Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 
 12#include "xfs_mount.h"
 13#include "xfs_btree.h"
 14#include "xfs_btree_staging.h"
 15#include "xfs_alloc_btree.h"
 16#include "xfs_alloc.h"
 17#include "xfs_extent_busy.h"
 18#include "xfs_error.h"
 19#include "xfs_trace.h"
 20#include "xfs_trans.h"
 21#include "xfs_ag.h"
 22
 23static struct kmem_cache	*xfs_allocbt_cur_cache;
 24
 25STATIC struct xfs_btree_cur *
 26xfs_allocbt_dup_cursor(
 27	struct xfs_btree_cur	*cur)
 28{
 29	return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
 30			cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
 
 31}
 32
 33STATIC void
 34xfs_allocbt_set_root(
 35	struct xfs_btree_cur		*cur,
 36	const union xfs_btree_ptr	*ptr,
 37	int				inc)
 38{
 39	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 40	struct xfs_agf		*agf = agbp->b_addr;
 41	int			btnum = cur->bc_btnum;
 
 42
 43	ASSERT(ptr->s != 0);
 44
 45	agf->agf_roots[btnum] = ptr->s;
 46	be32_add_cpu(&agf->agf_levels[btnum], inc);
 47	cur->bc_ag.pag->pagf_levels[btnum] += inc;
 48
 49	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 50}
 51
 52STATIC int
 53xfs_allocbt_alloc_block(
 54	struct xfs_btree_cur		*cur,
 55	const union xfs_btree_ptr	*start,
 56	union xfs_btree_ptr		*new,
 57	int				*stat)
 58{
 59	int			error;
 60	xfs_agblock_t		bno;
 61
 62	/* Allocate the new block from the freelist. If we can't, give up.  */
 63	error = xfs_alloc_get_freelist(cur->bc_ag.pag, cur->bc_tp,
 64			cur->bc_ag.agbp, &bno, 1);
 65	if (error)
 66		return error;
 67
 68	if (bno == NULLAGBLOCK) {
 69		*stat = 0;
 70		return 0;
 71	}
 72
 73	atomic64_inc(&cur->bc_mp->m_allocbt_blks);
 74	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.pag, bno, 1, false);
 75
 
 76	new->s = cpu_to_be32(bno);
 77
 78	*stat = 1;
 79	return 0;
 80}
 81
 82STATIC int
 83xfs_allocbt_free_block(
 84	struct xfs_btree_cur	*cur,
 85	struct xfs_buf		*bp)
 86{
 87	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 
 88	xfs_agblock_t		bno;
 89	int			error;
 90
 91	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
 92	error = xfs_alloc_put_freelist(cur->bc_ag.pag, cur->bc_tp, agbp, NULL,
 93			bno, 1);
 94	if (error)
 95		return error;
 96
 97	atomic64_dec(&cur->bc_mp->m_allocbt_blks);
 98	xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
 99			      XFS_EXTENT_BUSY_SKIP_DISCARD);
 
