Loading...
1/*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2020, Intel Corporation. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34
35#include <linux/kref.h>
36#include <linux/random.h>
37#include <linux/debugfs.h>
38#include <linux/export.h>
39#include <linux/delay.h>
40#include <linux/dma-buf.h>
41#include <linux/dma-resv.h>
42#include <rdma/ib_umem_odp.h>
43#include "dm.h"
44#include "mlx5_ib.h"
45#include "umr.h"
46
47enum {
48 MAX_PENDING_REG_MR = 8,
49};
50
51#define MLX5_UMR_ALIGN 2048
52
53static void
54create_mkey_callback(int status, struct mlx5_async_work *context);
55static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
56 u64 iova, int access_flags,
57 unsigned int page_size, bool populate);
58
59static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
60 struct ib_pd *pd)
61{
62 struct mlx5_ib_dev *dev = to_mdev(pd->device);
63
64 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
65 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
66 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
67 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
68 MLX5_SET(mkc, mkc, lr, 1);
69
70 if (acc & IB_ACCESS_RELAXED_ORDERING) {
71 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
72 MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
73
74 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
75 (MLX5_CAP_GEN(dev->mdev,
76 relaxed_ordering_read_pci_enabled) &&
77 pcie_relaxed_ordering_enabled(dev->mdev->pdev)))
78 MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
79 }
80
81 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
82 MLX5_SET(mkc, mkc, qpn, 0xffffff);
83 MLX5_SET64(mkc, mkc, start_addr, start_addr);
84}
85
86static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
87{
88 u8 key = atomic_inc_return(&dev->mkey_var);
89 void *mkc;
90
91 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
92 MLX5_SET(mkc, mkc, mkey_7_0, key);
93 *mkey = key;
94}
95
96static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
97 struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
98{
99 int ret;
100
101 assign_mkey_variant(dev, &mkey->key, in);
102 ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
103 if (!ret)
104 init_waitqueue_head(&mkey->wait);
105
106 return ret;
107}
108
109static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
110{
111 struct mlx5_ib_dev *dev = async_create->ent->dev;
112 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
113 size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
114
115 MLX5_SET(create_mkey_in, async_create->in, opcode,
116 MLX5_CMD_OP_CREATE_MKEY);
117 assign_mkey_variant(dev, &async_create->mkey, async_create->in);
118 return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
119 async_create->out, outlen, create_mkey_callback,
120 &async_create->cb_work);
121}
122
123static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
124static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
125
126static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
127{
128 WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
129
130 return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
131}
132
133static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
134{
135 if (status == -ENXIO) /* core driver is not available */
136 return;
137
138 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
139 if (status != -EREMOTEIO) /* driver specific failure */
140 return;
141
142 /* Failed in FW, print cmd out failure details */
143 mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
144}
145
146static int push_mkey_locked(struct mlx5_cache_ent *ent, u32 mkey)
147{
148 unsigned long tmp = ent->mkeys_queue.ci % NUM_MKEYS_PER_PAGE;
149 struct mlx5_mkeys_page *page;
150
151 lockdep_assert_held(&ent->mkeys_queue.lock);
152 if (ent->mkeys_queue.ci >=
153 ent->mkeys_queue.num_pages * NUM_MKEYS_PER_PAGE) {
154 page = kzalloc(sizeof(*page), GFP_ATOMIC);
155 if (!page)
156 return -ENOMEM;
157 ent->mkeys_queue.num_pages++;
158 list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
159 } else {
160 page = list_last_entry(&ent->mkeys_queue.pages_list,
161 struct mlx5_mkeys_page, list);
162 }
163
164 page->mkeys[tmp] = mkey;
165 ent->mkeys_queue.ci++;
166 return 0;
167}
168
169static int pop_mkey_locked(struct mlx5_cache_ent *ent)
170{
171 unsigned long tmp = (ent->mkeys_queue.ci - 1) % NUM_MKEYS_PER_PAGE;
172 struct mlx5_mkeys_page *last_page;
173 u32 mkey;
174
175 lockdep_assert_held(&ent->mkeys_queue.lock);
176 last_page = list_last_entry(&ent->mkeys_queue.pages_list,
177 struct mlx5_mkeys_page, list);
178 mkey = last_page->mkeys[tmp];
179 last_page->mkeys[tmp] = 0;
180 ent->mkeys_queue.ci--;
181 if (ent->mkeys_queue.num_pages > 1 && !tmp) {
182 list_del(&last_page->list);
183 ent->mkeys_queue.num_pages--;
184 kfree(last_page);
185 }
186 return mkey;
187}
188
189static void create_mkey_callback(int status, struct mlx5_async_work *context)
190{
191 struct mlx5r_async_create_mkey *mkey_out =
192 container_of(context, struct mlx5r_async_create_mkey, cb_work);
193 struct mlx5_cache_ent *ent = mkey_out->ent;
194 struct mlx5_ib_dev *dev = ent->dev;
195 unsigned long flags;
196
197 if (status) {
198 create_mkey_warn(dev, status, mkey_out->out);
199 kfree(mkey_out);
200 spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
201 ent->pending--;
202 WRITE_ONCE(dev->fill_delay, 1);
203 spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
204 mod_timer(&dev->delay_timer, jiffies + HZ);
205 return;
206 }
207
208 mkey_out->mkey |= mlx5_idx_to_mkey(
209 MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
210 WRITE_ONCE(dev->cache.last_add, jiffies);
211
212 spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
213 push_mkey_locked(ent, mkey_out->mkey);
214 /* If we are doing fill_to_high_water then keep going. */
215 queue_adjust_cache_locked(ent);
216 ent->pending--;
217 spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
218 kfree(mkey_out);
219}
220
221static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
222{
223 int ret = 0;
224
225 switch (access_mode) {
226 case MLX5_MKC_ACCESS_MODE_MTT:
227 ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
228 sizeof(struct mlx5_mtt));
229 break;
230 case MLX5_MKC_ACCESS_MODE_KSM:
231 ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
232 sizeof(struct mlx5_klm));
233 break;
234 default:
235 WARN_ON(1);
236 }
237 return ret;
238}
239
240static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
241{
242 set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0,
243 ent->dev->umrc.pd);
244 MLX5_SET(mkc, mkc, free, 1);
245 MLX5_SET(mkc, mkc, umr_en, 1);
246 MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3);
247 MLX5_SET(mkc, mkc, access_mode_4_2,
248 (ent->rb_key.access_mode >> 2) & 0x7);
249
250 MLX5_SET(mkc, mkc, translations_octword_size,
251 get_mkc_octo_size(ent->rb_key.access_mode,
252 ent->rb_key.ndescs));
253 MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
254}
255
256/* Asynchronously schedule new MRs to be populated in the cache. */
257static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
258{
259 struct mlx5r_async_create_mkey *async_create;
260 void *mkc;
261 int err = 0;
262 int i;
263
264 for (i = 0; i < num; i++) {
265 async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
266 GFP_KERNEL);
267 if (!async_create)
268 return -ENOMEM;
269 mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
270 memory_key_mkey_entry);
271 set_cache_mkc(ent, mkc);
272 async_create->ent = ent;
273
274 spin_lock_irq(&ent->mkeys_queue.lock);
275 if (ent->pending >= MAX_PENDING_REG_MR) {
276 err = -EAGAIN;
277 goto free_async_create;
278 }
279 ent->pending++;
280 spin_unlock_irq(&ent->mkeys_queue.lock);
281
282 err = mlx5_ib_create_mkey_cb(async_create);
283 if (err) {
284 mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
285 goto err_create_mkey;
286 }
287 }
288
289 return 0;
290
291err_create_mkey:
292 spin_lock_irq(&ent->mkeys_queue.lock);
293 ent->pending--;
294free_async_create:
295 spin_unlock_irq(&ent->mkeys_queue.lock);
296 kfree(async_create);
297 return err;
298}
299
300/* Synchronously create a MR in the cache */
301static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
302{
303 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
304 void *mkc;
305 u32 *in;
306 int err;
307
308 in = kzalloc(inlen, GFP_KERNEL);
309 if (!in)
310 return -ENOMEM;
311 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
312 set_cache_mkc(ent, mkc);
313
314 err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
315 if (err)
316 goto free_in;
317
318 WRITE_ONCE(ent->dev->cache.last_add, jiffies);
319free_in:
320 kfree(in);
321 return err;
322}
323
324static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
325{
326 u32 mkey;
327
328 lockdep_assert_held(&ent->mkeys_queue.lock);
329 if (!ent->mkeys_queue.ci)
330 return;
331 mkey = pop_mkey_locked(ent);
332 spin_unlock_irq(&ent->mkeys_queue.lock);
333 mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
334 spin_lock_irq(&ent->mkeys_queue.lock);
335}
336
337static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
338 bool limit_fill)
339 __acquires(&ent->mkeys_queue.lock) __releases(&ent->mkeys_queue.lock)
340{
341 int err;
342
343 lockdep_assert_held(&ent->mkeys_queue.lock);
344
345 while (true) {
346 if (limit_fill)
347 target = ent->limit * 2;
348 if (target == ent->pending + ent->mkeys_queue.ci)
349 return 0;
350 if (target > ent->pending + ent->mkeys_queue.ci) {
351 u32 todo = target - (ent->pending + ent->mkeys_queue.ci);
352
353 spin_unlock_irq(&ent->mkeys_queue.lock);
354 err = add_keys(ent, todo);
355 if (err == -EAGAIN)
356 usleep_range(3000, 5000);
357 spin_lock_irq(&ent->mkeys_queue.lock);
358 if (err) {
359 if (err != -EAGAIN)
360 return err;
361 } else
362 return 0;
363 } else {
364 remove_cache_mr_locked(ent);
365 }
366 }
367}
368
369static ssize_t size_write(struct file *filp, const char __user *buf,
370 size_t count, loff_t *pos)
371{
372 struct mlx5_cache_ent *ent = filp->private_data;
373 u32 target;
374 int err;
375
376 err = kstrtou32_from_user(buf, count, 0, &target);
377 if (err)
378 return err;
379
380 /*
381 * Target is the new value of total_mrs the user requests, however we
382 * cannot free MRs that are in use. Compute the target value for stored
383 * mkeys.
384 */
385 spin_lock_irq(&ent->mkeys_queue.lock);
386 if (target < ent->in_use) {
387 err = -EINVAL;
388 goto err_unlock;
389 }
390 target = target - ent->in_use;
391 if (target < ent->limit || target > ent->limit*2) {
392 err = -EINVAL;
393 goto err_unlock;
394 }
395 err = resize_available_mrs(ent, target, false);
396 if (err)
397 goto err_unlock;
398 spin_unlock_irq(&ent->mkeys_queue.lock);
399
400 return count;
401
402err_unlock:
403 spin_unlock_irq(&ent->mkeys_queue.lock);
404 return err;
405}
406
407static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
408 loff_t *pos)
409{
410 struct mlx5_cache_ent *ent = filp->private_data;
411 char lbuf[20];
412 int err;
413
414 err = snprintf(lbuf, sizeof(lbuf), "%ld\n",
415 ent->mkeys_queue.ci + ent->in_use);
416 if (err < 0)
417 return err;
418
419 return simple_read_from_buffer(buf, count, pos, lbuf, err);
420}
421
422static const struct file_operations size_fops = {
423 .owner = THIS_MODULE,
424 .open = simple_open,
425 .write = size_write,
426 .read = size_read,
427};
428
429static ssize_t limit_write(struct file *filp, const char __user *buf,
430 size_t count, loff_t *pos)
431{
432 struct mlx5_cache_ent *ent = filp->private_data;
433 u32 var;
434 int err;
435
436 err = kstrtou32_from_user(buf, count, 0, &var);
437 if (err)
438 return err;
439
440 /*
441 * Upon set we immediately fill the cache to high water mark implied by
442 * the limit.
443 */
444 spin_lock_irq(&ent->mkeys_queue.lock);
445 ent->limit = var;
446 err = resize_available_mrs(ent, 0, true);
447 spin_unlock_irq(&ent->mkeys_queue.lock);
448 if (err)
449 return err;
450 return count;
451}
452
453static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
454 loff_t *pos)
455{
456 struct mlx5_cache_ent *ent = filp->private_data;
457 char lbuf[20];
458 int err;
459
460 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
461 if (err < 0)
462 return err;
463
464 return simple_read_from_buffer(buf, count, pos, lbuf, err);
465}
466
467static const struct file_operations limit_fops = {
468 .owner = THIS_MODULE,
469 .open = simple_open,
470 .write = limit_write,
471 .read = limit_read,
472};
473
474static bool someone_adding(struct mlx5_mkey_cache *cache)
475{
476 struct mlx5_cache_ent *ent;
477 struct rb_node *node;
478 bool ret;
479
480 mutex_lock(&cache->rb_lock);
481 for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) {
482 ent = rb_entry(node, struct mlx5_cache_ent, node);
483 spin_lock_irq(&ent->mkeys_queue.lock);
484 ret = ent->mkeys_queue.ci < ent->limit;
485 spin_unlock_irq(&ent->mkeys_queue.lock);
486 if (ret) {
487 mutex_unlock(&cache->rb_lock);
488 return true;
489 }
490 }
491 mutex_unlock(&cache->rb_lock);
492 return false;
493}
494
495/*
496 * Check if the bucket is outside the high/low water mark and schedule an async
497 * update. The cache refill has hysteresis, once the low water mark is hit it is
498 * refilled up to the high mark.
499 */
500static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
501{
502 lockdep_assert_held(&ent->mkeys_queue.lock);
503
504 if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp)
505 return;
506 if (ent->mkeys_queue.ci < ent->limit) {
507 ent->fill_to_high_water = true;
508 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
509 } else if (ent->fill_to_high_water &&
510 ent->mkeys_queue.ci + ent->pending < 2 * ent->limit) {
511 /*
512 * Once we start populating due to hitting a low water mark
513 * continue until we pass the high water mark.
514 */
515 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
516 } else if (ent->mkeys_queue.ci == 2 * ent->limit) {
517 ent->fill_to_high_water = false;
518 } else if (ent->mkeys_queue.ci > 2 * ent->limit) {
519 /* Queue deletion of excess entries */
520 ent->fill_to_high_water = false;
521 if (ent->pending)
522 queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
523 msecs_to_jiffies(1000));
524 else
525 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
526 }
527}
528
529static void __cache_work_func(struct mlx5_cache_ent *ent)
530{
531 struct mlx5_ib_dev *dev = ent->dev;
532 struct mlx5_mkey_cache *cache = &dev->cache;
533 int err;
534
535 spin_lock_irq(&ent->mkeys_queue.lock);
536 if (ent->disabled)
537 goto out;
538
539 if (ent->fill_to_high_water &&
540 ent->mkeys_queue.ci + ent->pending < 2 * ent->limit &&
541 !READ_ONCE(dev->fill_delay)) {
542 spin_unlock_irq(&ent->mkeys_queue.lock);
543 err = add_keys(ent, 1);
544 spin_lock_irq(&ent->mkeys_queue.lock);
545 if (ent->disabled)
546 goto out;
547 if (err) {
548 /*
549 * EAGAIN only happens if there are pending MRs, so we
550 * will be rescheduled when storing them. The only
551 * failure path here is ENOMEM.
552 */
553 if (err != -EAGAIN) {
554 mlx5_ib_warn(
555 dev,
556 "add keys command failed, err %d\n",
557 err);
558 queue_delayed_work(cache->wq, &ent->dwork,
559 msecs_to_jiffies(1000));
560 }
561 }
562 } else if (ent->mkeys_queue.ci > 2 * ent->limit) {
563 bool need_delay;
564
565 /*
566 * The remove_cache_mr() logic is performed as garbage
567 * collection task. Such task is intended to be run when no
568 * other active processes are running.
569 *
570 * The need_resched() will return TRUE if there are user tasks
571 * to be activated in near future.
572 *
573 * In such case, we don't execute remove_cache_mr() and postpone
574 * the garbage collection work to try to run in next cycle, in
575 * order to free CPU resources to other tasks.
