Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v6.8
   1/*
   2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
   3 * Copyright (c) 2020, Intel Corporation. All rights reserved.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34
  35#include <linux/kref.h>
  36#include <linux/random.h>
  37#include <linux/debugfs.h>
  38#include <linux/export.h>
  39#include <linux/delay.h>
  40#include <linux/dma-buf.h>
  41#include <linux/dma-resv.h>
  42#include <rdma/ib_umem_odp.h>
  43#include "dm.h"
  44#include "mlx5_ib.h"
  45#include "umr.h"
  46
  47enum {
  48	MAX_PENDING_REG_MR = 8,
  49};
  50
  51#define MLX5_UMR_ALIGN 2048
 
 
 
 
 
 
  52
  53static void
  54create_mkey_callback(int status, struct mlx5_async_work *context);
  55static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
  56				     u64 iova, int access_flags,
  57				     unsigned int page_size, bool populate);
  58
  59static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
  60					  struct ib_pd *pd)
  61{
  62	struct mlx5_ib_dev *dev = to_mdev(pd->device);
  63
  64	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
  65	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
  66	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
  67	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
  68	MLX5_SET(mkc, mkc, lr, 1);
  69
  70	if (acc & IB_ACCESS_RELAXED_ORDERING) {
  71		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
  72			MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
 
  73
  74		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
  75		    (MLX5_CAP_GEN(dev->mdev,
  76				  relaxed_ordering_read_pci_enabled) &&
  77		     pcie_relaxed_ordering_enabled(dev->mdev->pdev)))
  78			MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
  79	}
  80
  81	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
  82	MLX5_SET(mkc, mkc, qpn, 0xffffff);
  83	MLX5_SET64(mkc, mkc, start_addr, start_addr);
  84}
  85
  86static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
  87{
  88	u8 key = atomic_inc_return(&dev->mkey_var);
  89	void *mkc;
  90
  91	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
  92	MLX5_SET(mkc, mkc, mkey_7_0, key);
  93	*mkey = key;
  94}
  95
  96static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
  97			       struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
  98{
  99	int ret;
 100
 101	assign_mkey_variant(dev, &mkey->key, in);
 102	ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
 103	if (!ret)
 104		init_waitqueue_head(&mkey->wait);
 105
 106	return ret;
 107}
 108
 109static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
 110{
 111	struct mlx5_ib_dev *dev = async_create->ent->dev;
 112	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
 113	size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
 114
 115	MLX5_SET(create_mkey_in, async_create->in, opcode,
 116		 MLX5_CMD_OP_CREATE_MKEY);
 117	assign_mkey_variant(dev, &async_create->mkey, async_create->in);
 118	return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
 119				async_create->out, outlen, create_mkey_callback,
 120				&async_create->cb_work);
 121}
 122
 123static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
 124static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
 125
 126static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
 127{
 128	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
 129
 130	return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
 131}
 132
 133static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
 
 134{
 135	if (status == -ENXIO) /* core driver is not available */
 136		return;
 137
 138	mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
 139	if (status != -EREMOTEIO) /* driver specific failure */
 140		return;
 141
 142	/* Failed in FW, print cmd out failure details */
 143	mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
 144}
 145
 146static int push_mkey_locked(struct mlx5_cache_ent *ent, u32 mkey)
 147{
 148	unsigned long tmp = ent->mkeys_queue.ci % NUM_MKEYS_PER_PAGE;
 149	struct mlx5_mkeys_page *page;
 150
 151	lockdep_assert_held(&ent->mkeys_queue.lock);
 152	if (ent->mkeys_queue.ci >=
 153	    ent->mkeys_queue.num_pages * NUM_MKEYS_PER_PAGE) {
 154		page = kzalloc(sizeof(*page), GFP_ATOMIC);
 155		if (!page)
 156			return -ENOMEM;
 157		ent->mkeys_queue.num_pages++;
 158		list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
 159	} else {
 160		page = list_last_entry(&ent->mkeys_queue.pages_list,
 161				       struct mlx5_mkeys_page, list);
 162	}
 163
 164	page->mkeys[tmp] = mkey;
 165	ent->mkeys_queue.ci++;
 166	return 0;
 167}
 
 168
 169static int pop_mkey_locked(struct mlx5_cache_ent *ent)
 170{
 171	unsigned long tmp = (ent->mkeys_queue.ci - 1) % NUM_MKEYS_PER_PAGE;
 172	struct mlx5_mkeys_page *last_page;
 173	u32 mkey;
 174
 175	lockdep_assert_held(&ent->mkeys_queue.lock);
 176	last_page = list_last_entry(&ent->mkeys_queue.pages_list,
 177				    struct mlx5_mkeys_page, list);
 178	mkey = last_page->mkeys[tmp];
 179	last_page->mkeys[tmp] = 0;
 180	ent->mkeys_queue.ci--;
 181	if (ent->mkeys_queue.num_pages > 1 && !tmp) {
 182		list_del(&last_page->list);
 183		ent->mkeys_queue.num_pages--;
 184		kfree(last_page);
 185	}
 186	return mkey;
 187}
 188
 189static void create_mkey_callback(int status, struct mlx5_async_work *context)
 190{
 191	struct mlx5r_async_create_mkey *mkey_out =
 192		container_of(context, struct mlx5r_async_create_mkey, cb_work);
 193	struct mlx5_cache_ent *ent = mkey_out->ent;
 194	struct mlx5_ib_dev *dev = ent->dev;
 195	unsigned long flags;
 
 
 196
 
 
 
 197	if (status) {
 198		create_mkey_warn(dev, status, mkey_out->out);
 199		kfree(mkey_out);
 200		spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
 201		ent->pending--;
 202		WRITE_ONCE(dev->fill_delay, 1);
 203		spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
 204		mod_timer(&dev->delay_timer, jiffies + HZ);
 205		return;
 206	}
 207
 208	mkey_out->mkey |= mlx5_idx_to_mkey(
 209		MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
 210	WRITE_ONCE(dev->cache.last_add, jiffies);
 211
 212	spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
 213	push_mkey_locked(ent, mkey_out->mkey);
 214	/* If we are doing fill_to_high_water then keep going. */
 215	queue_adjust_cache_locked(ent);
 216	ent->pending--;
 217	spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
 218	kfree(mkey_out);
 219}
 220
 221static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
 222{
 223	int ret = 0;
 
 224
 225	switch (access_mode) {
 226	case MLX5_MKC_ACCESS_MODE_MTT:
 227		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
 228						   sizeof(struct mlx5_mtt));
 229		break;
 230	case MLX5_MKC_ACCESS_MODE_KSM:
 231		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
 232						   sizeof(struct mlx5_klm));
 233		break;
 234	default:
 235		WARN_ON(1);
 236	}
 237	return ret;
 238}
 239
 240static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
 241{
 242	set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0,
 243				      ent->dev->umrc.pd);
 244	MLX5_SET(mkc, mkc, free, 1);
 245	MLX5_SET(mkc, mkc, umr_en, 1);
 246	MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3);
 247	MLX5_SET(mkc, mkc, access_mode_4_2,
 248		(ent->rb_key.access_mode >> 2) & 0x7);
 249
 250	MLX5_SET(mkc, mkc, translations_octword_size,
 251		 get_mkc_octo_size(ent->rb_key.access_mode,
 252				   ent->rb_key.ndescs));
 253	MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
 254}
 255
 256/* Asynchronously schedule new MRs to be populated in the cache. */
 257static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
 258{
 259	struct mlx5r_async_create_mkey *async_create;
 260	void *mkc;
 
 
 
 261	int err = 0;
 262	int i;
 263
 264	for (i = 0; i < num; i++) {
 265		async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
 266				       GFP_KERNEL);
 267		if (!async_create)
 268			return -ENOMEM;
 269		mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
 270				   memory_key_mkey_entry);
 271		set_cache_mkc(ent, mkc);
 272		async_create->ent = ent;
 273
 274		spin_lock_irq(&ent->mkeys_queue.lock);
 275		if (ent->pending >= MAX_PENDING_REG_MR) {
 276			err = -EAGAIN;
 277			goto free_async_create;
 278		}
 279		ent->pending++;
 280		spin_unlock_irq(&ent->mkeys_queue.lock);
 281
 282		err = mlx5_ib_create_mkey_cb(async_create);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283		if (err) {
 284			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
 285			goto err_create_mkey;
 
 
 
 
 286		}
 287	}
 288
 289	return 0;
 290
 291err_create_mkey:
 292	spin_lock_irq(&ent->mkeys_queue.lock);
 293	ent->pending--;
 294free_async_create:
 295	spin_unlock_irq(&ent->mkeys_queue.lock);
 296	kfree(async_create);
 297	return err;
 298}
 299
 300/* Synchronously create a MR in the cache */
 301static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
 302{
 303	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
 304	void *mkc;
 305	u32 *in;
 306	int err;
 307
 308	in = kzalloc(inlen, GFP_KERNEL);
 309	if (!in)
 310		return -ENOMEM;
 311	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
 312	set_cache_mkc(ent, mkc);
 313
 314	err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
 315	if (err)
 316		goto free_in;
 317
 318	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
 319free_in:
 320	kfree(in);
 321	return err;
 322}
 323
 324static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
 325{
 326	u32 mkey;
 327
 328	lockdep_assert_held(&ent->mkeys_queue.lock);
 329	if (!ent->mkeys_queue.ci)
 330		return;
 331	mkey = pop_mkey_locked(ent);
 332	spin_unlock_irq(&ent->mkeys_queue.lock);
 333	mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
 334	spin_lock_irq(&ent->mkeys_queue.lock);
 335}
 336
 337static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
 338				bool limit_fill)
 339	__acquires(&ent->mkeys_queue.lock) __releases(&ent->mkeys_queue.lock)
 340{
 
 
 
 341	int err;
 
 342
 343	lockdep_assert_held(&ent->mkeys_queue.lock);
 344
 345	while (true) {
 346		if (limit_fill)
 347			target = ent->limit * 2;
 348		if (target == ent->pending + ent->mkeys_queue.ci)
 349			return 0;
 350		if (target > ent->pending + ent->mkeys_queue.ci) {
 351			u32 todo = target - (ent->pending + ent->mkeys_queue.ci);
 352
 353			spin_unlock_irq(&ent->mkeys_queue.lock);
 354			err = add_keys(ent, todo);
 355			if (err == -EAGAIN)
 356				usleep_range(3000, 5000);
 357			spin_lock_irq(&ent->mkeys_queue.lock);
 358			if (err) {
 359				if (err != -EAGAIN)
 360					return err;
 361			} else
 362				return 0;
 363		} else {
 364			remove_cache_mr_locked(ent);
 365		}
 366	}
 367}
 368
 369static ssize_t size_write(struct file *filp, const char __user *buf,
 370			  size_t count, loff_t *pos)
 371{
 372	struct mlx5_cache_ent *ent = filp->private_data;
 373	u32 target;
 
 
 374	int err;
 
 375
 376	err = kstrtou32_from_user(buf, count, 0, &target);
 377	if (err)
 378		return err;
 379
 380	/*
 381	 * Target is the new value of total_mrs the user requests, however we
 382	 * cannot free MRs that are in use. Compute the target value for stored
 383	 * mkeys.
 384	 */
 385	spin_lock_irq(&ent->mkeys_queue.lock);
 386	if (target < ent->in_use) {
 387		err = -EINVAL;
 388		goto err_unlock;
 389	}
 390	target = target - ent->in_use;
 391	if (target < ent->limit || target > ent->limit*2) {
 392		err = -EINVAL;
 393		goto err_unlock;
 
 
 
 
 
 394	}
 395	err = resize_available_mrs(ent, target, false);
 396	if (err)
 397		goto err_unlock;
 398	spin_unlock_irq(&ent->mkeys_queue.lock);
 399
 400	return count;
 401
 402err_unlock:
 403	spin_unlock_irq(&ent->mkeys_queue.lock);
 404	return err;
 405}
 406
 407static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
 408			 loff_t *pos)
 409{
 410	struct mlx5_cache_ent *ent = filp->private_data;
 411	char lbuf[20];
 412	int err;
 413
 414	err = snprintf(lbuf, sizeof(lbuf), "%ld\n",
 415		       ent->mkeys_queue.ci + ent->in_use);
 
 
 416	if (err < 0)
 417		return err;
 418
 419	return simple_read_from_buffer(buf, count, pos, lbuf, err);
 
 
 
 
 
 420}
 421
 422static const struct file_operations size_fops = {
 423	.owner	= THIS_MODULE,
 424	.open	= simple_open,
 425	.write	= size_write,
 426	.read	= size_read,
 427};
 428
 429static ssize_t limit_write(struct file *filp, const char __user *buf,
 430			   size_t count, loff_t *pos)
 431{
 432	struct mlx5_cache_ent *ent = filp->private_data;
 
 
 433	u32 var;
 434	int err;
 
 435
 436	err = kstrtou32_from_user(buf, count, 0, &var);
 437	if (err)
 438		return err;
 
 
 
 
 
 
 
 
 439
 440	/*
 441	 * Upon set we immediately fill the cache to high water mark implied by
 442	 * the limit.
 443	 */
 444	spin_lock_irq(&ent->mkeys_queue.lock);
 445	ent->limit = var;
 446	err = resize_available_mrs(ent, 0, true);
 447	spin_unlock_irq(&ent->mkeys_queue.lock);
 448	if (err)
 449		return err;
 
 
 
 450	return count;
 451}
 452
 453static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
 454			  loff_t *pos)
 455{
 456	struct mlx5_cache_ent *ent = filp->private_data;
 457	char lbuf[20];
 458	int err;
 459
 
 
 
 460	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
 461	if (err < 0)
 462		return err;
 463
 464	return simple_read_from_buffer(buf, count, pos, lbuf, err);
 
 
 
 
 
 465}
 466
 467static const struct file_operations limit_fops = {
 468	.owner	= THIS_MODULE,
 469	.open	= simple_open,
 470	.write	= limit_write,
 471	.read	= limit_read,
 472};
 473
 474static bool someone_adding(struct mlx5_mkey_cache *cache)
 475{
 476	struct mlx5_cache_ent *ent;
 477	struct rb_node *node;
 478	bool ret;
 479
 480	mutex_lock(&cache->rb_lock);
 481	for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) {
 482		ent = rb_entry(node, struct mlx5_cache_ent, node);
 483		spin_lock_irq(&ent->mkeys_queue.lock);
 484		ret = ent->mkeys_queue.ci < ent->limit;
 485		spin_unlock_irq(&ent->mkeys_queue.lock);
 486		if (ret) {
 487			mutex_unlock(&cache->rb_lock);
 488			return true;
 489		}
 490	}
 491	mutex_unlock(&cache->rb_lock);
 492	return false;
 493}
 494
 495/*
 496 * Check if the bucket is outside the high/low water mark and schedule an async
 497 * update. The cache refill has hysteresis, once the low water mark is hit it is
 498 * refilled up to the high mark.
 499 */
 500static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
 501{
 502	lockdep_assert_held(&ent->mkeys_queue.lock);
 503
 504	if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp)
 505		return;
 506	if (ent->mkeys_queue.ci < ent->limit) {
 507		ent->fill_to_high_water = true;
 508		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
 509	} else if (ent->fill_to_high_water &&
 510		   ent->mkeys_queue.ci + ent->pending < 2 * ent->limit) {
 511		/*
 512		 * Once we start populating due to hitting a low water mark
 513		 * continue until we pass the high water mark.
 514		 */
 515		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
 516	} else if (ent->mkeys_queue.ci == 2 * ent->limit) {
 517		ent->fill_to_high_water = false;
 518	} else if (ent->mkeys_queue.ci > 2 * ent->limit) {
 519		/* Queue deletion of excess entries */
 520		ent->fill_to_high_water = false;
 521		if (ent->pending)
 522			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
 523					   msecs_to_jiffies(1000));
 524		else
 525			mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
 526	}
 527}
 528
 529static void __cache_work_func(struct mlx5_cache_ent *ent)
 530{
 531	struct mlx5_ib_dev *dev = ent->dev;
 532	struct mlx5_mkey_cache *cache = &dev->cache;
 
 533	int err;
 534
 535	spin_lock_irq(&ent->mkeys_queue.lock);
 536	if (ent->disabled)
 537		goto out;
 538
 539	if (ent->fill_to_high_water &&
 540	    ent->mkeys_queue.ci + ent->pending < 2 * ent->limit &&
 541	    !READ_ONCE(dev->fill_delay)) {
 542		spin_unlock_irq(&ent->mkeys_queue.lock);
 543		err = add_keys(ent, 1);
 544		spin_lock_irq(&ent->mkeys_queue.lock);
 545		if (ent->disabled)
 546			goto out;
 547		if (err) {
 548			/*
 549			 * EAGAIN only happens if there are pending MRs, so we
 550			 * will be rescheduled when storing them. The only
 551			 * failure path here is ENOMEM.
 552			 */
 553			if (err != -EAGAIN) {
 554				mlx5_ib_warn(
 555					dev,
 556					"add keys command failed, err %d\n",
 557					err);
 558				queue_delayed_work(cache->wq, &ent->dwork,
 559						   msecs_to_jiffies(1000));
 
