Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
10 *
11 * S3C USB2.0 High-speed / OtG driver
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/platform_device.h>
19#include <linux/dma-mapping.h>
20#include <linux/mutex.h>
21#include <linux/seq_file.h>
22#include <linux/delay.h>
23#include <linux/io.h>
24#include <linux/slab.h>
25
26#include <linux/usb/ch9.h>
27#include <linux/usb/gadget.h>
28#include <linux/usb/phy.h>
29#include <linux/usb/composite.h>
30
31
32#include "core.h"
33#include "hw.h"
34
35/* conversion functions */
36static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
37{
38 return container_of(req, struct dwc2_hsotg_req, req);
39}
40
41static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
42{
43 return container_of(ep, struct dwc2_hsotg_ep, ep);
44}
45
46static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
47{
48 return container_of(gadget, struct dwc2_hsotg, gadget);
49}
50
51static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
52{
53 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
54}
55
56static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
57{
58 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
59}
60
61static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
62 u32 ep_index, u32 dir_in)
63{
64 if (dir_in)
65 return hsotg->eps_in[ep_index];
66 else
67 return hsotg->eps_out[ep_index];
68}
69
70/* forward declaration of functions */
71static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
72
73/**
74 * using_dma - return the DMA status of the driver.
75 * @hsotg: The driver state.
76 *
77 * Return true if we're using DMA.
78 *
79 * Currently, we have the DMA support code worked into everywhere
80 * that needs it, but the AMBA DMA implementation in the hardware can
81 * only DMA from 32bit aligned addresses. This means that gadgets such
82 * as the CDC Ethernet cannot work as they often pass packets which are
83 * not 32bit aligned.
84 *
85 * Unfortunately the choice to use DMA or not is global to the controller
86 * and seems to be only settable when the controller is being put through
87 * a core reset. This means we either need to fix the gadgets to take
88 * account of DMA alignment, or add bounce buffers (yuerk).
89 *
90 * g_using_dma is set depending on dts flag.
91 */
92static inline bool using_dma(struct dwc2_hsotg *hsotg)
93{
94 return hsotg->params.g_dma;
95}
96
97/*
98 * using_desc_dma - return the descriptor DMA status of the driver.
99 * @hsotg: The driver state.
100 *
101 * Return true if we're using descriptor DMA.
102 */
103static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
104{
105 return hsotg->params.g_dma_desc;
106}
107
108/**
109 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
110 * @hs_ep: The endpoint
111 *
112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
113 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
114 */
115static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
116{
117 struct dwc2_hsotg *hsotg = hs_ep->parent;
118 u16 limit = DSTS_SOFFN_LIMIT;
119
120 if (hsotg->gadget.speed != USB_SPEED_HIGH)
121 limit >>= 3;
122
123 hs_ep->target_frame += hs_ep->interval;
124 if (hs_ep->target_frame > limit) {
125 hs_ep->frame_overrun = true;
126 hs_ep->target_frame &= limit;
127 } else {
128 hs_ep->frame_overrun = false;
129 }
130}
131
132/**
133 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
134 * by one.
135 * @hs_ep: The endpoint.
136 *
137 * This function used in service interval based scheduling flow to calculate
138 * descriptor frame number filed value. For service interval mode frame
139 * number in descriptor should point to last (u)frame in the interval.
140 *
141 */
142static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
143{
144 struct dwc2_hsotg *hsotg = hs_ep->parent;
145 u16 limit = DSTS_SOFFN_LIMIT;
146
147 if (hsotg->gadget.speed != USB_SPEED_HIGH)
148 limit >>= 3;
149
150 if (hs_ep->target_frame)
151 hs_ep->target_frame -= 1;
152 else
153 hs_ep->target_frame = limit;
154}
155
156/**
157 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
158 * @hsotg: The device state
159 * @ints: A bitmask of the interrupts to enable
160 */
161static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
162{
163 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
164 u32 new_gsintmsk;
165
166 new_gsintmsk = gsintmsk | ints;
167
168 if (new_gsintmsk != gsintmsk) {
169 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
170 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
171 }
172}
173
174/**
175 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
176 * @hsotg: The device state
177 * @ints: A bitmask of the interrupts to enable
178 */
179static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
180{
181 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
182 u32 new_gsintmsk;
183
184 new_gsintmsk = gsintmsk & ~ints;
185
186 if (new_gsintmsk != gsintmsk)
187 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
188}
189
190/**
191 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
192 * @hsotg: The device state
193 * @ep: The endpoint index
194 * @dir_in: True if direction is in.
195 * @en: The enable value, true to enable
196 *
197 * Set or clear the mask for an individual endpoint's interrupt
198 * request.
199 */
200static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
201 unsigned int ep, unsigned int dir_in,
202 unsigned int en)
203{
204 unsigned long flags;
205 u32 bit = 1 << ep;
206 u32 daint;
207
208 if (!dir_in)
209 bit <<= 16;
210
211 local_irq_save(flags);
212 daint = dwc2_readl(hsotg, DAINTMSK);
213 if (en)
214 daint |= bit;
215 else
216 daint &= ~bit;
217 dwc2_writel(hsotg, daint, DAINTMSK);
218 local_irq_restore(flags);
219}
220
221/**
222 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
223 *
224 * @hsotg: Programming view of the DWC_otg controller
225 */
226int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
227{
228 if (hsotg->hw_params.en_multiple_tx_fifo)
229 /* In dedicated FIFO mode we need count of IN EPs */
230 return hsotg->hw_params.num_dev_in_eps;
231 else
232 /* In shared FIFO mode we need count of Periodic IN EPs */
233 return hsotg->hw_params.num_dev_perio_in_ep;
234}
235
236/**
237 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
238 * device mode TX FIFOs
239 *
240 * @hsotg: Programming view of the DWC_otg controller
241 */
242int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
243{
244 int addr;
245 int tx_addr_max;
246 u32 np_tx_fifo_size;
247
248 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
249 hsotg->params.g_np_tx_fifo_size);
250
251 /* Get Endpoint Info Control block size in DWORDs. */
252 tx_addr_max = hsotg->hw_params.total_fifo_size;
253
254 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
255 if (tx_addr_max <= addr)
256 return 0;
257
258 return tx_addr_max - addr;
259}
260
261/**
262 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
263 *
264 * @hsotg: Programming view of the DWC_otg controller
265 *
266 */
267static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
268{
269 u32 gintsts2;
270 u32 gintmsk2;
271
272 gintsts2 = dwc2_readl(hsotg, GINTSTS2);
273 gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
274 gintsts2 &= gintmsk2;
275
276 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
277 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
278 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
279 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
280 }
281}
282
283/**
284 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
285 * TX FIFOs
286 *
287 * @hsotg: Programming view of the DWC_otg controller
288 */
289int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
290{
291 int tx_fifo_count;
292 int tx_fifo_depth;
293
294 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
295
296 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
297
298 if (!tx_fifo_count)
299 return tx_fifo_depth;
300 else
301 return tx_fifo_depth / tx_fifo_count;
302}
303
304/**
305 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
306 * @hsotg: The device instance.
307 */
308static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
309{
310 unsigned int ep;
311 unsigned int addr;
312 int timeout;
313
314 u32 val;
315 u32 *txfsz = hsotg->params.g_tx_fifo_size;
316
317 /* Reset fifo map if not correctly cleared during previous session */
318 WARN_ON(hsotg->fifo_map);
319 hsotg->fifo_map = 0;
320
321 /* set RX/NPTX FIFO sizes */
322 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
323 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
324 FIFOSIZE_STARTADDR_SHIFT) |
325 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
326 GNPTXFSIZ);
327
328 /*
329 * arange all the rest of the TX FIFOs, as some versions of this
330 * block have overlapping default addresses. This also ensures
331 * that if the settings have been changed, then they are set to
332 * known values.
333 */
334
335 /* start at the end of the GNPTXFSIZ, rounded up */
336 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
337
338 /*
339 * Configure fifos sizes from provided configuration and assign
340 * them to endpoints dynamically according to maxpacket size value of
341 * given endpoint.
342 */
343 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
344 if (!txfsz[ep])
345 continue;
346 val = addr;
347 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
348 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
349 "insufficient fifo memory");
350 addr += txfsz[ep];
351
352 dwc2_writel(hsotg, val, DPTXFSIZN(ep));
353 val = dwc2_readl(hsotg, DPTXFSIZN(ep));
354 }
355
356 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
357 addr << GDFIFOCFG_EPINFOBASE_SHIFT,
358 GDFIFOCFG);
359 /*
360 * according to p428 of the design guide, we need to ensure that
361 * all fifos are flushed before continuing
362 */
363
364 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
365 GRSTCTL_RXFFLSH, GRSTCTL);
366
367 /* wait until the fifos are both flushed */
368 timeout = 100;
369 while (1) {
370 val = dwc2_readl(hsotg, GRSTCTL);
371
372 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
373 break;
374
375 if (--timeout == 0) {
376 dev_err(hsotg->dev,
377 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
378 __func__, val);
379 break;
380 }
381
382 udelay(1);
383 }
384
385 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
386}
387
388/**
389 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
390 * @ep: USB endpoint to allocate request for.
391 * @flags: Allocation flags
392 *
393 * Allocate a new USB request structure appropriate for the specified endpoint
394 */
395static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
396 gfp_t flags)
397{
398 struct dwc2_hsotg_req *req;
399
400 req = kzalloc(sizeof(*req), flags);
401 if (!req)
402 return NULL;
403
404 INIT_LIST_HEAD(&req->queue);
405
406 return &req->req;
407}
408
409/**
410 * is_ep_periodic - return true if the endpoint is in periodic mode.
411 * @hs_ep: The endpoint to query.
412 *
413 * Returns true if the endpoint is in periodic mode, meaning it is being
414 * used for an Interrupt or ISO transfer.
415 */
416static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
417{
418 return hs_ep->periodic;
419}
420
421/**
422 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
423 * @hsotg: The device state.
424 * @hs_ep: The endpoint for the request
425 * @hs_req: The request being processed.
426 *
427 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
428 * of a request to ensure the buffer is ready for access by the caller.
429 */
430static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
431 struct dwc2_hsotg_ep *hs_ep,
432 struct dwc2_hsotg_req *hs_req)
433{
434 struct usb_request *req = &hs_req->req;
435
436 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
437}
438
439/*
440 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
441 * for Control endpoint
442 * @hsotg: The device state.
443 *
444 * This function will allocate 4 descriptor chains for EP 0: 2 for
445 * Setup stage, per one for IN and OUT data/status transactions.
446 */
447static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
448{
449 hsotg->setup_desc[0] =
450 dmam_alloc_coherent(hsotg->dev,
451 sizeof(struct dwc2_dma_desc),
452 &hsotg->setup_desc_dma[0],
453 GFP_KERNEL);
454 if (!hsotg->setup_desc[0])
455 goto fail;
456
457 hsotg->setup_desc[1] =
458 dmam_alloc_coherent(hsotg->dev,
459 sizeof(struct dwc2_dma_desc),
460 &hsotg->setup_desc_dma[1],
461 GFP_KERNEL);
462 if (!hsotg->setup_desc[1])
463 goto fail;
464
465 hsotg->ctrl_in_desc =
466 dmam_alloc_coherent(hsotg->dev,
467 sizeof(struct dwc2_dma_desc),
468 &hsotg->ctrl_in_desc_dma,
469 GFP_KERNEL);
470 if (!hsotg->ctrl_in_desc)
471 goto fail;
472
473 hsotg->ctrl_out_desc =
474 dmam_alloc_coherent(hsotg->dev,
475 sizeof(struct dwc2_dma_desc),
476 &hsotg->ctrl_out_desc_dma,
477 GFP_KERNEL);
478 if (!hsotg->ctrl_out_desc)
479 goto fail;
480
481 return 0;
482
483fail:
484 return -ENOMEM;
485}
486
487/**
488 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
489 * @hsotg: The controller state.
490 * @hs_ep: The endpoint we're going to write for.
491 * @hs_req: The request to write data for.
492 *
493 * This is called when the TxFIFO has some space in it to hold a new
494 * transmission and we have something to give it. The actual setup of
495 * the data size is done elsewhere, so all we have to do is to actually
496 * write the data.
497 *
498 * The return value is zero if there is more space (or nothing was done)
499 * otherwise -ENOSPC is returned if the FIFO space was used up.
500 *
501 * This routine is only needed for PIO
502 */
503static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
504 struct dwc2_hsotg_ep *hs_ep,
505 struct dwc2_hsotg_req *hs_req)
506{
507 bool periodic = is_ep_periodic(hs_ep);
508 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
509 int buf_pos = hs_req->req.actual;
510 int to_write = hs_ep->size_loaded;
511 void *data;
512 int can_write;
513 int pkt_round;
514 int max_transfer;
515
516 to_write -= (buf_pos - hs_ep->last_load);
517
518 /* if there's nothing to write, get out early */
519 if (to_write == 0)
520 return 0;
521
522 if (periodic && !hsotg->dedicated_fifos) {
523 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
524 int size_left;
525 int size_done;
526
527 /*
528 * work out how much data was loaded so we can calculate
529 * how much data is left in the fifo.
530 */
531
532 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
533
534 /*
535 * if shared fifo, we cannot write anything until the
536 * previous data has been completely sent.
537 */
538 if (hs_ep->fifo_load != 0) {
539 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
540 return -ENOSPC;
541 }
542
543 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
544 __func__, size_left,
545 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
546
547 /* how much of the data has moved */
548 size_done = hs_ep->size_loaded - size_left;
549
550 /* how much data is left in the fifo */
551 can_write = hs_ep->fifo_load - size_done;
552 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
553 __func__, can_write);
554
555 can_write = hs_ep->fifo_size - can_write;
556 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
557 __func__, can_write);
558
559 if (can_write <= 0) {
560 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
561 return -ENOSPC;
562 }
563 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
564 can_write = dwc2_readl(hsotg,
565 DTXFSTS(hs_ep->fifo_index));
566
567 can_write &= 0xffff;
568 can_write *= 4;
569 } else {
570 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
571 dev_dbg(hsotg->dev,
572 "%s: no queue slots available (0x%08x)\n",
573 __func__, gnptxsts);
574
575 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
576 return -ENOSPC;
577 }
578
579 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
580 can_write *= 4; /* fifo size is in 32bit quantities. */
581 }
582
583 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
584
585 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
586 __func__, gnptxsts, can_write, to_write, max_transfer);
587
588 /*
589 * limit to 512 bytes of data, it seems at least on the non-periodic
590 * FIFO, requests of >512 cause the endpoint to get stuck with a
591 * fragment of the end of the transfer in it.
592 */
593 if (can_write > 512 && !periodic)
594 can_write = 512;
595
596 /*
597 * limit the write to one max-packet size worth of data, but allow
598 * the transfer to return that it did not run out of fifo space
599 * doing it.
600 */
601 if (to_write > max_transfer) {
602 to_write = max_transfer;
603
604 /* it's needed only when we do not use dedicated fifos */
605 if (!hsotg->dedicated_fifos)
606 dwc2_hsotg_en_gsint(hsotg,
607 periodic ? GINTSTS_PTXFEMP :
608 GINTSTS_NPTXFEMP);
609 }
610
611 /* see if we can write data */
612
613 if (to_write > can_write) {
614 to_write = can_write;
615 pkt_round = to_write % max_transfer;
616
617 /*
618 * Round the write down to an
619 * exact number of packets.
620 *
621 * Note, we do not currently check to see if we can ever
622 * write a full packet or not to the FIFO.
623 */
624
625 if (pkt_round)
626 to_write -= pkt_round;
627
628 /*
629 * enable correct FIFO interrupt to alert us when there
630 * is more room left.
631 */
632
633 /* it's needed only when we do not use dedicated fifos */
634 if (!hsotg->dedicated_fifos)
635 dwc2_hsotg_en_gsint(hsotg,
636 periodic ? GINTSTS_PTXFEMP :
637 GINTSTS_NPTXFEMP);
638 }
639
640 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
641 to_write, hs_req->req.length, can_write, buf_pos);
642
643 if (to_write <= 0)
644 return -ENOSPC;
645
646 hs_req->req.actual = buf_pos + to_write;
647 hs_ep->total_data += to_write;
648
649 if (periodic)
650 hs_ep->fifo_load += to_write;
651
652 to_write = DIV_ROUND_UP(to_write, 4);
653 data = hs_req->req.buf + buf_pos;
654
655 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
656
657 return (to_write >= can_write) ? -ENOSPC : 0;
658}
659
660/**
661 * get_ep_limit - get the maximum data legnth for this endpoint
662 * @hs_ep: The endpoint
663 *
664 * Return the maximum data that can be queued in one go on a given endpoint
665 * so that transfers that are too long can be split.
666 */
667static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
668{
669 int index = hs_ep->index;
670 unsigned int maxsize;
671 unsigned int maxpkt;
672
673 if (index != 0) {
674 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
675 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
676 } else {
677 maxsize = 64 + 64;
678 if (hs_ep->dir_in)
679 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
680 else
681 maxpkt = 2;
682 }
683
684 /* we made the constant loading easier above by using +1 */
685 maxpkt--;
686 maxsize--;
687
688 /*
689 * constrain by packet count if maxpkts*pktsize is greater
690 * than the length register size.
691 */
692
693 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
694 maxsize = maxpkt * hs_ep->ep.maxpacket;
695
696 return maxsize;
697}
698
699/**
700 * dwc2_hsotg_read_frameno - read current frame number
701 * @hsotg: The device instance
702 *
703 * Return the current frame number
704 */
705static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
706{
707 u32 dsts;
708
709 dsts = dwc2_readl(hsotg, DSTS);
710 dsts &= DSTS_SOFFN_MASK;
711 dsts >>= DSTS_SOFFN_SHIFT;
712
713 return dsts;
714}
715
716/**
717 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
718 * DMA descriptor chain prepared for specific endpoint
719 * @hs_ep: The endpoint
720 *
721 * Return the maximum data that can be queued in one go on a given endpoint
722 * depending on its descriptor chain capacity so that transfers that
723 * are too long can be split.
724 */
725static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
726{
727 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
728 int is_isoc = hs_ep->isochronous;
729 unsigned int maxsize;
730 u32 mps = hs_ep->ep.maxpacket;
731 int dir_in = hs_ep->dir_in;
732
733 if (is_isoc)
734 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
735 DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
736 MAX_DMA_DESC_NUM_HS_ISOC;
737 else
738 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
739
740 /* Interrupt OUT EP with mps not multiple of 4 */
741 if (hs_ep->index)
742 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
743 maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
744
745 return maxsize;
746}
747
748/*
749 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
750 * @hs_ep: The endpoint
751 * @mask: RX/TX bytes mask to be defined
752 *
753 * Returns maximum data payload for one descriptor after analyzing endpoint
754 * characteristics.
755 * DMA descriptor transfer bytes limit depends on EP type:
756 * Control out - MPS,
757 * Isochronous - descriptor rx/tx bytes bitfield limit,
758 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
759 * have concatenations from various descriptors within one packet.
760 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
761 * to a single descriptor.
762 *
763 * Selects corresponding mask for RX/TX bytes as well.
764 */
765static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
766{
767 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
768 u32 mps = hs_ep->ep.maxpacket;
769 int dir_in = hs_ep->dir_in;
770 u32 desc_size = 0;
771
772 if (!hs_ep->index && !dir_in) {
773 desc_size = mps;
774 *mask = DEV_DMA_NBYTES_MASK;
775 } else if (hs_ep->isochronous) {
776 if (dir_in) {
777 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
778 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
779 } else {
780 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
781 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
782 }
783 } else {
784 desc_size = DEV_DMA_NBYTES_LIMIT;
785 *mask = DEV_DMA_NBYTES_MASK;
786
787 /* Round down desc_size to be mps multiple */
788 desc_size -= desc_size % mps;
789 }
790
791 /* Interrupt OUT EP with mps not multiple of 4 */
792 if (hs_ep->index)
793 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
794 desc_size = mps;
795 *mask = DEV_DMA_NBYTES_MASK;
796 }
797
798 return desc_size;
799}
800
801static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
802 struct dwc2_dma_desc **desc,
803 dma_addr_t dma_buff,
804 unsigned int len,
805 bool true_last)
806{
807 int dir_in = hs_ep->dir_in;
808 u32 mps = hs_ep->ep.maxpacket;
809 u32 maxsize = 0;
810 u32 offset = 0;
811 u32 mask = 0;
812 int i;
813
814 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
815
816 hs_ep->desc_count = (len / maxsize) +
817 ((len % maxsize) ? 1 : 0);
818 if (len == 0)
819 hs_ep->desc_count = 1;
820
821 for (i = 0; i < hs_ep->desc_count; ++i) {
822 (*desc)->status = 0;
823 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
824 << DEV_DMA_BUFF_STS_SHIFT);
825
826 if (len > maxsize) {
827 if (!hs_ep->index && !dir_in)
828 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
829
830 (*desc)->status |=
831 maxsize << DEV_DMA_NBYTES_SHIFT & mask;
832 (*desc)->buf = dma_buff + offset;
833
834 len -= maxsize;
835 offset += maxsize;
836 } else {
837 if (true_last)
838 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
839
840 if (dir_in)
841 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
842 ((hs_ep->send_zlp && true_last) ?
843 DEV_DMA_SHORT : 0);
844
845 (*desc)->status |=
846 len << DEV_DMA_NBYTES_SHIFT & mask;
847 (*desc)->buf = dma_buff + offset;
848 }
849
850 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
851 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
852 << DEV_DMA_BUFF_STS_SHIFT);
853 (*desc)++;
854 }
855}
856
857/*
858 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
859 * @hs_ep: The endpoint
860 * @ureq: Request to transfer
861 * @offset: offset in bytes
862 * @len: Length of the transfer
863 *
864 * This function will iterate over descriptor chain and fill its entries
865 * with corresponding information based on transfer data.
866 */
867static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
868 dma_addr_t dma_buff,
869 unsigned int len)
870{
871 struct usb_request *ureq = NULL;
872 struct dwc2_dma_desc *desc = hs_ep->desc_list;
873 struct scatterlist *sg;
874 int i;
875 u8 desc_count = 0;
876
877 if (hs_ep->req)
878 ureq = &hs_ep->req->req;
879
880 /* non-DMA sg buffer */
881 if (!ureq || !ureq->num_sgs) {
882 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
883 dma_buff, len, true);
884 return;
885 }
886
887 /* DMA sg buffer */
888 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
889 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
890 sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
891 sg_is_last(sg));
892 desc_count += hs_ep->desc_count;
893 }
894
895 hs_ep->desc_count = desc_count;
896}
897
898/*
899 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
900 * @hs_ep: The isochronous endpoint.
901 * @dma_buff: usb requests dma buffer.
902 * @len: usb request transfer length.
903 *
904 * Fills next free descriptor with the data of the arrived usb request,
905 * frame info, sets Last and IOC bits increments next_desc. If filled
906 * descriptor is not the first one, removes L bit from the previous descriptor
907 * status.
908 */
909static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
910 dma_addr_t dma_buff, unsigned int len)
911{
912 struct dwc2_dma_desc *desc;
913 struct dwc2_hsotg *hsotg = hs_ep->parent;
914 u32 index;
915 u32 mask = 0;
916 u8 pid = 0;
917
918 dwc2_gadget_get_desc_params(hs_ep, &mask);
919
920 index = hs_ep->next_desc;
921 desc = &hs_ep->desc_list[index];
922
923 /* Check if descriptor chain full */
924 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
925 DEV_DMA_BUFF_STS_HREADY) {
926 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
927 return 1;
928 }
929
930 /* Clear L bit of previous desc if more than one entries in the chain */
931 if (hs_ep->next_desc)
932 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
933
934 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
935 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
936
937 desc->status = 0;
938 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
939
940 desc->buf = dma_buff;
941 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
942 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
943
944 if (hs_ep->dir_in) {
945 if (len)
946 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
947 else
948 pid = 1;
949 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
950 DEV_DMA_ISOC_PID_MASK) |
951 ((len % hs_ep->ep.maxpacket) ?
952 DEV_DMA_SHORT : 0) |
953 ((hs_ep->target_frame <<
954 DEV_DMA_ISOC_FRNUM_SHIFT) &
955 DEV_DMA_ISOC_FRNUM_MASK);
956 }
957
958 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
959 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
960
961 /* Increment frame number by interval for IN */
962 if (hs_ep->dir_in)
963 dwc2_gadget_incr_frame_num(hs_ep);
964
965 /* Update index of last configured entry in the chain */
966 hs_ep->next_desc++;
967 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
968 hs_ep->next_desc = 0;
969
970 return 0;
971}
972
973/*
974 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
975 * @hs_ep: The isochronous endpoint.
976 *
977 * Prepare descriptor chain for isochronous endpoints. Afterwards
978 * write DMA address to HW and enable the endpoint.
979 */
980static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
981{
982 struct dwc2_hsotg *hsotg = hs_ep->parent;
983 struct dwc2_hsotg_req *hs_req, *treq;
984 int index = hs_ep->index;
985 int ret;
986 int i;
987 u32 dma_reg;
988 u32 depctl;
989 u32 ctrl;
990 struct dwc2_dma_desc *desc;
991
992 if (list_empty(&hs_ep->queue)) {
993 hs_ep->target_frame = TARGET_FRAME_INITIAL;
994 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
995 return;
996 }
997
998 /* Initialize descriptor chain by Host Busy status */
999 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1000 desc = &hs_ep->desc_list[i];
1001 desc->status = 0;
1002 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1003 << DEV_DMA_BUFF_STS_SHIFT);
1004 }
1005
1006 hs_ep->next_desc = 0;
1007 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1008 dma_addr_t dma_addr = hs_req->req.dma;
1009
1010 if (hs_req->req.num_sgs) {
1011 WARN_ON(hs_req->req.num_sgs > 1);
1012 dma_addr = sg_dma_address(hs_req->req.sg);
1013 }
1014 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1015 hs_req->req.length);
1016 if (ret)
1017 break;
1018 }
1019
1020 hs_ep->compl_desc = 0;
1021 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1022 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1023
1024 /* write descriptor chain address to control register */
1025 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1026
1027 ctrl = dwc2_readl(hsotg, depctl);
1028 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1029 dwc2_writel(hsotg, ctrl, depctl);
1030}
1031
1032static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1033static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1034 struct dwc2_hsotg_ep *hs_ep,
1035 struct dwc2_hsotg_req *hs_req,
1036 int result);
1037
1038/**
1039 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1040 * @hsotg: The controller state.
1041 * @hs_ep: The endpoint to process a request for
1042 * @hs_req: The request to start.
1043 * @continuing: True if we are doing more for the current request.
1044 *
1045 * Start the given request running by setting the endpoint registers
1046 * appropriately, and writing any data to the FIFOs.
1047 */
1048static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1049 struct dwc2_hsotg_ep *hs_ep,
1050 struct dwc2_hsotg_req *hs_req,
1051 bool continuing)
1052{
1053 struct usb_request *ureq = &hs_req->req;
1054 int index = hs_ep->index;
1055 int dir_in = hs_ep->dir_in;
1056 u32 epctrl_reg;
1057 u32 epsize_reg;
1058 u32 epsize;
1059 u32 ctrl;
1060 unsigned int length;
1061 unsigned int packets;
1062 unsigned int maxreq;
1063 unsigned int dma_reg;
1064
1065 if (index != 0) {
1066 if (hs_ep->req && !continuing) {
1067 dev_err(hsotg->dev, "%s: active request\n", __func__);
1068 WARN_ON(1);
1069 return;
1070 } else if (hs_ep->req != hs_req && continuing) {
1071 dev_err(hsotg->dev,
1072 "%s: continue different req\n", __func__);
1073 WARN_ON(1);
1074 return;
1075 }
1076 }
1077
1078 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1079 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1080 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1081
1082 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1083 __func__, dwc2_readl(hsotg, epctrl_reg), index,
1084 hs_ep->dir_in ? "in" : "out");
1085
1086 /* If endpoint is stalled, we will restart request later */
1087 ctrl = dwc2_readl(hsotg, epctrl_reg);
1088
1089 if (index && ctrl & DXEPCTL_STALL) {
1090 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1091 return;
1092 }
1093
1094 length = ureq->length - ureq->actual;
1095 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1096 ureq->length, ureq->actual);
1097
1098 if (!using_desc_dma(hsotg))
1099 maxreq = get_ep_limit(hs_ep);
1100 else
1101 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1102
1103 if (length > maxreq) {
1104 int round = maxreq % hs_ep->ep.maxpacket;
1105
1106 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1107 __func__, length, maxreq, round);
1108
1109 /* round down to multiple of packets */
1110 if (round)
1111 maxreq -= round;
1112
1113 length = maxreq;
1114 }
1115
1116 if (length)
1117 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1118 else
1119 packets = 1; /* send one packet if length is zero. */
1120
1121 if (dir_in && index != 0)
1122 if (hs_ep->isochronous)
1123 epsize = DXEPTSIZ_MC(packets);
1124 else
1125 epsize = DXEPTSIZ_MC(1);
1126 else
1127 epsize = 0;
1128
1129 /*
1130 * zero length packet should be programmed on its own and should not
1131 * be counted in DIEPTSIZ.PktCnt with other packets.
1132 */
1133 if (dir_in && ureq->zero && !continuing) {
1134 /* Test if zlp is actually required. */
1135 if ((ureq->length >= hs_ep->ep.maxpacket) &&
1136 !(ureq->length % hs_ep->ep.maxpacket))
1137 hs_ep->send_zlp = 1;
1138 }
1139
1140 epsize |= DXEPTSIZ_PKTCNT(packets);
1141 epsize |= DXEPTSIZ_XFERSIZE(length);
1142
1143 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1144 __func__, packets, length, ureq->length, epsize, epsize_reg);
1145
1146 /* store the request as the current one we're doing */
1147 hs_ep->req = hs_req;
1148
1149 if (using_desc_dma(hsotg)) {
1150 u32 offset = 0;
1151 u32 mps = hs_ep->ep.maxpacket;
1152
1153 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1154 if (!dir_in) {
1155 if (!index)
1156 length = mps;
1157 else if (length % mps)
1158 length += (mps - (length % mps));
1159 }
1160
1161 if (continuing)
1162 offset = ureq->actual;
1163
1164 /* Fill DDMA chain entries */
1165 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1166 length);
1167
1168 /* write descriptor chain address to control register */
1169 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1170
1171 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1172 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1173 } else {
1174 /* write size / packets */
1175 dwc2_writel(hsotg, epsize, epsize_reg);
1176
1177 if (using_dma(hsotg) && !continuing && (length != 0)) {
1178 /*
1179 * write DMA address to control register, buffer
1180 * already synced by dwc2_hsotg_ep_queue().
1181 */
1182
1183 dwc2_writel(hsotg, ureq->dma, dma_reg);
1184
1185 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1186 __func__, &ureq->dma, dma_reg);
1187 }
1188 }
1189
1190 if (hs_ep->isochronous) {
1191 if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1192 if (hs_ep->interval == 1) {
1193 if (hs_ep->target_frame & 0x1)
1194 ctrl |= DXEPCTL_SETODDFR;
1195 else
1196 ctrl |= DXEPCTL_SETEVENFR;
1197 }
1198 ctrl |= DXEPCTL_CNAK;
1199 } else {
1200 hs_req->req.frame_number = hs_ep->target_frame;
1201 hs_req->req.actual = 0;
1202 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1203 return;
1204 }
1205 }
1206
1207 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1208
1209 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1210
1211 /* For Setup request do not clear NAK */
1212 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1213 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1214
1215 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1216 dwc2_writel(hsotg, ctrl, epctrl_reg);
1217
1218 /*
1219 * set these, it seems that DMA support increments past the end
1220 * of the packet buffer so we need to calculate the length from
1221 * this information.
1222 */
1223 hs_ep->size_loaded = length;
1224 hs_ep->last_load = ureq->actual;
1225
1226 if (dir_in && !using_dma(hsotg)) {
1227 /* set these anyway, we may need them for non-periodic in */
1228 hs_ep->fifo_load = 0;
1229
1230 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1231 }
1232
1233 /*
1234 * Note, trying to clear the NAK here causes problems with transmit
1235 * on the S3C6400 ending up with the TXFIFO becoming full.
1236 */
1237
1238 /* check ep is enabled */
1239 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1240 dev_dbg(hsotg->dev,
1241 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1242 index, dwc2_readl(hsotg, epctrl_reg));
1243
1244 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1245 __func__, dwc2_readl(hsotg, epctrl_reg));
1246
1247 /* enable ep interrupts */
1248 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1249}
1250
1251/**
1252 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1253 * @hsotg: The device state.
1254 * @hs_ep: The endpoint the request is on.
1255 * @req: The request being processed.
1256 *
1257 * We've been asked to queue a request, so ensure that the memory buffer
1258 * is correctly setup for DMA. If we've been passed an extant DMA address
1259 * then ensure the buffer has been synced to memory. If our buffer has no
1260 * DMA memory, then we map the memory and mark our request to allow us to
1261 * cleanup on completion.
1262 */
1263static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1264 struct dwc2_hsotg_ep *hs_ep,
1265 struct usb_request *req)
1266{
1267 int ret;
1268
1269 hs_ep->map_dir = hs_ep->dir_in;
1270 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1271 if (ret)
1272 goto dma_error;
1273
1274 return 0;
1275
1276dma_error:
1277 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1278 __func__, req->buf, req->length);
1279
1280 return -EIO;
1281}
1282
1283static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1284 struct dwc2_hsotg_ep *hs_ep,
1285 struct dwc2_hsotg_req *hs_req)
1286{
1287 void *req_buf = hs_req->req.buf;
1288
1289 /* If dma is not being used or buffer is aligned */
1290 if (!using_dma(hsotg) || !((long)req_buf & 3))
1291 return 0;
1292
1293 WARN_ON(hs_req->saved_req_buf);
1294
1295 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1296 hs_ep->ep.name, req_buf, hs_req->req.length);
1297
1298 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1299 if (!hs_req->req.buf) {
1300 hs_req->req.buf = req_buf;
1301 dev_err(hsotg->dev,
1302 "%s: unable to allocate memory for bounce buffer\n",
1303 __func__);
1304 return -ENOMEM;
1305 }
1306
1307 /* Save actual buffer */
1308 hs_req->saved_req_buf = req_buf;
1309
1310 if (hs_ep->dir_in)
1311 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1312 return 0;
1313}
1314
1315static void
1316dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1317 struct dwc2_hsotg_ep *hs_ep,
1318 struct dwc2_hsotg_req *hs_req)
1319{
1320 /* If dma is not being used or buffer was aligned */
1321 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1322 return;
1323
1324 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1325 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1326
1327 /* Copy data from bounce buffer on successful out transfer */
1328 if (!hs_ep->dir_in && !hs_req->req.status)
1329 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1330 hs_req->req.actual);
1331
1332 /* Free bounce buffer */
1333 kfree(hs_req->req.buf);
1334
1335 hs_req->req.buf = hs_req->saved_req_buf;
1336 hs_req->saved_req_buf = NULL;
1337}
1338
1339/**
1340 * dwc2_gadget_target_frame_elapsed - Checks target frame
1341 * @hs_ep: The driver endpoint to check
1342 *
1343 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1344 * corresponding transfer.
1345 */
1346static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1347{
1348 struct dwc2_hsotg *hsotg = hs_ep->parent;
1349 u32 target_frame = hs_ep->target_frame;
1350 u32 current_frame = hsotg->frame_number;
1351 bool frame_overrun = hs_ep->frame_overrun;
1352 u16 limit = DSTS_SOFFN_LIMIT;
1353
1354 if (hsotg->gadget.speed != USB_SPEED_HIGH)
1355 limit >>= 3;
1356
1357 if (!frame_overrun && current_frame >= target_frame)
1358 return true;
1359
1360 if (frame_overrun && current_frame >= target_frame &&
1361 ((current_frame - target_frame) < limit / 2))
1362 return true;
1363
1364 return false;
1365}
1366
1367/*
1368 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1369 * @hsotg: The driver state
1370 * @hs_ep: the ep descriptor chain is for
1371 *
1372 * Called to update EP0 structure's pointers depend on stage of
1373 * control transfer.
1374 */
1375static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1376 struct dwc2_hsotg_ep *hs_ep)
1377{
1378 switch (hsotg->ep0_state) {
1379 case DWC2_EP0_SETUP:
1380 case DWC2_EP0_STATUS_OUT:
1381 hs_ep->desc_list = hsotg->setup_desc[0];
1382 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1383 break;
1384 case DWC2_EP0_DATA_IN:
1385 case DWC2_EP0_STATUS_IN:
1386 hs_ep->desc_list = hsotg->ctrl_in_desc;
1387 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1388 break;
1389 case DWC2_EP0_DATA_OUT:
1390 hs_ep->desc_list = hsotg->ctrl_out_desc;
1391 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1392 break;
1393 default:
1394 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1395 hsotg->ep0_state);
1396 return -EINVAL;
1397 }
1398
1399 return 0;
1400}
1401
1402static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1403 gfp_t gfp_flags)
1404{
1405 struct dwc2_hsotg_req *hs_req = our_req(req);
1406 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1407 struct dwc2_hsotg *hs = hs_ep->parent;
1408 bool first;
1409 int ret;
1410 u32 maxsize = 0;
1411 u32 mask = 0;
1412
1413
1414 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1415 ep->name, req, req->length, req->buf, req->no_interrupt,
1416 req->zero, req->short_not_ok);
1417
1418 /* Prevent new request submission when controller is suspended */
1419 if (hs->lx_state != DWC2_L0) {
1420 dev_dbg(hs->dev, "%s: submit request only in active state\n",
1421 __func__);
1422 return -EAGAIN;
1423 }
1424
1425 /* initialise status of the request */
1426 INIT_LIST_HEAD(&hs_req->queue);
1427 req->actual = 0;
1428 req->status = -EINPROGRESS;
1429
1430 /* Don't queue ISOC request if length greater than mps*mc */
1431 if (hs_ep->isochronous &&
1432 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1433 dev_err(hs->dev, "req length > maxpacket*mc\n");
1434 return -EINVAL;
1435 }
1436
1437 /* In DDMA mode for ISOC's don't queue request if length greater
1438 * than descriptor limits.
1439 */
1440 if (using_desc_dma(hs) && hs_ep->isochronous) {
1441 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1442 if (hs_ep->dir_in && req->length > maxsize) {
1443 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1444 req->length, maxsize);
1445 return -EINVAL;
1446 }
1447
1448 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1449 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1450 req->length, hs_ep->ep.maxpacket);
1451 return -EINVAL;
1452 }
1453 }
1454
1455 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1456 if (ret)
1457 return ret;
1458
1459 /* if we're using DMA, sync the buffers as necessary */
1460 if (using_dma(hs)) {
1461 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1462 if (ret)
1463 return ret;
1464 }
1465 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1466 if (using_desc_dma(hs) && !hs_ep->index) {
1467 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1468 if (ret)
1469 return ret;
1470 }
1471
1472 first = list_empty(&hs_ep->queue);
1473 list_add_tail(&hs_req->queue, &hs_ep->queue);
1474
1475 /*
1476 * Handle DDMA isochronous transfers separately - just add new entry
1477 * to the descriptor chain.
