Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
10 *
11 * S3C USB2.0 High-speed / OtG driver
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/platform_device.h>
19#include <linux/dma-mapping.h>
20#include <linux/mutex.h>
21#include <linux/seq_file.h>
22#include <linux/delay.h>
23#include <linux/io.h>
24#include <linux/slab.h>
25
26#include <linux/usb/ch9.h>
27#include <linux/usb/gadget.h>
28#include <linux/usb/phy.h>
29#include <linux/usb/composite.h>
30
31
32#include "core.h"
33#include "hw.h"
34
35/* conversion functions */
36static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
37{
38 return container_of(req, struct dwc2_hsotg_req, req);
39}
40
41static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
42{
43 return container_of(ep, struct dwc2_hsotg_ep, ep);
44}
45
46static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
47{
48 return container_of(gadget, struct dwc2_hsotg, gadget);
49}
50
51static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
52{
53 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
54}
55
56static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
57{
58 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
59}
60
61static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
62 u32 ep_index, u32 dir_in)
63{
64 if (dir_in)
65 return hsotg->eps_in[ep_index];
66 else
67 return hsotg->eps_out[ep_index];
68}
69
70/* forward declaration of functions */
71static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
72
73/**
74 * using_dma - return the DMA status of the driver.
75 * @hsotg: The driver state.
76 *
77 * Return true if we're using DMA.
78 *
79 * Currently, we have the DMA support code worked into everywhere
80 * that needs it, but the AMBA DMA implementation in the hardware can
81 * only DMA from 32bit aligned addresses. This means that gadgets such
82 * as the CDC Ethernet cannot work as they often pass packets which are
83 * not 32bit aligned.
84 *
85 * Unfortunately the choice to use DMA or not is global to the controller
86 * and seems to be only settable when the controller is being put through
87 * a core reset. This means we either need to fix the gadgets to take
88 * account of DMA alignment, or add bounce buffers (yuerk).
89 *
90 * g_using_dma is set depending on dts flag.
91 */
92static inline bool using_dma(struct dwc2_hsotg *hsotg)
93{
94 return hsotg->params.g_dma;
95}
96
97/*
98 * using_desc_dma - return the descriptor DMA status of the driver.
99 * @hsotg: The driver state.
100 *
101 * Return true if we're using descriptor DMA.
102 */
103static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
104{
105 return hsotg->params.g_dma_desc;
106}
107
108/**
109 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
110 * @hs_ep: The endpoint
111 *
112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
113 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
114 */
115static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
116{
117 struct dwc2_hsotg *hsotg = hs_ep->parent;
118 u16 limit = DSTS_SOFFN_LIMIT;
119
120 if (hsotg->gadget.speed != USB_SPEED_HIGH)
121 limit >>= 3;
122
123 hs_ep->target_frame += hs_ep->interval;
124 if (hs_ep->target_frame > limit) {
125 hs_ep->frame_overrun = true;
126 hs_ep->target_frame &= limit;
127 } else {
128 hs_ep->frame_overrun = false;
129 }
130}
131
132/**
133 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
134 * by one.
135 * @hs_ep: The endpoint.
136 *
137 * This function used in service interval based scheduling flow to calculate
138 * descriptor frame number filed value. For service interval mode frame
139 * number in descriptor should point to last (u)frame in the interval.
140 *
141 */
142static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
143{
144 struct dwc2_hsotg *hsotg = hs_ep->parent;
145 u16 limit = DSTS_SOFFN_LIMIT;
146
147 if (hsotg->gadget.speed != USB_SPEED_HIGH)
148 limit >>= 3;
149
150 if (hs_ep->target_frame)
151 hs_ep->target_frame -= 1;
152 else
153 hs_ep->target_frame = limit;
154}
155
156/**
157 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
158 * @hsotg: The device state
159 * @ints: A bitmask of the interrupts to enable
160 */
161static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
162{
163 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
164 u32 new_gsintmsk;
165
166 new_gsintmsk = gsintmsk | ints;
167
168 if (new_gsintmsk != gsintmsk) {
169 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
170 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
171 }
172}
173
174/**
175 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
176 * @hsotg: The device state
177 * @ints: A bitmask of the interrupts to enable
178 */
179static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
180{
181 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
182 u32 new_gsintmsk;
183
184 new_gsintmsk = gsintmsk & ~ints;
185
186 if (new_gsintmsk != gsintmsk)
187 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
188}
189
190/**
191 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
192 * @hsotg: The device state
193 * @ep: The endpoint index
194 * @dir_in: True if direction is in.
195 * @en: The enable value, true to enable
196 *
197 * Set or clear the mask for an individual endpoint's interrupt
198 * request.
199 */
200static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
201 unsigned int ep, unsigned int dir_in,
202 unsigned int en)
203{
204 unsigned long flags;
205 u32 bit = 1 << ep;
206 u32 daint;
207
208 if (!dir_in)
209 bit <<= 16;
210
211 local_irq_save(flags);
212 daint = dwc2_readl(hsotg, DAINTMSK);
213 if (en)
214 daint |= bit;
215 else
216 daint &= ~bit;
217 dwc2_writel(hsotg, daint, DAINTMSK);
218 local_irq_restore(flags);
219}
220
221/**
222 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
223 *
224 * @hsotg: Programming view of the DWC_otg controller
225 */
226int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
227{
228 if (hsotg->hw_params.en_multiple_tx_fifo)
229 /* In dedicated FIFO mode we need count of IN EPs */
230 return hsotg->hw_params.num_dev_in_eps;
231 else
232 /* In shared FIFO mode we need count of Periodic IN EPs */
233 return hsotg->hw_params.num_dev_perio_in_ep;
234}
235
236/**
237 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
238 * device mode TX FIFOs
239 *
240 * @hsotg: Programming view of the DWC_otg controller
241 */
242int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
243{
244 int addr;
245 int tx_addr_max;
246 u32 np_tx_fifo_size;
247
248 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
249 hsotg->params.g_np_tx_fifo_size);
250
251 /* Get Endpoint Info Control block size in DWORDs. */
252 tx_addr_max = hsotg->hw_params.total_fifo_size;
253
254 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
255 if (tx_addr_max <= addr)
256 return 0;
257
258 return tx_addr_max - addr;
259}
260
261/**
262 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
263 *
264 * @hsotg: Programming view of the DWC_otg controller
265 *
266 */
267static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
268{
269 u32 gintsts2;
270 u32 gintmsk2;
271
272 gintsts2 = dwc2_readl(hsotg, GINTSTS2);
273 gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
274 gintsts2 &= gintmsk2;
275
276 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
277 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
278 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
279 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
280 }
281}
282
283/**
284 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
285 * TX FIFOs
286 *
287 * @hsotg: Programming view of the DWC_otg controller
288 */
289int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
290{
291 int tx_fifo_count;
292 int tx_fifo_depth;
293
294 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
295
296 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
297
298 if (!tx_fifo_count)
299 return tx_fifo_depth;
300 else
301 return tx_fifo_depth / tx_fifo_count;
302}
303
304/**
305 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
306 * @hsotg: The device instance.
307 */
308static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
309{
310 unsigned int ep;
311 unsigned int addr;
312 int timeout;
313
314 u32 val;
315 u32 *txfsz = hsotg->params.g_tx_fifo_size;
316
317 /* Reset fifo map if not correctly cleared during previous session */
318 WARN_ON(hsotg->fifo_map);
319 hsotg->fifo_map = 0;
320
321 /* set RX/NPTX FIFO sizes */
322 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
323 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
324 FIFOSIZE_STARTADDR_SHIFT) |
325 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
326 GNPTXFSIZ);
327
328 /*
329 * arange all the rest of the TX FIFOs, as some versions of this
330 * block have overlapping default addresses. This also ensures
331 * that if the settings have been changed, then they are set to
332 * known values.
333 */
334
335 /* start at the end of the GNPTXFSIZ, rounded up */
336 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
337
338 /*
339 * Configure fifos sizes from provided configuration and assign
340 * them to endpoints dynamically according to maxpacket size value of
341 * given endpoint.
342 */
343 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
344 if (!txfsz[ep])
345 continue;
346 val = addr;
347 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
348 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
349 "insufficient fifo memory");
350 addr += txfsz[ep];
351
352 dwc2_writel(hsotg, val, DPTXFSIZN(ep));
353 val = dwc2_readl(hsotg, DPTXFSIZN(ep));
354 }
355
356 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
357 addr << GDFIFOCFG_EPINFOBASE_SHIFT,
358 GDFIFOCFG);
359 /*
360 * according to p428 of the design guide, we need to ensure that
361 * all fifos are flushed before continuing
362 */
363
364 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
365 GRSTCTL_RXFFLSH, GRSTCTL);
366
367 /* wait until the fifos are both flushed */
368 timeout = 100;
369 while (1) {
370 val = dwc2_readl(hsotg, GRSTCTL);
371
372 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
373 break;
374
375 if (--timeout == 0) {
376 dev_err(hsotg->dev,
377 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
378 __func__, val);
379 break;
380 }
381
382 udelay(1);
383 }
384
385 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
386}
387
388/**
389 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
390 * @ep: USB endpoint to allocate request for.
391 * @flags: Allocation flags
392 *
393 * Allocate a new USB request structure appropriate for the specified endpoint
394 */
395static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
396 gfp_t flags)
397{
398 struct dwc2_hsotg_req *req;
399
400 req = kzalloc(sizeof(*req), flags);
401 if (!req)
402 return NULL;
403
404 INIT_LIST_HEAD(&req->queue);
405
406 return &req->req;
407}
408
409/**
410 * is_ep_periodic - return true if the endpoint is in periodic mode.
411 * @hs_ep: The endpoint to query.
412 *
413 * Returns true if the endpoint is in periodic mode, meaning it is being
414 * used for an Interrupt or ISO transfer.
415 */
416static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
417{
418 return hs_ep->periodic;
419}
420
421/**
422 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
423 * @hsotg: The device state.
424 * @hs_ep: The endpoint for the request
425 * @hs_req: The request being processed.
426 *
427 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
428 * of a request to ensure the buffer is ready for access by the caller.
429 */
430static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
431 struct dwc2_hsotg_ep *hs_ep,
432 struct dwc2_hsotg_req *hs_req)
433{
434 struct usb_request *req = &hs_req->req;
435
436 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
437}
438
439/*
440 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
441 * for Control endpoint
442 * @hsotg: The device state.
443 *
444 * This function will allocate 4 descriptor chains for EP 0: 2 for
445 * Setup stage, per one for IN and OUT data/status transactions.
446 */
447static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
448{
449 hsotg->setup_desc[0] =
450 dmam_alloc_coherent(hsotg->dev,
451 sizeof(struct dwc2_dma_desc),
452 &hsotg->setup_desc_dma[0],
453 GFP_KERNEL);
454 if (!hsotg->setup_desc[0])
455 goto fail;
456
457 hsotg->setup_desc[1] =
458 dmam_alloc_coherent(hsotg->dev,
459 sizeof(struct dwc2_dma_desc),
460 &hsotg->setup_desc_dma[1],
461 GFP_KERNEL);
462 if (!hsotg->setup_desc[1])
463 goto fail;
464
465 hsotg->ctrl_in_desc =
466 dmam_alloc_coherent(hsotg->dev,
467 sizeof(struct dwc2_dma_desc),
468 &hsotg->ctrl_in_desc_dma,
469 GFP_KERNEL);
470 if (!hsotg->ctrl_in_desc)
471 goto fail;
472
473 hsotg->ctrl_out_desc =
474 dmam_alloc_coherent(hsotg->dev,
475 sizeof(struct dwc2_dma_desc),
476 &hsotg->ctrl_out_desc_dma,
477 GFP_KERNEL);
478 if (!hsotg->ctrl_out_desc)
479 goto fail;
480
481 return 0;
482
483fail:
484 return -ENOMEM;
485}
486
487/**
488 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
489 * @hsotg: The controller state.
490 * @hs_ep: The endpoint we're going to write for.
491 * @hs_req: The request to write data for.
492 *
493 * This is called when the TxFIFO has some space in it to hold a new
494 * transmission and we have something to give it. The actual setup of
495 * the data size is done elsewhere, so all we have to do is to actually
496 * write the data.
497 *
498 * The return value is zero if there is more space (or nothing was done)
499 * otherwise -ENOSPC is returned if the FIFO space was used up.
500 *
501 * This routine is only needed for PIO
502 */
503static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
504 struct dwc2_hsotg_ep *hs_ep,
505 struct dwc2_hsotg_req *hs_req)
506{
507 bool periodic = is_ep_periodic(hs_ep);
508 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
509 int buf_pos = hs_req->req.actual;
510 int to_write = hs_ep->size_loaded;
511 void *data;
512 int can_write;
513 int pkt_round;
514 int max_transfer;
515
516 to_write -= (buf_pos - hs_ep->last_load);
517
518 /* if there's nothing to write, get out early */
519 if (to_write == 0)
520 return 0;
521
522 if (periodic && !hsotg->dedicated_fifos) {
523 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
524 int size_left;
525 int size_done;
526
527 /*
528 * work out how much data was loaded so we can calculate
529 * how much data is left in the fifo.
530 */
531
532 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
533
534 /*
535 * if shared fifo, we cannot write anything until the
536 * previous data has been completely sent.
537 */
538 if (hs_ep->fifo_load != 0) {
539 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
540 return -ENOSPC;
541 }
542
543 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
544 __func__, size_left,
545 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
546
547 /* how much of the data has moved */
548 size_done = hs_ep->size_loaded - size_left;
549
550 /* how much data is left in the fifo */
551 can_write = hs_ep->fifo_load - size_done;
552 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
553 __func__, can_write);
554
555 can_write = hs_ep->fifo_size - can_write;
556 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
557 __func__, can_write);
558
559 if (can_write <= 0) {
560 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
561 return -ENOSPC;
562 }
563 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
564 can_write = dwc2_readl(hsotg,
565 DTXFSTS(hs_ep->fifo_index));
566
567 can_write &= 0xffff;
568 can_write *= 4;
569 } else {
570 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
571 dev_dbg(hsotg->dev,
572 "%s: no queue slots available (0x%08x)\n",
573 __func__, gnptxsts);
574
575 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
576 return -ENOSPC;
577 }
578
579 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
580 can_write *= 4; /* fifo size is in 32bit quantities. */
581 }
582
583 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
584
585 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
586 __func__, gnptxsts, can_write, to_write, max_transfer);
587
588 /*
589 * limit to 512 bytes of data, it seems at least on the non-periodic
590 * FIFO, requests of >512 cause the endpoint to get stuck with a
591 * fragment of the end of the transfer in it.
592 */
593 if (can_write > 512 && !periodic)
594 can_write = 512;
595
596 /*
597 * limit the write to one max-packet size worth of data, but allow
598 * the transfer to return that it did not run out of fifo space
599 * doing it.
600 */
601 if (to_write > max_transfer) {
602 to_write = max_transfer;
603
604 /* it's needed only when we do not use dedicated fifos */
605 if (!hsotg->dedicated_fifos)
606 dwc2_hsotg_en_gsint(hsotg,
607 periodic ? GINTSTS_PTXFEMP :
608 GINTSTS_NPTXFEMP);
609 }
610
611 /* see if we can write data */
612
613 if (to_write > can_write) {
614 to_write = can_write;
615 pkt_round = to_write % max_transfer;
616
617 /*
618 * Round the write down to an
619 * exact number of packets.
620 *
621 * Note, we do not currently check to see if we can ever
622 * write a full packet or not to the FIFO.
623 */
624
625 if (pkt_round)
626 to_write -= pkt_round;
627
628 /*
629 * enable correct FIFO interrupt to alert us when there
630 * is more room left.
631 */
632
633 /* it's needed only when we do not use dedicated fifos */
634 if (!hsotg->dedicated_fifos)
635 dwc2_hsotg_en_gsint(hsotg,
636 periodic ? GINTSTS_PTXFEMP :
637 GINTSTS_NPTXFEMP);
638 }
639
640 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
641 to_write, hs_req->req.length, can_write, buf_pos);
642
643 if (to_write <= 0)
644 return -ENOSPC;
645
646 hs_req->req.actual = buf_pos + to_write;
647 hs_ep->total_data += to_write;
648
649 if (periodic)
650 hs_ep->fifo_load += to_write;
651
652 to_write = DIV_ROUND_UP(to_write, 4);
653 data = hs_req->req.buf + buf_pos;
654
655 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
656
657 return (to_write >= can_write) ? -ENOSPC : 0;
658}
659
660/**
661 * get_ep_limit - get the maximum data legnth for this endpoint
662 * @hs_ep: The endpoint
663 *
664 * Return the maximum data that can be queued in one go on a given endpoint
665 * so that transfers that are too long can be split.
666 */
667static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
668{
669 int index = hs_ep->index;
670 unsigned int maxsize;
671 unsigned int maxpkt;
672
673 if (index != 0) {
674 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
675 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
676 } else {
677 maxsize = 64 + 64;
678 if (hs_ep->dir_in)
679 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
680 else
681 maxpkt = 2;
682 }
683
684 /* we made the constant loading easier above by using +1 */
685 maxpkt--;
686 maxsize--;
687
688 /*
689 * constrain by packet count if maxpkts*pktsize is greater
690 * than the length register size.
691 */
692
693 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
694 maxsize = maxpkt * hs_ep->ep.maxpacket;
695
696 return maxsize;
697}
698
699/**
700 * dwc2_hsotg_read_frameno - read current frame number
701 * @hsotg: The device instance
702 *
703 * Return the current frame number
704 */
705static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
706{
707 u32 dsts;
708
709 dsts = dwc2_readl(hsotg, DSTS);
710 dsts &= DSTS_SOFFN_MASK;
711 dsts >>= DSTS_SOFFN_SHIFT;
712
713 return dsts;
714}
715
716/**
717 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
718 * DMA descriptor chain prepared for specific endpoint
719 * @hs_ep: The endpoint
720 *
721 * Return the maximum data that can be queued in one go on a given endpoint
722 * depending on its descriptor chain capacity so that transfers that
723 * are too long can be split.
724 */
725static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
726{
727 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
728 int is_isoc = hs_ep->isochronous;
729 unsigned int maxsize;
730 u32 mps = hs_ep->ep.maxpacket;
731 int dir_in = hs_ep->dir_in;
732
733 if (is_isoc)
734 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
735 DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
736 MAX_DMA_DESC_NUM_HS_ISOC;
737 else
738 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
739
740 /* Interrupt OUT EP with mps not multiple of 4 */
741 if (hs_ep->index)
742 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
743 maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
744
745 return maxsize;
746}
747
748/*
749 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
750 * @hs_ep: The endpoint
751 * @mask: RX/TX bytes mask to be defined
752 *
753 * Returns maximum data payload for one descriptor after analyzing endpoint
754 * characteristics.
755 * DMA descriptor transfer bytes limit depends on EP type:
756 * Control out - MPS,
757 * Isochronous - descriptor rx/tx bytes bitfield limit,
758 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
759 * have concatenations from various descriptors within one packet.
760 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
761 * to a single descriptor.
762 *
763 * Selects corresponding mask for RX/TX bytes as well.
764 */
765static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
766{
767 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
768 u32 mps = hs_ep->ep.maxpacket;
769 int dir_in = hs_ep->dir_in;
770 u32 desc_size = 0;
771
772 if (!hs_ep->index && !dir_in) {
773 desc_size = mps;
774 *mask = DEV_DMA_NBYTES_MASK;
775 } else if (hs_ep->isochronous) {
776 if (dir_in) {
777 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
778 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
779 } else {
780 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
781 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
782 }
783 } else {
784 desc_size = DEV_DMA_NBYTES_LIMIT;
785 *mask = DEV_DMA_NBYTES_MASK;
786
787 /* Round down desc_size to be mps multiple */
788 desc_size -= desc_size % mps;
789 }
790
791 /* Interrupt OUT EP with mps not multiple of 4 */
792 if (hs_ep->index)
793 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
794 desc_size = mps;
795 *mask = DEV_DMA_NBYTES_MASK;
796 }
797
798 return desc_size;
799}
800
801static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
802 struct dwc2_dma_desc **desc,
803 dma_addr_t dma_buff,
804 unsigned int len,
805 bool true_last)
806{
807 int dir_in = hs_ep->dir_in;
808 u32 mps = hs_ep->ep.maxpacket;
809 u32 maxsize = 0;
810 u32 offset = 0;
811 u32 mask = 0;
812 int i;
813
814 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
815
816 hs_ep->desc_count = (len / maxsize) +
817 ((len % maxsize) ? 1 : 0);
818 if (len == 0)
819 hs_ep->desc_count = 1;
820
821 for (i = 0; i < hs_ep->desc_count; ++i) {
822 (*desc)->status = 0;
823 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
824 << DEV_DMA_BUFF_STS_SHIFT);
825
826 if (len > maxsize) {
827 if (!hs_ep->index && !dir_in)
828 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
829
830 (*desc)->status |=
831 maxsize << DEV_DMA_NBYTES_SHIFT & mask;
832 (*desc)->buf = dma_buff + offset;
833
834 len -= maxsize;
835 offset += maxsize;
836 } else {
837 if (true_last)
838 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
839
840 if (dir_in)
841 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
842 ((hs_ep->send_zlp && true_last) ?
843 DEV_DMA_SHORT : 0);
844
845 (*desc)->status |=
846 len << DEV_DMA_NBYTES_SHIFT & mask;
847 (*desc)->buf = dma_buff + offset;
848 }
849
850 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
851 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
852 << DEV_DMA_BUFF_STS_SHIFT);
853 (*desc)++;
854 }
855}
856
857/*
858 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
859 * @hs_ep: The endpoint
860 * @ureq: Request to transfer
861 * @offset: offset in bytes
862 * @len: Length of the transfer
863 *
864 * This function will iterate over descriptor chain and fill its entries
865 * with corresponding information based on transfer data.
866 */
867static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
868 dma_addr_t dma_buff,
869 unsigned int len)
870{
871 struct usb_request *ureq = NULL;
872 struct dwc2_dma_desc *desc = hs_ep->desc_list;
873 struct scatterlist *sg;
874 int i;
875 u8 desc_count = 0;
876
877 if (hs_ep->req)
878 ureq = &hs_ep->req->req;
879
880 /* non-DMA sg buffer */
881 if (!ureq || !ureq->num_sgs) {
882 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
883 dma_buff, len, true);
884 return;
885 }
886
887 /* DMA sg buffer */
888 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
889 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
890 sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
891 sg_is_last(sg));
892 desc_count += hs_ep->desc_count;
893 }
894
895 hs_ep->desc_count = desc_count;
896}
897
898/*
899 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
900 * @hs_ep: The isochronous endpoint.
901 * @dma_buff: usb requests dma buffer.