100	return 0;
101}
102
103/*
104 * Update the longest extent in the AGF
105 */
106STATIC void
107xfs_allocbt_update_lastrec(
108	struct xfs_btree_cur		*cur,
109	const struct xfs_btree_block	*block,
110	const union xfs_btree_rec	*rec,
111	int				ptr,
112	int				reason)
113{
114	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
115	struct xfs_perag	*pag;
116	__be32			len;
117	int			numrecs;
118
119	ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
120
121	switch (reason) {
122	case LASTREC_UPDATE:
123		/*
124		 * If this is the last leaf block and it's the last record,
125		 * then update the size of the longest extent in the AG.
126		 */
127		if (ptr != xfs_btree_get_numrecs(block))
128			return;
129		len = rec->alloc.ar_blockcount;
130		break;
131	case LASTREC_INSREC:
132		if (be32_to_cpu(rec->alloc.ar_blockcount) <=
133		    be32_to_cpu(agf->agf_longest))
134			return;
135		len = rec->alloc.ar_blockcount;
136		break;
137	case LASTREC_DELREC:
138		numrecs = xfs_btree_get_numrecs(block);
139		if (ptr <= numrecs)
140			return;
141		ASSERT(ptr == numrecs + 1);
142
143		if (numrecs) {
144			xfs_alloc_rec_t *rrp;
145
146			rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
147			len = rrp->ar_blockcount;
148		} else {
149			len = 0;
150		}
151
152		break;
153	default:
154		ASSERT(0);
155		return;
156	}
157
158	agf->agf_longest = len;
159	pag = cur->bc_ag.agbp->b_pag;
160	pag->pagf_longest = be32_to_cpu(len);
161	xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
162}
163
164STATIC int
165xfs_allocbt_get_minrecs(
166	struct xfs_btree_cur	*cur,
167	int			level)
168{
169	return cur->bc_mp->m_alloc_mnr[level != 0];
170}
171
172STATIC int
173xfs_allocbt_get_maxrecs(
174	struct xfs_btree_cur	*cur,
175	int			level)
176{
177	return cur->bc_mp->m_alloc_mxr[level != 0];
178}
179
180STATIC void
181xfs_allocbt_init_key_from_rec(
182	union xfs_btree_key		*key,
183	const union xfs_btree_rec	*rec)
184{
185	key->alloc.ar_startblock = rec->alloc.ar_startblock;
186	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
187}
188
189STATIC void
190xfs_bnobt_init_high_key_from_rec(
191	union xfs_btree_key		*key,
192	const union xfs_btree_rec	*rec)
193{
194	__u32				x;
195
196	x = be32_to_cpu(rec->alloc.ar_startblock);
197	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
198	key->alloc.ar_startblock = cpu_to_be32(x);
199	key->alloc.ar_blockcount = 0;
200}
201
202STATIC void
203xfs_cntbt_init_high_key_from_rec(
204	union xfs_btree_key		*key,
205	const union xfs_btree_rec	*rec)
206{
207	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
208	key->alloc.ar_startblock = 0;
209}
210
211STATIC void
212xfs_allocbt_init_rec_from_cur(
213	struct xfs_btree_cur	*cur,
214	union xfs_btree_rec	*rec)
215{
216	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
217	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
218}
219
220STATIC void
221xfs_allocbt_init_ptr_from_cur(
222	struct xfs_btree_cur	*cur,
223	union xfs_btree_ptr	*ptr)
224{
225	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
226
227	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
228
229	ptr->s = agf->agf_roots[cur->bc_btnum];
230}
231
232STATIC int64_t
233xfs_bnobt_key_diff(
234	struct xfs_btree_cur		*cur,
235	const union xfs_btree_key	*key)
236{
237	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
238	const struct xfs_alloc_rec	*kp = &key->alloc;
239
240	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
241}
242
243STATIC int64_t
244xfs_cntbt_key_diff(
245	struct xfs_btree_cur		*cur,
246	const union xfs_btree_key	*key)
247{
248	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
249	const struct xfs_alloc_rec	*kp = &key->alloc;
250	int64_t				diff;
251
252	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
253	if (diff)
254		return diff;
255
256	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
257}
258
259STATIC int64_t
260xfs_bnobt_diff_two_keys(
261	struct xfs_btree_cur		*cur,
262	const union xfs_btree_key	*k1,
263	const union xfs_btree_key	*k2,
264	const union xfs_btree_key	*mask)
265{
266	ASSERT(!mask || mask->alloc.ar_startblock);
267
268	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
269			be32_to_cpu(k2->alloc.ar_startblock);
270}
271
272STATIC int64_t
273xfs_cntbt_diff_two_keys(
274	struct xfs_btree_cur		*cur,
275	const union xfs_btree_key	*k1,
276	const union xfs_btree_key	*k2,
277	const union xfs_btree_key	*mask)
278{
279	int64_t				diff;
280
281	ASSERT(!mask || (mask->alloc.ar_blockcount &&
282			 mask->alloc.ar_startblock));
283
284	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
285		be32_to_cpu(k2->alloc.ar_blockcount);
286	if (diff)
287		return diff;
288
289	return  be32_to_cpu(k1->alloc.ar_startblock) -
290		be32_to_cpu(k2->alloc.ar_startblock);
291}
292
293static xfs_failaddr_t
294xfs_allocbt_verify(
295	struct xfs_buf		*bp)
296{
297	struct xfs_mount	*mp = bp->b_mount;
298	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
299	struct xfs_perag	*pag = bp->b_pag;
300	xfs_failaddr_t		fa;
301	unsigned int		level;
302	xfs_btnum_t		btnum = XFS_BTNUM_BNOi;
303
304	if (!xfs_verify_magic(bp, block->bb_magic))
305		return __this_address;
306
307	if (xfs_has_crc(mp)) {
308		fa = xfs_btree_sblock_v5hdr_verify(bp);
309		if (fa)
310			return fa;
311	}
312
313	/*
314	 * The perag may not be attached during grow operations or fully
315	 * initialized from the AGF during log recovery. Therefore we can only
316	 * check against maximum tree depth from those contexts.
317	 *
318	 * Otherwise check against the per-tree limit. Peek at one of the
319	 * verifier magic values to determine the type of tree we're verifying
320	 * against.
321	 */
322	level = be16_to_cpu(block->bb_level);
323	if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
324		btnum = XFS_BTNUM_CNTi;
325	if (pag && xfs_perag_initialised_agf(pag)) {
326		unsigned int	maxlevel = pag->pagf_levels[btnum];
327
328#ifdef CONFIG_XFS_ONLINE_REPAIR
329		/*
