Loading...
1/*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2020, Intel Corporation. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34
35#include <linux/kref.h>
36#include <linux/random.h>
37#include <linux/debugfs.h>
38#include <linux/export.h>
39#include <linux/delay.h>
40#include <linux/dma-buf.h>
41#include <linux/dma-resv.h>
42#include <rdma/ib_umem_odp.h>
43#include "dm.h"
44#include "mlx5_ib.h"
45#include "umr.h"
46
47enum {
48 MAX_PENDING_REG_MR = 8,
49};
50
51#define MLX5_UMR_ALIGN 2048
52
53static void
54create_mkey_callback(int status, struct mlx5_async_work *context);
55static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
56 u64 iova, int access_flags,
57 unsigned int page_size, bool populate);
58
59static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
60 struct ib_pd *pd)
61{
62 struct mlx5_ib_dev *dev = to_mdev(pd->device);
63
64 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
65 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
66 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
67 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
68 MLX5_SET(mkc, mkc, lr, 1);
69
70 if (acc & IB_ACCESS_RELAXED_ORDERING) {
71 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
72 MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
73
74 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
75 (MLX5_CAP_GEN(dev->mdev,
76 relaxed_ordering_read_pci_enabled) &&
77 pcie_relaxed_ordering_enabled(dev->mdev->pdev)))
78 MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
79 }
80
81 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
82 MLX5_SET(mkc, mkc, qpn, 0xffffff);
83 MLX5_SET64(mkc, mkc, start_addr, start_addr);
84}
85
86static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
87{
88 u8 key = atomic_inc_return(&dev->mkey_var);
89 void *mkc;
90
91 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
92 MLX5_SET(mkc, mkc, mkey_7_0, key);
93 *mkey = key;
94}
95
96static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
97 struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
98{
99 int ret;
100
101 assign_mkey_variant(dev, &mkey->key, in);
102 ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
103 if (!ret)
104 init_waitqueue_head(&mkey->wait);
105
106 return ret;
107}
108
109static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
110{
111 struct mlx5_ib_dev *dev = async_create->ent->dev;
112 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
113 size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
114
115 MLX5_SET(create_mkey_in, async_create->in, opcode,
116 MLX5_CMD_OP_CREATE_MKEY);
117 assign_mkey_variant(dev, &async_create->mkey, async_create->in);
118 return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
119 async_create->out, outlen, create_mkey_callback,
120 &async_create->cb_work);
121}
122
123static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
124static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
125
126static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
127{
128 WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
129
130 return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
131}
132
133static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
134{
135 if (status == -ENXIO) /* core driver is not available */
136 return;
137
138 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
139 if (status != -EREMOTEIO) /* driver specific failure */
140 return;
141
142 /* Failed in FW, print cmd out failure details */
143 mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
144}
145
146static int push_mkey_locked(struct mlx5_cache_ent *ent, u32 mkey)
147{
148 unsigned long tmp = ent->mkeys_queue.ci % NUM_MKEYS_PER_PAGE;
149 struct mlx5_mkeys_page *page;
150
151 lockdep_assert_held(&ent->mkeys_queue.lock);
152 if (ent->mkeys_queue.ci >=
153 ent->mkeys_queue.num_pages * NUM_MKEYS_PER_PAGE) {
154 page = kzalloc(sizeof(*page), GFP_ATOMIC);
155 if (!page)
156 return -ENOMEM;
157 ent->mkeys_queue.num_pages++;
158 list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
159 } else {
160 page = list_last_entry(&ent->mkeys_queue.pages_list,
161 struct mlx5_mkeys_page, list);
162 }
163
164 page->mkeys[tmp] = mkey;
165 ent->mkeys_queue.ci++;
166 return 0;
167}
168
169static int pop_mkey_locked(struct mlx5_cache_ent *ent)
170{
171 unsigned long tmp = (ent->mkeys_queue.ci - 1) % NUM_MKEYS_PER_PAGE;
172 struct mlx5_mkeys_page *last_page;
173 u32 mkey;
174
175 lockdep_assert_held(&ent->mkeys_queue.lock);
176 last_page = list_last_entry(&ent->mkeys_queue.pages_list,
177 struct mlx5_mkeys_page, list);
178 mkey = last_page->mkeys[tmp];
179 last_page->mkeys[tmp] = 0;
180 ent->mkeys_queue.ci--;
181 if (ent->mkeys_queue.num_pages > 1 && !tmp) {
182 list_del(&last_page->list);
183 ent->mkeys_queue.num_pages--;
184 kfree(last_page);
185 }
186 return mkey;
187}
188
189static void create_mkey_callback(int status, struct mlx5_async_work *context)
190{
191 struct mlx5r_async_create_mkey *mkey_out =
192 container_of(context, struct mlx5r_async_create_mkey, cb_work);
193 struct mlx5_cache_ent *ent = mkey_out->ent;
194 struct mlx5_ib_dev *dev = ent->dev;
195 unsigned long flags;
196
197 if (status) {
198 create_mkey_warn(dev, status, mkey_out->out);
199 kfree(mkey_out);
200 spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
201 ent->pending--;
202 WRITE_ONCE(dev->fill_delay, 1);
203 spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
204 mod_timer(&dev->delay_timer, jiffies + HZ);
205 return;
206 }
207
208 mkey_out->mkey |= mlx5_idx_to_mkey(
209 MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
210 WRITE_ONCE(dev->cache.last_add, jiffies);
211
212 spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
213 push_mkey_locked(ent, mkey_out->mkey);
214 /* If we are doing fill_to_high_water then keep going. */
215 queue_adjust_cache_locked(ent);
216 ent->pending--;
217 spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
218 kfree(mkey_out);
219}
220
221static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
222{
223 int ret = 0;
224
225 switch (access_mode) {
226 case MLX5_MKC_ACCESS_MODE_MTT:
227 ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
228 sizeof(struct mlx5_mtt));
229 break;
230 case MLX5_MKC_ACCESS_MODE_KSM:
231 ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
232 sizeof(struct mlx5_klm));
233 break;
234 default:
235 WARN_ON(1);
236 }
237 return ret;
238}
239
240static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
241{
242 set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0,
243 ent->dev->umrc.pd);
244 MLX5_SET(mkc, mkc, free, 1);
245 MLX5_SET(mkc, mkc, umr_en, 1);
246 MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3);
247 MLX5_SET(mkc, mkc, access_mode_4_2,
248 (ent->rb_key.access_mode >> 2) & 0x7);
249
250 MLX5_SET(mkc, mkc, translations_octword_size,
251 get_mkc_octo_size(ent->rb_key.access_mode,
252 ent->rb_key.ndescs));
253 MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
254}
255
256/* Asynchronously schedule new MRs to be populated in the cache. */
257static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
258{
259 struct mlx5r_async_create_mkey *async_create;
260 void *mkc;
261 int err = 0;
262 int i;
263
264 for (i = 0; i < num; i++) {
265 async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
266 GFP_KERNEL);
267 if (!async_create)
268 return -ENOMEM;
269 mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
270 memory_key_mkey_entry);
271 set_cache_mkc(ent, mkc);
272 async_create->ent = ent;
273
274 spin_lock_irq(&ent->mkeys_queue.lock);
275 if (ent->pending >= MAX_PENDING_REG_MR) {
276 err = -EAGAIN;
277 goto free_async_create;
278 }
279 ent->pending++;
280 spin_unlock_irq(&ent->mkeys_queue.lock);
281
282 err = mlx5_ib_create_mkey_cb(async_create);
283 if (err) {
284 mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
285 goto err_create_mkey;
286 }
287 }
288
289 return 0;
290
291err_create_mkey:
292 spin_lock_irq(&ent->mkeys_queue.lock);
293 ent->pending--;
294free_async_create:
295 spin_unlock_irq(&ent->mkeys_queue.lock);
296 kfree(async_create);
297 return err;
298}
299
300/* Synchronously create a MR in the cache */
301static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
302{
303 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
304 void *mkc;
305 u32 *in;
306 int err;
307
308 in = kzalloc(inlen, GFP_KERNEL);
309 if (!in)
310 return -ENOMEM;
311 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
312 set_cache_mkc(ent, mkc);
313
314 err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
315 if (err)
316 goto free_in;
317
318 WRITE_ONCE(ent->dev->cache.last_add, jiffies);
319free_in:
320 kfree(in);
321 return err;
322}
323
324static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
325{
326 u32 mkey;
327
328 lockdep_assert_held(&ent->mkeys_queue.lock);
329 if (!ent->mkeys_queue.ci)
330 return;
331 mkey = pop_mkey_locked(ent);
332 spin_unlock_irq(&ent->mkeys_queue.lock);
333 mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
334 spin_lock_irq(&ent->mkeys_queue.lock);
335}
336
337static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
338 bool limit_fill)
339 __acquires(&ent->mkeys_queue.lock) __releases(&ent->mkeys_queue.lock)
340{
341 int err;
342
343 lockdep_assert_held(&ent->mkeys_queue.lock);
344
345 while (true) {
346 if (limit_fill)
347 target = ent->limit * 2;
348 if (target == ent->pending + ent->mkeys_queue.ci)
349 return 0;
350 if (target > ent->pending + ent->mkeys_queue.ci) {
351 u32 todo = target - (ent->pending + ent->mkeys_queue.ci);
352
353 spin_unlock_irq(&ent->mkeys_queue.lock);
354 err = add_keys(ent, todo);
355 if (err == -EAGAIN)
356 usleep_range(3000, 5000);
357 spin_lock_irq(&ent->mkeys_queue.lock);
358 if (err) {
359 if (err != -EAGAIN)
360 return err;
361 } else
362 return 0;
363 } else {
364 remove_cache_mr_locked(ent);
365 }
366 }
367}
368
369static ssize_t size_write(struct file *filp, const char __user *buf,
370 size_t count, loff_t *pos)
371{
372 struct mlx5_cache_ent *ent = filp->private_data;
373 u32 target;
374 int err;
375
376 err = kstrtou32_from_user(buf, count, 0, &target);
377 if (err)
378 return err;
379
380 /*
381 * Target is the new value of total_mrs the user requests, however we
382 * cannot free MRs that are in use. Compute the target value for stored
383 * mkeys.
384 */
385 spin_lock_irq(&ent->mkeys_queue.lock);
386 if (target < ent->in_use) {
387 err = -EINVAL;
388 goto err_unlock;
389 }
390 target = target - ent->in_use;
391 if (target < ent->limit || target > ent->limit*2) {
392 err = -EINVAL;
393 goto err_unlock;
394 }
395 err = resize_available_mrs(ent, target, false);
396 if (err)
397 goto err_unlock;
398 spin_unlock_irq(&ent->mkeys_queue.lock);
399
400 return count;
401
402err_unlock:
403 spin_unlock_irq(&ent->mkeys_queue.lock);
404 return err;
405}
406
407static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
408 loff_t *pos)
409{
410 struct mlx5_cache_ent *ent = filp->private_data;
411 char lbuf[20];
412 int err;
413
414 err = snprintf(lbuf, sizeof(lbuf), "%ld\n",
415 ent->mkeys_queue.ci + ent->in_use);
416 if (err < 0)
417 return err;
418
419 return simple_read_from_buffer(buf, count, pos, lbuf, err);
420}
421
422static const struct file_operations size_fops = {
423 .owner = THIS_MODULE,
424 .open = simple_open,
425 .write = size_write,
426 .read = size_read,
427};
428
429static ssize_t limit_write(struct file *filp, const char __user *buf,
430 size_t count, loff_t *pos)
431{
432 struct mlx5_cache_ent *ent = filp->private_data;
433 u32 var;
434 int err;
435
436 err = kstrtou32_from_user(buf, count, 0, &var);
437 if (err)
438 return err;
439
440 /*
441 * Upon set we immediately fill the cache to high water mark implied by
442 * the limit.
443 */
444 spin_lock_irq(&ent->mkeys_queue.lock);
445 ent->limit = var;
446 err = resize_available_mrs(ent, 0, true);
447 spin_unlock_irq(&ent->mkeys_queue.lock);
448 if (err)
449 return err;
450 return count;
451}
452
453static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
454 loff_t *pos)
455{
456 struct mlx5_cache_ent *ent = filp->private_data;
457 char lbuf[20];
458 int err;
459
460 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
461 if (err < 0)
462 return err;
463
464 return simple_read_from_buffer(buf, count, pos, lbuf, err);
465}
466
467static const struct file_operations limit_fops = {
468 .owner = THIS_MODULE,
469 .open = simple_open,
470 .write = limit_write,
471 .read = limit_read,
472};
473
474static bool someone_adding(struct mlx5_mkey_cache *cache)
475{
476 struct mlx5_cache_ent *ent;
477 struct rb_node *node;
478 bool ret;
479
480 mutex_lock(&cache->rb_lock);
481 for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) {
482 ent = rb_entry(node, struct mlx5_cache_ent, node);
483 spin_lock_irq(&ent->mkeys_queue.lock);
484 ret = ent->mkeys_queue.ci < ent->limit;
485 spin_unlock_irq(&ent->mkeys_queue.lock);
486 if (ret) {
487 mutex_unlock(&cache->rb_lock);
488 return true;
489 }
490 }
491 mutex_unlock(&cache->rb_lock);
492 return false;
493}
494
495/*
496 * Check if the bucket is outside the high/low water mark and schedule an async
497 * update. The cache refill has hysteresis, once the low water mark is hit it is
498 * refilled up to the high mark.
499 */
500static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
501{
502 lockdep_assert_held(&ent->mkeys_queue.lock);
503
504 if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp)
505 return;
506 if (ent->mkeys_queue.ci < ent->limit) {
507 ent->fill_to_high_water = true;
508 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
509 } else if (ent->fill_to_high_water &&
510 ent->mkeys_queue.ci + ent->pending < 2 * ent->limit) {
511 /*
512 * Once we start populating due to hitting a low water mark
513 * continue until we pass the high water mark.
514 */
515 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
516 } else if (ent->mkeys_queue.ci == 2 * ent->limit) {
517 ent->fill_to_high_water = false;
518 } else if (ent->mkeys_queue.ci > 2 * ent->limit) {
519 /* Queue deletion of excess entries */
520 ent->fill_to_high_water = false;
521 if (ent->pending)
522 queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
523 msecs_to_jiffies(1000));
524 else
525 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
526 }
527}
528
529static void __cache_work_func(struct mlx5_cache_ent *ent)
530{
531 struct mlx5_ib_dev *dev = ent->dev;
532 struct mlx5_mkey_cache *cache = &dev->cache;
533 int err;
534
535 spin_lock_irq(&ent->mkeys_queue.lock);
536 if (ent->disabled)
537 goto out;
538
539 if (ent->fill_to_high_water &&
540 ent->mkeys_queue.ci + ent->pending < 2 * ent->limit &&
541 !READ_ONCE(dev->fill_delay)) {
542 spin_unlock_irq(&ent->mkeys_queue.lock);
543 err = add_keys(ent, 1);
544 spin_lock_irq(&ent->mkeys_queue.lock);
545 if (ent->disabled)
546 goto out;
547 if (err) {
548 /*
549 * EAGAIN only happens if there are pending MRs, so we
550 * will be rescheduled when storing them. The only
551 * failure path here is ENOMEM.
552 */
553 if (err != -EAGAIN) {
554 mlx5_ib_warn(
555 dev,
556 "add keys command failed, err %d\n",
557 err);
558 queue_delayed_work(cache->wq, &ent->dwork,
559 msecs_to_jiffies(1000));
560 }
561 }
562 } else if (ent->mkeys_queue.ci > 2 * ent->limit) {
563 bool need_delay;
564
565 /*
566 * The remove_cache_mr() logic is performed as garbage
567 * collection task. Such task is intended to be run when no
568 * other active processes are running.
569 *
570 * The need_resched() will return TRUE if there are user tasks
571 * to be activated in near future.
572 *
573 * In such case, we don't execute remove_cache_mr() and postpone
574 * the garbage collection work to try to run in next cycle, in
575 * order to free CPU resources to other tasks.
576 */
577 spin_unlock_irq(&ent->mkeys_queue.lock);
578 need_delay = need_resched() || someone_adding(cache) ||
579 !time_after(jiffies,
580 READ_ONCE(cache->last_add) + 300 * HZ);
581 spin_lock_irq(&ent->mkeys_queue.lock);
582 if (ent->disabled)
583 goto out;
584 if (need_delay) {
585 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
586 goto out;
587 }
588 remove_cache_mr_locked(ent);
589 queue_adjust_cache_locked(ent);
590 }
591out:
592 spin_unlock_irq(&ent->mkeys_queue.lock);
593}
594
595static void delayed_cache_work_func(struct work_struct *work)
596{
597 struct mlx5_cache_ent *ent;
598
599 ent = container_of(work, struct mlx5_cache_ent, dwork.work);
600 __cache_work_func(ent);
601}
602
603static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,
604 struct mlx5r_cache_rb_key key2)
605{
606 int res;
607
608 res = key1.ats - key2.ats;
609 if (res)
610 return res;
611
612 res = key1.access_mode - key2.access_mode;
613 if (res)
614 return res;
615
616 res = key1.access_flags - key2.access_flags;
617 if (res)
618 return res;
619
620 /*
621 * keep ndescs the last in the compare table since the find function
622 * searches for an exact match on all properties and only closest
623 * match in size.
624 */
625 return key1.ndescs - key2.ndescs;
626}
627
628static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache,
629 struct mlx5_cache_ent *ent)
630{
631 struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL;
632 struct mlx5_cache_ent *cur;
633 int cmp;
634
635 /* Figure out where to put new node */
636 while (*new) {
637 cur = rb_entry(*new, struct mlx5_cache_ent, node);
638 parent = *new;
639 cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key);
640 if (cmp > 0)
641 new = &((*new)->rb_left);
642 if (cmp < 0)
643 new = &((*new)->rb_right);
644 if (cmp == 0) {
645 mutex_unlock(&cache->rb_lock);
646 return -EEXIST;
647 }
648 }
649
650 /* Add new node and rebalance tree. */
651 rb_link_node(&ent->node, parent, new);
652 rb_insert_color(&ent->node, &cache->rb_root);
653
654 return 0;
655}
656
657static struct mlx5_cache_ent *
658mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev,
659 struct mlx5r_cache_rb_key rb_key)
660{
661 struct rb_node *node = dev->cache.rb_root.rb_node;
662 struct mlx5_cache_ent *cur, *smallest = NULL;
663 int cmp;
664
665 /*
666 * Find the smallest ent with order >= requested_order.
