Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_btree.h"
 14#include "xfs_btree_staging.h"
 15#include "xfs_alloc_btree.h"
 16#include "xfs_alloc.h"
 17#include "xfs_extent_busy.h"
 18#include "xfs_error.h"
 
 19#include "xfs_trace.h"
 20#include "xfs_trans.h"
 21#include "xfs_ag.h"
 22
 23static struct kmem_cache	*xfs_allocbt_cur_cache;
 24
 25STATIC struct xfs_btree_cur *
 26xfs_allocbt_dup_cursor(
 27	struct xfs_btree_cur	*cur)
 28{
 29	return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
 30			cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
 31}
 32
 
 
 
 
 
 
 
 
 
 33STATIC void
 34xfs_allocbt_set_root(
 35	struct xfs_btree_cur		*cur,
 36	const union xfs_btree_ptr	*ptr,
 37	int				inc)
 38{
 39	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 40	struct xfs_agf		*agf = agbp->b_addr;
 41	int			btnum = cur->bc_btnum;
 42
 43	ASSERT(ptr->s != 0);
 44
 45	agf->agf_roots[btnum] = ptr->s;
 46	be32_add_cpu(&agf->agf_levels[btnum], inc);
 47	cur->bc_ag.pag->pagf_levels[btnum] += inc;
 
 
 
 
 
 
 48
 49	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 50}
 51
 52STATIC int
 53xfs_allocbt_alloc_block(
 54	struct xfs_btree_cur		*cur,
 55	const union xfs_btree_ptr	*start,
 56	union xfs_btree_ptr		*new,
 57	int				*stat)
 58{
 59	int			error;
 60	xfs_agblock_t		bno;
 61
 62	/* Allocate the new block from the freelist. If we can't, give up.  */
 63	error = xfs_alloc_get_freelist(cur->bc_ag.pag, cur->bc_tp,
 64			cur->bc_ag.agbp, &bno, 1);
 65	if (error)
 66		return error;
 67
 68	if (bno == NULLAGBLOCK) {
 69		*stat = 0;
 70		return 0;
 71	}
 72
 73	atomic64_inc(&cur->bc_mp->m_allocbt_blks);
 74	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.pag, bno, 1, false);
 75
 76	new->s = cpu_to_be32(bno);
 77
 78	*stat = 1;
 79	return 0;
 80}
 81
 82STATIC int
 83xfs_allocbt_free_block(
 84	struct xfs_btree_cur	*cur,
 85	struct xfs_buf		*bp)
 86{
 87	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 88	xfs_agblock_t		bno;
 89	int			error;
 90
 91	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
 92	error = xfs_alloc_put_freelist(cur->bc_ag.pag, cur->bc_tp, agbp, NULL,
 93			bno, 1);
 94	if (error)
 95		return error;
 96
 97	atomic64_dec(&cur->bc_mp->m_allocbt_blks);
 98	xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
 99			      XFS_EXTENT_BUSY_SKIP_DISCARD);
100	return 0;
101}
102
103/*
104 * Update the longest extent in the AGF
105 */
106STATIC void
107xfs_allocbt_update_lastrec(
108	struct xfs_btree_cur		*cur,
109	const struct xfs_btree_block	*block,
110	const union xfs_btree_rec	*rec,
111	int				ptr,
112	int				reason)
113{
114	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
115	struct xfs_perag	*pag;
116	__be32			len;
117	int			numrecs;
118
119	ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
120
121	switch (reason) {
122	case LASTREC_UPDATE:
123		/*
124		 * If this is the last leaf block and it's the last record,
125		 * then update the size of the longest extent in the AG.
126		 */
127		if (ptr != xfs_btree_get_numrecs(block))
128			return;
129		len = rec->alloc.ar_blockcount;
130		break;
131	case LASTREC_INSREC:
132		if (be32_to_cpu(rec->alloc.ar_blockcount) <=
133		    be32_to_cpu(agf->agf_longest))
134			return;
135		len = rec->alloc.ar_blockcount;
136		break;
137	case LASTREC_DELREC:
138		numrecs = xfs_btree_get_numrecs(block);
139		if (ptr <= numrecs)
140			return;
141		ASSERT(ptr == numrecs + 1);
142
143		if (numrecs) {
144			xfs_alloc_rec_t *rrp;
145
146			rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
147			len = rrp->ar_blockcount;
148		} else {
149			len = 0;
150		}
151
152		break;
153	default:
154		ASSERT(0);
155		return;
156	}
157
158	agf->agf_longest = len;
159	pag = cur->bc_ag.agbp->b_pag;
160	pag->pagf_longest = be32_to_cpu(len);
161	xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
162}
163
164STATIC int
165xfs_allocbt_get_minrecs(
166	struct xfs_btree_cur	*cur,
167	int			level)
168{
169	return cur->bc_mp->m_alloc_mnr[level != 0];
170}
171
172STATIC int
173xfs_allocbt_get_maxrecs(
174	struct xfs_btree_cur	*cur,
175	int			level)
176{
177	return cur->bc_mp->m_alloc_mxr[level != 0];
178}
179
180STATIC void
181xfs_allocbt_init_key_from_rec(
182	union xfs_btree_key		*key,
183	const union xfs_btree_rec	*rec)
184{
185	key->alloc.ar_startblock = rec->alloc.ar_startblock;
186	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
187}
188
189STATIC void
190xfs_bnobt_init_high_key_from_rec(
191	union xfs_btree_key		*key,
192	const union xfs_btree_rec	*rec)
193{
194	__u32				x;
195
196	x = be32_to_cpu(rec->alloc.ar_startblock);
197	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
198	key->alloc.ar_startblock = cpu_to_be32(x);
199	key->alloc.ar_blockcount = 0;
200}
201
202STATIC void
203xfs_cntbt_init_high_key_from_rec(
204	union xfs_btree_key		*key,
205	const union xfs_btree_rec	*rec)
206{
207	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
208	key->alloc.ar_startblock = 0;
209}
210
211STATIC void
212xfs_allocbt_init_rec_from_cur(
213	struct xfs_btree_cur	*cur,
214	union xfs_btree_rec	*rec)
215{
216	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
217	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
218}
219
220STATIC void
221xfs_allocbt_init_ptr_from_cur(
222	struct xfs_btree_cur	*cur,
223	union xfs_btree_ptr	*ptr)
224{
225	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
226
227	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
228
229	ptr->s = agf->agf_roots[cur->bc_btnum];
 
