Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2// Copyright (c) 2017-2018 MediaTek Inc.
   3
   4/*
   5 * Driver for MediaTek High-Speed DMA Controller
   6 *
   7 * Author: Sean Wang <sean.wang@mediatek.com>
   8 *
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/clk.h>
  13#include <linux/dmaengine.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/iopoll.h>
  17#include <linux/list.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_dma.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/refcount.h>
  24#include <linux/slab.h>
  25
  26#include "../virt-dma.h"
  27
  28#define MTK_HSDMA_USEC_POLL		20
  29#define MTK_HSDMA_TIMEOUT_POLL		200000
  30#define MTK_HSDMA_DMA_BUSWIDTHS		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
  31
  32/* The default number of virtual channel */
  33#define MTK_HSDMA_NR_VCHANS		3
  34
  35/* Only one physical channel supported */
  36#define MTK_HSDMA_NR_MAX_PCHANS		1
  37
  38/* Macro for physical descriptor (PD) manipulation */
  39/* The number of PD which must be 2 of power */
  40#define MTK_DMA_SIZE			64
  41#define MTK_HSDMA_NEXT_DESP_IDX(x, y)	(((x) + 1) & ((y) - 1))
  42#define MTK_HSDMA_LAST_DESP_IDX(x, y)	(((x) - 1) & ((y) - 1))
  43#define MTK_HSDMA_MAX_LEN		0x3f80
  44#define MTK_HSDMA_ALIGN_SIZE		4
  45#define MTK_HSDMA_PLEN_MASK		0x3fff
  46#define MTK_HSDMA_DESC_PLEN(x)		(((x) & MTK_HSDMA_PLEN_MASK) << 16)
  47#define MTK_HSDMA_DESC_PLEN_GET(x)	(((x) >> 16) & MTK_HSDMA_PLEN_MASK)
  48
  49/* Registers for underlying ring manipulation */
  50#define MTK_HSDMA_TX_BASE		0x0
  51#define MTK_HSDMA_TX_CNT		0x4
  52#define MTK_HSDMA_TX_CPU		0x8
  53#define MTK_HSDMA_TX_DMA		0xc
  54#define MTK_HSDMA_RX_BASE		0x100
  55#define MTK_HSDMA_RX_CNT		0x104
  56#define MTK_HSDMA_RX_CPU		0x108
  57#define MTK_HSDMA_RX_DMA		0x10c
  58
  59/* Registers for global setup */
  60#define MTK_HSDMA_GLO			0x204
  61#define MTK_HSDMA_GLO_MULTI_DMA		BIT(10)
  62#define MTK_HSDMA_TX_WB_DDONE		BIT(6)
  63#define MTK_HSDMA_BURST_64BYTES		(0x2 << 4)
  64#define MTK_HSDMA_GLO_RX_BUSY		BIT(3)
  65#define MTK_HSDMA_GLO_RX_DMA		BIT(2)
  66#define MTK_HSDMA_GLO_TX_BUSY		BIT(1)
  67#define MTK_HSDMA_GLO_TX_DMA		BIT(0)
  68#define MTK_HSDMA_GLO_DMA		(MTK_HSDMA_GLO_TX_DMA |	\
  69					 MTK_HSDMA_GLO_RX_DMA)
  70#define MTK_HSDMA_GLO_BUSY		(MTK_HSDMA_GLO_RX_BUSY | \
  71					 MTK_HSDMA_GLO_TX_BUSY)
  72#define MTK_HSDMA_GLO_DEFAULT		(MTK_HSDMA_GLO_TX_DMA | \
  73					 MTK_HSDMA_GLO_RX_DMA | \
  74					 MTK_HSDMA_TX_WB_DDONE | \
  75					 MTK_HSDMA_BURST_64BYTES | \
  76					 MTK_HSDMA_GLO_MULTI_DMA)
  77
  78/* Registers for reset */
  79#define MTK_HSDMA_RESET			0x208
  80#define MTK_HSDMA_RST_TX		BIT(0)
  81#define MTK_HSDMA_RST_RX		BIT(16)
  82
  83/* Registers for interrupt control */
  84#define MTK_HSDMA_DLYINT		0x20c
  85#define MTK_HSDMA_RXDLY_INT_EN		BIT(15)
  86
  87/* Interrupt fires when the pending number's more than the specified */
  88#define MTK_HSDMA_RXMAX_PINT(x)		(((x) & 0x7f) << 8)
  89
  90/* Interrupt fires when the pending time's more than the specified in 20 us */
  91#define MTK_HSDMA_RXMAX_PTIME(x)	((x) & 0x7f)
  92#define MTK_HSDMA_DLYINT_DEFAULT	(MTK_HSDMA_RXDLY_INT_EN | \
  93					 MTK_HSDMA_RXMAX_PINT(20) | \
  94					 MTK_HSDMA_RXMAX_PTIME(20))
  95#define MTK_HSDMA_INT_STATUS		0x220
  96#define MTK_HSDMA_INT_ENABLE		0x228
  97#define MTK_HSDMA_INT_RXDONE		BIT(16)
  98
  99enum mtk_hsdma_vdesc_flag {
 100	MTK_HSDMA_VDESC_FINISHED	= 0x01,
 101};
 102
 103#define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED)
 104
 105/**
 106 * struct mtk_hsdma_pdesc - This is the struct holding info describing physical
 107 *			    descriptor (PD) and its placement must be kept at
 108 *			    4-bytes alignment in little endian order.
 109 * @desc1:		    | The control pad used to indicate hardware how to
 110 * @desc2:		    | deal with the descriptor such as source and
 111 * @desc3:		    | destination address and data length. The maximum
 112 * @desc4:		    | data length each pdesc can handle is 0x3f80 bytes
 113 */
 114struct mtk_hsdma_pdesc {
 115	__le32 desc1;
 116	__le32 desc2;
 117	__le32 desc3;
 118	__le32 desc4;
 119} __packed __aligned(4);
 120
 121/**
 122 * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual
 123 *			    descriptor (VD)
 124 * @vd:			    An instance for struct virt_dma_desc
 125 * @len:		    The total data size device wants to move
 126 * @residue:		    The remaining data size device will move
 127 * @dest:		    The destination address device wants to move to
 128 * @src:		    The source address device wants to move from
 129 */
 130struct mtk_hsdma_vdesc {
 131	struct virt_dma_desc vd;
 132	size_t len;
 133	size_t residue;
 134	dma_addr_t dest;
 135	dma_addr_t src;
 136};
 137
 138/**
 139 * struct mtk_hsdma_cb - This is the struct holding extra info required for RX
 140 *			 ring to know what relevant VD the PD is being
 141 *			 mapped to.
 142 * @vd:			 Pointer to the relevant VD.
 143 * @flag:		 Flag indicating what action should be taken when VD
 144 *			 is completed.
 145 */
 146struct mtk_hsdma_cb {
 147	struct virt_dma_desc *vd;
 148	enum mtk_hsdma_vdesc_flag flag;
 149};
 150
 151/**
 152 * struct mtk_hsdma_ring - This struct holds info describing underlying ring
 153 *			   space
 154 * @txd:		   The descriptor TX ring which describes DMA source
 155 *			   information
 156 * @rxd:		   The descriptor RX ring which describes DMA
 157 *			   destination information
 158 * @cb:			   The extra information pointed at by RX ring
 159 * @tphys:		   The physical addr of TX ring
 160 * @rphys:		   The physical addr of RX ring
 161 * @cur_tptr:		   Pointer to the next free descriptor used by the host
 162 * @cur_rptr:		   Pointer to the last done descriptor by the device
 163 */
 164struct mtk_hsdma_ring {
 165	struct mtk_hsdma_pdesc *txd;
 166	struct mtk_hsdma_pdesc *rxd;
 167	struct mtk_hsdma_cb *cb;
 168	dma_addr_t tphys;
 169	dma_addr_t rphys;
 170	u16 cur_tptr;
 171	u16 cur_rptr;
 172};
 173
 174/**
 175 * struct mtk_hsdma_pchan - This is the struct holding info describing physical
 176 *			   channel (PC)
 177 * @ring:		   An instance for the underlying ring
 178 * @sz_ring:		   Total size allocated for the ring
 179 * @nr_free:		   Total number of free rooms in the ring. It would
 180 *			   be accessed and updated frequently between IRQ
 181 *			   context and user context to reflect whether ring
 182 *			   can accept requests from VD.