667 */
668 while (node) {
669 cur = rb_entry(node, struct mlx5_cache_ent, node);
670 cmp = cache_ent_key_cmp(cur->rb_key, rb_key);
671 if (cmp > 0) {
672 smallest = cur;
673 node = node->rb_left;
674 }
675 if (cmp < 0)
676 node = node->rb_right;
677 if (cmp == 0)
678 return cur;
679 }
680
681 return (smallest &&
682 smallest->rb_key.access_mode == rb_key.access_mode &&
683 smallest->rb_key.access_flags == rb_key.access_flags &&
684 smallest->rb_key.ats == rb_key.ats) ?
685 smallest :
686 NULL;
687}
688
689static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
690 struct mlx5_cache_ent *ent,
691 int access_flags)
692{
693 struct mlx5_ib_mr *mr;
694 int err;
695
696 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
697 if (!mr)
698 return ERR_PTR(-ENOMEM);
699
700 spin_lock_irq(&ent->mkeys_queue.lock);
701 ent->in_use++;
702
703 if (!ent->mkeys_queue.ci) {
704 queue_adjust_cache_locked(ent);
705 ent->miss++;
706 spin_unlock_irq(&ent->mkeys_queue.lock);
707 err = create_cache_mkey(ent, &mr->mmkey.key);
708 if (err) {
709 spin_lock_irq(&ent->mkeys_queue.lock);
710 ent->in_use--;
711 spin_unlock_irq(&ent->mkeys_queue.lock);
712 kfree(mr);
713 return ERR_PTR(err);
714 }
715 } else {
716 mr->mmkey.key = pop_mkey_locked(ent);
717 queue_adjust_cache_locked(ent);
718 spin_unlock_irq(&ent->mkeys_queue.lock);
719 }
720 mr->mmkey.cache_ent = ent;
721 mr->mmkey.type = MLX5_MKEY_MR;
722 init_waitqueue_head(&mr->mmkey.wait);
723 return mr;
724}
725
726static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev,
727 int access_flags)
728{
729 int ret = 0;
730
731 if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
732 MLX5_CAP_GEN(dev->mdev, atomic) &&
733 MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled))
734 ret |= IB_ACCESS_REMOTE_ATOMIC;
735
736 if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
737 MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) &&
738 !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr))
739 ret |= IB_ACCESS_RELAXED_ORDERING;
740
741 if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
742 (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
743 MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) &&
744 !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr))
745 ret |= IB_ACCESS_RELAXED_ORDERING;
746
747 return ret;
748}
749
750struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
751 int access_flags, int access_mode,
752 int ndescs)
753{
754 struct mlx5r_cache_rb_key rb_key = {
755 .ndescs = ndescs,
756 .access_mode = access_mode,
757 .access_flags = get_unchangeable_access_flags(dev, access_flags)
758 };
759 struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key);
760
761 if (!ent)
762 return ERR_PTR(-EOPNOTSUPP);
763
764 return _mlx5_mr_cache_alloc(dev, ent, access_flags);
765}
766
767static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent)
768{
769 u32 mkey;
770
771 cancel_delayed_work(&ent->dwork);
772 spin_lock_irq(&ent->mkeys_queue.lock);
773 while (ent->mkeys_queue.ci) {
774 mkey = pop_mkey_locked(ent);
775 spin_unlock_irq(&ent->mkeys_queue.lock);
776 mlx5_core_destroy_mkey(dev->mdev, mkey);
777 spin_lock_irq(&ent->mkeys_queue.lock);
778 }
779 spin_unlock_irq(&ent->mkeys_queue.lock);
780}
781
782static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
783{
784 if (!mlx5_debugfs_root || dev->is_rep)
785 return;
786
787 debugfs_remove_recursive(dev->cache.fs_root);
788 dev->cache.fs_root = NULL;
789}
790
791static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev,
792 struct mlx5_cache_ent *ent)
793{
794 int order = order_base_2(ent->rb_key.ndescs);
795 struct dentry *dir;
796
797 if (!mlx5_debugfs_root || dev->is_rep)
798 return;
799
800 if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
801 order = MLX5_IMR_KSM_CACHE_ENTRY + 2;
802
803 sprintf(ent->name, "%d", order);
804 dir = debugfs_create_dir(ent->name, dev->cache.fs_root);
805 debugfs_create_file("size", 0600, dir, ent, &size_fops);
806 debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
807 debugfs_create_ulong("cur", 0400, dir, &ent->mkeys_queue.ci);
808 debugfs_create_u32("miss", 0600, dir, &ent->miss);
809}
810
811static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
812{
813 struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev);
814 struct mlx5_mkey_cache *cache = &dev->cache;
815
816 if (!mlx5_debugfs_root || dev->is_rep)
817 return;
818
819 cache->fs_root = debugfs_create_dir("mr_cache", dbg_root);
820}
821
822static void delay_time_func(struct timer_list *t)
823{
824 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
825
826 WRITE_ONCE(dev->fill_delay, 0);
827}
828
829static int mlx5r_mkeys_init(struct mlx5_cache_ent *ent)
830{
831 struct mlx5_mkeys_page *page;
832
833 page = kzalloc(sizeof(*page), GFP_KERNEL);
834 if (!page)
835 return -ENOMEM;
836 INIT_LIST_HEAD(&ent->mkeys_queue.pages_list);
837 spin_lock_init(&ent->mkeys_queue.lock);
838 list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
839 ent->mkeys_queue.num_pages++;
840 return 0;
841}
842
843static void mlx5r_mkeys_uninit(struct mlx5_cache_ent *ent)
844{
845 struct mlx5_mkeys_page *page;
846
847 WARN_ON(ent->mkeys_queue.ci || ent->mkeys_queue.num_pages > 1);
848 page = list_last_entry(&ent->mkeys_queue.pages_list,
849 struct mlx5_mkeys_page, list);
850 list_del(&page->list);
851 kfree(page);
852}
853
854struct mlx5_cache_ent *
855mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev,
856 struct mlx5r_cache_rb_key rb_key,
857 bool persistent_entry)
858{
859 struct mlx5_cache_ent *ent;
860 int order;
861 int ret;
862
863 ent = kzalloc(sizeof(*ent), GFP_KERNEL);
864 if (!ent)
865 return ERR_PTR(-ENOMEM);
866
867 ret = mlx5r_mkeys_init(ent);
868 if (ret)
869 goto mkeys_err;
870 ent->rb_key = rb_key;
871 ent->dev = dev;
872 ent->is_tmp = !persistent_entry;
873
874 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
875
876 ret = mlx5_cache_ent_insert(&dev->cache, ent);
877 if (ret)
878 goto ent_insert_err;
879
880 if (persistent_entry) {
881 if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
882 order = MLX5_IMR_KSM_CACHE_ENTRY;
883 else
884 order = order_base_2(rb_key.ndescs) - 2;
885
886 if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
887 !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
888 mlx5r_umr_can_load_pas(dev, 0))
889 ent->limit = dev->mdev->profile.mr_cache[order].limit;
890 else
891 ent->limit = 0;
892
893 mlx5_mkey_cache_debugfs_add_ent(dev, ent);
894 } else {
895 mod_delayed_work(ent->dev->cache.wq,
896 &ent->dev->cache.remove_ent_dwork,
897 msecs_to_jiffies(30 * 1000));
898 }
899
900 return ent;
901ent_insert_err:
902 mlx5r_mkeys_uninit(ent);
903mkeys_err:
904 kfree(ent);
905 return ERR_PTR(ret);
906}
907
908static void remove_ent_work_func(struct work_struct *work)
909{
910 struct mlx5_mkey_cache *cache;
911 struct mlx5_cache_ent *ent;
912 struct rb_node *cur;
913
914 cache = container_of(work, struct mlx5_mkey_cache,
915 remove_ent_dwork.work);
916 mutex_lock(&cache->rb_lock);
917 cur = rb_last(&cache->rb_root);
918 while (cur) {
919 ent = rb_entry(cur, struct mlx5_cache_ent, node);
920 cur = rb_prev(cur);
921 mutex_unlock(&cache->rb_lock);
922
923 spin_lock_irq(&ent->mkeys_queue.lock);
924 if (!ent->is_tmp) {
925 spin_unlock_irq(&ent->mkeys_queue.lock);
926 mutex_lock(&cache->rb_lock);
927 continue;
928 }
929 spin_unlock_irq(&ent->mkeys_queue.lock);
930
931 clean_keys(ent->dev, ent);
932 mutex_lock(&cache->rb_lock);
933 }
934 mutex_unlock(&cache->rb_lock);
935}
936
937int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
938{
939 struct mlx5_mkey_cache *cache = &dev->cache;
940 struct rb_root *root = &dev->cache.rb_root;
941 struct mlx5r_cache_rb_key rb_key = {
942 .access_mode = MLX5_MKC_ACCESS_MODE_MTT,
943 };
944 struct mlx5_cache_ent *ent;
945 struct rb_node *node;
946 int ret;
947 int i;
948
949 mutex_init(&dev->slow_path_mutex);
950 mutex_init(&dev->cache.rb_lock);
951 dev->cache.rb_root = RB_ROOT;
952 INIT_DELAYED_WORK(&dev->cache.remove_ent_dwork, remove_ent_work_func);
953 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
954 if (!cache->wq) {
955 mlx5_ib_warn(dev, "failed to create work queue\n");
956 return -ENOMEM;
957 }
958
959 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
960 timer_setup(&dev->delay_timer, delay_time_func, 0);
961 mlx5_mkey_cache_debugfs_init(dev);
962 mutex_lock(&cache->rb_lock);
963 for (i = 0; i <= mkey_cache_max_order(dev); i++) {
964 rb_key.ndescs = 1 << (i + 2);
965 ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
966 if (IS_ERR(ent)) {
967 ret = PTR_ERR(ent);
968 goto err;
969 }
970 }
971
972 ret = mlx5_odp_init_mkey_cache(dev);
973 if (ret)
974 goto err;
975
976 mutex_unlock(&cache->rb_lock);
977 for (node = rb_first(root); node; node = rb_next(node)) {
978 ent = rb_entry(node, struct mlx5_cache_ent, node);
979 spin_lock_irq(&ent->mkeys_queue.lock);
980 queue_adjust_cache_locked(ent);
981 spin_unlock_irq(&ent->mkeys_queue.lock);
982 }
983
984 return 0;
985
986err:
987 mutex_unlock(&cache->rb_lock);
988 mlx5_mkey_cache_debugfs_cleanup(dev);
989 mlx5_ib_warn(dev, "failed to create mkey cache entry\n");
990 return ret;
991}
992
993void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
994{
995 struct rb_root *root = &dev->cache.rb_root;
996 struct mlx5_cache_ent *ent;
997 struct rb_node *node;
998
999 if (!dev->cache.wq)
1000 return;
1001
1002 mutex_lock(&dev->cache.rb_lock);
1003 cancel_delayed_work(&dev->cache.remove_ent_dwork);
1004 for (node = rb_first(root); node; node = rb_next(node)) {
1005 ent = rb_entry(node, struct mlx5_cache_ent, node);
1006 spin_lock_irq(&ent->mkeys_queue.lock);
1007 ent->disabled = true;
1008 spin_unlock_irq(&ent->mkeys_queue.lock);
1009 cancel_delayed_work(&ent->dwork);
1010 }
1011 mutex_unlock(&dev->cache.rb_lock);
1012
1013 /*
1014 * After all entries are disabled and will not reschedule on WQ,
1015 * flush it and all async commands.
1016 */
1017 flush_workqueue(dev->cache.wq);
1018
1019 mlx5_mkey_cache_debugfs_cleanup(dev);
1020 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
1021
1022 /* At this point all entries are disabled and have no concurrent work. */
1023 mutex_lock(&dev->cache.rb_lock);
1024 node = rb_first(root);
1025 while (node) {
1026 ent = rb_entry(node, struct mlx5_cache_ent, node);
1027 node = rb_next(node);
1028 clean_keys(dev, ent);
1029 rb_erase(&ent->node, root);
1030 mlx5r_mkeys_uninit(ent);
1031 kfree(ent);
1032 }
1033 mutex_unlock(&dev->cache.rb_lock);
1034
1035 destroy_workqueue(dev->cache.wq);
1036 del_timer_sync(&dev->delay_timer);
1037}
1038
1039struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
1040{
1041 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1042 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1043 struct mlx5_ib_mr *mr;
1044 void *mkc;
1045 u32 *in;
1046 int err;
1047
1048 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1049 if (!mr)
1050 return ERR_PTR(-ENOMEM);
1051
1052 in = kzalloc(inlen, GFP_KERNEL);
1053 if (!in) {
1054 err = -ENOMEM;
1055 goto err_free;
1056 }
1057
1058 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1059
1060 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
1061 MLX5_SET(mkc, mkc, length64, 1);
1062 set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
1063 pd);
1064
1065 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1066 if (err)
1067 goto err_in;
1068
1069 kfree(in);
1070 mr->mmkey.type = MLX5_MKEY_MR;
1071 mr->ibmr.lkey = mr->mmkey.key;
1072 mr->ibmr.rkey = mr->mmkey.key;
1073 mr->umem = NULL;
1074
1075 return &mr->ibmr;
1076
1077err_in:
1078 kfree(in);
1079
1080err_free:
1081 kfree(mr);
1082
1083 return ERR_PTR(err);
1084}
1085
1086static int get_octo_len(u64 addr, u64 len, int page_shift)
1087{
1088 u64 page_size = 1ULL << page_shift;
1089 u64 offset;
1090 int npages;
1091
1092 offset = addr & (page_size - 1);
1093 npages = ALIGN(len + offset, page_size) >> page_shift;
1094 return (npages + 1) / 2;
1095}
1096
1097static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
1098{
1099 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
1100 return MKEY_CACHE_LAST_STD_ENTRY;
1101 return MLX5_MAX_UMR_SHIFT;
1102}
1103
1104static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1105 u64 length, int access_flags, u64 iova)
1106{
1107 mr->ibmr.lkey = mr->mmkey.key;
1108 mr->ibmr.rkey = mr->mmkey.key;
1109 mr->ibmr.length = length;
1110 mr->ibmr.device = &dev->ib_dev;
1111 mr->ibmr.iova = iova;
1112 mr->access_flags = access_flags;
1113}
1114
1115static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
1116 u64 iova)
1117{
1118 /*
1119 * The alignment of iova has already been checked upon entering
1120 * UVERBS_METHOD_REG_DMABUF_MR
1121 */
1122 umem->iova = iova;
1123 return PAGE_SIZE;
1124}
1125
1126static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
1127 struct ib_umem *umem, u64 iova,
1128 int access_flags)
1129{
1130 struct mlx5r_cache_rb_key rb_key = {
1131 .access_mode = MLX5_MKC_ACCESS_MODE_MTT,
1132 };
1133 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1134 struct mlx5_cache_ent *ent;
1135 struct mlx5_ib_mr *mr;
1136 unsigned int page_size;
1137
1138 if (umem->is_dmabuf)
1139 page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
1140 else
1141 page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
1142 0, iova);
1143 if (WARN_ON(!page_size))
1144 return ERR_PTR(-EINVAL);
1145
1146 rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size);
1147 rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags);
1148 rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags);
1149 ent = mkey_cache_ent_from_rb_key(dev, rb_key);
1150 /*
1151 * If the MR can't come from the cache then synchronously create an uncached
1152 * one.
1153 */
1154 if (!ent) {
1155 mutex_lock(&dev->slow_path_mutex);
1156 mr = reg_create(pd, umem, iova, access_flags, page_size, false);
1157 mutex_unlock(&dev->slow_path_mutex);
1158 if (IS_ERR(mr))
1159 return mr;
1160 mr->mmkey.rb_key = rb_key;
1161 return mr;
1162 }
1163
1164 mr = _mlx5_mr_cache_alloc(dev, ent, access_flags);
1165 if (IS_ERR(mr))
1166 return mr;
1167
1168 mr->ibmr.pd = pd;
1169 mr->umem = umem;
1170 mr->page_shift = order_base_2(page_size);
1171 set_mr_fields(dev, mr, umem->length, access_flags, iova);
1172
1173 return mr;
1174}
1175
1176/*
1177 * If ibmr is NULL it will be allocated by reg_create.
1178 * Else, the given ibmr will be used.
1179 */
1180static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1181 u64 iova, int access_flags,
1182 unsigned int page_size, bool populate)
1183{
1184 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1185 struct mlx5_ib_mr *mr;
1186 __be64 *pas;
1187 void *mkc;
1188 int inlen;
1189 u32 *in;
1190 int err;
1191 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1192
1193 if (!page_size)
1194 return ERR_PTR(-EINVAL);
1195 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1196 if (!mr)
1197 return ERR_PTR(-ENOMEM);
1198
1199 mr->ibmr.pd = pd;
1200 mr->access_flags = access_flags;
1201 mr->page_shift = order_base_2(page_size);
1202
1203 inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1204 if (populate)
1205 inlen += sizeof(*pas) *
1206 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1207 in = kvzalloc(inlen, GFP_KERNEL);
1208 if (!in) {
1209 err = -ENOMEM;
1210 goto err_1;
1211 }
1212 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1213 if (populate) {
1214 if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1215 err = -EINVAL;
1216 goto err_2;
1217 }
1218 mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1219 pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1220 }
1221
1222 /* The pg_access bit allows setting the access flags
1223 * in the page list submitted with the command.