 
 
230}
231
232STATIC int64_t
233xfs_bnobt_key_diff(
234	struct xfs_btree_cur		*cur,
235	const union xfs_btree_key	*key)
236{
237	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
238	const struct xfs_alloc_rec	*kp = &key->alloc;
239
240	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
241}
242
243STATIC int64_t
244xfs_cntbt_key_diff(
245	struct xfs_btree_cur		*cur,
246	const union xfs_btree_key	*key)
247{
248	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
249	const struct xfs_alloc_rec	*kp = &key->alloc;
250	int64_t				diff;
251
252	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
253	if (diff)
254		return diff;
255
256	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
257}
258
259STATIC int64_t
260xfs_bnobt_diff_two_keys(
261	struct xfs_btree_cur		*cur,
262	const union xfs_btree_key	*k1,
263	const union xfs_btree_key	*k2,
264	const union xfs_btree_key	*mask)
265{
266	ASSERT(!mask || mask->alloc.ar_startblock);
267
268	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
269			be32_to_cpu(k2->alloc.ar_startblock);
270}
271
272STATIC int64_t
273xfs_cntbt_diff_two_keys(
274	struct xfs_btree_cur		*cur,
275	const union xfs_btree_key	*k1,
276	const union xfs_btree_key	*k2,
277	const union xfs_btree_key	*mask)
278{
279	int64_t				diff;
280
281	ASSERT(!mask || (mask->alloc.ar_blockcount &&
282			 mask->alloc.ar_startblock));
283
284	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
285		be32_to_cpu(k2->alloc.ar_blockcount);
286	if (diff)
287		return diff;
288
289	return  be32_to_cpu(k1->alloc.ar_startblock) -
290		be32_to_cpu(k2->alloc.ar_startblock);
291}
292
293static xfs_failaddr_t
294xfs_allocbt_verify(
295	struct xfs_buf		*bp)
296{
297	struct xfs_mount	*mp = bp->b_mount;
298	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
299	struct xfs_perag	*pag = bp->b_pag;
300	xfs_failaddr_t		fa;
301	unsigned int		level;
302	xfs_btnum_t		btnum = XFS_BTNUM_BNOi;
303
304	if (!xfs_verify_magic(bp, block->bb_magic))
305		return __this_address;
306
307	if (xfs_has_crc(mp)) {
308		fa = xfs_btree_sblock_v5hdr_verify(bp);
309		if (fa)
310			return fa;
311	}
312
313	/*
314	 * The perag may not be attached during grow operations or fully
315	 * initialized from the AGF during log recovery. Therefore we can only
316	 * check against maximum tree depth from those contexts.
317	 *
318	 * Otherwise check against the per-tree limit. Peek at one of the
319	 * verifier magic values to determine the type of tree we're verifying
320	 * against.
321	 */
322	level = be16_to_cpu(block->bb_level);
323	if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
324		btnum = XFS_BTNUM_CNTi;
325	if (pag && xfs_perag_initialised_agf(pag)) {
326		unsigned int	maxlevel = pag->pagf_levels[btnum];
327
328#ifdef CONFIG_XFS_ONLINE_REPAIR
329		/*
330		 * Online repair could be rewriting the free space btrees, so
331		 * we'll validate against the larger of either tree while this
332		 * is going on.
333		 */
334		maxlevel = max_t(unsigned int, maxlevel,
335				 pag->pagf_repair_levels[btnum]);
 
 
 
 
 
 
 
336#endif
337		if (level >= maxlevel)
 