902 * @len: usb request transfer length.
903 *
904 * Fills next free descriptor with the data of the arrived usb request,
905 * frame info, sets Last and IOC bits increments next_desc. If filled
906 * descriptor is not the first one, removes L bit from the previous descriptor
907 * status.
908 */
909static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
910 dma_addr_t dma_buff, unsigned int len)
911{
912 struct dwc2_dma_desc *desc;
913 struct dwc2_hsotg *hsotg = hs_ep->parent;
914 u32 index;
915 u32 mask = 0;
916 u8 pid = 0;
917
918 dwc2_gadget_get_desc_params(hs_ep, &mask);
919
920 index = hs_ep->next_desc;
921 desc = &hs_ep->desc_list[index];
922
923 /* Check if descriptor chain full */
924 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
925 DEV_DMA_BUFF_STS_HREADY) {
926 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
927 return 1;
928 }
929
930 /* Clear L bit of previous desc if more than one entries in the chain */
931 if (hs_ep->next_desc)
932 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
933
934 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
935 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
936
937 desc->status = 0;
938 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
939
940 desc->buf = dma_buff;
941 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
942 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
943
944 if (hs_ep->dir_in) {
945 if (len)
946 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
947 else
948 pid = 1;
949 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
950 DEV_DMA_ISOC_PID_MASK) |
951 ((len % hs_ep->ep.maxpacket) ?
952 DEV_DMA_SHORT : 0) |
953 ((hs_ep->target_frame <<
954 DEV_DMA_ISOC_FRNUM_SHIFT) &
955 DEV_DMA_ISOC_FRNUM_MASK);
956 }
957
958 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
959 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
960
961 /* Increment frame number by interval for IN */
962 if (hs_ep->dir_in)
963 dwc2_gadget_incr_frame_num(hs_ep);
964
965 /* Update index of last configured entry in the chain */
966 hs_ep->next_desc++;
967 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
968 hs_ep->next_desc = 0;
969
970 return 0;
971}
972
973/*
974 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
975 * @hs_ep: The isochronous endpoint.
976 *
977 * Prepare descriptor chain for isochronous endpoints. Afterwards
978 * write DMA address to HW and enable the endpoint.
979 */
980static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
981{
982 struct dwc2_hsotg *hsotg = hs_ep->parent;
983 struct dwc2_hsotg_req *hs_req, *treq;
984 int index = hs_ep->index;
985 int ret;
986 int i;
987 u32 dma_reg;
988 u32 depctl;
989 u32 ctrl;
990 struct dwc2_dma_desc *desc;
991
992 if (list_empty(&hs_ep->queue)) {
993 hs_ep->target_frame = TARGET_FRAME_INITIAL;
994 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
995 return;
996 }
997
998 /* Initialize descriptor chain by Host Busy status */
999 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1000 desc = &hs_ep->desc_list[i];
1001 desc->status = 0;
1002 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1003 << DEV_DMA_BUFF_STS_SHIFT);
1004 }
1005
1006 hs_ep->next_desc = 0;
1007 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1008 dma_addr_t dma_addr = hs_req->req.dma;
1009
1010 if (hs_req->req.num_sgs) {
1011 WARN_ON(hs_req->req.num_sgs > 1);
1012 dma_addr = sg_dma_address(hs_req->req.sg);
1013 }
1014 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1015 hs_req->req.length);
1016 if (ret)
1017 break;
1018 }
1019
1020 hs_ep->compl_desc = 0;
1021 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1022 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1023
1024 /* write descriptor chain address to control register */
1025 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1026
1027 ctrl = dwc2_readl(hsotg, depctl);
1028 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1029 dwc2_writel(hsotg, ctrl, depctl);
1030}
1031
1032static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1033static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1034 struct dwc2_hsotg_ep *hs_ep,
1035 struct dwc2_hsotg_req *hs_req,
1036 int result);
1037
1038/**
1039 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1040 * @hsotg: The controller state.
1041 * @hs_ep: The endpoint to process a request for
1042 * @hs_req: The request to start.
1043 * @continuing: True if we are doing more for the current request.
1044 *
1045 * Start the given request running by setting the endpoint registers
1046 * appropriately, and writing any data to the FIFOs.
1047 */
1048static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1049 struct dwc2_hsotg_ep *hs_ep,
1050 struct dwc2_hsotg_req *hs_req,
1051 bool continuing)
1052{
1053 struct usb_request *ureq = &hs_req->req;
1054 int index = hs_ep->index;
1055 int dir_in = hs_ep->dir_in;
1056 u32 epctrl_reg;
1057 u32 epsize_reg;
1058 u32 epsize;
1059 u32 ctrl;
1060 unsigned int length;
1061 unsigned int packets;
1062 unsigned int maxreq;
1063 unsigned int dma_reg;
1064
1065 if (index != 0) {
1066 if (hs_ep->req && !continuing) {
1067 dev_err(hsotg->dev, "%s: active request\n", __func__);
1068 WARN_ON(1);
1069 return;
1070 } else if (hs_ep->req != hs_req && continuing) {
1071 dev_err(hsotg->dev,
1072 "%s: continue different req\n", __func__);
1073 WARN_ON(1);
1074 return;
1075 }
1076 }
1077
1078 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1079 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1080 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1081
1082 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1083 __func__, dwc2_readl(hsotg, epctrl_reg), index,
1084 hs_ep->dir_in ? "in" : "out");
1085
1086 /* If endpoint is stalled, we will restart request later */
1087 ctrl = dwc2_readl(hsotg, epctrl_reg);
1088
1089 if (index && ctrl & DXEPCTL_STALL) {
1090 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1091 return;
1092 }
1093
1094 length = ureq->length - ureq->actual;
1095 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1096 ureq->length, ureq->actual);
1097
1098 if (!using_desc_dma(hsotg))
1099 maxreq = get_ep_limit(hs_ep);
1100 else
1101 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1102
1103 if (length > maxreq) {
1104 int round = maxreq % hs_ep->ep.maxpacket;
1105
1106 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1107 __func__, length, maxreq, round);
1108
1109 /* round down to multiple of packets */
1110 if (round)
1111 maxreq -= round;
1112
1113 length = maxreq;
1114 }
1115
1116 if (length)
1117 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1118 else
1119 packets = 1; /* send one packet if length is zero. */
1120
1121 if (dir_in && index != 0)
1122 if (hs_ep->isochronous)
1123 epsize = DXEPTSIZ_MC(packets);
1124 else
1125 epsize = DXEPTSIZ_MC(1);
1126 else
1127 epsize = 0;
1128
1129 /*
1130 * zero length packet should be programmed on its own and should not
1131 * be counted in DIEPTSIZ.PktCnt with other packets.
1132 */
1133 if (dir_in && ureq->zero && !continuing) {
1134 /* Test if zlp is actually required. */
1135 if ((ureq->length >= hs_ep->ep.maxpacket) &&
1136 !(ureq->length % hs_ep->ep.maxpacket))
1137 hs_ep->send_zlp = 1;
1138 }
1139
1140 epsize |= DXEPTSIZ_PKTCNT(packets);
1141 epsize |= DXEPTSIZ_XFERSIZE(length);
1142
1143 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1144 __func__, packets, length, ureq->length, epsize, epsize_reg);
1145
1146 /* store the request as the current one we're doing */
1147 hs_ep->req = hs_req;
1148
1149 if (using_desc_dma(hsotg)) {
1150 u32 offset = 0;
1151 u32 mps = hs_ep->ep.maxpacket;
1152
1153 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1154 if (!dir_in) {
1155 if (!index)
1156 length = mps;
1157 else if (length % mps)
1158 length += (mps - (length % mps));
1159 }
1160
1161 if (continuing)
1162 offset = ureq->actual;
1163
1164 /* Fill DDMA chain entries */
1165 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1166 length);
1167
1168 /* write descriptor chain address to control register */
1169 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1170
1171 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1172 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1173 } else {
1174 /* write size / packets */
1175 dwc2_writel(hsotg, epsize, epsize_reg);
1176
1177 if (using_dma(hsotg) && !continuing && (length != 0)) {
1178 /*
1179 * write DMA address to control register, buffer
1180 * already synced by dwc2_hsotg_ep_queue().
1181 */
1182
1183 dwc2_writel(hsotg, ureq->dma, dma_reg);
1184
1185 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1186 __func__, &ureq->dma, dma_reg);
1187 }
1188 }
1189
1190 if (hs_ep->isochronous) {
1191 if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1192 if (hs_ep->interval == 1) {
1193 if (hs_ep->target_frame & 0x1)
1194 ctrl |= DXEPCTL_SETODDFR;
1195 else
1196 ctrl |= DXEPCTL_SETEVENFR;
1197 }
1198 ctrl |= DXEPCTL_CNAK;
1199 } else {
1200 hs_req->req.frame_number = hs_ep->target_frame;
1201 hs_req->req.actual = 0;
1202 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1203 return;
1204 }
1205 }
1206
1207 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1208
1209 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1210
1211 /* For Setup request do not clear NAK */
1212 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1213 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1214
1215 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1216 dwc2_writel(hsotg, ctrl, epctrl_reg);
1217
1218 /*
1219 * set these, it seems that DMA support increments past the end
1220 * of the packet buffer so we need to calculate the length from
1221 * this information.
1222 */
1223 hs_ep->size_loaded = length;
1224 hs_ep->last_load = ureq->actual;
1225
1226 if (dir_in && !using_dma(hsotg)) {
1227 /* set these anyway, we may need them for non-periodic in */
1228 hs_ep->fifo_load = 0;
1229
1230 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1231 }
1232
1233 /*
1234 * Note, trying to clear the NAK here causes problems with transmit
1235 * on the S3C6400 ending up with the TXFIFO becoming full.
1236 */
1237
1238 /* check ep is enabled */
1239 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1240 dev_dbg(hsotg->dev,
1241 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1242 index, dwc2_readl(hsotg, epctrl_reg));
1243
1244 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1245 __func__, dwc2_readl(hsotg, epctrl_reg));
1246
1247 /* enable ep interrupts */
1248 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1249}
1250
1251/**
1252 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1253 * @hsotg: The device state.
1254 * @hs_ep: The endpoint the request is on.
1255 * @req: The request being processed.
1256 *
1257 * We've been asked to queue a request, so ensure that the memory buffer
1258 * is correctly setup for DMA. If we've been passed an extant DMA address
1259 * then ensure the buffer has been synced to memory. If our buffer has no
1260 * DMA memory, then we map the memory and mark our request to allow us to
1261 * cleanup on completion.
1262 */
1263static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1264 struct dwc2_hsotg_ep *hs_ep,
1265 struct usb_request *req)
1266{
1267 int ret;
1268
1269 hs_ep->map_dir = hs_ep->dir_in;
1270 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1271 if (ret)
1272 goto dma_error;
1273
1274 return 0;
1275
1276dma_error:
1277 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1278 __func__, req->buf, req->length);
1279
1280 return -EIO;
1281}
1282
1283static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1284 struct dwc2_hsotg_ep *hs_ep,
1285 struct dwc2_hsotg_req *hs_req)
1286{
1287 void *req_buf = hs_req->req.buf;
1288
1289 /* If dma is not being used or buffer is aligned */
1290 if (!using_dma(hsotg) || !((long)req_buf & 3))
1291 return 0;
1292
1293 WARN_ON(hs_req->saved_req_buf);
1294
1295 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1296 hs_ep->ep.name, req_buf, hs_req->req.length);
1297
1298 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1299 if (!hs_req->req.buf) {
1300 hs_req->req.buf = req_buf;
1301 dev_err(hsotg->dev,
1302 "%s: unable to allocate memory for bounce buffer\n",
1303 __func__);
1304 return -ENOMEM;
1305 }
1306
1307 /* Save actual buffer */
1308 hs_req->saved_req_buf = req_buf;
1309
1310 if (hs_ep->dir_in)
1311 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1312 return 0;
1313}
1314
1315static void
1316dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1317 struct dwc2_hsotg_ep *hs_ep,
1318 struct dwc2_hsotg_req *hs_req)
1319{
1320 /* If dma is not being used or buffer was aligned */
1321 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1322 return;
1323
1324 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1325 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1326
1327 /* Copy data from bounce buffer on successful out transfer */
1328 if (!hs_ep->dir_in && !hs_req->req.status)
1329 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1330 hs_req->req.actual);
1331
1332 /* Free bounce buffer */
1333 kfree(hs_req->req.buf);
1334
1335 hs_req->req.buf = hs_req->saved_req_buf;
1336 hs_req->saved_req_buf = NULL;
1337}
1338
1339/**
1340 * dwc2_gadget_target_frame_elapsed - Checks target frame
1341 * @hs_ep: The driver endpoint to check
1342 *
1343 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1344 * corresponding transfer.
1345 */
1346static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1347{
1348 struct dwc2_hsotg *hsotg = hs_ep->parent;
1349 u32 target_frame = hs_ep->target_frame;
1350 u32 current_frame = hsotg->frame_number;
1351 bool frame_overrun = hs_ep->frame_overrun;
1352 u16 limit = DSTS_SOFFN_LIMIT;
1353
1354 if (hsotg->gadget.speed != USB_SPEED_HIGH)
1355 limit >>= 3;
1356
1357 if (!frame_overrun && current_frame >= target_frame)
1358 return true;
1359
1360 if (frame_overrun && current_frame >= target_frame &&
1361 ((current_frame - target_frame) < limit / 2))
1362 return true;
1363
1364 return false;
1365}
1366
1367/*
1368 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1369 * @hsotg: The driver state
1370 * @hs_ep: the ep descriptor chain is for
1371 *
1372 * Called to update EP0 structure's pointers depend on stage of
1373 * control transfer.
1374 */
1375static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1376 struct dwc2_hsotg_ep *hs_ep)
1377{
1378 switch (hsotg->ep0_state) {
1379 case DWC2_EP0_SETUP:
1380 case DWC2_EP0_STATUS_OUT:
1381 hs_ep->desc_list = hsotg->setup_desc[0];
1382 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1383 break;
1384 case DWC2_EP0_DATA_IN:
1385 case DWC2_EP0_STATUS_IN:
1386 hs_ep->desc_list = hsotg->ctrl_in_desc;
1387 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1388 break;
1389 case DWC2_EP0_DATA_OUT:
1390 hs_ep->desc_list = hsotg->ctrl_out_desc;
1391 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1392 break;
1393 default:
1394 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1395 hsotg->ep0_state);
1396 return -EINVAL;
1397 }
1398
1399 return 0;
1400}
1401
1402static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1403 gfp_t gfp_flags)
1404{
1405 struct dwc2_hsotg_req *hs_req = our_req(req);
1406 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1407 struct dwc2_hsotg *hs = hs_ep->parent;
1408 bool first;
1409 int ret;
1410 u32 maxsize = 0;
1411 u32 mask = 0;
1412
1413
1414 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1415 ep->name, req, req->length, req->buf, req->no_interrupt,
1416 req->zero, req->short_not_ok);
1417
1418 /* Prevent new request submission when controller is suspended */
1419 if (hs->lx_state != DWC2_L0) {
1420 dev_dbg(hs->dev, "%s: submit request only in active state\n",
1421 __func__);
1422 return -EAGAIN;
1423 }
1424
1425 /* initialise status of the request */
1426 INIT_LIST_HEAD(&hs_req->queue);
1427 req->actual = 0;
1428 req->status = -EINPROGRESS;
1429
1430 /* Don't queue ISOC request if length greater than mps*mc */
1431 if (hs_ep->isochronous &&
1432 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1433 dev_err(hs->dev, "req length > maxpacket*mc\n");
1434 return -EINVAL;
1435 }
1436
1437 /* In DDMA mode for ISOC's don't queue request if length greater
1438 * than descriptor limits.
1439 */
1440 if (using_desc_dma(hs) && hs_ep->isochronous) {
1441 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1442 if (hs_ep->dir_in && req->length > maxsize) {
1443 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1444 req->length, maxsize);
1445 return -EINVAL;
1446 }
1447
1448 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1449 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1450 req->length, hs_ep->ep.maxpacket);
1451 return -EINVAL;
1452 }
1453 }
1454
1455 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1456 if (ret)
1457 return ret;
1458
1459 /* if we're using DMA, sync the buffers as necessary */
1460 if (using_dma(hs)) {
1461 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1462 if (ret)
1463 return ret;
1464 }
1465 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1466 if (using_desc_dma(hs) && !hs_ep->index) {
1467 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1468 if (ret)
1469 return ret;
1470 }
1471
1472 first = list_empty(&hs_ep->queue);
1473 list_add_tail(&hs_req->queue, &hs_ep->queue);
1474
1475 /*
1476 * Handle DDMA isochronous transfers separately - just add new entry
1477 * to the descriptor chain.
1478 * Transfer will be started once SW gets either one of NAK or
1479 * OutTknEpDis interrupts.
1480 */
1481 if (using_desc_dma(hs) && hs_ep->isochronous) {
1482 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1483 dma_addr_t dma_addr = hs_req->req.dma;
1484
1485 if (hs_req->req.num_sgs) {
1486 WARN_ON(hs_req->req.num_sgs > 1);
1487 dma_addr = sg_dma_address(hs_req->req.sg);
1488 }
1489 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1490 hs_req->req.length);
1491 }
1492 return 0;
1493 }
1494
1495 /* Change EP direction if status phase request is after data out */
1496 if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1497 hs->ep0_state == DWC2_EP0_DATA_OUT)
1498 hs_ep->dir_in = 1;
1499
1500 if (first) {
1501 if (!hs_ep->isochronous) {
1502 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1503 return 0;
1504 }
1505
1506 /* Update current frame number value. */
1507 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1508 while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1509 dwc2_gadget_incr_frame_num(hs_ep);
1510 /* Update current frame number value once more as it
1511 * changes here.
1512 */
1513 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1514 }
1515
1516 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1517 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1518 }
1519 return 0;
1520}
1521
1522static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1523 gfp_t gfp_flags)
1524{
1525 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1526 struct dwc2_hsotg *hs = hs_ep->parent;
1527 unsigned long flags;
1528 int ret;
1529
1530 spin_lock_irqsave(&hs->lock, flags);
1531 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1532 spin_unlock_irqrestore(&hs->lock, flags);
1533
1534 return ret;
1535}
1536
1537static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1538 struct usb_request *req)
1539{
1540 struct dwc2_hsotg_req *hs_req = our_req(req);
1541
1542 kfree(hs_req);
1543}
1544
1545/**
1546 * dwc2_hsotg_complete_oursetup - setup completion callback
1547 * @ep: The endpoint the request was on.
1548 * @req: The request completed.
1549 *
1550 * Called on completion of any requests the driver itself
1551 * submitted that need cleaning up.
1552 */
1553static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1554 struct usb_request *req)
1555{
1556 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1557 struct dwc2_hsotg *hsotg = hs_ep->parent;
1558
1559 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1560
1561 dwc2_hsotg_ep_free_request(ep, req);
1562}
1563
1564/**
1565 * ep_from_windex - convert control wIndex value to endpoint
1566 * @hsotg: The driver state.
1567 * @windex: The control request wIndex field (in host order).
1568 *
1569 * Convert the given wIndex into a pointer to an driver endpoint
1570 * structure, or return NULL if it is not a valid endpoint.
1571 */
1572static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1573 u32 windex)
1574{
1575 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1576 int idx = windex & 0x7F;
1577
1578 if (windex >= 0x100)
1579 return NULL;
1580
1581 if (idx > hsotg->num_of_eps)
1582 return NULL;
1583
1584 return index_to_ep(hsotg, idx, dir);
1585}
1586
1587/**
1588 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1589 * @hsotg: The driver state.
1590 * @testmode: requested usb test mode
1591 * Enable usb Test Mode requested by the Host.
1592 */
1593int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1594{
1595 int dctl = dwc2_readl(hsotg, DCTL);
1596
1597 dctl &= ~DCTL_TSTCTL_MASK;
1598 switch (testmode) {
1599 case USB_TEST_J:
1600 case USB_TEST_K:
1601 case USB_TEST_SE0_NAK:
1602 case USB_TEST_PACKET:
1603 case USB_TEST_FORCE_ENABLE:
1604 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1605 break;
1606 default:
1607 return -EINVAL;
1608 }
1609 dwc2_writel(hsotg, dctl, DCTL);
1610 return 0;
1611}
1612
1613/**
1614 * dwc2_hsotg_send_reply - send reply to control request
1615 * @hsotg: The device state
1616 * @ep: Endpoint 0
1617 * @buff: Buffer for request
1618 * @length: Length of reply.
1619 *
1620 * Create a request and queue it on the given endpoint. This is useful as
1621 * an internal method of sending replies to certain control requests, etc.
1622 */
1623static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1624 struct dwc2_hsotg_ep *ep,
1625 void *buff,
1626 int length)
1627{
1628 struct usb_request *req;
1629 int ret;
1630
1631 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1632
1633 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1634 hsotg->ep0_reply = req;
1635 if (!req) {
1636 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1637 return -ENOMEM;
1638 }
1639
1640 req->buf = hsotg->ep0_buff;
1641 req->length = length;
1642 /*
1643 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1644 * STATUS stage.
1645 */
1646 req->zero = 0;
1647 req->complete = dwc2_hsotg_complete_oursetup;
1648
1649 if (length)
1650 memcpy(req->buf, buff, length);
1651
1652 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1653 if (ret) {
1654 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1655 return ret;
1656 }
1657
1658 return 0;
1659}
1660
1661/**
1662 * dwc2_hsotg_process_req_status - process request GET_STATUS
1663 * @hsotg: The device state
1664 * @ctrl: USB control request
1665 */
1666static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1667 struct usb_ctrlrequest *ctrl)
1668{
1669 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1670 struct dwc2_hsotg_ep *ep;
1671 __le16 reply;
1672 u16 status;
1673 int ret;
1674
1675 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1676
1677 if (!ep0->dir_in) {
1678 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1679 return -EINVAL;
1680 }
1681
1682 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1683 case USB_RECIP_DEVICE:
1684 status = hsotg->gadget.is_selfpowered <<
1685 USB_DEVICE_SELF_POWERED;
1686 status |= hsotg->remote_wakeup_allowed <<
1687 USB_DEVICE_REMOTE_WAKEUP;
1688 reply = cpu_to_le16(status);
1689 break;
1690
1691 case USB_RECIP_INTERFACE:
1692 /* currently, the data result should be zero */
1693 reply = cpu_to_le16(0);
1694 break;
1695
1696 case USB_RECIP_ENDPOINT:
1697 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1698 if (!ep)
1699 return -ENOENT;
1700
1701 reply = cpu_to_le16(ep->halted ? 1 : 0);
1702 break;
1703
1704 default:
1705 return 0;
1706 }
1707
1708 if (le16_to_cpu(ctrl->wLength) != 2)
1709 return -EINVAL;
1710
1711 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1712 if (ret) {
1713 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1714 return ret;
1715 }
1716
1717 return 1;
1718}
1719
1720static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1721
1722/**
1723 * get_ep_head - return the first request on the endpoint
1724 * @hs_ep: The controller endpoint to get
1725 *
1726 * Get the first request on the endpoint.