1224 */
1225 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1226
1227 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1228 set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1229 populate ? pd : dev->umrc.pd);
1230 MLX5_SET(mkc, mkc, free, !populate);
1231 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1232 MLX5_SET(mkc, mkc, umr_en, 1);
1233
1234 MLX5_SET64(mkc, mkc, len, umem->length);
1235 MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1236 MLX5_SET(mkc, mkc, translations_octword_size,
1237 get_octo_len(iova, umem->length, mr->page_shift));
1238 MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1239 if (mlx5_umem_needs_ats(dev, umem, access_flags))
1240 MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1241 if (populate) {
1242 MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1243 get_octo_len(iova, umem->length, mr->page_shift));
1244 }
1245
1246 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1247 if (err) {
1248 mlx5_ib_warn(dev, "create mkey failed\n");
1249 goto err_2;
1250 }
1251 mr->mmkey.type = MLX5_MKEY_MR;
1252 mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift);
1253 mr->umem = umem;
1254 set_mr_fields(dev, mr, umem->length, access_flags, iova);
1255 kvfree(in);
1256
1257 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1258
1259 return mr;
1260
1261err_2:
1262 kvfree(in);
1263err_1:
1264 kfree(mr);
1265 return ERR_PTR(err);
1266}
1267
1268static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1269 u64 length, int acc, int mode)
1270{
1271 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1272 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1273 struct mlx5_ib_mr *mr;
1274 void *mkc;
1275 u32 *in;
1276 int err;
1277
1278 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1279 if (!mr)
1280 return ERR_PTR(-ENOMEM);
1281
1282 in = kzalloc(inlen, GFP_KERNEL);
1283 if (!in) {
1284 err = -ENOMEM;
1285 goto err_free;
1286 }
1287
1288 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1289
1290 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1291 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1292 MLX5_SET64(mkc, mkc, len, length);
1293 set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1294
1295 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1296 if (err)
1297 goto err_in;
1298
1299 kfree(in);
1300
1301 set_mr_fields(dev, mr, length, acc, start_addr);
1302
1303 return &mr->ibmr;
1304
1305err_in:
1306 kfree(in);
1307
1308err_free:
1309 kfree(mr);
1310
1311 return ERR_PTR(err);
1312}
1313
1314int mlx5_ib_advise_mr(struct ib_pd *pd,
1315 enum ib_uverbs_advise_mr_advice advice,
1316 u32 flags,
1317 struct ib_sge *sg_list,
1318 u32 num_sge,
1319 struct uverbs_attr_bundle *attrs)
1320{
1321 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1322 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1323 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1324 return -EOPNOTSUPP;
1325
1326 return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1327 sg_list, num_sge);
1328}
1329
1330struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1331 struct ib_dm_mr_attr *attr,
1332 struct uverbs_attr_bundle *attrs)
1333{
1334 struct mlx5_ib_dm *mdm = to_mdm(dm);
1335 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1336 u64 start_addr = mdm->dev_addr + attr->offset;
1337 int mode;
1338
1339 switch (mdm->type) {
1340 case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1341 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1342 return ERR_PTR(-EINVAL);
1343
1344 mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1345 start_addr -= pci_resource_start(dev->pdev, 0);
1346 break;
1347 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1348 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1349 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1350 case MLX5_IB_UAPI_DM_TYPE_ENCAP_SW_ICM:
1351 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1352 return ERR_PTR(-EINVAL);
1353
1354 mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1355 break;
1356 default:
1357 return ERR_PTR(-EINVAL);
1358 }
1359
1360 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1361 attr->access_flags, mode);
1362}
1363
1364static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1365 u64 iova, int access_flags)
1366{
1367 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1368 struct mlx5_ib_mr *mr = NULL;
1369 bool xlt_with_umr;
1370 int err;
1371
1372 xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1373 if (xlt_with_umr) {
1374 mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1375 } else {
1376 unsigned int page_size = mlx5_umem_find_best_pgsz(
1377 umem, mkc, log_page_size, 0, iova);
1378
1379 mutex_lock(&dev->slow_path_mutex);
1380 mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1381 mutex_unlock(&dev->slow_path_mutex);
1382 }
1383 if (IS_ERR(mr)) {
1384 ib_umem_release(umem);
1385 return ERR_CAST(mr);
1386 }
1387
1388 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1389
1390 atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1391
1392 if (xlt_with_umr) {
1393 /*
1394 * If the MR was created with reg_create then it will be
1395 * configured properly but left disabled. It is safe to go ahead
1396 * and configure it again via UMR while enabling it.
1397 */
1398 err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1399 if (err) {
1400 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1401 return ERR_PTR(err);
1402 }
1403 }
1404 return &mr->ibmr;
1405}
1406
1407static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1408 u64 iova, int access_flags,
1409 struct ib_udata *udata)
1410{
1411 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1412 struct ib_umem_odp *odp;
1413 struct mlx5_ib_mr *mr;
1414 int err;
1415
1416 if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1417 return ERR_PTR(-EOPNOTSUPP);
1418
1419 err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1420 if (err)
1421 return ERR_PTR(err);
1422 if (!start && length == U64_MAX) {
1423 if (iova != 0)
1424 return ERR_PTR(-EINVAL);
1425 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1426 return ERR_PTR(-EINVAL);
1427
1428 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1429 if (IS_ERR(mr))
1430 return ERR_CAST(mr);
1431 return &mr->ibmr;
1432 }
1433
1434 /* ODP requires xlt update via umr to work. */
1435 if (!mlx5r_umr_can_load_pas(dev, length))
1436 return ERR_PTR(-EINVAL);
1437
1438 odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1439 &mlx5_mn_ops);
1440 if (IS_ERR(odp))
1441 return ERR_CAST(odp);
1442
1443 mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1444 if (IS_ERR(mr)) {
1445 ib_umem_release(&odp->umem);
1446 return ERR_CAST(mr);
1447 }
1448 xa_init(&mr->implicit_children);
1449
1450 odp->private = mr;
1451 err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1452 if (err)
1453 goto err_dereg_mr;
1454
1455 err = mlx5_ib_init_odp_mr(mr);
1456 if (err)
1457 goto err_dereg_mr;
1458 return &mr->ibmr;
1459
1460err_dereg_mr:
1461 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1462 return ERR_PTR(err);
1463}
1464
1465struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1466 u64 iova, int access_flags,
1467 struct ib_udata *udata)
1468{
1469 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1470 struct ib_umem *umem;
1471
1472 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1473 return ERR_PTR(-EOPNOTSUPP);
1474
1475 mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1476 start, iova, length, access_flags);
1477
1478 if (access_flags & IB_ACCESS_ON_DEMAND)
1479 return create_user_odp_mr(pd, start, length, iova, access_flags,
1480 udata);
1481 umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1482 if (IS_ERR(umem))
1483 return ERR_CAST(umem);
1484 return create_real_mr(pd, umem, iova, access_flags);
1485}
1486
1487static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1488{
1489 struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1490 struct mlx5_ib_mr *mr = umem_dmabuf->private;
1491
1492 dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1493
1494 if (!umem_dmabuf->sgt)
1495 return;
1496
1497 mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1498 ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1499}
1500
1501static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1502 .allow_peer2peer = 1,
1503 .move_notify = mlx5_ib_dmabuf_invalidate_cb,
1504};
1505
1506struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1507 u64 length, u64 virt_addr,
1508 int fd, int access_flags,
1509 struct ib_udata *udata)
1510{
1511 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1512 struct mlx5_ib_mr *mr = NULL;
1513 struct ib_umem_dmabuf *umem_dmabuf;
1514 int err;
1515
1516 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1517 !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1518 return ERR_PTR(-EOPNOTSUPP);
1519
1520 mlx5_ib_dbg(dev,
1521 "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1522 offset, virt_addr, length, fd, access_flags);
1523
1524 /* dmabuf requires xlt update via umr to work. */
1525 if (!mlx5r_umr_can_load_pas(dev, length))
1526 return ERR_PTR(-EINVAL);
1527
1528 umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1529 access_flags,
1530 &mlx5_ib_dmabuf_attach_ops);
1531 if (IS_ERR(umem_dmabuf)) {
1532 mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1533 PTR_ERR(umem_dmabuf));
1534 return ERR_CAST(umem_dmabuf);
1535 }
1536
1537 mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1538 access_flags);
1539 if (IS_ERR(mr)) {
1540 ib_umem_release(&umem_dmabuf->umem);
1541 return ERR_CAST(mr);
1542 }
1543
1544 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1545
1546 atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1547 umem_dmabuf->private = mr;
1548 err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1549 if (err)
1550 goto err_dereg_mr;
1551
1552 err = mlx5_ib_init_dmabuf_mr(mr);
1553 if (err)
1554 goto err_dereg_mr;
1555 return &mr->ibmr;
1556
1557err_dereg_mr:
1558 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1559 return ERR_PTR(err);
1560}
1561
1562/*
1563 * True if the change in access flags can be done via UMR, only some access
1564 * flags can be updated.
1565 */
1566static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1567 unsigned int current_access_flags,
1568 unsigned int target_access_flags)
1569{
1570 unsigned int diffs = current_access_flags ^ target_access_flags;
1571
1572 if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1573 IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
1574 return false;
1575 return mlx5r_umr_can_reconfig(dev, current_access_flags,
1576 target_access_flags);
1577}
1578
1579static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1580 struct ib_umem *new_umem,
1581 int new_access_flags, u64 iova,
1582 unsigned long *page_size)
1583{
1584 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1585
1586 /* We only track the allocated sizes of MRs from the cache */
1587 if (!mr->mmkey.cache_ent)
1588 return false;
1589 if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1590 return false;
1591
1592 *page_size =
1593 mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1594 if (WARN_ON(!*page_size))
1595 return false;
1596 return (mr->mmkey.cache_ent->rb_key.ndescs) >=
1597 ib_umem_num_dma_blocks(new_umem, *page_size);
1598}
1599
1600static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1601 int access_flags, int flags, struct ib_umem *new_umem,
1602 u64 iova, unsigned long page_size)
1603{
1604 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1605 int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1606 struct ib_umem *old_umem = mr->umem;
1607 int err;
1608
1609 /*
1610 * To keep everything simple the MR is revoked before we start to mess
1611 * with it. This ensure the change is atomic relative to any use of the
1612 * MR.
1613 */
1614 err = mlx5r_umr_revoke_mr(mr);
1615 if (err)
1616 return err;
1617
1618 if (flags & IB_MR_REREG_PD) {
1619 mr->ibmr.pd = pd;
1620 upd_flags |= MLX5_IB_UPD_XLT_PD;
1621 }
1622 if (flags & IB_MR_REREG_ACCESS) {
1623 mr->access_flags = access_flags;
1624 upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1625 }
1626
1627 mr->ibmr.iova = iova;
1628 mr->ibmr.length = new_umem->length;
1629 mr->page_shift = order_base_2(page_size);
1630 mr->umem = new_umem;
1631 err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1632 if (err) {
1633 /*
1634 * The MR is revoked at this point so there is no issue to free
1635 * new_umem.
1636 */
1637 mr->umem = old_umem;
1638 return err;
1639 }
1640
1641 atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1642 ib_umem_release(old_umem);
1643 atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1644 return 0;
1645}
1646
1647struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1648 u64 length, u64 iova, int new_access_flags,
1649 struct ib_pd *new_pd,
1650 struct ib_udata *udata)
1651{
1652 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1653 struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1654 int err;
1655
1656 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1657 return ERR_PTR(-EOPNOTSUPP);
1658
1659 mlx5_ib_dbg(
1660 dev,
1661 "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1662 start, iova, length, new_access_flags);
1663
1664 if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1665 return ERR_PTR(-EOPNOTSUPP);
1666
1667 if (!(flags & IB_MR_REREG_ACCESS))
1668 new_access_flags = mr->access_flags;
1669 if (!(flags & IB_MR_REREG_PD))
1670 new_pd = ib_mr->pd;
1671
1672 if (!(flags & IB_MR_REREG_TRANS)) {
1673 struct ib_umem *umem;
1674
1675 /* Fast path for PD/access change */
1676 if (can_use_umr_rereg_access(dev, mr->access_flags,
1677 new_access_flags)) {
1678 err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1679 new_access_flags);
1680 if (err)
1681 return ERR_PTR(err);
1682 return NULL;
1683 }
1684 /* DM or ODP MR's don't have a normal umem so we can't re-use it */
1685 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1686 goto recreate;
1687
1688 /*
1689 * Only one active MR can refer to a umem at one time, revoke
1690 * the old MR before assigning the umem to the new one.
1691 */
1692 err = mlx5r_umr_revoke_mr(mr);
1693 if (err)
1694 return ERR_PTR(err);
1695 umem = mr->umem;
1696 mr->umem = NULL;
1697 atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1698
1699 return create_real_mr(new_pd, umem, mr->ibmr.iova,
1700 new_access_flags);
1701 }
1702
1703 /*
1704 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1705 * but the logic around releasing the umem is different
1706 */
1707 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1708 goto recreate;
1709
1710 if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1711 can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1712 struct ib_umem *new_umem;
1713 unsigned long page_size;
1714
1715 new_umem = ib_umem_get(&dev->ib_dev, start, length,
1716 new_access_flags);
1717 if (IS_ERR(new_umem))
1718 return ERR_CAST(new_umem);
1719
1720 /* Fast path for PAS change */
1721 if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1722 &page_size)) {
1723 err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1724 new_umem, iova, page_size);
1725 if (err) {
1726 ib_umem_release(new_umem);
1727 return ERR_PTR(err);
1728 }
1729 return NULL;
1730 }
1731 return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1732 }
1733
1734 /*
1735 * Everything else has no state we can preserve, just create a new MR
1736 * from scratch
1737 */
1738recreate:
1739 return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1740 new_access_flags, udata);
1741}
1742
1743static int
1744mlx5_alloc_priv_descs(struct ib_device *device,
1745 struct mlx5_ib_mr *mr,
1746 int ndescs,
1747 int desc_size)
1748{
1749 struct mlx5_ib_dev *dev = to_mdev(device);
1750 struct device *ddev = &dev->mdev->pdev->dev;
1751 int size = ndescs * desc_size;
1752 int add_size;
1753 int ret;
1754
1755 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1756 if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) {
1757 int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size));
1758
1759 add_size = min_t(int, end - size, add_size);
1760 }
1761
1762 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1763 if (!mr->descs_alloc)
1764 return -ENOMEM;
1765
1766 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1767
1768 mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1769 if (dma_mapping_error(ddev, mr->desc_map)) {
1770 ret = -ENOMEM;
1771 goto err;
1772 }
1773
1774 return 0;
1775err:
1776 kfree(mr->descs_alloc);
1777
1778 return ret;
1779}
1780
1781static void
1782mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1783{
1784 if (!mr->umem && mr->descs) {
1785 struct ib_device *device = mr->ibmr.device;
1786 int size = mr->max_descs * mr->desc_size;
1787 struct mlx5_ib_dev *dev = to_mdev(device);
1788
1789 dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1790 DMA_TO_DEVICE);
1791 kfree(mr->descs_alloc);
1792 mr->descs = NULL;
1793 }
1794}
1795
1796static int cache_ent_find_and_store(struct mlx5_ib_dev *dev,
1797 struct mlx5_ib_mr *mr)
1798{
1799 struct mlx5_mkey_cache *cache = &dev->cache;
1800 struct mlx5_cache_ent *ent;
1801 int ret;
1802
1803 if (mr->mmkey.cache_ent) {
1804 spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1805 mr->mmkey.cache_ent->in_use--;
1806 goto end;
1807 }
1808
1809 mutex_lock(&cache->rb_lock);
1810 ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key);
1811 if (ent) {
1812 if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) {
1813 if (ent->disabled) {
1814 mutex_unlock(&cache->rb_lock);
1815 return -EOPNOTSUPP;
1816 }
1817 mr->mmkey.cache_ent = ent;
1818 spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1819 mutex_unlock(&cache->rb_lock);
1820 goto end;
1821 }
1822 }
1823
1824 ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false);
1825 mutex_unlock(&cache->rb_lock);
1826 if (IS_ERR(ent))
1827 return PTR_ERR(ent);
1828
1829 mr->mmkey.cache_ent = ent;
1830 spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1831
1832end:
1833 ret = push_mkey_locked(mr->mmkey.cache_ent, mr->mmkey.key);
1834 spin_unlock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1835 return ret;
1836}
1837
1838int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1839{
1840 struct mlx5_ib_mr *mr = to_mmr(ibmr);
1841 struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1842 int rc;
1843
1844 /*
1845 * Any async use of the mr must hold the refcount, once the refcount
1846 * goes to zero no other thread, such as ODP page faults, prefetch, any
1847 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1848 */
1849 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1850 refcount_read(&mr->mmkey.usecount) != 0 &&
1851 xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1852 mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1853
1854 if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1855 xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1856 mr->sig, NULL, GFP_KERNEL);
1857
1858 if (mr->mtt_mr) {
1859 rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1860 if (rc)
1861 return rc;
1862 mr->mtt_mr = NULL;
1863 }
1864 if (mr->klm_mr) {
1865 rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1866 if (rc)
1867 return rc;
1868 mr->klm_mr = NULL;
1869 }
1870
1871 if (mlx5_core_destroy_psv(dev->mdev,
1872 mr->sig->psv_memory.psv_idx))
1873 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1874 mr->sig->psv_memory.psv_idx);
1875 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1876 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1877 mr->sig->psv_wire.psv_idx);