 
338			return __this_address;
339	} else if (level >= mp->m_alloc_maxlevels)
340		return __this_address;
341
342	return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
343}
344
345static void
346xfs_allocbt_read_verify(
347	struct xfs_buf	*bp)
348{
349	xfs_failaddr_t	fa;
350
351	if (!xfs_btree_sblock_verify_crc(bp))
352		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
353	else {
354		fa = xfs_allocbt_verify(bp);
355		if (fa)
356			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
357	}
358
359	if (bp->b_error)
360		trace_xfs_btree_corrupt(bp, _RET_IP_);
361}
362
363static void
364xfs_allocbt_write_verify(
365	struct xfs_buf	*bp)
366{
367	xfs_failaddr_t	fa;
368
369	fa = xfs_allocbt_verify(bp);
370	if (fa) {
371		trace_xfs_btree_corrupt(bp, _RET_IP_);
372		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
373		return;
374	}
375	xfs_btree_sblock_calc_crc(bp);
376
377}
378
379const struct xfs_buf_ops xfs_bnobt_buf_ops = {
380	.name = "xfs_bnobt",
381	.magic = { cpu_to_be32(XFS_ABTB_MAGIC),
382		   cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
383	.verify_read = xfs_allocbt_read_verify,
384	.verify_write = xfs_allocbt_write_verify,
385	.verify_struct = xfs_allocbt_verify,
386};
387
388const struct xfs_buf_ops xfs_cntbt_buf_ops = {
389	.name = "xfs_cntbt",
390	.magic = { cpu_to_be32(XFS_ABTC_MAGIC),
391		   cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
392	.verify_read = xfs_allocbt_read_verify,
393	.verify_write = xfs_allocbt_write_verify,
394	.verify_struct = xfs_allocbt_verify,
395};
396
397STATIC int
398xfs_bnobt_keys_inorder(
399	struct xfs_btree_cur		*cur,
400	const union xfs_btree_key	*k1,
401	const union xfs_btree_key	*k2)
402{
403	return be32_to_cpu(k1->alloc.ar_startblock) <
404	       be32_to_cpu(k2->alloc.ar_startblock);
405}
406
407STATIC int
408xfs_bnobt_recs_inorder(
409	struct xfs_btree_cur		*cur,
410	const union xfs_btree_rec	*r1,
411	const union xfs_btree_rec	*r2)
412{
413	return be32_to_cpu(r1->alloc.ar_startblock) +
414		be32_to_cpu(r1->alloc.ar_blockcount) <=
415		be32_to_cpu(r2->alloc.ar_startblock);
416}
417
418STATIC int
419xfs_cntbt_keys_inorder(
420	struct xfs_btree_cur		*cur,
421	const union xfs_btree_key	*k1,
422	const union xfs_btree_key	*k2)
423{
424	return be32_to_cpu(k1->alloc.ar_blockcount) <
425		be32_to_cpu(k2->alloc.ar_blockcount) ||
426		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
427		 be32_to_cpu(k1->alloc.ar_startblock) <
428		 be32_to_cpu(k2->alloc.ar_startblock));
429}
430
431STATIC int
432xfs_cntbt_recs_inorder(
433	struct xfs_btree_cur		*cur,
434	const union xfs_btree_rec	*r1,
435	const union xfs_btree_rec	*r2)
436{
437	return be32_to_cpu(r1->alloc.ar_blockcount) <
438		be32_to_cpu(r2->alloc.ar_blockcount) ||
439		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
440		 be32_to_cpu(r1->alloc.ar_startblock) <
441		 be32_to_cpu(r2->alloc.ar_startblock));
442}
443
444STATIC enum xbtree_key_contig
445xfs_allocbt_keys_contiguous(
446	struct xfs_btree_cur		*cur,
447	const union xfs_btree_key	*key1,
448	const union xfs_btree_key	*key2,
449	const union xfs_btree_key	*mask)
450{
451	ASSERT(!mask || mask->alloc.ar_startblock);
452
453	return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
454				 be32_to_cpu(key2->alloc.ar_startblock));
455}
456
457static const struct xfs_btree_ops xfs_bnobt_ops = {
 
 
 
458	.rec_len		= sizeof(xfs_alloc_rec_t),
459	.key_len		= sizeof(xfs_alloc_key_t),
 
460
461	.dup_cursor		= xfs_allocbt_dup_cursor,
 
 
 
 
462	.set_root		= xfs_allocbt_set_root,
463	.alloc_block		= xfs_allocbt_alloc_block,
464	.free_block		= xfs_allocbt_free_block,
465	.update_lastrec		= xfs_allocbt_update_lastrec,
466	.get_minrecs		= xfs_allocbt_get_minrecs,
467	.get_maxrecs		= xfs_allocbt_get_maxrecs,
468	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
469	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
470	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
471	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
472	.key_diff		= xfs_bnobt_key_diff,
473	.buf_ops		= &xfs_bnobt_buf_ops,
474	.diff_two_keys		= xfs_bnobt_diff_two_keys,
475	.keys_inorder		= xfs_bnobt_keys_inorder,
476	.recs_inorder		= xfs_bnobt_recs_inorder,
477	.keys_contiguous	= xfs_allocbt_keys_contiguous,
478};
479
480static const struct xfs_btree_ops xfs_cntbt_ops = {
 
 
 
 
481	.rec_len		= sizeof(xfs_alloc_rec_t),
482	.key_len		= sizeof(xfs_alloc_key_t),
 
 
 
 
 
483
484	.dup_cursor		= xfs_allocbt_dup_cursor,
485	.set_root		= xfs_allocbt_set_root,
486	.alloc_block		= xfs_allocbt_alloc_block,
487	.free_block		= xfs_allocbt_free_block,
488	.update_lastrec		= xfs_allocbt_update_lastrec,
489	.get_minrecs		= xfs_allocbt_get_minrecs,
490	.get_maxrecs		= xfs_allocbt_get_maxrecs,
491	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
492	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
493	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
494	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
495	.key_diff		= xfs_cntbt_key_diff,
496	.buf_ops		= &xfs_cntbt_buf_ops,
497	.diff_two_keys		= xfs_cntbt_diff_two_keys,
498	.keys_inorder		= xfs_cntbt_keys_inorder,
499	.recs_inorder		= xfs_cntbt_recs_inorder,
500	.keys_contiguous	= NULL, /* not needed right now */
501};
502
503/* Allocate most of a new allocation btree cursor. */
504STATIC struct xfs_btree_cur *
505xfs_allocbt_init_common(
 
