Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 | // SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2017-2018 MediaTek Inc. /* * Driver for MediaTek High-Speed DMA Controller * * Author: Sean Wang <sean.wang@mediatek.com> * */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/iopoll.h> #include <linux/list.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_dma.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/refcount.h> #include <linux/slab.h> #include "../virt-dma.h" #define MTK_HSDMA_USEC_POLL 20 #define MTK_HSDMA_TIMEOUT_POLL 200000 #define MTK_HSDMA_DMA_BUSWIDTHS BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) /* The default number of virtual channel */ #define MTK_HSDMA_NR_VCHANS 3 /* Only one physical channel supported */ #define MTK_HSDMA_NR_MAX_PCHANS 1 /* Macro for physical descriptor (PD) manipulation */ /* The number of PD which must be 2 of power */ #define MTK_DMA_SIZE 64 #define MTK_HSDMA_NEXT_DESP_IDX(x, y) (((x) + 1) & ((y) - 1)) #define MTK_HSDMA_LAST_DESP_IDX(x, y) (((x) - 1) & ((y) - 1)) #define MTK_HSDMA_MAX_LEN 0x3f80 #define MTK_HSDMA_ALIGN_SIZE 4 #define MTK_HSDMA_PLEN_MASK 0x3fff #define MTK_HSDMA_DESC_PLEN(x) (((x) & MTK_HSDMA_PLEN_MASK) << 16) #define MTK_HSDMA_DESC_PLEN_GET(x) (((x) >> 16) & MTK_HSDMA_PLEN_MASK) /* Registers for underlying ring manipulation */ #define MTK_HSDMA_TX_BASE 0x0 #define MTK_HSDMA_TX_CNT 0x4 #define MTK_HSDMA_TX_CPU 0x8 #define MTK_HSDMA_TX_DMA 0xc #define MTK_HSDMA_RX_BASE 0x100 #define MTK_HSDMA_RX_CNT 0x104 #define MTK_HSDMA_RX_CPU 0x108 #define MTK_HSDMA_RX_DMA 0x10c /* Registers for global setup */ #define MTK_HSDMA_GLO 0x204 #define MTK_HSDMA_GLO_MULTI_DMA BIT(10) #define MTK_HSDMA_TX_WB_DDONE BIT(6) #define MTK_HSDMA_BURST_64BYTES (0x2 << 4) #define MTK_HSDMA_GLO_RX_BUSY BIT(3) #define MTK_HSDMA_GLO_RX_DMA BIT(2) #define MTK_HSDMA_GLO_TX_BUSY BIT(1) #define MTK_HSDMA_GLO_TX_DMA BIT(0) #define MTK_HSDMA_GLO_DMA (MTK_HSDMA_GLO_TX_DMA | \ MTK_HSDMA_GLO_RX_DMA) #define MTK_HSDMA_GLO_BUSY (MTK_HSDMA_GLO_RX_BUSY | \ MTK_HSDMA_GLO_TX_BUSY) #define MTK_HSDMA_GLO_DEFAULT (MTK_HSDMA_GLO_TX_DMA | \ MTK_HSDMA_GLO_RX_DMA | \ MTK_HSDMA_TX_WB_DDONE | \ MTK_HSDMA_BURST_64BYTES | \ MTK_HSDMA_GLO_MULTI_DMA) /* Registers for reset */ #define MTK_HSDMA_RESET 0x208 #define MTK_HSDMA_RST_TX BIT(0) #define MTK_HSDMA_RST_RX BIT(16) /* Registers for interrupt control */ #define MTK_HSDMA_DLYINT 0x20c #define MTK_HSDMA_RXDLY_INT_EN BIT(15) /* Interrupt fires when the pending number's more than the specified */ #define MTK_HSDMA_RXMAX_PINT(x) (((x) & 0x7f) << 8) /* Interrupt fires when the pending time's more than the specified in 20 us */ #define MTK_HSDMA_RXMAX_PTIME(x) ((x) & 0x7f) #define MTK_HSDMA_DLYINT_DEFAULT (MTK_HSDMA_RXDLY_INT_EN | \ MTK_HSDMA_RXMAX_PINT(20) | \ MTK_HSDMA_RXMAX_PTIME(20)) #define MTK_HSDMA_INT_STATUS 0x220 #define MTK_HSDMA_INT_ENABLE 0x228 #define MTK_HSDMA_INT_RXDONE BIT(16) enum mtk_hsdma_vdesc_flag { MTK_HSDMA_VDESC_FINISHED = 0x01, }; #define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED) /** * struct mtk_hsdma_pdesc - This is the struct holding info describing physical * descriptor (PD) and its placement must be kept at * 4-bytes alignment in little endian order. * @desc1: | The control pad used to indicate hardware how to * @desc2: | deal with the descriptor such as source and * @desc3: | destination address and data length. The maximum * @desc4: | data length each pdesc can handle is 0x3f80 bytes */ struct mtk_hsdma_pdesc { __le32 desc1; __le32 desc2; __le32 desc3; __le32 desc4; } __packed __aligned(4); /** * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual * descriptor (VD) * @vd: An instance for struct virt_dma_desc * @len: The total data size device wants to move * @residue: The remaining data size device will move * @dest: The destination address device wants to move to * @src: The source address