576 */
577 spin_unlock_irq(&ent->mkeys_queue.lock);
578 need_delay = need_resched() || someone_adding(cache) ||
579 !time_after(jiffies,
580 READ_ONCE(cache->last_add) + 300 * HZ);
581 spin_lock_irq(&ent->mkeys_queue.lock);
582 if (ent->disabled)
583 goto out;
584 if (need_delay) {
585 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
586 goto out;
587 }
588 remove_cache_mr_locked(ent);
589 queue_adjust_cache_locked(ent);
590 }
591out:
592 spin_unlock_irq(&ent->mkeys_queue.lock);
593}
594
595static void delayed_cache_work_func(struct work_struct *work)
596{
597 struct mlx5_cache_ent *ent;
598
599 ent = container_of(work, struct mlx5_cache_ent, dwork.work);
600 __cache_work_func(ent);
601}
602
603static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,
604 struct mlx5r_cache_rb_key key2)
605{
606 int res;
607
608 res = key1.ats - key2.ats;
609 if (res)
610 return res;
611
612 res = key1.access_mode - key2.access_mode;
613 if (res)
614 return res;
615
616 res = key1.access_flags - key2.access_flags;
617 if (res)
618 return res;
619
620 /*
621 * keep ndescs the last in the compare table since the find function
622 * searches for an exact match on all properties and only closest
623 * match in size.
624 */
625 return key1.ndescs - key2.ndescs;
626}
627
628static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache,
629 struct mlx5_cache_ent *ent)
630{
631 struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL;
632 struct mlx5_cache_ent *cur;
633 int cmp;
634
635 /* Figure out where to put new node */
636 while (*new) {
637 cur = rb_entry(*new, struct mlx5_cache_ent, node);
638 parent = *new;
639 cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key);
640 if (cmp > 0)
641 new = &((*new)->rb_left);
642 if (cmp < 0)
643 new = &((*new)->rb_right);
644 if (cmp == 0) {
645 mutex_unlock(&cache->rb_lock);
646 return -EEXIST;
647 }
648 }
649
650 /* Add new node and rebalance tree. */
651 rb_link_node(&ent->node, parent, new);
652 rb_insert_color(&ent->node, &cache->rb_root);
653
654 return 0;
655}
656
657static struct mlx5_cache_ent *
658mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev,
659 struct mlx5r_cache_rb_key rb_key)
660{
661 struct rb_node *node = dev->cache.rb_root.rb_node;
662 struct mlx5_cache_ent *cur, *smallest = NULL;
663 int cmp;
664
665 /*
666 * Find the smallest ent with order >= requested_order.
667 */
668 while (node) {
669 cur = rb_entry(node, struct mlx5_cache_ent, node);
670 cmp = cache_ent_key_cmp(cur->rb_key, rb_key);
671 if (cmp > 0) {
672 smallest = cur;
673 node = node->rb_left;
674 }
675 if (cmp < 0)
676 node = node->rb_right;
677 if (cmp == 0)
678 return cur;
679 }
680
681 return (smallest &&
682 smallest->rb_key.access_mode == rb_key.access_mode &&
683 smallest->rb_key.access_flags == rb_key.access_flags &&
684 smallest->rb_key.ats == rb_key.ats) ?
685 smallest :
686 NULL;
687}
688
689static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
690 struct mlx5_cache_ent *ent,
691 int access_flags)
692{
693 struct mlx5_ib_mr *mr;
694 int err;
695
696 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
697 if (!mr)
698 return ERR_PTR(-ENOMEM);
699
700 spin_lock_irq(&ent->mkeys_queue.lock);
701 ent->in_use++;
702
703 if (!ent->mkeys_queue.ci) {
704 queue_adjust_cache_locked(ent);
705 ent->miss++;
706 spin_unlock_irq(&ent->mkeys_queue.lock);
707 err = create_cache_mkey(ent, &mr->mmkey.key);
708 if (err) {
709 spin_lock_irq(&ent->mkeys_queue.lock);
710 ent->in_use--;
711 spin_unlock_irq(&ent->mkeys_queue.lock);
712 kfree(mr);
713 return ERR_PTR(err);
714 }
715 } else {
716 mr->mmkey.key = pop_mkey_locked(ent);
717 queue_adjust_cache_locked(ent);
718 spin_unlock_irq(&ent->mkeys_queue.lock);
719 }
720 mr->mmkey.cache_ent = ent;
721 mr->mmkey.type = MLX5_MKEY_MR;
722 init_waitqueue_head(&mr->mmkey.wait);
723 return mr;
724}
725
726static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev,
727 int access_flags)
728{
729 int ret = 0;
730
731 if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
732 MLX5_CAP_GEN(dev->mdev, atomic) &&
733 MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled))
734 ret |= IB_ACCESS_REMOTE_ATOMIC;
735
736 if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
737 MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) &&
738 !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr))
739 ret |= IB_ACCESS_RELAXED_ORDERING;
740
741 if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
742 (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
743 MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) &&
744 !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr))
745 ret |= IB_ACCESS_RELAXED_ORDERING;
746
747 return ret;
748}
749
750struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
751 int access_flags, int access_mode,
752 int ndescs)
753{
754 struct mlx5r_cache_rb_key rb_key = {
755 .ndescs = ndescs,
756 .access_mode = access_mode,
757 .access_flags = get_unchangeable_access_flags(dev, access_flags)
758 };
759 struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key);
760
761 if (!ent)
762 return ERR_PTR(-EOPNOTSUPP);
763
764 return _mlx5_mr_cache_alloc(dev, ent, access_flags);
765}
766
767static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent)
768{
769 u32 mkey;
770
771 cancel_delayed_work(&ent->dwork);
772 spin_lock_irq(&ent->mkeys_queue.lock);
773 while (ent->mkeys_queue.ci) {
774 mkey = pop_mkey_locked(ent);
775 spin_unlock_irq(&ent->mkeys_queue.lock);
776 mlx5_core_destroy_mkey(dev->mdev, mkey);
777 spin_lock_irq(&ent->mkeys_queue.lock);
778 }
779 spin_unlock_irq(&ent->mkeys_queue.lock);
780}
781
782static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
783{
784 if (!mlx5_debugfs_root || dev->is_rep)
785 return;
786
787 debugfs_remove_recursive(dev->cache.fs_root);
788 dev->cache.fs_root = NULL;
789}
790
791static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev,
792 struct mlx5_cache_ent *ent)
793{
794 int order = order_base_2(ent->rb_key.ndescs);
795 struct dentry *dir;
796
797 if (!mlx5_debugfs_root || dev->is_rep)
798 return;
799
800 if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
801 order = MLX5_IMR_KSM_CACHE_ENTRY + 2;
802
803 sprintf(ent->name, "%d", order);
804 dir = debugfs_create_dir(ent->name, dev->cache.fs_root);
805 debugfs_create_file("size", 0600, dir, ent, &size_fops);
806 debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
807 debugfs_create_ulong("cur", 0400, dir, &ent->mkeys_queue.ci);
808 debugfs_create_u32("miss", 0600, dir, &ent->miss);
809}
810
811static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
812{
813 struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev);
814 struct mlx5_mkey_cache *cache = &dev->cache;
815
816 if (!mlx5_debugfs_root || dev->is_rep)
817 return;
818
819 cache->fs_root = debugfs_create_dir("mr_cache", dbg_root);
820}
821
822static void delay_time_func(struct timer_list *t)
823{
824 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
825
826 WRITE_ONCE(dev->fill_delay, 0);
827}
828
829static int mlx5r_mkeys_init(struct mlx5_cache_ent *ent)
830{
831 struct mlx5_mkeys_page *page;
832
833 page = kzalloc(sizeof(*page), GFP_KERNEL);
834 if (!page)
835 return -ENOMEM;
836 INIT_LIST_HEAD(&ent->mkeys_queue.pages_list);
837 spin_lock_init(&ent->mkeys_queue.lock);
838 list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
839 ent->mkeys_queue.num_pages++;
840 return 0;
841}
842
843static void mlx5r_mkeys_uninit(struct mlx5_cache_ent *ent)
844{
845 struct mlx5_mkeys_page *page;
846
847 WARN_ON(ent->mkeys_queue.ci || ent->mkeys_queue.num_pages > 1);
848 page = list_last_entry(&ent->mkeys_queue.pages_list,
849 struct mlx5_mkeys_page, list);
850 list_del(&page->list);
851 kfree(page);
852}
853
854struct mlx5_cache_ent *
855mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev,
856 struct mlx5r_cache_rb_key rb_key,
857 bool persistent_entry)
858{
859 struct mlx5_cache_ent *ent;
860 int order;
861 int ret;
862
863 ent = kzalloc(sizeof(*ent), GFP_KERNEL);
864 if (!ent)
865 return ERR_PTR(-ENOMEM);
866
867 ret = mlx5r_mkeys_init(ent);
868 if (ret)
869 goto mkeys_err;
870 ent->rb_key = rb_key;
871 ent->dev = dev;
872 ent->is_tmp = !persistent_entry;
873
874 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
875
876 ret = mlx5_cache_ent_insert(&dev->cache, ent);
877 if (ret)
878 goto ent_insert_err;
879
880 if (persistent_entry) {
881 if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
882 order = MLX5_IMR_KSM_CACHE_ENTRY;
883 else
884 order = order_base_2(rb_key.ndescs) - 2;
885
886 if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
887 !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
888 mlx5r_umr_can_load_pas(dev, 0))
889 ent->limit = dev->mdev->profile.mr_cache[order].limit;
890 else
891 ent->limit = 0;
892
893 mlx5_mkey_cache_debugfs_add_ent(dev, ent);
894 } else {
895 mod_delayed_work(ent->dev->cache.wq,
896 &ent->dev->cache.remove_ent_dwork,
897 msecs_to_jiffies(30 * 1000));
898 }
899
900 return ent;
901ent_insert_err:
902 mlx5r_mkeys_uninit(ent);
903mkeys_err:
904 kfree(ent);
905 return ERR_PTR(ret);
906}
907
908static void remove_ent_work_func(struct work_struct *work)
909{
910 struct mlx5_mkey_cache *cache;
911 struct mlx5_cache_ent *ent;
912 struct rb_node *cur;
913
914 cache = container_of(work, struct mlx5_mkey_cache,
915 remove_ent_dwork.work);
916 mutex_lock(&cache->rb_lock);
917 cur = rb_last(&cache->rb_root);
918 while (cur) {
919 ent = rb_entry(cur, struct mlx5_cache_ent, node);
920 cur = rb_prev(cur);
921 mutex_unlock(&cache->rb_lock);
922
923 spin_lock_irq(&ent->mkeys_queue.lock);
924 if (!ent->is_tmp) {
925 spin_unlock_irq(&ent->mkeys_queue.lock);
926 mutex_lock(&cache->rb_lock);
927 continue;
928 }
929 spin_unlock_irq(&ent->mkeys_queue.lock);
930
931 clean_keys(ent->dev, ent);
932 mutex_lock(&cache->rb_lock);
933 }
934 mutex_unlock(&cache->rb_lock);
935}
936
937int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
938{
939 struct mlx5_mkey_cache *cache = &dev->cache;
940 struct rb_root *root = &dev->cache.rb_root;
941 struct mlx5r_cache_rb_key rb_key = {
942 .access_mode = MLX5_MKC_ACCESS_MODE_MTT,
943 };
944 struct mlx5_cache_ent *ent;
945 struct rb_node *node;
946 int ret;
947 int i;
948
949 mutex_init(&dev->slow_path_mutex);
950 mutex_init(&dev->cache.rb_lock);
951 dev->cache.rb_root = RB_ROOT;
952 INIT_DELAYED_WORK(&dev->cache.remove_ent_dwork, remove_ent_work_func);
953 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
954 if (!cache->wq) {
955 mlx5_ib_warn(dev, "failed to create work queue\n");
956 return -ENOMEM;
957 }
958
959 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
960 timer_setup(&dev->delay_timer, delay_time_func, 0);
961 mlx5_mkey_cache_debugfs_init(dev);
962 mutex_lock(&cache->rb_lock);
963 for (i = 0; i <= mkey_cache_max_order(dev); i++) {
964 rb_key.ndescs = 1 << (i + 2);
965 ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
966 if (IS_ERR(ent)) {
967 ret = PTR_ERR(ent);
968 goto err;
969 }
970 }
971
972 ret = mlx5_odp_init_mkey_cache(dev);
973 if (ret)
974 goto err;
975
976 mutex_unlock(&cache->rb_lock);
977 for (node = rb_first(root); node; node = rb_next(node)) {
978 ent = rb_entry(node, struct mlx5_cache_ent, node);
979 spin_lock_irq(&ent->mkeys_queue.lock);
980 queue_adjust_cache_locked(ent);
981 spin_unlock_irq(&ent->mkeys_queue.lock);
982 }
983
984 return 0;
985
986err:
987 mutex_unlock(&cache->rb_lock);
988 mlx5_mkey_cache_debugfs_cleanup(dev);
989 mlx5_ib_warn(dev, "failed to create mkey cache entry\n");
990 return ret;
991}
992
993void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
994{
995 struct rb_root *root = &dev->cache.rb_root;
996 struct mlx5_cache_ent *ent;
997 struct rb_node *node;
998
999 if (!dev->cache.wq)
1000 return;
1001
1002 mutex_lock(&dev->cache.rb_lock);
1003 cancel_delayed_work(&dev->cache.remove_ent_dwork);
1004 for (node = rb_first(root); node; node = rb_next(node)) {
1005 ent = rb_entry(node, struct mlx5_cache_ent, node);
1006 spin_lock_irq(&ent->mkeys_queue.lock);
1007 ent->disabled = true;
1008 spin_unlock_irq(&ent->mkeys_queue.lock);
1009 cancel_delayed_work(&ent->dwork);
1010 }
1011 mutex_unlock(&dev->cache.rb_lock);
1012
1013 /*
1014 * After all entries are disabled and will not reschedule on WQ,
1015 * flush it and all async commands.
1016 */
1017 flush_workqueue(dev->cache.wq);
1018
1019 mlx5_mkey_cache_debugfs_cleanup(dev);
1020 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
1021
1022 /* At this point all entries are disabled and have no concurrent work. */
1023 mutex_lock(&dev->cache.rb_lock);
1024 node = rb_first(root);
1025 while (node) {
1026 ent = rb_entry(node, struct mlx5_cache_ent, node);
1027 node = rb_next(node);
1028 clean_keys(dev, ent);
1029 rb_erase(&ent->node, root);
1030 mlx5r_mkeys_uninit(ent);
1031 kfree(ent);
1032 }
1033 mutex_unlock(&dev->cache.rb_lock);
1034
1035 destroy_workqueue(dev->cache.wq);
1036 del_timer_sync(&dev->delay_timer);
1037}
1038
1039struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
1040{
1041 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1042 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1043 struct mlx5_ib_mr *mr;
1044 void *mkc;
1045 u32 *in;
1046 int err;
1047
1048 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1049 if (!mr)
1050 return ERR_PTR(-ENOMEM);
1051
1052 in = kzalloc(inlen, GFP_KERNEL);
1053 if (!in) {
1054 err = -ENOMEM;
1055 goto err_free;
1056 }
1057
1058 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1059
1060 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
1061 MLX5_SET(mkc, mkc, length64, 1);
1062 set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
1063 pd);
1064
1065 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1066 if (err)
1067 goto err_in;
1068
1069 kfree(in);
1070 mr->mmkey.type = MLX5_MKEY_MR;
1071 mr->ibmr.lkey = mr->mmkey.key;
1072 mr->ibmr.rkey = mr->mmkey.key;
1073 mr->umem = NULL;
1074
1075 return &mr->ibmr;
1076
1077err_in:
1078 kfree(in);
1079
1080err_free:
1081 kfree(mr);
1082
1083 return ERR_PTR(err);
1084}
1085
1086static int get_octo_len(u64 addr, u64 len, int page_shift)
1087{
1088 u64 page_size = 1ULL << page_shift;
1089 u64 offset;
1090 int npages;
1091
1092 offset = addr & (page_size - 1);
1093 npages = ALIGN(len + offset, page_size) >> page_shift;
1094 return (npages + 1) / 2;
1095}
1096
1097static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
1098{
1099 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
1100 return MKEY_CACHE_LAST_STD_ENTRY;
1101 return MLX5_MAX_UMR_SHIFT;
1102}
1103
1104static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1105 u64 length, int access_flags, u64 iova)
1106{
1107 mr->ibmr.lkey = mr->mmkey.key;
1108 mr->ibmr.rkey = mr->mmkey.key;
1109 mr->ibmr.length = length;
1110 mr->ibmr.device = &dev->ib_dev;
1111 mr->ibmr.iova = iova;
1112 mr->access_flags = access_flags;
1113}
1114
1115static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
1116 u64 iova)
1117{
1118 /*
1119 * The alignment of iova has already been checked upon entering
1120 * UVERBS_METHOD_REG_DMABUF_MR
1121 */
1122 umem->iova = iova;
1123 return PAGE_SIZE;
1124}
1125
1126static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
1127 struct ib_umem *umem, u64 iova,
1128 int access_flags)
1129{
1130 struct mlx5r_cache_rb_key rb_key = {
1131 .access_mode = MLX5_MKC_ACCESS_MODE_MTT,
1132 };
1133 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1134 struct mlx5_cache_ent *ent;
1135 struct mlx5_ib_mr *mr;
1136 unsigned int page_size;
1137
1138 if (umem->is_dmabuf)
1139 page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
1140 else
1141 page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
1142 0, iova);
1143 if (WARN_ON(!page_size))
1144 return ERR_PTR(-EINVAL);
1145
1146 rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size);
1147 rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags);
1148 rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags);
1149 ent = mkey_cache_ent_from_rb_key(dev, rb_key);
1150 /*
1151 * If the MR can't come from the cache then synchronously create an uncached
1152 * one.
