->supply) {
4448 rdev_err(rdev,
4449 "bypassed regulator has no supply!\n");
4450 return -EPROBE_DEFER;
4451 }
4452
4453 return regulator_get_voltage_rdev(rdev->supply->rdev);
4454 }
4455 }
4456
4457 if (rdev->desc->ops->get_voltage_sel) {
4458 sel = rdev->desc->ops->get_voltage_sel(rdev);
4459 if (sel < 0)
4460 return sel;
4461 ret = rdev->desc->ops->list_voltage(rdev, sel);
4462 } else if (rdev->desc->ops->get_voltage) {
4463 ret = rdev->desc->ops->get_voltage(rdev);
4464 } else if (rdev->desc->ops->list_voltage) {
4465 ret = rdev->desc->ops->list_voltage(rdev, 0);
4466 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4467 ret = rdev->desc->fixed_uV;
4468 } else if (rdev->supply) {
4469 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4470 } else if (rdev->supply_name) {
4471 return -EPROBE_DEFER;
4472 } else {
4473 return -EINVAL;
4474 }
4475
4476 if (ret < 0)
4477 return ret;
4478 return ret - rdev->constraints->uV_offset;
4479}
4480EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4481
4482/**
4483 * regulator_get_voltage - get regulator output voltage
4484 * @regulator: regulator source
4485 *
4486 * This returns the current regulator voltage in uV.
4487 *
4488 * NOTE: If the regulator is disabled it will return the voltage value. This
4489 * function should not be used to determine regulator state.
4490 */
4491int regulator_get_voltage(struct regulator *regulator)
4492{
4493 struct ww_acquire_ctx ww_ctx;
4494 int ret;
4495
4496 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4497 ret = regulator_get_voltage_rdev(regulator->rdev);
4498 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4499
4500 return ret;
4501}
4502EXPORT_SYMBOL_GPL(regulator_get_voltage);
4503
4504/**
4505 * regulator_set_current_limit - set regulator output current limit
4506 * @regulator: regulator source
4507 * @min_uA: Minimum supported current in uA
4508 * @max_uA: Maximum supported current in uA
4509 *
4510 * Sets current sink to the desired output current. This can be set during
4511 * any regulator state. IOW, regulator can be disabled or enabled.
4512 *
4513 * If the regulator is enabled then the current will change to the new value
4514 * immediately otherwise if the regulator is disabled the regulator will
4515 * output at the new current when enabled.
4516 *
4517 * NOTE: Regulator system constraints must be set for this regulator before
4518 * calling this function otherwise this call will fail.
4519 */
4520int regulator_set_current_limit(struct regulator *regulator,
4521 int min_uA, int max_uA)
4522{
4523 struct regulator_dev *rdev = regulator->rdev;
4524 int ret;
4525
4526 regulator_lock(rdev);
4527
4528 /* sanity check */
4529 if (!rdev->desc->ops->set_current_limit) {
4530 ret = -EINVAL;
4531 goto out;
4532 }
4533
4534 /* constraints check */
4535 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4536 if (ret < 0)
4537 goto out;
4538
4539 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4540out:
4541 regulator_unlock(rdev);
4542 return ret;
4543}
4544EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4545
4546static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4547{
4548 /* sanity check */
4549 if (!rdev->desc->ops->get_current_limit)
4550 return -EINVAL;
4551
4552 return rdev->desc->ops->get_current_limit(rdev);
4553}
4554
4555static int _regulator_get_current_limit(struct regulator_dev *rdev)
4556{
4557 int ret;
4558
4559 regulator_lock(rdev);
4560 ret = _regulator_get_current_limit_unlocked(rdev);
4561 regulator_unlock(rdev);
4562
4563 return ret;
4564}
4565
4566/**
4567 * regulator_get_current_limit - get regulator output current
4568 * @regulator: regulator source
4569 *
4570 * This returns the current supplied by the specified current sink in uA.
4571 *
4572 * NOTE: If the regulator is disabled it will return the current value. This
4573 * function should not be used to determine regulator state.
4574 */
4575int regulator_get_current_limit(struct regulator *regulator)
4576{
4577 return _regulator_get_current_limit(regulator->rdev);
4578}
4579EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4580
4581/**
4582 * regulator_set_mode - set regulator operating mode
4583 * @regulator: regulator source
4584 * @mode: operating mode - one of the REGULATOR_MODE constants
4585 *
4586 * Set regulator operating mode to increase regulator efficiency or improve
4587 * regulation performance.
4588 *
4589 * NOTE: Regulator system constraints must be set for this regulator before
4590 * calling this function otherwise this call will fail.
4591 */
4592int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4593{
4594 struct regulator_dev *rdev = regulator->rdev;
4595 int ret;
4596 int regulator_curr_mode;
4597
4598 regulator_lock(rdev);
4599
4600 /* sanity check */
4601 if (!rdev->desc->ops->set_mode) {
4602 ret = -EINVAL;
4603 goto out;
4604 }
4605
4606 /* return if the same mode is requested */
4607 if (rdev->desc->ops->get_mode) {
4608 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4609 if (regulator_curr_mode == mode) {
4610 ret = 0;
4611 goto out;
4612 }
4613 }
4614
4615 /* constraints check */
4616 ret = regulator_mode_constrain(rdev, &mode);
4617 if (ret < 0)
4618 goto out;
4619
4620 ret = rdev->desc->ops->set_mode(rdev, mode);
4621out:
4622 regulator_unlock(rdev);
4623 return ret;
4624}
4625EXPORT_SYMBOL_GPL(regulator_set_mode);
4626
4627static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4628{
4629 /* sanity check */
4630 if (!rdev->desc->ops->get_mode)
4631 return -EINVAL;
4632
4633 return rdev->desc->ops->get_mode(rdev);
4634}
4635
4636static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4637{
4638 int ret;
4639
4640 regulator_lock(rdev);
4641 ret = _regulator_get_mode_unlocked(rdev);
4642 regulator_unlock(rdev);
4643
4644 return ret;
4645}
4646
4647/**
4648 * regulator_get_mode - get regulator operating mode
4649 * @regulator: regulator source
4650 *
4651 * Get the current regulator operating mode.
4652 */
4653unsigned int regulator_get_mode(struct regulator *regulator)
4654{
4655 return _regulator_get_mode(regulator->rdev);
4656}
4657EXPORT_SYMBOL_GPL(regulator_get_mode);
4658
4659static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4660{
4661 int ret = 0;
4662
4663 if (rdev->use_cached_err) {
4664 spin_lock(&rdev->err_lock);
4665 ret = rdev->cached_err;
4666 spin_unlock(&rdev->err_lock);
4667 }
4668 return ret;
4669}
4670
4671static int _regulator_get_error_flags(struct regulator_dev *rdev,
4672 unsigned int *flags)
4673{
4674 int cached_flags, ret = 0;
4675
4676 regulator_lock(rdev);
4677
4678 cached_flags = rdev_get_cached_err_flags(rdev);
4679
4680 if (rdev->desc->ops->get_error_flags)
4681 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4682 else if (!rdev->use_cached_err)
4683 ret = -EINVAL;
4684
4685 *flags |= cached_flags;
4686
4687 regulator_unlock(rdev);
4688
4689 return ret;
4690}
4691
4692/**
4693 * regulator_get_error_flags - get regulator error information
4694 * @regulator: regulator source
4695 * @flags: pointer to store error flags
4696 *
4697 * Get the current regulator error information.
4698 */
4699int regulator_get_error_flags(struct regulator *regulator,
4700 unsigned int *flags)
4701{
4702 return _regulator_get_error_flags(regulator->rdev, flags);
4703}
4704EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4705
4706/**
4707 * regulator_set_load - set regulator load
4708 * @regulator: regulator source
4709 * @uA_load: load current
4710 *
4711 * Notifies the regulator core of a new device load. This is then used by
4712 * DRMS (if enabled by constraints) to set the most efficient regulator
4713 * operating mode for the new regulator loading.
4714 *
4715 * Consumer devices notify their supply regulator of the maximum power
4716 * they will require (can be taken from device datasheet in the power
4717 * consumption tables) when they change operational status and hence power
4718 * state. Examples of operational state changes that can affect power
4719 * consumption are :-
4720 *
4721 * o Device is opened / closed.
4722 * o Device I/O is about to begin or has just finished.
4723 * o Device is idling in between work.
4724 *
4725 * This information is also exported via sysfs to userspace.
4726 *
4727 * DRMS will sum the total requested load on the regulator and change
4728 * to the most efficient operating mode if platform constraints allow.
4729 *
4730 * NOTE: when a regulator consumer requests to have a regulator
4731 * disabled then any load that consumer requested no longer counts
4732 * toward the total requested load. If the regulator is re-enabled
4733 * then the previously requested load will start counting again.
4734 *
4735 * If a regulator is an always-on regulator then an individual consumer's
4736 * load will still be removed if that consumer is fully disabled.
4737 *
4738 * On error a negative errno is returned.
4739 */
4740int regulator_set_load(struct regulator *regulator, int uA_load)
4741{
4742 struct regulator_dev *rdev = regulator->rdev;
4743 int old_uA_load;
4744 int ret = 0;
4745
4746 regulator_lock(rdev);
4747 old_uA_load = regulator->uA_load;
4748 regulator->uA_load = uA_load;
4749 if (regulator->enable_count && old_uA_load != uA_load) {
4750 ret = drms_uA_update(rdev);
4751 if (ret < 0)
4752 regulator->uA_load = old_uA_load;
4753 }
4754 regulator_unlock(rdev);
4755
4756 return ret;
4757}
4758EXPORT_SYMBOL_GPL(regulator_set_load);
4759
4760/**
4761 * regulator_allow_bypass - allow the regulator to go into bypass mode
4762 *
4763 * @regulator: Regulator to configure
4764 * @enable: enable or disable bypass mode
4765 *
4766 * Allow the regulator to go into bypass mode if all other consumers
4767 * for the regulator also enable bypass mode and the machine
4768 * constraints allow this. Bypass mode means that the regulator is
4769 * simply passing the input directly to the output with no regulation.
4770 */
4771int regulator_allow_bypass(struct regulator *regulator, bool enable)
4772{
4773 struct regulator_dev *rdev = regulator->rdev;
4774 const char *name = rdev_get_name(rdev);
4775 int ret = 0;
4776
4777 if (!rdev->desc->ops->set_bypass)
4778 return 0;
4779
4780 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4781 return 0;
4782
4783 regulator_lock(rdev);
4784
4785 if (enable && !regulator->bypass) {
4786 rdev->bypass_count++;
4787
4788 if (rdev->bypass_count == rdev->open_count) {
4789 trace_regulator_bypass_enable(name);
4790
4791 ret = rdev->desc->ops->set_bypass(rdev, enable);
4792 if (ret != 0)
4793 rdev->bypass_count--;
4794 else
4795 trace_regulator_bypass_enable_complete(name);
4796 }
4797
4798 } else if (!enable && regulator->bypass) {
4799 rdev->bypass_count--;
4800
4801 if (rdev->bypass_count != rdev->open_count) {
4802 trace_regulator_bypass_disable(name);
4803
4804 ret = rdev->desc->ops->set_bypass(rdev, enable);
4805 if (ret != 0)
4806 rdev->bypass_count++;
4807 else
4808 trace_regulator_bypass_disable_complete(name);
4809 }
4810 }
4811
4812 if (ret == 0)
4813 regulator->bypass = enable;
4814
4815 regulator_unlock(rdev);
4816
4817 return ret;
4818}
4819EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4820
4821/**
4822 * regulator_register_notifier - register regulator event notifier
4823 * @regulator: regulator source
4824 * @nb: notifier block
4825 *
4826 * Register notifier block to receive regulator events.
4827 */
4828int regulator_register_notifier(struct regulator *regulator,
4829 struct notifier_block *nb)
4830{
4831 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4832 nb);
4833}
4834EXPORT_SYMBOL_GPL(regulator_register_notifier);
4835
4836/**
4837 * regulator_unregister_notifier - unregister regulator event notifier
4838 * @regulator: regulator source
4839 * @nb: notifier block
4840 *
4841 * Unregister regulator event notifier block.
4842 */
4843int regulator_unregister_notifier(struct regulator *regulator,
4844 struct notifier_block *nb)
4845{
4846 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4847 nb);
4848}
4849EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4850
4851/* notify regulator consumers and downstream regulator consumers.
4852 * Note mutex must be held by caller.
4853 */
4854static int _notifier_call_chain(struct regulator_dev *rdev,
4855 unsigned long event, void *data)
4856{
4857 /* call rdev chain first */
4858 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data);
4859
4860 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4861 struct device *parent = rdev->dev.parent;
4862 const char *rname = rdev_get_name(rdev);
4863 char name[32];
4864
4865 /* Avoid duplicate debugfs directory names */
4866 if (parent && rname == rdev->desc->name) {
4867 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4868 rname);
4869 rname = name;
4870 }
4871 reg_generate_netlink_event(rname, event);
4872 }
4873
4874 return ret;
4875}
4876
4877int _regulator_bulk_get(struct device *dev, int num_consumers,
4878 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4879{
4880 int i;
4881 int ret;
4882
4883 for (i = 0; i < num_consumers; i++)
4884 consumers[i].consumer = NULL;
4885
4886 for (i = 0; i < num_consumers; i++) {
4887 consumers[i].consumer = _regulator_get(dev,
4888 consumers[i].supply, get_type);
4889 if (IS_ERR(consumers[i].consumer)) {
4890 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4891 "Failed to get supply '%s'",
4892 consumers[i].supply);
4893 consumers[i].consumer = NULL;
4894 goto err;
4895 }
4896
4897 if (consumers[i].init_load_uA > 0) {
4898 ret = regulator_set_load(consumers[i].consumer,
4899 consumers[i].init_load_uA);
4900 if (ret) {
4901 i++;
4902 goto err;
4903 }
4904 }
4905 }
4906
4907 return 0;
4908
4909err:
4910 while (--i >= 0)
4911 regulator_put(consumers[i].consumer);
4912
4913 return ret;
4914}
4915
4916/**
4917 * regulator_bulk_get - get multiple regulator consumers
4918 *
4919 * @dev: Device to supply
4920 * @num_consumers: Number of consumers to register
4921 * @consumers: Configuration of consumers; clients are stored here.
4922 *
4923 * @return 0 on success, an errno on failure.
4924 *
4925 * This helper function allows drivers to get several regulator
4926 * consumers in one operation. If any of the regulators cannot be
4927 * acquired then any regulators that were allocated will be freed
4928 * before returning to the caller.
4929 */
4930int regulator_bulk_get(struct device *dev, int num_consumers,
4931 struct regulator_bulk_data *consumers)
4932{
4933 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4934}
4935EXPORT_SYMBOL_GPL(regulator_bulk_get);
4936
4937static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4938{
4939 struct regulator_bulk_data *bulk = data;
4940
4941 bulk->ret = regulator_enable(bulk->consumer);
4942}
4943
4944/**
4945 * regulator_bulk_enable - enable multiple regulator consumers
4946 *
4947 * @num_consumers: Number of consumers
4948 * @consumers: Consumer data; clients are stored here.
4949 * @return 0 on success, an errno on failure
4950 *
4951 * This convenience API allows consumers to enable multiple regulator
4952 * clients in a single API call. If any consumers cannot be enabled
4953 * then any others that were enabled will be disabled again prior to
4954 * return.
4955 */
4956int regulator_bulk_enable(int num_consumers,
4957 struct regulator_bulk_data *consumers)
4958{
4959 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4960 int i;
4961 int ret = 0;
4962
4963 for (i = 0; i < num_consumers; i++) {
4964 async_schedule_domain(regulator_bulk_enable_async,
4965 &consumers[i], &async_domain);
4966 }
4967
4968 async_synchronize_full_domain(&async_domain);
4969
4970 /* If any consumer failed we need to unwind any that succeeded */
4971 for (i = 0; i < num_consumers; i++) {
4972 if (consumers[i].ret != 0) {
4973 ret = consumers[i].ret;
4974 goto err;
4975 }
4976 }
4977
4978 return 0;
4979
4980err:
4981 for (i = 0; i < num_consumers; i++) {
4982 if (consumers[i].ret < 0)
4983 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4984 ERR_PTR(consumers[i].ret));
4985 else
4986 regulator_disable(consumers[i].consumer);
4987 }
4988
4989 return ret;
4990}
4991EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4992
4993/**
4994 * regulator_bulk_disable - disable multiple regulator consumers
4995 *
4996 * @num_consumers: Number of consumers
4997 * @consumers: Consumer data; clients are stored here.
4998 * @return 0 on success, an errno on failure
4999 *
5000 * This convenience API allows consumers to disable multiple regulator
5001 * clients in a single API call. If any consumers cannot be disabled
5002 * then any others that were disabled will be enabled again prior to
5003 * return.
5004 */
5005int regulator_bulk_disable(int num_consumers,
5006 struct regulator_bulk_data *consumers)
5007{
5008 int i;
5009 int ret, r;
5010
5011 for (i = num_consumers - 1; i >= 0; --i) {
5012 ret = regulator_disable(consumers[i].consumer);
5013 if (ret != 0)
5014 goto err;
5015 }
5016
5017 return 0;
5018
5019err:
5020 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5021 for (++i; i < num_consumers; ++i) {
5022 r = regulator_enable(consumers[i].consumer);
5023 if (r != 0)
5024 pr_err("Failed to re-enable %s: %pe\n",
5025 consumers[i].supply, ERR_PTR(r));
5026 }
5027
5028 return ret;
5029}
5030EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5031
5032/**
5033 * regulator_bulk_force_disable - force disable multiple regulator consumers
5034 *
5035 * @num_consumers: Number of consumers
5036 * @consumers: Consumer data; clients are stored here.
5037 * @return 0 on success, an errno on failure
5038 *
5039 * This convenience API allows consumers to forcibly disable multiple regulator
5040 * clients in a single API call.
5041 * NOTE: This should be used for situations when device damage will
5042 * likely occur if the regulators are not disabled (e.g. over temp).
5043 * Although regulator_force_disable function call for some consumers can
5044 * return error numbers, the function is called for all consumers.
5045 */
5046int regulator_bulk_force_disable(int num_consumers,
5047 struct regulator_bulk_data *consumers)
5048{
5049 int i;
5050 int ret = 0;
5051
5052 for (i = 0; i < num_consumers; i++) {
5053 consumers[i].ret =
5054 regulator_force_disable(consumers[i].consumer);
5055
5056 /* Store first error for reporting */
5057 if (consumers[i].ret && !ret)
5058 ret = consumers[i].ret;
5059 }
5060
5061 return ret;
5062}
5063EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5064
5065/**
5066 * regulator_bulk_free - free multiple regulator consumers
5067 *
5068 * @num_consumers: Number of consumers
5069 * @consumers: Consumer data; clients are stored here.
5070 *
5071 * This convenience API allows consumers to free multiple regulator
5072 * clients in a single API call.
5073 */
5074void regulator_bulk_free(int num_consumers,
5075 struct regulator_bulk_data *consumers)
5076{
5077 int i;
5078
5079 for (i = 0; i < num_consumers; i++) {
5080 regulator_put(consumers[i].consumer);
5081 consumers[i].consumer = NULL;
5082 }
5083}
5084EXPORT_SYMBOL_GPL(regulator_bulk_free);
5085
5086/**
5087 * regulator_handle_critical - Handle events for system-critical regulators.
5088 * @rdev: The regulator device.
5089 * @event: The event being handled.
5090 *
5091 * This function handles critical events such as under-voltage, over-current,
5092 * and unknown errors for regulators deemed system-critical. On detecting such
5093 * events, it triggers a hardware protection shutdown with a defined timeout.
5094 */
5095static void regulator_handle_critical(struct regulator_dev *rdev,
5096 unsigned long event)
5097{
5098 const char *reason = NULL;
5099
5100 if (!rdev->constraints->system_critical)
5101 return;
5102
5103 switch (event) {
5104 case REGULATOR_EVENT_UNDER_VOLTAGE:
5105 reason = "System critical regulator: voltage drop detected";
5106 break;
5107 case REGULATOR_EVENT_OVER_CURRENT:
5108 reason = "System critical regulator: over-current detected";
5109 break;
5110 case REGULATOR_EVENT_FAIL:
5111 reason = "System critical regulator: unknown error";
5112 }
5113
5114 if (!reason)
5115 return;
5116
5117 hw_protection_shutdown(reason,
5118 rdev->constraints->uv_less_critical_window_ms);
5119}
5120
5121/**
5122 * regulator_notifier_call_chain - call regulator event notifier
5123 * @rdev: regulator source
5124 * @event: notifier block
5125 * @data: callback-specific data.
5126 *
5127 * Called by regulator drivers to notify clients a regulator event has
5128 * occurred.
5129 */
5130int regulator_notifier_call_chain(struct regulator_dev *rdev,
5131 unsigned long event, void *data)
5132{
5133 regulator_handle_critical(rdev, event);
5134
5135 _notifier_call_chain(rdev, event, data);
5136 return NOTIFY_DONE;
5137
5138}
5139EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5140
5141/**
5142 * regulator_mode_to_status - convert a regulator mode into a status
5143 *
5144 * @mode: Mode to convert
5145 *
5146 * Convert a regulator mode into a status.
5147 */
5148int regulator_mode_to_status(unsigned int mode)
5149{
5150 switch (mode) {
5151 case REGULATOR_MODE_FAST:
5152 return REGULATOR_STATUS_FAST;
5153 case REGULATOR_MODE_NORMAL:
5154 return REGULATOR_STATUS_NORMAL;
5155 case REGULATOR_MODE_IDLE:
5156 return REGULATOR_STATUS_IDLE;
5157 case REGULATOR_MODE_STANDBY:
5158 return REGULATOR_STATUS_STANDBY;
5159 default:
5160 return REGULATOR_STATUS_UNDEFINED;
5161 }
5162}
5163EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5164
5165static struct attribute *regulator_dev_attrs[] = {
5166 &dev_attr_name.attr,
5167 &dev_attr_num_users.attr,
5168 &dev_attr_type.attr,
5169 &dev_attr_microvolts.attr,
5170 &dev_attr_microamps.attr,
5171 &dev_attr_opmode.attr,
5172 &dev_attr_state.attr,
5173 &dev_attr_status.attr,
5174 &dev_attr_bypass.attr,
5175 &dev_attr_requested_microamps.attr,
5176 &dev_attr_min_microvolts.attr,
5177 &dev_attr_max_microvolts.attr,
5178 &dev_attr_min_microamps.attr,
5179 &dev_attr_max_microamps.attr,
5180 &dev_attr_under_voltage.attr,
5181 &dev_attr_over_current.attr,
5182 &dev_attr_regulation_out.attr,
5183 &dev_attr_fail.attr,
5184 &dev_attr_over_temp.attr,
5185 &dev_attr_under_voltage_warn.attr,
5186 &dev_attr_over_current_warn.attr,
5187 &dev_attr_over_voltage_warn.attr,
5188 &dev_attr_over_temp_warn.attr,
5189 &dev_attr_suspend_standby_state.attr,
5190 &dev_attr_suspend_mem_state.attr,
5191 &dev_attr_suspend_disk_state.attr,
5192 &dev_attr_suspend_standby_microvolts.attr,
5193 &dev_attr_suspend_mem_microvolts.attr,
5194 &dev_attr_suspend_disk_microvolts.attr,
5195 &dev_attr_suspend_standby_mode.attr,
5196 &dev_attr_suspend_mem_mode.attr,
5197 &dev_attr_suspend_disk_mode.attr,
5198 NULL
5199};
5200
5201/*
5202 * To avoid cluttering sysfs (and memory) with useless state, only
5203 * create attributes that can be meaningfully displayed.
5204 */
5205static umode_t regulator_attr_is_visible(struct kobject *kobj,
5206 struct attribute *attr, int idx)
5207{
5208 struct device *dev = kobj_to_dev(kobj);
5209 struct regulator_dev *rdev = dev_to_rdev(dev);
5210 const struct regulator_ops *ops = rdev->desc->ops;
5211 umode_t mode = attr->mode;
5212
5213 /* these three are always present */
5214 if (attr == &dev_attr_name.attr ||
5215 attr == &dev_attr_num_users.attr ||
5216 attr == &dev_attr_type.attr)
5217 return mode;
5218
5219 /* some attributes need specific methods to be displayed */
5220 if (attr == &dev_attr_microvolts.attr) {
5221 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5222 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5223 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5224 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5225 return mode;
5226 return 0;
5227 }
5228
5229 if (attr == &dev_attr_microamps.attr)
5230 return ops->get_current_limit ? mode : 0;
5231
5232 if (attr == &dev_attr_opmode.attr)
5233 return ops->get_mode ? mode : 0;
5234
5235 if (attr == &dev_attr_state.attr)
5236 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5237
5238 if (attr == &dev_attr_status.attr)
5239 return ops->get_status ? mode : 0;
5240
5241 if (attr == &dev_attr_bypass.attr)
5242 return ops->get_bypass ? mode : 0;
5243
5244 if (attr == &dev_attr_under_voltage.attr ||
5245 attr == &dev_attr_over_current.attr ||
5246 attr == &dev_attr_regulation_out.attr ||
5247 attr == &dev_attr_fail.attr ||
5248 attr == &dev_attr_over_temp.attr ||
5249 attr == &dev_attr_under_voltage_warn.attr ||
5250 attr == &dev_attr_over_current_warn.attr ||
5251 attr == &dev_attr_over_voltage_warn.attr ||
5252 attr == &dev_attr_over_temp_warn.attr)
5253 return ops->get_error_flags ? mode : 0;
5254
5255 /* constraints need specific supporting methods */
5256 if (attr == &dev_attr_min_microvolts.attr ||
5257 attr == &dev_attr_max_microvolts.attr)
5258 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5259
5260 if (attr == &dev_attr_min_microamps.attr ||
5261 attr == &dev_attr_max_microamps.attr)
5262 return ops->set_current_limit ? mode : 0;
5263
5264 if (attr == &dev_attr_suspend_standby_state.attr ||
5265 attr == &dev_attr_suspend_mem_state.attr ||
5266 attr == &dev_attr_suspend_disk_state.attr)
5267 return mode;
5268
5269 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5270 attr == &dev_attr_suspend_mem_microvolts.attr ||
5271 attr == &dev_attr_suspend_disk_microvolts.attr)
5272 return ops->set_suspend_voltage ? mode : 0;
5273
5274 if (attr == &dev_attr_suspend_standby_mode.attr ||
5275 attr == &dev_attr_suspend_mem_mode.attr ||
5276 attr == &dev_attr_suspend_disk_mode.attr)
5277 return ops->set_suspend_mode ? mode : 0;
5278
5279 return mode;
5280}
5281
5282static const struct attribute_group regulator_dev_group = {
5283 .attrs = regulator_dev_attrs,
5284 .is_visible = regulator_attr_is_visible,
5285};
5286
5287static const struct attribute_group *regulator_dev_groups[] = {
5288 ®ulator_dev_group,
5289 NULL
5290};
5291
5292static void regulator_dev_release(struct device *dev)
5293{
5294 struct regulator_dev *rdev = dev_get_drvdata(dev);
5295
5296 debugfs_remove_recursive(rdev->debugfs);
5297 kfree(rdev->constraints);
5298 of_node_put(rdev->dev.of_node);
5299 kfree(rdev);
5300}
5301
5302static void rdev_init_debugfs(struct regulator_dev *rdev)
5303{
5304 struct device *parent = rdev->dev.parent;
5305 const char *rname = rdev_get_name(rdev);
5306 char name[NAME_MAX];
5307
5308 /* Avoid duplicate debugfs directory names */
5309 if (parent && rname == rdev->desc->name) {
5310 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5311 rname);
5312 rname = name;
5313 }
5314
5315 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5316 if (IS_ERR(rdev->debugfs))
5317 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5318
5319 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5320 &rdev->use_count);
5321 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5322 &rdev->open_count);
5323 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5324 &rdev->bypass_count);
5325}
5326
5327static int regulator_register_resolve_supply(struct device *dev, void *data)
5328{
5329 struct regulator_dev *rdev = dev_to_rdev(dev);
5330
5331 if (regulator_resolve_supply(rdev))
5332 rdev_dbg(rdev, "unable to resolve supply\n");
5333
5334 return 0;
5335}
5336
5337int regulator_coupler_register(struct regulator_coupler *coupler)
5338{
5339 mutex_lock(®ulator_list_mutex);
5340 list_add_tail(&coupler->list, ®ulator_coupler_list);
5341 mutex_unlock(®ulator_list_mutex);
5342
5343 return 0;
5344}
5345
5346static struct regulator_coupler *
5347regulator_find_coupler(struct regulator_dev *rdev)
5348{
5349 struct regulator_coupler *coupler;
5350 int err;
5351
5352 /*
5353 * Note that regulators are appended to the list and the generic
5354 * coupler is registered first, hence it will be attached at last
5355 * if nobody cared.