device wants to move from */ struct mtk_hsdma_vdesc { struct virt_dma_desc vd; size_t len; size_t residue; dma_addr_t dest; dma_addr_t src; }; /** * struct mtk_hsdma_cb - This is the struct holding extra info required for RX * ring to know what relevant VD the PD is being * mapped to. * @vd: Pointer to the relevant VD. * @flag: Flag indicating what action should be taken when VD * is completed. */ struct mtk_hsdma_cb { struct virt_dma_desc *vd; enum mtk_hsdma_vdesc_flag flag; }; /** * struct mtk_hsdma_ring - This struct holds info describing underlying ring * space * @txd: The descriptor TX ring which describes DMA source * information * @rxd: The descriptor RX ring which describes DMA * destination information * @cb: The extra information pointed at by RX ring * @tphys: The physical addr of TX ring * @rphys: The physical addr of RX ring * @cur_tptr: Pointer to the next free descriptor used by the host * @cur_rptr: Pointer to the last done descriptor by the device */ struct mtk_hsdma_ring { struct mtk_hsdma_pdesc *txd; struct mtk_hsdma_pdesc *rxd; struct mtk_hsdma_cb *cb; dma_addr_t tphys; dma_addr_t rphys; u16 cur_tptr; u16 cur_rptr; }; /** * struct mtk_hsdma_pchan - This is the struct holding info describing physical * channel (PC) * @ring: An instance for the underlying ring * @sz_ring: Total size allocated for the ring * @nr_free: Total number of free rooms in the ring. It would * be accessed and updated frequently between IRQ * context and user context to reflect whether ring * can accept requests from VD. */ struct mtk_hsdma_pchan { struct mtk_hsdma_ring ring; size_t sz_ring; atomic_t nr_free; }; /** * struct mtk_hsdma_vchan - This is the struct holding info describing virtual * channel (VC) * @vc: An instance for struct virt_dma_chan * @issue_completion: The wait for all issued descriptors completited * @issue_synchronize: Bool indicating channel synchronization starts * @desc_hw_processing: List those descriptors the hardware is processing, * which is protected by vc.lock */ struct mtk_hsdma_vchan { struct virt_dma_chan vc; struct completion issue_completion; bool issue_synchronize; struct list_head desc_hw_processing; }; /** * struct mtk_hsdma_soc - This is the struct holding differences among SoCs * @ddone: Bit mask for DDONE * @ls0: Bit mask for LS0 */ struct mtk_hsdma_soc { __le32 ddone; __le32 ls0; }; /** * struct mtk_hsdma_device - This is the struct holding info describing HSDMA * device * @ddev: An instance for struct dma_device * @base: The mapped register I/O base * @clk: The clock that device internal is using * @irq: The IRQ that device are using * @dma_requests: The number of VCs the device supports to * @vc: The pointer to all available VCs * @pc: The pointer to the underlying PC * @pc_refcnt: Track how many VCs are using the PC * @lock: Lock protect agaisting multiple VCs access PC * @soc: The pointer to area holding differences among * vaious platform */ struct mtk_hsdma_device { struct dma_device ddev; void __iomem *base; struct clk *clk; u32 irq; u32 dma_requests; struct mtk_hsdma_vchan *vc; struct mtk_hsdma_pchan *pc; refcount_t pc_refcnt; /* Lock used to protect against multiple VCs access PC */ spinlock_t lock; const struct mtk_hsdma_soc *soc; }; static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan) { return container_of(chan->device, struct mtk_hsdma_device, ddev); } static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan) { return container_of(chan, struct mtk_hsdma_vchan, vc.chan); } static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd) { return container_of(vd, struct mtk_hsdma_vdesc, vd); } static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma) { return hsdma->ddev.dev; } static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg) { return readl(hsdma->base + reg); } static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val) { writel(val, hsdma->base + reg); } static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg, u32 mask, u32 set) { u32 val; val = mtk_dma_read(hsdma, reg); val &= ~mask; val |= set; mtk_dma_write(hsdma, reg, val); } static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val) { mtk_dma_rmw(hsdma, reg, 0, val); } static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val) { mtk_dma_rmw(hsdma, reg, val, 0); } static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd) { kfree(container_of(vd, struct mtk_hsdma_vdesc, vd)); } static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma) { u32 status = 0; return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status, !(status & MTK_HSDMA_GLO_BUSY), MTK_HSDMA_USEC_POLL, MTK_HSDMA_TIMEOUT_POLL); } static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma, struct mtk_hsdma_pchan *pc) { struct mtk_hsdma_ring *ring = &pc->ring; int err; memset(pc, 0, sizeof(*pc)); /* * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring. */ pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd); ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring, &ring->tphys, GFP_NOWAIT); if (!ring->txd) return -ENOMEM; ring->rxd = &ring->txd[MTK_DMA_SIZE]; ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd); ring->cur_tptr = 0; ring->cur_rptr = MTK_DMA_SIZE - 1; ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT); if (!ring->cb) { err = -ENOMEM; goto err_free_dma; } atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1); /* Disable HSDMA and wait for the completion */ mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA); err = mtk_hsdma_busy_wait(hsdma); if (err) goto err_free_cb; /* Reset */ mtk_dma_set(hsdma, MTK_HSDMA_RESET, MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX); mtk_dma_clr(hsdma, MTK_HSDMA_RESET, MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX); /* Setup HSDMA initial pointer in the ring */ mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys); mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE); mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr); mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0); mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys); mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE); mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr); mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0); /* Enable HSDMA */ mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA); /* Setup delayed interrupt */ mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT); /* Enable interrupt */ mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE); return 0; err_free_cb: kfree(ring->cb); err_free_dma: dma_free_coherent(hsdma2dev(hsdma), pc->sz_ring, ring->txd, ring->tphys); return err; } static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma, struct mtk_hsdma_pchan *pc) { struct mtk_hsdma_ring *ring = &pc->ring; /* Disable HSDMA and then wait for the completion */ mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA); mtk_hsdma_busy_wait(hsdma); /* Reset pointer in the ring */ mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE); mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0); mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0); mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0); mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0); mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0); mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1); kfree(ring->cb); dma_free_coherent(hsdma2dev(hsdma), pc->sz_ring, ring->txd, ring->tphys); } static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma, struct mtk_hsdma_pchan *pc, struct mtk_hsdma_vdesc *hvd) { struct mtk_hsdma_ring *ring = &pc->ring; struct mtk_hsdma_pdesc *txd, *rxd; u16 reserved, prev, tlen, num_sgs; unsigned long flags; /* Protect against PC is accessed by multiple VCs simultaneously */ spin_lock_irqsave(&hsdma->lock, flags); /* * Reserve rooms, where pc->nr_free is used to track how many free * rooms in the ring being updated in user and IRQ context. */ num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN); reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free)); if (!reserved) { spin_unlock_irqrestore(&hsdma->lock, flags); return -ENOSPC; } atomic_sub(reserved, &pc->nr_free); while (reserved--) { /* Limit size by PD capability for valid data moving */ tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ? MTK_HSDMA_MAX_LEN : hvd->len; /* * Setup PDs using the remaining VD info mapped on those * reserved rooms. And since RXD is shared memory between the * host and the device allocated by dma_alloc_coherent call, * the helper macro WRITE_ONCE can ensure the data written to * RAM would really happens. */ txd = &ring->txd[ring->cur_tptr]; WRITE_ONCE(txd->desc1, hvd->src); WRITE_ONCE(txd->desc2, hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen)); rxd = &ring->rxd[ring->cur_tptr]; WRITE_ONCE(rxd->desc1, hvd->dest); WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen)); /* Associate VD, the PD belonged to */ ring->cb[ring->cur_tptr].vd = &hvd->vd; /* Move forward the pointer of TX ring */ ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE); /* Update VD with remaining data */ hvd->src += tlen; hvd->dest += tlen; hvd->len -= tlen; } /* * Tagging flag for the last PD for VD will be responsible for * completing VD. */ if (!hvd->len) { prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE); ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED; } /* Ensure all changes indeed done before we're going on */ wmb(); /* * Updating into hardware the pointer of TX ring lets HSDMA to take * action for those pending PDs. */ mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr); spin_unlock_irqrestore(&hsdma->lock, flags); return 0; } static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma, struct mtk_hsdma_vchan *hvc) { struct virt_dma_desc *vd, *vd2; int err; lockdep_assert_held(&hvc->vc.lock); list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) { struct mtk_hsdma_vdesc *hvd; hvd = to_hsdma_vdesc(vd); /* Map VD into PC and all VCs shares a single PC */ err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd); /* * Move VD from desc_issued to desc_hw_processing when entire * VD is fit into available PDs. Otherwise, the uncompleted * VDs would stay in list desc_issued and then restart the * processing as soon as possible once underlying ring space * got freed. */ if (err == -ENOSPC || hvd->len > 0) break; /* * The extra list desc_hw_processing is used because * hardware can't provide sufficient information allowing us * to know what VDs are still working on the underlying ring. * Through the additional list, it can help us to implement * terminate_all, residue calculation and such thing needed * to know detail descriptor status on the hardware. */ list_move_tail(&vd->node, &hvc->desc_hw_processing); } } static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma) { struct mtk_hsdma_vchan *hvc; struct mtk_hsdma_pdesc *rxd; struct mtk_hsdma_vdesc *hvd; struct mtk_hsdma_pchan *pc; struct mtk_hsdma_cb *cb; int i = MTK_DMA_SIZE; __le32 desc2; u32 status; u16 next; /* Read IRQ status */ status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS); if (unlikely(!(status & MTK_HSDMA_INT_RXDONE))) goto rx_done; pc = hsdma->pc; /* * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to * reclaim these finished descriptors: The most number of PDs the ISR * can handle at one time shouldn't be more than MTK_DMA_SIZE so we * take it as limited count instead of just using a dangerous infinite * poll. */ while (i--) { next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr, MTK_DMA_SIZE); rxd = &pc->ring.rxd[next]; /* * If MTK_HSDMA_DESC_DDONE is no specified, that means data * moving for the PD is still under going. */ desc2 = READ_ONCE(rxd->desc2); if (!