330		 * Online repair could be rewriting the free space btrees, so
331		 * we'll validate against the larger of either tree while this
332		 * is going on.
333		 */
334		maxlevel = max_t(unsigned int, maxlevel,
335				 pag->pagf_repair_levels[btnum]);
336#endif
337		if (level >= maxlevel)
338			return __this_address;
339	} else if (level >= mp->m_alloc_maxlevels)
340		return __this_address;
341
342	return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
343}
344
345static void
346xfs_allocbt_read_verify(
347	struct xfs_buf	*bp)
348{
349	xfs_failaddr_t	fa;
350
351	if (!xfs_btree_sblock_verify_crc(bp))
352		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
353	else {
354		fa = xfs_allocbt_verify(bp);
355		if (fa)
356			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
357	}
358
359	if (bp->b_error)
360		trace_xfs_btree_corrupt(bp, _RET_IP_);
361}
362
363static void
364xfs_allocbt_write_verify(
365	struct xfs_buf	*bp)
366{
367	xfs_failaddr_t	fa;
368
369	fa = xfs_allocbt_verify(bp);
370	if (fa) {
371		trace_xfs_btree_corrupt(bp, _RET_IP_);
372		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
373		return;
374	}
375	xfs_btree_sblock_calc_crc(bp);
376
377}
378
379const struct xfs_buf_ops xfs_bnobt_buf_ops = {
380	.name = "xfs_bnobt",
381	.magic = { cpu_to_be32(XFS_ABTB_MAGIC),
382		   cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
383	.verify_read = xfs_allocbt_read_verify,
384	.verify_write = xfs_allocbt_write_verify,
385	.verify_struct = xfs_allocbt_verify,
386};
387
388const struct xfs_buf_ops xfs_cntbt_buf_ops = {
389	.name = "xfs_cntbt",
390	.magic = { cpu_to_be32(XFS_ABTC_MAGIC),
391		   cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
392	.verify_read = xfs_allocbt_read_verify,
393	.verify_write = xfs_allocbt_write_verify,
394	.verify_struct = xfs_allocbt_verify,
395};
396
397STATIC int
398xfs_bnobt_keys_inorder(
399	struct xfs_btree_cur		*cur,
400	const union xfs_btree_key	*k1,
401	const union xfs_btree_key	*k2)
402{
403	return be32_to_cpu(k1->alloc.ar_startblock) <
404	       be32_to_cpu(k2->alloc.ar_startblock);
405}
406
407STATIC int
408xfs_bnobt_recs_inorder(
409	struct xfs_btree_cur		*cur,
410	const union xfs_btree_rec	*r1,
411	const union xfs_btree_rec	*r2)
412{
413	return be32_to_cpu(r1->alloc.ar_startblock) +
414		be32_to_cpu(r1->alloc.ar_blockcount) <=
415		be32_to_cpu(r2->alloc.ar_startblock);
416}
417
418STATIC int
419xfs_cntbt_keys_inorder(
420	struct xfs_btree_cur		*cur,
421	const union xfs_btree_key	*k1,
422	const union xfs_btree_key	*k2)
423{
424	return be32_to_cpu(k1->alloc.ar_blockcount) <
425		be32_to_cpu(k2->alloc.ar_blockcount) ||
426		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
427		 be32_to_cpu(k1->alloc.ar_startblock) <
428		 be32_to_cpu(k2->alloc.ar_startblock));
429}
430
431STATIC int
432xfs_cntbt_recs_inorder(
433	struct xfs_btree_cur		*cur,
434	const union xfs_btree_rec	*r1,
435	const union xfs_btree_rec	*r2)
436{
437	return be32_to_cpu(r1->alloc.ar_blockcount) <
438		be32_to_cpu(r2->alloc.ar_blockcount) ||
439		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
440		 be32_to_cpu(r1->alloc.ar_startblock) <
441		 be32_to_cpu(r2->alloc.ar_startblock));
442}
443
444STATIC enum xbtree_key_contig
445xfs_allocbt_keys_contiguous(
446	struct xfs_btree_cur		*cur,
447	const union xfs_btree_key	*key1,
448	const union xfs_btree_key	*key2,
449	const union xfs_btree_key	*mask)
450{
451	ASSERT(!mask || mask->alloc.ar_startblock);
452
453	return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
454				 be32_to_cpu(key2->alloc.ar_startblock));
455}
456
457static const struct xfs_btree_ops xfs_bnobt_ops = {
458	.rec_len		= sizeof(xfs_alloc_rec_t),
459	.key_len		= sizeof(xfs_alloc_key_t),
460
461	.dup_cursor		= xfs_allocbt_dup_cursor,
462	.set_root		= xfs_allocbt_set_root,
463	.alloc_block		= xfs_allocbt_alloc_block,
464	.free_block		= xfs_allocbt_free_block,
465	.update_lastrec		= xfs_allocbt_update_lastrec,
466	.get_minrecs		= xfs_allocbt_get_minrecs,
467	.get_maxrecs		= xfs_allocbt_get_maxrecs,
468	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
469	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
470	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
471	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
472	.key_diff		= xfs_bnobt_key_diff,
473	.buf_ops		= &xfs_bnobt_buf_ops,
474	.diff_two_keys		= xfs_bnobt_diff_two_keys,
475	.keys_inorder		= xfs_bnobt_keys_inorder,
476	.recs_inorder		= xfs_bnobt_recs_inorder,
477	.keys_contiguous	= xfs_allocbt_keys_contiguous,
478};
479
480static const struct xfs_btree_ops xfs_cntbt_ops = {
481	.rec_len		= sizeof(xfs_alloc_rec_t),
482	.key_len		= sizeof(xfs_alloc_key_t),
483
484	.dup_cursor		= xfs_allocbt_dup_cursor,
485	.set_root		= xfs_allocbt_set_root,
486	.alloc_block		= xfs_allocbt_alloc_block,
487	.free_block		= xfs_allocbt_free_block,
488	.update_lastrec		= xfs_allocbt_update_lastrec,
489	.get_minrecs		= xfs_allocbt_get_minrecs,
490	.get_maxrecs		= xfs_allocbt_get_maxrecs,
491	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
492	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
493	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
494	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
495	.key_diff		= xfs_cntbt_key_diff,
496	.buf_ops		= &xfs_cntbt_buf_ops,
497	.diff_two_keys		= xfs_cntbt_diff_two_keys,
498	.keys_inorder		= xfs_cntbt_keys_inorder,
499	.recs_inorder		= xfs_cntbt_recs_inorder,
500	.keys_contiguous	= NULL, /* not needed right now */
501};
502
503/* Allocate most of a new allocation btree cursor. */
504STATIC struct xfs_btree_cur *
505xfs_allocbt_init_common(
506	struct xfs_mount	*mp,
507	struct xfs_trans	*tp,
508	struct xfs_perag	*pag,
509	xfs_btnum_t		btnum)
510{
511	struct xfs_btree_cur	*cur;
512
513	ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
514
515	cur = xfs_btree_alloc_cursor(mp, tp, btnum, mp->m_alloc_maxlevels,
516			xfs_allocbt_cur_cache);
517	cur->bc_ag.abt.active = false;
 