 
 560			}
 561		}
 562	} else if (ent->mkeys_queue.ci > 2 * ent->limit) {
 563		bool need_delay;
 564
 565		/*
 566		 * The remove_cache_mr() logic is performed as garbage
 567		 * collection task. Such task is intended to be run when no
 568		 * other active processes are running.
 569		 *
 570		 * The need_resched() will return TRUE if there are user tasks
 571		 * to be activated in near future.
 572		 *
 573		 * In such case, we don't execute remove_cache_mr() and postpone
 574		 * the garbage collection work to try to run in next cycle, in
 575		 * order to free CPU resources to other tasks.
 576		 */
 577		spin_unlock_irq(&ent->mkeys_queue.lock);
 578		need_delay = need_resched() || someone_adding(cache) ||
 579			     !time_after(jiffies,
 580					 READ_ONCE(cache->last_add) + 300 * HZ);
 581		spin_lock_irq(&ent->mkeys_queue.lock);
 582		if (ent->disabled)
 583			goto out;
 584		if (need_delay) {
 585			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
 586			goto out;
 587		}
 588		remove_cache_mr_locked(ent);
 589		queue_adjust_cache_locked(ent);
 590	}
 591out:
 592	spin_unlock_irq(&ent->mkeys_queue.lock);
 593}
 594
 595static void delayed_cache_work_func(struct work_struct *work)
 596{
 597	struct mlx5_cache_ent *ent;
 598
 599	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
 600	__cache_work_func(ent);
 601}
 602
 603static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,
 604			     struct mlx5r_cache_rb_key key2)
 605{
 606	int res;
 607
 608	res = key1.ats - key2.ats;
 609	if (res)
 610		return res;
 611
 612	res = key1.access_mode - key2.access_mode;
 613	if (res)
 614		return res;
 615
 616	res = key1.access_flags - key2.access_flags;
 617	if (res)
 618		return res;
 619
 620	/*
 621	 * keep ndescs the last in the compare table since the find function
 622	 * searches for an exact match on all properties and only closest
 623	 * match in size.
 624	 */
 625	return key1.ndescs - key2.ndescs;
 626}
 627
 628static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache,
 629				 struct mlx5_cache_ent *ent)
 630{
 631	struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL;
 632	struct mlx5_cache_ent *cur;
 633	int cmp;
 634
 635	/* Figure out where to put new node */
 636	while (*new) {
 637		cur = rb_entry(*new, struct mlx5_cache_ent, node);
 638		parent = *new;
 639		cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key);
 640		if (cmp > 0)
 641			new = &((*new)->rb_left);
 642		if (cmp < 0)
 643			new = &((*new)->rb_right);
 644		if (cmp == 0) {
 645			mutex_unlock(&cache->rb_lock);
 646			return -EEXIST;
 647		}
 648	}
 649
 650	/* Add new node and rebalance tree. */
 651	rb_link_node(&ent->node, parent, new);
 652	rb_insert_color(&ent->node, &cache->rb_root);
 653
 654	return 0;
 655}
 656
 657static struct mlx5_cache_ent *
 658mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev,
 659			   struct mlx5r_cache_rb_key rb_key)
 660{
 661	struct rb_node *node = dev->cache.rb_root.rb_node;
 662	struct mlx5_cache_ent *cur, *smallest = NULL;
 663	int cmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664
 665	/*
 666	 * Find the smallest ent with order >= requested_order.
 667	 */
 668	while (node) {
 669		cur = rb_entry(node, struct mlx5_cache_ent, node);
 670		cmp = cache_ent_key_cmp(cur->rb_key, rb_key);
 671		if (cmp > 0) {
 672			smallest = cur;
 673			node = node->rb_left;
 674		}
 675		if (cmp < 0)
 676			node = node->rb_right;
 677		if (cmp == 0)
 678			return cur;
 679	}
 680
 681	return (smallest &&
 682		smallest->rb_key.access_mode == rb_key.access_mode &&
 683		smallest->rb_key.access_flags == rb_key.access_flags &&
 684		smallest->rb_key.ats == rb_key.ats) ?
 685		       smallest :
 686		       NULL;
 687}
 688
 689static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
 690					struct mlx5_cache_ent *ent,
 691					int access_flags)
 692{
 693	struct mlx5_ib_mr *mr;
 694	int err;
 695
 696	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
 697	if (!mr)
 698		return ERR_PTR(-ENOMEM);
 699
 700	spin_lock_irq(&ent->mkeys_queue.lock);
 701	ent->in_use++;
 702
 703	if (!ent->mkeys_queue.ci) {
 704		queue_adjust_cache_locked(ent);
 705		ent->miss++;
 706		spin_unlock_irq(&ent->mkeys_queue.lock);
 707		err = create_cache_mkey(ent, &mr->mmkey.key);
 708		if (err) {
 709			spin_lock_irq(&ent->mkeys_queue.lock);
 710			ent->in_use--;
 711			spin_unlock_irq(&ent->mkeys_queue.lock);
 712			kfree(mr);
 713			return ERR_PTR(err);
 714		}
 715	} else {
 716		mr->mmkey.key = pop_mkey_locked(ent);
 717		queue_adjust_cache_locked(ent);
 718		spin_unlock_irq(&ent->mkeys_queue.lock);
 719	}
 720	mr->mmkey.cache_ent = ent;
 721	mr->mmkey.type = MLX5_MKEY_MR;
 722	init_waitqueue_head(&mr->mmkey.wait);
 723	return mr;
 724}
 725
 726static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev,
 727					 int access_flags)
 728{
 729	int ret = 0;
 730
 731	if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
 732	    MLX5_CAP_GEN(dev->mdev, atomic) &&
 733	    MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled))
 734		ret |= IB_ACCESS_REMOTE_ATOMIC;
 735
 736	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
 737	    MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) &&
 738	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr))
 739		ret |= IB_ACCESS_RELAXED_ORDERING;
 740
 741	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
 742	    (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
 743	     MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) &&
 744	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr))
 745		ret |= IB_ACCESS_RELAXED_ORDERING;
 746
 747	return ret;
 748}
 749
 750struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
 751				       int access_flags, int access_mode,
 752				       int ndescs)
 753{
 754	struct mlx5r_cache_rb_key rb_key = {
 755		.ndescs = ndescs,
 756		.access_mode = access_mode,
 757		.access_flags = get_unchangeable_access_flags(dev, access_flags)
 758	};
 759	struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key);
 760
 761	if (!ent)
 762		return ERR_PTR(-EOPNOTSUPP);
 
 
 
 
 
 
 
 
 
 
 763
 764	return _mlx5_mr_cache_alloc(dev, ent, access_flags);
 
 765}
 766
 767static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent)
 768{
 769	u32 mkey;
 
 
 
 770
 771	cancel_delayed_work(&ent->dwork);
 772	spin_lock_irq(&ent->mkeys_queue.lock);
 773	while (ent->mkeys_queue.ci) {
 774		mkey = pop_mkey_locked(ent);
 775		spin_unlock_irq(&ent->mkeys_queue.lock);
 776		mlx5_core_destroy_mkey(dev->mdev, mkey);
 777		spin_lock_irq(&ent->mkeys_queue.lock);
 
 
 
 
 
 
 
 
 
 
 778	}
 779	spin_unlock_irq(&ent->mkeys_queue.lock);
 780}
 781
 782static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
 783{
 784	if (!mlx5_debugfs_root || dev->is_rep)
 785		return;
 786
 787	debugfs_remove_recursive(dev->cache.fs_root);
 788	dev->cache.fs_root = NULL;
 789}
 790
 791static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev,
 792					    struct mlx5_cache_ent *ent)
 793{
 794	int order = order_base_2(ent->rb_key.ndescs);
 795	struct dentry *dir;
 796
 797	if (!mlx5_debugfs_root || dev->is_rep)
 798		return;
 799
 800	if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
 801		order = MLX5_IMR_KSM_CACHE_ENTRY + 2;
 802
 803	sprintf(ent->name, "%d", order);
 804	dir = debugfs_create_dir(ent->name, dev->cache.fs_root);
 805	debugfs_create_file("size", 0600, dir, ent, &size_fops);
 806	debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
 807	debugfs_create_ulong("cur", 0400, dir, &ent->mkeys_queue.ci);
 808	debugfs_create_u32("miss", 0600, dir, &ent->miss);
 809}
 810
 811static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
 812{
 813	struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev);
 814	struct mlx5_mkey_cache *cache = &dev->cache;
 815
 816	if (!mlx5_debugfs_root || dev->is_rep)
 817		return;
 
 
 
 
 818
 819	cache->fs_root = debugfs_create_dir("mr_cache", dbg_root);
 820}
 
 
 821
 822static void delay_time_func(struct timer_list *t)
 823{
 824	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
 
 825
 826	WRITE_ONCE(dev->fill_delay, 0);
 827}
 
 
 828
 829static int mlx5r_mkeys_init(struct mlx5_cache_ent *ent)
 830{
 831	struct mlx5_mkeys_page *page;
 
 
 832
 833	page = kzalloc(sizeof(*page), GFP_KERNEL);
 834	if (!page)
 835		return -ENOMEM;
 836	INIT_LIST_HEAD(&ent->mkeys_queue.pages_list);
 837	spin_lock_init(&ent->mkeys_queue.lock);
 838	list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
 839	ent->mkeys_queue.num_pages++;
 840	return 0;
 841}
 842
 843static void mlx5r_mkeys_uninit(struct mlx5_cache_ent *ent)
 844{
 845	struct mlx5_mkeys_page *page;
 
 846
 847	WARN_ON(ent->mkeys_queue.ci || ent->mkeys_queue.num_pages > 1);
 848	page = list_last_entry(&ent->mkeys_queue.pages_list,
 849			       struct mlx5_mkeys_page, list);
 850	list_del(&page->list);
 851	kfree(page);
 852}
 853
 854struct mlx5_cache_ent *
 855mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev,
 856			      struct mlx5r_cache_rb_key rb_key,
 857			      bool persistent_entry)
 858{
 859	struct mlx5_cache_ent *ent;
 860	int order;
 861	int ret;
 862
 863	ent = kzalloc(sizeof(*ent), GFP_KERNEL);
 864	if (!ent)
 865		return ERR_PTR(-ENOMEM);
 866
 867	ret = mlx5r_mkeys_init(ent);
 868	if (ret)
 869		goto mkeys_err;
 870	ent->rb_key = rb_key;
 871	ent->dev = dev;
 872	ent->is_tmp = !persistent_entry;
 873
 874	INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
 875
 876	ret = mlx5_cache_ent_insert(&dev->cache, ent);
 877	if (ret)
 878		goto ent_insert_err;
 879
 880	if (persistent_entry) {
 881		if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
 882			order = MLX5_IMR_KSM_CACHE_ENTRY;
 883		else
 884			order = order_base_2(rb_key.ndescs) - 2;
 885
 886		if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
 887		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
 888		    mlx5r_umr_can_load_pas(dev, 0))
 889			ent->limit = dev->mdev->profile.mr_cache[order].limit;
 890		else
 891			ent->limit = 0;
 892
 893		mlx5_mkey_cache_debugfs_add_ent(dev, ent);
 894	} else {
 895		mod_delayed_work(ent->dev->cache.wq,
 896				 &ent->dev->cache.remove_ent_dwork,
 897				 msecs_to_jiffies(30 * 1000));
 898	}
 899
 900	return ent;
 901ent_insert_err:
 902	mlx5r_mkeys_uninit(ent);
 903mkeys_err:
 904	kfree(ent);
 905	return ERR_PTR(ret);
 906}
 907
 908static void remove_ent_work_func(struct work_struct *work)
 909{
 910	struct mlx5_mkey_cache *cache;
 911	struct mlx5_cache_ent *ent;
 912	struct rb_node *cur;
 913
 914	cache = container_of(work, struct mlx5_mkey_cache,
 915			     remove_ent_dwork.work);
 916	mutex_lock(&cache->rb_lock);
 917	cur = rb_last(&cache->rb_root);
 918	while (cur) {
 919		ent = rb_entry(cur, struct mlx5_cache_ent, node);
 920		cur = rb_prev(cur);
 921		mutex_unlock(&cache->rb_lock);
 922
 923		spin_lock_irq(&ent->mkeys_queue.lock);
 924		if (!ent->is_tmp) {
 925			spin_unlock_irq(&ent->mkeys_queue.lock);
 926			mutex_lock(&cache->rb_lock);
 927			continue;
 928		}
 929		spin_unlock_irq(&ent->mkeys_queue.lock);
 930
 931		clean_keys(ent->dev, ent);
 932		mutex_lock(&cache->rb_lock);
 933	}
 934	mutex_unlock(&cache->rb_lock);
 935}
 936
 937int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
 938{
 939	struct mlx5_mkey_cache *cache = &dev->cache;
 940	struct rb_root *root = &dev->cache.rb_root;
 941	struct mlx5r_cache_rb_key rb_key = {
 942		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
 943	};
 944	struct mlx5_cache_ent *ent;
 945	struct rb_node *node;
 946	int ret;
 947	int i;
 948
 949	mutex_init(&dev->slow_path_mutex);
 950	mutex_init(&dev->cache.rb_lock);
 951	dev->cache.rb_root = RB_ROOT;
 952	INIT_DELAYED_WORK(&dev->cache.remove_ent_dwork, remove_ent_work_func);
 953	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
 954	if (!cache->wq) {
 955		mlx5_ib_warn(dev, "failed to create work queue\n");
 956		return -ENOMEM;
 957	}
 958
 959	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
 960	timer_setup(&dev->delay_timer, delay_time_func, 0);
 961	mlx5_mkey_cache_debugfs_init(dev);
 962	mutex_lock(&cache->rb_lock);
 963	for (i = 0; i <= mkey_cache_max_order(dev); i++) {
 964		rb_key.ndescs = 1 << (i + 2);
 965		ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
 966		if (IS_ERR(ent)) {
 967			ret = PTR_ERR(ent);
 968			goto err;
 969		}
 970	}
 971
 972	ret = mlx5_odp_init_mkey_cache(dev);
 973	if (ret)
 974		goto err;
 
 975
 976	mutex_unlock(&cache->rb_lock);
 977	for (node = rb_first(root); node; node = rb_next(node)) {
 978		ent = rb_entry(node, struct mlx5_cache_ent, node);
 979		spin_lock_irq(&ent->mkeys_queue.lock);
 980		queue_adjust_cache_locked(ent);
 981		spin_unlock_irq(&ent->mkeys_queue.lock);
 982	}
 983
 984	return 0;
 
 
 985
 986err:
 987	mutex_unlock(&cache->rb_lock);
 988	mlx5_mkey_cache_debugfs_cleanup(dev);
 989	mlx5_ib_warn(dev, "failed to create mkey cache entry\n");
 990	return ret;
 991}
 992
 993void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
 994{
 995	struct rb_root *root = &dev->cache.rb_root;
 996	struct mlx5_cache_ent *ent;
 997	struct rb_node *node;
 998
 999	if (!dev->cache.wq)
1000		return;
1001
1002	mutex_lock(&dev->cache.rb_lock);
1003	cancel_delayed_work(&dev->cache.remove_ent_dwork);
1004	for (node = rb_first(root); node; node = rb_next(node)) {
1005		ent = rb_entry(node, struct mlx5_cache_ent, node);
1006		spin_lock_irq(&ent->mkeys_queue.lock);
1007		ent->disabled = true;
1008		spin_unlock_irq(&ent->mkeys_queue.lock);
1009		cancel_delayed_work(&ent->dwork);
1010	}
1011	mutex_unlock(&dev->cache.rb_lock);
1012
1013	/*
1014	 * After all entries are disabled and will not reschedule on WQ,
1015	 * flush it and all async commands.
1016	 */
1017	flush_workqueue(dev->cache.wq);
1018
1019	mlx5_mkey_cache_debugfs_cleanup(dev);
1020	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
1021
1022	/* At this point all entries are disabled and have no concurrent work. */
1023	mutex_lock(&dev->cache.rb_lock);
1024	node = rb_first(root);
1025	while (node) {
1026		ent = rb_entry(node, struct mlx5_cache_ent, node);
1027		node = rb_next(node);
1028		clean_keys(dev, ent);
1029		rb_erase(&ent->node, root);
1030		mlx5r_mkeys_uninit(ent);
1031		kfree(ent);
1032	}
1033	mutex_unlock(&dev->cache.rb_lock);
1034
1035	destroy_workqueue(dev->cache.wq);
1036	del_timer_sync(&dev->delay_timer);
 
 
1037}
1038
1039struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
1040{
1041	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1042	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
 
 
1043	struct mlx5_ib_mr *mr;
1044	void *mkc;
1045	u32 *in;
1046	int err;
1047
1048	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1049	if (!mr)
1050		return ERR_PTR(-ENOMEM);
1051
1052	in = kzalloc(inlen, GFP_KERNEL);
1053	if (!in) {
1054		err = -ENOMEM;
1055		goto err_free;
1056	}
1057
1058	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1059
1060	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
1061	MLX5_SET(mkc, mkc, length64, 1);
1062	set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
1063				      pd);
1064
1065	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
 
1066	if (err)
1067		goto err_in;
1068
1069	kfree(in);
1070	mr->mmkey.type = MLX5_MKEY_MR;
1071	mr->ibmr.lkey = mr->mmkey.key;
1072	mr->ibmr.rkey = mr->mmkey.key;
1073	mr->umem = NULL;
1074
1075	return &mr->ibmr;
1076
1077err_in:
1078	kfree(in);
1079
1080err_free:
1081	kfree(mr);
1082
1083	return ERR_PTR(err);
1084}
1085
1086static int get_octo_len(u64 addr, u64 len, int page_shift)
1087{
1088	u64 page_size = 1ULL << page_shift;
1089	u64 offset;
1090	int npages;
1091
1092	offset = addr & (page_size - 1);
1093	npages = ALIGN(len + offset, page_size) >> page_shift;
1094	return (npages + 1) / 2;
1095}
1096
1097static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
1098{
1099	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
1100		return MKEY_CACHE_LAST_STD_ENTRY;
1101	return MLX5_MAX_UMR_SHIFT;
1102}
1103
1104static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1105			  u64 length, int access_flags, u64 iova)
 