1153 */
1154 if (!ent) {
1155 mutex_lock(&dev->slow_path_mutex);
1156 mr = reg_create(pd, umem, iova, access_flags, page_size, false);
1157 mutex_unlock(&dev->slow_path_mutex);
1158 if (IS_ERR(mr))
1159 return mr;
1160 mr->mmkey.rb_key = rb_key;
1161 return mr;
1162 }
1163
1164 mr = _mlx5_mr_cache_alloc(dev, ent, access_flags);
1165 if (IS_ERR(mr))
1166 return mr;
1167
1168 mr->ibmr.pd = pd;
1169 mr->umem = umem;
1170 mr->page_shift = order_base_2(page_size);
1171 set_mr_fields(dev, mr, umem->length, access_flags, iova);
1172
1173 return mr;
1174}
1175
1176/*
1177 * If ibmr is NULL it will be allocated by reg_create.
1178 * Else, the given ibmr will be used.
1179 */
1180static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1181 u64 iova, int access_flags,
1182 unsigned int page_size, bool populate)
1183{
1184 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1185 struct mlx5_ib_mr *mr;
1186 __be64 *pas;
1187 void *mkc;
1188 int inlen;
1189 u32 *in;
1190 int err;
1191 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1192
1193 if (!page_size)
1194 return ERR_PTR(-EINVAL);
1195 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1196 if (!mr)
1197 return ERR_PTR(-ENOMEM);
1198
1199 mr->ibmr.pd = pd;
1200 mr->access_flags = access_flags;
1201 mr->page_shift = order_base_2(page_size);
1202
1203 inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1204 if (populate)
1205 inlen += sizeof(*pas) *
1206 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1207 in = kvzalloc(inlen, GFP_KERNEL);
1208 if (!in) {
1209 err = -ENOMEM;
1210 goto err_1;
1211 }
1212 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1213 if (populate) {
1214 if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1215 err = -EINVAL;
1216 goto err_2;
1217 }
1218 mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1219 pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1220 }
1221
1222 /* The pg_access bit allows setting the access flags
1223 * in the page list submitted with the command.
1224 */
1225 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1226
1227 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1228 set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1229 populate ? pd : dev->umrc.pd);
1230 MLX5_SET(mkc, mkc, free, !populate);
1231 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1232 MLX5_SET(mkc, mkc, umr_en, 1);
1233
1234 MLX5_SET64(mkc, mkc, len, umem->length);
1235 MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1236 MLX5_SET(mkc, mkc, translations_octword_size,
1237 get_octo_len(iova, umem->length, mr->page_shift));
1238 MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1239 if (mlx5_umem_needs_ats(dev, umem, access_flags))
1240 MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1241 if (populate) {
1242 MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1243 get_octo_len(iova, umem->length, mr->page_shift));
1244 }
1245
1246 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1247 if (err) {
1248 mlx5_ib_warn(dev, "create mkey failed\n");
1249 goto err_2;
1250 }
1251 mr->mmkey.type = MLX5_MKEY_MR;
1252 mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift);
1253 mr->umem = umem;
1254 set_mr_fields(dev, mr, umem->length, access_flags, iova);
1255 kvfree(in);
1256
1257 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1258
1259 return mr;
1260
1261err_2:
1262 kvfree(in);
1263err_1:
1264 kfree(mr);
1265 return ERR_PTR(err);
1266}
1267
1268static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1269 u64 length, int acc, int mode)
1270{
1271 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1272 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1273 struct mlx5_ib_mr *mr;
1274 void *mkc;
1275 u32 *in;
1276 int err;
1277
1278 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1279 if (!mr)
1280 return ERR_PTR(-ENOMEM);
1281
1282 in = kzalloc(inlen, GFP_KERNEL);
1283 if (!in) {
1284 err = -ENOMEM;
1285 goto err_free;
1286 }
1287
1288 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1289
1290 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1291 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1292 MLX5_SET64(mkc, mkc, len, length);
1293 set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1294
1295 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1296 if (err)
1297 goto err_in;
1298
1299 kfree(in);
1300
1301 set_mr_fields(dev, mr, length, acc, start_addr);
1302
1303 return &mr->ibmr;
1304
1305err_in:
1306 kfree(in);
1307
1308err_free:
1309 kfree(mr);
1310
1311 return ERR_PTR(err);
1312}
1313
1314int mlx5_ib_advise_mr(struct ib_pd *pd,
1315 enum ib_uverbs_advise_mr_advice advice,
1316 u32 flags,
1317 struct ib_sge *sg_list,
1318 u32 num_sge,
1319 struct uverbs_attr_bundle *attrs)
1320{
1321 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1322 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1323 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1324 return -EOPNOTSUPP;
1325
1326 return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1327 sg_list, num_sge);
1328}
1329
1330struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1331 struct ib_dm_mr_attr *attr,
1332 struct uverbs_attr_bundle *attrs)
1333{
1334 struct mlx5_ib_dm *mdm = to_mdm(dm);
1335 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1336 u64 start_addr = mdm->dev_addr + attr->offset;
1337 int mode;
1338
1339 switch (mdm->type) {
1340 case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1341 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1342 return ERR_PTR(-EINVAL);
1343
1344 mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1345 start_addr -= pci_resource_start(dev->pdev, 0);
1346 break;
1347 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1348 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1349 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1350 case MLX5_IB_UAPI_DM_TYPE_ENCAP_SW_ICM:
1351 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1352 return ERR_PTR(-EINVAL);
1353
1354 mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1355 break;
1356 default:
1357 return ERR_PTR(-EINVAL);
1358 }
1359
1360 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1361 attr->access_flags, mode);
1362}
1363
1364static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1365 u64 iova, int access_flags)
1366{
1367 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1368 struct mlx5_ib_mr *mr = NULL;
1369 bool xlt_with_umr;
1370 int err;
1371
1372 xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1373 if (xlt_with_umr) {
1374 mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1375 } else {
1376 unsigned int page_size = mlx5_umem_find_best_pgsz(
1377 umem, mkc, log_page_size, 0, iova);
1378
1379 mutex_lock(&dev->slow_path_mutex);
1380 mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1381 mutex_unlock(&dev->slow_path_mutex);
1382 }
1383 if (IS_ERR(mr)) {
1384 ib_umem_release(umem);
1385 return ERR_CAST(mr);
1386 }
1387
1388 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1389
1390 atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1391
1392 if (xlt_with_umr) {
1393 /*
1394 * If the MR was created with reg_create then it will be
1395 * configured properly but left disabled. It is safe to go ahead
1396 * and configure it again via UMR while enabling it.
1397 */
1398 err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1399 if (err) {
1400 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1401 return ERR_PTR(err);
1402 }
1403 }
1404 return &mr->ibmr;
1405}
1406
1407static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1408 u64 iova, int access_flags,
1409 struct ib_udata *udata)
1410{
1411 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1412 struct ib_umem_odp *odp;
1413 struct mlx5_ib_mr *mr;
1414 int err;
1415
1416 if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1417 return ERR_PTR(-EOPNOTSUPP);
1418
1419 err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1420 if (err)
1421 return ERR_PTR(err);
1422 if (!start && length == U64_MAX) {
1423 if (iova != 0)
1424 return ERR_PTR(-EINVAL);
1425 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1426 return ERR_PTR(-EINVAL);
1427
1428 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1429 if (IS_ERR(mr))
1430 return ERR_CAST(mr);
1431 return &mr->ibmr;
1432 }
1433
1434 /* ODP requires xlt update via umr to work. */
1435 if (!mlx5r_umr_can_load_pas(dev, length))
1436 return ERR_PTR(-EINVAL);
1437
1438 odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1439 &mlx5_mn_ops);
1440 if (IS_ERR(odp))
1441 return ERR_CAST(odp);
1442
1443 mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1444 if (IS_ERR(mr)) {
1445 ib_umem_release(&odp->umem);
1446 return ERR_CAST(mr);
1447 }
1448 xa_init(&mr->implicit_children);
1449
1450 odp->private = mr;
1451 err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1452 if (err)
1453 goto err_dereg_mr;
1454
1455 err = mlx5_ib_init_odp_mr(mr);
1456 if (err)
1457 goto err_dereg_mr;
1458 return &mr->ibmr;
1459
1460err_dereg_mr:
1461 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1462 return ERR_PTR(err);
1463}
1464
1465struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1466 u64 iova, int access_flags,
1467 struct ib_udata *udata)
1468{
1469 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1470 struct ib_umem *umem;
1471
1472 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1473 return ERR_PTR(-EOPNOTSUPP);
1474
1475 mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1476 start, iova, length, access_flags);
1477
1478 if (access_flags & IB_ACCESS_ON_DEMAND)
1479 return create_user_odp_mr(pd, start, length, iova, access_flags,
1480 udata);
1481 umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1482 if (IS_ERR(umem))
1483 return ERR_CAST(umem);
1484 return create_real_mr(pd, umem, iova, access_flags);
1485}
1486
1487static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1488{
1489 struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1490 struct mlx5_ib_mr *mr = umem_dmabuf->private;
1491
1492 dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1493
1494 if (!umem_dmabuf->sgt)
1495 return;
1496
1497 mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1498 ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1499}
1500
1501static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1502 .allow_peer2peer = 1,
1503 .move_notify = mlx5_ib_dmabuf_invalidate_cb,
1504};
1505
1506struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1507 u64 length, u64 virt_addr,
1508 int fd, int access_flags,
1509 struct ib_udata *udata)
1510{
1511 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1512 struct mlx5_ib_mr *mr = NULL;
1513 struct ib_umem_dmabuf *umem_dmabuf;
1514 int err;
1515
1516 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1517 !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1518 return ERR_PTR(-EOPNOTSUPP);
1519
1520 mlx5_ib_dbg(dev,
1521 "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1522 offset, virt_addr, length, fd, access_flags);
1523
1524 /* dmabuf requires xlt update via umr to work. */
1525 if (!mlx5r_umr_can_load_pas(dev, length))
1526 return ERR_PTR(-EINVAL);
1527
1528 umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1529 access_flags,
1530 &mlx5_ib_dmabuf_attach_ops);
1531 if (IS_ERR(umem_dmabuf)) {
1532 mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1533 PTR_ERR(umem_dmabuf));
1534 return ERR_CAST(umem_dmabuf);
1535 }
1536
1537 mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1538 access_flags);
1539 if (IS_ERR(mr)) {
1540 ib_umem_release(&umem_dmabuf->umem);
1541 return ERR_CAST(mr);
1542 }
1543
1544 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1545
1546 atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1547 umem_dmabuf->private = mr;
1548 err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1549 if (err)
1550 goto err_dereg_mr;
1551
1552 err = mlx5_ib_init_dmabuf_mr(mr);
1553 if (err)
1554 goto err_dereg_mr;
1555 return &mr->ibmr;
1556
1557err_dereg_mr:
1558 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1559 return ERR_PTR(err);
1560}
1561
1562/*
1563 * True if the change in access flags can be done via UMR, only some access
1564 * flags can be updated.
1565 */
1566static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1567 unsigned int current_access_flags,
1568 unsigned int target_access_flags)
1569{
1570 unsigned int diffs = current_access_flags ^ target_access_flags;
1571
1572 if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1573 IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
1574 return false;
1575 return mlx5r_umr_can_reconfig(dev, current_access_flags,
1576 target_access_flags);
1577}
1578
1579static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1580 struct ib_umem *new_umem,
1581 int new_access_flags, u64 iova,
1582 unsigned long *page_size)
1583{
1584 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1585
1586 /* We only track the allocated sizes of MRs from the cache */
1587 if (!mr->mmkey.cache_ent)
1588 return false;
1589 if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1590 return false;
1591
1592 *page_size =
1593 mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1594 if (WARN_ON(!*page_size))
1595 return false;
1596 return (mr->mmkey.cache_ent->rb_key.ndescs) >=
1597 ib_umem_num_dma_blocks(new_umem, *page_size);
1598}
1599
1600static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1601 int access_flags, int flags, struct ib_umem *new_umem,
1602 u64 iova, unsigned long page_size)
1603{
1604 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1605 int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1606 struct ib_umem *old_umem = mr->umem;
1607 int err;
1608
1609 /*
1610 * To keep everything simple the MR is revoked before we start to mess
1611 * with it. This ensure the change is atomic relative to any use of the
1612 * MR.
1613 */
1614 err = mlx5r_umr_revoke_mr(mr);
1615 if (err)
1616 return err;
1617
1618 if (flags & IB_MR_REREG_PD) {
1619 mr->ibmr.pd = pd;
1620 upd_flags |= MLX5_IB_UPD_XLT_PD;
1621 }
1622 if (flags & IB_MR_REREG_ACCESS) {
1623 mr->access_flags = access_flags;
1624 upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1625 }
1626
1627 mr->ibmr.iova = iova;
1628 mr->ibmr.length = new_umem->length;
1629 mr->page_shift = order_base_2(page_size);
1630 mr->umem = new_umem;
1631 err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1632 if (err) {
1633 /*
1634 * The MR is revoked at this point so there is no issue to free
1635 * new_umem.
1636 */
1637 mr->umem = old_umem;
1638 return err;
1639 }
1640
1641 atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1642 ib_umem_release(old_umem);
1643 atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1644 return 0;
1645}
1646
1647struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1648 u64 length, u64 iova, int new_access_flags,
1649 struct ib_pd *new_pd,
1650 struct ib_udata *udata)
1651{
1652 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1653 struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1654 int err;
1655
1656 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1657 return ERR_PTR(-EOPNOTSUPP);
1658
1659 mlx5_ib_dbg(
1660 dev,
1661 "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1662 start, iova, length, new_access_flags);
1663
1664 if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1665 return ERR_PTR(-EOPNOTSUPP);
1666
1667 if (!(flags & IB_MR_REREG_ACCESS))
1668 new_access_flags = mr->access_flags;
1669 if (!(flags & IB_MR_REREG_PD))
1670 new_pd = ib_mr->pd;
1671
1672 if (!(flags & IB_MR_REREG_TRANS)) {
1673 struct ib_umem *umem;
1674
1675 /* Fast path for PD/access change */
1676 if (can_use_umr_rereg_access(dev, mr->access_flags,
1677 new_access_flags)) {
1678 err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1679 new_access_flags);
1680 if (err)
1681 return ERR_PTR(err);
1682 return NULL;
1683 }
1684 /* DM or ODP MR's don't have a normal umem so we can't re-use it */
1685 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1686 goto recreate;
1687
1688 /*
1689 * Only one active MR can refer to a umem at one time, revoke
1690 * the old MR before assigning the umem to the new one.