5356 */
5357 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5358 err = coupler->attach_regulator(coupler, rdev);
5359 if (!err) {
5360 if (!coupler->balance_voltage &&
5361 rdev->coupling_desc.n_coupled > 2)
5362 goto err_unsupported;
5363
5364 return coupler;
5365 }
5366
5367 if (err < 0)
5368 return ERR_PTR(err);
5369
5370 if (err == 1)
5371 continue;
5372
5373 break;
5374 }
5375
5376 return ERR_PTR(-EINVAL);
5377
5378err_unsupported:
5379 if (coupler->detach_regulator)
5380 coupler->detach_regulator(coupler, rdev);
5381
5382 rdev_err(rdev,
5383 "Voltage balancing for multiple regulator couples is unimplemented\n");
5384
5385 return ERR_PTR(-EPERM);
5386}
5387
5388static void regulator_resolve_coupling(struct regulator_dev *rdev)
5389{
5390 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5391 struct coupling_desc *c_desc = &rdev->coupling_desc;
5392 int n_coupled = c_desc->n_coupled;
5393 struct regulator_dev *c_rdev;
5394 int i;
5395
5396 for (i = 1; i < n_coupled; i++) {
5397 /* already resolved */
5398 if (c_desc->coupled_rdevs[i])
5399 continue;
5400
5401 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5402
5403 if (!c_rdev)
5404 continue;
5405
5406 if (c_rdev->coupling_desc.coupler != coupler) {
5407 rdev_err(rdev, "coupler mismatch with %s\n",
5408 rdev_get_name(c_rdev));
5409 return;
5410 }
5411
5412 c_desc->coupled_rdevs[i] = c_rdev;
5413 c_desc->n_resolved++;
5414
5415 regulator_resolve_coupling(c_rdev);
5416 }
5417}
5418
5419static void regulator_remove_coupling(struct regulator_dev *rdev)
5420{
5421 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5422 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5423 struct regulator_dev *__c_rdev, *c_rdev;
5424 unsigned int __n_coupled, n_coupled;
5425 int i, k;
5426 int err;
5427
5428 n_coupled = c_desc->n_coupled;
5429
5430 for (i = 1; i < n_coupled; i++) {
5431 c_rdev = c_desc->coupled_rdevs[i];
5432
5433 if (!c_rdev)
5434 continue;
5435
5436 regulator_lock(c_rdev);
5437
5438 __c_desc = &c_rdev->coupling_desc;
5439 __n_coupled = __c_desc->n_coupled;
5440
5441 for (k = 1; k < __n_coupled; k++) {
5442 __c_rdev = __c_desc->coupled_rdevs[k];
5443
5444 if (__c_rdev == rdev) {
5445 __c_desc->coupled_rdevs[k] = NULL;
5446 __c_desc->n_resolved--;
5447 break;
5448 }
5449 }
5450
5451 regulator_unlock(c_rdev);
5452
5453 c_desc->coupled_rdevs[i] = NULL;
5454 c_desc->n_resolved--;
5455 }
5456
5457 if (coupler && coupler->detach_regulator) {
5458 err = coupler->detach_regulator(coupler, rdev);
5459 if (err)
5460 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5461 ERR_PTR(err));
5462 }
5463
5464 kfree(rdev->coupling_desc.coupled_rdevs);
5465 rdev->coupling_desc.coupled_rdevs = NULL;
5466}
5467
5468static int regulator_init_coupling(struct regulator_dev *rdev)
5469{
5470 struct regulator_dev **coupled;
5471 int err, n_phandles;
5472
5473 if (!IS_ENABLED(CONFIG_OF))
5474 n_phandles = 0;
5475 else
5476 n_phandles = of_get_n_coupled(rdev);
5477
5478 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5479 if (!coupled)
5480 return -ENOMEM;
5481
5482 rdev->coupling_desc.coupled_rdevs = coupled;
5483
5484 /*
5485 * Every regulator should always have coupling descriptor filled with
5486 * at least pointer to itself.
5487 */
5488 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5489 rdev->coupling_desc.n_coupled = n_phandles + 1;
5490 rdev->coupling_desc.n_resolved++;
5491
5492 /* regulator isn't coupled */
5493 if (n_phandles == 0)
5494 return 0;
5495
5496 if (!of_check_coupling_data(rdev))
5497 return -EPERM;
5498
5499 mutex_lock(®ulator_list_mutex);
5500 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5501 mutex_unlock(®ulator_list_mutex);
5502
5503 if (IS_ERR(rdev->coupling_desc.coupler)) {
5504 err = PTR_ERR(rdev->coupling_desc.coupler);
5505 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5506 return err;
5507 }
5508
5509 return 0;
5510}
5511
5512static int generic_coupler_attach(struct regulator_coupler *coupler,
5513 struct regulator_dev *rdev)
5514{
5515 if (rdev->coupling_desc.n_coupled > 2) {
5516 rdev_err(rdev,
5517 "Voltage balancing for multiple regulator couples is unimplemented\n");
5518 return -EPERM;
5519 }
5520
5521 if (!rdev->constraints->always_on) {
5522 rdev_err(rdev,
5523 "Coupling of a non always-on regulator is unimplemented\n");
5524 return -ENOTSUPP;
5525 }
5526
5527 return 0;
5528}
5529
5530static struct regulator_coupler generic_regulator_coupler = {
5531 .attach_regulator = generic_coupler_attach,
5532};
5533
5534/**
5535 * regulator_register - register regulator
5536 * @dev: the device that drive the regulator
5537 * @regulator_desc: regulator to register
5538 * @cfg: runtime configuration for regulator
5539 *
5540 * Called by regulator drivers to register a regulator.
5541 * Returns a valid pointer to struct regulator_dev on success
5542 * or an ERR_PTR() on error.
5543 */
5544struct regulator_dev *
5545regulator_register(struct device *dev,
5546 const struct regulator_desc *regulator_desc,
5547 const struct regulator_config *cfg)
5548{
5549 const struct regulator_init_data *init_data;
5550 struct regulator_config *config = NULL;
5551 static atomic_t regulator_no = ATOMIC_INIT(-1);
5552 struct regulator_dev *rdev;
5553 bool dangling_cfg_gpiod = false;
5554 bool dangling_of_gpiod = false;
5555 int ret, i;
5556 bool resolved_early = false;
5557
5558 if (cfg == NULL)
5559 return ERR_PTR(-EINVAL);
5560 if (cfg->ena_gpiod)
5561 dangling_cfg_gpiod = true;
5562 if (regulator_desc == NULL) {
5563 ret = -EINVAL;
5564 goto rinse;
5565 }
5566
5567 WARN_ON(!dev || !cfg->dev);
5568
5569 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5570 ret = -EINVAL;
5571 goto rinse;
5572 }
5573
5574 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5575 regulator_desc->type != REGULATOR_CURRENT) {
5576 ret = -EINVAL;
5577 goto rinse;
5578 }
5579
5580 /* Only one of each should be implemented */
5581 WARN_ON(regulator_desc->ops->get_voltage &&
5582 regulator_desc->ops->get_voltage_sel);
5583 WARN_ON(regulator_desc->ops->set_voltage &&
5584 regulator_desc->ops->set_voltage_sel);
5585
5586 /* If we're using selectors we must implement list_voltage. */
5587 if (regulator_desc->ops->get_voltage_sel &&
5588 !regulator_desc->ops->list_voltage) {
5589 ret = -EINVAL;
5590 goto rinse;
5591 }
5592 if (regulator_desc->ops->set_voltage_sel &&
5593 !regulator_desc->ops->list_voltage) {
5594 ret = -EINVAL;
5595 goto rinse;
5596 }
5597
5598 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5599 if (rdev == NULL) {
5600 ret = -ENOMEM;
5601 goto rinse;
5602 }
5603 device_initialize(&rdev->dev);
5604 dev_set_drvdata(&rdev->dev, rdev);
5605 rdev->dev.class = ®ulator_class;
5606 spin_lock_init(&rdev->err_lock);
5607
5608 /*
5609 * Duplicate the config so the driver could override it after
5610 * parsing init data.
5611 */
5612 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5613 if (config == NULL) {
5614 ret = -ENOMEM;
5615 goto clean;
5616 }
5617
5618 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5619 &rdev->dev.of_node);
5620
5621 /*
5622 * Sometimes not all resources are probed already so we need to take
5623 * that into account. This happens most the time if the ena_gpiod comes
5624 * from a gpio extender or something else.
5625 */
5626 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5627 ret = -EPROBE_DEFER;
5628 goto clean;
5629 }
5630
5631 /*
5632 * We need to keep track of any GPIO descriptor coming from the
5633 * device tree until we have handled it over to the core. If the
5634 * config that was passed in to this function DOES NOT contain
5635 * a descriptor, and the config after this call DOES contain
5636 * a descriptor, we definitely got one from parsing the device
5637 * tree.
5638 */
5639 if (!cfg->ena_gpiod && config->ena_gpiod)
5640 dangling_of_gpiod = true;
5641 if (!init_data) {
5642 init_data = config->init_data;
5643 rdev->dev.of_node = of_node_get(config->of_node);
5644 }
5645
5646 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5647 rdev->reg_data = config->driver_data;
5648 rdev->owner = regulator_desc->owner;
5649 rdev->desc = regulator_desc;
5650 if (config->regmap)
5651 rdev->regmap = config->regmap;
5652 else if (dev_get_regmap(dev, NULL))
5653 rdev->regmap = dev_get_regmap(dev, NULL);
5654 else if (dev->parent)
5655 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5656 INIT_LIST_HEAD(&rdev->consumer_list);
5657 INIT_LIST_HEAD(&rdev->list);
5658 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5659 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5660
5661 if (init_data && init_data->supply_regulator)
5662 rdev->supply_name = init_data->supply_regulator;
5663 else if (regulator_desc->supply_name)
5664 rdev->supply_name = regulator_desc->supply_name;
5665
5666 /* register with sysfs */
5667 rdev->dev.parent = config->dev;
5668 dev_set_name(&rdev->dev, "regulator.%lu",
5669 (unsigned long) atomic_inc_return(®ulator_no));
5670
5671 /* set regulator constraints */
5672 if (init_data)
5673 rdev->constraints = kmemdup(&init_data->constraints,
5674 sizeof(*rdev->constraints),
5675 GFP_KERNEL);
5676 else
5677 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5678 GFP_KERNEL);
5679 if (!rdev->constraints) {
5680 ret = -ENOMEM;
5681 goto wash;
5682 }
5683
5684 if ((rdev->supply_name && !rdev->supply) &&
5685 (rdev->constraints->always_on ||
5686 rdev->constraints->boot_on)) {
5687 ret = regulator_resolve_supply(rdev);
5688 if (ret)
5689 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5690 ERR_PTR(ret));
5691
5692 resolved_early = true;
5693 }
5694
5695 /* perform any regulator specific init */
5696 if (init_data && init_data->regulator_init) {
5697 ret = init_data->regulator_init(rdev->reg_data);
5698 if (ret < 0)
5699 goto wash;
5700 }
5701
5702 if (config->ena_gpiod) {
5703 ret = regulator_ena_gpio_request(rdev, config);
5704 if (ret != 0) {
5705 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5706 ERR_PTR(ret));
5707 goto wash;
5708 }
5709 /* The regulator core took over the GPIO descriptor */
5710 dangling_cfg_gpiod = false;
5711 dangling_of_gpiod = false;
5712 }
5713
5714 ret = set_machine_constraints(rdev);
5715 if (ret == -EPROBE_DEFER && !resolved_early) {
5716 /* Regulator might be in bypass mode and so needs its supply
5717 * to set the constraints
5718 */
5719 /* FIXME: this currently triggers a chicken-and-egg problem
5720 * when creating -SUPPLY symlink in sysfs to a regulator
5721 * that is just being created
5722 */
5723 rdev_dbg(rdev, "will resolve supply early: %s\n",
5724 rdev->supply_name);
5725 ret = regulator_resolve_supply(rdev);
5726 if (!ret)
5727 ret = set_machine_constraints(rdev);
5728 else
5729 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5730 ERR_PTR(ret));
5731 }
5732 if (ret < 0)
5733 goto wash;
5734
5735 ret = regulator_init_coupling(rdev);
5736 if (ret < 0)
5737 goto wash;
5738
5739 /* add consumers devices */
5740 if (init_data) {
5741 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5742 ret = set_consumer_device_supply(rdev,
5743 init_data->consumer_supplies[i].dev_name,
5744 init_data->consumer_supplies[i].supply);
5745 if (ret < 0) {
5746 dev_err(dev, "Failed to set supply %s\n",
5747 init_data->consumer_supplies[i].supply);
5748 goto unset_supplies;
5749 }
5750 }
5751 }
5752
5753 if (!rdev->desc->ops->get_voltage &&
5754 !rdev->desc->ops->list_voltage &&
5755 !rdev->desc->fixed_uV)
5756 rdev->is_switch = true;
5757
5758 ret = device_add(&rdev->dev);
5759 if (ret != 0)
5760 goto unset_supplies;
5761
5762 rdev_init_debugfs(rdev);
5763
5764 /* try to resolve regulators coupling since a new one was registered */
5765 mutex_lock(®ulator_list_mutex);
5766 regulator_resolve_coupling(rdev);
5767 mutex_unlock(®ulator_list_mutex);
5768
5769 /* try to resolve regulators supply since a new one was registered */
5770 class_for_each_device(®ulator_class, NULL, NULL,
5771 regulator_register_resolve_supply);
5772 kfree(config);
5773 return rdev;
5774
5775unset_supplies:
5776 mutex_lock(®ulator_list_mutex);
5777 unset_regulator_supplies(rdev);
5778 regulator_remove_coupling(rdev);
5779 mutex_unlock(®ulator_list_mutex);
5780wash:
5781 regulator_put(rdev->supply);
5782 kfree(rdev->coupling_desc.coupled_rdevs);
5783 mutex_lock(®ulator_list_mutex);
5784 regulator_ena_gpio_free(rdev);
5785 mutex_unlock(®ulator_list_mutex);
5786clean:
5787 if (dangling_of_gpiod)
5788 gpiod_put(config->ena_gpiod);
5789 kfree(config);
5790 put_device(&rdev->dev);
5791rinse:
5792 if (dangling_cfg_gpiod)
5793 gpiod_put(cfg->ena_gpiod);
5794 return ERR_PTR(ret);
5795}
5796EXPORT_SYMBOL_GPL(regulator_register);
5797
5798/**
5799 * regulator_unregister - unregister regulator
5800 * @rdev: regulator to unregister
5801 *
5802 * Called by regulator drivers to unregister a regulator.
5803 */
5804void regulator_unregister(struct regulator_dev *rdev)
5805{
5806 if (rdev == NULL)
5807 return;
5808
5809 if (rdev->supply) {
5810 while (rdev->use_count--)
5811 regulator_disable(rdev->supply);
5812 regulator_put(rdev->supply);
5813 }
5814
5815 flush_work(&rdev->disable_work.work);
5816
5817 mutex_lock(®ulator_list_mutex);
5818
5819 WARN_ON(rdev->open_count);
5820 regulator_remove_coupling(rdev);
5821 unset_regulator_supplies(rdev);
5822 list_del(&rdev->list);
5823 regulator_ena_gpio_free(rdev);
5824 device_unregister(&rdev->dev);
5825
5826 mutex_unlock(®ulator_list_mutex);
5827}
5828EXPORT_SYMBOL_GPL(regulator_unregister);
5829
5830#ifdef CONFIG_SUSPEND
5831/**
5832 * regulator_suspend - prepare regulators for system wide suspend
5833 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5834 *
5835 * Configure each regulator with it's suspend operating parameters for state.
5836 */
5837static int regulator_suspend(struct device *dev)
5838{
5839 struct regulator_dev *rdev = dev_to_rdev(dev);
5840 suspend_state_t state = pm_suspend_target_state;
5841 int ret;
5842 const struct regulator_state *rstate;
5843
5844 rstate = regulator_get_suspend_state_check(rdev, state);
5845 if (!rstate)
5846 return 0;
5847
5848 regulator_lock(rdev);
5849 ret = __suspend_set_state(rdev, rstate);
5850 regulator_unlock(rdev);
5851
5852 return ret;
5853}
5854
5855static int regulator_resume(struct device *dev)
5856{
5857 suspend_state_t state = pm_suspend_target_state;
5858 struct regulator_dev *rdev = dev_to_rdev(dev);
5859 struct regulator_state *rstate;
5860 int ret = 0;
5861
5862 rstate = regulator_get_suspend_state(rdev, state);
5863 if (rstate == NULL)
5864 return 0;
5865
5866 /* Avoid grabbing the lock if we don't need to */
5867 if (!rdev->desc->ops->resume)
5868 return 0;
5869
5870 regulator_lock(rdev);
5871
5872 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5873 rstate->enabled == DISABLE_IN_SUSPEND)
5874 ret = rdev->desc->ops->resume(rdev);
5875
5876 regulator_unlock(rdev);
5877
5878 return ret;
5879}
5880#else /* !CONFIG_SUSPEND */
5881
5882#define regulator_suspend NULL
5883#define regulator_resume NULL
5884
5885#endif /* !CONFIG_SUSPEND */
5886
5887#ifdef CONFIG_PM
5888static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5889 .suspend = regulator_suspend,
5890 .resume = regulator_resume,
5891};
5892#endif
5893
5894struct class regulator_class = {
5895 .name = "regulator",
5896 .dev_release = regulator_dev_release,
5897 .dev_groups = regulator_dev_groups,
5898#ifdef CONFIG_PM
5899 .pm = ®ulator_pm_ops,
5900#endif
5901};
5902/**
5903 * regulator_has_full_constraints - the system has fully specified constraints
5904 *
5905 * Calling this function will cause the regulator API to disable all
5906 * regulators which have a zero use count and don't have an always_on
5907 * constraint in a late_initcall.
5908 *
5909 * The intention is that this will become the default behaviour in a
5910 * future kernel release so users are encouraged to use this facility
5911 * now.
5912 */
5913void regulator_has_full_constraints(void)
5914{
5915 has_full_constraints = 1;
5916}
5917EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5918
5919/**
5920 * rdev_get_drvdata - get rdev regulator driver data
5921 * @rdev: regulator
5922 *
5923 * Get rdev regulator driver private data. This call can be used in the
5924 * regulator driver context.
5925 */
5926void *rdev_get_drvdata(struct regulator_dev *rdev)
5927{
5928 return rdev->reg_data;
5929}
5930EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5931
5932/**
5933 * regulator_get_drvdata - get regulator driver data
5934 * @regulator: regulator
5935 *
5936 * Get regulator driver private data. This call can be used in the consumer
5937 * driver context when non API regulator specific functions need to be called.
5938 */
5939void *regulator_get_drvdata(struct regulator *regulator)
5940{
5941 return regulator->rdev->reg_data;
5942}
5943EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5944
5945/**
5946 * regulator_set_drvdata - set regulator driver data
5947 * @regulator: regulator
5948 * @data: data
5949 */
5950void regulator_set_drvdata(struct regulator *regulator, void *data)
5951{
5952 regulator->rdev->reg_data = data;
5953}
5954EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5955
5956/**
5957 * rdev_get_id - get regulator ID
5958 * @rdev: regulator
5959 */
5960int rdev_get_id(struct regulator_dev *rdev)
5961{
5962 return rdev->desc->id;
5963}
5964EXPORT_SYMBOL_GPL(rdev_get_id);
5965
5966struct device *rdev_get_dev(struct regulator_dev *rdev)
5967{
5968 return &rdev->dev;
5969}
5970EXPORT_SYMBOL_GPL(rdev_get_dev);
5971
5972struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5973{
5974 return rdev->regmap;
5975}
5976EXPORT_SYMBOL_GPL(rdev_get_regmap);
5977
5978void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5979{
5980 return reg_init_data->driver_data;
5981}
5982EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5983
5984#ifdef CONFIG_DEBUG_FS
5985static int supply_map_show(struct seq_file *sf, void *data)
5986{
5987 struct regulator_map *map;
5988
5989 list_for_each_entry(map, ®ulator_map_list, list) {
5990 seq_printf(sf, "%s -> %s.%s\n",
5991 rdev_get_name(map->regulator), map->dev_name,
5992 map->supply);
5993 }
5994
5995 return 0;
5996}
5997DEFINE_SHOW_ATTRIBUTE(supply_map);
5998
5999struct summary_data {
6000 struct seq_file *s;
6001 struct regulator_dev *parent;
6002 int level;
6003};
6004
6005static void regulator_summary_show_subtree(struct seq_file *s,
6006 struct regulator_dev *rdev,
6007 int level);
6008
6009static int regulator_summary_show_children(struct device *dev, void *data)
6010{
6011 struct regulator_dev *rdev = dev_to_rdev(dev);
6012 struct summary_data *summary_data = data;
6013
6014 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6015 regulator_summary_show_subtree(summary_data->s, rdev,
6016 summary_data->level + 1);
6017
6018 return 0;
6019}
6020
6021static void regulator_summary_show_subtree(struct seq_file *s,
6022 struct regulator_dev *rdev,
6023 int level)
6024{
6025 struct regulation_constraints *c;
6026 struct regulator *consumer;
6027 struct summary_data summary_data;
6028 unsigned int opmode;
6029
6030 if (!rdev)
6031 return;
6032
6033 opmode = _regulator_get_mode_unlocked(rdev);
6034 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6035 level * 3 + 1, "",
6036 30 - level * 3, rdev_get_name(rdev),
6037 rdev->use_count, rdev->open_count, rdev->bypass_count,
6038 regulator_opmode_to_str(opmode));
6039
6040 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6041 seq_printf(s, "%5dmA ",
6042 _regulator_get_current_limit_unlocked(rdev) / 1000);
6043
6044 c = rdev->constraints;
6045 if (c) {
6046 switch (rdev->desc->type) {
6047 case REGULATOR_VOLTAGE:
6048 seq_printf(s, "%5dmV %5dmV ",
6049 c->min_uV / 1000, c->max_uV / 1000);
6050 break;
6051 case REGULATOR_CURRENT:
6052 seq_printf(s, "%5dmA %5dmA ",
6053 c->min_uA / 1000, c->max_uA / 1000);
6054 break;
6055 }
6056 }
6057
6058 seq_puts(s, "\n");
6059
6060 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6061 if (consumer->dev && consumer->dev->class == ®ulator_class)
6062 continue;
6063
6064 seq_printf(s, "%*s%-*s ",
6065 (level + 1) * 3 + 1, "",
6066 30 - (level + 1) * 3,
6067 consumer->supply_name ? consumer->supply_name :
6068 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6069
6070 switch (rdev->desc->type) {
6071 case REGULATOR_VOLTAGE:
6072 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6073 consumer->enable_count,
6074 consumer->uA_load / 1000,
6075 consumer->uA_load && !consumer->enable_count ?
6076 '*' : ' ',
6077 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6078 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6079 break;
6080 case REGULATOR_CURRENT:
6081 break;
6082 }
6083
6084 seq_puts(s, "\n");
6085 }
6086
6087 summary_data.s = s;
6088 summary_data.level = level;
6089 summary_data.parent = rdev;
6090
6091 class_for_each_device(®ulator_class, NULL, &summary_data,
6092 regulator_summary_show_children);
6093}
6094
6095struct summary_lock_data {
6096 struct ww_acquire_ctx *ww_ctx;
6097 struct regulator_dev **new_contended_rdev;
6098 struct regulator_dev **old_contended_rdev;
6099};
6100
6101static int regulator_summary_lock_one(struct device *dev, void *data)
6102{
6103 struct regulator_dev *rdev = dev_to_rdev(dev);
6104 struct summary_lock_data *lock_data = data;
6105 int ret = 0;
6106
6107 if (rdev != *lock_data->old_contended_rdev) {
6108 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6109
6110 if (ret == -EDEADLK)
6111 *lock_data->new_contended_rdev = rdev;
6112 else
6113 WARN_ON_ONCE(ret);
6114 } else {
6115 *lock_data->old_contended_rdev = NULL;
6116 }
6117
6118 return ret;
6119}
6120
6121static int regulator_summary_unlock_one(struct device *dev, void *data)
6122{
6123 struct regulator_dev *rdev = dev_to_rdev(dev);
6124 struct summary_lock_data *lock_data = data;
6125
6126 if (lock_data) {
6127 if (rdev == *lock_data->new_contended_rdev)
6128 return -EDEADLK;
6129 }
6130
6131 regulator_unlock(rdev);
6132
6133 return 0;
6134}
6135
6136static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6137 struct regulator_dev **new_contended_rdev,
6138 struct regulator_dev **old_contended_rdev)
6139{
6140 struct summary_lock_data lock_data;
6141 int ret;
6142
6143 lock_data.ww_ctx = ww_ctx;
6144 lock_data.new_contended_rdev = new_contended_rdev;
6145 lock_data.old_contended_rdev = old_contended_rdev;
6146
6147 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6148 regulator_summary_lock_one);
6149 if (ret)
6150 class_for_each_device(®ulator_class, NULL, &lock_data,
6151 regulator_summary_unlock_one);
6152
6153 return ret;
6154}
6155
6156static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6157{
6158 struct regulator_dev *new_contended_rdev = NULL;
6159 struct regulator_dev *old_contended_rdev = NULL;
6160 int err;
6161
6162 mutex_lock(®ulator_list_mutex);
6163
6164 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6165
6166 do {
6167 if (new_contended_rdev) {
6168 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6169 old_contended_rdev = new_contended_rdev;
6170 old_contended_rdev->ref_cnt++;
6171 old_contended_rdev->mutex_owner = current;
6172 }
6173
6174 err = regulator_summary_lock_all(ww_ctx,
6175 &new_contended_rdev,
6176 &old_contended_rdev);
6177
6178 if (old_contended_rdev)
6179 regulator_unlock(old_contended_rdev);
6180
6181 } while (err == -EDEADLK);
6182
6183 ww_acquire_done(ww_ctx);
6184}
6185
6186static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6187{
6188 class_for_each_device(®ulator_class, NULL, NULL,
6189 regulator_summary_unlock_one);
6190 ww_acquire_fini(ww_ctx);
6191
6192 mutex_unlock(®ulator_list_mutex);
6193}
6194
6195static int regulator_summary_show_roots(struct device *dev, void *data)
6196{
6197 struct regulator_dev *rdev = dev_to_rdev(dev);
6198 struct seq_file *s = data;
6199
6200 if (!rdev->supply)
6201 regulator_summary_show_subtree(s, rdev, 0);
6202
6203 return 0;
6204}
6205
6206static int regulator_summary_show(struct seq_file *s, void *data)
6207{
6208 struct ww_acquire_ctx ww_ctx;
6209
6210 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6211 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6212
6213 regulator_summary_lock(&ww_ctx);
6214
6215 class_for_each_device(®ulator_class, NULL, s,
6216 regulator_summary_show_roots);
6217
6218 regulator_summary_unlock(&ww_ctx);
6219
6220 return 0;
6221}
6222DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6223#endif /* CONFIG_DEBUG_FS */
6224
6225static int __init regulator_init(void)
6226{
6227 int ret;
6228
6229 ret = class_register(®ulator_class);
6230
6231 debugfs_root = debugfs_create_dir("regulator", NULL);
6232 if (IS_ERR(debugfs_root))
6233 pr_debug("regulator: Failed to create debugfs directory\n");
6234
6235#ifdef CONFIG_DEBUG_FS
6236 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6237 &supply_map_fops);
6238
6239 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6240 NULL, ®ulator_summary_fops);
6241#endif
6242 regulator_dummy_init();
6243
6244 regulator_coupler_register(&generic_regulator_coupler);
6245
6246 return ret;
6247}
6248
6249/* init early to allow our consumers to complete system booting */
6250core_initcall(regulator_init);
6251
6252static int regulator_late_cleanup(struct device *dev, void *data)
6253{
6254 struct regulator_dev *rdev = dev_to_rdev(dev);
6255 struct regulation_constraints *c = rdev->constraints;
6256 int ret;
6257
6258 if (c && c->always_on)
6259 return 0;
6260
6261 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6262 return 0;
6263
6264 regulator_lock(rdev);
6265
6266 if (rdev->use_count)
6267 goto unlock;
6268
6269 /* If reading the status failed, assume that it's off. */
6270 if (_regulator_is_enabled(rdev) <= 0)
6271 goto unlock;
6272
6273 if (have_full_constraints()) {
6274 /* We log since this may kill the system if it goes
6275 * wrong.
6276 */
6277 rdev_info(rdev, "disabling\n");
6278 ret = _regulator_do_disable(rdev);
6279 if (ret != 0)
6280 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6281 } else {
6282 /* The intention is that in future we will
6283 * assume that full constraints are provided
6284 * so warn even if we aren't going to do
6285 * anything here.
6286 */
6287 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6288 }
6289
6290unlock:
6291 regulator_unlock(rdev);
6292
6293 return 0;
6294}
6295
6296static bool regulator_ignore_unused;
6297static int __init regulator_ignore_unused_setup(char *__unused)
6298{
6299 regulator_ignore_unused = true;
6300 return 1;
6301}
6302__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6303
6304static void regulator_init_complete_work_function(struct work_struct *work)
6305{
6306 /*
6307 * Regulators may had failed to resolve their input supplies
6308 * when were registered, either because the input supply was
6309 * not registered yet or because its parent device was not
6310 * bound yet. So attempt to resolve the input supplies for
6311 * pending regulators before trying to disable unused ones.
6312 */
6313 class_for_each_device(®ulator_class, NULL, NULL,
6314 regulator_register_resolve_supply);
6315
6316 /*
6317 * For debugging purposes, it may be useful to prevent unused
6318 * regulators from being disabled.
6319 */
6320 if (regulator_ignore_unused) {
6321 pr_warn("regulator: Not disabling unused regulators\n");
6322 return;
6323 }
6324
6325 /* If we have a full configuration then disable any regulators
6326 * we have permission to change the status for and which are
6327 * not in use or always_on. This is effectively the default
6328 * for DT and ACPI as they have full constraints.
6329 */
6330 class_for_each_device(®ulator_class, NULL, NULL,
6331 regulator_late_cleanup);
6332}
6333
6334static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6335 regulator_init_complete_work_function);
6336
6337static int __init regulator_init_complete(void)
6338{
6339 /*
6340 * Since DT doesn't provide an idiomatic mechanism for
6341 * enabling full constraints and since it's much more natural
6342 * with DT to provide them just assume that a DT enabled
6343 * system has full constraints.
6344 */
6345 if (of_have_populated_dt())
6346 has_full_constraints = true;
6347
6348 /*
6349 * We punt completion for an arbitrary amount of time since
6350 * systems like distros will load many drivers from userspace
6351 * so consumers might not always be ready yet, this is
6352 * particularly an issue with laptops where this might bounce
6353 * the display off then on. Ideally we'd get a notification
6354 * from userspace when this happens but we don't so just wait
6355 * a bit and hope we waited long enough. It'd be better if
6356 * we'd only do this on systems that need it, and a kernel
6357 * command line option might be useful.
6358 */
6359 schedule_delayed_work(®ulator_init_complete_work,
6360 msecs_to_jiffies(30000));
6361
6362 return 0;
6363}
6364late_initcall_sync(regulator_init_complete);
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36static DEFINE_WW_CLASS(regulator_ww_class);
37static DEFINE_MUTEX(regulator_nesting_mutex);
38static DEFINE_MUTEX(regulator_list_mutex);
39static LIST_HEAD(regulator_map_list);
40static LIST_HEAD(regulator_ena_gpio_list);
41static LIST_HEAD(regulator_supply_alias_list);
42static LIST_HEAD(regulator_coupler_list);
43static bool has_full_constraints;
44
45static struct dentry *debugfs_root;
46
47/*
48 * struct regulator_map
49 *
50 * Used to provide symbolic supply names to devices.