1106{
1107	mr->ibmr.lkey = mr->mmkey.key;
1108	mr->ibmr.rkey = mr->mmkey.key;
1109	mr->ibmr.length = length;
1110	mr->ibmr.device = &dev->ib_dev;
1111	mr->ibmr.iova = iova;
1112	mr->access_flags = access_flags;
1113}
1114
1115static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
1116						  u64 iova)
1117{
1118	/*
1119	 * The alignment of iova has already been checked upon entering
1120	 * UVERBS_METHOD_REG_DMABUF_MR
 
1121	 */
1122	umem->iova = iova;
1123	return PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124}
1125
1126static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
1127					     struct ib_umem *umem, u64 iova,
1128					     int access_flags)
1129{
1130	struct mlx5r_cache_rb_key rb_key = {
1131		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
1132	};
1133	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1134	struct mlx5_cache_ent *ent;
1135	struct mlx5_ib_mr *mr;
1136	unsigned int page_size;
1137
1138	if (umem->is_dmabuf)
1139		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
 
 
 
 
 
 
1140	else
1141		page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
1142						     0, iova);
1143	if (WARN_ON(!page_size))
1144		return ERR_PTR(-EINVAL);
1145
1146	rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size);
1147	rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags);
1148	rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags);
1149	ent = mkey_cache_ent_from_rb_key(dev, rb_key);
1150	/*
1151	 * If the MR can't come from the cache then synchronously create an uncached
1152	 * one.
1153	 */
1154	if (!ent) {
1155		mutex_lock(&dev->slow_path_mutex);
1156		mr = reg_create(pd, umem, iova, access_flags, page_size, false);
1157		mutex_unlock(&dev->slow_path_mutex);
1158		if (IS_ERR(mr))
1159			return mr;
1160		mr->mmkey.rb_key = rb_key;
1161		return mr;
1162	}
1163
1164	mr = _mlx5_mr_cache_alloc(dev, ent, access_flags);
1165	if (IS_ERR(mr))
1166		return mr;
1167
1168	mr->ibmr.pd = pd;
1169	mr->umem = umem;
1170	mr->page_shift = order_base_2(page_size);
1171	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1172
1173	return mr;
1174}
1175
1176/*
1177 * If ibmr is NULL it will be allocated by reg_create.
1178 * Else, the given ibmr will be used.
1179 */
1180static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1181				     u64 iova, int access_flags,
1182				     unsigned int page_size, bool populate)
1183{
1184	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1185	struct mlx5_ib_mr *mr;
1186	__be64 *pas;
1187	void *mkc;
1188	int inlen;
1189	u32 *in;
1190	int err;
1191	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1192
1193	if (!page_size)
1194		return ERR_PTR(-EINVAL);
1195	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1196	if (!mr)
1197		return ERR_PTR(-ENOMEM);
1198
1199	mr->ibmr.pd = pd;
1200	mr->access_flags = access_flags;
1201	mr->page_shift = order_base_2(page_size);
1202
1203	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1204	if (populate)
1205		inlen += sizeof(*pas) *
1206			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1207	in = kvzalloc(inlen, GFP_KERNEL);
1208	if (!in) {
1209		err = -ENOMEM;
1210		goto err_1;
1211	}
1212	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1213	if (populate) {
1214		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1215			err = -EINVAL;
1216			goto err_2;
1217		}
1218		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1219				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1220	}
1221
1222	/* The pg_access bit allows setting the access flags
1223	 * in the page list submitted with the command.
1224	 */
1225	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
 
 
 
 
 
1226
1227	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1228	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1229				      populate ? pd : dev->umrc.pd);
1230	MLX5_SET(mkc, mkc, free, !populate);
1231	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1232	MLX5_SET(mkc, mkc, umr_en, 1);
1233
1234	MLX5_SET64(mkc, mkc, len, umem->length);
1235	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1236	MLX5_SET(mkc, mkc, translations_octword_size,
1237		 get_octo_len(iova, umem->length, mr->page_shift));
1238	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1239	if (mlx5_umem_needs_ats(dev, umem, access_flags))
1240		MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1241	if (populate) {
1242		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1243			 get_octo_len(iova, umem->length, mr->page_shift));
1244	}
1245
1246	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1247	if (err) {
1248		mlx5_ib_warn(dev, "create mkey failed\n");
1249		goto err_2;
 
1250	}
1251	mr->mmkey.type = MLX5_MKEY_MR;
1252	mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift);
1253	mr->umem = umem;
1254	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1255	kvfree(in);
1256
1257	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
 
1258
1259	return mr;
 
1260
1261err_2:
1262	kvfree(in);
1263err_1:
1264	kfree(mr);
1265	return ERR_PTR(err);
 
 
 
 
 
 
 
 
 
1266}
1267
1268static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1269				       u64 length, int acc, int mode)
 
1270{
1271	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1272	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
 
 
 
 
1273	struct mlx5_ib_mr *mr;
1274	void *mkc;
1275	u32 *in;
1276	int err;
 
 
 
1277
1278	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1279	if (!mr)
1280		return ERR_PTR(-ENOMEM);
 
1281
1282	in = kzalloc(inlen, GFP_KERNEL);
1283	if (!in) {
1284		err = -ENOMEM;
1285		goto err_free;
 
1286	}
1287
1288	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1289
1290	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1291	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1292	MLX5_SET64(mkc, mkc, len, length);
1293	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1294
1295	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
 
1296	if (err)
1297		goto err_in;
1298
1299	kfree(in);
1300
1301	set_mr_fields(dev, mr, length, acc, start_addr);
 
 
1302
1303	return &mr->ibmr;
 
 
 
 
 
 
 
 
 
 
 
1304
1305err_in:
1306	kfree(in);
 
1307
1308err_free:
1309	kfree(mr);
1310
1311	return ERR_PTR(err);
1312}
 
1313
1314int mlx5_ib_advise_mr(struct ib_pd *pd,
1315		      enum ib_uverbs_advise_mr_advice advice,
1316		      u32 flags,
1317		      struct ib_sge *sg_list,
1318		      u32 num_sge,
1319		      struct uverbs_attr_bundle *attrs)
1320{
1321	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1322	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1323	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1324		return -EOPNOTSUPP;
1325
1326	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1327					 sg_list, num_sge);
1328}
1329
1330struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1331				struct ib_dm_mr_attr *attr,
1332				struct uverbs_attr_bundle *attrs)
1333{
1334	struct mlx5_ib_dm *mdm = to_mdm(dm);
1335	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1336	u64 start_addr = mdm->dev_addr + attr->offset;
1337	int mode;
1338
1339	switch (mdm->type) {
1340	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1341		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1342			return ERR_PTR(-EINVAL);
1343
1344		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1345		start_addr -= pci_resource_start(dev->pdev, 0);
1346		break;
1347	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1348	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1349	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1350	case MLX5_IB_UAPI_DM_TYPE_ENCAP_SW_ICM:
1351		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1352			return ERR_PTR(-EINVAL);
1353
1354		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1355		break;
1356	default:
1357		return ERR_PTR(-EINVAL);
1358	}
1359
1360	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1361				 attr->access_flags, mode);
1362}
1363
1364static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1365				    u64 iova, int access_flags)
1366{
1367	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1368	struct mlx5_ib_mr *mr = NULL;
1369	bool xlt_with_umr;
1370	int err;
1371
1372	xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1373	if (xlt_with_umr) {
1374		mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1375	} else {
1376		unsigned int page_size = mlx5_umem_find_best_pgsz(
1377			umem, mkc, log_page_size, 0, iova);
1378
1379		mutex_lock(&dev->slow_path_mutex);
1380		mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1381		mutex_unlock(&dev->slow_path_mutex);
1382	}
1383	if (IS_ERR(mr)) {
1384		ib_umem_release(umem);
1385		return ERR_CAST(mr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1386	}
1387
1388	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1389
1390	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1391
1392	if (xlt_with_umr) {
1393		/*
1394		 * If the MR was created with reg_create then it will be
1395		 * configured properly but left disabled. It is safe to go ahead
1396		 * and configure it again via UMR while enabling it.
1397		 */
1398		err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1399		if (err) {
1400			mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1401			return ERR_PTR(err);
 
 
 
 
 
 
1402		}
 
1403	}
1404	return &mr->ibmr;
 
 
 
 
 
 
 
 
1405}
 
1406
1407static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1408					u64 iova, int access_flags,
1409					struct ib_udata *udata)
 
 
 
 
 
1410{
1411	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1412	struct ib_umem_odp *odp;
1413	struct mlx5_ib_mr *mr;
 
1414	int err;
 
1415
1416	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1417		return ERR_PTR(-EOPNOTSUPP);
1418
1419	err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1420	if (err)
1421		return ERR_PTR(err);
1422	if (!start && length == U64_MAX) {
1423		if (iova != 0)
1424			return ERR_PTR(-EINVAL);
1425		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1426			return ERR_PTR(-EINVAL);
1427
1428		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1429		if (IS_ERR(mr))
1430			return ERR_CAST(mr);
1431		return &mr->ibmr;
 
1432	}
 
 
1433
1434	/* ODP requires xlt update via umr to work. */
1435	if (!mlx5r_umr_can_load_pas(dev, length))
1436		return ERR_PTR(-EINVAL);
1437
1438	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1439			      &mlx5_mn_ops);
1440	if (IS_ERR(odp))
1441		return ERR_CAST(odp);
1442
1443	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1444	if (IS_ERR(mr)) {
1445		ib_umem_release(&odp->umem);
1446		return ERR_CAST(mr);
 
 
 
 
 
 
1447	}
1448	xa_init(&mr->implicit_children);
1449
1450	odp->private = mr;
1451	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1452	if (err)
1453		goto err_dereg_mr;
1454
1455	err = mlx5_ib_init_odp_mr(mr);
1456	if (err)
1457		goto err_dereg_mr;
1458	return &mr->ibmr;
1459
1460err_dereg_mr:
1461	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1462	return ERR_PTR(err);
1463}
1464
1465struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1466				  u64 iova, int access_flags,
1467				  struct ib_udata *udata)
1468{
1469	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1470	struct ib_umem *umem;
1471
1472	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1473		return ERR_PTR(-EOPNOTSUPP);
1474
1475	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1476		    start, iova, length, access_flags);
 
1477
1478	if (access_flags & IB_ACCESS_ON_DEMAND)
1479		return create_user_odp_mr(pd, start, length, iova, access_flags,
1480					  udata);
1481	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1482	if (IS_ERR(umem))
1483		return ERR_CAST(umem);
1484	return create_real_mr(pd, umem, iova, access_flags);
1485}
1486
1487static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
 
1488{
1489	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1490	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1491
1492	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1493
1494	if (!umem_dmabuf->sgt)
1495		return;
1496
1497	mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1498	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1499}
1500
1501static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1502	.allow_peer2peer = 1,
1503	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1504};
1505
1506struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1507					 u64 length, u64 virt_addr,
1508					 int fd, int access_flags,
1509					 struct ib_udata *udata)
1510{
1511	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1512	struct mlx5_ib_mr *mr = NULL;
1513	struct ib_umem_dmabuf *umem_dmabuf;
 
 
 
 
1514	int err;
1515
1516	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1517	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1518		return ERR_PTR(-EOPNOTSUPP);
1519
1520	mlx5_ib_dbg(dev,
1521		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1522		    offset, virt_addr, length, fd, access_flags);
1523
1524	/* dmabuf requires xlt update via umr to work. */
1525	if (!mlx5r_umr_can_load_pas(dev, length))
1526		return ERR_PTR(-EINVAL);
1527
1528	umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1529					 access_flags,
1530					 &mlx5_ib_dmabuf_attach_ops);
1531	if (IS_ERR(umem_dmabuf)) {
1532		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1533			    PTR_ERR(umem_dmabuf));
1534		return ERR_CAST(umem_dmabuf);
 
 
 
 
1535	}
1536
1537	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1538				access_flags);
 
 
1539	if (IS_ERR(mr)) {
1540		ib_umem_release(&umem_dmabuf->umem);
1541		return ERR_CAST(mr);
1542	}
1543
1544	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1545
1546	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1547	umem_dmabuf->private = mr;
1548	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1549	if (err)
1550		goto err_dereg_mr;
 
1551
1552	err = mlx5_ib_init_dmabuf_mr(mr);
1553	if (err)
1554		goto err_dereg_mr;
1555	return &mr->ibmr;
1556
1557err_dereg_mr:
1558	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1559	return ERR_PTR(err);
1560}
1561
1562/*
1563 * True if the change in access flags can be done via UMR, only some access
1564 * flags can be updated.
1565 */
1566static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1567				     unsigned int current_access_flags,
1568				     unsigned int target_access_flags)
1569{
1570	unsigned int diffs = current_access_flags ^ target_access_flags;
1571
1572	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1573		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
1574		return false;
1575	return mlx5r_umr_can_reconfig(dev, current_access_flags,
1576				      target_access_flags);
1577}
1578
1579static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1580				  struct ib_umem *new_umem,
1581				  int new_access_flags, u64 iova,
1582				  unsigned long *page_size)
1583{
1584	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
 
 
 
 
1585
1586	/* We only track the allocated sizes of MRs from the cache */
1587	if (!mr->mmkey.cache_ent)
1588		return false;
1589	if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1590		return false;
1591
1592	*page_size =
1593		mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1594	if (WARN_ON(!*page_size))
1595		return false;
1596	return (mr->mmkey.cache_ent->rb_key.ndescs) >=
1597	       ib_umem_num_dma_blocks(new_umem, *page_size);
1598}
1599
1600static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1601			 int access_flags, int flags, struct ib_umem *new_umem,
1602			 u64 iova, unsigned long page_size)
 
 
 
 
 
 
 
 
 
 
 
 
1603{
1604	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1605	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1606	struct ib_umem *old_umem = mr->umem;
1607	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1608
1609	/*
1610	 * To keep everything simple the MR is revoked before we start to mess
1611	 * with it. This ensure the change is atomic relative to any use of the
1612	 * MR.
1613	 */
1614	err = mlx5r_umr_revoke_mr(mr);
1615	if (err)
1616		return err;
1617
1618	if (flags & IB_MR_REREG_PD) {
1619		mr->ibmr.pd = pd;
1620		upd_flags |= MLX5_IB_UPD_XLT_PD;
1621	}
 
1622	if (flags & IB_MR_REREG_ACCESS) {
1623		mr->access_flags = access_flags;
1624		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1625	}
1626
1627	mr->ibmr.iova = iova;
1628	mr->ibmr.length = new_umem->length;
1629	mr->page_shift = order_base_2(page_size);
1630	mr->umem = new_umem;
1631	err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1632	if (err) {
1633		/*
1634		 * The MR is revoked at this point so there is no issue to free
1635		 * new_umem.
1636		 */
1637		mr->umem = old_umem;
1638		return err;
 
 
1639	}
1640
1641	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1642	ib_umem_release(old_umem);
1643	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1644	return 0;
 
 
1645}
1646
1647struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1648				    u64 length, u64 iova, int new_access_flags,
1649				    struct ib_pd *new_pd,
1650				    struct ib_udata *udata)
1651{
1652	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1653	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
 
 
 
 
 
 
 
 
 
 
1654	int err;
1655
1656	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1657		return ERR_PTR(-EOPNOTSUPP);
1658
1659	mlx5_ib_dbg(
1660		dev,
1661		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1662		start, iova, length, new_access_flags);
1663
1664	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1665		return ERR_PTR(-EOPNOTSUPP);
1666
1667	if (!(flags & IB_MR_REREG_ACCESS))
1668		new_access_flags = mr->access_flags;
1669	if (!(flags & IB_MR_REREG_PD))
1670		new_pd = ib_mr->pd;
1671
1672	if (!(flags & IB_MR_REREG_TRANS)) {
1673		struct ib_umem *umem;
1674
1675		/* Fast path for PD/access change */
1676		if (can_use_umr_rereg_access(dev, mr->access_flags,
1677					     new_access_flags)) {
1678			err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1679							new_access_flags);
1680			if (err)
1681				return ERR_PTR(err);
1682			return NULL;
1683		}
1684		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1685		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1686			goto recreate;
1687
 
1688		/*
1689		 * Only one active MR can refer to a umem at one time, revoke
1690		 * the old MR before assigning the umem to the new one.
1691		 */
1692		err = mlx5r_umr_revoke_mr(mr);
 
 
 
 
 
 
 
 
1693		if (err)
1694			return ERR_PTR(err);
1695		umem = mr->umem;
1696		mr->umem = NULL;
1697		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1698
1699		return create_real_mr(new_pd, umem, mr->ibmr.iova,
1700				      new_access_flags);
1701	}
1702
1703	/*
1704	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1705	 * but the logic around releasing the umem is different
1706	 */
1707	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1708		goto recreate;
1709
1710	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1711	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1712		struct ib_umem *new_umem;
1713		unsigned long page_size;
1714
1715		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1716				       new_access_flags);
1717		if (IS_ERR(new_umem))
1718			return ERR_CAST(new_umem);
1719
1720		/* Fast path for PAS change */
1721		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1722					  &page_size)) {
1723			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1724					    new_umem, iova, page_size);
1725			if (err) {
1726				ib_umem_release(new_umem);
1727				return ERR_PTR(err);
1728			}
1729			return NULL;
1730		}
1731		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1732	}
1733
1734	/*
1735	 * Everything else has no state we can preserve, just create a new MR
1736	 * from scratch
1737	 */
1738recreate:
1739	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1740				   new_access_flags, udata);
 