 183 */
 184struct mtk_hsdma_pchan {
 185	struct mtk_hsdma_ring ring;
 186	size_t sz_ring;
 187	atomic_t nr_free;
 188};
 189
 190/**
 191 * struct mtk_hsdma_vchan - This is the struct holding info describing virtual
 192 *			   channel (VC)
 193 * @vc:			   An instance for struct virt_dma_chan
 194 * @issue_completion:	   The wait for all issued descriptors completited
 195 * @issue_synchronize:	   Bool indicating channel synchronization starts
 196 * @desc_hw_processing:	   List those descriptors the hardware is processing,
 197 *			   which is protected by vc.lock
 198 */
 199struct mtk_hsdma_vchan {
 200	struct virt_dma_chan vc;
 201	struct completion issue_completion;
 202	bool issue_synchronize;
 203	struct list_head desc_hw_processing;
 204};
 205
 206/**
 207 * struct mtk_hsdma_soc - This is the struct holding differences among SoCs
 208 * @ddone:		  Bit mask for DDONE
 209 * @ls0:		  Bit mask for LS0
 210 */
 211struct mtk_hsdma_soc {
 212	__le32 ddone;
 213	__le32 ls0;
 214};
 215
 216/**
 217 * struct mtk_hsdma_device - This is the struct holding info describing HSDMA
 218 *			     device
 219 * @ddev:		     An instance for struct dma_device
 220 * @base:		     The mapped register I/O base
 221 * @clk:		     The clock that device internal is using
 222 * @irq:		     The IRQ that device are using
 223 * @dma_requests:	     The number of VCs the device supports to
 224 * @vc:			     The pointer to all available VCs
 225 * @pc:			     The pointer to the underlying PC
 226 * @pc_refcnt:		     Track how many VCs are using the PC
 227 * @lock:		     Lock protect agaisting multiple VCs access PC
 228 * @soc:		     The pointer to area holding differences among
 229 *			     vaious platform
 230 */
 231struct mtk_hsdma_device {
 232	struct dma_device ddev;
 233	void __iomem *base;
 234	struct clk *clk;
 235	u32 irq;
 236
 237	u32 dma_requests;
 238	struct mtk_hsdma_vchan *vc;
 239	struct mtk_hsdma_pchan *pc;
 240	refcount_t pc_refcnt;
 241
 242	/* Lock used to protect against multiple VCs access PC */
 243	spinlock_t lock;
 244
 245	const struct mtk_hsdma_soc *soc;
 246};
 247
 248static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan)
 249{
 250	return container_of(chan->device, struct mtk_hsdma_device, ddev);
 251}
 252
 253static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan)
 254{
 255	return container_of(chan, struct mtk_hsdma_vchan, vc.chan);
 256}
 257
 258static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd)
 259{
 260	return container_of(vd, struct mtk_hsdma_vdesc, vd);
 261}
 262
 263static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma)
 264{
 265	return hsdma->ddev.dev;
 266}
 267
 268static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg)
 269{
 270	return readl(hsdma->base + reg);
 271}
 272
 273static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 274{
 275	writel(val, hsdma->base + reg);
 276}
 277
 278static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg,
 279			u32 mask, u32 set)
 280{
 281	u32 val;
 282
 283	val = mtk_dma_read(hsdma, reg);
 284	val &= ~mask;
 285	val |= set;
 286	mtk_dma_write(hsdma, reg, val);
 287}
 288
 289static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 290{
 291	mtk_dma_rmw(hsdma, reg, 0, val);
 292}
 293
 294static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 295{
 296	mtk_dma_rmw(hsdma, reg, val, 0);
 297}
 298
 299static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd)
 300{
 301	kfree(container_of(vd, struct mtk_hsdma_vdesc, vd));
 302}
 303
 304static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma)
 305{
 306	u32 status = 0;
 307
 308	return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status,
 309				  !(status & MTK_HSDMA_GLO_BUSY),
 310				  MTK_HSDMA_USEC_POLL,
 311				  MTK_HSDMA_TIMEOUT_POLL);
 312}
 313
 314static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma,
 315				 struct mtk_hsdma_pchan *pc)
 316{
 317	struct mtk_hsdma_ring *ring = &pc->ring;
 318	int err;
 319
 320	memset(pc, 0, sizeof(*pc));
 321
 322	/*
 323	 * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring
 324	 * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring.
 325	 */
 326	pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd);
 327	ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring,
 328				       &ring->tphys, GFP_NOWAIT);
 329	if (!ring->txd)
 330		return -ENOMEM;
 331
 332	ring->rxd = &ring->txd[MTK_DMA_SIZE];
 333	ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd);
 334	ring->cur_tptr = 0;
 335	ring->cur_rptr = MTK_DMA_SIZE - 1;
 336
 337	ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT);
 338	if (!ring->cb) {
 339		err = -ENOMEM;
 340		goto err_free_dma;
 341	}
 342
 343	atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1);
 344
 345	/* Disable HSDMA and wait for the completion */
 346	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 347	err = mtk_hsdma_busy_wait(hsdma);
 348	if (err)
 349		goto err_free_cb;
 350
 351	/* Reset */
 352	mtk_dma_set(hsdma, MTK_HSDMA_RESET,
 353		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
 354	mtk_dma_clr(hsdma, MTK_HSDMA_RESET,
 355		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
 356
 357	/* Setup HSDMA initial pointer in the ring */
 358	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys);
 359	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE);
 360	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
 361	mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0);
 362	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys);
 363	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE);
 364	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr);
 365	mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0);
 366
 367	/* Enable HSDMA */
 368	mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 369
 370	/* Setup delayed interrupt */
 371	mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT);
 372
 373	/* Enable interrupt */
 374	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 375
 376	return 0;
 377
 378err_free_cb:
 379	kfree(ring->cb);
 380
 381err_free_dma:
 382	dma_free_coherent(hsdma2dev(hsdma),
 383			  pc->sz_ring, ring->txd, ring->tphys);
 384	return err;
 385}
 386
 387static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma,
 388				 struct mtk_hsdma_pchan *pc)
 389{
 390	struct mtk_hsdma_ring *ring = &pc->ring;
 391
 392	/* Disable HSDMA and then wait for the completion */
 393	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 394	mtk_hsdma_busy_wait(hsdma);
 395
 396	/* Reset pointer in the ring */
 397	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 398	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0);
 399	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0);
 400	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0);
 401	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0);
 402	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0);
 403	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1);
 404
 405	kfree(ring->cb);
 406
 407	dma_free_coherent(hsdma2dev(hsdma),
 408			  pc->sz_ring, ring->txd, ring->tphys);
 409}
 410
 411static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma,
 412					 struct mtk_hsdma_pchan *pc,
 413					 struct mtk_hsdma_vdesc *hvd)
 414{
 415	struct mtk_hsdma_ring *ring = &pc->ring;
 416	struct mtk_hsdma_pdesc *txd, *rxd;
 417	u16 reserved, prev, tlen, num_sgs;
 418	unsigned long flags;
 419
 420	/* Protect against PC is accessed by multiple VCs simultaneously */
 421	spin_lock_irqsave(&hsdma->lock, flags);
 422
 423	/*
 424	 * Reserve rooms, where pc->nr_free is used to track how many free
 425	 * rooms in the ring being updated in user and IRQ context.
 426	 */
 427	num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN);
 428	reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free));
 429
 430	if (!reserved) {
 431		spin_unlock_irqrestore(&hsdma->lock, flags);
 432		return -ENOSPC;
 433	}
 434
 435	atomic_sub(reserved, &pc->nr_free);
 436
 437	while (reserved--) {
 438		/* Limit size by PD capability for valid data moving */
 439		tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ?
 440		       MTK_HSDMA_MAX_LEN : hvd->len;
 441
 442		/*
 443		 * Setup PDs using the remaining VD info mapped on those
 444		 * reserved rooms. And since RXD is shared memory between the
 445		 * host and the device allocated by dma_alloc_coherent call,
 446		 * the helper macro WRITE_ONCE can ensure the data written to
 447		 * RAM would really happens.
 448		 */
 449		txd = &ring->txd[ring->cur_tptr];
 450		WRITE_ONCE(txd->desc1, hvd->src);
 451		WRITE_ONCE(txd->desc2,
 452			   hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen));
 453
 454		rxd = &ring->rxd[ring->cur_tptr];
 455		WRITE_ONCE(rxd->desc1, hvd->dest);
 456		WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen));
 457
 458		/* Associate VD, the PD belonged to */
 459		ring->cb[ring->cur_tptr].vd = &hvd->vd;
 460
 461		/* Move forward the pointer of TX ring */
 462		ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr,
 463							 MTK_DMA_SIZE);
 464
 465		/* Update VD with remaining data */
 466		hvd->src  += tlen;
 467		hvd->dest += tlen;
 468		hvd->len  -= tlen;
 469	}
 470
 471	/*
 472	 * Tagging flag for the last PD for VD will be responsible for
 473	 * completing VD.
 474	 */
 475	if (!hvd->len) {
 476		prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE);
 477		ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED;
 478	}
 479
 480	/* Ensure all changes indeed done before we're going on */
 481	wmb();
 482
 483	/*
 484	 * Updating into hardware the pointer of TX ring lets HSDMA to take
 485	 * action for those pending PDs.
 486	 */
 487	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
 488
 489	spin_unlock_irqrestore(&hsdma->lock, flags);
 490
 491	return 0;
 492}
 493
 494static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma,
 495					  struct mtk_hsdma_vchan *hvc)
 496{
 497	struct virt_dma_desc *vd, *vd2;
 498	int err;
 499
 500	lockdep_assert_held(&hvc->vc.lock);
 501
 502	list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) {
 503		struct mtk_hsdma_vdesc *hvd;
 504
 505		hvd = to_hsdma_vdesc(vd);
 506
 507		/* Map VD into PC and all VCs shares a single PC */
 508		err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd);
 509
 510		/*
 511		 * Move VD from desc_issued to desc_hw_processing when entire
 512		 * VD is fit into available PDs. Otherwise, the uncompleted
 513		 * VDs would stay in list desc_issued and then restart the
 514		 * processing as soon as possible once underlying ring space
 515		 * got freed.