1727 */
1728static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1729{
1730 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1731 queue);
1732}
1733
1734/**
1735 * dwc2_gadget_start_next_request - Starts next request from ep queue
1736 * @hs_ep: Endpoint structure
1737 *
1738 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1739 * in its handler. Hence we need to unmask it here to be able to do
1740 * resynchronization.
1741 */
1742static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1743{
1744 struct dwc2_hsotg *hsotg = hs_ep->parent;
1745 int dir_in = hs_ep->dir_in;
1746 struct dwc2_hsotg_req *hs_req;
1747
1748 if (!list_empty(&hs_ep->queue)) {
1749 hs_req = get_ep_head(hs_ep);
1750 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1751 return;
1752 }
1753 if (!hs_ep->isochronous)
1754 return;
1755
1756 if (dir_in) {
1757 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1758 __func__);
1759 } else {
1760 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1761 __func__);
1762 }
1763}
1764
1765/**
1766 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1767 * @hsotg: The device state
1768 * @ctrl: USB control request
1769 */
1770static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1771 struct usb_ctrlrequest *ctrl)
1772{
1773 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1774 struct dwc2_hsotg_req *hs_req;
1775 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1776 struct dwc2_hsotg_ep *ep;
1777 int ret;
1778 bool halted;
1779 u32 recip;
1780 u32 wValue;
1781 u32 wIndex;
1782
1783 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1784 __func__, set ? "SET" : "CLEAR");
1785
1786 wValue = le16_to_cpu(ctrl->wValue);
1787 wIndex = le16_to_cpu(ctrl->wIndex);
1788 recip = ctrl->bRequestType & USB_RECIP_MASK;
1789
1790 switch (recip) {
1791 case USB_RECIP_DEVICE:
1792 switch (wValue) {
1793 case USB_DEVICE_REMOTE_WAKEUP:
1794 if (set)
1795 hsotg->remote_wakeup_allowed = 1;
1796 else
1797 hsotg->remote_wakeup_allowed = 0;
1798 break;
1799
1800 case USB_DEVICE_TEST_MODE:
1801 if ((wIndex & 0xff) != 0)
1802 return -EINVAL;
1803 if (!set)
1804 return -EINVAL;
1805
1806 hsotg->test_mode = wIndex >> 8;
1807 break;
1808 default:
1809 return -ENOENT;
1810 }
1811
1812 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1813 if (ret) {
1814 dev_err(hsotg->dev,
1815 "%s: failed to send reply\n", __func__);
1816 return ret;
1817 }
1818 break;
1819
1820 case USB_RECIP_ENDPOINT:
1821 ep = ep_from_windex(hsotg, wIndex);
1822 if (!ep) {
1823 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1824 __func__, wIndex);
1825 return -ENOENT;
1826 }
1827
1828 switch (wValue) {
1829 case USB_ENDPOINT_HALT:
1830 halted = ep->halted;
1831
1832 if (!ep->wedged)
1833 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1834
1835 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1836 if (ret) {
1837 dev_err(hsotg->dev,
1838 "%s: failed to send reply\n", __func__);
1839 return ret;
1840 }
1841
1842 /*
1843 * we have to complete all requests for ep if it was
1844 * halted, and the halt was cleared by CLEAR_FEATURE
1845 */
1846
1847 if (!set && halted) {
1848 /*
1849 * If we have request in progress,
1850 * then complete it
1851 */
1852 if (ep->req) {
1853 hs_req = ep->req;
1854 ep->req = NULL;
1855 list_del_init(&hs_req->queue);
1856 if (hs_req->req.complete) {
1857 spin_unlock(&hsotg->lock);
1858 usb_gadget_giveback_request(
1859 &ep->ep, &hs_req->req);
1860 spin_lock(&hsotg->lock);
1861 }
1862 }
1863
1864 /* If we have pending request, then start it */
1865 if (!ep->req)
1866 dwc2_gadget_start_next_request(ep);
1867 }
1868
1869 break;
1870
1871 default:
1872 return -ENOENT;
1873 }
1874 break;
1875 default:
1876 return -ENOENT;
1877 }
1878 return 1;
1879}
1880
1881static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1882
1883/**
1884 * dwc2_hsotg_stall_ep0 - stall ep0
1885 * @hsotg: The device state
1886 *
1887 * Set stall for ep0 as response for setup request.
1888 */
1889static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1890{
1891 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1892 u32 reg;
1893 u32 ctrl;
1894
1895 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1896 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1897
1898 /*
1899 * DxEPCTL_Stall will be cleared by EP once it has
1900 * taken effect, so no need to clear later.
1901 */
1902
1903 ctrl = dwc2_readl(hsotg, reg);
1904 ctrl |= DXEPCTL_STALL;
1905 ctrl |= DXEPCTL_CNAK;
1906 dwc2_writel(hsotg, ctrl, reg);
1907
1908 dev_dbg(hsotg->dev,
1909 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1910 ctrl, reg, dwc2_readl(hsotg, reg));
1911
1912 /*
1913 * complete won't be called, so we enqueue
1914 * setup request here
1915 */
1916 dwc2_hsotg_enqueue_setup(hsotg);
1917}
1918
1919/**
1920 * dwc2_hsotg_process_control - process a control request
1921 * @hsotg: The device state
1922 * @ctrl: The control request received
1923 *
1924 * The controller has received the SETUP phase of a control request, and
1925 * needs to work out what to do next (and whether to pass it on to the
1926 * gadget driver).
1927 */
1928static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1929 struct usb_ctrlrequest *ctrl)
1930{
1931 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1932 int ret = 0;
1933 u32 dcfg;
1934
1935 dev_dbg(hsotg->dev,
1936 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1937 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1938 ctrl->wIndex, ctrl->wLength);
1939
1940 if (ctrl->wLength == 0) {
1941 ep0->dir_in = 1;
1942 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1943 } else if (ctrl->bRequestType & USB_DIR_IN) {
1944 ep0->dir_in = 1;
1945 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1946 } else {
1947 ep0->dir_in = 0;
1948 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1949 }
1950
1951 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1952 switch (ctrl->bRequest) {
1953 case USB_REQ_SET_ADDRESS:
1954 hsotg->connected = 1;
1955 dcfg = dwc2_readl(hsotg, DCFG);
1956 dcfg &= ~DCFG_DEVADDR_MASK;
1957 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1958 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1959 dwc2_writel(hsotg, dcfg, DCFG);
1960
1961 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1962
1963 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1964 return;
1965
1966 case USB_REQ_GET_STATUS:
1967 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1968 break;
1969
1970 case USB_REQ_CLEAR_FEATURE:
1971 case USB_REQ_SET_FEATURE:
1972 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1973 break;
1974 }
1975 }
1976
1977 /* as a fallback, try delivering it to the driver to deal with */
1978
1979 if (ret == 0 && hsotg->driver) {
1980 spin_unlock(&hsotg->lock);
1981 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1982 spin_lock(&hsotg->lock);
1983 if (ret < 0)
1984 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1985 }
1986
1987 hsotg->delayed_status = false;
1988 if (ret == USB_GADGET_DELAYED_STATUS)
1989 hsotg->delayed_status = true;
1990
1991 /*
1992 * the request is either unhandlable, or is not formatted correctly
1993 * so respond with a STALL for the status stage to indicate failure.
1994 */
1995
1996 if (ret < 0)
1997 dwc2_hsotg_stall_ep0(hsotg);
1998}
1999
2000/**
2001 * dwc2_hsotg_complete_setup - completion of a setup transfer
2002 * @ep: The endpoint the request was on.
2003 * @req: The request completed.
2004 *
2005 * Called on completion of any requests the driver itself submitted for
2006 * EP0 setup packets
2007 */
2008static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2009 struct usb_request *req)
2010{
2011 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2012 struct dwc2_hsotg *hsotg = hs_ep->parent;
2013
2014 if (req->status < 0) {
2015 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2016 return;
2017 }
2018
2019 spin_lock(&hsotg->lock);
2020 if (req->actual == 0)
2021 dwc2_hsotg_enqueue_setup(hsotg);
2022 else
2023 dwc2_hsotg_process_control(hsotg, req->buf);
2024 spin_unlock(&hsotg->lock);
2025}
2026
2027/**
2028 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2029 * @hsotg: The device state.
2030 *
2031 * Enqueue a request on EP0 if necessary to received any SETUP packets
2032 * received from the host.
2033 */
2034static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2035{
2036 struct usb_request *req = hsotg->ctrl_req;
2037 struct dwc2_hsotg_req *hs_req = our_req(req);
2038 int ret;
2039
2040 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2041
2042 req->zero = 0;
2043 req->length = 8;
2044 req->buf = hsotg->ctrl_buff;
2045 req->complete = dwc2_hsotg_complete_setup;
2046
2047 if (!list_empty(&hs_req->queue)) {
2048 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2049 return;
2050 }
2051
2052 hsotg->eps_out[0]->dir_in = 0;
2053 hsotg->eps_out[0]->send_zlp = 0;
2054 hsotg->ep0_state = DWC2_EP0_SETUP;
2055
2056 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2057 if (ret < 0) {
2058 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2059 /*
2060 * Don't think there's much we can do other than watch the
2061 * driver fail.
2062 */
2063 }
2064}
2065
2066static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2067 struct dwc2_hsotg_ep *hs_ep)
2068{
2069 u32 ctrl;
2070 u8 index = hs_ep->index;
2071 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2072 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2073
2074 if (hs_ep->dir_in)
2075 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2076 index);
2077 else
2078 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2079 index);
2080 if (using_desc_dma(hsotg)) {
2081 /* Not specific buffer needed for ep0 ZLP */
2082 dma_addr_t dma = hs_ep->desc_list_dma;
2083
2084 if (!index)
2085 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2086
2087 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2088 } else {
2089 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2090 DXEPTSIZ_XFERSIZE(0),
2091 epsiz_reg);
2092 }
2093
2094 ctrl = dwc2_readl(hsotg, epctl_reg);
2095 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
2096 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2097 ctrl |= DXEPCTL_USBACTEP;
2098 dwc2_writel(hsotg, ctrl, epctl_reg);
2099}
2100
2101/**
2102 * dwc2_hsotg_complete_request - complete a request given to us
2103 * @hsotg: The device state.
2104 * @hs_ep: The endpoint the request was on.
2105 * @hs_req: The request to complete.
2106 * @result: The result code (0 => Ok, otherwise errno)
2107 *
2108 * The given request has finished, so call the necessary completion
2109 * if it has one and then look to see if we can start a new request
2110 * on the endpoint.
2111 *
2112 * Note, expects the ep to already be locked as appropriate.
2113 */
2114static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2115 struct dwc2_hsotg_ep *hs_ep,
2116 struct dwc2_hsotg_req *hs_req,
2117 int result)
2118{
2119 if (!hs_req) {
2120 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2121 return;
2122 }
2123
2124 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2125 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2126
2127 /*
2128 * only replace the status if we've not already set an error
2129 * from a previous transaction
2130 */
2131
2132 if (hs_req->req.status == -EINPROGRESS)
2133 hs_req->req.status = result;
2134
2135 if (using_dma(hsotg))
2136 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2137
2138 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2139
2140 hs_ep->req = NULL;
2141 list_del_init(&hs_req->queue);
2142
2143 /*
2144 * call the complete request with the locks off, just in case the
2145 * request tries to queue more work for this endpoint.
2146 */
2147
2148 if (hs_req->req.complete) {
2149 spin_unlock(&hsotg->lock);
2150 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2151 spin_lock(&hsotg->lock);
2152 }
2153
2154 /* In DDMA don't need to proceed to starting of next ISOC request */
2155 if (using_desc_dma(hsotg) && hs_ep->isochronous)
2156 return;
2157
2158 /*
2159 * Look to see if there is anything else to do. Note, the completion
2160 * of the previous request may have caused a new request to be started
2161 * so be careful when doing this.
2162 */
2163
2164 if (!hs_ep->req && result >= 0)
2165 dwc2_gadget_start_next_request(hs_ep);
2166}
2167
2168/*
2169 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2170 * @hs_ep: The endpoint the request was on.
2171 *
2172 * Get first request from the ep queue, determine descriptor on which complete
2173 * happened. SW discovers which descriptor currently in use by HW, adjusts
2174 * dma_address and calculates index of completed descriptor based on the value
2175 * of DEPDMA register. Update actual length of request, giveback to gadget.
2176 */
2177static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2178{
2179 struct dwc2_hsotg *hsotg = hs_ep->parent;
2180 struct dwc2_hsotg_req *hs_req;
2181 struct usb_request *ureq;
2182 u32 desc_sts;
2183 u32 mask;
2184
2185 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2186
2187 /* Process only descriptors with buffer status set to DMA done */
2188 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2189 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2190
2191 hs_req = get_ep_head(hs_ep);
2192 if (!hs_req) {
2193 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2194 return;
2195 }
2196 ureq = &hs_req->req;
2197
2198 /* Check completion status */
2199 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2200 DEV_DMA_STS_SUCC) {
2201 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2202 DEV_DMA_ISOC_RX_NBYTES_MASK;
2203 ureq->actual = ureq->length - ((desc_sts & mask) >>
2204 DEV_DMA_ISOC_NBYTES_SHIFT);
2205
2206 /* Adjust actual len for ISOC Out if len is
2207 * not align of 4
2208 */
2209 if (!hs_ep->dir_in && ureq->length & 0x3)
2210 ureq->actual += 4 - (ureq->length & 0x3);
2211
2212 /* Set actual frame number for completed transfers */
2213 ureq->frame_number =
2214 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2215 DEV_DMA_ISOC_FRNUM_SHIFT;
2216 }
2217
2218 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2219
2220 hs_ep->compl_desc++;
2221 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2222 hs_ep->compl_desc = 0;
2223 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2224 }
2225}
2226
2227/*
2228 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2229 * @hs_ep: The isochronous endpoint.
2230 *
2231 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2232 * interrupt. Reset target frame and next_desc to allow to start
2233 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2234 * interrupt for OUT direction.
2235 */
2236static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2237{
2238 struct dwc2_hsotg *hsotg = hs_ep->parent;
2239
2240 if (!hs_ep->dir_in)
2241 dwc2_flush_rx_fifo(hsotg);
2242 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2243
2244 hs_ep->target_frame = TARGET_FRAME_INITIAL;
2245 hs_ep->next_desc = 0;
2246 hs_ep->compl_desc = 0;
2247}
2248
2249/**
2250 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2251 * @hsotg: The device state.
2252 * @ep_idx: The endpoint index for the data
2253 * @size: The size of data in the fifo, in bytes
2254 *
2255 * The FIFO status shows there is data to read from the FIFO for a given
2256 * endpoint, so sort out whether we need to read the data into a request
2257 * that has been made for that endpoint.
2258 */
2259static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2260{
2261 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2262 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2263 int to_read;
2264 int max_req;
2265 int read_ptr;
2266
2267 if (!hs_req) {
2268 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2269 int ptr;
2270
2271 dev_dbg(hsotg->dev,
2272 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2273 __func__, size, ep_idx, epctl);
2274
2275 /* dump the data from the FIFO, we've nothing we can do */
2276 for (ptr = 0; ptr < size; ptr += 4)
2277 (void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2278
2279 return;
2280 }
2281
2282 to_read = size;
2283 read_ptr = hs_req->req.actual;
2284 max_req = hs_req->req.length - read_ptr;
2285
2286 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2287 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2288
2289 if (to_read > max_req) {
2290 /*
2291 * more data appeared than we where willing
2292 * to deal with in this request.
2293 */
2294
2295 /* currently we don't deal this */
2296 WARN_ON_ONCE(1);
2297 }
2298
2299 hs_ep->total_data += to_read;
2300 hs_req->req.actual += to_read;
2301 to_read = DIV_ROUND_UP(to_read, 4);
2302
2303 /*
2304 * note, we might over-write the buffer end by 3 bytes depending on
2305 * alignment of the data.
2306 */
2307 dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2308 hs_req->req.buf + read_ptr, to_read);
2309}
2310
2311/**
2312 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2313 * @hsotg: The device instance
2314 * @dir_in: If IN zlp
2315 *
2316 * Generate a zero-length IN packet request for terminating a SETUP
2317 * transaction.
2318 *
2319 * Note, since we don't write any data to the TxFIFO, then it is
2320 * currently believed that we do not need to wait for any space in
2321 * the TxFIFO.
2322 */
2323static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2324{
2325 /* eps_out[0] is used in both directions */
2326 hsotg->eps_out[0]->dir_in = dir_in;
2327 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2328
2329 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2330}
2331
2332/*
2333 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2334 * @hs_ep - The endpoint on which transfer went
2335 *
2336 * Iterate over endpoints descriptor chain and get info on bytes remained
2337 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2338 */
2339static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2340{
2341 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2342 struct dwc2_hsotg *hsotg = hs_ep->parent;
2343 unsigned int bytes_rem = 0;
2344 unsigned int bytes_rem_correction = 0;
2345 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2346 int i;
2347 u32 status;
2348 u32 mps = hs_ep->ep.maxpacket;
2349 int dir_in = hs_ep->dir_in;
2350
2351 if (!desc)
2352 return -EINVAL;
2353
2354 /* Interrupt OUT EP with mps not multiple of 4 */
2355 if (hs_ep->index)
2356 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2357 bytes_rem_correction = 4 - (mps % 4);
2358
2359 for (i = 0; i < hs_ep->desc_count; ++i) {
2360 status = desc->status;
2361 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2362 bytes_rem -= bytes_rem_correction;
2363
2364 if (status & DEV_DMA_STS_MASK)
2365 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2366 i, status & DEV_DMA_STS_MASK);
2367
2368 if (status & DEV_DMA_L)
2369 break;
2370
2371 desc++;
2372 }
2373
2374 return bytes_rem;
2375}
2376
2377/**
2378 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2379 * @hsotg: The device instance
2380 * @epnum: The endpoint received from
2381 *
2382 * The RXFIFO has delivered an OutDone event, which means that the data
2383 * transfer for an OUT endpoint has been completed, either by a short
2384 * packet or by the finish of a transfer.
2385 */
2386static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2387{
2388 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2389 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2390 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2391 struct usb_request *req = &hs_req->req;
2392 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2393 int result = 0;
2394
2395 if (!hs_req) {
2396 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2397 return;
2398 }
2399
2400 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2401 dev_dbg(hsotg->dev, "zlp packet received\n");
2402 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2403 dwc2_hsotg_enqueue_setup(hsotg);
2404 return;
2405 }
2406
2407 if (using_desc_dma(hsotg))
2408 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2409
2410 if (using_dma(hsotg)) {
2411 unsigned int size_done;
2412
2413 /*
2414 * Calculate the size of the transfer by checking how much
2415 * is left in the endpoint size register and then working it
2416 * out from the amount we loaded for the transfer.
2417 *
2418 * We need to do this as DMA pointers are always 32bit aligned
2419 * so may overshoot/undershoot the transfer.
2420 */
2421
2422 size_done = hs_ep->size_loaded - size_left;
2423 size_done += hs_ep->last_load;
2424
2425 req->actual = size_done;
2426 }
2427
2428 /* if there is more request to do, schedule new transfer */
2429 if (req->actual < req->length && size_left == 0) {
2430 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2431 return;
2432 }
2433
2434 if (req->actual < req->length && req->short_not_ok) {
2435 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2436 __func__, req->actual, req->length);
2437
2438 /*
2439 * todo - what should we return here? there's no one else
2440 * even bothering to check the status.
2441 */
2442 }
2443
2444 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2445 if (!using_desc_dma(hsotg) && epnum == 0 &&
2446 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2447 /* Move to STATUS IN */
2448 if (!hsotg->delayed_status)
2449 dwc2_hsotg_ep0_zlp(hsotg, true);
2450 }
2451
2452 /* Set actual frame number for completed transfers */
2453 if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2454 req->frame_number = hs_ep->target_frame;
2455 dwc2_gadget_incr_frame_num(hs_ep);
2456 }
2457
2458 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2459}
2460
2461/**
2462 * dwc2_hsotg_handle_rx - RX FIFO has data
2463 * @hsotg: The device instance
2464 *
2465 * The IRQ handler has detected that the RX FIFO has some data in it
2466 * that requires processing, so find out what is in there and do the
2467 * appropriate read.
2468 *
2469 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2470 * chunks, so if you have x packets received on an endpoint you'll get x
2471 * FIFO events delivered, each with a packet's worth of data in it.
2472 *
2473 * When using DMA, we should not be processing events from the RXFIFO
2474 * as the actual data should be sent to the memory directly and we turn
2475 * on the completion interrupts to get notifications of transfer completion.
2476 */
2477static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2478{
2479 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2480 u32 epnum, status, size;
2481
2482 WARN_ON(using_dma(hsotg));
2483
2484 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2485 status = grxstsr & GRXSTS_PKTSTS_MASK;
2486
2487 size = grxstsr & GRXSTS_BYTECNT_MASK;
2488 size >>= GRXSTS_BYTECNT_SHIFT;
2489
2490 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2491 __func__, grxstsr, size, epnum);
2492
2493 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2494 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2495 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2496 break;
2497
2498 case GRXSTS_PKTSTS_OUTDONE:
2499 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2500 dwc2_hsotg_read_frameno(hsotg));
2501
2502 if (!using_dma(hsotg))
2503 dwc2_hsotg_handle_outdone(hsotg, epnum);
2504 break;
2505
2506 case GRXSTS_PKTSTS_SETUPDONE:
2507 dev_dbg(hsotg->dev,
2508 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2509 dwc2_hsotg_read_frameno(hsotg),
2510 dwc2_readl(hsotg, DOEPCTL(0)));
2511 /*
2512 * Call dwc2_hsotg_handle_outdone here if it was not called from
2513 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2514 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2515 */
2516 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2517 dwc2_hsotg_handle_outdone(hsotg, epnum);
2518 break;
2519
2520 case GRXSTS_PKTSTS_OUTRX:
2521 dwc2_hsotg_rx_data(hsotg, epnum, size);
2522 break;
2523
2524 case GRXSTS_PKTSTS_SETUPRX:
2525 dev_dbg(hsotg->dev,
2526 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2527 dwc2_hsotg_read_frameno(hsotg),
2528 dwc2_readl(hsotg, DOEPCTL(0)));
2529
2530 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2531
2532 dwc2_hsotg_rx_data(hsotg, epnum, size);
2533 break;
2534
2535 default:
2536 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2537 __func__, grxstsr);
2538
2539 dwc2_hsotg_dump(hsotg);
2540 break;
2541 }
2542}
2543
2544/**
2545 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2546 * @mps: The maximum packet size in bytes.