51 */
52struct regulator_map {
53 struct list_head list;
54 const char *dev_name; /* The dev_name() for the consumer */
55 const char *supply;
56 struct regulator_dev *regulator;
57};
58
59/*
60 * struct regulator_enable_gpio
61 *
62 * Management for shared enable GPIO pin
63 */
64struct regulator_enable_gpio {
65 struct list_head list;
66 struct gpio_desc *gpiod;
67 u32 enable_count; /* a number of enabled shared GPIO */
68 u32 request_count; /* a number of requested shared GPIO */
69};
70
71/*
72 * struct regulator_supply_alias
73 *
74 * Used to map lookups for a supply onto an alternative device.
75 */
76struct regulator_supply_alias {
77 struct list_head list;
78 struct device *src_dev;
79 const char *src_supply;
80 struct device *alias_dev;
81 const char *alias_supply;
82};
83
84static int _regulator_is_enabled(struct regulator_dev *rdev);
85static int _regulator_disable(struct regulator *regulator);
86static int _regulator_get_current_limit(struct regulator_dev *rdev);
87static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
88static int _notifier_call_chain(struct regulator_dev *rdev,
89 unsigned long event, void *data);
90static int _regulator_do_set_voltage(struct regulator_dev *rdev,
91 int min_uV, int max_uV);
92static int regulator_balance_voltage(struct regulator_dev *rdev,
93 suspend_state_t state);
94static struct regulator *create_regulator(struct regulator_dev *rdev,
95 struct device *dev,
96 const char *supply_name);
97static void destroy_regulator(struct regulator *regulator);
98static void _regulator_put(struct regulator *regulator);
99
100const char *rdev_get_name(struct regulator_dev *rdev)
101{
102 if (rdev->constraints && rdev->constraints->name)
103 return rdev->constraints->name;
104 else if (rdev->desc->name)
105 return rdev->desc->name;
106 else
107 return "";
108}
109EXPORT_SYMBOL_GPL(rdev_get_name);
110
111static bool have_full_constraints(void)
112{
113 return has_full_constraints || of_have_populated_dt();
114}
115
116static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
117{
118 if (!rdev->constraints) {
119 rdev_err(rdev, "no constraints\n");
120 return false;
121 }
122
123 if (rdev->constraints->valid_ops_mask & ops)
124 return true;
125
126 return false;
127}
128
129/**
130 * regulator_lock_nested - lock a single regulator
131 * @rdev: regulator source
132 * @ww_ctx: w/w mutex acquire context
133 *
134 * This function can be called many times by one task on
135 * a single regulator and its mutex will be locked only
136 * once. If a task, which is calling this function is other
137 * than the one, which initially locked the mutex, it will
138 * wait on mutex.
139 */
140static inline int regulator_lock_nested(struct regulator_dev *rdev,
141 struct ww_acquire_ctx *ww_ctx)
142{
143 bool lock = false;
144 int ret = 0;
145
146 mutex_lock(®ulator_nesting_mutex);
147
148 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
149 if (rdev->mutex_owner == current)
150 rdev->ref_cnt++;
151 else
152 lock = true;
153
154 if (lock) {
155 mutex_unlock(®ulator_nesting_mutex);
156 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
157 mutex_lock(®ulator_nesting_mutex);
158 }
159 } else {
160 lock = true;
161 }
162
163 if (lock && ret != -EDEADLK) {
164 rdev->ref_cnt++;
165 rdev->mutex_owner = current;
166 }
167
168 mutex_unlock(®ulator_nesting_mutex);
169
170 return ret;
171}
172
173/**
174 * regulator_lock - lock a single regulator
175 * @rdev: regulator source
176 *
177 * This function can be called many times by one task on
178 * a single regulator and its mutex will be locked only
179 * once. If a task, which is calling this function is other
180 * than the one, which initially locked the mutex, it will
181 * wait on mutex.
182 */
183static void regulator_lock(struct regulator_dev *rdev)
184{
185 regulator_lock_nested(rdev, NULL);
186}
187
188/**
189 * regulator_unlock - unlock a single regulator
190 * @rdev: regulator_source
191 *
192 * This function unlocks the mutex when the
193 * reference counter reaches 0.
194 */
195static void regulator_unlock(struct regulator_dev *rdev)
196{
197 mutex_lock(®ulator_nesting_mutex);
198
199 if (--rdev->ref_cnt == 0) {
200 rdev->mutex_owner = NULL;
201 ww_mutex_unlock(&rdev->mutex);
202 }
203
204 WARN_ON_ONCE(rdev->ref_cnt < 0);
205
206 mutex_unlock(®ulator_nesting_mutex);
207}
208
209static bool regulator_supply_is_couple(struct regulator_dev *rdev)
210{
211 struct regulator_dev *c_rdev;
212 int i;
213
214 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
215 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
216
217 if (rdev->supply->rdev == c_rdev)
218 return true;
219 }
220
221 return false;
222}
223
224static void regulator_unlock_recursive(struct regulator_dev *rdev,
225 unsigned int n_coupled)
226{
227 struct regulator_dev *c_rdev, *supply_rdev;
228 int i, supply_n_coupled;
229
230 for (i = n_coupled; i > 0; i--) {
231 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
232
233 if (!c_rdev)
234 continue;
235
236 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
237 supply_rdev = c_rdev->supply->rdev;
238 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
239
240 regulator_unlock_recursive(supply_rdev,
241 supply_n_coupled);
242 }
243
244 regulator_unlock(c_rdev);
245 }
246}
247
248static int regulator_lock_recursive(struct regulator_dev *rdev,
249 struct regulator_dev **new_contended_rdev,
250 struct regulator_dev **old_contended_rdev,
251 struct ww_acquire_ctx *ww_ctx)
252{
253 struct regulator_dev *c_rdev;
254 int i, err;
255
256 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
257 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
258
259 if (!c_rdev)
260 continue;
261
262 if (c_rdev != *old_contended_rdev) {
263 err = regulator_lock_nested(c_rdev, ww_ctx);
264 if (err) {
265 if (err == -EDEADLK) {
266 *new_contended_rdev = c_rdev;
267 goto err_unlock;
268 }
269
270 /* shouldn't happen */
271 WARN_ON_ONCE(err != -EALREADY);
272 }
273 } else {
274 *old_contended_rdev = NULL;
275 }
276
277 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
278 err = regulator_lock_recursive(c_rdev->supply->rdev,
279 new_contended_rdev,
280 old_contended_rdev,
281 ww_ctx);
282 if (err) {
283 regulator_unlock(c_rdev);
284 goto err_unlock;
285 }
286 }
287 }
288
289 return 0;
290
291err_unlock:
292 regulator_unlock_recursive(rdev, i);
293
294 return err;
295}
296
297/**
298 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
299 * regulators
300 * @rdev: regulator source
301 * @ww_ctx: w/w mutex acquire context
302 *
303 * Unlock all regulators related with rdev by coupling or supplying.
304 */
305static void regulator_unlock_dependent(struct regulator_dev *rdev,
306 struct ww_acquire_ctx *ww_ctx)
307{
308 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
309 ww_acquire_fini(ww_ctx);
310}
311
312/**
313 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
314 * @rdev: regulator source
315 * @ww_ctx: w/w mutex acquire context
316 *
317 * This function as a wrapper on regulator_lock_recursive(), which locks
318 * all regulators related with rdev by coupling or supplying.
319 */
320static void regulator_lock_dependent(struct regulator_dev *rdev,
321 struct ww_acquire_ctx *ww_ctx)
322{
323 struct regulator_dev *new_contended_rdev = NULL;
324 struct regulator_dev *old_contended_rdev = NULL;
325 int err;
326
327 mutex_lock(®ulator_list_mutex);
328
329 ww_acquire_init(ww_ctx, ®ulator_ww_class);
330
331 do {
332 if (new_contended_rdev) {
333 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
334 old_contended_rdev = new_contended_rdev;
335 old_contended_rdev->ref_cnt++;
336 }
337
338 err = regulator_lock_recursive(rdev,
339 &new_contended_rdev,
340 &old_contended_rdev,
341 ww_ctx);
342
343 if (old_contended_rdev)
344 regulator_unlock(old_contended_rdev);
345
346 } while (err == -EDEADLK);
347
348 ww_acquire_done(ww_ctx);
349
350 mutex_unlock(®ulator_list_mutex);
351}
352
353/**
354 * of_get_child_regulator - get a child regulator device node
355 * based on supply name
356 * @parent: Parent device node
357 * @prop_name: Combination regulator supply name and "-supply"
358 *
359 * Traverse all child nodes.
360 * Extract the child regulator device node corresponding to the supply name.
361 * returns the device node corresponding to the regulator if found, else
362 * returns NULL.
363 */
364static struct device_node *of_get_child_regulator(struct device_node *parent,
365 const char *prop_name)
366{
367 struct device_node *regnode = NULL;
368 struct device_node *child = NULL;
369
370 for_each_child_of_node(parent, child) {
371 regnode = of_parse_phandle(child, prop_name, 0);
372
373 if (!regnode) {
374 regnode = of_get_child_regulator(child, prop_name);
375 if (regnode)
376 goto err_node_put;
377 } else {
378 goto err_node_put;
379 }
380 }
381 return NULL;
382
383err_node_put:
384 of_node_put(child);
385 return regnode;
386}
387
388/**
389 * of_get_regulator - get a regulator device node based on supply name
390 * @dev: Device pointer for the consumer (of regulator) device
391 * @supply: regulator supply name
392 *
393 * Extract the regulator device node corresponding to the supply name.
394 * returns the device node corresponding to the regulator if found, else
395 * returns NULL.
396 */
397static struct device_node *of_get_regulator(struct device *dev, const char *supply)
398{
399 struct device_node *regnode = NULL;
400 char prop_name[64]; /* 64 is max size of property name */
401
402 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
403
404 snprintf(prop_name, 64, "%s-supply", supply);
405 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
406
407 if (!regnode) {
408 regnode = of_get_child_regulator(dev->of_node, prop_name);
409 if (regnode)
410 return regnode;
411
412 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
413 prop_name, dev->of_node);
414 return NULL;
415 }
416 return regnode;
417}
418
419/* Platform voltage constraint check */
420int regulator_check_voltage(struct regulator_dev *rdev,
421 int *min_uV, int *max_uV)
422{
423 BUG_ON(*min_uV > *max_uV);
424
425 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
426 rdev_err(rdev, "voltage operation not allowed\n");
427 return -EPERM;
428 }
429
430 if (*max_uV > rdev->constraints->max_uV)
431 *max_uV = rdev->constraints->max_uV;
432 if (*min_uV < rdev->constraints->min_uV)
433 *min_uV = rdev->constraints->min_uV;
434
435 if (*min_uV > *max_uV) {
436 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
437 *min_uV, *max_uV);
438 return -EINVAL;
439 }
440
441 return 0;
442}
443
444/* return 0 if the state is valid */
445static int regulator_check_states(suspend_state_t state)
446{
447 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
448}
449
450/* Make sure we select a voltage that suits the needs of all
451 * regulator consumers
452 */
453int regulator_check_consumers(struct regulator_dev *rdev,
454 int *min_uV, int *max_uV,
455 suspend_state_t state)
456{
457 struct regulator *regulator;
458 struct regulator_voltage *voltage;
459
460 list_for_each_entry(regulator, &rdev->consumer_list, list) {
461 voltage = ®ulator->voltage[state];
462 /*
463 * Assume consumers that didn't say anything are OK
464 * with anything in the constraint range.
465 */
466 if (!voltage->min_uV && !voltage->max_uV)
467 continue;
468
469 if (*max_uV > voltage->max_uV)
470 *max_uV = voltage->max_uV;
471 if (*min_uV < voltage->min_uV)
472 *min_uV = voltage->min_uV;
473 }
474
475 if (*min_uV > *max_uV) {
476 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
477 *min_uV, *max_uV);
478 return -EINVAL;
479 }
480
481 return 0;
482}
483
484/* current constraint check */
485static int regulator_check_current_limit(struct regulator_dev *rdev,
486 int *min_uA, int *max_uA)
487{
488 BUG_ON(*min_uA > *max_uA);
489
490 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
491 rdev_err(rdev, "current operation not allowed\n");
492 return -EPERM;
493 }
494
495 if (*max_uA > rdev->constraints->max_uA)
496 *max_uA = rdev->constraints->max_uA;
497 if (*min_uA < rdev->constraints->min_uA)
498 *min_uA = rdev->constraints->min_uA;
499
500 if (*min_uA > *max_uA) {
501 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
502 *min_uA, *max_uA);
503 return -EINVAL;
504 }
505
506 return 0;
507}
508
509/* operating mode constraint check */
510static int regulator_mode_constrain(struct regulator_dev *rdev,
511 unsigned int *mode)
512{
513 switch (*mode) {
514 case REGULATOR_MODE_FAST:
515 case REGULATOR_MODE_NORMAL:
516 case REGULATOR_MODE_IDLE:
517 case REGULATOR_MODE_STANDBY:
518 break;
519 default:
520 rdev_err(rdev, "invalid mode %x specified\n", *mode);
521 return -EINVAL;
522 }
523
524 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
525 rdev_err(rdev, "mode operation not allowed\n");
526 return -EPERM;
527 }
528
529 /* The modes are bitmasks, the most power hungry modes having
530 * the lowest values. If the requested mode isn't supported
531 * try higher modes.
532 */
533 while (*mode) {
534 if (rdev->constraints->valid_modes_mask & *mode)
535 return 0;
536 *mode /= 2;
537 }
538
539 return -EINVAL;
540}
541
542static inline struct regulator_state *
543regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
544{
545 if (rdev->constraints == NULL)
546 return NULL;
547
548 switch (state) {
549 case PM_SUSPEND_STANDBY:
550 return &rdev->constraints->state_standby;
551 case PM_SUSPEND_MEM:
552 return &rdev->constraints->state_mem;
553 case PM_SUSPEND_MAX:
554 return &rdev->constraints->state_disk;
555 default:
556 return NULL;
557 }
558}
559
560static const struct regulator_state *
561regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
562{
563 const struct regulator_state *rstate;
564
565 rstate = regulator_get_suspend_state(rdev, state);
566 if (rstate == NULL)
567 return NULL;
568
569 /* If we have no suspend mode configuration don't set anything;
570 * only warn if the driver implements set_suspend_voltage or
571 * set_suspend_mode callback.
572 */
573 if (rstate->enabled != ENABLE_IN_SUSPEND &&
574 rstate->enabled != DISABLE_IN_SUSPEND) {
575 if (rdev->desc->ops->set_suspend_voltage ||
576 rdev->desc->ops->set_suspend_mode)
577 rdev_warn(rdev, "No configuration\n");
578 return NULL;
579 }
580
581 return rstate;
582}
583
584static ssize_t microvolts_show(struct device *dev,
585 struct device_attribute *attr, char *buf)
586{
587 struct regulator_dev *rdev = dev_get_drvdata(dev);
588 int uV;
589
590 regulator_lock(rdev);
591 uV = regulator_get_voltage_rdev(rdev);
592 regulator_unlock(rdev);
593
594 if (uV < 0)
595 return uV;
596 return sprintf(buf, "%d\n", uV);
597}
598static DEVICE_ATTR_RO(microvolts);
599
600static ssize_t microamps_show(struct device *dev,
601 struct device_attribute *attr, char *buf)
602{
603 struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
606}
607static DEVICE_ATTR_RO(microamps);
608
609static ssize_t name_show(struct device *dev, struct device_attribute *attr,
610 char *buf)
611{
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614 return sprintf(buf, "%s\n", rdev_get_name(rdev));
615}
616static DEVICE_ATTR_RO(name);
617
618static const char *regulator_opmode_to_str(int mode)
619{
620 switch (mode) {
621 case REGULATOR_MODE_FAST:
622 return "fast";
623 case REGULATOR_MODE_NORMAL:
624 return "normal";
625 case REGULATOR_MODE_IDLE:
626 return "idle";
627 case REGULATOR_MODE_STANDBY:
628 return "standby";
629 }
630 return "unknown";
631}
632
633static ssize_t regulator_print_opmode(char *buf, int mode)
634{
635 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
636}
637
638static ssize_t opmode_show(struct device *dev,
639 struct device_attribute *attr, char *buf)
640{
641 struct regulator_dev *rdev = dev_get_drvdata(dev);
642
643 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
644}
645static DEVICE_ATTR_RO(opmode);
646
647static ssize_t regulator_print_state(char *buf, int state)
648{
649 if (state > 0)
650 return sprintf(buf, "enabled\n");
651 else if (state == 0)
652 return sprintf(buf, "disabled\n");
653 else
654 return sprintf(buf, "unknown\n");
655}
656
657static ssize_t state_show(struct device *dev,
658 struct device_attribute *attr, char *buf)
659{
660 struct regulator_dev *rdev = dev_get_drvdata(dev);
661 ssize_t ret;
662
663 regulator_lock(rdev);
664 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
665 regulator_unlock(rdev);
666
667 return ret;
668}
669static DEVICE_ATTR_RO(state);
670
671static ssize_t status_show(struct device *dev,
672 struct device_attribute *attr, char *buf)
673{
674 struct regulator_dev *rdev = dev_get_drvdata(dev);
675 int status;
676 char *label;
677
678 status = rdev->desc->ops->get_status(rdev);
679 if (status < 0)
680 return status;
681
682 switch (status) {
683 case REGULATOR_STATUS_OFF:
684 label = "off";
685 break;
686 case REGULATOR_STATUS_ON:
687 label = "on";
688 break;
689 case REGULATOR_STATUS_ERROR:
690 label = "error";
691 break;
692 case REGULATOR_STATUS_FAST:
693 label = "fast";
694 break;
695 case REGULATOR_STATUS_NORMAL:
696 label = "normal";
697 break;
698 case REGULATOR_STATUS_IDLE:
699 label = "idle";
700 break;
701 case REGULATOR_STATUS_STANDBY:
702 label = "standby";
703 break;
704 case REGULATOR_STATUS_BYPASS:
705 label = "bypass";
706 break;
707 case REGULATOR_STATUS_UNDEFINED:
708 label = "undefined";
709 break;
710 default:
711 return -ERANGE;
712 }
713
714 return sprintf(buf, "%s\n", label);
715}
716static DEVICE_ATTR_RO(status);
717
718static ssize_t min_microamps_show(struct device *dev,
719 struct device_attribute *attr, char *buf)
720{
721 struct regulator_dev *rdev = dev_get_drvdata(dev);
722
723 if (!rdev->constraints)
724 return sprintf(buf, "constraint not defined\n");
725
726 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
727}
728static DEVICE_ATTR_RO(min_microamps);
729
730static ssize_t max_microamps_show(struct device *dev,
731 struct device_attribute *attr, char *buf)
732{
733 struct regulator_dev *rdev = dev_get_drvdata(dev);
734
735 if (!rdev->constraints)
736 return sprintf(buf, "constraint not defined\n");
737
738 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
739}
740static DEVICE_ATTR_RO(max_microamps);
741
742static ssize_t min_microvolts_show(struct device *dev,
743 struct device_attribute *attr, char *buf)
744{
745 struct regulator_dev *rdev = dev_get_drvdata(dev);
746
747 if (!rdev->constraints)
748 return sprintf(buf, "constraint not defined\n");
749
750 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
751}
752static DEVICE_ATTR_RO(min_microvolts);
753
754static ssize_t max_microvolts_show(struct device *dev,
755 struct device_attribute *attr, char *buf)
756{
757 struct regulator_dev *rdev = dev_get_drvdata(dev);
758
759 if (!rdev->constraints)
760 return sprintf(buf, "constraint not defined\n");
761
762 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
763}
764static DEVICE_ATTR_RO(max_microvolts);
765
766static ssize_t requested_microamps_show(struct device *dev,
767 struct device_attribute *attr, char *buf)
768{
769 struct regulator_dev *rdev = dev_get_drvdata(dev);
770 struct regulator *regulator;
771 int uA = 0;
772
773 regulator_lock(rdev);
774 list_for_each_entry(regulator, &rdev->consumer_list, list) {
775 if (regulator->enable_count)
776 uA += regulator->uA_load;
777 }
778 regulator_unlock(rdev);
779 return sprintf(buf, "%d\n", uA);
780}
781static DEVICE_ATTR_RO(requested_microamps);
782
783static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
784 char *buf)
785{
786 struct regulator_dev *rdev = dev_get_drvdata(dev);
787 return sprintf(buf, "%d\n", rdev->use_count);
788}
789static DEVICE_ATTR_RO(num_users);
790
791static ssize_t type_show(struct device *dev, struct device_attribute *attr,
792 char *buf)
793{
794 struct regulator_dev *rdev = dev_get_drvdata(dev);
795
796 switch (rdev->desc->type) {
797 case REGULATOR_VOLTAGE:
798 return sprintf(buf, "voltage\n");
799 case REGULATOR_CURRENT:
800 return sprintf(buf, "current\n");
801 }
802 return sprintf(buf, "unknown\n");
803}
804static DEVICE_ATTR_RO(type);
805
806static ssize_t suspend_mem_microvolts_show(struct device *dev,
807 struct device_attribute *attr, char *buf)
808{
809 struct regulator_dev *rdev = dev_get_drvdata(dev);
810
811 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
812}
813static DEVICE_ATTR_RO(suspend_mem_microvolts);
814
815static ssize_t suspend_disk_microvolts_show(struct device *dev,
816 struct device_attribute *attr, char *buf)
817{
818 struct regulator_dev *rdev = dev_get_drvdata(dev);
819
820 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
821}
822static DEVICE_ATTR_RO(suspend_disk_microvolts);
823
824static ssize_t suspend_standby_microvolts_show(struct device *dev,
825 struct device_attribute *attr, char *buf)
826{
827 struct regulator_dev *rdev = dev_get_drvdata(dev);
828
829 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
830}
831static DEVICE_ATTR_RO(suspend_standby_microvolts);
832
833static ssize_t suspend_mem_mode_show(struct device *dev,
834 struct device_attribute *attr, char *buf)
835{
836 struct regulator_dev *rdev = dev_get_drvdata(dev);
837
838 return regulator_print_opmode(buf,
839 rdev->constraints->state_mem.mode);
840}
841static DEVICE_ATTR_RO(suspend_mem_mode);
842
843static ssize_t suspend_disk_mode_show(struct device *dev,
844 struct device_attribute *attr, char *buf)
845{
846 struct regulator_dev *rdev = dev_get_drvdata(dev);
847
848 return regulator_print_opmode(buf,
849 rdev->constraints->state_disk.mode);
850}
851static DEVICE_ATTR_RO(suspend_disk_mode);
852
853static ssize_t suspend_standby_mode_show(struct device *dev,
854 struct device_attribute *attr, char *buf)
855{
856 struct regulator_dev *rdev = dev_get_drvdata(dev);
857
858 return regulator_print_opmode(buf,
859 rdev->constraints->state_standby.mode);
860}
861static DEVICE_ATTR_RO(suspend_standby_mode);
862
863static ssize_t suspend_mem_state_show(struct device *dev,
864 struct device_attribute *attr, char *buf)
865{
866 struct regulator_dev *rdev = dev_get_drvdata(dev);
867
868 return regulator_print_state(buf,
869 rdev->constraints->state_mem.enabled);
870}
871static DEVICE_ATTR_RO(suspend_mem_state);
872
873static ssize_t suspend_disk_state_show(struct device *dev,
874 struct device_attribute *attr, char *buf)
875{
876 struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878 return regulator_print_state(buf,
879 rdev->constraints->state_disk.enabled);
880}
881static DEVICE_ATTR_RO(suspend_disk_state);
882
883static ssize_t suspend_standby_state_show(struct device *dev,
884 struct device_attribute *attr, char *buf)
885{
886 struct regulator_dev *rdev = dev_get_drvdata(dev);
887
888 return regulator_print_state(buf,
889 rdev->constraints->state_standby.enabled);
890}
891static DEVICE_ATTR_RO(suspend_standby_state);
892
893static ssize_t bypass_show(struct device *dev,
894 struct device_attribute *attr, char *buf)
895{
896 struct regulator_dev *rdev = dev_get_drvdata(dev);
897 const char *report;
898 bool bypass;
899 int ret;
900
901 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
902
903 if (ret != 0)
904 report = "unknown";
905 else if (bypass)
906 report = "enabled";
907 else
908 report = "disabled";
909
910 return sprintf(buf, "%s\n", report);
911}
912static DEVICE_ATTR_RO(bypass);
913
914/* Calculate the new optimum regulator operating mode based on the new total
915 * consumer load. All locks held by caller
916 */
917static int drms_uA_update(struct regulator_dev *rdev)
918{
919 struct regulator *sibling;
920 int current_uA = 0, output_uV, input_uV, err;
921 unsigned int mode;
922
923 /*
924 * first check to see if we can set modes at all, otherwise just
925 * tell the consumer everything is OK.
926 */
927 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
928 rdev_dbg(rdev, "DRMS operation not allowed\n");
929 return 0;
930 }
931
932 if (!rdev->desc->ops->get_optimum_mode &&
933 !rdev->desc->ops->set_load)
934 return 0;
935
936 if (!rdev->desc->ops->set_mode &&
937 !rdev->desc->ops->set_load)
938 return -EINVAL;
939
940 /* calc total requested load */
941 list_for_each_entry(sibling, &rdev->consumer_list, list) {
942 if (sibling->enable_count)
943 current_uA += sibling->uA_load;
944 }
945
946 current_uA += rdev->constraints->system_load;
947
948 if (rdev->desc->ops->set_load) {
949 /* set the optimum mode for our new total regulator load */
950 err = rdev->desc->ops->set_load(rdev, current_uA);
951 if (err < 0)
952 rdev_err(rdev, "failed to set load %d: %pe\n",
953 current_uA, ERR_PTR(err));
954 } else {
955 /* get output voltage */
956 output_uV = regulator_get_voltage_rdev(rdev);
957 if (output_uV <= 0) {
958 rdev_err(rdev, "invalid output voltage found\n");
959 return -EINVAL;
960 }
961
962 /* get input voltage */
963 input_uV = 0;
964 if (rdev->supply)
965 input_uV = regulator_get_voltage(rdev->supply);
966 if (input_uV <= 0)
967 input_uV = rdev->constraints->input_uV;
968 if (input_uV <= 0) {
969 rdev_err(rdev, "invalid input voltage found\n");
970 return -EINVAL;
971 }
972
973 /* now get the optimum mode for our new total regulator load */
974 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
975 output_uV, current_uA);
976
977 /* check the new mode is allowed */
978 err = regulator_mode_constrain(rdev, &mode);
979 if (err < 0) {
980 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
981 current_uA, input_uV, output_uV, ERR_PTR(err));
982 return err;
983 }
984
985 err = rdev->desc->ops->set_mode(rdev, mode);
986 if (err < 0)
987 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
988 mode, ERR_PTR(err));
989 }
990
991 return err;
992}
993
994static int __suspend_set_state(struct regulator_dev *rdev,
995 const struct regulator_state *rstate)
996{
997 int ret = 0;
998
999 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1000 rdev->desc->ops->set_suspend_enable)
1001 ret = rdev->desc->ops->set_suspend_enable(rdev);
1002 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1003 rdev->desc->ops->set_suspend_disable)
1004 ret = rdev->desc->ops->set_suspend_disable(rdev);
1005 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1006 ret = 0;
1007
1008 if (ret < 0) {
1009 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1010 return ret;
1011 }
1012
1013 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1014 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1015 if (ret < 0) {
1016 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1017 return ret;
1018 }
1019 }
1020
1021 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1022 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1023 if (ret < 0) {
1024 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1025 return ret;
1026 }
1027 }
1028
1029 return ret;
1030}
1031
1032static int suspend_set_initial_state(struct regulator_dev *rdev)
1033{
1034 const struct regulator_state *rstate;
1035
1036 rstate = regulator_get_suspend_state_check(rdev,
1037 rdev->constraints->initial_state);
1038 if (!rstate)
1039 return 0;
1040
1041 return __suspend_set_state(rdev, rstate);
1042}
1043
1044#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1045static void print_constraints_debug(struct regulator_dev *rdev)
1046{
1047 struct regulation_constraints *constraints = rdev->constraints;
1048 char buf[160] = "";
1049 size_t len = sizeof(buf) - 1;
1050 int count = 0;
1051 int ret;
1052
1053 if (constraints->min_uV && constraints->max_uV) {
1054 if (constraints->min_uV == constraints->max_uV)
1055 count += scnprintf(buf + count, len - count, "%d mV ",
1056 constraints->min_uV / 1000);
1057 else
1058 count += scnprintf(buf + count, len - count,
1059 "%d <--> %d mV ",
1060 constraints->min_uV / 1000,
1061 constraints->max_uV / 1000);
1062 }
1063
1064 if (!constraints->min_uV ||
1065 constraints->min_uV != constraints->max_uV) {
1066 ret = regulator_get_voltage_rdev(rdev);
1067 if (ret > 0)
1068 count += scnprintf(buf + count, len - count,
1069 "at %d mV ", ret / 1000);
1070 }
1071
1072 if (constraints->uV_offset)
1073 count += scnprintf(buf + count, len - count, "%dmV offset ",
1074 constraints->uV_offset / 1000);
1075
1076 if (constraints->min_uA && constraints->max_uA) {
1077 if (constraints->min_uA == constraints->max_uA)
1078 count += scnprintf(buf + count, len - count, "%d mA ",
1079 constraints->min_uA / 1000);
1080 else
1081 count += scnprintf(buf + count, len - count,
1082 "%d <--> %d mA ",
1083 constraints->min_uA / 1000,
1084 constraints->max_uA / 1000);
1085 }
1086
1087 if (!constraints->min_uA ||
1088 constraints->min_uA != constraints->max_uA) {
1089 ret = _regulator_get_current_limit(rdev);
1090 if (ret > 0)
1091 count += scnprintf(buf + count, len - count,
1092 "at %d mA ", ret / 1000);
1093 }
1094
1095 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1096 count += scnprintf(buf + count, len - count, "fast ");
1097 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1098 count += scnprintf(buf + count, len - count, "normal ");
1099 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1100 count += scnprintf(buf + count, len - count, "idle ");
1101 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1102 count += scnprintf(buf + count, len - count, "standby ");
1103
1104 if (!count)
1105 count = scnprintf(buf, len, "no parameters");
1106 else
1107 --count;
1108
1109 count += scnprintf(buf + count, len - count, ", %s",
1110 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1111
1112 rdev_dbg(rdev, "%s\n", buf);
1113}
1114#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1115static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1116#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1117
1118static void print_constraints(struct regulator_dev *rdev)
1119{
1120 struct regulation_constraints *constraints = rdev->constraints;
1121
1122 print_constraints_debug(rdev);
1123
1124 if ((constraints->min_uV != constraints->max_uV) &&
1125 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1126 rdev_warn(rdev,
1127 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1128}
1129
1130static int machine_constraints_voltage(struct regulator_dev *rdev,
1131 struct regulation_constraints *constraints)
1132{
1133 const struct regulator_ops *ops = rdev->desc->ops;
1134 int ret;
1135
1136 /* do we need to apply the constraint voltage */
1137 if (rdev->constraints->apply_uV &&
1138 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1139 int target_min, target_max;
1140 int current_uV = regulator_get_voltage_rdev(rdev);
1141
1142 if (current_uV == -ENOTRECOVERABLE) {
1143 /* This regulator can't be read and must be initialized */
1144 rdev_info(rdev, "Setting %d-%duV\n",
1145 rdev->constraints->min_uV,
1146 rdev->constraints->max_uV);
1147 _regulator_do_set_voltage(rdev,
1148 rdev->constraints->min_uV,
1149 rdev->constraints->max_uV);
1150 current_uV = regulator_get_voltage_rdev(rdev);
1151 }
1152
1153 if (current_uV < 0) {
1154 rdev_err(rdev,
1155 "failed to get the current voltage: %pe\n",
1156 ERR_PTR(current_uV));
1157 return current_uV;
1158 }
1159
1160 /*
1161 * If we're below the minimum voltage move up to the
1162 * minimum voltage, if we're above the maximum voltage
1163 * then move down to the maximum.