1478 * Transfer will be started once SW gets either one of NAK or
1479 * OutTknEpDis interrupts.
1480 */
1481 if (using_desc_dma(hs) && hs_ep->isochronous) {
1482 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1483 dma_addr_t dma_addr = hs_req->req.dma;
1484
1485 if (hs_req->req.num_sgs) {
1486 WARN_ON(hs_req->req.num_sgs > 1);
1487 dma_addr = sg_dma_address(hs_req->req.sg);
1488 }
1489 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1490 hs_req->req.length);
1491 }
1492 return 0;
1493 }
1494
1495 /* Change EP direction if status phase request is after data out */
1496 if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1497 hs->ep0_state == DWC2_EP0_DATA_OUT)
1498 hs_ep->dir_in = 1;
1499
1500 if (first) {
1501 if (!hs_ep->isochronous) {
1502 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1503 return 0;
1504 }
1505
1506 /* Update current frame number value. */
1507 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1508 while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1509 dwc2_gadget_incr_frame_num(hs_ep);
1510 /* Update current frame number value once more as it
1511 * changes here.
1512 */
1513 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1514 }
1515
1516 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1517 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1518 }
1519 return 0;
1520}
1521
1522static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1523 gfp_t gfp_flags)
1524{
1525 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1526 struct dwc2_hsotg *hs = hs_ep->parent;
1527 unsigned long flags;
1528 int ret;
1529
1530 spin_lock_irqsave(&hs->lock, flags);
1531 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1532 spin_unlock_irqrestore(&hs->lock, flags);
1533
1534 return ret;
1535}
1536
1537static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1538 struct usb_request *req)
1539{
1540 struct dwc2_hsotg_req *hs_req = our_req(req);
1541
1542 kfree(hs_req);
1543}
1544
1545/**
1546 * dwc2_hsotg_complete_oursetup - setup completion callback
1547 * @ep: The endpoint the request was on.
1548 * @req: The request completed.
1549 *
1550 * Called on completion of any requests the driver itself
1551 * submitted that need cleaning up.
1552 */
1553static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1554 struct usb_request *req)
1555{
1556 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1557 struct dwc2_hsotg *hsotg = hs_ep->parent;
1558
1559 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1560
1561 dwc2_hsotg_ep_free_request(ep, req);
1562}
1563
1564/**
1565 * ep_from_windex - convert control wIndex value to endpoint
1566 * @hsotg: The driver state.
1567 * @windex: The control request wIndex field (in host order).
1568 *
1569 * Convert the given wIndex into a pointer to an driver endpoint
1570 * structure, or return NULL if it is not a valid endpoint.
1571 */
1572static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1573 u32 windex)
1574{
1575 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1576 int idx = windex & 0x7F;
1577
1578 if (windex >= 0x100)
1579 return NULL;
1580
1581 if (idx > hsotg->num_of_eps)
1582 return NULL;
1583
1584 return index_to_ep(hsotg, idx, dir);
1585}
1586
1587/**
1588 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1589 * @hsotg: The driver state.
1590 * @testmode: requested usb test mode
1591 * Enable usb Test Mode requested by the Host.
1592 */
1593int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1594{
1595 int dctl = dwc2_readl(hsotg, DCTL);
1596
1597 dctl &= ~DCTL_TSTCTL_MASK;
1598 switch (testmode) {
1599 case USB_TEST_J:
1600 case USB_TEST_K:
1601 case USB_TEST_SE0_NAK:
1602 case USB_TEST_PACKET:
1603 case USB_TEST_FORCE_ENABLE:
1604 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1605 break;
1606 default:
1607 return -EINVAL;
1608 }
1609 dwc2_writel(hsotg, dctl, DCTL);
1610 return 0;
1611}
1612
1613/**
1614 * dwc2_hsotg_send_reply - send reply to control request
1615 * @hsotg: The device state
1616 * @ep: Endpoint 0
1617 * @buff: Buffer for request
1618 * @length: Length of reply.
1619 *
1620 * Create a request and queue it on the given endpoint. This is useful as
1621 * an internal method of sending replies to certain control requests, etc.
1622 */
1623static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1624 struct dwc2_hsotg_ep *ep,
1625 void *buff,
1626 int length)
1627{
1628 struct usb_request *req;
1629 int ret;
1630
1631 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1632
1633 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1634 hsotg->ep0_reply = req;
1635 if (!req) {
1636 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1637 return -ENOMEM;
1638 }
1639
1640 req->buf = hsotg->ep0_buff;
1641 req->length = length;
1642 /*
1643 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1644 * STATUS stage.
1645 */
1646 req->zero = 0;
1647 req->complete = dwc2_hsotg_complete_oursetup;
1648
1649 if (length)
1650 memcpy(req->buf, buff, length);
1651
1652 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1653 if (ret) {
1654 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1655 return ret;
1656 }
1657
1658 return 0;
1659}
1660
1661/**
1662 * dwc2_hsotg_process_req_status - process request GET_STATUS
1663 * @hsotg: The device state
1664 * @ctrl: USB control request
1665 */
1666static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1667 struct usb_ctrlrequest *ctrl)
1668{
1669 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1670 struct dwc2_hsotg_ep *ep;
1671 __le16 reply;
1672 u16 status;
1673 int ret;
1674
1675 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1676
1677 if (!ep0->dir_in) {
1678 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1679 return -EINVAL;
1680 }
1681
1682 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1683 case USB_RECIP_DEVICE:
1684 status = hsotg->gadget.is_selfpowered <<
1685 USB_DEVICE_SELF_POWERED;
1686 status |= hsotg->remote_wakeup_allowed <<
1687 USB_DEVICE_REMOTE_WAKEUP;
1688 reply = cpu_to_le16(status);
1689 break;
1690
1691 case USB_RECIP_INTERFACE:
1692 /* currently, the data result should be zero */
1693 reply = cpu_to_le16(0);
1694 break;
1695
1696 case USB_RECIP_ENDPOINT:
1697 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1698 if (!ep)
1699 return -ENOENT;
1700
1701 reply = cpu_to_le16(ep->halted ? 1 : 0);
1702 break;
1703
1704 default:
1705 return 0;
1706 }
1707
1708 if (le16_to_cpu(ctrl->wLength) != 2)
1709 return -EINVAL;
1710
1711 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1712 if (ret) {
1713 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1714 return ret;
1715 }
1716
1717 return 1;
1718}
1719
1720static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1721
1722/**
1723 * get_ep_head - return the first request on the endpoint
1724 * @hs_ep: The controller endpoint to get
1725 *
1726 * Get the first request on the endpoint.
1727 */
1728static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1729{
1730 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1731 queue);
1732}
1733
1734/**
1735 * dwc2_gadget_start_next_request - Starts next request from ep queue
1736 * @hs_ep: Endpoint structure
1737 *
1738 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1739 * in its handler. Hence we need to unmask it here to be able to do
1740 * resynchronization.
1741 */
1742static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1743{
1744 struct dwc2_hsotg *hsotg = hs_ep->parent;
1745 int dir_in = hs_ep->dir_in;
1746 struct dwc2_hsotg_req *hs_req;
1747
1748 if (!list_empty(&hs_ep->queue)) {
1749 hs_req = get_ep_head(hs_ep);
1750 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1751 return;
1752 }
1753 if (!hs_ep->isochronous)
1754 return;
1755
1756 if (dir_in) {
1757 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1758 __func__);
1759 } else {
1760 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1761 __func__);
1762 }
1763}
1764
1765/**
1766 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1767 * @hsotg: The device state
1768 * @ctrl: USB control request
1769 */
1770static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1771 struct usb_ctrlrequest *ctrl)
1772{
1773 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1774 struct dwc2_hsotg_req *hs_req;
1775 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1776 struct dwc2_hsotg_ep *ep;
1777 int ret;
1778 bool halted;
1779 u32 recip;
1780 u32 wValue;
1781 u32 wIndex;
1782
1783 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1784 __func__, set ? "SET" : "CLEAR");
1785
1786 wValue = le16_to_cpu(ctrl->wValue);
1787 wIndex = le16_to_cpu(ctrl->wIndex);
1788 recip = ctrl->bRequestType & USB_RECIP_MASK;
1789
1790 switch (recip) {
1791 case USB_RECIP_DEVICE:
1792 switch (wValue) {
1793 case USB_DEVICE_REMOTE_WAKEUP:
1794 if (set)
1795 hsotg->remote_wakeup_allowed = 1;
1796 else
1797 hsotg->remote_wakeup_allowed = 0;
1798 break;
1799
1800 case USB_DEVICE_TEST_MODE:
1801 if ((wIndex & 0xff) != 0)
1802 return -EINVAL;
1803 if (!set)
1804 return -EINVAL;
1805
1806 hsotg->test_mode = wIndex >> 8;
1807 break;
1808 default:
1809 return -ENOENT;
1810 }
1811
1812 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1813 if (ret) {
1814 dev_err(hsotg->dev,
1815 "%s: failed to send reply\n", __func__);
1816 return ret;
1817 }
1818 break;
1819
1820 case USB_RECIP_ENDPOINT:
1821 ep = ep_from_windex(hsotg, wIndex);
1822 if (!ep) {
1823 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1824 __func__, wIndex);
1825 return -ENOENT;
1826 }
1827
1828 switch (wValue) {
1829 case USB_ENDPOINT_HALT:
1830 halted = ep->halted;
1831
1832 if (!ep->wedged)
1833 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1834
1835 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1836 if (ret) {
1837 dev_err(hsotg->dev,
1838 "%s: failed to send reply\n", __func__);
1839 return ret;
1840 }
1841
1842 /*
1843 * we have to complete all requests for ep if it was
1844 * halted, and the halt was cleared by CLEAR_FEATURE
1845 */
1846
1847 if (!set && halted) {
1848 /*
1849 * If we have request in progress,
1850 * then complete it
1851 */
1852 if (ep->req) {
1853 hs_req = ep->req;
1854 ep->req = NULL;
1855 list_del_init(&hs_req->queue);
1856 if (hs_req->req.complete) {
1857 spin_unlock(&hsotg->lock);
1858 usb_gadget_giveback_request(
1859 &ep->ep, &hs_req->req);
1860 spin_lock(&hsotg->lock);
1861 }
1862 }
1863
1864 /* If we have pending request, then start it */
1865 if (!ep->req)
1866 dwc2_gadget_start_next_request(ep);
1867 }
1868
1869 break;
1870
1871 default:
1872 return -ENOENT;
1873 }
1874 break;
1875 default:
1876 return -ENOENT;
1877 }
1878 return 1;
1879}
1880
1881static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1882
1883/**
1884 * dwc2_hsotg_stall_ep0 - stall ep0
1885 * @hsotg: The device state
1886 *
1887 * Set stall for ep0 as response for setup request.
1888 */
1889static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1890{
1891 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1892 u32 reg;
1893 u32 ctrl;
1894
1895 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1896 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1897
1898 /*
1899 * DxEPCTL_Stall will be cleared by EP once it has
1900 * taken effect, so no need to clear later.
1901 */
1902
1903 ctrl = dwc2_readl(hsotg, reg);
1904 ctrl |= DXEPCTL_STALL;
1905 ctrl |= DXEPCTL_CNAK;
1906 dwc2_writel(hsotg, ctrl, reg);
1907
1908 dev_dbg(hsotg->dev,
1909 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1910 ctrl, reg, dwc2_readl(hsotg, reg));
1911
1912 /*
1913 * complete won't be called, so we enqueue
1914 * setup request here
1915 */
1916 dwc2_hsotg_enqueue_setup(hsotg);
1917}
1918
1919/**
1920 * dwc2_hsotg_process_control - process a control request
1921 * @hsotg: The device state
1922 * @ctrl: The control request received
1923 *
1924 * The controller has received the SETUP phase of a control request, and
1925 * needs to work out what to do next (and whether to pass it on to the
1926 * gadget driver).
1927 */
1928static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1929 struct usb_ctrlrequest *ctrl)
1930{
1931 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1932 int ret = 0;
1933 u32 dcfg;
1934
1935 dev_dbg(hsotg->dev,
1936 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1937 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1938 ctrl->wIndex, ctrl->wLength);
1939
1940 if (ctrl->wLength == 0) {
1941 ep0->dir_in = 1;
1942 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1943 } else if (ctrl->bRequestType & USB_DIR_IN) {
1944 ep0->dir_in = 1;
1945 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1946 } else {
1947 ep0->dir_in = 0;
1948 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1949 }
1950
1951 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1952 switch (ctrl->bRequest) {
1953 case USB_REQ_SET_ADDRESS:
1954 hsotg->connected = 1;
1955 dcfg = dwc2_readl(hsotg, DCFG);
1956 dcfg &= ~DCFG_DEVADDR_MASK;
1957 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1958 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1959 dwc2_writel(hsotg, dcfg, DCFG);
1960
1961 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1962
1963 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1964 return;
1965
1966 case USB_REQ_GET_STATUS:
1967 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1968 break;
1969
1970 case USB_REQ_CLEAR_FEATURE:
1971 case USB_REQ_SET_FEATURE:
1972 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1973 break;
1974 }
1975 }
1976
1977 /* as a fallback, try delivering it to the driver to deal with */
1978
1979 if (ret == 0 && hsotg->driver) {
1980 spin_unlock(&hsotg->lock);
1981 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1982 spin_lock(&hsotg->lock);
1983 if (ret < 0)
1984 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1985 }
1986
1987 hsotg->delayed_status = false;
1988 if (ret == USB_GADGET_DELAYED_STATUS)
1989 hsotg->delayed_status = true;
1990
1991 /*
1992 * the request is either unhandlable, or is not formatted correctly
1993 * so respond with a STALL for the status stage to indicate failure.
1994 */
1995
1996 if (ret < 0)
1997 dwc2_hsotg_stall_ep0(hsotg);
1998}
1999
2000/**
2001 * dwc2_hsotg_complete_setup - completion of a setup transfer
2002 * @ep: The endpoint the request was on.
2003 * @req: The request completed.
2004 *
2005 * Called on completion of any requests the driver itself submitted for
2006 * EP0 setup packets
2007 */
2008static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2009 struct usb_request *req)
2010{
2011 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2012 struct dwc2_hsotg *hsotg = hs_ep->parent;
2013
2014 if (req->status < 0) {
2015 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2016 return;
2017 }
2018
2019 spin_lock(&hsotg->lock);
2020 if (req->actual == 0)
2021 dwc2_hsotg_enqueue_setup(hsotg);
2022 else
2023 dwc2_hsotg_process_control(hsotg, req->buf);
2024 spin_unlock(&hsotg->lock);
2025}
2026
2027/**
2028 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2029 * @hsotg: The device state.
2030 *
2031 * Enqueue a request on EP0 if necessary to received any SETUP packets
2032 * received from the host.
2033 */
2034static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2035{
2036 struct usb_request *req = hsotg->ctrl_req;
2037 struct dwc2_hsotg_req *hs_req = our_req(req);
2038 int ret;
2039
2040 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2041
2042 req->zero = 0;
2043 req->length = 8;
2044 req->buf = hsotg->ctrl_buff;
2045 req->complete = dwc2_hsotg_complete_setup;
2046
2047 if (!list_empty(&hs_req->queue)) {
2048 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2049 return;
2050 }
2051
2052 hsotg->eps_out[0]->dir_in = 0;
2053 hsotg->eps_out[0]->send_zlp = 0;
2054 hsotg->ep0_state = DWC2_EP0_SETUP;
2055
2056 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2057 if (ret < 0) {
2058 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2059 /*
2060 * Don't think there's much we can do other than watch the
2061 * driver fail.
2062 */
2063 }
2064}
2065
2066static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2067 struct dwc2_hsotg_ep *hs_ep)
2068{
2069 u32 ctrl;
2070 u8 index = hs_ep->index;
2071 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2072 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2073
2074 if (hs_ep->dir_in)
2075 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2076 index);
2077 else
2078 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2079 index);
2080 if (using_desc_dma(hsotg)) {
2081 /* Not specific buffer needed for ep0 ZLP */
2082 dma_addr_t dma = hs_ep->desc_list_dma;
2083
2084 if (!index)
2085 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2086
2087 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2088 } else {
2089 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2090 DXEPTSIZ_XFERSIZE(0),
2091 epsiz_reg);
2092 }
2093
2094 ctrl = dwc2_readl(hsotg, epctl_reg);
2095 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
2096 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2097 ctrl |= DXEPCTL_USBACTEP;
2098 dwc2_writel(hsotg, ctrl, epctl_reg);
2099}
2100
2101/**
2102 * dwc2_hsotg_complete_request - complete a request given to us
2103 * @hsotg: The device state.
2104 * @hs_ep: The endpoint the request was on.
2105 * @hs_req: The request to complete.
2106 * @result: The result code (0 => Ok, otherwise errno)
2107 *
2108 * The given request has finished, so call the necessary completion
2109 * if it has one and then look to see if we can start a new request
2110 * on the endpoint.
2111 *
2112 * Note, expects the ep to already be locked as appropriate.
2113 */
2114static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2115 struct dwc2_hsotg_ep *hs_ep,
2116 struct dwc2_hsotg_req *hs_req,
2117 int result)
2118{
2119 if (!hs_req) {
2120 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2121 return;
2122 }
2123
2124 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2125 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2126
2127 /*
2128 * only replace the status if we've not already set an error
2129 * from a previous transaction
2130 */
2131
2132 if (hs_req->req.status == -EINPROGRESS)
2133 hs_req->req.status = result;
2134
2135 if (using_dma(hsotg))
2136 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2137
2138 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2139
2140 hs_ep->req = NULL;
2141 list_del_init(&hs_req->queue);
2142
2143 /*
2144 * call the complete request with the locks off, just in case the
2145 * request tries to queue more work for this endpoint.
2146 */
2147
2148 if (hs_req->req.complete) {
2149 spin_unlock(&hsotg->lock);
2150 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2151 spin_lock(&hsotg->lock);
2152 }
2153
2154 /* In DDMA don't need to proceed to starting of next ISOC request */
2155 if (using_desc_dma(hsotg) && hs_ep->isochronous)
2156 return;
2157
2158 /*
2159 * Look to see if there is anything else to do. Note, the completion
2160 * of the previous request may have caused a new request to be started
2161 * so be careful when doing this.
2162 */
2163
2164 if (!hs_ep->req && result >= 0)
2165 dwc2_gadget_start_next_request(hs_ep);
2166}
2167
2168/*
2169 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2170 * @hs_ep: The endpoint the request was on.
2171 *
2172 * Get first request from the ep queue, determine descriptor on which complete
2173 * happened. SW discovers which descriptor currently in use by HW, adjusts
2174 * dma_address and calculates index of completed descriptor based on the value
2175 * of DEPDMA register. Update actual length of request, giveback to gadget.
2176 */
2177static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2178{
2179 struct dwc2_hsotg *hsotg = hs_ep->parent;
2180 struct dwc2_hsotg_req *hs_req;
2181 struct usb_request *ureq;
2182 u32 desc_sts;
2183 u32 mask;
2184
2185 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2186
2187 /* Process only descriptors with buffer status set to DMA done */
2188 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2189 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2190
2191 hs_req = get_ep_head(hs_ep);
2192 if (!hs_req) {
2193 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2194 return;
2195 }
2196 ureq = &hs_req->req;
2197
2198 /* Check completion status */
2199 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2200 DEV_DMA_STS_SUCC) {
2201 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2202 DEV_DMA_ISOC_RX_NBYTES_MASK;
2203 ureq->actual = ureq->length - ((desc_sts & mask) >>
2204 DEV_DMA_ISOC_NBYTES_SHIFT);
2205
2206 /* Adjust actual len for ISOC Out if len is
2207 * not align of 4
2208 */
2209 if (!hs_ep->dir_in && ureq->length & 0x3)
2210 ureq->actual += 4 - (ureq->length & 0x3);
2211
2212 /* Set actual frame number for completed transfers */
2213 ureq->frame_number =
2214 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2215 DEV_DMA_ISOC_FRNUM_SHIFT;
2216 }
2217
2218 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2219
2220 hs_ep->compl_desc++;
2221 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2222 hs_ep->compl_desc = 0;
2223 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2224 }
2225}
2226
2227/*
2228 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2229 * @hs_ep: The isochronous endpoint.
2230 *
2231 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2232 * interrupt. Reset target frame and next_desc to allow to start
2233 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2234 * interrupt for OUT direction.
2235 */
2236static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2237{
2238 struct dwc2_hsotg *hsotg = hs_ep->parent;
2239
2240 if (!hs_ep->dir_in)
2241 dwc2_flush_rx_fifo(hsotg);
2242 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2243
2244 hs_ep->target_frame = TARGET_FRAME_INITIAL;
2245 hs_ep->next_desc = 0;
2246 hs_ep->compl_desc = 0;
2247}
2248
2249/**
2250 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2251 * @hsotg: The device state.
2252 * @ep_idx: The endpoint index for the data
2253 * @size: The size of data in the fifo, in bytes
2254 *
2255 * The FIFO status shows there is data to read from the FIFO for a given
2256 * endpoint, so sort out whether we need to read the data into a request
2257 * that has been made for that endpoint.
2258 */
2259static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2260{
2261 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2262 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2263 int to_read;
2264 int max_req;
2265 int read_ptr;
2266
2267 if (!hs_req) {
2268 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2269 int ptr;
2270
2271 dev_dbg(hsotg->dev,
2272 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2273 __func__, size, ep_idx, epctl);
2274
2275 /* dump the data from the FIFO, we've nothing we can do */
2276 for (ptr = 0; ptr < size; ptr += 4)
2277 (void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2278
2279 return;
2280 }
2281
2282 to_read = size;
2283 read_ptr = hs_req->req.actual;
2284 max_req = hs_req->req.length - read_ptr;
2285
2286 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2287 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2288
2289 if (to_read > max_req) {
2290 /*
2291 * more data appeared than we where willing
2292 * to deal with in this request.
2293 */
2294
2295 /* currently we don't deal this */
2296 WARN_ON_ONCE(1);
2297 }
2298
2299 hs_ep->total_data += to_read;
2300 hs_req->req.actual += to_read;
2301 to_read = DIV_ROUND_UP(to_read, 4);
2302
2303 /*
2304 * note, we might over-write the buffer end by 3 bytes depending on
2305 * alignment of the data.
2306 */
2307 dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2308 hs_req->req.buf + read_ptr, to_read);
2309}
2310
2311/**
2312 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2313 * @hsotg: The device instance
2314 * @dir_in: If IN zlp
2315 *
2316 * Generate a zero-length IN packet request for terminating a SETUP
2317 * transaction.
2318 *
2319 * Note, since we don't write any data to the TxFIFO, then it is
2320 * currently believed that we do not need to wait for any space in
2321 * the TxFIFO.
2322 */
2323static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2324{
2325 /* eps_out[0] is used in both directions */
2326 hsotg->eps_out[0]->dir_in = dir_in;
2327 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2328
2329 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2330}
2331
2332/*
2333 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2334 * @hs_ep - The endpoint on which transfer went
2335 *
2336 * Iterate over endpoints descriptor chain and get info on bytes remained
2337 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2338 */
2339static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2340{
2341 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2342 struct dwc2_hsotg *hsotg = hs_ep->parent;
2343 unsigned int bytes_rem = 0;
2344 unsigned int bytes_rem_correction = 0;
2345 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2346 int i;
2347 u32 status;
2348 u32 mps = hs_ep->ep.maxpacket;
2349 int dir_in = hs_ep->dir_in;
2350
2351 if (!desc)
2352 return -EINVAL;
2353
2354 /* Interrupt OUT EP with mps not multiple of 4 */
2355 if (hs_ep->index)
2356 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2357 bytes_rem_correction = 4 - (mps % 4);
2358
2359 for (i = 0; i < hs_ep->desc_count; ++i) {
2360 status = desc->status;
2361 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2362 bytes_rem -= bytes_rem_correction;
2363
2364 if (status & DEV_DMA_STS_MASK)
2365 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2366 i, status & DEV_DMA_STS_MASK);
2367
2368 if (status & DEV_DMA_L)
2369 break;
2370
2371 desc++;
2372 }
2373
2374 return bytes_rem;
2375}
2376
2377/**
2378 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2379 * @hsotg: The device instance
2380 * @epnum: The endpoint received from
2381 *
2382 * The RXFIFO has delivered an OutDone event, which means that the data
2383 * transfer for an OUT endpoint has been completed, either by a short
2384 * packet or by the finish of a transfer.
2385 */
2386static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2387{
2388 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2389 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2390 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2391 struct usb_request *req = &hs_req->req;
2392 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2393 int result = 0;
2394
2395 if (!hs_req) {
2396 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2397 return;
2398 }
2399
2400 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2401 dev_dbg(hsotg->dev, "zlp packet received\n");
2402 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2403 dwc2_hsotg_enqueue_setup(hsotg);
2404 return;
2405 }
2406
2407 if (using_desc_dma(hsotg))
2408 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2409
2410 if (using_dma(hsotg)) {
2411 unsigned int size_done;
2412
2413 /*
2414 * Calculate the size of the transfer by checking how much
2415 * is left in the endpoint size register and then working it
2416 * out from the amount we loaded for the transfer.
2417 *
2418 * We need to do this as DMA pointers are always 32bit aligned
2419 * so may overshoot/undershoot the transfer.
2420 */
2421
2422 size_done = hs_ep->size_loaded - size_left;
2423 size_done += hs_ep->last_load;
2424
2425 req->actual = size_done;
2426 }
2427
2428 /* if there is more request to do, schedule new transfer */
2429 if (req->actual < req->length && size_left == 0) {
2430 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2431 return;
2432 }
2433
2434 if (req->actual < req->length && req->short_not_ok) {
2435 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2436 __func__, req->actual, req->length);
2437
2438 /*
2439 * todo - what should we return here? there's no one else
2440 * even bothering to check the status.
2441 */
2442 }
2443
2444 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2445 if (!using_desc_dma(hsotg) && epnum == 0 &&
2446 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2447 /* Move to STATUS IN */
2448 if (!hsotg->delayed_status)
2449 dwc2_hsotg_ep0_zlp(hsotg, true);
2450 }
2451
2452 /* Set actual frame number for completed transfers */
2453 if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2454 req->frame_number = hs_ep->target_frame;
2455 dwc2_gadget_incr_frame_num(hs_ep);
2456 }
2457
2458 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2459}
2460
2461/**
2462 * dwc2_hsotg_handle_rx - RX FIFO has data
2463 * @hsotg: The device instance
2464 *
2465 * The IRQ handler has detected that the RX FIFO has some data in it
2466 * that requires processing, so find out what is in there and do the
2467 * appropriate read.
2468 *
2469 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2470 * chunks, so if you have x packets received on an endpoint you'll get x
2471 * FIFO events delivered, each with a packet's worth of data in it.
2472 *
2473 * When using DMA, we should not be processing events from the RXFIFO
2474 * as the actual data should be sent to the memory directly and we turn
2475 * on the completion interrupts to get notifications of transfer completion.
2476 */
2477static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2478{
2479 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2480 u32 epnum, status, size;
2481
2482 WARN_ON(using_dma(hsotg));
2483
2484 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2485 status = grxstsr & GRXSTS_PKTSTS_MASK;
2486
2487 size = grxstsr & GRXSTS_BYTECNT_MASK;
2488 size >>= GRXSTS_BYTECNT_SHIFT;
2489
2490 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2491 __func__, grxstsr, size, epnum);
2492
2493 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2494 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2495 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2496 break;
2497
2498 case GRXSTS_PKTSTS_OUTDONE:
2499 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2500 dwc2_hsotg_read_frameno(hsotg));
2501
2502 if (!using_dma(hsotg))
2503 dwc2_hsotg_handle_outdone(hsotg, epnum);
2504 break;
2505
2506 case GRXSTS_PKTSTS_SETUPDONE:
2507 dev_dbg(hsotg->dev,
2508 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2509 dwc2_hsotg_read_frameno(hsotg),
2510 dwc2_readl(hsotg, DOEPCTL(0)));
2511 /*
2512 * Call dwc2_hsotg_handle_outdone here if it was not called from
2513 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2514 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2515 */
2516 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2517 dwc2_hsotg_handle_outdone(hsotg, epnum);
2518 break;
2519
2520 case GRXSTS_PKTSTS_OUTRX:
2521 dwc2_hsotg_rx_data(hsotg, epnum, size);
2522 break;
2523
2524 case GRXSTS_PKTSTS_SETUPRX:
2525 dev_dbg(hsotg->dev,
2526 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2527 dwc2_hsotg_read_frameno(hsotg),
2528 dwc2_readl(hsotg, DOEPCTL(0)));
2529
2530 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2531
2532 dwc2_hsotg_rx_data(hsotg, epnum, size);
2533 break;
2534
2535 default:
2536 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2537 __func__, grxstsr);
2538
2539 dwc2_hsotg_dump(hsotg);
2540 break;
2541 }
2542}
2543
2544/**
2545 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2546 * @mps: The maximum packet size in bytes.
2547 */
2548static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2549{
2550 switch (mps) {
2551 case 64:
2552 return D0EPCTL_MPS_64;
2553 case 32:
2554 return D0EPCTL_MPS_32;
2555 case 16:
2556 return D0EPCTL_MPS_16;
2557 case 8:
2558 return D0EPCTL_MPS_8;
2559 }
2560
2561 /* bad max packet size, warn and return invalid result */
2562 WARN_ON(1);
2563 return (u32)-1;
2564}
2565
2566/**
2567 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2568 * @hsotg: The driver state.
2569 * @ep: The index number of the endpoint
2570 * @mps: The maximum packet size in bytes
2571 * @mc: The multicount value
2572 * @dir_in: True if direction is in.
2573 *
2574 * Configure the maximum packet size for the given endpoint, updating
2575 * the hardware control registers to reflect this.
2576 */
2577static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2578 unsigned int ep, unsigned int mps,
2579 unsigned int mc, unsigned int dir_in)
2580{
2581 struct dwc2_hsotg_ep *hs_ep;
2582 u32 reg;
2583
2584 hs_ep = index_to_ep(hsotg, ep, dir_in);
2585 if (!hs_ep)
2586 return;
2587
2588 if (ep == 0) {
2589 u32 mps_bytes = mps;
2590
2591 /* EP0 is a special case */
2592 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2593 if (mps > 3)
2594 goto bad_mps;
2595 hs_ep->ep.maxpacket = mps_bytes;
2596 hs_ep->mc = 1;
2597 } else {
2598 if (mps > 1024)
2599 goto bad_mps;
2600 hs_ep->mc = mc;
2601 if (mc > 3)
2602 goto bad_mps;
2603 hs_ep->ep.maxpacket = mps;
2604 }
2605
2606 if (dir_in) {
2607 reg = dwc2_readl(hsotg, DIEPCTL(ep));
2608 reg &= ~DXEPCTL_MPS_MASK;
2609 reg |= mps;
2610 dwc2_writel(hsotg, reg, DIEPCTL(ep));
2611 } else {
2612 reg = dwc2_readl(hsotg, DOEPCTL(ep));
2613 reg &= ~DXEPCTL_MPS_MASK;
2614 reg |= mps;
2615 dwc2_writel(hsotg, reg, DOEPCTL(ep));
2616 }
2617
2618 return;
2619
2620bad_mps:
2621 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2622}
2623
2624/**
2625 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2626 * @hsotg: The driver state
2627 * @idx: The index for the endpoint (0..15)
2628 */
2629static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2630{
2631 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2632 GRSTCTL);
2633
2634 /* wait until the fifo is flushed */
2635 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2636 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2637 __func__);
2638}
2639
2640/**
2641 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2642 * @hsotg: The driver state
2643 * @hs_ep: The driver endpoint to check.
2644 *
2645 * Check to see if there is a request that has data to send, and if so
2646 * make an attempt to write data into the FIFO.
2647 */
2648static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2649 struct dwc2_hsotg_ep *hs_ep)
2650{
2651 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2652
2653 if (!hs_ep->dir_in || !hs_req) {
2654 /**
2655 * if request is not enqueued, we disable interrupts
2656 * for endpoints, excepting ep0
2657 */
2658 if (hs_ep->index != 0)
2659 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2660 hs_ep->dir_in, 0);
2661 return 0;
2662 }
2663
2664 if (hs_req->req.actual < hs_req->req.length) {
2665 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2666 hs_ep->index);
2667 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2668 }
2669
2670 return 0;
2671}
2672
2673/**
2674 * dwc2_hsotg_complete_in - complete IN transfer
2675 * @hsotg: The device state.
2676 * @hs_ep: The endpoint that has just completed.
2677 *
2678 * An IN transfer has been completed, update the transfer's state and then
2679 * call the relevant completion routines.
2680 */
2681static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2682 struct dwc2_hsotg_ep *hs_ep)
2683{
2684 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2685 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2686 int size_left, size_done;
2687
2688 if (!hs_req) {
2689 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2690 return;
2691 }
2692
2693 /* Finish ZLP handling for IN EP0 transactions */
2694 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2695 dev_dbg(hsotg->dev, "zlp packet sent\n");
2696
2697 /*
2698 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2699 * changed to IN. Change back to complete OUT transfer request
2700 */
2701 hs_ep->dir_in = 0;
2702
2703 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2704 if (hsotg->test_mode) {
2705 int ret;
2706
2707 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2708 if (ret < 0) {
2709 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2710 hsotg->test_mode);
2711 dwc2_hsotg_stall_ep0(hsotg);
2712 return;
2713 }
2714 }
2715 dwc2_hsotg_enqueue_setup(hsotg);
2716 return;
2717 }
2718
2719 /*
2720 * Calculate the size of the transfer by checking how much is left
2721 * in the endpoint size register and then working it out from
2722 * the amount we loaded for the transfer.
2723 *
2724 * We do this even for DMA, as the transfer may have incremented
2725 * past the end of the buffer (DMA transfers are always 32bit
2726 * aligned).
2727 */
2728 if (using_desc_dma(hsotg)) {
2729 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2730 if (size_left < 0)
2731 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2732 size_left);
2733 } else {
2734 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2735 }
2736
2737 size_done = hs_ep->size_loaded - size_left;
2738 size_done += hs_ep->last_load;
2739
2740 if (hs_req->req.actual != size_done)
2741 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2742 __func__, hs_req->req.actual, size_done);
2743
2744 hs_req->req.actual = size_done;
2745 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2746 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2747
2748 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2749 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2750 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2751 return;
2752 }
2753
2754 /* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2755 if (hs_ep->send_zlp) {
2756 hs_ep->send_zlp = 0;
2757 if (!using_desc_dma(hsotg)) {
2758 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2759 /* transfer will be completed on next complete interrupt */
2760 return;
2761 }
2762 }
2763
2764 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2765 /* Move to STATUS OUT */
2766 dwc2_hsotg_ep0_zlp(hsotg, false);
2767 return;
2768 }
2769
2770 /* Set actual frame number for completed transfers */
2771 if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2772 hs_req->req.frame_number = hs_ep->target_frame;
2773 dwc2_gadget_incr_frame_num(hs_ep);
2774 }
2775
2776 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2777}
2778
2779/**
2780 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2781 * @hsotg: The device state.
2782 * @idx: Index of ep.
2783 * @dir_in: Endpoint direction 1-in 0-out.
2784 *
2785 * Reads for endpoint with given index and direction, by masking
2786 * epint_reg with coresponding mask.
2787 */
2788static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2789 unsigned int idx, int dir_in)
2790{
2791 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2792 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2793 u32 ints;
2794 u32 mask;
2795 u32 diepempmsk;
2796
2797 mask = dwc2_readl(hsotg, epmsk_reg);
2798 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2799 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2800 mask |= DXEPINT_SETUP_RCVD;
2801
2802 ints = dwc2_readl(hsotg, epint_reg);
2803 ints &= mask;
2804 return ints;
2805}
2806
2807/**
2808 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2809 * @hs_ep: The endpoint on which interrupt is asserted.
2810 *
2811 * This interrupt indicates that the endpoint has been disabled per the
2812 * application's request.
2813 *
2814 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2815 * in case of ISOC completes current request.
2816 *
2817 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2818 * request starts it.
2819 */
2820static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2821{
2822 struct dwc2_hsotg *hsotg = hs_ep->parent;
2823 struct dwc2_hsotg_req *hs_req;
2824 unsigned char idx = hs_ep->index;
2825 int dir_in = hs_ep->dir_in;
2826 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2827 int dctl = dwc2_readl(hsotg, DCTL);
2828
2829 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2830
2831 if (dir_in) {
2832 int epctl = dwc2_readl(hsotg, epctl_reg);
2833
2834 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2835
2836 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2837 int dctl = dwc2_readl(hsotg, DCTL);
2838
2839 dctl |= DCTL_CGNPINNAK;
2840 dwc2_writel(hsotg, dctl, DCTL);
2841 }
2842 } else {
2843
2844 if (dctl & DCTL_GOUTNAKSTS) {
2845 dctl |= DCTL_CGOUTNAK;
2846 dwc2_writel(hsotg, dctl, DCTL);
2847 }
2848 }
2849
2850 if (!hs_ep->isochronous)
2851 return;
2852
2853 if (list_empty(&hs_ep->queue)) {
2854 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2855 __func__, hs_ep);
2856 return;
2857 }
2858
2859 do {
2860 hs_req = get_ep_head(hs_ep);
2861 if (hs_req) {
2862 hs_req->req.frame_number = hs_ep->target_frame;
2863 hs_req->req.actual = 0;
2864 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2865 -ENODATA);
2866 }
2867 dwc2_gadget_incr_frame_num(hs_ep);
2868 /* Update current frame number value. */
2869 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2870 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2871}
2872
2873/**
2874 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2875 * @ep: The endpoint on which interrupt is asserted.
2876 *
2877 * This is starting point for ISOC-OUT transfer, synchronization done with
2878 * first out token received from host while corresponding EP is disabled.
2879 *
2880 * Device does not know initial frame in which out token will come. For this
2881 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2882 * getting this interrupt SW starts calculation for next transfer frame.
2883 */
2884static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2885{
2886 struct dwc2_hsotg *hsotg = ep->parent;
2887 struct dwc2_hsotg_req *hs_req;
2888 int dir_in = ep->dir_in;
2889
2890 if (dir_in || !ep->isochronous)
2891 return;
2892
2893 if (using_desc_dma(hsotg)) {
2894 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2895 /* Start first ISO Out */
2896 ep->target_frame = hsotg->frame_number;
2897 dwc2_gadget_start_isoc_ddma(ep);
2898 }
2899 return;
2900 }
2901
2902 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2903 u32 ctrl;
2904
2905 ep->target_frame = hsotg->frame_number;
2906 if (ep->interval > 1) {
2907 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2908 if (ep->target_frame & 0x1)
2909 ctrl |= DXEPCTL_SETODDFR;
2910 else
2911 ctrl |= DXEPCTL_SETEVENFR;
2912
2913 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2914 }
2915 }
2916
2917 while (dwc2_gadget_target_frame_elapsed(ep)) {
2918 hs_req = get_ep_head(ep);
2919 if (hs_req) {
2920 hs_req->req.frame_number = ep->target_frame;
2921 hs_req->req.actual = 0;
2922 dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2923 }
2924
2925 dwc2_gadget_incr_frame_num(ep);
2926 /* Update current frame number value. */
2927 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2928 }
2929
2930 if (!ep->req)
2931 dwc2_gadget_start_next_request(ep);
2932
2933}
2934
2935static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2936 struct dwc2_hsotg_ep *hs_ep);
2937
2938/**
2939 * dwc2_gadget_handle_nak - handle NAK interrupt
2940 * @hs_ep: The endpoint on which interrupt is asserted.