 516		 */
 517		if (err == -ENOSPC || hvd->len > 0)
 518			break;
 519
 520		/*
 521		 * The extra list desc_hw_processing is used because
 522		 * hardware can't provide sufficient information allowing us
 523		 * to know what VDs are still working on the underlying ring.
 524		 * Through the additional list, it can help us to implement
 525		 * terminate_all, residue calculation and such thing needed
 526		 * to know detail descriptor status on the hardware.
 527		 */
 528		list_move_tail(&vd->node, &hvc->desc_hw_processing);
 529	}
 530}
 531
 532static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma)
 533{
 534	struct mtk_hsdma_vchan *hvc;
 535	struct mtk_hsdma_pdesc *rxd;
 536	struct mtk_hsdma_vdesc *hvd;
 537	struct mtk_hsdma_pchan *pc;
 538	struct mtk_hsdma_cb *cb;
 539	int i = MTK_DMA_SIZE;
 540	__le32 desc2;
 541	u32 status;
 542	u16 next;
 543
 544	/* Read IRQ status */
 545	status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS);
 546	if (unlikely(!(status & MTK_HSDMA_INT_RXDONE)))
 547		goto rx_done;
 548
 549	pc = hsdma->pc;
 550
 551	/*
 552	 * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to
 553	 * reclaim these finished descriptors: The most number of PDs the ISR
 554	 * can handle at one time shouldn't be more than MTK_DMA_SIZE so we
 555	 * take it as limited count instead of just using a dangerous infinite
 556	 * poll.
 557	 */
 558	while (i--) {
 559		next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr,
 560					       MTK_DMA_SIZE);
 561		rxd = &pc->ring.rxd[next];
 562
 563		/*
 564		 * If MTK_HSDMA_DESC_DDONE is no specified, that means data
 565		 * moving for the PD is still under going.
 566		 */
 567		desc2 = READ_ONCE(rxd->desc2);
 568		if (!(desc2 & hsdma->soc->ddone))
 569			break;
 570
 571		cb = &pc->ring.cb[next];
 572		if (unlikely(!cb->vd)) {
 573			dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n");
 574			break;
 575		}
 576
 577		/* Update residue of VD the associated PD belonged to */
 578		hvd = to_hsdma_vdesc(cb->vd);
 579		hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2);
 580
 581		/* Complete VD until the relevant last PD is finished */
 582		if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) {
 583			hvc = to_hsdma_vchan(cb->vd->tx.chan);
 584
 585			spin_lock(&hvc->vc.lock);
 586
 587			/* Remove VD from list desc_hw_processing */
 588			list_del(&cb->vd->node);
 589
 590			/* Add VD into list desc_completed */
 591			vchan_cookie_complete(cb->vd);
 592
 593			if (hvc->issue_synchronize &&
 594			    list_empty(&hvc->desc_hw_processing)) {
 595				complete(&hvc->issue_completion);
 596				hvc->issue_synchronize = false;
 597			}
 598			spin_unlock(&hvc->vc.lock);
 599
 600			cb->flag = 0;
 601		}
 602
 603		cb->vd = NULL;
 604
 605		/*
 606		 * Recycle the RXD with the helper WRITE_ONCE that can ensure
 607		 * data written into RAM would really happens.
 608		 */
 609		WRITE_ONCE(rxd->desc1, 0);
 610		WRITE_ONCE(rxd->desc2, 0);
 611		pc->ring.cur_rptr = next;
 612
 613		/* Release rooms */
 614		atomic_inc(&pc->nr_free);
 615	}
 616
 617	/* Ensure all changes indeed done before we're going on */
 618	wmb();
 619
 620	/* Update CPU pointer for those completed PDs */
 621	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr);
 622
 623	/*
 624	 * Acking the pending IRQ allows hardware no longer to keep the used
 625	 * IRQ line in certain trigger state when software has completed all
 626	 * the finished physical descriptors.
 627	 */
 628	if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1)
 629		mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status);
 630
 631	/* ASAP handles pending VDs in all VCs after freeing some rooms */
 632	for (i = 0; i < hsdma->dma_requests; i++) {
 633		hvc = &hsdma->vc[i];
 634		spin_lock(&hvc->vc.lock);
 635		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
 636		spin_unlock(&hvc->vc.lock);
 637	}
 638
 639rx_done:
 640	/* All completed PDs are cleaned up, so enable interrupt again */
 641	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 642}
 643
 644static irqreturn_t mtk_hsdma_irq(int irq, void *devid)
 645{
 646	struct mtk_hsdma_device *hsdma = devid;
 647
 648	/*
 649	 * Disable interrupt until all completed PDs are cleaned up in
 650	 * mtk_hsdma_free_rooms call.
 651	 */
 652	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 653
 654	mtk_hsdma_free_rooms_in_ring(hsdma);
 655
 656	return IRQ_HANDLED;
 657}
 658
 659static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c,
 660							dma_cookie_t cookie)
 661{
 662	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 663	struct virt_dma_desc *vd;
 664
 665	list_for_each_entry(vd, &hvc->desc_hw_processing, node)
 666		if (vd->tx.cookie == cookie)
 667			return vd;
 668
 669	list_for_each_entry(vd, &hvc->vc.desc_issued, node)
 670		if (vd->tx.cookie == cookie)
 671			return vd;
 672
 673	return NULL;
 674}
 675
 676static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c,
 677					   dma_cookie_t cookie,
 678					   struct dma_tx_state *txstate)
 679{
 680	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 681	struct mtk_hsdma_vdesc *hvd;
 682	struct virt_dma_desc *vd;
 683	enum dma_status ret;
 684	unsigned long flags;
 685	size_t bytes = 0;
 686
 687	ret = dma_cookie_status(c, cookie, txstate);
 688	if (ret == DMA_COMPLETE || !txstate)
 689		return ret;
 690
 691	spin_lock_irqsave(&hvc->vc.lock, flags);
 692	vd = mtk_hsdma_find_active_desc(c, cookie);
 693	spin_unlock_irqrestore(&hvc->vc.lock, flags);
 694
 695	if (vd) {
 696		hvd = to_hsdma_vdesc(vd);
 697		bytes = hvd->residue;
 698	}
 699
 700	dma_set_residue(txstate, bytes);
 701
 702	return ret;
 703}
 704
 705static void mtk_hsdma_issue_pending(struct dma_chan *c)
 706{
 707	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 708	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 709	unsigned long flags;
 710
 711	spin_lock_irqsave(&hvc->vc.lock, flags);
 712
 713	if (vchan_issue_pending(&hvc->vc))
 714		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
 715
 716	spin_unlock_irqrestore(&hvc->vc.lock, flags);
 717}
 718
 719static struct dma_async_tx_descriptor *
 720mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest,
 721			  dma_addr_t src, size_t len, unsigned long flags)
 722{
 723	struct mtk_hsdma_vdesc *hvd;
 724
 725	hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT);
 726	if (!hvd)
 727		return NULL;
 728
 729	hvd->len = len;
 730	hvd->residue = len;
 731	hvd->src = src;
 732	hvd->dest = dest;
 733
 734	return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags);
 735}
 736
 737static int mtk_hsdma_free_inactive_desc(struct dma_chan *c)
 738{
 739	struct virt_dma_chan *vc = to_virt_chan(c);
 740	unsigned long flags;
 741	LIST_HEAD(head);
 742
 743	spin_lock_irqsave(&vc->lock, flags);
 744	list_splice_tail_init(&vc->desc_allocated, &head);
 745	list_splice_tail_init(&vc->desc_submitted, &head);
 746	list_splice_tail_init(&vc->desc_issued, &head);
 747	spin_unlock_irqrestore(&vc->lock, flags);
 748
 749	/* At the point, we don't expect users put descriptor into VC again */
 750	vchan_dma_desc_free_list(vc, &head);
 751
 752	return 0;
 753}
 754
 755static void mtk_hsdma_free_active_desc(struct dma_chan *c)
 756{
 757	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 758	bool sync_needed = false;
 759
 760	/*
 761	 * Once issue_synchronize is being set, which means once the hardware
 762	 * consumes all descriptors for the channel in the ring, the
 763	 * synchronization must be notified immediately it is completed.
 764	 */
 765	spin_lock(&hvc->vc.lock);
 766	if (!list_empty(&hvc->desc_hw_processing)) {
 767		hvc->issue_synchronize = true;
 768		sync_needed = true;
 769	}
 770	spin_unlock(&hvc->vc.lock);
 771
 772	if (sync_needed)
 773		wait_for_completion(&hvc->issue_completion);
 774	/*
 775	 * At the point, we expect that all remaining descriptors in the ring
 776	 * for the channel should be all processing done.