1164 */
1165 target_min = current_uV;
1166 target_max = current_uV;
1167
1168 if (current_uV < rdev->constraints->min_uV) {
1169 target_min = rdev->constraints->min_uV;
1170 target_max = rdev->constraints->min_uV;
1171 }
1172
1173 if (current_uV > rdev->constraints->max_uV) {
1174 target_min = rdev->constraints->max_uV;
1175 target_max = rdev->constraints->max_uV;
1176 }
1177
1178 if (target_min != current_uV || target_max != current_uV) {
1179 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1180 current_uV, target_min, target_max);
1181 ret = _regulator_do_set_voltage(
1182 rdev, target_min, target_max);
1183 if (ret < 0) {
1184 rdev_err(rdev,
1185 "failed to apply %d-%duV constraint: %pe\n",
1186 target_min, target_max, ERR_PTR(ret));
1187 return ret;
1188 }
1189 }
1190 }
1191
1192 /* constrain machine-level voltage specs to fit
1193 * the actual range supported by this regulator.
1194 */
1195 if (ops->list_voltage && rdev->desc->n_voltages) {
1196 int count = rdev->desc->n_voltages;
1197 int i;
1198 int min_uV = INT_MAX;
1199 int max_uV = INT_MIN;
1200 int cmin = constraints->min_uV;
1201 int cmax = constraints->max_uV;
1202
1203 /* it's safe to autoconfigure fixed-voltage supplies
1204 * and the constraints are used by list_voltage.
1205 */
1206 if (count == 1 && !cmin) {
1207 cmin = 1;
1208 cmax = INT_MAX;
1209 constraints->min_uV = cmin;
1210 constraints->max_uV = cmax;
1211 }
1212
1213 /* voltage constraints are optional */
1214 if ((cmin == 0) && (cmax == 0))
1215 return 0;
1216
1217 /* else require explicit machine-level constraints */
1218 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1219 rdev_err(rdev, "invalid voltage constraints\n");
1220 return -EINVAL;
1221 }
1222
1223 /* no need to loop voltages if range is continuous */
1224 if (rdev->desc->continuous_voltage_range)
1225 return 0;
1226
1227 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1228 for (i = 0; i < count; i++) {
1229 int value;
1230
1231 value = ops->list_voltage(rdev, i);
1232 if (value <= 0)
1233 continue;
1234
1235 /* maybe adjust [min_uV..max_uV] */
1236 if (value >= cmin && value < min_uV)
1237 min_uV = value;
1238 if (value <= cmax && value > max_uV)
1239 max_uV = value;
1240 }
1241
1242 /* final: [min_uV..max_uV] valid iff constraints valid */
1243 if (max_uV < min_uV) {
1244 rdev_err(rdev,
1245 "unsupportable voltage constraints %u-%uuV\n",
1246 min_uV, max_uV);
1247 return -EINVAL;
1248 }
1249
1250 /* use regulator's subset of machine constraints */
1251 if (constraints->min_uV < min_uV) {
1252 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1253 constraints->min_uV, min_uV);
1254 constraints->min_uV = min_uV;
1255 }
1256 if (constraints->max_uV > max_uV) {
1257 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1258 constraints->max_uV, max_uV);
1259 constraints->max_uV = max_uV;
1260 }
1261 }
1262
1263 return 0;
1264}
1265
1266static int machine_constraints_current(struct regulator_dev *rdev,
1267 struct regulation_constraints *constraints)
1268{
1269 const struct regulator_ops *ops = rdev->desc->ops;
1270 int ret;
1271
1272 if (!constraints->min_uA && !constraints->max_uA)
1273 return 0;
1274
1275 if (constraints->min_uA > constraints->max_uA) {
1276 rdev_err(rdev, "Invalid current constraints\n");
1277 return -EINVAL;
1278 }
1279
1280 if (!ops->set_current_limit || !ops->get_current_limit) {
1281 rdev_warn(rdev, "Operation of current configuration missing\n");
1282 return 0;
1283 }
1284
1285 /* Set regulator current in constraints range */
1286 ret = ops->set_current_limit(rdev, constraints->min_uA,
1287 constraints->max_uA);
1288 if (ret < 0) {
1289 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1290 return ret;
1291 }
1292
1293 return 0;
1294}
1295
1296static int _regulator_do_enable(struct regulator_dev *rdev);
1297
1298static int notif_set_limit(struct regulator_dev *rdev,
1299 int (*set)(struct regulator_dev *, int, int, bool),
1300 int limit, int severity)
1301{
1302 bool enable;
1303
1304 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1305 enable = false;
1306 limit = 0;
1307 } else {
1308 enable = true;
1309 }
1310
1311 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1312 limit = 0;
1313
1314 return set(rdev, limit, severity, enable);
1315}
1316
1317static int handle_notify_limits(struct regulator_dev *rdev,
1318 int (*set)(struct regulator_dev *, int, int, bool),
1319 struct notification_limit *limits)
1320{
1321 int ret = 0;
1322
1323 if (!set)
1324 return -EOPNOTSUPP;
1325
1326 if (limits->prot)
1327 ret = notif_set_limit(rdev, set, limits->prot,
1328 REGULATOR_SEVERITY_PROT);
1329 if (ret)
1330 return ret;
1331
1332 if (limits->err)
1333 ret = notif_set_limit(rdev, set, limits->err,
1334 REGULATOR_SEVERITY_ERR);
1335 if (ret)
1336 return ret;
1337
1338 if (limits->warn)
1339 ret = notif_set_limit(rdev, set, limits->warn,
1340 REGULATOR_SEVERITY_WARN);
1341
1342 return ret;
1343}
1344/**
1345 * set_machine_constraints - sets regulator constraints
1346 * @rdev: regulator source
1347 *
1348 * Allows platform initialisation code to define and constrain
1349 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1350 * Constraints *must* be set by platform code in order for some
1351 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1352 * set_mode.
1353 */
1354static int set_machine_constraints(struct regulator_dev *rdev)
1355{
1356 int ret = 0;
1357 const struct regulator_ops *ops = rdev->desc->ops;
1358
1359 ret = machine_constraints_voltage(rdev, rdev->constraints);
1360 if (ret != 0)
1361 return ret;
1362
1363 ret = machine_constraints_current(rdev, rdev->constraints);
1364 if (ret != 0)
1365 return ret;
1366
1367 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1368 ret = ops->set_input_current_limit(rdev,
1369 rdev->constraints->ilim_uA);
1370 if (ret < 0) {
1371 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1372 return ret;
1373 }
1374 }
1375
1376 /* do we need to setup our suspend state */
1377 if (rdev->constraints->initial_state) {
1378 ret = suspend_set_initial_state(rdev);
1379 if (ret < 0) {
1380 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1381 return ret;
1382 }
1383 }
1384
1385 if (rdev->constraints->initial_mode) {
1386 if (!ops->set_mode) {
1387 rdev_err(rdev, "no set_mode operation\n");
1388 return -EINVAL;
1389 }
1390
1391 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1392 if (ret < 0) {
1393 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1394 return ret;
1395 }
1396 } else if (rdev->constraints->system_load) {
1397 /*
1398 * We'll only apply the initial system load if an
1399 * initial mode wasn't specified.
1400 */
1401 drms_uA_update(rdev);
1402 }
1403
1404 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1405 && ops->set_ramp_delay) {
1406 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1407 if (ret < 0) {
1408 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1409 return ret;
1410 }
1411 }
1412
1413 if (rdev->constraints->pull_down && ops->set_pull_down) {
1414 ret = ops->set_pull_down(rdev);
1415 if (ret < 0) {
1416 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1417 return ret;
1418 }
1419 }
1420
1421 if (rdev->constraints->soft_start && ops->set_soft_start) {
1422 ret = ops->set_soft_start(rdev);
1423 if (ret < 0) {
1424 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1425 return ret;
1426 }
1427 }
1428
1429 /*
1430 * Existing logic does not warn if over_current_protection is given as
1431 * a constraint but driver does not support that. I think we should
1432 * warn about this type of issues as it is possible someone changes
1433 * PMIC on board to another type - and the another PMIC's driver does
1434 * not support setting protection. Board composer may happily believe
1435 * the DT limits are respected - especially if the new PMIC HW also
1436 * supports protection but the driver does not. I won't change the logic
1437 * without hearing more experienced opinion on this though.
1438 *
1439 * If warning is seen as a good idea then we can merge handling the
1440 * over-curret protection and detection and get rid of this special
1441 * handling.
1442 */
1443 if (rdev->constraints->over_current_protection
1444 && ops->set_over_current_protection) {
1445 int lim = rdev->constraints->over_curr_limits.prot;
1446
1447 ret = ops->set_over_current_protection(rdev, lim,
1448 REGULATOR_SEVERITY_PROT,
1449 true);
1450 if (ret < 0) {
1451 rdev_err(rdev, "failed to set over current protection: %pe\n",
1452 ERR_PTR(ret));
1453 return ret;
1454 }
1455 }
1456
1457 if (rdev->constraints->over_current_detection)
1458 ret = handle_notify_limits(rdev,
1459 ops->set_over_current_protection,
1460 &rdev->constraints->over_curr_limits);
1461 if (ret) {
1462 if (ret != -EOPNOTSUPP) {
1463 rdev_err(rdev, "failed to set over current limits: %pe\n",
1464 ERR_PTR(ret));
1465 return ret;
1466 }
1467 rdev_warn(rdev,
1468 "IC does not support requested over-current limits\n");
1469 }
1470
1471 if (rdev->constraints->over_voltage_detection)
1472 ret = handle_notify_limits(rdev,
1473 ops->set_over_voltage_protection,
1474 &rdev->constraints->over_voltage_limits);
1475 if (ret) {
1476 if (ret != -EOPNOTSUPP) {
1477 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1478 ERR_PTR(ret));
1479 return ret;
1480 }
1481 rdev_warn(rdev,
1482 "IC does not support requested over voltage limits\n");
1483 }
1484
1485 if (rdev->constraints->under_voltage_detection)
1486 ret = handle_notify_limits(rdev,
1487 ops->set_under_voltage_protection,
1488 &rdev->constraints->under_voltage_limits);
1489 if (ret) {
1490 if (ret != -EOPNOTSUPP) {
1491 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1492 ERR_PTR(ret));
1493 return ret;
1494 }
1495 rdev_warn(rdev,
1496 "IC does not support requested under voltage limits\n");
1497 }
1498
1499 if (rdev->constraints->over_temp_detection)
1500 ret = handle_notify_limits(rdev,
1501 ops->set_thermal_protection,
1502 &rdev->constraints->temp_limits);
1503 if (ret) {
1504 if (ret != -EOPNOTSUPP) {
1505 rdev_err(rdev, "failed to set temperature limits %pe\n",
1506 ERR_PTR(ret));
1507 return ret;
1508 }
1509 rdev_warn(rdev,
1510 "IC does not support requested temperature limits\n");
1511 }
1512
1513 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1514 bool ad_state = (rdev->constraints->active_discharge ==
1515 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1516
1517 ret = ops->set_active_discharge(rdev, ad_state);
1518 if (ret < 0) {
1519 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1520 return ret;
1521 }
1522 }
1523
1524 /* If the constraints say the regulator should be on at this point
1525 * and we have control then make sure it is enabled.
1526 */
1527 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1528 /* If we want to enable this regulator, make sure that we know
1529 * the supplying regulator.
1530 */
1531 if (rdev->supply_name && !rdev->supply)
1532 return -EPROBE_DEFER;
1533
1534 if (rdev->supply) {
1535 ret = regulator_enable(rdev->supply);
1536 if (ret < 0) {
1537 _regulator_put(rdev->supply);
1538 rdev->supply = NULL;
1539 return ret;
1540 }
1541 }
1542
1543 ret = _regulator_do_enable(rdev);
1544 if (ret < 0 && ret != -EINVAL) {
1545 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1546 return ret;
1547 }
1548
1549 if (rdev->constraints->always_on)
1550 rdev->use_count++;
1551 } else if (rdev->desc->off_on_delay) {
1552 rdev->last_off = ktime_get();
1553 }
1554
1555 print_constraints(rdev);
1556 return 0;
1557}
1558
1559/**
1560 * set_supply - set regulator supply regulator
1561 * @rdev: regulator name
1562 * @supply_rdev: supply regulator name
1563 *
1564 * Called by platform initialisation code to set the supply regulator for this
1565 * regulator. This ensures that a regulators supply will also be enabled by the
1566 * core if it's child is enabled.
1567 */
1568static int set_supply(struct regulator_dev *rdev,
1569 struct regulator_dev *supply_rdev)
1570{
1571 int err;
1572
1573 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1574
1575 if (!try_module_get(supply_rdev->owner))
1576 return -ENODEV;
1577
1578 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1579 if (rdev->supply == NULL) {
1580 err = -ENOMEM;
1581 return err;
1582 }
1583 supply_rdev->open_count++;
1584
1585 return 0;
1586}
1587
1588/**
1589 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1590 * @rdev: regulator source
1591 * @consumer_dev_name: dev_name() string for device supply applies to
1592 * @supply: symbolic name for supply
1593 *
1594 * Allows platform initialisation code to map physical regulator
1595 * sources to symbolic names for supplies for use by devices. Devices
1596 * should use these symbolic names to request regulators, avoiding the
1597 * need to provide board-specific regulator names as platform data.
1598 */
1599static int set_consumer_device_supply(struct regulator_dev *rdev,
1600 const char *consumer_dev_name,
1601 const char *supply)
1602{
1603 struct regulator_map *node, *new_node;
1604 int has_dev;
1605
1606 if (supply == NULL)
1607 return -EINVAL;
1608
1609 if (consumer_dev_name != NULL)
1610 has_dev = 1;
1611 else
1612 has_dev = 0;
1613
1614 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1615 if (new_node == NULL)
1616 return -ENOMEM;
1617
1618 new_node->regulator = rdev;
1619 new_node->supply = supply;
1620
1621 if (has_dev) {
1622 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1623 if (new_node->dev_name == NULL) {
1624 kfree(new_node);
1625 return -ENOMEM;
1626 }
1627 }
1628
1629 mutex_lock(®ulator_list_mutex);
1630 list_for_each_entry(node, ®ulator_map_list, list) {
1631 if (node->dev_name && consumer_dev_name) {
1632 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1633 continue;
1634 } else if (node->dev_name || consumer_dev_name) {
1635 continue;
1636 }
1637
1638 if (strcmp(node->supply, supply) != 0)
1639 continue;
1640
1641 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1642 consumer_dev_name,
1643 dev_name(&node->regulator->dev),
1644 node->regulator->desc->name,
1645 supply,
1646 dev_name(&rdev->dev), rdev_get_name(rdev));
1647 goto fail;
1648 }
1649
1650 list_add(&new_node->list, ®ulator_map_list);
1651 mutex_unlock(®ulator_list_mutex);
1652
1653 return 0;
1654
1655fail:
1656 mutex_unlock(®ulator_list_mutex);
1657 kfree(new_node->dev_name);
1658 kfree(new_node);
1659 return -EBUSY;
1660}
1661
1662static void unset_regulator_supplies(struct regulator_dev *rdev)
1663{
1664 struct regulator_map *node, *n;
1665
1666 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1667 if (rdev == node->regulator) {
1668 list_del(&node->list);
1669 kfree(node->dev_name);
1670 kfree(node);
1671 }
1672 }
1673}
1674
1675#ifdef CONFIG_DEBUG_FS
1676static ssize_t constraint_flags_read_file(struct file *file,
1677 char __user *user_buf,
1678 size_t count, loff_t *ppos)
1679{
1680 const struct regulator *regulator = file->private_data;
1681 const struct regulation_constraints *c = regulator->rdev->constraints;
1682 char *buf;
1683 ssize_t ret;
1684
1685 if (!c)
1686 return 0;
1687
1688 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1689 if (!buf)
1690 return -ENOMEM;
1691
1692 ret = snprintf(buf, PAGE_SIZE,
1693 "always_on: %u\n"
1694 "boot_on: %u\n"
1695 "apply_uV: %u\n"
1696 "ramp_disable: %u\n"
1697 "soft_start: %u\n"
1698 "pull_down: %u\n"
1699 "over_current_protection: %u\n",
1700 c->always_on,
1701 c->boot_on,
1702 c->apply_uV,
1703 c->ramp_disable,
1704 c->soft_start,
1705 c->pull_down,
1706 c->over_current_protection);
1707
1708 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1709 kfree(buf);
1710
1711 return ret;
1712}
1713
1714#endif
1715
1716static const struct file_operations constraint_flags_fops = {
1717#ifdef CONFIG_DEBUG_FS
1718 .open = simple_open,
1719 .read = constraint_flags_read_file,
1720 .llseek = default_llseek,
1721#endif
1722};
1723
1724#define REG_STR_SIZE 64
1725
1726static struct regulator *create_regulator(struct regulator_dev *rdev,
1727 struct device *dev,
1728 const char *supply_name)
1729{
1730 struct regulator *regulator;
1731 int err = 0;
1732
1733 if (dev) {
1734 char buf[REG_STR_SIZE];
1735 int size;
1736
1737 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1738 dev->kobj.name, supply_name);
1739 if (size >= REG_STR_SIZE)
1740 return NULL;
1741
1742 supply_name = kstrdup(buf, GFP_KERNEL);
1743 if (supply_name == NULL)
1744 return NULL;
1745 } else {
1746 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1747 if (supply_name == NULL)
1748 return NULL;
1749 }
1750
1751 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1752 if (regulator == NULL) {
1753 kfree(supply_name);
1754 return NULL;
1755 }
1756
1757 regulator->rdev = rdev;
1758 regulator->supply_name = supply_name;
1759
1760 regulator_lock(rdev);
1761 list_add(®ulator->list, &rdev->consumer_list);
1762 regulator_unlock(rdev);
1763
1764 if (dev) {
1765 regulator->dev = dev;
1766
1767 /* Add a link to the device sysfs entry */
1768 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1769 supply_name);
1770 if (err) {
1771 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1772 dev->kobj.name, ERR_PTR(err));
1773 /* non-fatal */
1774 }
1775 }
1776
1777 if (err != -EEXIST)
1778 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1779 if (!regulator->debugfs) {
1780 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1781 } else {
1782 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1783 ®ulator->uA_load);
1784 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1785 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1786 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1787 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1788 debugfs_create_file("constraint_flags", 0444,
1789 regulator->debugfs, regulator,
1790 &constraint_flags_fops);
1791 }
1792
1793 /*
1794 * Check now if the regulator is an always on regulator - if
1795 * it is then we don't need to do nearly so much work for
1796 * enable/disable calls.
1797 */
1798 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1799 _regulator_is_enabled(rdev))
1800 regulator->always_on = true;
1801
1802 return regulator;
1803}
1804
1805static int _regulator_get_enable_time(struct regulator_dev *rdev)
1806{
1807 if (rdev->constraints && rdev->constraints->enable_time)
1808 return rdev->constraints->enable_time;
1809 if (rdev->desc->ops->enable_time)
1810 return rdev->desc->ops->enable_time(rdev);
1811 return rdev->desc->enable_time;
1812}
1813
1814static struct regulator_supply_alias *regulator_find_supply_alias(
1815 struct device *dev, const char *supply)
1816{
1817 struct regulator_supply_alias *map;
1818
1819 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1820 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1821 return map;
1822
1823 return NULL;
1824}
1825
1826static void regulator_supply_alias(struct device **dev, const char **supply)
1827{
1828 struct regulator_supply_alias *map;
1829
1830 map = regulator_find_supply_alias(*dev, *supply);
1831 if (map) {
1832 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1833 *supply, map->alias_supply,
1834 dev_name(map->alias_dev));
1835 *dev = map->alias_dev;
1836 *supply = map->alias_supply;
1837 }
1838}
1839
1840static int regulator_match(struct device *dev, const void *data)
1841{
1842 struct regulator_dev *r = dev_to_rdev(dev);
1843
1844 return strcmp(rdev_get_name(r), data) == 0;
1845}
1846
1847static struct regulator_dev *regulator_lookup_by_name(const char *name)
1848{
1849 struct device *dev;
1850
1851 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1852
1853 return dev ? dev_to_rdev(dev) : NULL;
1854}
1855
1856/**
1857 * regulator_dev_lookup - lookup a regulator device.
1858 * @dev: device for regulator "consumer".
1859 * @supply: Supply name or regulator ID.
1860 *
1861 * If successful, returns a struct regulator_dev that corresponds to the name
1862 * @supply and with the embedded struct device refcount incremented by one.
1863 * The refcount must be dropped by calling put_device().
1864 * On failure one of the following ERR-PTR-encoded values is returned:
1865 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1866 * in the future.
1867 */
1868static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1869 const char *supply)
1870{
1871 struct regulator_dev *r = NULL;
1872 struct device_node *node;
1873 struct regulator_map *map;
1874 const char *devname = NULL;
1875
1876 regulator_supply_alias(&dev, &supply);
1877
1878 /* first do a dt based lookup */
1879 if (dev && dev->of_node) {
1880 node = of_get_regulator(dev, supply);
1881 if (node) {
1882 r = of_find_regulator_by_node(node);
1883 if (r)
1884 return r;
1885
1886 /*
1887 * We have a node, but there is no device.
1888 * assume it has not registered yet.
1889 */
1890 return ERR_PTR(-EPROBE_DEFER);
1891 }
1892 }
1893
1894 /* if not found, try doing it non-dt way */
1895 if (dev)
1896 devname = dev_name(dev);
1897
1898 mutex_lock(®ulator_list_mutex);
1899 list_for_each_entry(map, ®ulator_map_list, list) {
1900 /* If the mapping has a device set up it must match */
1901 if (map->dev_name &&
1902 (!devname || strcmp(map->dev_name, devname)))
1903 continue;
1904
1905 if (strcmp(map->supply, supply) == 0 &&
1906 get_device(&map->regulator->dev)) {
1907 r = map->regulator;
1908 break;
1909 }
1910 }
1911 mutex_unlock(®ulator_list_mutex);
1912
1913 if (r)
1914 return r;
1915
1916 r = regulator_lookup_by_name(supply);
1917 if (r)
1918 return r;
1919
1920 return ERR_PTR(-ENODEV);
1921}
1922
1923static int regulator_resolve_supply(struct regulator_dev *rdev)
1924{
1925 struct regulator_dev *r;
1926 struct device *dev = rdev->dev.parent;
1927 int ret = 0;
1928
1929 /* No supply to resolve? */
1930 if (!rdev->supply_name)
1931 return 0;
1932
1933 /* Supply already resolved? (fast-path without locking contention) */
1934 if (rdev->supply)
1935 return 0;
1936
1937 r = regulator_dev_lookup(dev, rdev->supply_name);
1938 if (IS_ERR(r)) {
1939 ret = PTR_ERR(r);
1940
1941 /* Did the lookup explicitly defer for us? */
1942 if (ret == -EPROBE_DEFER)
1943 goto out;
1944
1945 if (have_full_constraints()) {
1946 r = dummy_regulator_rdev;
1947 get_device(&r->dev);
1948 } else {
1949 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1950 rdev->supply_name, rdev->desc->name);
1951 ret = -EPROBE_DEFER;
1952 goto out;
1953 }
1954 }
1955
1956 if (r == rdev) {
1957 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1958 rdev->desc->name, rdev->supply_name);
1959 if (!have_full_constraints()) {
1960 ret = -EINVAL;
1961 goto out;
1962 }
1963 r = dummy_regulator_rdev;
1964 get_device(&r->dev);
1965 }
1966
1967 /*
1968 * If the supply's parent device is not the same as the
1969 * regulator's parent device, then ensure the parent device
1970 * is bound before we resolve the supply, in case the parent
1971 * device get probe deferred and unregisters the supply.
1972 */
1973 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1974 if (!device_is_bound(r->dev.parent)) {
1975 put_device(&r->dev);
1976 ret = -EPROBE_DEFER;
1977 goto out;
1978 }
1979 }
1980
1981 /* Recursively resolve the supply of the supply */
1982 ret = regulator_resolve_supply(r);
1983 if (ret < 0) {
1984 put_device(&r->dev);
1985 goto out;
1986 }
1987
1988 /*
1989 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1990 * between rdev->supply null check and setting rdev->supply in
1991 * set_supply() from concurrent tasks.
1992 */
1993 regulator_lock(rdev);
1994
1995 /* Supply just resolved by a concurrent task? */
1996 if (rdev->supply) {
1997 regulator_unlock(rdev);
1998 put_device(&r->dev);
1999 goto out;
2000 }
2001
2002 ret = set_supply(rdev, r);
2003 if (ret < 0) {
2004 regulator_unlock(rdev);
2005 put_device(&r->dev);
2006 goto out;
2007 }
2008
2009 regulator_unlock(rdev);
2010
2011 /*
2012 * In set_machine_constraints() we may have turned this regulator on
2013 * but we couldn't propagate to the supply if it hadn't been resolved
2014 * yet. Do it now.
2015 */
2016 if (rdev->use_count) {
2017 ret = regulator_enable(rdev->supply);
2018 if (ret < 0) {
2019 _regulator_put(rdev->supply);
2020 rdev->supply = NULL;
2021 goto out;
2022 }
2023 }
2024
2025out:
2026 return ret;
2027}
2028
2029/* Internal regulator request function */
2030struct regulator *_regulator_get(struct device *dev, const char *id,
2031 enum regulator_get_type get_type)
2032{
2033 struct regulator_dev *rdev;
2034 struct regulator *regulator;
2035 struct device_link *link;
2036 int ret;
2037
2038 if (get_type >= MAX_GET_TYPE) {
2039 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2040 return ERR_PTR(-EINVAL);
2041 }
2042
2043 if (id == NULL) {
2044 pr_err("get() with no identifier\n");
2045 return ERR_PTR(-EINVAL);
2046 }
2047
2048 rdev = regulator_dev_lookup(dev, id);
2049 if (IS_ERR(rdev)) {
2050 ret = PTR_ERR(rdev);
2051
2052 /*
2053 * If regulator_dev_lookup() fails with error other
2054 * than -ENODEV our job here is done, we simply return it.
2055 */
2056 if (ret != -ENODEV)
2057 return ERR_PTR(ret);
2058
2059 if (!have_full_constraints()) {
2060 dev_warn(dev,
2061 "incomplete constraints, dummy supplies not allowed\n");
2062 return ERR_PTR(-ENODEV);
2063 }
2064
2065 switch (get_type) {
2066 case NORMAL_GET:
2067 /*
2068 * Assume that a regulator is physically present and
2069 * enabled, even if it isn't hooked up, and just
2070 * provide a dummy.
2071 */
2072 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2073 rdev = dummy_regulator_rdev;
2074 get_device(&rdev->dev);
2075 break;
2076
2077 case EXCLUSIVE_GET:
2078 dev_warn(dev,
2079 "dummy supplies not allowed for exclusive requests\n");
2080 fallthrough;
2081
2082 default:
2083 return ERR_PTR(-ENODEV);
2084 }
2085 }
2086
2087 if (rdev->exclusive) {
2088 regulator = ERR_PTR(-EPERM);
2089 put_device(&rdev->dev);
2090 return regulator;
2091 }
2092
2093 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2094 regulator = ERR_PTR(-EBUSY);
2095 put_device(&rdev->dev);
2096 return regulator;
2097 }
2098
2099 mutex_lock(®ulator_list_mutex);
2100 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2101 mutex_unlock(®ulator_list_mutex);
2102
2103 if (ret != 0) {
2104 regulator = ERR_PTR(-EPROBE_DEFER);
2105 put_device(&rdev->dev);
2106 return regulator;
2107 }
2108
2109 ret = regulator_resolve_supply(rdev);
2110 if (ret < 0) {
2111 regulator = ERR_PTR(ret);
2112 put_device(&rdev->dev);
2113 return regulator;
2114 }
2115
2116 if (!try_module_get(rdev->owner)) {
2117 regulator = ERR_PTR(-EPROBE_DEFER);
2118 put_device(&rdev->dev);
2119 return regulator;
2120 }
2121
2122 regulator = create_regulator(rdev, dev, id);
2123 if (regulator == NULL) {
2124 regulator = ERR_PTR(-ENOMEM);
2125 module_put(rdev->owner);
2126 put_device(&rdev->dev);
2127 return regulator;
2128 }
2129
2130 rdev->open_count++;
2131 if (get_type == EXCLUSIVE_GET) {
2132 rdev->exclusive = 1;
2133
2134 ret = _regulator_is_enabled(rdev);
2135 if (ret > 0)
2136 rdev->use_count = 1;
2137 else
2138 rdev->use_count = 0;
2139 }
2140
2141 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2142 if (!IS_ERR_OR_NULL(link))
2143 regulator->device_link = true;
2144
2145 return regulator;
2146}
2147
2148/**
2149 * regulator_get - lookup and obtain a reference to a regulator.