2547 */
2548static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2549{
2550 switch (mps) {
2551 case 64:
2552 return D0EPCTL_MPS_64;
2553 case 32:
2554 return D0EPCTL_MPS_32;
2555 case 16:
2556 return D0EPCTL_MPS_16;
2557 case 8:
2558 return D0EPCTL_MPS_8;
2559 }
2560
2561 /* bad max packet size, warn and return invalid result */
2562 WARN_ON(1);
2563 return (u32)-1;
2564}
2565
2566/**
2567 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2568 * @hsotg: The driver state.
2569 * @ep: The index number of the endpoint
2570 * @mps: The maximum packet size in bytes
2571 * @mc: The multicount value
2572 * @dir_in: True if direction is in.
2573 *
2574 * Configure the maximum packet size for the given endpoint, updating
2575 * the hardware control registers to reflect this.
2576 */
2577static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2578 unsigned int ep, unsigned int mps,
2579 unsigned int mc, unsigned int dir_in)
2580{
2581 struct dwc2_hsotg_ep *hs_ep;
2582 u32 reg;
2583
2584 hs_ep = index_to_ep(hsotg, ep, dir_in);
2585 if (!hs_ep)
2586 return;
2587
2588 if (ep == 0) {
2589 u32 mps_bytes = mps;
2590
2591 /* EP0 is a special case */
2592 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2593 if (mps > 3)
2594 goto bad_mps;
2595 hs_ep->ep.maxpacket = mps_bytes;
2596 hs_ep->mc = 1;
2597 } else {
2598 if (mps > 1024)
2599 goto bad_mps;
2600 hs_ep->mc = mc;
2601 if (mc > 3)
2602 goto bad_mps;
2603 hs_ep->ep.maxpacket = mps;
2604 }
2605
2606 if (dir_in) {
2607 reg = dwc2_readl(hsotg, DIEPCTL(ep));
2608 reg &= ~DXEPCTL_MPS_MASK;
2609 reg |= mps;
2610 dwc2_writel(hsotg, reg, DIEPCTL(ep));
2611 } else {
2612 reg = dwc2_readl(hsotg, DOEPCTL(ep));
2613 reg &= ~DXEPCTL_MPS_MASK;
2614 reg |= mps;
2615 dwc2_writel(hsotg, reg, DOEPCTL(ep));
2616 }
2617
2618 return;
2619
2620bad_mps:
2621 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2622}
2623
2624/**
2625 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2626 * @hsotg: The driver state
2627 * @idx: The index for the endpoint (0..15)
2628 */
2629static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2630{
2631 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2632 GRSTCTL);
2633
2634 /* wait until the fifo is flushed */
2635 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2636 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2637 __func__);
2638}
2639
2640/**
2641 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2642 * @hsotg: The driver state
2643 * @hs_ep: The driver endpoint to check.
2644 *
2645 * Check to see if there is a request that has data to send, and if so
2646 * make an attempt to write data into the FIFO.
2647 */
2648static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2649 struct dwc2_hsotg_ep *hs_ep)
2650{
2651 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2652
2653 if (!hs_ep->dir_in || !hs_req) {
2654 /**
2655 * if request is not enqueued, we disable interrupts
2656 * for endpoints, excepting ep0
2657 */
2658 if (hs_ep->index != 0)
2659 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2660 hs_ep->dir_in, 0);
2661 return 0;
2662 }
2663
2664 if (hs_req->req.actual < hs_req->req.length) {
2665 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2666 hs_ep->index);
2667 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2668 }
2669
2670 return 0;
2671}
2672
2673/**
2674 * dwc2_hsotg_complete_in - complete IN transfer
2675 * @hsotg: The device state.
2676 * @hs_ep: The endpoint that has just completed.
2677 *
2678 * An IN transfer has been completed, update the transfer's state and then
2679 * call the relevant completion routines.
2680 */
2681static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2682 struct dwc2_hsotg_ep *hs_ep)
2683{
2684 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2685 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2686 int size_left, size_done;
2687
2688 if (!hs_req) {
2689 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2690 return;
2691 }
2692
2693 /* Finish ZLP handling for IN EP0 transactions */
2694 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2695 dev_dbg(hsotg->dev, "zlp packet sent\n");
2696
2697 /*
2698 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2699 * changed to IN. Change back to complete OUT transfer request
2700 */
2701 hs_ep->dir_in = 0;
2702
2703 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2704 if (hsotg->test_mode) {
2705 int ret;
2706
2707 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2708 if (ret < 0) {
2709 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2710 hsotg->test_mode);
2711 dwc2_hsotg_stall_ep0(hsotg);
2712 return;
2713 }
2714 }
2715 dwc2_hsotg_enqueue_setup(hsotg);
2716 return;
2717 }
2718
2719 /*
2720 * Calculate the size of the transfer by checking how much is left
2721 * in the endpoint size register and then working it out from
2722 * the amount we loaded for the transfer.
2723 *
2724 * We do this even for DMA, as the transfer may have incremented
2725 * past the end of the buffer (DMA transfers are always 32bit
2726 * aligned).
2727 */
2728 if (using_desc_dma(hsotg)) {
2729 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2730 if (size_left < 0)
2731 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2732 size_left);
2733 } else {
2734 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2735 }
2736
2737 size_done = hs_ep->size_loaded - size_left;
2738 size_done += hs_ep->last_load;
2739
2740 if (hs_req->req.actual != size_done)
2741 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2742 __func__, hs_req->req.actual, size_done);
2743
2744 hs_req->req.actual = size_done;
2745 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2746 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2747
2748 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2749 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2750 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2751 return;
2752 }
2753
2754 /* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2755 if (hs_ep->send_zlp) {
2756 hs_ep->send_zlp = 0;
2757 if (!using_desc_dma(hsotg)) {
2758 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2759 /* transfer will be completed on next complete interrupt */
2760 return;
2761 }
2762 }
2763
2764 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2765 /* Move to STATUS OUT */
2766 dwc2_hsotg_ep0_zlp(hsotg, false);
2767 return;
2768 }
2769
2770 /* Set actual frame number for completed transfers */
2771 if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2772 hs_req->req.frame_number = hs_ep->target_frame;
2773 dwc2_gadget_incr_frame_num(hs_ep);
2774 }
2775
2776 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2777}
2778
2779/**
2780 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2781 * @hsotg: The device state.
2782 * @idx: Index of ep.
2783 * @dir_in: Endpoint direction 1-in 0-out.
2784 *
2785 * Reads for endpoint with given index and direction, by masking
2786 * epint_reg with coresponding mask.
2787 */
2788static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2789 unsigned int idx, int dir_in)
2790{
2791 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2792 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2793 u32 ints;
2794 u32 mask;
2795 u32 diepempmsk;
2796
2797 mask = dwc2_readl(hsotg, epmsk_reg);
2798 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2799 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2800 mask |= DXEPINT_SETUP_RCVD;
2801
2802 ints = dwc2_readl(hsotg, epint_reg);
2803 ints &= mask;
2804 return ints;
2805}
2806
2807/**
2808 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2809 * @hs_ep: The endpoint on which interrupt is asserted.
2810 *
2811 * This interrupt indicates that the endpoint has been disabled per the
2812 * application's request.
2813 *
2814 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2815 * in case of ISOC completes current request.
2816 *
2817 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2818 * request starts it.
2819 */
2820static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2821{
2822 struct dwc2_hsotg *hsotg = hs_ep->parent;
2823 struct dwc2_hsotg_req *hs_req;
2824 unsigned char idx = hs_ep->index;
2825 int dir_in = hs_ep->dir_in;
2826 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2827 int dctl = dwc2_readl(hsotg, DCTL);
2828
2829 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2830
2831 if (dir_in) {
2832 int epctl = dwc2_readl(hsotg, epctl_reg);
2833
2834 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2835
2836 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2837 int dctl = dwc2_readl(hsotg, DCTL);
2838
2839 dctl |= DCTL_CGNPINNAK;
2840 dwc2_writel(hsotg, dctl, DCTL);
2841 }
2842 } else {
2843
2844 if (dctl & DCTL_GOUTNAKSTS) {
2845 dctl |= DCTL_CGOUTNAK;
2846 dwc2_writel(hsotg, dctl, DCTL);
2847 }
2848 }
2849
2850 if (!hs_ep->isochronous)
2851 return;
2852
2853 if (list_empty(&hs_ep->queue)) {
2854 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2855 __func__, hs_ep);
2856 return;
2857 }
2858
2859 do {
2860 hs_req = get_ep_head(hs_ep);
2861 if (hs_req) {
2862 hs_req->req.frame_number = hs_ep->target_frame;
2863 hs_req->req.actual = 0;
2864 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2865 -ENODATA);
2866 }
2867 dwc2_gadget_incr_frame_num(hs_ep);
2868 /* Update current frame number value. */
2869 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2870 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2871}
2872
2873/**
2874 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2875 * @ep: The endpoint on which interrupt is asserted.
2876 *
2877 * This is starting point for ISOC-OUT transfer, synchronization done with
2878 * first out token received from host while corresponding EP is disabled.
2879 *
2880 * Device does not know initial frame in which out token will come. For this
2881 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2882 * getting this interrupt SW starts calculation for next transfer frame.
2883 */
2884static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2885{
2886 struct dwc2_hsotg *hsotg = ep->parent;
2887 struct dwc2_hsotg_req *hs_req;
2888 int dir_in = ep->dir_in;
2889
2890 if (dir_in || !ep->isochronous)
2891 return;
2892
2893 if (using_desc_dma(hsotg)) {
2894 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2895 /* Start first ISO Out */
2896 ep->target_frame = hsotg->frame_number;
2897 dwc2_gadget_start_isoc_ddma(ep);
2898 }
2899 return;
2900 }
2901
2902 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2903 u32 ctrl;
2904
2905 ep->target_frame = hsotg->frame_number;
2906 if (ep->interval > 1) {
2907 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2908 if (ep->target_frame & 0x1)
2909 ctrl |= DXEPCTL_SETODDFR;
2910 else
2911 ctrl |= DXEPCTL_SETEVENFR;
2912
2913 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2914 }
2915 }
2916
2917 while (dwc2_gadget_target_frame_elapsed(ep)) {
2918 hs_req = get_ep_head(ep);
2919 if (hs_req) {
2920 hs_req->req.frame_number = ep->target_frame;
2921 hs_req->req.actual = 0;
2922 dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2923 }
2924
2925 dwc2_gadget_incr_frame_num(ep);
2926 /* Update current frame number value. */
2927 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2928 }
2929
2930 if (!ep->req)
2931 dwc2_gadget_start_next_request(ep);
2932
2933}
2934
2935static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2936 struct dwc2_hsotg_ep *hs_ep);
2937
2938/**
2939 * dwc2_gadget_handle_nak - handle NAK interrupt
2940 * @hs_ep: The endpoint on which interrupt is asserted.
2941 *
2942 * This is starting point for ISOC-IN transfer, synchronization done with
2943 * first IN token received from host while corresponding EP is disabled.
2944 *
2945 * Device does not know when first one token will arrive from host. On first
2946 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2947 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2948 * sent in response to that as there was no data in FIFO. SW is basing on this
2949 * interrupt to obtain frame in which token has come and then based on the
2950 * interval calculates next frame for transfer.
2951 */
2952static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2953{
2954 struct dwc2_hsotg *hsotg = hs_ep->parent;
2955 struct dwc2_hsotg_req *hs_req;
2956 int dir_in = hs_ep->dir_in;
2957 u32 ctrl;
2958
2959 if (!dir_in || !hs_ep->isochronous)
2960 return;
2961
2962 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2963
2964 if (using_desc_dma(hsotg)) {
2965 hs_ep->target_frame = hsotg->frame_number;
2966 dwc2_gadget_incr_frame_num(hs_ep);
2967
2968 /* In service interval mode target_frame must
2969 * be set to last (u)frame of the service interval.
2970 */
2971 if (hsotg->params.service_interval) {
2972 /* Set target_frame to the first (u)frame of
2973 * the service interval
2974 */
2975 hs_ep->target_frame &= ~hs_ep->interval + 1;
2976
2977 /* Set target_frame to the last (u)frame of
2978 * the service interval
2979 */
2980 dwc2_gadget_incr_frame_num(hs_ep);
2981 dwc2_gadget_dec_frame_num_by_one(hs_ep);
2982 }
2983
2984 dwc2_gadget_start_isoc_ddma(hs_ep);
2985 return;
2986 }
2987
2988 hs_ep->target_frame = hsotg->frame_number;
2989 if (hs_ep->interval > 1) {
2990 u32 ctrl = dwc2_readl(hsotg,
2991 DIEPCTL(hs_ep->index));
2992 if (hs_ep->target_frame & 0x1)
2993 ctrl |= DXEPCTL_SETODDFR;
2994 else
2995 ctrl |= DXEPCTL_SETEVENFR;
2996
2997 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2998 }
2999 }
3000
3001 if (using_desc_dma(hsotg))
3002 return;
3003
3004 ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
3005 if (ctrl & DXEPCTL_EPENA)
3006 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3007 else
3008 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3009
3010 while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3011 hs_req = get_ep_head(hs_ep);
3012 if (hs_req) {
3013 hs_req->req.frame_number = hs_ep->target_frame;
3014 hs_req->req.actual = 0;
3015 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3016 }
3017
3018 dwc2_gadget_incr_frame_num(hs_ep);
3019 /* Update current frame number value. */
3020 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3021 }
3022
3023 if (!hs_ep->req)
3024 dwc2_gadget_start_next_request(hs_ep);
3025}
3026
3027/**
3028 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3029 * @hsotg: The driver state
3030 * @idx: The index for the endpoint (0..15)
3031 * @dir_in: Set if this is an IN endpoint
3032 *
3033 * Process and clear any interrupt pending for an individual endpoint
3034 */
3035static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3036 int dir_in)
3037{
3038 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3039 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3040 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3041 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3042 u32 ints;
3043
3044 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3045
3046 /* Clear endpoint interrupts */
3047 dwc2_writel(hsotg, ints, epint_reg);
3048
3049 if (!hs_ep) {
3050 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3051 __func__, idx, dir_in ? "in" : "out");
3052 return;
3053 }
3054
3055 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3056 __func__, idx, dir_in ? "in" : "out", ints);
3057
3058 /* Don't process XferCompl interrupt if it is a setup packet */
3059 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3060 ints &= ~DXEPINT_XFERCOMPL;
3061
3062 /*
3063 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3064 * stage and xfercomplete was generated without SETUP phase done
3065 * interrupt. SW should parse received setup packet only after host's
3066 * exit from setup phase of control transfer.
3067 */
3068 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3069 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3070 ints &= ~DXEPINT_XFERCOMPL;
3071
3072 if (ints & DXEPINT_XFERCOMPL) {
3073 dev_dbg(hsotg->dev,
3074 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3075 __func__, dwc2_readl(hsotg, epctl_reg),
3076 dwc2_readl(hsotg, epsiz_reg));
3077
3078 /* In DDMA handle isochronous requests separately */
3079 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3080 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3081 } else if (dir_in) {
3082 /*
3083 * We get OutDone from the FIFO, so we only
3084 * need to look at completing IN requests here
3085 * if operating slave mode
3086 */
3087 if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3088 dwc2_hsotg_complete_in(hsotg, hs_ep);
3089
3090 if (idx == 0 && !hs_ep->req)
3091 dwc2_hsotg_enqueue_setup(hsotg);
3092 } else if (using_dma(hsotg)) {
3093 /*
3094 * We're using DMA, we need to fire an OutDone here
3095 * as we ignore the RXFIFO.
3096 */
3097 if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3098 dwc2_hsotg_handle_outdone(hsotg, idx);
3099 }
3100 }
3101
3102 if (ints & DXEPINT_EPDISBLD)
3103 dwc2_gadget_handle_ep_disabled(hs_ep);
3104
3105 if (ints & DXEPINT_OUTTKNEPDIS)
3106 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3107
3108 if (ints & DXEPINT_NAKINTRPT)
3109 dwc2_gadget_handle_nak(hs_ep);
3110
3111 if (ints & DXEPINT_AHBERR)
3112 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3113
3114 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
3115 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
3116
3117 if (using_dma(hsotg) && idx == 0) {
3118 /*
3119 * this is the notification we've received a
3120 * setup packet. In non-DMA mode we'd get this
3121 * from the RXFIFO, instead we need to process
3122 * the setup here.
3123 */
3124
3125 if (dir_in)
3126 WARN_ON_ONCE(1);
3127 else
3128 dwc2_hsotg_handle_outdone(hsotg, 0);
3129 }
3130 }
3131
3132 if (ints & DXEPINT_STSPHSERCVD) {
3133 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3134
3135 /* Safety check EP0 state when STSPHSERCVD asserted */
3136 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3137 /* Move to STATUS IN for DDMA */
3138 if (using_desc_dma(hsotg)) {
3139 if (!hsotg->delayed_status)
3140 dwc2_hsotg_ep0_zlp(hsotg, true);
3141 else
3142 /* In case of 3 stage Control Write with delayed
3143 * status, when Status IN transfer started
3144 * before STSPHSERCVD asserted, NAKSTS bit not
3145 * cleared by CNAK in dwc2_hsotg_start_req()
3146 * function. Clear now NAKSTS to allow complete
3147 * transfer.
3148 */
3149 dwc2_set_bit(hsotg, DIEPCTL(0),
3150 DXEPCTL_CNAK);
3151 }
3152 }
3153
3154 }
3155
3156 if (ints & DXEPINT_BACK2BACKSETUP)
3157 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3158
3159 if (ints & DXEPINT_BNAINTR) {
3160 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3161 if (hs_ep->isochronous)
3162 dwc2_gadget_handle_isoc_bna(hs_ep);
3163 }
3164
3165 if (dir_in && !hs_ep->isochronous) {
3166 /* not sure if this is important, but we'll clear it anyway */
3167 if (ints & DXEPINT_INTKNTXFEMP) {
3168 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3169 __func__, idx);
3170 }
3171
3172 /* this probably means something bad is happening */
3173 if (ints & DXEPINT_INTKNEPMIS) {
3174 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3175 __func__, idx);
3176 }
3177
3178 /* FIFO has space or is empty (see GAHBCFG) */
3179 if (hsotg->dedicated_fifos &&
3180 ints & DXEPINT_TXFEMP) {
3181 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3182 __func__, idx);
3183 if (!using_dma(hsotg))
3184 dwc2_hsotg_trytx(hsotg, hs_ep);
3185 }
3186 }
3187}
3188
3189/**
3190 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3191 * @hsotg: The device state.
3192 *
3193 * Handle updating the device settings after the enumeration phase has
3194 * been completed.
3195 */
3196static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3197{
3198 u32 dsts = dwc2_readl(hsotg, DSTS);
3199 int ep0_mps = 0, ep_mps = 8;
3200
3201 /*
3202 * This should signal the finish of the enumeration phase
3203 * of the USB handshaking, so we should now know what rate
3204 * we connected at.
3205 */
3206
3207 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3208
3209 /*
3210 * note, since we're limited by the size of transfer on EP0, and
3211 * it seems IN transfers must be a even number of packets we do
3212 * not advertise a 64byte MPS on EP0.
3213 */
3214
3215 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3216 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3217 case DSTS_ENUMSPD_FS:
3218 case DSTS_ENUMSPD_FS48:
3219 hsotg->gadget.speed = USB_SPEED_FULL;
3220 ep0_mps = EP0_MPS_LIMIT;
3221 ep_mps = 1023;
3222 break;
3223
3224 case DSTS_ENUMSPD_HS:
3225 hsotg->gadget.speed = USB_SPEED_HIGH;
3226 ep0_mps = EP0_MPS_LIMIT;
3227 ep_mps = 1024;
3228 break;
3229
3230 case DSTS_ENUMSPD_LS:
3231 hsotg->gadget.speed = USB_SPEED_LOW;
3232 ep0_mps = 8;
3233 ep_mps = 8;
3234 /*
3235 * note, we don't actually support LS in this driver at the
3236 * moment, and the documentation seems to imply that it isn't
3237 * supported by the PHYs on some of the devices.
3238 */
3239 break;
3240 }
3241 dev_info(hsotg->dev, "new device is %s\n",
3242 usb_speed_string(hsotg->gadget.speed));
3243
3244 /*
3245 * we should now know the maximum packet size for an
3246 * endpoint, so set the endpoints to a default value.
3247 */
3248
3249 if (ep0_mps) {
3250 int i;
3251 /* Initialize ep0 for both in and out directions */
3252 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3253 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3254 for (i = 1; i < hsotg->num_of_eps; i++) {
3255 if (hsotg->eps_in[i])
3256 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3257 0, 1);
3258 if (hsotg->eps_out[i])
3259 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3260 0, 0);
3261 }
3262 }
3263
3264 /* ensure after enumeration our EP0 is active */
3265
3266 dwc2_hsotg_enqueue_setup(hsotg);
3267
3268 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3269 dwc2_readl(hsotg, DIEPCTL0),
3270 dwc2_readl(hsotg, DOEPCTL0));
3271}
3272
3273/**
3274 * kill_all_requests - remove all requests from the endpoint's queue
3275 * @hsotg: The device state.
3276 * @ep: The endpoint the requests may be on.
3277 * @result: The result code to use.
3278 *
3279 * Go through the requests on the given endpoint and mark them
3280 * completed with the given result code.
3281 */
3282static void kill_all_requests(struct dwc2_hsotg *hsotg,
3283 struct dwc2_hsotg_ep *ep,
3284 int result)
3285{
3286 unsigned int size;
3287
3288 ep->req = NULL;
3289
3290 while (!list_empty(&ep->queue)) {
3291 struct dwc2_hsotg_req *req = get_ep_head(ep);
3292
3293 dwc2_hsotg_complete_request(hsotg, ep, req, result);
3294 }
3295
3296 if (!hsotg->dedicated_fifos)
3297 return;
3298 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3299 if (size < ep->fifo_size)
3300 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3301}
3302
3303/**
3304 * dwc2_hsotg_disconnect - disconnect service
3305 * @hsotg: The device state.
3306 *
3307 * The device has been disconnected. Remove all current
3308 * transactions and signal the gadget driver that this
3309 * has happened.