 
 
 
 
 
 
 
 
 
 
 
1741}
1742
1743static int
1744mlx5_alloc_priv_descs(struct ib_device *device,
1745		      struct mlx5_ib_mr *mr,
1746		      int ndescs,
1747		      int desc_size)
1748{
1749	struct mlx5_ib_dev *dev = to_mdev(device);
1750	struct device *ddev = &dev->mdev->pdev->dev;
1751	int size = ndescs * desc_size;
1752	int add_size;
1753	int ret;
1754
1755	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1756	if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) {
1757		int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size));
1758
1759		add_size = min_t(int, end - size, add_size);
1760	}
1761
1762	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1763	if (!mr->descs_alloc)
1764		return -ENOMEM;
1765
1766	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1767
1768	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1769	if (dma_mapping_error(ddev, mr->desc_map)) {
 
1770		ret = -ENOMEM;
1771		goto err;
1772	}
1773
1774	return 0;
1775err:
1776	kfree(mr->descs_alloc);
1777
1778	return ret;
1779}
1780
1781static void
1782mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1783{
1784	if (!mr->umem && mr->descs) {
1785		struct ib_device *device = mr->ibmr.device;
1786		int size = mr->max_descs * mr->desc_size;
1787		struct mlx5_ib_dev *dev = to_mdev(device);
1788
1789		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1790				 DMA_TO_DEVICE);
1791		kfree(mr->descs_alloc);
1792		mr->descs = NULL;
1793	}
1794}
1795
1796static int cache_ent_find_and_store(struct mlx5_ib_dev *dev,
1797				    struct mlx5_ib_mr *mr)
1798{
1799	struct mlx5_mkey_cache *cache = &dev->cache;
1800	struct mlx5_cache_ent *ent;
1801	int ret;
1802
1803	if (mr->mmkey.cache_ent) {
1804		spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1805		mr->mmkey.cache_ent->in_use--;
1806		goto end;
1807	}
1808
1809	mutex_lock(&cache->rb_lock);
1810	ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key);
1811	if (ent) {
1812		if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) {
1813			if (ent->disabled) {
1814				mutex_unlock(&cache->rb_lock);
1815				return -EOPNOTSUPP;
1816			}
1817			mr->mmkey.cache_ent = ent;
1818			spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1819			mutex_unlock(&cache->rb_lock);
1820			goto end;
1821		}
1822	}
1823
1824	ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false);
1825	mutex_unlock(&cache->rb_lock);
1826	if (IS_ERR(ent))
1827		return PTR_ERR(ent);
1828
1829	mr->mmkey.cache_ent = ent;
1830	spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1831
1832end:
1833	ret = push_mkey_locked(mr->mmkey.cache_ent, mr->mmkey.key);
1834	spin_unlock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1835	return ret;
1836}
1837
1838int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1839{
1840	struct mlx5_ib_mr *mr = to_mmr(ibmr);
1841	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1842	int rc;
1843
1844	/*
1845	 * Any async use of the mr must hold the refcount, once the refcount
1846	 * goes to zero no other thread, such as ODP page faults, prefetch, any
1847	 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1848	 */
1849	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1850	    refcount_read(&mr->mmkey.usecount) != 0 &&
1851	    xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1852		mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1853
1854	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1855		xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1856			   mr->sig, NULL, GFP_KERNEL);
1857
1858		if (mr->mtt_mr) {
1859			rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1860			if (rc)
1861				return rc;
1862			mr->mtt_mr = NULL;
1863		}
1864		if (mr->klm_mr) {
1865			rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1866			if (rc)
1867				return rc;
1868			mr->klm_mr = NULL;
1869		}
1870
 
1871		if (mlx5_core_destroy_psv(dev->mdev,
1872					  mr->sig->psv_memory.psv_idx))
1873			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1874				     mr->sig->psv_memory.psv_idx);
1875		if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
 
1876			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1877				     mr->sig->psv_wire.psv_idx);
1878		kfree(mr->sig);
1879		mr->sig = NULL;
1880	}
1881
1882	/* Stop DMA */
1883	if (mr->umem && mlx5r_umr_can_load_pas(dev, mr->umem->length))
1884		if (mlx5r_umr_revoke_mr(mr) ||
1885		    cache_ent_find_and_store(dev, mr))
1886			mr->mmkey.cache_ent = NULL;
1887
1888	if (!mr->mmkey.cache_ent) {
1889		rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1890		if (rc)
1891			return rc;
1892	}
1893
1894	if (mr->umem) {
1895		bool is_odp = is_odp_mr(mr);
1896
1897		if (!is_odp)
1898			atomic_sub(ib_umem_num_pages(mr->umem),
1899				   &dev->mdev->priv.reg_pages);
1900		ib_umem_release(mr->umem);
1901		if (is_odp)
1902			mlx5_ib_free_odp_mr(mr);
1903	}
1904
1905	if (!mr->mmkey.cache_ent)
1906		mlx5_free_priv_descs(mr);
1907
1908	kfree(mr);
1909	return 0;
1910}
1911
1912static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1913				   int access_mode, int page_shift)
1914{
1915	void *mkc;
1916
1917	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1918
1919	/* This is only used from the kernel, so setting the PD is OK. */
1920	set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
1921	MLX5_SET(mkc, mkc, free, 1);
1922	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1923	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1924	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1925	MLX5_SET(mkc, mkc, umr_en, 1);
1926	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1927}
1928
1929static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1930				  int ndescs, int desc_size, int page_shift,
1931				  int access_mode, u32 *in, int inlen)
1932{
1933	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1934	int err;
1935
1936	mr->access_mode = access_mode;
1937	mr->desc_size = desc_size;
1938	mr->max_descs = ndescs;
1939
1940	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1941	if (err)
1942		return err;
1943
1944	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1945
1946	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1947	if (err)
1948		goto err_free_descs;
1949
1950	mr->mmkey.type = MLX5_MKEY_MR;
1951	mr->ibmr.lkey = mr->mmkey.key;
1952	mr->ibmr.rkey = mr->mmkey.key;
1953
1954	return 0;
1955
1956err_free_descs:
1957	mlx5_free_priv_descs(mr);
1958	return err;
1959}
1960
1961static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1962				u32 max_num_sg, u32 max_num_meta_sg,
1963				int desc_size, int access_mode)
1964{
1965	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1966	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1967	int page_shift = 0;
1968	struct mlx5_ib_mr *mr;
1969	u32 *in;
1970	int err;
1971
1972	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1973	if (!mr)
1974		return ERR_PTR(-ENOMEM);
1975
1976	mr->ibmr.pd = pd;
1977	mr->ibmr.device = pd->device;
1978
1979	in = kzalloc(inlen, GFP_KERNEL);
1980	if (!in) {
1981		err = -ENOMEM;
1982		goto err_free;
1983	}
1984
1985	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1986		page_shift = PAGE_SHIFT;
1987
1988	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1989				     access_mode, in, inlen);
1990	if (err)
1991		goto err_free_in;
1992
1993	mr->umem = NULL;
1994	kfree(in);
1995
1996	return mr;
1997
1998err_free_in:
1999	kfree(in);
2000err_free:
2001	kfree(mr);
2002	return ERR_PTR(err);
2003}
2004
2005static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2006				    int ndescs, u32 *in, int inlen)
2007{
2008	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2009				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2010				      inlen);
2011}
2012
2013static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2014				    int ndescs, u32 *in, int inlen)
2015{
2016	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2017				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2018}
2019
2020static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2021				      int max_num_sg, int max_num_meta_sg,
2022				      u32 *in, int inlen)
2023{
2024	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2025	u32 psv_index[2];
2026	void *mkc;
2027	int err;
2028
2029	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2030	if (!mr->sig)
2031		return -ENOMEM;
2032
2033	/* create mem & wire PSVs */
2034	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2035	if (err)
2036		goto err_free_sig;
2037
2038	mr->sig->psv_memory.psv_idx = psv_index[0];
2039	mr->sig->psv_wire.psv_idx = psv_index[1];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2040
2041	mr->sig->sig_status_checked = true;
2042	mr->sig->sig_err_exists = false;
2043	/* Next UMR, Arm SIGERR */
2044	++mr->sig->sigerr_count;
2045	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2046					 sizeof(struct mlx5_klm),
2047					 MLX5_MKC_ACCESS_MODE_KLMS);
2048	if (IS_ERR(mr->klm_mr)) {
2049		err = PTR_ERR(mr->klm_mr);
2050		goto err_destroy_psv;
2051	}
2052	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2053					 sizeof(struct mlx5_mtt),
2054					 MLX5_MKC_ACCESS_MODE_MTT);
2055	if (IS_ERR(mr->mtt_mr)) {
2056		err = PTR_ERR(mr->mtt_mr);
2057		goto err_free_klm_mr;
2058	}
 
2059
2060	/* Set bsf descriptors for mkey */
2061	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2062	MLX5_SET(mkc, mkc, bsf_en, 1);
2063	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2064
2065	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2066				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2067	if (err)
2068		goto err_free_mtt_mr;
2069
2070	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2071			      mr->sig, GFP_KERNEL));
2072	if (err)
2073		goto err_free_descs;
2074	return 0;
2075
2076err_free_descs:
2077	destroy_mkey(dev, mr);
2078	mlx5_free_priv_descs(mr);
2079err_free_mtt_mr:
2080	mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2081	mr->mtt_mr = NULL;
2082err_free_klm_mr:
2083	mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2084	mr->klm_mr = NULL;
2085err_destroy_psv:
2086	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2087		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2088			     mr->sig->psv_memory.psv_idx);
2089	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2090		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2091			     mr->sig->psv_wire.psv_idx);
2092err_free_sig:
2093	kfree(mr->sig);
2094
2095	return err;
2096}
2097
2098static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2099					enum ib_mr_type mr_type, u32 max_num_sg,
2100					u32 max_num_meta_sg)
2101{
2102	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2103	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2104	int ndescs = ALIGN(max_num_sg, 4);
2105	struct mlx5_ib_mr *mr;
2106	u32 *in;
2107	int err;
2108
2109	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2110	if (!mr)
2111		return ERR_PTR(-ENOMEM);
2112
2113	in = kzalloc(inlen, GFP_KERNEL);
2114	if (!in) {
2115		err = -ENOMEM;
2116		goto err_free;
2117	}
2118
2119	mr->ibmr.device = pd->device;
2120	mr->umem = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2121
2122	switch (mr_type) {
2123	case IB_MR_TYPE_MEM_REG:
2124		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2125		break;
2126	case IB_MR_TYPE_SG_GAPS:
2127		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2128		break;
2129	case IB_MR_TYPE_INTEGRITY:
2130		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2131						 max_num_meta_sg, in, inlen);
2132		break;
2133	default:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2134		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2135		err = -EINVAL;
 
2136	}
2137
 
 
 
2138	if (err)
2139		goto err_free_in;
2140
 
 
 
2141	kfree(in);
2142
2143	return &mr->ibmr;
2144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145err_free_in:
2146	kfree(in);
2147err_free:
2148	kfree(mr);
2149	return ERR_PTR(err);
2150}
2151
2152struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2153			       u32 max_num_sg)
2154{
2155	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2156}
2157
2158struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2159					 u32 max_num_sg, u32 max_num_meta_sg)
2160{
2161	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2162				  max_num_meta_sg);
2163}
2164
2165int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2166{
2167	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2168	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2169	struct mlx5_ib_mw *mw = to_mmw(ibmw);
2170	unsigned int ndescs;
2171	u32 *in = NULL;
2172	void *mkc;
2173	int err;
2174	struct mlx5_ib_alloc_mw req = {};
2175	struct {
2176		__u32	comp_mask;
2177		__u32	response_length;
2178	} resp = {};
2179
2180	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2181	if (err)
2182		return err;
2183
2184	if (req.comp_mask || req.reserved1 || req.reserved2)
2185		return -EOPNOTSUPP;
2186
2187	if (udata->inlen > sizeof(req) &&
2188	    !ib_is_udata_cleared(udata, sizeof(req),
2189				 udata->inlen - sizeof(req)))
2190		return -EOPNOTSUPP;
2191
2192	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2193
2194	in = kzalloc(inlen, GFP_KERNEL);
2195	if (!in)
2196		return -ENOMEM;
2197
2198	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
 
2199
2200	MLX5_SET(mkc, mkc, free, 1);
2201	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2202	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2203	MLX5_SET(mkc, mkc, umr_en, 1);
2204	MLX5_SET(mkc, mkc, lr, 1);
2205	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2206	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2207	MLX5_SET(mkc, mkc, qpn, 0xffffff);
2208
2209	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
 
2210	if (err)
2211		goto free;
2212
2213	mw->mmkey.type = MLX5_MKEY_MW;
2214	ibmw->rkey = mw->mmkey.key;
2215	mw->mmkey.ndescs = ndescs;
2216
2217	resp.response_length =
2218		min(offsetofend(typeof(resp), response_length), udata->outlen);
2219	if (resp.response_length) {
2220		err = ib_copy_to_udata(udata, &resp, resp.response_length);
2221		if (err)
2222			goto free_mkey;
2223	}
2224
2225	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2226		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2227		if (err)
2228			goto free_mkey;
2229	}
2230
2231	kfree(in);
2232	return 0;
2233
2234free_mkey:
2235	mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
2236free:
 
2237	kfree(in);
2238	return err;
2239}
2240
2241int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2242{
2243	struct mlx5_ib_dev *dev = to_mdev(mw->device);
2244	struct mlx5_ib_mw *mmw = to_mmw(mw);
 
2245
2246	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2247	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2248		/*
2249		 * pagefault_single_data_segment() may be accessing mmw
2250		 * if the user bound an ODP MR to this MW.
2251		 */
2252		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2253
2254	return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
2255}
2256
2257int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2258			    struct ib_mr_status *mr_status)
2259{
2260	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2261	int ret = 0;
2262
2263	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2264		pr_err("Invalid status check mask\n");
2265		ret = -EINVAL;
2266		goto done;
2267	}
2268
2269	mr_status->fail_status = 0;
2270	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2271		if (!mmr->sig) {
2272			ret = -EINVAL;
2273			pr_err("signature status check requested on a non-signature enabled MR\n");
2274			goto done;
2275		}
2276
2277		mmr->sig->sig_status_checked = true;
2278		if (!mmr->sig->sig_err_exists)
2279			goto done;
2280
2281		if (ibmr->lkey == mmr->sig->err_item.key)
2282			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2283			       sizeof(mr_status->sig_err));
2284		else {
2285			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2286			mr_status->sig_err.sig_err_offset = 0;
2287			mr_status->sig_err.key = mmr->sig->err_item.key;
2288		}
2289
2290		mmr->sig->sig_err_exists = false;
2291		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2292	}
2293
2294done:
2295	return ret;
2296}
2297
2298static int
2299mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2300			int data_sg_nents, unsigned int *data_sg_offset,
2301			struct scatterlist *meta_sg, int meta_sg_nents,
2302			unsigned int *meta_sg_offset)
2303{
2304	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2305	unsigned int sg_offset = 0;
2306	int n = 0;
2307
2308	mr->meta_length = 0;
2309	if (data_sg_nents == 1) {
2310		n++;
2311		mr->mmkey.ndescs = 1;
2312		if (data_sg_offset)
2313			sg_offset = *data_sg_offset;
2314		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2315		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2316		if (meta_sg_nents == 1) {
2317			n++;
2318			mr->meta_ndescs = 1;
2319			if (meta_sg_offset)
2320				sg_offset = *meta_sg_offset;
2321			else
2322				sg_offset = 0;
2323			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2324			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2325		}
2326		ibmr->length = mr->data_length + mr->meta_length;
2327	}
2328
2329	return n;
2330}
2331
2332static int
2333mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2334		   struct scatterlist *sgl,
2335		   unsigned short sg_nents,
2336		   unsigned int *sg_offset_p,
2337		   struct scatterlist *meta_sgl,
2338		   unsigned short meta_sg_nents,
2339		   unsigned int *meta_sg_offset_p)
2340{
2341	struct scatterlist *sg = sgl;
2342	struct mlx5_klm *klms = mr->descs;
2343	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2344	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2345	int i, j = 0;
2346
2347	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2348	mr->ibmr.length = 0;
 