2941 *
2942 * This is starting point for ISOC-IN transfer, synchronization done with
2943 * first IN token received from host while corresponding EP is disabled.
2944 *
2945 * Device does not know when first one token will arrive from host. On first
2946 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2947 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2948 * sent in response to that as there was no data in FIFO. SW is basing on this
2949 * interrupt to obtain frame in which token has come and then based on the
2950 * interval calculates next frame for transfer.
2951 */
2952static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2953{
2954 struct dwc2_hsotg *hsotg = hs_ep->parent;
2955 struct dwc2_hsotg_req *hs_req;
2956 int dir_in = hs_ep->dir_in;
2957 u32 ctrl;
2958
2959 if (!dir_in || !hs_ep->isochronous)
2960 return;
2961
2962 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2963
2964 if (using_desc_dma(hsotg)) {
2965 hs_ep->target_frame = hsotg->frame_number;
2966 dwc2_gadget_incr_frame_num(hs_ep);
2967
2968 /* In service interval mode target_frame must
2969 * be set to last (u)frame of the service interval.
2970 */
2971 if (hsotg->params.service_interval) {
2972 /* Set target_frame to the first (u)frame of
2973 * the service interval
2974 */
2975 hs_ep->target_frame &= ~hs_ep->interval + 1;
2976
2977 /* Set target_frame to the last (u)frame of
2978 * the service interval
2979 */
2980 dwc2_gadget_incr_frame_num(hs_ep);
2981 dwc2_gadget_dec_frame_num_by_one(hs_ep);
2982 }
2983
2984 dwc2_gadget_start_isoc_ddma(hs_ep);
2985 return;
2986 }
2987
2988 hs_ep->target_frame = hsotg->frame_number;
2989 if (hs_ep->interval > 1) {
2990 u32 ctrl = dwc2_readl(hsotg,
2991 DIEPCTL(hs_ep->index));
2992 if (hs_ep->target_frame & 0x1)
2993 ctrl |= DXEPCTL_SETODDFR;
2994 else
2995 ctrl |= DXEPCTL_SETEVENFR;
2996
2997 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2998 }
2999 }
3000
3001 if (using_desc_dma(hsotg))
3002 return;
3003
3004 ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
3005 if (ctrl & DXEPCTL_EPENA)
3006 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3007 else
3008 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3009
3010 while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3011 hs_req = get_ep_head(hs_ep);
3012 if (hs_req) {
3013 hs_req->req.frame_number = hs_ep->target_frame;
3014 hs_req->req.actual = 0;
3015 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3016 }
3017
3018 dwc2_gadget_incr_frame_num(hs_ep);
3019 /* Update current frame number value. */
3020 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3021 }
3022
3023 if (!hs_ep->req)
3024 dwc2_gadget_start_next_request(hs_ep);
3025}
3026
3027/**
3028 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3029 * @hsotg: The driver state
3030 * @idx: The index for the endpoint (0..15)
3031 * @dir_in: Set if this is an IN endpoint
3032 *
3033 * Process and clear any interrupt pending for an individual endpoint
3034 */
3035static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3036 int dir_in)
3037{
3038 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3039 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3040 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3041 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3042 u32 ints;
3043
3044 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3045
3046 /* Clear endpoint interrupts */
3047 dwc2_writel(hsotg, ints, epint_reg);
3048
3049 if (!hs_ep) {
3050 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3051 __func__, idx, dir_in ? "in" : "out");
3052 return;
3053 }
3054
3055 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3056 __func__, idx, dir_in ? "in" : "out", ints);
3057
3058 /* Don't process XferCompl interrupt if it is a setup packet */
3059 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3060 ints &= ~DXEPINT_XFERCOMPL;
3061
3062 /*
3063 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3064 * stage and xfercomplete was generated without SETUP phase done
3065 * interrupt. SW should parse received setup packet only after host's
3066 * exit from setup phase of control transfer.
3067 */
3068 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3069 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3070 ints &= ~DXEPINT_XFERCOMPL;
3071
3072 if (ints & DXEPINT_XFERCOMPL) {
3073 dev_dbg(hsotg->dev,
3074 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3075 __func__, dwc2_readl(hsotg, epctl_reg),
3076 dwc2_readl(hsotg, epsiz_reg));
3077
3078 /* In DDMA handle isochronous requests separately */
3079 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3080 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3081 } else if (dir_in) {
3082 /*
3083 * We get OutDone from the FIFO, so we only
3084 * need to look at completing IN requests here
3085 * if operating slave mode
3086 */
3087 if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3088 dwc2_hsotg_complete_in(hsotg, hs_ep);
3089
3090 if (idx == 0 && !hs_ep->req)
3091 dwc2_hsotg_enqueue_setup(hsotg);
3092 } else if (using_dma(hsotg)) {
3093 /*
3094 * We're using DMA, we need to fire an OutDone here
3095 * as we ignore the RXFIFO.
3096 */
3097 if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3098 dwc2_hsotg_handle_outdone(hsotg, idx);
3099 }
3100 }
3101
3102 if (ints & DXEPINT_EPDISBLD)
3103 dwc2_gadget_handle_ep_disabled(hs_ep);
3104
3105 if (ints & DXEPINT_OUTTKNEPDIS)
3106 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3107
3108 if (ints & DXEPINT_NAKINTRPT)
3109 dwc2_gadget_handle_nak(hs_ep);
3110
3111 if (ints & DXEPINT_AHBERR)
3112 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3113
3114 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
3115 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
3116
3117 if (using_dma(hsotg) && idx == 0) {
3118 /*
3119 * this is the notification we've received a
3120 * setup packet. In non-DMA mode we'd get this
3121 * from the RXFIFO, instead we need to process
3122 * the setup here.
3123 */
3124
3125 if (dir_in)
3126 WARN_ON_ONCE(1);
3127 else
3128 dwc2_hsotg_handle_outdone(hsotg, 0);
3129 }
3130 }
3131
3132 if (ints & DXEPINT_STSPHSERCVD) {
3133 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3134
3135 /* Safety check EP0 state when STSPHSERCVD asserted */
3136 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3137 /* Move to STATUS IN for DDMA */
3138 if (using_desc_dma(hsotg)) {
3139 if (!hsotg->delayed_status)
3140 dwc2_hsotg_ep0_zlp(hsotg, true);
3141 else
3142 /* In case of 3 stage Control Write with delayed
3143 * status, when Status IN transfer started
3144 * before STSPHSERCVD asserted, NAKSTS bit not
3145 * cleared by CNAK in dwc2_hsotg_start_req()
3146 * function. Clear now NAKSTS to allow complete
3147 * transfer.
3148 */
3149 dwc2_set_bit(hsotg, DIEPCTL(0),
3150 DXEPCTL_CNAK);
3151 }
3152 }
3153
3154 }
3155
3156 if (ints & DXEPINT_BACK2BACKSETUP)
3157 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3158
3159 if (ints & DXEPINT_BNAINTR) {
3160 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3161 if (hs_ep->isochronous)
3162 dwc2_gadget_handle_isoc_bna(hs_ep);
3163 }
3164
3165 if (dir_in && !hs_ep->isochronous) {
3166 /* not sure if this is important, but we'll clear it anyway */
3167 if (ints & DXEPINT_INTKNTXFEMP) {
3168 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3169 __func__, idx);
3170 }
3171
3172 /* this probably means something bad is happening */
3173 if (ints & DXEPINT_INTKNEPMIS) {
3174 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3175 __func__, idx);
3176 }
3177
3178 /* FIFO has space or is empty (see GAHBCFG) */
3179 if (hsotg->dedicated_fifos &&
3180 ints & DXEPINT_TXFEMP) {
3181 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3182 __func__, idx);
3183 if (!using_dma(hsotg))
3184 dwc2_hsotg_trytx(hsotg, hs_ep);
3185 }
3186 }
3187}
3188
3189/**
3190 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3191 * @hsotg: The device state.
3192 *
3193 * Handle updating the device settings after the enumeration phase has
3194 * been completed.
3195 */
3196static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3197{
3198 u32 dsts = dwc2_readl(hsotg, DSTS);
3199 int ep0_mps = 0, ep_mps = 8;
3200
3201 /*
3202 * This should signal the finish of the enumeration phase
3203 * of the USB handshaking, so we should now know what rate
3204 * we connected at.
3205 */
3206
3207 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3208
3209 /*
3210 * note, since we're limited by the size of transfer on EP0, and
3211 * it seems IN transfers must be a even number of packets we do
3212 * not advertise a 64byte MPS on EP0.
3213 */
3214
3215 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3216 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3217 case DSTS_ENUMSPD_FS:
3218 case DSTS_ENUMSPD_FS48:
3219 hsotg->gadget.speed = USB_SPEED_FULL;
3220 ep0_mps = EP0_MPS_LIMIT;
3221 ep_mps = 1023;
3222 break;
3223
3224 case DSTS_ENUMSPD_HS:
3225 hsotg->gadget.speed = USB_SPEED_HIGH;
3226 ep0_mps = EP0_MPS_LIMIT;
3227 ep_mps = 1024;
3228 break;
3229
3230 case DSTS_ENUMSPD_LS:
3231 hsotg->gadget.speed = USB_SPEED_LOW;
3232 ep0_mps = 8;
3233 ep_mps = 8;
3234 /*
3235 * note, we don't actually support LS in this driver at the
3236 * moment, and the documentation seems to imply that it isn't
3237 * supported by the PHYs on some of the devices.
3238 */
3239 break;
3240 }
3241 dev_info(hsotg->dev, "new device is %s\n",
3242 usb_speed_string(hsotg->gadget.speed));
3243
3244 /*
3245 * we should now know the maximum packet size for an
3246 * endpoint, so set the endpoints to a default value.
3247 */
3248
3249 if (ep0_mps) {
3250 int i;
3251 /* Initialize ep0 for both in and out directions */
3252 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3253 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3254 for (i = 1; i < hsotg->num_of_eps; i++) {
3255 if (hsotg->eps_in[i])
3256 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3257 0, 1);
3258 if (hsotg->eps_out[i])
3259 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3260 0, 0);
3261 }
3262 }
3263
3264 /* ensure after enumeration our EP0 is active */
3265
3266 dwc2_hsotg_enqueue_setup(hsotg);
3267
3268 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3269 dwc2_readl(hsotg, DIEPCTL0),
3270 dwc2_readl(hsotg, DOEPCTL0));
3271}
3272
3273/**
3274 * kill_all_requests - remove all requests from the endpoint's queue
3275 * @hsotg: The device state.
3276 * @ep: The endpoint the requests may be on.
3277 * @result: The result code to use.
3278 *
3279 * Go through the requests on the given endpoint and mark them
3280 * completed with the given result code.
3281 */
3282static void kill_all_requests(struct dwc2_hsotg *hsotg,
3283 struct dwc2_hsotg_ep *ep,
3284 int result)
3285{
3286 unsigned int size;
3287
3288 ep->req = NULL;
3289
3290 while (!list_empty(&ep->queue)) {
3291 struct dwc2_hsotg_req *req = get_ep_head(ep);
3292
3293 dwc2_hsotg_complete_request(hsotg, ep, req, result);
3294 }
3295
3296 if (!hsotg->dedicated_fifos)
3297 return;
3298 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3299 if (size < ep->fifo_size)
3300 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3301}
3302
3303/**
3304 * dwc2_hsotg_disconnect - disconnect service
3305 * @hsotg: The device state.
3306 *
3307 * The device has been disconnected. Remove all current
3308 * transactions and signal the gadget driver that this
3309 * has happened.
3310 */
3311void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3312{
3313 unsigned int ep;
3314
3315 if (!hsotg->connected)
3316 return;
3317
3318 hsotg->connected = 0;
3319 hsotg->test_mode = 0;
3320
3321 /* all endpoints should be shutdown */
3322 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3323 if (hsotg->eps_in[ep])
3324 kill_all_requests(hsotg, hsotg->eps_in[ep],
3325 -ESHUTDOWN);
3326 if (hsotg->eps_out[ep])
3327 kill_all_requests(hsotg, hsotg->eps_out[ep],
3328 -ESHUTDOWN);
3329 }
3330
3331 call_gadget(hsotg, disconnect);
3332 hsotg->lx_state = DWC2_L3;
3333
3334 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3335}
3336
3337/**
3338 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3339 * @hsotg: The device state:
3340 * @periodic: True if this is a periodic FIFO interrupt
3341 */
3342static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3343{
3344 struct dwc2_hsotg_ep *ep;
3345 int epno, ret;
3346
3347 /* look through for any more data to transmit */
3348 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3349 ep = index_to_ep(hsotg, epno, 1);
3350
3351 if (!ep)
3352 continue;
3353
3354 if (!ep->dir_in)
3355 continue;
3356
3357 if ((periodic && !ep->periodic) ||
3358 (!periodic && ep->periodic))
3359 continue;
3360
3361 ret = dwc2_hsotg_trytx(hsotg, ep);
3362 if (ret < 0)
3363 break;
3364 }
3365}
3366
3367/* IRQ flags which will trigger a retry around the IRQ loop */
3368#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3369 GINTSTS_PTXFEMP | \
3370 GINTSTS_RXFLVL)
3371
3372static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3373/**
3374 * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3375 * @hsotg: The device state
3376 * @is_usb_reset: Usb resetting flag
3377 *
3378 * Issue a soft reset to the core, and await the core finishing it.
3379 */
3380void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3381 bool is_usb_reset)
3382{
3383 u32 intmsk;
3384 u32 val;
3385 u32 usbcfg;
3386 u32 dcfg = 0;
3387 int ep;
3388
3389 /* Kill any ep0 requests as controller will be reinitialized */
3390 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3391
3392 if (!is_usb_reset) {
3393 if (dwc2_core_reset(hsotg, true))
3394 return;
3395 } else {
3396 /* all endpoints should be shutdown */
3397 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3398 if (hsotg->eps_in[ep])
3399 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3400 if (hsotg->eps_out[ep])
3401 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3402 }
3403 }
3404
3405 /*
3406 * we must now enable ep0 ready for host detection and then
3407 * set configuration.
3408 */
3409
3410 /* keep other bits untouched (so e.g. forced modes are not lost) */
3411 usbcfg = dwc2_readl(hsotg, GUSBCFG);
3412 usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3413 usbcfg |= GUSBCFG_TOUTCAL(7);
3414
3415 /* remove the HNP/SRP and set the PHY */
3416 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3417 dwc2_writel(hsotg, usbcfg, GUSBCFG);
3418
3419 dwc2_phy_init(hsotg, true);
3420
3421 dwc2_hsotg_init_fifo(hsotg);
3422
3423 if (!is_usb_reset)
3424 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3425
3426 dcfg |= DCFG_EPMISCNT(1);
3427
3428 switch (hsotg->params.speed) {
3429 case DWC2_SPEED_PARAM_LOW:
3430 dcfg |= DCFG_DEVSPD_LS;
3431 break;
3432 case DWC2_SPEED_PARAM_FULL:
3433 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3434 dcfg |= DCFG_DEVSPD_FS48;
3435 else
3436 dcfg |= DCFG_DEVSPD_FS;
3437 break;
3438 default:
3439 dcfg |= DCFG_DEVSPD_HS;
3440 }
3441
3442 if (hsotg->params.ipg_isoc_en)
3443 dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3444
3445 dwc2_writel(hsotg, dcfg, DCFG);
3446
3447 /* Clear any pending OTG interrupts */
3448 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3449
3450 /* Clear any pending interrupts */
3451 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3452 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3453 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3454 GINTSTS_USBRST | GINTSTS_RESETDET |
3455 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3456 GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3457 GINTSTS_LPMTRANRCVD;
3458
3459 if (!using_desc_dma(hsotg))
3460 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3461
3462 if (!hsotg->params.external_id_pin_ctl)
3463 intmsk |= GINTSTS_CONIDSTSCHNG;
3464
3465 dwc2_writel(hsotg, intmsk, GINTMSK);
3466
3467 if (using_dma(hsotg)) {
3468 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3469 hsotg->params.ahbcfg,
3470 GAHBCFG);
3471
3472 /* Set DDMA mode support in the core if needed */
3473 if (using_desc_dma(hsotg))
3474 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3475
3476 } else {
3477 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3478 (GAHBCFG_NP_TXF_EMP_LVL |
3479 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3480 GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3481 }
3482
3483 /*
3484 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3485 * when we have no data to transfer. Otherwise we get being flooded by
3486 * interrupts.
3487 */
3488
3489 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3490 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3491 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3492 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3493 DIEPMSK);
3494
3495 /*
3496 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3497 * DMA mode we may need this and StsPhseRcvd.
3498 */
3499 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3500 DOEPMSK_STSPHSERCVDMSK) : 0) |
3501 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3502 DOEPMSK_SETUPMSK,
3503 DOEPMSK);
3504
3505 /* Enable BNA interrupt for DDMA */
3506 if (using_desc_dma(hsotg)) {
3507 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3508 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3509 }
3510
3511 /* Enable Service Interval mode if supported */
3512 if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3513 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3514
3515 dwc2_writel(hsotg, 0, DAINTMSK);
3516
3517 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3518 dwc2_readl(hsotg, DIEPCTL0),
3519 dwc2_readl(hsotg, DOEPCTL0));
3520
3521 /* enable in and out endpoint interrupts */
3522 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3523
3524 /*
3525 * Enable the RXFIFO when in slave mode, as this is how we collect
3526 * the data. In DMA mode, we get events from the FIFO but also
3527 * things we cannot process, so do not use it.
3528 */
3529 if (!using_dma(hsotg))
3530 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3531
3532 /* Enable interrupts for EP0 in and out */
3533 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3534 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3535
3536 if (!is_usb_reset) {
3537 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3538 udelay(10); /* see openiboot */
3539 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3540 }
3541
3542 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3543
3544 /*
3545 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3546 * writing to the EPCTL register..
3547 */
3548
3549 /* set to read 1 8byte packet */
3550 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3551 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3552
3553 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3554 DXEPCTL_CNAK | DXEPCTL_EPENA |
3555 DXEPCTL_USBACTEP,
3556 DOEPCTL0);
3557
3558 /* enable, but don't activate EP0in */
3559 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3560 DXEPCTL_USBACTEP, DIEPCTL0);
3561
3562 /* clear global NAKs */
3563 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3564 if (!is_usb_reset)
3565 val |= DCTL_SFTDISCON;
3566 dwc2_set_bit(hsotg, DCTL, val);
3567
3568 /* configure the core to support LPM */
3569 dwc2_gadget_init_lpm(hsotg);
3570
3571 /* program GREFCLK register if needed */
3572 if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3573 dwc2_gadget_program_ref_clk(hsotg);
3574
3575 /* must be at-least 3ms to allow bus to see disconnect */
3576 mdelay(3);
3577
3578 hsotg->lx_state = DWC2_L0;
3579
3580 dwc2_hsotg_enqueue_setup(hsotg);
3581
3582 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3583 dwc2_readl(hsotg, DIEPCTL0),
3584 dwc2_readl(hsotg, DOEPCTL0));
3585}
3586
3587void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3588{
3589 /* set the soft-disconnect bit */
3590 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3591}
3592
3593void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3594{
3595 /* remove the soft-disconnect and let's go */
3596 if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD))
3597 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3598}
3599
3600/**
3601 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3602 * @hsotg: The device state:
3603 *
3604 * This interrupt indicates one of the following conditions occurred while
3605 * transmitting an ISOC transaction.
3606 * - Corrupted IN Token for ISOC EP.
3607 * - Packet not complete in FIFO.
3608 *
3609 * The following actions will be taken:
3610 * - Determine the EP
3611 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3612 */
3613static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3614{
3615 struct dwc2_hsotg_ep *hs_ep;
3616 u32 epctrl;
3617 u32 daintmsk;
3618 u32 idx;
3619
3620 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3621
3622 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3623
3624 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3625 hs_ep = hsotg->eps_in[idx];
3626 /* Proceed only unmasked ISOC EPs */
3627 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3628 continue;
3629
3630 epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3631 if ((epctrl & DXEPCTL_EPENA) &&
3632 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3633 epctrl |= DXEPCTL_SNAK;
3634 epctrl |= DXEPCTL_EPDIS;
3635 dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3636 }
3637 }
3638
3639 /* Clear interrupt */
3640 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3641}
3642
3643/**
3644 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3645 * @hsotg: The device state:
3646 *
3647 * This interrupt indicates one of the following conditions occurred while
3648 * transmitting an ISOC transaction.
3649 * - Corrupted OUT Token for ISOC EP.
3650 * - Packet not complete in FIFO.
3651 *
3652 * The following actions will be taken:
3653 * - Determine the EP
3654 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3655 */
3656static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3657{
3658 u32 gintsts;
3659 u32 gintmsk;
3660 u32 daintmsk;
3661 u32 epctrl;
3662 struct dwc2_hsotg_ep *hs_ep;
3663 int idx;
3664
3665 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3666
3667 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3668 daintmsk >>= DAINT_OUTEP_SHIFT;
3669
3670 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3671 hs_ep = hsotg->eps_out[idx];
3672 /* Proceed only unmasked ISOC EPs */
3673 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3674 continue;
3675
3676 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3677 if ((epctrl & DXEPCTL_EPENA) &&
3678 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3679 /* Unmask GOUTNAKEFF interrupt */
3680 gintmsk = dwc2_readl(hsotg, GINTMSK);
3681 gintmsk |= GINTSTS_GOUTNAKEFF;
3682 dwc2_writel(hsotg, gintmsk, GINTMSK);
3683
3684 gintsts = dwc2_readl(hsotg, GINTSTS);
3685 if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3686 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3687 break;
3688 }
3689 }
3690 }
3691
3692 /* Clear interrupt */
3693 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3694}
3695
3696/**
3697 * dwc2_hsotg_irq - handle device interrupt
3698 * @irq: The IRQ number triggered
3699 * @pw: The pw value when registered the handler.
3700 */
3701static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3702{
3703 struct dwc2_hsotg *hsotg = pw;
3704 int retry_count = 8;
3705 u32 gintsts;
3706 u32 gintmsk;
3707
3708 if (!dwc2_is_device_mode(hsotg))
3709 return IRQ_NONE;
3710
3711 spin_lock(&hsotg->lock);
3712irq_retry:
3713 gintsts = dwc2_readl(hsotg, GINTSTS);
3714 gintmsk = dwc2_readl(hsotg, GINTMSK);
3715
3716 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3717 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3718
3719 gintsts &= gintmsk;
3720
3721 if (gintsts & GINTSTS_RESETDET) {
3722 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3723
3724 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3725
3726 /* This event must be used only if controller is suspended */
3727 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3728 dwc2_exit_partial_power_down(hsotg, 0, true);
3729
3730 hsotg->lx_state = DWC2_L0;
3731 }
3732
3733 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3734 u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3735 u32 connected = hsotg->connected;
3736
3737 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3738 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3739 dwc2_readl(hsotg, GNPTXSTS));
3740
3741 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3742
3743 /* Report disconnection if it is not already done. */
3744 dwc2_hsotg_disconnect(hsotg);
3745
3746 /* Reset device address to zero */
3747 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3748
3749 if (usb_status & GOTGCTL_BSESVLD && connected)
3750 dwc2_hsotg_core_init_disconnected(hsotg, true);
3751 }
3752
3753 if (gintsts & GINTSTS_ENUMDONE) {
3754 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3755
3756 dwc2_hsotg_irq_enumdone(hsotg);
3757 }
3758
3759 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3760 u32 daint = dwc2_readl(hsotg, DAINT);
3761 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3762 u32 daint_out, daint_in;
3763 int ep;
3764
3765 daint &= daintmsk;
3766 daint_out = daint >> DAINT_OUTEP_SHIFT;
3767 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3768
3769 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3770
3771 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3772 ep++, daint_out >>= 1) {
3773 if (daint_out & 1)
3774 dwc2_hsotg_epint(hsotg, ep, 0);
3775 }
3776
3777 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3778 ep++, daint_in >>= 1) {
3779 if (daint_in & 1)
3780 dwc2_hsotg_epint(hsotg, ep, 1);
3781 }
3782 }
3783
3784 /* check both FIFOs */
3785
3786 if (gintsts & GINTSTS_NPTXFEMP) {
3787 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3788
3789 /*
3790 * Disable the interrupt to stop it happening again
3791 * unless one of these endpoint routines decides that
3792 * it needs re-enabling
3793 */
3794
3795 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3796 dwc2_hsotg_irq_fifoempty(hsotg, false);
3797 }
3798
3799 if (gintsts & GINTSTS_PTXFEMP) {
3800 dev_dbg(hsotg->dev, "PTxFEmp\n");
3801
3802 /* See note in GINTSTS_NPTxFEmp */
3803
3804 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3805 dwc2_hsotg_irq_fifoempty(hsotg, true);
3806 }
3807
3808 if (gintsts & GINTSTS_RXFLVL) {
3809 /*
3810 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3811 * we need to retry dwc2_hsotg_handle_rx if this is still
3812 * set.
3813 */
3814
3815 dwc2_hsotg_handle_rx(hsotg);
3816 }
3817
3818 if (gintsts & GINTSTS_ERLYSUSP) {
3819 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3820 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3821 }
3822
3823 /*
3824 * these next two seem to crop-up occasionally causing the core
3825 * to shutdown the USB transfer, so try clearing them and logging
3826 * the occurrence.
3827 */
3828
3829 if (gintsts & GINTSTS_GOUTNAKEFF) {
3830 u8 idx;
3831 u32 epctrl;
3832 u32 gintmsk;
3833 u32 daintmsk;
3834 struct dwc2_hsotg_ep *hs_ep;
3835
3836 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3837 daintmsk >>= DAINT_OUTEP_SHIFT;
3838 /* Mask this interrupt */
3839 gintmsk = dwc2_readl(hsotg, GINTMSK);
3840 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3841 dwc2_writel(hsotg, gintmsk, GINTMSK);
3842
3843 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3844 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3845 hs_ep = hsotg->eps_out[idx];
3846 /* Proceed only unmasked ISOC EPs */
3847 if (BIT(idx) & ~daintmsk)
3848 continue;
3849
3850 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3851
3852 //ISOC Ep's only
3853 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3854 epctrl |= DXEPCTL_SNAK;
3855 epctrl |= DXEPCTL_EPDIS;
3856 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3857 continue;
3858 }
3859
3860 //Non-ISOC EP's
3861 if (hs_ep->halted) {
3862 if (!(epctrl & DXEPCTL_EPENA))
3863 epctrl |= DXEPCTL_EPENA;
3864 epctrl |= DXEPCTL_EPDIS;
3865 epctrl |= DXEPCTL_STALL;
3866 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3867 }
3868 }
3869
3870 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3871 }
3872
3873 if (gintsts & GINTSTS_GINNAKEFF) {
3874 dev_info(hsotg->dev, "GINNakEff triggered\n");
3875
3876 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3877
3878 dwc2_hsotg_dump(hsotg);
3879 }
3880
3881 if (gintsts & GINTSTS_INCOMPL_SOIN)
3882 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3883
3884 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3885 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3886
3887 /*
3888 * if we've had fifo events, we should try and go around the
3889 * loop again to see if there's any point in returning yet.
3890 */
3891
3892 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3893 goto irq_retry;
3894
3895 /* Check WKUP_ALERT interrupt*/
3896 if (hsotg->params.service_interval)
3897 dwc2_gadget_wkup_alert_handler(hsotg);
3898
3899 spin_unlock(&hsotg->lock);
3900
3901 return IRQ_HANDLED;
3902}
3903
3904static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3905 struct dwc2_hsotg_ep *hs_ep)
3906{
3907 u32 epctrl_reg;
3908 u32 epint_reg;
3909
3910 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3911 DOEPCTL(hs_ep->index);
3912 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3913 DOEPINT(hs_ep->index);
3914
3915 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3916 hs_ep->name);
3917
3918 if (hs_ep->dir_in) {
3919 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3920 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3921 /* Wait for Nak effect */
3922 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3923 DXEPINT_INEPNAKEFF, 100))
3924 dev_warn(hsotg->dev,
3925 "%s: timeout DIEPINT.NAKEFF\n",
3926 __func__);
3927 } else {
3928 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3929 /* Wait for Nak effect */
3930 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3931 GINTSTS_GINNAKEFF, 100))
3932 dev_warn(hsotg->dev,
3933 "%s: timeout GINTSTS.GINNAKEFF\n",
3934 __func__);
3935 }
3936 } else {
3937 /* Mask GINTSTS_GOUTNAKEFF interrupt */
3938 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3939
3940 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3941 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3942
3943 if (!using_dma(hsotg)) {
3944 /* Wait for GINTSTS_RXFLVL interrupt */
3945 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3946 GINTSTS_RXFLVL, 100)) {
3947 dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3948 __func__);
3949 } else {
3950 /*
3951 * Pop GLOBAL OUT NAK status packet from RxFIFO
3952 * to assert GOUTNAKEFF interrupt
3953 */
3954 dwc2_readl(hsotg, GRXSTSP);
3955 }
3956 }
3957
3958 /* Wait for global nak to take effect */
3959 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3960 GINTSTS_GOUTNAKEFF, 100))
3961 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3962 __func__);
3963 }
3964
3965 /* Disable ep */
3966 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3967
3968 /* Wait for ep to be disabled */
3969 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3970 dev_warn(hsotg->dev,
3971 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3972
3973 /* Clear EPDISBLD interrupt */
3974 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3975
3976 if (hs_ep->dir_in) {
3977 unsigned short fifo_index;
3978
3979 if (hsotg->dedicated_fifos || hs_ep->periodic)
3980 fifo_index = hs_ep->fifo_index;
3981 else
3982 fifo_index = 0;
3983
3984 /* Flush TX FIFO */
3985 dwc2_flush_tx_fifo(hsotg, fifo_index);
3986
3987 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3988 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3989 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3990
3991 } else {
3992 /* Remove global NAKs */
3993 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3994 }
3995}
3996
3997/**
3998 * dwc2_hsotg_ep_enable - enable the given endpoint
3999 * @ep: The USB endpint to configure
4000 * @desc: The USB endpoint descriptor to configure with.
4001 *
4002 * This is called from the USB gadget code's usb_ep_enable().
4003 */
4004static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
4005 const struct usb_endpoint_descriptor *desc)
4006{
4007 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4008 struct dwc2_hsotg *hsotg = hs_ep->parent;
4009 unsigned long flags;
4010 unsigned int index = hs_ep->index;
4011 u32 epctrl_reg;
4012 u32 epctrl;
4013 u32 mps;
4014 u32 mc;
4015 u32 mask;
4016 unsigned int dir_in;
4017 unsigned int i, val, size;
4018 int ret = 0;
4019 unsigned char ep_type;
4020 int desc_num;
4021
4022 dev_dbg(hsotg->dev,
4023 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4024 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4025 desc->wMaxPacketSize, desc->bInterval);
4026
4027 /* not to be called for EP0 */
4028 if (index == 0) {
4029 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4030 return -EINVAL;
4031 }
4032
4033 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4034 if (dir_in != hs_ep->dir_in) {
4035 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4036 return -EINVAL;
4037 }
4038
4039 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4040 mps = usb_endpoint_maxp(desc);
4041 mc = usb_endpoint_maxp_mult(desc);
4042
4043 /* ISOC IN in DDMA supported bInterval up to 10 */
4044 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4045 dir_in && desc->bInterval > 10) {
4046 dev_err(hsotg->dev,
4047 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4048 return -EINVAL;
4049 }
4050
4051 /* High bandwidth ISOC OUT in DDMA not supported */
4052 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4053 !dir_in && mc > 1) {
4054 dev_err(hsotg->dev,
4055 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4056 return -EINVAL;
4057 }
4058
4059 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4060
4061 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4062 epctrl = dwc2_readl(hsotg, epctrl_reg);
4063
4064 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4065 __func__, epctrl, epctrl_reg);
4066
4067 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4068 desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4069 else
4070 desc_num = MAX_DMA_DESC_NUM_GENERIC;
4071
4072 /* Allocate DMA descriptor chain for non-ctrl endpoints */
4073 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4074 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4075 desc_num * sizeof(struct dwc2_dma_desc),
4076 &hs_ep->desc_list_dma, GFP_ATOMIC);
4077 if (!hs_ep->desc_list) {
4078 ret = -ENOMEM;
4079 goto error2;
4080 }
4081 }
4082
4083 spin_lock_irqsave(&hsotg->lock, flags);
4084
4085 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4086 epctrl |= DXEPCTL_MPS(mps);
4087
4088 /*
4089 * mark the endpoint as active, otherwise the core may ignore
4090 * transactions entirely for this endpoint
4091 */
4092 epctrl |= DXEPCTL_USBACTEP;
4093
4094 /* update the endpoint state */
4095 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4096
4097 /* default, set to non-periodic */
4098 hs_ep->isochronous = 0;
4099 hs_ep->periodic = 0;
4100 hs_ep->halted = 0;
4101 hs_ep->wedged = 0;
4102 hs_ep->interval = desc->bInterval;
4103
4104 switch (ep_type) {
4105 case USB_ENDPOINT_XFER_ISOC:
4106 epctrl |= DXEPCTL_EPTYPE_ISO;
4107 epctrl |= DXEPCTL_SETEVENFR;
4108 hs_ep->isochronous = 1;
4109 hs_ep->interval = 1 << (desc->bInterval - 1);
4110 hs_ep->target_frame = TARGET_FRAME_INITIAL;
4111 hs_ep->next_desc = 0;
4112 hs_ep->compl_desc = 0;
4113 if (dir_in) {
4114 hs_ep->periodic = 1;
4115 mask = dwc2_readl(hsotg, DIEPMSK);
4116 mask |= DIEPMSK_NAKMSK;
4117 dwc2_writel(hsotg, mask, DIEPMSK);
4118 } else {
4119 epctrl |= DXEPCTL_SNAK;
4120 mask = dwc2_readl(hsotg, DOEPMSK);
4121 mask |= DOEPMSK_OUTTKNEPDISMSK;
4122 dwc2_writel(hsotg, mask, DOEPMSK);
4123 }
4124 break;
4125
4126 case USB_ENDPOINT_XFER_BULK:
4127 epctrl |= DXEPCTL_EPTYPE_BULK;
4128 break;
4129
4130 case USB_ENDPOINT_XFER_INT:
4131 if (dir_in)
4132 hs_ep->periodic = 1;
4133
4134 if (hsotg->gadget.speed == USB_SPEED_HIGH)
4135 hs_ep->interval = 1 << (desc->bInterval - 1);
4136
4137 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4138 break;
4139
4140 case USB_ENDPOINT_XFER_CONTROL:
4141 epctrl |= DXEPCTL_EPTYPE_CONTROL;
4142 break;
4143 }
4144
4145 /*
4146 * if the hardware has dedicated fifos, we must give each IN EP
4147 * a unique tx-fifo even if it is non-periodic.
4148 */
4149 if (dir_in && hsotg->dedicated_fifos) {
4150 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4151 u32 fifo_index = 0;
4152 u32 fifo_size = UINT_MAX;
4153
4154 size = hs_ep->ep.maxpacket * hs_ep->mc;
4155 for (i = 1; i <= fifo_count; ++i) {
4156 if (hsotg->fifo_map & (1 << i))
4157 continue;
4158 val = dwc2_readl(hsotg, DPTXFSIZN(i));
4159 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4160 if (val < size)
4161 continue;
4162 /* Search for smallest acceptable fifo */
4163 if (val < fifo_size) {
4164 fifo_size = val;
4165 fifo_index = i;
4166 }
4167 }
4168 if (!fifo_index) {
4169 dev_err(hsotg->dev,
4170 "%s: No suitable fifo found\n", __func__);
4171 ret = -ENOMEM;
4172 goto error1;
4173 }
4174 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4175 hsotg->fifo_map |= 1 << fifo_index;
4176 epctrl |= DXEPCTL_TXFNUM(fifo_index);
4177 hs_ep->fifo_index = fifo_index;
4178 hs_ep->fifo_size = fifo_size;
4179 }
4180
4181 /* for non control endpoints, set PID to D0 */
4182 if (index && !hs_ep->isochronous)
4183 epctrl |= DXEPCTL_SETD0PID;
4184
4185 /* WA for Full speed ISOC IN in DDMA mode.
4186 * By Clear NAK status of EP, core will send ZLP
4187 * to IN token and assert NAK interrupt relying
4188 * on TxFIFO status only
4189 */
4190
4191 if (hsotg->gadget.speed == USB_SPEED_FULL &&
4192 hs_ep->isochronous && dir_in) {
4193 /* The WA applies only to core versions from 2.72a
4194 * to 4.00a (including both). Also for FS_IOT_1.00a
4195 * and HS_IOT_1.00a.
4196 */
4197 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4198
4199 if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4200 gsnpsid <= DWC2_CORE_REV_4_00a) ||
4201 gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4202 gsnpsid == DWC2_HS_IOT_REV_1_00a)
4203 epctrl |= DXEPCTL_CNAK;
4204 }
4205
4206 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4207 __func__, epctrl);
4208
4209 dwc2_writel(hsotg, epctrl, epctrl_reg);
4210 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4211 __func__, dwc2_readl(hsotg, epctrl_reg));
4212
4213 /* enable the endpoint interrupt */
4214 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4215
4216error1:
4217 spin_unlock_irqrestore(&hsotg->lock, flags);
4218
4219error2:
4220 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4221 dmam_free_coherent(hsotg->dev, desc_num *
4222 sizeof(struct dwc2_dma_desc),
4223 hs_ep->desc_list, hs_ep->desc_list_dma);
4224 hs_ep->desc_list = NULL;
4225 }
4226
4227 return ret;
4228}
4229
4230/**
4231 * dwc2_hsotg_ep_disable - disable given endpoint
4232 * @ep: The endpoint to disable.