 777	 */
 778	WARN_ONCE(!list_empty(&hvc->desc_hw_processing),
 779		  "Desc pending still in list desc_hw_processing\n");
 780
 781	/* Free all descriptors in list desc_completed */
 782	vchan_synchronize(&hvc->vc);
 783
 784	WARN_ONCE(!list_empty(&hvc->vc.desc_completed),
 785		  "Desc pending still in list desc_completed\n");
 786}
 787
 788static int mtk_hsdma_terminate_all(struct dma_chan *c)
 789{
 790	/*
 791	 * Free pending descriptors not processed yet by hardware that have
 792	 * previously been submitted to the channel.
 793	 */
 794	mtk_hsdma_free_inactive_desc(c);
 795
 796	/*
 797	 * However, the DMA engine doesn't provide any way to stop these
 798	 * descriptors being processed currently by hardware. The only way is
 799	 * to just waiting until these descriptors are all processed completely
 800	 * through mtk_hsdma_free_active_desc call.
 801	 */
 802	mtk_hsdma_free_active_desc(c);
 803
 804	return 0;
 805}
 806
 807static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c)
 808{
 809	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 810	int err;
 811
 812	/*
 813	 * Since HSDMA has only one PC, the resource for PC is being allocated
 814	 * when the first VC is being created and the other VCs would run on
 815	 * the same PC.
 816	 */
 817	if (!refcount_read(&hsdma->pc_refcnt)) {
 818		err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc);
 819		if (err)
 820			return err;
 821		/*
 822		 * refcount_inc would complain increment on 0; use-after-free.
 823		 * Thus, we need to explicitly set it as 1 initially.
 824		 */
 825		refcount_set(&hsdma->pc_refcnt, 1);
 826	} else {
 827		refcount_inc(&hsdma->pc_refcnt);
 828	}
 829
 830	return 0;
 831}
 832
 833static void mtk_hsdma_free_chan_resources(struct dma_chan *c)
 834{
 835	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 836
 837	/* Free all descriptors in all lists on the VC */
 838	mtk_hsdma_terminate_all(c);
 839
 840	/* The resource for PC is not freed until all the VCs are destroyed */
 841	if (!refcount_dec_and_test(&hsdma->pc_refcnt))
 842		return;
 843
 844	mtk_hsdma_free_pchan(hsdma, hsdma->pc);
 845}
 846
 847static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma)
 848{
 849	int err;
 850
 851	pm_runtime_enable(hsdma2dev(hsdma));
 852	pm_runtime_get_sync(hsdma2dev(hsdma));
 853
 854	err = clk_prepare_enable(hsdma->clk);
 855	if (err)
 856		return err;
 857
 858	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
 859	mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT);
 860
 861	return 0;
 862}
 863
 864static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma)
 865{
 866	mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0);
 867
 868	clk_disable_unprepare(hsdma->clk);
 869
 870	pm_runtime_put_sync(hsdma2dev(hsdma));
 871	pm_runtime_disable(hsdma2dev(hsdma));
 872
 873	return 0;
 874}
 875
 876static const struct mtk_hsdma_soc mt7623_soc = {
 877	.ddone = BIT(31),
 878	.ls0 = BIT(30),
 879};
 880
 881static const struct mtk_hsdma_soc mt7622_soc = {
 882	.ddone = BIT(15),
 883	.ls0 = BIT(14),
 884};
 885
 886static const struct of_device_id mtk_hsdma_match[] = {
 887	{ .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc},
 888	{ .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc},
 889	{ /* sentinel */ }
 890};
 891MODULE_DEVICE_TABLE(of, mtk_hsdma_match);
 892
 893static int mtk_hsdma_probe(struct platform_device *pdev)
 894{
 895	struct mtk_hsdma_device *hsdma;
 896	struct mtk_hsdma_vchan *vc;
 897	struct dma_device *dd;
 898	int i, err;
 899
 900	hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL);
 901	if (!hsdma)
 902		return -ENOMEM;
 903
 904	dd = &hsdma->ddev;
 905
 906	hsdma->base = devm_platform_ioremap_resource(pdev, 0);
 907	if (IS_ERR(hsdma->base))
 908		return PTR_ERR(hsdma->base);
 909
 910	hsdma->soc = of_device_get_match_data(&pdev->dev);
 911	if (!hsdma->soc) {
 912		dev_err(&pdev->dev, "No device match found\n");
 913		return -ENODEV;
 914	}
 915
 916	hsdma->clk = devm_clk_get(&pdev->dev, "hsdma");
 917	if (IS_ERR(hsdma->clk)) {
 918		dev_err(&pdev->dev, "No clock for %s\n",
 919			dev_name(&pdev->dev));
 920		return PTR_ERR(hsdma->clk);
 921	}
 922
 923	err = platform_get_irq(pdev, 0);
 924	if (err < 0)
 925		return err;
 926	hsdma->irq = err;
 927
 928	refcount_set(&hsdma->pc_refcnt, 0);
 929	spin_lock_init(&hsdma->lock);
 930
 931	dma_cap_set(DMA_MEMCPY, dd->cap_mask);
 932
 933	dd->copy_align = MTK_HSDMA_ALIGN_SIZE;
 934	dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources;
 935	dd->device_free_chan_resources = mtk_hsdma_free_chan_resources;
 936	dd->device_tx_status = mtk_hsdma_tx_status;
 937	dd->device_issue_pending = mtk_hsdma_issue_pending;
 938	dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy;
 939	dd->device_terminate_all = mtk_hsdma_terminate_all;
 940	dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
 941	dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
 942	dd->directions = BIT(DMA_MEM_TO_MEM);
 943	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
 944	dd->dev = &pdev->dev;
 945	INIT_LIST_HEAD(&dd->channels);
 946
 947	hsdma->dma_requests = MTK_HSDMA_NR_VCHANS;
 948	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
 949						      "dma-requests",
 950						      &hsdma->dma_requests)) {
 951		dev_info(&pdev->dev,
 952			 "Using %u as missing dma-requests property\n",
 953			 MTK_HSDMA_NR_VCHANS);
 954	}
 955
 956	hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS,
 957				 sizeof(*hsdma->pc), GFP_KERNEL);
 958	if (!hsdma->pc)
 959		return -ENOMEM;
 960
 961	hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests,
 962				 sizeof(*hsdma->vc), GFP_KERNEL);
 963	if (!hsdma->vc)
 964		return -ENOMEM;
 965
 966	for (i = 0; i < hsdma->dma_requests; i++) {
 967		vc = &hsdma->vc[i];
 968		vc->vc.desc_free = mtk_hsdma_vdesc_free;
 969		vchan_init(&vc->vc, dd);
 970		init_completion(&vc->issue_completion);
 971		INIT_LIST_HEAD(&vc->desc_hw_processing);
 972	}
 973
 974	err = dma_async_device_register(dd);
 975	if (err)
 976		return err;
 977
 978	err = of_dma_controller_register(pdev->dev.of_node,
 979					 of_dma_xlate_by_chan_id, hsdma);
 980	if (err) {
 981		dev_err(&pdev->dev,
 982			"MediaTek HSDMA OF registration failed %d\n", err);
 983		goto err_unregister;
 984	}
 985
 986	mtk_hsdma_hw_init(hsdma);
 987
 988	err = devm_request_irq(&pdev->dev, hsdma->irq,
 989			       mtk_hsdma_irq, 0,
 990			       dev_name(&pdev->dev), hsdma);
 991	if (err) {
 992		dev_err(&pdev->dev,
 993			"request_irq failed with err %d\n", err);
 994		goto err_free;
 995	}
 996
 997	platform_set_drvdata(pdev, hsdma);
 998
 999	dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n");
1000
1001	return 0;
1002
1003err_free:
1004	mtk_hsdma_hw_deinit(hsdma);
1005	of_dma_controller_free(pdev->dev.of_node);
1006err_unregister:
1007	dma_async_device_unregister(dd);
1008
1009	return err;
1010}
1011
1012static void mtk_hsdma_remove(struct platform_device *pdev)
1013{
1014	struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev);
1015	struct mtk_hsdma_vchan *vc;
1016	int i;
1017
1018	/* Kill VC task */
1019	for (i = 0; i < hsdma->dma_requests; i++) {
1020		vc = &hsdma->vc[i];
1021
1022		list_del(&vc->vc.chan.device_node);
1023		tasklet_kill(&vc->vc.task);
1024	}
1025
1026	/* Disable DMA interrupt */
1027	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
1028
1029	/* Waits for any pending IRQ handlers to complete */
1030	synchronize_irq(hsdma->irq);
1031
1032	/* Disable hardware */
1033	mtk_hsdma_hw_deinit(hsdma);
1034
1035	dma_async_device_unregister(&hsdma->ddev);
1036	of_dma_controller_free(pdev->dev.of_node);
1037}
1038
1039static struct platform_driver mtk_hsdma_driver = {
1040	.probe		= mtk_hsdma_probe,
1041	.remove_new	= mtk_hsdma_remove,
1042	.driver = {
1043		.name		= KBUILD_MODNAME,
1044		.of_match_table	= mtk_hsdma_match,
1045	},
1046};
1047module_platform_driver(mtk_hsdma_driver);
1048
1049MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver");
1050MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1051MODULE_LICENSE("GPL v2");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2// Copyright (c) 2017-2018 MediaTek Inc.