2349
2350	for_each_sg(sgl, sg, sg_nents, i) {
2351		if (unlikely(i >= mr->max_descs))
2352			break;
2353		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2354		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2355		klms[i].key = cpu_to_be32(lkey);
2356		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2357
2358		sg_offset = 0;
2359	}
2360
2361	if (sg_offset_p)
2362		*sg_offset_p = sg_offset;
2363
2364	mr->mmkey.ndescs = i;
2365	mr->data_length = mr->ibmr.length;
2366
2367	if (meta_sg_nents) {
2368		sg = meta_sgl;
2369		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2370		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2371			if (unlikely(i + j >= mr->max_descs))
2372				break;
2373			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2374						     sg_offset);
2375			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2376							 sg_offset);
2377			klms[i + j].key = cpu_to_be32(lkey);
2378			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2379
2380			sg_offset = 0;
2381		}
2382		if (meta_sg_offset_p)
2383			*meta_sg_offset_p = sg_offset;
2384
2385		mr->meta_ndescs = j;
2386		mr->meta_length = mr->ibmr.length - mr->data_length;
2387	}
2388
2389	return i + j;
2390}
2391
2392static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2393{
2394	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2395	__be64 *descs;
2396
2397	if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2398		return -ENOMEM;
2399
2400	descs = mr->descs;
2401	descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2402
2403	return 0;
2404}
2405
2406static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2407{
2408	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2409	__be64 *descs;
2410
2411	if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2412		return -ENOMEM;
2413
2414	descs = mr->descs;
2415	descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2416		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2417
2418	return 0;
2419}
2420
2421static int
2422mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2423			 int data_sg_nents, unsigned int *data_sg_offset,
2424			 struct scatterlist *meta_sg, int meta_sg_nents,
2425			 unsigned int *meta_sg_offset)
2426{
2427	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2428	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2429	int n;
2430
2431	pi_mr->mmkey.ndescs = 0;
2432	pi_mr->meta_ndescs = 0;
2433	pi_mr->meta_length = 0;
2434
2435	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2436				   pi_mr->desc_size * pi_mr->max_descs,
2437				   DMA_TO_DEVICE);
2438
2439	pi_mr->ibmr.page_size = ibmr->page_size;
2440	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2441			   mlx5_set_page);
2442	if (n != data_sg_nents)
2443		return n;
2444
2445	pi_mr->data_iova = pi_mr->ibmr.iova;
2446	pi_mr->data_length = pi_mr->ibmr.length;
2447	pi_mr->ibmr.length = pi_mr->data_length;
2448	ibmr->length = pi_mr->data_length;
2449
2450	if (meta_sg_nents) {
2451		u64 page_mask = ~((u64)ibmr->page_size - 1);
2452		u64 iova = pi_mr->data_iova;
2453
2454		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2455				    meta_sg_offset, mlx5_set_page_pi);
2456
2457		pi_mr->meta_length = pi_mr->ibmr.length;
2458		/*
2459		 * PI address for the HW is the offset of the metadata address
2460		 * relative to the first data page address.
2461		 * It equals to first data page address + size of data pages +
2462		 * metadata offset at the first metadata page
2463		 */
2464		pi_mr->pi_iova = (iova & page_mask) +
2465				 pi_mr->mmkey.ndescs * ibmr->page_size +
2466				 (pi_mr->ibmr.iova & ~page_mask);
2467		/*
2468		 * In order to use one MTT MR for data and metadata, we register
2469		 * also the gaps between the end of the data and the start of
2470		 * the metadata (the sig MR will verify that the HW will access
2471		 * to right addresses). This mapping is safe because we use
2472		 * internal mkey for the registration.
2473		 */
2474		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2475		pi_mr->ibmr.iova = iova;
2476		ibmr->length += pi_mr->meta_length;
2477	}
2478
2479	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2480				      pi_mr->desc_size * pi_mr->max_descs,
2481				      DMA_TO_DEVICE);
2482
2483	return n;
2484}
2485
2486static int
2487mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2488			 int data_sg_nents, unsigned int *data_sg_offset,
2489			 struct scatterlist *meta_sg, int meta_sg_nents,
2490			 unsigned int *meta_sg_offset)
2491{
2492	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2493	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2494	int n;
2495
2496	pi_mr->mmkey.ndescs = 0;
2497	pi_mr->meta_ndescs = 0;
2498	pi_mr->meta_length = 0;
2499
2500	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2501				   pi_mr->desc_size * pi_mr->max_descs,
2502				   DMA_TO_DEVICE);
2503
2504	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2505			       meta_sg, meta_sg_nents, meta_sg_offset);
2506
2507	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2508				      pi_mr->desc_size * pi_mr->max_descs,
2509				      DMA_TO_DEVICE);
2510
2511	/* This is zero-based memory region */
2512	pi_mr->data_iova = 0;
2513	pi_mr->ibmr.iova = 0;
2514	pi_mr->pi_iova = pi_mr->data_length;
2515	ibmr->length = pi_mr->ibmr.length;
2516
2517	return n;
2518}
2519
2520int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2521			 int data_sg_nents, unsigned int *data_sg_offset,
2522			 struct scatterlist *meta_sg, int meta_sg_nents,
2523			 unsigned int *meta_sg_offset)
2524{
2525	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2526	struct mlx5_ib_mr *pi_mr = NULL;
2527	int n;
2528
2529	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2530
2531	mr->mmkey.ndescs = 0;
2532	mr->data_length = 0;
2533	mr->data_iova = 0;
2534	mr->meta_ndescs = 0;
2535	mr->pi_iova = 0;
2536	/*
2537	 * As a performance optimization, if possible, there is no need to
2538	 * perform UMR operation to register the data/metadata buffers.
2539	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2540	 * Fallback to UMR only in case of a failure.
2541	 */
2542	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2543				    data_sg_offset, meta_sg, meta_sg_nents,
2544				    meta_sg_offset);
2545	if (n == data_sg_nents + meta_sg_nents)
2546		goto out;
2547	/*
2548	 * As a performance optimization, if possible, there is no need to map
2549	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2550	 * descriptors and fallback to KLM only in case of a failure.
2551	 * It's more efficient for the HW to work with MTT descriptors
2552	 * (especially in high load).
2553	 * Use KLM (indirect access) only if it's mandatory.
2554	 */
2555	pi_mr = mr->mtt_mr;
2556	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2557				     data_sg_offset, meta_sg, meta_sg_nents,
2558				     meta_sg_offset);
2559	if (n == data_sg_nents + meta_sg_nents)
2560		goto out;
2561
2562	pi_mr = mr->klm_mr;
2563	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2564				     data_sg_offset, meta_sg, meta_sg_nents,
2565				     meta_sg_offset);
2566	if (unlikely(n != data_sg_nents + meta_sg_nents))
2567		return -ENOMEM;
2568
2569out:
2570	/* This is zero-based memory region */
2571	ibmr->iova = 0;
2572	mr->pi_mr = pi_mr;
2573	if (pi_mr)
2574		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2575	else
2576		ibmr->sig_attrs->meta_length = mr->meta_length;
2577
2578	return 0;
2579}
2580
2581int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2582		      unsigned int *sg_offset)
 
2583{
2584	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2585	int n;
2586
2587	mr->mmkey.ndescs = 0;
2588
2589	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2590				   mr->desc_size * mr->max_descs,
2591				   DMA_TO_DEVICE);
2592
2593	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2594		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2595				       NULL);
2596	else
2597		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2598				mlx5_set_page);
2599
2600	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2601				      mr->desc_size * mr->max_descs,
2602				      DMA_TO_DEVICE);
2603
2604	return n;
2605}
v4.6
   1/*
   2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
 
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 */
  32
  33
  34#include <linux/kref.h>
  35#include <linux/random.h>
  36#include <linux/debugfs.h>
  37#include <linux/export.h>
  38#include <linux/delay.h>
  39#include <rdma/ib_umem.h>
 
  40#include <rdma/ib_umem_odp.h>
  41#include <rdma/ib_verbs.h>
  42#include "mlx5_ib.h"
  43#include "user.h"
  44
  45enum {
  46	MAX_PENDING_REG_MR = 8,
  47};
  48
  49#define MLX5_UMR_ALIGN 2048
  50#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
  51static __be64 mlx5_ib_update_mtt_emergency_buffer[
  52		MLX5_UMR_MTT_MIN_CHUNK_SIZE/sizeof(__be64)]
  53	__aligned(MLX5_UMR_ALIGN);
  54static DEFINE_MUTEX(mlx5_ib_update_mtt_emergency_buffer_mutex);
  55#endif
  56
  57static int clean_mr(struct mlx5_ib_mr *mr);
 
 
 
 
  58
  59static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
 
  60{
  61	int err = mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
 
 
 
 
 
 
  62
  63#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
  64	/* Wait until all page fault handlers using the mr complete. */
  65	synchronize_srcu(&dev->mr_srcu);
  66#endif
  67
  68	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69}
  70
  71static int order2idx(struct mlx5_ib_dev *dev, int order)
 
  72{
  73	struct mlx5_mr_cache *cache = &dev->cache;
 
 
 
 
 
  74
  75	if (order < cache->ent[0].order)
  76		return 0;
  77	else
  78		return order - cache->ent[0].order;
 
 
 
 
 
 
 
 
 
 
 
  79}
  80
  81static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length)
 
 
 
  82{
  83	return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >=
  84		length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1));
 
  85}
  86
  87#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
  88static void update_odp_mr(struct mlx5_ib_mr *mr)
  89{
  90	if (mr->umem->odp_data) {
  91		/*
  92		 * This barrier prevents the compiler from moving the
  93		 * setting of umem->odp_data->private to point to our
  94		 * MR, before reg_umr finished, to ensure that the MR
  95		 * initialization have finished before starting to
  96		 * handle invalidations.
  97		 */
  98		smp_wmb();
  99		mr->umem->odp_data->private = mr;
 100		/*
 101		 * Make sure we will see the new
 102		 * umem->odp_data->private value in the invalidation
 103		 * routines, before we can get page faults on the
 104		 * MR. Page faults can happen once we put the MR in
 105		 * the tree, below this line. Without the barrier,
 106		 * there can be a fault handling and an invalidation
 107		 * before umem->odp_data->private == mr is visible to
 108		 * the invalidation handler.
 109		 */
 110		smp_wmb();
 
 
 
 
 
 
 111	}
 
 
 
 
 112}
 113#endif
 114
 115static void reg_mr_callback(int status, void *context)
 116{
 117	struct mlx5_ib_mr *mr = context;
 118	struct mlx5_ib_dev *dev = mr->dev;
 119	struct mlx5_mr_cache *cache = &dev->cache;
 120	int c = order2idx(dev, mr->order);
 121	struct mlx5_cache_ent *ent = &cache->ent[c];
 122	u8 key;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123	unsigned long flags;
 124	struct mlx5_mkey_table *table = &dev->mdev->priv.mkey_table;
 125	int err;
 126
 127	spin_lock_irqsave(&ent->lock, flags);
 128	ent->pending--;
 129	spin_unlock_irqrestore(&ent->lock, flags);
 130	if (status) {
 131		mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
 132		kfree(mr);
 133		dev->fill_delay = 1;
 
 
 
 134		mod_timer(&dev->delay_timer, jiffies + HZ);
 135		return;
 136	}
 137
 138	if (mr->out.hdr.status) {
 139		mlx5_ib_warn(dev, "failed - status %d, syndorme 0x%x\n",
 140			     mr->out.hdr.status,
 141			     be32_to_cpu(mr->out.hdr.syndrome));
 142		kfree(mr);
 143		dev->fill_delay = 1;
 144		mod_timer(&dev->delay_timer, jiffies + HZ);
 145		return;
 146	}
 
 
 
 147
 148	spin_lock_irqsave(&dev->mdev->priv.mkey_lock, flags);
 149	key = dev->mdev->priv.mkey_key++;
 150	spin_unlock_irqrestore(&dev->mdev->priv.mkey_lock, flags);
 151	mr->mmkey.key = mlx5_idx_to_mkey(be32_to_cpu(mr->out.mkey) & 0xffffff) | key;
 152
 153	cache->last_add = jiffies;
 
 
 
 
 
 
 
 
 
 
 
 
 
 154
 155	spin_lock_irqsave(&ent->lock, flags);
 156	list_add_tail(&mr->list, &ent->head);
 157	ent->cur++;
 158	ent->size++;
 159	spin_unlock_irqrestore(&ent->lock, flags);
 160
 161	write_lock_irqsave(&table->lock, flags);
 162	err = radix_tree_insert(&table->tree, mlx5_base_mkey(mr->mmkey.key),
 163				&mr->mmkey);
 164	if (err)
 165		pr_err("Error inserting to mkey tree. 0x%x\n", -err);
 166	write_unlock_irqrestore(&table->lock, flags);
 
 
 167}
 168
 169static int add_keys(struct mlx5_ib_dev *dev, int c, int num)
 
 170{
 171	struct mlx5_mr_cache *cache = &dev->cache;
 172	struct mlx5_cache_ent *ent = &cache->ent[c];
 173	struct mlx5_create_mkey_mbox_in *in;
 174	struct mlx5_ib_mr *mr;
 175	int npages = 1 << ent->order;
 176	int err = 0;
 177	int i;
 178
 179	in = kzalloc(sizeof(*in), GFP_KERNEL);
 180	if (!in)
 181		return -ENOMEM;
 
 
 
 
 
 
 182
 183	for (i = 0; i < num; i++) {
 184		if (ent->pending >= MAX_PENDING_REG_MR) {
 185			err = -EAGAIN;
 186			break;
 187		}
 
 
 188
 189		mr = kzalloc(sizeof(*mr), GFP_KERNEL);
 190		if (!mr) {
 191			err = -ENOMEM;
 192			break;
 193		}
 194		mr->order = ent->order;
 195		mr->umred = 1;
 196		mr->dev = dev;
 197		in->seg.status = MLX5_MKEY_STATUS_FREE;
 198		in->seg.xlt_oct_size = cpu_to_be32((npages + 1) / 2);
 199		in->seg.qpn_mkey7_0 = cpu_to_be32(0xffffff << 8);
 200		in->seg.flags = MLX5_ACCESS_MODE_MTT | MLX5_PERM_UMR_EN;
 201		in->seg.log2_page_size = 12;
 202
 203		spin_lock_irq(&ent->lock);
 204		ent->pending++;
 205		spin_unlock_irq(&ent->lock);
 206		err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in,
 207					    sizeof(*in), reg_mr_callback,
 208					    mr, &mr->out);
 209		if (err) {
 210			spin_lock_irq(&ent->lock);
 211			ent->pending--;
 212			spin_unlock_irq(&ent->lock);
 213			mlx5_ib_warn(dev, "create mkey failed %d\n", err);
 214			kfree(mr);
 215			break;
 216		}
 217	}
 218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219	kfree(in);
 220	return err;
 221}
 222
 223static void remove_keys(struct mlx5_ib_dev *dev, int c, int num)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224{
 225	struct mlx5_mr_cache *cache = &dev->cache;
 226	struct mlx5_cache_ent *ent = &cache->ent[c];
 227	struct mlx5_ib_mr *mr;
 228	int err;
 229	int i;
 230
 231	for (i = 0; i < num; i++) {
 232		spin_lock_irq(&ent->lock);
 233		if (list_empty(&ent->head)) {
 234			spin_unlock_irq(&ent->lock);
 235			return;
 236		}
 237		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
 238		list_del(&mr->list);
 239		ent->cur--;
 240		ent->size--;
 241		spin_unlock_irq(&ent->lock);
 242		err = destroy_mkey(dev, mr);
 243		if (err)
 244			mlx5_ib_warn(dev, "failed destroy mkey\n");
 245		else
 246			kfree(mr);
 
 
 
 
 
 
 
 247	}
 248}
 249
 250static ssize_t size_write(struct file *filp, const char __user *buf,
 251			  size_t count, loff_t *pos)
 252{
 253	struct mlx5_cache_ent *ent = filp->private_data;
 254	struct mlx5_ib_dev *dev = ent->dev;
 255	char lbuf[20];
 256	u32 var;
 257	int err;
 258	int c;
 259
 260	if (copy_from_user(lbuf, buf, sizeof(lbuf)))
 261		return -EFAULT;
 
 262
 263	c = order2idx(dev, ent->order);
 264	lbuf[sizeof(lbuf) - 1] = 0;
 265
 266	if (sscanf(lbuf, "%u", &var) != 1)
 267		return -EINVAL;
 268
 269	if (var < ent->limit)
 270		return -EINVAL;
 271
 272	if (var > ent->size) {
 273		do {
 274			err = add_keys(dev, c, var - ent->size);
 275			if (err && err != -EAGAIN)
 276				return err;
 277
 278			usleep_range(3000, 5000);
 279		} while (err);
 280	} else if (var < ent->size) {
 281		remove_keys(dev, c, ent->size - var);
 282	}
 
 
 
 
 283
 284	return count;
 
 
 
 
 285}
 286
 287static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
 288			 loff_t *pos)
 289{
 290	struct mlx5_cache_ent *ent = filp->private_data;
 291	char lbuf[20];
 292	int err;
 293
 294	if (*pos)
 295		return 0;
 296
 297	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->size);
 298	if (err < 0)
 299		return err;
 300
 301	if (copy_to_user(buf, lbuf, err))
 302		return -EFAULT;
 303
 304	*pos += err;
 305
 306	return err;
 307}
 308
 309static const struct file_operations size_fops = {
 310	.owner	= THIS_MODULE,
 311	.open	= simple_open,
 312	.write	= size_write,
 313	.read	= size_read,
 314};
 315
 316static ssize_t limit_write(struct file *filp, const char __user *buf,
 317			   size_t count, loff_t *pos)
 318{
 319	struct mlx5_cache_ent *ent = filp->private_data;
 320	struct mlx5_ib_dev *dev = ent->dev;
 321	char lbuf[20];
 322	u32 var;
 323	int err;
 324	int c;
 325
 326	if (copy_from_user(lbuf, buf, sizeof(lbuf)))
 327		return -EFAULT;
 328
 329	c = order2idx(dev, ent->order);
 330	lbuf[sizeof(lbuf) - 1] = 0;
 331
 332	if (sscanf(lbuf, "%u", &var) != 1)
 333		return -EINVAL;
 334
 335	if (var > ent->size)
 336		return -EINVAL;
 337
 