(desc2 & hsdma->soc->ddone)) break; cb = &pc->ring.cb[next]; if (unlikely(!cb->vd)) { dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n"); break; } /* Update residue of VD the associated PD belonged to */ hvd = to_hsdma_vdesc(cb->vd); hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2); /* Complete VD until the relevant last PD is finished */ if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) { hvc = to_hsdma_vchan(cb->vd->tx.chan); spin_lock(&hvc->vc.lock); /* Remove VD from list desc_hw_processing */ list_del(&cb->vd->node); /* Add VD into list desc_completed */ vchan_cookie_complete(cb->vd); if (hvc->issue_synchronize && list_empty(&hvc->desc_hw_processing)) { complete(&hvc->issue_completion); hvc->issue_synchronize = false; } spin_unlock(&hvc->vc.lock); cb->flag = 0; } cb->vd = NULL; /* * Recycle the RXD with the helper WRITE_ONCE that can ensure * data written into RAM would really happens. */ WRITE_ONCE(rxd->desc1, 0); WRITE_ONCE(rxd->desc2, 0); pc->ring.cur_rptr = next; /* Release rooms */ atomic_inc(&pc->nr_free); } /* Ensure all changes indeed done before we're going on */ wmb(); /* Update CPU pointer for those completed PDs */ mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr); /* * Acking the pending IRQ allows hardware no longer to keep the used * IRQ line in certain trigger state when software has completed all * the finished physical descriptors. */ if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1) mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status); /* ASAP handles pending VDs in all VCs after freeing some rooms */ for (i = 0; i < hsdma->dma_requests; i++) { hvc = &hsdma->vc[i]; spin_lock(&hvc->vc.lock); mtk_hsdma_issue_vchan_pending(hsdma, hvc); spin_unlock(&hvc->vc.lock); } rx_done: /* All completed PDs are cleaned up, so enable interrupt again */ mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE); } static irqreturn_t mtk_hsdma_irq(int irq, void *devid) { struct mtk_hsdma_device *hsdma = devid; /* * Disable interrupt until all completed PDs are cleaned up in * mtk_hsdma_free_rooms call. */ mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE); mtk_hsdma_free_rooms_in_ring(hsdma); return IRQ_HANDLED; } static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c, dma_cookie_t cookie) { struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c); struct virt_dma_desc *vd; list_for_each_entry(vd, &hvc->desc_hw_processing, node) if (vd->tx.cookie == cookie) return vd; list_for_each_entry(vd, &hvc->vc.desc_issued, node) if (vd->tx.cookie == cookie) return vd; return NULL; } static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c); struct mtk_hsdma_vdesc *hvd; struct virt_dma_desc *vd; enum dma_status ret; unsigned long flags; size_t bytes = 0; ret = dma_cookie_status(c, cookie, txstate); if (ret == DMA_COMPLETE || !txstate) return ret; spin_lock_irqsave(&hvc->vc.lock, flags); vd = mtk_hsdma_find_active_desc(c, cookie); spin_unlock_irqrestore(&hvc->vc.lock, flags); if (vd) { hvd = to_hsdma_vdesc(vd); bytes = hvd->residue; } dma_set_residue(txstate, bytes); return ret; } static void mtk_hsdma_issue_pending(struct dma_chan *c) { struct mtk_hsdma_device *hsdma = to_hsdma_dev(c); struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c); unsigned long flags; spin_lock_irqsave(&hvc->vc.lock, flags); if (vchan_issue_pending(&hvc->vc)) mtk_hsdma_issue_vchan_pending(hsdma, hvc); spin_unlock_irqrestore(&hvc->vc.lock, flags); } static struct dma_async_tx_descriptor * mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { struct mtk_hsdma_vdesc *hvd; hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT); if (!hvd) return NULL; hvd->len = len; hvd->residue = len; hvd->src = src; hvd->dest = dest; return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags); } static int mtk_hsdma_free_inactive_desc(struct