4233 */
4234static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4235{
4236 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4237 struct dwc2_hsotg *hsotg = hs_ep->parent;
4238 int dir_in = hs_ep->dir_in;
4239 int index = hs_ep->index;
4240 u32 epctrl_reg;
4241 u32 ctrl;
4242
4243 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4244
4245 if (ep == &hsotg->eps_out[0]->ep) {
4246 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4247 return -EINVAL;
4248 }
4249
4250 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4251 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4252 return -EINVAL;
4253 }
4254
4255 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4256
4257 ctrl = dwc2_readl(hsotg, epctrl_reg);
4258
4259 if (ctrl & DXEPCTL_EPENA)
4260 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4261
4262 ctrl &= ~DXEPCTL_EPENA;
4263 ctrl &= ~DXEPCTL_USBACTEP;
4264 ctrl |= DXEPCTL_SNAK;
4265
4266 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4267 dwc2_writel(hsotg, ctrl, epctrl_reg);
4268
4269 /* disable endpoint interrupts */
4270 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4271
4272 /* terminate all requests with shutdown */
4273 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4274
4275 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4276 hs_ep->fifo_index = 0;
4277 hs_ep->fifo_size = 0;
4278
4279 return 0;
4280}
4281
4282static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4283{
4284 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4285 struct dwc2_hsotg *hsotg = hs_ep->parent;
4286 unsigned long flags;
4287 int ret;
4288
4289 spin_lock_irqsave(&hsotg->lock, flags);
4290 ret = dwc2_hsotg_ep_disable(ep);
4291 spin_unlock_irqrestore(&hsotg->lock, flags);
4292 return ret;
4293}
4294
4295/**
4296 * on_list - check request is on the given endpoint
4297 * @ep: The endpoint to check.
4298 * @test: The request to test if it is on the endpoint.
4299 */
4300static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4301{
4302 struct dwc2_hsotg_req *req, *treq;
4303
4304 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4305 if (req == test)
4306 return true;
4307 }
4308
4309 return false;
4310}
4311
4312/**
4313 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4314 * @ep: The endpoint to dequeue.
4315 * @req: The request to be removed from a queue.
4316 */
4317static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4318{
4319 struct dwc2_hsotg_req *hs_req = our_req(req);
4320 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4321 struct dwc2_hsotg *hs = hs_ep->parent;
4322 unsigned long flags;
4323
4324 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4325
4326 spin_lock_irqsave(&hs->lock, flags);
4327
4328 if (!on_list(hs_ep, hs_req)) {
4329 spin_unlock_irqrestore(&hs->lock, flags);
4330 return -EINVAL;
4331 }
4332
4333 /* Dequeue already started request */
4334 if (req == &hs_ep->req->req)
4335 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4336
4337 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4338 spin_unlock_irqrestore(&hs->lock, flags);
4339
4340 return 0;
4341}
4342
4343/**
4344 * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint
4345 * @ep: The endpoint to be wedged.
4346 *
4347 */
4348static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep)
4349{
4350 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4351 struct dwc2_hsotg *hs = hs_ep->parent;
4352
4353 unsigned long flags;
4354 int ret;
4355
4356 spin_lock_irqsave(&hs->lock, flags);
4357 hs_ep->wedged = 1;
4358 ret = dwc2_hsotg_ep_sethalt(ep, 1, false);
4359 spin_unlock_irqrestore(&hs->lock, flags);
4360
4361 return ret;
4362}
4363
4364/**
4365 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4366 * @ep: The endpoint to set halt.
4367 * @value: Set or unset the halt.
4368 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4369 * the endpoint is busy processing requests.
4370 *
4371 * We need to stall the endpoint immediately if request comes from set_feature
4372 * protocol command handler.
4373 */
4374static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4375{
4376 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4377 struct dwc2_hsotg *hs = hs_ep->parent;
4378 int index = hs_ep->index;
4379 u32 epreg;
4380 u32 epctl;
4381 u32 xfertype;
4382
4383 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4384
4385 if (index == 0) {
4386 if (value)
4387 dwc2_hsotg_stall_ep0(hs);
4388 else
4389 dev_warn(hs->dev,
4390 "%s: can't clear halt on ep0\n", __func__);
4391 return 0;
4392 }
4393
4394 if (hs_ep->isochronous) {
4395 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4396 return -EINVAL;
4397 }
4398
4399 if (!now && value && !list_empty(&hs_ep->queue)) {
4400 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4401 ep->name);
4402 return -EAGAIN;
4403 }
4404
4405 if (hs_ep->dir_in) {
4406 epreg = DIEPCTL(index);
4407 epctl = dwc2_readl(hs, epreg);
4408
4409 if (value) {
4410 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4411 if (epctl & DXEPCTL_EPENA)
4412 epctl |= DXEPCTL_EPDIS;
4413 } else {
4414 epctl &= ~DXEPCTL_STALL;
4415 hs_ep->wedged = 0;
4416 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4417 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4418 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4419 epctl |= DXEPCTL_SETD0PID;
4420 }
4421 dwc2_writel(hs, epctl, epreg);
4422 } else {
4423 epreg = DOEPCTL(index);
4424 epctl = dwc2_readl(hs, epreg);
4425
4426 if (value) {
4427 /* Unmask GOUTNAKEFF interrupt */
4428 dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4429
4430 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4431 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4432 // STALL bit will be set in GOUTNAKEFF interrupt handler
4433 } else {
4434 epctl &= ~DXEPCTL_STALL;
4435 hs_ep->wedged = 0;
4436 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4437 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4438 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4439 epctl |= DXEPCTL_SETD0PID;
4440 dwc2_writel(hs, epctl, epreg);
4441 }
4442 }
4443
4444 hs_ep->halted = value;
4445 return 0;
4446}
4447
4448/**
4449 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4450 * @ep: The endpoint to set halt.
4451 * @value: Set or unset the halt.
4452 */
4453static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4454{
4455 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4456 struct dwc2_hsotg *hs = hs_ep->parent;
4457 unsigned long flags;
4458 int ret;
4459
4460 spin_lock_irqsave(&hs->lock, flags);
4461 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4462 spin_unlock_irqrestore(&hs->lock, flags);
4463
4464 return ret;
4465}
4466
4467static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4468 .enable = dwc2_hsotg_ep_enable,
4469 .disable = dwc2_hsotg_ep_disable_lock,
4470 .alloc_request = dwc2_hsotg_ep_alloc_request,
4471 .free_request = dwc2_hsotg_ep_free_request,
4472 .queue = dwc2_hsotg_ep_queue_lock,
4473 .dequeue = dwc2_hsotg_ep_dequeue,
4474 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4475 .set_wedge = dwc2_gadget_ep_set_wedge,
4476 /* note, don't believe we have any call for the fifo routines */
4477};
4478
4479/**
4480 * dwc2_hsotg_init - initialize the usb core
4481 * @hsotg: The driver state
4482 */
4483static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4484{
4485 /* unmask subset of endpoint interrupts */
4486
4487 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4488 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4489 DIEPMSK);
4490
4491 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4492 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4493 DOEPMSK);
4494
4495 dwc2_writel(hsotg, 0, DAINTMSK);
4496
4497 /* Be in disconnected state until gadget is registered */
4498 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4499
4500 /* setup fifos */
4501
4502 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4503 dwc2_readl(hsotg, GRXFSIZ),
4504 dwc2_readl(hsotg, GNPTXFSIZ));
4505
4506 dwc2_hsotg_init_fifo(hsotg);
4507
4508 if (using_dma(hsotg))
4509 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4510}
4511
4512/**
4513 * dwc2_hsotg_udc_start - prepare the udc for work
4514 * @gadget: The usb gadget state
4515 * @driver: The usb gadget driver
4516 *
4517 * Perform initialization to prepare udc device and driver
4518 * to work.
4519 */
4520static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4521 struct usb_gadget_driver *driver)
4522{
4523 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4524 unsigned long flags;
4525 int ret;
4526
4527 if (!hsotg) {
4528 pr_err("%s: called with no device\n", __func__);
4529 return -ENODEV;
4530 }
4531
4532 if (!driver) {
4533 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4534 return -EINVAL;
4535 }
4536
4537 if (driver->max_speed < USB_SPEED_FULL)
4538 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4539
4540 if (!driver->setup) {
4541 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4542 return -EINVAL;
4543 }
4544
4545 WARN_ON(hsotg->driver);
4546
4547 hsotg->driver = driver;
4548 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4549 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4550
4551 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4552 ret = dwc2_lowlevel_hw_enable(hsotg);
4553 if (ret)
4554 goto err;
4555 }
4556
4557 if (!IS_ERR_OR_NULL(hsotg->uphy))
4558 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4559
4560 spin_lock_irqsave(&hsotg->lock, flags);
4561 if (dwc2_hw_is_device(hsotg)) {
4562 dwc2_hsotg_init(hsotg);
4563 dwc2_hsotg_core_init_disconnected(hsotg, false);
4564 }
4565
4566 hsotg->enabled = 0;
4567 spin_unlock_irqrestore(&hsotg->lock, flags);
4568
4569 gadget->sg_supported = using_desc_dma(hsotg);
4570 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4571
4572 return 0;
4573
4574err:
4575 hsotg->driver = NULL;
4576 return ret;
4577}
4578
4579/**
4580 * dwc2_hsotg_udc_stop - stop the udc
4581 * @gadget: The usb gadget state
4582 *
4583 * Stop udc hw block and stay tunned for future transmissions
4584 */
4585static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4586{
4587 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4588 unsigned long flags;
4589 int ep;
4590
4591 if (!hsotg)
4592 return -ENODEV;
4593
4594 /* all endpoints should be shutdown */
4595 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4596 if (hsotg->eps_in[ep])
4597 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4598 if (hsotg->eps_out[ep])
4599 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4600 }
4601
4602 spin_lock_irqsave(&hsotg->lock, flags);
4603
4604 hsotg->driver = NULL;
4605 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4606 hsotg->enabled = 0;
4607
4608 spin_unlock_irqrestore(&hsotg->lock, flags);
4609
4610 if (!IS_ERR_OR_NULL(hsotg->uphy))
4611 otg_set_peripheral(hsotg->uphy->otg, NULL);
4612
4613 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4614 dwc2_lowlevel_hw_disable(hsotg);
4615
4616 return 0;
4617}
4618
4619/**
4620 * dwc2_hsotg_gadget_getframe - read the frame number
4621 * @gadget: The usb gadget state
4622 *
4623 * Read the {micro} frame number
4624 */
4625static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4626{
4627 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4628}
4629
4630/**
4631 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4632 * @gadget: The usb gadget state
4633 * @is_selfpowered: Whether the device is self-powered
4634 *
4635 * Set if the device is self or bus powered.
4636 */
4637static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4638 int is_selfpowered)
4639{
4640 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4641 unsigned long flags;
4642
4643 spin_lock_irqsave(&hsotg->lock, flags);
4644 gadget->is_selfpowered = !!is_selfpowered;
4645 spin_unlock_irqrestore(&hsotg->lock, flags);
4646
4647 return 0;
4648}
4649
4650/**
4651 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4652 * @gadget: The usb gadget state
4653 * @is_on: Current state of the USB PHY
4654 *
4655 * Connect/Disconnect the USB PHY pullup
4656 */
4657static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4658{
4659 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4660 unsigned long flags;
4661
4662 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4663 hsotg->op_state);
4664
4665 /* Don't modify pullup state while in host mode */
4666 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4667 hsotg->enabled = is_on;
4668 return 0;
4669 }
4670
4671 spin_lock_irqsave(&hsotg->lock, flags);
4672 if (is_on) {
4673 hsotg->enabled = 1;
4674 dwc2_hsotg_core_init_disconnected(hsotg, false);
4675 /* Enable ACG feature in device mode,if supported */
4676 dwc2_enable_acg(hsotg);
4677 dwc2_hsotg_core_connect(hsotg);
4678 } else {
4679 dwc2_hsotg_core_disconnect(hsotg);
4680 dwc2_hsotg_disconnect(hsotg);
4681 hsotg->enabled = 0;
4682 }
4683
4684 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4685 spin_unlock_irqrestore(&hsotg->lock, flags);
4686
4687 return 0;
4688}
4689
4690static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4691{
4692 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4693 unsigned long flags;
4694
4695 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4696 spin_lock_irqsave(&hsotg->lock, flags);
4697
4698 /*
4699 * If controller is in partial power down state, it must exit from
4700 * that state before being initialized / de-initialized
4701 */
4702 if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4703 /*
4704 * No need to check the return value as
4705 * registers are not being restored.
4706 */
4707 dwc2_exit_partial_power_down(hsotg, 0, false);
4708
4709 if (is_active) {
4710 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4711
4712 dwc2_hsotg_core_init_disconnected(hsotg, false);
4713 if (hsotg->enabled) {
4714 /* Enable ACG feature in device mode,if supported */
4715 dwc2_enable_acg(hsotg);
4716 dwc2_hsotg_core_connect(hsotg);
4717 }
4718 } else {
4719 dwc2_hsotg_core_disconnect(hsotg);
4720 dwc2_hsotg_disconnect(hsotg);
4721 }
4722
4723 spin_unlock_irqrestore(&hsotg->lock, flags);
4724 return 0;
4725}
4726
4727/**
4728 * dwc2_hsotg_vbus_draw - report bMaxPower field
4729 * @gadget: The usb gadget state
4730 * @mA: Amount of current
4731 *
4732 * Report how much power the device may consume to the phy.
4733 */
4734static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4735{
4736 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4737
4738 if (IS_ERR_OR_NULL(hsotg->uphy))
4739 return -ENOTSUPP;
4740 return usb_phy_set_power(hsotg->uphy, mA);
4741}
4742
4743static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed)
4744{
4745 struct dwc2_hsotg *hsotg = to_hsotg(g);
4746 unsigned long flags;
4747
4748 spin_lock_irqsave(&hsotg->lock, flags);
4749 switch (speed) {
4750 case USB_SPEED_HIGH:
4751 hsotg->params.speed = DWC2_SPEED_PARAM_HIGH;
4752 break;
4753 case USB_SPEED_FULL:
4754 hsotg->params.speed = DWC2_SPEED_PARAM_FULL;
4755 break;
4756 case USB_SPEED_LOW:
4757 hsotg->params.speed = DWC2_SPEED_PARAM_LOW;
4758 break;
4759 default:
4760 dev_err(hsotg->dev, "invalid speed (%d)\n", speed);
4761 }
4762 spin_unlock_irqrestore(&hsotg->lock, flags);
4763}
4764
4765static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4766 .get_frame = dwc2_hsotg_gadget_getframe,
4767 .set_selfpowered = dwc2_hsotg_set_selfpowered,
4768 .udc_start = dwc2_hsotg_udc_start,
4769 .udc_stop = dwc2_hsotg_udc_stop,
4770 .pullup = dwc2_hsotg_pullup,
4771 .udc_set_speed = dwc2_gadget_set_speed,
4772 .vbus_session = dwc2_hsotg_vbus_session,
4773 .vbus_draw = dwc2_hsotg_vbus_draw,
4774};
4775
4776/**
4777 * dwc2_hsotg_initep - initialise a single endpoint
4778 * @hsotg: The device state.
4779 * @hs_ep: The endpoint to be initialised.
4780 * @epnum: The endpoint number
4781 * @dir_in: True if direction is in.
4782 *
4783 * Initialise the given endpoint (as part of the probe and device state
4784 * creation) to give to the gadget driver. Setup the endpoint name, any
4785 * direction information and other state that may be required.
4786 */
4787static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4788 struct dwc2_hsotg_ep *hs_ep,
4789 int epnum,
4790 bool dir_in)
4791{
4792 char *dir;
4793
4794 if (epnum == 0)
4795 dir = "";
4796 else if (dir_in)
4797 dir = "in";
4798 else
4799 dir = "out";
4800
4801 hs_ep->dir_in = dir_in;
4802 hs_ep->index = epnum;
4803
4804 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4805
4806 INIT_LIST_HEAD(&hs_ep->queue);
4807 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4808
4809 /* add to the list of endpoints known by the gadget driver */
4810 if (epnum)
4811 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4812
4813 hs_ep->parent = hsotg;
4814 hs_ep->ep.name = hs_ep->name;
4815
4816 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4817 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4818 else
4819 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4820 epnum ? 1024 : EP0_MPS_LIMIT);
4821 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4822
4823 if (epnum == 0) {
4824 hs_ep->ep.caps.type_control = true;
4825 } else {
4826 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4827 hs_ep->ep.caps.type_iso = true;
4828 hs_ep->ep.caps.type_bulk = true;
4829 }
4830 hs_ep->ep.caps.type_int = true;
4831 }
4832
4833 if (dir_in)
4834 hs_ep->ep.caps.dir_in = true;
4835 else
4836 hs_ep->ep.caps.dir_out = true;
4837
4838 /*
4839 * if we're using dma, we need to set the next-endpoint pointer
4840 * to be something valid.
4841 */
4842
4843 if (using_dma(hsotg)) {
4844 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4845
4846 if (dir_in)
4847 dwc2_writel(hsotg, next, DIEPCTL(epnum));
4848 else
4849 dwc2_writel(hsotg, next, DOEPCTL(epnum));
4850 }
4851}
4852
4853/**
4854 * dwc2_hsotg_hw_cfg - read HW configuration registers
4855 * @hsotg: Programming view of the DWC_otg controller
4856 *
4857 * Read the USB core HW configuration registers
4858 */
4859static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4860{
4861 u32 cfg;
4862 u32 ep_type;
4863 u32 i;
4864
4865 /* check hardware configuration */
4866
4867 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4868
4869 /* Add ep0 */
4870 hsotg->num_of_eps++;
4871
4872 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4873 sizeof(struct dwc2_hsotg_ep),
4874 GFP_KERNEL);
4875 if (!hsotg->eps_in[0])
4876 return -ENOMEM;
4877 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4878 hsotg->eps_out[0] = hsotg->eps_in[0];
4879
4880 cfg = hsotg->hw_params.dev_ep_dirs;
4881 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4882 ep_type = cfg & 3;
4883 /* Direction in or both */
4884 if (!(ep_type & 2)) {
4885 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4886 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4887 if (!hsotg->eps_in[i])
4888 return -ENOMEM;
4889 }
4890 /* Direction out or both */
4891 if (!(ep_type & 1)) {
4892 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4893 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4894 if (!hsotg->eps_out[i])
4895 return -ENOMEM;
4896 }
4897 }
4898
4899 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4900 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4901
4902 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4903 hsotg->num_of_eps,
4904 hsotg->dedicated_fifos ? "dedicated" : "shared",
4905 hsotg->fifo_mem);
4906 return 0;
4907}
4908
4909/**
4910 * dwc2_hsotg_dump - dump state of the udc
4911 * @hsotg: Programming view of the DWC_otg controller
4912 *
4913 */
4914static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4915{
4916#ifdef DEBUG
4917 struct device *dev = hsotg->dev;
4918 u32 val;
4919 int idx;
4920
4921 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4922 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4923 dwc2_readl(hsotg, DIEPMSK));
4924
4925 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4926 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4927
4928 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4929 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4930
4931 /* show periodic fifo settings */
4932
4933 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4934 val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4935 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4936 val >> FIFOSIZE_DEPTH_SHIFT,
4937 val & FIFOSIZE_STARTADDR_MASK);
4938 }
4939
4940 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4941 dev_info(dev,
4942 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4943 dwc2_readl(hsotg, DIEPCTL(idx)),
4944 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4945 dwc2_readl(hsotg, DIEPDMA(idx)));
4946
4947 val = dwc2_readl(hsotg, DOEPCTL(idx));
4948 dev_info(dev,
4949 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4950 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4951 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4952 dwc2_readl(hsotg, DOEPDMA(idx)));
4953 }
4954
4955 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4956 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4957#endif
4958}
4959
4960/**
4961 * dwc2_gadget_init - init function for gadget
4962 * @hsotg: Programming view of the DWC_otg controller
4963 *
4964 */
4965int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4966{
4967 struct device *dev = hsotg->dev;
4968 int epnum;
4969 int ret;
4970
4971 /* Dump fifo information */
4972 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4973 hsotg->params.g_np_tx_fifo_size);
4974 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4975
4976 switch (hsotg->params.speed) {
4977 case DWC2_SPEED_PARAM_LOW:
4978 hsotg->gadget.max_speed = USB_SPEED_LOW;
4979 break;
4980 case DWC2_SPEED_PARAM_FULL:
4981 hsotg->gadget.max_speed = USB_SPEED_FULL;
4982 break;
4983 default:
4984 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4985 break;
4986 }
4987
4988 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4989 hsotg->gadget.name = dev_name(dev);
4990 hsotg->gadget.otg_caps = &hsotg->params.otg_caps;
4991 hsotg->remote_wakeup_allowed = 0;
4992
4993 if (hsotg->params.lpm)
4994 hsotg->gadget.lpm_capable = true;
4995
4996 if (hsotg->dr_mode == USB_DR_MODE_OTG)
4997 hsotg->gadget.is_otg = 1;
4998 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4999 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
5000
5001 ret = dwc2_hsotg_hw_cfg(hsotg);
5002 if (ret) {
5003 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
5004 return ret;
5005 }
5006
5007 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
5008 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5009 if (!hsotg->ctrl_buff)
5010 return -ENOMEM;
5011
5012 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
5013 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5014 if (!hsotg->ep0_buff)
5015 return -ENOMEM;
5016
5017 if (using_desc_dma(hsotg)) {
5018 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
5019 if (ret < 0)
5020 return ret;
5021 }
5022
5023 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
5024 IRQF_SHARED, dev_name(hsotg->dev), hsotg);
5025 if (ret < 0) {
5026 dev_err(dev, "cannot claim IRQ for gadget\n");
5027 return ret;
5028 }
5029
5030 /* hsotg->num_of_eps holds number of EPs other than ep0 */
5031
5032 if (hsotg->num_of_eps == 0) {
5033 dev_err(dev, "wrong number of EPs (zero)\n");
5034 return -EINVAL;
5035 }
5036
5037 /* setup endpoint information */
5038
5039 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
5040 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
5041
5042 /* allocate EP0 request */
5043
5044 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
5045 GFP_KERNEL);
5046 if (!hsotg->ctrl_req) {
5047 dev_err(dev, "failed to allocate ctrl req\n");
5048 return -ENOMEM;
5049 }
5050
5051 /* initialise the endpoints now the core has been initialised */
5052 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
5053 if (hsotg->eps_in[epnum])
5054 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
5055 epnum, 1);
5056 if (hsotg->eps_out[epnum])
5057 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
5058 epnum, 0);
5059 }
5060
5061 dwc2_hsotg_dump(hsotg);
5062
5063 return 0;
5064}
5065
5066/**
5067 * dwc2_hsotg_remove - remove function for hsotg driver
5068 * @hsotg: Programming view of the DWC_otg controller
5069 *
5070 */
5071int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5072{
5073 usb_del_gadget_udc(&hsotg->gadget);
5074 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5075
5076 return 0;
5077}
5078
5079int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5080{
5081 unsigned long flags;
5082
5083 if (hsotg->lx_state != DWC2_L0)
5084 return 0;
5085
5086 if (hsotg->driver) {
5087 int ep;
5088
5089 dev_info(hsotg->dev, "suspending usb gadget %s\n",
5090 hsotg->driver->driver.name);
5091
5092 spin_lock_irqsave(&hsotg->lock, flags);
5093 if (hsotg->enabled)
5094 dwc2_hsotg_core_disconnect(hsotg);
5095 dwc2_hsotg_disconnect(hsotg);
5096 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5097 spin_unlock_irqrestore(&hsotg->lock, flags);
5098
5099 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
5100 if (hsotg->eps_in[ep])
5101 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5102 if (hsotg->eps_out[ep])
5103 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5104 }
5105 }
5106
5107 return 0;
5108}
5109
5110int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5111{
5112 unsigned long flags;
5113
5114 if (hsotg->lx_state == DWC2_L2)
5115 return 0;
5116
5117 if (hsotg->driver) {
5118 dev_info(hsotg->dev, "resuming usb gadget %s\n",
5119 hsotg->driver->driver.name);
5120
5121 spin_lock_irqsave(&hsotg->lock, flags);
5122 dwc2_hsotg_core_init_disconnected(hsotg, false);
5123 if (hsotg->enabled) {
5124 /* Enable ACG feature in device mode,if supported */
5125 dwc2_enable_acg(hsotg);
5126 dwc2_hsotg_core_connect(hsotg);
5127 }
5128 spin_unlock_irqrestore(&hsotg->lock, flags);
5129 }
5130
5131 return 0;
5132}
5133
5134/**
5135 * dwc2_backup_device_registers() - Backup controller device registers.
5136 * When suspending usb bus, registers needs to be backuped
5137 * if controller power is disabled once suspended.
5138 *
5139 * @hsotg: Programming view of the DWC_otg controller
5140 */
5141int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5142{
5143 struct dwc2_dregs_backup *dr;
5144 int i;
5145
5146 dev_dbg(hsotg->dev, "%s\n", __func__);
5147
5148 /* Backup dev regs */
5149 dr = &hsotg->dr_backup;
5150
5151 dr->dcfg = dwc2_readl(hsotg, DCFG);
5152 dr->dctl = dwc2_readl(hsotg, DCTL);
5153 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5154 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5155 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5156
5157 for (i = 0; i < hsotg->num_of_eps; i++) {
5158 /* Backup IN EPs */
5159 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5160
5161 /* Ensure DATA PID is correctly configured */
5162 if (dr->diepctl[i] & DXEPCTL_DPID)
5163 dr->diepctl[i] |= DXEPCTL_SETD1PID;
5164 else
5165 dr->diepctl[i] |= DXEPCTL_SETD0PID;
5166
5167 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5168 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5169
5170 /* Backup OUT EPs */
5171 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5172
5173 /* Ensure DATA PID is correctly configured */
5174 if (dr->doepctl[i] & DXEPCTL_DPID)
5175 dr->doepctl[i] |= DXEPCTL_SETD1PID;
5176 else
5177 dr->doepctl[i] |= DXEPCTL_SETD0PID;
5178
5179 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5180 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5181 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5182 }
5183 dr->valid = true;
5184 return 0;
5185}
5186
5187/**
5188 * dwc2_restore_device_registers() - Restore controller device registers.
5189 * When resuming usb bus, device registers needs to be restored
5190 * if controller power were disabled.
5191 *
5192 * @hsotg: Programming view of the DWC_otg controller
5193 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5194 *
5195 * Return: 0 if successful, negative error code otherwise
5196 */
5197int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5198{
5199 struct dwc2_dregs_backup *dr;
5200 int i;
5201
5202 dev_dbg(hsotg->dev, "%s\n", __func__);
5203
5204 /* Restore dev regs */
5205 dr = &hsotg->dr_backup;
5206 if (!dr->valid) {
5207 dev_err(hsotg->dev, "%s: no device registers to restore\n",
5208 __func__);
5209 return -EINVAL;
5210 }
5211 dr->valid = false;
5212
5213 if (!remote_wakeup)
5214 dwc2_writel(hsotg, dr->dctl, DCTL);
5215
5216 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5217 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5218 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5219
5220 for (i = 0; i < hsotg->num_of_eps; i++) {
5221 /* Restore IN EPs */
5222 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5223 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5224 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5225 /** WA for enabled EPx's IN in DDMA mode. On entering to
5226 * hibernation wrong value read and saved from DIEPDMAx,
5227 * as result BNA interrupt asserted on hibernation exit
5228 * by restoring from saved area.
5229 */
5230 if (using_desc_dma(hsotg) &&
5231 (dr->diepctl[i] & DXEPCTL_EPENA))
5232 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5233 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5234 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5235 /* Restore OUT EPs */
5236 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5237 /* WA for enabled EPx's OUT in DDMA mode. On entering to
5238 * hibernation wrong value read and saved from DOEPDMAx,
5239 * as result BNA interrupt asserted on hibernation exit
5240 * by restoring from saved area.
5241 */
5242 if (using_desc_dma(hsotg) &&
5243 (dr->doepctl[i] & DXEPCTL_EPENA))
5244 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5245 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5246 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5247 }
5248
5249 return 0;
5250}
5251
5252/**
5253 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5254 *
5255 * @hsotg: Programming view of DWC_otg controller
5256 *
5257 */
5258void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5259{
5260 u32 val;
5261
5262 if (!hsotg->params.lpm)
5263 return;
5264
5265 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5266 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5267 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5268 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5269 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5270 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5271 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5272 dwc2_writel(hsotg, val, GLPMCFG);
5273 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5274
5275 /* Unmask WKUP_ALERT Interrupt */
5276 if (hsotg->params.service_interval)
5277 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5278}
5279
5280/**
5281 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5282 *
5283 * @hsotg: Programming view of DWC_otg controller
5284 *
5285 */
5286void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5287{
5288 u32 val = 0;
5289
5290 val |= GREFCLK_REF_CLK_MODE;
5291 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5292 val |= hsotg->params.sof_cnt_wkup_alert <<
5293 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5294
5295 dwc2_writel(hsotg, val, GREFCLK);
5296 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5297}
5298
5299/**
5300 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5301 *
5302 * @hsotg: Programming view of the DWC_otg controller
5303 *
5304 * Return non-zero if failed to enter to hibernation.
5305 */
5306int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5307{
5308 u32 gpwrdn;
5309 int ret = 0;
5310
5311 /* Change to L2(suspend) state */
5312 hsotg->lx_state = DWC2_L2;
5313 dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5314 ret = dwc2_backup_global_registers(hsotg);
5315 if (ret) {
5316 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5317 __func__);
5318 return ret;
5319 }
5320 ret = dwc2_backup_device_registers(hsotg);
5321 if (ret) {
5322 dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5323 __func__);
5324 return ret;
5325 }
5326
5327 gpwrdn = GPWRDN_PWRDNRSTN;
5328 gpwrdn |= GPWRDN_PMUACTV;
5329 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5330 udelay(10);
5331
5332 /* Set flag to indicate that we are in hibernation */
5333 hsotg->hibernated = 1;
5334
5335 /* Enable interrupts from wake up logic */
5336 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5337 gpwrdn |= GPWRDN_PMUINTSEL;
5338 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5339 udelay(10);
5340
5341 /* Unmask device mode interrupts in GPWRDN */
5342 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5343 gpwrdn |= GPWRDN_RST_DET_MSK;
5344 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5345 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5346 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5347 udelay(10);
5348
5349 /* Enable Power Down Clamp */
5350 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5351 gpwrdn |= GPWRDN_PWRDNCLMP;
5352 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5353 udelay(10);
5354
5355 /* Switch off VDD */
5356 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5357 gpwrdn |= GPWRDN_PWRDNSWTCH;
5358 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5359 udelay(10);
5360
5361 /* Save gpwrdn register for further usage if stschng interrupt */
5362 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5363 dev_dbg(hsotg->dev, "Hibernation completed\n");
5364
5365 return ret;
5366}
5367
5368/**
5369 * dwc2_gadget_exit_hibernation()
5370 * This function is for exiting from Device mode hibernation by host initiated
5371 * resume/reset and device initiated remote-wakeup.
5372 *
5373 * @hsotg: Programming view of the DWC_otg controller
5374 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5375 * @reset: indicates whether resume is initiated by Reset.
5376 *
5377 * Return non-zero if failed to exit from hibernation.
5378 */
5379int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5380 int rem_wakeup, int reset)
5381{
5382 u32 pcgcctl;
5383 u32 gpwrdn;
5384 u32 dctl;
5385 int ret = 0;
5386 struct dwc2_gregs_backup *gr;
5387 struct dwc2_dregs_backup *dr;
5388
5389 gr = &hsotg->gr_backup;
5390 dr = &hsotg->dr_backup;
5391
5392 if (!hsotg->hibernated) {
5393 dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5394 return 1;
5395 }
5396 dev_dbg(hsotg->dev,
5397 "%s: called with rem_wakeup = %d reset = %d\n",
5398 __func__, rem_wakeup, reset);
5399
5400 dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5401
5402 if (!reset) {
5403 /* Clear all pending interupts */
5404 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5405 }
5406
5407 /* De-assert Restore */
5408 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5409 gpwrdn &= ~GPWRDN_RESTORE;
5410 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5411 udelay(10);
5412
5413 if (!rem_wakeup) {
5414 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5415 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5416 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5417 }
5418
5419 /* Restore GUSBCFG, DCFG and DCTL */
5420 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5421 dwc2_writel(hsotg, dr->dcfg, DCFG);
5422 dwc2_writel(hsotg, dr->dctl, DCTL);
5423
5424 /* On USB Reset, reset device address to zero */
5425 if (reset)
5426 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5427
5428 /* De-assert Wakeup Logic */
5429 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5430 gpwrdn &= ~GPWRDN_PMUACTV;
5431 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5432
5433 if (rem_wakeup) {
5434 udelay(10);
5435 /* Start Remote Wakeup Signaling */
5436 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5437 } else {
5438 udelay(50);
5439 /* Set Device programming done bit */
5440 dctl = dwc2_readl(hsotg, DCTL);
5441 dctl |= DCTL_PWRONPRGDONE;
5442 dwc2_writel(hsotg, dctl, DCTL);
5443 }
5444 /* Wait for interrupts which must be cleared */
5445 mdelay(2);
5446 /* Clear all pending interupts */
5447 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5448
5449 /* Restore global registers */
5450 ret = dwc2_restore_global_registers(hsotg);
5451 if (ret) {
5452 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5453 __func__);
5454 return ret;
5455 }
5456
5457 /* Restore device registers */
5458 ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5459 if (ret) {
5460 dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5461 __func__);
5462 return ret;
5463 }
5464
5465 if (rem_wakeup) {
5466 mdelay(10);
5467 dctl = dwc2_readl(hsotg, DCTL);
5468 dctl &= ~DCTL_RMTWKUPSIG;
5469 dwc2_writel(hsotg, dctl, DCTL);
5470 }
5471
5472 hsotg->hibernated = 0;
5473 hsotg->lx_state = DWC2_L0;
5474 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5475
5476 return ret;
5477}
5478
5479/**
5480 * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5481 * power down.
5482 *
5483 * @hsotg: Programming view of the DWC_otg controller
5484 *
5485 * Return: non-zero if failed to enter device partial power down.
5486 *
5487 * This function is for entering device mode partial power down.
5488 */
5489int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5490{
5491 u32 pcgcctl;
5492 int ret = 0;
5493
5494 dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5495
5496 /* Backup all registers */
5497 ret = dwc2_backup_global_registers(hsotg);
5498 if (ret) {
5499 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5500 __func__);
5501 return ret;
5502 }
5503
5504 ret = dwc2_backup_device_registers(hsotg);
5505 if (ret) {
5506 dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5507 __func__);
5508 return ret;
5509 }
5510
5511 /*
5512 * Clear any pending interrupts since dwc2 will not be able to
5513 * clear them after entering partial_power_down.
5514 */
5515 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5516
5517 /* Put the controller in low power state */
5518 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5519
5520 pcgcctl |= PCGCTL_PWRCLMP;
5521 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5522 udelay(5);
5523
5524 pcgcctl |= PCGCTL_RSTPDWNMODULE;
5525 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5526 udelay(5);
5527
5528 pcgcctl |= PCGCTL_STOPPCLK;
5529 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5530
5531 /* Set in_ppd flag to 1 as here core enters suspend. */
5532 hsotg->in_ppd = 1;
5533 hsotg->lx_state = DWC2_L2;
5534
5535 dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5536
5537 return ret;
5538}
5539
5540/*
5541 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5542 * power down.
5543 *
5544 * @hsotg: Programming view of the DWC_otg controller
5545 * @restore: indicates whether need to restore the registers or not.
5546 *
5547 * Return: non-zero if failed to exit device partial power down.
5548 *
5549 * This function is for exiting from device mode partial power down.
5550 */
5551int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5552 bool restore)
5553{
5554 u32 pcgcctl;
5555 u32 dctl;
5556 struct dwc2_dregs_backup *dr;
5557 int ret = 0;
5558
5559 dr = &hsotg->dr_backup;
5560
5561 dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5562
5563 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5564 pcgcctl &= ~PCGCTL_STOPPCLK;
5565 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5566
5567 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5568 pcgcctl &= ~PCGCTL_PWRCLMP;
5569 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5570
5571 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5572 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5573 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5574
5575 udelay(100);
5576 if (restore) {
5577 ret = dwc2_restore_global_registers(hsotg);
5578 if (ret) {
5579 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5580 __func__);
5581 return ret;
5582 }
5583 /* Restore DCFG */
5584 dwc2_writel(hsotg, dr->dcfg, DCFG);
5585
5586 ret = dwc2_restore_device_registers(hsotg, 0);
5587 if (ret) {
5588 dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5589 __func__);
5590 return ret;
5591 }
5592 }
5593
5594 /* Set the Power-On Programming done bit */
5595 dctl = dwc2_readl(hsotg, DCTL);
5596 dctl |= DCTL_PWRONPRGDONE;
5597 dwc2_writel(hsotg, dctl, DCTL);
5598
5599 /* Set in_ppd flag to 0 as here core exits from suspend. */
5600 hsotg->in_ppd = 0;
5601 hsotg->lx_state = DWC2_L0;
5602
5603 dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5604 return ret;
5605}
5606
5607/**
5608 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5609 *
5610 * @hsotg: Programming view of the DWC_otg controller
5611 *
5612 * Return: non-zero if failed to enter device partial power down.
5613 *
5614 * This function is for entering device mode clock gating.
5615 */
5616void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5617{
5618 u32 pcgctl;
5619
5620 dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5621
5622 /* Set the Phy Clock bit as suspend is received. */
5623 pcgctl = dwc2_readl(hsotg, PCGCTL);
5624 pcgctl |= PCGCTL_STOPPCLK;
5625 dwc2_writel(hsotg, pcgctl, PCGCTL);
5626 udelay(5);
5627
5628 /* Set the Gate hclk as suspend is received. */
5629 pcgctl = dwc2_readl(hsotg, PCGCTL);
5630 pcgctl |= PCGCTL_GATEHCLK;
5631 dwc2_writel(hsotg, pcgctl, PCGCTL);
5632 udelay(5);
5633
5634 hsotg->lx_state = DWC2_L2;
5635 hsotg->bus_suspended = true;
5636}
5637
5638/*
5639 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5640 *
5641 * @hsotg: Programming view of the DWC_otg controller
5642 * @rem_wakeup: indicates whether remote wake up is enabled.
5643 *
5644 * This function is for exiting from device mode clock gating.
5645 */
5646void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5647{
5648 u32 pcgctl;
5649 u32 dctl;
5650
5651 dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5652
5653 /* Clear the Gate hclk. */
5654 pcgctl = dwc2_readl(hsotg, PCGCTL);
5655 pcgctl &= ~PCGCTL_GATEHCLK;
5656 dwc2_writel(hsotg, pcgctl, PCGCTL);
5657 udelay(5);
5658
5659 /* Phy Clock bit. */
5660 pcgctl = dwc2_readl(hsotg, PCGCTL);
5661 pcgctl &= ~PCGCTL_STOPPCLK;
5662 dwc2_writel(hsotg, pcgctl, PCGCTL);
5663 udelay(5);
5664
5665 if (rem_wakeup) {
5666 /* Set Remote Wakeup Signaling */
5667 dctl = dwc2_readl(hsotg, DCTL);
5668 dctl |= DCTL_RMTWKUPSIG;
5669 dwc2_writel(hsotg, dctl, DCTL);
5670 }
5671
5672 /* Change to L0 state */
5673 call_gadget(hsotg, resume);
5674 hsotg->lx_state = DWC2_L0;
5675 hsotg->bus_suspended = false;
5676}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
10 *
11 * S3C USB2.0 High-speed / OtG driver
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/platform_device.h>
19#include <linux/dma-mapping.h>
20#include <linux/mutex.h>
21#include <linux/seq_file.h>
22#include <linux/delay.h>
23#include <linux/io.h>
24#include <linux/slab.h>
25
26#include <linux/usb/ch9.h>
27#include <linux/usb/gadget.h>
28#include <linux/usb/phy.h>
29#include <linux/usb/composite.h>
30
31
32#include "core.h"
33#include "hw.h"
34
35/* conversion functions */
36static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
37{
38 return container_of(req, struct dwc2_hsotg_req, req);
39}
40
41static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
42{
43 return container_of(ep, struct dwc2_hsotg_ep, ep);
44}
45
46static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
47{
48 return container_of(gadget, struct dwc2_hsotg, gadget);
49}
50
51static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
52{
53 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
54}
55
56static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
57{
58 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
59}
60
61static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
62 u32 ep_index, u32 dir_in)
63{
64 if (dir_in)
65 return hsotg->eps_in[ep_index];
66 else
67 return hsotg->eps_out[ep_index];
68}
69
70/* forward declaration of functions */
71static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
72
73/**
74 * using_dma - return the DMA status of the driver.