1878 kfree(mr->sig);
1879 mr->sig = NULL;
1880 }
1881
1882 /* Stop DMA */
1883 if (mr->umem && mlx5r_umr_can_load_pas(dev, mr->umem->length))
1884 if (mlx5r_umr_revoke_mr(mr) ||
1885 cache_ent_find_and_store(dev, mr))
1886 mr->mmkey.cache_ent = NULL;
1887
1888 if (!mr->mmkey.cache_ent) {
1889 rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1890 if (rc)
1891 return rc;
1892 }
1893
1894 if (mr->umem) {
1895 bool is_odp = is_odp_mr(mr);
1896
1897 if (!is_odp)
1898 atomic_sub(ib_umem_num_pages(mr->umem),
1899 &dev->mdev->priv.reg_pages);
1900 ib_umem_release(mr->umem);
1901 if (is_odp)
1902 mlx5_ib_free_odp_mr(mr);
1903 }
1904
1905 if (!mr->mmkey.cache_ent)
1906 mlx5_free_priv_descs(mr);
1907
1908 kfree(mr);
1909 return 0;
1910}
1911
1912static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1913 int access_mode, int page_shift)
1914{
1915 void *mkc;
1916
1917 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1918
1919 /* This is only used from the kernel, so setting the PD is OK. */
1920 set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
1921 MLX5_SET(mkc, mkc, free, 1);
1922 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1923 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1924 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1925 MLX5_SET(mkc, mkc, umr_en, 1);
1926 MLX5_SET(mkc, mkc, log_page_size, page_shift);
1927}
1928
1929static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1930 int ndescs, int desc_size, int page_shift,
1931 int access_mode, u32 *in, int inlen)
1932{
1933 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1934 int err;
1935
1936 mr->access_mode = access_mode;
1937 mr->desc_size = desc_size;
1938 mr->max_descs = ndescs;
1939
1940 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1941 if (err)
1942 return err;
1943
1944 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1945
1946 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1947 if (err)
1948 goto err_free_descs;
1949
1950 mr->mmkey.type = MLX5_MKEY_MR;
1951 mr->ibmr.lkey = mr->mmkey.key;
1952 mr->ibmr.rkey = mr->mmkey.key;
1953
1954 return 0;
1955
1956err_free_descs:
1957 mlx5_free_priv_descs(mr);
1958 return err;
1959}
1960
1961static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1962 u32 max_num_sg, u32 max_num_meta_sg,
1963 int desc_size, int access_mode)
1964{
1965 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1966 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1967 int page_shift = 0;
1968 struct mlx5_ib_mr *mr;
1969 u32 *in;
1970 int err;
1971
1972 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1973 if (!mr)
1974 return ERR_PTR(-ENOMEM);
1975
1976 mr->ibmr.pd = pd;
1977 mr->ibmr.device = pd->device;
1978
1979 in = kzalloc(inlen, GFP_KERNEL);
1980 if (!in) {
1981 err = -ENOMEM;
1982 goto err_free;
1983 }
1984
1985 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1986 page_shift = PAGE_SHIFT;
1987
1988 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1989 access_mode, in, inlen);
1990 if (err)
1991 goto err_free_in;
1992
1993 mr->umem = NULL;
1994 kfree(in);
1995
1996 return mr;
1997
1998err_free_in:
1999 kfree(in);
2000err_free:
2001 kfree(mr);
2002 return ERR_PTR(err);
2003}
2004
2005static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2006 int ndescs, u32 *in, int inlen)
2007{
2008 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2009 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2010 inlen);
2011}
2012
2013static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2014 int ndescs, u32 *in, int inlen)
2015{
2016 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2017 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2018}
2019
2020static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2021 int max_num_sg, int max_num_meta_sg,
2022 u32 *in, int inlen)
2023{
2024 struct mlx5_ib_dev *dev = to_mdev(pd->device);
2025 u32 psv_index[2];
2026 void *mkc;
2027 int err;
2028
2029 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2030 if (!mr->sig)
2031 return -ENOMEM;
2032
2033 /* create mem & wire PSVs */
2034 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2035 if (err)
2036 goto err_free_sig;
2037
2038 mr->sig->psv_memory.psv_idx = psv_index[0];
2039 mr->sig->psv_wire.psv_idx = psv_index[1];
2040
2041 mr->sig->sig_status_checked = true;
2042 mr->sig->sig_err_exists = false;
2043 /* Next UMR, Arm SIGERR */
2044 ++mr->sig->sigerr_count;
2045 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2046 sizeof(struct mlx5_klm),
2047 MLX5_MKC_ACCESS_MODE_KLMS);
2048 if (IS_ERR(mr->klm_mr)) {
2049 err = PTR_ERR(mr->klm_mr);
2050 goto err_destroy_psv;
2051 }
2052 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2053 sizeof(struct mlx5_mtt),
2054 MLX5_MKC_ACCESS_MODE_MTT);
2055 if (IS_ERR(mr->mtt_mr)) {
2056 err = PTR_ERR(mr->mtt_mr);
2057 goto err_free_klm_mr;
2058 }
2059
2060 /* Set bsf descriptors for mkey */
2061 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2062 MLX5_SET(mkc, mkc, bsf_en, 1);
2063 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2064
2065 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2066 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2067 if (err)
2068 goto err_free_mtt_mr;
2069
2070 err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2071 mr->sig, GFP_KERNEL));
2072 if (err)
2073 goto err_free_descs;
2074 return 0;
2075
2076err_free_descs:
2077 destroy_mkey(dev, mr);
2078 mlx5_free_priv_descs(mr);
2079err_free_mtt_mr:
2080 mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2081 mr->mtt_mr = NULL;
2082err_free_klm_mr:
2083 mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2084 mr->klm_mr = NULL;
2085err_destroy_psv:
2086 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2087 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2088 mr->sig->psv_memory.psv_idx);
2089 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2090 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2091 mr->sig->psv_wire.psv_idx);
2092err_free_sig:
2093 kfree(mr->sig);
2094
2095 return err;
2096}
2097
2098static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2099 enum ib_mr_type mr_type, u32 max_num_sg,
2100 u32 max_num_meta_sg)
2101{
2102 struct mlx5_ib_dev *dev = to_mdev(pd->device);
2103 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2104 int ndescs = ALIGN(max_num_sg, 4);
2105 struct mlx5_ib_mr *mr;
2106 u32 *in;
2107 int err;
2108
2109 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2110 if (!mr)
2111 return ERR_PTR(-ENOMEM);
2112
2113 in = kzalloc(inlen, GFP_KERNEL);
2114 if (!in) {
2115 err = -ENOMEM;
2116 goto err_free;
2117 }
2118
2119 mr->ibmr.device = pd->device;
2120 mr->umem = NULL;
2121
2122 switch (mr_type) {
2123 case IB_MR_TYPE_MEM_REG:
2124 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2125 break;
2126 case IB_MR_TYPE_SG_GAPS:
2127 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2128 break;
2129 case IB_MR_TYPE_INTEGRITY:
2130 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2131 max_num_meta_sg, in, inlen);
2132 break;
2133 default:
2134 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2135 err = -EINVAL;
2136 }
2137
2138 if (err)
2139 goto err_free_in;
2140
2141 kfree(in);
2142
2143 return &mr->ibmr;
2144
2145err_free_in:
2146 kfree(in);
2147err_free:
2148 kfree(mr);
2149 return ERR_PTR(err);
2150}
2151
2152struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2153 u32 max_num_sg)
2154{
2155 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2156}
2157
2158struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2159 u32 max_num_sg, u32 max_num_meta_sg)
2160{
2161 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2162 max_num_meta_sg);
2163}
2164
2165int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2166{
2167 struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2168 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2169 struct mlx5_ib_mw *mw = to_mmw(ibmw);
2170 unsigned int ndescs;
2171 u32 *in = NULL;
2172 void *mkc;
2173 int err;
2174 struct mlx5_ib_alloc_mw req = {};
2175 struct {
2176 __u32 comp_mask;
2177 __u32 response_length;
2178 } resp = {};
2179
2180 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2181 if (err)
2182 return err;
2183
2184 if (req.comp_mask || req.reserved1 || req.reserved2)
2185 return -EOPNOTSUPP;
2186
2187 if (udata->inlen > sizeof(req) &&
2188 !ib_is_udata_cleared(udata, sizeof(req),
2189 udata->inlen - sizeof(req)))
2190 return -EOPNOTSUPP;
2191
2192 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2193
2194 in = kzalloc(inlen, GFP_KERNEL);
2195 if (!in)
2196 return -ENOMEM;
2197
2198 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2199
2200 MLX5_SET(mkc, mkc, free, 1);
2201 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2202 MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2203 MLX5_SET(mkc, mkc, umr_en, 1);
2204 MLX5_SET(mkc, mkc, lr, 1);
2205 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2206 MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2207 MLX5_SET(mkc, mkc, qpn, 0xffffff);
2208
2209 err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2210 if (err)
2211 goto free;
2212
2213 mw->mmkey.type = MLX5_MKEY_MW;
2214 ibmw->rkey = mw->mmkey.key;
2215 mw->mmkey.ndescs = ndescs;
2216
2217 resp.response_length =
2218 min(offsetofend(typeof(resp), response_length), udata->outlen);
2219 if (resp.response_length) {
2220 err = ib_copy_to_udata(udata, &resp, resp.response_length);
2221 if (err)
2222 goto free_mkey;
2223 }
2224
2225 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2226 err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2227 if (err)
2228 goto free_mkey;
2229 }
2230
2231 kfree(in);
2232 return 0;
2233
2234free_mkey:
2235 mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
2236free:
2237 kfree(in);
2238 return err;
2239}
2240
2241int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2242{
2243 struct mlx5_ib_dev *dev = to_mdev(mw->device);
2244 struct mlx5_ib_mw *mmw = to_mmw(mw);
2245
2246 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2247 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2248 /*
2249 * pagefault_single_data_segment() may be accessing mmw
2250 * if the user bound an ODP MR to this MW.
2251 */
2252 mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2253
2254 return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
2255}
2256
2257int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2258 struct ib_mr_status *mr_status)
2259{
2260 struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2261 int ret = 0;
2262
2263 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2264 pr_err("Invalid status check mask\n");
2265 ret = -EINVAL;
2266 goto done;
2267 }
2268
2269 mr_status->fail_status = 0;
2270 if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2271 if (!mmr->sig) {
2272 ret = -EINVAL;
2273 pr_err("signature status check requested on a non-signature enabled MR\n");
2274 goto done;
2275 }
2276
2277 mmr->sig->sig_status_checked = true;
2278 if (!mmr->sig->sig_err_exists)
2279 goto done;
2280
2281 if (ibmr->lkey == mmr->sig->err_item.key)
2282 memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2283 sizeof(mr_status->sig_err));
2284 else {
2285 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2286 mr_status->sig_err.sig_err_offset = 0;
2287 mr_status->sig_err.key = mmr->sig->err_item.key;
2288 }
2289
2290 mmr->sig->sig_err_exists = false;
2291 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2292 }
2293
2294done:
2295 return ret;
2296}
2297
2298static int
2299mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2300 int data_sg_nents, unsigned int *data_sg_offset,
2301 struct scatterlist *meta_sg, int meta_sg_nents,
2302 unsigned int *meta_sg_offset)
2303{
2304 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2305 unsigned int sg_offset = 0;
2306 int n = 0;
2307
2308 mr->meta_length = 0;
2309 if (data_sg_nents == 1) {
2310 n++;
2311 mr->mmkey.ndescs = 1;
2312 if (data_sg_offset)
2313 sg_offset = *data_sg_offset;
2314 mr->data_length = sg_dma_len(data_sg) - sg_offset;
2315 mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2316 if (meta_sg_nents == 1) {
2317 n++;
2318 mr->meta_ndescs = 1;
2319 if (meta_sg_offset)
2320 sg_offset = *meta_sg_offset;
2321 else
2322 sg_offset = 0;
2323 mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2324 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2325 }
2326 ibmr->length = mr->data_length + mr->meta_length;
2327 }
2328
2329 return n;
2330}
2331
2332static int
2333mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2334 struct scatterlist *sgl,
2335 unsigned short sg_nents,
2336 unsigned int *sg_offset_p,
2337 struct scatterlist *meta_sgl,
2338 unsigned short meta_sg_nents,
2339 unsigned int *meta_sg_offset_p)
2340{
2341 struct scatterlist *sg = sgl;
2342 struct mlx5_klm *klms = mr->descs;
2343 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2344 u32 lkey = mr->ibmr.pd->local_dma_lkey;
2345 int i, j = 0;
2346
2347 mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2348 mr->ibmr.length = 0;
2349
2350 for_each_sg(sgl, sg, sg_nents, i) {
2351 if (unlikely(i >= mr->max_descs))
2352 break;
2353 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2354 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2355 klms[i].key = cpu_to_be32(lkey);
2356 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2357
2358 sg_offset = 0;
2359 }
2360
2361 if (sg_offset_p)
2362 *sg_offset_p = sg_offset;
2363
2364 mr->mmkey.ndescs = i;
2365 mr->data_length = mr->ibmr.length;
2366
2367 if (meta_sg_nents) {
2368 sg = meta_sgl;
2369 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2370 for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2371 if (unlikely(i + j >= mr->max_descs))
2372 break;
2373 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2374 sg_offset);
2375 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2376 sg_offset);
2377 klms[i + j].key = cpu_to_be32(lkey);
2378 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2379
2380 sg_offset = 0;
2381 }
2382 if (meta_sg_offset_p)
2383 *meta_sg_offset_p = sg_offset;
2384
2385 mr->meta_ndescs = j;
2386 mr->meta_length = mr->ibmr.length - mr->data_length;
2387 }
2388
2389 return i + j;
2390}
2391
2392static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2393{
2394 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2395 __be64 *descs;
2396
2397 if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2398 return -ENOMEM;
2399
2400 descs = mr->descs;
2401 descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2402
2403 return 0;
2404}
2405
2406static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2407{
2408 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2409 __be64 *descs;
2410
2411 if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2412 return -ENOMEM;
2413
2414 descs = mr->descs;
2415 descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2416 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2417
2418 return 0;
2419}
2420
2421static int
2422mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2423 int data_sg_nents, unsigned int *data_sg_offset,
2424 struct scatterlist *meta_sg, int meta_sg_nents,
2425 unsigned int *meta_sg_offset)
2426{
2427 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2428 struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2429 int n;
2430
2431 pi_mr->mmkey.ndescs = 0;
2432 pi_mr->meta_ndescs = 0;
2433 pi_mr->meta_length = 0;
2434
2435 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2436 pi_mr->desc_size * pi_mr->max_descs,
2437 DMA_TO_DEVICE);
2438
2439 pi_mr->ibmr.page_size = ibmr->page_size;
2440 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2441 mlx5_set_page);
2442 if (n != data_sg_nents)
2443 return n;
2444
2445 pi_mr->data_iova = pi_mr->ibmr.iova;
2446 pi_mr->data_length = pi_mr->ibmr.length;
2447 pi_mr->ibmr.length = pi_mr->data_length;
2448 ibmr->length = pi_mr->data_length;
2449
2450 if (meta_sg_nents) {
2451 u64 page_mask = ~((u64)ibmr->page_size - 1);
2452 u64 iova = pi_mr->data_iova;
2453
2454 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2455 meta_sg_offset, mlx5_set_page_pi);
2456
2457 pi_mr->meta_length = pi_mr->ibmr.length;
2458 /*
2459 * PI address for the HW is the offset of the metadata address
2460 * relative to the first data page address.
2461 * It equals to first data page address + size of data pages +
2462 * metadata offset at the first metadata page
2463 */
2464 pi_mr->pi_iova = (iova & page_mask) +
2465 pi_mr->mmkey.ndescs * ibmr->page_size +
2466 (pi_mr->ibmr.iova & ~page_mask);
2467 /*
2468 * In order to use one MTT MR for data and metadata, we register
2469 * also the gaps between the end of the data and the start of
2470 * the metadata (the sig MR will verify that the HW will access
2471 * to right addresses). This mapping is safe because we use
2472 * internal mkey for the registration.
2473 */
2474 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2475 pi_mr->ibmr.iova = iova;
2476 ibmr->length += pi_mr->meta_length;
2477 }
2478
2479 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2480 pi_mr->desc_size * pi_mr->max_descs,
2481 DMA_TO_DEVICE);
2482
2483 return n;
2484}
2485
2486static int
2487mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2488 int data_sg_nents, unsigned int *data_sg_offset,
2489 struct scatterlist *meta_sg, int meta_sg_nents,
2490 unsigned int *meta_sg_offset)
2491{
2492 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2493 struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2494 int n;
2495
2496 pi_mr->mmkey.ndescs = 0;
2497 pi_mr->meta_ndescs = 0;
2498 pi_mr->meta_length = 0;
2499
2500 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2501 pi_mr->desc_size * pi_mr->max_descs,
2502 DMA_TO_DEVICE);
2503
2504 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2505 meta_sg, meta_sg_nents, meta_sg_offset);
2506
2507 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2508 pi_mr->desc_size * pi_mr->max_descs,
2509 DMA_TO_DEVICE);
2510
2511 /* This is zero-based memory region */
2512 pi_mr->data_iova = 0;
2513 pi_mr->ibmr.iova = 0;
2514 pi_mr->pi_iova = pi_mr->data_length;
2515 ibmr->length = pi_mr->ibmr.length;
2516
2517 return n;
2518}
2519
2520int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2521 int data_sg_nents, unsigned int *data_sg_offset,
2522 struct scatterlist *meta_sg, int meta_sg_nents,
2523 unsigned int *meta_sg_offset)
2524{
2525 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2526 struct mlx5_ib_mr *pi_mr = NULL;
2527 int n;
2528
2529 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2530
2531 mr->mmkey.ndescs = 0;
2532 mr->data_length = 0;
2533 mr->data_iova = 0;
2534 mr->meta_ndescs = 0;
2535 mr->pi_iova = 0;
2536 /*
2537 * As a performance optimization, if possible, there is no need to
2538 * perform UMR operation to register the data/metadata buffers.
2539 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2540 * Fallback to UMR only in case of a failure.
2541 */
2542 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2543 data_sg_offset, meta_sg, meta_sg_nents,
2544 meta_sg_offset);
2545 if (n == data_sg_nents + meta_sg_nents)
2546 goto out;
2547 /*
2548 * As a performance optimization, if possible, there is no need to map
2549 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2550 * descriptors and fallback to KLM only in case of a failure.
2551 * It's more efficient for the HW to work with MTT descriptors
2552 * (especially in high load).
2553 * Use KLM (indirect access) only if it's mandatory.