2150 * @dev: device for regulator "consumer"
2151 * @id: Supply name or regulator ID.
2152 *
2153 * Returns a struct regulator corresponding to the regulator producer,
2154 * or IS_ERR() condition containing errno.
2155 *
2156 * Use of supply names configured via set_consumer_device_supply() is
2157 * strongly encouraged. It is recommended that the supply name used
2158 * should match the name used for the supply and/or the relevant
2159 * device pins in the datasheet.
2160 */
2161struct regulator *regulator_get(struct device *dev, const char *id)
2162{
2163 return _regulator_get(dev, id, NORMAL_GET);
2164}
2165EXPORT_SYMBOL_GPL(regulator_get);
2166
2167/**
2168 * regulator_get_exclusive - obtain exclusive access to a regulator.
2169 * @dev: device for regulator "consumer"
2170 * @id: Supply name or regulator ID.
2171 *
2172 * Returns a struct regulator corresponding to the regulator producer,
2173 * or IS_ERR() condition containing errno. Other consumers will be
2174 * unable to obtain this regulator while this reference is held and the
2175 * use count for the regulator will be initialised to reflect the current
2176 * state of the regulator.
2177 *
2178 * This is intended for use by consumers which cannot tolerate shared
2179 * use of the regulator such as those which need to force the
2180 * regulator off for correct operation of the hardware they are
2181 * controlling.
2182 *
2183 * Use of supply names configured via set_consumer_device_supply() is
2184 * strongly encouraged. It is recommended that the supply name used
2185 * should match the name used for the supply and/or the relevant
2186 * device pins in the datasheet.
2187 */
2188struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2189{
2190 return _regulator_get(dev, id, EXCLUSIVE_GET);
2191}
2192EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2193
2194/**
2195 * regulator_get_optional - obtain optional access to a regulator.
2196 * @dev: device for regulator "consumer"
2197 * @id: Supply name or regulator ID.
2198 *
2199 * Returns a struct regulator corresponding to the regulator producer,
2200 * or IS_ERR() condition containing errno.
2201 *
2202 * This is intended for use by consumers for devices which can have
2203 * some supplies unconnected in normal use, such as some MMC devices.
2204 * It can allow the regulator core to provide stub supplies for other
2205 * supplies requested using normal regulator_get() calls without
2206 * disrupting the operation of drivers that can handle absent
2207 * supplies.
2208 *
2209 * Use of supply names configured via set_consumer_device_supply() is
2210 * strongly encouraged. It is recommended that the supply name used
2211 * should match the name used for the supply and/or the relevant
2212 * device pins in the datasheet.
2213 */
2214struct regulator *regulator_get_optional(struct device *dev, const char *id)
2215{
2216 return _regulator_get(dev, id, OPTIONAL_GET);
2217}
2218EXPORT_SYMBOL_GPL(regulator_get_optional);
2219
2220static void destroy_regulator(struct regulator *regulator)
2221{
2222 struct regulator_dev *rdev = regulator->rdev;
2223
2224 debugfs_remove_recursive(regulator->debugfs);
2225
2226 if (regulator->dev) {
2227 if (regulator->device_link)
2228 device_link_remove(regulator->dev, &rdev->dev);
2229
2230 /* remove any sysfs entries */
2231 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2232 }
2233
2234 regulator_lock(rdev);
2235 list_del(®ulator->list);
2236
2237 rdev->open_count--;
2238 rdev->exclusive = 0;
2239 regulator_unlock(rdev);
2240
2241 kfree_const(regulator->supply_name);
2242 kfree(regulator);
2243}
2244
2245/* regulator_list_mutex lock held by regulator_put() */
2246static void _regulator_put(struct regulator *regulator)
2247{
2248 struct regulator_dev *rdev;
2249
2250 if (IS_ERR_OR_NULL(regulator))
2251 return;
2252
2253 lockdep_assert_held_once(®ulator_list_mutex);
2254
2255 /* Docs say you must disable before calling regulator_put() */
2256 WARN_ON(regulator->enable_count);
2257
2258 rdev = regulator->rdev;
2259
2260 destroy_regulator(regulator);
2261
2262 module_put(rdev->owner);
2263 put_device(&rdev->dev);
2264}
2265
2266/**
2267 * regulator_put - "free" the regulator source
2268 * @regulator: regulator source
2269 *
2270 * Note: drivers must ensure that all regulator_enable calls made on this
2271 * regulator source are balanced by regulator_disable calls prior to calling
2272 * this function.
2273 */
2274void regulator_put(struct regulator *regulator)
2275{
2276 mutex_lock(®ulator_list_mutex);
2277 _regulator_put(regulator);
2278 mutex_unlock(®ulator_list_mutex);
2279}
2280EXPORT_SYMBOL_GPL(regulator_put);
2281
2282/**
2283 * regulator_register_supply_alias - Provide device alias for supply lookup
2284 *
2285 * @dev: device that will be given as the regulator "consumer"
2286 * @id: Supply name or regulator ID
2287 * @alias_dev: device that should be used to lookup the supply
2288 * @alias_id: Supply name or regulator ID that should be used to lookup the
2289 * supply
2290 *
2291 * All lookups for id on dev will instead be conducted for alias_id on
2292 * alias_dev.
2293 */
2294int regulator_register_supply_alias(struct device *dev, const char *id,
2295 struct device *alias_dev,
2296 const char *alias_id)
2297{
2298 struct regulator_supply_alias *map;
2299
2300 map = regulator_find_supply_alias(dev, id);
2301 if (map)
2302 return -EEXIST;
2303
2304 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2305 if (!map)
2306 return -ENOMEM;
2307
2308 map->src_dev = dev;
2309 map->src_supply = id;
2310 map->alias_dev = alias_dev;
2311 map->alias_supply = alias_id;
2312
2313 list_add(&map->list, ®ulator_supply_alias_list);
2314
2315 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2316 id, dev_name(dev), alias_id, dev_name(alias_dev));
2317
2318 return 0;
2319}
2320EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2321
2322/**
2323 * regulator_unregister_supply_alias - Remove device alias
2324 *
2325 * @dev: device that will be given as the regulator "consumer"
2326 * @id: Supply name or regulator ID
2327 *
2328 * Remove a lookup alias if one exists for id on dev.
2329 */
2330void regulator_unregister_supply_alias(struct device *dev, const char *id)
2331{
2332 struct regulator_supply_alias *map;
2333
2334 map = regulator_find_supply_alias(dev, id);
2335 if (map) {
2336 list_del(&map->list);
2337 kfree(map);
2338 }
2339}
2340EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2341
2342/**
2343 * regulator_bulk_register_supply_alias - register multiple aliases
2344 *
2345 * @dev: device that will be given as the regulator "consumer"
2346 * @id: List of supply names or regulator IDs
2347 * @alias_dev: device that should be used to lookup the supply
2348 * @alias_id: List of supply names or regulator IDs that should be used to
2349 * lookup the supply
2350 * @num_id: Number of aliases to register
2351 *
2352 * @return 0 on success, an errno on failure.
2353 *
2354 * This helper function allows drivers to register several supply
2355 * aliases in one operation. If any of the aliases cannot be
2356 * registered any aliases that were registered will be removed
2357 * before returning to the caller.
2358 */
2359int regulator_bulk_register_supply_alias(struct device *dev,
2360 const char *const *id,
2361 struct device *alias_dev,
2362 const char *const *alias_id,
2363 int num_id)
2364{
2365 int i;
2366 int ret;
2367
2368 for (i = 0; i < num_id; ++i) {
2369 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2370 alias_id[i]);
2371 if (ret < 0)
2372 goto err;
2373 }
2374
2375 return 0;
2376
2377err:
2378 dev_err(dev,
2379 "Failed to create supply alias %s,%s -> %s,%s\n",
2380 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2381
2382 while (--i >= 0)
2383 regulator_unregister_supply_alias(dev, id[i]);
2384
2385 return ret;
2386}
2387EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2388
2389/**
2390 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2391 *
2392 * @dev: device that will be given as the regulator "consumer"
2393 * @id: List of supply names or regulator IDs
2394 * @num_id: Number of aliases to unregister
2395 *
2396 * This helper function allows drivers to unregister several supply
2397 * aliases in one operation.
2398 */
2399void regulator_bulk_unregister_supply_alias(struct device *dev,
2400 const char *const *id,
2401 int num_id)
2402{
2403 int i;
2404
2405 for (i = 0; i < num_id; ++i)
2406 regulator_unregister_supply_alias(dev, id[i]);
2407}
2408EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2409
2410
2411/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2412static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2413 const struct regulator_config *config)
2414{
2415 struct regulator_enable_gpio *pin, *new_pin;
2416 struct gpio_desc *gpiod;
2417
2418 gpiod = config->ena_gpiod;
2419 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2420
2421 mutex_lock(®ulator_list_mutex);
2422
2423 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2424 if (pin->gpiod == gpiod) {
2425 rdev_dbg(rdev, "GPIO is already used\n");
2426 goto update_ena_gpio_to_rdev;
2427 }
2428 }
2429
2430 if (new_pin == NULL) {
2431 mutex_unlock(®ulator_list_mutex);
2432 return -ENOMEM;
2433 }
2434
2435 pin = new_pin;
2436 new_pin = NULL;
2437
2438 pin->gpiod = gpiod;
2439 list_add(&pin->list, ®ulator_ena_gpio_list);
2440
2441update_ena_gpio_to_rdev:
2442 pin->request_count++;
2443 rdev->ena_pin = pin;
2444
2445 mutex_unlock(®ulator_list_mutex);
2446 kfree(new_pin);
2447
2448 return 0;
2449}
2450
2451static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2452{
2453 struct regulator_enable_gpio *pin, *n;
2454
2455 if (!rdev->ena_pin)
2456 return;
2457
2458 /* Free the GPIO only in case of no use */
2459 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2460 if (pin != rdev->ena_pin)
2461 continue;
2462
2463 if (--pin->request_count)
2464 break;
2465
2466 gpiod_put(pin->gpiod);
2467 list_del(&pin->list);
2468 kfree(pin);
2469 break;
2470 }
2471
2472 rdev->ena_pin = NULL;
2473}
2474
2475/**
2476 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2477 * @rdev: regulator_dev structure
2478 * @enable: enable GPIO at initial use?
2479 *
2480 * GPIO is enabled in case of initial use. (enable_count is 0)
2481 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2482 */
2483static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2484{
2485 struct regulator_enable_gpio *pin = rdev->ena_pin;
2486
2487 if (!pin)
2488 return -EINVAL;
2489
2490 if (enable) {
2491 /* Enable GPIO at initial use */
2492 if (pin->enable_count == 0)
2493 gpiod_set_value_cansleep(pin->gpiod, 1);
2494
2495 pin->enable_count++;
2496 } else {
2497 if (pin->enable_count > 1) {
2498 pin->enable_count--;
2499 return 0;
2500 }
2501
2502 /* Disable GPIO if not used */
2503 if (pin->enable_count <= 1) {
2504 gpiod_set_value_cansleep(pin->gpiod, 0);
2505 pin->enable_count = 0;
2506 }
2507 }
2508
2509 return 0;
2510}
2511
2512/**
2513 * _regulator_enable_delay - a delay helper function
2514 * @delay: time to delay in microseconds
2515 *
2516 * Delay for the requested amount of time as per the guidelines in:
2517 *
2518 * Documentation/timers/timers-howto.rst
2519 *
2520 * The assumption here is that regulators will never be enabled in
2521 * atomic context and therefore sleeping functions can be used.
2522 */
2523static void _regulator_enable_delay(unsigned int delay)
2524{
2525 unsigned int ms = delay / 1000;
2526 unsigned int us = delay % 1000;
2527
2528 if (ms > 0) {
2529 /*
2530 * For small enough values, handle super-millisecond
2531 * delays in the usleep_range() call below.
2532 */
2533 if (ms < 20)
2534 us += ms * 1000;
2535 else
2536 msleep(ms);
2537 }
2538
2539 /*
2540 * Give the scheduler some room to coalesce with any other
2541 * wakeup sources. For delays shorter than 10 us, don't even
2542 * bother setting up high-resolution timers and just busy-
2543 * loop.
2544 */
2545 if (us >= 10)
2546 usleep_range(us, us + 100);
2547 else
2548 udelay(us);
2549}
2550
2551/**
2552 * _regulator_check_status_enabled
2553 *
2554 * A helper function to check if the regulator status can be interpreted
2555 * as 'regulator is enabled'.
2556 * @rdev: the regulator device to check
2557 *
2558 * Return:
2559 * * 1 - if status shows regulator is in enabled state
2560 * * 0 - if not enabled state
2561 * * Error Value - as received from ops->get_status()
2562 */
2563static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2564{
2565 int ret = rdev->desc->ops->get_status(rdev);
2566
2567 if (ret < 0) {
2568 rdev_info(rdev, "get_status returned error: %d\n", ret);
2569 return ret;
2570 }
2571
2572 switch (ret) {
2573 case REGULATOR_STATUS_OFF:
2574 case REGULATOR_STATUS_ERROR:
2575 case REGULATOR_STATUS_UNDEFINED:
2576 return 0;
2577 default:
2578 return 1;
2579 }
2580}
2581
2582static int _regulator_do_enable(struct regulator_dev *rdev)
2583{
2584 int ret, delay;
2585
2586 /* Query before enabling in case configuration dependent. */
2587 ret = _regulator_get_enable_time(rdev);
2588 if (ret >= 0) {
2589 delay = ret;
2590 } else {
2591 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2592 delay = 0;
2593 }
2594
2595 trace_regulator_enable(rdev_get_name(rdev));
2596
2597 if (rdev->desc->off_on_delay && rdev->last_off) {
2598 /* if needed, keep a distance of off_on_delay from last time
2599 * this regulator was disabled.
2600 */
2601 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2602 s64 remaining = ktime_us_delta(end, ktime_get());
2603
2604 if (remaining > 0)
2605 _regulator_enable_delay(remaining);
2606 }
2607
2608 if (rdev->ena_pin) {
2609 if (!rdev->ena_gpio_state) {
2610 ret = regulator_ena_gpio_ctrl(rdev, true);
2611 if (ret < 0)
2612 return ret;
2613 rdev->ena_gpio_state = 1;
2614 }
2615 } else if (rdev->desc->ops->enable) {
2616 ret = rdev->desc->ops->enable(rdev);
2617 if (ret < 0)
2618 return ret;
2619 } else {
2620 return -EINVAL;
2621 }
2622
2623 /* Allow the regulator to ramp; it would be useful to extend
2624 * this for bulk operations so that the regulators can ramp
2625 * together.
2626 */
2627 trace_regulator_enable_delay(rdev_get_name(rdev));
2628
2629 /* If poll_enabled_time is set, poll upto the delay calculated
2630 * above, delaying poll_enabled_time uS to check if the regulator
2631 * actually got enabled.
2632 * If the regulator isn't enabled after enable_delay has
2633 * expired, return -ETIMEDOUT.
2634 */
2635 if (rdev->desc->poll_enabled_time) {
2636 unsigned int time_remaining = delay;
2637
2638 while (time_remaining > 0) {
2639 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2640
2641 if (rdev->desc->ops->get_status) {
2642 ret = _regulator_check_status_enabled(rdev);
2643 if (ret < 0)
2644 return ret;
2645 else if (ret)
2646 break;
2647 } else if (rdev->desc->ops->is_enabled(rdev))
2648 break;
2649
2650 time_remaining -= rdev->desc->poll_enabled_time;
2651 }
2652
2653 if (time_remaining <= 0) {
2654 rdev_err(rdev, "Enabled check timed out\n");
2655 return -ETIMEDOUT;
2656 }
2657 } else {
2658 _regulator_enable_delay(delay);
2659 }
2660
2661 trace_regulator_enable_complete(rdev_get_name(rdev));
2662
2663 return 0;
2664}
2665
2666/**
2667 * _regulator_handle_consumer_enable - handle that a consumer enabled
2668 * @regulator: regulator source
2669 *
2670 * Some things on a regulator consumer (like the contribution towards total
2671 * load on the regulator) only have an effect when the consumer wants the
2672 * regulator enabled. Explained in example with two consumers of the same
2673 * regulator:
2674 * consumer A: set_load(100); => total load = 0
2675 * consumer A: regulator_enable(); => total load = 100
2676 * consumer B: set_load(1000); => total load = 100
2677 * consumer B: regulator_enable(); => total load = 1100
2678 * consumer A: regulator_disable(); => total_load = 1000
2679 *
2680 * This function (together with _regulator_handle_consumer_disable) is
2681 * responsible for keeping track of the refcount for a given regulator consumer
2682 * and applying / unapplying these things.
2683 *
2684 * Returns 0 upon no error; -error upon error.
2685 */
2686static int _regulator_handle_consumer_enable(struct regulator *regulator)
2687{
2688 struct regulator_dev *rdev = regulator->rdev;
2689
2690 lockdep_assert_held_once(&rdev->mutex.base);
2691
2692 regulator->enable_count++;
2693 if (regulator->uA_load && regulator->enable_count == 1)
2694 return drms_uA_update(rdev);
2695
2696 return 0;
2697}
2698
2699/**
2700 * _regulator_handle_consumer_disable - handle that a consumer disabled
2701 * @regulator: regulator source
2702 *
2703 * The opposite of _regulator_handle_consumer_enable().
2704 *
2705 * Returns 0 upon no error; -error upon error.
2706 */
2707static int _regulator_handle_consumer_disable(struct regulator *regulator)
2708{
2709 struct regulator_dev *rdev = regulator->rdev;
2710
2711 lockdep_assert_held_once(&rdev->mutex.base);
2712
2713 if (!regulator->enable_count) {
2714 rdev_err(rdev, "Underflow of regulator enable count\n");
2715 return -EINVAL;
2716 }
2717
2718 regulator->enable_count--;
2719 if (regulator->uA_load && regulator->enable_count == 0)
2720 return drms_uA_update(rdev);
2721
2722 return 0;
2723}
2724
2725/* locks held by regulator_enable() */
2726static int _regulator_enable(struct regulator *regulator)
2727{
2728 struct regulator_dev *rdev = regulator->rdev;
2729 int ret;
2730
2731 lockdep_assert_held_once(&rdev->mutex.base);
2732
2733 if (rdev->use_count == 0 && rdev->supply) {
2734 ret = _regulator_enable(rdev->supply);
2735 if (ret < 0)
2736 return ret;
2737 }
2738
2739 /* balance only if there are regulators coupled */
2740 if (rdev->coupling_desc.n_coupled > 1) {
2741 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2742 if (ret < 0)
2743 goto err_disable_supply;
2744 }
2745
2746 ret = _regulator_handle_consumer_enable(regulator);
2747 if (ret < 0)
2748 goto err_disable_supply;
2749
2750 if (rdev->use_count == 0) {
2751 /*
2752 * The regulator may already be enabled if it's not switchable
2753 * or was left on
2754 */
2755 ret = _regulator_is_enabled(rdev);
2756 if (ret == -EINVAL || ret == 0) {
2757 if (!regulator_ops_is_valid(rdev,
2758 REGULATOR_CHANGE_STATUS)) {
2759 ret = -EPERM;
2760 goto err_consumer_disable;
2761 }
2762
2763 ret = _regulator_do_enable(rdev);
2764 if (ret < 0)
2765 goto err_consumer_disable;
2766
2767 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2768 NULL);
2769 } else if (ret < 0) {
2770 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2771 goto err_consumer_disable;
2772 }
2773 /* Fallthrough on positive return values - already enabled */
2774 }
2775
2776 rdev->use_count++;
2777
2778 return 0;
2779
2780err_consumer_disable:
2781 _regulator_handle_consumer_disable(regulator);
2782
2783err_disable_supply:
2784 if (rdev->use_count == 0 && rdev->supply)
2785 _regulator_disable(rdev->supply);
2786
2787 return ret;
2788}
2789
2790/**
2791 * regulator_enable - enable regulator output
2792 * @regulator: regulator source
2793 *
2794 * Request that the regulator be enabled with the regulator output at
2795 * the predefined voltage or current value. Calls to regulator_enable()
2796 * must be balanced with calls to regulator_disable().
2797 *
2798 * NOTE: the output value can be set by other drivers, boot loader or may be
2799 * hardwired in the regulator.
2800 */
2801int regulator_enable(struct regulator *regulator)
2802{
2803 struct regulator_dev *rdev = regulator->rdev;
2804 struct ww_acquire_ctx ww_ctx;
2805 int ret;
2806
2807 regulator_lock_dependent(rdev, &ww_ctx);
2808 ret = _regulator_enable(regulator);
2809 regulator_unlock_dependent(rdev, &ww_ctx);
2810
2811 return ret;
2812}
2813EXPORT_SYMBOL_GPL(regulator_enable);
2814
2815static int _regulator_do_disable(struct regulator_dev *rdev)
2816{
2817 int ret;
2818
2819 trace_regulator_disable(rdev_get_name(rdev));
2820
2821 if (rdev->ena_pin) {
2822 if (rdev->ena_gpio_state) {
2823 ret = regulator_ena_gpio_ctrl(rdev, false);
2824 if (ret < 0)
2825 return ret;
2826 rdev->ena_gpio_state = 0;
2827 }
2828
2829 } else if (rdev->desc->ops->disable) {
2830 ret = rdev->desc->ops->disable(rdev);
2831 if (ret != 0)
2832 return ret;
2833 }
2834
2835 if (rdev->desc->off_on_delay)
2836 rdev->last_off = ktime_get();
2837
2838 trace_regulator_disable_complete(rdev_get_name(rdev));
2839
2840 return 0;
2841}
2842
2843/* locks held by regulator_disable() */
2844static int _regulator_disable(struct regulator *regulator)
2845{
2846 struct regulator_dev *rdev = regulator->rdev;
2847 int ret = 0;
2848
2849 lockdep_assert_held_once(&rdev->mutex.base);
2850
2851 if (WARN(rdev->use_count <= 0,
2852 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2853 return -EIO;
2854
2855 /* are we the last user and permitted to disable ? */
2856 if (rdev->use_count == 1 &&
2857 (rdev->constraints && !rdev->constraints->always_on)) {
2858
2859 /* we are last user */
2860 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2861 ret = _notifier_call_chain(rdev,
2862 REGULATOR_EVENT_PRE_DISABLE,
2863 NULL);
2864 if (ret & NOTIFY_STOP_MASK)
2865 return -EINVAL;
2866
2867 ret = _regulator_do_disable(rdev);
2868 if (ret < 0) {
2869 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2870 _notifier_call_chain(rdev,
2871 REGULATOR_EVENT_ABORT_DISABLE,
2872 NULL);
2873 return ret;
2874 }
2875 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2876 NULL);
2877 }
2878
2879 rdev->use_count = 0;
2880 } else if (rdev->use_count > 1) {
2881 rdev->use_count--;
2882 }
2883
2884 if (ret == 0)
2885 ret = _regulator_handle_consumer_disable(regulator);
2886
2887 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2888 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889
2890 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2891 ret = _regulator_disable(rdev->supply);
2892
2893 return ret;
2894}
2895
2896/**
2897 * regulator_disable - disable regulator output
2898 * @regulator: regulator source
2899 *
2900 * Disable the regulator output voltage or current. Calls to
2901 * regulator_enable() must be balanced with calls to
2902 * regulator_disable().
2903 *
2904 * NOTE: this will only disable the regulator output if no other consumer
2905 * devices have it enabled, the regulator device supports disabling and
2906 * machine constraints permit this operation.
2907 */
2908int regulator_disable(struct regulator *regulator)
2909{
2910 struct regulator_dev *rdev = regulator->rdev;
2911 struct ww_acquire_ctx ww_ctx;
2912 int ret;
2913
2914 regulator_lock_dependent(rdev, &ww_ctx);
2915 ret = _regulator_disable(regulator);
2916 regulator_unlock_dependent(rdev, &ww_ctx);
2917
2918 return ret;
2919}
2920EXPORT_SYMBOL_GPL(regulator_disable);
2921
2922/* locks held by regulator_force_disable() */
2923static int _regulator_force_disable(struct regulator_dev *rdev)
2924{
2925 int ret = 0;
2926
2927 lockdep_assert_held_once(&rdev->mutex.base);
2928
2929 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2930 REGULATOR_EVENT_PRE_DISABLE, NULL);
2931 if (ret & NOTIFY_STOP_MASK)
2932 return -EINVAL;
2933
2934 ret = _regulator_do_disable(rdev);
2935 if (ret < 0) {
2936 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2937 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2938 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2939 return ret;
2940 }
2941
2942 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2943 REGULATOR_EVENT_DISABLE, NULL);
2944
2945 return 0;
2946}
2947
2948/**
2949 * regulator_force_disable - force disable regulator output
2950 * @regulator: regulator source
2951 *
2952 * Forcibly disable the regulator output voltage or current.
2953 * NOTE: this *will* disable the regulator output even if other consumer
2954 * devices have it enabled. This should be used for situations when device
2955 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2956 */
2957int regulator_force_disable(struct regulator *regulator)
2958{
2959 struct regulator_dev *rdev = regulator->rdev;
2960 struct ww_acquire_ctx ww_ctx;
2961 int ret;
2962
2963 regulator_lock_dependent(rdev, &ww_ctx);
2964
2965 ret = _regulator_force_disable(regulator->rdev);
2966
2967 if (rdev->coupling_desc.n_coupled > 1)
2968 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2969
2970 if (regulator->uA_load) {
2971 regulator->uA_load = 0;
2972 ret = drms_uA_update(rdev);
2973 }
2974
2975 if (rdev->use_count != 0 && rdev->supply)
2976 _regulator_disable(rdev->supply);
2977
2978 regulator_unlock_dependent(rdev, &ww_ctx);
2979
2980 return ret;
2981}
2982EXPORT_SYMBOL_GPL(regulator_force_disable);
2983
2984static void regulator_disable_work(struct work_struct *work)
2985{
2986 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2987 disable_work.work);
2988 struct ww_acquire_ctx ww_ctx;
2989 int count, i, ret;
2990 struct regulator *regulator;
2991 int total_count = 0;
2992
2993 regulator_lock_dependent(rdev, &ww_ctx);
2994
2995 /*
2996 * Workqueue functions queue the new work instance while the previous
2997 * work instance is being processed. Cancel the queued work instance
2998 * as the work instance under processing does the job of the queued
2999 * work instance.
3000 */
3001 cancel_delayed_work(&rdev->disable_work);
3002
3003 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3004 count = regulator->deferred_disables;
3005
3006 if (!count)
3007 continue;
3008
3009 total_count += count;
3010 regulator->deferred_disables = 0;
3011
3012 for (i = 0; i < count; i++) {
3013 ret = _regulator_disable(regulator);
3014 if (ret != 0)
3015 rdev_err(rdev, "Deferred disable failed: %pe\n",
3016 ERR_PTR(ret));
3017 }
3018 }
3019 WARN_ON(!total_count);
3020
3021 if (rdev->coupling_desc.n_coupled > 1)
3022 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3023
3024 regulator_unlock_dependent(rdev, &ww_ctx);
3025}
3026
3027/**
3028 * regulator_disable_deferred - disable regulator output with delay
3029 * @regulator: regulator source
3030 * @ms: milliseconds until the regulator is disabled
3031 *
3032 * Execute regulator_disable() on the regulator after a delay. This
3033 * is intended for use with devices that require some time to quiesce.
3034 *
3035 * NOTE: this will only disable the regulator output if no other consumer
3036 * devices have it enabled, the regulator device supports disabling and
3037 * machine constraints permit this operation.
3038 */
3039int regulator_disable_deferred(struct regulator *regulator, int ms)
3040{
3041 struct regulator_dev *rdev = regulator->rdev;
3042
3043 if (!ms)
3044 return regulator_disable(regulator);
3045
3046 regulator_lock(rdev);
3047 regulator->deferred_disables++;
3048 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3049 msecs_to_jiffies(ms));
3050 regulator_unlock(rdev);
3051
3052 return 0;
3053}
3054EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3055
3056static int _regulator_is_enabled(struct regulator_dev *rdev)
3057{
3058 /* A GPIO control always takes precedence */
3059 if (rdev->ena_pin)
3060 return rdev->ena_gpio_state;
3061
3062 /* If we don't know then assume that the regulator is always on */
3063 if (!rdev->desc->ops->is_enabled)
3064 return 1;
3065
3066 return rdev->desc->ops->is_enabled(rdev);
3067}
3068
3069static int _regulator_list_voltage(struct regulator_dev *rdev,
3070 unsigned selector, int lock)
3071{
3072 const struct regulator_ops *ops = rdev->desc->ops;
3073 int ret;
3074
3075 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3076 return rdev->desc->fixed_uV;
3077
3078 if (ops->list_voltage) {
3079 if (selector >= rdev->desc->n_voltages)
3080 return -EINVAL;
3081 if (selector < rdev->desc->linear_min_sel)
3082 return 0;
3083 if (lock)
3084 regulator_lock(rdev);
3085 ret = ops->list_voltage(rdev, selector);
3086 if (lock)
3087 regulator_unlock(rdev);
3088 } else if (rdev->is_switch && rdev->supply) {
3089 ret = _regulator_list_voltage(rdev->supply->rdev,
3090 selector, lock);
3091 } else {
3092 return -EINVAL;
3093 }
3094
3095 if (ret > 0) {
3096 if (ret < rdev->constraints->min_uV)
3097 ret = 0;
3098 else if (ret > rdev->constraints->max_uV)
3099 ret = 0;
3100 }
3101
3102 return ret;
3103}
3104
3105/**
3106 * regulator_is_enabled - is the regulator output enabled
3107 * @regulator: regulator source
3108 *
3109 * Returns positive if the regulator driver backing the source/client
3110 * has requested that the device be enabled, zero if it hasn't, else a
3111 * negative errno code.