75 * @hsotg: The driver state.
76 *
77 * Return true if we're using DMA.
78 *
79 * Currently, we have the DMA support code worked into everywhere
80 * that needs it, but the AMBA DMA implementation in the hardware can
81 * only DMA from 32bit aligned addresses. This means that gadgets such
82 * as the CDC Ethernet cannot work as they often pass packets which are
83 * not 32bit aligned.
84 *
85 * Unfortunately the choice to use DMA or not is global to the controller
86 * and seems to be only settable when the controller is being put through
87 * a core reset. This means we either need to fix the gadgets to take
88 * account of DMA alignment, or add bounce buffers (yuerk).
89 *
90 * g_using_dma is set depending on dts flag.
91 */
92static inline bool using_dma(struct dwc2_hsotg *hsotg)
93{
94 return hsotg->params.g_dma;
95}
96
97/*
98 * using_desc_dma - return the descriptor DMA status of the driver.
99 * @hsotg: The driver state.
100 *
101 * Return true if we're using descriptor DMA.
102 */
103static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
104{
105 return hsotg->params.g_dma_desc;
106}
107
108/**
109 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
110 * @hs_ep: The endpoint
111 *
112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
113 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
114 */
115static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
116{
117 struct dwc2_hsotg *hsotg = hs_ep->parent;
118 u16 limit = DSTS_SOFFN_LIMIT;
119
120 if (hsotg->gadget.speed != USB_SPEED_HIGH)
121 limit >>= 3;
122
123 hs_ep->target_frame += hs_ep->interval;
124 if (hs_ep->target_frame > limit) {
125 hs_ep->frame_overrun = true;
126 hs_ep->target_frame &= limit;
127 } else {
128 hs_ep->frame_overrun = false;
129 }
130}
131
132/**
133 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
134 * by one.
135 * @hs_ep: The endpoint.
136 *
137 * This function used in service interval based scheduling flow to calculate
138 * descriptor frame number filed value. For service interval mode frame
139 * number in descriptor should point to last (u)frame in the interval.
140 *
141 */
142static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
143{
144 struct dwc2_hsotg *hsotg = hs_ep->parent;
145 u16 limit = DSTS_SOFFN_LIMIT;
146
147 if (hsotg->gadget.speed != USB_SPEED_HIGH)
148 limit >>= 3;
149
150 if (hs_ep->target_frame)
151 hs_ep->target_frame -= 1;
152 else
153 hs_ep->target_frame = limit;
154}
155
156/**
157 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
158 * @hsotg: The device state
159 * @ints: A bitmask of the interrupts to enable
160 */
161static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
162{
163 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
164 u32 new_gsintmsk;
165
166 new_gsintmsk = gsintmsk | ints;
167
168 if (new_gsintmsk != gsintmsk) {
169 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
170 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
171 }
172}
173
174/**
175 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
176 * @hsotg: The device state
177 * @ints: A bitmask of the interrupts to enable
178 */
179static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
180{
181 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
182 u32 new_gsintmsk;
183
184 new_gsintmsk = gsintmsk & ~ints;
185
186 if (new_gsintmsk != gsintmsk)
187 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
188}
189
190/**
191 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
192 * @hsotg: The device state
193 * @ep: The endpoint index
194 * @dir_in: True if direction is in.
195 * @en: The enable value, true to enable
196 *
197 * Set or clear the mask for an individual endpoint's interrupt
198 * request.
199 */
200static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
201 unsigned int ep, unsigned int dir_in,
202 unsigned int en)
203{
204 unsigned long flags;
205 u32 bit = 1 << ep;
206 u32 daint;
207
208 if (!dir_in)
209 bit <<= 16;
210
211 local_irq_save(flags);
212 daint = dwc2_readl(hsotg, DAINTMSK);
213 if (en)
214 daint |= bit;
215 else
216 daint &= ~bit;
217 dwc2_writel(hsotg, daint, DAINTMSK);
218 local_irq_restore(flags);
219}
220
221/**
222 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
223 *
224 * @hsotg: Programming view of the DWC_otg controller
225 */
226int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
227{
228 if (hsotg->hw_params.en_multiple_tx_fifo)
229 /* In dedicated FIFO mode we need count of IN EPs */
230 return hsotg->hw_params.num_dev_in_eps;
231 else
232 /* In shared FIFO mode we need count of Periodic IN EPs */
233 return hsotg->hw_params.num_dev_perio_in_ep;
234}
235
236/**
237 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
238 * device mode TX FIFOs
239 *
240 * @hsotg: Programming view of the DWC_otg controller
241 */
242int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
243{
244 int addr;
245 int tx_addr_max;
246 u32 np_tx_fifo_size;
247
248 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
249 hsotg->params.g_np_tx_fifo_size);
250
251 /* Get Endpoint Info Control block size in DWORDs. */
252 tx_addr_max = hsotg->hw_params.total_fifo_size;
253
254 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
255 if (tx_addr_max <= addr)
256 return 0;
257
258 return tx_addr_max - addr;
259}
260
261/**
262 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
263 *
264 * @hsotg: Programming view of the DWC_otg controller
265 *
266 */
267static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
268{
269 u32 gintsts2;
270 u32 gintmsk2;
271
272 gintsts2 = dwc2_readl(hsotg, GINTSTS2);
273 gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
274 gintsts2 &= gintmsk2;
275
276 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
277 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
278 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
279 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
280 }
281}
282
283/**
284 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
285 * TX FIFOs
286 *
287 * @hsotg: Programming view of the DWC_otg controller
288 */
289int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
290{
291 int tx_fifo_count;
292 int tx_fifo_depth;
293
294 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
295
296 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
297
298 if (!tx_fifo_count)
299 return tx_fifo_depth;
300 else
301 return tx_fifo_depth / tx_fifo_count;
302}
303
304/**
305 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
306 * @hsotg: The device instance.
307 */
308static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
309{
310 unsigned int ep;
311 unsigned int addr;
312 int timeout;
313
314 u32 val;
315 u32 *txfsz = hsotg->params.g_tx_fifo_size;
316
317 /* Reset fifo map if not correctly cleared during previous session */
318 WARN_ON(hsotg->fifo_map);
319 hsotg->fifo_map = 0;
320
321 /* set RX/NPTX FIFO sizes */
322 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
323 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
324 FIFOSIZE_STARTADDR_SHIFT) |
325 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
326 GNPTXFSIZ);
327
328 /*
329 * arange all the rest of the TX FIFOs, as some versions of this
330 * block have overlapping default addresses. This also ensures
331 * that if the settings have been changed, then they are set to
332 * known values.
333 */
334
335 /* start at the end of the GNPTXFSIZ, rounded up */
336 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
337
338 /*
339 * Configure fifos sizes from provided configuration and assign
340 * them to endpoints dynamically according to maxpacket size value of
341 * given endpoint.
342 */
343 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
344 if (!txfsz[ep])
345 continue;
346 val = addr;
347 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
348 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
349 "insufficient fifo memory");
350 addr += txfsz[ep];
351
352 dwc2_writel(hsotg, val, DPTXFSIZN(ep));
353 val = dwc2_readl(hsotg, DPTXFSIZN(ep));
354 }
355
356 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
357 addr << GDFIFOCFG_EPINFOBASE_SHIFT,
358 GDFIFOCFG);
359 /*
360 * according to p428 of the design guide, we need to ensure that
361 * all fifos are flushed before continuing
362 */
363
364 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
365 GRSTCTL_RXFFLSH, GRSTCTL);
366
367 /* wait until the fifos are both flushed */
368 timeout = 100;
369 while (1) {
370 val = dwc2_readl(hsotg, GRSTCTL);
371
372 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
373 break;
374
375 if (--timeout == 0) {
376 dev_err(hsotg->dev,
377 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
378 __func__, val);
379 break;
380 }
381
382 udelay(1);
383 }
384
385 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
386}
387
388/**
389 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
390 * @ep: USB endpoint to allocate request for.
391 * @flags: Allocation flags
392 *
393 * Allocate a new USB request structure appropriate for the specified endpoint
394 */
395static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
396 gfp_t flags)
397{
398 struct dwc2_hsotg_req *req;
399
400 req = kzalloc(sizeof(*req), flags);
401 if (!req)
402 return NULL;
403
404 INIT_LIST_HEAD(&req->queue);
405
406 return &req->req;
407}
408
409/**
410 * is_ep_periodic - return true if the endpoint is in periodic mode.
411 * @hs_ep: The endpoint to query.
412 *
413 * Returns true if the endpoint is in periodic mode, meaning it is being
414 * used for an Interrupt or ISO transfer.
415 */
416static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
417{
418 return hs_ep->periodic;
419}
420
421/**
422 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
423 * @hsotg: The device state.
424 * @hs_ep: The endpoint for the request
425 * @hs_req: The request being processed.
426 *
427 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
428 * of a request to ensure the buffer is ready for access by the caller.
429 */
430static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
431 struct dwc2_hsotg_ep *hs_ep,
432 struct dwc2_hsotg_req *hs_req)
433{
434 struct usb_request *req = &hs_req->req;
435
436 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
437}
438
439/*
440 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
441 * for Control endpoint
442 * @hsotg: The device state.
443 *
444 * This function will allocate 4 descriptor chains for EP 0: 2 for
445 * Setup stage, per one for IN and OUT data/status transactions.
446 */
447static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
448{
449 hsotg->setup_desc[0] =
450 dmam_alloc_coherent(hsotg->dev,
451 sizeof(struct dwc2_dma_desc),
452 &hsotg->setup_desc_dma[0],
453 GFP_KERNEL);
454 if (!hsotg->setup_desc[0])
455 goto fail;
456
457 hsotg->setup_desc[1] =
458 dmam_alloc_coherent(hsotg->dev,
459 sizeof(struct dwc2_dma_desc),
460 &hsotg->setup_desc_dma[1],
461 GFP_KERNEL);
462 if (!hsotg->setup_desc[1])
463 goto fail;
464
465 hsotg->ctrl_in_desc =
466 dmam_alloc_coherent(hsotg->dev,
467 sizeof(struct dwc2_dma_desc),
468 &hsotg->ctrl_in_desc_dma,
469 GFP_KERNEL);
470 if (!hsotg->ctrl_in_desc)
471 goto fail;
472
473 hsotg->ctrl_out_desc =
474 dmam_alloc_coherent(hsotg->dev,
475 sizeof(struct dwc2_dma_desc),
476 &hsotg->ctrl_out_desc_dma,
477 GFP_KERNEL);
478 if (!hsotg->ctrl_out_desc)
479 goto fail;
480
481 return 0;
482
483fail:
484 return -ENOMEM;
485}
486
487/**
488 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
489 * @hsotg: The controller state.
490 * @hs_ep: The endpoint we're going to write for.
491 * @hs_req: The request to write data for.
492 *
493 * This is called when the TxFIFO has some space in it to hold a new
494 * transmission and we have something to give it. The actual setup of
495 * the data size is done elsewhere, so all we have to do is to actually
496 * write the data.
497 *
498 * The return value is zero if there is more space (or nothing was done)
499 * otherwise -ENOSPC is returned if the FIFO space was used up.
500 *
501 * This routine is only needed for PIO
502 */
503static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
504 struct dwc2_hsotg_ep *hs_ep,
505 struct dwc2_hsotg_req *hs_req)
506{
507 bool periodic = is_ep_periodic(hs_ep);
508 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
509 int buf_pos = hs_req->req.actual;
510 int to_write = hs_ep->size_loaded;
511 void *data;
512 int can_write;
513 int pkt_round;
514 int max_transfer;
515
516 to_write -= (buf_pos - hs_ep->last_load);
517
518 /* if there's nothing to write, get out early */
519 if (to_write == 0)
520 return 0;
521
522 if (periodic && !hsotg->dedicated_fifos) {
523 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
524 int size_left;
525 int size_done;
526
527 /*
528 * work out how much data was loaded so we can calculate
529 * how much data is left in the fifo.
530 */
531
532 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
533
534 /*
535 * if shared fifo, we cannot write anything until the
536 * previous data has been completely sent.
537 */
538 if (hs_ep->fifo_load != 0) {
539 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
540 return -ENOSPC;
541 }
542
543 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
544 __func__, size_left,
545 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
546
547 /* how much of the data has moved */
548 size_done = hs_ep->size_loaded - size_left;
549
550 /* how much data is left in the fifo */
551 can_write = hs_ep->fifo_load - size_done;
552 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
553 __func__, can_write);
554
555 can_write = hs_ep->fifo_size - can_write;
556 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
557 __func__, can_write);
558
559 if (can_write <= 0) {
560 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
561 return -ENOSPC;
562 }
563 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
564 can_write = dwc2_readl(hsotg,
565 DTXFSTS(hs_ep->fifo_index));
566
567 can_write &= 0xffff;
568 can_write *= 4;
569 } else {
570 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
571 dev_dbg(hsotg->dev,
572 "%s: no queue slots available (0x%08x)\n",
573 __func__, gnptxsts);
574
575 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
576 return -ENOSPC;
577 }
578
579 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
580 can_write *= 4; /* fifo size is in 32bit quantities. */
581 }
582
583 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
584
585 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
586 __func__, gnptxsts, can_write, to_write, max_transfer);
587
588 /*
589 * limit to 512 bytes of data, it seems at least on the non-periodic
590 * FIFO, requests of >512 cause the endpoint to get stuck with a
591 * fragment of the end of the transfer in it.
592 */
593 if (can_write > 512 && !periodic)
594 can_write = 512;
595
596 /*
597 * limit the write to one max-packet size worth of data, but allow
598 * the transfer to return that it did not run out of fifo space
599 * doing it.
600 */
601 if (to_write > max_transfer) {
602 to_write = max_transfer;
603
604 /* it's needed only when we do not use dedicated fifos */
605 if (!hsotg->dedicated_fifos)
606 dwc2_hsotg_en_gsint(hsotg,
607 periodic ? GINTSTS_PTXFEMP :
608 GINTSTS_NPTXFEMP);
609 }
610
611 /* see if we can write data */
612
613 if (to_write > can_write) {
614 to_write = can_write;
615 pkt_round = to_write % max_transfer;
616
617 /*
618 * Round the write down to an
619 * exact number of packets.
620 *
621 * Note, we do not currently check to see if we can ever
622 * write a full packet or not to the FIFO.
623 */
624
625 if (pkt_round)
626 to_write -= pkt_round;
627
628 /*
629 * enable correct FIFO interrupt to alert us when there
630 * is more room left.
631 */
632
633 /* it's needed only when we do not use dedicated fifos */
634 if (!hsotg->dedicated_fifos)
635 dwc2_hsotg_en_gsint(hsotg,
636 periodic ? GINTSTS_PTXFEMP :
637 GINTSTS_NPTXFEMP);
638 }
639
640 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
641 to_write, hs_req->req.length, can_write, buf_pos);
642
643 if (to_write <= 0)
644 return -ENOSPC;
645
646 hs_req->req.actual = buf_pos + to_write;
647 hs_ep->total_data += to_write;
648
649 if (periodic)
650 hs_ep->fifo_load += to_write;
651
652 to_write = DIV_ROUND_UP(to_write, 4);
653 data = hs_req->req.buf + buf_pos;
654
655 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
656
657 return (to_write >= can_write) ? -ENOSPC : 0;
658}
659
660/**
661 * get_ep_limit - get the maximum data legnth for this endpoint
662 * @hs_ep: The endpoint
663 *
664 * Return the maximum data that can be queued in one go on a given endpoint
665 * so that transfers that are too long can be split.
666 */
667static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
668{
669 int index = hs_ep->index;
670 unsigned int maxsize;
671 unsigned int maxpkt;
672
673 if (index != 0) {
674 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
675 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
676 } else {
677 maxsize = 64 + 64;
678 if (hs_ep->dir_in)
679 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
680 else
681 maxpkt = 2;
682 }
683
684 /* we made the constant loading easier above by using +1 */
685 maxpkt--;
686 maxsize--;
687
688 /*
689 * constrain by packet count if maxpkts*pktsize is greater
690 * than the length register size.
691 */
692
693 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
694 maxsize = maxpkt * hs_ep->ep.maxpacket;
695
696 return maxsize;
697}
698
699/**
700 * dwc2_hsotg_read_frameno - read current frame number
701 * @hsotg: The device instance
702 *
703 * Return the current frame number
704 */
705static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
706{
707 u32 dsts;
708
709 dsts = dwc2_readl(hsotg, DSTS);
710 dsts &= DSTS_SOFFN_MASK;
711 dsts >>= DSTS_SOFFN_SHIFT;
712
713 return dsts;
714}
715
716/**
717 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
718 * DMA descriptor chain prepared for specific endpoint
719 * @hs_ep: The endpoint
720 *
721 * Return the maximum data that can be queued in one go on a given endpoint
722 * depending on its descriptor chain capacity so that transfers that
723 * are too long can be split.
724 */
725static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
726{
727 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
728 int is_isoc = hs_ep->isochronous;
729 unsigned int maxsize;
730 u32 mps = hs_ep->ep.maxpacket;
731 int dir_in = hs_ep->dir_in;
732
733 if (is_isoc)
734 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
735 DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
736 MAX_DMA_DESC_NUM_HS_ISOC;
737 else
738 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
739
740 /* Interrupt OUT EP with mps not multiple of 4 */
741 if (hs_ep->index)
742 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
743 maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
744
745 return maxsize;
746}
747
748/*
749 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
750 * @hs_ep: The endpoint
751 * @mask: RX/TX bytes mask to be defined
752 *
753 * Returns maximum data payload for one descriptor after analyzing endpoint
754 * characteristics.
755 * DMA descriptor transfer bytes limit depends on EP type:
756 * Control out - MPS,
757 * Isochronous - descriptor rx/tx bytes bitfield limit,
758 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
759 * have concatenations from various descriptors within one packet.
760 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
761 * to a single descriptor.
762 *
763 * Selects corresponding mask for RX/TX bytes as well.
764 */
765static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
766{
767 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
768 u32 mps = hs_ep->ep.maxpacket;
769 int dir_in = hs_ep->dir_in;
770 u32 desc_size = 0;
771
772 if (!hs_ep->index && !dir_in) {
773 desc_size = mps;
774 *mask = DEV_DMA_NBYTES_MASK;
775 } else if (hs_ep->isochronous) {
776 if (dir_in) {
777 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
778 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
779 } else {
780 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
781 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
782 }
783 } else {
784 desc_size = DEV_DMA_NBYTES_LIMIT;
785 *mask = DEV_DMA_NBYTES_MASK;
786
787 /* Round down desc_size to be mps multiple */
788 desc_size -= desc_size % mps;
789 }
790
791 /* Interrupt OUT EP with mps not multiple of 4 */
792 if (hs_ep->index)
793 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
794 desc_size = mps;
795 *mask = DEV_DMA_NBYTES_MASK;
796 }
797
798 return desc_size;
799}
800
801static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
802 struct dwc2_dma_desc **desc,
803 dma_addr_t dma_buff,
804 unsigned int len,
805 bool true_last)
806{
807 int dir_in = hs_ep->dir_in;
808 u32 mps = hs_ep->ep.maxpacket;
809 u32 maxsize = 0;
810 u32 offset = 0;
811 u32 mask = 0;
812 int i;
813
814 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
815
816 hs_ep->desc_count = (len / maxsize) +
817 ((len % maxsize) ? 1 : 0);
818 if (len == 0)
819 hs_ep->desc_count = 1;
820
821 for (i = 0; i < hs_ep->desc_count; ++i) {
822 (*desc)->status = 0;
823 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
824 << DEV_DMA_BUFF_STS_SHIFT);
825
826 if (len > maxsize) {
827 if (!hs_ep->index && !dir_in)
828 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
829
830 (*desc)->status |=
831 maxsize << DEV_DMA_NBYTES_SHIFT & mask;
832 (*desc)->buf = dma_buff + offset;
833
834 len -= maxsize;
835 offset += maxsize;
836 } else {
837 if (true_last)
838 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
839
840 if (dir_in)
841 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
842 ((hs_ep->send_zlp && true_last) ?
843 DEV_DMA_SHORT : 0);
844
845 (*desc)->status |=
846 len << DEV_DMA_NBYTES_SHIFT & mask;
847 (*desc)->buf = dma_buff + offset;
848 }
849
850 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
851 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
852 << DEV_DMA_BUFF_STS_SHIFT);
853 (*desc)++;
854 }
855}
856
857/*
858 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
859 * @hs_ep: The endpoint
860 * @ureq: Request to transfer
861 * @offset: offset in bytes
862 * @len: Length of the transfer
863 *
864 * This function will iterate over descriptor chain and fill its entries
865 * with corresponding information based on transfer data.
866 */
867static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
868 dma_addr_t dma_buff,
869 unsigned int len)
870{
871 struct usb_request *ureq = NULL;
872 struct dwc2_dma_desc *desc = hs_ep->desc_list;
873 struct scatterlist *sg;
874 int i;
875 u8 desc_count = 0;
876
877 if (hs_ep->req)
878 ureq = &hs_ep->req->req;
879
880 /* non-DMA sg buffer */
881 if (!ureq || !ureq->num_sgs) {
882 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
883 dma_buff, len, true);
884 return;
885 }
886
887 /* DMA sg buffer */
888 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
889 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
890 sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
891 sg_is_last(sg));
892 desc_count += hs_ep->desc_count;
893 }
894
895 hs_ep->desc_count = desc_count;
896}
897
898/*
899 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
900 * @hs_ep: The isochronous endpoint.
901 * @dma_buff: usb requests dma buffer.
902 * @len: usb request transfer length.
903 *
904 * Fills next free descriptor with the data of the arrived usb request,
905 * frame info, sets Last and IOC bits increments next_desc. If filled
906 * descriptor is not the first one, removes L bit from the previous descriptor
907 * status.
908 */
909static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
910 dma_addr_t dma_buff, unsigned int len)
911{
912 struct dwc2_dma_desc *desc;
913 struct dwc2_hsotg *hsotg = hs_ep->parent;
914 u32 index;
915 u32 mask = 0;
916 u8 pid = 0;
917
918 dwc2_gadget_get_desc_params(hs_ep, &mask);
919
920 index = hs_ep->next_desc;
921 desc = &hs_ep->desc_list[index];
922
923 /* Check if descriptor chain full */
924 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
925 DEV_DMA_BUFF_STS_HREADY) {
926 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
927 return 1;
928 }
929
930 /* Clear L bit of previous desc if more than one entries in the chain */
931 if (hs_ep->next_desc)
932 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
933
934 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
935 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
936
937 desc->status = 0;
938 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
939
940 desc->buf = dma_buff;
941 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
942 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
943
944 if (hs_ep->dir_in) {
945 if (len)
946 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
947 else
948 pid = 1;
949 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
950 DEV_DMA_ISOC_PID_MASK) |
951 ((len % hs_ep->ep.maxpacket) ?
952 DEV_DMA_SHORT : 0) |
953 ((hs_ep->target_frame <<
954 DEV_DMA_ISOC_FRNUM_SHIFT) &
955 DEV_DMA_ISOC_FRNUM_MASK);
956 }
957
958 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
959 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
960
961 /* Increment frame number by interval for IN */
962 if (hs_ep->dir_in)
963 dwc2_gadget_incr_frame_num(hs_ep);
964
965 /* Update index of last configured entry in the chain */
966 hs_ep->next_desc++;
967 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
968 hs_ep->next_desc = 0;
969
970 return 0;
971}
972
973/*
974 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
975 * @hs_ep: The isochronous endpoint.
976 *
977 * Prepare descriptor chain for isochronous endpoints. Afterwards
978 * write DMA address to HW and enable the endpoint.
979 */
980static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
981{
982 struct dwc2_hsotg *hsotg = hs_ep->parent;
983 struct dwc2_hsotg_req *hs_req, *treq;
984 int index = hs_ep->index;
985 int ret;
986 int i;
987 u32 dma_reg;
988 u32 depctl;
989 u32 ctrl;
990 struct dwc2_dma_desc *desc;
991
992 if (list_empty(&hs_ep->queue)) {
993 hs_ep->target_frame = TARGET_FRAME_INITIAL;
994 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
995 return;
996 }
997
998 /* Initialize descriptor chain by Host Busy status */
999 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1000 desc = &hs_ep->desc_list[i];
1001 desc->status = 0;
1002 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1003 << DEV_DMA_BUFF_STS_SHIFT);
1004 }
1005
1006 hs_ep->next_desc = 0;
1007 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1008 dma_addr_t dma_addr = hs_req->req.dma;
1009
1010 if (hs_req->req.num_sgs) {
1011 WARN_ON(hs_req->req.num_sgs > 1);
1012 dma_addr = sg_dma_address(hs_req->req.sg);
1013 }
1014 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1015 hs_req->req.length);
1016 if (ret)
1017 break;
1018 }
1019
1020 hs_ep->compl_desc = 0;
1021 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1022 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1023
1024 /* write descriptor chain address to control register */
1025 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1026
1027 ctrl = dwc2_readl(hsotg, depctl);
1028 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1029 dwc2_writel(hsotg, ctrl, depctl);
1030}
1031
1032static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1033static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1034 struct dwc2_hsotg_ep *hs_ep,
1035 struct dwc2_hsotg_req *hs_req,
1036 int result);
1037
1038/**
1039 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1040 * @hsotg: The controller state.
1041 * @hs_ep: The endpoint to process a request for
1042 * @hs_req: The request to start.
1043 * @continuing: True if we are doing more for the current request.
1044 *
1045 * Start the given request running by setting the endpoint registers
1046 * appropriately, and writing any data to the FIFOs.
1047 */
1048static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1049 struct dwc2_hsotg_ep *hs_ep,
1050 struct dwc2_hsotg_req *hs_req,
1051 bool continuing)
1052{
1053 struct usb_request *ureq = &hs_req->req;
1054 int index = hs_ep->index;
1055 int dir_in = hs_ep->dir_in;
1056 u32 epctrl_reg;
1057 u32 epsize_reg;
1058 u32 epsize;
1059 u32 ctrl;
1060 unsigned int length;
1061 unsigned int packets;
1062 unsigned int maxreq;
1063 unsigned int dma_reg;
1064
1065 if (index != 0) {
1066 if (hs_ep->req && !continuing) {
1067 dev_err(hsotg->dev, "%s: active request\n", __func__);
1068 WARN_ON(1);
1069 return;
1070 } else if (hs_ep->req != hs_req && continuing) {
1071 dev_err(hsotg->dev,
1072 "%s: continue different req\n", __func__);
1073 WARN_ON(1);
1074 return;
1075 }
1076 }
1077
1078 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1079 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1080 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1081
1082 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1083 __func__, dwc2_readl(hsotg, epctrl_reg), index,
1084 hs_ep->dir_in ? "in" : "out");
1085
1086 /* If endpoint is stalled, we will restart request later */
1087 ctrl = dwc2_readl(hsotg, epctrl_reg);
1088
1089 if (index && ctrl & DXEPCTL_STALL) {
1090 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1091 return;
1092 }
1093
1094 length = ureq->length - ureq->actual;
1095 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1096 ureq->length, ureq->actual);
1097
1098 if (!using_desc_dma(hsotg))
1099 maxreq = get_ep_limit(hs_ep);
1100 else
1101 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1102
1103 if (length > maxreq) {
1104 int round = maxreq % hs_ep->ep.maxpacket;
1105
1106 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1107 __func__, length, maxreq, round);
1108
1109 /* round down to multiple of packets */
1110 if (round)
1111 maxreq -= round;
1112
1113 length = maxreq;
1114 }
1115
1116 if (length)
1117 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1118 else
1119 packets = 1; /* send one packet if length is zero. */
1120
1121 if (dir_in && index != 0)
1122 if (hs_ep->isochronous)
1123 epsize = DXEPTSIZ_MC(packets);
1124 else
1125 epsize = DXEPTSIZ_MC(1);
1126 else
1127 epsize = 0;
1128
1129 /*
1130 * zero length packet should be programmed on its own and should not
1131 * be counted in DIEPTSIZ.PktCnt with other packets.
1132 */
1133 if (dir_in && ureq->zero && !continuing) {
1134 /* Test if zlp is actually required. */
1135 if ((ureq->length >= hs_ep->ep.maxpacket) &&
1136 !(ureq->length % hs_ep->ep.maxpacket))
1137 hs_ep->send_zlp = 1;
1138 }
1139
1140 epsize |= DXEPTSIZ_PKTCNT(packets);
1141 epsize |= DXEPTSIZ_XFERSIZE(length);
1142
1143 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1144 __func__, packets, length, ureq->length, epsize, epsize_reg);
1145
1146 /* store the request as the current one we're doing */
1147 hs_ep->req = hs_req;
1148
1149 if (using_desc_dma(hsotg)) {
1150 u32 offset = 0;
1151 u32 mps = hs_ep->ep.maxpacket;
1152
1153 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1154 if (!dir_in) {
1155 if (!index)
1156 length = mps;
1157 else if (length % mps)
1158 length += (mps - (length % mps));
1159 }
1160
1161 if (continuing)
1162 offset = ureq->actual;
1163
1164 /* Fill DDMA chain entries */
1165 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1166 length);
1167
1168 /* write descriptor chain address to control register */
1169 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1170
1171 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1172 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1173 } else {
1174 /* write size / packets */
1175 dwc2_writel(hsotg, epsize, epsize_reg);
1176
1177 if (using_dma(hsotg) && !continuing && (length != 0)) {
1178 /*
1179 * write DMA address to control register, buffer
1180 * already synced by dwc2_hsotg_ep_queue().
1181 */
1182
1183 dwc2_writel(hsotg, ureq->dma, dma_reg);
1184
1185 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1186 __func__, &ureq->dma, dma_reg);
1187 }
1188 }
1189
1190 if (hs_ep->isochronous) {
1191 if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1192 if (hs_ep->interval == 1) {
1193 if (hs_ep->target_frame & 0x1)
1194 ctrl |= DXEPCTL_SETODDFR;
1195 else
1196 ctrl |= DXEPCTL_SETEVENFR;
1197 }
1198 ctrl |= DXEPCTL_CNAK;
1199 } else {
1200 hs_req->req.frame_number = hs_ep->target_frame;
1201 hs_req->req.actual = 0;
1202 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1203 return;
1204 }
1205 }
1206
1207 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1208
1209 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1210
1211 /* For Setup request do not clear NAK */
1212 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1213 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1214
1215 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1216 dwc2_writel(hsotg, ctrl, epctrl_reg);
1217
1218 /*
1219 * set these, it seems that DMA support increments past the end
1220 * of the packet buffer so we need to calculate the length from
1221 * this information.
1222 */
1223 hs_ep->size_loaded = length;
1224 hs_ep->last_load = ureq->actual;
1225
1226 if (dir_in && !using_dma(hsotg)) {
1227 /* set these anyway, we may need them for non-periodic in */
1228 hs_ep->fifo_load = 0;
1229
1230 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1231 }
1232
1233 /*
1234 * Note, trying to clear the NAK here causes problems with transmit
1235 * on the S3C6400 ending up with the TXFIFO becoming full.
1236 */
1237
1238 /* check ep is enabled */
1239 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1240 dev_dbg(hsotg->dev,
1241 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1242 index, dwc2_readl(hsotg, epctrl_reg));
1243
1244 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1245 __func__, dwc2_readl(hsotg, epctrl_reg));
1246
1247 /* enable ep interrupts */
1248 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1249}
1250
1251/**
1252 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1253 * @hsotg: The device state.
1254 * @hs_ep: The endpoint the request is on.
1255 * @req: The request being processed.
1256 *
1257 * We've been asked to queue a request, so ensure that the memory buffer
1258 * is correctly setup for DMA. If we've been passed an extant DMA address
1259 * then ensure the buffer has been synced to memory. If our buffer has no
1260 * DMA memory, then we map the memory and mark our request to allow us to
1261 * cleanup on completion.
1262 */
1263static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1264 struct dwc2_hsotg_ep *hs_ep,
1265 struct usb_request *req)
1266{
1267 int ret;
1268
1269 hs_ep->map_dir = hs_ep->dir_in;
1270 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1271 if (ret)
1272 goto dma_error;
1273
1274 return 0;
1275
1276dma_error:
1277 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1278 __func__, req->buf, req->length);
1279
1280 return -EIO;
1281}
1282
1283static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1284 struct dwc2_hsotg_ep *hs_ep,
1285 struct dwc2_hsotg_req *hs_req)
1286{
1287 void *req_buf = hs_req->req.buf;
1288
1289 /* If dma is not being used or buffer is aligned */
1290 if (!using_dma(hsotg) || !((long)req_buf & 3))
1291 return 0;
1292
1293 WARN_ON(hs_req->saved_req_buf);
1294
1295 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1296 hs_ep->ep.name, req_buf, hs_req->req.length);
1297
1298 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1299 if (!hs_req->req.buf) {
1300 hs_req->req.buf = req_buf;
1301 dev_err(hsotg->dev,
1302 "%s: unable to allocate memory for bounce buffer\n",
1303 __func__);
1304 return -ENOMEM;
1305 }
1306
1307 /* Save actual buffer */
1308 hs_req->saved_req_buf = req_buf;
1309
1310 if (hs_ep->dir_in)
1311 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1312 return 0;
1313}
1314
1315static void
1316dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1317 struct dwc2_hsotg_ep *hs_ep,
1318 struct dwc2_hsotg_req *hs_req)
1319{
1320 /* If dma is not being used or buffer was aligned */
1321 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1322 return;
1323
1324 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1325 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1326
1327 /* Copy data from bounce buffer on successful out transfer */
1328 if (!hs_ep->dir_in && !hs_req->req.status)
1329 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1330 hs_req->req.actual);
1331
1332 /* Free bounce buffer */
1333 kfree(hs_req->req.buf);
1334
1335 hs_req->req.buf = hs_req->saved_req_buf;
1336 hs_req->saved_req_buf = NULL;
1337}
1338
1339/**
1340 * dwc2_gadget_target_frame_elapsed - Checks target frame
1341 * @hs_ep: The driver endpoint to check
1342 *
1343 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1344 * corresponding transfer.
1345 */
1346static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1347{
1348 struct dwc2_hsotg *hsotg = hs_ep->parent;
1349 u32 target_frame = hs_ep->target_frame;
1350 u32 current_frame = hsotg->frame_number;
1351 bool frame_overrun = hs_ep->frame_overrun;
1352 u16 limit = DSTS_SOFFN_LIMIT;
1353
1354 if (hsotg->gadget.speed != USB_SPEED_HIGH)
1355 limit >>= 3;
1356
1357 if (!frame_overrun && current_frame >= target_frame)
1358 return true;
1359
1360 if (frame_overrun && current_frame >= target_frame &&
1361 ((current_frame - target_frame) < limit / 2))
1362 return true;
1363
1364 return false;
1365}
1366
1367/*
1368 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1369 * @hsotg: The driver state
1370 * @hs_ep: the ep descriptor chain is for
1371 *
1372 * Called to update EP0 structure's pointers depend on stage of
1373 * control transfer.
1374 */
1375static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1376 struct dwc2_hsotg_ep *hs_ep)
1377{
1378 switch (hsotg->ep0_state) {
1379 case DWC2_EP0_SETUP:
1380 case DWC2_EP0_STATUS_OUT:
1381 hs_ep->desc_list = hsotg->setup_desc[0];
1382 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1383 break;
1384 case DWC2_EP0_DATA_IN:
1385 case DWC2_EP0_STATUS_IN:
1386 hs_ep->desc_list = hsotg->ctrl_in_desc;
1387 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1388 break;
1389 case DWC2_EP0_DATA_OUT:
1390 hs_ep->desc_list = hsotg->ctrl_out_desc;
1391 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1392 break;
1393 default:
1394 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1395 hsotg->ep0_state);
1396 return -EINVAL;
1397 }
1398
1399 return 0;
1400}
1401
1402static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1403 gfp_t gfp_flags)
1404{
1405 struct dwc2_hsotg_req *hs_req = our_req(req);
1406 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1407 struct dwc2_hsotg *hs = hs_ep->parent;
1408 bool first;
1409 int ret;
1410 u32 maxsize = 0;
1411 u32 mask = 0;
1412
1413
1414 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1415 ep->name, req, req->length, req->buf, req->no_interrupt,
1416 req->zero, req->short_not_ok);
1417
1418 if (hs->lx_state == DWC2_L1) {
1419 dwc2_wakeup_from_lpm_l1(hs, true);
1420 }
1421
1422 /* Prevent new request submission when controller is suspended */
1423 if (hs->lx_state != DWC2_L0) {
1424 dev_dbg(hs->dev, "%s: submit request only in active state\n",
1425 __func__);
1426 return -EAGAIN;
1427 }
1428
1429 /* initialise status of the request */
1430 INIT_LIST_HEAD(&hs_req->queue);
1431 req->actual = 0;
1432 req->status = -EINPROGRESS;
1433
1434 /* Don't queue ISOC request if length greater than mps*mc */
1435 if (hs_ep->isochronous &&
1436 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1437 dev_err(hs->dev, "req length > maxpacket*mc\n");
1438 return -EINVAL;
1439 }
1440
1441 /* In DDMA mode for ISOC's don't queue request if length greater
1442 * than descriptor limits.
1443 */
1444 if (using_desc_dma(hs) && hs_ep->isochronous) {
1445 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1446 if (hs_ep->dir_in && req->length > maxsize) {
1447 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1448 req->length, maxsize);
1449 return -EINVAL;
1450 }
1451
1452 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1453 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1454 req->length, hs_ep->ep.maxpacket);
1455 return -EINVAL;
1456 }
1457 }
1458
1459 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1460 if (ret)
1461 return ret;
1462
1463 /* if we're using DMA, sync the buffers as necessary */
1464 if (using_dma(hs)) {
1465 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1466 if (ret)
1467 return ret;
1468 }
1469 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1470 if (using_desc_dma(hs) && !hs_ep->index) {
1471 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1472 if (ret)
1473 return ret;
1474 }
1475
1476 first = list_empty(&hs_ep->queue);
1477 list_add_tail(&hs_req->queue, &hs_ep->queue);
1478
1479 /*
1480 * Handle DDMA isochronous transfers separately - just add new entry
1481 * to the descriptor chain.