 
 
 
506	struct xfs_mount	*mp,
507	struct xfs_trans	*tp,
508	struct xfs_perag	*pag,
509	xfs_btnum_t		btnum)
510{
511	struct xfs_btree_cur	*cur;
512
513	ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
514
515	cur = xfs_btree_alloc_cursor(mp, tp, btnum, mp->m_alloc_maxlevels,
516			xfs_allocbt_cur_cache);
517	cur->bc_ag.abt.active = false;
518
519	if (btnum == XFS_BTNUM_CNT) {
520		cur->bc_ops = &xfs_cntbt_ops;
521		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
522		cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
523	} else {
524		cur->bc_ops = &xfs_bnobt_ops;
525		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
526	}
527
528	cur->bc_ag.pag = xfs_perag_hold(pag);
 
 
 
529
530	if (xfs_has_crc(mp))
531		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
532
533	return cur;
534}
535
536/*
537 * Allocate a new allocation btree cursor.
 
 
538 */
539struct xfs_btree_cur *			/* new alloc btree cursor */
540xfs_allocbt_init_cursor(
541	struct xfs_mount	*mp,		/* file system mount point */
542	struct xfs_trans	*tp,		/* transaction pointer */
543	struct xfs_buf		*agbp,		/* buffer for agf structure */
544	struct xfs_perag	*pag,
545	xfs_btnum_t		btnum)		/* btree identifier */
546{
547	struct xfs_agf		*agf = agbp->b_addr;
548	struct xfs_btree_cur	*cur;
549
550	cur = xfs_allocbt_init_common(mp, tp, pag, btnum);
551	if (btnum == XFS_BTNUM_CNT)
552		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
553	else
554		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
555
556	cur->bc_ag.agbp = agbp;
557
558	return cur;
559}
560
561/* Create a free space btree cursor with a fake root for staging. */
562struct xfs_btree_cur *
563xfs_allocbt_stage_cursor(
564	struct xfs_mount	*mp,
565	struct xbtree_afakeroot	*afake,
566	struct xfs_perag	*pag,
567	xfs_btnum_t		btnum)
568{
569	struct xfs_btree_cur	*cur;
570
571	cur = xfs_allocbt_init_common(mp, NULL, pag, btnum);
572	xfs_btree_stage_afakeroot(cur, afake);
 
 
 
 
 
 
 
573	return cur;
574}
575
576/*
577 * Install a new free space btree root.  Caller is responsible for invalidating
578 * and freeing the old btree blocks.
579 */
580void
581xfs_allocbt_commit_staged_btree(
582	struct xfs_btree_cur	*cur,
583	struct xfs_trans	*tp,
584	struct xfs_buf		*agbp)
585{
586	struct xfs_agf		*agf = agbp->b_addr;
587	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
588
589	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
590
591	agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
592	agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
593	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
594
595	if (cur->bc_btnum == XFS_BTNUM_BNO) {
596		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
597	} else {
598		cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
599		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
600	}
 
 
 
601}
602
603/* Calculate number of records in an alloc btree block. */
604static inline unsigned int
605xfs_allocbt_block_maxrecs(
606	unsigned int		blocklen,
607	bool			leaf)
608{
609	if (leaf)
610		return blocklen / sizeof(xfs_alloc_rec_t);
611	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
612}
613
614/*
615 * Calculate number of records in an alloc btree block.
616 */
617int
618xfs_allocbt_maxrecs(
619	struct xfs_mount	*mp,
620	int			blocklen,
621	int			leaf)
622{
623	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
624	return xfs_allocbt_block_maxrecs(blocklen, leaf);
625}
626
627/* Free space btrees are at their largest when every other block is free. */
628#define XFS_MAX_FREESP_RECORDS	((XFS_MAX_AG_BLOCKS + 1) / 2)
629
630/* Compute the max possible height for free space btrees. */
631unsigned int
632xfs_allocbt_maxlevels_ondisk(void)
633{
634	unsigned int		minrecs[2];
635	unsigned int		blocklen;
636
637	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
638		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
639
640	minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
641	minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
642
643	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
644}
645
646/* Calculate the freespace btree size for some records. */
647xfs_extlen_t
648xfs_allocbt_calc_size(
649	struct xfs_mount	*mp,
650	unsigned long long	len)
651{
652	return xfs_btree_calc_size(mp->m_alloc_mnr, len);
653}
654
655int __init
656xfs_allocbt_init_cur_cache(void)
657{
658	xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
659			xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
660			0, 0, NULL);
661
662	if (!xfs_allocbt_cur_cache)
663		return -ENOMEM;
664	return 0;
665}
666
667void
668xfs_allocbt_destroy_cur_cache(void)
669{
670	kmem_cache_destroy(xfs_allocbt_cur_cache);
671	xfs_allocbt_cur_cache = NULL;
672}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_btree.h"
 14#include "xfs_btree_staging.h"
 15#include "xfs_alloc_btree.h"
 16#include "xfs_alloc.h"
 17#include "xfs_extent_busy.h"
 18#include "xfs_error.h"
 19#include "xfs_health.h"
 20#include "xfs_trace.h"
 21#include "xfs_trans.h"
 22#include "xfs_ag.h"
 23
 24static struct kmem_cache	*xfs_allocbt_cur_cache;
 25
 26STATIC struct xfs_btree_cur *
 27xfs_bnobt_dup_cursor(
 28	struct xfs_btree_cur	*cur)
 29{
 30	return xfs_bnobt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
 31			cur->bc_ag.pag);
 32}
 33
 34STATIC struct xfs_btree_cur *
 35xfs_cntbt_dup_cursor(
 36	struct xfs_btree_cur	*cur)
 37{
 38	return xfs_cntbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
 39			cur->bc_ag.pag);
 40}
 41
 42
 43STATIC void
 44xfs_allocbt_set_root(
 45	struct xfs_btree_cur		*cur,
 46	const union xfs_btree_ptr	*ptr,
 47	int				inc)
 48{
 49	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 50	struct xfs_agf		*agf = agbp->b_addr;
 