2554 */
2555 pi_mr = mr->mtt_mr;
2556 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2557 data_sg_offset, meta_sg, meta_sg_nents,
2558 meta_sg_offset);
2559 if (n == data_sg_nents + meta_sg_nents)
2560 goto out;
2561
2562 pi_mr = mr->klm_mr;
2563 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2564 data_sg_offset, meta_sg, meta_sg_nents,
2565 meta_sg_offset);
2566 if (unlikely(n != data_sg_nents + meta_sg_nents))
2567 return -ENOMEM;
2568
2569out:
2570 /* This is zero-based memory region */
2571 ibmr->iova = 0;
2572 mr->pi_mr = pi_mr;
2573 if (pi_mr)
2574 ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2575 else
2576 ibmr->sig_attrs->meta_length = mr->meta_length;
2577
2578 return 0;
2579}
2580
2581int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2582 unsigned int *sg_offset)
2583{
2584 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2585 int n;
2586
2587 mr->mmkey.ndescs = 0;
2588
2589 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2590 mr->desc_size * mr->max_descs,
2591 DMA_TO_DEVICE);
2592
2593 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2594 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2595 NULL);
2596 else
2597 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2598 mlx5_set_page);
2599
2600 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2601 mr->desc_size * mr->max_descs,
2602 DMA_TO_DEVICE);
2603
2604 return n;
2605}
1/*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2020, Intel Corporation. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34
35#include <linux/kref.h>
36#include <linux/random.h>
37#include <linux/debugfs.h>
38#include <linux/export.h>
39#include <linux/delay.h>
40#include <linux/dma-buf.h>
41#include <linux/dma-resv.h>
42#include <rdma/ib_umem_odp.h>
43#include "dm.h"
44#include "mlx5_ib.h"
45#include "umr.h"
46
47enum {
48 MAX_PENDING_REG_MR = 8,
49};
50
51#define MLX5_UMR_ALIGN 2048
52
53static void
54create_mkey_callback(int status, struct mlx5_async_work *context);
55static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
56 u64 iova, int access_flags,
57 unsigned int page_size, bool populate);
58
59static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
60 struct ib_pd *pd)
61{
62 struct mlx5_ib_dev *dev = to_mdev(pd->device);
63
64 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
65 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
66 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
67 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
68 MLX5_SET(mkc, mkc, lr, 1);
69
70 if (acc & IB_ACCESS_RELAXED_ORDERING) {
71 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
72 MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
73
74 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
75 (MLX5_CAP_GEN(dev->mdev,
76 relaxed_ordering_read_pci_enabled) &&
77 pcie_relaxed_ordering_enabled(dev->mdev->pdev)))
78 MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
79 }
80
81 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
82 MLX5_SET(mkc, mkc, qpn, 0xffffff);
83 MLX5_SET64(mkc, mkc, start_addr, start_addr);
84}
85
86static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
87{
88 u8 key = atomic_inc_return(&dev->mkey_var);
89 void *mkc;
90
91 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
92 MLX5_SET(mkc, mkc, mkey_7_0, key);
93 *mkey = key;
94}
95
96static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
97 struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
98{
99 int ret;
100
101 assign_mkey_variant(dev, &mkey->key, in);
102 ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
103 if (!ret)
104 init_waitqueue_head(&mkey->wait);
105
106 return ret;
107}
108
109static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
110{
111 struct mlx5_ib_dev *dev = async_create->ent->dev;
112 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
113 size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
114
115 MLX5_SET(create_mkey_in, async_create->in, opcode,
116 MLX5_CMD_OP_CREATE_MKEY);
117 assign_mkey_variant(dev, &async_create->mkey, async_create->in);
118 return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
119 async_create->out, outlen, create_mkey_callback,
120 &async_create->cb_work);
121}
122
123static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
124static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
125
126static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
127{
128 WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
129
130 return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
131}
132
133static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
134{
135 if (status == -ENXIO) /* core driver is not available */
136 return;
137
138 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
139 if (status != -EREMOTEIO) /* driver specific failure */
140 return;
141
142 /* Failed in FW, print cmd out failure details */
143 mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
144}
145
146static int push_mkey_locked(struct mlx5_cache_ent *ent, u32 mkey)
147{
148 unsigned long tmp = ent->mkeys_queue.ci % NUM_MKEYS_PER_PAGE;
149 struct mlx5_mkeys_page *page;
150
151 lockdep_assert_held(&ent->mkeys_queue.lock);
152 if (ent->mkeys_queue.ci >=
153 ent->mkeys_queue.num_pages * NUM_MKEYS_PER_PAGE) {
154 page = kzalloc(sizeof(*page), GFP_ATOMIC);
155 if (!page)
156 return -ENOMEM;
157 ent->mkeys_queue.num_pages++;
158 list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
159 } else {
160 page = list_last_entry(&ent->mkeys_queue.pages_list,
161 struct mlx5_mkeys_page, list);
162 }
163
164 page->mkeys[tmp] = mkey;
165 ent->mkeys_queue.ci++;
166 return 0;
167}
168
169static int pop_mkey_locked(struct mlx5_cache_ent *ent)
170{
171 unsigned long tmp = (ent->mkeys_queue.ci - 1) % NUM_MKEYS_PER_PAGE;
172 struct mlx5_mkeys_page *last_page;
173 u32 mkey;
174
175 lockdep_assert_held(&ent->mkeys_queue.lock);
176 last_page = list_last_entry(&ent->mkeys_queue.pages_list,
177 struct mlx5_mkeys_page, list);
178 mkey = last_page->mkeys[tmp];
179 last_page->mkeys[tmp] = 0;
180 ent->mkeys_queue.ci--;
181 if (ent->mkeys_queue.num_pages > 1 && !tmp) {
182 list_del(&last_page->list);
183 ent->mkeys_queue.num_pages--;
184 kfree(last_page);
185 }
186 return mkey;
187}
188
189static void create_mkey_callback(int status, struct mlx5_async_work *context)
190{
191 struct mlx5r_async_create_mkey *mkey_out =
192 container_of(context, struct mlx5r_async_create_mkey, cb_work);
193 struct mlx5_cache_ent *ent = mkey_out->ent;
194 struct mlx5_ib_dev *dev = ent->dev;
195 unsigned long flags;
196
197 if (status) {
198 create_mkey_warn(dev, status, mkey_out->out);
199 kfree(mkey_out);
200 spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
201 ent->pending--;
202 WRITE_ONCE(dev->fill_delay, 1);
203 spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
204 mod_timer(&dev->delay_timer, jiffies + HZ);
205 return;
206 }
207
208 mkey_out->mkey |= mlx5_idx_to_mkey(
209 MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
210 WRITE_ONCE(dev->cache.last_add, jiffies);
211
212 spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
213 push_mkey_locked(ent, mkey_out->mkey);
214 /* If we are doing fill_to_high_water then keep going. */
215 queue_adjust_cache_locked(ent);
216 ent->pending--;
217 spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
218 kfree(mkey_out);
219}
220
221static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
222{
223 int ret = 0;
224
225 switch (access_mode) {
226 case MLX5_MKC_ACCESS_MODE_MTT:
227 ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
228 sizeof(struct mlx5_mtt));
229 break;
230 case MLX5_MKC_ACCESS_MODE_KSM:
231 ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
232 sizeof(struct mlx5_klm));
233 break;
234 default:
235 WARN_ON(1);
236 }
237 return ret;
238}
239
240static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
241{
242 set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0,
243 ent->dev->umrc.pd);
244 MLX5_SET(mkc, mkc, free, 1);
245 MLX5_SET(mkc, mkc, umr_en, 1);
246 MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3);
247 MLX5_SET(mkc, mkc, access_mode_4_2,
248 (ent->rb_key.access_mode >> 2) & 0x7);
249
250 MLX5_SET(mkc, mkc, translations_octword_size,
251 get_mkc_octo_size(ent->rb_key.access_mode,
252 ent->rb_key.ndescs));
253 MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
254}
255
256/* Asynchronously schedule new MRs to be populated in the cache. */
257static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
258{
259 struct mlx5r_async_create_mkey *async_create;
260 void *mkc;
261 int err = 0;
262 int i;
263
264 for (i = 0; i < num; i++) {
265 async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
266 GFP_KERNEL);
267 if (!async_create)
268 return -ENOMEM;
269 mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
270 memory_key_mkey_entry);
271 set_cache_mkc(ent, mkc);
272 async_create->ent = ent;
273
274 spin_lock_irq(&ent->mkeys_queue.lock);
275 if (ent->pending >= MAX_PENDING_REG_MR) {
276 err = -EAGAIN;
277 goto free_async_create;
278 }
279 ent->pending++;
280 spin_unlock_irq(&ent->mkeys_queue.lock);
281
282 err = mlx5_ib_create_mkey_cb(async_create);
283 if (err) {
284 mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
285 goto err_create_mkey;
286 }
287 }
288
289 return 0;
290
291err_create_mkey:
292 spin_lock_irq(&ent->mkeys_queue.lock);
293 ent->pending--;
294free_async_create:
295 spin_unlock_irq(&ent->mkeys_queue.lock);
296 kfree(async_create);
297 return err;
298}
299
300/* Synchronously create a MR in the cache */
301static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
302{
303 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
304 void *mkc;
305 u32 *in;
306 int err;
307
308 in = kzalloc(inlen, GFP_KERNEL);
309 if (!in)
310 return -ENOMEM;
311 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
312 set_cache_mkc(ent, mkc);
313
314 err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
315 if (err)
316 goto free_in;
317
318 WRITE_ONCE(ent->dev->cache.last_add, jiffies);
319free_in:
320 kfree(in);
321 return err;
322}
323
324static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
325{
326 u32 mkey;
327
328 lockdep_assert_held(&ent->mkeys_queue.lock);
329 if (!ent->mkeys_queue.ci)
330 return;
331 mkey = pop_mkey_locked(ent);
332 spin_unlock_irq(&ent->mkeys_queue.lock);
333 mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
334 spin_lock_irq(&ent->mkeys_queue.lock);
335}
336
337static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
338 bool limit_fill)
339 __acquires(&ent->mkeys_queue.lock) __releases(&ent->mkeys_queue.lock)
340{
341 int err;
342
343 lockdep_assert_held(&ent->mkeys_queue.lock);
344
345 while (true) {
346 if (limit_fill)
347 target = ent->limit * 2;
348 if (target == ent->pending + ent->mkeys_queue.ci)
349 return 0;
350 if (target > ent->pending + ent->mkeys_queue.ci) {
351 u32 todo = target - (ent->pending + ent->mkeys_queue.ci);
352
353 spin_unlock_irq(&ent->mkeys_queue.lock);
354 err = add_keys(ent, todo);
355 if (err == -EAGAIN)
356 usleep_range(3000, 5000);
357 spin_lock_irq(&ent->mkeys_queue.lock);
358 if (err) {
359 if (err != -EAGAIN)
360 return err;
361 } else
362 return 0;
363 } else {
364 remove_cache_mr_locked(ent);
365 }
366 }
367}
368
369static ssize_t size_write(struct file *filp, const char __user *buf,
370 size_t count, loff_t *pos)
371{
372 struct mlx5_cache_ent *ent = filp->private_data;
373 u32 target;
374 int err;
375
376 err = kstrtou32_from_user(buf, count, 0, &target);
377 if (err)
378 return err;
379
380 /*
381 * Target is the new value of total_mrs the user requests, however we
382 * cannot free MRs that are in use. Compute the target value for stored
383 * mkeys.
384 */
385 spin_lock_irq(&ent->mkeys_queue.lock);
386 if (target < ent->in_use) {
387 err = -EINVAL;
388 goto err_unlock;
389 }
390 target = target - ent->in_use;
391 if (target < ent->limit || target > ent->limit*2) {
392 err = -EINVAL;
393 goto err_unlock;
394 }
395 err = resize_available_mrs(ent, target, false);
396 if (err)
397 goto err_unlock;
398 spin_unlock_irq(&ent->mkeys_queue.lock);
399
400 return count;
401
402err_unlock:
403 spin_unlock_irq(&ent->mkeys_queue.lock);
404 return err;
405}
406
407static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
408 loff_t *pos)
409{
410 struct mlx5_cache_ent *ent = filp->private_data;
411 char lbuf[20];
412 int err;
413
414 err = snprintf(lbuf, sizeof(lbuf), "%ld\n",
415 ent->mkeys_queue.ci + ent->in_use);
416 if (err < 0)
417 return err;
418
419 return simple_read_from_buffer(buf, count, pos, lbuf, err);
420}
421
422static const struct file_operations size_fops = {
423 .owner = THIS_MODULE,
424 .open = simple_open,
425 .write = size_write,
426 .read = size_read,
427};
428
429static ssize_t limit_write(struct file *filp, const char __user *buf,
430 size_t count, loff_t *pos)
431{
432 struct mlx5_cache_ent *ent = filp->private_data;
433 u32 var;
434 int err;
435
436 err = kstrtou32_from_user(buf, count, 0, &var);
437 if (err)
438 return err;
439
440 /*
441 * Upon set we immediately fill the cache to high water mark implied by
442 * the limit.
443 */
444 spin_lock_irq(&ent->mkeys_queue.lock);
445 ent->limit = var;
446 err = resize_available_mrs(ent, 0, true);
447 spin_unlock_irq(&ent->mkeys_queue.lock);
448 if (err)
449 return err;
450 return count;
451}
452
453static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
454 loff_t *pos)
455{
456 struct mlx5_cache_ent *ent = filp->private_data;
457 char lbuf[20];
458 int err;
459
460 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
461 if (err < 0)
462 return err;
463
464 return simple_read_from_buffer(buf, count, pos, lbuf, err);
465}
466
467static const struct file_operations limit_fops = {
468 .owner = THIS_MODULE,
469 .open = simple_open,
470 .write = limit_write,
471 .read = limit_read,
472};
473
474static bool someone_adding(struct mlx5_mkey_cache *cache)
475{
476 struct mlx5_cache_ent *ent;
477 struct rb_node *node;
478 bool ret;
479
480 mutex_lock(&cache->rb_lock);
481 for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) {
482 ent = rb_entry(node, struct mlx5_cache_ent, node);
483 spin_lock_irq(&ent->mkeys_queue.lock);
484 ret = ent->mkeys_queue.ci < ent->limit;
485 spin_unlock_irq(&ent->mkeys_queue.lock);
486 if (ret) {
487 mutex_unlock(&cache->rb_lock);
488 return true;
489 }
490 }
491 mutex_unlock(&cache->rb_lock);
492 return false;
493}
494
495/*
496 * Check if the bucket is outside the high/low water mark and schedule an async
497 * update. The cache refill has hysteresis, once the low water mark is hit it is
498 * refilled up to the high mark.
499 */
500static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
501{
502 lockdep_assert_held(&ent->mkeys_queue.lock);
503
504 if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp)
505 return;
506 if (ent->mkeys_queue.ci < ent->limit) {
507 ent->fill_to_high_water = true;
508 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
509 } else if (ent->fill_to_high_water &&
510 ent->mkeys_queue.ci + ent->pending < 2 * ent->limit) {
511 /*
512 * Once we start populating due to hitting a low water mark
513 * continue until we pass the high water mark.
514 */
515 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
516 } else if (ent->mkeys_queue.ci == 2 * ent->limit) {
517 ent->fill_to_high_water = false;
518 } else if (ent->mkeys_queue.ci > 2 * ent->limit) {
519 /* Queue deletion of excess entries */
520 ent->fill_to_high_water = false;
521 if (ent->pending)
522 queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
523 msecs_to_jiffies(1000));
524 else
525 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
526 }
527}
528
529static void __cache_work_func(struct mlx5_cache_ent *ent)
530{
531 struct mlx5_ib_dev *dev = ent->dev;
532 struct mlx5_mkey_cache *cache = &dev->cache;
533 int err;
534
535 spin_lock_irq(&ent->mkeys_queue.lock);
536 if (ent->disabled)
537 goto out;
538
539 if (ent->fill_to_high_water &&
540 ent->mkeys_queue.ci + ent->pending < 2 * ent->limit &&
541 !READ_ONCE(dev->fill_delay)) {
542 spin_unlock_irq(&ent->mkeys_queue.lock);
543 err = add_keys(ent, 1);
544 spin_lock_irq(&ent->mkeys_queue.lock);
545 if (ent->disabled)
546 goto out;
547 if (err) {
548 /*
549 * EAGAIN only happens if there are pending MRs, so we
550 * will be rescheduled when storing them. The only
551 * failure path here is ENOMEM.
552 */
553 if (err != -EAGAIN) {
554 mlx5_ib_warn(
555 dev,
556 "add keys command failed, err %d\n",
557 err);
558 queue_delayed_work(cache->wq, &ent->dwork,
559 msecs_to_jiffies(1000));
560 }
561 }
562 } else if (ent->mkeys_queue.ci > 2 * ent->limit) {
563 bool need_delay;
564
565 /*
566 * The remove_cache_mr() logic is performed as garbage
567 * collection task. Such task is intended to be run when no
568 * other active processes are running.
569 *
570 * The need_resched() will return TRUE if there are user tasks
571 * to be activated in near future.
572 *
573 * In such case, we don't execute remove_cache_mr() and postpone
574 * the garbage collection work to try to run in next cycle, in
575 * order to free CPU resources to other tasks.
576 */
577 spin_unlock_irq(&ent->mkeys_queue.lock);
578 need_delay = need_resched() || someone_adding(cache) ||
579 !time_after(jiffies,
580 READ_ONCE(cache->last_add) + 300 * HZ);
581 spin_lock_irq(&ent->mkeys_queue.lock);
582 if (ent->disabled)
583 goto out;
584 if (need_delay) {
585 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
586 goto out;
587 }
588 remove_cache_mr_locked(ent);
589 queue_adjust_cache_locked(ent);
590 }
591out:
592 spin_unlock_irq(&ent->mkeys_queue.lock);
593}
594
595static void delayed_cache_work_func(struct work_struct *work)
596{
597 struct mlx5_cache_ent *ent;
598
599 ent = container_of(work, struct mlx5_cache_ent, dwork.work);
600 __cache_work_func(ent);
601}
602
603static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,
604 struct mlx5r_cache_rb_key key2)
605{
606 int res;
607
608 res = key1.ats - key2.ats;
609 if (res)
610 return res;
611
612 res = key1.access_mode - key2.access_mode;
613 if (res)
614 return res;
615
616 res = key1.access_flags - key2.access_flags;
617 if (res)
618 return res;
619
620 /*
621 * keep ndescs the last in the compare table since the find function
622 * searches for an exact match on all properties and only closest
623 * match in size.
624 */
625 return key1.ndescs - key2.ndescs;
626}
627
628static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache,
629 struct mlx5_cache_ent *ent)
630{
631 struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL;
632 struct mlx5_cache_ent *cur;
633 int cmp;
634
635 /* Figure out where to put new node */
636 while (*new) {
637 cur = rb_entry(*new, struct mlx5_cache_ent, node);
638 parent = *new;
639 cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key);
640 if (cmp > 0)
641 new = &((*new)->rb_left);
642 if (cmp < 0)
643 new = &((*new)->rb_right);
644 if (cmp == 0) {
645 mutex_unlock(&cache->rb_lock);
646 return -EEXIST;
647 }
648 }
649
650 /* Add new node and rebalance tree. */
651 rb_link_node(&ent->node, parent, new);
652 rb_insert_color(&ent->node, &cache->rb_root);
653
654 return 0;
655}
656
657static struct mlx5_cache_ent *
658mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev,
659 struct mlx5r_cache_rb_key rb_key)
660{
661 struct rb_node *node = dev->cache.rb_root.rb_node;
662 struct mlx5_cache_ent *cur, *smallest = NULL;
663 int cmp;
664
665 /*
666 * Find the smallest ent with order >= requested_order.