 
 
 
 
 338	ent->limit = var;
 339
 340	if (ent->cur < ent->limit) {
 341		err = add_keys(dev, c, 2 * ent->limit - ent->cur);
 342		if (err)
 343			return err;
 344	}
 345
 346	return count;
 347}
 348
 349static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
 350			  loff_t *pos)
 351{
 352	struct mlx5_cache_ent *ent = filp->private_data;
 353	char lbuf[20];
 354	int err;
 355
 356	if (*pos)
 357		return 0;
 358
 359	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
 360	if (err < 0)
 361		return err;
 362
 363	if (copy_to_user(buf, lbuf, err))
 364		return -EFAULT;
 365
 366	*pos += err;
 367
 368	return err;
 369}
 370
 371static const struct file_operations limit_fops = {
 372	.owner	= THIS_MODULE,
 373	.open	= simple_open,
 374	.write	= limit_write,
 375	.read	= limit_read,
 376};
 377
 378static int someone_adding(struct mlx5_mr_cache *cache)
 379{
 380	int i;
 
 
 381
 382	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
 383		if (cache->ent[i].cur < cache->ent[i].limit)
 384			return 1;
 
 
 
 
 
 
 
 385	}
 
 
 
 
 
 
 
 
 
 
 
 
 386
 387	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388}
 389
 390static void __cache_work_func(struct mlx5_cache_ent *ent)
 391{
 392	struct mlx5_ib_dev *dev = ent->dev;
 393	struct mlx5_mr_cache *cache = &dev->cache;
 394	int i = order2idx(dev, ent->order);
 395	int err;
 396
 397	if (cache->stopped)
 398		return;
 399
 400	ent = &dev->cache.ent[i];
 401	if (ent->cur < 2 * ent->limit && !dev->fill_delay) {
 402		err = add_keys(dev, i, 1);
 403		if (ent->cur < 2 * ent->limit) {
 404			if (err == -EAGAIN) {
 405				mlx5_ib_dbg(dev, "returned eagain, order %d\n",
 406					    i + 2);
 407				queue_delayed_work(cache->wq, &ent->dwork,
 408						   msecs_to_jiffies(3));
 409			} else if (err) {
 410				mlx5_ib_warn(dev, "command failed order %d, err %d\n",
 411					     i + 2, err);
 
 
 
 
 
 
 
 
 412				queue_delayed_work(cache->wq, &ent->dwork,
 413						   msecs_to_jiffies(1000));
 414			} else {
 415				queue_work(cache->wq, &ent->work);
 416			}
 417		}
 418	} else if (ent->cur > 2 * ent->limit) {
 
 
 419		/*
 420		 * The remove_keys() logic is performed as garbage collection
 421		 * task. Such task is intended to be run when no other active
 422		 * processes are running.
 423		 *
 424		 * The need_resched() will return TRUE if there are user tasks
 425		 * to be activated in near future.
 426		 *
 427		 * In such case, we don't execute remove_keys() and postpone
 428		 * the garbage collection work to try to run in next cycle,
 429		 * in order to free CPU resources to other tasks.
 430		 */
 431		if (!need_resched() && !someone_adding(cache) &&
 432		    time_after(jiffies, cache->last_add + 300 * HZ)) {
 433			remove_keys(dev, i, 1);
 434			if (ent->cur > ent->limit)
 435				queue_work(cache->wq, &ent->work);
 436		} else {
 
 
 437			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
 
 438		}
 
 
 439	}
 
 
 440}
 441
 442static void delayed_cache_work_func(struct work_struct *work)
 443{
 444	struct mlx5_cache_ent *ent;
 445
 446	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
 447	__cache_work_func(ent);
 448}
 449
 450static void cache_work_func(struct work_struct *work)
 
 451{
 452	struct mlx5_cache_ent *ent;
 
 
 
 
 
 
 
 
 
 
 
 
 453
 454	ent = container_of(work, struct mlx5_cache_ent, work);
 455	__cache_work_func(ent);
 
 
 
 
 456}
 457
 458static struct mlx5_ib_mr *alloc_cached_mr(struct mlx5_ib_dev *dev, int order)
 
 459{
 460	struct mlx5_mr_cache *cache = &dev->cache;
 461	struct mlx5_ib_mr *mr = NULL;
 462	struct mlx5_cache_ent *ent;
 463	int c;
 464	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 465
 466	c = order2idx(dev, order);
 467	if (c < 0 || c >= MAX_MR_CACHE_ENTRIES) {
 468		mlx5_ib_warn(dev, "order %d, cache index %d\n", order, c);
 469		return NULL;
 470	}
 471
 472	for (i = c; i < MAX_MR_CACHE_ENTRIES; i++) {
 473		ent = &cache->ent[i];
 474
 475		mlx5_ib_dbg(dev, "order %d, cache index %d\n", ent->order, i);
 476
 477		spin_lock_irq(&ent->lock);
 478		if (!list_empty(&ent->head)) {
 479			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
 480					      list);
 481			list_del(&mr->list);
 482			ent->cur--;
 483			spin_unlock_irq(&ent->lock);
 484			if (ent->cur < ent->limit)
 485				queue_work(cache->wq, &ent->work);
 486			break;
 487		}
 488		spin_unlock_irq(&ent->lock);
 489
 490		queue_work(cache->wq, &ent->work);
 491	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492
 
 493	if (!mr)
 494		cache->ent[c].miss++;
 
 
 
 495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496	return mr;
 497}
 498
 499static void free_cached_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
 
 500{
 501	struct mlx5_mr_cache *cache = &dev->cache;
 502	struct mlx5_cache_ent *ent;
 503	int shrink = 0;
 504	int c;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505
 506	c = order2idx(dev, mr->order);
 507	if (c < 0 || c >= MAX_MR_CACHE_ENTRIES) {
 508		mlx5_ib_warn(dev, "order %d, cache index %d\n", mr->order, c);
 509		return;
 510	}
 511	ent = &cache->ent[c];
 512	spin_lock_irq(&ent->lock);
 513	list_add_tail(&mr->list, &ent->head);
 514	ent->cur++;
 515	if (ent->cur > 2 * ent->limit)
 516		shrink = 1;
 517	spin_unlock_irq(&ent->lock);
 518
 519	if (shrink)
 520		queue_work(cache->wq, &ent->work);
 521}
 522
 523static void clean_keys(struct mlx5_ib_dev *dev, int c)
 524{
 525	struct mlx5_mr_cache *cache = &dev->cache;
 526	struct mlx5_cache_ent *ent = &cache->ent[c];
 527	struct mlx5_ib_mr *mr;
 528	int err;
 529
 530	cancel_delayed_work(&ent->dwork);
 531	while (1) {
 532		spin_lock_irq(&ent->lock);
 533		if (list_empty(&ent->head)) {
 534			spin_unlock_irq(&ent->lock);
 535			return;
 536		}
 537		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
 538		list_del(&mr->list);
 539		ent->cur--;
 540		ent->size--;
 541		spin_unlock_irq(&ent->lock);
 542		err = destroy_mkey(dev, mr);
 543		if (err)
 544			mlx5_ib_warn(dev, "failed destroy mkey\n");
 545		else
 546			kfree(mr);
 547	}
 
 548}
 549
 550static int mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
 551{
 552	struct mlx5_mr_cache *cache = &dev->cache;
 553	struct mlx5_cache_ent *ent;
 554	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	if (!mlx5_debugfs_root)
 557		return 0;
 
 
 
 
 
 558
 559	cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
 560	if (!cache->root)
 561		return -ENOMEM;
 
 562
 563	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
 564		ent = &cache->ent[i];
 565		sprintf(ent->name, "%d", ent->order);
 566		ent->dir = debugfs_create_dir(ent->name,  cache->root);
 567		if (!ent->dir)
 568			return -ENOMEM;
 569
 570		ent->fsize = debugfs_create_file("size", 0600, ent->dir, ent,
 571						 &size_fops);
 572		if (!ent->fsize)
 573			return -ENOMEM;
 574
 575		ent->flimit = debugfs_create_file("limit", 0600, ent->dir, ent,
 576						  &limit_fops);
 577		if (!ent->flimit)
 578			return -ENOMEM;
 579
 580		ent->fcur = debugfs_create_u32("cur", 0400, ent->dir,
 581					       &ent->cur);
 582		if (!ent->fcur)
 583			return -ENOMEM;
 584
 585		ent->fmiss = debugfs_create_u32("miss", 0600, ent->dir,
 586						&ent->miss);
 587		if (!ent->fmiss)
 588			return -ENOMEM;
 589	}
 590
 
 
 
 
 
 
 
 591	return 0;
 592}
 593
 594static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
 595{
 596	if (!mlx5_debugfs_root)
 597		return;
 598
 599	debugfs_remove_recursive(dev->cache.root);
 
 
 
 
 600}
 601
 602static void delay_time_func(unsigned long ctx)
 
 
 
 603{
 604	struct mlx5_ib_dev *dev = (struct mlx5_ib_dev *)ctx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 605
 606	dev->fill_delay = 0;
 
 
 
 
 
 607}
 608
 609int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
 610{
 611	struct mlx5_mr_cache *cache = &dev->cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612	struct mlx5_cache_ent *ent;
 613	int limit;
 614	int err;
 615	int i;
 616
 617	cache->wq = create_singlethread_workqueue("mkey_cache");
 
 
 
 
 618	if (!cache->wq) {
 619		mlx5_ib_warn(dev, "failed to create work queue\n");
 620		return -ENOMEM;
 621	}
 622
 623	setup_timer(&dev->delay_timer, delay_time_func, (unsigned long)dev);
 624	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
 625		INIT_LIST_HEAD(&cache->ent[i].head);
 626		spin_lock_init(&cache->ent[i].lock);
 627
 628		ent = &cache->ent[i];
 629		INIT_LIST_HEAD(&ent->head);
 630		spin_lock_init(&ent->lock);
 631		ent->order = i + 2;
 632		ent->dev = dev;
 
 
 633
 634		if (dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE)
 635			limit = dev->mdev->profile->mr_cache[i].limit;
 636		else
 637			limit = 0;
 638
 639		INIT_WORK(&ent->work, cache_work_func);
 640		INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
 641		ent->limit = limit;
 642		queue_work(cache->wq, &ent->work);
 
 
 643	}
 644
 645	err = mlx5_mr_cache_debugfs_init(dev);
 646	if (err)
 647		mlx5_ib_warn(dev, "cache debugfs failure\n");
 648
 649	return 0;
 
 
 
 
 650}
 651
 652int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
 653{
 654	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 655
 656	dev->cache.stopped = 1;
 
 
 
 657	flush_workqueue(dev->cache.wq);
 658
 659	mlx5_mr_cache_debugfs_cleanup(dev);
 
 660
 661	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
 662		clean_keys(dev, i);
 
 
 
 
 
 
 
 
 
 
 663
 664	destroy_workqueue(dev->cache.wq);
 665	del_timer_sync(&dev->delay_timer);
 666
 667	return 0;
 668}
 669
 670struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
 671{
 672	struct mlx5_ib_dev *dev = to_mdev(pd->device);
 673	struct mlx5_core_dev *mdev = dev->mdev;
 674	struct mlx5_create_mkey_mbox_in *in;
 675	struct mlx5_mkey_seg *seg;
 676	struct mlx5_ib_mr *mr;
 
 
 677	int err;
 678
 679	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
 680	if (!mr)
 681		return ERR_PTR(-ENOMEM);
 682
 683	in = kzalloc(sizeof(*in), GFP_KERNEL);
 684	if (!in) {
 685		err = -ENOMEM;
 686		goto err_free;
 687	}
 688
 689	seg = &in->seg;
 690	seg->flags = convert_access(acc) | MLX5_ACCESS_MODE_PA;
 691	seg->flags_pd = cpu_to_be32(to_mpd(pd)->pdn | MLX5_MKEY_LEN64);
 692	seg->qpn_mkey7_0 = cpu_to_be32(0xffffff << 8);
 693	seg->start_addr = 0;
 
 694
 695	err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, sizeof(*in), NULL, NULL,
 696				    NULL);
 697	if (err)
 698		goto err_in;
 699
 700	kfree(in);
 
 701	mr->ibmr.lkey = mr->mmkey.key;
 702	mr->ibmr.rkey = mr->mmkey.key;
 703	mr->umem = NULL;
 704
 705	return &mr->ibmr;
 706
 707err_in:
 708	kfree(in);
 709
 710err_free:
 711	kfree(mr);
 712
 713	return ERR_PTR(err);
 714}
 715
 716static int get_octo_len(u64 addr, u64 len, int page_size)
 717{
 
 718	u64 offset;
 719	int npages;
 720
 721	offset = addr & (page_size - 1);
 722	npages = ALIGN(len + offset, page_size) >> ilog2(page_size);
 723	return (npages + 1) / 2;
 724}
 725
 726static int use_umr(int order)
 727{
 728	return order <= MLX5_MAX_UMR_SHIFT;
 
 
 729}
 730
 731static int dma_map_mr_pas(struct mlx5_ib_dev *dev, struct ib_umem *umem,
 732			  int npages, int page_shift, int *size,
 733			  __be64 **mr_pas, dma_addr_t *dma)
 734{
 735	__be64 *pas;
 736	struct device *ddev = dev->ib_dev.dma_device;
 
 
 
 
 
 737
 
 
 
 738	/*
 739	 * UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes.
 740	 * To avoid copying garbage after the pas array, we allocate
 741	 * a little more.
 742	 */
 743	*size = ALIGN(sizeof(u64) * npages, MLX5_UMR_MTT_ALIGNMENT);
 744	*mr_pas = kmalloc(*size + MLX5_UMR_ALIGN - 1, GFP_KERNEL);
 745	if (!(*mr_pas))
 746		return -ENOMEM;
 747
 748	pas = PTR_ALIGN(*mr_pas, MLX5_UMR_ALIGN);
 749	mlx5_ib_populate_pas(dev, umem, page_shift, pas, MLX5_IB_MTT_PRESENT);
 750	/* Clear padding after the actual pages. */
 751	memset(pas + npages, 0, *size - npages * sizeof(u64));
 752
 753	*dma = dma_map_single(ddev, pas, *size, DMA_TO_DEVICE);
 754	if (dma_mapping_error(ddev, *dma)) {
 755		kfree(*mr_pas);
 756		return -ENOMEM;
 757	}
 758
 759	return 0;
 760}
 761
 762static void prep_umr_wqe_common(struct ib_pd *pd, struct ib_send_wr *wr,
 763				struct ib_sge *sg, u64 dma, int n, u32 key,
 764				int page_shift)
 765{
 
 
 
 766	struct mlx5_ib_dev *dev = to_mdev(pd->device);
 767	struct mlx5_umr_wr *umrwr = umr_wr(wr);
 
 
 768
 769	sg->addr = dma;
 770	sg->length = ALIGN(sizeof(u64) * n, 64);
 771	sg->lkey = dev->umrc.pd->local_dma_lkey;
 772
 773	wr->next = NULL;
 774	wr->sg_list = sg;
 775	if (n)
 776		wr->num_sge = 1;
 777	else
 778		wr->num_sge = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779
 780	wr->opcode = MLX5_IB_WR_UMR;
 
 
 781
 782	umrwr->npages = n;
 783	umrwr->page_shift = page_shift;
 784	umrwr->mkey = key;
 
 
 
 785}
 786
 787static void prep_umr_reg_wqe(struct ib_pd *pd, struct ib_send_wr *wr,
 788			     struct ib_sge *sg, u64 dma, int n, u32 key,
 789			     int page_shift, u64 virt_addr, u64 len,
 790			     int access_flags)
 
 
 
 791{
 792	struct mlx5_umr_wr *umrwr = umr_wr(wr);
 
 
 
 
 
 
 
 793
 794	prep_umr_wqe_common(pd, wr, sg, dma, n, key, page_shift);
 
 
 
 
 795
 796	wr->send_flags = 0;
 
 
 797
 798	umrwr->target.virt_addr = virt_addr;
 799	umrwr->length = len;
 800	umrwr->access_flags = access_flags;
 801	umrwr->pd = pd;
 802}
 
 
 
 
 
 
 
 
 
 
 
 
 
 803
 804static void prep_umr_unreg_wqe(struct mlx5_ib_dev *dev,
 805			       struct ib_send_wr *wr, u32 key)
 806{
 807	struct mlx5_umr_wr *umrwr = umr_wr(wr);
 808
 809	wr->send_flags = MLX5_IB_SEND_UMR_UNREG | MLX5_IB_SEND_UMR_FAIL_IF_FREE;
 810	wr->opcode = MLX5_IB_WR_UMR;
 811	umrwr->mkey = key;
 812}
 813
 814static struct ib_umem *mr_umem_get(struct ib_pd *pd, u64 start, u64 length,
 815				   int access_flags, int *npages,
 816				   int *page_shift, int *ncont, int *order)
 817{
 818	struct mlx5_ib_dev *dev = to_mdev(pd->device);
 819	struct ib_umem *umem = ib_umem_get(pd->uobject->context, start, length,
 820					   access_flags, 0);
 821	if (IS_ERR(umem)) {
 822		mlx5_ib_err(dev, "umem get failed (%ld)\n", PTR_ERR(umem));
 823		return (void *)umem;
 
 
 