1482 * Transfer will be started once SW gets either one of NAK or
1483 * OutTknEpDis interrupts.
1484 */
1485 if (using_desc_dma(hs) && hs_ep->isochronous) {
1486 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1487 dma_addr_t dma_addr = hs_req->req.dma;
1488
1489 if (hs_req->req.num_sgs) {
1490 WARN_ON(hs_req->req.num_sgs > 1);
1491 dma_addr = sg_dma_address(hs_req->req.sg);
1492 }
1493 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1494 hs_req->req.length);
1495 }
1496 return 0;
1497 }
1498
1499 /* Change EP direction if status phase request is after data out */
1500 if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1501 hs->ep0_state == DWC2_EP0_DATA_OUT)
1502 hs_ep->dir_in = 1;
1503
1504 if (first) {
1505 if (!hs_ep->isochronous) {
1506 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1507 return 0;
1508 }
1509
1510 /* Update current frame number value. */
1511 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1512 while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1513 dwc2_gadget_incr_frame_num(hs_ep);
1514 /* Update current frame number value once more as it
1515 * changes here.
1516 */
1517 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1518 }
1519
1520 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1521 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1522 }
1523 return 0;
1524}
1525
1526static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1527 gfp_t gfp_flags)
1528{
1529 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1530 struct dwc2_hsotg *hs = hs_ep->parent;
1531 unsigned long flags;
1532 int ret;
1533
1534 spin_lock_irqsave(&hs->lock, flags);
1535 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1536 spin_unlock_irqrestore(&hs->lock, flags);
1537
1538 return ret;
1539}
1540
1541static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1542 struct usb_request *req)
1543{
1544 struct dwc2_hsotg_req *hs_req = our_req(req);
1545
1546 kfree(hs_req);
1547}
1548
1549/**
1550 * dwc2_hsotg_complete_oursetup - setup completion callback
1551 * @ep: The endpoint the request was on.
1552 * @req: The request completed.
1553 *
1554 * Called on completion of any requests the driver itself
1555 * submitted that need cleaning up.
1556 */
1557static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1558 struct usb_request *req)
1559{
1560 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1561 struct dwc2_hsotg *hsotg = hs_ep->parent;
1562
1563 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1564
1565 dwc2_hsotg_ep_free_request(ep, req);
1566}
1567
1568/**
1569 * ep_from_windex - convert control wIndex value to endpoint
1570 * @hsotg: The driver state.
1571 * @windex: The control request wIndex field (in host order).
1572 *
1573 * Convert the given wIndex into a pointer to an driver endpoint
1574 * structure, or return NULL if it is not a valid endpoint.
1575 */
1576static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1577 u32 windex)
1578{
1579 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1580 int idx = windex & 0x7F;
1581
1582 if (windex >= 0x100)
1583 return NULL;
1584
1585 if (idx > hsotg->num_of_eps)
1586 return NULL;
1587
1588 return index_to_ep(hsotg, idx, dir);
1589}
1590
1591/**
1592 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1593 * @hsotg: The driver state.
1594 * @testmode: requested usb test mode
1595 * Enable usb Test Mode requested by the Host.
1596 */
1597int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1598{
1599 int dctl = dwc2_readl(hsotg, DCTL);
1600
1601 dctl &= ~DCTL_TSTCTL_MASK;
1602 switch (testmode) {
1603 case USB_TEST_J:
1604 case USB_TEST_K:
1605 case USB_TEST_SE0_NAK:
1606 case USB_TEST_PACKET:
1607 case USB_TEST_FORCE_ENABLE:
1608 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1609 break;
1610 default:
1611 return -EINVAL;
1612 }
1613 dwc2_writel(hsotg, dctl, DCTL);
1614 return 0;
1615}
1616
1617/**
1618 * dwc2_hsotg_send_reply - send reply to control request
1619 * @hsotg: The device state
1620 * @ep: Endpoint 0
1621 * @buff: Buffer for request
1622 * @length: Length of reply.
1623 *
1624 * Create a request and queue it on the given endpoint. This is useful as
1625 * an internal method of sending replies to certain control requests, etc.
1626 */
1627static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1628 struct dwc2_hsotg_ep *ep,
1629 void *buff,
1630 int length)
1631{
1632 struct usb_request *req;
1633 int ret;
1634
1635 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1636
1637 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1638 hsotg->ep0_reply = req;
1639 if (!req) {
1640 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1641 return -ENOMEM;
1642 }
1643
1644 req->buf = hsotg->ep0_buff;
1645 req->length = length;
1646 /*
1647 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1648 * STATUS stage.
1649 */
1650 req->zero = 0;
1651 req->complete = dwc2_hsotg_complete_oursetup;
1652
1653 if (length)
1654 memcpy(req->buf, buff, length);
1655
1656 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1657 if (ret) {
1658 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1659 return ret;
1660 }
1661
1662 return 0;
1663}
1664
1665/**
1666 * dwc2_hsotg_process_req_status - process request GET_STATUS
1667 * @hsotg: The device state
1668 * @ctrl: USB control request
1669 */
1670static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1671 struct usb_ctrlrequest *ctrl)
1672{
1673 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1674 struct dwc2_hsotg_ep *ep;
1675 __le16 reply;
1676 u16 status;
1677 int ret;
1678
1679 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1680
1681 if (!ep0->dir_in) {
1682 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1683 return -EINVAL;
1684 }
1685
1686 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1687 case USB_RECIP_DEVICE:
1688 status = hsotg->gadget.is_selfpowered <<
1689 USB_DEVICE_SELF_POWERED;
1690 status |= hsotg->remote_wakeup_allowed <<
1691 USB_DEVICE_REMOTE_WAKEUP;
1692 reply = cpu_to_le16(status);
1693 break;
1694
1695 case USB_RECIP_INTERFACE:
1696 /* currently, the data result should be zero */
1697 reply = cpu_to_le16(0);
1698 break;
1699
1700 case USB_RECIP_ENDPOINT:
1701 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1702 if (!ep)
1703 return -ENOENT;
1704
1705 reply = cpu_to_le16(ep->halted ? 1 : 0);
1706 break;
1707
1708 default:
1709 return 0;
1710 }
1711
1712 if (le16_to_cpu(ctrl->wLength) != 2)
1713 return -EINVAL;
1714
1715 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1716 if (ret) {
1717 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1718 return ret;
1719 }
1720
1721 return 1;
1722}
1723
1724static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1725
1726/**
1727 * get_ep_head - return the first request on the endpoint
1728 * @hs_ep: The controller endpoint to get
1729 *
1730 * Get the first request on the endpoint.
1731 */
1732static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1733{
1734 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1735 queue);
1736}
1737
1738/**
1739 * dwc2_gadget_start_next_request - Starts next request from ep queue
1740 * @hs_ep: Endpoint structure
1741 *
1742 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1743 * in its handler. Hence we need to unmask it here to be able to do
1744 * resynchronization.
1745 */
1746static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1747{
1748 struct dwc2_hsotg *hsotg = hs_ep->parent;
1749 int dir_in = hs_ep->dir_in;
1750 struct dwc2_hsotg_req *hs_req;
1751
1752 if (!list_empty(&hs_ep->queue)) {
1753 hs_req = get_ep_head(hs_ep);
1754 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1755 return;
1756 }
1757 if (!hs_ep->isochronous)
1758 return;
1759
1760 if (dir_in) {
1761 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1762 __func__);
1763 } else {
1764 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1765 __func__);
1766 }
1767}
1768
1769/**
1770 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1771 * @hsotg: The device state
1772 * @ctrl: USB control request
1773 */
1774static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1775 struct usb_ctrlrequest *ctrl)
1776{
1777 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1778 struct dwc2_hsotg_req *hs_req;
1779 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1780 struct dwc2_hsotg_ep *ep;
1781 int ret;
1782 bool halted;
1783 u32 recip;
1784 u32 wValue;
1785 u32 wIndex;
1786
1787 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1788 __func__, set ? "SET" : "CLEAR");
1789
1790 wValue = le16_to_cpu(ctrl->wValue);
1791 wIndex = le16_to_cpu(ctrl->wIndex);
1792 recip = ctrl->bRequestType & USB_RECIP_MASK;
1793
1794 switch (recip) {
1795 case USB_RECIP_DEVICE:
1796 switch (wValue) {
1797 case USB_DEVICE_REMOTE_WAKEUP:
1798 if (set)
1799 hsotg->remote_wakeup_allowed = 1;
1800 else
1801 hsotg->remote_wakeup_allowed = 0;
1802 break;
1803
1804 case USB_DEVICE_TEST_MODE:
1805 if ((wIndex & 0xff) != 0)
1806 return -EINVAL;
1807 if (!set)
1808 return -EINVAL;
1809
1810 hsotg->test_mode = wIndex >> 8;
1811 break;
1812 default:
1813 return -ENOENT;
1814 }
1815
1816 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1817 if (ret) {
1818 dev_err(hsotg->dev,
1819 "%s: failed to send reply\n", __func__);
1820 return ret;
1821 }
1822 break;
1823
1824 case USB_RECIP_ENDPOINT:
1825 ep = ep_from_windex(hsotg, wIndex);
1826 if (!ep) {
1827 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1828 __func__, wIndex);
1829 return -ENOENT;
1830 }
1831
1832 switch (wValue) {
1833 case USB_ENDPOINT_HALT:
1834 halted = ep->halted;
1835
1836 if (!ep->wedged)
1837 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1838
1839 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1840 if (ret) {
1841 dev_err(hsotg->dev,
1842 "%s: failed to send reply\n", __func__);
1843 return ret;
1844 }
1845
1846 /*
1847 * we have to complete all requests for ep if it was
1848 * halted, and the halt was cleared by CLEAR_FEATURE
1849 */
1850
1851 if (!set && halted) {
1852 /*
1853 * If we have request in progress,
1854 * then complete it
1855 */
1856 if (ep->req) {
1857 hs_req = ep->req;
1858 ep->req = NULL;
1859 list_del_init(&hs_req->queue);
1860 if (hs_req->req.complete) {
1861 spin_unlock(&hsotg->lock);
1862 usb_gadget_giveback_request(
1863 &ep->ep, &hs_req->req);
1864 spin_lock(&hsotg->lock);
1865 }
1866 }
1867
1868 /* If we have pending request, then start it */
1869 if (!ep->req)
1870 dwc2_gadget_start_next_request(ep);
1871 }
1872
1873 break;
1874
1875 default:
1876 return -ENOENT;
1877 }
1878 break;
1879 default:
1880 return -ENOENT;
1881 }
1882 return 1;
1883}
1884
1885static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1886
1887/**
1888 * dwc2_hsotg_stall_ep0 - stall ep0
1889 * @hsotg: The device state
1890 *
1891 * Set stall for ep0 as response for setup request.
1892 */
1893static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1894{
1895 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1896 u32 reg;
1897 u32 ctrl;
1898
1899 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1900 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1901
1902 /*
1903 * DxEPCTL_Stall will be cleared by EP once it has
1904 * taken effect, so no need to clear later.
1905 */
1906
1907 ctrl = dwc2_readl(hsotg, reg);
1908 ctrl |= DXEPCTL_STALL;
1909 ctrl |= DXEPCTL_CNAK;
1910 dwc2_writel(hsotg, ctrl, reg);
1911
1912 dev_dbg(hsotg->dev,
1913 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1914 ctrl, reg, dwc2_readl(hsotg, reg));
1915
1916 /*
1917 * complete won't be called, so we enqueue
1918 * setup request here
1919 */
1920 dwc2_hsotg_enqueue_setup(hsotg);
1921}
1922
1923/**
1924 * dwc2_hsotg_process_control - process a control request
1925 * @hsotg: The device state
1926 * @ctrl: The control request received
1927 *
1928 * The controller has received the SETUP phase of a control request, and
1929 * needs to work out what to do next (and whether to pass it on to the
1930 * gadget driver).
1931 */
1932static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1933 struct usb_ctrlrequest *ctrl)
1934{
1935 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1936 int ret = 0;
1937 u32 dcfg;
1938
1939 dev_dbg(hsotg->dev,
1940 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1941 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1942 ctrl->wIndex, ctrl->wLength);
1943
1944 if (ctrl->wLength == 0) {
1945 ep0->dir_in = 1;
1946 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1947 } else if (ctrl->bRequestType & USB_DIR_IN) {
1948 ep0->dir_in = 1;
1949 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1950 } else {
1951 ep0->dir_in = 0;
1952 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1953 }
1954
1955 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1956 switch (ctrl->bRequest) {
1957 case USB_REQ_SET_ADDRESS:
1958 hsotg->connected = 1;
1959 dcfg = dwc2_readl(hsotg, DCFG);
1960 dcfg &= ~DCFG_DEVADDR_MASK;
1961 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1962 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1963 dwc2_writel(hsotg, dcfg, DCFG);
1964
1965 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1966
1967 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1968 return;
1969
1970 case USB_REQ_GET_STATUS:
1971 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1972 break;
1973
1974 case USB_REQ_CLEAR_FEATURE:
1975 case USB_REQ_SET_FEATURE:
1976 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1977 break;
1978 }
1979 }
1980
1981 /* as a fallback, try delivering it to the driver to deal with */
1982
1983 if (ret == 0 && hsotg->driver) {
1984 spin_unlock(&hsotg->lock);
1985 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1986 spin_lock(&hsotg->lock);
1987 if (ret < 0)
1988 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1989 }
1990
1991 hsotg->delayed_status = false;
1992 if (ret == USB_GADGET_DELAYED_STATUS)
1993 hsotg->delayed_status = true;
1994
1995 /*
1996 * the request is either unhandlable, or is not formatted correctly
1997 * so respond with a STALL for the status stage to indicate failure.
1998 */
1999
2000 if (ret < 0)
2001 dwc2_hsotg_stall_ep0(hsotg);
2002}
2003
2004/**
2005 * dwc2_hsotg_complete_setup - completion of a setup transfer
2006 * @ep: The endpoint the request was on.
2007 * @req: The request completed.
2008 *
2009 * Called on completion of any requests the driver itself submitted for
2010 * EP0 setup packets
2011 */
2012static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2013 struct usb_request *req)
2014{
2015 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2016 struct dwc2_hsotg *hsotg = hs_ep->parent;
2017
2018 if (req->status < 0) {
2019 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2020 return;
2021 }
2022
2023 spin_lock(&hsotg->lock);
2024 if (req->actual == 0)
2025 dwc2_hsotg_enqueue_setup(hsotg);
2026 else
2027 dwc2_hsotg_process_control(hsotg, req->buf);
2028 spin_unlock(&hsotg->lock);
2029}
2030
2031/**
2032 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2033 * @hsotg: The device state.
2034 *
2035 * Enqueue a request on EP0 if necessary to received any SETUP packets
2036 * received from the host.
2037 */
2038static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2039{
2040 struct usb_request *req = hsotg->ctrl_req;
2041 struct dwc2_hsotg_req *hs_req = our_req(req);
2042 int ret;
2043
2044 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2045
2046 req->zero = 0;
2047 req->length = 8;
2048 req->buf = hsotg->ctrl_buff;
2049 req->complete = dwc2_hsotg_complete_setup;
2050
2051 if (!list_empty(&hs_req->queue)) {
2052 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2053 return;
2054 }
2055
2056 hsotg->eps_out[0]->dir_in = 0;
2057 hsotg->eps_out[0]->send_zlp = 0;
2058 hsotg->ep0_state = DWC2_EP0_SETUP;
2059
2060 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2061 if (ret < 0) {
2062 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2063 /*
2064 * Don't think there's much we can do other than watch the
2065 * driver fail.
2066 */
2067 }
2068}
2069
2070static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2071 struct dwc2_hsotg_ep *hs_ep)
2072{
2073 u32 ctrl;
2074 u8 index = hs_ep->index;
2075 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2076 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2077
2078 if (hs_ep->dir_in)
2079 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2080 index);
2081 else
2082 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2083 index);
2084 if (using_desc_dma(hsotg)) {
2085 /* Not specific buffer needed for ep0 ZLP */
2086 dma_addr_t dma = hs_ep->desc_list_dma;
2087
2088 if (!index)
2089 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2090
2091 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2092 } else {
2093 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2094 DXEPTSIZ_XFERSIZE(0),
2095 epsiz_reg);
2096 }
2097
2098 ctrl = dwc2_readl(hsotg, epctl_reg);
2099 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
2100 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2101 ctrl |= DXEPCTL_USBACTEP;
2102 dwc2_writel(hsotg, ctrl, epctl_reg);
2103}
2104
2105/**
2106 * dwc2_hsotg_complete_request - complete a request given to us
2107 * @hsotg: The device state.
2108 * @hs_ep: The endpoint the request was on.
2109 * @hs_req: The request to complete.
2110 * @result: The result code (0 => Ok, otherwise errno)
2111 *
2112 * The given request has finished, so call the necessary completion
2113 * if it has one and then look to see if we can start a new request
2114 * on the endpoint.
2115 *
2116 * Note, expects the ep to already be locked as appropriate.
2117 */
2118static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2119 struct dwc2_hsotg_ep *hs_ep,
2120 struct dwc2_hsotg_req *hs_req,
2121 int result)
2122{
2123 if (!hs_req) {
2124 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2125 return;
2126 }
2127
2128 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2129 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2130
2131 /*
2132 * only replace the status if we've not already set an error
2133 * from a previous transaction
2134 */
2135
2136 if (hs_req->req.status == -EINPROGRESS)
2137 hs_req->req.status = result;
2138
2139 if (using_dma(hsotg))
2140 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2141
2142 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2143
2144 hs_ep->req = NULL;
2145 list_del_init(&hs_req->queue);
2146
2147 /*
2148 * call the complete request with the locks off, just in case the
2149 * request tries to queue more work for this endpoint.
2150 */
2151
2152 if (hs_req->req.complete) {
2153 spin_unlock(&hsotg->lock);
2154 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2155 spin_lock(&hsotg->lock);
2156 }
2157
2158 /* In DDMA don't need to proceed to starting of next ISOC request */
2159 if (using_desc_dma(hsotg) && hs_ep->isochronous)
2160 return;
2161
2162 /*
2163 * Look to see if there is anything else to do. Note, the completion
2164 * of the previous request may have caused a new request to be started
2165 * so be careful when doing this.
2166 */
2167
2168 if (!hs_ep->req && result >= 0)
2169 dwc2_gadget_start_next_request(hs_ep);
2170}
2171
2172/*
2173 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2174 * @hs_ep: The endpoint the request was on.
2175 *
2176 * Get first request from the ep queue, determine descriptor on which complete
2177 * happened. SW discovers which descriptor currently in use by HW, adjusts
2178 * dma_address and calculates index of completed descriptor based on the value
2179 * of DEPDMA register. Update actual length of request, giveback to gadget.
2180 */
2181static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2182{
2183 struct dwc2_hsotg *hsotg = hs_ep->parent;
2184 struct dwc2_hsotg_req *hs_req;
2185 struct usb_request *ureq;
2186 u32 desc_sts;
2187 u32 mask;
2188
2189 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2190
2191 /* Process only descriptors with buffer status set to DMA done */
2192 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2193 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2194
2195 hs_req = get_ep_head(hs_ep);
2196 if (!hs_req) {
2197 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2198 return;
2199 }
2200 ureq = &hs_req->req;
2201
2202 /* Check completion status */
2203 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2204 DEV_DMA_STS_SUCC) {
2205 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2206 DEV_DMA_ISOC_RX_NBYTES_MASK;
2207 ureq->actual = ureq->length - ((desc_sts & mask) >>
2208 DEV_DMA_ISOC_NBYTES_SHIFT);
2209
2210 /* Adjust actual len for ISOC Out if len is
2211 * not align of 4
2212 */
2213 if (!hs_ep->dir_in && ureq->length & 0x3)
2214 ureq->actual += 4 - (ureq->length & 0x3);
2215
2216 /* Set actual frame number for completed transfers */
2217 ureq->frame_number =
2218 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2219 DEV_DMA_ISOC_FRNUM_SHIFT;
2220 }
2221
2222 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2223
2224 hs_ep->compl_desc++;
2225 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2226 hs_ep->compl_desc = 0;
2227 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2228 }
2229}
2230
2231/*
2232 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2233 * @hs_ep: The isochronous endpoint.
2234 *
2235 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2236 * interrupt. Reset target frame and next_desc to allow to start
2237 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2238 * interrupt for OUT direction.
2239 */
2240static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2241{
2242 struct dwc2_hsotg *hsotg = hs_ep->parent;
2243
2244 if (!hs_ep->dir_in)
2245 dwc2_flush_rx_fifo(hsotg);
2246 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2247
2248 hs_ep->target_frame = TARGET_FRAME_INITIAL;
2249 hs_ep->next_desc = 0;
2250 hs_ep->compl_desc = 0;
2251}
2252
2253/**
2254 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2255 * @hsotg: The device state.
2256 * @ep_idx: The endpoint index for the data
2257 * @size: The size of data in the fifo, in bytes
2258 *
2259 * The FIFO status shows there is data to read from the FIFO for a given
2260 * endpoint, so sort out whether we need to read the data into a request
2261 * that has been made for that endpoint.
2262 */
2263static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2264{
2265 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2266 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2267 int to_read;
2268 int max_req;
2269 int read_ptr;
2270
2271 if (!hs_req) {
2272 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2273 int ptr;
2274
2275 dev_dbg(hsotg->dev,
2276 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2277 __func__, size, ep_idx, epctl);
2278
2279 /* dump the data from the FIFO, we've nothing we can do */
2280 for (ptr = 0; ptr < size; ptr += 4)
2281 (void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2282
2283 return;
2284 }
2285
2286 to_read = size;
2287 read_ptr = hs_req->req.actual;
2288 max_req = hs_req->req.length - read_ptr;
2289
2290 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2291 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2292
2293 if (to_read > max_req) {
2294 /*
2295 * more data appeared than we where willing
2296 * to deal with in this request.
2297 */
2298
2299 /* currently we don't deal this */
2300 WARN_ON_ONCE(1);
2301 }
2302
2303 hs_ep->total_data += to_read;
2304 hs_req->req.actual += to_read;
2305 to_read = DIV_ROUND_UP(to_read, 4);
2306
2307 /*
2308 * note, we might over-write the buffer end by 3 bytes depending on
2309 * alignment of the data.
2310 */
2311 dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2312 hs_req->req.buf + read_ptr, to_read);
2313}
2314
2315/**
2316 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2317 * @hsotg: The device instance
2318 * @dir_in: If IN zlp
2319 *
2320 * Generate a zero-length IN packet request for terminating a SETUP
2321 * transaction.
2322 *
2323 * Note, since we don't write any data to the TxFIFO, then it is
2324 * currently believed that we do not need to wait for any space in
2325 * the TxFIFO.
2326 */
2327static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2328{
2329 /* eps_out[0] is used in both directions */
2330 hsotg->eps_out[0]->dir_in = dir_in;
2331 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2332
2333 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2334}
2335
2336/*
2337 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2338 * @hs_ep - The endpoint on which transfer went
2339 *
2340 * Iterate over endpoints descriptor chain and get info on bytes remained
2341 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2342 */
2343static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2344{
2345 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2346 struct dwc2_hsotg *hsotg = hs_ep->parent;
2347 unsigned int bytes_rem = 0;
2348 unsigned int bytes_rem_correction = 0;
2349 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2350 int i;
2351 u32 status;
2352 u32 mps = hs_ep->ep.maxpacket;
2353 int dir_in = hs_ep->dir_in;
2354
2355 if (!desc)
2356 return -EINVAL;
2357
2358 /* Interrupt OUT EP with mps not multiple of 4 */
2359 if (hs_ep->index)
2360 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2361 bytes_rem_correction = 4 - (mps % 4);
2362
2363 for (i = 0; i < hs_ep->desc_count; ++i) {
2364 status = desc->status;
2365 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2366 bytes_rem -= bytes_rem_correction;
2367
2368 if (status & DEV_DMA_STS_MASK)
2369 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2370 i, status & DEV_DMA_STS_MASK);
2371
2372 if (status & DEV_DMA_L)
2373 break;
2374
2375 desc++;
2376 }
2377
2378 return bytes_rem;
2379}
2380
2381/**
2382 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2383 * @hsotg: The device instance
2384 * @epnum: The endpoint received from
2385 *
2386 * The RXFIFO has delivered an OutDone event, which means that the data
2387 * transfer for an OUT endpoint has been completed, either by a short
2388 * packet or by the finish of a transfer.
2389 */
2390static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2391{
2392 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2393 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2394 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2395 struct usb_request *req = &hs_req->req;
2396 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2397 int result = 0;
2398
2399 if (!hs_req) {
2400 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2401 return;
2402 }
2403
2404 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2405 dev_dbg(hsotg->dev, "zlp packet received\n");
2406 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2407 dwc2_hsotg_enqueue_setup(hsotg);
2408 return;
2409 }
2410
2411 if (using_desc_dma(hsotg))
2412 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2413
2414 if (using_dma(hsotg)) {
2415 unsigned int size_done;
2416
2417 /*
2418 * Calculate the size of the transfer by checking how much
2419 * is left in the endpoint size register and then working it
2420 * out from the amount we loaded for the transfer.
2421 *
2422 * We need to do this as DMA pointers are always 32bit aligned
2423 * so may overshoot/undershoot the transfer.
2424 */
2425
2426 size_done = hs_ep->size_loaded - size_left;
2427 size_done += hs_ep->last_load;
2428
2429 req->actual = size_done;
2430 }
2431
2432 /* if there is more request to do, schedule new transfer */
2433 if (req->actual < req->length && size_left == 0) {
2434 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2435 return;
2436 }
2437
2438 if (req->actual < req->length && req->short_not_ok) {
2439 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2440 __func__, req->actual, req->length);
2441
2442 /*
2443 * todo - what should we return here? there's no one else
2444 * even bothering to check the status.
2445 */
2446 }
2447
2448 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2449 if (!using_desc_dma(hsotg) && epnum == 0 &&
2450 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2451 /* Move to STATUS IN */
2452 if (!hsotg->delayed_status)
2453 dwc2_hsotg_ep0_zlp(hsotg, true);
2454 }
2455
2456 /* Set actual frame number for completed transfers */
2457 if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2458 req->frame_number = hs_ep->target_frame;
2459 dwc2_gadget_incr_frame_num(hs_ep);
2460 }
2461
2462 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2463}
2464
2465/**
2466 * dwc2_hsotg_handle_rx - RX FIFO has data
2467 * @hsotg: The device instance
2468 *
2469 * The IRQ handler has detected that the RX FIFO has some data in it
2470 * that requires processing, so find out what is in there and do the
2471 * appropriate read.
2472 *
2473 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2474 * chunks, so if you have x packets received on an endpoint you'll get x
2475 * FIFO events delivered, each with a packet's worth of data in it.
2476 *
2477 * When using DMA, we should not be processing events from the RXFIFO
2478 * as the actual data should be sent to the memory directly and we turn
2479 * on the completion interrupts to get notifications of transfer completion.
2480 */
2481static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2482{
2483 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2484 u32 epnum, status, size;
2485
2486 WARN_ON(using_dma(hsotg));
2487
2488 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2489 status = grxstsr & GRXSTS_PKTSTS_MASK;
2490
2491 size = grxstsr & GRXSTS_BYTECNT_MASK;
2492 size >>= GRXSTS_BYTECNT_SHIFT;
2493
2494 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2495 __func__, grxstsr, size, epnum);
2496
2497 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2498 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2499 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2500 break;
2501
2502 case GRXSTS_PKTSTS_OUTDONE:
2503 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2504 dwc2_hsotg_read_frameno(hsotg));
2505
2506 if (!using_dma(hsotg))
2507 dwc2_hsotg_handle_outdone(hsotg, epnum);
2508 break;
2509
2510 case GRXSTS_PKTSTS_SETUPDONE:
2511 dev_dbg(hsotg->dev,
2512 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2513 dwc2_hsotg_read_frameno(hsotg),
2514 dwc2_readl(hsotg, DOEPCTL(0)));
2515 /*
2516 * Call dwc2_hsotg_handle_outdone here if it was not called from
2517 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2518 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2519 */
2520 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2521 dwc2_hsotg_handle_outdone(hsotg, epnum);
2522 break;
2523
2524 case GRXSTS_PKTSTS_OUTRX:
2525 dwc2_hsotg_rx_data(hsotg, epnum, size);
2526 break;
2527
2528 case GRXSTS_PKTSTS_SETUPRX:
2529 dev_dbg(hsotg->dev,
2530 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2531 dwc2_hsotg_read_frameno(hsotg),
2532 dwc2_readl(hsotg, DOEPCTL(0)));
2533
2534 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2535
2536 dwc2_hsotg_rx_data(hsotg, epnum, size);
2537 break;
2538
2539 default:
2540 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2541 __func__, grxstsr);
2542
2543 dwc2_hsotg_dump(hsotg);
2544 break;
2545 }
2546}
2547
2548/**
2549 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2550 * @mps: The maximum packet size in bytes.
2551 */
2552static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2553{
2554 switch (mps) {
2555 case 64:
2556 return D0EPCTL_MPS_64;
2557 case 32:
2558 return D0EPCTL_MPS_32;
2559 case 16:
2560 return D0EPCTL_MPS_16;
2561 case 8:
2562 return D0EPCTL_MPS_8;
2563 }
2564
2565 /* bad max packet size, warn and return invalid result */
2566 WARN_ON(1);
2567 return (u32)-1;
2568}
2569
2570/**
2571 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2572 * @hsotg: The driver state.
2573 * @ep: The index number of the endpoint
2574 * @mps: The maximum packet size in bytes
2575 * @mc: The multicount value
2576 * @dir_in: True if direction is in.
2577 *
2578 * Configure the maximum packet size for the given endpoint, updating
2579 * the hardware control registers to reflect this.
2580 */
2581static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2582 unsigned int ep, unsigned int mps,
2583 unsigned int mc, unsigned int dir_in)
2584{
2585 struct dwc2_hsotg_ep *hs_ep;
2586 u32 reg;
2587
2588 hs_ep = index_to_ep(hsotg, ep, dir_in);
2589 if (!hs_ep)
2590 return;
2591
2592 if (ep == 0) {
2593 u32 mps_bytes = mps;
2594
2595 /* EP0 is a special case */
2596 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2597 if (mps > 3)
2598 goto bad_mps;
2599 hs_ep->ep.maxpacket = mps_bytes;
2600 hs_ep->mc = 1;
2601 } else {
2602 if (mps > 1024)
2603 goto bad_mps;
2604 hs_ep->mc = mc;
2605 if (mc > 3)
2606 goto bad_mps;
2607 hs_ep->ep.maxpacket = mps;
2608 }
2609
2610 if (dir_in) {
2611 reg = dwc2_readl(hsotg, DIEPCTL(ep));
2612 reg &= ~DXEPCTL_MPS_MASK;
2613 reg |= mps;
2614 dwc2_writel(hsotg, reg, DIEPCTL(ep));
2615 } else {
2616 reg = dwc2_readl(hsotg, DOEPCTL(ep));
2617 reg &= ~DXEPCTL_MPS_MASK;
2618 reg |= mps;
2619 dwc2_writel(hsotg, reg, DOEPCTL(ep));
2620 }
2621
2622 return;
2623
2624bad_mps:
2625 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2626}
2627
2628/**
2629 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2630 * @hsotg: The driver state
2631 * @idx: The index for the endpoint (0..15)
2632 */
2633static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2634{
2635 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2636 GRSTCTL);
2637
2638 /* wait until the fifo is flushed */
2639 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2640 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2641 __func__);
2642}
2643
2644/**
2645 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2646 * @hsotg: The driver state
2647 * @hs_ep: The driver endpoint to check.
2648 *
2649 * Check to see if there is a request that has data to send, and if so
2650 * make an attempt to write data into the FIFO.
2651 */
2652static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2653 struct dwc2_hsotg_ep *hs_ep)
2654{
2655 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2656
2657 if (!hs_ep->dir_in || !hs_req) {
2658 /**
2659 * if request is not enqueued, we disable interrupts
2660 * for endpoints, excepting ep0
2661 */
2662 if (hs_ep->index != 0)
2663 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2664 hs_ep->dir_in, 0);
2665 return 0;
2666 }
2667
2668 if (hs_req->req.actual < hs_req->req.length) {
2669 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2670 hs_ep->index);
2671 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2672 }
2673
2674 return 0;
2675}
2676
2677/**
2678 * dwc2_hsotg_complete_in - complete IN transfer
2679 * @hsotg: The device state.
2680 * @hs_ep: The endpoint that has just completed.
2681 *
2682 * An IN transfer has been completed, update the transfer's state and then
2683 * call the relevant completion routines.
2684 */
2685static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2686 struct dwc2_hsotg_ep *hs_ep)
2687{
2688 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2689 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2690 int size_left, size_done;
2691
2692 if (!hs_req) {
2693 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2694 return;
2695 }
2696
2697 /* Finish ZLP handling for IN EP0 transactions */
2698 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2699 dev_dbg(hsotg->dev, "zlp packet sent\n");
2700
2701 /*
2702 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2703 * changed to IN. Change back to complete OUT transfer request
2704 */
2705 hs_ep->dir_in = 0;
2706
2707 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2708 if (hsotg->test_mode) {
2709 int ret;
2710
2711 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2712 if (ret < 0) {
2713 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2714 hsotg->test_mode);
2715 dwc2_hsotg_stall_ep0(hsotg);
2716 return;
2717 }
2718 }
2719 dwc2_hsotg_enqueue_setup(hsotg);
2720 return;
2721 }
2722
2723 /*
2724 * Calculate the size of the transfer by checking how much is left
2725 * in the endpoint size register and then working it out from
2726 * the amount we loaded for the transfer.
2727 *
2728 * We do this even for DMA, as the transfer may have incremented
2729 * past the end of the buffer (DMA transfers are always 32bit
2730 * aligned).
2731 */
2732 if (using_desc_dma(hsotg)) {
2733 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2734 if (size_left < 0)
2735 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2736 size_left);
2737 } else {
2738 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2739 }
2740
2741 size_done = hs_ep->size_loaded - size_left;
2742 size_done += hs_ep->last_load;
2743
2744 if (hs_req->req.actual != size_done)
2745 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2746 __func__, hs_req->req.actual, size_done);
2747
2748 hs_req->req.actual = size_done;
2749 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2750 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2751
2752 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2753 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2754 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2755 return;
2756 }
2757
2758 /* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2759 if (hs_ep->send_zlp) {
2760 hs_ep->send_zlp = 0;
2761 if (!using_desc_dma(hsotg)) {
2762 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2763 /* transfer will be completed on next complete interrupt */
2764 return;
2765 }
2766 }
2767
2768 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2769 /* Move to STATUS OUT */
2770 dwc2_hsotg_ep0_zlp(hsotg, false);
2771 return;
2772 }
2773
2774 /* Set actual frame number for completed transfers */
2775 if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2776 hs_req->req.frame_number = hs_ep->target_frame;
2777 dwc2_gadget_incr_frame_num(hs_ep);
2778 }
2779
2780 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2781}
2782
2783/**
2784 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2785 * @hsotg: The device state.
2786 * @idx: Index of ep.
2787 * @dir_in: Endpoint direction 1-in 0-out.
2788 *
2789 * Reads for endpoint with given index and direction, by masking
2790 * epint_reg with coresponding mask.
2791 */
2792static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2793 unsigned int idx, int dir_in)
2794{
2795 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2796 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2797 u32 ints;
2798 u32 mask;
2799 u32 diepempmsk;
2800
2801 mask = dwc2_readl(hsotg, epmsk_reg);
2802 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2803 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2804 mask |= DXEPINT_SETUP_RCVD;
2805
2806 ints = dwc2_readl(hsotg, epint_reg);
2807 ints &= mask;
2808 return ints;
2809}
2810
2811/**
2812 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2813 * @hs_ep: The endpoint on which interrupt is asserted.
2814 *
2815 * This interrupt indicates that the endpoint has been disabled per the
2816 * application's request.
2817 *
2818 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2819 * in case of ISOC completes current request.
2820 *
2821 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2822 * request starts it.
2823 */
2824static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2825{
2826 struct dwc2_hsotg *hsotg = hs_ep->parent;
2827 struct dwc2_hsotg_req *hs_req;
2828 unsigned char idx = hs_ep->index;
2829 int dir_in = hs_ep->dir_in;
2830 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2831 int dctl = dwc2_readl(hsotg, DCTL);
2832
2833 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2834
2835 if (dir_in) {
2836 int epctl = dwc2_readl(hsotg, epctl_reg);
2837
2838 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2839
2840 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2841 int dctl = dwc2_readl(hsotg, DCTL);
2842
2843 dctl |= DCTL_CGNPINNAK;
2844 dwc2_writel(hsotg, dctl, DCTL);
2845 }
2846 } else {
2847
2848 if (dctl & DCTL_GOUTNAKSTS) {
2849 dctl |= DCTL_CGOUTNAK;
2850 dwc2_writel(hsotg, dctl, DCTL);
2851 }
2852 }
2853
2854 if (!hs_ep->isochronous)
2855 return;
2856
2857 if (list_empty(&hs_ep->queue)) {
2858 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2859 __func__, hs_ep);
2860 return;
2861 }
2862
2863 do {
2864 hs_req = get_ep_head(hs_ep);
2865 if (hs_req) {
2866 hs_req->req.frame_number = hs_ep->target_frame;
2867 hs_req->req.actual = 0;
2868 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2869 -ENODATA);
2870 }
2871 dwc2_gadget_incr_frame_num(hs_ep);
2872 /* Update current frame number value. */
2873 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2874 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2875}
2876
2877/**
2878 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2879 * @ep: The endpoint on which interrupt is asserted.
2880 *
2881 * This is starting point for ISOC-OUT transfer, synchronization done with
2882 * first out token received from host while corresponding EP is disabled.
2883 *
2884 * Device does not know initial frame in which out token will come. For this
2885 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2886 * getting this interrupt SW starts calculation for next transfer frame.
2887 */
2888static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2889{
2890 struct dwc2_hsotg *hsotg = ep->parent;
2891 struct dwc2_hsotg_req *hs_req;
2892 int dir_in = ep->dir_in;
2893
2894 if (dir_in || !ep->isochronous)
2895 return;
2896
2897 if (using_desc_dma(hsotg)) {
2898 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2899 /* Start first ISO Out */
2900 ep->target_frame = hsotg->frame_number;
2901 dwc2_gadget_start_isoc_ddma(ep);
2902 }
2903 return;
2904 }
2905
2906 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2907 u32 ctrl;
2908
2909 ep->target_frame = hsotg->frame_number;
2910 if (ep->interval > 1) {
2911 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2912 if (ep->target_frame & 0x1)
2913 ctrl |= DXEPCTL_SETODDFR;
2914 else
2915 ctrl |= DXEPCTL_SETEVENFR;
2916
2917 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2918 }
2919 }
2920
2921 while (dwc2_gadget_target_frame_elapsed(ep)) {
2922 hs_req = get_ep_head(ep);
2923 if (hs_req) {
2924 hs_req->req.frame_number = ep->target_frame;
2925 hs_req->req.actual = 0;
2926 dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2927 }
2928
2929 dwc2_gadget_incr_frame_num(ep);
2930 /* Update current frame number value. */
2931 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2932 }
2933
2934 if (!ep->req)
2935 dwc2_gadget_start_next_request(ep);
2936
2937}
2938
2939static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2940 struct dwc2_hsotg_ep *hs_ep);
2941
2942/**
2943 * dwc2_gadget_handle_nak - handle NAK interrupt
2944 * @hs_ep: The endpoint on which interrupt is asserted.