   3
   4/*
   5 * Driver for MediaTek High-Speed DMA Controller
   6 *
   7 * Author: Sean Wang <sean.wang@mediatek.com>
   8 *
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/clk.h>
  13#include <linux/dmaengine.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/iopoll.h>
  17#include <linux/list.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_dma.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/refcount.h>
  24#include <linux/slab.h>
  25
  26#include "../virt-dma.h"
  27
  28#define MTK_HSDMA_USEC_POLL		20
  29#define MTK_HSDMA_TIMEOUT_POLL		200000
  30#define MTK_HSDMA_DMA_BUSWIDTHS		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
  31
  32/* The default number of virtual channel */
  33#define MTK_HSDMA_NR_VCHANS		3
  34
  35/* Only one physical channel supported */
  36#define MTK_HSDMA_NR_MAX_PCHANS		1
  37
  38/* Macro for physical descriptor (PD) manipulation */
  39/* The number of PD which must be 2 of power */
  40#define MTK_DMA_SIZE			64
  41#define MTK_HSDMA_NEXT_DESP_IDX(x, y)	(((x) + 1) & ((y) - 1))
  42#define MTK_HSDMA_LAST_DESP_IDX(x, y)	(((x) - 1) & ((y) - 1))
  43#define MTK_HSDMA_MAX_LEN		0x3f80
  44#define MTK_HSDMA_ALIGN_SIZE		4
  45#define MTK_HSDMA_PLEN_MASK		0x3fff
  46#define MTK_HSDMA_DESC_PLEN(x)		(((x) & MTK_HSDMA_PLEN_MASK) << 16)
  47#define MTK_HSDMA_DESC_PLEN_GET(x)	(((x) >> 16) & MTK_HSDMA_PLEN_MASK)
  48
  49/* Registers for underlying ring manipulation */
  50#define MTK_HSDMA_TX_BASE		0x0
  51#define MTK_HSDMA_TX_CNT		0x4
  52#define MTK_HSDMA_TX_CPU		0x8
  53#define MTK_HSDMA_TX_DMA		0xc
  54#define MTK_HSDMA_RX_BASE		0x100
  55#define MTK_HSDMA_RX_CNT		0x104
  56#define MTK_HSDMA_RX_CPU		0x108
  57#define MTK_HSDMA_RX_DMA		0x10c
  58
  59/* Registers for global setup */
  60#define MTK_HSDMA_GLO			0x204
  61#define MTK_HSDMA_GLO_MULTI_DMA		BIT(10)
  62#define MTK_HSDMA_TX_WB_DDONE		BIT(6)
  63#define MTK_HSDMA_BURST_64BYTES		(0x2 << 4)
  64#define MTK_HSDMA_GLO_RX_BUSY		BIT(3)
  65#define MTK_HSDMA_GLO_RX_DMA		BIT(2)
  66#define MTK_HSDMA_GLO_TX_BUSY		BIT(1)
  67#define MTK_HSDMA_GLO_TX_DMA		BIT(0)
  68#define MTK_HSDMA_GLO_DMA		(MTK_HSDMA_GLO_TX_DMA |	\
  69					 MTK_HSDMA_GLO_RX_DMA)
  70#define MTK_HSDMA_GLO_BUSY		(MTK_HSDMA_GLO_RX_BUSY | \
  71					 MTK_HSDMA_GLO_TX_BUSY)
  72#define MTK_HSDMA_GLO_DEFAULT		(MTK_HSDMA_GLO_TX_DMA | \
  73					 MTK_HSDMA_GLO_RX_DMA | \
  74					 MTK_HSDMA_TX_WB_DDONE | \
  75					 MTK_HSDMA_BURST_64BYTES | \
  76					 MTK_HSDMA_GLO_MULTI_DMA)
  77
  78/* Registers for reset */
  79#define MTK_HSDMA_RESET			0x208
  80#define MTK_HSDMA_RST_TX		BIT(0)
  81#define MTK_HSDMA_RST_RX		BIT(16)
  82
  83/* Registers for interrupt control */
  84#define MTK_HSDMA_DLYINT		0x20c
  85#define MTK_HSDMA_RXDLY_INT_EN		BIT(15)
  86
  87/* Interrupt fires when the pending number's more than the specified */
  88#define MTK_HSDMA_RXMAX_PINT(x)		(((x) & 0x7f) << 8)
  89
  90/* Interrupt fires when the pending time's more than the specified in 20 us */
  91#define MTK_HSDMA_RXMAX_PTIME(x)	((x) & 0x7f)
  92#define MTK_HSDMA_DLYINT_DEFAULT	(MTK_HSDMA_RXDLY_INT_EN | \
  93					 MTK_HSDMA_RXMAX_PINT(20) | \
  94					 MTK_HSDMA_RXMAX_PTIME(20))
  95#define MTK_HSDMA_INT_STATUS		0x220
  96#define MTK_HSDMA_INT_ENABLE		0x228
  97#define MTK_HSDMA_INT_RXDONE		BIT(16)
  98
  99enum mtk_hsdma_vdesc_flag {
 100	MTK_HSDMA_VDESC_FINISHED	= 0x01,
 101};
 102
 103#define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED)
 104
 105/**
 106 * struct mtk_hsdma_pdesc - This is the struct holding info describing physical
 107 *			    descriptor (PD) and its placement must be kept at
 108 *			    4-bytes alignment in little endian order.
 109 * @desc1:		    | The control pad used to indicate hardware how to
 110 * @desc2:		    | deal with the descriptor such as source and
 111 * @desc3:		    | destination address and data length. The maximum
 112 * @desc4:		    | data length each pdesc can handle is 0x3f80 bytes
 113 */
 114struct mtk_hsdma_pdesc {
 115	__le32 desc1;
 116	__le32 desc2;
 117	__le32 desc3;
 118	__le32 desc4;
 119} __packed __aligned(4);
 120
 121/**
 122 * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual
 123 *			    descriptor (VD)
 124 * @vd:			    An instance for struct virt_dma_desc
 125 * @len:		    The total data size device wants to move
 126 * @residue:		    The remaining data size device will move
 127 * @dest:		    The destination address device wants to move to
 128 * @src:		    The source address device wants to move from
 129 */
 130struct mtk_hsdma_vdesc {
 131	struct virt_dma_desc vd;
 132	size_t len;
 133	size_t residue;
 134	dma_addr_t dest;
 135	dma_addr_t src;
 136};
 137
 138/**
 139 * struct mtk_hsdma_cb - This is the struct holding extra info required for RX
 140 *			 ring to know what relevant VD the PD is being
 141 *			 mapped to.
 142 * @vd:			 Pointer to the relevant VD.
 143 * @flag:		 Flag indicating what action should be taken when VD
 144 *			 is completed.
 145 */
 146struct mtk_hsdma_cb {
 147	struct virt_dma_desc *vd;
 148	enum mtk_hsdma_vdesc_flag flag;
 149};
 150
 151/**
 152 * struct mtk_hsdma_ring - This struct holds info describing underlying ring
 153 *			   space
 154 * @txd:		   The descriptor TX ring which describes DMA source
 155 *			   information
 156 * @rxd:		   The descriptor RX ring which describes DMA
 157 *			   destination information
 158 * @cb:			   The extra information pointed at by RX ring
 159 * @tphys:		   The physical addr of TX ring
 160 * @rphys:		   The physical addr of RX ring
 161 * @cur_tptr:		   Pointer to the next free descriptor used by the host
 162 * @cur_rptr:		   Pointer to the last done descriptor by the device
 163 */
 164struct mtk_hsdma_ring {
 165	struct mtk_hsdma_pdesc *txd;
 166	struct mtk_hsdma_pdesc *rxd;
 167	struct mtk_hsdma_cb *cb;
 168	dma_addr_t tphys;
 169	dma_addr_t rphys;
 170	u16 cur_tptr;
 171	u16 cur_rptr;
 172};
 173
 174/**
 175 * struct mtk_hsdma_pchan - This is the struct holding info describing physical
 176 *			   channel (PC)
 177 * @ring:		   An instance for the underlying ring
 178 * @sz_ring:		   Total size allocated for the ring
 179 * @nr_free:		   Total number of free rooms in the ring. It would
 180 *			   be accessed and updated frequently between IRQ
 181 *			   context and user context to reflect whether ring
 182 *			   can accept requests from VD.