 
 
518
519	if (btnum == XFS_BTNUM_CNT) {
520		cur->bc_ops = &xfs_cntbt_ops;
521		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
522		cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
523	} else {
524		cur->bc_ops = &xfs_bnobt_ops;
525		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
526	}
527
528	cur->bc_ag.pag = xfs_perag_hold(pag);
 
529
530	if (xfs_has_crc(mp))
531		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
532
533	return cur;
534}
535
536/*
537 * Allocate a new allocation btree cursor.
538 */
539struct xfs_btree_cur *			/* new alloc btree cursor */
540xfs_allocbt_init_cursor(
541	struct xfs_mount	*mp,		/* file system mount point */
542	struct xfs_trans	*tp,		/* transaction pointer */
543	struct xfs_buf		*agbp,		/* buffer for agf structure */
544	struct xfs_perag	*pag,
545	xfs_btnum_t		btnum)		/* btree identifier */
546{
547	struct xfs_agf		*agf = agbp->b_addr;
548	struct xfs_btree_cur	*cur;
549
550	cur = xfs_allocbt_init_common(mp, tp, pag, btnum);
551	if (btnum == XFS_BTNUM_CNT)
552		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
553	else
554		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
555
556	cur->bc_ag.agbp = agbp;
557
558	return cur;
559}
560
561/* Create a free space btree cursor with a fake root for staging. */
562struct xfs_btree_cur *
563xfs_allocbt_stage_cursor(
564	struct xfs_mount	*mp,
565	struct xbtree_afakeroot	*afake,
566	struct xfs_perag	*pag,
567	xfs_btnum_t		btnum)
568{
569	struct xfs_btree_cur	*cur;
570
571	cur = xfs_allocbt_init_common(mp, NULL, pag, btnum);
572	xfs_btree_stage_afakeroot(cur, afake);
573	return cur;
574}
575
576/*
577 * Install a new free space btree root.  Caller is responsible for invalidating
578 * and freeing the old btree blocks.
579 */
580void
581xfs_allocbt_commit_staged_btree(
582	struct xfs_btree_cur	*cur,
583	struct xfs_trans	*tp,
584	struct xfs_buf		*agbp)
585{
586	struct xfs_agf		*agf = agbp->b_addr;
587	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
588
589	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
590
591	agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
592	agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
593	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
594
595	if (cur->bc_btnum == XFS_BTNUM_BNO) {
596		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
597	} else {
598		cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
599		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
600	}
601}
602
603/* Calculate number of records in an alloc btree block. */
604static inline unsigned int
605xfs_allocbt_block_maxrecs(
606	unsigned int		blocklen,
607	bool			leaf)
608{
609	if (leaf)
610		return blocklen / sizeof(xfs_alloc_rec_t);
611	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
612}
613
614/*
615 * Calculate number of records in an alloc btree block.
616 */
617int
618xfs_allocbt_maxrecs(
619	struct xfs_mount	*mp,
620	int			blocklen,
621	int			leaf)
622{
623	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
624	return xfs_allocbt_block_maxrecs(blocklen, leaf);
625}
626
627/* Free space btrees are at their largest when every other block is free. */
628#define XFS_MAX_FREESP_RECORDS	((XFS_MAX_AG_BLOCKS + 1) / 2)
629
630/* Compute the max possible height for free space btrees. */
631unsigned int
632xfs_allocbt_maxlevels_ondisk(void)
633{
634	unsigned int		minrecs[2];
635	unsigned int		blocklen;
636
637	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
638		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
639
640	minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
641	minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
642
643	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
 