3310 */
3311void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3312{
3313 unsigned int ep;
3314
3315 if (!hsotg->connected)
3316 return;
3317
3318 hsotg->connected = 0;
3319 hsotg->test_mode = 0;
3320
3321 /* all endpoints should be shutdown */
3322 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3323 if (hsotg->eps_in[ep])
3324 kill_all_requests(hsotg, hsotg->eps_in[ep],
3325 -ESHUTDOWN);
3326 if (hsotg->eps_out[ep])
3327 kill_all_requests(hsotg, hsotg->eps_out[ep],
3328 -ESHUTDOWN);
3329 }
3330
3331 call_gadget(hsotg, disconnect);
3332 hsotg->lx_state = DWC2_L3;
3333
3334 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3335}
3336
3337/**
3338 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3339 * @hsotg: The device state:
3340 * @periodic: True if this is a periodic FIFO interrupt
3341 */
3342static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3343{
3344 struct dwc2_hsotg_ep *ep;
3345 int epno, ret;
3346
3347 /* look through for any more data to transmit */
3348 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3349 ep = index_to_ep(hsotg, epno, 1);
3350
3351 if (!ep)
3352 continue;
3353
3354 if (!ep->dir_in)
3355 continue;
3356
3357 if ((periodic && !ep->periodic) ||
3358 (!periodic && ep->periodic))
3359 continue;
3360
3361 ret = dwc2_hsotg_trytx(hsotg, ep);
3362 if (ret < 0)
3363 break;
3364 }
3365}
3366
3367/* IRQ flags which will trigger a retry around the IRQ loop */
3368#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3369 GINTSTS_PTXFEMP | \
3370 GINTSTS_RXFLVL)
3371
3372static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3373/**
3374 * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3375 * @hsotg: The device state
3376 * @is_usb_reset: Usb resetting flag
3377 *
3378 * Issue a soft reset to the core, and await the core finishing it.
3379 */
3380void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3381 bool is_usb_reset)
3382{
3383 u32 intmsk;
3384 u32 val;
3385 u32 usbcfg;
3386 u32 dcfg = 0;
3387 int ep;
3388
3389 /* Kill any ep0 requests as controller will be reinitialized */
3390 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3391
3392 if (!is_usb_reset) {
3393 if (dwc2_core_reset(hsotg, true))
3394 return;
3395 } else {
3396 /* all endpoints should be shutdown */
3397 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3398 if (hsotg->eps_in[ep])
3399 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3400 if (hsotg->eps_out[ep])
3401 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3402 }
3403 }
3404
3405 /*
3406 * we must now enable ep0 ready for host detection and then
3407 * set configuration.
3408 */
3409
3410 /* keep other bits untouched (so e.g. forced modes are not lost) */
3411 usbcfg = dwc2_readl(hsotg, GUSBCFG);
3412 usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3413 usbcfg |= GUSBCFG_TOUTCAL(7);
3414
3415 /* remove the HNP/SRP and set the PHY */
3416 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3417 dwc2_writel(hsotg, usbcfg, GUSBCFG);
3418
3419 dwc2_phy_init(hsotg, true);
3420
3421 dwc2_hsotg_init_fifo(hsotg);
3422
3423 if (!is_usb_reset)
3424 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3425
3426 dcfg |= DCFG_EPMISCNT(1);
3427
3428 switch (hsotg->params.speed) {
3429 case DWC2_SPEED_PARAM_LOW:
3430 dcfg |= DCFG_DEVSPD_LS;
3431 break;
3432 case DWC2_SPEED_PARAM_FULL:
3433 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3434 dcfg |= DCFG_DEVSPD_FS48;
3435 else
3436 dcfg |= DCFG_DEVSPD_FS;
3437 break;
3438 default:
3439 dcfg |= DCFG_DEVSPD_HS;
3440 }
3441
3442 if (hsotg->params.ipg_isoc_en)
3443 dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3444
3445 dwc2_writel(hsotg, dcfg, DCFG);
3446
3447 /* Clear any pending OTG interrupts */
3448 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3449
3450 /* Clear any pending interrupts */
3451 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3452 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3453 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3454 GINTSTS_USBRST | GINTSTS_RESETDET |
3455 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3456 GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3457 GINTSTS_LPMTRANRCVD;
3458
3459 if (!using_desc_dma(hsotg))
3460 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3461
3462 if (!hsotg->params.external_id_pin_ctl)
3463 intmsk |= GINTSTS_CONIDSTSCHNG;
3464
3465 dwc2_writel(hsotg, intmsk, GINTMSK);
3466
3467 if (using_dma(hsotg)) {
3468 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3469 hsotg->params.ahbcfg,
3470 GAHBCFG);
3471
3472 /* Set DDMA mode support in the core if needed */
3473 if (using_desc_dma(hsotg))
3474 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3475
3476 } else {
3477 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3478 (GAHBCFG_NP_TXF_EMP_LVL |
3479 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3480 GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3481 }
3482
3483 /*
3484 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3485 * when we have no data to transfer. Otherwise we get being flooded by
3486 * interrupts.
3487 */
3488
3489 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3490 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3491 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3492 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3493 DIEPMSK);
3494
3495 /*
3496 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3497 * DMA mode we may need this and StsPhseRcvd.
3498 */
3499 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3500 DOEPMSK_STSPHSERCVDMSK) : 0) |
3501 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3502 DOEPMSK_SETUPMSK,
3503 DOEPMSK);
3504
3505 /* Enable BNA interrupt for DDMA */
3506 if (using_desc_dma(hsotg)) {
3507 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3508 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3509 }
3510
3511 /* Enable Service Interval mode if supported */
3512 if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3513 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3514
3515 dwc2_writel(hsotg, 0, DAINTMSK);
3516
3517 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3518 dwc2_readl(hsotg, DIEPCTL0),
3519 dwc2_readl(hsotg, DOEPCTL0));
3520
3521 /* enable in and out endpoint interrupts */
3522 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3523
3524 /*
3525 * Enable the RXFIFO when in slave mode, as this is how we collect
3526 * the data. In DMA mode, we get events from the FIFO but also
3527 * things we cannot process, so do not use it.
3528 */
3529 if (!using_dma(hsotg))
3530 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3531
3532 /* Enable interrupts for EP0 in and out */
3533 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3534 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3535
3536 if (!is_usb_reset) {
3537 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3538 udelay(10); /* see openiboot */
3539 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3540 }
3541
3542 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3543
3544 /*
3545 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3546 * writing to the EPCTL register..
3547 */
3548
3549 /* set to read 1 8byte packet */
3550 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3551 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3552
3553 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3554 DXEPCTL_CNAK | DXEPCTL_EPENA |
3555 DXEPCTL_USBACTEP,
3556 DOEPCTL0);
3557
3558 /* enable, but don't activate EP0in */
3559 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3560 DXEPCTL_USBACTEP, DIEPCTL0);
3561
3562 /* clear global NAKs */
3563 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3564 if (!is_usb_reset)
3565 val |= DCTL_SFTDISCON;
3566 dwc2_set_bit(hsotg, DCTL, val);
3567
3568 /* configure the core to support LPM */
3569 dwc2_gadget_init_lpm(hsotg);
3570
3571 /* program GREFCLK register if needed */
3572 if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3573 dwc2_gadget_program_ref_clk(hsotg);
3574
3575 /* must be at-least 3ms to allow bus to see disconnect */
3576 mdelay(3);
3577
3578 hsotg->lx_state = DWC2_L0;
3579
3580 dwc2_hsotg_enqueue_setup(hsotg);
3581
3582 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3583 dwc2_readl(hsotg, DIEPCTL0),
3584 dwc2_readl(hsotg, DOEPCTL0));
3585}
3586
3587void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3588{
3589 /* set the soft-disconnect bit */
3590 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3591}
3592
3593void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3594{
3595 /* remove the soft-disconnect and let's go */
3596 if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD))
3597 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3598}
3599
3600/**
3601 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3602 * @hsotg: The device state:
3603 *
3604 * This interrupt indicates one of the following conditions occurred while
3605 * transmitting an ISOC transaction.
3606 * - Corrupted IN Token for ISOC EP.
3607 * - Packet not complete in FIFO.
3608 *
3609 * The following actions will be taken:
3610 * - Determine the EP
3611 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3612 */
3613static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3614{
3615 struct dwc2_hsotg_ep *hs_ep;
3616 u32 epctrl;
3617 u32 daintmsk;
3618 u32 idx;
3619
3620 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3621
3622 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3623
3624 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3625 hs_ep = hsotg->eps_in[idx];
3626 /* Proceed only unmasked ISOC EPs */
3627 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3628 continue;
3629
3630 epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3631 if ((epctrl & DXEPCTL_EPENA) &&
3632 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3633 epctrl |= DXEPCTL_SNAK;
3634 epctrl |= DXEPCTL_EPDIS;
3635 dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3636 }
3637 }
3638
3639 /* Clear interrupt */
3640 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3641}
3642
3643/**
3644 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3645 * @hsotg: The device state:
3646 *
3647 * This interrupt indicates one of the following conditions occurred while
3648 * transmitting an ISOC transaction.
3649 * - Corrupted OUT Token for ISOC EP.
3650 * - Packet not complete in FIFO.
3651 *
3652 * The following actions will be taken:
3653 * - Determine the EP
3654 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3655 */
3656static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3657{
3658 u32 gintsts;
3659 u32 gintmsk;
3660 u32 daintmsk;
3661 u32 epctrl;
3662 struct dwc2_hsotg_ep *hs_ep;
3663 int idx;
3664
3665 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3666
3667 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3668 daintmsk >>= DAINT_OUTEP_SHIFT;
3669
3670 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3671 hs_ep = hsotg->eps_out[idx];
3672 /* Proceed only unmasked ISOC EPs */
3673 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3674 continue;
3675
3676 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3677 if ((epctrl & DXEPCTL_EPENA) &&
3678 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3679 /* Unmask GOUTNAKEFF interrupt */
3680 gintmsk = dwc2_readl(hsotg, GINTMSK);
3681 gintmsk |= GINTSTS_GOUTNAKEFF;
3682 dwc2_writel(hsotg, gintmsk, GINTMSK);
3683
3684 gintsts = dwc2_readl(hsotg, GINTSTS);
3685 if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3686 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3687 break;
3688 }
3689 }
3690 }
3691
3692 /* Clear interrupt */
3693 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3694}
3695
3696/**
3697 * dwc2_hsotg_irq - handle device interrupt
3698 * @irq: The IRQ number triggered
3699 * @pw: The pw value when registered the handler.
3700 */
3701static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3702{
3703 struct dwc2_hsotg *hsotg = pw;
3704 int retry_count = 8;
3705 u32 gintsts;
3706 u32 gintmsk;
3707
3708 if (!dwc2_is_device_mode(hsotg))
3709 return IRQ_NONE;
3710
3711 spin_lock(&hsotg->lock);
3712irq_retry:
3713 gintsts = dwc2_readl(hsotg, GINTSTS);
3714 gintmsk = dwc2_readl(hsotg, GINTMSK);
3715
3716 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3717 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3718
3719 gintsts &= gintmsk;
3720
3721 if (gintsts & GINTSTS_RESETDET) {
3722 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3723
3724 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3725
3726 /* This event must be used only if controller is suspended */
3727 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3728 dwc2_exit_partial_power_down(hsotg, 0, true);
3729
3730 hsotg->lx_state = DWC2_L0;
3731 }
3732
3733 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3734 u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3735 u32 connected = hsotg->connected;
3736
3737 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3738 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3739 dwc2_readl(hsotg, GNPTXSTS));
3740
3741 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3742
3743 /* Report disconnection if it is not already done. */
3744 dwc2_hsotg_disconnect(hsotg);
3745
3746 /* Reset device address to zero */
3747 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3748
3749 if (usb_status & GOTGCTL_BSESVLD && connected)
3750 dwc2_hsotg_core_init_disconnected(hsotg, true);
3751 }
3752
3753 if (gintsts & GINTSTS_ENUMDONE) {
3754 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3755
3756 dwc2_hsotg_irq_enumdone(hsotg);
3757 }
3758
3759 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3760 u32 daint = dwc2_readl(hsotg, DAINT);
3761 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3762 u32 daint_out, daint_in;
3763 int ep;
3764
3765 daint &= daintmsk;
3766 daint_out = daint >> DAINT_OUTEP_SHIFT;
3767 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3768
3769 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3770
3771 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3772 ep++, daint_out >>= 1) {
3773 if (daint_out & 1)
3774 dwc2_hsotg_epint(hsotg, ep, 0);
3775 }
3776
3777 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3778 ep++, daint_in >>= 1) {
3779 if (daint_in & 1)
3780 dwc2_hsotg_epint(hsotg, ep, 1);
3781 }
3782 }
3783
3784 /* check both FIFOs */
3785
3786 if (gintsts & GINTSTS_NPTXFEMP) {
3787 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3788
3789 /*
3790 * Disable the interrupt to stop it happening again
3791 * unless one of these endpoint routines decides that
3792 * it needs re-enabling
3793 */
3794
3795 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3796 dwc2_hsotg_irq_fifoempty(hsotg, false);
3797 }
3798
3799 if (gintsts & GINTSTS_PTXFEMP) {
3800 dev_dbg(hsotg->dev, "PTxFEmp\n");
3801
3802 /* See note in GINTSTS_NPTxFEmp */
3803
3804 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3805 dwc2_hsotg_irq_fifoempty(hsotg, true);
3806 }
3807
3808 if (gintsts & GINTSTS_RXFLVL) {
3809 /*
3810 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3811 * we need to retry dwc2_hsotg_handle_rx if this is still
3812 * set.
3813 */
3814
3815 dwc2_hsotg_handle_rx(hsotg);
3816 }
3817
3818 if (gintsts & GINTSTS_ERLYSUSP) {
3819 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3820 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3821 }
3822
3823 /*
3824 * these next two seem to crop-up occasionally causing the core
3825 * to shutdown the USB transfer, so try clearing them and logging
3826 * the occurrence.
3827 */
3828
3829 if (gintsts & GINTSTS_GOUTNAKEFF) {
3830 u8 idx;
3831 u32 epctrl;
3832 u32 gintmsk;
3833 u32 daintmsk;
3834 struct dwc2_hsotg_ep *hs_ep;
3835
3836 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3837 daintmsk >>= DAINT_OUTEP_SHIFT;
3838 /* Mask this interrupt */
3839 gintmsk = dwc2_readl(hsotg, GINTMSK);
3840 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3841 dwc2_writel(hsotg, gintmsk, GINTMSK);
3842
3843 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3844 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3845 hs_ep = hsotg->eps_out[idx];
3846 /* Proceed only unmasked ISOC EPs */
3847 if (BIT(idx) & ~daintmsk)
3848 continue;
3849
3850 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3851
3852 //ISOC Ep's only
3853 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3854 epctrl |= DXEPCTL_SNAK;
3855 epctrl |= DXEPCTL_EPDIS;
3856 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3857 continue;
3858 }
3859
3860 //Non-ISOC EP's
3861 if (hs_ep->halted) {
3862 if (!(epctrl & DXEPCTL_EPENA))
3863 epctrl |= DXEPCTL_EPENA;
3864 epctrl |= DXEPCTL_EPDIS;
3865 epctrl |= DXEPCTL_STALL;
3866 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3867 }
3868 }
3869
3870 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3871 }
3872
3873 if (gintsts & GINTSTS_GINNAKEFF) {
3874 dev_info(hsotg->dev, "GINNakEff triggered\n");
3875
3876 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3877
3878 dwc2_hsotg_dump(hsotg);
3879 }
3880
3881 if (gintsts & GINTSTS_INCOMPL_SOIN)
3882 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3883
3884 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3885 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3886
3887 /*
3888 * if we've had fifo events, we should try and go around the
3889 * loop again to see if there's any point in returning yet.
3890 */
3891
3892 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3893 goto irq_retry;
3894
3895 /* Check WKUP_ALERT interrupt*/
3896 if (hsotg->params.service_interval)
3897 dwc2_gadget_wkup_alert_handler(hsotg);
3898
3899 spin_unlock(&hsotg->lock);
3900
3901 return IRQ_HANDLED;
3902}
3903
3904static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3905 struct dwc2_hsotg_ep *hs_ep)
3906{
3907 u32 epctrl_reg;
3908 u32 epint_reg;
3909
3910 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3911 DOEPCTL(hs_ep->index);
3912 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3913 DOEPINT(hs_ep->index);
3914
3915 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3916 hs_ep->name);
3917
3918 if (hs_ep->dir_in) {
3919 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3920 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3921 /* Wait for Nak effect */
3922 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3923 DXEPINT_INEPNAKEFF, 100))
3924 dev_warn(hsotg->dev,
3925 "%s: timeout DIEPINT.NAKEFF\n",
3926 __func__);
3927 } else {
3928 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3929 /* Wait for Nak effect */
3930 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3931 GINTSTS_GINNAKEFF, 100))
3932 dev_warn(hsotg->dev,
3933 "%s: timeout GINTSTS.GINNAKEFF\n",
3934 __func__);
3935 }
3936 } else {
3937 /* Mask GINTSTS_GOUTNAKEFF interrupt */
3938 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3939
3940 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3941 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3942
3943 if (!using_dma(hsotg)) {
3944 /* Wait for GINTSTS_RXFLVL interrupt */
3945 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3946 GINTSTS_RXFLVL, 100)) {
3947 dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3948 __func__);
3949 } else {
3950 /*
3951 * Pop GLOBAL OUT NAK status packet from RxFIFO
3952 * to assert GOUTNAKEFF interrupt
3953 */
3954 dwc2_readl(hsotg, GRXSTSP);
3955 }
3956 }
3957
3958 /* Wait for global nak to take effect */
3959 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3960 GINTSTS_GOUTNAKEFF, 100))
3961 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3962 __func__);
3963 }
3964
3965 /* Disable ep */
3966 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3967
3968 /* Wait for ep to be disabled */
3969 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3970 dev_warn(hsotg->dev,
3971 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3972
3973 /* Clear EPDISBLD interrupt */
3974 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3975
3976 if (hs_ep->dir_in) {
3977 unsigned short fifo_index;
3978
3979 if (hsotg->dedicated_fifos || hs_ep->periodic)
3980 fifo_index = hs_ep->fifo_index;
3981 else
3982 fifo_index = 0;
3983
3984 /* Flush TX FIFO */
3985 dwc2_flush_tx_fifo(hsotg, fifo_index);
3986
3987 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3988 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3989 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3990
3991 } else {
3992 /* Remove global NAKs */
3993 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3994 }
3995}
3996
3997/**
3998 * dwc2_hsotg_ep_enable - enable the given endpoint
3999 * @ep: The USB endpint to configure
4000 * @desc: The USB endpoint descriptor to configure with.
4001 *
4002 * This is called from the USB gadget code's usb_ep_enable().
4003 */
4004static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
4005 const struct usb_endpoint_descriptor *desc)
4006{
4007 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4008 struct dwc2_hsotg *hsotg = hs_ep->parent;
4009 unsigned long flags;
4010 unsigned int index = hs_ep->index;
4011 u32 epctrl_reg;
4012 u32 epctrl;
4013 u32 mps;
4014 u32 mc;
4015 u32 mask;
4016 unsigned int dir_in;
4017 unsigned int i, val, size;
4018 int ret = 0;
4019 unsigned char ep_type;
4020 int desc_num;
4021
4022 dev_dbg(hsotg->dev,
4023 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4024 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4025 desc->wMaxPacketSize, desc->bInterval);
4026
4027 /* not to be called for EP0 */
4028 if (index == 0) {
4029 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4030 return -EINVAL;
4031 }
4032
4033 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4034 if (dir_in != hs_ep->dir_in) {
4035 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4036 return -EINVAL;
4037 }
4038
4039 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4040 mps = usb_endpoint_maxp(desc);
4041 mc = usb_endpoint_maxp_mult(desc);
4042
4043 /* ISOC IN in DDMA supported bInterval up to 10 */
4044 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4045 dir_in && desc->bInterval > 10) {
4046 dev_err(hsotg->dev,
4047 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4048 return -EINVAL;
4049 }
4050
4051 /* High bandwidth ISOC OUT in DDMA not supported */
4052 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4053 !dir_in && mc > 1) {
4054 dev_err(hsotg->dev,
4055 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4056 return -EINVAL;
4057 }
4058
4059 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4060
4061 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4062 epctrl = dwc2_readl(hsotg, epctrl_reg);
4063
4064 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4065 __func__, epctrl, epctrl_reg);
4066
4067 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4068 desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4069 else
4070 desc_num = MAX_DMA_DESC_NUM_GENERIC;
4071
4072 /* Allocate DMA descriptor chain for non-ctrl endpoints */
4073 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4074 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4075 desc_num * sizeof(struct dwc2_dma_desc),
4076 &hs_ep->desc_list_dma, GFP_ATOMIC);
4077 if (!hs_ep->desc_list) {
4078 ret = -ENOMEM;
4079 goto error2;
4080 }
4081 }
4082
4083 spin_lock_irqsave(&hsotg->lock, flags);
4084
4085 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4086 epctrl |= DXEPCTL_MPS(mps);
4087
4088 /*
4089 * mark the endpoint as active, otherwise the core may ignore
4090 * transactions entirely for this endpoint
4091 */
4092 epctrl |= DXEPCTL_USBACTEP;
4093
4094 /* update the endpoint state */
4095 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4096
4097 /* default, set to non-periodic */
4098 hs_ep->isochronous = 0;
4099 hs_ep->periodic = 0;
4100 hs_ep->halted = 0;
4101 hs_ep->wedged = 0;
4102 hs_ep->interval = desc->bInterval;
4103
4104 switch (ep_type) {
4105 case USB_ENDPOINT_XFER_ISOC:
4106 epctrl |= DXEPCTL_EPTYPE_ISO;
4107 epctrl |= DXEPCTL_SETEVENFR;
4108 hs_ep->isochronous = 1;
4109 hs_ep->interval = 1 << (desc->bInterval - 1);
4110 hs_ep->target_frame = TARGET_FRAME_INITIAL;
4111 hs_ep->next_desc = 0;
4112 hs_ep->compl_desc = 0;
4113 if (dir_in) {
4114 hs_ep->periodic = 1;
4115 mask = dwc2_readl(hsotg, DIEPMSK);
4116 mask |= DIEPMSK_NAKMSK;
4117 dwc2_writel(hsotg, mask, DIEPMSK);
4118 } else {
4119 epctrl |= DXEPCTL_SNAK;
4120 mask = dwc2_readl(hsotg, DOEPMSK);
4121 mask |= DOEPMSK_OUTTKNEPDISMSK;
4122 dwc2_writel(hsotg, mask, DOEPMSK);
4123 }
4124 break;
4125
4126 case USB_ENDPOINT_XFER_BULK:
4127 epctrl |= DXEPCTL_EPTYPE_BULK;
4128 break;
4129
4130 case USB_ENDPOINT_XFER_INT:
4131 if (dir_in)
4132 hs_ep->periodic = 1;
4133
4134 if (hsotg->gadget.speed == USB_SPEED_HIGH)
4135 hs_ep->interval = 1 << (desc->bInterval - 1);
4136
4137 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4138 break;
4139
4140 case USB_ENDPOINT_XFER_CONTROL:
4141 epctrl |= DXEPCTL_EPTYPE_CONTROL;
4142 break;
4143 }
4144
4145 /*
4146 * if the hardware has dedicated fifos, we must give each IN EP
4147 * a unique tx-fifo even if it is non-periodic.