1691 */
1692 err = mlx5r_umr_revoke_mr(mr);
1693 if (err)
1694 return ERR_PTR(err);
1695 umem = mr->umem;
1696 mr->umem = NULL;
1697 atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1698
1699 return create_real_mr(new_pd, umem, mr->ibmr.iova,
1700 new_access_flags);
1701 }
1702
1703 /*
1704 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1705 * but the logic around releasing the umem is different
1706 */
1707 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1708 goto recreate;
1709
1710 if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1711 can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1712 struct ib_umem *new_umem;
1713 unsigned long page_size;
1714
1715 new_umem = ib_umem_get(&dev->ib_dev, start, length,
1716 new_access_flags);
1717 if (IS_ERR(new_umem))
1718 return ERR_CAST(new_umem);
1719
1720 /* Fast path for PAS change */
1721 if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1722 &page_size)) {
1723 err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1724 new_umem, iova, page_size);
1725 if (err) {
1726 ib_umem_release(new_umem);
1727 return ERR_PTR(err);
1728 }
1729 return NULL;
1730 }
1731 return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1732 }
1733
1734 /*
1735 * Everything else has no state we can preserve, just create a new MR
1736 * from scratch
1737 */
1738recreate:
1739 return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1740 new_access_flags, udata);
1741}
1742
1743static int
1744mlx5_alloc_priv_descs(struct ib_device *device,
1745 struct mlx5_ib_mr *mr,
1746 int ndescs,
1747 int desc_size)
1748{
1749 struct mlx5_ib_dev *dev = to_mdev(device);
1750 struct device *ddev = &dev->mdev->pdev->dev;
1751 int size = ndescs * desc_size;
1752 int add_size;
1753 int ret;
1754
1755 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1756 if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) {
1757 int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size));
1758
1759 add_size = min_t(int, end - size, add_size);
1760 }
1761
1762 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1763 if (!mr->descs_alloc)
1764 return -ENOMEM;
1765
1766 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1767
1768 mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1769 if (dma_mapping_error(ddev, mr->desc_map)) {
1770 ret = -ENOMEM;
1771 goto err;
1772 }
1773
1774 return 0;
1775err:
1776 kfree(mr->descs_alloc);
1777
1778 return ret;
1779}
1780
1781static void
1782mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1783{
1784 if (!mr->umem && mr->descs) {
1785 struct ib_device *device = mr->ibmr.device;
1786 int size = mr->max_descs * mr->desc_size;
1787 struct mlx5_ib_dev *dev = to_mdev(device);
1788
1789 dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1790 DMA_TO_DEVICE);
1791 kfree(mr->descs_alloc);
1792 mr->descs = NULL;
1793 }
1794}
1795
1796static int cache_ent_find_and_store(struct mlx5_ib_dev *dev,
1797 struct mlx5_ib_mr *mr)
1798{
1799 struct mlx5_mkey_cache *cache = &dev->cache;
1800 struct mlx5_cache_ent *ent;
1801 int ret;
1802
1803 if (mr->mmkey.cache_ent) {
1804 spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1805 mr->mmkey.cache_ent->in_use--;
1806 goto end;
1807 }
1808
1809 mutex_lock(&cache->rb_lock);
1810 ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key);
1811 if (ent) {
1812 if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) {
1813 if (ent->disabled) {
1814 mutex_unlock(&cache->rb_lock);
1815 return -EOPNOTSUPP;
1816 }
1817 mr->mmkey.cache_ent = ent;
1818 spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1819 mutex_unlock(&cache->rb_lock);
1820 goto end;
1821 }
1822 }
1823
1824 ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false);
1825 mutex_unlock(&cache->rb_lock);
1826 if (IS_ERR(ent))
1827 return PTR_ERR(ent);
1828
1829 mr->mmkey.cache_ent = ent;
1830 spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1831
1832end:
1833 ret = push_mkey_locked(mr->mmkey.cache_ent, mr->mmkey.key);
1834 spin_unlock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1835 return ret;
1836}
1837
1838int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1839{
1840 struct mlx5_ib_mr *mr = to_mmr(ibmr);
1841 struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1842 int rc;
1843
1844 /*
1845 * Any async use of the mr must hold the refcount, once the refcount
1846 * goes to zero no other thread, such as ODP page faults, prefetch, any
1847 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1848 */
1849 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1850 refcount_read(&mr->mmkey.usecount) != 0 &&
1851 xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1852 mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1853
1854 if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1855 xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1856 mr->sig, NULL, GFP_KERNEL);
1857
1858 if (mr->mtt_mr) {
1859 rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1860 if (rc)
1861 return rc;
1862 mr->mtt_mr = NULL;
1863 }
1864 if (mr->klm_mr) {
1865 rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1866 if (rc)
1867 return rc;
1868 mr->klm_mr = NULL;
1869 }
1870
1871 if (mlx5_core_destroy_psv(dev->mdev,
1872 mr->sig->psv_memory.psv_idx))
1873 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1874 mr->sig->psv_memory.psv_idx);
1875 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1876 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1877 mr->sig->psv_wire.psv_idx);
1878 kfree(mr->sig);
1879 mr->sig = NULL;
1880 }
1881
1882 /* Stop DMA */
1883 if (mr->umem && mlx5r_umr_can_load_pas(dev, mr->umem->length))
1884 if (mlx5r_umr_revoke_mr(mr) ||
1885 cache_ent_find_and_store(dev, mr))
1886 mr->mmkey.cache_ent = NULL;
1887
1888 if (!mr->mmkey.cache_ent) {
1889 rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1890 if (rc)
1891 return rc;
1892 }
1893
1894 if (mr->umem) {
1895 bool is_odp = is_odp_mr(mr);
1896
1897 if (!is_odp)
1898 atomic_sub(ib_umem_num_pages(mr->umem),
1899 &dev->mdev->priv.reg_pages);
1900 ib_umem_release(mr->umem);
1901 if (is_odp)
1902 mlx5_ib_free_odp_mr(mr);
1903 }
1904
1905 if (!mr->mmkey.cache_ent)
1906 mlx5_free_priv_descs(mr);
1907
1908 kfree(mr);
1909 return 0;
1910}
1911
1912static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1913 int access_mode, int page_shift)
1914{
1915 void *mkc;
1916
1917 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1918
1919 /* This is only used from the kernel, so setting the PD is OK. */
1920 set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
1921 MLX5_SET(mkc, mkc, free, 1);
1922 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1923 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1924 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1925 MLX5_SET(mkc, mkc, umr_en, 1);
1926 MLX5_SET(mkc, mkc, log_page_size, page_shift);
1927}
1928
1929static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1930 int ndescs, int desc_size, int page_shift,
1931 int access_mode, u32 *in, int inlen)
1932{
1933 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1934 int err;
1935
1936 mr->access_mode = access_mode;
1937 mr->desc_size = desc_size;
1938 mr->max_descs = ndescs;
1939
1940 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1941 if (err)
1942 return err;
1943
1944 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1945
1946 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1947 if (err)
1948 goto err_free_descs;
1949
1950 mr->mmkey.type = MLX5_MKEY_MR;
1951 mr->ibmr.lkey = mr->mmkey.key;
1952 mr->ibmr.rkey = mr->mmkey.key;
1953
1954 return 0;
1955
1956err_free_descs:
1957 mlx5_free_priv_descs(mr);
1958 return err;
1959}
1960
1961static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1962 u32 max_num_sg, u32 max_num_meta_sg,
1963 int desc_size, int access_mode)
1964{
1965 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1966 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1967 int page_shift = 0;
1968 struct mlx5_ib_mr *mr;
1969 u32 *in;
1970 int err;
1971
1972 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1973 if (!mr)
1974 return ERR_PTR(-ENOMEM);
1975
1976 mr->ibmr.pd = pd;
1977 mr->ibmr.device = pd->device;
1978
1979 in = kzalloc(inlen, GFP_KERNEL);
1980 if (!in) {
1981 err = -ENOMEM;
1982 goto err_free;
1983 }
1984
1985 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1986 page_shift = PAGE_SHIFT;
1987
1988 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1989 access_mode, in, inlen);
1990 if (err)
1991 goto err_free_in;
1992
1993 mr->umem = NULL;
1994 kfree(in);
1995
1996 return mr;
1997
1998err_free_in:
1999 kfree(in);
2000err_free:
2001 kfree(mr);
2002 return ERR_PTR(err);
2003}
2004
2005static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2006 int ndescs, u32 *in, int inlen)
2007{
2008 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2009 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2010 inlen);
2011}
2012
2013static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2014 int ndescs, u32 *in, int inlen)
2015{
2016 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2017 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2018}
2019
2020static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2021 int max_num_sg, int max_num_meta_sg,
2022 u32 *in, int inlen)
2023{
2024 struct mlx5_ib_dev *dev = to_mdev(pd->device);
2025 u32 psv_index[2];
2026 void *mkc;
2027 int err;
2028
2029 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2030 if (!mr->sig)
2031 return -ENOMEM;
2032
2033 /* create mem & wire PSVs */
2034 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2035 if (err)
2036 goto err_free_sig;
2037
2038 mr->sig->psv_memory.psv_idx = psv_index[0];
2039 mr->sig->psv_wire.psv_idx = psv_index[1];
2040
2041 mr->sig->sig_status_checked = true;
2042 mr->sig->sig_err_exists = false;
2043 /* Next UMR, Arm SIGERR */
2044 ++mr->sig->sigerr_count;
2045 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2046 sizeof(struct mlx5_klm),
2047 MLX5_MKC_ACCESS_MODE_KLMS);
2048 if (IS_ERR(mr->klm_mr)) {
2049 err = PTR_ERR(mr->klm_mr);
2050 goto err_destroy_psv;
2051 }
2052 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2053 sizeof(struct mlx5_mtt),
2054 MLX5_MKC_ACCESS_MODE_MTT);
2055 if (IS_ERR(mr->mtt_mr)) {
2056 err = PTR_ERR(mr->mtt_mr);
2057 goto err_free_klm_mr;
2058 }
2059
2060 /* Set bsf descriptors for mkey */
2061 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2062 MLX5_SET(mkc, mkc, bsf_en, 1);
2063 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2064
2065 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2066 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2067 if (err)
2068 goto err_free_mtt_mr;
2069
2070 err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2071 mr->sig, GFP_KERNEL));
2072 if (err)
2073 goto err_free_descs;
2074 return 0;
2075
2076err_free_descs:
2077 destroy_mkey(dev, mr);
2078 mlx5_free_priv_descs(mr);
2079err_free_mtt_mr:
2080 mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2081 mr->mtt_mr = NULL;
2082err_free_klm_mr:
2083 mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2084 mr->klm_mr = NULL;
2085err_destroy_psv:
2086 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2087 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2088 mr->sig->psv_memory.psv_idx);
2089 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2090 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2091 mr->sig->psv_wire.psv_idx);
2092err_free_sig:
2093 kfree(mr->sig);
2094
2095 return err;
2096}
2097
2098static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2099 enum ib_mr_type mr_type, u32 max_num_sg,
2100 u32 max_num_meta_sg)
2101{
2102 struct mlx5_ib_dev *dev = to_mdev(pd->device);
2103 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2104 int ndescs = ALIGN(max_num_sg, 4);
2105 struct mlx5_ib_mr *mr;
2106 u32 *in;
2107 int err;
2108
2109 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2110 if (!mr)
2111 return ERR_PTR(-ENOMEM);
2112
2113 in = kzalloc(inlen, GFP_KERNEL);
2114 if (!in) {
2115 err = -ENOMEM;
2116 goto err_free;
2117 }
2118
2119 mr->ibmr.device = pd->device;
2120 mr->umem = NULL;
2121
2122 switch (mr_type) {
2123 case IB_MR_TYPE_MEM_REG:
2124 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2125 break;
2126 case IB_MR_TYPE_SG_GAPS:
2127 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2128 break;
2129 case IB_MR_TYPE_INTEGRITY:
2130 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2131 max_num_meta_sg, in, inlen);
2132 break;
2133 default:
2134 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2135 err = -EINVAL;
2136 }
2137
2138 if (err)
2139 goto err_free_in;
2140
2141 kfree(in);
2142
2143 return &mr->ibmr;
2144
2145err_free_in:
2146 kfree(in);
2147err_free:
2148 kfree(mr);
2149 return ERR_PTR(err);
2150}
2151
2152struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2153 u32 max_num_sg)
2154{
2155 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2156}
2157
2158struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2159 u32 max_num_sg, u32 max_num_meta_sg)
2160{
2161 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2162 max_num_meta_sg);
2163}
2164
2165int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2166{
2167 struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2168 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2169 struct mlx5_ib_mw *mw = to_mmw(ibmw);
2170 unsigned int ndescs;
2171 u32 *in = NULL;
2172 void *mkc;
2173 int err;
2174 struct mlx5_ib_alloc_mw req = {};
2175 struct {
2176 __u32 comp_mask;
2177 __u32 response_length;
2178 } resp = {};
2179
2180 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2181 if (err)
2182 return err;
2183
2184 if (req.comp_mask || req.reserved1 || req.reserved2)
2185 return -EOPNOTSUPP;
2186
2187 if (udata->inlen > sizeof(req) &&
2188 !ib_is_udata_cleared(udata, sizeof(req),
2189 udata->inlen - sizeof(req)))
2190 return -EOPNOTSUPP;
2191
2192 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2193
2194 in = kzalloc(inlen, GFP_KERNEL);
2195 if (!in)
2196 return -ENOMEM;
2197
2198 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2199
2200 MLX5_SET(mkc, mkc, free, 1);
2201 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2202 MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2203 MLX5_SET(mkc, mkc, umr_en, 1);
2204 MLX5_SET(mkc, mkc, lr, 1);
2205 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2206 MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2207 MLX5_SET(mkc, mkc, qpn, 0xffffff);
2208
2209 err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2210 if (err)
2211 goto free;
2212
2213 mw->mmkey.type = MLX5_MKEY_MW;
2214 ibmw->rkey = mw->mmkey.key;
2215 mw->mmkey.ndescs = ndescs;
2216
2217 resp.response_length =
2218 min(offsetofend(typeof(resp), response_length), udata->outlen);
2219 if (resp.response_length) {
2220 err = ib_copy_to_udata(udata, &resp, resp.response_length);
2221 if (err)
2222 goto free_mkey;
2223 }
2224
2225 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2226 err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2227 if (err)
2228 goto free_mkey;
2229 }
2230
2231 kfree(in);
2232 return 0;
2233
2234free_mkey:
2235 mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
2236free:
2237 kfree(in);
2238 return err;
2239}
2240
2241int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2242{
2243 struct mlx5_ib_dev *dev = to_mdev(mw->device);
2244 struct mlx5_ib_mw *mmw = to_mmw(mw);
2245
2246 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2247 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2248 /*
2249 * pagefault_single_data_segment() may be accessing mmw
2250 * if the user bound an ODP MR to this MW.