3112 *
3113 * Note that the device backing this regulator handle can have multiple
3114 * users, so it might be enabled even if regulator_enable() was never
3115 * called for this particular source.
3116 */
3117int regulator_is_enabled(struct regulator *regulator)
3118{
3119 int ret;
3120
3121 if (regulator->always_on)
3122 return 1;
3123
3124 regulator_lock(regulator->rdev);
3125 ret = _regulator_is_enabled(regulator->rdev);
3126 regulator_unlock(regulator->rdev);
3127
3128 return ret;
3129}
3130EXPORT_SYMBOL_GPL(regulator_is_enabled);
3131
3132/**
3133 * regulator_count_voltages - count regulator_list_voltage() selectors
3134 * @regulator: regulator source
3135 *
3136 * Returns number of selectors, or negative errno. Selectors are
3137 * numbered starting at zero, and typically correspond to bitfields
3138 * in hardware registers.
3139 */
3140int regulator_count_voltages(struct regulator *regulator)
3141{
3142 struct regulator_dev *rdev = regulator->rdev;
3143
3144 if (rdev->desc->n_voltages)
3145 return rdev->desc->n_voltages;
3146
3147 if (!rdev->is_switch || !rdev->supply)
3148 return -EINVAL;
3149
3150 return regulator_count_voltages(rdev->supply);
3151}
3152EXPORT_SYMBOL_GPL(regulator_count_voltages);
3153
3154/**
3155 * regulator_list_voltage - enumerate supported voltages
3156 * @regulator: regulator source
3157 * @selector: identify voltage to list
3158 * Context: can sleep
3159 *
3160 * Returns a voltage that can be passed to @regulator_set_voltage(),
3161 * zero if this selector code can't be used on this system, or a
3162 * negative errno.
3163 */
3164int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3165{
3166 return _regulator_list_voltage(regulator->rdev, selector, 1);
3167}
3168EXPORT_SYMBOL_GPL(regulator_list_voltage);
3169
3170/**
3171 * regulator_get_regmap - get the regulator's register map
3172 * @regulator: regulator source
3173 *
3174 * Returns the register map for the given regulator, or an ERR_PTR value
3175 * if the regulator doesn't use regmap.
3176 */
3177struct regmap *regulator_get_regmap(struct regulator *regulator)
3178{
3179 struct regmap *map = regulator->rdev->regmap;
3180
3181 return map ? map : ERR_PTR(-EOPNOTSUPP);
3182}
3183
3184/**
3185 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3186 * @regulator: regulator source
3187 * @vsel_reg: voltage selector register, output parameter
3188 * @vsel_mask: mask for voltage selector bitfield, output parameter
3189 *
3190 * Returns the hardware register offset and bitmask used for setting the
3191 * regulator voltage. This might be useful when configuring voltage-scaling
3192 * hardware or firmware that can make I2C requests behind the kernel's back,
3193 * for example.
3194 *
3195 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3196 * and 0 is returned, otherwise a negative errno is returned.
3197 */
3198int regulator_get_hardware_vsel_register(struct regulator *regulator,
3199 unsigned *vsel_reg,
3200 unsigned *vsel_mask)
3201{
3202 struct regulator_dev *rdev = regulator->rdev;
3203 const struct regulator_ops *ops = rdev->desc->ops;
3204
3205 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3206 return -EOPNOTSUPP;
3207
3208 *vsel_reg = rdev->desc->vsel_reg;
3209 *vsel_mask = rdev->desc->vsel_mask;
3210
3211 return 0;
3212}
3213EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3214
3215/**
3216 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3217 * @regulator: regulator source
3218 * @selector: identify voltage to list
3219 *
3220 * Converts the selector to a hardware-specific voltage selector that can be
3221 * directly written to the regulator registers. The address of the voltage
3222 * register can be determined by calling @regulator_get_hardware_vsel_register.
3223 *
3224 * On error a negative errno is returned.
3225 */
3226int regulator_list_hardware_vsel(struct regulator *regulator,
3227 unsigned selector)
3228{
3229 struct regulator_dev *rdev = regulator->rdev;
3230 const struct regulator_ops *ops = rdev->desc->ops;
3231
3232 if (selector >= rdev->desc->n_voltages)
3233 return -EINVAL;
3234 if (selector < rdev->desc->linear_min_sel)
3235 return 0;
3236 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3237 return -EOPNOTSUPP;
3238
3239 return selector;
3240}
3241EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3242
3243/**
3244 * regulator_get_linear_step - return the voltage step size between VSEL values
3245 * @regulator: regulator source
3246 *
3247 * Returns the voltage step size between VSEL values for linear
3248 * regulators, or return 0 if the regulator isn't a linear regulator.
3249 */
3250unsigned int regulator_get_linear_step(struct regulator *regulator)
3251{
3252 struct regulator_dev *rdev = regulator->rdev;
3253
3254 return rdev->desc->uV_step;
3255}
3256EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3257
3258/**
3259 * regulator_is_supported_voltage - check if a voltage range can be supported
3260 *
3261 * @regulator: Regulator to check.
3262 * @min_uV: Minimum required voltage in uV.
3263 * @max_uV: Maximum required voltage in uV.
3264 *
3265 * Returns a boolean.
3266 */
3267int regulator_is_supported_voltage(struct regulator *regulator,
3268 int min_uV, int max_uV)
3269{
3270 struct regulator_dev *rdev = regulator->rdev;
3271 int i, voltages, ret;
3272
3273 /* If we can't change voltage check the current voltage */
3274 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3275 ret = regulator_get_voltage(regulator);
3276 if (ret >= 0)
3277 return min_uV <= ret && ret <= max_uV;
3278 else
3279 return ret;
3280 }
3281
3282 /* Any voltage within constrains range is fine? */
3283 if (rdev->desc->continuous_voltage_range)
3284 return min_uV >= rdev->constraints->min_uV &&
3285 max_uV <= rdev->constraints->max_uV;
3286
3287 ret = regulator_count_voltages(regulator);
3288 if (ret < 0)
3289 return 0;
3290 voltages = ret;
3291
3292 for (i = 0; i < voltages; i++) {
3293 ret = regulator_list_voltage(regulator, i);
3294
3295 if (ret >= min_uV && ret <= max_uV)
3296 return 1;
3297 }
3298
3299 return 0;
3300}
3301EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3302
3303static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3304 int max_uV)
3305{
3306 const struct regulator_desc *desc = rdev->desc;
3307
3308 if (desc->ops->map_voltage)
3309 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3310
3311 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3312 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3313
3314 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3315 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3316
3317 if (desc->ops->list_voltage ==
3318 regulator_list_voltage_pickable_linear_range)
3319 return regulator_map_voltage_pickable_linear_range(rdev,
3320 min_uV, max_uV);
3321
3322 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3323}
3324
3325static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3326 int min_uV, int max_uV,
3327 unsigned *selector)
3328{
3329 struct pre_voltage_change_data data;
3330 int ret;
3331
3332 data.old_uV = regulator_get_voltage_rdev(rdev);
3333 data.min_uV = min_uV;
3334 data.max_uV = max_uV;
3335 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3336 &data);
3337 if (ret & NOTIFY_STOP_MASK)
3338 return -EINVAL;
3339
3340 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3341 if (ret >= 0)
3342 return ret;
3343
3344 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3345 (void *)data.old_uV);
3346
3347 return ret;
3348}
3349
3350static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3351 int uV, unsigned selector)
3352{
3353 struct pre_voltage_change_data data;
3354 int ret;
3355
3356 data.old_uV = regulator_get_voltage_rdev(rdev);
3357 data.min_uV = uV;
3358 data.max_uV = uV;
3359 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3360 &data);
3361 if (ret & NOTIFY_STOP_MASK)
3362 return -EINVAL;
3363
3364 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3365 if (ret >= 0)
3366 return ret;
3367
3368 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3369 (void *)data.old_uV);
3370
3371 return ret;
3372}
3373
3374static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3375 int uV, int new_selector)
3376{
3377 const struct regulator_ops *ops = rdev->desc->ops;
3378 int diff, old_sel, curr_sel, ret;
3379
3380 /* Stepping is only needed if the regulator is enabled. */
3381 if (!_regulator_is_enabled(rdev))
3382 goto final_set;
3383
3384 if (!ops->get_voltage_sel)
3385 return -EINVAL;
3386
3387 old_sel = ops->get_voltage_sel(rdev);
3388 if (old_sel < 0)
3389 return old_sel;
3390
3391 diff = new_selector - old_sel;
3392 if (diff == 0)
3393 return 0; /* No change needed. */
3394
3395 if (diff > 0) {
3396 /* Stepping up. */
3397 for (curr_sel = old_sel + rdev->desc->vsel_step;
3398 curr_sel < new_selector;
3399 curr_sel += rdev->desc->vsel_step) {
3400 /*
3401 * Call the callback directly instead of using
3402 * _regulator_call_set_voltage_sel() as we don't
3403 * want to notify anyone yet. Same in the branch
3404 * below.
3405 */
3406 ret = ops->set_voltage_sel(rdev, curr_sel);
3407 if (ret)
3408 goto try_revert;
3409 }
3410 } else {
3411 /* Stepping down. */
3412 for (curr_sel = old_sel - rdev->desc->vsel_step;
3413 curr_sel > new_selector;
3414 curr_sel -= rdev->desc->vsel_step) {
3415 ret = ops->set_voltage_sel(rdev, curr_sel);
3416 if (ret)
3417 goto try_revert;
3418 }
3419 }
3420
3421final_set:
3422 /* The final selector will trigger the notifiers. */
3423 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3424
3425try_revert:
3426 /*
3427 * At least try to return to the previous voltage if setting a new
3428 * one failed.
3429 */
3430 (void)ops->set_voltage_sel(rdev, old_sel);
3431 return ret;
3432}
3433
3434static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3435 int old_uV, int new_uV)
3436{
3437 unsigned int ramp_delay = 0;
3438
3439 if (rdev->constraints->ramp_delay)
3440 ramp_delay = rdev->constraints->ramp_delay;
3441 else if (rdev->desc->ramp_delay)
3442 ramp_delay = rdev->desc->ramp_delay;
3443 else if (rdev->constraints->settling_time)
3444 return rdev->constraints->settling_time;
3445 else if (rdev->constraints->settling_time_up &&
3446 (new_uV > old_uV))
3447 return rdev->constraints->settling_time_up;
3448 else if (rdev->constraints->settling_time_down &&
3449 (new_uV < old_uV))
3450 return rdev->constraints->settling_time_down;
3451
3452 if (ramp_delay == 0) {
3453 rdev_dbg(rdev, "ramp_delay not set\n");
3454 return 0;
3455 }
3456
3457 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3458}
3459
3460static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3461 int min_uV, int max_uV)
3462{
3463 int ret;
3464 int delay = 0;
3465 int best_val = 0;
3466 unsigned int selector;
3467 int old_selector = -1;
3468 const struct regulator_ops *ops = rdev->desc->ops;
3469 int old_uV = regulator_get_voltage_rdev(rdev);
3470
3471 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3472
3473 min_uV += rdev->constraints->uV_offset;
3474 max_uV += rdev->constraints->uV_offset;
3475
3476 /*
3477 * If we can't obtain the old selector there is not enough
3478 * info to call set_voltage_time_sel().
3479 */
3480 if (_regulator_is_enabled(rdev) &&
3481 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3482 old_selector = ops->get_voltage_sel(rdev);
3483 if (old_selector < 0)
3484 return old_selector;
3485 }
3486
3487 if (ops->set_voltage) {
3488 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3489 &selector);
3490
3491 if (ret >= 0) {
3492 if (ops->list_voltage)
3493 best_val = ops->list_voltage(rdev,
3494 selector);
3495 else
3496 best_val = regulator_get_voltage_rdev(rdev);
3497 }
3498
3499 } else if (ops->set_voltage_sel) {
3500 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3501 if (ret >= 0) {
3502 best_val = ops->list_voltage(rdev, ret);
3503 if (min_uV <= best_val && max_uV >= best_val) {
3504 selector = ret;
3505 if (old_selector == selector)
3506 ret = 0;
3507 else if (rdev->desc->vsel_step)
3508 ret = _regulator_set_voltage_sel_step(
3509 rdev, best_val, selector);
3510 else
3511 ret = _regulator_call_set_voltage_sel(
3512 rdev, best_val, selector);
3513 } else {
3514 ret = -EINVAL;
3515 }
3516 }
3517 } else {
3518 ret = -EINVAL;
3519 }
3520
3521 if (ret)
3522 goto out;
3523
3524 if (ops->set_voltage_time_sel) {
3525 /*
3526 * Call set_voltage_time_sel if successfully obtained
3527 * old_selector
3528 */
3529 if (old_selector >= 0 && old_selector != selector)
3530 delay = ops->set_voltage_time_sel(rdev, old_selector,
3531 selector);
3532 } else {
3533 if (old_uV != best_val) {
3534 if (ops->set_voltage_time)
3535 delay = ops->set_voltage_time(rdev, old_uV,
3536 best_val);
3537 else
3538 delay = _regulator_set_voltage_time(rdev,
3539 old_uV,
3540 best_val);
3541 }
3542 }
3543
3544 if (delay < 0) {
3545 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3546 delay = 0;
3547 }
3548
3549 /* Insert any necessary delays */
3550 if (delay >= 1000) {
3551 mdelay(delay / 1000);
3552 udelay(delay % 1000);
3553 } else if (delay) {
3554 udelay(delay);
3555 }
3556
3557 if (best_val >= 0) {
3558 unsigned long data = best_val;
3559
3560 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3561 (void *)data);
3562 }
3563
3564out:
3565 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3566
3567 return ret;
3568}
3569
3570static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3571 int min_uV, int max_uV, suspend_state_t state)
3572{
3573 struct regulator_state *rstate;
3574 int uV, sel;
3575
3576 rstate = regulator_get_suspend_state(rdev, state);
3577 if (rstate == NULL)
3578 return -EINVAL;
3579
3580 if (min_uV < rstate->min_uV)
3581 min_uV = rstate->min_uV;
3582 if (max_uV > rstate->max_uV)
3583 max_uV = rstate->max_uV;
3584
3585 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3586 if (sel < 0)
3587 return sel;
3588
3589 uV = rdev->desc->ops->list_voltage(rdev, sel);
3590 if (uV >= min_uV && uV <= max_uV)
3591 rstate->uV = uV;
3592
3593 return 0;
3594}
3595
3596static int regulator_set_voltage_unlocked(struct regulator *regulator,
3597 int min_uV, int max_uV,
3598 suspend_state_t state)
3599{
3600 struct regulator_dev *rdev = regulator->rdev;
3601 struct regulator_voltage *voltage = ®ulator->voltage[state];
3602 int ret = 0;
3603 int old_min_uV, old_max_uV;
3604 int current_uV;
3605
3606 /* If we're setting the same range as last time the change
3607 * should be a noop (some cpufreq implementations use the same
3608 * voltage for multiple frequencies, for example).
3609 */
3610 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3611 goto out;
3612
3613 /* If we're trying to set a range that overlaps the current voltage,
3614 * return successfully even though the regulator does not support
3615 * changing the voltage.
3616 */
3617 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3618 current_uV = regulator_get_voltage_rdev(rdev);
3619 if (min_uV <= current_uV && current_uV <= max_uV) {
3620 voltage->min_uV = min_uV;
3621 voltage->max_uV = max_uV;
3622 goto out;
3623 }
3624 }
3625
3626 /* sanity check */
3627 if (!rdev->desc->ops->set_voltage &&
3628 !rdev->desc->ops->set_voltage_sel) {
3629 ret = -EINVAL;
3630 goto out;
3631 }
3632
3633 /* constraints check */
3634 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3635 if (ret < 0)
3636 goto out;
3637
3638 /* restore original values in case of error */
3639 old_min_uV = voltage->min_uV;
3640 old_max_uV = voltage->max_uV;
3641 voltage->min_uV = min_uV;
3642 voltage->max_uV = max_uV;
3643
3644 /* for not coupled regulators this will just set the voltage */
3645 ret = regulator_balance_voltage(rdev, state);
3646 if (ret < 0) {
3647 voltage->min_uV = old_min_uV;
3648 voltage->max_uV = old_max_uV;
3649 }
3650
3651out:
3652 return ret;
3653}
3654
3655int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3656 int max_uV, suspend_state_t state)
3657{
3658 int best_supply_uV = 0;
3659 int supply_change_uV = 0;
3660 int ret;
3661
3662 if (rdev->supply &&
3663 regulator_ops_is_valid(rdev->supply->rdev,
3664 REGULATOR_CHANGE_VOLTAGE) &&
3665 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3666 rdev->desc->ops->get_voltage_sel))) {
3667 int current_supply_uV;
3668 int selector;
3669
3670 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3671 if (selector < 0) {
3672 ret = selector;
3673 goto out;
3674 }
3675
3676 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3677 if (best_supply_uV < 0) {
3678 ret = best_supply_uV;
3679 goto out;
3680 }
3681
3682 best_supply_uV += rdev->desc->min_dropout_uV;
3683
3684 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3685 if (current_supply_uV < 0) {
3686 ret = current_supply_uV;
3687 goto out;
3688 }
3689
3690 supply_change_uV = best_supply_uV - current_supply_uV;
3691 }
3692
3693 if (supply_change_uV > 0) {
3694 ret = regulator_set_voltage_unlocked(rdev->supply,
3695 best_supply_uV, INT_MAX, state);
3696 if (ret) {
3697 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3698 ERR_PTR(ret));
3699 goto out;
3700 }
3701 }
3702
3703 if (state == PM_SUSPEND_ON)
3704 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3705 else
3706 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3707 max_uV, state);
3708 if (ret < 0)
3709 goto out;
3710
3711 if (supply_change_uV < 0) {
3712 ret = regulator_set_voltage_unlocked(rdev->supply,
3713 best_supply_uV, INT_MAX, state);
3714 if (ret)
3715 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3716 ERR_PTR(ret));
3717 /* No need to fail here */
3718 ret = 0;
3719 }
3720
3721out:
3722 return ret;
3723}
3724EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3725
3726static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3727 int *current_uV, int *min_uV)
3728{
3729 struct regulation_constraints *constraints = rdev->constraints;
3730
3731 /* Limit voltage change only if necessary */
3732 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3733 return 1;
3734
3735 if (*current_uV < 0) {
3736 *current_uV = regulator_get_voltage_rdev(rdev);
3737
3738 if (*current_uV < 0)
3739 return *current_uV;
3740 }
3741
3742 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3743 return 1;
3744
3745 /* Clamp target voltage within the given step */
3746 if (*current_uV < *min_uV)
3747 *min_uV = min(*current_uV + constraints->max_uV_step,
3748 *min_uV);
3749 else
3750 *min_uV = max(*current_uV - constraints->max_uV_step,
3751 *min_uV);
3752
3753 return 0;
3754}
3755
3756static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3757 int *current_uV,
3758 int *min_uV, int *max_uV,
3759 suspend_state_t state,
3760 int n_coupled)
3761{
3762 struct coupling_desc *c_desc = &rdev->coupling_desc;
3763 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3764 struct regulation_constraints *constraints = rdev->constraints;
3765 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3766 int max_current_uV = 0, min_current_uV = INT_MAX;
3767 int highest_min_uV = 0, target_uV, possible_uV;
3768 int i, ret, max_spread;
3769 bool done;
3770
3771 *current_uV = -1;
3772
3773 /*
3774 * If there are no coupled regulators, simply set the voltage
3775 * demanded by consumers.
3776 */
3777 if (n_coupled == 1) {
3778 /*
3779 * If consumers don't provide any demands, set voltage
3780 * to min_uV
3781 */
3782 desired_min_uV = constraints->min_uV;
3783 desired_max_uV = constraints->max_uV;
3784
3785 ret = regulator_check_consumers(rdev,
3786 &desired_min_uV,
3787 &desired_max_uV, state);
3788 if (ret < 0)
3789 return ret;
3790
3791 possible_uV = desired_min_uV;
3792 done = true;
3793
3794 goto finish;
3795 }
3796
3797 /* Find highest min desired voltage */
3798 for (i = 0; i < n_coupled; i++) {
3799 int tmp_min = 0;
3800 int tmp_max = INT_MAX;
3801
3802 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3803
3804 ret = regulator_check_consumers(c_rdevs[i],
3805 &tmp_min,
3806 &tmp_max, state);
3807 if (ret < 0)
3808 return ret;
3809
3810 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3811 if (ret < 0)
3812 return ret;
3813
3814 highest_min_uV = max(highest_min_uV, tmp_min);
3815
3816 if (i == 0) {
3817 desired_min_uV = tmp_min;
3818 desired_max_uV = tmp_max;
3819 }
3820 }
3821
3822 max_spread = constraints->max_spread[0];
3823
3824 /*
3825 * Let target_uV be equal to the desired one if possible.
3826 * If not, set it to minimum voltage, allowed by other coupled
3827 * regulators.
3828 */
3829 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3830
3831 /*
3832 * Find min and max voltages, which currently aren't violating
3833 * max_spread.
3834 */
3835 for (i = 1; i < n_coupled; i++) {
3836 int tmp_act;
3837
3838 if (!_regulator_is_enabled(c_rdevs[i]))
3839 continue;
3840
3841 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3842 if (tmp_act < 0)
3843 return tmp_act;
3844
3845 min_current_uV = min(tmp_act, min_current_uV);
3846 max_current_uV = max(tmp_act, max_current_uV);
3847 }
3848
3849 /* There aren't any other regulators enabled */
3850 if (max_current_uV == 0) {
3851 possible_uV = target_uV;
3852 } else {
3853 /*
3854 * Correct target voltage, so as it currently isn't
3855 * violating max_spread
3856 */
3857 possible_uV = max(target_uV, max_current_uV - max_spread);
3858 possible_uV = min(possible_uV, min_current_uV + max_spread);
3859 }
3860
3861 if (possible_uV > desired_max_uV)
3862 return -EINVAL;
3863
3864 done = (possible_uV == target_uV);
3865 desired_min_uV = possible_uV;
3866
3867finish:
3868 /* Apply max_uV_step constraint if necessary */
3869 if (state == PM_SUSPEND_ON) {
3870 ret = regulator_limit_voltage_step(rdev, current_uV,
3871 &desired_min_uV);
3872 if (ret < 0)
3873 return ret;
3874
3875 if (ret == 0)
3876 done = false;
3877 }
3878
3879 /* Set current_uV if wasn't done earlier in the code and if necessary */
3880 if (n_coupled > 1 && *current_uV == -1) {
3881
3882 if (_regulator_is_enabled(rdev)) {
3883 ret = regulator_get_voltage_rdev(rdev);
3884 if (ret < 0)
3885 return ret;
3886
3887 *current_uV = ret;
3888 } else {
3889 *current_uV = desired_min_uV;
3890 }
3891 }
3892
3893 *min_uV = desired_min_uV;
3894 *max_uV = desired_max_uV;
3895
3896 return done;
3897}
3898
3899int regulator_do_balance_voltage(struct regulator_dev *rdev,
3900 suspend_state_t state, bool skip_coupled)
3901{
3902 struct regulator_dev **c_rdevs;
3903 struct regulator_dev *best_rdev;
3904 struct coupling_desc *c_desc = &rdev->coupling_desc;
3905 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3906 unsigned int delta, best_delta;
3907 unsigned long c_rdev_done = 0;
3908 bool best_c_rdev_done;
3909
3910 c_rdevs = c_desc->coupled_rdevs;
3911 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3912
3913 /*
3914 * Find the best possible voltage change on each loop. Leave the loop
3915 * if there isn't any possible change.
3916 */
3917 do {
3918 best_c_rdev_done = false;
3919 best_delta = 0;
3920 best_min_uV = 0;
3921 best_max_uV = 0;
3922 best_c_rdev = 0;
3923 best_rdev = NULL;
3924
3925 /*
3926 * Find highest difference between optimal voltage
3927 * and current voltage.
3928 */
3929 for (i = 0; i < n_coupled; i++) {
3930 /*
3931 * optimal_uV is the best voltage that can be set for
3932 * i-th regulator at the moment without violating
3933 * max_spread constraint in order to balance
3934 * the coupled voltages.
3935 */
3936 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3937
3938 if (test_bit(i, &c_rdev_done))
3939 continue;
3940
3941 ret = regulator_get_optimal_voltage(c_rdevs[i],
3942 ¤t_uV,
3943 &optimal_uV,
3944 &optimal_max_uV,
3945 state, n_coupled);
3946 if (ret < 0)
3947 goto out;
3948
3949 delta = abs(optimal_uV - current_uV);
3950
3951 if (delta && best_delta <= delta) {
3952 best_c_rdev_done = ret;
3953 best_delta = delta;
3954 best_rdev = c_rdevs[i];
3955 best_min_uV = optimal_uV;
3956 best_max_uV = optimal_max_uV;
3957 best_c_rdev = i;
3958 }
3959 }
3960
3961 /* Nothing to change, return successfully */
3962 if (!best_rdev) {
3963 ret = 0;
3964 goto out;
3965 }
3966
3967 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3968 best_max_uV, state);
3969
3970 if (ret < 0)
3971 goto out;
3972
3973 if (best_c_rdev_done)
3974 set_bit(best_c_rdev, &c_rdev_done);
3975
3976 } while (n_coupled > 1);
3977
3978out:
3979 return ret;
3980}
3981
3982static int regulator_balance_voltage(struct regulator_dev *rdev,
3983 suspend_state_t state)
3984{
3985 struct coupling_desc *c_desc = &rdev->coupling_desc;
3986 struct regulator_coupler *coupler = c_desc->coupler;
3987 bool skip_coupled = false;
3988
3989 /*
3990 * If system is in a state other than PM_SUSPEND_ON, don't check
3991 * other coupled regulators.
3992 */
3993 if (state != PM_SUSPEND_ON)
3994 skip_coupled = true;
3995
3996 if (c_desc->n_resolved < c_desc->n_coupled) {
3997 rdev_err(rdev, "Not all coupled regulators registered\n");
3998 return -EPERM;
3999 }
4000
4001 /* Invoke custom balancer for customized couplers */
4002 if (coupler && coupler->balance_voltage)
4003 return coupler->balance_voltage(coupler, rdev, state);
4004
4005 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4006}
4007
4008/**
4009 * regulator_set_voltage - set regulator output voltage
4010 * @regulator: regulator source
4011 * @min_uV: Minimum required voltage in uV
4012 * @max_uV: Maximum acceptable voltage in uV
4013 *
4014 * Sets a voltage regulator to the desired output voltage. This can be set
4015 * during any regulator state. IOW, regulator can be disabled or enabled.
4016 *
4017 * If the regulator is enabled then the voltage will change to the new value
4018 * immediately otherwise if the regulator is disabled the regulator will
4019 * output at the new voltage when enabled.
4020 *
4021 * NOTE: If the regulator is shared between several devices then the lowest
4022 * request voltage that meets the system constraints will be used.
4023 * Regulator system constraints must be set for this regulator before
4024 * calling this function otherwise this call will fail.
4025 */
4026int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4027{
4028 struct ww_acquire_ctx ww_ctx;
4029 int ret;
4030
4031 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4032
4033 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4034 PM_SUSPEND_ON);
4035
4036 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4037
4038 return ret;
4039}
4040EXPORT_SYMBOL_GPL(regulator_set_voltage);
4041
4042static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4043 suspend_state_t state, bool en)
4044{
4045 struct regulator_state *rstate;
4046
4047 rstate = regulator_get_suspend_state(rdev, state);
4048 if (rstate == NULL)
4049 return -EINVAL;
4050
4051 if (!rstate->changeable)
4052 return -EPERM;
4053
4054 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4055
4056 return 0;
4057}
4058
4059int regulator_suspend_enable(struct regulator_dev *rdev,
4060 suspend_state_t state)
4061{
4062 return regulator_suspend_toggle(rdev, state, true);
4063}
4064EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4065
4066int regulator_suspend_disable(struct regulator_dev *rdev,
4067 suspend_state_t state)
4068{
4069 struct regulator *regulator;
4070 struct regulator_voltage *voltage;
4071
4072 /*
4073 * if any consumer wants this regulator device keeping on in
4074 * suspend states, don't set it as disabled.
4075 */
4076 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4077 voltage = ®ulator->voltage[state];
4078 if (voltage->min_uV || voltage->max_uV)
4079 return 0;
4080 }
4081
4082 return regulator_suspend_toggle(rdev, state, false);
4083}
4084EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4085
4086static int _regulator_set_suspend_voltage(struct regulator *regulator,
4087 int min_uV, int max_uV,
4088 suspend_state_t state)
4089{
4090 struct regulator_dev *rdev = regulator->rdev;
4091 struct regulator_state *rstate;
4092
4093 rstate = regulator_get_suspend_state(rdev, state);
4094 if (rstate == NULL)
4095 return -EINVAL;
4096
4097 if (rstate->min_uV == rstate->max_uV) {
4098 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4099 return -EPERM;
4100 }
4101
4102 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4103}
4104
4105int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4106 int max_uV, suspend_state_t state)
4107{
4108 struct ww_acquire_ctx ww_ctx;
4109 int ret;
4110
4111 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4112 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4113 return -EINVAL;
4114
4115 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4116
4117 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4118 max_uV, state);
4119
4120 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4121
4122 return ret;
4123}
4124EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4125
4126/**
4127 * regulator_set_voltage_time - get raise/fall time
4128 * @regulator: regulator source
4129 * @old_uV: starting voltage in microvolts
4130 * @new_uV: target voltage in microvolts
4131 *
4132 * Provided with the starting and ending voltage, this function attempts to
4133 * calculate the time in microseconds required to rise or fall to this new
4134 * voltage.