667 */
668 while (node) {
669 cur = rb_entry(node, struct mlx5_cache_ent, node);
670 cmp = cache_ent_key_cmp(cur->rb_key, rb_key);
671 if (cmp > 0) {
672 smallest = cur;
673 node = node->rb_left;
674 }
675 if (cmp < 0)
676 node = node->rb_right;
677 if (cmp == 0)
678 return cur;
679 }
680
681 return (smallest &&
682 smallest->rb_key.access_mode == rb_key.access_mode &&
683 smallest->rb_key.access_flags == rb_key.access_flags &&
684 smallest->rb_key.ats == rb_key.ats) ?
685 smallest :
686 NULL;
687}
688
689static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
690 struct mlx5_cache_ent *ent,
691 int access_flags)
692{
693 struct mlx5_ib_mr *mr;
694 int err;
695
696 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
697 if (!mr)
698 return ERR_PTR(-ENOMEM);
699
700 spin_lock_irq(&ent->mkeys_queue.lock);
701 ent->in_use++;
702
703 if (!ent->mkeys_queue.ci) {
704 queue_adjust_cache_locked(ent);
705 ent->miss++;
706 spin_unlock_irq(&ent->mkeys_queue.lock);
707 err = create_cache_mkey(ent, &mr->mmkey.key);
708 if (err) {
709 spin_lock_irq(&ent->mkeys_queue.lock);
710 ent->in_use--;
711 spin_unlock_irq(&ent->mkeys_queue.lock);
712 kfree(mr);
713 return ERR_PTR(err);
714 }
715 } else {
716 mr->mmkey.key = pop_mkey_locked(ent);
717 queue_adjust_cache_locked(ent);
718 spin_unlock_irq(&ent->mkeys_queue.lock);
719 }
720 mr->mmkey.cache_ent = ent;
721 mr->mmkey.type = MLX5_MKEY_MR;
722 init_waitqueue_head(&mr->mmkey.wait);
723 return mr;
724}
725
726static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev,
727 int access_flags)
728{
729 int ret = 0;
730
731 if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
732 MLX5_CAP_GEN(dev->mdev, atomic) &&
733 MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled))
734 ret |= IB_ACCESS_REMOTE_ATOMIC;
735
736 if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
737 MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) &&
738 !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr))
739 ret |= IB_ACCESS_RELAXED_ORDERING;
740
741 if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
742 (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
743 MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) &&
744 !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr))
745 ret |= IB_ACCESS_RELAXED_ORDERING;
746
747 return ret;
748}
749
750struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
751 int access_flags, int access_mode,
752 int ndescs)
753{
754 struct mlx5r_cache_rb_key rb_key = {
755 .ndescs = ndescs,
756 .access_mode = access_mode,
757 .access_flags = get_unchangeable_access_flags(dev, access_flags)
758 };
759 struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key);
760
761 if (!ent)
762 return ERR_PTR(-EOPNOTSUPP);
763
764 return _mlx5_mr_cache_alloc(dev, ent, access_flags);
765}
766
767static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent)
768{
769 u32 mkey;
770
771 cancel_delayed_work(&ent->dwork);
772 spin_lock_irq(&ent->mkeys_queue.lock);
773 while (ent->mkeys_queue.ci) {
774 mkey = pop_mkey_locked(ent);
775 spin_unlock_irq(&ent->mkeys_queue.lock);
776 mlx5_core_destroy_mkey(dev->mdev, mkey);
777 spin_lock_irq(&ent->mkeys_queue.lock);
778 }
779 spin_unlock_irq(&ent->mkeys_queue.lock);
780}
781
782static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
783{
784 if (!mlx5_debugfs_root || dev->is_rep)
785 return;
786
787 debugfs_remove_recursive(dev->cache.fs_root);
788 dev->cache.fs_root = NULL;
789}
790
791static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev,
792 struct mlx5_cache_ent *ent)
793{
794 int order = order_base_2(ent->rb_key.ndescs);
795 struct dentry *dir;
796
797 if (!mlx5_debugfs_root || dev->is_rep)
798 return;
799
800 if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
801 order = MLX5_IMR_KSM_CACHE_ENTRY + 2;
802
803 sprintf(ent->name, "%d", order);
804 dir = debugfs_create_dir(ent->name, dev->cache.fs_root);
805 debugfs_create_file("size", 0600, dir, ent, &size_fops);
806 debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
807 debugfs_create_ulong("cur", 0400, dir, &ent->mkeys_queue.ci);
808 debugfs_create_u32("miss", 0600, dir, &ent->miss);
809}
810
811static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
812{
813 struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev);
814 struct mlx5_mkey_cache *cache = &dev->cache;
815
816 if (!mlx5_debugfs_root || dev->is_rep)
817 return;
818
819 cache->fs_root = debugfs_create_dir("mr_cache", dbg_root);
820}
821
822static void delay_time_func(struct timer_list *t)
823{
824 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
825
826 WRITE_ONCE(dev->fill_delay, 0);
827}
828
829static int mlx5r_mkeys_init(struct mlx5_cache_ent *ent)
830{
831 struct mlx5_mkeys_page *page;
832
833 page = kzalloc(sizeof(*page), GFP_KERNEL);
834 if (!page)
835 return -ENOMEM;
836 INIT_LIST_HEAD(&ent->mkeys_queue.pages_list);
837 spin_lock_init(&ent->mkeys_queue.lock);
838 list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
839 ent->mkeys_queue.num_pages++;
840 return 0;
841}
842
843static void mlx5r_mkeys_uninit(struct mlx5_cache_ent *ent)
844{
845 struct mlx5_mkeys_page *page;
846
847 WARN_ON(ent->mkeys_queue.ci || ent->mkeys_queue.num_pages > 1);
848 page = list_last_entry(&ent->mkeys_queue.pages_list,
849 struct mlx5_mkeys_page, list);
850 list_del(&page->list);
851 kfree(page);
852}
853
854struct mlx5_cache_ent *
855mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev,
856 struct mlx5r_cache_rb_key rb_key,
857 bool persistent_entry)
858{
859 struct mlx5_cache_ent *ent;
860 int order;
861 int ret;
862
863 ent = kzalloc(sizeof(*ent), GFP_KERNEL);
864 if (!ent)
865 return ERR_PTR(-ENOMEM);
866
867 ret = mlx5r_mkeys_init(ent);
868 if (ret)
869 goto mkeys_err;
870 ent->rb_key = rb_key;
871 ent->dev = dev;
872 ent->is_tmp = !persistent_entry;
873
874 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
875
876 ret = mlx5_cache_ent_insert(&dev->cache, ent);
877 if (ret)
878 goto ent_insert_err;
879
880 if (persistent_entry) {
881 if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
882 order = MLX5_IMR_KSM_CACHE_ENTRY;
883 else
884 order = order_base_2(rb_key.ndescs) - 2;
885
886 if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
887 !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
888 mlx5r_umr_can_load_pas(dev, 0))
889 ent->limit = dev->mdev->profile.mr_cache[order].limit;
890 else
891 ent->limit = 0;
892
893 mlx5_mkey_cache_debugfs_add_ent(dev, ent);
894 } else {
895 mod_delayed_work(ent->dev->cache.wq,
896 &ent->dev->cache.remove_ent_dwork,
897 msecs_to_jiffies(30 * 1000));
898 }
899
900 return ent;
901ent_insert_err:
902 mlx5r_mkeys_uninit(ent);
903mkeys_err:
904 kfree(ent);
905 return ERR_PTR(ret);
906}
907
908static void remove_ent_work_func(struct work_struct *work)
909{
910 struct mlx5_mkey_cache *cache;
911 struct mlx5_cache_ent *ent;
912 struct rb_node *cur;
913
914 cache = container_of(work, struct mlx5_mkey_cache,
915 remove_ent_dwork.work);
916 mutex_lock(&cache->rb_lock);
917 cur = rb_last(&cache->rb_root);
918 while (cur) {
919 ent = rb_entry(cur, struct mlx5_cache_ent, node);
920 cur = rb_prev(cur);
921 mutex_unlock(&cache->rb_lock);
922
923 spin_lock_irq(&ent->mkeys_queue.lock);
924 if (!ent->is_tmp) {
925 spin_unlock_irq(&ent->mkeys_queue.lock);
926 mutex_lock(&cache->rb_lock);
927 continue;
928 }
929 spin_unlock_irq(&ent->mkeys_queue.lock);
930
931 clean_keys(ent->dev, ent);
932 mutex_lock(&cache->rb_lock);
933 }
934 mutex_unlock(&cache->rb_lock);
935}
936
937int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
938{
939 struct mlx5_mkey_cache *cache = &dev->cache;
940 struct rb_root *root = &dev->cache.rb_root;
941 struct mlx5r_cache_rb_key rb_key = {
942 .access_mode = MLX5_MKC_ACCESS_MODE_MTT,
943 };
944 struct mlx5_cache_ent *ent;
945 struct rb_node *node;
946 int ret;
947 int i;
948
949 mutex_init(&dev->slow_path_mutex);
950 mutex_init(&dev->cache.rb_lock);
951 dev->cache.rb_root = RB_ROOT;
952 INIT_DELAYED_WORK(&dev->cache.remove_ent_dwork, remove_ent_work_func);
953 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
954 if (!cache->wq) {
955 mlx5_ib_warn(dev, "failed to create work queue\n");
956 return -ENOMEM;
957 }
958
959 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
960 timer_setup(&dev->delay_timer, delay_time_func, 0);
961 mlx5_mkey_cache_debugfs_init(dev);
962 mutex_lock(&cache->rb_lock);
963 for (i = 0; i <= mkey_cache_max_order(dev); i++) {
964 rb_key.ndescs = 1 << (i + 2);
965 ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
966 if (IS_ERR(ent)) {
967 ret = PTR_ERR(ent);
968 goto err;
969 }
970 }
971
972 ret = mlx5_odp_init_mkey_cache(dev);
973 if (ret)
974 goto err;
975
976 mutex_unlock(&cache->rb_lock);
977 for (node = rb_first(root); node; node = rb_next(node)) {
978 ent = rb_entry(node, struct mlx5_cache_ent, node);
979 spin_lock_irq(&ent->mkeys_queue.lock);
980 queue_adjust_cache_locked(ent);
981 spin_unlock_irq(&ent->mkeys_queue.lock);
982 }
983
984 return 0;
985
986err:
987 mutex_unlock(&cache->rb_lock);
988 mlx5_mkey_cache_debugfs_cleanup(dev);
989 mlx5_ib_warn(dev, "failed to create mkey cache entry\n");
990 return ret;
991}
992
993void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
994{
995 struct rb_root *root = &dev->cache.rb_root;
996 struct mlx5_cache_ent *ent;
997 struct rb_node *node;
998
999 if (!dev->cache.wq)
1000 return;
1001
1002 mutex_lock(&dev->cache.rb_lock);
1003 cancel_delayed_work(&dev->cache.remove_ent_dwork);
1004 for (node = rb_first(root); node; node = rb_next(node)) {
1005 ent = rb_entry(node, struct mlx5_cache_ent, node);
1006 spin_lock_irq(&ent->mkeys_queue.lock);
1007 ent->disabled = true;
1008 spin_unlock_irq(&ent->mkeys_queue.lock);
1009 cancel_delayed_work(&ent->dwork);
1010 }
1011 mutex_unlock(&dev->cache.rb_lock);
1012
1013 /*
1014 * After all entries are disabled and will not reschedule on WQ,
1015 * flush it and all async commands.
1016 */
1017 flush_workqueue(dev->cache.wq);
1018
1019 mlx5_mkey_cache_debugfs_cleanup(dev);
1020 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
1021
1022 /* At this point all entries are disabled and have no concurrent work. */
1023 mutex_lock(&dev->cache.rb_lock);
1024 node = rb_first(root);
1025 while (node) {
1026 ent = rb_entry(node, struct mlx5_cache_ent, node);
1027 node = rb_next(node);
1028 clean_keys(dev, ent);
1029 rb_erase(&ent->node, root);
1030 mlx5r_mkeys_uninit(ent);
1031 kfree(ent);
1032 }
1033 mutex_unlock(&dev->cache.rb_lock);
1034
1035 destroy_workqueue(dev->cache.wq);
1036 del_timer_sync(&dev->delay_timer);
1037}
1038
1039struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
1040{
1041 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1042 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1043 struct mlx5_ib_mr *mr;
1044 void *mkc;
1045 u32 *in;
1046 int err;
1047
1048 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1049 if (!mr)
1050 return ERR_PTR(-ENOMEM);
1051
1052 in = kzalloc(inlen, GFP_KERNEL);
1053 if (!in) {
1054 err = -ENOMEM;
1055 goto err_free;
1056 }
1057
1058 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1059
1060 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
1061 MLX5_SET(mkc, mkc, length64, 1);
1062 set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
1063 pd);
1064
1065 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1066 if (err)
1067 goto err_in;
1068
1069 kfree(in);
1070 mr->mmkey.type = MLX5_MKEY_MR;
1071 mr->ibmr.lkey = mr->mmkey.key;
1072 mr->ibmr.rkey = mr->mmkey.key;
1073 mr->umem = NULL;
1074
1075 return &mr->ibmr;
1076
1077err_in:
1078 kfree(in);
1079
1080err_free:
1081 kfree(mr);
1082
1083 return ERR_PTR(err);
1084}
1085
1086static int get_octo_len(u64 addr, u64 len, int page_shift)
1087{
1088 u64 page_size = 1ULL << page_shift;
1089 u64 offset;
1090 int npages;
1091
1092 offset = addr & (page_size - 1);
1093 npages = ALIGN(len + offset, page_size) >> page_shift;
1094 return (npages + 1) / 2;
1095}
1096
1097static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
1098{
1099 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
1100 return MKEY_CACHE_LAST_STD_ENTRY;
1101 return MLX5_MAX_UMR_SHIFT;
1102}
1103
1104static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1105 u64 length, int access_flags, u64 iova)
1106{
1107 mr->ibmr.lkey = mr->mmkey.key;
1108 mr->ibmr.rkey = mr->mmkey.key;
1109 mr->ibmr.length = length;
1110 mr->ibmr.device = &dev->ib_dev;
1111 mr->ibmr.iova = iova;
1112 mr->access_flags = access_flags;
1113}
1114
1115static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
1116 u64 iova)
1117{
1118 /*
1119 * The alignment of iova has already been checked upon entering
1120 * UVERBS_METHOD_REG_DMABUF_MR
1121 */
1122 umem->iova = iova;
1123 return PAGE_SIZE;
1124}
1125
1126static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
1127 struct ib_umem *umem, u64 iova,
1128 int access_flags)
1129{
1130 struct mlx5r_cache_rb_key rb_key = {
1131 .access_mode = MLX5_MKC_ACCESS_MODE_MTT,
1132 };
1133 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1134 struct mlx5_cache_ent *ent;
1135 struct mlx5_ib_mr *mr;
1136 unsigned int page_size;
1137
1138 if (umem->is_dmabuf)
1139 page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
1140 else
1141 page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
1142 0, iova);
1143 if (WARN_ON(!page_size))
1144 return ERR_PTR(-EINVAL);
1145
1146 rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size);
1147 rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags);
1148 rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags);
1149 ent = mkey_cache_ent_from_rb_key(dev, rb_key);
1150 /*
1151 * If the MR can't come from the cache then synchronously create an uncached
1152 * one.
1153 */
1154 if (!ent) {
1155 mutex_lock(&dev->slow_path_mutex);
1156 mr = reg_create(pd, umem, iova, access_flags, page_size, false);
1157 mutex_unlock(&dev->slow_path_mutex);
1158 if (IS_ERR(mr))
1159 return mr;
1160 mr->mmkey.rb_key = rb_key;
1161 mr->mmkey.cacheable = true;
1162 return mr;
1163 }
1164
1165 mr = _mlx5_mr_cache_alloc(dev, ent, access_flags);
1166 if (IS_ERR(mr))
1167 return mr;
1168
1169 mr->ibmr.pd = pd;
1170 mr->umem = umem;
1171 mr->page_shift = order_base_2(page_size);
1172 mr->mmkey.cacheable = true;
1173 set_mr_fields(dev, mr, umem->length, access_flags, iova);
1174
1175 return mr;
1176}
1177
1178/*
1179 * If ibmr is NULL it will be allocated by reg_create.
1180 * Else, the given ibmr will be used.
1181 */
1182static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1183 u64 iova, int access_flags,
1184 unsigned int page_size, bool populate)
1185{
1186 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1187 struct mlx5_ib_mr *mr;
1188 __be64 *pas;
1189 void *mkc;
1190 int inlen;
1191 u32 *in;
1192 int err;
1193 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1194
1195 if (!page_size)
1196 return ERR_PTR(-EINVAL);
1197 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1198 if (!mr)
1199 return ERR_PTR(-ENOMEM);
1200
1201 mr->ibmr.pd = pd;
1202 mr->access_flags = access_flags;
1203 mr->page_shift = order_base_2(page_size);
1204
1205 inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1206 if (populate)
1207 inlen += sizeof(*pas) *
1208 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1209 in = kvzalloc(inlen, GFP_KERNEL);
1210 if (!in) {
1211 err = -ENOMEM;
1212 goto err_1;
1213 }
1214 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1215 if (populate) {
1216 if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1217 err = -EINVAL;
1218 goto err_2;
1219 }
1220 mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1221 pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1222 }
1223
1224 /* The pg_access bit allows setting the access flags
1225 * in the page list submitted with the command.