 51
 52	ASSERT(ptr->s != 0);
 53
 54	if (xfs_btree_is_bno(cur->bc_ops)) {
 55		agf->agf_bno_root = ptr->s;
 56		be32_add_cpu(&agf->agf_bno_level, inc);
 57		cur->bc_ag.pag->pagf_bno_level += inc;
 58	} else {
 59		agf->agf_cnt_root = ptr->s;
 60		be32_add_cpu(&agf->agf_cnt_level, inc);
 61		cur->bc_ag.pag->pagf_cnt_level += inc;
 62	}
 63
 64	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 65}
 66
 67STATIC int
 68xfs_allocbt_alloc_block(
 69	struct xfs_btree_cur		*cur,
 70	const union xfs_btree_ptr	*start,
 71	union xfs_btree_ptr		*new,
 72	int				*stat)
 73{
 74	int			error;
 75	xfs_agblock_t		bno;
 76
 77	/* Allocate the new block from the freelist. If we can't, give up.  */
 78	error = xfs_alloc_get_freelist(cur->bc_ag.pag, cur->bc_tp,
 79			cur->bc_ag.agbp, &bno, 1);
 80	if (error)
 81		return error;
 82
 83	if (bno == NULLAGBLOCK) {
 84		*stat = 0;
 85		return 0;
 86	}
 87
 88	atomic64_inc(&cur->bc_mp->m_allocbt_blks);
 89	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.pag, bno, 1, false);
 90
 91	new->s = cpu_to_be32(bno);
 92
 93	*stat = 1;
 94	return 0;
 95}
 96
 97STATIC int
 98xfs_allocbt_free_block(
 99	struct xfs_btree_cur	*cur,
100	struct xfs_buf		*bp)
101{
102	struct xfs_buf		*agbp = cur->bc_ag.agbp;
103	xfs_agblock_t		bno;
104	int			error;
105
106	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
107	error = xfs_alloc_put_freelist(cur->bc_ag.pag, cur->bc_tp, agbp, NULL,
108			bno, 1);
109	if (error)
110		return error;
111
112	atomic64_dec(&cur->bc_mp->m_allocbt_blks);
113	xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
114			      XFS_EXTENT_BUSY_SKIP_DISCARD);
115	return 0;
116}
117
118/*
119 * Update the longest extent in the AGF
120 */
121STATIC void
122xfs_allocbt_update_lastrec(
123	struct xfs_btree_cur		*cur,
124	const struct xfs_btree_block	*block,
125	const union xfs_btree_rec	*rec,
126	int				ptr,
127	int				reason)
128{
129	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
130	struct xfs_perag	*pag;
131	__be32			len;
132	int			numrecs;
133
134	ASSERT(!xfs_btree_is_bno(cur->bc_ops));
135
136	switch (reason) {
137	case LASTREC_UPDATE:
138		/*
139		 * If this is the last leaf block and it's the last record,
140		 * then update the size of the longest extent in the AG.
141		 */
142		if (ptr != xfs_btree_get_numrecs(block))
143			return;
144		len = rec->alloc.ar_blockcount;
145		break;
146	case LASTREC_INSREC:
147		if (be32_to_cpu(rec->alloc.ar_blockcount) <=
148		    be32_to_cpu(agf->agf_longest))
149			return;
150		len = rec->alloc.ar_blockcount;
151		break;
152	case LASTREC_DELREC:
153		numrecs = xfs_btree_get_numrecs(block);
154		if (ptr <= numrecs)
155			return;
156		ASSERT(ptr == numrecs + 1);
157
158		if (numrecs) {
159			xfs_alloc_rec_t *rrp;
160
161			rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
162			len = rrp->ar_blockcount;
163		} else {
164			len = 0;
165		}
166
167		break;
168	default:
169		ASSERT(0);
170		return;
171	}
172
173	agf->agf_longest = len;
174	pag = cur->bc_ag.agbp->b_pag;
175	pag->pagf_longest = be32_to_cpu(len);
176	xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
177}
178
179STATIC int
180xfs_allocbt_get_minrecs(
181	struct xfs_btree_cur	*cur,
182	int			level)
183{
184	return cur->bc_mp->m_alloc_mnr[level != 0];
185}
186
187STATIC int
188xfs_allocbt_get_maxrecs(
189	struct xfs_btree_cur	*cur,
190	int			level)
191{
192	return cur->bc_mp->m_alloc_mxr[level != 0];
193}
194
195STATIC void
196xfs_allocbt_init_key_from_rec(
197	union xfs_btree_key		*key,
198	const union xfs_btree_rec	*rec)
199{
200	key->alloc.ar_startblock = rec->alloc.ar_startblock;
201	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
202}
203
204STATIC void
205xfs_bnobt_init_high_key_from_rec(
206	union xfs_btree_key		*key,
207	const union xfs_btree_rec	*rec)
208{
209	__u32				x;
210
211	x = be32_to_cpu(rec->alloc.ar_startblock);
212	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
213	key->alloc.ar_startblock = cpu_to_be32(x);
214	key->alloc.ar_blockcount = 0;
215}
216
217STATIC void
218xfs_cntbt_init_high_key_from_rec(
219	union xfs_btree_key		*key,
220	const union xfs_btree_rec	*rec)
221{
222	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
223	key->alloc.ar_startblock = 0;
224}
225
226STATIC void
227xfs_allocbt_init_rec_from_cur(
228	struct xfs_btree_cur	*cur,
229	union xfs_btree_rec	*rec)
230{
231	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
232	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
233}
234
235STATIC void
236xfs_allocbt_init_ptr_from_cur(
237	struct xfs_btree_cur	*cur,
238	union xfs_btree_ptr	*ptr)
239{
240	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
241
242	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
243
244	if (xfs_btree_is_bno(cur->bc_ops))
245		ptr->s = agf->agf_bno_root;
246	else
247		ptr->s = agf->agf_cnt_root;
248}
249
250STATIC int64_t
251xfs_bnobt_key_diff(
252	struct xfs_btree_cur		*cur,
253	const union xfs_btree_key	*key)
254{
255	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
256	const struct xfs_alloc_rec	*kp = &key->alloc;
257
258	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
259}
260
261STATIC int64_t
262xfs_cntbt_key_diff(
263	struct xfs_btree_cur		*cur,
264	const union xfs_btree_key	*key)
265{
266	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
267	const struct xfs_alloc_rec	*kp = &key->alloc;
268	int64_t				diff;
269
270	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
271	if (diff)
272		return diff;
273
274	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
275}
276
277STATIC int64_t
278xfs_bnobt_diff_two_keys(
279	struct xfs_btree_cur		*cur,
280	const union xfs_btree_key	*k1,
281	const union xfs_btree_key	*k2,
282	const union xfs_btree_key	*mask)
283{
284	ASSERT(!mask || mask->alloc.ar_startblock);
285
286	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
287			be32_to_cpu(k2->alloc.ar_startblock);
288}
289
290STATIC int64_t
291xfs_cntbt_diff_two_keys(
292	struct xfs_btree_cur		*cur,
293	const union xfs_btree_key	*k1,
294	const union xfs_btree_key	*k2,
295	const union xfs_btree_key	*mask)
296{
297	int64_t				diff;
298
299	ASSERT(!mask || (mask->alloc.ar_blockcount &&
300			 mask->alloc.ar_startblock));
301
302	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
303		be32_to_cpu(k2->alloc.ar_blockcount);
304	if (diff)
305		return diff;
306
307	return  be32_to_cpu(k1->alloc.ar_startblock) -
308		be32_to_cpu(k2->alloc.ar_startblock);
309}
310
311static xfs_failaddr_t
312xfs_allocbt_verify(
313	struct xfs_buf		*bp)
314{
315	struct xfs_mount	*mp = bp->b_mount;
316	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
317	struct xfs_perag	*pag = bp->b_pag;
318	xfs_failaddr_t		fa;
319	unsigned int		level;
 