2945 *
2946 * This is starting point for ISOC-IN transfer, synchronization done with
2947 * first IN token received from host while corresponding EP is disabled.
2948 *
2949 * Device does not know when first one token will arrive from host. On first
2950 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2951 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2952 * sent in response to that as there was no data in FIFO. SW is basing on this
2953 * interrupt to obtain frame in which token has come and then based on the
2954 * interval calculates next frame for transfer.
2955 */
2956static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2957{
2958 struct dwc2_hsotg *hsotg = hs_ep->parent;
2959 struct dwc2_hsotg_req *hs_req;
2960 int dir_in = hs_ep->dir_in;
2961 u32 ctrl;
2962
2963 if (!dir_in || !hs_ep->isochronous)
2964 return;
2965
2966 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2967
2968 if (using_desc_dma(hsotg)) {
2969 hs_ep->target_frame = hsotg->frame_number;
2970 dwc2_gadget_incr_frame_num(hs_ep);
2971
2972 /* In service interval mode target_frame must
2973 * be set to last (u)frame of the service interval.
2974 */
2975 if (hsotg->params.service_interval) {
2976 /* Set target_frame to the first (u)frame of
2977 * the service interval
2978 */
2979 hs_ep->target_frame &= ~hs_ep->interval + 1;
2980
2981 /* Set target_frame to the last (u)frame of
2982 * the service interval
2983 */
2984 dwc2_gadget_incr_frame_num(hs_ep);
2985 dwc2_gadget_dec_frame_num_by_one(hs_ep);
2986 }
2987
2988 dwc2_gadget_start_isoc_ddma(hs_ep);
2989 return;
2990 }
2991
2992 hs_ep->target_frame = hsotg->frame_number;
2993 if (hs_ep->interval > 1) {
2994 u32 ctrl = dwc2_readl(hsotg,
2995 DIEPCTL(hs_ep->index));
2996 if (hs_ep->target_frame & 0x1)
2997 ctrl |= DXEPCTL_SETODDFR;
2998 else
2999 ctrl |= DXEPCTL_SETEVENFR;
3000
3001 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
3002 }
3003 }
3004
3005 if (using_desc_dma(hsotg))
3006 return;
3007
3008 ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
3009 if (ctrl & DXEPCTL_EPENA)
3010 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3011 else
3012 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3013
3014 while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3015 hs_req = get_ep_head(hs_ep);
3016 if (hs_req) {
3017 hs_req->req.frame_number = hs_ep->target_frame;
3018 hs_req->req.actual = 0;
3019 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3020 }
3021
3022 dwc2_gadget_incr_frame_num(hs_ep);
3023 /* Update current frame number value. */
3024 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3025 }
3026
3027 if (!hs_ep->req)
3028 dwc2_gadget_start_next_request(hs_ep);
3029}
3030
3031/**
3032 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3033 * @hsotg: The driver state
3034 * @idx: The index for the endpoint (0..15)
3035 * @dir_in: Set if this is an IN endpoint
3036 *
3037 * Process and clear any interrupt pending for an individual endpoint
3038 */
3039static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3040 int dir_in)
3041{
3042 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3043 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3044 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3045 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3046 u32 ints;
3047
3048 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3049
3050 /* Clear endpoint interrupts */
3051 dwc2_writel(hsotg, ints, epint_reg);
3052
3053 if (!hs_ep) {
3054 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3055 __func__, idx, dir_in ? "in" : "out");
3056 return;
3057 }
3058
3059 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3060 __func__, idx, dir_in ? "in" : "out", ints);
3061
3062 /* Don't process XferCompl interrupt if it is a setup packet */
3063 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3064 ints &= ~DXEPINT_XFERCOMPL;
3065
3066 /*
3067 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3068 * stage and xfercomplete was generated without SETUP phase done
3069 * interrupt. SW should parse received setup packet only after host's
3070 * exit from setup phase of control transfer.
3071 */
3072 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3073 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3074 ints &= ~DXEPINT_XFERCOMPL;
3075
3076 if (ints & DXEPINT_XFERCOMPL) {
3077 dev_dbg(hsotg->dev,
3078 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3079 __func__, dwc2_readl(hsotg, epctl_reg),
3080 dwc2_readl(hsotg, epsiz_reg));
3081
3082 /* In DDMA handle isochronous requests separately */
3083 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3084 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3085 } else if (dir_in) {
3086 /*
3087 * We get OutDone from the FIFO, so we only
3088 * need to look at completing IN requests here
3089 * if operating slave mode
3090 */
3091 if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3092 dwc2_hsotg_complete_in(hsotg, hs_ep);
3093
3094 if (idx == 0 && !hs_ep->req)
3095 dwc2_hsotg_enqueue_setup(hsotg);
3096 } else if (using_dma(hsotg)) {
3097 /*
3098 * We're using DMA, we need to fire an OutDone here
3099 * as we ignore the RXFIFO.
3100 */
3101 if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3102 dwc2_hsotg_handle_outdone(hsotg, idx);
3103 }
3104 }
3105
3106 if (ints & DXEPINT_EPDISBLD)
3107 dwc2_gadget_handle_ep_disabled(hs_ep);
3108
3109 if (ints & DXEPINT_OUTTKNEPDIS)
3110 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3111
3112 if (ints & DXEPINT_NAKINTRPT)
3113 dwc2_gadget_handle_nak(hs_ep);
3114
3115 if (ints & DXEPINT_AHBERR)
3116 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3117
3118 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
3119 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
3120
3121 if (using_dma(hsotg) && idx == 0) {
3122 /*
3123 * this is the notification we've received a
3124 * setup packet. In non-DMA mode we'd get this
3125 * from the RXFIFO, instead we need to process
3126 * the setup here.
3127 */
3128
3129 if (dir_in)
3130 WARN_ON_ONCE(1);
3131 else
3132 dwc2_hsotg_handle_outdone(hsotg, 0);
3133 }
3134 }
3135
3136 if (ints & DXEPINT_STSPHSERCVD) {
3137 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3138
3139 /* Safety check EP0 state when STSPHSERCVD asserted */
3140 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3141 /* Move to STATUS IN for DDMA */
3142 if (using_desc_dma(hsotg)) {
3143 if (!hsotg->delayed_status)
3144 dwc2_hsotg_ep0_zlp(hsotg, true);
3145 else
3146 /* In case of 3 stage Control Write with delayed
3147 * status, when Status IN transfer started
3148 * before STSPHSERCVD asserted, NAKSTS bit not
3149 * cleared by CNAK in dwc2_hsotg_start_req()
3150 * function. Clear now NAKSTS to allow complete
3151 * transfer.
3152 */
3153 dwc2_set_bit(hsotg, DIEPCTL(0),
3154 DXEPCTL_CNAK);
3155 }
3156 }
3157
3158 }
3159
3160 if (ints & DXEPINT_BACK2BACKSETUP)
3161 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3162
3163 if (ints & DXEPINT_BNAINTR) {
3164 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3165 if (hs_ep->isochronous)
3166 dwc2_gadget_handle_isoc_bna(hs_ep);
3167 }
3168
3169 if (dir_in && !hs_ep->isochronous) {
3170 /* not sure if this is important, but we'll clear it anyway */
3171 if (ints & DXEPINT_INTKNTXFEMP) {
3172 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3173 __func__, idx);
3174 }
3175
3176 /* this probably means something bad is happening */
3177 if (ints & DXEPINT_INTKNEPMIS) {
3178 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3179 __func__, idx);
3180 }
3181
3182 /* FIFO has space or is empty (see GAHBCFG) */
3183 if (hsotg->dedicated_fifos &&
3184 ints & DXEPINT_TXFEMP) {
3185 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3186 __func__, idx);
3187 if (!using_dma(hsotg))
3188 dwc2_hsotg_trytx(hsotg, hs_ep);
3189 }
3190 }
3191}
3192
3193/**
3194 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3195 * @hsotg: The device state.
3196 *
3197 * Handle updating the device settings after the enumeration phase has
3198 * been completed.
3199 */
3200static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3201{
3202 u32 dsts = dwc2_readl(hsotg, DSTS);
3203 int ep0_mps = 0, ep_mps = 8;
3204
3205 /*
3206 * This should signal the finish of the enumeration phase
3207 * of the USB handshaking, so we should now know what rate
3208 * we connected at.
3209 */
3210
3211 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3212
3213 /*
3214 * note, since we're limited by the size of transfer on EP0, and
3215 * it seems IN transfers must be a even number of packets we do
3216 * not advertise a 64byte MPS on EP0.
3217 */
3218
3219 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3220 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3221 case DSTS_ENUMSPD_FS:
3222 case DSTS_ENUMSPD_FS48:
3223 hsotg->gadget.speed = USB_SPEED_FULL;
3224 ep0_mps = EP0_MPS_LIMIT;
3225 ep_mps = 1023;
3226 break;
3227
3228 case DSTS_ENUMSPD_HS:
3229 hsotg->gadget.speed = USB_SPEED_HIGH;
3230 ep0_mps = EP0_MPS_LIMIT;
3231 ep_mps = 1024;
3232 break;
3233
3234 case DSTS_ENUMSPD_LS:
3235 hsotg->gadget.speed = USB_SPEED_LOW;
3236 ep0_mps = 8;
3237 ep_mps = 8;
3238 /*
3239 * note, we don't actually support LS in this driver at the
3240 * moment, and the documentation seems to imply that it isn't
3241 * supported by the PHYs on some of the devices.
3242 */
3243 break;
3244 }
3245 dev_info(hsotg->dev, "new device is %s\n",
3246 usb_speed_string(hsotg->gadget.speed));
3247
3248 /*
3249 * we should now know the maximum packet size for an
3250 * endpoint, so set the endpoints to a default value.
3251 */
3252
3253 if (ep0_mps) {
3254 int i;
3255 /* Initialize ep0 for both in and out directions */
3256 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3257 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3258 for (i = 1; i < hsotg->num_of_eps; i++) {
3259 if (hsotg->eps_in[i])
3260 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3261 0, 1);
3262 if (hsotg->eps_out[i])
3263 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3264 0, 0);
3265 }
3266 }
3267
3268 /* ensure after enumeration our EP0 is active */
3269
3270 dwc2_hsotg_enqueue_setup(hsotg);
3271
3272 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3273 dwc2_readl(hsotg, DIEPCTL0),
3274 dwc2_readl(hsotg, DOEPCTL0));
3275}
3276
3277/**
3278 * kill_all_requests - remove all requests from the endpoint's queue
3279 * @hsotg: The device state.
3280 * @ep: The endpoint the requests may be on.
3281 * @result: The result code to use.
3282 *
3283 * Go through the requests on the given endpoint and mark them
3284 * completed with the given result code.
3285 */
3286static void kill_all_requests(struct dwc2_hsotg *hsotg,
3287 struct dwc2_hsotg_ep *ep,
3288 int result)
3289{
3290 unsigned int size;
3291
3292 ep->req = NULL;
3293
3294 while (!list_empty(&ep->queue)) {
3295 struct dwc2_hsotg_req *req = get_ep_head(ep);
3296
3297 dwc2_hsotg_complete_request(hsotg, ep, req, result);
3298 }
3299
3300 if (!hsotg->dedicated_fifos)
3301 return;
3302 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3303 if (size < ep->fifo_size)
3304 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3305}
3306
3307/**
3308 * dwc2_hsotg_disconnect - disconnect service
3309 * @hsotg: The device state.
3310 *
3311 * The device has been disconnected. Remove all current
3312 * transactions and signal the gadget driver that this
3313 * has happened.
3314 */
3315void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3316{
3317 unsigned int ep;
3318
3319 if (!hsotg->connected)
3320 return;
3321
3322 hsotg->connected = 0;
3323 hsotg->test_mode = 0;
3324
3325 /* all endpoints should be shutdown */
3326 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3327 if (hsotg->eps_in[ep])
3328 kill_all_requests(hsotg, hsotg->eps_in[ep],
3329 -ESHUTDOWN);
3330 if (hsotg->eps_out[ep])
3331 kill_all_requests(hsotg, hsotg->eps_out[ep],
3332 -ESHUTDOWN);
3333 }
3334
3335 call_gadget(hsotg, disconnect);
3336 hsotg->lx_state = DWC2_L3;
3337
3338 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3339}
3340
3341/**
3342 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3343 * @hsotg: The device state:
3344 * @periodic: True if this is a periodic FIFO interrupt
3345 */
3346static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3347{
3348 struct dwc2_hsotg_ep *ep;
3349 int epno, ret;
3350
3351 /* look through for any more data to transmit */
3352 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3353 ep = index_to_ep(hsotg, epno, 1);
3354
3355 if (!ep)
3356 continue;
3357
3358 if (!ep->dir_in)
3359 continue;
3360
3361 if ((periodic && !ep->periodic) ||
3362 (!periodic && ep->periodic))
3363 continue;
3364
3365 ret = dwc2_hsotg_trytx(hsotg, ep);
3366 if (ret < 0)
3367 break;
3368 }
3369}
3370
3371/* IRQ flags which will trigger a retry around the IRQ loop */
3372#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3373 GINTSTS_PTXFEMP | \
3374 GINTSTS_RXFLVL)
3375
3376static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3377/**
3378 * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3379 * @hsotg: The device state
3380 * @is_usb_reset: Usb resetting flag
3381 *
3382 * Issue a soft reset to the core, and await the core finishing it.
3383 */
3384void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3385 bool is_usb_reset)
3386{
3387 u32 intmsk;
3388 u32 val;
3389 u32 usbcfg;
3390 u32 dcfg = 0;
3391 int ep;
3392
3393 /* Kill any ep0 requests as controller will be reinitialized */
3394 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3395
3396 if (!is_usb_reset) {
3397 if (dwc2_core_reset(hsotg, true))
3398 return;
3399 } else {
3400 /* all endpoints should be shutdown */
3401 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3402 if (hsotg->eps_in[ep])
3403 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3404 if (hsotg->eps_out[ep])
3405 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3406 }
3407 }
3408
3409 /*
3410 * we must now enable ep0 ready for host detection and then
3411 * set configuration.
3412 */
3413
3414 /* keep other bits untouched (so e.g. forced modes are not lost) */
3415 usbcfg = dwc2_readl(hsotg, GUSBCFG);
3416 usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3417 usbcfg |= GUSBCFG_TOUTCAL(7);
3418
3419 /* remove the HNP/SRP and set the PHY */
3420 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3421 dwc2_writel(hsotg, usbcfg, GUSBCFG);
3422
3423 dwc2_phy_init(hsotg, true);
3424
3425 dwc2_hsotg_init_fifo(hsotg);
3426
3427 if (!is_usb_reset)
3428 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3429
3430 dcfg |= DCFG_EPMISCNT(1);
3431
3432 switch (hsotg->params.speed) {
3433 case DWC2_SPEED_PARAM_LOW:
3434 dcfg |= DCFG_DEVSPD_LS;
3435 break;
3436 case DWC2_SPEED_PARAM_FULL:
3437 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3438 dcfg |= DCFG_DEVSPD_FS48;
3439 else
3440 dcfg |= DCFG_DEVSPD_FS;
3441 break;
3442 default:
3443 dcfg |= DCFG_DEVSPD_HS;
3444 }
3445
3446 if (hsotg->params.ipg_isoc_en)
3447 dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3448
3449 dwc2_writel(hsotg, dcfg, DCFG);
3450
3451 /* Clear any pending OTG interrupts */
3452 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3453
3454 /* Clear any pending interrupts */
3455 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3456 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3457 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3458 GINTSTS_USBRST | GINTSTS_RESETDET |
3459 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3460 GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3461 GINTSTS_LPMTRANRCVD;
3462
3463 if (!using_desc_dma(hsotg))
3464 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3465
3466 if (!hsotg->params.external_id_pin_ctl)
3467 intmsk |= GINTSTS_CONIDSTSCHNG;
3468
3469 dwc2_writel(hsotg, intmsk, GINTMSK);
3470
3471 if (using_dma(hsotg)) {
3472 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3473 hsotg->params.ahbcfg,
3474 GAHBCFG);
3475
3476 /* Set DDMA mode support in the core if needed */
3477 if (using_desc_dma(hsotg))
3478 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3479
3480 } else {
3481 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3482 (GAHBCFG_NP_TXF_EMP_LVL |
3483 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3484 GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3485 }
3486
3487 /*
3488 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3489 * when we have no data to transfer. Otherwise we get being flooded by
3490 * interrupts.
3491 */
3492
3493 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3494 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3495 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3496 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3497 DIEPMSK);
3498
3499 /*
3500 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3501 * DMA mode we may need this and StsPhseRcvd.
3502 */
3503 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3504 DOEPMSK_STSPHSERCVDMSK) : 0) |
3505 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3506 DOEPMSK_SETUPMSK,
3507 DOEPMSK);
3508
3509 /* Enable BNA interrupt for DDMA */
3510 if (using_desc_dma(hsotg)) {
3511 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3512 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3513 }
3514
3515 /* Enable Service Interval mode if supported */
3516 if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3517 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3518
3519 dwc2_writel(hsotg, 0, DAINTMSK);
3520
3521 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3522 dwc2_readl(hsotg, DIEPCTL0),
3523 dwc2_readl(hsotg, DOEPCTL0));
3524
3525 /* enable in and out endpoint interrupts */
3526 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3527
3528 /*
3529 * Enable the RXFIFO when in slave mode, as this is how we collect
3530 * the data. In DMA mode, we get events from the FIFO but also
3531 * things we cannot process, so do not use it.
3532 */
3533 if (!using_dma(hsotg))
3534 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3535
3536 /* Enable interrupts for EP0 in and out */
3537 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3538 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3539
3540 if (!is_usb_reset) {
3541 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3542 udelay(10); /* see openiboot */
3543 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3544 }
3545
3546 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3547
3548 /*
3549 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3550 * writing to the EPCTL register..
3551 */
3552
3553 /* set to read 1 8byte packet */
3554 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3555 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3556
3557 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3558 DXEPCTL_CNAK | DXEPCTL_EPENA |
3559 DXEPCTL_USBACTEP,
3560 DOEPCTL0);
3561
3562 /* enable, but don't activate EP0in */
3563 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3564 DXEPCTL_USBACTEP, DIEPCTL0);
3565
3566 /* clear global NAKs */
3567 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3568 if (!is_usb_reset)
3569 val |= DCTL_SFTDISCON;
3570 dwc2_set_bit(hsotg, DCTL, val);
3571
3572 /* configure the core to support LPM */
3573 dwc2_gadget_init_lpm(hsotg);
3574
3575 /* program GREFCLK register if needed */
3576 if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3577 dwc2_gadget_program_ref_clk(hsotg);
3578
3579 /* must be at-least 3ms to allow bus to see disconnect */
3580 mdelay(3);
3581
3582 hsotg->lx_state = DWC2_L0;
3583
3584 dwc2_hsotg_enqueue_setup(hsotg);
3585
3586 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3587 dwc2_readl(hsotg, DIEPCTL0),
3588 dwc2_readl(hsotg, DOEPCTL0));
3589}
3590
3591void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3592{
3593 /* set the soft-disconnect bit */
3594 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3595}
3596
3597void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3598{
3599 /* remove the soft-disconnect and let's go */
3600 if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD))
3601 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3602}
3603
3604/**
3605 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3606 * @hsotg: The device state:
3607 *
3608 * This interrupt indicates one of the following conditions occurred while
3609 * transmitting an ISOC transaction.
3610 * - Corrupted IN Token for ISOC EP.
3611 * - Packet not complete in FIFO.
3612 *
3613 * The following actions will be taken:
3614 * - Determine the EP
3615 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3616 */
3617static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3618{
3619 struct dwc2_hsotg_ep *hs_ep;
3620 u32 epctrl;
3621 u32 daintmsk;
3622 u32 idx;
3623
3624 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3625
3626 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3627
3628 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3629 hs_ep = hsotg->eps_in[idx];
3630 /* Proceed only unmasked ISOC EPs */
3631 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3632 continue;
3633
3634 epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3635 if ((epctrl & DXEPCTL_EPENA) &&
3636 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3637 epctrl |= DXEPCTL_SNAK;
3638 epctrl |= DXEPCTL_EPDIS;
3639 dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3640 }
3641 }
3642
3643 /* Clear interrupt */
3644 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3645}
3646
3647/**
3648 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3649 * @hsotg: The device state:
3650 *
3651 * This interrupt indicates one of the following conditions occurred while
3652 * transmitting an ISOC transaction.
3653 * - Corrupted OUT Token for ISOC EP.
3654 * - Packet not complete in FIFO.
3655 *
3656 * The following actions will be taken:
3657 * - Determine the EP
3658 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3659 */
3660static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3661{
3662 u32 gintsts;
3663 u32 gintmsk;
3664 u32 daintmsk;
3665 u32 epctrl;
3666 struct dwc2_hsotg_ep *hs_ep;
3667 int idx;
3668
3669 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3670
3671 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3672 daintmsk >>= DAINT_OUTEP_SHIFT;
3673
3674 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3675 hs_ep = hsotg->eps_out[idx];
3676 /* Proceed only unmasked ISOC EPs */
3677 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3678 continue;
3679
3680 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3681 if ((epctrl & DXEPCTL_EPENA) &&
3682 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3683 /* Unmask GOUTNAKEFF interrupt */
3684 gintmsk = dwc2_readl(hsotg, GINTMSK);
3685 gintmsk |= GINTSTS_GOUTNAKEFF;
3686 dwc2_writel(hsotg, gintmsk, GINTMSK);
3687
3688 gintsts = dwc2_readl(hsotg, GINTSTS);
3689 if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3690 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3691 break;
3692 }
3693 }
3694 }
3695
3696 /* Clear interrupt */
3697 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3698}
3699
3700/**
3701 * dwc2_hsotg_irq - handle device interrupt
3702 * @irq: The IRQ number triggered
3703 * @pw: The pw value when registered the handler.
3704 */
3705static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3706{
3707 struct dwc2_hsotg *hsotg = pw;
3708 int retry_count = 8;
3709 u32 gintsts;
3710 u32 gintmsk;
3711
3712 if (!dwc2_is_device_mode(hsotg))
3713 return IRQ_NONE;
3714
3715 spin_lock(&hsotg->lock);
3716irq_retry:
3717 gintsts = dwc2_readl(hsotg, GINTSTS);
3718 gintmsk = dwc2_readl(hsotg, GINTMSK);
3719
3720 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3721 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3722
3723 gintsts &= gintmsk;
3724
3725 if (gintsts & GINTSTS_RESETDET) {
3726 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3727
3728 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3729
3730 /* This event must be used only if controller is suspended */
3731 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3732 dwc2_exit_partial_power_down(hsotg, 0, true);
3733
3734 /* Exit gadget mode clock gating. */
3735 if (hsotg->params.power_down ==
3736 DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended &&
3737 !hsotg->params.no_clock_gating)
3738 dwc2_gadget_exit_clock_gating(hsotg, 0);
3739
3740 hsotg->lx_state = DWC2_L0;
3741 }
3742
3743 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3744 u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3745 u32 connected = hsotg->connected;
3746
3747 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3748 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3749 dwc2_readl(hsotg, GNPTXSTS));
3750
3751 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3752
3753 /* Report disconnection if it is not already done. */
3754 dwc2_hsotg_disconnect(hsotg);
3755
3756 /* Reset device address to zero */
3757 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3758
3759 if (usb_status & GOTGCTL_BSESVLD && connected)
3760 dwc2_hsotg_core_init_disconnected(hsotg, true);
3761 }
3762
3763 if (gintsts & GINTSTS_ENUMDONE) {
3764 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3765
3766 dwc2_hsotg_irq_enumdone(hsotg);
3767 }
3768
3769 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3770 u32 daint = dwc2_readl(hsotg, DAINT);
3771 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3772 u32 daint_out, daint_in;
3773 int ep;
3774
3775 daint &= daintmsk;
3776 daint_out = daint >> DAINT_OUTEP_SHIFT;
3777 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3778
3779 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3780
3781 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3782 ep++, daint_out >>= 1) {
3783 if (daint_out & 1)
3784 dwc2_hsotg_epint(hsotg, ep, 0);
3785 }
3786
3787 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3788 ep++, daint_in >>= 1) {
3789 if (daint_in & 1)
3790 dwc2_hsotg_epint(hsotg, ep, 1);
3791 }
3792 }
3793
3794 /* check both FIFOs */
3795
3796 if (gintsts & GINTSTS_NPTXFEMP) {
3797 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3798
3799 /*
3800 * Disable the interrupt to stop it happening again
3801 * unless one of these endpoint routines decides that
3802 * it needs re-enabling
3803 */
3804
3805 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3806 dwc2_hsotg_irq_fifoempty(hsotg, false);
3807 }
3808
3809 if (gintsts & GINTSTS_PTXFEMP) {
3810 dev_dbg(hsotg->dev, "PTxFEmp\n");
3811
3812 /* See note in GINTSTS_NPTxFEmp */
3813
3814 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3815 dwc2_hsotg_irq_fifoempty(hsotg, true);
3816 }
3817
3818 if (gintsts & GINTSTS_RXFLVL) {
3819 /*
3820 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3821 * we need to retry dwc2_hsotg_handle_rx if this is still
3822 * set.
3823 */
3824
3825 dwc2_hsotg_handle_rx(hsotg);
3826 }
3827
3828 if (gintsts & GINTSTS_ERLYSUSP) {
3829 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3830 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3831 }
3832
3833 /*
3834 * these next two seem to crop-up occasionally causing the core
3835 * to shutdown the USB transfer, so try clearing them and logging
3836 * the occurrence.
3837 */
3838
3839 if (gintsts & GINTSTS_GOUTNAKEFF) {
3840 u8 idx;
3841 u32 epctrl;
3842 u32 gintmsk;
3843 u32 daintmsk;
3844 struct dwc2_hsotg_ep *hs_ep;
3845
3846 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3847 daintmsk >>= DAINT_OUTEP_SHIFT;
3848 /* Mask this interrupt */
3849 gintmsk = dwc2_readl(hsotg, GINTMSK);
3850 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3851 dwc2_writel(hsotg, gintmsk, GINTMSK);
3852
3853 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3854 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3855 hs_ep = hsotg->eps_out[idx];
3856 /* Proceed only unmasked ISOC EPs */
3857 if (BIT(idx) & ~daintmsk)
3858 continue;
3859
3860 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3861
3862 //ISOC Ep's only
3863 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3864 epctrl |= DXEPCTL_SNAK;
3865 epctrl |= DXEPCTL_EPDIS;
3866 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3867 continue;
3868 }
3869
3870 //Non-ISOC EP's
3871 if (hs_ep->halted) {
3872 if (!(epctrl & DXEPCTL_EPENA))
3873 epctrl |= DXEPCTL_EPENA;
3874 epctrl |= DXEPCTL_EPDIS;
3875 epctrl |= DXEPCTL_STALL;
3876 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3877 }
3878 }
3879
3880 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3881 }
3882
3883 if (gintsts & GINTSTS_GINNAKEFF) {
3884 dev_info(hsotg->dev, "GINNakEff triggered\n");
3885
3886 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3887
3888 dwc2_hsotg_dump(hsotg);
3889 }
3890
3891 if (gintsts & GINTSTS_INCOMPL_SOIN)
3892 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3893
3894 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3895 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3896
3897 /*
3898 * if we've had fifo events, we should try and go around the
3899 * loop again to see if there's any point in returning yet.
3900 */
3901
3902 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3903 goto irq_retry;
3904
3905 /* Check WKUP_ALERT interrupt*/
3906 if (hsotg->params.service_interval)
3907 dwc2_gadget_wkup_alert_handler(hsotg);
3908
3909 spin_unlock(&hsotg->lock);
3910
3911 return IRQ_HANDLED;
3912}
3913
3914static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3915 struct dwc2_hsotg_ep *hs_ep)
3916{
3917 u32 epctrl_reg;
3918 u32 epint_reg;
3919
3920 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3921 DOEPCTL(hs_ep->index);
3922 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3923 DOEPINT(hs_ep->index);
3924
3925 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3926 hs_ep->name);
3927
3928 if (hs_ep->dir_in) {
3929 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3930 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3931 /* Wait for Nak effect */
3932 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3933 DXEPINT_INEPNAKEFF, 100))
3934 dev_warn(hsotg->dev,
3935 "%s: timeout DIEPINT.NAKEFF\n",
3936 __func__);
3937 } else {
3938 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3939 /* Wait for Nak effect */
3940 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3941 GINTSTS_GINNAKEFF, 100))
3942 dev_warn(hsotg->dev,
3943 "%s: timeout GINTSTS.GINNAKEFF\n",
3944 __func__);
3945 }
3946 } else {
3947 /* Mask GINTSTS_GOUTNAKEFF interrupt */
3948 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3949
3950 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3951 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3952
3953 if (!using_dma(hsotg)) {
3954 /* Wait for GINTSTS_RXFLVL interrupt */
3955 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3956 GINTSTS_RXFLVL, 100)) {
3957 dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3958 __func__);
3959 } else {
3960 /*
3961 * Pop GLOBAL OUT NAK status packet from RxFIFO
3962 * to assert GOUTNAKEFF interrupt
3963 */
3964 dwc2_readl(hsotg, GRXSTSP);
3965 }
3966 }
3967
3968 /* Wait for global nak to take effect */
3969 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3970 GINTSTS_GOUTNAKEFF, 100))
3971 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3972 __func__);
3973 }
3974
3975 /* Disable ep */
3976 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3977
3978 /* Wait for ep to be disabled */
3979 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3980 dev_warn(hsotg->dev,
3981 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3982
3983 /* Clear EPDISBLD interrupt */
3984 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3985
3986 if (hs_ep->dir_in) {
3987 unsigned short fifo_index;
3988
3989 if (hsotg->dedicated_fifos || hs_ep->periodic)
3990 fifo_index = hs_ep->fifo_index;
3991 else
3992 fifo_index = 0;
3993
3994 /* Flush TX FIFO */
3995 dwc2_flush_tx_fifo(hsotg, fifo_index);
3996
3997 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3998 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3999 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
4000
4001 } else {
4002 /* Remove global NAKs */
4003 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
4004 }
4005}
4006
4007/**
4008 * dwc2_hsotg_ep_enable - enable the given endpoint
4009 * @ep: The USB endpint to configure
4010 * @desc: The USB endpoint descriptor to configure with.
4011 *
4012 * This is called from the USB gadget code's usb_ep_enable().
4013 */
4014static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
4015 const struct usb_endpoint_descriptor *desc)
4016{
4017 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4018 struct dwc2_hsotg *hsotg = hs_ep->parent;
4019 unsigned long flags;
4020 unsigned int index = hs_ep->index;
4021 u32 epctrl_reg;
4022 u32 epctrl;
4023 u32 mps;
4024 u32 mc;
4025 u32 mask;
4026 unsigned int dir_in;
4027 unsigned int i, val, size;
4028 int ret = 0;
4029 unsigned char ep_type;
4030 int desc_num;
4031
4032 dev_dbg(hsotg->dev,
4033 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4034 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4035 desc->wMaxPacketSize, desc->bInterval);
4036
4037 /* not to be called for EP0 */
4038 if (index == 0) {
4039 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4040 return -EINVAL;
4041 }
4042
4043 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4044 if (dir_in != hs_ep->dir_in) {
4045 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4046 return -EINVAL;
4047 }
4048
4049 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4050 mps = usb_endpoint_maxp(desc);
4051 mc = usb_endpoint_maxp_mult(desc);
4052
4053 /* ISOC IN in DDMA supported bInterval up to 10 */
4054 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4055 dir_in && desc->bInterval > 10) {
4056 dev_err(hsotg->dev,
4057 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4058 return -EINVAL;
4059 }
4060
4061 /* High bandwidth ISOC OUT in DDMA not supported */
4062 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4063 !dir_in && mc > 1) {
4064 dev_err(hsotg->dev,
4065 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4066 return -EINVAL;
4067 }
4068
4069 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4070
4071 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4072 epctrl = dwc2_readl(hsotg, epctrl_reg);
4073
4074 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4075 __func__, epctrl, epctrl_reg);
4076
4077 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4078 desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4079 else
4080 desc_num = MAX_DMA_DESC_NUM_GENERIC;
4081
4082 /* Allocate DMA descriptor chain for non-ctrl endpoints */
4083 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4084 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4085 desc_num * sizeof(struct dwc2_dma_desc),
4086 &hs_ep->desc_list_dma, GFP_ATOMIC);
4087 if (!hs_ep->desc_list) {
4088 ret = -ENOMEM;
4089 goto error2;
4090 }
4091 }
4092
4093 spin_lock_irqsave(&hsotg->lock, flags);
4094
4095 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4096 epctrl |= DXEPCTL_MPS(mps);
4097
4098 /*
4099 * mark the endpoint as active, otherwise the core may ignore
4100 * transactions entirely for this endpoint
4101 */
4102 epctrl |= DXEPCTL_USBACTEP;
4103
4104 /* update the endpoint state */
4105 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4106
4107 /* default, set to non-periodic */
4108 hs_ep->isochronous = 0;
4109 hs_ep->periodic = 0;
4110 hs_ep->halted = 0;
4111 hs_ep->wedged = 0;
4112 hs_ep->interval = desc->bInterval;
4113
4114 switch (ep_type) {
4115 case USB_ENDPOINT_XFER_ISOC:
4116 epctrl |= DXEPCTL_EPTYPE_ISO;
4117 epctrl |= DXEPCTL_SETEVENFR;
4118 hs_ep->isochronous = 1;
4119 hs_ep->interval = 1 << (desc->bInterval - 1);
4120 hs_ep->target_frame = TARGET_FRAME_INITIAL;
4121 hs_ep->next_desc = 0;
4122 hs_ep->compl_desc = 0;
4123 if (dir_in) {
4124 hs_ep->periodic = 1;
4125 mask = dwc2_readl(hsotg, DIEPMSK);
4126 mask |= DIEPMSK_NAKMSK;
4127 dwc2_writel(hsotg, mask, DIEPMSK);
4128 } else {
4129 epctrl |= DXEPCTL_SNAK;
4130 mask = dwc2_readl(hsotg, DOEPMSK);
4131 mask |= DOEPMSK_OUTTKNEPDISMSK;
4132 dwc2_writel(hsotg, mask, DOEPMSK);
4133 }
4134 break;
4135
4136 case USB_ENDPOINT_XFER_BULK:
4137 epctrl |= DXEPCTL_EPTYPE_BULK;
4138 break;
4139
4140 case USB_ENDPOINT_XFER_INT:
4141 if (dir_in)
4142 hs_ep->periodic = 1;
4143
4144 if (hsotg->gadget.speed == USB_SPEED_HIGH)
4145 hs_ep->interval = 1 << (desc->bInterval - 1);
4146
4147 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4148 break;
4149
4150 case USB_ENDPOINT_XFER_CONTROL:
4151 epctrl |= DXEPCTL_EPTYPE_CONTROL;
4152 break;
4153 }
4154
4155 /*
4156 * if the hardware has dedicated fifos, we must give each IN EP
4157 * a unique tx-fifo even if it is non-periodic.
4158 */
4159 if (dir_in && hsotg->dedicated_fifos) {
4160 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4161 u32 fifo_index = 0;
4162 u32 fifo_size = UINT_MAX;
4163
4164 size = hs_ep->ep.maxpacket * hs_ep->mc;
4165 for (i = 1; i <= fifo_count; ++i) {
4166 if (hsotg->fifo_map & (1 << i))
4167 continue;
4168 val = dwc2_readl(hsotg, DPTXFSIZN(i));
4169 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4170 if (val < size)
4171 continue;
4172 /* Search for smallest acceptable fifo */
4173 if (val < fifo_size) {
4174 fifo_size = val;
4175 fifo_index = i;
4176 }
4177 }
4178 if (!fifo_index) {
4179 dev_err(hsotg->dev,
4180 "%s: No suitable fifo found\n", __func__);
4181 ret = -ENOMEM;
4182 goto error1;
4183 }
4184 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4185 hsotg->fifo_map |= 1 << fifo_index;
4186 epctrl |= DXEPCTL_TXFNUM(fifo_index);
4187 hs_ep->fifo_index = fifo_index;
4188 hs_ep->fifo_size = fifo_size;
4189 }
4190
4191 /* for non control endpoints, set PID to D0 */
4192 if (index && !hs_ep->isochronous)
4193 epctrl |= DXEPCTL_SETD0PID;
4194
4195 /* WA for Full speed ISOC IN in DDMA mode.
4196 * By Clear NAK status of EP, core will send ZLP
4197 * to IN token and assert NAK interrupt relying
4198 * on TxFIFO status only
4199 */
4200
4201 if (hsotg->gadget.speed == USB_SPEED_FULL &&
4202 hs_ep->isochronous && dir_in) {
4203 /* The WA applies only to core versions from 2.72a
4204 * to 4.00a (including both). Also for FS_IOT_1.00a
4205 * and HS_IOT_1.00a.
4206 */
4207 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4208
4209 if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4210 gsnpsid <= DWC2_CORE_REV_4_00a) ||
4211 gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4212 gsnpsid == DWC2_HS_IOT_REV_1_00a)
4213 epctrl |= DXEPCTL_CNAK;
4214 }
4215
4216 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4217 __func__, epctrl);
4218
4219 dwc2_writel(hsotg, epctrl, epctrl_reg);
4220 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4221 __func__, dwc2_readl(hsotg, epctrl_reg));
4222
4223 /* enable the endpoint interrupt */
4224 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4225
4226error1:
4227 spin_unlock_irqrestore(&hsotg->lock, flags);
4228
4229error2:
4230 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4231 dmam_free_coherent(hsotg->dev, desc_num *
4232 sizeof(struct dwc2_dma_desc),
4233 hs_ep->desc_list, hs_ep->desc_list_dma);
4234 hs_ep->desc_list = NULL;
4235 }
4236
4237 return ret;
4238}
4239
4240/**
4241 * dwc2_hsotg_ep_disable - disable given endpoint
4242 * @ep: The endpoint to disable.