2251 */
2252 mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2253
2254 return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
2255}
2256
2257int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2258 struct ib_mr_status *mr_status)
2259{
2260 struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2261 int ret = 0;
2262
2263 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2264 pr_err("Invalid status check mask\n");
2265 ret = -EINVAL;
2266 goto done;
2267 }
2268
2269 mr_status->fail_status = 0;
2270 if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2271 if (!mmr->sig) {
2272 ret = -EINVAL;
2273 pr_err("signature status check requested on a non-signature enabled MR\n");
2274 goto done;
2275 }
2276
2277 mmr->sig->sig_status_checked = true;
2278 if (!mmr->sig->sig_err_exists)
2279 goto done;
2280
2281 if (ibmr->lkey == mmr->sig->err_item.key)
2282 memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2283 sizeof(mr_status->sig_err));
2284 else {
2285 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2286 mr_status->sig_err.sig_err_offset = 0;
2287 mr_status->sig_err.key = mmr->sig->err_item.key;
2288 }
2289
2290 mmr->sig->sig_err_exists = false;
2291 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2292 }
2293
2294done:
2295 return ret;
2296}
2297
2298static int
2299mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2300 int data_sg_nents, unsigned int *data_sg_offset,
2301 struct scatterlist *meta_sg, int meta_sg_nents,
2302 unsigned int *meta_sg_offset)
2303{
2304 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2305 unsigned int sg_offset = 0;
2306 int n = 0;
2307
2308 mr->meta_length = 0;
2309 if (data_sg_nents == 1) {
2310 n++;
2311 mr->mmkey.ndescs = 1;
2312 if (data_sg_offset)
2313 sg_offset = *data_sg_offset;
2314 mr->data_length = sg_dma_len(data_sg) - sg_offset;
2315 mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2316 if (meta_sg_nents == 1) {
2317 n++;
2318 mr->meta_ndescs = 1;
2319 if (meta_sg_offset)
2320 sg_offset = *meta_sg_offset;
2321 else
2322 sg_offset = 0;
2323 mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2324 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2325 }
2326 ibmr->length = mr->data_length + mr->meta_length;
2327 }
2328
2329 return n;
2330}
2331
2332static int
2333mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2334 struct scatterlist *sgl,
2335 unsigned short sg_nents,
2336 unsigned int *sg_offset_p,
2337 struct scatterlist *meta_sgl,
2338 unsigned short meta_sg_nents,
2339 unsigned int *meta_sg_offset_p)
2340{
2341 struct scatterlist *sg = sgl;
2342 struct mlx5_klm *klms = mr->descs;
2343 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2344 u32 lkey = mr->ibmr.pd->local_dma_lkey;
2345 int i, j = 0;
2346
2347 mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2348 mr->ibmr.length = 0;
2349
2350 for_each_sg(sgl, sg, sg_nents, i) {
2351 if (unlikely(i >= mr->max_descs))
2352 break;
2353 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2354 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2355 klms[i].key = cpu_to_be32(lkey);
2356 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2357
2358 sg_offset = 0;
2359 }
2360
2361 if (sg_offset_p)
2362 *sg_offset_p = sg_offset;
2363
2364 mr->mmkey.ndescs = i;
2365 mr->data_length = mr->ibmr.length;
2366
2367 if (meta_sg_nents) {
2368 sg = meta_sgl;
2369 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2370 for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2371 if (unlikely(i + j >= mr->max_descs))
2372 break;
2373 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2374 sg_offset);
2375 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2376 sg_offset);
2377 klms[i + j].key = cpu_to_be32(lkey);
2378 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2379
2380 sg_offset = 0;
2381 }
2382 if (meta_sg_offset_p)
2383 *meta_sg_offset_p = sg_offset;
2384
2385 mr->meta_ndescs = j;
2386 mr->meta_length = mr->ibmr.length - mr->data_length;
2387 }
2388
2389 return i + j;
2390}
2391
2392static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2393{
2394 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2395 __be64 *descs;
2396
2397 if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2398 return -ENOMEM;
2399
2400 descs = mr->descs;
2401 descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2402
2403 return 0;
2404}
2405
2406static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2407{
2408 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2409 __be64 *descs;
2410
2411 if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2412 return -ENOMEM;
2413
2414 descs = mr->descs;
2415 descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2416 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2417
2418 return 0;
2419}
2420
2421static int
2422mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2423 int data_sg_nents, unsigned int *data_sg_offset,
2424 struct scatterlist *meta_sg, int meta_sg_nents,
2425 unsigned int *meta_sg_offset)
2426{
2427 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2428 struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2429 int n;
2430
2431 pi_mr->mmkey.ndescs = 0;
2432 pi_mr->meta_ndescs = 0;
2433 pi_mr->meta_length = 0;
2434
2435 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2436 pi_mr->desc_size * pi_mr->max_descs,
2437 DMA_TO_DEVICE);
2438
2439 pi_mr->ibmr.page_size = ibmr->page_size;
2440 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2441 mlx5_set_page);
2442 if (n != data_sg_nents)
2443 return n;
2444
2445 pi_mr->data_iova = pi_mr->ibmr.iova;
2446 pi_mr->data_length = pi_mr->ibmr.length;
2447 pi_mr->ibmr.length = pi_mr->data_length;
2448 ibmr->length = pi_mr->data_length;
2449
2450 if (meta_sg_nents) {
2451 u64 page_mask = ~((u64)ibmr->page_size - 1);
2452 u64 iova = pi_mr->data_iova;
2453
2454 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2455 meta_sg_offset, mlx5_set_page_pi);
2456
2457 pi_mr->meta_length = pi_mr->ibmr.length;
2458 /*
2459 * PI address for the HW is the offset of the metadata address
2460 * relative to the first data page address.
2461 * It equals to first data page address + size of data pages +
2462 * metadata offset at the first metadata page
2463 */
2464 pi_mr->pi_iova = (iova & page_mask) +
2465 pi_mr->mmkey.ndescs * ibmr->page_size +
2466 (pi_mr->ibmr.iova & ~page_mask);
2467 /*
2468 * In order to use one MTT MR for data and metadata, we register
2469 * also the gaps between the end of the data and the start of
2470 * the metadata (the sig MR will verify that the HW will access
2471 * to right addresses). This mapping is safe because we use
2472 * internal mkey for the registration.
2473 */
2474 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2475 pi_mr->ibmr.iova = iova;
2476 ibmr->length += pi_mr->meta_length;
2477 }
2478
2479 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2480 pi_mr->desc_size * pi_mr->max_descs,
2481 DMA_TO_DEVICE);
2482
2483 return n;
2484}
2485
2486static int
2487mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2488 int data_sg_nents, unsigned int *data_sg_offset,
2489 struct scatterlist *meta_sg, int meta_sg_nents,
2490 unsigned int *meta_sg_offset)
2491{
2492 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2493 struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2494 int n;
2495
2496 pi_mr->mmkey.ndescs = 0;
2497 pi_mr->meta_ndescs = 0;
2498 pi_mr->meta_length = 0;
2499
2500 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2501 pi_mr->desc_size * pi_mr->max_descs,
2502 DMA_TO_DEVICE);
2503
2504 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2505 meta_sg, meta_sg_nents, meta_sg_offset);
2506
2507 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2508 pi_mr->desc_size * pi_mr->max_descs,
2509 DMA_TO_DEVICE);
2510
2511 /* This is zero-based memory region */
2512 pi_mr->data_iova = 0;
2513 pi_mr->ibmr.iova = 0;
2514 pi_mr->pi_iova = pi_mr->data_length;
2515 ibmr->length = pi_mr->ibmr.length;
2516
2517 return n;
2518}
2519
2520int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2521 int data_sg_nents, unsigned int *data_sg_offset,
2522 struct scatterlist *meta_sg, int meta_sg_nents,
2523 unsigned int *meta_sg_offset)
2524{
2525 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2526 struct mlx5_ib_mr *pi_mr = NULL;
2527 int n;
2528
2529 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2530
2531 mr->mmkey.ndescs = 0;
2532 mr->data_length = 0;
2533 mr->data_iova = 0;
2534 mr->meta_ndescs = 0;
2535 mr->pi_iova = 0;
2536 /*
2537 * As a performance optimization, if possible, there is no need to
2538 * perform UMR operation to register the data/metadata buffers.
2539 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2540 * Fallback to UMR only in case of a failure.
2541 */
2542 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2543 data_sg_offset, meta_sg, meta_sg_nents,
2544 meta_sg_offset);
2545 if (n == data_sg_nents + meta_sg_nents)
2546 goto out;
2547 /*
2548 * As a performance optimization, if possible, there is no need to map
2549 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2550 * descriptors and fallback to KLM only in case of a failure.
2551 * It's more efficient for the HW to work with MTT descriptors
2552 * (especially in high load).
2553 * Use KLM (indirect access) only if it's mandatory.
2554 */
2555 pi_mr = mr->mtt_mr;
2556 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2557 data_sg_offset, meta_sg, meta_sg_nents,
2558 meta_sg_offset);
2559 if (n == data_sg_nents + meta_sg_nents)
2560 goto out;
2561
2562 pi_mr = mr->klm_mr;
2563 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2564 data_sg_offset, meta_sg, meta_sg_nents,
2565 meta_sg_offset);
2566 if (unlikely(n != data_sg_nents + meta_sg_nents))
2567 return -ENOMEM;
2568
2569out:
2570 /* This is zero-based memory region */
2571 ibmr->iova = 0;
2572 mr->pi_mr = pi_mr;
2573 if (pi_mr)
2574 ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2575 else
2576 ibmr->sig_attrs->meta_length = mr->meta_length;
2577
2578 return 0;
2579}
2580
2581int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2582 unsigned int *sg_offset)
2583{
2584 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2585 int n;
2586
2587 mr->mmkey.ndescs = 0;
2588
2589 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2590 mr->desc_size * mr->max_descs,
2591 DMA_TO_DEVICE);
2592
2593 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2594 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2595 NULL);
2596 else
2597 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2598 mlx5_set_page);
2599
2600 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2601 mr->desc_size * mr->max_descs,
2602 DMA_TO_DEVICE);
2603
2604 return n;
2605}
1/*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33
34#include <linux/kref.h>
35#include <linux/random.h>
36#include <linux/debugfs.h>
37#include <linux/export.h>
38#include <linux/delay.h>
39#include <rdma/ib_umem.h>
40#include <rdma/ib_umem_odp.h>
41#include <rdma/ib_verbs.h>
42#include "mlx5_ib.h"
43#include "user.h"
44
45enum {
46 MAX_PENDING_REG_MR = 8,
47};
48
49#define MLX5_UMR_ALIGN 2048
50#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
51static __be64 mlx5_ib_update_mtt_emergency_buffer[
52 MLX5_UMR_MTT_MIN_CHUNK_SIZE/sizeof(__be64)]
53 __aligned(MLX5_UMR_ALIGN);
54static DEFINE_MUTEX(mlx5_ib_update_mtt_emergency_buffer_mutex);
55#endif
56
57static int clean_mr(struct mlx5_ib_mr *mr);
58
59static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
60{
61 int err = mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
62
63#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
64 /* Wait until all page fault handlers using the mr complete. */
65 synchronize_srcu(&dev->mr_srcu);
66#endif
67
68 return err;
69}
70
71static int order2idx(struct mlx5_ib_dev *dev, int order)
72{
73 struct mlx5_mr_cache *cache = &dev->cache;
74
75 if (order < cache->ent[0].order)
76 return 0;
77 else
78 return order - cache->ent[0].order;
79}
80
81static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length)
82{
83 return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >=
84 length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1));
85}
86
87#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
88static void update_odp_mr(struct mlx5_ib_mr *mr)
89{
90 if (mr->umem->odp_data) {
91 /*
92 * This barrier prevents the compiler from moving the
93 * setting of umem->odp_data->private to point to our
94 * MR, before reg_umr finished, to ensure that the MR
95 * initialization have finished before starting to
96 * handle invalidations.
97 */
98 smp_wmb();
99 mr->umem->odp_data->private = mr;
100 /*
101 * Make sure we will see the new
102 * umem->odp_data->private value in the invalidation
103 * routines, before we can get page faults on the
104 * MR. Page faults can happen once we put the MR in
105 * the tree, below this line. Without the barrier,
106 * there can be a fault handling and an invalidation
107 * before umem->odp_data->private == mr is visible to
108 * the invalidation handler.
109 */
110 smp_wmb();
111 }
112}
113#endif
114
115static void reg_mr_callback(int status, void *context)
116{
117 struct mlx5_ib_mr *mr = context;
118 struct mlx5_ib_dev *dev = mr->dev;
119 struct mlx5_mr_cache *cache = &dev->cache;
120 int c = order2idx(dev, mr->order);
121 struct mlx5_cache_ent *ent = &cache->ent[c];
122 u8 key;
123 unsigned long flags;
124 struct mlx5_mkey_table *table = &dev->mdev->priv.mkey_table;
125 int err;
126
127 spin_lock_irqsave(&ent->lock, flags);
128 ent->pending--;
129 spin_unlock_irqrestore(&ent->lock, flags);
130 if (status) {
131 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
132 kfree(mr);
133 dev->fill_delay = 1;
134 mod_timer(&dev->delay_timer, jiffies + HZ);
135 return;
136 }
137
138 if (mr->out.hdr.status) {
139 mlx5_ib_warn(dev, "failed - status %d, syndorme 0x%x\n",
140 mr->out.hdr.status,
141 be32_to_cpu(mr->out.hdr.syndrome));
142 kfree(mr);
143 dev->fill_delay = 1;
144 mod_timer(&dev->delay_timer, jiffies + HZ);
145 return;
146 }
147
148 spin_lock_irqsave(&dev->mdev->priv.mkey_lock, flags);
149 key = dev->mdev->priv.mkey_key++;
150 spin_unlock_irqrestore(&dev->mdev->priv.mkey_lock, flags);
151 mr->mmkey.key = mlx5_idx_to_mkey(be32_to_cpu(mr->out.mkey) & 0xffffff) | key;
152
153 cache->last_add = jiffies;
154
155 spin_lock_irqsave(&ent->lock, flags);
156 list_add_tail(&mr->list, &ent->head);
157 ent->cur++;
158 ent->size++;
159 spin_unlock_irqrestore(&ent->lock, flags);
160
161 write_lock_irqsave(&table->lock, flags);
162 err = radix_tree_insert(&table->tree, mlx5_base_mkey(mr->mmkey.key),
163 &mr->mmkey);
164 if (err)
165 pr_err("Error inserting to mkey tree. 0x%x\n", -err);
166 write_unlock_irqrestore(&table->lock, flags);
167}
168
169static int add_keys(struct mlx5_ib_dev *dev, int c, int num)
170{
171 struct mlx5_mr_cache *cache = &dev->cache;
172 struct mlx5_cache_ent *ent = &cache->ent[c];
173 struct mlx5_create_mkey_mbox_in *in;
174 struct mlx5_ib_mr *mr;
175 int npages = 1 << ent->order;
176 int err = 0;
177 int i;
178
179 in = kzalloc(sizeof(*in), GFP_KERNEL);
180 if (!in)
181 return -ENOMEM;
182
183 for (i = 0; i < num; i++) {
184 if (ent->pending >= MAX_PENDING_REG_MR) {
185 err = -EAGAIN;
186 break;
187 }
188
189 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
190 if (!mr) {
191 err = -ENOMEM;
192 break;
193 }
194 mr->order = ent->order;
195 mr->umred = 1;
196 mr->dev = dev;
197 in->seg.status = MLX5_MKEY_STATUS_FREE;
198 in->seg.xlt_oct_size = cpu_to_be32((npages + 1) / 2);
199 in->seg.qpn_mkey7_0 = cpu_to_be32(0xffffff << 8);
200 in->seg.flags = MLX5_ACCESS_MODE_MTT | MLX5_PERM_UMR_EN;
201 in->seg.log2_page_size = 12;
202
203 spin_lock_irq(&ent->lock);
204 ent->pending++;
205 spin_unlock_irq(&ent->lock);
206 err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in,
207 sizeof(*in), reg_mr_callback,
208 mr, &mr->out);
209 if (err) {
210 spin_lock_irq(&ent->lock);
211 ent->pending--;
212 spin_unlock_irq(&ent->lock);
213 mlx5_ib_warn(dev, "create mkey failed %d\n", err);
214 kfree(mr);
215 break;
216 }
217 }
218
219 kfree(in);
220 return err;
221}
222
223static void remove_keys(struct mlx5_ib_dev *dev, int c, int num)
224{
225 struct mlx5_mr_cache *cache = &dev->cache;
226 struct mlx5_cache_ent *ent = &cache->ent[c];
227 struct mlx5_ib_mr *mr;
228 int err;
229 int i;
230
231 for (i = 0; i < num; i++) {
232 spin_lock_irq(&ent->lock);
233 if (list_empty(&ent->head)) {
234 spin_unlock_irq(&ent->lock);
235 return;
236 }
237 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
238 list_del(&mr->list);
239 ent->cur--;
240 ent->size--;
241 spin_unlock_irq(&ent->lock);
242 err = destroy_mkey(dev, mr);
243 if (err)
244 mlx5_ib_warn(dev, "failed destroy mkey\n");
245 else
246 kfree(mr);
247 }
248}
249
250static ssize_t size_write(struct file *filp, const char __user *buf,
251 size_t count, loff_t *pos)
252{
253 struct mlx5_cache_ent *ent = filp->private_data;
254 struct mlx5_ib_dev *dev = ent->dev;
255 char lbuf[20];
256 u32 var;
257 int err;
258 int c;
259
260 if (copy_from_user(lbuf, buf, sizeof(lbuf)))
261 return -EFAULT;
262
263 c = order2idx(dev, ent->order);
264 lbuf[sizeof(lbuf) - 1] = 0;
265
266 if (sscanf(lbuf, "%u", &var) != 1)
267 return -EINVAL;
268
269 if (var < ent->limit)
270 return -EINVAL;
271
272 if (var > ent->size) {
273 do {
274 err = add_keys(dev, c, var - ent->size);
275 if (err && err != -EAGAIN)
276 return err;
277
278 usleep_range(3000, 5000);
279 } while (err);
280 } else if (var < ent->size) {
281 remove_keys(dev, c, ent->size - var);
282 }
283
284 return count;
285}
286
287static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
288 loff_t *pos)
289{
290 struct mlx5_cache_ent *ent = filp->private_data;
291 char lbuf[20];
292 int err;
293
294 if (*pos)
295 return 0;
296
297 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->size);
298 if (err < 0)
299 return err;
300
301 if (copy_to_user(buf, lbuf, err))
302 return -EFAULT;
303
304 *pos += err;
305
306 return err;
307}
308
309static const struct file_operations size_fops = {
310 .owner = THIS_MODULE,
311 .open = simple_open,
312 .write = size_write,
313 .read = size_read,
314};
315
316static ssize_t limit_write(struct file *filp, const char __user *buf,
317 size_t count, loff_t *pos)
318{
319 struct mlx5_cache_ent *ent = filp->private_data;
320 struct mlx5_ib_dev *dev = ent->dev;
321 char lbuf[20];
322 u32 var;
323 int err;
324 int c;
325
326 if (copy_from_user(lbuf, buf, sizeof(lbuf)))
327 return -EFAULT;
328
329 c = order2idx(dev, ent->order);
330 lbuf[sizeof(lbuf) - 1] = 0;
331
332 if (sscanf(lbuf, "%u", &var) != 1)
333 return -EINVAL;
334
335 if (var > ent->size)
336 return -EINVAL;
337
338 ent->limit = var;
339
340 if (ent->cur < ent->limit) {
341 err = add_keys(dev, c, 2 * ent->limit - ent->cur);
342 if (err)
343 return err;
344 }
345
346 return count;
347}
348
349static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
350 loff_t *pos)
351{
352 struct mlx5_cache_ent *ent = filp->private_data;
353 char lbuf[20];
354 int err;
355
356 if (*pos)
357 return 0;
358
359 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
360 if (err < 0)
361 return err;
362
363 if (copy_to_user(buf, lbuf, err))
364 return -EFAULT;
365
366 *pos += err;
367
368 return err;
369}
370
371static const struct file_operations limit_fops = {
372 .owner = THIS_MODULE,
373 .open = simple_open,
374 .write = limit_write,
375 .read = limit_read,
376};
377
378static int someone_adding(struct mlx5_mr_cache *cache)
379{
380 int i;
381
382 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
383 if (cache->ent[i].cur < cache->ent[i].limit)
384 return 1;
385 }
386
387 return 0;
388}
389
390static void __cache_work_func(struct mlx5_cache_ent *ent)
391{
392 struct mlx5_ib_dev *dev = ent->dev;
393 struct mlx5_mr_cache *cache = &dev->cache;
394 int i = order2idx(dev, ent->order);
395 int err;
396
397 if (cache->stopped)
398 return;
399
400 ent = &dev->cache.ent[i];
401 if (ent->cur < 2 * ent->limit && !dev->fill_delay) {
402 err = add_keys(dev, i, 1);
403 if (ent->cur < 2 * ent->limit) {
404 if (err == -EAGAIN) {
405 mlx5_ib_dbg(dev, "returned eagain, order %d\n",
406 i + 2);
407 queue_delayed_work(cache->wq, &ent->dwork,
408 msecs_to_jiffies(3));
409 } else if (err) {
410 mlx5_ib_warn(dev, "command failed order %d, err %d\n",
411 i + 2, err);
412 queue_delayed_work(cache->wq, &ent->dwork,
413 msecs_to_jiffies(1000));
414 } else {
415 queue_work(cache->wq, &ent->work);
416 }
417 }
418 } else if (ent->cur > 2 * ent->limit) {
419 /*
420 * The remove_keys() logic is performed as garbage collection
421 * task. Such task is intended to be run when no other active
422 * processes are running.