 183 */
 184struct mtk_hsdma_pchan {
 185	struct mtk_hsdma_ring ring;
 186	size_t sz_ring;
 187	atomic_t nr_free;
 188};
 189
 190/**
 191 * struct mtk_hsdma_vchan - This is the struct holding info describing virtual
 192 *			   channel (VC)
 193 * @vc:			   An instance for struct virt_dma_chan
 194 * @issue_completion:	   The wait for all issued descriptors completited
 195 * @issue_synchronize:	   Bool indicating channel synchronization starts
 196 * @desc_hw_processing:	   List those descriptors the hardware is processing,
 197 *			   which is protected by vc.lock
 198 */
 199struct mtk_hsdma_vchan {
 200	struct virt_dma_chan vc;
 201	struct completion issue_completion;
 202	bool issue_synchronize;
 203	struct list_head desc_hw_processing;
 204};
 205
 206/**
 207 * struct mtk_hsdma_soc - This is the struct holding differences among SoCs
 208 * @ddone:		  Bit mask for DDONE
 209 * @ls0:		  Bit mask for LS0
 210 */
 211struct mtk_hsdma_soc {
 212	__le32 ddone;
 213	__le32 ls0;
 214};
 215
 216/**
 217 * struct mtk_hsdma_device - This is the struct holding info describing HSDMA
 218 *			     device
 219 * @ddev:		     An instance for struct dma_device
 220 * @base:		     The mapped register I/O base
 221 * @clk:		     The clock that device internal is using
 222 * @irq:		     The IRQ that device are using
 223 * @dma_requests:	     The number of VCs the device supports to
 224 * @vc:			     The pointer to all available VCs
 225 * @pc:			     The pointer to the underlying PC
 226 * @pc_refcnt:		     Track how many VCs are using the PC
 227 * @lock:		     Lock protect agaisting multiple VCs access PC
 228 * @soc:		     The pointer to area holding differences among
 229 *			     vaious platform
 230 */
 231struct mtk_hsdma_device {
 232	struct dma_device ddev;
 233	void __iomem *base;
 234	struct clk *clk;
 235	u32 irq;
 236
 237	u32 dma_requests;
 238	struct mtk_hsdma_vchan *vc;
 239	struct mtk_hsdma_pchan *pc;
 240	refcount_t pc_refcnt;
 241
 242	/* Lock used to protect against multiple VCs access PC */
 243	spinlock_t lock;
 244
 245	const struct mtk_hsdma_soc *soc;
 246};
 247
 248static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan)
 249{
 250	return container_of(chan->device, struct mtk_hsdma_device, ddev);
 251}
 252
 253static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan)
 254{
 255	return container_of(chan, struct mtk_hsdma_vchan, vc.chan);
 256}
 257
 258static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd)
 259{
 260	return container_of(vd, struct mtk_hsdma_vdesc, vd);
 261}
 262
 263static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma)
 264{
 265	return hsdma->ddev.dev;
 266}
 267
 268static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg)
 269{
 270	return readl(hsdma->base + reg);
 271}
 272
 273static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 274{
 275	writel(val, hsdma->base + reg);
 276}
 277
 278static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg,
 279			u32 mask, u32 set)
 280{
 281	u32 val;
 282
 283	val = mtk_dma_read(hsdma, reg);
 284	val &= ~mask;
 285	val |= set;
 286	mtk_dma_write(hsdma, reg, val);
 287}
 288
 289static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 290{
 291	mtk_dma_rmw(hsdma, reg, 0, val);
 292}
 293
 294static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 295{
 296	mtk_dma_rmw(hsdma, reg, val, 0);
 297}
 298
 299static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd)
 300{
 301	kfree(container_of(vd, struct mtk_hsdma_vdesc, vd));
 302}
 303
 304static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma)
 305{
 306	u32 status = 0;
 307
 308	return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status,
 309				  !(status & MTK_HSDMA_GLO_BUSY),
 310				  MTK_HSDMA_USEC_POLL,
 311				  MTK_HSDMA_TIMEOUT_POLL);
 312}
 313
 314static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma,
 315				 struct mtk_hsdma_pchan *pc)
 316{
 317	struct mtk_hsdma_ring *ring = &pc->ring;
 318	int err;
 319
 320	memset(pc, 0, sizeof(*pc));
 321
 322	/*
 323	 * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring
 324	 * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring.
 325	 */
 326	pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd);
 327	ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring,
 328				       &ring->tphys, GFP_NOWAIT);
 329	if (!ring->txd)
 330		return -ENOMEM;
 331
 332	ring->rxd = &ring->txd[MTK_DMA_SIZE];
 333	ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd);
 334	ring->cur_tptr = 0;
 335	ring->cur_rptr = MTK_DMA_SIZE - 1;
 336
 337	ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT);
 338	if (!ring->cb) {
 339		err = -ENOMEM;
 340		goto err_free_dma;
 341	}
 342
 343	atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1);
 344
 345	/* Disable HSDMA and wait for the completion */
 346	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 347	err = mtk_hsdma_busy_wait(hsdma);
 348	if (err)
 349		goto err_free_cb;
 350
 351	/* Reset */
 352	mtk_dma_set(hsdma, MTK_HSDMA_RESET,
 353		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
 354	mtk_dma_clr(hsdma, MTK_HSDMA_RESET,
 355		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
 356
 357	/* Setup HSDMA initial pointer in the ring */
 358	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys);
 359	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE);
 360	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
 361	mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0);
 362	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys);
 363	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE);
 364	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr);
 365	mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0);
 366
 367	/* Enable HSDMA */
 368	mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 369
 370	/* Setup delayed interrupt */
 371	mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT);
 372
 373	/* Enable interrupt */
 374	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 375
 376	return 0;
 377
 378err_free_cb:
 379	kfree(ring->cb);
 380
 381err_free_dma:
 382	dma_free_coherent(hsdma2dev(hsdma),
 383			  pc->sz_ring, ring->txd, ring->tphys);
 384	return err;
 385}
 386
 387static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma,
 388				 struct mtk_hsdma_pchan *pc)
 389{
 390	struct mtk_hsdma_ring *ring = &pc->ring;
 391
 392	/* Disable HSDMA and then wait for the completion */
 393	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 394	mtk_hsdma_busy_wait(hsdma);
 395
 396	/* Reset pointer in the ring */
 397	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 398	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0);
 399	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0);
 400	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0);
 401	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0);
 402	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0);
 403	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1);
 404
 405	kfree(ring->cb);
 406
 407	dma_free_coherent(hsdma2dev(hsdma),
 408			  pc->sz_ring, ring->txd, ring->tphys);
 409}
 410
 411static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma,
 412					 struct mtk_hsdma_pchan *pc,
 413					 struct mtk_hsdma_vdesc *hvd)
 414{
 415	struct mtk_hsdma_ring *ring = &pc->ring;
 416	struct mtk_hsdma_pdesc *txd, *rxd;
 417	u16 reserved, prev, tlen, num_sgs;
 418	unsigned long flags;
 419
 420	/* Protect against PC is accessed by multiple VCs simultaneously */
 421	spin_lock_irqsave(&hsdma->lock, flags);
 422
 423	/*
 424	 * Reserve rooms, where pc->nr_free is used to track how many free
 425	 * rooms in the ring being updated in user and IRQ context.
 426	 */
 427	num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN);
 428	reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free));
 429
 430	if (!reserved) {
 431		spin_unlock_irqrestore(&hsdma->lock, flags);
 432		return -ENOSPC;
 433	}
 434
 435	atomic_sub(reserved, &pc->nr_free);
 436
 437	while (reserved--) {
 438		/* Limit size by PD capability for valid data moving */
 439		tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ?
 440		       MTK_HSDMA_MAX_LEN : hvd->len;
 441
 442		/*
 443		 * Setup PDs using the remaining VD info mapped on those
 444		 * reserved rooms. And since RXD is shared memory between the
 445		 * host and the device allocated by dma_alloc_coherent call,
 446		 * the helper macro WRITE_ONCE can ensure the data written to
 447		 * RAM would really happens.
 448		 */
 449		txd = &ring->txd[ring->cur_tptr];
 450		WRITE_ONCE(txd->desc1, hvd->src);
 451		WRITE_ONCE(txd->desc2,
 452			   hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen));
 453
 454		rxd = &ring->rxd[ring->cur_tptr];
 455		WRITE_ONCE(rxd->desc1, hvd->dest);
 456		WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen));
 457
 458		/* Associate VD, the PD belonged to */
 459		ring->cb[ring->cur_tptr].vd = &hvd->vd;
 460
 461		/* Move forward the pointer of TX ring */
 462		ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr,
 463							 MTK_DMA_SIZE);
 464
 465		/* Update VD with remaining data */
 466		hvd->src  += tlen;
 467		hvd->dest += tlen;
 468		hvd->len  -= tlen;
 469	}
 470
 471	/*
 472	 * Tagging flag for the last PD for VD will be responsible for
 473	 * completing VD.
 474	 */
 475	if (!hvd->len) {
 476		prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE);
 477		ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED;
 478	}
 479
 480	/* Ensure all changes indeed done before we're going on */
 481	wmb();
 482
 483	/*
 484	 * Updating into hardware the pointer of TX ring lets HSDMA to take
 485	 * action for those pending PDs.
 486	 */
 487	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
 488
 489	spin_unlock_irqrestore(&hsdma->lock, flags);
 490
 491	return 0;
 492}
 493
 494static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma,
 495					  struct mtk_hsdma_vchan *hvc)
 496{
 497	struct virt_dma_desc *vd, *vd2;
 498	int err;
 499
 500	lockdep_assert_held(&hvc->vc.lock);
 501
 502	list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) {
 503		struct mtk_hsdma_vdesc *hvd;
 504
 505		hvd = to_hsdma_vdesc(vd);
 506
 507		/* Map VD into PC and all VCs shares a single PC */
 508		err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd);
 509
 510		/*
 511		 * Move VD from desc_issued to desc_hw_processing when entire
 512		 * VD is fit into available PDs. Otherwise, the uncompleted
 513		 * VDs would stay in list desc_issued and then restart the
 514		 * processing as soon as possible once underlying ring space
 515		 * got freed.