 
 
 
 
 824	}
 825
 826	mlx5_ib_cont_pages(umem, start, npages, page_shift, ncont, order);
 827	if (!*npages) {
 828		mlx5_ib_warn(dev, "avoid zero region\n");
 829		ib_umem_release(umem);
 830		return ERR_PTR(-EINVAL);
 831	}
 
 
 
 
 
 832
 833	mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n",
 834		    *npages, *ncont, *order, *page_shift);
 835
 836	return umem;
 837}
 838
 839static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
 840{
 841	struct mlx5_ib_umr_context *context =
 842		container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
 843
 844	context->status = wc->status;
 845	complete(&context->done);
 846}
 847
 848static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
 849{
 850	context->cqe.done = mlx5_ib_umr_done;
 851	context->status = -1;
 852	init_completion(&context->done);
 853}
 854
 855static struct mlx5_ib_mr *reg_umr(struct ib_pd *pd, struct ib_umem *umem,
 856				  u64 virt_addr, u64 len, int npages,
 857				  int page_shift, int order, int access_flags)
 858{
 859	struct mlx5_ib_dev *dev = to_mdev(pd->device);
 860	struct device *ddev = dev->ib_dev.dma_device;
 861	struct umr_common *umrc = &dev->umrc;
 862	struct mlx5_ib_umr_context umr_context;
 863	struct mlx5_umr_wr umrwr = {};
 864	struct ib_send_wr *bad;
 865	struct mlx5_ib_mr *mr;
 866	struct ib_sge sg;
 867	int size;
 868	__be64 *mr_pas;
 869	dma_addr_t dma;
 870	int err = 0;
 871	int i;
 872
 873	for (i = 0; i < 1; i++) {
 874		mr = alloc_cached_mr(dev, order);
 875		if (mr)
 876			break;
 877
 878		err = add_keys(dev, order2idx(dev, order), 1);
 879		if (err && err != -EAGAIN) {
 880			mlx5_ib_warn(dev, "add_keys failed, err %d\n", err);
 881			break;
 882		}
 883	}
 884
 885	if (!mr)
 886		return ERR_PTR(-EAGAIN);
 
 
 
 
 887
 888	err = dma_map_mr_pas(dev, umem, npages, page_shift, &size, &mr_pas,
 889			     &dma);
 890	if (err)
 891		goto free_mr;
 892
 893	mlx5_ib_init_umr_context(&umr_context);
 894
 895	umrwr.wr.wr_cqe = &umr_context.cqe;
 896	prep_umr_reg_wqe(pd, &umrwr.wr, &sg, dma, npages, mr->mmkey.key,
 897			 page_shift, virt_addr, len, access_flags);
 898
 899	down(&umrc->sem);
 900	err = ib_post_send(umrc->qp, &umrwr.wr, &bad);
 901	if (err) {
 902		mlx5_ib_warn(dev, "post send failed, err %d\n", err);
 903		goto unmap_dma;
 904	} else {
 905		wait_for_completion(&umr_context.done);
 906		if (umr_context.status != IB_WC_SUCCESS) {
 907			mlx5_ib_warn(dev, "reg umr failed\n");
 908			err = -EFAULT;
 909		}
 910	}
 911
 912	mr->mmkey.iova = virt_addr;
 913	mr->mmkey.size = len;
 914	mr->mmkey.pd = to_mpd(pd)->pdn;
 915
 916	mr->live = 1;
 
 917
 918unmap_dma:
 919	up(&umrc->sem);
 920	dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
 921
 922	kfree(mr_pas);
 923
 924free_mr:
 925	if (err) {
 926		free_cached_mr(dev, mr);
 927		return ERR_PTR(err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928	}
 929
 930	return mr;
 
 931}
 932
 933#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
 934int mlx5_ib_update_mtt(struct mlx5_ib_mr *mr, u64 start_page_index, int npages,
 935		       int zap)
 936{
 937	struct mlx5_ib_dev *dev = mr->dev;
 938	struct device *ddev = dev->ib_dev.dma_device;
 939	struct umr_common *umrc = &dev->umrc;
 940	struct mlx5_ib_umr_context umr_context;
 941	struct ib_umem *umem = mr->umem;
 942	int size;
 943	__be64 *pas;
 944	dma_addr_t dma;
 945	struct ib_send_wr *bad;
 946	struct mlx5_umr_wr wr;
 947	struct ib_sge sg;
 948	int err = 0;
 949	const int page_index_alignment = MLX5_UMR_MTT_ALIGNMENT / sizeof(u64);
 950	const int page_index_mask = page_index_alignment - 1;
 951	size_t pages_mapped = 0;
 952	size_t pages_to_map = 0;
 953	size_t pages_iter = 0;
 954	int use_emergency_buf = 0;
 955
 956	/* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
 957	 * so we need to align the offset and length accordingly */
 958	if (start_page_index & page_index_mask) {
 959		npages += start_page_index & page_index_mask;
 960		start_page_index &= ~page_index_mask;
 961	}
 962
 963	pages_to_map = ALIGN(npages, page_index_alignment);
 964
 965	if (start_page_index + pages_to_map > MLX5_MAX_UMR_PAGES)
 966		return -EINVAL;
 967
 968	size = sizeof(u64) * pages_to_map;
 969	size = min_t(int, PAGE_SIZE, size);
 970	/* We allocate with GFP_ATOMIC to avoid recursion into page-reclaim
 971	 * code, when we are called from an invalidation. The pas buffer must
 972	 * be 2k-aligned for Connect-IB. */
 973	pas = (__be64 *)get_zeroed_page(GFP_ATOMIC);
 974	if (!pas) {
 975		mlx5_ib_warn(dev, "unable to allocate memory during MTT update, falling back to slower chunked mechanism.\n");
 976		pas = mlx5_ib_update_mtt_emergency_buffer;
 977		size = MLX5_UMR_MTT_MIN_CHUNK_SIZE;
 978		use_emergency_buf = 1;
 979		mutex_lock(&mlx5_ib_update_mtt_emergency_buffer_mutex);
 980		memset(pas, 0, size);
 981	}
 982	pages_iter = size / sizeof(u64);
 983	dma = dma_map_single(ddev, pas, size, DMA_TO_DEVICE);
 984	if (dma_mapping_error(ddev, dma)) {
 985		mlx5_ib_err(dev, "unable to map DMA during MTT update.\n");
 986		err = -ENOMEM;
 987		goto free_pas;
 988	}
 989
 990	for (pages_mapped = 0;
 991	     pages_mapped < pages_to_map && !err;
 992	     pages_mapped += pages_iter, start_page_index += pages_iter) {
 993		dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE);
 994
 995		npages = min_t(size_t,
 996			       pages_iter,
 997			       ib_umem_num_pages(umem) - start_page_index);
 998
 999		if (!zap) {
1000			__mlx5_ib_populate_pas(dev, umem, PAGE_SHIFT,
1001					       start_page_index, npages, pas,
1002					       MLX5_IB_MTT_PRESENT);
1003			/* Clear padding after the pages brought from the
1004			 * umem. */
1005			memset(pas + npages, 0, size - npages * sizeof(u64));
1006		}
1007
1008		dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE);
1009
1010		mlx5_ib_init_umr_context(&umr_context);
1011
1012		memset(&wr, 0, sizeof(wr));
1013		wr.wr.wr_cqe = &umr_context.cqe;
1014
1015		sg.addr = dma;
1016		sg.length = ALIGN(npages * sizeof(u64),
1017				MLX5_UMR_MTT_ALIGNMENT);
1018		sg.lkey = dev->umrc.pd->local_dma_lkey;
1019
1020		wr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE |
1021				MLX5_IB_SEND_UMR_UPDATE_MTT;
1022		wr.wr.sg_list = &sg;
1023		wr.wr.num_sge = 1;
1024		wr.wr.opcode = MLX5_IB_WR_UMR;
1025		wr.npages = sg.length / sizeof(u64);
1026		wr.page_shift = PAGE_SHIFT;
1027		wr.mkey = mr->mmkey.key;
1028		wr.target.offset = start_page_index;
1029
1030		down(&umrc->sem);
1031		err = ib_post_send(umrc->qp, &wr.wr, &bad);
 
 
 
 
 
1032		if (err) {
1033			mlx5_ib_err(dev, "UMR post send failed, err %d\n", err);
1034		} else {
1035			wait_for_completion(&umr_context.done);
1036			if (umr_context.status != IB_WC_SUCCESS) {
1037				mlx5_ib_err(dev, "UMR completion failed, code %d\n",
1038					    umr_context.status);
1039				err = -EFAULT;
1040			}
1041		}
1042		up(&umrc->sem);
1043	}
1044	dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
1045
1046free_pas:
1047	if (!use_emergency_buf)
1048		free_page((unsigned long)pas);
1049	else
1050		mutex_unlock(&mlx5_ib_update_mtt_emergency_buffer_mutex);
1051
1052	return err;
1053}
1054#endif
1055
1056/*
1057 * If ibmr is NULL it will be allocated by reg_create.
1058 * Else, the given ibmr will be used.
1059 */
1060static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd,
1061				     u64 virt_addr, u64 length,
1062				     struct ib_umem *umem, int npages,
1063				     int page_shift, int access_flags)
1064{
1065	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1066	struct mlx5_create_mkey_mbox_in *in;
1067	struct mlx5_ib_mr *mr;
1068	int inlen;
1069	int err;
1070	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1071
1072	mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL);
1073	if (!mr)
1074		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
1075
1076	inlen = sizeof(*in) + sizeof(*in->pas) * ((npages + 1) / 2) * 2;
1077	in = mlx5_vzalloc(inlen);
1078	if (!in) {
1079		err = -ENOMEM;
1080		goto err_1;
1081	}
1082	mlx5_ib_populate_pas(dev, umem, page_shift, in->pas,
1083			     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1084
1085	/* The MLX5_MKEY_INBOX_PG_ACCESS bit allows setting the access flags
1086	 * in the page list submitted with the command. */
1087	in->flags = pg_cap ? cpu_to_be32(MLX5_MKEY_INBOX_PG_ACCESS) : 0;
1088	in->seg.flags = convert_access(access_flags) |
1089		MLX5_ACCESS_MODE_MTT;
1090	in->seg.flags_pd = cpu_to_be32(to_mpd(pd)->pdn);
1091	in->seg.start_addr = cpu_to_be64(virt_addr);
1092	in->seg.len = cpu_to_be64(length);
1093	in->seg.bsfs_octo_size = 0;
1094	in->seg.xlt_oct_size = cpu_to_be32(get_octo_len(virt_addr, length, 1 << page_shift));
1095	in->seg.log2_page_size = page_shift;
1096	in->seg.qpn_mkey7_0 = cpu_to_be32(0xffffff << 8);
1097	in->xlat_oct_act_size = cpu_to_be32(get_octo_len(virt_addr, length,
1098							 1 << page_shift));
1099	err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen, NULL,
1100				    NULL, NULL);
1101	if (err) {
1102		mlx5_ib_warn(dev, "create mkey failed\n");
1103		goto err_2;
1104	}
1105	mr->umem = umem;
1106	mr->dev = dev;
1107	mr->live = 1;
1108	kvfree(in);
 
 
 
 
 
 
 
1109
1110	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
 
 
 
1111
1112	return mr;
 
 
 
 
 
1113
1114err_2:
1115	kvfree(in);
1116
1117err_1:
1118	if (!ibmr)
1119		kfree(mr);
1120
1121	return ERR_PTR(err);
 
 
 
 
 
 
1122}
1123
1124static void set_mr_fileds(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1125			  int npages, u64 length, int access_flags)
1126{
1127	mr->npages = npages;
1128	atomic_add(npages, &dev->mdev->priv.reg_pages);
1129	mr->ibmr.lkey = mr->mmkey.key;
1130	mr->ibmr.rkey = mr->mmkey.key;
1131	mr->ibmr.length = length;
1132	mr->access_flags = access_flags;
 
 
 
 
1133}
1134
1135struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1136				  u64 virt_addr, int access_flags,
1137				  struct ib_udata *udata)
 
 
 
 
 
 
1138{
1139	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1140	struct mlx5_ib_mr *mr = NULL;
1141	struct ib_umem *umem;
1142	int page_shift;
1143	int npages;
1144	int ncont;
1145	int order;
1146	int err;
1147
1148	mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1149		    start, virt_addr, length, access_flags);
1150	umem = mr_umem_get(pd, start, length, access_flags, &npages,
1151			   &page_shift, &ncont, &order);
 
 
 
1152
1153	if (IS_ERR(umem))
1154		return (void *)umem;
 
1155
1156	if (use_umr(order)) {
1157		mr = reg_umr(pd, umem, virt_addr, length, ncont, page_shift,
1158			     order, access_flags);
1159		if (PTR_ERR(mr) == -EAGAIN) {
1160			mlx5_ib_dbg(dev, "cache empty for order %d", order);
1161			mr = NULL;
1162		}
1163	} else if (access_flags & IB_ACCESS_ON_DEMAND) {
1164		err = -EINVAL;
1165		pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB");
1166		goto error;
1167	}
1168
1169	if (!mr)
1170		mr = reg_create(NULL, pd, virt_addr, length, umem, ncont,
1171				page_shift, access_flags);
1172
1173	if (IS_ERR(mr)) {
1174		err = PTR_ERR(mr);
1175		goto error;
1176	}
1177
1178	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1179
1180	mr->umem = umem;
1181	set_mr_fileds(dev, mr, npages, length, access_flags);
1182
1183#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1184	update_odp_mr(mr);
1185#endif
1186
 
 
 
1187	return &mr->ibmr;
1188
1189error:
1190	ib_umem_release(umem);
1191	return ERR_PTR(err);
1192}
1193
1194static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195{
1196	struct umr_common *umrc = &dev->umrc;
1197	struct mlx5_ib_umr_context umr_context;
1198	struct mlx5_umr_wr umrwr = {};
1199	struct ib_send_wr *bad;
1200	int err;
1201
1202	mlx5_ib_init_umr_context(&umr_context);
1203
1204	umrwr.wr.wr_cqe = &umr_context.cqe;
1205	prep_umr_unreg_wqe(dev, &umrwr.wr, mr->mmkey.key);
1206
1207	down(&umrc->sem);
1208	err = ib_post_send(umrc->qp, &umrwr.wr, &bad);
1209	if (err) {
1210		up(&umrc->sem);
1211		mlx5_ib_dbg(dev, "err %d\n", err);
1212		goto error;
1213	} else {
1214		wait_for_completion(&umr_context.done);
1215		up(&umrc->sem);
1216	}
1217	if (umr_context.status != IB_WC_SUCCESS) {
1218		mlx5_ib_warn(dev, "unreg umr failed\n");
1219		err = -EFAULT;
1220		goto error;
1221	}
1222	return 0;
1223
1224error:
1225	return err;
1226}
1227
1228static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr, u64 virt_addr,
1229		     u64 length, int npages, int page_shift, int order,
1230		     int access_flags, int flags)
1231{
1232	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1233	struct device *ddev = dev->ib_dev.dma_device;
1234	struct mlx5_ib_umr_context umr_context;
1235	struct ib_send_wr *bad;
1236	struct mlx5_umr_wr umrwr = {};
1237	struct ib_sge sg;
1238	struct umr_common *umrc = &dev->umrc;
1239	dma_addr_t dma = 0;
1240	__be64 *mr_pas = NULL;
1241	int size;
1242	int err;
1243
1244	mlx5_ib_init_umr_context(&umr_context);
1245
1246	umrwr.wr.wr_cqe = &umr_context.cqe;
1247	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1248
1249	if (flags & IB_MR_REREG_TRANS) {
1250		err = dma_map_mr_pas(dev, mr->umem, npages, page_shift, &size,
1251				     &mr_pas, &dma);
1252		if (err)
1253			return err;
1254
1255		umrwr.target.virt_addr = virt_addr;
1256		umrwr.length = length;
1257		umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1258	}
1259
1260	prep_umr_wqe_common(pd, &umrwr.wr, &sg, dma, npages, mr->mmkey.key,
1261			    page_shift);
 
1262
1263	if (flags & IB_MR_REREG_PD) {
1264		umrwr.pd = pd;
1265		umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD;
1266	}
1267
1268	if (flags & IB_MR_REREG_ACCESS) {
1269		umrwr.access_flags = access_flags;
1270		umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_ACCESS;
1271	}
1272
1273	/* post send request to UMR QP */
1274	down(&umrc->sem);
1275	err = ib_post_send(umrc->qp, &umrwr.wr, &bad);
1276
 
1277	if (err) {
1278		mlx5_ib_warn(dev, "post send failed, err %d\n", err);
1279	} else {
1280		wait_for_completion(&umr_context.done);
1281		if (umr_context.status != IB_WC_SUCCESS) {
1282			mlx5_ib_warn(dev, "reg umr failed (%u)\n",
1283				     umr_context.status);
1284			err = -EFAULT;
1285		}
1286	}
1287
1288	up(&umrc->sem);
1289	if (flags & IB_MR_REREG_TRANS) {
1290		dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
1291		kfree(mr_pas);
1292	}
1293	return err;
1294}
1295
1296int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1297			  u64 length, u64 virt_addr, int new_access_flags,
1298			  struct ib_pd *new_pd, struct ib_udata *udata)
 
1299{
1300	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1301	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1302	struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd;
1303	int access_flags = flags & IB_MR_REREG_ACCESS ?
1304			    new_access_flags :
1305			    mr->access_flags;
1306	u64 addr = (flags & IB_MR_REREG_TRANS) ? virt_addr : mr->umem->address;
1307	u64 len = (flags & IB_MR_REREG_TRANS) ? length : mr->umem->length;
1308	int page_shift = 0;
1309	int npages = 0;
1310	int ncont = 0;
1311	int order = 0;
1312	int err;
1313
1314	mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1315		    start, virt_addr, length, access_flags);
 
 
 
 
 
 
 
 
1316
1317	if (flags != IB_MR_REREG_PD) {
1318		/*
1319		 * Replace umem. This needs to be done whether or not UMR is
1320		 * used.
1321		 */
1322		flags |= IB_MR_REREG_TRANS;
1323		ib_umem_release(mr->umem);
1324		mr->umem = mr_umem_get(pd, addr, len, access_flags, &npages,
1325				       &page_shift, &ncont, &order);
1326		if (IS_ERR(mr->umem)) {
1327			err = PTR_ERR(mr->umem);
1328			mr->umem = NULL;
1329			return err;
 
 
 
1330		}
1331	}
 
 
1332
1333	if (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len)) {
1334		/*
1335		 * UMR can't be used - MKey needs to be replaced.
 