4148 */
4149 if (dir_in && hsotg->dedicated_fifos) {
4150 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4151 u32 fifo_index = 0;
4152 u32 fifo_size = UINT_MAX;
4153
4154 size = hs_ep->ep.maxpacket * hs_ep->mc;
4155 for (i = 1; i <= fifo_count; ++i) {
4156 if (hsotg->fifo_map & (1 << i))
4157 continue;
4158 val = dwc2_readl(hsotg, DPTXFSIZN(i));
4159 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4160 if (val < size)
4161 continue;
4162 /* Search for smallest acceptable fifo */
4163 if (val < fifo_size) {
4164 fifo_size = val;
4165 fifo_index = i;
4166 }
4167 }
4168 if (!fifo_index) {
4169 dev_err(hsotg->dev,
4170 "%s: No suitable fifo found\n", __func__);
4171 ret = -ENOMEM;
4172 goto error1;
4173 }
4174 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4175 hsotg->fifo_map |= 1 << fifo_index;
4176 epctrl |= DXEPCTL_TXFNUM(fifo_index);
4177 hs_ep->fifo_index = fifo_index;
4178 hs_ep->fifo_size = fifo_size;
4179 }
4180
4181 /* for non control endpoints, set PID to D0 */
4182 if (index && !hs_ep->isochronous)
4183 epctrl |= DXEPCTL_SETD0PID;
4184
4185 /* WA for Full speed ISOC IN in DDMA mode.
4186 * By Clear NAK status of EP, core will send ZLP
4187 * to IN token and assert NAK interrupt relying
4188 * on TxFIFO status only
4189 */
4190
4191 if (hsotg->gadget.speed == USB_SPEED_FULL &&
4192 hs_ep->isochronous && dir_in) {
4193 /* The WA applies only to core versions from 2.72a
4194 * to 4.00a (including both). Also for FS_IOT_1.00a
4195 * and HS_IOT_1.00a.
4196 */
4197 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4198
4199 if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4200 gsnpsid <= DWC2_CORE_REV_4_00a) ||
4201 gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4202 gsnpsid == DWC2_HS_IOT_REV_1_00a)
4203 epctrl |= DXEPCTL_CNAK;
4204 }
4205
4206 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4207 __func__, epctrl);
4208
4209 dwc2_writel(hsotg, epctrl, epctrl_reg);
4210 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4211 __func__, dwc2_readl(hsotg, epctrl_reg));
4212
4213 /* enable the endpoint interrupt */
4214 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4215
4216error1:
4217 spin_unlock_irqrestore(&hsotg->lock, flags);
4218
4219error2:
4220 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4221 dmam_free_coherent(hsotg->dev, desc_num *
4222 sizeof(struct dwc2_dma_desc),
4223 hs_ep->desc_list, hs_ep->desc_list_dma);
4224 hs_ep->desc_list = NULL;
4225 }
4226
4227 return ret;
4228}
4229
4230/**
4231 * dwc2_hsotg_ep_disable - disable given endpoint
4232 * @ep: The endpoint to disable.
4233 */
4234static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4235{
4236 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4237 struct dwc2_hsotg *hsotg = hs_ep->parent;
4238 int dir_in = hs_ep->dir_in;
4239 int index = hs_ep->index;
4240 u32 epctrl_reg;
4241 u32 ctrl;
4242
4243 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4244
4245 if (ep == &hsotg->eps_out[0]->ep) {
4246 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4247 return -EINVAL;
4248 }
4249
4250 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4251 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4252 return -EINVAL;
4253 }
4254
4255 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4256
4257 ctrl = dwc2_readl(hsotg, epctrl_reg);
4258
4259 if (ctrl & DXEPCTL_EPENA)
4260 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4261
4262 ctrl &= ~DXEPCTL_EPENA;
4263 ctrl &= ~DXEPCTL_USBACTEP;
4264 ctrl |= DXEPCTL_SNAK;
4265
4266 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4267 dwc2_writel(hsotg, ctrl, epctrl_reg);
4268
4269 /* disable endpoint interrupts */
4270 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4271
4272 /* terminate all requests with shutdown */
4273 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4274
4275 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4276 hs_ep->fifo_index = 0;
4277 hs_ep->fifo_size = 0;
4278
4279 return 0;
4280}
4281
4282static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4283{
4284 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4285 struct dwc2_hsotg *hsotg = hs_ep->parent;
4286 unsigned long flags;
4287 int ret;
4288
4289 spin_lock_irqsave(&hsotg->lock, flags);
4290 ret = dwc2_hsotg_ep_disable(ep);
4291 spin_unlock_irqrestore(&hsotg->lock, flags);
4292 return ret;
4293}
4294
4295/**
4296 * on_list - check request is on the given endpoint
4297 * @ep: The endpoint to check.
4298 * @test: The request to test if it is on the endpoint.
4299 */
4300static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4301{
4302 struct dwc2_hsotg_req *req, *treq;
4303
4304 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4305 if (req == test)
4306 return true;
4307 }
4308
4309 return false;
4310}
4311
4312/**
4313 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4314 * @ep: The endpoint to dequeue.
4315 * @req: The request to be removed from a queue.
4316 */
4317static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4318{
4319 struct dwc2_hsotg_req *hs_req = our_req(req);
4320 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4321 struct dwc2_hsotg *hs = hs_ep->parent;
4322 unsigned long flags;
4323
4324 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4325
4326 spin_lock_irqsave(&hs->lock, flags);
4327
4328 if (!on_list(hs_ep, hs_req)) {
4329 spin_unlock_irqrestore(&hs->lock, flags);
4330 return -EINVAL;
4331 }
4332
4333 /* Dequeue already started request */
4334 if (req == &hs_ep->req->req)
4335 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4336
4337 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4338 spin_unlock_irqrestore(&hs->lock, flags);
4339
4340 return 0;
4341}
4342
4343/**
4344 * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint
4345 * @ep: The endpoint to be wedged.
4346 *
4347 */
4348static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep)
4349{
4350 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4351 struct dwc2_hsotg *hs = hs_ep->parent;
4352
4353 unsigned long flags;
4354 int ret;
4355
4356 spin_lock_irqsave(&hs->lock, flags);
4357 hs_ep->wedged = 1;
4358 ret = dwc2_hsotg_ep_sethalt(ep, 1, false);
4359 spin_unlock_irqrestore(&hs->lock, flags);
4360
4361 return ret;
4362}
4363
4364/**
4365 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4366 * @ep: The endpoint to set halt.
4367 * @value: Set or unset the halt.
4368 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4369 * the endpoint is busy processing requests.
4370 *
4371 * We need to stall the endpoint immediately if request comes from set_feature
4372 * protocol command handler.
4373 */
4374static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4375{
4376 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4377 struct dwc2_hsotg *hs = hs_ep->parent;
4378 int index = hs_ep->index;
4379 u32 epreg;
4380 u32 epctl;
4381 u32 xfertype;
4382
4383 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4384
4385 if (index == 0) {
4386 if (value)
4387 dwc2_hsotg_stall_ep0(hs);
4388 else
4389 dev_warn(hs->dev,
4390 "%s: can't clear halt on ep0\n", __func__);
4391 return 0;
4392 }
4393
4394 if (hs_ep->isochronous) {
4395 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4396 return -EINVAL;
4397 }
4398
4399 if (!now && value && !list_empty(&hs_ep->queue)) {
4400 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4401 ep->name);
4402 return -EAGAIN;
4403 }
4404
4405 if (hs_ep->dir_in) {
4406 epreg = DIEPCTL(index);
4407 epctl = dwc2_readl(hs, epreg);
4408
4409 if (value) {
4410 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4411 if (epctl & DXEPCTL_EPENA)
4412 epctl |= DXEPCTL_EPDIS;
4413 } else {
4414 epctl &= ~DXEPCTL_STALL;
4415 hs_ep->wedged = 0;
4416 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4417 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4418 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4419 epctl |= DXEPCTL_SETD0PID;
4420 }
4421 dwc2_writel(hs, epctl, epreg);
4422 } else {
4423 epreg = DOEPCTL(index);
4424 epctl = dwc2_readl(hs, epreg);
4425
4426 if (value) {
4427 /* Unmask GOUTNAKEFF interrupt */
4428 dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4429
4430 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4431 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4432 // STALL bit will be set in GOUTNAKEFF interrupt handler
4433 } else {
4434 epctl &= ~DXEPCTL_STALL;
4435 hs_ep->wedged = 0;
4436 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4437 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4438 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4439 epctl |= DXEPCTL_SETD0PID;
4440 dwc2_writel(hs, epctl, epreg);
4441 }
4442 }
4443
4444 hs_ep->halted = value;
4445 return 0;
4446}
4447
4448/**
4449 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4450 * @ep: The endpoint to set halt.
4451 * @value: Set or unset the halt.
4452 */
4453static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4454{
4455 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4456 struct dwc2_hsotg *hs = hs_ep->parent;
4457 unsigned long flags;
4458 int ret;
4459
4460 spin_lock_irqsave(&hs->lock, flags);
4461 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4462 spin_unlock_irqrestore(&hs->lock, flags);
4463
4464 return ret;
4465}
4466
4467static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4468 .enable = dwc2_hsotg_ep_enable,
4469 .disable = dwc2_hsotg_ep_disable_lock,
4470 .alloc_request = dwc2_hsotg_ep_alloc_request,
4471 .free_request = dwc2_hsotg_ep_free_request,
4472 .queue = dwc2_hsotg_ep_queue_lock,
4473 .dequeue = dwc2_hsotg_ep_dequeue,
4474 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4475 .set_wedge = dwc2_gadget_ep_set_wedge,
4476 /* note, don't believe we have any call for the fifo routines */
4477};
4478
4479/**
4480 * dwc2_hsotg_init - initialize the usb core
4481 * @hsotg: The driver state
4482 */
4483static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4484{
4485 /* unmask subset of endpoint interrupts */
4486
4487 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4488 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4489 DIEPMSK);
4490
4491 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4492 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4493 DOEPMSK);
4494
4495 dwc2_writel(hsotg, 0, DAINTMSK);
4496
4497 /* Be in disconnected state until gadget is registered */
4498 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4499
4500 /* setup fifos */
4501
4502 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4503 dwc2_readl(hsotg, GRXFSIZ),
4504 dwc2_readl(hsotg, GNPTXFSIZ));
4505
4506 dwc2_hsotg_init_fifo(hsotg);
4507
4508 if (using_dma(hsotg))
4509 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4510}
4511
4512/**
4513 * dwc2_hsotg_udc_start - prepare the udc for work
4514 * @gadget: The usb gadget state
4515 * @driver: The usb gadget driver
4516 *
4517 * Perform initialization to prepare udc device and driver
4518 * to work.
4519 */
4520static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4521 struct usb_gadget_driver *driver)
4522{
4523 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4524 unsigned long flags;
4525 int ret;
4526
4527 if (!hsotg) {
4528 pr_err("%s: called with no device\n", __func__);
4529 return -ENODEV;
4530 }
4531
4532 if (!driver) {
4533 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4534 return -EINVAL;
4535 }
4536
4537 if (driver->max_speed < USB_SPEED_FULL)
4538 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4539
4540 if (!driver->setup) {
4541 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4542 return -EINVAL;
4543 }
4544
4545 WARN_ON(hsotg->driver);
4546
4547 hsotg->driver = driver;
4548 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4549 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4550
4551 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4552 ret = dwc2_lowlevel_hw_enable(hsotg);
4553 if (ret)
4554 goto err;
4555 }
4556
4557 if (!IS_ERR_OR_NULL(hsotg->uphy))
4558 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4559
4560 spin_lock_irqsave(&hsotg->lock, flags);
4561 if (dwc2_hw_is_device(hsotg)) {
4562 dwc2_hsotg_init(hsotg);
4563 dwc2_hsotg_core_init_disconnected(hsotg, false);
4564 }
4565
4566 hsotg->enabled = 0;
4567 spin_unlock_irqrestore(&hsotg->lock, flags);
4568
4569 gadget->sg_supported = using_desc_dma(hsotg);
4570 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4571
4572 return 0;
4573
4574err:
4575 hsotg->driver = NULL;
4576 return ret;
4577}
4578
4579/**
4580 * dwc2_hsotg_udc_stop - stop the udc
4581 * @gadget: The usb gadget state
4582 *
4583 * Stop udc hw block and stay tunned for future transmissions
4584 */
4585static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4586{
4587 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4588 unsigned long flags;
4589 int ep;
4590
4591 if (!hsotg)
4592 return -ENODEV;
4593
4594 /* all endpoints should be shutdown */
4595 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4596 if (hsotg->eps_in[ep])
4597 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4598 if (hsotg->eps_out[ep])
4599 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4600 }
4601
4602 spin_lock_irqsave(&hsotg->lock, flags);
4603
4604 hsotg->driver = NULL;
4605 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4606 hsotg->enabled = 0;
4607
4608 spin_unlock_irqrestore(&hsotg->lock, flags);
4609
4610 if (!IS_ERR_OR_NULL(hsotg->uphy))
4611 otg_set_peripheral(hsotg->uphy->otg, NULL);
4612
4613 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4614 dwc2_lowlevel_hw_disable(hsotg);
4615
4616 return 0;
4617}
4618
4619/**
4620 * dwc2_hsotg_gadget_getframe - read the frame number
4621 * @gadget: The usb gadget state
4622 *
4623 * Read the {micro} frame number
4624 */
4625static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4626{
4627 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4628}
4629
4630/**
4631 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4632 * @gadget: The usb gadget state
4633 * @is_selfpowered: Whether the device is self-powered
4634 *
4635 * Set if the device is self or bus powered.
4636 */
4637static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4638 int is_selfpowered)
4639{
4640 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4641 unsigned long flags;
4642
4643 spin_lock_irqsave(&hsotg->lock, flags);
4644 gadget->is_selfpowered = !!is_selfpowered;
4645 spin_unlock_irqrestore(&hsotg->lock, flags);
4646
4647 return 0;
4648}
4649
4650/**
4651 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4652 * @gadget: The usb gadget state
4653 * @is_on: Current state of the USB PHY
4654 *
4655 * Connect/Disconnect the USB PHY pullup
4656 */
4657static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4658{
4659 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4660 unsigned long flags;
4661
4662 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4663 hsotg->op_state);
4664
4665 /* Don't modify pullup state while in host mode */
4666 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4667 hsotg->enabled = is_on;
4668 return 0;
4669 }
4670
4671 spin_lock_irqsave(&hsotg->lock, flags);
4672 if (is_on) {
4673 hsotg->enabled = 1;
4674 dwc2_hsotg_core_init_disconnected(hsotg, false);
4675 /* Enable ACG feature in device mode,if supported */
4676 dwc2_enable_acg(hsotg);
4677 dwc2_hsotg_core_connect(hsotg);
4678 } else {
4679 dwc2_hsotg_core_disconnect(hsotg);
4680 dwc2_hsotg_disconnect(hsotg);
4681 hsotg->enabled = 0;
4682 }
4683
4684 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4685 spin_unlock_irqrestore(&hsotg->lock, flags);
4686
4687 return 0;
4688}
4689
4690static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4691{
4692 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4693 unsigned long flags;
4694
4695 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4696 spin_lock_irqsave(&hsotg->lock, flags);
4697
4698 /*
4699 * If controller is in partial power down state, it must exit from
4700 * that state before being initialized / de-initialized
4701 */
4702 if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4703 /*
4704 * No need to check the return value as
4705 * registers are not being restored.
4706 */
4707 dwc2_exit_partial_power_down(hsotg, 0, false);
4708
4709 if (is_active) {
4710 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4711
4712 dwc2_hsotg_core_init_disconnected(hsotg, false);
4713 if (hsotg->enabled) {
4714 /* Enable ACG feature in device mode,if supported */
4715 dwc2_enable_acg(hsotg);
4716 dwc2_hsotg_core_connect(hsotg);
4717 }
4718 } else {
4719 dwc2_hsotg_core_disconnect(hsotg);
4720 dwc2_hsotg_disconnect(hsotg);
4721 }
4722
4723 spin_unlock_irqrestore(&hsotg->lock, flags);
4724 return 0;
4725}
4726
4727/**
4728 * dwc2_hsotg_vbus_draw - report bMaxPower field
4729 * @gadget: The usb gadget state
4730 * @mA: Amount of current
4731 *
4732 * Report how much power the device may consume to the phy.
4733 */
4734static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4735{
4736 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4737
4738 if (IS_ERR_OR_NULL(hsotg->uphy))
4739 return -ENOTSUPP;
4740 return usb_phy_set_power(hsotg->uphy, mA);
4741}
4742
4743static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed)
4744{
4745 struct dwc2_hsotg *hsotg = to_hsotg(g);
4746 unsigned long flags;
4747
4748 spin_lock_irqsave(&hsotg->lock, flags);
4749 switch (speed) {
4750 case USB_SPEED_HIGH:
4751 hsotg->params.speed = DWC2_SPEED_PARAM_HIGH;
4752 break;
4753 case USB_SPEED_FULL:
4754 hsotg->params.speed = DWC2_SPEED_PARAM_FULL;
4755 break;
4756 case USB_SPEED_LOW:
4757 hsotg->params.speed = DWC2_SPEED_PARAM_LOW;
4758 break;
4759 default:
4760 dev_err(hsotg->dev, "invalid speed (%d)\n", speed);
4761 }
4762 spin_unlock_irqrestore(&hsotg->lock, flags);
4763}
4764
4765static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4766 .get_frame = dwc2_hsotg_gadget_getframe,
4767 .set_selfpowered = dwc2_hsotg_set_selfpowered,
4768 .udc_start = dwc2_hsotg_udc_start,
4769 .udc_stop = dwc2_hsotg_udc_stop,
4770 .pullup = dwc2_hsotg_pullup,
4771 .udc_set_speed = dwc2_gadget_set_speed,
4772 .vbus_session = dwc2_hsotg_vbus_session,
4773 .vbus_draw = dwc2_hsotg_vbus_draw,
4774};
4775
4776/**
4777 * dwc2_hsotg_initep - initialise a single endpoint
4778 * @hsotg: The device state.
4779 * @hs_ep: The endpoint to be initialised.
4780 * @epnum: The endpoint number
4781 * @dir_in: True if direction is in.
4782 *
4783 * Initialise the given endpoint (as part of the probe and device state
4784 * creation) to give to the gadget driver. Setup the endpoint name, any
4785 * direction information and other state that may be required.
4786 */
4787static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4788 struct dwc2_hsotg_ep *hs_ep,
4789 int epnum,
4790 bool dir_in)
4791{
4792 char *dir;
4793
4794 if (epnum == 0)
4795 dir = "";
4796 else if (dir_in)
4797 dir = "in";
4798 else
4799 dir = "out";
4800
4801 hs_ep->dir_in = dir_in;
4802 hs_ep->index = epnum;
4803
4804 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4805
4806 INIT_LIST_HEAD(&hs_ep->queue);
4807 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4808
4809 /* add to the list of endpoints known by the gadget driver */
4810 if (epnum)
4811 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4812
4813 hs_ep->parent = hsotg;
4814 hs_ep->ep.name = hs_ep->name;
4815
4816 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4817 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4818 else
4819 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4820 epnum ? 1024 : EP0_MPS_LIMIT);
4821 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4822
4823 if (epnum == 0) {
4824 hs_ep->ep.caps.type_control = true;
4825 } else {
4826 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4827 hs_ep->ep.caps.type_iso = true;
4828 hs_ep->ep.caps.type_bulk = true;
4829 }
4830 hs_ep->ep.caps.type_int = true;
4831 }
4832
4833 if (dir_in)
4834 hs_ep->ep.caps.dir_in = true;
4835 else
4836 hs_ep->ep.caps.dir_out = true;
4837
4838 /*
4839 * if we're using dma, we need to set the next-endpoint pointer
4840 * to be something valid.