4243 */
4244static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4245{
4246 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4247 struct dwc2_hsotg *hsotg = hs_ep->parent;
4248 int dir_in = hs_ep->dir_in;
4249 int index = hs_ep->index;
4250 u32 epctrl_reg;
4251 u32 ctrl;
4252
4253 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4254
4255 if (ep == &hsotg->eps_out[0]->ep) {
4256 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4257 return -EINVAL;
4258 }
4259
4260 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4261 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4262 return -EINVAL;
4263 }
4264
4265 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4266
4267 ctrl = dwc2_readl(hsotg, epctrl_reg);
4268
4269 if (ctrl & DXEPCTL_EPENA)
4270 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4271
4272 ctrl &= ~DXEPCTL_EPENA;
4273 ctrl &= ~DXEPCTL_USBACTEP;
4274 ctrl |= DXEPCTL_SNAK;
4275
4276 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4277 dwc2_writel(hsotg, ctrl, epctrl_reg);
4278
4279 /* disable endpoint interrupts */
4280 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4281
4282 /* terminate all requests with shutdown */
4283 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4284
4285 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4286 hs_ep->fifo_index = 0;
4287 hs_ep->fifo_size = 0;
4288
4289 return 0;
4290}
4291
4292static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4293{
4294 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4295 struct dwc2_hsotg *hsotg = hs_ep->parent;
4296 unsigned long flags;
4297 int ret;
4298
4299 spin_lock_irqsave(&hsotg->lock, flags);
4300 ret = dwc2_hsotg_ep_disable(ep);
4301 spin_unlock_irqrestore(&hsotg->lock, flags);
4302 return ret;
4303}
4304
4305/**
4306 * on_list - check request is on the given endpoint
4307 * @ep: The endpoint to check.
4308 * @test: The request to test if it is on the endpoint.
4309 */
4310static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4311{
4312 struct dwc2_hsotg_req *req, *treq;
4313
4314 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4315 if (req == test)
4316 return true;
4317 }
4318
4319 return false;
4320}
4321
4322/**
4323 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4324 * @ep: The endpoint to dequeue.
4325 * @req: The request to be removed from a queue.
4326 */
4327static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4328{
4329 struct dwc2_hsotg_req *hs_req = our_req(req);
4330 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4331 struct dwc2_hsotg *hs = hs_ep->parent;
4332 unsigned long flags;
4333
4334 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4335
4336 spin_lock_irqsave(&hs->lock, flags);
4337
4338 if (!on_list(hs_ep, hs_req)) {
4339 spin_unlock_irqrestore(&hs->lock, flags);
4340 return -EINVAL;
4341 }
4342
4343 /* Dequeue already started request */
4344 if (req == &hs_ep->req->req)
4345 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4346
4347 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4348 spin_unlock_irqrestore(&hs->lock, flags);
4349
4350 return 0;
4351}
4352
4353/**
4354 * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint
4355 * @ep: The endpoint to be wedged.
4356 *
4357 */
4358static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep)
4359{
4360 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4361 struct dwc2_hsotg *hs = hs_ep->parent;
4362
4363 unsigned long flags;
4364 int ret;
4365
4366 spin_lock_irqsave(&hs->lock, flags);
4367 hs_ep->wedged = 1;
4368 ret = dwc2_hsotg_ep_sethalt(ep, 1, false);
4369 spin_unlock_irqrestore(&hs->lock, flags);
4370
4371 return ret;
4372}
4373
4374/**
4375 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4376 * @ep: The endpoint to set halt.
4377 * @value: Set or unset the halt.
4378 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4379 * the endpoint is busy processing requests.
4380 *
4381 * We need to stall the endpoint immediately if request comes from set_feature
4382 * protocol command handler.
4383 */
4384static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4385{
4386 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4387 struct dwc2_hsotg *hs = hs_ep->parent;
4388 int index = hs_ep->index;
4389 u32 epreg;
4390 u32 epctl;
4391 u32 xfertype;
4392
4393 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4394
4395 if (index == 0) {
4396 if (value)
4397 dwc2_hsotg_stall_ep0(hs);
4398 else
4399 dev_warn(hs->dev,
4400 "%s: can't clear halt on ep0\n", __func__);
4401 return 0;
4402 }
4403
4404 if (hs_ep->isochronous) {
4405 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4406 return -EINVAL;
4407 }
4408
4409 if (!now && value && !list_empty(&hs_ep->queue)) {
4410 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4411 ep->name);
4412 return -EAGAIN;
4413 }
4414
4415 if (hs_ep->dir_in) {
4416 epreg = DIEPCTL(index);
4417 epctl = dwc2_readl(hs, epreg);
4418
4419 if (value) {
4420 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4421 if (epctl & DXEPCTL_EPENA)
4422 epctl |= DXEPCTL_EPDIS;
4423 } else {
4424 epctl &= ~DXEPCTL_STALL;
4425 hs_ep->wedged = 0;
4426 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4427 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4428 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4429 epctl |= DXEPCTL_SETD0PID;
4430 }
4431 dwc2_writel(hs, epctl, epreg);
4432 } else {
4433 epreg = DOEPCTL(index);
4434 epctl = dwc2_readl(hs, epreg);
4435
4436 if (value) {
4437 /* Unmask GOUTNAKEFF interrupt */
4438 dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4439
4440 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4441 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4442 // STALL bit will be set in GOUTNAKEFF interrupt handler
4443 } else {
4444 epctl &= ~DXEPCTL_STALL;
4445 hs_ep->wedged = 0;
4446 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4447 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4448 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4449 epctl |= DXEPCTL_SETD0PID;
4450 dwc2_writel(hs, epctl, epreg);
4451 }
4452 }
4453
4454 hs_ep->halted = value;
4455 return 0;
4456}
4457
4458/**
4459 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4460 * @ep: The endpoint to set halt.
4461 * @value: Set or unset the halt.
4462 */
4463static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4464{
4465 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4466 struct dwc2_hsotg *hs = hs_ep->parent;
4467 unsigned long flags;
4468 int ret;
4469
4470 spin_lock_irqsave(&hs->lock, flags);
4471 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4472 spin_unlock_irqrestore(&hs->lock, flags);
4473
4474 return ret;
4475}
4476
4477static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4478 .enable = dwc2_hsotg_ep_enable,
4479 .disable = dwc2_hsotg_ep_disable_lock,
4480 .alloc_request = dwc2_hsotg_ep_alloc_request,
4481 .free_request = dwc2_hsotg_ep_free_request,
4482 .queue = dwc2_hsotg_ep_queue_lock,
4483 .dequeue = dwc2_hsotg_ep_dequeue,
4484 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4485 .set_wedge = dwc2_gadget_ep_set_wedge,
4486 /* note, don't believe we have any call for the fifo routines */
4487};
4488
4489/**
4490 * dwc2_hsotg_init - initialize the usb core
4491 * @hsotg: The driver state
4492 */
4493static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4494{
4495 /* unmask subset of endpoint interrupts */
4496
4497 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4498 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4499 DIEPMSK);
4500
4501 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4502 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4503 DOEPMSK);
4504
4505 dwc2_writel(hsotg, 0, DAINTMSK);
4506
4507 /* Be in disconnected state until gadget is registered */
4508 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4509
4510 /* setup fifos */
4511
4512 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4513 dwc2_readl(hsotg, GRXFSIZ),
4514 dwc2_readl(hsotg, GNPTXFSIZ));
4515
4516 dwc2_hsotg_init_fifo(hsotg);
4517
4518 if (using_dma(hsotg))
4519 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4520}
4521
4522/**
4523 * dwc2_hsotg_udc_start - prepare the udc for work
4524 * @gadget: The usb gadget state
4525 * @driver: The usb gadget driver
4526 *
4527 * Perform initialization to prepare udc device and driver
4528 * to work.
4529 */
4530static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4531 struct usb_gadget_driver *driver)
4532{
4533 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4534 unsigned long flags;
4535 int ret;
4536
4537 if (!hsotg) {
4538 pr_err("%s: called with no device\n", __func__);
4539 return -ENODEV;
4540 }
4541
4542 if (!driver) {
4543 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4544 return -EINVAL;
4545 }
4546
4547 if (driver->max_speed < USB_SPEED_FULL)
4548 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4549
4550 if (!driver->setup) {
4551 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4552 return -EINVAL;
4553 }
4554
4555 WARN_ON(hsotg->driver);
4556
4557 hsotg->driver = driver;
4558 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4559 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4560
4561 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4562 ret = dwc2_lowlevel_hw_enable(hsotg);
4563 if (ret)
4564 goto err;
4565 }
4566
4567 if (!IS_ERR_OR_NULL(hsotg->uphy))
4568 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4569
4570 spin_lock_irqsave(&hsotg->lock, flags);
4571 if (dwc2_hw_is_device(hsotg)) {
4572 dwc2_hsotg_init(hsotg);
4573 dwc2_hsotg_core_init_disconnected(hsotg, false);
4574 }
4575
4576 hsotg->enabled = 0;
4577 spin_unlock_irqrestore(&hsotg->lock, flags);
4578
4579 gadget->sg_supported = using_desc_dma(hsotg);
4580 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4581
4582 return 0;
4583
4584err:
4585 hsotg->driver = NULL;
4586 return ret;
4587}
4588
4589/**
4590 * dwc2_hsotg_udc_stop - stop the udc
4591 * @gadget: The usb gadget state
4592 *
4593 * Stop udc hw block and stay tunned for future transmissions
4594 */
4595static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4596{
4597 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4598 unsigned long flags;
4599 int ep;
4600
4601 if (!hsotg)
4602 return -ENODEV;
4603
4604 /* all endpoints should be shutdown */
4605 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4606 if (hsotg->eps_in[ep])
4607 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4608 if (hsotg->eps_out[ep])
4609 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4610 }
4611
4612 spin_lock_irqsave(&hsotg->lock, flags);
4613
4614 hsotg->driver = NULL;
4615 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4616 hsotg->enabled = 0;
4617
4618 spin_unlock_irqrestore(&hsotg->lock, flags);
4619
4620 if (!IS_ERR_OR_NULL(hsotg->uphy))
4621 otg_set_peripheral(hsotg->uphy->otg, NULL);
4622
4623 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4624 dwc2_lowlevel_hw_disable(hsotg);
4625
4626 return 0;
4627}
4628
4629/**
4630 * dwc2_hsotg_gadget_getframe - read the frame number
4631 * @gadget: The usb gadget state
4632 *
4633 * Read the {micro} frame number
4634 */
4635static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4636{
4637 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4638}
4639
4640/**
4641 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4642 * @gadget: The usb gadget state
4643 * @is_selfpowered: Whether the device is self-powered
4644 *
4645 * Set if the device is self or bus powered.
4646 */
4647static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4648 int is_selfpowered)
4649{
4650 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4651 unsigned long flags;
4652
4653 spin_lock_irqsave(&hsotg->lock, flags);
4654 gadget->is_selfpowered = !!is_selfpowered;
4655 spin_unlock_irqrestore(&hsotg->lock, flags);
4656
4657 return 0;
4658}
4659
4660/**
4661 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4662 * @gadget: The usb gadget state
4663 * @is_on: Current state of the USB PHY
4664 *
4665 * Connect/Disconnect the USB PHY pullup
4666 */
4667static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4668{
4669 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4670 unsigned long flags;
4671
4672 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4673 hsotg->op_state);
4674
4675 /* Don't modify pullup state while in host mode */
4676 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4677 hsotg->enabled = is_on;
4678 return 0;
4679 }
4680
4681 spin_lock_irqsave(&hsotg->lock, flags);
4682 if (is_on) {
4683 hsotg->enabled = 1;
4684 dwc2_hsotg_core_init_disconnected(hsotg, false);
4685 /* Enable ACG feature in device mode,if supported */
4686 dwc2_enable_acg(hsotg);
4687 dwc2_hsotg_core_connect(hsotg);
4688 } else {
4689 dwc2_hsotg_core_disconnect(hsotg);
4690 dwc2_hsotg_disconnect(hsotg);
4691 hsotg->enabled = 0;
4692 }
4693
4694 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4695 spin_unlock_irqrestore(&hsotg->lock, flags);
4696
4697 return 0;
4698}
4699
4700static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4701{
4702 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4703 unsigned long flags;
4704
4705 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4706 spin_lock_irqsave(&hsotg->lock, flags);
4707
4708 /*
4709 * If controller is in partial power down state, it must exit from
4710 * that state before being initialized / de-initialized
4711 */
4712 if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4713 /*
4714 * No need to check the return value as
4715 * registers are not being restored.
4716 */
4717 dwc2_exit_partial_power_down(hsotg, 0, false);
4718
4719 if (is_active) {
4720 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4721
4722 dwc2_hsotg_core_init_disconnected(hsotg, false);
4723 if (hsotg->enabled) {
4724 /* Enable ACG feature in device mode,if supported */
4725 dwc2_enable_acg(hsotg);
4726 dwc2_hsotg_core_connect(hsotg);
4727 }
4728 } else {
4729 dwc2_hsotg_core_disconnect(hsotg);
4730 dwc2_hsotg_disconnect(hsotg);
4731 }
4732
4733 spin_unlock_irqrestore(&hsotg->lock, flags);
4734 return 0;
4735}
4736
4737/**
4738 * dwc2_hsotg_vbus_draw - report bMaxPower field
4739 * @gadget: The usb gadget state
4740 * @mA: Amount of current
4741 *
4742 * Report how much power the device may consume to the phy.
4743 */
4744static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4745{
4746 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4747
4748 if (IS_ERR_OR_NULL(hsotg->uphy))
4749 return -ENOTSUPP;
4750 return usb_phy_set_power(hsotg->uphy, mA);
4751}
4752
4753static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed)
4754{
4755 struct dwc2_hsotg *hsotg = to_hsotg(g);
4756 unsigned long flags;
4757
4758 spin_lock_irqsave(&hsotg->lock, flags);
4759 switch (speed) {
4760 case USB_SPEED_HIGH:
4761 hsotg->params.speed = DWC2_SPEED_PARAM_HIGH;
4762 break;
4763 case USB_SPEED_FULL:
4764 hsotg->params.speed = DWC2_SPEED_PARAM_FULL;
4765 break;
4766 case USB_SPEED_LOW:
4767 hsotg->params.speed = DWC2_SPEED_PARAM_LOW;
4768 break;
4769 default:
4770 dev_err(hsotg->dev, "invalid speed (%d)\n", speed);
4771 }
4772 spin_unlock_irqrestore(&hsotg->lock, flags);
4773}
4774
4775static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4776 .get_frame = dwc2_hsotg_gadget_getframe,
4777 .set_selfpowered = dwc2_hsotg_set_selfpowered,
4778 .udc_start = dwc2_hsotg_udc_start,
4779 .udc_stop = dwc2_hsotg_udc_stop,
4780 .pullup = dwc2_hsotg_pullup,
4781 .udc_set_speed = dwc2_gadget_set_speed,
4782 .vbus_session = dwc2_hsotg_vbus_session,
4783 .vbus_draw = dwc2_hsotg_vbus_draw,
4784};
4785
4786/**
4787 * dwc2_hsotg_initep - initialise a single endpoint
4788 * @hsotg: The device state.
4789 * @hs_ep: The endpoint to be initialised.
4790 * @epnum: The endpoint number
4791 * @dir_in: True if direction is in.
4792 *
4793 * Initialise the given endpoint (as part of the probe and device state
4794 * creation) to give to the gadget driver. Setup the endpoint name, any
4795 * direction information and other state that may be required.
4796 */
4797static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4798 struct dwc2_hsotg_ep *hs_ep,
4799 int epnum,
4800 bool dir_in)
4801{
4802 char *dir;
4803
4804 if (epnum == 0)
4805 dir = "";
4806 else if (dir_in)
4807 dir = "in";
4808 else
4809 dir = "out";
4810
4811 hs_ep->dir_in = dir_in;
4812 hs_ep->index = epnum;
4813
4814 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4815
4816 INIT_LIST_HEAD(&hs_ep->queue);
4817 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4818
4819 /* add to the list of endpoints known by the gadget driver */
4820 if (epnum)
4821 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4822
4823 hs_ep->parent = hsotg;
4824 hs_ep->ep.name = hs_ep->name;
4825
4826 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4827 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4828 else
4829 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4830 epnum ? 1024 : EP0_MPS_LIMIT);
4831 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4832
4833 if (epnum == 0) {
4834 hs_ep->ep.caps.type_control = true;
4835 } else {
4836 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4837 hs_ep->ep.caps.type_iso = true;
4838 hs_ep->ep.caps.type_bulk = true;
4839 }
4840 hs_ep->ep.caps.type_int = true;
4841 }
4842
4843 if (dir_in)
4844 hs_ep->ep.caps.dir_in = true;
4845 else
4846 hs_ep->ep.caps.dir_out = true;
4847
4848 /*
4849 * if we're using dma, we need to set the next-endpoint pointer
4850 * to be something valid.
4851 */
4852
4853 if (using_dma(hsotg)) {
4854 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4855
4856 if (dir_in)
4857 dwc2_writel(hsotg, next, DIEPCTL(epnum));
4858 else
4859 dwc2_writel(hsotg, next, DOEPCTL(epnum));
4860 }
4861}
4862
4863/**
4864 * dwc2_hsotg_hw_cfg - read HW configuration registers
4865 * @hsotg: Programming view of the DWC_otg controller
4866 *
4867 * Read the USB core HW configuration registers
4868 */
4869static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4870{
4871 u32 cfg;
4872 u32 ep_type;
4873 u32 i;
4874
4875 /* check hardware configuration */
4876
4877 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4878
4879 /* Add ep0 */
4880 hsotg->num_of_eps++;
4881
4882 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4883 sizeof(struct dwc2_hsotg_ep),
4884 GFP_KERNEL);
4885 if (!hsotg->eps_in[0])
4886 return -ENOMEM;
4887 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4888 hsotg->eps_out[0] = hsotg->eps_in[0];
4889
4890 cfg = hsotg->hw_params.dev_ep_dirs;
4891 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4892 ep_type = cfg & 3;
4893 /* Direction in or both */
4894 if (!(ep_type & 2)) {
4895 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4896 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4897 if (!hsotg->eps_in[i])
4898 return -ENOMEM;
4899 }
4900 /* Direction out or both */
4901 if (!(ep_type & 1)) {
4902 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4903 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4904 if (!hsotg->eps_out[i])
4905 return -ENOMEM;
4906 }
4907 }
4908
4909 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4910 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4911
4912 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4913 hsotg->num_of_eps,
4914 hsotg->dedicated_fifos ? "dedicated" : "shared",
4915 hsotg->fifo_mem);
4916 return 0;
4917}
4918
4919/**
4920 * dwc2_hsotg_dump - dump state of the udc
4921 * @hsotg: Programming view of the DWC_otg controller
4922 *
4923 */
4924static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4925{
4926#ifdef DEBUG
4927 struct device *dev = hsotg->dev;
4928 u32 val;
4929 int idx;
4930
4931 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4932 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4933 dwc2_readl(hsotg, DIEPMSK));
4934
4935 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4936 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4937
4938 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4939 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4940
4941 /* show periodic fifo settings */
4942
4943 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4944 val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4945 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4946 val >> FIFOSIZE_DEPTH_SHIFT,
4947 val & FIFOSIZE_STARTADDR_MASK);
4948 }
4949
4950 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4951 dev_info(dev,
4952 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4953 dwc2_readl(hsotg, DIEPCTL(idx)),
4954 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4955 dwc2_readl(hsotg, DIEPDMA(idx)));
4956
4957 val = dwc2_readl(hsotg, DOEPCTL(idx));
4958 dev_info(dev,
4959 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4960 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4961 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4962 dwc2_readl(hsotg, DOEPDMA(idx)));
4963 }
4964
4965 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4966 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4967#endif
4968}
4969
4970/**
4971 * dwc2_gadget_init - init function for gadget
4972 * @hsotg: Programming view of the DWC_otg controller
4973 *
4974 */
4975int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4976{
4977 struct device *dev = hsotg->dev;
4978 int epnum;
4979 int ret;
4980
4981 /* Dump fifo information */
4982 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4983 hsotg->params.g_np_tx_fifo_size);
4984 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4985
4986 switch (hsotg->params.speed) {
4987 case DWC2_SPEED_PARAM_LOW:
4988 hsotg->gadget.max_speed = USB_SPEED_LOW;
4989 break;
4990 case DWC2_SPEED_PARAM_FULL:
4991 hsotg->gadget.max_speed = USB_SPEED_FULL;
4992 break;
4993 default:
4994 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4995 break;
4996 }
4997
4998 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4999 hsotg->gadget.name = dev_name(dev);
5000 hsotg->gadget.otg_caps = &hsotg->params.otg_caps;
5001 hsotg->remote_wakeup_allowed = 0;
5002
5003 if (hsotg->params.lpm)
5004 hsotg->gadget.lpm_capable = true;
5005
5006 if (hsotg->dr_mode == USB_DR_MODE_OTG)
5007 hsotg->gadget.is_otg = 1;
5008 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
5009 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
5010
5011 ret = dwc2_hsotg_hw_cfg(hsotg);
5012 if (ret) {
5013 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
5014 return ret;
5015 }
5016
5017 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
5018 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5019 if (!hsotg->ctrl_buff)
5020 return -ENOMEM;
5021
5022 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
5023 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5024 if (!hsotg->ep0_buff)
5025 return -ENOMEM;
5026
5027 if (using_desc_dma(hsotg)) {
5028 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
5029 if (ret < 0)
5030 return ret;
5031 }
5032
5033 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
5034 IRQF_SHARED, dev_name(hsotg->dev), hsotg);
5035 if (ret < 0) {
5036 dev_err(dev, "cannot claim IRQ for gadget\n");
5037 return ret;
5038 }
5039
5040 /* hsotg->num_of_eps holds number of EPs other than ep0 */
5041
5042 if (hsotg->num_of_eps == 0) {
5043 dev_err(dev, "wrong number of EPs (zero)\n");
5044 return -EINVAL;
5045 }
5046
5047 /* setup endpoint information */
5048
5049 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
5050 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
5051
5052 /* allocate EP0 request */
5053
5054 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
5055 GFP_KERNEL);
5056 if (!hsotg->ctrl_req) {
5057 dev_err(dev, "failed to allocate ctrl req\n");
5058 return -ENOMEM;
5059 }
5060
5061 /* initialise the endpoints now the core has been initialised */
5062 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
5063 if (hsotg->eps_in[epnum])
5064 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
5065 epnum, 1);
5066 if (hsotg->eps_out[epnum])
5067 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
5068 epnum, 0);
5069 }
5070
5071 dwc2_hsotg_dump(hsotg);
5072
5073 return 0;
5074}
5075
5076/**
5077 * dwc2_hsotg_remove - remove function for hsotg driver
5078 * @hsotg: Programming view of the DWC_otg controller
5079 *
5080 */
5081int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5082{
5083 usb_del_gadget_udc(&hsotg->gadget);
5084 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5085
5086 return 0;
5087}
5088
5089int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5090{
5091 unsigned long flags;
5092
5093 if (hsotg->lx_state != DWC2_L0)
5094 return 0;
5095
5096 if (hsotg->driver) {
5097 int ep;
5098
5099 dev_info(hsotg->dev, "suspending usb gadget %s\n",
5100 hsotg->driver->driver.name);
5101
5102 spin_lock_irqsave(&hsotg->lock, flags);
5103 if (hsotg->enabled)
5104 dwc2_hsotg_core_disconnect(hsotg);
5105 dwc2_hsotg_disconnect(hsotg);
5106 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5107 spin_unlock_irqrestore(&hsotg->lock, flags);
5108
5109 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
5110 if (hsotg->eps_in[ep])
5111 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5112 if (hsotg->eps_out[ep])
5113 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5114 }
5115 }
5116
5117 return 0;
5118}
5119
5120int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5121{
5122 unsigned long flags;
5123
5124 if (hsotg->lx_state == DWC2_L2)
5125 return 0;
5126
5127 if (hsotg->driver) {
5128 dev_info(hsotg->dev, "resuming usb gadget %s\n",
5129 hsotg->driver->driver.name);
5130
5131 spin_lock_irqsave(&hsotg->lock, flags);
5132 dwc2_hsotg_core_init_disconnected(hsotg, false);
5133 if (hsotg->enabled) {
5134 /* Enable ACG feature in device mode,if supported */
5135 dwc2_enable_acg(hsotg);
5136 dwc2_hsotg_core_connect(hsotg);
5137 }
5138 spin_unlock_irqrestore(&hsotg->lock, flags);
5139 }
5140
5141 return 0;
5142}
5143
5144/**
5145 * dwc2_backup_device_registers() - Backup controller device registers.
5146 * When suspending usb bus, registers needs to be backuped
5147 * if controller power is disabled once suspended.
5148 *
5149 * @hsotg: Programming view of the DWC_otg controller
5150 */
5151int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5152{
5153 struct dwc2_dregs_backup *dr;
5154 int i;
5155
5156 dev_dbg(hsotg->dev, "%s\n", __func__);
5157
5158 /* Backup dev regs */
5159 dr = &hsotg->dr_backup;
5160
5161 dr->dcfg = dwc2_readl(hsotg, DCFG);
5162 dr->dctl = dwc2_readl(hsotg, DCTL);
5163 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5164 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5165 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5166
5167 for (i = 0; i < hsotg->num_of_eps; i++) {
5168 /* Backup IN EPs */
5169 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5170
5171 /* Ensure DATA PID is correctly configured */
5172 if (dr->diepctl[i] & DXEPCTL_DPID)
5173 dr->diepctl[i] |= DXEPCTL_SETD1PID;
5174 else
5175 dr->diepctl[i] |= DXEPCTL_SETD0PID;
5176
5177 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5178 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5179
5180 /* Backup OUT EPs */
5181 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5182
5183 /* Ensure DATA PID is correctly configured */
5184 if (dr->doepctl[i] & DXEPCTL_DPID)
5185 dr->doepctl[i] |= DXEPCTL_SETD1PID;
5186 else
5187 dr->doepctl[i] |= DXEPCTL_SETD0PID;
5188
5189 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5190 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5191 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5192 }
5193 dr->valid = true;
5194 return 0;
5195}
5196
5197/**
5198 * dwc2_restore_device_registers() - Restore controller device registers.
5199 * When resuming usb bus, device registers needs to be restored
5200 * if controller power were disabled.
5201 *
5202 * @hsotg: Programming view of the DWC_otg controller
5203 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5204 *
5205 * Return: 0 if successful, negative error code otherwise
5206 */
5207int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5208{
5209 struct dwc2_dregs_backup *dr;
5210 int i;
5211
5212 dev_dbg(hsotg->dev, "%s\n", __func__);
5213
5214 /* Restore dev regs */
5215 dr = &hsotg->dr_backup;
5216 if (!dr->valid) {
5217 dev_err(hsotg->dev, "%s: no device registers to restore\n",
5218 __func__);
5219 return -EINVAL;
5220 }
5221 dr->valid = false;
5222
5223 if (!remote_wakeup)
5224 dwc2_writel(hsotg, dr->dctl, DCTL);
5225
5226 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5227 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5228 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5229
5230 for (i = 0; i < hsotg->num_of_eps; i++) {
5231 /* Restore IN EPs */
5232 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5233 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5234 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5235 /** WA for enabled EPx's IN in DDMA mode. On entering to
5236 * hibernation wrong value read and saved from DIEPDMAx,
5237 * as result BNA interrupt asserted on hibernation exit
5238 * by restoring from saved area.
5239 */
5240 if (using_desc_dma(hsotg) &&
5241 (dr->diepctl[i] & DXEPCTL_EPENA))
5242 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5243 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5244 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5245 /* Restore OUT EPs */
5246 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5247 /* WA for enabled EPx's OUT in DDMA mode. On entering to
5248 * hibernation wrong value read and saved from DOEPDMAx,
5249 * as result BNA interrupt asserted on hibernation exit
5250 * by restoring from saved area.
5251 */
5252 if (using_desc_dma(hsotg) &&
5253 (dr->doepctl[i] & DXEPCTL_EPENA))
5254 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5255 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5256 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5257 }
5258
5259 return 0;
5260}
5261
5262/**
5263 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5264 *
5265 * @hsotg: Programming view of DWC_otg controller
5266 *
5267 */
5268void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5269{
5270 u32 val;
5271
5272 if (!hsotg->params.lpm)
5273 return;
5274
5275 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5276 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5277 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5278 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5279 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5280 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5281 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5282 dwc2_writel(hsotg, val, GLPMCFG);
5283 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5284
5285 /* Unmask WKUP_ALERT Interrupt */
5286 if (hsotg->params.service_interval)
5287 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5288}
5289
5290/**
5291 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5292 *
5293 * @hsotg: Programming view of DWC_otg controller
5294 *
5295 */
5296void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5297{
5298 u32 val = 0;
5299
5300 val |= GREFCLK_REF_CLK_MODE;
5301 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5302 val |= hsotg->params.sof_cnt_wkup_alert <<
5303 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5304
5305 dwc2_writel(hsotg, val, GREFCLK);
5306 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5307}
5308
5309/**
5310 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5311 *
5312 * @hsotg: Programming view of the DWC_otg controller
5313 *
5314 * Return non-zero if failed to enter to hibernation.
5315 */
5316int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5317{
5318 u32 gpwrdn;
5319 int ret = 0;
5320
5321 /* Change to L2(suspend) state */
5322 hsotg->lx_state = DWC2_L2;
5323 dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5324 ret = dwc2_backup_global_registers(hsotg);
5325 if (ret) {
5326 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5327 __func__);
5328 return ret;
5329 }
5330 ret = dwc2_backup_device_registers(hsotg);
5331 if (ret) {
5332 dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5333 __func__);
5334 return ret;
5335 }
5336
5337 gpwrdn = GPWRDN_PWRDNRSTN;
5338 gpwrdn |= GPWRDN_PMUACTV;
5339 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5340 udelay(10);
5341
5342 /* Set flag to indicate that we are in hibernation */
5343 hsotg->hibernated = 1;
5344
5345 /* Enable interrupts from wake up logic */
5346 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5347 gpwrdn |= GPWRDN_PMUINTSEL;
5348 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5349 udelay(10);
5350
5351 /* Unmask device mode interrupts in GPWRDN */
5352 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5353 gpwrdn |= GPWRDN_RST_DET_MSK;
5354 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5355 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5356 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5357 udelay(10);
5358
5359 /* Enable Power Down Clamp */
5360 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5361 gpwrdn |= GPWRDN_PWRDNCLMP;
5362 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5363 udelay(10);
5364
5365 /* Switch off VDD */
5366 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5367 gpwrdn |= GPWRDN_PWRDNSWTCH;
5368 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5369 udelay(10);
5370
5371 /* Save gpwrdn register for further usage if stschng interrupt */
5372 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5373 dev_dbg(hsotg->dev, "Hibernation completed\n");
5374
5375 return ret;
5376}
5377
5378/**
5379 * dwc2_gadget_exit_hibernation()
5380 * This function is for exiting from Device mode hibernation by host initiated
5381 * resume/reset and device initiated remote-wakeup.
5382 *
5383 * @hsotg: Programming view of the DWC_otg controller
5384 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5385 * @reset: indicates whether resume is initiated by Reset.
5386 *
5387 * Return non-zero if failed to exit from hibernation.
5388 */
5389int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5390 int rem_wakeup, int reset)
5391{
5392 u32 pcgcctl;
5393 u32 gpwrdn;
5394 u32 dctl;
5395 int ret = 0;
5396 struct dwc2_gregs_backup *gr;
5397 struct dwc2_dregs_backup *dr;
5398
5399 gr = &hsotg->gr_backup;
5400 dr = &hsotg->dr_backup;
5401
5402 if (!hsotg->hibernated) {
5403 dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5404 return 1;
5405 }
5406 dev_dbg(hsotg->dev,
5407 "%s: called with rem_wakeup = %d reset = %d\n",
5408 __func__, rem_wakeup, reset);
5409
5410 dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5411
5412 if (!reset) {
5413 /* Clear all pending interupts */
5414 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5415 }
5416
5417 /* De-assert Restore */
5418 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5419 gpwrdn &= ~GPWRDN_RESTORE;
5420 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5421 udelay(10);
5422
5423 if (!rem_wakeup) {
5424 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5425 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5426 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5427 }
5428
5429 /* Restore GUSBCFG, DCFG and DCTL */
5430 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5431 dwc2_writel(hsotg, dr->dcfg, DCFG);
5432 dwc2_writel(hsotg, dr->dctl, DCTL);
5433
5434 /* On USB Reset, reset device address to zero */
5435 if (reset)
5436 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5437
5438 /* De-assert Wakeup Logic */
5439 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5440 gpwrdn &= ~GPWRDN_PMUACTV;
5441 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5442
5443 if (rem_wakeup) {
5444 udelay(10);
5445 /* Start Remote Wakeup Signaling */
5446 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5447 } else {
5448 udelay(50);
5449 /* Set Device programming done bit */
5450 dctl = dwc2_readl(hsotg, DCTL);
5451 dctl |= DCTL_PWRONPRGDONE;
5452 dwc2_writel(hsotg, dctl, DCTL);
5453 }
5454 /* Wait for interrupts which must be cleared */
5455 mdelay(2);
5456 /* Clear all pending interupts */
5457 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5458
5459 /* Restore global registers */
5460 ret = dwc2_restore_global_registers(hsotg);
5461 if (ret) {
5462 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5463 __func__);
5464 return ret;
5465 }
5466
5467 /* Restore device registers */
5468 ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5469 if (ret) {
5470 dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5471 __func__);
5472 return ret;
5473 }
5474
5475 if (rem_wakeup) {
5476 mdelay(10);
5477 dctl = dwc2_readl(hsotg, DCTL);
5478 dctl &= ~DCTL_RMTWKUPSIG;
5479 dwc2_writel(hsotg, dctl, DCTL);
5480 }
5481
5482 hsotg->hibernated = 0;
5483 hsotg->lx_state = DWC2_L0;
5484 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5485
5486 return ret;
5487}
5488
5489/**
5490 * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5491 * power down.
5492 *
5493 * @hsotg: Programming view of the DWC_otg controller
5494 *
5495 * Return: non-zero if failed to enter device partial power down.
5496 *
5497 * This function is for entering device mode partial power down.
5498 */
5499int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5500{
5501 u32 pcgcctl;
5502 int ret = 0;
5503
5504 dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5505
5506 /* Backup all registers */
5507 ret = dwc2_backup_global_registers(hsotg);
5508 if (ret) {
5509 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5510 __func__);
5511 return ret;
5512 }
5513
5514 ret = dwc2_backup_device_registers(hsotg);
5515 if (ret) {
5516 dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5517 __func__);
5518 return ret;
5519 }
5520
5521 /*
5522 * Clear any pending interrupts since dwc2 will not be able to
5523 * clear them after entering partial_power_down.
5524 */
5525 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5526
5527 /* Put the controller in low power state */
5528 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5529
5530 pcgcctl |= PCGCTL_PWRCLMP;
5531 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5532 udelay(5);
5533
5534 pcgcctl |= PCGCTL_RSTPDWNMODULE;
5535 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5536 udelay(5);
5537
5538 pcgcctl |= PCGCTL_STOPPCLK;
5539 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5540
5541 /* Set in_ppd flag to 1 as here core enters suspend. */
5542 hsotg->in_ppd = 1;
5543 hsotg->lx_state = DWC2_L2;
5544
5545 dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5546
5547 return ret;
5548}
5549
5550/*
5551 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5552 * power down.
5553 *
5554 * @hsotg: Programming view of the DWC_otg controller
5555 * @restore: indicates whether need to restore the registers or not.
5556 *
5557 * Return: non-zero if failed to exit device partial power down.
5558 *
5559 * This function is for exiting from device mode partial power down.
5560 */
5561int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5562 bool restore)
5563{
5564 u32 pcgcctl;
5565 u32 dctl;
5566 struct dwc2_dregs_backup *dr;
5567 int ret = 0;
5568
5569 dr = &hsotg->dr_backup;
5570
5571 dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5572
5573 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5574 pcgcctl &= ~PCGCTL_STOPPCLK;
5575 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5576
5577 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5578 pcgcctl &= ~PCGCTL_PWRCLMP;
5579 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5580
5581 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5582 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5583 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5584
5585 udelay(100);
5586 if (restore) {
5587 ret = dwc2_restore_global_registers(hsotg);
5588 if (ret) {
5589 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5590 __func__);
5591 return ret;
5592 }
5593 /* Restore DCFG */
5594 dwc2_writel(hsotg, dr->dcfg, DCFG);
5595
5596 ret = dwc2_restore_device_registers(hsotg, 0);
5597 if (ret) {
5598 dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5599 __func__);
5600 return ret;
5601 }
5602 }
5603
5604 /* Set the Power-On Programming done bit */
5605 dctl = dwc2_readl(hsotg, DCTL);
5606 dctl |= DCTL_PWRONPRGDONE;
5607 dwc2_writel(hsotg, dctl, DCTL);
5608
5609 /* Set in_ppd flag to 0 as here core exits from suspend. */
5610 hsotg->in_ppd = 0;
5611 hsotg->lx_state = DWC2_L0;
5612
5613 dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5614 return ret;
5615}
5616
5617/**
5618 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5619 *
5620 * @hsotg: Programming view of the DWC_otg controller
5621 *
5622 * Return: non-zero if failed to enter device partial power down.
5623 *
5624 * This function is for entering device mode clock gating.
5625 */
5626void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5627{
5628 u32 pcgctl;
5629
5630 dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5631
5632 /* Set the Phy Clock bit as suspend is received. */
5633 pcgctl = dwc2_readl(hsotg, PCGCTL);
5634 pcgctl |= PCGCTL_STOPPCLK;
5635 dwc2_writel(hsotg, pcgctl, PCGCTL);
5636 udelay(5);
5637
5638 /* Set the Gate hclk as suspend is received. */
5639 pcgctl = dwc2_readl(hsotg, PCGCTL);
5640 pcgctl |= PCGCTL_GATEHCLK;
5641 dwc2_writel(hsotg, pcgctl, PCGCTL);
5642 udelay(5);
5643
5644 hsotg->lx_state = DWC2_L2;
5645 hsotg->bus_suspended = true;
5646}
5647
5648/*
5649 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5650 *
5651 * @hsotg: Programming view of the DWC_otg controller
5652 * @rem_wakeup: indicates whether remote wake up is enabled.
5653 *
5654 * This function is for exiting from device mode clock gating.
5655 */
5656void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5657{
5658 u32 pcgctl;
5659 u32 dctl;
5660
5661 dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5662
5663 /* Clear the Gate hclk. */
5664 pcgctl = dwc2_readl(hsotg, PCGCTL);
5665 pcgctl &= ~PCGCTL_GATEHCLK;
5666 dwc2_writel(hsotg, pcgctl, PCGCTL);
5667 udelay(5);
5668
5669 /* Phy Clock bit. */
5670 pcgctl = dwc2_readl(hsotg, PCGCTL);
5671 pcgctl &= ~PCGCTL_STOPPCLK;
5672 dwc2_writel(hsotg, pcgctl, PCGCTL);
5673 udelay(5);
5674
5675 if (rem_wakeup) {
5676 /* Set Remote Wakeup Signaling */
5677 dctl = dwc2_readl(hsotg, DCTL);
5678 dctl |= DCTL_RMTWKUPSIG;
5679 dwc2_writel(hsotg, dctl, DCTL);
5680 }
5681
5682 /* Change to L0 state */
5683 call_gadget(hsotg, resume);
5684 hsotg->lx_state = DWC2_L0;
5685 hsotg->bus_suspended = false;
5686}