 
644}
645
646/* Calculate the freespace btree size for some records. */
647xfs_extlen_t
648xfs_allocbt_calc_size(
649	struct xfs_mount	*mp,
650	unsigned long long	len)
651{
652	return xfs_btree_calc_size(mp->m_alloc_mnr, len);
653}
654
655int __init
656xfs_allocbt_init_cur_cache(void)
657{
658	xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
659			xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
660			0, 0, NULL);
661
662	if (!xfs_allocbt_cur_cache)
663		return -ENOMEM;
664	return 0;
665}
666
667void
668xfs_allocbt_destroy_cur_cache(void)
669{
670	kmem_cache_destroy(xfs_allocbt_cur_cache);
671	xfs_allocbt_cur_cache = NULL;
672}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_sb.h"
 13#include "xfs_mount.h"
 14#include "xfs_btree.h"
 15#include "xfs_btree_staging.h"
 16#include "xfs_alloc_btree.h"
 17#include "xfs_alloc.h"
 18#include "xfs_extent_busy.h"
 19#include "xfs_error.h"
 20#include "xfs_trace.h"
 21#include "xfs_trans.h"
 
 22
 
 23
 24STATIC struct xfs_btree_cur *
 25xfs_allocbt_dup_cursor(
 26	struct xfs_btree_cur	*cur)
 27{
 28	return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
 29			cur->bc_ag.agbp, cur->bc_ag.agno,
 30			cur->bc_btnum);
 31}
 32
 33STATIC void
 34xfs_allocbt_set_root(
 35	struct xfs_btree_cur	*cur,
 36	union xfs_btree_ptr	*ptr,
 37	int			inc)
 38{
 39	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 40	struct xfs_agf		*agf = agbp->b_addr;
 41	int			btnum = cur->bc_btnum;
 42	struct xfs_perag	*pag = agbp->b_pag;
 43
 44	ASSERT(ptr->s != 0);
 45
 46	agf->agf_roots[btnum] = ptr->s;
 47	be32_add_cpu(&agf->agf_levels[btnum], inc);
 48	pag->pagf_levels[btnum] += inc;
 49
 50	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 51}
 52
 53STATIC int
 54xfs_allocbt_alloc_block(
 55	struct xfs_btree_cur	*cur,
 56	union xfs_btree_ptr	*start,
 57	union xfs_btree_ptr	*new,
 58	int			*stat)
 59{
 60	int			error;
 61	xfs_agblock_t		bno;
 62
 63	/* Allocate the new block from the freelist. If we can't, give up.  */
 64	error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_ag.agbp,
 65				       &bno, 1);
 66	if (error)
 67		return error;
 68
 69	if (bno == NULLAGBLOCK) {
 70		*stat = 0;
 71		return 0;
 72	}
 73
 74	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.agno, bno, 1, false);
 
 75
 76	xfs_trans_agbtree_delta(cur->bc_tp, 1);
 77	new->s = cpu_to_be32(bno);
 78
 79	*stat = 1;
 80	return 0;
 81}
 82
 83STATIC int
 84xfs_allocbt_free_block(
 85	struct xfs_btree_cur	*cur,
 86	struct xfs_buf		*bp)
 87{
 88	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 89	struct xfs_agf		*agf = agbp->b_addr;
 90	xfs_agblock_t		bno;
 91	int			error;
 92
 93	bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
 94	error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
 
 95	if (error)
 96		return error;
 97
 98	xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
 