4841 */
4842
4843 if (using_dma(hsotg)) {
4844 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4845
4846 if (dir_in)
4847 dwc2_writel(hsotg, next, DIEPCTL(epnum));
4848 else
4849 dwc2_writel(hsotg, next, DOEPCTL(epnum));
4850 }
4851}
4852
4853/**
4854 * dwc2_hsotg_hw_cfg - read HW configuration registers
4855 * @hsotg: Programming view of the DWC_otg controller
4856 *
4857 * Read the USB core HW configuration registers
4858 */
4859static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4860{
4861 u32 cfg;
4862 u32 ep_type;
4863 u32 i;
4864
4865 /* check hardware configuration */
4866
4867 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4868
4869 /* Add ep0 */
4870 hsotg->num_of_eps++;
4871
4872 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4873 sizeof(struct dwc2_hsotg_ep),
4874 GFP_KERNEL);
4875 if (!hsotg->eps_in[0])
4876 return -ENOMEM;
4877 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4878 hsotg->eps_out[0] = hsotg->eps_in[0];
4879
4880 cfg = hsotg->hw_params.dev_ep_dirs;
4881 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4882 ep_type = cfg & 3;
4883 /* Direction in or both */
4884 if (!(ep_type & 2)) {
4885 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4886 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4887 if (!hsotg->eps_in[i])
4888 return -ENOMEM;
4889 }
4890 /* Direction out or both */
4891 if (!(ep_type & 1)) {
4892 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4893 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4894 if (!hsotg->eps_out[i])
4895 return -ENOMEM;
4896 }
4897 }
4898
4899 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4900 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4901
4902 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4903 hsotg->num_of_eps,
4904 hsotg->dedicated_fifos ? "dedicated" : "shared",
4905 hsotg->fifo_mem);
4906 return 0;
4907}
4908
4909/**
4910 * dwc2_hsotg_dump - dump state of the udc
4911 * @hsotg: Programming view of the DWC_otg controller
4912 *
4913 */
4914static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4915{
4916#ifdef DEBUG
4917 struct device *dev = hsotg->dev;
4918 u32 val;
4919 int idx;
4920
4921 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4922 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4923 dwc2_readl(hsotg, DIEPMSK));
4924
4925 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4926 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4927
4928 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4929 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4930
4931 /* show periodic fifo settings */
4932
4933 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4934 val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4935 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4936 val >> FIFOSIZE_DEPTH_SHIFT,
4937 val & FIFOSIZE_STARTADDR_MASK);
4938 }
4939
4940 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4941 dev_info(dev,
4942 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4943 dwc2_readl(hsotg, DIEPCTL(idx)),
4944 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4945 dwc2_readl(hsotg, DIEPDMA(idx)));
4946
4947 val = dwc2_readl(hsotg, DOEPCTL(idx));
4948 dev_info(dev,
4949 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4950 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4951 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4952 dwc2_readl(hsotg, DOEPDMA(idx)));
4953 }
4954
4955 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4956 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4957#endif
4958}
4959
4960/**
4961 * dwc2_gadget_init - init function for gadget
4962 * @hsotg: Programming view of the DWC_otg controller
4963 *
4964 */
4965int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4966{
4967 struct device *dev = hsotg->dev;
4968 int epnum;
4969 int ret;
4970
4971 /* Dump fifo information */
4972 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4973 hsotg->params.g_np_tx_fifo_size);
4974 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4975
4976 switch (hsotg->params.speed) {
4977 case DWC2_SPEED_PARAM_LOW:
4978 hsotg->gadget.max_speed = USB_SPEED_LOW;
4979 break;
4980 case DWC2_SPEED_PARAM_FULL:
4981 hsotg->gadget.max_speed = USB_SPEED_FULL;
4982 break;
4983 default:
4984 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4985 break;
4986 }
4987
4988 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4989 hsotg->gadget.name = dev_name(dev);
4990 hsotg->gadget.otg_caps = &hsotg->params.otg_caps;
4991 hsotg->remote_wakeup_allowed = 0;
4992
4993 if (hsotg->params.lpm)
4994 hsotg->gadget.lpm_capable = true;
4995
4996 if (hsotg->dr_mode == USB_DR_MODE_OTG)
4997 hsotg->gadget.is_otg = 1;
4998 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4999 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
5000
5001 ret = dwc2_hsotg_hw_cfg(hsotg);
5002 if (ret) {
5003 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
5004 return ret;
5005 }
5006
5007 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
5008 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5009 if (!hsotg->ctrl_buff)
5010 return -ENOMEM;
5011
5012 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
5013 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5014 if (!hsotg->ep0_buff)
5015 return -ENOMEM;
5016
5017 if (using_desc_dma(hsotg)) {
5018 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
5019 if (ret < 0)
5020 return ret;
5021 }
5022
5023 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
5024 IRQF_SHARED, dev_name(hsotg->dev), hsotg);
5025 if (ret < 0) {
5026 dev_err(dev, "cannot claim IRQ for gadget\n");
5027 return ret;
5028 }
5029
5030 /* hsotg->num_of_eps holds number of EPs other than ep0 */
5031
5032 if (hsotg->num_of_eps == 0) {
5033 dev_err(dev, "wrong number of EPs (zero)\n");
5034 return -EINVAL;
5035 }
5036
5037 /* setup endpoint information */
5038
5039 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
5040 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
5041
5042 /* allocate EP0 request */
5043
5044 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
5045 GFP_KERNEL);
5046 if (!hsotg->ctrl_req) {
5047 dev_err(dev, "failed to allocate ctrl req\n");
5048 return -ENOMEM;
5049 }
5050
5051 /* initialise the endpoints now the core has been initialised */
5052 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
5053 if (hsotg->eps_in[epnum])
5054 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
5055 epnum, 1);
5056 if (hsotg->eps_out[epnum])
5057 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
5058 epnum, 0);
5059 }
5060
5061 dwc2_hsotg_dump(hsotg);
5062
5063 return 0;
5064}
5065
5066/**
5067 * dwc2_hsotg_remove - remove function for hsotg driver
5068 * @hsotg: Programming view of the DWC_otg controller
5069 *
5070 */
5071int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5072{
5073 usb_del_gadget_udc(&hsotg->gadget);
5074 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5075
5076 return 0;
5077}
5078
5079int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5080{
5081 unsigned long flags;
5082
5083 if (hsotg->lx_state != DWC2_L0)
5084 return 0;
5085
5086 if (hsotg->driver) {
5087 int ep;
5088
5089 dev_info(hsotg->dev, "suspending usb gadget %s\n",
5090 hsotg->driver->driver.name);
5091
5092 spin_lock_irqsave(&hsotg->lock, flags);
5093 if (hsotg->enabled)
5094 dwc2_hsotg_core_disconnect(hsotg);
5095 dwc2_hsotg_disconnect(hsotg);
5096 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5097 spin_unlock_irqrestore(&hsotg->lock, flags);
5098
5099 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
5100 if (hsotg->eps_in[ep])
5101 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5102 if (hsotg->eps_out[ep])
5103 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5104 }
5105 }
5106
5107 return 0;
5108}
5109
5110int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5111{
5112 unsigned long flags;
5113
5114 if (hsotg->lx_state == DWC2_L2)
5115 return 0;
5116
5117 if (hsotg->driver) {
5118 dev_info(hsotg->dev, "resuming usb gadget %s\n",
5119 hsotg->driver->driver.name);
5120
5121 spin_lock_irqsave(&hsotg->lock, flags);
5122 dwc2_hsotg_core_init_disconnected(hsotg, false);
5123 if (hsotg->enabled) {
5124 /* Enable ACG feature in device mode,if supported */
5125 dwc2_enable_acg(hsotg);
5126 dwc2_hsotg_core_connect(hsotg);
5127 }
5128 spin_unlock_irqrestore(&hsotg->lock, flags);
5129 }
5130
5131 return 0;
5132}
5133
5134/**
5135 * dwc2_backup_device_registers() - Backup controller device registers.
5136 * When suspending usb bus, registers needs to be backuped
5137 * if controller power is disabled once suspended.
5138 *
5139 * @hsotg: Programming view of the DWC_otg controller
5140 */
5141int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5142{
5143 struct dwc2_dregs_backup *dr;
5144 int i;
5145
5146 dev_dbg(hsotg->dev, "%s\n", __func__);
5147
5148 /* Backup dev regs */
5149 dr = &hsotg->dr_backup;
5150
5151 dr->dcfg = dwc2_readl(hsotg, DCFG);
5152 dr->dctl = dwc2_readl(hsotg, DCTL);
5153 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5154 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5155 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5156
5157 for (i = 0; i < hsotg->num_of_eps; i++) {
5158 /* Backup IN EPs */
5159 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5160
5161 /* Ensure DATA PID is correctly configured */
5162 if (dr->diepctl[i] & DXEPCTL_DPID)
5163 dr->diepctl[i] |= DXEPCTL_SETD1PID;
5164 else
5165 dr->diepctl[i] |= DXEPCTL_SETD0PID;
5166
5167 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5168 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5169
5170 /* Backup OUT EPs */
5171 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5172
5173 /* Ensure DATA PID is correctly configured */
5174 if (dr->doepctl[i] & DXEPCTL_DPID)
5175 dr->doepctl[i] |= DXEPCTL_SETD1PID;
5176 else
5177 dr->doepctl[i] |= DXEPCTL_SETD0PID;
5178
5179 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5180 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5181 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5182 }
5183 dr->valid = true;
5184 return 0;
5185}
5186
5187/**
5188 * dwc2_restore_device_registers() - Restore controller device registers.
5189 * When resuming usb bus, device registers needs to be restored
5190 * if controller power were disabled.
5191 *
5192 * @hsotg: Programming view of the DWC_otg controller
5193 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5194 *
5195 * Return: 0 if successful, negative error code otherwise
5196 */
5197int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5198{
5199 struct dwc2_dregs_backup *dr;
5200 int i;
5201
5202 dev_dbg(hsotg->dev, "%s\n", __func__);
5203
5204 /* Restore dev regs */
5205 dr = &hsotg->dr_backup;
5206 if (!dr->valid) {
5207 dev_err(hsotg->dev, "%s: no device registers to restore\n",
5208 __func__);
5209 return -EINVAL;
5210 }
5211 dr->valid = false;
5212
5213 if (!remote_wakeup)
5214 dwc2_writel(hsotg, dr->dctl, DCTL);
5215
5216 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5217 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5218 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5219
5220 for (i = 0; i < hsotg->num_of_eps; i++) {
5221 /* Restore IN EPs */
5222 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5223 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5224 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5225 /** WA for enabled EPx's IN in DDMA mode. On entering to
5226 * hibernation wrong value read and saved from DIEPDMAx,
5227 * as result BNA interrupt asserted on hibernation exit
5228 * by restoring from saved area.
5229 */
5230 if (using_desc_dma(hsotg) &&
5231 (dr->diepctl[i] & DXEPCTL_EPENA))
5232 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5233 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5234 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5235 /* Restore OUT EPs */
5236 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5237 /* WA for enabled EPx's OUT in DDMA mode. On entering to
5238 * hibernation wrong value read and saved from DOEPDMAx,
5239 * as result BNA interrupt asserted on hibernation exit
5240 * by restoring from saved area.
5241 */
5242 if (using_desc_dma(hsotg) &&
5243 (dr->doepctl[i] & DXEPCTL_EPENA))
5244 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5245 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5246 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5247 }
5248
5249 return 0;
5250}
5251
5252/**
5253 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5254 *
5255 * @hsotg: Programming view of DWC_otg controller
5256 *
5257 */
5258void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5259{
5260 u32 val;
5261
5262 if (!hsotg->params.lpm)
5263 return;
5264
5265 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5266 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5267 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5268 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5269 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5270 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5271 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5272 dwc2_writel(hsotg, val, GLPMCFG);
5273 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5274
5275 /* Unmask WKUP_ALERT Interrupt */
5276 if (hsotg->params.service_interval)
5277 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5278}
5279
5280/**
5281 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5282 *
5283 * @hsotg: Programming view of DWC_otg controller
5284 *
5285 */
5286void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5287{
5288 u32 val = 0;
5289
5290 val |= GREFCLK_REF_CLK_MODE;
5291 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5292 val |= hsotg->params.sof_cnt_wkup_alert <<
5293 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5294
5295 dwc2_writel(hsotg, val, GREFCLK);
5296 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5297}
5298
5299/**
5300 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5301 *
5302 * @hsotg: Programming view of the DWC_otg controller
5303 *
5304 * Return non-zero if failed to enter to hibernation.
5305 */
5306int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5307{
5308 u32 gpwrdn;
5309 int ret = 0;
5310
5311 /* Change to L2(suspend) state */
5312 hsotg->lx_state = DWC2_L2;
5313 dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5314 ret = dwc2_backup_global_registers(hsotg);
5315 if (ret) {
5316 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5317 __func__);
5318 return ret;
5319 }
5320 ret = dwc2_backup_device_registers(hsotg);
5321 if (ret) {
5322 dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5323 __func__);
5324 return ret;
5325 }
5326
5327 gpwrdn = GPWRDN_PWRDNRSTN;
5328 gpwrdn |= GPWRDN_PMUACTV;
5329 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5330 udelay(10);
5331
5332 /* Set flag to indicate that we are in hibernation */
5333 hsotg->hibernated = 1;
5334
5335 /* Enable interrupts from wake up logic */
5336 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5337 gpwrdn |= GPWRDN_PMUINTSEL;
5338 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5339 udelay(10);
5340
5341 /* Unmask device mode interrupts in GPWRDN */
5342 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5343 gpwrdn |= GPWRDN_RST_DET_MSK;
5344 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5345 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5346 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5347 udelay(10);
5348
5349 /* Enable Power Down Clamp */
5350 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5351 gpwrdn |= GPWRDN_PWRDNCLMP;
5352 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5353 udelay(10);
5354
5355 /* Switch off VDD */
5356 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5357 gpwrdn |= GPWRDN_PWRDNSWTCH;
5358 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5359 udelay(10);
5360
5361 /* Save gpwrdn register for further usage if stschng interrupt */
5362 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5363 dev_dbg(hsotg->dev, "Hibernation completed\n");
5364
5365 return ret;
5366}
5367
5368/**
5369 * dwc2_gadget_exit_hibernation()
5370 * This function is for exiting from Device mode hibernation by host initiated
5371 * resume/reset and device initiated remote-wakeup.
5372 *
5373 * @hsotg: Programming view of the DWC_otg controller
5374 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5375 * @reset: indicates whether resume is initiated by Reset.
5376 *
5377 * Return non-zero if failed to exit from hibernation.
5378 */
5379int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5380 int rem_wakeup, int reset)
5381{
5382 u32 pcgcctl;
5383 u32 gpwrdn;
5384 u32 dctl;
5385 int ret = 0;
5386 struct dwc2_gregs_backup *gr;
5387 struct dwc2_dregs_backup *dr;
5388
5389 gr = &hsotg->gr_backup;
5390 dr = &hsotg->dr_backup;
5391
5392 if (!hsotg->hibernated) {
5393 dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5394 return 1;
5395 }
5396 dev_dbg(hsotg->dev,
5397 "%s: called with rem_wakeup = %d reset = %d\n",
5398 __func__, rem_wakeup, reset);
5399
5400 dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5401
5402 if (!reset) {
5403 /* Clear all pending interupts */
5404 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5405 }
5406
5407 /* De-assert Restore */
5408 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5409 gpwrdn &= ~GPWRDN_RESTORE;
5410 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5411 udelay(10);
5412
5413 if (!rem_wakeup) {
5414 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5415 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5416 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5417 }
5418
5419 /* Restore GUSBCFG, DCFG and DCTL */
5420 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5421 dwc2_writel(hsotg, dr->dcfg, DCFG);
5422 dwc2_writel(hsotg, dr->dctl, DCTL);
5423
5424 /* On USB Reset, reset device address to zero */
5425 if (reset)
5426 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5427
5428 /* De-assert Wakeup Logic */
5429 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5430 gpwrdn &= ~GPWRDN_PMUACTV;
5431 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5432
5433 if (rem_wakeup) {
5434 udelay(10);
5435 /* Start Remote Wakeup Signaling */
5436 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5437 } else {
5438 udelay(50);
5439 /* Set Device programming done bit */
5440 dctl = dwc2_readl(hsotg, DCTL);
5441 dctl |= DCTL_PWRONPRGDONE;
5442 dwc2_writel(hsotg, dctl, DCTL);
5443 }
5444 /* Wait for interrupts which must be cleared */
5445 mdelay(2);
5446 /* Clear all pending interupts */
5447 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5448
5449 /* Restore global registers */
5450 ret = dwc2_restore_global_registers(hsotg);
5451 if (ret) {
5452 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5453 __func__);
5454 return ret;
5455 }
5456
5457 /* Restore device registers */
5458 ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5459 if (ret) {
5460 dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5461 __func__);
5462 return ret;
5463 }
5464
5465 if (rem_wakeup) {
5466 mdelay(10);
5467 dctl = dwc2_readl(hsotg, DCTL);
5468 dctl &= ~DCTL_RMTWKUPSIG;
5469 dwc2_writel(hsotg, dctl, DCTL);
5470 }
5471
5472 hsotg->hibernated = 0;
5473 hsotg->lx_state = DWC2_L0;
5474 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5475
5476 return ret;
5477}
5478
5479/**
5480 * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5481 * power down.
5482 *
5483 * @hsotg: Programming view of the DWC_otg controller
5484 *
5485 * Return: non-zero if failed to enter device partial power down.
5486 *
5487 * This function is for entering device mode partial power down.
5488 */
5489int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5490{
5491 u32 pcgcctl;
5492 int ret = 0;
5493
5494 dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5495
5496 /* Backup all registers */
5497 ret = dwc2_backup_global_registers(hsotg);
5498 if (ret) {
5499 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5500 __func__);
5501 return ret;
5502 }
5503
5504 ret = dwc2_backup_device_registers(hsotg);
5505 if (ret) {
5506 dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5507 __func__);
5508 return ret;
5509 }
5510
5511 /*
5512 * Clear any pending interrupts since dwc2 will not be able to
5513 * clear them after entering partial_power_down.
5514 */
5515 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5516
5517 /* Put the controller in low power state */
5518 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5519
5520 pcgcctl |= PCGCTL_PWRCLMP;
5521 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5522 udelay(5);
5523
5524 pcgcctl |= PCGCTL_RSTPDWNMODULE;
5525 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5526 udelay(5);
5527
5528 pcgcctl |= PCGCTL_STOPPCLK;
5529 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5530
5531 /* Set in_ppd flag to 1 as here core enters suspend. */
5532 hsotg->in_ppd = 1;
5533 hsotg->lx_state = DWC2_L2;
5534
5535 dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5536
5537 return ret;
5538}
5539
5540/*
5541 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5542 * power down.
5543 *
5544 * @hsotg: Programming view of the DWC_otg controller
5545 * @restore: indicates whether need to restore the registers or not.
5546 *
5547 * Return: non-zero if failed to exit device partial power down.
5548 *
5549 * This function is for exiting from device mode partial power down.
5550 */
5551int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5552 bool restore)
5553{
5554 u32 pcgcctl;
5555 u32 dctl;
5556 struct dwc2_dregs_backup *dr;
5557 int ret = 0;
5558
5559 dr = &hsotg->dr_backup;
5560
5561 dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5562
5563 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5564 pcgcctl &= ~PCGCTL_STOPPCLK;
5565 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5566
5567 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5568 pcgcctl &= ~PCGCTL_PWRCLMP;
5569 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5570
5571 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5572 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5573 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5574
5575 udelay(100);
5576 if (restore) {
5577 ret = dwc2_restore_global_registers(hsotg);
5578 if (ret) {
5579 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5580 __func__);
5581 return ret;
5582 }
5583 /* Restore DCFG */
5584 dwc2_writel(hsotg, dr->dcfg, DCFG);
5585
5586 ret = dwc2_restore_device_registers(hsotg, 0);
5587 if (ret) {
5588 dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5589 __func__);
5590 return ret;
5591 }
5592 }
5593
5594 /* Set the Power-On Programming done bit */
5595 dctl = dwc2_readl(hsotg, DCTL);
5596 dctl |= DCTL_PWRONPRGDONE;
5597 dwc2_writel(hsotg, dctl, DCTL);
5598
5599 /* Set in_ppd flag to 0 as here core exits from suspend. */
5600 hsotg->in_ppd = 0;
5601 hsotg->lx_state = DWC2_L0;
5602
5603 dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5604 return ret;
5605}
5606
5607/**
5608 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5609 *
5610 * @hsotg: Programming view of the DWC_otg controller
5611 *
5612 * Return: non-zero if failed to enter device partial power down.
5613 *
5614 * This function is for entering device mode clock gating.
5615 */
5616void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5617{
5618 u32 pcgctl;
5619
5620 dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5621
5622 /* Set the Phy Clock bit as suspend is received. */
5623 pcgctl = dwc2_readl(hsotg, PCGCTL);
5624 pcgctl |= PCGCTL_STOPPCLK;
5625 dwc2_writel(hsotg, pcgctl, PCGCTL);
5626 udelay(5);
5627
5628 /* Set the Gate hclk as suspend is received. */
5629 pcgctl = dwc2_readl(hsotg, PCGCTL);
5630 pcgctl |= PCGCTL_GATEHCLK;
5631 dwc2_writel(hsotg, pcgctl, PCGCTL);
5632 udelay(5);
5633
5634 hsotg->lx_state = DWC2_L2;
5635 hsotg->bus_suspended = true;
5636}
5637
5638/*
5639 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5640 *
5641 * @hsotg: Programming view of the DWC_otg controller
5642 * @rem_wakeup: indicates whether remote wake up is enabled.
5643 *
5644 * This function is for exiting from device mode clock gating.
5645 */
5646void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5647{
5648 u32 pcgctl;
5649 u32 dctl;
5650
5651 dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5652
5653 /* Clear the Gate hclk. */
5654 pcgctl = dwc2_readl(hsotg, PCGCTL);
5655 pcgctl &= ~PCGCTL_GATEHCLK;
5656 dwc2_writel(hsotg, pcgctl, PCGCTL);
5657 udelay(5);
5658
5659 /* Phy Clock bit. */
5660 pcgctl = dwc2_readl(hsotg, PCGCTL);
5661 pcgctl &= ~PCGCTL_STOPPCLK;
5662 dwc2_writel(hsotg, pcgctl, PCGCTL);
5663 udelay(5);
5664
5665 if (rem_wakeup) {
5666 /* Set Remote Wakeup Signaling */
5667 dctl = dwc2_readl(hsotg, DCTL);
5668 dctl |= DCTL_RMTWKUPSIG;
5669 dwc2_writel(hsotg, dctl, DCTL);
5670 }
5671
5672 /* Change to L0 state */
5673 call_gadget(hsotg, resume);
5674 hsotg->lx_state = DWC2_L0;
5675 hsotg->bus_suspended = false;
5676}
1/**
2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright 2008 Openmoko, Inc.
6 * Copyright 2008 Simtec Electronics
7 * Ben Dooks <ben@simtec.co.uk>
8 * http://armlinux.simtec.co.uk/
9 *
10 * S3C USB2.0 High-speed / OtG driver
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/spinlock.h>
20#include <linux/interrupt.h>
21#include <linux/platform_device.h>
22#include <linux/dma-mapping.h>
23#include <linux/mutex.h>
24#include <linux/seq_file.h>
25#include <linux/delay.h>
26#include <linux/io.h>
27#include <linux/slab.h>
28#include <linux/of_platform.h>
29
30#include <linux/usb/ch9.h>
31#include <linux/usb/gadget.h>
32#include <linux/usb/phy.h>
33
34#include "core.h"
35#include "hw.h"
36
37/* conversion functions */
38static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39{
40 return container_of(req, struct dwc2_hsotg_req, req);
41}
42
43static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44{
45 return container_of(ep, struct dwc2_hsotg_ep, ep);
46}
47
48static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49{
50 return container_of(gadget, struct dwc2_hsotg, gadget);
51}
52
53static inline void __orr32(void __iomem *ptr, u32 val)
54{
55 dwc2_writel(dwc2_readl(ptr) | val, ptr);
56}
57
58static inline void __bic32(void __iomem *ptr, u32 val)
59{
60 dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61}
62
63static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 u32 ep_index, u32 dir_in)
65{
66 if (dir_in)
67 return hsotg->eps_in[ep_index];
68 else
69 return hsotg->eps_out[ep_index];
70}
71
72/* forward declaration of functions */
73static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74
75/**
76 * using_dma - return the DMA status of the driver.
77 * @hsotg: The driver state.
78 *
79 * Return true if we're using DMA.
80 *
81 * Currently, we have the DMA support code worked into everywhere
82 * that needs it, but the AMBA DMA implementation in the hardware can
83 * only DMA from 32bit aligned addresses. This means that gadgets such
84 * as the CDC Ethernet cannot work as they often pass packets which are
85 * not 32bit aligned.
86 *
87 * Unfortunately the choice to use DMA or not is global to the controller
88 * and seems to be only settable when the controller is being put through
89 * a core reset. This means we either need to fix the gadgets to take
90 * account of DMA alignment, or add bounce buffers (yuerk).