dma_chan *c) { struct virt_dma_chan *vc = to_virt_chan(c); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&vc->lock, flags); list_splice_tail_init(&vc->desc_allocated, &head); list_splice_tail_init(&vc->desc_submitted, &head); list_splice_tail_init(&vc->desc_issued, &head); spin_unlock_irqrestore(&vc->lock, flags); /* At the point, we don't expect users put descriptor into VC again */ vchan_dma_desc_free_list(vc, &head); return 0; } static void mtk_hsdma_free_active_desc(struct dma_chan *c) { struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c); bool sync_needed = false; /* * Once issue_synchronize is being set, which means once the hardware * consumes all descriptors for the channel in the ring, the * synchronization must be notified immediately it is completed. */ spin_lock(&hvc->vc.lock); if (!list_empty(&hvc->desc_hw_processing)) { hvc->issue_synchronize = true; sync_needed = true; } spin_unlock(&hvc->vc.lock); if (sync_needed) wait_for_completion(&hvc->issue_completion); /* * At the point, we expect that all remaining descriptors in the ring * for the channel should be all processing done. */ WARN_ONCE(!list_empty(&hvc->desc_hw_processing), "Desc pending still in list desc_hw_processing\n"); /* Free all descriptors in list desc_completed */ vchan_synchronize(&hvc->vc); WARN_ONCE(!list_empty(&hvc->vc.desc_completed), "Desc pending still in list desc_completed\n"); } static int mtk_hsdma_terminate_all(struct dma_chan *c) { /* * Free pending descriptors not processed yet by hardware that have * previously been submitted to the channel. */ mtk_hsdma_free_inactive_desc(c); /* * However, the DMA engine doesn't provide any way to stop these * descriptors being processed currently by hardware. The only way is * to just waiting until these descriptors are all processed completely * through mtk_hsdma_free_active_desc call. */ mtk_hsdma_free_active_desc(c); return 0; } static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c) { struct mtk_hsdma_device *hsdma = to_hsdma_dev(c); int err; /* * Since HSDMA has only one PC, the resource for PC is being allocated * when the first VC is being created and the other VCs would run on * the same PC. */ if (!refcount_read(&hsdma->pc_refcnt)) { err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc); if (err) return err; /* * refcount_inc would complain increment on 0; use-after-free. * Thus, we need to explicitly set it as 1 initially. */ refcount_set(&hsdma->pc_refcnt, 1); } else { refcount_inc(&hsdma->pc_refcnt); } return 0; } static void mtk_hsdma_free_chan_resources(struct dma_chan *c) { struct mtk_hsdma_device *hsdma = to_hsdma_dev(c); /* Free all descriptors in all lists on the VC */ mtk_hsdma_terminate_all(c); /* The resource for PC is not freed until all the VCs are destroyed */ if (!refcount_dec_and_test(&hsdma->pc_refcnt)) return; mtk_hsdma_free_pchan(hsdma, hsdma->pc); } static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma) { int err; pm_runtime_enable(hsdma2dev(hsdma)); pm_runtime_get_sync(hsdma2dev(hsdma)); err = clk_prepare_enable(hsdma->clk); if (err) return err; mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0); mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT); return 0; } static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma) { mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0); clk_disable_unprepare(hsdma->clk); pm_runtime_put_sync(hsdma2dev(hsdma)); pm_runtime_disable(hsdma2dev(hsdma)); return 0; } static const struct mtk_hsdma_soc mt7623_soc = { .ddone = BIT(31), .ls0 = BIT(30), }; static const struct mtk_hsdma_soc mt7622_soc = { .ddone = BIT(15), .ls0 = BIT(14), }; static const struct of_device_id mtk_hsdma_match[] = { { .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc}, { .