 99			      XFS_EXTENT_BUSY_SKIP_DISCARD);
100	xfs_trans_agbtree_delta(cur->bc_tp, -1);
101	return 0;
102}
103
104/*
105 * Update the longest extent in the AGF
106 */
107STATIC void
108xfs_allocbt_update_lastrec(
109	struct xfs_btree_cur	*cur,
110	struct xfs_btree_block	*block,
111	union xfs_btree_rec	*rec,
112	int			ptr,
113	int			reason)
114{
115	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
116	struct xfs_perag	*pag;
117	__be32			len;
118	int			numrecs;
119
120	ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
121
122	switch (reason) {
123	case LASTREC_UPDATE:
124		/*
125		 * If this is the last leaf block and it's the last record,
126		 * then update the size of the longest extent in the AG.
127		 */
128		if (ptr != xfs_btree_get_numrecs(block))
129			return;
130		len = rec->alloc.ar_blockcount;
131		break;
132	case LASTREC_INSREC:
133		if (be32_to_cpu(rec->alloc.ar_blockcount) <=
134		    be32_to_cpu(agf->agf_longest))
135			return;
136		len = rec->alloc.ar_blockcount;
137		break;
138	case LASTREC_DELREC:
139		numrecs = xfs_btree_get_numrecs(block);
140		if (ptr <= numrecs)
141			return;
142		ASSERT(ptr == numrecs + 1);
143
144		if (numrecs) {
145			xfs_alloc_rec_t *rrp;
146
147			rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
148			len = rrp->ar_blockcount;
149		} else {
150			len = 0;
151		}
152
153		break;
154	default:
155		ASSERT(0);
156		return;
157	}
158
159	agf->agf_longest = len;
160	pag = cur->bc_ag.agbp->b_pag;
161	pag->pagf_longest = be32_to_cpu(len);
162	xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
163}
164
165STATIC int
166xfs_allocbt_get_minrecs(
167	struct xfs_btree_cur	*cur,
168	int			level)
169{
170	return cur->bc_mp->m_alloc_mnr[level != 0];
171}
172
173STATIC int
174xfs_allocbt_get_maxrecs(
175	struct xfs_btree_cur	*cur,
176	int			level)
177{
178	return cur->bc_mp->m_alloc_mxr[level != 0];
179}
180
181STATIC void
182xfs_allocbt_init_key_from_rec(
183	union xfs_btree_key	*key,
184	union xfs_btree_rec	*rec)
185{
186	key->alloc.ar_startblock = rec->alloc.ar_startblock;
187	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
188}
189
190STATIC void
191xfs_bnobt_init_high_key_from_rec(
192	union xfs_btree_key	*key,
193	union xfs_btree_rec	*rec)
194{
195	__u32			x;
196
197	x = be32_to_cpu(rec->alloc.ar_startblock);
198	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
199	key->alloc.ar_startblock = cpu_to_be32(x);
200	key->alloc.ar_blockcount = 0;
201}
202
203STATIC void
204xfs_cntbt_init_high_key_from_rec(
205	union xfs_btree_key	*key,
206	union xfs_btree_rec	*rec)
207{
208	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
209	key->alloc.ar_startblock = 0;
210}
211
212STATIC void
213xfs_allocbt_init_rec_from_cur(
214	struct xfs_btree_cur	*cur,
215	union xfs_btree_rec	*rec)
216{
217	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
218	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
219}
220
221STATIC void
222xfs_allocbt_init_ptr_from_cur(
223	struct xfs_btree_cur	*cur,
224	union xfs_btree_ptr	*ptr)
225{
226	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
227
228	ASSERT(cur->bc_ag.agno == be32_to_cpu(agf->agf_seqno));
229
230	ptr->s = agf->agf_roots[cur->bc_btnum];
231}
232
233STATIC int64_t
234xfs_bnobt_key_diff(
235	struct xfs_btree_cur	*cur,
236	union xfs_btree_key	*key)
237{
238	xfs_alloc_rec_incore_t	*rec = &cur->bc_rec.a;
239	xfs_alloc_key_t		*kp = &key->alloc;
240
241	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
242}
243
244STATIC int64_t
245xfs_cntbt_key_diff(
246	struct xfs_btree_cur	*cur,
247	union xfs_btree_key	*key)
248{
249	xfs_alloc_rec_incore_t	*rec = &cur->bc_rec.a;
250	xfs_alloc_key_t		*kp = &key->alloc;
251	int64_t			diff;
252
253	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
254	if (diff)
255		return diff;
256
257	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
258}
259
260STATIC int64_t
261xfs_bnobt_diff_two_keys(
262	struct xfs_btree_cur	*cur,
263	union xfs_btree_key	*k1,
264	union xfs_btree_key	*k2)
 
265{
 
 
266	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
267			  be32_to_cpu(k2->alloc.ar_startblock);
268}
269
270STATIC int64_t
271xfs_cntbt_diff_two_keys(
272	struct xfs_btree_cur	*cur,
273	union xfs_btree_key	*k1,
274	union xfs_btree_key	*k2)
 
275{
276	int64_t			diff;
 
 
 
277
278	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
279		be32_to_cpu(k2->alloc.ar_blockcount);
280	if (diff)
281		return diff;
282
283	return  be32_to_cpu(k1->alloc.ar_startblock) -
284		be32_to_cpu(k2->alloc.ar_startblock);
285}
286
287static xfs_failaddr_t
288xfs_allocbt_verify(
289	struct xfs_buf		*bp)
290{
291	struct xfs_mount	*mp = bp->b_mount;
292	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
293	struct xfs_perag	*pag = bp->b_pag;
294	xfs_failaddr_t		fa;
295	unsigned int		level;
296	xfs_btnum_t		btnum = XFS_BTNUM_BNOi;
297
298	if (!xfs_verify_magic(bp, block->bb_magic))
299		return __this_address;
300
301	if (xfs_sb_version_hascrc(&mp->m_sb)) {
302		fa = xfs_btree_sblock_v5hdr_verify(bp);
303		if (fa)
304			return fa;
305	}
306
307	/*
308	 * The perag may not be attached during grow operations or fully
309	 * initialized from the AGF during log recovery. Therefore we can only
310	 * check against maximum tree depth from those contexts.
311	 *
312	 * Otherwise check against the per-tree limit. Peek at one of the
313	 * verifier magic values to determine the type of tree we're verifying
314	 * against.
315	 */
316	level = be16_to_cpu(block->bb_level);
317	if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
318		btnum = XFS_BTNUM_CNTi;
319	if (pag && pag->pagf_init) {
320		if (level >= pag->pagf_levels[btnum])
 