4135 */
4136int regulator_set_voltage_time(struct regulator *regulator,
4137 int old_uV, int new_uV)
4138{
4139 struct regulator_dev *rdev = regulator->rdev;
4140 const struct regulator_ops *ops = rdev->desc->ops;
4141 int old_sel = -1;
4142 int new_sel = -1;
4143 int voltage;
4144 int i;
4145
4146 if (ops->set_voltage_time)
4147 return ops->set_voltage_time(rdev, old_uV, new_uV);
4148 else if (!ops->set_voltage_time_sel)
4149 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4150
4151 /* Currently requires operations to do this */
4152 if (!ops->list_voltage || !rdev->desc->n_voltages)
4153 return -EINVAL;
4154
4155 for (i = 0; i < rdev->desc->n_voltages; i++) {
4156 /* We only look for exact voltage matches here */
4157 if (i < rdev->desc->linear_min_sel)
4158 continue;
4159
4160 if (old_sel >= 0 && new_sel >= 0)
4161 break;
4162
4163 voltage = regulator_list_voltage(regulator, i);
4164 if (voltage < 0)
4165 return -EINVAL;
4166 if (voltage == 0)
4167 continue;
4168 if (voltage == old_uV)
4169 old_sel = i;
4170 if (voltage == new_uV)
4171 new_sel = i;
4172 }
4173
4174 if (old_sel < 0 || new_sel < 0)
4175 return -EINVAL;
4176
4177 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4178}
4179EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4180
4181/**
4182 * regulator_set_voltage_time_sel - get raise/fall time
4183 * @rdev: regulator source device
4184 * @old_selector: selector for starting voltage
4185 * @new_selector: selector for target voltage
4186 *
4187 * Provided with the starting and target voltage selectors, this function
4188 * returns time in microseconds required to rise or fall to this new voltage
4189 *
4190 * Drivers providing ramp_delay in regulation_constraints can use this as their
4191 * set_voltage_time_sel() operation.
4192 */
4193int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4194 unsigned int old_selector,
4195 unsigned int new_selector)
4196{
4197 int old_volt, new_volt;
4198
4199 /* sanity check */
4200 if (!rdev->desc->ops->list_voltage)
4201 return -EINVAL;
4202
4203 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4204 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4205
4206 if (rdev->desc->ops->set_voltage_time)
4207 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4208 new_volt);
4209 else
4210 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4211}
4212EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4213
4214int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4215{
4216 int ret;
4217
4218 regulator_lock(rdev);
4219
4220 if (!rdev->desc->ops->set_voltage &&
4221 !rdev->desc->ops->set_voltage_sel) {
4222 ret = -EINVAL;
4223 goto out;
4224 }
4225
4226 /* balance only, if regulator is coupled */
4227 if (rdev->coupling_desc.n_coupled > 1)
4228 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4229 else
4230 ret = -EOPNOTSUPP;
4231
4232out:
4233 regulator_unlock(rdev);
4234 return ret;
4235}
4236
4237/**
4238 * regulator_sync_voltage - re-apply last regulator output voltage
4239 * @regulator: regulator source
4240 *
4241 * Re-apply the last configured voltage. This is intended to be used
4242 * where some external control source the consumer is cooperating with
4243 * has caused the configured voltage to change.
4244 */
4245int regulator_sync_voltage(struct regulator *regulator)
4246{
4247 struct regulator_dev *rdev = regulator->rdev;
4248 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4249 int ret, min_uV, max_uV;
4250
4251 regulator_lock(rdev);
4252
4253 if (!rdev->desc->ops->set_voltage &&
4254 !rdev->desc->ops->set_voltage_sel) {
4255 ret = -EINVAL;
4256 goto out;
4257 }
4258
4259 /* This is only going to work if we've had a voltage configured. */
4260 if (!voltage->min_uV && !voltage->max_uV) {
4261 ret = -EINVAL;
4262 goto out;
4263 }
4264
4265 min_uV = voltage->min_uV;
4266 max_uV = voltage->max_uV;
4267
4268 /* This should be a paranoia check... */
4269 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4270 if (ret < 0)
4271 goto out;
4272
4273 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4274 if (ret < 0)
4275 goto out;
4276
4277 /* balance only, if regulator is coupled */
4278 if (rdev->coupling_desc.n_coupled > 1)
4279 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4280 else
4281 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4282
4283out:
4284 regulator_unlock(rdev);
4285 return ret;
4286}
4287EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4288
4289int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4290{
4291 int sel, ret;
4292 bool bypassed;
4293
4294 if (rdev->desc->ops->get_bypass) {
4295 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4296 if (ret < 0)
4297 return ret;
4298 if (bypassed) {
4299 /* if bypassed the regulator must have a supply */
4300 if (!rdev->supply) {
4301 rdev_err(rdev,
4302 "bypassed regulator has no supply!\n");
4303 return -EPROBE_DEFER;
4304 }
4305
4306 return regulator_get_voltage_rdev(rdev->supply->rdev);
4307 }
4308 }
4309
4310 if (rdev->desc->ops->get_voltage_sel) {
4311 sel = rdev->desc->ops->get_voltage_sel(rdev);
4312 if (sel < 0)
4313 return sel;
4314 ret = rdev->desc->ops->list_voltage(rdev, sel);
4315 } else if (rdev->desc->ops->get_voltage) {
4316 ret = rdev->desc->ops->get_voltage(rdev);
4317 } else if (rdev->desc->ops->list_voltage) {
4318 ret = rdev->desc->ops->list_voltage(rdev, 0);
4319 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4320 ret = rdev->desc->fixed_uV;
4321 } else if (rdev->supply) {
4322 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4323 } else if (rdev->supply_name) {
4324 return -EPROBE_DEFER;
4325 } else {
4326 return -EINVAL;
4327 }
4328
4329 if (ret < 0)
4330 return ret;
4331 return ret - rdev->constraints->uV_offset;
4332}
4333EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4334
4335/**
4336 * regulator_get_voltage - get regulator output voltage
4337 * @regulator: regulator source
4338 *
4339 * This returns the current regulator voltage in uV.
4340 *
4341 * NOTE: If the regulator is disabled it will return the voltage value. This
4342 * function should not be used to determine regulator state.
4343 */
4344int regulator_get_voltage(struct regulator *regulator)
4345{
4346 struct ww_acquire_ctx ww_ctx;
4347 int ret;
4348
4349 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4350 ret = regulator_get_voltage_rdev(regulator->rdev);
4351 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4352
4353 return ret;
4354}
4355EXPORT_SYMBOL_GPL(regulator_get_voltage);
4356
4357/**
4358 * regulator_set_current_limit - set regulator output current limit
4359 * @regulator: regulator source
4360 * @min_uA: Minimum supported current in uA
4361 * @max_uA: Maximum supported current in uA
4362 *
4363 * Sets current sink to the desired output current. This can be set during
4364 * any regulator state. IOW, regulator can be disabled or enabled.
4365 *
4366 * If the regulator is enabled then the current will change to the new value
4367 * immediately otherwise if the regulator is disabled the regulator will
4368 * output at the new current when enabled.
4369 *
4370 * NOTE: Regulator system constraints must be set for this regulator before
4371 * calling this function otherwise this call will fail.
4372 */
4373int regulator_set_current_limit(struct regulator *regulator,
4374 int min_uA, int max_uA)
4375{
4376 struct regulator_dev *rdev = regulator->rdev;
4377 int ret;
4378
4379 regulator_lock(rdev);
4380
4381 /* sanity check */
4382 if (!rdev->desc->ops->set_current_limit) {
4383 ret = -EINVAL;
4384 goto out;
4385 }
4386
4387 /* constraints check */
4388 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4389 if (ret < 0)
4390 goto out;
4391
4392 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4393out:
4394 regulator_unlock(rdev);
4395 return ret;
4396}
4397EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4398
4399static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4400{
4401 /* sanity check */
4402 if (!rdev->desc->ops->get_current_limit)
4403 return -EINVAL;
4404
4405 return rdev->desc->ops->get_current_limit(rdev);
4406}
4407
4408static int _regulator_get_current_limit(struct regulator_dev *rdev)
4409{
4410 int ret;
4411
4412 regulator_lock(rdev);
4413 ret = _regulator_get_current_limit_unlocked(rdev);
4414 regulator_unlock(rdev);
4415
4416 return ret;
4417}
4418
4419/**
4420 * regulator_get_current_limit - get regulator output current
4421 * @regulator: regulator source
4422 *
4423 * This returns the current supplied by the specified current sink in uA.
4424 *
4425 * NOTE: If the regulator is disabled it will return the current value. This
4426 * function should not be used to determine regulator state.
4427 */
4428int regulator_get_current_limit(struct regulator *regulator)
4429{
4430 return _regulator_get_current_limit(regulator->rdev);
4431}
4432EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4433
4434/**
4435 * regulator_set_mode - set regulator operating mode
4436 * @regulator: regulator source
4437 * @mode: operating mode - one of the REGULATOR_MODE constants
4438 *
4439 * Set regulator operating mode to increase regulator efficiency or improve
4440 * regulation performance.
4441 *
4442 * NOTE: Regulator system constraints must be set for this regulator before
4443 * calling this function otherwise this call will fail.
4444 */
4445int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4446{
4447 struct regulator_dev *rdev = regulator->rdev;
4448 int ret;
4449 int regulator_curr_mode;
4450
4451 regulator_lock(rdev);
4452
4453 /* sanity check */
4454 if (!rdev->desc->ops->set_mode) {
4455 ret = -EINVAL;
4456 goto out;
4457 }
4458
4459 /* return if the same mode is requested */
4460 if (rdev->desc->ops->get_mode) {
4461 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4462 if (regulator_curr_mode == mode) {
4463 ret = 0;
4464 goto out;
4465 }
4466 }
4467
4468 /* constraints check */
4469 ret = regulator_mode_constrain(rdev, &mode);
4470 if (ret < 0)
4471 goto out;
4472
4473 ret = rdev->desc->ops->set_mode(rdev, mode);
4474out:
4475 regulator_unlock(rdev);
4476 return ret;
4477}
4478EXPORT_SYMBOL_GPL(regulator_set_mode);
4479
4480static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4481{
4482 /* sanity check */
4483 if (!rdev->desc->ops->get_mode)
4484 return -EINVAL;
4485
4486 return rdev->desc->ops->get_mode(rdev);
4487}
4488
4489static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4490{
4491 int ret;
4492
4493 regulator_lock(rdev);
4494 ret = _regulator_get_mode_unlocked(rdev);
4495 regulator_unlock(rdev);
4496
4497 return ret;
4498}
4499
4500/**
4501 * regulator_get_mode - get regulator operating mode
4502 * @regulator: regulator source
4503 *
4504 * Get the current regulator operating mode.
4505 */
4506unsigned int regulator_get_mode(struct regulator *regulator)
4507{
4508 return _regulator_get_mode(regulator->rdev);
4509}
4510EXPORT_SYMBOL_GPL(regulator_get_mode);
4511
4512static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4513{
4514 int ret = 0;
4515
4516 if (rdev->use_cached_err) {
4517 spin_lock(&rdev->err_lock);
4518 ret = rdev->cached_err;
4519 spin_unlock(&rdev->err_lock);
4520 }
4521 return ret;
4522}
4523
4524static int _regulator_get_error_flags(struct regulator_dev *rdev,
4525 unsigned int *flags)
4526{
4527 int cached_flags, ret = 0;
4528
4529 regulator_lock(rdev);
4530
4531 cached_flags = rdev_get_cached_err_flags(rdev);
4532
4533 if (rdev->desc->ops->get_error_flags)
4534 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4535 else if (!rdev->use_cached_err)
4536 ret = -EINVAL;
4537
4538 *flags |= cached_flags;
4539
4540 regulator_unlock(rdev);
4541
4542 return ret;
4543}
4544
4545/**
4546 * regulator_get_error_flags - get regulator error information
4547 * @regulator: regulator source
4548 * @flags: pointer to store error flags
4549 *
4550 * Get the current regulator error information.
4551 */
4552int regulator_get_error_flags(struct regulator *regulator,
4553 unsigned int *flags)
4554{
4555 return _regulator_get_error_flags(regulator->rdev, flags);
4556}
4557EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4558
4559/**
4560 * regulator_set_load - set regulator load
4561 * @regulator: regulator source
4562 * @uA_load: load current
4563 *
4564 * Notifies the regulator core of a new device load. This is then used by
4565 * DRMS (if enabled by constraints) to set the most efficient regulator
4566 * operating mode for the new regulator loading.
4567 *
4568 * Consumer devices notify their supply regulator of the maximum power
4569 * they will require (can be taken from device datasheet in the power
4570 * consumption tables) when they change operational status and hence power
4571 * state. Examples of operational state changes that can affect power
4572 * consumption are :-
4573 *
4574 * o Device is opened / closed.
4575 * o Device I/O is about to begin or has just finished.
4576 * o Device is idling in between work.
4577 *
4578 * This information is also exported via sysfs to userspace.
4579 *
4580 * DRMS will sum the total requested load on the regulator and change
4581 * to the most efficient operating mode if platform constraints allow.
4582 *
4583 * NOTE: when a regulator consumer requests to have a regulator
4584 * disabled then any load that consumer requested no longer counts
4585 * toward the total requested load. If the regulator is re-enabled
4586 * then the previously requested load will start counting again.
4587 *
4588 * If a regulator is an always-on regulator then an individual consumer's
4589 * load will still be removed if that consumer is fully disabled.
4590 *
4591 * On error a negative errno is returned.
4592 */
4593int regulator_set_load(struct regulator *regulator, int uA_load)
4594{
4595 struct regulator_dev *rdev = regulator->rdev;
4596 int old_uA_load;
4597 int ret = 0;
4598
4599 regulator_lock(rdev);
4600 old_uA_load = regulator->uA_load;
4601 regulator->uA_load = uA_load;
4602 if (regulator->enable_count && old_uA_load != uA_load) {
4603 ret = drms_uA_update(rdev);
4604 if (ret < 0)
4605 regulator->uA_load = old_uA_load;
4606 }
4607 regulator_unlock(rdev);
4608
4609 return ret;
4610}
4611EXPORT_SYMBOL_GPL(regulator_set_load);
4612
4613/**
4614 * regulator_allow_bypass - allow the regulator to go into bypass mode
4615 *
4616 * @regulator: Regulator to configure
4617 * @enable: enable or disable bypass mode
4618 *
4619 * Allow the regulator to go into bypass mode if all other consumers
4620 * for the regulator also enable bypass mode and the machine
4621 * constraints allow this. Bypass mode means that the regulator is
4622 * simply passing the input directly to the output with no regulation.
4623 */
4624int regulator_allow_bypass(struct regulator *regulator, bool enable)
4625{
4626 struct regulator_dev *rdev = regulator->rdev;
4627 const char *name = rdev_get_name(rdev);
4628 int ret = 0;
4629
4630 if (!rdev->desc->ops->set_bypass)
4631 return 0;
4632
4633 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4634 return 0;
4635
4636 regulator_lock(rdev);
4637
4638 if (enable && !regulator->bypass) {
4639 rdev->bypass_count++;
4640
4641 if (rdev->bypass_count == rdev->open_count) {
4642 trace_regulator_bypass_enable(name);
4643
4644 ret = rdev->desc->ops->set_bypass(rdev, enable);
4645 if (ret != 0)
4646 rdev->bypass_count--;
4647 else
4648 trace_regulator_bypass_enable_complete(name);
4649 }
4650
4651 } else if (!enable && regulator->bypass) {
4652 rdev->bypass_count--;
4653
4654 if (rdev->bypass_count != rdev->open_count) {
4655 trace_regulator_bypass_disable(name);
4656
4657 ret = rdev->desc->ops->set_bypass(rdev, enable);
4658 if (ret != 0)
4659 rdev->bypass_count++;
4660 else
4661 trace_regulator_bypass_disable_complete(name);
4662 }
4663 }
4664
4665 if (ret == 0)
4666 regulator->bypass = enable;
4667
4668 regulator_unlock(rdev);
4669
4670 return ret;
4671}
4672EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4673
4674/**
4675 * regulator_register_notifier - register regulator event notifier
4676 * @regulator: regulator source
4677 * @nb: notifier block
4678 *
4679 * Register notifier block to receive regulator events.
4680 */
4681int regulator_register_notifier(struct regulator *regulator,
4682 struct notifier_block *nb)
4683{
4684 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4685 nb);
4686}
4687EXPORT_SYMBOL_GPL(regulator_register_notifier);
4688
4689/**
4690 * regulator_unregister_notifier - unregister regulator event notifier
4691 * @regulator: regulator source
4692 * @nb: notifier block
4693 *
4694 * Unregister regulator event notifier block.
4695 */
4696int regulator_unregister_notifier(struct regulator *regulator,
4697 struct notifier_block *nb)
4698{
4699 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4700 nb);
4701}
4702EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4703
4704/* notify regulator consumers and downstream regulator consumers.
4705 * Note mutex must be held by caller.
4706 */
4707static int _notifier_call_chain(struct regulator_dev *rdev,
4708 unsigned long event, void *data)
4709{
4710 /* call rdev chain first */
4711 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4712}
4713
4714/**
4715 * regulator_bulk_get - get multiple regulator consumers
4716 *
4717 * @dev: Device to supply
4718 * @num_consumers: Number of consumers to register
4719 * @consumers: Configuration of consumers; clients are stored here.
4720 *
4721 * @return 0 on success, an errno on failure.
4722 *
4723 * This helper function allows drivers to get several regulator
4724 * consumers in one operation. If any of the regulators cannot be
4725 * acquired then any regulators that were allocated will be freed
4726 * before returning to the caller.
4727 */
4728int regulator_bulk_get(struct device *dev, int num_consumers,
4729 struct regulator_bulk_data *consumers)
4730{
4731 int i;
4732 int ret;
4733
4734 for (i = 0; i < num_consumers; i++)
4735 consumers[i].consumer = NULL;
4736
4737 for (i = 0; i < num_consumers; i++) {
4738 consumers[i].consumer = regulator_get(dev,
4739 consumers[i].supply);
4740 if (IS_ERR(consumers[i].consumer)) {
4741 ret = PTR_ERR(consumers[i].consumer);
4742 consumers[i].consumer = NULL;
4743 goto err;
4744 }
4745 }
4746
4747 return 0;
4748
4749err:
4750 if (ret != -EPROBE_DEFER)
4751 dev_err(dev, "Failed to get supply '%s': %pe\n",
4752 consumers[i].supply, ERR_PTR(ret));
4753 else
4754 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4755 consumers[i].supply);
4756
4757 while (--i >= 0)
4758 regulator_put(consumers[i].consumer);
4759
4760 return ret;
4761}
4762EXPORT_SYMBOL_GPL(regulator_bulk_get);
4763
4764static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4765{
4766 struct regulator_bulk_data *bulk = data;
4767
4768 bulk->ret = regulator_enable(bulk->consumer);
4769}
4770
4771/**
4772 * regulator_bulk_enable - enable multiple regulator consumers
4773 *
4774 * @num_consumers: Number of consumers
4775 * @consumers: Consumer data; clients are stored here.
4776 * @return 0 on success, an errno on failure
4777 *
4778 * This convenience API allows consumers to enable multiple regulator
4779 * clients in a single API call. If any consumers cannot be enabled
4780 * then any others that were enabled will be disabled again prior to
4781 * return.
4782 */
4783int regulator_bulk_enable(int num_consumers,
4784 struct regulator_bulk_data *consumers)
4785{
4786 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4787 int i;
4788 int ret = 0;
4789
4790 for (i = 0; i < num_consumers; i++) {
4791 async_schedule_domain(regulator_bulk_enable_async,
4792 &consumers[i], &async_domain);
4793 }
4794
4795 async_synchronize_full_domain(&async_domain);
4796
4797 /* If any consumer failed we need to unwind any that succeeded */
4798 for (i = 0; i < num_consumers; i++) {
4799 if (consumers[i].ret != 0) {
4800 ret = consumers[i].ret;
4801 goto err;
4802 }
4803 }
4804
4805 return 0;
4806
4807err:
4808 for (i = 0; i < num_consumers; i++) {
4809 if (consumers[i].ret < 0)
4810 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4811 ERR_PTR(consumers[i].ret));
4812 else
4813 regulator_disable(consumers[i].consumer);
4814 }
4815
4816 return ret;
4817}
4818EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4819
4820/**
4821 * regulator_bulk_disable - disable multiple regulator consumers
4822 *
4823 * @num_consumers: Number of consumers
4824 * @consumers: Consumer data; clients are stored here.
4825 * @return 0 on success, an errno on failure
4826 *
4827 * This convenience API allows consumers to disable multiple regulator
4828 * clients in a single API call. If any consumers cannot be disabled
4829 * then any others that were disabled will be enabled again prior to
4830 * return.
4831 */
4832int regulator_bulk_disable(int num_consumers,
4833 struct regulator_bulk_data *consumers)
4834{
4835 int i;
4836 int ret, r;
4837
4838 for (i = num_consumers - 1; i >= 0; --i) {
4839 ret = regulator_disable(consumers[i].consumer);
4840 if (ret != 0)
4841 goto err;
4842 }
4843
4844 return 0;
4845
4846err:
4847 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4848 for (++i; i < num_consumers; ++i) {
4849 r = regulator_enable(consumers[i].consumer);
4850 if (r != 0)
4851 pr_err("Failed to re-enable %s: %pe\n",
4852 consumers[i].supply, ERR_PTR(r));
4853 }
4854
4855 return ret;
4856}
4857EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4858
4859/**
4860 * regulator_bulk_force_disable - force disable multiple regulator consumers
4861 *
4862 * @num_consumers: Number of consumers
4863 * @consumers: Consumer data; clients are stored here.
4864 * @return 0 on success, an errno on failure
4865 *
4866 * This convenience API allows consumers to forcibly disable multiple regulator
4867 * clients in a single API call.
4868 * NOTE: This should be used for situations when device damage will
4869 * likely occur if the regulators are not disabled (e.g. over temp).
4870 * Although regulator_force_disable function call for some consumers can
4871 * return error numbers, the function is called for all consumers.
4872 */
4873int regulator_bulk_force_disable(int num_consumers,
4874 struct regulator_bulk_data *consumers)
4875{
4876 int i;
4877 int ret = 0;
4878
4879 for (i = 0; i < num_consumers; i++) {
4880 consumers[i].ret =
4881 regulator_force_disable(consumers[i].consumer);
4882
4883 /* Store first error for reporting */
4884 if (consumers[i].ret && !ret)
4885 ret = consumers[i].ret;
4886 }
4887
4888 return ret;
4889}
4890EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4891
4892/**
4893 * regulator_bulk_free - free multiple regulator consumers
4894 *
4895 * @num_consumers: Number of consumers
4896 * @consumers: Consumer data; clients are stored here.
4897 *
4898 * This convenience API allows consumers to free multiple regulator
4899 * clients in a single API call.
4900 */
4901void regulator_bulk_free(int num_consumers,
4902 struct regulator_bulk_data *consumers)
4903{
4904 int i;
4905
4906 for (i = 0; i < num_consumers; i++) {
4907 regulator_put(consumers[i].consumer);
4908 consumers[i].consumer = NULL;
4909 }
4910}
4911EXPORT_SYMBOL_GPL(regulator_bulk_free);
4912
4913/**
4914 * regulator_notifier_call_chain - call regulator event notifier
4915 * @rdev: regulator source
4916 * @event: notifier block
4917 * @data: callback-specific data.
4918 *
4919 * Called by regulator drivers to notify clients a regulator event has
4920 * occurred.
4921 */
4922int regulator_notifier_call_chain(struct regulator_dev *rdev,
4923 unsigned long event, void *data)
4924{
4925 _notifier_call_chain(rdev, event, data);
4926 return NOTIFY_DONE;
4927
4928}
4929EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4930
4931/**
4932 * regulator_mode_to_status - convert a regulator mode into a status
4933 *
4934 * @mode: Mode to convert
4935 *
4936 * Convert a regulator mode into a status.
4937 */
4938int regulator_mode_to_status(unsigned int mode)
4939{
4940 switch (mode) {
4941 case REGULATOR_MODE_FAST:
4942 return REGULATOR_STATUS_FAST;
4943 case REGULATOR_MODE_NORMAL:
4944 return REGULATOR_STATUS_NORMAL;
4945 case REGULATOR_MODE_IDLE:
4946 return REGULATOR_STATUS_IDLE;
4947 case REGULATOR_MODE_STANDBY:
4948 return REGULATOR_STATUS_STANDBY;
4949 default:
4950 return REGULATOR_STATUS_UNDEFINED;
4951 }
4952}
4953EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4954
4955static struct attribute *regulator_dev_attrs[] = {
4956 &dev_attr_name.attr,
4957 &dev_attr_num_users.attr,
4958 &dev_attr_type.attr,
4959 &dev_attr_microvolts.attr,
4960 &dev_attr_microamps.attr,
4961 &dev_attr_opmode.attr,
4962 &dev_attr_state.attr,
4963 &dev_attr_status.attr,
4964 &dev_attr_bypass.attr,
4965 &dev_attr_requested_microamps.attr,
4966 &dev_attr_min_microvolts.attr,
4967 &dev_attr_max_microvolts.attr,
4968 &dev_attr_min_microamps.attr,
4969 &dev_attr_max_microamps.attr,
4970 &dev_attr_suspend_standby_state.attr,
4971 &dev_attr_suspend_mem_state.attr,
4972 &dev_attr_suspend_disk_state.attr,
4973 &dev_attr_suspend_standby_microvolts.attr,
4974 &dev_attr_suspend_mem_microvolts.attr,
4975 &dev_attr_suspend_disk_microvolts.attr,
4976 &dev_attr_suspend_standby_mode.attr,
4977 &dev_attr_suspend_mem_mode.attr,
4978 &dev_attr_suspend_disk_mode.attr,
4979 NULL
4980};
4981
4982/*
4983 * To avoid cluttering sysfs (and memory) with useless state, only
4984 * create attributes that can be meaningfully displayed.
4985 */
4986static umode_t regulator_attr_is_visible(struct kobject *kobj,
4987 struct attribute *attr, int idx)
4988{
4989 struct device *dev = kobj_to_dev(kobj);
4990 struct regulator_dev *rdev = dev_to_rdev(dev);
4991 const struct regulator_ops *ops = rdev->desc->ops;
4992 umode_t mode = attr->mode;
4993
4994 /* these three are always present */
4995 if (attr == &dev_attr_name.attr ||
4996 attr == &dev_attr_num_users.attr ||
4997 attr == &dev_attr_type.attr)
4998 return mode;
4999
5000 /* some attributes need specific methods to be displayed */
5001 if (attr == &dev_attr_microvolts.attr) {
5002 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5003 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5004 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5005 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5006 return mode;
5007 return 0;
5008 }
5009
5010 if (attr == &dev_attr_microamps.attr)
5011 return ops->get_current_limit ? mode : 0;
5012
5013 if (attr == &dev_attr_opmode.attr)
5014 return ops->get_mode ? mode : 0;
5015
5016 if (attr == &dev_attr_state.attr)
5017 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5018
5019 if (attr == &dev_attr_status.attr)
5020 return ops->get_status ? mode : 0;
5021
5022 if (attr == &dev_attr_bypass.attr)
5023 return ops->get_bypass ? mode : 0;
5024
5025 /* constraints need specific supporting methods */
5026 if (attr == &dev_attr_min_microvolts.attr ||
5027 attr == &dev_attr_max_microvolts.attr)
5028 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5029
5030 if (attr == &dev_attr_min_microamps.attr ||
5031 attr == &dev_attr_max_microamps.attr)
5032 return ops->set_current_limit ? mode : 0;
5033
5034 if (attr == &dev_attr_suspend_standby_state.attr ||
5035 attr == &dev_attr_suspend_mem_state.attr ||
5036 attr == &dev_attr_suspend_disk_state.attr)
5037 return mode;
5038
5039 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5040 attr == &dev_attr_suspend_mem_microvolts.attr ||
5041 attr == &dev_attr_suspend_disk_microvolts.attr)
5042 return ops->set_suspend_voltage ? mode : 0;
5043
5044 if (attr == &dev_attr_suspend_standby_mode.attr ||
5045 attr == &dev_attr_suspend_mem_mode.attr ||
5046 attr == &dev_attr_suspend_disk_mode.attr)
5047 return ops->set_suspend_mode ? mode : 0;
5048
5049 return mode;
5050}
5051
5052static const struct attribute_group regulator_dev_group = {
5053 .attrs = regulator_dev_attrs,
5054 .is_visible = regulator_attr_is_visible,
5055};
5056
5057static const struct attribute_group *regulator_dev_groups[] = {
5058 ®ulator_dev_group,
5059 NULL
5060};
5061
5062static void regulator_dev_release(struct device *dev)
5063{
5064 struct regulator_dev *rdev = dev_get_drvdata(dev);
5065
5066 kfree(rdev->constraints);
5067 of_node_put(rdev->dev.of_node);
5068 kfree(rdev);
5069}
5070
5071static void rdev_init_debugfs(struct regulator_dev *rdev)
5072{
5073 struct device *parent = rdev->dev.parent;
5074 const char *rname = rdev_get_name(rdev);
5075 char name[NAME_MAX];
5076
5077 /* Avoid duplicate debugfs directory names */
5078 if (parent && rname == rdev->desc->name) {
5079 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5080 rname);
5081 rname = name;
5082 }
5083
5084 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5085 if (!rdev->debugfs) {
5086 rdev_warn(rdev, "Failed to create debugfs directory\n");
5087 return;
5088 }
5089
5090 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5091 &rdev->use_count);
5092 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5093 &rdev->open_count);
5094 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5095 &rdev->bypass_count);
5096}
5097
5098static int regulator_register_resolve_supply(struct device *dev, void *data)
5099{
5100 struct regulator_dev *rdev = dev_to_rdev(dev);
5101
5102 if (regulator_resolve_supply(rdev))
5103 rdev_dbg(rdev, "unable to resolve supply\n");
5104
5105 return 0;
5106}
5107
5108int regulator_coupler_register(struct regulator_coupler *coupler)
5109{
5110 mutex_lock(®ulator_list_mutex);
5111 list_add_tail(&coupler->list, ®ulator_coupler_list);
5112 mutex_unlock(®ulator_list_mutex);
5113
5114 return 0;
5115}
5116
5117static struct regulator_coupler *
5118regulator_find_coupler(struct regulator_dev *rdev)
5119{
5120 struct regulator_coupler *coupler;
5121 int err;
5122
5123 /*
5124 * Note that regulators are appended to the list and the generic
5125 * coupler is registered first, hence it will be attached at last
5126 * if nobody cared.