 516		 */
 517		if (err == -ENOSPC || hvd->len > 0)
 518			break;
 519
 520		/*
 521		 * The extra list desc_hw_processing is used because
 522		 * hardware can't provide sufficient information allowing us
 523		 * to know what VDs are still working on the underlying ring.
 524		 * Through the additional list, it can help us to implement
 525		 * terminate_all, residue calculation and such thing needed
 526		 * to know detail descriptor status on the hardware.
 527		 */
 528		list_move_tail(&vd->node, &hvc->desc_hw_processing);
 529	}
 530}
 531
 532static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma)
 533{
 534	struct mtk_hsdma_vchan *hvc;
 535	struct mtk_hsdma_pdesc *rxd;
 536	struct mtk_hsdma_vdesc *hvd;
 537	struct mtk_hsdma_pchan *pc;
 538	struct mtk_hsdma_cb *cb;
 539	int i = MTK_DMA_SIZE;
 540	__le32 desc2;
 541	u32 status;
 542	u16 next;
 543
 544	/* Read IRQ status */
 545	status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS);
 546	if (unlikely(!(status & MTK_HSDMA_INT_RXDONE)))
 547		goto rx_done;
 548
 549	pc = hsdma->pc;
 550
 551	/*
 552	 * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to
 553	 * reclaim these finished descriptors: The most number of PDs the ISR
 554	 * can handle at one time shouldn't be more than MTK_DMA_SIZE so we
 555	 * take it as limited count instead of just using a dangerous infinite
 556	 * poll.
 557	 */
 558	while (i--) {
 559		next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr,
 560					       MTK_DMA_SIZE);
 561		rxd = &pc->ring.rxd[next];
 562
 563		/*
 564		 * If MTK_HSDMA_DESC_DDONE is no specified, that means data
 565		 * moving for the PD is still under going.
 566		 */
 567		desc2 = READ_ONCE(rxd->desc2);
 568		if (!(desc2 & hsdma->soc->ddone))
 569			break;
 570
 571		cb = &pc->ring.cb[next];
 572		if (unlikely(!cb->vd)) {
 573			dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n");
 574			break;
 575		}
 576
 577		/* Update residue of VD the associated PD belonged to */
 578		hvd = to_hsdma_vdesc(cb->vd);
 579		hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2);
 580
 581		/* Complete VD until the relevant last PD is finished */
 582		if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) {
 583			hvc = to_hsdma_vchan(cb->vd->tx.chan);
 584
 585			spin_lock(&hvc->vc.lock);
 586
 587			/* Remove VD from list desc_hw_processing */
 588			list_del(&cb->vd->node);
 589
 590			/* Add VD into list desc_completed */
 591			vchan_cookie_complete(cb->vd);
 592
 593			if (hvc->issue_synchronize &&
 594			    list_empty(&hvc->desc_hw_processing)) {
 595				complete(&hvc->issue_completion);
 596				hvc->issue_synchronize = false;
 597			}
 598			spin_unlock(&hvc->vc.lock);
 599
 600			cb->flag = 0;
 601		}
 602
 603		cb->vd = NULL;
 604
 605		/*
 606		 * Recycle the RXD with the helper WRITE_ONCE that can ensure
 607		 * data written into RAM would really happens.
 608		 */
 609		WRITE_ONCE(rxd->desc1, 0);
 610		WRITE_ONCE(rxd->desc2, 0);
 611		pc->ring.cur_rptr = next;
 612
 613		/* Release rooms */
 614		atomic_inc(&pc->nr_free);
 615	}
 616
 617	/* Ensure all changes indeed done before we're going on */
 618	wmb();
 619
 620	/* Update CPU pointer for those completed PDs */
 621	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr);
 622
 623	/*
 624	 * Acking the pending IRQ allows hardware no longer to keep the used
 625	 * IRQ line in certain trigger state when software has completed all
 626	 * the finished physical descriptors.
 627	 */
 628	if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1)
 629		mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status);
 630
 631	/* ASAP handles pending VDs in all VCs after freeing some rooms */
 632	for (i = 0; i < hsdma->dma_requests; i++) {
 633		hvc = &hsdma->vc[i];
 634		spin_lock(&hvc->vc.lock);
 635		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
 636		spin_unlock(&hvc->vc.lock);
 637	}
 638
 639rx_done:
 640	/* All completed PDs are cleaned up, so enable interrupt again */
 641	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 642}
 643
 644static irqreturn_t mtk_hsdma_irq(int irq, void *devid)
 645{
 646	struct mtk_hsdma_device *hsdma = devid;
 647
 648	/*
 649	 * Disable interrupt until all completed PDs are cleaned up in
 650	 * mtk_hsdma_free_rooms call.
 651	 */
 652	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 653
 654	mtk_hsdma_free_rooms_in_ring(hsdma);
 655
 656	return IRQ_HANDLED;
 657}
 658
 659static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c,
 660							dma_cookie_t cookie)
 661{
 662	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 663	struct virt_dma_desc *vd;
 664
 665	list_for_each_entry(vd, &hvc->desc_hw_processing, node)
 666		if (vd->tx.cookie == cookie)
 667			return vd;
 668
 669	list_for_each_entry(vd, &hvc->vc.desc_issued, node)
 670		if (vd->tx.cookie == cookie)
 671			return vd;
 672
 673	return NULL;
 674}
 675
 676static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c,
 677					   dma_cookie_t cookie,
 678					   struct dma_tx_state *txstate)
 679{
 680	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 681	struct mtk_hsdma_vdesc *hvd;
 682	struct virt_dma_desc *vd;
 683	enum dma_status ret;
 684	unsigned long flags;
 685	size_t bytes = 0;
 686
 687	ret = dma_cookie_status(c, cookie, txstate);
 688	if (ret == DMA_COMPLETE || !txstate)
 689		return ret;
 690
 691	spin_lock_irqsave(&hvc->vc.lock, flags);
 692	vd = mtk_hsdma_find_active_desc(c, cookie);
 693	spin_unlock_irqrestore(&hvc->vc.lock, flags);
 694
 695	if (vd) {
 696		hvd = to_hsdma_vdesc(vd);
 697		bytes = hvd->residue;
 698	}
 699
 700	dma_set_residue(txstate, bytes);
 701
 702	return ret;
 703}
 704
 705static void mtk_hsdma_issue_pending(struct dma_chan *c)
 706{
 707	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 708	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 709	unsigned long flags;
 710
 711	spin_lock_irqsave(&hvc->vc.lock, flags);
 712
 713	if (vchan_issue_pending(&hvc->vc))
 714		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
 715
 716	spin_unlock_irqrestore(&hvc->vc.lock, flags);
 717}
 718
 719static struct dma_async_tx_descriptor *
 720mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest,
 721			  dma_addr_t src, size_t len, unsigned long flags)
 722{
 723	struct mtk_hsdma_vdesc *hvd;
 724
 725	hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT);
 726	if (!hvd)
 727		return NULL;
 728
 729	hvd->len = len;
 730	hvd->residue = len;
 731	hvd->src = src;
 732	hvd->dest = dest;
 733
 734	return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags);
 735}
 736
 737static int mtk_hsdma_free_inactive_desc(struct dma_chan *c)
 738{
 739	struct virt_dma_chan *vc = to_virt_chan(c);
 740	unsigned long flags;
 741	LIST_HEAD(head);
 742
 743	spin_lock_irqsave(&vc->lock, flags);
 744	list_splice_tail_init(&vc->desc_allocated, &head);
 745	list_splice_tail_init(&vc->desc_submitted, &head);
 746	list_splice_tail_init(&vc->desc_issued, &head);
 747	spin_unlock_irqrestore(&vc->lock, flags);
 748
 749	/* At the point, we don't expect users put descriptor into VC again */
 750	vchan_dma_desc_free_list(vc, &head);
 751
 752	return 0;
 753}
 754
 755static void mtk_hsdma_free_active_desc(struct dma_chan *c)
 756{
 757	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 758	bool sync_needed = false;
 759
 760	/*
 761	 * Once issue_synchronize is being set, which means once the hardware
 762	 * consumes all descriptors for the channel in the ring, the
 763	 * synchronization must be notified immediately it is completed.
 764	 */
 765	spin_lock(&hvc->vc.lock);
 766	if (!list_empty(&hvc->desc_hw_processing)) {
 767		hvc->issue_synchronize = true;
 768		sync_needed = true;
 769	}
 770	spin_unlock(&hvc->vc.lock);
 771
 772	if (sync_needed)
 773		wait_for_completion(&hvc->issue_completion);
 774	/*
 775	 * At the point, we expect that all remaining descriptors in the ring
 776	 * for the channel should be all processing done.