1336		 */
1337		if (mr->umred) {
1338			err = unreg_umr(dev, mr);
1339			if (err)
1340				mlx5_ib_warn(dev, "Failed to unregister MR\n");
1341		} else {
1342			err = destroy_mkey(dev, mr);
1343			if (err)
1344				mlx5_ib_warn(dev, "Failed to destroy MKey\n");
1345		}
1346		if (err)
1347			return err;
 
 
 
1348
1349		mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont,
1350				page_shift, access_flags);
 
1351
1352		if (IS_ERR(mr))
1353			return PTR_ERR(mr);
 
 
 
 
1354
1355		mr->umred = 0;
1356	} else {
1357		/*
1358		 * Send a UMR WQE
1359		 */
1360		err = rereg_umr(pd, mr, addr, len, npages, page_shift,
1361				order, access_flags, flags);
1362		if (err) {
1363			mlx5_ib_warn(dev, "Failed to rereg UMR\n");
1364			return err;
 
 
 
 
 
 
 
 
 
 
1365		}
 
1366	}
1367
1368	if (flags & IB_MR_REREG_PD) {
1369		ib_mr->pd = pd;
1370		mr->mmkey.pd = to_mpd(pd)->pdn;
1371	}
1372
1373	if (flags & IB_MR_REREG_ACCESS)
1374		mr->access_flags = access_flags;
1375
1376	if (flags & IB_MR_REREG_TRANS) {
1377		atomic_sub(mr->npages, &dev->mdev->priv.reg_pages);
1378		set_mr_fileds(dev, mr, npages, len, access_flags);
1379		mr->mmkey.iova = addr;
1380		mr->mmkey.size = len;
1381	}
1382#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1383	update_odp_mr(mr);
1384#endif
1385
1386	return 0;
1387}
1388
1389static int
1390mlx5_alloc_priv_descs(struct ib_device *device,
1391		      struct mlx5_ib_mr *mr,
1392		      int ndescs,
1393		      int desc_size)
1394{
 
 
1395	int size = ndescs * desc_size;
1396	int add_size;
1397	int ret;
1398
1399	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
 
 
 
 
 
1400
1401	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1402	if (!mr->descs_alloc)
1403		return -ENOMEM;
1404
1405	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1406
1407	mr->desc_map = dma_map_single(device->dma_device, mr->descs,
1408				      size, DMA_TO_DEVICE);
1409	if (dma_mapping_error(device->dma_device, mr->desc_map)) {
1410		ret = -ENOMEM;
1411		goto err;
1412	}
1413
1414	return 0;
1415err:
1416	kfree(mr->descs_alloc);
1417
1418	return ret;
1419}
1420
1421static void
1422mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1423{
1424	if (mr->descs) {
1425		struct ib_device *device = mr->ibmr.device;
1426		int size = mr->max_descs * mr->desc_size;
 
1427
1428		dma_unmap_single(device->dma_device, mr->desc_map,
1429				 size, DMA_TO_DEVICE);
1430		kfree(mr->descs_alloc);
1431		mr->descs = NULL;
1432	}
1433}
1434
1435static int clean_mr(struct mlx5_ib_mr *mr)
 
1436{
1437	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1438	int umred = mr->umred;
1439	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1440
1441	if (mr->sig) {
1442		if (mlx5_core_destroy_psv(dev->mdev,
1443					  mr->sig->psv_memory.psv_idx))
1444			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1445				     mr->sig->psv_memory.psv_idx);
1446		if (mlx5_core_destroy_psv(dev->mdev,
1447					  mr->sig->psv_wire.psv_idx))
1448			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1449				     mr->sig->psv_wire.psv_idx);
1450		kfree(mr->sig);
1451		mr->sig = NULL;
1452	}
1453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1454	mlx5_free_priv_descs(mr);
 
 
1455
1456	if (!umred) {
1457		err = destroy_mkey(dev, mr);
1458		if (err) {
1459			mlx5_ib_warn(dev, "failed to destroy mkey 0x%x (%d)\n",
1460				     mr->mmkey.key, err);
1461			return err;
1462		}
1463	} else {
1464		err = unreg_umr(dev, mr);
1465		if (err) {
1466			mlx5_ib_warn(dev, "failed unregister\n");
1467			return err;
1468		}
1469		free_cached_mr(dev, mr);
 
 
 
 
 
 
 
 
1470	}
1471
1472	if (!umred)
1473		kfree(mr);
 
 
 
 
 
 
 
 
 
 
1474
1475	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476}
1477
1478int mlx5_ib_dereg_mr(struct ib_mr *ibmr)
 
 
1479{
1480	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1481	struct mlx5_ib_mr *mr = to_mmr(ibmr);
1482	int npages = mr->npages;
1483	struct ib_umem *umem = mr->umem;
 
 
 
 
 
 
 
 
 
1484
1485#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1486	if (umem && umem->odp_data) {
1487		/* Prevent new page faults from succeeding */
1488		mr->live = 0;
1489		/* Wait for all running page-fault handlers to finish. */
1490		synchronize_srcu(&dev->mr_srcu);
1491		/* Destroy all page mappings */
1492		mlx5_ib_invalidate_range(umem, ib_umem_start(umem),
1493					 ib_umem_end(umem));
1494		/*
1495		 * We kill the umem before the MR for ODP,
1496		 * so that there will not be any invalidations in
1497		 * flight, looking at the *mr struct.
1498		 */
1499		ib_umem_release(umem);
1500		atomic_sub(npages, &dev->mdev->priv.reg_pages);
1501
1502		/* Avoid double-freeing the umem. */
1503		umem = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1504	}
1505#endif
1506
1507	clean_mr(mr);
 
 
 
1508
1509	if (umem) {
1510		ib_umem_release(umem);
1511		atomic_sub(npages, &dev->mdev->priv.reg_pages);
1512	}
1513
 
 
 
 
1514	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1515}
1516
1517struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd,
1518			       enum ib_mr_type mr_type,
1519			       u32 max_num_sg)
1520{
1521	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1522	struct mlx5_create_mkey_mbox_in *in;
 
1523	struct mlx5_ib_mr *mr;
1524	int ndescs = ALIGN(max_num_sg, 4);
1525	int err;
1526
1527	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1528	if (!mr)
1529		return ERR_PTR(-ENOMEM);
1530
1531	in = kzalloc(sizeof(*in), GFP_KERNEL);
1532	if (!in) {
1533		err = -ENOMEM;
1534		goto err_free;
1535	}
1536
1537	in->seg.status = MLX5_MKEY_STATUS_FREE;
1538	in->seg.xlt_oct_size = cpu_to_be32(ndescs);
1539	in->seg.qpn_mkey7_0 = cpu_to_be32(0xffffff << 8);
1540	in->seg.flags_pd = cpu_to_be32(to_mpd(pd)->pdn);
1541
1542	if (mr_type == IB_MR_TYPE_MEM_REG) {
1543		mr->access_mode = MLX5_ACCESS_MODE_MTT;
1544		in->seg.log2_page_size = PAGE_SHIFT;
1545
1546		err = mlx5_alloc_priv_descs(pd->device, mr,
1547					    ndescs, sizeof(u64));
1548		if (err)
1549			goto err_free_in;
1550
1551		mr->desc_size = sizeof(u64);
1552		mr->max_descs = ndescs;
1553	} else if (mr_type == IB_MR_TYPE_SG_GAPS) {
1554		mr->access_mode = MLX5_ACCESS_MODE_KLM;
1555
1556		err = mlx5_alloc_priv_descs(pd->device, mr,
1557					    ndescs, sizeof(struct mlx5_klm));
1558		if (err)
1559			goto err_free_in;
1560		mr->desc_size = sizeof(struct mlx5_klm);
1561		mr->max_descs = ndescs;
1562	} else if (mr_type == IB_MR_TYPE_SIGNATURE) {
1563		u32 psv_index[2];
1564
1565		in->seg.flags_pd = cpu_to_be32(be32_to_cpu(in->seg.flags_pd) |
1566							   MLX5_MKEY_BSF_EN);
1567		in->seg.bsfs_octo_size = cpu_to_be32(MLX5_MKEY_BSF_OCTO_SIZE);
1568		mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1569		if (!mr->sig) {
1570			err = -ENOMEM;
1571			goto err_free_in;
1572		}
1573
1574		/* create mem & wire PSVs */
1575		err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn,
1576					   2, psv_index);
1577		if (err)
1578			goto err_free_sig;
1579
1580		mr->access_mode = MLX5_ACCESS_MODE_KLM;
1581		mr->sig->psv_memory.psv_idx = psv_index[0];
1582		mr->sig->psv_wire.psv_idx = psv_index[1];
1583
1584		mr->sig->sig_status_checked = true;
1585		mr->sig->sig_err_exists = false;
1586		/* Next UMR, Arm SIGERR */
1587		++mr->sig->sigerr_count;
1588	} else {
1589		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1590		err = -EINVAL;
1591		goto err_free_in;
1592	}
1593
1594	in->seg.flags = MLX5_PERM_UMR_EN | mr->access_mode;
1595	err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, sizeof(*in),
1596				    NULL, NULL, NULL);
1597	if (err)
1598		goto err_destroy_psv;
1599
1600	mr->ibmr.lkey = mr->mmkey.key;
1601	mr->ibmr.rkey = mr->mmkey.key;
1602	mr->umem = NULL;
1603	kfree(in);
1604
1605	return &mr->ibmr;
1606
1607err_destroy_psv:
1608	if (mr->sig) {
1609		if (mlx5_core_destroy_psv(dev->mdev,
1610					  mr->sig->psv_memory.psv_idx))
1611			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1612				     mr->sig->psv_memory.psv_idx);
1613		if (mlx5_core_destroy_psv(dev->mdev,
1614					  mr->sig->psv_wire.psv_idx))
1615			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1616				     mr->sig->psv_wire.psv_idx);
1617	}
1618	mlx5_free_priv_descs(mr);
1619err_free_sig:
1620	kfree(mr->sig);
1621err_free_in:
1622	kfree(in);
1623err_free:
1624	kfree(mr);
1625	return ERR_PTR(err);
1626}
1627
1628struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
1629			       struct ib_udata *udata)
 
 
 
 
 
 
 
 
 
 
 
 
1630{
1631	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1632	struct mlx5_create_mkey_mbox_in *in = NULL;
1633	struct mlx5_ib_mw *mw = NULL;
1634	int ndescs;
 
 
1635	int err;
1636	struct mlx5_ib_alloc_mw req = {};
1637	struct {
1638		__u32	comp_mask;
1639		__u32	response_length;
1640	} resp = {};
1641
1642	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
1643	if (err)
1644		return ERR_PTR(err);
1645
1646	if (req.comp_mask || req.reserved1 || req.reserved2)
1647		return ERR_PTR(-EOPNOTSUPP);
1648
1649	if (udata->inlen > sizeof(req) &&
1650	    !ib_is_udata_cleared(udata, sizeof(req),
1651				 udata->inlen - sizeof(req)))
1652		return ERR_PTR(-EOPNOTSUPP);
1653
1654	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
1655
1656	mw = kzalloc(sizeof(*mw), GFP_KERNEL);
1657	in = kzalloc(sizeof(*in), GFP_KERNEL);
1658	if (!mw || !in) {
1659		err = -ENOMEM;
1660		goto free;
1661	}
1662
1663	in->seg.status = MLX5_MKEY_STATUS_FREE;
1664	in->seg.xlt_oct_size = cpu_to_be32(ndescs);
1665	in->seg.flags_pd = cpu_to_be32(to_mpd(pd)->pdn);
1666	in->seg.flags = MLX5_PERM_UMR_EN | MLX5_ACCESS_MODE_KLM |
1667		MLX5_PERM_LOCAL_READ;
1668	if (type == IB_MW_TYPE_2)
1669		in->seg.flags_pd |= cpu_to_be32(MLX5_MKEY_REMOTE_INVAL);
1670	in->seg.qpn_mkey7_0 = cpu_to_be32(0xffffff << 8);
1671
1672	err = mlx5_core_create_mkey(dev->mdev, &mw->mmkey, in, sizeof(*in),
1673				    NULL, NULL, NULL);
1674	if (err)
1675		goto free;
1676
1677	mw->ibmw.rkey = mw->mmkey.key;
 
 
1678
1679	resp.response_length = min(offsetof(typeof(resp), response_length) +
1680				   sizeof(resp.response_length), udata->outlen);
1681	if (resp.response_length) {
1682		err = ib_copy_to_udata(udata, &resp, resp.response_length);
1683		if (err) {
1684			mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
1685			goto free;
1686		}
 
 
 
 
1687	}
1688
1689	kfree(in);
1690	return &mw->ibmw;
1691
 
 
1692free:
1693	kfree(mw);
1694	kfree(in);
1695	return ERR_PTR(err);
1696}
1697
1698int mlx5_ib_dealloc_mw(struct ib_mw *mw)
1699{
 
1700	struct mlx5_ib_mw *mmw = to_mmw(mw);
1701	int err;
1702
1703	err =  mlx5_core_destroy_mkey((to_mdev(mw->device))->mdev,
1704				      &mmw->mmkey);
1705	if (!err)
1706		kfree(mmw);
1707	return err;
 
 
 
 
1708}
1709
1710int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
1711			    struct ib_mr_status *mr_status)
1712{
1713	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1714	int ret = 0;
1715
1716	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
1717		pr_err("Invalid status check mask\n");
1718		ret = -EINVAL;
1719		goto done;
1720	}
1721
1722	mr_status->fail_status = 0;
1723	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
1724		if (!mmr->sig) {
1725			ret = -EINVAL;
1726			pr_err("signature status check requested on a non-signature enabled MR\n");
1727			goto done;
1728		}
1729
1730		mmr->sig->sig_status_checked = true;
1731		if (!mmr->sig->sig_err_exists)
1732			goto done;
1733
1734		if (ibmr->lkey == mmr->sig->err_item.key)
1735			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
1736			       sizeof(mr_status->sig_err));
1737		else {
1738			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
1739			mr_status->sig_err.sig_err_offset = 0;
1740			mr_status->sig_err.key = mmr->sig->err_item.key;
1741		}
1742
1743		mmr->sig->sig_err_exists = false;
1744		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
1745	}
1746
1747done:
1748	return ret;
1749}
1750
1751static int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
1753		   struct scatterlist *sgl,
1754		   unsigned short sg_nents)
 
 
 
 
1755{
1756	struct scatterlist *sg = sgl;
1757	struct mlx5_klm *klms = mr->descs;
 
1758	u32 lkey = mr->ibmr.pd->local_dma_lkey;
1759	int i;
1760
1761	mr->ibmr.iova = sg_dma_address(sg);
1762	mr->ibmr.length = 0;
1763	mr->ndescs = sg_nents;
1764
1765	for_each_sg(sgl, sg, sg_nents, i) {
1766		if (unlikely(i > mr->max_descs))
1767			break;
1768		klms[i].va = cpu_to_be64(sg_dma_address(sg));
1769		klms[i].bcount = cpu_to_be32(sg_dma_len(sg));
1770		klms[i].key = cpu_to_be32(lkey);
1771		mr->ibmr.length += sg_dma_len(sg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1772	}
1773
1774	return i;
1775}
1776
1777static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
1778{
1779	struct mlx5_ib_mr *mr = to_mmr(ibmr);
1780	__be64 *descs;
1781
1782	if (unlikely(mr->ndescs == mr->max_descs))
1783		return -ENOMEM;
1784
1785	descs = mr->descs;
1786	descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1787
1788	return 0;
1789}
1790
1791int mlx5_ib_map_mr_sg(struct ib_mr *ibmr,
1792		      struct scatterlist *sg,
1793		      int sg_nents)
1794{
1795	struct mlx5_ib_mr *mr = to_mmr(ibmr);
1796	int n;
1797
1798	mr->ndescs = 0;
1799
1800	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
1801				   mr->desc_size * mr->max_descs,
1802				   DMA_TO_DEVICE);
1803
1804	if (mr->access_mode == MLX5_ACCESS_MODE_KLM)
1805		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents);
 
1806	else
1807		n = ib_sg_to_pages(ibmr, sg, sg_nents, mlx5_set_page);
 
1808
1809	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
1810				      mr->desc_size * mr->max_descs,
1811				      DMA_TO_DEVICE);
1812
1813	return n;
1814}