423 *
424 * The need_resched() will return TRUE if there are user tasks
425 * to be activated in near future.
426 *
427 * In such case, we don't execute remove_keys() and postpone
428 * the garbage collection work to try to run in next cycle,
429 * in order to free CPU resources to other tasks.
430 */
431 if (!need_resched() && !someone_adding(cache) &&
432 time_after(jiffies, cache->last_add + 300 * HZ)) {
433 remove_keys(dev, i, 1);
434 if (ent->cur > ent->limit)
435 queue_work(cache->wq, &ent->work);
436 } else {
437 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
438 }
439 }
440}
441
442static void delayed_cache_work_func(struct work_struct *work)
443{
444 struct mlx5_cache_ent *ent;
445
446 ent = container_of(work, struct mlx5_cache_ent, dwork.work);
447 __cache_work_func(ent);
448}
449
450static void cache_work_func(struct work_struct *work)
451{
452 struct mlx5_cache_ent *ent;
453
454 ent = container_of(work, struct mlx5_cache_ent, work);
455 __cache_work_func(ent);
456}
457
458static struct mlx5_ib_mr *alloc_cached_mr(struct mlx5_ib_dev *dev, int order)
459{
460 struct mlx5_mr_cache *cache = &dev->cache;
461 struct mlx5_ib_mr *mr = NULL;
462 struct mlx5_cache_ent *ent;
463 int c;
464 int i;
465
466 c = order2idx(dev, order);
467 if (c < 0 || c >= MAX_MR_CACHE_ENTRIES) {
468 mlx5_ib_warn(dev, "order %d, cache index %d\n", order, c);
469 return NULL;
470 }
471
472 for (i = c; i < MAX_MR_CACHE_ENTRIES; i++) {
473 ent = &cache->ent[i];
474
475 mlx5_ib_dbg(dev, "order %d, cache index %d\n", ent->order, i);
476
477 spin_lock_irq(&ent->lock);
478 if (!list_empty(&ent->head)) {
479 mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
480 list);
481 list_del(&mr->list);
482 ent->cur--;
483 spin_unlock_irq(&ent->lock);
484 if (ent->cur < ent->limit)
485 queue_work(cache->wq, &ent->work);
486 break;
487 }
488 spin_unlock_irq(&ent->lock);
489
490 queue_work(cache->wq, &ent->work);
491 }
492
493 if (!mr)
494 cache->ent[c].miss++;
495
496 return mr;
497}
498
499static void free_cached_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
500{
501 struct mlx5_mr_cache *cache = &dev->cache;
502 struct mlx5_cache_ent *ent;
503 int shrink = 0;
504 int c;
505
506 c = order2idx(dev, mr->order);
507 if (c < 0 || c >= MAX_MR_CACHE_ENTRIES) {
508 mlx5_ib_warn(dev, "order %d, cache index %d\n", mr->order, c);
509 return;
510 }
511 ent = &cache->ent[c];
512 spin_lock_irq(&ent->lock);
513 list_add_tail(&mr->list, &ent->head);
514 ent->cur++;
515 if (ent->cur > 2 * ent->limit)
516 shrink = 1;
517 spin_unlock_irq(&ent->lock);
518
519 if (shrink)
520 queue_work(cache->wq, &ent->work);
521}
522
523static void clean_keys(struct mlx5_ib_dev *dev, int c)
524{
525 struct mlx5_mr_cache *cache = &dev->cache;
526 struct mlx5_cache_ent *ent = &cache->ent[c];
527 struct mlx5_ib_mr *mr;
528 int err;
529
530 cancel_delayed_work(&ent->dwork);
531 while (1) {
532 spin_lock_irq(&ent->lock);
533 if (list_empty(&ent->head)) {
534 spin_unlock_irq(&ent->lock);
535 return;
536 }
537 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
538 list_del(&mr->list);
539 ent->cur--;
540 ent->size--;
541 spin_unlock_irq(&ent->lock);
542 err = destroy_mkey(dev, mr);
543 if (err)
544 mlx5_ib_warn(dev, "failed destroy mkey\n");
545 else
546 kfree(mr);
547 }
548}
549
550static int mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
551{
552 struct mlx5_mr_cache *cache = &dev->cache;
553 struct mlx5_cache_ent *ent;
554 int i;
555
556 if (!mlx5_debugfs_root)
557 return 0;
558
559 cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
560 if (!cache->root)
561 return -ENOMEM;
562
563 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
564 ent = &cache->ent[i];
565 sprintf(ent->name, "%d", ent->order);
566 ent->dir = debugfs_create_dir(ent->name, cache->root);
567 if (!ent->dir)
568 return -ENOMEM;
569
570 ent->fsize = debugfs_create_file("size", 0600, ent->dir, ent,
571 &size_fops);
572 if (!ent->fsize)
573 return -ENOMEM;
574
575 ent->flimit = debugfs_create_file("limit", 0600, ent->dir, ent,
576 &limit_fops);
577 if (!ent->flimit)
578 return -ENOMEM;
579
580 ent->fcur = debugfs_create_u32("cur", 0400, ent->dir,
581 &ent->cur);
582 if (!ent->fcur)
583 return -ENOMEM;
584
585 ent->fmiss = debugfs_create_u32("miss", 0600, ent->dir,
586 &ent->miss);
587 if (!ent->fmiss)
588 return -ENOMEM;
589 }
590
591 return 0;
592}
593
594static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
595{
596 if (!mlx5_debugfs_root)
597 return;
598
599 debugfs_remove_recursive(dev->cache.root);
600}
601
602static void delay_time_func(unsigned long ctx)
603{
604 struct mlx5_ib_dev *dev = (struct mlx5_ib_dev *)ctx;
605
606 dev->fill_delay = 0;
607}
608
609int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
610{
611 struct mlx5_mr_cache *cache = &dev->cache;
612 struct mlx5_cache_ent *ent;
613 int limit;
614 int err;
615 int i;
616
617 cache->wq = create_singlethread_workqueue("mkey_cache");
618 if (!cache->wq) {
619 mlx5_ib_warn(dev, "failed to create work queue\n");
620 return -ENOMEM;
621 }
622
623 setup_timer(&dev->delay_timer, delay_time_func, (unsigned long)dev);
624 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
625 INIT_LIST_HEAD(&cache->ent[i].head);
626 spin_lock_init(&cache->ent[i].lock);
627
628 ent = &cache->ent[i];
629 INIT_LIST_HEAD(&ent->head);
630 spin_lock_init(&ent->lock);
631 ent->order = i + 2;
632 ent->dev = dev;
633
634 if (dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE)
635 limit = dev->mdev->profile->mr_cache[i].limit;
636 else
637 limit = 0;
638
639 INIT_WORK(&ent->work, cache_work_func);
640 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
641 ent->limit = limit;
642 queue_work(cache->wq, &ent->work);
643 }
644
645 err = mlx5_mr_cache_debugfs_init(dev);
646 if (err)
647 mlx5_ib_warn(dev, "cache debugfs failure\n");
648
649 return 0;
650}
651
652int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
653{
654 int i;
655
656 dev->cache.stopped = 1;
657 flush_workqueue(dev->cache.wq);
658
659 mlx5_mr_cache_debugfs_cleanup(dev);
660
661 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
662 clean_keys(dev, i);
663
664 destroy_workqueue(dev->cache.wq);
665 del_timer_sync(&dev->delay_timer);
666
667 return 0;
668}
669
670struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
671{
672 struct mlx5_ib_dev *dev = to_mdev(pd->device);
673 struct mlx5_core_dev *mdev = dev->mdev;
674 struct mlx5_create_mkey_mbox_in *in;
675 struct mlx5_mkey_seg *seg;
676 struct mlx5_ib_mr *mr;
677 int err;
678
679 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
680 if (!mr)
681 return ERR_PTR(-ENOMEM);
682
683 in = kzalloc(sizeof(*in), GFP_KERNEL);
684 if (!in) {
685 err = -ENOMEM;
686 goto err_free;
687 }
688
689 seg = &in->seg;
690 seg->flags = convert_access(acc) | MLX5_ACCESS_MODE_PA;
691 seg->flags_pd = cpu_to_be32(to_mpd(pd)->pdn | MLX5_MKEY_LEN64);
692 seg->qpn_mkey7_0 = cpu_to_be32(0xffffff << 8);
693 seg->start_addr = 0;
694
695 err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, sizeof(*in), NULL, NULL,
696 NULL);
697 if (err)
698 goto err_in;
699
700 kfree(in);
701 mr->ibmr.lkey = mr->mmkey.key;
702 mr->ibmr.rkey = mr->mmkey.key;
703 mr->umem = NULL;
704
705 return &mr->ibmr;
706
707err_in:
708 kfree(in);
709
710err_free:
711 kfree(mr);
712
713 return ERR_PTR(err);
714}
715
716static int get_octo_len(u64 addr, u64 len, int page_size)
717{
718 u64 offset;
719 int npages;
720
721 offset = addr & (page_size - 1);
722 npages = ALIGN(len + offset, page_size) >> ilog2(page_size);
723 return (npages + 1) / 2;
724}
725
726static int use_umr(int order)
727{
728 return order <= MLX5_MAX_UMR_SHIFT;
729}
730
731static int dma_map_mr_pas(struct mlx5_ib_dev *dev, struct ib_umem *umem,
732 int npages, int page_shift, int *size,
733 __be64 **mr_pas, dma_addr_t *dma)
734{
735 __be64 *pas;
736 struct device *ddev = dev->ib_dev.dma_device;
737
738 /*
739 * UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes.
740 * To avoid copying garbage after the pas array, we allocate
741 * a little more.