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc}, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mtk_hsdma_match); static int mtk_hsdma_probe(struct platform_device *pdev) { struct mtk_hsdma_device *hsdma; struct mtk_hsdma_vchan *vc; struct dma_device *dd; int i, err; hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL); if (!hsdma) return -ENOMEM; dd = &hsdma->ddev; hsdma->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(hsdma->base)) return PTR_ERR(hsdma->base); hsdma->soc = of_device_get_match_data(&pdev->dev); if (!hsdma->soc) { dev_err(&pdev->dev, "No device match found\n"); return -ENODEV; } hsdma->clk = devm_clk_get(&pdev->dev, "hsdma"); if (IS_ERR(hsdma->clk)) { dev_err(&pdev->dev, "No clock for %s\n", dev_name(&pdev->dev)); return PTR_ERR(hsdma->clk); } err = platform_get_irq(pdev, 0); if (err < 0) return err; hsdma->irq = err; refcount_set(&hsdma->pc_refcnt, 0); spin_lock_init(&hsdma->lock); dma_cap_set(DMA_MEMCPY, dd->cap_mask); dd->copy_align = MTK_HSDMA_ALIGN_SIZE; dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources; dd->device_free_chan_resources = mtk_hsdma_free_chan_resources; dd->device_tx_status = mtk_hsdma_tx_status; dd->device_issue_pending = mtk_hsdma_issue_pending; dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy; dd->device_terminate_all = mtk_hsdma_terminate_all; dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS; dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS; dd->directions = BIT(DMA_MEM_TO_MEM); dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; dd->dev = &pdev->dev; INIT_LIST_HEAD(&dd->channels); hsdma->dma_requests = MTK_HSDMA_NR_VCHANS; if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node, "dma-requests", &hsdma->dma_requests)) { dev_info(&pdev->dev, "Using %u as missing dma-requests property\n", MTK_HSDMA_NR_VCHANS); } hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS, sizeof(*hsdma->pc), GFP_KERNEL); if (!hsdma->pc) return -ENOMEM; hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests, sizeof(*hsdma->vc), GFP_KERNEL); if (!hsdma->vc) return -ENOMEM; for (i = 0; i < hsdma->dma_requests; i++) { vc = &hsdma->vc[i]; vc->vc.desc_free = mtk_hsdma_vdesc_free; vchan_init(&vc->vc, dd); init_completion(&vc->issue_completion); INIT_LIST_HEAD(&vc->desc_hw_processing); } err = dma_async_device_register(dd); if (err) return err; err = of_dma_controller_register(pdev->dev.of_node, of_dma_xlate_by_chan_id, hsdma); if (err) { dev_err(&pdev->dev, "MediaTek HSDMA OF registration failed %d\n", err); goto err_unregister; } mtk_hsdma_hw_init(hsdma); err = devm_request_irq(&pdev->dev, hsdma->irq, mtk_hsdma_irq, 0, dev_name(&pdev->dev), hsdma); if (err) { dev_err(&pdev->dev, "request_irq failed with err %d\n", err); goto err_free; } platform_set_drvdata(pdev, hsdma); dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n"); return 0; err_free: mtk_hsdma_hw_deinit(hsdma); of_dma_controller_free(pdev->dev.of_node); err_unregister: dma_async_device_unregister(dd); return err; } static void mtk_hsdma_remove(struct platform_device *pdev) { struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev); struct mtk_hsdma_vchan *vc; int i; /* Kill VC task */ for (i = 0; i < hsdma->dma_requests; i++) { vc = &hsdma->vc[i]; list_del(&vc->vc.chan.device_node); tasklet_kill(&vc->vc.task); } /* Disable DMA interrupt */ mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0); /* Waits for any pending IRQ handlers to complete */ synchronize_irq(hsdma->irq); /* Disable hardware */ mtk_hsdma_hw_deinit(hsdma); dma_async_device_unregister(&hsdma->ddev); of_dma_controller_free(pdev->dev.of_node); } static struct platform_driver mtk_hsdma_driver = { .probe = mtk_hsdma_probe, .remove_new = mtk_hsdma_remove, .driver = { .name = KBUILD_MODNAME, .of_match_table = mtk_hsdma_match, }, }; module_platform_driver(mtk_hsdma_driver); MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver"); MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>"); MODULE_LICENSE("GPL v2"); |