 777	 */
 778	WARN_ONCE(!list_empty(&hvc->desc_hw_processing),
 779		  "Desc pending still in list desc_hw_processing\n");
 780
 781	/* Free all descriptors in list desc_completed */
 782	vchan_synchronize(&hvc->vc);
 783
 784	WARN_ONCE(!list_empty(&hvc->vc.desc_completed),
 785		  "Desc pending still in list desc_completed\n");
 786}
 787
 788static int mtk_hsdma_terminate_all(struct dma_chan *c)
 789{
 790	/*
 791	 * Free pending descriptors not processed yet by hardware that have
 792	 * previously been submitted to the channel.
 793	 */
 794	mtk_hsdma_free_inactive_desc(c);
 795
 796	/*
 797	 * However, the DMA engine doesn't provide any way to stop these
 798	 * descriptors being processed currently by hardware. The only way is
 799	 * to just waiting until these descriptors are all processed completely
 800	 * through mtk_hsdma_free_active_desc call.
 801	 */
 802	mtk_hsdma_free_active_desc(c);
 803
 804	return 0;
 805}
 806
 807static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c)
 808{
 809	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 810	int err;
 811
 812	/*
 813	 * Since HSDMA has only one PC, the resource for PC is being allocated
 814	 * when the first VC is being created and the other VCs would run on
 815	 * the same PC.
 816	 */
 817	if (!refcount_read(&hsdma->pc_refcnt)) {
 818		err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc);
 819		if (err)
 820			return err;
 821		/*
 822		 * refcount_inc would complain increment on 0; use-after-free.
 823		 * Thus, we need to explicitly set it as 1 initially.
 824		 */
 825		refcount_set(&hsdma->pc_refcnt, 1);
 826	} else {
 827		refcount_inc(&hsdma->pc_refcnt);
 828	}
 829
 830	return 0;
 831}
 832
 833static void mtk_hsdma_free_chan_resources(struct dma_chan *c)
 834{
 835	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 836
 837	/* Free all descriptors in all lists on the VC */
 838	mtk_hsdma_terminate_all(c);
 839
 840	/* The resource for PC is not freed until all the VCs are destroyed */
 841	if (!refcount_dec_and_test(&hsdma->pc_refcnt))
 842		return;
 843
 844	mtk_hsdma_free_pchan(hsdma, hsdma->pc);
 845}
 846
 847static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma)
 848{
 849	int err;
 850
 851	pm_runtime_enable(hsdma2dev(hsdma));
 852	pm_runtime_get_sync(hsdma2dev(hsdma));
 853
 854	err = clk_prepare_enable(hsdma->clk);
 855	if (err)
 856		return err;
 857
 858	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
 859	mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT);
 860
 861	return 0;
 862}
 863
 864static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma)
 865{
 866	mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0);
 867
 868	clk_disable_unprepare(hsdma->clk);
 869
 870	pm_runtime_put_sync(hsdma2dev(hsdma));
 871	pm_runtime_disable(hsdma2dev(hsdma));
 872
 873	return 0;
 874}
 875
 876static const struct mtk_hsdma_soc mt7623_soc = {
 877	.ddone = BIT(31),
 878	.ls0 = BIT(30),
 879};
 880
 881static const struct mtk_hsdma_soc mt7622_soc = {
 882	.ddone = BIT(15),
 883	.ls0 = BIT(14),
 884};
 885
 886static const struct of_device_id mtk_hsdma_match[] = {
 887	{ .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc},
 888	{ .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc},
 889	{ /* sentinel */ }
 890};
 891MODULE_DEVICE_TABLE(of, mtk_hsdma_match);
 892
 893static int mtk_hsdma_probe(struct platform_device *pdev)
 894{
 895	struct mtk_hsdma_device *hsdma;
 896	struct mtk_hsdma_vchan *vc;
 897	struct dma_device *dd;
 898	int i, err;
 899
 900	hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL);
 901	if (!hsdma)
 902		return -ENOMEM;
 903
 904	dd = &hsdma->ddev;
 905
 906	hsdma->base = devm_platform_ioremap_resource(pdev, 0);
 907	if (IS_ERR(hsdma->base))
 908		return PTR_ERR(hsdma->base);
 909
 910	hsdma->soc = of_device_get_match_data(&pdev->dev);
 911	if (!hsdma->soc) {
 912		dev_err(&pdev->dev, "No device match found\n");
 913		return -ENODEV;
 914	}
 915
 916	hsdma->clk = devm_clk_get(&pdev->dev, "hsdma");
 917	if (IS_ERR(hsdma->clk)) {
 918		dev_err(&pdev->dev, "No clock for %s\n",
 919			dev_name(&pdev->dev));
 920		return PTR_ERR(hsdma->clk);
 921	}
 922
 923	err = platform_get_irq(pdev, 0);
 924	if (err < 0)
 925		return err;
 926	hsdma->irq = err;
 927
 928	refcount_set(&hsdma->pc_refcnt, 0);
 929	spin_lock_init(&hsdma->lock);
 930
 931	dma_cap_set(DMA_MEMCPY, dd->cap_mask);
 932
 933	dd->copy_align = MTK_HSDMA_ALIGN_SIZE;
 934	dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources;
 935	dd->device_free_chan_resources = mtk_hsdma_free_chan_resources;
 936	dd->device_tx_status = mtk_hsdma_tx_status;
 937	dd->device_issue_pending = mtk_hsdma_issue_pending;
 938	dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy;
 939	dd->device_terminate_all = mtk_hsdma_terminate_all;
 940	dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
 941	dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
 942	dd->directions = BIT(DMA_MEM_TO_MEM);
 943	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
 944	dd->dev = &pdev->dev;
 945	INIT_LIST_HEAD(&dd->channels);
 946
 947	hsdma->dma_requests = MTK_HSDMA_NR_VCHANS;
 948	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
 949						      "dma-requests",
 950						      &hsdma->dma_requests)) {
 951		dev_info(&pdev->dev,
 952			 "Using %u as missing dma-requests property\n",
 953			 MTK_HSDMA_NR_VCHANS);
 954	}
 955
 956	hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS,
 957				 sizeof(*hsdma->pc), GFP_KERNEL);
 958	if (!hsdma->pc)
 959		return -ENOMEM;
 960
 961	hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests,
 962				 sizeof(*hsdma->vc), GFP_KERNEL);
 963	if (!hsdma->vc)
 964		return -ENOMEM;
 965
 966	for (i = 0; i < hsdma->dma_requests; i++) {
 967		vc = &hsdma->vc[i];
 968		vc->vc.desc_free = mtk_hsdma_vdesc_free;
 969		vchan_init(&vc->vc, dd);
 970		init_completion(&vc->issue_completion);
 971		INIT_LIST_HEAD(&vc->desc_hw_processing);
 972	}
 973
 974	err = dma_async_device_register(dd);
 975	if (err)
 976		return err;
 977
 978	err = of_dma_controller_register(pdev->dev.of_node,
 979					 of_dma_xlate_by_chan_id, hsdma);
 980	if (err) {
 981		dev_err(&pdev->dev,
 982			"MediaTek HSDMA OF registration failed %d\n", err);
 983		goto err_unregister;
 984	}
 985
 986	mtk_hsdma_hw_init(hsdma);
 987
 988	err = devm_request_irq(&pdev->dev, hsdma->irq,
 989			       mtk_hsdma_irq, 0,
 990			       dev_name(&pdev->dev), hsdma);
 991	if (err) {
 992		dev_err(&pdev->dev,
 993			"request_irq failed with err %d\n", err);
 994		goto err_free;
 995	}
 996
 997	platform_set_drvdata(pdev, hsdma);
 998
 999	dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n");
1000
1001	return 0;
1002
1003err_free:
1004	mtk_hsdma_hw_deinit(hsdma);
1005	of_dma_controller_free(pdev->dev.of_node);
1006err_unregister:
1007	dma_async_device_unregister(dd);
1008
1009	return err;
1010}
1011
1012static void mtk_hsdma_remove(struct platform_device *pdev)
1013{
1014	struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev);
1015	struct mtk_hsdma_vchan *vc;
1016	int i;
1017
1018	/* Kill VC task */
1019	for (i = 0; i < hsdma->dma_requests; i++) {
1020		vc = &hsdma->vc[i];
1021
1022		list_del(&vc->vc.chan.device_node);
1023		tasklet_kill(&vc->vc.task);
1024	}
1025
1026	/* Disable DMA interrupt */
1027	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
1028
1029	/* Waits for any pending IRQ handlers to complete */
1030	synchronize_irq(hsdma->irq);
1031
1032	/* Disable hardware */
1033	mtk_hsdma_hw_deinit(hsdma);
1034
1035	dma_async_device_unregister(&hsdma->ddev);
1036	of_dma_controller_free(pdev->dev.of_node);
1037}
1038
1039static struct platform_driver mtk_hsdma_driver = {
1040	.probe		= mtk_hsdma_probe,
1041	.remove_new	= mtk_hsdma_remove,
1042	.driver = {
1043		.name		= KBUILD_MODNAME,
1044		.of_match_table	= mtk_hsdma_match,
1045	},
1046};
1047module_platform_driver(mtk_hsdma_driver);
1048
1049MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver");
1050MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1051MODULE_LICENSE("GPL v2");