742 */
743 *size = ALIGN(sizeof(u64) * npages, MLX5_UMR_MTT_ALIGNMENT);
744 *mr_pas = kmalloc(*size + MLX5_UMR_ALIGN - 1, GFP_KERNEL);
745 if (!(*mr_pas))
746 return -ENOMEM;
747
748 pas = PTR_ALIGN(*mr_pas, MLX5_UMR_ALIGN);
749 mlx5_ib_populate_pas(dev, umem, page_shift, pas, MLX5_IB_MTT_PRESENT);
750 /* Clear padding after the actual pages. */
751 memset(pas + npages, 0, *size - npages * sizeof(u64));
752
753 *dma = dma_map_single(ddev, pas, *size, DMA_TO_DEVICE);
754 if (dma_mapping_error(ddev, *dma)) {
755 kfree(*mr_pas);
756 return -ENOMEM;
757 }
758
759 return 0;
760}
761
762static void prep_umr_wqe_common(struct ib_pd *pd, struct ib_send_wr *wr,
763 struct ib_sge *sg, u64 dma, int n, u32 key,
764 int page_shift)
765{
766 struct mlx5_ib_dev *dev = to_mdev(pd->device);
767 struct mlx5_umr_wr *umrwr = umr_wr(wr);
768
769 sg->addr = dma;
770 sg->length = ALIGN(sizeof(u64) * n, 64);
771 sg->lkey = dev->umrc.pd->local_dma_lkey;
772
773 wr->next = NULL;
774 wr->sg_list = sg;
775 if (n)
776 wr->num_sge = 1;
777 else
778 wr->num_sge = 0;
779
780 wr->opcode = MLX5_IB_WR_UMR;
781
782 umrwr->npages = n;
783 umrwr->page_shift = page_shift;
784 umrwr->mkey = key;
785}
786
787static void prep_umr_reg_wqe(struct ib_pd *pd, struct ib_send_wr *wr,
788 struct ib_sge *sg, u64 dma, int n, u32 key,
789 int page_shift, u64 virt_addr, u64 len,
790 int access_flags)
791{
792 struct mlx5_umr_wr *umrwr = umr_wr(wr);
793
794 prep_umr_wqe_common(pd, wr, sg, dma, n, key, page_shift);
795
796 wr->send_flags = 0;
797
798 umrwr->target.virt_addr = virt_addr;
799 umrwr->length = len;
800 umrwr->access_flags = access_flags;
801 umrwr->pd = pd;
802}
803
804static void prep_umr_unreg_wqe(struct mlx5_ib_dev *dev,
805 struct ib_send_wr *wr, u32 key)
806{
807 struct mlx5_umr_wr *umrwr = umr_wr(wr);
808
809 wr->send_flags = MLX5_IB_SEND_UMR_UNREG | MLX5_IB_SEND_UMR_FAIL_IF_FREE;
810 wr->opcode = MLX5_IB_WR_UMR;
811 umrwr->mkey = key;
812}
813
814static struct ib_umem *mr_umem_get(struct ib_pd *pd, u64 start, u64 length,
815 int access_flags, int *npages,
816 int *page_shift, int *ncont, int *order)
817{
818 struct mlx5_ib_dev *dev = to_mdev(pd->device);
819 struct ib_umem *umem = ib_umem_get(pd->uobject->context, start, length,
820 access_flags, 0);
821 if (IS_ERR(umem)) {
822 mlx5_ib_err(dev, "umem get failed (%ld)\n", PTR_ERR(umem));
823 return (void *)umem;
824 }
825
826 mlx5_ib_cont_pages(umem, start, npages, page_shift, ncont, order);
827 if (!*npages) {
828 mlx5_ib_warn(dev, "avoid zero region\n");
829 ib_umem_release(umem);
830 return ERR_PTR(-EINVAL);
831 }
832
833 mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n",
834 *npages, *ncont, *order, *page_shift);
835
836 return umem;
837}
838
839static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
840{
841 struct mlx5_ib_umr_context *context =
842 container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
843
844 context->status = wc->status;
845 complete(&context->done);
846}
847
848static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
849{
850 context->cqe.done = mlx5_ib_umr_done;
851 context->status = -1;
852 init_completion(&context->done);
853}
854
855static struct mlx5_ib_mr *reg_umr(struct ib_pd *pd, struct ib_umem *umem,
856 u64 virt_addr, u64 len, int npages,
857 int page_shift, int order, int access_flags)
858{
859 struct mlx5_ib_dev *dev = to_mdev(pd->device);
860 struct device *ddev = dev->ib_dev.dma_device;
861 struct umr_common *umrc = &dev->umrc;
862 struct mlx5_ib_umr_context umr_context;
863 struct mlx5_umr_wr umrwr = {};
864 struct ib_send_wr *bad;
865 struct mlx5_ib_mr *mr;
866 struct ib_sge sg;
867 int size;
868 __be64 *mr_pas;
869 dma_addr_t dma;
870 int err = 0;
871 int i;
872
873 for (i = 0; i < 1; i++) {
874 mr = alloc_cached_mr(dev, order);
875 if (mr)
876 break;
877
878 err = add_keys(dev, order2idx(dev, order), 1);
879 if (err && err != -EAGAIN) {
880 mlx5_ib_warn(dev, "add_keys failed, err %d\n", err);
881 break;
882 }
883 }
884
885 if (!mr)
886 return ERR_PTR(-EAGAIN);
887
888 err = dma_map_mr_pas(dev, umem, npages, page_shift, &size, &mr_pas,
889 &dma);
890 if (err)
891 goto free_mr;
892
893 mlx5_ib_init_umr_context(&umr_context);
894
895 umrwr.wr.wr_cqe = &umr_context.cqe;
896 prep_umr_reg_wqe(pd, &umrwr.wr, &sg, dma, npages, mr->mmkey.key,
897 page_shift, virt_addr, len, access_flags);
898
899 down(&umrc->sem);
900 err = ib_post_send(umrc->qp, &umrwr.wr, &bad);
901 if (err) {
902 mlx5_ib_warn(dev, "post send failed, err %d\n", err);
903 goto unmap_dma;
904 } else {
905 wait_for_completion(&umr_context.done);
906 if (umr_context.status != IB_WC_SUCCESS) {
907 mlx5_ib_warn(dev, "reg umr failed\n");
908 err = -EFAULT;
909 }
910 }
911
912 mr->mmkey.iova = virt_addr;
913 mr->mmkey.size = len;
914 mr->mmkey.pd = to_mpd(pd)->pdn;
915
916 mr->live = 1;
917
918unmap_dma:
919 up(&umrc->sem);
920 dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
921
922 kfree(mr_pas);
923
924free_mr:
925 if (err) {
926 free_cached_mr(dev, mr);
927 return ERR_PTR(err);
928 }
929
930 return mr;
931}
932
933#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
934int mlx5_ib_update_mtt(struct mlx5_ib_mr *mr, u64 start_page_index, int npages,
935 int zap)
936{
937 struct mlx5_ib_dev *dev = mr->dev;
938 struct device *ddev = dev->ib_dev.dma_device;
939 struct umr_common *umrc = &dev->umrc;
940 struct mlx5_ib_umr_context umr_context;
941 struct ib_umem *umem = mr->umem;
942 int size;
943 __be64 *pas;
944 dma_addr_t dma;
945 struct ib_send_wr *bad;
946 struct mlx5_umr_wr wr;
947 struct ib_sge sg;
948 int err = 0;
949 const int page_index_alignment = MLX5_UMR_MTT_ALIGNMENT / sizeof(u64);
950 const int page_index_mask = page_index_alignment - 1;
951 size_t pages_mapped = 0;
952 size_t pages_to_map = 0;
953 size_t pages_iter = 0;
954 int use_emergency_buf = 0;
955
956 /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
957 * so we need to align the offset and length accordingly */
958 if (start_page_index & page_index_mask) {
959 npages += start_page_index & page_index_mask;
960 start_page_index &= ~page_index_mask;
961 }
962
963 pages_to_map = ALIGN(npages, page_index_alignment);
964
965 if (start_page_index + pages_to_map > MLX5_MAX_UMR_PAGES)
966 return -EINVAL;
967
968 size = sizeof(u64) * pages_to_map;
969 size = min_t(int, PAGE_SIZE, size);
970 /* We allocate with GFP_ATOMIC to avoid recursion into page-reclaim
971 * code, when we are called from an invalidation. The pas buffer must
972 * be 2k-aligned for Connect-IB. */
973 pas = (__be64 *)get_zeroed_page(GFP_ATOMIC);
974 if (!pas) {
975 mlx5_ib_warn(dev, "unable to allocate memory during MTT update, falling back to slower chunked mechanism.\n");
976 pas = mlx5_ib_update_mtt_emergency_buffer;
977 size = MLX5_UMR_MTT_MIN_CHUNK_SIZE;
978 use_emergency_buf = 1;
979 mutex_lock(&mlx5_ib_update_mtt_emergency_buffer_mutex);
980 memset(pas, 0, size);
981 }
982 pages_iter = size / sizeof(u64);
983 dma = dma_map_single(ddev, pas, size, DMA_TO_DEVICE);
984 if (dma_mapping_error(ddev, dma)) {
985 mlx5_ib_err(dev, "unable to map DMA during MTT update.\n");
986 err = -ENOMEM;
987 goto free_pas;
988 }
989
990 for (pages_mapped = 0;
991 pages_mapped < pages_to_map && !err;
992 pages_mapped += pages_iter, start_page_index += pages_iter) {
993 dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE);
994
995 npages = min_t(size_t,
996 pages_iter,
997 ib_umem_num_pages(umem) - start_page_index);
998
999 if (!zap) {
1000 __mlx5_ib_populate_pas(dev, umem, PAGE_SHIFT,
1001 start_page_index, npages, pas,
1002 MLX5_IB_MTT_PRESENT);
1003 /* Clear padding after the pages brought from the
1004 * umem. */
1005 memset(pas + npages, 0, size - npages * sizeof(u64));
1006 }
1007
1008 dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE);
1009
1010 mlx5_ib_init_umr_context(&umr_context);
1011
1012 memset(&wr, 0, sizeof(wr));
1013 wr.wr.wr_cqe = &umr_context.cqe;
1014
1015 sg.addr = dma;
1016 sg.length = ALIGN(npages * sizeof(u64),
1017 MLX5_UMR_MTT_ALIGNMENT);
1018 sg.lkey = dev->umrc.pd->local_dma_lkey;
1019
1020 wr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE |
1021 MLX5_IB_SEND_UMR_UPDATE_MTT;
1022 wr.wr.sg_list = &sg;
1023 wr.wr.num_sge = 1;
1024 wr.wr.opcode = MLX5_IB_WR_UMR;
1025 wr.npages = sg.length / sizeof(u64);
1026 wr.page_shift = PAGE_SHIFT;
1027 wr.mkey = mr->mmkey.key;
1028 wr.target.offset = start_page_index;
1029
1030 down(&umrc->sem);
1031 err = ib_post_send(umrc->qp, &wr.wr, &bad);
1032 if (err) {
1033 mlx5_ib_err(dev, "UMR post send failed, err %d\n", err);
1034 } else {
1035 wait_for_completion(&umr_context.done);
1036 if (umr_context.status != IB_WC_SUCCESS) {
1037 mlx5_ib_err(dev, "UMR completion failed, code %d\n",
1038 umr_context.status);
1039 err = -EFAULT;
1040 }
1041 }
1042 up(&umrc->sem);
1043 }
1044 dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
1045
1046free_pas:
1047 if (!use_emergency_buf)
1048 free_page((unsigned long)pas);
1049 else
1050 mutex_unlock(&mlx5_ib_update_mtt_emergency_buffer_mutex);
1051
1052 return err;
1053}
1054#endif
1055
1056/*
1057 * If ibmr is NULL it will be allocated by reg_create.
1058 * Else, the given ibmr will be used.
1059 */
1060static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd,
1061 u64 virt_addr, u64 length,
1062 struct ib_umem *umem, int npages,
1063 int page_shift, int access_flags)
1064{
1065 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1066 struct mlx5_create_mkey_mbox_in *in;
1067 struct mlx5_ib_mr *mr;
1068 int inlen;
1069 int err;
1070 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1071
1072 mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL);
1073 if (!mr)
1074 return ERR_PTR(-ENOMEM);
1075
1076 inlen = sizeof(*in) + sizeof(*in->pas) * ((npages + 1) / 2) * 2;
1077 in = mlx5_vzalloc(inlen);
1078 if (!in) {
1079 err = -ENOMEM;
1080 goto err_1;
1081 }
1082 mlx5_ib_populate_pas(dev, umem, page_shift, in->pas,
1083 pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1084
1085 /* The MLX5_MKEY_INBOX_PG_ACCESS bit allows setting the access flags
1086 * in the page list submitted with the command. */
1087 in->flags = pg_cap ? cpu_to_be32(MLX5_MKEY_INBOX_PG_ACCESS) : 0;
1088 in->seg.flags = convert_access(access_flags) |
1089 MLX5_ACCESS_MODE_MTT;
1090 in->seg.flags_pd = cpu_to_be32(to_mpd(pd)->pdn);
1091 in->seg.start_addr = cpu_to_be64(virt_addr);
1092 in->seg.len = cpu_to_be64(length);
1093 in->seg.bsfs_octo_size = 0;
1094 in->seg.xlt_oct_size = cpu_to_be32(get_octo_len(virt_addr, length, 1 << page_shift));
1095 in->seg.log2_page_size = page_shift;
1096 in->seg.qpn_mkey7_0 = cpu_to_be32(0xffffff << 8);
1097 in->xlat_oct_act_size = cpu_to_be32(get_octo_len(virt_addr, length,
1098 1 << page_shift));
1099 err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen, NULL,
1100 NULL, NULL);
1101 if (err) {
1102 mlx5_ib_warn(dev, "create mkey failed\n");
1103 goto err_2;
1104 }
1105 mr->umem = umem;
1106 mr->dev = dev;
1107 mr->live = 1;
1108 kvfree(in);
1109
1110 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1111
1112 return mr;
1113
1114err_2:
1115 kvfree(in);
1116
1117err_1:
1118 if (!ibmr)
1119 kfree(mr);
1120
1121 return ERR_PTR(err);
1122}
1123
1124static void set_mr_fileds(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1125 int npages, u64 length, int access_flags)
1126{
1127 mr->npages = npages;
1128 atomic_add(npages, &dev->mdev->priv.reg_pages);
1129 mr->ibmr.lkey = mr->mmkey.key;
1130 mr->ibmr.rkey = mr->mmkey.key;
1131 mr->ibmr.length = length;
1132 mr->access_flags = access_flags;
1133}
1134
1135struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1136 u64 virt_addr, int access_flags,
1137 struct ib_udata *udata)
1138{
1139 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1140 struct mlx5_ib_mr *mr = NULL;
1141 struct ib_umem *umem;
1142 int page_shift;
1143 int npages;
1144 int ncont;
1145 int order;
1146 int err;
1147
1148 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1149 start, virt_addr, length, access_flags);
1150 umem = mr_umem_get(pd, start, length, access_flags, &npages,
1151 &page_shift, &ncont, &order);
1152
1153 if (IS_ERR(umem))
1154 return (void *)umem;
1155
1156 if (use_umr(order)) {
1157 mr = reg_umr(pd, umem, virt_addr, length, ncont, page_shift,
1158 order, access_flags);
1159 if (PTR_ERR(mr) == -EAGAIN) {
1160 mlx5_ib_dbg(dev, "cache empty for order %d", order);
1161 mr = NULL;
1162 }
1163 } else if (access_flags & IB_ACCESS_ON_DEMAND) {
1164 err = -EINVAL;
1165 pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB");
1166 goto error;
1167 }
1168
1169 if (!mr)
1170 mr = reg_create(NULL, pd, virt_addr, length, umem, ncont,
1171 page_shift, access_flags);
1172
1173 if (IS_ERR(mr)) {
1174 err = PTR_ERR(mr);
1175 goto error;
1176 }
1177
1178 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1179
1180 mr->umem = umem;
1181 set_mr_fileds(dev, mr, npages, length, access_flags);
1182
1183#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1184 update_odp_mr(mr);
1185#endif
1186
1187 return &mr->ibmr;
1188
1189error:
1190 ib_umem_release(umem);
1191 return ERR_PTR(err);
1192}
1193
1194static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1195{
1196 struct umr_common *umrc = &dev->umrc;
1197 struct mlx5_ib_umr_context umr_context;
1198 struct mlx5_umr_wr umrwr = {};
1199 struct ib_send_wr *bad;
1200 int err;
1201
1202 mlx5_ib_init_umr_context(&umr_context);
1203
1204 umrwr.wr.wr_cqe = &umr_context.cqe;
1205 prep_umr_unreg_wqe(dev, &umrwr.wr, mr->mmkey.key);
1206
1207 down(&umrc->sem);
1208 err = ib_post_send(umrc->qp, &umrwr.wr, &bad);
1209 if (err) {
1210 up(&umrc->sem);
1211 mlx5_ib_dbg(dev, "err %d\n", err);
1212 goto error;
1213 } else {
1214 wait_for_completion(&umr_context.done);
1215 up(&umrc->sem);
1216 }
1217 if (umr_context.status != IB_WC_SUCCESS) {
1218 mlx5_ib_warn(dev, "unreg umr failed\n");
1219 err = -EFAULT;
1220 goto error;
1221 }
1222 return 0;
1223
1224error:
1225 return err;
1226}
1227
1228static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr, u64 virt_addr,
1229 u64 length, int npages, int page_shift, int order,
1230 int access_flags, int flags)
1231{
1232 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1233 struct device *ddev = dev->ib_dev.dma_device;
1234 struct mlx5_ib_umr_context umr_context;
1235 struct ib_send_wr *bad;
1236 struct mlx5_umr_wr umrwr = {};
1237 struct ib_sge sg;
1238 struct umr_common *umrc = &dev->umrc;
1239 dma_addr_t dma = 0;
1240 __be64 *mr_pas = NULL;
1241 int size;
1242 int err;
1243
1244 mlx5_ib_init_umr_context(&umr_context);
1245
1246 umrwr.wr.wr_cqe = &umr_context.cqe;
1247 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1248
1249 if (flags & IB_MR_REREG_TRANS) {
1250 err = dma_map_mr_pas(dev, mr->umem, npages, page_shift, &size,
1251 &mr_pas, &dma);
1252 if (err)
1253 return err;
1254
1255 umrwr.target.virt_addr = virt_addr;
1256 umrwr.length = length;
1257 umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1258 }
1259
1260 prep_umr_wqe_common(pd, &umrwr.wr, &sg, dma, npages, mr->mmkey.key,
1261 page_shift);
1262
1263 if (flags & IB_MR_REREG_PD) {
1264 umrwr.pd = pd;
1265 umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD;
1266 }
1267
1268 if (flags & IB_MR_REREG_ACCESS) {
1269 umrwr.access_flags = access_flags;
1270 umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_ACCESS;
1271 }
1272
1273 /* post send request to UMR QP */
1274 down(&umrc->sem);
1275 err = ib_post_send(umrc->qp, &umrwr.wr, &bad);
1276
1277 if (err) {
1278 mlx5_ib_warn(dev, "post send failed, err %d\n", err);
1279 } else {
1280 wait_for_completion(&umr_context.done);
1281 if (umr_context.status != IB_WC_SUCCESS) {
1282 mlx5_ib_warn(dev, "reg umr failed (%u)\n",
1283 umr_context.status);
1284 err = -EFAULT;
1285 }
1286 }
1287
1288 up(&umrc->sem);
1289 if (flags & IB_MR_REREG_TRANS) {
1290 dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
1291 kfree(mr_pas);
1292 }
1293 return err;
1294}
1295
1296int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1297 u64 length, u64 virt_addr, int new_access_flags,
1298 struct ib_pd *new_pd, struct ib_udata *udata)
1299{
1300 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1301 struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1302 struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd;
1303 int access_flags = flags & IB_MR_REREG_ACCESS ?
1304 new_access_flags :
1305 mr->access_flags;
1306 u64 addr = (flags & IB_MR_REREG_TRANS) ? virt_addr : mr->umem->address;
1307 u64 len = (flags & IB_MR_REREG_TRANS) ? length : mr->umem->length;
1308 int page_shift = 0;
1309 int npages = 0;
1310 int ncont = 0;
1311 int order = 0;
1312 int err;
1313
1314 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1315 start, virt_addr, length, access_flags);
1316
1317 if (flags != IB_MR_REREG_PD) {
1318 /*
1319 * Replace umem. This needs to be done whether or not UMR is
1320 * used.