1226 */
1227 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1228
1229 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1230 set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1231 populate ? pd : dev->umrc.pd);
1232 MLX5_SET(mkc, mkc, free, !populate);
1233 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1234 MLX5_SET(mkc, mkc, umr_en, 1);
1235
1236 MLX5_SET64(mkc, mkc, len, umem->length);
1237 MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1238 MLX5_SET(mkc, mkc, translations_octword_size,
1239 get_octo_len(iova, umem->length, mr->page_shift));
1240 MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1241 if (mlx5_umem_needs_ats(dev, umem, access_flags))
1242 MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1243 if (populate) {
1244 MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1245 get_octo_len(iova, umem->length, mr->page_shift));
1246 }
1247
1248 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1249 if (err) {
1250 mlx5_ib_warn(dev, "create mkey failed\n");
1251 goto err_2;
1252 }
1253 mr->mmkey.type = MLX5_MKEY_MR;
1254 mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift);
1255 mr->umem = umem;
1256 set_mr_fields(dev, mr, umem->length, access_flags, iova);
1257 kvfree(in);
1258
1259 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1260
1261 return mr;
1262
1263err_2:
1264 kvfree(in);
1265err_1:
1266 kfree(mr);
1267 return ERR_PTR(err);
1268}
1269
1270static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1271 u64 length, int acc, int mode)
1272{
1273 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1274 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1275 struct mlx5_ib_mr *mr;
1276 void *mkc;
1277 u32 *in;
1278 int err;
1279
1280 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1281 if (!mr)
1282 return ERR_PTR(-ENOMEM);
1283
1284 in = kzalloc(inlen, GFP_KERNEL);
1285 if (!in) {
1286 err = -ENOMEM;
1287 goto err_free;
1288 }
1289
1290 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1291
1292 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1293 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1294 MLX5_SET64(mkc, mkc, len, length);
1295 set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1296
1297 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1298 if (err)
1299 goto err_in;
1300
1301 kfree(in);
1302
1303 set_mr_fields(dev, mr, length, acc, start_addr);
1304
1305 return &mr->ibmr;
1306
1307err_in:
1308 kfree(in);
1309
1310err_free:
1311 kfree(mr);
1312
1313 return ERR_PTR(err);
1314}
1315
1316int mlx5_ib_advise_mr(struct ib_pd *pd,
1317 enum ib_uverbs_advise_mr_advice advice,
1318 u32 flags,
1319 struct ib_sge *sg_list,
1320 u32 num_sge,
1321 struct uverbs_attr_bundle *attrs)
1322{
1323 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1324 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1325 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1326 return -EOPNOTSUPP;
1327
1328 return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1329 sg_list, num_sge);
1330}
1331
1332struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1333 struct ib_dm_mr_attr *attr,
1334 struct uverbs_attr_bundle *attrs)
1335{
1336 struct mlx5_ib_dm *mdm = to_mdm(dm);
1337 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1338 u64 start_addr = mdm->dev_addr + attr->offset;
1339 int mode;
1340
1341 switch (mdm->type) {
1342 case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1343 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1344 return ERR_PTR(-EINVAL);
1345
1346 mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1347 start_addr -= pci_resource_start(dev->pdev, 0);
1348 break;
1349 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1350 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1351 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1352 case MLX5_IB_UAPI_DM_TYPE_ENCAP_SW_ICM:
1353 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1354 return ERR_PTR(-EINVAL);
1355
1356 mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1357 break;
1358 default:
1359 return ERR_PTR(-EINVAL);
1360 }
1361
1362 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1363 attr->access_flags, mode);
1364}
1365
1366static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1367 u64 iova, int access_flags)
1368{
1369 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1370 struct mlx5_ib_mr *mr = NULL;
1371 bool xlt_with_umr;
1372 int err;
1373
1374 xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1375 if (xlt_with_umr) {
1376 mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1377 } else {
1378 unsigned int page_size = mlx5_umem_find_best_pgsz(
1379 umem, mkc, log_page_size, 0, iova);
1380
1381 mutex_lock(&dev->slow_path_mutex);
1382 mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1383 mutex_unlock(&dev->slow_path_mutex);
1384 }
1385 if (IS_ERR(mr)) {
1386 ib_umem_release(umem);
1387 return ERR_CAST(mr);
1388 }
1389
1390 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1391
1392 atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1393
1394 if (xlt_with_umr) {
1395 /*
1396 * If the MR was created with reg_create then it will be
1397 * configured properly but left disabled. It is safe to go ahead
1398 * and configure it again via UMR while enabling it.
1399 */
1400 err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1401 if (err) {
1402 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1403 return ERR_PTR(err);
1404 }
1405 }
1406 return &mr->ibmr;
1407}
1408
1409static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1410 u64 iova, int access_flags,
1411 struct ib_udata *udata)
1412{
1413 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1414 struct ib_umem_odp *odp;
1415 struct mlx5_ib_mr *mr;
1416 int err;
1417
1418 if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1419 return ERR_PTR(-EOPNOTSUPP);
1420
1421 err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1422 if (err)
1423 return ERR_PTR(err);
1424 if (!start && length == U64_MAX) {
1425 if (iova != 0)
1426 return ERR_PTR(-EINVAL);
1427 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1428 return ERR_PTR(-EINVAL);
1429
1430 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1431 if (IS_ERR(mr))
1432 return ERR_CAST(mr);
1433 return &mr->ibmr;
1434 }
1435
1436 /* ODP requires xlt update via umr to work. */
1437 if (!mlx5r_umr_can_load_pas(dev, length))
1438 return ERR_PTR(-EINVAL);
1439
1440 odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1441 &mlx5_mn_ops);
1442 if (IS_ERR(odp))
1443 return ERR_CAST(odp);
1444
1445 mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1446 if (IS_ERR(mr)) {
1447 ib_umem_release(&odp->umem);
1448 return ERR_CAST(mr);
1449 }
1450 xa_init(&mr->implicit_children);
1451
1452 odp->private = mr;
1453 err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1454 if (err)
1455 goto err_dereg_mr;
1456
1457 err = mlx5_ib_init_odp_mr(mr);
1458 if (err)
1459 goto err_dereg_mr;
1460 return &mr->ibmr;
1461
1462err_dereg_mr:
1463 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1464 return ERR_PTR(err);
1465}
1466
1467struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1468 u64 iova, int access_flags,
1469 struct ib_udata *udata)
1470{
1471 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1472 struct ib_umem *umem;
1473
1474 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1475 return ERR_PTR(-EOPNOTSUPP);
1476
1477 mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1478 start, iova, length, access_flags);
1479
1480 if (access_flags & IB_ACCESS_ON_DEMAND)
1481 return create_user_odp_mr(pd, start, length, iova, access_flags,
1482 udata);
1483 umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1484 if (IS_ERR(umem))
1485 return ERR_CAST(umem);
1486 return create_real_mr(pd, umem, iova, access_flags);
1487}
1488
1489static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1490{
1491 struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1492 struct mlx5_ib_mr *mr = umem_dmabuf->private;
1493
1494 dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1495
1496 if (!umem_dmabuf->sgt)
1497 return;
1498
1499 mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1500 ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1501}
1502
1503static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1504 .allow_peer2peer = 1,
1505 .move_notify = mlx5_ib_dmabuf_invalidate_cb,
1506};
1507
1508struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1509 u64 length, u64 virt_addr,
1510 int fd, int access_flags,
1511 struct ib_udata *udata)
1512{
1513 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1514 struct mlx5_ib_mr *mr = NULL;
1515 struct ib_umem_dmabuf *umem_dmabuf;
1516 int err;
1517
1518 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1519 !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1520 return ERR_PTR(-EOPNOTSUPP);
1521
1522 mlx5_ib_dbg(dev,
1523 "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1524 offset, virt_addr, length, fd, access_flags);
1525
1526 /* dmabuf requires xlt update via umr to work. */
1527 if (!mlx5r_umr_can_load_pas(dev, length))
1528 return ERR_PTR(-EINVAL);
1529
1530 umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1531 access_flags,
1532 &mlx5_ib_dmabuf_attach_ops);
1533 if (IS_ERR(umem_dmabuf)) {
1534 mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1535 PTR_ERR(umem_dmabuf));
1536 return ERR_CAST(umem_dmabuf);
1537 }
1538
1539 mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1540 access_flags);
1541 if (IS_ERR(mr)) {
1542 ib_umem_release(&umem_dmabuf->umem);
1543 return ERR_CAST(mr);
1544 }
1545
1546 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1547
1548 atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1549 umem_dmabuf->private = mr;
1550 err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1551 if (err)
1552 goto err_dereg_mr;
1553
1554 err = mlx5_ib_init_dmabuf_mr(mr);
1555 if (err)
1556 goto err_dereg_mr;
1557 return &mr->ibmr;
1558
1559err_dereg_mr:
1560 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1561 return ERR_PTR(err);
1562}
1563
1564/*
1565 * True if the change in access flags can be done via UMR, only some access
1566 * flags can be updated.
1567 */
1568static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1569 unsigned int current_access_flags,
1570 unsigned int target_access_flags)
1571{
1572 unsigned int diffs = current_access_flags ^ target_access_flags;
1573
1574 if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1575 IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING |
1576 IB_ACCESS_REMOTE_ATOMIC))
1577 return false;
1578 return mlx5r_umr_can_reconfig(dev, current_access_flags,
1579 target_access_flags);
1580}
1581
1582static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1583 struct ib_umem *new_umem,
1584 int new_access_flags, u64 iova,
1585 unsigned long *page_size)
1586{
1587 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1588
1589 /* We only track the allocated sizes of MRs from the cache */
1590 if (!mr->mmkey.cache_ent)
1591 return false;
1592 if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1593 return false;
1594
1595 *page_size =
1596 mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1597 if (WARN_ON(!*page_size))
1598 return false;
1599 return (mr->mmkey.cache_ent->rb_key.ndescs) >=
1600 ib_umem_num_dma_blocks(new_umem, *page_size);
1601}
1602
1603static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1604 int access_flags, int flags, struct ib_umem *new_umem,
1605 u64 iova, unsigned long page_size)
1606{
1607 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1608 int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1609 struct ib_umem *old_umem = mr->umem;
1610 int err;
1611
1612 /*
1613 * To keep everything simple the MR is revoked before we start to mess
1614 * with it. This ensure the change is atomic relative to any use of the
1615 * MR.
1616 */
1617 err = mlx5r_umr_revoke_mr(mr);
1618 if (err)
1619 return err;
1620
1621 if (flags & IB_MR_REREG_PD) {
1622 mr->ibmr.pd = pd;
1623 upd_flags |= MLX5_IB_UPD_XLT_PD;
1624 }
1625 if (flags & IB_MR_REREG_ACCESS) {
1626 mr->access_flags = access_flags;
1627 upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1628 }
1629
1630 mr->ibmr.iova = iova;
1631 mr->ibmr.length = new_umem->length;
1632 mr->page_shift = order_base_2(page_size);
1633 mr->umem = new_umem;
1634 err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1635 if (err) {
1636 /*
1637 * The MR is revoked at this point so there is no issue to free
1638 * new_umem.
1639 */
1640 mr->umem = old_umem;
1641 return err;
1642 }
1643
1644 atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1645 ib_umem_release(old_umem);
1646 atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1647 return 0;
1648}
1649
1650struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1651 u64 length, u64 iova, int new_access_flags,
1652 struct ib_pd *new_pd,
1653 struct ib_udata *udata)
1654{
1655 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1656 struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1657 int err;
1658
1659 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1660 return ERR_PTR(-EOPNOTSUPP);
1661
1662 mlx5_ib_dbg(
1663 dev,
1664 "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1665 start, iova, length, new_access_flags);
1666
1667 if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1668 return ERR_PTR(-EOPNOTSUPP);
1669
1670 if (!(flags & IB_MR_REREG_ACCESS))
1671 new_access_flags = mr->access_flags;
1672 if (!(flags & IB_MR_REREG_PD))
1673 new_pd = ib_mr->pd;
1674
1675 if (!(flags & IB_MR_REREG_TRANS)) {
1676 struct ib_umem *umem;
1677
1678 /* Fast path for PD/access change */
1679 if (can_use_umr_rereg_access(dev, mr->access_flags,
1680 new_access_flags)) {
1681 err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1682 new_access_flags);
1683 if (err)
1684 return ERR_PTR(err);
1685 return NULL;
1686 }
1687 /* DM or ODP MR's don't have a normal umem so we can't re-use it */
1688 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1689 goto recreate;
1690
1691 /*
1692 * Only one active MR can refer to a umem at one time, revoke
1693 * the old MR before assigning the umem to the new one.
1694 */
1695 err = mlx5r_umr_revoke_mr(mr);
1696 if (err)
1697 return ERR_PTR(err);
1698 umem = mr->umem;
1699 mr->umem = NULL;
1700 atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1701
1702 return create_real_mr(new_pd, umem, mr->ibmr.iova,
1703 new_access_flags);
1704 }
1705
1706 /*
1707 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1708 * but the logic around releasing the umem is different
1709 */
1710 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1711 goto recreate;
1712
1713 if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1714 can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1715 struct ib_umem *new_umem;
1716 unsigned long page_size;
1717
1718 new_umem = ib_umem_get(&dev->ib_dev, start, length,
1719 new_access_flags);
1720 if (IS_ERR(new_umem))
1721 return ERR_CAST(new_umem);
1722
1723 /* Fast path for PAS change */
1724 if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1725 &page_size)) {
1726 err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1727 new_umem, iova, page_size);
1728 if (err) {
1729 ib_umem_release(new_umem);
1730 return ERR_PTR(err);
1731 }
1732 return NULL;
1733 }
1734 return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1735 }
1736
1737 /*
1738 * Everything else has no state we can preserve, just create a new MR
1739 * from scratch
1740 */
1741recreate:
1742 return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1743 new_access_flags, udata);
1744}
1745
1746static int
1747mlx5_alloc_priv_descs(struct ib_device *device,
1748 struct mlx5_ib_mr *mr,
1749 int ndescs,
1750 int desc_size)
1751{
1752 struct mlx5_ib_dev *dev = to_mdev(device);
1753 struct device *ddev = &dev->mdev->pdev->dev;
1754 int size = ndescs * desc_size;
1755 int add_size;
1756 int ret;
1757
1758 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1759 if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) {
1760 int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size));
1761
1762 add_size = min_t(int, end - size, add_size);
1763 }
1764
1765 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1766 if (!mr->descs_alloc)
1767 return -ENOMEM;
1768
1769 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1770
1771 mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1772 if (dma_mapping_error(ddev, mr->desc_map)) {
1773 ret = -ENOMEM;
1774 goto err;
1775 }
1776
1777 return 0;
1778err:
1779 kfree(mr->descs_alloc);
1780
1781 return ret;
1782}
1783
1784static void
1785mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1786{
1787 if (!mr->umem && mr->descs) {
1788 struct ib_device *device = mr->ibmr.device;
1789 int size = mr->max_descs * mr->desc_size;
1790 struct mlx5_ib_dev *dev = to_mdev(device);
1791
1792 dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1793 DMA_TO_DEVICE);
1794 kfree(mr->descs_alloc);
1795 mr->descs = NULL;
1796 }
1797}
1798
1799static int cache_ent_find_and_store(struct mlx5_ib_dev *dev,
1800 struct mlx5_ib_mr *mr)
1801{
1802 struct mlx5_mkey_cache *cache = &dev->cache;
1803 struct mlx5_cache_ent *ent;
1804 int ret;
1805
1806 if (mr->mmkey.cache_ent) {
1807 spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1808 mr->mmkey.cache_ent->in_use--;
1809 goto end;
1810 }
1811
1812 mutex_lock(&cache->rb_lock);
1813 ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key);
1814 if (ent) {
1815 if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) {
1816 if (ent->disabled) {
1817 mutex_unlock(&cache->rb_lock);
1818 return -EOPNOTSUPP;
1819 }
1820 mr->mmkey.cache_ent = ent;
1821 spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1822 mutex_unlock(&cache->rb_lock);
1823 goto end;
1824 }
1825 }
1826
1827 ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false);
1828 mutex_unlock(&cache->rb_lock);
1829 if (IS_ERR(ent))
1830 return PTR_ERR(ent);
1831
1832 mr->mmkey.cache_ent = ent;
1833 spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1834
1835end:
1836 ret = push_mkey_locked(mr->mmkey.cache_ent, mr->mmkey.key);
1837 spin_unlock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1838 return ret;
1839}
1840
1841static int mlx5_revoke_mr(struct mlx5_ib_mr *mr)
1842{
1843 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1844 struct mlx5_cache_ent *ent = mr->mmkey.cache_ent;
1845
1846 if (mr->mmkey.cacheable && !mlx5r_umr_revoke_mr(mr) && !cache_ent_find_and_store(dev, mr))
1847 return 0;
1848
1849 if (ent) {
1850 spin_lock_irq(&ent->mkeys_queue.lock);
1851 ent->in_use--;
1852 mr->mmkey.cache_ent = NULL;
1853 spin_unlock_irq(&ent->mkeys_queue.lock);
1854 }
1855 return destroy_mkey(dev, mr);
1856}
1857
1858int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1859{
1860 struct mlx5_ib_mr *mr = to_mmr(ibmr);
1861 struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1862 int rc;
1863
1864 /*
1865 * Any async use of the mr must hold the refcount, once the refcount
1866 * goes to zero no other thread, such as ODP page faults, prefetch, any
1867 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1868 */
1869 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1870 refcount_read(&mr->mmkey.usecount) != 0 &&
1871 xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1872 mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1873
1874 if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1875 xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1876 mr->sig, NULL, GFP_KERNEL);
1877
1878 if (mr->mtt_mr) {
1879 rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1880 if (rc)
1881 return rc;
1882 mr->mtt_mr = NULL;
1883 }
1884 if (mr->klm_mr) {
1885 rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1886 if (rc)
1887 return rc;
1888 mr->klm_mr = NULL;
1889 }
1890
1891 if (mlx5_core_destroy_psv(dev->mdev,
1892 mr->sig->psv_memory.psv_idx))
1893 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1894 mr->sig->psv_memory.psv_idx);
1895 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1896 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1897 mr->sig->psv_wire.psv_idx);
1898 kfree(mr->sig);
1899 mr->sig = NULL;
1900 }
1901
1902 /* Stop DMA */
1903 rc = mlx5_revoke_mr(mr);
1904 if (rc)
1905 return rc;
1906
1907 if (mr->umem) {
1908 bool is_odp = is_odp_mr(mr);
1909
1910 if (!is_odp)
1911 atomic_sub(ib_umem_num_pages(mr->umem),