5127 */
5128 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5129 err = coupler->attach_regulator(coupler, rdev);
5130 if (!err) {
5131 if (!coupler->balance_voltage &&
5132 rdev->coupling_desc.n_coupled > 2)
5133 goto err_unsupported;
5134
5135 return coupler;
5136 }
5137
5138 if (err < 0)
5139 return ERR_PTR(err);
5140
5141 if (err == 1)
5142 continue;
5143
5144 break;
5145 }
5146
5147 return ERR_PTR(-EINVAL);
5148
5149err_unsupported:
5150 if (coupler->detach_regulator)
5151 coupler->detach_regulator(coupler, rdev);
5152
5153 rdev_err(rdev,
5154 "Voltage balancing for multiple regulator couples is unimplemented\n");
5155
5156 return ERR_PTR(-EPERM);
5157}
5158
5159static void regulator_resolve_coupling(struct regulator_dev *rdev)
5160{
5161 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5162 struct coupling_desc *c_desc = &rdev->coupling_desc;
5163 int n_coupled = c_desc->n_coupled;
5164 struct regulator_dev *c_rdev;
5165 int i;
5166
5167 for (i = 1; i < n_coupled; i++) {
5168 /* already resolved */
5169 if (c_desc->coupled_rdevs[i])
5170 continue;
5171
5172 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5173
5174 if (!c_rdev)
5175 continue;
5176
5177 if (c_rdev->coupling_desc.coupler != coupler) {
5178 rdev_err(rdev, "coupler mismatch with %s\n",
5179 rdev_get_name(c_rdev));
5180 return;
5181 }
5182
5183 c_desc->coupled_rdevs[i] = c_rdev;
5184 c_desc->n_resolved++;
5185
5186 regulator_resolve_coupling(c_rdev);
5187 }
5188}
5189
5190static void regulator_remove_coupling(struct regulator_dev *rdev)
5191{
5192 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5193 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5194 struct regulator_dev *__c_rdev, *c_rdev;
5195 unsigned int __n_coupled, n_coupled;
5196 int i, k;
5197 int err;
5198
5199 n_coupled = c_desc->n_coupled;
5200
5201 for (i = 1; i < n_coupled; i++) {
5202 c_rdev = c_desc->coupled_rdevs[i];
5203
5204 if (!c_rdev)
5205 continue;
5206
5207 regulator_lock(c_rdev);
5208
5209 __c_desc = &c_rdev->coupling_desc;
5210 __n_coupled = __c_desc->n_coupled;
5211
5212 for (k = 1; k < __n_coupled; k++) {
5213 __c_rdev = __c_desc->coupled_rdevs[k];
5214
5215 if (__c_rdev == rdev) {
5216 __c_desc->coupled_rdevs[k] = NULL;
5217 __c_desc->n_resolved--;
5218 break;
5219 }
5220 }
5221
5222 regulator_unlock(c_rdev);
5223
5224 c_desc->coupled_rdevs[i] = NULL;
5225 c_desc->n_resolved--;
5226 }
5227
5228 if (coupler && coupler->detach_regulator) {
5229 err = coupler->detach_regulator(coupler, rdev);
5230 if (err)
5231 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5232 ERR_PTR(err));
5233 }
5234
5235 kfree(rdev->coupling_desc.coupled_rdevs);
5236 rdev->coupling_desc.coupled_rdevs = NULL;
5237}
5238
5239static int regulator_init_coupling(struct regulator_dev *rdev)
5240{
5241 struct regulator_dev **coupled;
5242 int err, n_phandles;
5243
5244 if (!IS_ENABLED(CONFIG_OF))
5245 n_phandles = 0;
5246 else
5247 n_phandles = of_get_n_coupled(rdev);
5248
5249 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5250 if (!coupled)
5251 return -ENOMEM;
5252
5253 rdev->coupling_desc.coupled_rdevs = coupled;
5254
5255 /*
5256 * Every regulator should always have coupling descriptor filled with
5257 * at least pointer to itself.
5258 */
5259 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5260 rdev->coupling_desc.n_coupled = n_phandles + 1;
5261 rdev->coupling_desc.n_resolved++;
5262
5263 /* regulator isn't coupled */
5264 if (n_phandles == 0)
5265 return 0;
5266
5267 if (!of_check_coupling_data(rdev))
5268 return -EPERM;
5269
5270 mutex_lock(®ulator_list_mutex);
5271 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5272 mutex_unlock(®ulator_list_mutex);
5273
5274 if (IS_ERR(rdev->coupling_desc.coupler)) {
5275 err = PTR_ERR(rdev->coupling_desc.coupler);
5276 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5277 return err;
5278 }
5279
5280 return 0;
5281}
5282
5283static int generic_coupler_attach(struct regulator_coupler *coupler,
5284 struct regulator_dev *rdev)
5285{
5286 if (rdev->coupling_desc.n_coupled > 2) {
5287 rdev_err(rdev,
5288 "Voltage balancing for multiple regulator couples is unimplemented\n");
5289 return -EPERM;
5290 }
5291
5292 if (!rdev->constraints->always_on) {
5293 rdev_err(rdev,
5294 "Coupling of a non always-on regulator is unimplemented\n");
5295 return -ENOTSUPP;
5296 }
5297
5298 return 0;
5299}
5300
5301static struct regulator_coupler generic_regulator_coupler = {
5302 .attach_regulator = generic_coupler_attach,
5303};
5304
5305/**
5306 * regulator_register - register regulator
5307 * @regulator_desc: regulator to register
5308 * @cfg: runtime configuration for regulator
5309 *
5310 * Called by regulator drivers to register a regulator.
5311 * Returns a valid pointer to struct regulator_dev on success
5312 * or an ERR_PTR() on error.
5313 */
5314struct regulator_dev *
5315regulator_register(const struct regulator_desc *regulator_desc,
5316 const struct regulator_config *cfg)
5317{
5318 const struct regulator_init_data *init_data;
5319 struct regulator_config *config = NULL;
5320 static atomic_t regulator_no = ATOMIC_INIT(-1);
5321 struct regulator_dev *rdev;
5322 bool dangling_cfg_gpiod = false;
5323 bool dangling_of_gpiod = false;
5324 struct device *dev;
5325 int ret, i;
5326
5327 if (cfg == NULL)
5328 return ERR_PTR(-EINVAL);
5329 if (cfg->ena_gpiod)
5330 dangling_cfg_gpiod = true;
5331 if (regulator_desc == NULL) {
5332 ret = -EINVAL;
5333 goto rinse;
5334 }
5335
5336 dev = cfg->dev;
5337 WARN_ON(!dev);
5338
5339 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5340 ret = -EINVAL;
5341 goto rinse;
5342 }
5343
5344 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5345 regulator_desc->type != REGULATOR_CURRENT) {
5346 ret = -EINVAL;
5347 goto rinse;
5348 }
5349
5350 /* Only one of each should be implemented */
5351 WARN_ON(regulator_desc->ops->get_voltage &&
5352 regulator_desc->ops->get_voltage_sel);
5353 WARN_ON(regulator_desc->ops->set_voltage &&
5354 regulator_desc->ops->set_voltage_sel);
5355
5356 /* If we're using selectors we must implement list_voltage. */
5357 if (regulator_desc->ops->get_voltage_sel &&
5358 !regulator_desc->ops->list_voltage) {
5359 ret = -EINVAL;
5360 goto rinse;
5361 }
5362 if (regulator_desc->ops->set_voltage_sel &&
5363 !regulator_desc->ops->list_voltage) {
5364 ret = -EINVAL;
5365 goto rinse;
5366 }
5367
5368 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5369 if (rdev == NULL) {
5370 ret = -ENOMEM;
5371 goto rinse;
5372 }
5373 device_initialize(&rdev->dev);
5374 spin_lock_init(&rdev->err_lock);
5375
5376 /*
5377 * Duplicate the config so the driver could override it after
5378 * parsing init data.
5379 */
5380 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5381 if (config == NULL) {
5382 ret = -ENOMEM;
5383 goto clean;
5384 }
5385
5386 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5387 &rdev->dev.of_node);
5388
5389 /*
5390 * Sometimes not all resources are probed already so we need to take
5391 * that into account. This happens most the time if the ena_gpiod comes
5392 * from a gpio extender or something else.
5393 */
5394 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5395 ret = -EPROBE_DEFER;
5396 goto clean;
5397 }
5398
5399 /*
5400 * We need to keep track of any GPIO descriptor coming from the
5401 * device tree until we have handled it over to the core. If the
5402 * config that was passed in to this function DOES NOT contain
5403 * a descriptor, and the config after this call DOES contain
5404 * a descriptor, we definitely got one from parsing the device
5405 * tree.
5406 */
5407 if (!cfg->ena_gpiod && config->ena_gpiod)
5408 dangling_of_gpiod = true;
5409 if (!init_data) {
5410 init_data = config->init_data;
5411 rdev->dev.of_node = of_node_get(config->of_node);
5412 }
5413
5414 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5415 rdev->reg_data = config->driver_data;
5416 rdev->owner = regulator_desc->owner;
5417 rdev->desc = regulator_desc;
5418 if (config->regmap)
5419 rdev->regmap = config->regmap;
5420 else if (dev_get_regmap(dev, NULL))
5421 rdev->regmap = dev_get_regmap(dev, NULL);
5422 else if (dev->parent)
5423 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5424 INIT_LIST_HEAD(&rdev->consumer_list);
5425 INIT_LIST_HEAD(&rdev->list);
5426 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5427 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5428
5429 /* preform any regulator specific init */
5430 if (init_data && init_data->regulator_init) {
5431 ret = init_data->regulator_init(rdev->reg_data);
5432 if (ret < 0)
5433 goto clean;
5434 }
5435
5436 if (config->ena_gpiod) {
5437 ret = regulator_ena_gpio_request(rdev, config);
5438 if (ret != 0) {
5439 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5440 ERR_PTR(ret));
5441 goto clean;
5442 }
5443 /* The regulator core took over the GPIO descriptor */
5444 dangling_cfg_gpiod = false;
5445 dangling_of_gpiod = false;
5446 }
5447
5448 /* register with sysfs */
5449 rdev->dev.class = ®ulator_class;
5450 rdev->dev.parent = dev;
5451 dev_set_name(&rdev->dev, "regulator.%lu",
5452 (unsigned long) atomic_inc_return(®ulator_no));
5453 dev_set_drvdata(&rdev->dev, rdev);
5454
5455 /* set regulator constraints */
5456 if (init_data)
5457 rdev->constraints = kmemdup(&init_data->constraints,
5458 sizeof(*rdev->constraints),
5459 GFP_KERNEL);
5460 else
5461 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5462 GFP_KERNEL);
5463 if (!rdev->constraints) {
5464 ret = -ENOMEM;
5465 goto wash;
5466 }
5467
5468 if (init_data && init_data->supply_regulator)
5469 rdev->supply_name = init_data->supply_regulator;
5470 else if (regulator_desc->supply_name)
5471 rdev->supply_name = regulator_desc->supply_name;
5472
5473 ret = set_machine_constraints(rdev);
5474 if (ret == -EPROBE_DEFER) {
5475 /* Regulator might be in bypass mode and so needs its supply
5476 * to set the constraints
5477 */
5478 /* FIXME: this currently triggers a chicken-and-egg problem
5479 * when creating -SUPPLY symlink in sysfs to a regulator
5480 * that is just being created
5481 */
5482 rdev_dbg(rdev, "will resolve supply early: %s\n",
5483 rdev->supply_name);
5484 ret = regulator_resolve_supply(rdev);
5485 if (!ret)
5486 ret = set_machine_constraints(rdev);
5487 else
5488 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5489 ERR_PTR(ret));
5490 }
5491 if (ret < 0)
5492 goto wash;
5493
5494 ret = regulator_init_coupling(rdev);
5495 if (ret < 0)
5496 goto wash;
5497
5498 /* add consumers devices */
5499 if (init_data) {
5500 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5501 ret = set_consumer_device_supply(rdev,
5502 init_data->consumer_supplies[i].dev_name,
5503 init_data->consumer_supplies[i].supply);
5504 if (ret < 0) {
5505 dev_err(dev, "Failed to set supply %s\n",
5506 init_data->consumer_supplies[i].supply);
5507 goto unset_supplies;
5508 }
5509 }
5510 }
5511
5512 if (!rdev->desc->ops->get_voltage &&
5513 !rdev->desc->ops->list_voltage &&
5514 !rdev->desc->fixed_uV)
5515 rdev->is_switch = true;
5516
5517 ret = device_add(&rdev->dev);
5518 if (ret != 0)
5519 goto unset_supplies;
5520
5521 rdev_init_debugfs(rdev);
5522
5523 /* try to resolve regulators coupling since a new one was registered */
5524 mutex_lock(®ulator_list_mutex);
5525 regulator_resolve_coupling(rdev);
5526 mutex_unlock(®ulator_list_mutex);
5527
5528 /* try to resolve regulators supply since a new one was registered */
5529 class_for_each_device(®ulator_class, NULL, NULL,
5530 regulator_register_resolve_supply);
5531 kfree(config);
5532 return rdev;
5533
5534unset_supplies:
5535 mutex_lock(®ulator_list_mutex);
5536 unset_regulator_supplies(rdev);
5537 regulator_remove_coupling(rdev);
5538 mutex_unlock(®ulator_list_mutex);
5539wash:
5540 kfree(rdev->coupling_desc.coupled_rdevs);
5541 mutex_lock(®ulator_list_mutex);
5542 regulator_ena_gpio_free(rdev);
5543 mutex_unlock(®ulator_list_mutex);
5544clean:
5545 if (dangling_of_gpiod)
5546 gpiod_put(config->ena_gpiod);
5547 kfree(config);
5548 put_device(&rdev->dev);
5549rinse:
5550 if (dangling_cfg_gpiod)
5551 gpiod_put(cfg->ena_gpiod);
5552 return ERR_PTR(ret);
5553}
5554EXPORT_SYMBOL_GPL(regulator_register);
5555
5556/**
5557 * regulator_unregister - unregister regulator
5558 * @rdev: regulator to unregister
5559 *
5560 * Called by regulator drivers to unregister a regulator.
5561 */
5562void regulator_unregister(struct regulator_dev *rdev)
5563{
5564 if (rdev == NULL)
5565 return;
5566
5567 if (rdev->supply) {
5568 while (rdev->use_count--)
5569 regulator_disable(rdev->supply);
5570 regulator_put(rdev->supply);
5571 }
5572
5573 flush_work(&rdev->disable_work.work);
5574
5575 mutex_lock(®ulator_list_mutex);
5576
5577 debugfs_remove_recursive(rdev->debugfs);
5578 WARN_ON(rdev->open_count);
5579 regulator_remove_coupling(rdev);
5580 unset_regulator_supplies(rdev);
5581 list_del(&rdev->list);
5582 regulator_ena_gpio_free(rdev);
5583 device_unregister(&rdev->dev);
5584
5585 mutex_unlock(®ulator_list_mutex);
5586}
5587EXPORT_SYMBOL_GPL(regulator_unregister);
5588
5589#ifdef CONFIG_SUSPEND
5590/**
5591 * regulator_suspend - prepare regulators for system wide suspend
5592 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5593 *
5594 * Configure each regulator with it's suspend operating parameters for state.
5595 */
5596static int regulator_suspend(struct device *dev)
5597{
5598 struct regulator_dev *rdev = dev_to_rdev(dev);
5599 suspend_state_t state = pm_suspend_target_state;
5600 int ret;
5601 const struct regulator_state *rstate;
5602
5603 rstate = regulator_get_suspend_state_check(rdev, state);
5604 if (!rstate)
5605 return 0;
5606
5607 regulator_lock(rdev);
5608 ret = __suspend_set_state(rdev, rstate);
5609 regulator_unlock(rdev);
5610
5611 return ret;
5612}
5613
5614static int regulator_resume(struct device *dev)
5615{
5616 suspend_state_t state = pm_suspend_target_state;
5617 struct regulator_dev *rdev = dev_to_rdev(dev);
5618 struct regulator_state *rstate;
5619 int ret = 0;
5620
5621 rstate = regulator_get_suspend_state(rdev, state);
5622 if (rstate == NULL)
5623 return 0;
5624
5625 /* Avoid grabbing the lock if we don't need to */
5626 if (!rdev->desc->ops->resume)
5627 return 0;
5628
5629 regulator_lock(rdev);
5630
5631 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5632 rstate->enabled == DISABLE_IN_SUSPEND)
5633 ret = rdev->desc->ops->resume(rdev);
5634
5635 regulator_unlock(rdev);
5636
5637 return ret;
5638}
5639#else /* !CONFIG_SUSPEND */
5640
5641#define regulator_suspend NULL
5642#define regulator_resume NULL
5643
5644#endif /* !CONFIG_SUSPEND */
5645
5646#ifdef CONFIG_PM
5647static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5648 .suspend = regulator_suspend,
5649 .resume = regulator_resume,
5650};
5651#endif
5652
5653struct class regulator_class = {
5654 .name = "regulator",
5655 .dev_release = regulator_dev_release,
5656 .dev_groups = regulator_dev_groups,
5657#ifdef CONFIG_PM
5658 .pm = ®ulator_pm_ops,
5659#endif
5660};
5661/**
5662 * regulator_has_full_constraints - the system has fully specified constraints
5663 *
5664 * Calling this function will cause the regulator API to disable all
5665 * regulators which have a zero use count and don't have an always_on
5666 * constraint in a late_initcall.
5667 *
5668 * The intention is that this will become the default behaviour in a
5669 * future kernel release so users are encouraged to use this facility
5670 * now.
5671 */
5672void regulator_has_full_constraints(void)
5673{
5674 has_full_constraints = 1;
5675}
5676EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5677
5678/**
5679 * rdev_get_drvdata - get rdev regulator driver data
5680 * @rdev: regulator
5681 *
5682 * Get rdev regulator driver private data. This call can be used in the
5683 * regulator driver context.
5684 */
5685void *rdev_get_drvdata(struct regulator_dev *rdev)
5686{
5687 return rdev->reg_data;
5688}
5689EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5690
5691/**
5692 * regulator_get_drvdata - get regulator driver data
5693 * @regulator: regulator
5694 *
5695 * Get regulator driver private data. This call can be used in the consumer
5696 * driver context when non API regulator specific functions need to be called.
5697 */
5698void *regulator_get_drvdata(struct regulator *regulator)
5699{
5700 return regulator->rdev->reg_data;
5701}
5702EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5703
5704/**
5705 * regulator_set_drvdata - set regulator driver data
5706 * @regulator: regulator
5707 * @data: data
5708 */
5709void regulator_set_drvdata(struct regulator *regulator, void *data)
5710{
5711 regulator->rdev->reg_data = data;
5712}
5713EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5714
5715/**
5716 * rdev_get_id - get regulator ID
5717 * @rdev: regulator
5718 */
5719int rdev_get_id(struct regulator_dev *rdev)
5720{
5721 return rdev->desc->id;
5722}
5723EXPORT_SYMBOL_GPL(rdev_get_id);
5724
5725struct device *rdev_get_dev(struct regulator_dev *rdev)
5726{
5727 return &rdev->dev;
5728}
5729EXPORT_SYMBOL_GPL(rdev_get_dev);
5730
5731struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5732{
5733 return rdev->regmap;
5734}
5735EXPORT_SYMBOL_GPL(rdev_get_regmap);
5736
5737void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5738{
5739 return reg_init_data->driver_data;
5740}
5741EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5742
5743#ifdef CONFIG_DEBUG_FS
5744static int supply_map_show(struct seq_file *sf, void *data)
5745{
5746 struct regulator_map *map;
5747
5748 list_for_each_entry(map, ®ulator_map_list, list) {
5749 seq_printf(sf, "%s -> %s.%s\n",
5750 rdev_get_name(map->regulator), map->dev_name,
5751 map->supply);
5752 }
5753
5754 return 0;
5755}
5756DEFINE_SHOW_ATTRIBUTE(supply_map);
5757
5758struct summary_data {
5759 struct seq_file *s;
5760 struct regulator_dev *parent;
5761 int level;
5762};
5763
5764static void regulator_summary_show_subtree(struct seq_file *s,
5765 struct regulator_dev *rdev,
5766 int level);
5767
5768static int regulator_summary_show_children(struct device *dev, void *data)
5769{
5770 struct regulator_dev *rdev = dev_to_rdev(dev);
5771 struct summary_data *summary_data = data;
5772
5773 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5774 regulator_summary_show_subtree(summary_data->s, rdev,
5775 summary_data->level + 1);
5776
5777 return 0;
5778}
5779
5780static void regulator_summary_show_subtree(struct seq_file *s,
5781 struct regulator_dev *rdev,
5782 int level)
5783{
5784 struct regulation_constraints *c;
5785 struct regulator *consumer;
5786 struct summary_data summary_data;
5787 unsigned int opmode;
5788
5789 if (!rdev)
5790 return;
5791
5792 opmode = _regulator_get_mode_unlocked(rdev);
5793 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5794 level * 3 + 1, "",
5795 30 - level * 3, rdev_get_name(rdev),
5796 rdev->use_count, rdev->open_count, rdev->bypass_count,
5797 regulator_opmode_to_str(opmode));
5798
5799 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5800 seq_printf(s, "%5dmA ",
5801 _regulator_get_current_limit_unlocked(rdev) / 1000);
5802
5803 c = rdev->constraints;
5804 if (c) {
5805 switch (rdev->desc->type) {
5806 case REGULATOR_VOLTAGE:
5807 seq_printf(s, "%5dmV %5dmV ",
5808 c->min_uV / 1000, c->max_uV / 1000);
5809 break;
5810 case REGULATOR_CURRENT:
5811 seq_printf(s, "%5dmA %5dmA ",
5812 c->min_uA / 1000, c->max_uA / 1000);
5813 break;
5814 }
5815 }
5816
5817 seq_puts(s, "\n");
5818
5819 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5820 if (consumer->dev && consumer->dev->class == ®ulator_class)
5821 continue;
5822
5823 seq_printf(s, "%*s%-*s ",
5824 (level + 1) * 3 + 1, "",
5825 30 - (level + 1) * 3,
5826 consumer->supply_name ? consumer->supply_name :
5827 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5828
5829 switch (rdev->desc->type) {
5830 case REGULATOR_VOLTAGE:
5831 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5832 consumer->enable_count,
5833 consumer->uA_load / 1000,
5834 consumer->uA_load && !consumer->enable_count ?
5835 '*' : ' ',
5836 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5837 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5838 break;
5839 case REGULATOR_CURRENT:
5840 break;
5841 }
5842
5843 seq_puts(s, "\n");
5844 }
5845
5846 summary_data.s = s;
5847 summary_data.level = level;
5848 summary_data.parent = rdev;
5849
5850 class_for_each_device(®ulator_class, NULL, &summary_data,
5851 regulator_summary_show_children);
5852}
5853
5854struct summary_lock_data {
5855 struct ww_acquire_ctx *ww_ctx;
5856 struct regulator_dev **new_contended_rdev;
5857 struct regulator_dev **old_contended_rdev;
5858};
5859
5860static int regulator_summary_lock_one(struct device *dev, void *data)
5861{
5862 struct regulator_dev *rdev = dev_to_rdev(dev);
5863 struct summary_lock_data *lock_data = data;
5864 int ret = 0;
5865
5866 if (rdev != *lock_data->old_contended_rdev) {
5867 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5868
5869 if (ret == -EDEADLK)
5870 *lock_data->new_contended_rdev = rdev;
5871 else
5872 WARN_ON_ONCE(ret);
5873 } else {
5874 *lock_data->old_contended_rdev = NULL;
5875 }
5876
5877 return ret;
5878}
5879
5880static int regulator_summary_unlock_one(struct device *dev, void *data)
5881{
5882 struct regulator_dev *rdev = dev_to_rdev(dev);
5883 struct summary_lock_data *lock_data = data;
5884
5885 if (lock_data) {
5886 if (rdev == *lock_data->new_contended_rdev)
5887 return -EDEADLK;
5888 }
5889
5890 regulator_unlock(rdev);
5891
5892 return 0;
5893}
5894
5895static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5896 struct regulator_dev **new_contended_rdev,
5897 struct regulator_dev **old_contended_rdev)
5898{
5899 struct summary_lock_data lock_data;
5900 int ret;
5901
5902 lock_data.ww_ctx = ww_ctx;
5903 lock_data.new_contended_rdev = new_contended_rdev;
5904 lock_data.old_contended_rdev = old_contended_rdev;
5905
5906 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5907 regulator_summary_lock_one);
5908 if (ret)
5909 class_for_each_device(®ulator_class, NULL, &lock_data,
5910 regulator_summary_unlock_one);
5911
5912 return ret;
5913}
5914
5915static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5916{
5917 struct regulator_dev *new_contended_rdev = NULL;
5918 struct regulator_dev *old_contended_rdev = NULL;
5919 int err;
5920
5921 mutex_lock(®ulator_list_mutex);
5922
5923 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5924
5925 do {
5926 if (new_contended_rdev) {
5927 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5928 old_contended_rdev = new_contended_rdev;
5929 old_contended_rdev->ref_cnt++;
5930 }
5931
5932 err = regulator_summary_lock_all(ww_ctx,
5933 &new_contended_rdev,
5934 &old_contended_rdev);
5935
5936 if (old_contended_rdev)
5937 regulator_unlock(old_contended_rdev);
5938
5939 } while (err == -EDEADLK);
5940
5941 ww_acquire_done(ww_ctx);
5942}
5943
5944static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5945{
5946 class_for_each_device(®ulator_class, NULL, NULL,
5947 regulator_summary_unlock_one);
5948 ww_acquire_fini(ww_ctx);
5949
5950 mutex_unlock(®ulator_list_mutex);
5951}
5952
5953static int regulator_summary_show_roots(struct device *dev, void *data)
5954{
5955 struct regulator_dev *rdev = dev_to_rdev(dev);
5956 struct seq_file *s = data;
5957
5958 if (!rdev->supply)
5959 regulator_summary_show_subtree(s, rdev, 0);
5960
5961 return 0;
5962}
5963
5964static int regulator_summary_show(struct seq_file *s, void *data)
5965{
5966 struct ww_acquire_ctx ww_ctx;
5967
5968 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5969 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5970
5971 regulator_summary_lock(&ww_ctx);
5972
5973 class_for_each_device(®ulator_class, NULL, s,
5974 regulator_summary_show_roots);
5975
5976 regulator_summary_unlock(&ww_ctx);
5977
5978 return 0;
5979}
5980DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5981#endif /* CONFIG_DEBUG_FS */
5982
5983static int __init regulator_init(void)
5984{
5985 int ret;
5986
5987 ret = class_register(®ulator_class);
5988
5989 debugfs_root = debugfs_create_dir("regulator", NULL);
5990 if (!debugfs_root)
5991 pr_warn("regulator: Failed to create debugfs directory\n");
5992
5993#ifdef CONFIG_DEBUG_FS
5994 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5995 &supply_map_fops);
5996
5997 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5998 NULL, ®ulator_summary_fops);
5999#endif
6000 regulator_dummy_init();
6001
6002 regulator_coupler_register(&generic_regulator_coupler);
6003
6004 return ret;
6005}
6006
6007/* init early to allow our consumers to complete system booting */
6008core_initcall(regulator_init);
6009
6010static int regulator_late_cleanup(struct device *dev, void *data)
6011{
6012 struct regulator_dev *rdev = dev_to_rdev(dev);
6013 const struct regulator_ops *ops = rdev->desc->ops;
6014 struct regulation_constraints *c = rdev->constraints;
6015 int enabled, ret;
6016
6017 if (c && c->always_on)
6018 return 0;
6019
6020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6021 return 0;
6022
6023 regulator_lock(rdev);
6024
6025 if (rdev->use_count)
6026 goto unlock;
6027
6028 /* If we can't read the status assume it's always on. */
6029 if (ops->is_enabled)
6030 enabled = ops->is_enabled(rdev);
6031 else
6032 enabled = 1;
6033
6034 /* But if reading the status failed, assume that it's off. */
6035 if (enabled <= 0)
6036 goto unlock;
6037
6038 if (have_full_constraints()) {
6039 /* We log since this may kill the system if it goes
6040 * wrong.
6041 */
6042 rdev_info(rdev, "disabling\n");
6043 ret = _regulator_do_disable(rdev);
6044 if (ret != 0)
6045 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6046 } else {
6047 /* The intention is that in future we will
6048 * assume that full constraints are provided
6049 * so warn even if we aren't going to do
6050 * anything here.
6051 */
6052 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6053 }
6054
6055unlock:
6056 regulator_unlock(rdev);
6057
6058 return 0;
6059}
6060
6061static void regulator_init_complete_work_function(struct work_struct *work)
6062{
6063 /*
6064 * Regulators may had failed to resolve their input supplies
6065 * when were registered, either because the input supply was
6066 * not registered yet or because its parent device was not
6067 * bound yet. So attempt to resolve the input supplies for
6068 * pending regulators before trying to disable unused ones.
6069 */
6070 class_for_each_device(®ulator_class, NULL, NULL,
6071 regulator_register_resolve_supply);
6072
6073 /* If we have a full configuration then disable any regulators
6074 * we have permission to change the status for and which are
6075 * not in use or always_on. This is effectively the default
6076 * for DT and ACPI as they have full constraints.
6077 */
6078 class_for_each_device(®ulator_class, NULL, NULL,
6079 regulator_late_cleanup);
6080}
6081
6082static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6083 regulator_init_complete_work_function);
6084
6085static int __init regulator_init_complete(void)
6086{
6087 /*
6088 * Since DT doesn't provide an idiomatic mechanism for
6089 * enabling full constraints and since it's much more natural
6090 * with DT to provide them just assume that a DT enabled
6091 * system has full constraints.
6092 */
6093 if (of_have_populated_dt())
6094 has_full_constraints = true;
6095
6096 /*
6097 * We punt completion for an arbitrary amount of time since
6098 * systems like distros will load many drivers from userspace
6099 * so consumers might not always be ready yet, this is
6100 * particularly an issue with laptops where this might bounce
6101 * the display off then on. Ideally we'd get a notification
6102 * from userspace when this happens but we don't so just wait
6103 * a bit and hope we waited long enough. It'd be better if
6104 * we'd only do this on systems that need it, and a kernel
6105 * command line option might be useful.
6106 */
6107 schedule_delayed_work(®ulator_init_complete_work,
6108 msecs_to_jiffies(30000));
6109
6110 return 0;
6111}
6112late_initcall_sync(regulator_init_complete);