1321 */
1322 flags |= IB_MR_REREG_TRANS;
1323 ib_umem_release(mr->umem);
1324 mr->umem = mr_umem_get(pd, addr, len, access_flags, &npages,
1325 &page_shift, &ncont, &order);
1326 if (IS_ERR(mr->umem)) {
1327 err = PTR_ERR(mr->umem);
1328 mr->umem = NULL;
1329 return err;
1330 }
1331 }
1332
1333 if (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len)) {
1334 /*
1335 * UMR can't be used - MKey needs to be replaced.
1336 */
1337 if (mr->umred) {
1338 err = unreg_umr(dev, mr);
1339 if (err)
1340 mlx5_ib_warn(dev, "Failed to unregister MR\n");
1341 } else {
1342 err = destroy_mkey(dev, mr);
1343 if (err)
1344 mlx5_ib_warn(dev, "Failed to destroy MKey\n");
1345 }
1346 if (err)
1347 return err;
1348
1349 mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont,
1350 page_shift, access_flags);
1351
1352 if (IS_ERR(mr))
1353 return PTR_ERR(mr);
1354
1355 mr->umred = 0;
1356 } else {
1357 /*
1358 * Send a UMR WQE
1359 */
1360 err = rereg_umr(pd, mr, addr, len, npages, page_shift,
1361 order, access_flags, flags);
1362 if (err) {
1363 mlx5_ib_warn(dev, "Failed to rereg UMR\n");
1364 return err;
1365 }
1366 }
1367
1368 if (flags & IB_MR_REREG_PD) {
1369 ib_mr->pd = pd;
1370 mr->mmkey.pd = to_mpd(pd)->pdn;
1371 }
1372
1373 if (flags & IB_MR_REREG_ACCESS)
1374 mr->access_flags = access_flags;
1375
1376 if (flags & IB_MR_REREG_TRANS) {
1377 atomic_sub(mr->npages, &dev->mdev->priv.reg_pages);
1378 set_mr_fileds(dev, mr, npages, len, access_flags);
1379 mr->mmkey.iova = addr;
1380 mr->mmkey.size = len;
1381 }
1382#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1383 update_odp_mr(mr);
1384#endif
1385
1386 return 0;
1387}
1388
1389static int
1390mlx5_alloc_priv_descs(struct ib_device *device,
1391 struct mlx5_ib_mr *mr,
1392 int ndescs,
1393 int desc_size)
1394{
1395 int size = ndescs * desc_size;
1396 int add_size;
1397 int ret;
1398
1399 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1400
1401 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1402 if (!mr->descs_alloc)
1403 return -ENOMEM;
1404
1405 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1406
1407 mr->desc_map = dma_map_single(device->dma_device, mr->descs,
1408 size, DMA_TO_DEVICE);
1409 if (dma_mapping_error(device->dma_device, mr->desc_map)) {
1410 ret = -ENOMEM;
1411 goto err;
1412 }
1413
1414 return 0;
1415err:
1416 kfree(mr->descs_alloc);
1417
1418 return ret;
1419}
1420
1421static void
1422mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1423{
1424 if (mr->descs) {
1425 struct ib_device *device = mr->ibmr.device;
1426 int size = mr->max_descs * mr->desc_size;
1427
1428 dma_unmap_single(device->dma_device, mr->desc_map,
1429 size, DMA_TO_DEVICE);
1430 kfree(mr->descs_alloc);
1431 mr->descs = NULL;
1432 }
1433}
1434
1435static int clean_mr(struct mlx5_ib_mr *mr)
1436{
1437 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1438 int umred = mr->umred;
1439 int err;
1440
1441 if (mr->sig) {
1442 if (mlx5_core_destroy_psv(dev->mdev,
1443 mr->sig->psv_memory.psv_idx))
1444 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1445 mr->sig->psv_memory.psv_idx);
1446 if (mlx5_core_destroy_psv(dev->mdev,
1447 mr->sig->psv_wire.psv_idx))
1448 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1449 mr->sig->psv_wire.psv_idx);
1450 kfree(mr->sig);
1451 mr->sig = NULL;
1452 }
1453
1454 mlx5_free_priv_descs(mr);
1455
1456 if (!umred) {
1457 err = destroy_mkey(dev, mr);
1458 if (err) {
1459 mlx5_ib_warn(dev, "failed to destroy mkey 0x%x (%d)\n",
1460 mr->mmkey.key, err);
1461 return err;
1462 }
1463 } else {
1464 err = unreg_umr(dev, mr);
1465 if (err) {
1466 mlx5_ib_warn(dev, "failed unregister\n");
1467 return err;
1468 }
1469 free_cached_mr(dev, mr);
1470 }
1471
1472 if (!umred)
1473 kfree(mr);
1474
1475 return 0;
1476}
1477
1478int mlx5_ib_dereg_mr(struct ib_mr *ibmr)
1479{
1480 struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1481 struct mlx5_ib_mr *mr = to_mmr(ibmr);
1482 int npages = mr->npages;
1483 struct ib_umem *umem = mr->umem;
1484
1485#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1486 if (umem && umem->odp_data) {
1487 /* Prevent new page faults from succeeding */
1488 mr->live = 0;
1489 /* Wait for all running page-fault handlers to finish. */
1490 synchronize_srcu(&dev->mr_srcu);
1491 /* Destroy all page mappings */
1492 mlx5_ib_invalidate_range(umem, ib_umem_start(umem),
1493 ib_umem_end(umem));
1494 /*
1495 * We kill the umem before the MR for ODP,
1496 * so that there will not be any invalidations in
1497 * flight, looking at the *mr struct.
1498 */
1499 ib_umem_release(umem);
1500 atomic_sub(npages, &dev->mdev->priv.reg_pages);
1501
1502 /* Avoid double-freeing the umem. */
1503 umem = NULL;
1504 }
1505#endif
1506
1507 clean_mr(mr);
1508
1509 if (umem) {
1510 ib_umem_release(umem);
1511 atomic_sub(npages, &dev->mdev->priv.reg_pages);
1512 }
1513
1514 return 0;
1515}
1516
1517struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd,
1518 enum ib_mr_type mr_type,
1519 u32 max_num_sg)
1520{
1521 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1522 struct mlx5_create_mkey_mbox_in *in;
1523 struct mlx5_ib_mr *mr;
1524 int ndescs = ALIGN(max_num_sg, 4);
1525 int err;
1526
1527 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1528 if (!mr)
1529 return ERR_PTR(-ENOMEM);
1530
1531 in = kzalloc(sizeof(*in), GFP_KERNEL);
1532 if (!in) {
1533 err = -ENOMEM;
1534 goto err_free;
1535 }
1536
1537 in->seg.status = MLX5_MKEY_STATUS_FREE;
1538 in->seg.xlt_oct_size = cpu_to_be32(ndescs);
1539 in->seg.qpn_mkey7_0 = cpu_to_be32(0xffffff << 8);
1540 in->seg.flags_pd = cpu_to_be32(to_mpd(pd)->pdn);
1541
1542 if (mr_type == IB_MR_TYPE_MEM_REG) {
1543 mr->access_mode = MLX5_ACCESS_MODE_MTT;
1544 in->seg.log2_page_size = PAGE_SHIFT;
1545
1546 err = mlx5_alloc_priv_descs(pd->device, mr,
1547 ndescs, sizeof(u64));
1548 if (err)
1549 goto err_free_in;
1550
1551 mr->desc_size = sizeof(u64);
1552 mr->max_descs = ndescs;
1553 } else if (mr_type == IB_MR_TYPE_SG_GAPS) {
1554 mr->access_mode = MLX5_ACCESS_MODE_KLM;
1555
1556 err = mlx5_alloc_priv_descs(pd->device, mr,
1557 ndescs, sizeof(struct mlx5_klm));
1558 if (err)
1559 goto err_free_in;
1560 mr->desc_size = sizeof(struct mlx5_klm);
1561 mr->max_descs = ndescs;
1562 } else if (mr_type == IB_MR_TYPE_SIGNATURE) {
1563 u32 psv_index[2];
1564
1565 in->seg.flags_pd = cpu_to_be32(be32_to_cpu(in->seg.flags_pd) |
1566 MLX5_MKEY_BSF_EN);
1567 in->seg.bsfs_octo_size = cpu_to_be32(MLX5_MKEY_BSF_OCTO_SIZE);
1568 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1569 if (!mr->sig) {
1570 err = -ENOMEM;
1571 goto err_free_in;
1572 }
1573
1574 /* create mem & wire PSVs */
1575 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn,
1576 2, psv_index);
1577 if (err)
1578 goto err_free_sig;
1579
1580 mr->access_mode = MLX5_ACCESS_MODE_KLM;
1581 mr->sig->psv_memory.psv_idx = psv_index[0];
1582 mr->sig->psv_wire.psv_idx = psv_index[1];
1583
1584 mr->sig->sig_status_checked = true;
1585 mr->sig->sig_err_exists = false;
1586 /* Next UMR, Arm SIGERR */
1587 ++mr->sig->sigerr_count;
1588 } else {
1589 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1590 err = -EINVAL;
1591 goto err_free_in;
1592 }
1593
1594 in->seg.flags = MLX5_PERM_UMR_EN | mr->access_mode;
1595 err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, sizeof(*in),
1596 NULL, NULL, NULL);
1597 if (err)
1598 goto err_destroy_psv;
1599
1600 mr->ibmr.lkey = mr->mmkey.key;
1601 mr->ibmr.rkey = mr->mmkey.key;
1602 mr->umem = NULL;
1603 kfree(in);
1604
1605 return &mr->ibmr;
1606
1607err_destroy_psv:
1608 if (mr->sig) {
1609 if (mlx5_core_destroy_psv(dev->mdev,
1610 mr->sig->psv_memory.psv_idx))
1611 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1612 mr->sig->psv_memory.psv_idx);
1613 if (mlx5_core_destroy_psv(dev->mdev,
1614 mr->sig->psv_wire.psv_idx))
1615 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1616 mr->sig->psv_wire.psv_idx);
1617 }
1618 mlx5_free_priv_descs(mr);
1619err_free_sig:
1620 kfree(mr->sig);
1621err_free_in:
1622 kfree(in);
1623err_free:
1624 kfree(mr);
1625 return ERR_PTR(err);
1626}
1627
1628struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
1629 struct ib_udata *udata)
1630{
1631 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1632 struct mlx5_create_mkey_mbox_in *in = NULL;
1633 struct mlx5_ib_mw *mw = NULL;
1634 int ndescs;
1635 int err;
1636 struct mlx5_ib_alloc_mw req = {};
1637 struct {
1638 __u32 comp_mask;
1639 __u32 response_length;
1640 } resp = {};
1641
1642 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
1643 if (err)
1644 return ERR_PTR(err);
1645
1646 if (req.comp_mask || req.reserved1 || req.reserved2)
1647 return ERR_PTR(-EOPNOTSUPP);
1648
1649 if (udata->inlen > sizeof(req) &&
1650 !ib_is_udata_cleared(udata, sizeof(req),
1651 udata->inlen - sizeof(req)))
1652 return ERR_PTR(-EOPNOTSUPP);
1653
1654 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
1655
1656 mw = kzalloc(sizeof(*mw), GFP_KERNEL);
1657 in = kzalloc(sizeof(*in), GFP_KERNEL);
1658 if (!mw || !in) {
1659 err = -ENOMEM;
1660 goto free;
1661 }
1662
1663 in->seg.status = MLX5_MKEY_STATUS_FREE;
1664 in->seg.xlt_oct_size = cpu_to_be32(ndescs);
1665 in->seg.flags_pd = cpu_to_be32(to_mpd(pd)->pdn);
1666 in->seg.flags = MLX5_PERM_UMR_EN | MLX5_ACCESS_MODE_KLM |
1667 MLX5_PERM_LOCAL_READ;
1668 if (type == IB_MW_TYPE_2)
1669 in->seg.flags_pd |= cpu_to_be32(MLX5_MKEY_REMOTE_INVAL);
1670 in->seg.qpn_mkey7_0 = cpu_to_be32(0xffffff << 8);
1671
1672 err = mlx5_core_create_mkey(dev->mdev, &mw->mmkey, in, sizeof(*in),
1673 NULL, NULL, NULL);
1674 if (err)
1675 goto free;
1676
1677 mw->ibmw.rkey = mw->mmkey.key;
1678
1679 resp.response_length = min(offsetof(typeof(resp), response_length) +
1680 sizeof(resp.response_length), udata->outlen);
1681 if (resp.response_length) {
1682 err = ib_copy_to_udata(udata, &resp, resp.response_length);
1683 if (err) {
1684 mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
1685 goto free;
1686 }
1687 }
1688
1689 kfree(in);
1690 return &mw->ibmw;
1691
1692free:
1693 kfree(mw);
1694 kfree(in);
1695 return ERR_PTR(err);
1696}
1697
1698int mlx5_ib_dealloc_mw(struct ib_mw *mw)
1699{
1700 struct mlx5_ib_mw *mmw = to_mmw(mw);
1701 int err;
1702
1703 err = mlx5_core_destroy_mkey((to_mdev(mw->device))->mdev,
1704 &mmw->mmkey);
1705 if (!err)
1706 kfree(mmw);
1707 return err;
1708}
1709
1710int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
1711 struct ib_mr_status *mr_status)
1712{
1713 struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1714 int ret = 0;
1715
1716 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
1717 pr_err("Invalid status check mask\n");
1718 ret = -EINVAL;
1719 goto done;
1720 }
1721
1722 mr_status->fail_status = 0;
1723 if (check_mask & IB_MR_CHECK_SIG_STATUS) {
1724 if (!mmr->sig) {
1725 ret = -EINVAL;
1726 pr_err("signature status check requested on a non-signature enabled MR\n");
1727 goto done;
1728 }
1729
1730 mmr->sig->sig_status_checked = true;
1731 if (!mmr->sig->sig_err_exists)
1732 goto done;
1733
1734 if (ibmr->lkey == mmr->sig->err_item.key)
1735 memcpy(&mr_status->sig_err, &mmr->sig->err_item,
1736 sizeof(mr_status->sig_err));
1737 else {
1738 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
1739 mr_status->sig_err.sig_err_offset = 0;
1740 mr_status->sig_err.key = mmr->sig->err_item.key;
1741 }
1742
1743 mmr->sig->sig_err_exists = false;
1744 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
1745 }
1746
1747done:
1748 return ret;
1749}
1750
1751static int
1752mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
1753 struct scatterlist *sgl,
1754 unsigned short sg_nents)
1755{
1756 struct scatterlist *sg = sgl;
1757 struct mlx5_klm *klms = mr->descs;
1758 u32 lkey = mr->ibmr.pd->local_dma_lkey;
1759 int i;
1760
1761 mr->ibmr.iova = sg_dma_address(sg);
1762 mr->ibmr.length = 0;
1763 mr->ndescs = sg_nents;
1764
1765 for_each_sg(sgl, sg, sg_nents, i) {
1766 if (unlikely(i > mr->max_descs))
1767 break;
1768 klms[i].va = cpu_to_be64(sg_dma_address(sg));
1769 klms[i].bcount = cpu_to_be32(sg_dma_len(sg));
1770 klms[i].key = cpu_to_be32(lkey);
1771 mr->ibmr.length += sg_dma_len(sg);
1772 }
1773
1774 return i;
1775}
1776
1777static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
1778{
1779 struct mlx5_ib_mr *mr = to_mmr(ibmr);
1780 __be64 *descs;
1781
1782 if (unlikely(mr->ndescs == mr->max_descs))
1783 return -ENOMEM;
1784
1785 descs = mr->descs;
1786 descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
1787
1788 return 0;
1789}
1790
1791int mlx5_ib_map_mr_sg(struct ib_mr *ibmr,
1792 struct scatterlist *sg,
1793 int sg_nents)
1794{
1795 struct mlx5_ib_mr *mr = to_mmr(ibmr);
1796 int n;
1797
1798 mr->ndescs = 0;
1799
1800 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
1801 mr->desc_size * mr->max_descs,
1802 DMA_TO_DEVICE);
1803
1804 if (mr->access_mode == MLX5_ACCESS_MODE_KLM)
1805 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents);
1806 else
1807 n = ib_sg_to_pages(ibmr, sg, sg_nents, mlx5_set_page);
1808
1809 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
1810 mr->desc_size * mr->max_descs,
1811 DMA_TO_DEVICE);
1812
1813 return n;
1814}