320
321	if (!xfs_verify_magic(bp, block->bb_magic))
322		return __this_address;
323
324	if (xfs_has_crc(mp)) {
325		fa = xfs_btree_agblock_v5hdr_verify(bp);
326		if (fa)
327			return fa;
328	}
329
330	/*
331	 * The perag may not be attached during grow operations or fully
332	 * initialized from the AGF during log recovery. Therefore we can only
333	 * check against maximum tree depth from those contexts.
334	 *
335	 * Otherwise check against the per-tree limit. Peek at one of the
336	 * verifier magic values to determine the type of tree we're verifying
337	 * against.
338	 */
339	level = be16_to_cpu(block->bb_level);
 
 
340	if (pag && xfs_perag_initialised_agf(pag)) {
341		unsigned int	maxlevel, repair_maxlevel = 0;
342
 
343		/*
344		 * Online repair could be rewriting the free space btrees, so
345		 * we'll validate against the larger of either tree while this
346		 * is going on.
347		 */
348		if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC)) {
349			maxlevel = pag->pagf_cnt_level;
350#ifdef CONFIG_XFS_ONLINE_REPAIR
351			repair_maxlevel = pag->pagf_repair_cnt_level;
352#endif
353		} else {
354			maxlevel = pag->pagf_bno_level;
355#ifdef CONFIG_XFS_ONLINE_REPAIR
356			repair_maxlevel = pag->pagf_repair_bno_level;
357#endif
358		}
359
360		if (level >= max(maxlevel, repair_maxlevel))
361			return __this_address;
362	} else if (level >= mp->m_alloc_maxlevels)
363		return __this_address;
364
365	return xfs_btree_agblock_verify(bp, mp->m_alloc_mxr[level != 0]);
366}
367
368static void
369xfs_allocbt_read_verify(
370	struct xfs_buf	*bp)
371{
372	xfs_failaddr_t	fa;
373
374	if (!xfs_btree_agblock_verify_crc(bp))
375		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
376	else {
377		fa = xfs_allocbt_verify(bp);
378		if (fa)
379			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
380	}
381
382	if (bp->b_error)
383		trace_xfs_btree_corrupt(bp, _RET_IP_);
384}
385
386static void
387xfs_allocbt_write_verify(
388	struct xfs_buf	*bp)
389{
390	xfs_failaddr_t	fa;
391
392	fa = xfs_allocbt_verify(bp);
393	if (fa) {
394		trace_xfs_btree_corrupt(bp, _RET_IP_);
395		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
396		return;
397	}
398	xfs_btree_agblock_calc_crc(bp);
399
400}
401
402const struct xfs_buf_ops xfs_bnobt_buf_ops = {
403	.name = "xfs_bnobt",
404	.magic = { cpu_to_be32(XFS_ABTB_MAGIC),
405		   cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
406	.verify_read = xfs_allocbt_read_verify,
407	.verify_write = xfs_allocbt_write_verify,
408	.verify_struct = xfs_allocbt_verify,
409};
410
411const struct xfs_buf_ops xfs_cntbt_buf_ops = {
412	.name = "xfs_cntbt",
413	.magic = { cpu_to_be32(XFS_ABTC_MAGIC),
414		   cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
415	.verify_read = xfs_allocbt_read_verify,
416	.verify_write = xfs_allocbt_write_verify,
417	.verify_struct = xfs_allocbt_verify,
418};
419
420STATIC int
421xfs_bnobt_keys_inorder(
422	struct xfs_btree_cur		*cur,
423	const union xfs_btree_key	*k1,
424	const union xfs_btree_key	*k2)
425{
426	return be32_to_cpu(k1->alloc.ar_startblock) <
427	       be32_to_cpu(k2->alloc.ar_startblock);
428}
429
430STATIC int
431xfs_bnobt_recs_inorder(
432	struct xfs_btree_cur		*cur,
433	const union xfs_btree_rec	*r1,
434	const union xfs_btree_rec	*r2)
435{
436	return be32_to_cpu(r1->alloc.ar_startblock) +
437		be32_to_cpu(r1->alloc.ar_blockcount) <=
438		be32_to_cpu(r2->alloc.ar_startblock);
439}
440
441STATIC int
442xfs_cntbt_keys_inorder(
443	struct xfs_btree_cur		*cur,
444	const union xfs_btree_key	*k1,
445	const union xfs_btree_key	*k2)
446{
447	return be32_to_cpu(k1->alloc.ar_blockcount) <
448		be32_to_cpu(k2->alloc.ar_blockcount) ||
449		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
450		 be32_to_cpu(k1->alloc.ar_startblock) <
451		 be32_to_cpu(k2->alloc.ar_startblock));
452}
453
454STATIC int