 
 
 
 
 
 
 
 
 
 
321			return __this_address;
322	} else if (level >= mp->m_ag_maxlevels)
323		return __this_address;
324
325	return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
326}
327
328static void
329xfs_allocbt_read_verify(
330	struct xfs_buf	*bp)
331{
332	xfs_failaddr_t	fa;
333
334	if (!xfs_btree_sblock_verify_crc(bp))
335		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
336	else {
337		fa = xfs_allocbt_verify(bp);
338		if (fa)
339			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
340	}
341
342	if (bp->b_error)
343		trace_xfs_btree_corrupt(bp, _RET_IP_);
344}
345
346static void
347xfs_allocbt_write_verify(
348	struct xfs_buf	*bp)
349{
350	xfs_failaddr_t	fa;
351
352	fa = xfs_allocbt_verify(bp);
353	if (fa) {
354		trace_xfs_btree_corrupt(bp, _RET_IP_);
355		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
356		return;
357	}
358	xfs_btree_sblock_calc_crc(bp);
359
360}
361
362const struct xfs_buf_ops xfs_bnobt_buf_ops = {
363	.name = "xfs_bnobt",
364	.magic = { cpu_to_be32(XFS_ABTB_MAGIC),
365		   cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
366	.verify_read = xfs_allocbt_read_verify,
367	.verify_write = xfs_allocbt_write_verify,
368	.verify_struct = xfs_allocbt_verify,
369};
370
371const struct xfs_buf_ops xfs_cntbt_buf_ops = {
372	.name = "xfs_cntbt",
373	.magic = { cpu_to_be32(XFS_ABTC_MAGIC),
374		   cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
375	.verify_read = xfs_allocbt_read_verify,
376	.verify_write = xfs_allocbt_write_verify,
377	.verify_struct = xfs_allocbt_verify,
378};
379
380STATIC int
381xfs_bnobt_keys_inorder(
382	struct xfs_btree_cur	*cur,
383	union xfs_btree_key	*k1,
384	union xfs_btree_key	*k2)
385{
386	return be32_to_cpu(k1->alloc.ar_startblock) <
387	       be32_to_cpu(k2->alloc.ar_startblock);
388}
389
390STATIC int
391xfs_bnobt_recs_inorder(
392	struct xfs_btree_cur	*cur,
393	union xfs_btree_rec	*r1,
394	union xfs_btree_rec	*r2)
395{
396	return be32_to_cpu(r1->alloc.ar_startblock) +
397		be32_to_cpu(r1->alloc.ar_blockcount) <=
398		be32_to_cpu(r2->alloc.ar_startblock);
399}
400
401STATIC int
402xfs_cntbt_keys_inorder(
403	struct xfs_btree_cur	*cur,
404	union xfs_btree_key	*k1,
405	union xfs_btree_key	*k2)
406{
407	return be32_to_cpu(k1->alloc.ar_blockcount) <
408		be32_to_cpu(k2->alloc.ar_blockcount) ||
409		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
410		 be32_to_cpu(k1->alloc.ar_startblock) <
411		 be32_to_cpu(k2->alloc.ar_startblock));
412}
413
414STATIC int
415xfs_cntbt_recs_inorder(
416	struct xfs_btree_cur	*cur,
417	union xfs_btree_rec	*r1,
418	union xfs_btree_rec	*r2)
419{
420	return be32_to_cpu(r1->alloc.ar_blockcount) <
421		be32_to_cpu(r2->alloc.ar_blockcount) ||
422		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
423		 be32_to_cpu(r1->alloc.ar_startblock) <
424		 be32_to_cpu(r2->alloc.ar_startblock));
425}
426
 
 
 
 
 
 
 
 
 
 
 
 
 
427static const struct xfs_btree_ops xfs_bnobt_ops = {
428	.rec_len		= sizeof(xfs_alloc_rec_t),
429	.key_len		= sizeof(xfs_alloc_key_t),
430
431	.dup_cursor		= xfs_allocbt_dup_cursor,
432	.set_root		= xfs_allocbt_set_root,
433	.alloc_block		= xfs_allocbt_alloc_block,
434	.free_block		= xfs_allocbt_free_block,
435	.update_lastrec		= xfs_allocbt_update_lastrec,
436	.get_minrecs		= xfs_allocbt_get_minrecs,
437	.get_maxrecs		= xfs_allocbt_get_maxrecs,
438	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
439	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
440	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
441	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
442	.key_diff		= xfs_bnobt_key_diff,
443	.buf_ops		= &xfs_bnobt_buf_ops,
444	.diff_two_keys		= xfs_bnobt_diff_two_keys,
445	.keys_inorder		= xfs_bnobt_keys_inorder,
446	.recs_inorder		= xfs_bnobt_recs_inorder,
 