1912 &dev->mdev->priv.reg_pages);
1913 ib_umem_release(mr->umem);
1914 if (is_odp)
1915 mlx5_ib_free_odp_mr(mr);
1916 }
1917
1918 if (!mr->mmkey.cache_ent)
1919 mlx5_free_priv_descs(mr);
1920
1921 kfree(mr);
1922 return 0;
1923}
1924
1925static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1926 int access_mode, int page_shift)
1927{
1928 void *mkc;
1929
1930 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1931
1932 /* This is only used from the kernel, so setting the PD is OK. */
1933 set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
1934 MLX5_SET(mkc, mkc, free, 1);
1935 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1936 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1937 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1938 MLX5_SET(mkc, mkc, umr_en, 1);
1939 MLX5_SET(mkc, mkc, log_page_size, page_shift);
1940}
1941
1942static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1943 int ndescs, int desc_size, int page_shift,
1944 int access_mode, u32 *in, int inlen)
1945{
1946 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1947 int err;
1948
1949 mr->access_mode = access_mode;
1950 mr->desc_size = desc_size;
1951 mr->max_descs = ndescs;
1952
1953 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1954 if (err)
1955 return err;
1956
1957 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1958
1959 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1960 if (err)
1961 goto err_free_descs;
1962
1963 mr->mmkey.type = MLX5_MKEY_MR;
1964 mr->ibmr.lkey = mr->mmkey.key;
1965 mr->ibmr.rkey = mr->mmkey.key;
1966
1967 return 0;
1968
1969err_free_descs:
1970 mlx5_free_priv_descs(mr);
1971 return err;
1972}
1973
1974static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1975 u32 max_num_sg, u32 max_num_meta_sg,
1976 int desc_size, int access_mode)
1977{
1978 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1979 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1980 int page_shift = 0;
1981 struct mlx5_ib_mr *mr;
1982 u32 *in;
1983 int err;
1984
1985 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1986 if (!mr)
1987 return ERR_PTR(-ENOMEM);
1988
1989 mr->ibmr.pd = pd;
1990 mr->ibmr.device = pd->device;
1991
1992 in = kzalloc(inlen, GFP_KERNEL);
1993 if (!in) {
1994 err = -ENOMEM;
1995 goto err_free;
1996 }
1997
1998 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1999 page_shift = PAGE_SHIFT;
2000
2001 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
2002 access_mode, in, inlen);
2003 if (err)
2004 goto err_free_in;
2005
2006 mr->umem = NULL;
2007 kfree(in);
2008
2009 return mr;
2010
2011err_free_in:
2012 kfree(in);
2013err_free:
2014 kfree(mr);
2015 return ERR_PTR(err);
2016}
2017
2018static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2019 int ndescs, u32 *in, int inlen)
2020{
2021 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2022 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2023 inlen);
2024}
2025
2026static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2027 int ndescs, u32 *in, int inlen)
2028{
2029 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2030 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2031}
2032
2033static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2034 int max_num_sg, int max_num_meta_sg,
2035 u32 *in, int inlen)
2036{
2037 struct mlx5_ib_dev *dev = to_mdev(pd->device);
2038 u32 psv_index[2];
2039 void *mkc;
2040 int err;
2041
2042 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2043 if (!mr->sig)
2044 return -ENOMEM;
2045
2046 /* create mem & wire PSVs */
2047 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2048 if (err)
2049 goto err_free_sig;
2050
2051 mr->sig->psv_memory.psv_idx = psv_index[0];
2052 mr->sig->psv_wire.psv_idx = psv_index[1];
2053
2054 mr->sig->sig_status_checked = true;
2055 mr->sig->sig_err_exists = false;
2056 /* Next UMR, Arm SIGERR */
2057 ++mr->sig->sigerr_count;
2058 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2059 sizeof(struct mlx5_klm),
2060 MLX5_MKC_ACCESS_MODE_KLMS);
2061 if (IS_ERR(mr->klm_mr)) {
2062 err = PTR_ERR(mr->klm_mr);
2063 goto err_destroy_psv;
2064 }
2065 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2066 sizeof(struct mlx5_mtt),
2067 MLX5_MKC_ACCESS_MODE_MTT);
2068 if (IS_ERR(mr->mtt_mr)) {
2069 err = PTR_ERR(mr->mtt_mr);
2070 goto err_free_klm_mr;
2071 }
2072
2073 /* Set bsf descriptors for mkey */
2074 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2075 MLX5_SET(mkc, mkc, bsf_en, 1);
2076 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2077
2078 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2079 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2080 if (err)
2081 goto err_free_mtt_mr;
2082
2083 err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2084 mr->sig, GFP_KERNEL));
2085 if (err)
2086 goto err_free_descs;
2087 return 0;
2088
2089err_free_descs:
2090 destroy_mkey(dev, mr);
2091 mlx5_free_priv_descs(mr);
2092err_free_mtt_mr:
2093 mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2094 mr->mtt_mr = NULL;
2095err_free_klm_mr:
2096 mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2097 mr->klm_mr = NULL;
2098err_destroy_psv:
2099 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2100 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2101 mr->sig->psv_memory.psv_idx);
2102 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2103 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2104 mr->sig->psv_wire.psv_idx);
2105err_free_sig:
2106 kfree(mr->sig);
2107
2108 return err;
2109}
2110
2111static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2112 enum ib_mr_type mr_type, u32 max_num_sg,
2113 u32 max_num_meta_sg)
2114{
2115 struct mlx5_ib_dev *dev = to_mdev(pd->device);
2116 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2117 int ndescs = ALIGN(max_num_sg, 4);
2118 struct mlx5_ib_mr *mr;
2119 u32 *in;
2120 int err;
2121
2122 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2123 if (!mr)
2124 return ERR_PTR(-ENOMEM);
2125
2126 in = kzalloc(inlen, GFP_KERNEL);
2127 if (!in) {
2128 err = -ENOMEM;
2129 goto err_free;
2130 }
2131
2132 mr->ibmr.device = pd->device;
2133 mr->umem = NULL;
2134
2135 switch (mr_type) {
2136 case IB_MR_TYPE_MEM_REG:
2137 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2138 break;
2139 case IB_MR_TYPE_SG_GAPS:
2140 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2141 break;
2142 case IB_MR_TYPE_INTEGRITY:
2143 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2144 max_num_meta_sg, in, inlen);
2145 break;
2146 default:
2147 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2148 err = -EINVAL;
2149 }
2150
2151 if (err)
2152 goto err_free_in;
2153
2154 kfree(in);
2155
2156 return &mr->ibmr;
2157
2158err_free_in:
2159 kfree(in);
2160err_free:
2161 kfree(mr);
2162 return ERR_PTR(err);
2163}
2164
2165struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2166 u32 max_num_sg)
2167{
2168 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2169}
2170
2171struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2172 u32 max_num_sg, u32 max_num_meta_sg)
2173{
2174 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2175 max_num_meta_sg);
2176}
2177
2178int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2179{
2180 struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2181 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2182 struct mlx5_ib_mw *mw = to_mmw(ibmw);
2183 unsigned int ndescs;
2184 u32 *in = NULL;
2185 void *mkc;
2186 int err;
2187 struct mlx5_ib_alloc_mw req = {};
2188 struct {
2189 __u32 comp_mask;
2190 __u32 response_length;
2191 } resp = {};
2192
2193 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2194 if (err)
2195 return err;
2196
2197 if (req.comp_mask || req.reserved1 || req.reserved2)
2198 return -EOPNOTSUPP;
2199
2200 if (udata->inlen > sizeof(req) &&
2201 !ib_is_udata_cleared(udata, sizeof(req),
2202 udata->inlen - sizeof(req)))
2203 return -EOPNOTSUPP;
2204
2205 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2206
2207 in = kzalloc(inlen, GFP_KERNEL);
2208 if (!in)
2209 return -ENOMEM;
2210
2211 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2212
2213 MLX5_SET(mkc, mkc, free, 1);
2214 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2215 MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2216 MLX5_SET(mkc, mkc, umr_en, 1);
2217 MLX5_SET(mkc, mkc, lr, 1);
2218 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2219 MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2220 MLX5_SET(mkc, mkc, qpn, 0xffffff);
2221
2222 err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2223 if (err)
2224 goto free;
2225
2226 mw->mmkey.type = MLX5_MKEY_MW;
2227 ibmw->rkey = mw->mmkey.key;
2228 mw->mmkey.ndescs = ndescs;
2229
2230 resp.response_length =
2231 min(offsetofend(typeof(resp), response_length), udata->outlen);
2232 if (resp.response_length) {
2233 err = ib_copy_to_udata(udata, &resp, resp.response_length);
2234 if (err)
2235 goto free_mkey;
2236 }
2237
2238 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2239 err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2240 if (err)
2241 goto free_mkey;
2242 }
2243
2244 kfree(in);
2245 return 0;
2246
2247free_mkey:
2248 mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
2249free:
2250 kfree(in);
2251 return err;
2252}
2253
2254int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2255{
2256 struct mlx5_ib_dev *dev = to_mdev(mw->device);
2257 struct mlx5_ib_mw *mmw = to_mmw(mw);
2258
2259 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2260 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2261 /*
2262 * pagefault_single_data_segment() may be accessing mmw
2263 * if the user bound an ODP MR to this MW.
2264 */
2265 mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2266
2267 return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
2268}
2269
2270int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2271 struct ib_mr_status *mr_status)
2272{
2273 struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2274 int ret = 0;
2275
2276 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2277 pr_err("Invalid status check mask\n");
2278 ret = -EINVAL;
2279 goto done;
2280 }
2281
2282 mr_status->fail_status = 0;
2283 if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2284 if (!mmr->sig) {
2285 ret = -EINVAL;
2286 pr_err("signature status check requested on a non-signature enabled MR\n");
2287 goto done;
2288 }
2289
2290 mmr->sig->sig_status_checked = true;
2291 if (!mmr->sig->sig_err_exists)
2292 goto done;
2293
2294 if (ibmr->lkey == mmr->sig->err_item.key)
2295 memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2296 sizeof(mr_status->sig_err));
2297 else {
2298 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2299 mr_status->sig_err.sig_err_offset = 0;
2300 mr_status->sig_err.key = mmr->sig->err_item.key;
2301 }
2302
2303 mmr->sig->sig_err_exists = false;
2304 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2305 }
2306
2307done:
2308 return ret;
2309}
2310
2311static int
2312mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2313 int data_sg_nents, unsigned int *data_sg_offset,
2314 struct scatterlist *meta_sg, int meta_sg_nents,
2315 unsigned int *meta_sg_offset)
2316{
2317 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2318 unsigned int sg_offset = 0;
2319 int n = 0;
2320
2321 mr->meta_length = 0;
2322 if (data_sg_nents == 1) {
2323 n++;
2324 mr->mmkey.ndescs = 1;
2325 if (data_sg_offset)
2326 sg_offset = *data_sg_offset;
2327 mr->data_length = sg_dma_len(data_sg) - sg_offset;
2328 mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2329 if (meta_sg_nents == 1) {
2330 n++;
2331 mr->meta_ndescs = 1;
2332 if (meta_sg_offset)
2333 sg_offset = *meta_sg_offset;
2334 else
2335 sg_offset = 0;
2336 mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2337 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2338 }
2339 ibmr->length = mr->data_length + mr->meta_length;
2340 }
2341
2342 return n;
2343}
2344
2345static int
2346mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2347 struct scatterlist *sgl,
2348 unsigned short sg_nents,
2349 unsigned int *sg_offset_p,
2350 struct scatterlist *meta_sgl,
2351 unsigned short meta_sg_nents,
2352 unsigned int *meta_sg_offset_p)
2353{
2354 struct scatterlist *sg = sgl;
2355 struct mlx5_klm *klms = mr->descs;
2356 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2357 u32 lkey = mr->ibmr.pd->local_dma_lkey;
2358 int i, j = 0;
2359
2360 mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2361 mr->ibmr.length = 0;
2362
2363 for_each_sg(sgl, sg, sg_nents, i) {
2364 if (unlikely(i >= mr->max_descs))
2365 break;
2366 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2367 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2368 klms[i].key = cpu_to_be32(lkey);
2369 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2370
2371 sg_offset = 0;
2372 }
2373
2374 if (sg_offset_p)
2375 *sg_offset_p = sg_offset;
2376
2377 mr->mmkey.ndescs = i;
2378 mr->data_length = mr->ibmr.length;
2379
2380 if (meta_sg_nents) {
2381 sg = meta_sgl;
2382 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2383 for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2384 if (unlikely(i + j >= mr->max_descs))
2385 break;
2386 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2387 sg_offset);
2388 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2389 sg_offset);
2390 klms[i + j].key = cpu_to_be32(lkey);
2391 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2392
2393 sg_offset = 0;
2394 }
2395 if (meta_sg_offset_p)
2396 *meta_sg_offset_p = sg_offset;
2397
2398 mr->meta_ndescs = j;
2399 mr->meta_length = mr->ibmr.length - mr->data_length;
2400 }
2401
2402 return i + j;
2403}
2404
2405static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2406{
2407 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2408 __be64 *descs;
2409
2410 if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2411 return -ENOMEM;
2412
2413 descs = mr->descs;
2414 descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2415
2416 return 0;
2417}
2418
2419static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2420{
2421 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2422 __be64 *descs;
2423
2424 if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2425 return -ENOMEM;
2426
2427 descs = mr->descs;
2428 descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2429 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2430
2431 return 0;
2432}
2433
2434static int
2435mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2436 int data_sg_nents, unsigned int *data_sg_offset,
2437 struct scatterlist *meta_sg, int meta_sg_nents,
2438 unsigned int *meta_sg_offset)
2439{
2440 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2441 struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2442 int n;
2443
2444 pi_mr->mmkey.ndescs = 0;
2445 pi_mr->meta_ndescs = 0;
2446 pi_mr->meta_length = 0;
2447
2448 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2449 pi_mr->desc_size * pi_mr->max_descs,
2450 DMA_TO_DEVICE);
2451
2452 pi_mr->ibmr.page_size = ibmr->page_size;
2453 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2454 mlx5_set_page);
2455 if (n != data_sg_nents)
2456 return n;
2457
2458 pi_mr->data_iova = pi_mr->ibmr.iova;
2459 pi_mr->data_length = pi_mr->ibmr.length;
2460 pi_mr->ibmr.length = pi_mr->data_length;
2461 ibmr->length = pi_mr->data_length;
2462
2463 if (meta_sg_nents) {
2464 u64 page_mask = ~((u64)ibmr->page_size - 1);
2465 u64 iova = pi_mr->data_iova;
2466
2467 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2468 meta_sg_offset, mlx5_set_page_pi);
2469
2470 pi_mr->meta_length = pi_mr->ibmr.length;
2471 /*
2472 * PI address for the HW is the offset of the metadata address
2473 * relative to the first data page address.
2474 * It equals to first data page address + size of data pages +
2475 * metadata offset at the first metadata page
2476 */
2477 pi_mr->pi_iova = (iova & page_mask) +
2478 pi_mr->mmkey.ndescs * ibmr->page_size +
2479 (pi_mr->ibmr.iova & ~page_mask);
2480 /*
2481 * In order to use one MTT MR for data and metadata, we register
2482 * also the gaps between the end of the data and the start of
2483 * the metadata (the sig MR will verify that the HW will access
2484 * to right addresses). This mapping is safe because we use
2485 * internal mkey for the registration.
2486 */
2487 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2488 pi_mr->ibmr.iova = iova;
2489 ibmr->length += pi_mr->meta_length;
2490 }
2491
2492 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2493 pi_mr->desc_size * pi_mr->max_descs,
2494 DMA_TO_DEVICE);
2495
2496 return n;
2497}
2498
2499static int
2500mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2501 int data_sg_nents, unsigned int *data_sg_offset,
2502 struct scatterlist *meta_sg, int meta_sg_nents,
2503 unsigned int *meta_sg_offset)
2504{
2505 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2506 struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2507 int n;
2508
2509 pi_mr->mmkey.ndescs = 0;
2510 pi_mr->meta_ndescs = 0;
2511 pi_mr->meta_length = 0;
2512
2513 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2514 pi_mr->desc_size * pi_mr->max_descs,
2515 DMA_TO_DEVICE);
2516
2517 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2518 meta_sg, meta_sg_nents, meta_sg_offset);
2519
2520 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2521 pi_mr->desc_size * pi_mr->max_descs,
2522 DMA_TO_DEVICE);
2523
2524 /* This is zero-based memory region */
2525 pi_mr->data_iova = 0;
2526 pi_mr->ibmr.iova = 0;
2527 pi_mr->pi_iova = pi_mr->data_length;
2528 ibmr->length = pi_mr->ibmr.length;
2529
2530 return n;
2531}
2532
2533int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2534 int data_sg_nents, unsigned int *data_sg_offset,
2535 struct scatterlist *meta_sg, int meta_sg_nents,
2536 unsigned int *meta_sg_offset)
2537{
2538 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2539 struct mlx5_ib_mr *pi_mr = NULL;
2540 int n;
2541
2542 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2543
2544 mr->mmkey.ndescs = 0;
2545 mr->data_length = 0;
2546 mr->data_iova = 0;
2547 mr->meta_ndescs = 0;
2548 mr->pi_iova = 0;
2549 /*
2550 * As a performance optimization, if possible, there is no need to
2551 * perform UMR operation to register the data/metadata buffers.
2552 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2553 * Fallback to UMR only in case of a failure.
2554 */
2555 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2556 data_sg_offset, meta_sg, meta_sg_nents,
2557 meta_sg_offset);
2558 if (n == data_sg_nents + meta_sg_nents)
2559 goto out;
2560 /*
2561 * As a performance optimization, if possible, there is no need to map
2562 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2563 * descriptors and fallback to KLM only in case of a failure.
2564 * It's more efficient for the HW to work with MTT descriptors
2565 * (especially in high load).
2566 * Use KLM (indirect access) only if it's mandatory.
2567 */
2568 pi_mr = mr->mtt_mr;
2569 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2570 data_sg_offset, meta_sg, meta_sg_nents,
2571 meta_sg_offset);
2572 if (n == data_sg_nents + meta_sg_nents)
2573 goto out;
2574
2575 pi_mr = mr->klm_mr;
2576 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2577 data_sg_offset, meta_sg, meta_sg_nents,
2578 meta_sg_offset);
2579 if (unlikely(n != data_sg_nents + meta_sg_nents))
2580 return -ENOMEM;
2581
2582out:
2583 /* This is zero-based memory region */
2584 ibmr->iova = 0;
2585 mr->pi_mr = pi_mr;
2586 if (pi_mr)
2587 ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2588 else
2589 ibmr->sig_attrs->meta_length = mr->meta_length;
2590
2591 return 0;
2592}
2593
2594int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2595 unsigned int *sg_offset)
2596{
2597 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2598 int n;
2599
2600 mr->mmkey.ndescs = 0;
2601
2602 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2603 mr->desc_size * mr->max_descs,
2604 DMA_TO_DEVICE);
2605
2606 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2607 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2608 NULL);
2609 else
2610 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2611 mlx5_set_page);
2612
2613 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2614 mr->desc_size * mr->max_descs,
2615 DMA_TO_DEVICE);
2616
2617 return n;
2618}