455xfs_cntbt_recs_inorder(
456	struct xfs_btree_cur		*cur,
457	const union xfs_btree_rec	*r1,
458	const union xfs_btree_rec	*r2)
459{
460	return be32_to_cpu(r1->alloc.ar_blockcount) <
461		be32_to_cpu(r2->alloc.ar_blockcount) ||
462		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
463		 be32_to_cpu(r1->alloc.ar_startblock) <
464		 be32_to_cpu(r2->alloc.ar_startblock));
465}
466
467STATIC enum xbtree_key_contig
468xfs_allocbt_keys_contiguous(
469	struct xfs_btree_cur		*cur,
470	const union xfs_btree_key	*key1,
471	const union xfs_btree_key	*key2,
472	const union xfs_btree_key	*mask)
473{
474	ASSERT(!mask || mask->alloc.ar_startblock);
475
476	return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
477				 be32_to_cpu(key2->alloc.ar_startblock));
478}
479
480const struct xfs_btree_ops xfs_bnobt_ops = {
481	.name			= "bno",
482	.type			= XFS_BTREE_TYPE_AG,
483
484	.rec_len		= sizeof(xfs_alloc_rec_t),
485	.key_len		= sizeof(xfs_alloc_key_t),
486	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
487
488	.lru_refs		= XFS_ALLOC_BTREE_REF,
489	.statoff		= XFS_STATS_CALC_INDEX(xs_abtb_2),
490	.sick_mask		= XFS_SICK_AG_BNOBT,
491
492	.dup_cursor		= xfs_bnobt_dup_cursor,
493	.set_root		= xfs_allocbt_set_root,
494	.alloc_block		= xfs_allocbt_alloc_block,
495	.free_block		= xfs_allocbt_free_block,
496	.update_lastrec		= xfs_allocbt_update_lastrec,
497	.get_minrecs		= xfs_allocbt_get_minrecs,
498	.get_maxrecs		= xfs_allocbt_get_maxrecs,
499	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
500	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
501	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
502	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
503	.key_diff		= xfs_bnobt_key_diff,
504	.buf_ops		= &xfs_bnobt_buf_ops,
505	.diff_two_keys		= xfs_bnobt_diff_two_keys,
506	.keys_inorder		= xfs_bnobt_keys_inorder,
507	.recs_inorder		= xfs_bnobt_recs_inorder,
508	.keys_contiguous	= xfs_allocbt_keys_contiguous,
509};
510
511const struct xfs_btree_ops xfs_cntbt_ops = {
512	.name			= "cnt",
513	.type			= XFS_BTREE_TYPE_AG,
514	.geom_flags		= XFS_BTGEO_LASTREC_UPDATE,
515
516	.rec_len		= sizeof(xfs_alloc_rec_t),
517	.key_len		= sizeof(xfs_alloc_key_t),
518	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
519
520	.lru_refs		= XFS_ALLOC_BTREE_REF,
521	.statoff		= XFS_STATS_CALC_INDEX(xs_abtc_2),
522	.sick_mask		= XFS_SICK_AG_CNTBT,
523
524	.dup_cursor		= xfs_cntbt_dup_cursor,
525	.set_root		= xfs_allocbt_set_root,
526	.alloc_block		= xfs_allocbt_alloc_block,
527	.free_block		= xfs_allocbt_free_block,
528	.update_lastrec		= xfs_allocbt_update_lastrec,
529	.get_minrecs		= xfs_allocbt_get_minrecs,
530	.get_maxrecs		= xfs_allocbt_get_maxrecs,
531	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
532	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
533	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
534	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
535	.key_diff		= xfs_cntbt_key_diff,
536	.buf_ops		= &xfs_cntbt_buf_ops,
537	.diff_two_keys		= xfs_cntbt_diff_two_keys,
538	.keys_inorder		= xfs_cntbt_keys_inorder,
539	.recs_inorder		= xfs_cntbt_recs_inorder,
540	.keys_contiguous	= NULL, /* not needed right now */
541};
542
543/*
544 * Allocate a new bnobt cursor.
545 *
546 * For staging cursors tp and agbp are NULL.
547 */
548struct xfs_btree_cur *
549xfs_bnobt_init_cursor(
550	struct xfs_mount	*mp,
551	struct xfs_trans	*tp,
552	struct xfs_buf		*agbp,
553	struct xfs_perag	*pag)
554{
555	struct xfs_btree_cur	*cur;
556
557	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bnobt_ops,
558			mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
559	cur->bc_ag.pag = xfs_perag_hold(pag);
560	cur->bc_ag.agbp = agbp;
561	if (agbp) {
562		struct xfs_agf		*agf = agbp->b_addr;
563
564		cur->bc_nlevels = be32_to_cpu(agf->agf_bno_level);
565	}
 