447};
448
449static const struct xfs_btree_ops xfs_cntbt_ops = {
450	.rec_len		= sizeof(xfs_alloc_rec_t),
451	.key_len		= sizeof(xfs_alloc_key_t),
452
453	.dup_cursor		= xfs_allocbt_dup_cursor,
454	.set_root		= xfs_allocbt_set_root,
455	.alloc_block		= xfs_allocbt_alloc_block,
456	.free_block		= xfs_allocbt_free_block,
457	.update_lastrec		= xfs_allocbt_update_lastrec,
458	.get_minrecs		= xfs_allocbt_get_minrecs,
459	.get_maxrecs		= xfs_allocbt_get_maxrecs,
460	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
461	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
462	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
463	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
464	.key_diff		= xfs_cntbt_key_diff,
465	.buf_ops		= &xfs_cntbt_buf_ops,
466	.diff_two_keys		= xfs_cntbt_diff_two_keys,
467	.keys_inorder		= xfs_cntbt_keys_inorder,
468	.recs_inorder		= xfs_cntbt_recs_inorder,
 
469};
470
471/* Allocate most of a new allocation btree cursor. */
472STATIC struct xfs_btree_cur *
473xfs_allocbt_init_common(
474	struct xfs_mount	*mp,
475	struct xfs_trans	*tp,
476	xfs_agnumber_t		agno,
477	xfs_btnum_t		btnum)
478{
479	struct xfs_btree_cur	*cur;
480
481	ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
482
483	cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL);
484
485	cur->bc_tp = tp;
486	cur->bc_mp = mp;
487	cur->bc_btnum = btnum;
488	cur->bc_blocklog = mp->m_sb.sb_blocklog;
489
490	if (btnum == XFS_BTNUM_CNT) {
491		cur->bc_ops = &xfs_cntbt_ops;
492		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
493		cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
494	} else {
495		cur->bc_ops = &xfs_bnobt_ops;
496		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
497	}
498
499	cur->bc_ag.agno = agno;
500	cur->bc_ag.abt.active = false;
501
502	if (xfs_sb_version_hascrc(&mp->m_sb))
503		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
504
505	return cur;
506}
507
508/*
509 * Allocate a new allocation btree cursor.
510 */
511struct xfs_btree_cur *			/* new alloc btree cursor */
512xfs_allocbt_init_cursor(
513	struct xfs_mount	*mp,		/* file system mount point */
514	struct xfs_trans	*tp,		/* transaction pointer */
515	struct xfs_buf		*agbp,		/* buffer for agf structure */
516	xfs_agnumber_t		agno,		/* allocation group number */
517	xfs_btnum_t		btnum)		/* btree identifier */
518{
519	struct xfs_agf		*agf = agbp->b_addr;
520	struct xfs_btree_cur	*cur;
521
522	cur = xfs_allocbt_init_common(mp, tp, agno, btnum);
523	if (btnum == XFS_BTNUM_CNT)
524		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
525	else
526		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
527
528	cur->bc_ag.agbp = agbp;
529
530	return cur;
531}
532
533/* Create a free space btree cursor with a fake root for staging. */
534struct xfs_btree_cur *
535xfs_allocbt_stage_cursor(
536	struct xfs_mount	*mp,
537	struct xbtree_afakeroot	*afake,
538	xfs_agnumber_t		agno,
539	xfs_btnum_t		btnum)
540{
541	struct xfs_btree_cur	*cur;
542
543	cur = xfs_allocbt_init_common(mp, NULL, agno, btnum);
544	xfs_btree_stage_afakeroot(cur, afake);
545	return cur;
546}
547
548/*
549 * Install a new free space btree root.  Caller is responsible for invalidating
550 * and freeing the old btree blocks.
551 */
552void
553xfs_allocbt_commit_staged_btree(
554	struct xfs_btree_cur	*cur,
555	struct xfs_trans	*tp,
556	struct xfs_buf		*agbp)
557{
558	struct xfs_agf		*agf = agbp->b_addr;
559	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
560
561	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
562
563	agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
564	agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
565	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
566
567	if (cur->bc_btnum == XFS_BTNUM_BNO) {
568		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
569	} else {
570		cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
571		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
572	}
573}
574
 
 
 
 
 
 
 
 
 
 
 
575/*
576 * Calculate number of records in an alloc btree block.
577 */
578int
579xfs_allocbt_maxrecs(
580	struct xfs_mount	*mp,
581	int			blocklen,
582	int			leaf)
583{
584	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585
586	if (leaf)
587		return blocklen / sizeof(xfs_alloc_rec_t);
588	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
589}
590
591/* Calculate the freespace btree size for some records. */
592xfs_extlen_t
593xfs_allocbt_calc_size(
594	struct xfs_mount	*mp,
595	unsigned long long	len)
596{
597	return xfs_btree_calc_size(mp->m_alloc_mnr, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598}