566	return cur;
567}
568
569/*
570 * Allocate a new cntbt cursor.
571 *
572 * For staging cursors tp and agbp are NULL.
573 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574struct xfs_btree_cur *
575xfs_cntbt_init_cursor(
576	struct xfs_mount	*mp,
577	struct xfs_trans	*tp,
578	struct xfs_buf		*agbp,
579	struct xfs_perag	*pag)
580{
581	struct xfs_btree_cur	*cur;
582
583	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_cntbt_ops,
584			mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
585	cur->bc_ag.pag = xfs_perag_hold(pag);
586	cur->bc_ag.agbp = agbp;
587	if (agbp) {
588		struct xfs_agf		*agf = agbp->b_addr;
589
590		cur->bc_nlevels = be32_to_cpu(agf->agf_cnt_level);
591	}
592	return cur;
593}
594
595/*
596 * Install a new free space btree root.  Caller is responsible for invalidating
597 * and freeing the old btree blocks.
598 */
599void
600xfs_allocbt_commit_staged_btree(
601	struct xfs_btree_cur	*cur,
602	struct xfs_trans	*tp,
603	struct xfs_buf		*agbp)
604{
605	struct xfs_agf		*agf = agbp->b_addr;
606	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
607
608	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
609
610	if (xfs_btree_is_bno(cur->bc_ops)) {
611		agf->agf_bno_root = cpu_to_be32(afake->af_root);
612		agf->agf_bno_level = cpu_to_be32(afake->af_levels);
 
 
 
613	} else {
614		agf->agf_cnt_root = cpu_to_be32(afake->af_root);
615		agf->agf_cnt_level = cpu_to_be32(afake->af_levels);
616	}
617	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
618
619	xfs_btree_commit_afakeroot(cur, tp, agbp);
620}
621
622/* Calculate number of records in an alloc btree block. */
623static inline unsigned int
624xfs_allocbt_block_maxrecs(
625	unsigned int		blocklen,
626	bool			leaf)
627{
628	if (leaf)
629		return blocklen / sizeof(xfs_alloc_rec_t);
630	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
631}
632
633/*
634 * Calculate number of records in an alloc btree block.
635 */
636int
637xfs_allocbt_maxrecs(
638	struct xfs_mount	*mp,
639	int			blocklen,
640	int			leaf)
641{
642	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
643	return xfs_allocbt_block_maxrecs(blocklen, leaf);
644}
645
646/* Free space btrees are at their largest when every other block is free. */
647#define XFS_MAX_FREESP_RECORDS	((XFS_MAX_AG_BLOCKS + 1) / 2)
648
649/* Compute the max possible height for free space btrees. */
650unsigned int
651xfs_allocbt_maxlevels_ondisk(void)
652{
653	unsigned int		minrecs[2];
654	unsigned int		blocklen;
655
656	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
657		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
658
659	minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
660	minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
661
662	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
663}
664
665/* Calculate the freespace btree size for some records. */
666xfs_extlen_t
667xfs_allocbt_calc_size(
668	struct xfs_mount	*mp,
669	unsigned long long	len)
670{
671	return xfs_btree_calc_size(mp->m_alloc_mnr, len);
672}
673
674int __init
675xfs_allocbt_init_cur_cache(void)
676{
677	xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
678			xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
679			0, 0, NULL);
680
681	if (!xfs_allocbt_cur_cache)
682		return -ENOMEM;
683	return 0;
684}
685
686void
687xfs_allocbt_destroy_cur_cache(void)
688{
689	kmem_cache_destroy(xfs_allocbt_cur_cache);
690	xfs_allocbt_cur_cache = NULL;
691}