91 *
92 * g_using_dma is set depending on dts flag.
93 */
94static inline bool using_dma(struct dwc2_hsotg *hsotg)
95{
96 return hsotg->params.g_dma;
97}
98
99/*
100 * using_desc_dma - return the descriptor DMA status of the driver.
101 * @hsotg: The driver state.
102 *
103 * Return true if we're using descriptor DMA.
104 */
105static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
106{
107 return hsotg->params.g_dma_desc;
108}
109
110/**
111 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
112 * @hs_ep: The endpoint
113 * @increment: The value to increment by
114 *
115 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
116 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
117 */
118static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
119{
120 hs_ep->target_frame += hs_ep->interval;
121 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
122 hs_ep->frame_overrun = 1;
123 hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
124 } else {
125 hs_ep->frame_overrun = 0;
126 }
127}
128
129/**
130 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131 * @hsotg: The device state
132 * @ints: A bitmask of the interrupts to enable
133 */
134static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
135{
136 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
137 u32 new_gsintmsk;
138
139 new_gsintmsk = gsintmsk | ints;
140
141 if (new_gsintmsk != gsintmsk) {
142 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
143 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
144 }
145}
146
147/**
148 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149 * @hsotg: The device state
150 * @ints: A bitmask of the interrupts to enable
151 */
152static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
153{
154 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
155 u32 new_gsintmsk;
156
157 new_gsintmsk = gsintmsk & ~ints;
158
159 if (new_gsintmsk != gsintmsk)
160 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161}
162
163/**
164 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165 * @hsotg: The device state
166 * @ep: The endpoint index
167 * @dir_in: True if direction is in.
168 * @en: The enable value, true to enable
169 *
170 * Set or clear the mask for an individual endpoint's interrupt
171 * request.
172 */
173static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
174 unsigned int ep, unsigned int dir_in,
175 unsigned int en)
176{
177 unsigned long flags;
178 u32 bit = 1 << ep;
179 u32 daint;
180
181 if (!dir_in)
182 bit <<= 16;
183
184 local_irq_save(flags);
185 daint = dwc2_readl(hsotg->regs + DAINTMSK);
186 if (en)
187 daint |= bit;
188 else
189 daint &= ~bit;
190 dwc2_writel(daint, hsotg->regs + DAINTMSK);
191 local_irq_restore(flags);
192}
193
194/**
195 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
196 * @hsotg: The device instance.
197 */
198static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
199{
200 unsigned int ep;
201 unsigned int addr;
202 int timeout;
203 u32 val;
204 u32 *txfsz = hsotg->params.g_tx_fifo_size;
205
206 /* Reset fifo map if not correctly cleared during previous session */
207 WARN_ON(hsotg->fifo_map);
208 hsotg->fifo_map = 0;
209
210 /* set RX/NPTX FIFO sizes */
211 dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
212 dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
213 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
214 hsotg->regs + GNPTXFSIZ);
215
216 /*
217 * arange all the rest of the TX FIFOs, as some versions of this
218 * block have overlapping default addresses. This also ensures
219 * that if the settings have been changed, then they are set to
220 * known values.
221 */
222
223 /* start at the end of the GNPTXFSIZ, rounded up */
224 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
225
226 /*
227 * Configure fifos sizes from provided configuration and assign
228 * them to endpoints dynamically according to maxpacket size value of
229 * given endpoint.
230 */
231 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
232 if (!txfsz[ep])
233 continue;
234 val = addr;
235 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
236 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
237 "insufficient fifo memory");
238 addr += txfsz[ep];
239
240 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
241 val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
242 }
243
244 /*
245 * according to p428 of the design guide, we need to ensure that
246 * all fifos are flushed before continuing
247 */
248
249 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
250 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
251
252 /* wait until the fifos are both flushed */
253 timeout = 100;
254 while (1) {
255 val = dwc2_readl(hsotg->regs + GRSTCTL);
256
257 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
258 break;
259
260 if (--timeout == 0) {
261 dev_err(hsotg->dev,
262 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
263 __func__, val);
264 break;
265 }
266
267 udelay(1);
268 }
269
270 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
271}
272
273/**
274 * @ep: USB endpoint to allocate request for.
275 * @flags: Allocation flags
276 *
277 * Allocate a new USB request structure appropriate for the specified endpoint
278 */
279static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
280 gfp_t flags)
281{
282 struct dwc2_hsotg_req *req;
283
284 req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
285 if (!req)
286 return NULL;
287
288 INIT_LIST_HEAD(&req->queue);
289
290 return &req->req;
291}
292
293/**
294 * is_ep_periodic - return true if the endpoint is in periodic mode.
295 * @hs_ep: The endpoint to query.
296 *
297 * Returns true if the endpoint is in periodic mode, meaning it is being
298 * used for an Interrupt or ISO transfer.
299 */
300static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
301{
302 return hs_ep->periodic;
303}
304
305/**
306 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
307 * @hsotg: The device state.
308 * @hs_ep: The endpoint for the request
309 * @hs_req: The request being processed.
310 *
311 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
312 * of a request to ensure the buffer is ready for access by the caller.
313 */
314static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
315 struct dwc2_hsotg_ep *hs_ep,
316 struct dwc2_hsotg_req *hs_req)
317{
318 struct usb_request *req = &hs_req->req;
319 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
320}
321
322/*
323 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
324 * for Control endpoint
325 * @hsotg: The device state.
326 *
327 * This function will allocate 4 descriptor chains for EP 0: 2 for
328 * Setup stage, per one for IN and OUT data/status transactions.
329 */
330static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
331{
332 hsotg->setup_desc[0] =
333 dmam_alloc_coherent(hsotg->dev,
334 sizeof(struct dwc2_dma_desc),
335 &hsotg->setup_desc_dma[0],
336 GFP_KERNEL);
337 if (!hsotg->setup_desc[0])
338 goto fail;
339
340 hsotg->setup_desc[1] =
341 dmam_alloc_coherent(hsotg->dev,
342 sizeof(struct dwc2_dma_desc),
343 &hsotg->setup_desc_dma[1],
344 GFP_KERNEL);
345 if (!hsotg->setup_desc[1])
346 goto fail;
347
348 hsotg->ctrl_in_desc =
349 dmam_alloc_coherent(hsotg->dev,
350 sizeof(struct dwc2_dma_desc),
351 &hsotg->ctrl_in_desc_dma,
352 GFP_KERNEL);
353 if (!hsotg->ctrl_in_desc)
354 goto fail;
355
356 hsotg->ctrl_out_desc =
357 dmam_alloc_coherent(hsotg->dev,
358 sizeof(struct dwc2_dma_desc),
359 &hsotg->ctrl_out_desc_dma,
360 GFP_KERNEL);
361 if (!hsotg->ctrl_out_desc)
362 goto fail;
363
364 return 0;
365
366fail:
367 return -ENOMEM;
368}
369
370/**
371 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
372 * @hsotg: The controller state.
373 * @hs_ep: The endpoint we're going to write for.
374 * @hs_req: The request to write data for.
375 *
376 * This is called when the TxFIFO has some space in it to hold a new
377 * transmission and we have something to give it. The actual setup of
378 * the data size is done elsewhere, so all we have to do is to actually
379 * write the data.
380 *
381 * The return value is zero if there is more space (or nothing was done)
382 * otherwise -ENOSPC is returned if the FIFO space was used up.
383 *
384 * This routine is only needed for PIO
385 */
386static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
387 struct dwc2_hsotg_ep *hs_ep,
388 struct dwc2_hsotg_req *hs_req)
389{
390 bool periodic = is_ep_periodic(hs_ep);
391 u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
392 int buf_pos = hs_req->req.actual;
393 int to_write = hs_ep->size_loaded;
394 void *data;
395 int can_write;
396 int pkt_round;
397 int max_transfer;
398
399 to_write -= (buf_pos - hs_ep->last_load);
400
401 /* if there's nothing to write, get out early */
402 if (to_write == 0)
403 return 0;
404
405 if (periodic && !hsotg->dedicated_fifos) {
406 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
407 int size_left;
408 int size_done;
409
410 /*
411 * work out how much data was loaded so we can calculate
412 * how much data is left in the fifo.
413 */
414
415 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
416
417 /*
418 * if shared fifo, we cannot write anything until the
419 * previous data has been completely sent.
420 */
421 if (hs_ep->fifo_load != 0) {
422 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
423 return -ENOSPC;
424 }
425
426 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
427 __func__, size_left,
428 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
429
430 /* how much of the data has moved */
431 size_done = hs_ep->size_loaded - size_left;
432
433 /* how much data is left in the fifo */
434 can_write = hs_ep->fifo_load - size_done;
435 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
436 __func__, can_write);
437
438 can_write = hs_ep->fifo_size - can_write;
439 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
440 __func__, can_write);
441
442 if (can_write <= 0) {
443 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
444 return -ENOSPC;
445 }
446 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
447 can_write = dwc2_readl(hsotg->regs +
448 DTXFSTS(hs_ep->fifo_index));
449
450 can_write &= 0xffff;
451 can_write *= 4;
452 } else {
453 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
454 dev_dbg(hsotg->dev,
455 "%s: no queue slots available (0x%08x)\n",
456 __func__, gnptxsts);
457
458 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
459 return -ENOSPC;
460 }
461
462 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
463 can_write *= 4; /* fifo size is in 32bit quantities. */
464 }
465
466 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
467
468 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
469 __func__, gnptxsts, can_write, to_write, max_transfer);
470
471 /*
472 * limit to 512 bytes of data, it seems at least on the non-periodic
473 * FIFO, requests of >512 cause the endpoint to get stuck with a
474 * fragment of the end of the transfer in it.
475 */
476 if (can_write > 512 && !periodic)
477 can_write = 512;
478
479 /*
480 * limit the write to one max-packet size worth of data, but allow
481 * the transfer to return that it did not run out of fifo space
482 * doing it.
483 */
484 if (to_write > max_transfer) {
485 to_write = max_transfer;
486
487 /* it's needed only when we do not use dedicated fifos */
488 if (!hsotg->dedicated_fifos)
489 dwc2_hsotg_en_gsint(hsotg,
490 periodic ? GINTSTS_PTXFEMP :
491 GINTSTS_NPTXFEMP);
492 }
493
494 /* see if we can write data */
495
496 if (to_write > can_write) {
497 to_write = can_write;
498 pkt_round = to_write % max_transfer;
499
500 /*
501 * Round the write down to an
502 * exact number of packets.
503 *
504 * Note, we do not currently check to see if we can ever
505 * write a full packet or not to the FIFO.
506 */
507
508 if (pkt_round)
509 to_write -= pkt_round;
510
511 /*
512 * enable correct FIFO interrupt to alert us when there
513 * is more room left.
514 */
515
516 /* it's needed only when we do not use dedicated fifos */
517 if (!hsotg->dedicated_fifos)
518 dwc2_hsotg_en_gsint(hsotg,
519 periodic ? GINTSTS_PTXFEMP :
520 GINTSTS_NPTXFEMP);
521 }
522
523 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
524 to_write, hs_req->req.length, can_write, buf_pos);
525
526 if (to_write <= 0)
527 return -ENOSPC;
528
529 hs_req->req.actual = buf_pos + to_write;
530 hs_ep->total_data += to_write;
531
532 if (periodic)
533 hs_ep->fifo_load += to_write;
534
535 to_write = DIV_ROUND_UP(to_write, 4);
536 data = hs_req->req.buf + buf_pos;
537
538 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
539
540 return (to_write >= can_write) ? -ENOSPC : 0;
541}
542
543/**
544 * get_ep_limit - get the maximum data legnth for this endpoint
545 * @hs_ep: The endpoint
546 *
547 * Return the maximum data that can be queued in one go on a given endpoint
548 * so that transfers that are too long can be split.
549 */
550static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
551{
552 int index = hs_ep->index;
553 unsigned maxsize;
554 unsigned maxpkt;
555
556 if (index != 0) {
557 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
558 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
559 } else {
560 maxsize = 64+64;
561 if (hs_ep->dir_in)
562 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
563 else
564 maxpkt = 2;
565 }
566
567 /* we made the constant loading easier above by using +1 */
568 maxpkt--;
569 maxsize--;
570
571 /*
572 * constrain by packet count if maxpkts*pktsize is greater
573 * than the length register size.
574 */
575
576 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
577 maxsize = maxpkt * hs_ep->ep.maxpacket;
578
579 return maxsize;
580}
581
582/**
583* dwc2_hsotg_read_frameno - read current frame number
584* @hsotg: The device instance
585*
586* Return the current frame number
587*/
588static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
589{
590 u32 dsts;
591
592 dsts = dwc2_readl(hsotg->regs + DSTS);
593 dsts &= DSTS_SOFFN_MASK;
594 dsts >>= DSTS_SOFFN_SHIFT;
595
596 return dsts;
597}
598
599/**
600 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
601 * DMA descriptor chain prepared for specific endpoint
602 * @hs_ep: The endpoint
603 *
604 * Return the maximum data that can be queued in one go on a given endpoint
605 * depending on its descriptor chain capacity so that transfers that
606 * are too long can be split.
607 */
608static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
609{
610 int is_isoc = hs_ep->isochronous;
611 unsigned int maxsize;
612
613 if (is_isoc)
614 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
615 DEV_DMA_ISOC_RX_NBYTES_LIMIT;
616 else
617 maxsize = DEV_DMA_NBYTES_LIMIT;
618
619 /* Above size of one descriptor was chosen, multiple it */
620 maxsize *= MAX_DMA_DESC_NUM_GENERIC;
621
622 return maxsize;
623}
624
625/*
626 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
627 * @hs_ep: The endpoint
628 * @mask: RX/TX bytes mask to be defined
629 *
630 * Returns maximum data payload for one descriptor after analyzing endpoint
631 * characteristics.
632 * DMA descriptor transfer bytes limit depends on EP type:
633 * Control out - MPS,
634 * Isochronous - descriptor rx/tx bytes bitfield limit,
635 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
636 * have concatenations from various descriptors within one packet.
637 *
638 * Selects corresponding mask for RX/TX bytes as well.
639 */
640static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
641{
642 u32 mps = hs_ep->ep.maxpacket;
643 int dir_in = hs_ep->dir_in;
644 u32 desc_size = 0;
645
646 if (!hs_ep->index && !dir_in) {
647 desc_size = mps;
648 *mask = DEV_DMA_NBYTES_MASK;
649 } else if (hs_ep->isochronous) {
650 if (dir_in) {
651 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
652 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
653 } else {
654 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
655 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
656 }
657 } else {
658 desc_size = DEV_DMA_NBYTES_LIMIT;
659 *mask = DEV_DMA_NBYTES_MASK;
660
661 /* Round down desc_size to be mps multiple */
662 desc_size -= desc_size % mps;
663 }
664
665 return desc_size;
666}
667
668/*
669 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
670 * @hs_ep: The endpoint
671 * @dma_buff: DMA address to use
672 * @len: Length of the transfer
673 *
674 * This function will iterate over descriptor chain and fill its entries
675 * with corresponding information based on transfer data.
676 */
677static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
678 dma_addr_t dma_buff,
679 unsigned int len)
680{
681 struct dwc2_hsotg *hsotg = hs_ep->parent;
682 int dir_in = hs_ep->dir_in;
683 struct dwc2_dma_desc *desc = hs_ep->desc_list;
684 u32 mps = hs_ep->ep.maxpacket;
685 u32 maxsize = 0;
686 u32 offset = 0;
687 u32 mask = 0;
688 int i;
689
690 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
691
692 hs_ep->desc_count = (len / maxsize) +
693 ((len % maxsize) ? 1 : 0);
694 if (len == 0)
695 hs_ep->desc_count = 1;
696
697 for (i = 0; i < hs_ep->desc_count; ++i) {
698 desc->status = 0;
699 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
700 << DEV_DMA_BUFF_STS_SHIFT);
701
702 if (len > maxsize) {
703 if (!hs_ep->index && !dir_in)
704 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
705
706 desc->status |= (maxsize <<
707 DEV_DMA_NBYTES_SHIFT & mask);
708 desc->buf = dma_buff + offset;
709
710 len -= maxsize;
711 offset += maxsize;
712 } else {
713 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
714
715 if (dir_in)
716 desc->status |= (len % mps) ? DEV_DMA_SHORT :
717 ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
718 if (len > maxsize)
719 dev_err(hsotg->dev, "wrong len %d\n", len);
720
721 desc->status |=
722 len << DEV_DMA_NBYTES_SHIFT & mask;
723 desc->buf = dma_buff + offset;
724 }
725
726 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
727 desc->status |= (DEV_DMA_BUFF_STS_HREADY
728 << DEV_DMA_BUFF_STS_SHIFT);
729 desc++;
730 }
731}
732
733/*
734 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
735 * @hs_ep: The isochronous endpoint.
736 * @dma_buff: usb requests dma buffer.
737 * @len: usb request transfer length.
738 *
739 * Finds out index of first free entry either in the bottom or up half of
740 * descriptor chain depend on which is under SW control and not processed
741 * by HW. Then fills that descriptor with the data of the arrived usb request,
742 * frame info, sets Last and IOC bits increments next_desc. If filled
743 * descriptor is not the first one, removes L bit from the previous descriptor
744 * status.
745 */
746static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
747 dma_addr_t dma_buff, unsigned int len)
748{
749 struct dwc2_dma_desc *desc;
750 struct dwc2_hsotg *hsotg = hs_ep->parent;
751 u32 index;
752 u32 maxsize = 0;
753 u32 mask = 0;
754
755 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
756 if (len > maxsize) {
757 dev_err(hsotg->dev, "wrong len %d\n", len);
758 return -EINVAL;
759 }
760
761 /*
762 * If SW has already filled half of chain, then return and wait for
763 * the other chain to be processed by HW.
764 */
765 if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
766 return -EBUSY;
767
768 /* Increment frame number by interval for IN */
769 if (hs_ep->dir_in)
770 dwc2_gadget_incr_frame_num(hs_ep);
771
772 index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
773 hs_ep->next_desc;
774
775 /* Sanity check of calculated index */
776 if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
777 (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
778 dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
779 return -EINVAL;
780 }
781
782 desc = &hs_ep->desc_list[index];
783
784 /* Clear L bit of previous desc if more than one entries in the chain */
785 if (hs_ep->next_desc)
786 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
787
788 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
789 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
790
791 desc->status = 0;
792 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
793
794 desc->buf = dma_buff;
795 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
796 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
797
798 if (hs_ep->dir_in) {
799 desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
800 DEV_DMA_ISOC_PID_MASK) |
801 ((len % hs_ep->ep.maxpacket) ?
802 DEV_DMA_SHORT : 0) |
803 ((hs_ep->target_frame <<
804 DEV_DMA_ISOC_FRNUM_SHIFT) &
805 DEV_DMA_ISOC_FRNUM_MASK);
806 }
807
808 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
809 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
810
811 /* Update index of last configured entry in the chain */
812 hs_ep->next_desc++;
813
814 return 0;
815}
816
817/*
818 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
819 * @hs_ep: The isochronous endpoint.
820 *
821 * Prepare first descriptor chain for isochronous endpoints. Afterwards
822 * write DMA address to HW and enable the endpoint.
823 *
824 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
825 * to prepare second descriptor chain while first one is being processed by HW.
826 */
827static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
828{
829 struct dwc2_hsotg *hsotg = hs_ep->parent;
830 struct dwc2_hsotg_req *hs_req, *treq;
831 int index = hs_ep->index;
832 int ret;
833 u32 dma_reg;
834 u32 depctl;
835 u32 ctrl;
836
837 if (list_empty(&hs_ep->queue)) {
838 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
839 return;
840 }
841
842 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
843 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
844 hs_req->req.length);
845 if (ret) {
846 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
847 break;
848 }
849 }
850
851 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
852 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
853
854 /* write descriptor chain address to control register */
855 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
856
857 ctrl = dwc2_readl(hsotg->regs + depctl);
858 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
859 dwc2_writel(ctrl, hsotg->regs + depctl);
860
861 /* Switch ISOC descriptor chain number being processed by SW*/
862 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
863 hs_ep->next_desc = 0;
864}
865
866/**
867 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
868 * @hsotg: The controller state.
869 * @hs_ep: The endpoint to process a request for
870 * @hs_req: The request to start.
871 * @continuing: True if we are doing more for the current request.
872 *
873 * Start the given request running by setting the endpoint registers
874 * appropriately, and writing any data to the FIFOs.
875 */
876static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
877 struct dwc2_hsotg_ep *hs_ep,
878 struct dwc2_hsotg_req *hs_req,
879 bool continuing)
880{
881 struct usb_request *ureq = &hs_req->req;
882 int index = hs_ep->index;
883 int dir_in = hs_ep->dir_in;
884 u32 epctrl_reg;
885 u32 epsize_reg;
886 u32 epsize;
887 u32 ctrl;
888 unsigned length;
889 unsigned packets;
890 unsigned maxreq;
891 unsigned int dma_reg;
892
893 if (index != 0) {
894 if (hs_ep->req && !continuing) {
895 dev_err(hsotg->dev, "%s: active request\n", __func__);
896 WARN_ON(1);
897 return;
898 } else if (hs_ep->req != hs_req && continuing) {
899 dev_err(hsotg->dev,
900 "%s: continue different req\n", __func__);
901 WARN_ON(1);
902 return;
903 }
904 }
905
906 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
907 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
908 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
909
910 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
911 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
912 hs_ep->dir_in ? "in" : "out");
913
914 /* If endpoint is stalled, we will restart request later */
915 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
916
917 if (index && ctrl & DXEPCTL_STALL) {
918 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
919 return;
920 }
921
922 length = ureq->length - ureq->actual;
923 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
924 ureq->length, ureq->actual);
925
926 if (!using_desc_dma(hsotg))
927 maxreq = get_ep_limit(hs_ep);
928 else
929 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
930
931 if (length > maxreq) {
932 int round = maxreq % hs_ep->ep.maxpacket;
933
934 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
935 __func__, length, maxreq, round);
936
937 /* round down to multiple of packets */
938 if (round)
939 maxreq -= round;
940
941 length = maxreq;
942 }
943
944 if (length)
945 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
946 else
947 packets = 1; /* send one packet if length is zero. */
948
949 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
950 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
951 return;
952 }
953
954 if (dir_in && index != 0)
955 if (hs_ep->isochronous)
956 epsize = DXEPTSIZ_MC(packets);
957 else
958 epsize = DXEPTSIZ_MC(1);
959 else
960 epsize = 0;
961
962 /*
963 * zero length packet should be programmed on its own and should not
964 * be counted in DIEPTSIZ.PktCnt with other packets.
965 */
966 if (dir_in && ureq->zero && !continuing) {
967 /* Test if zlp is actually required. */
968 if ((ureq->length >= hs_ep->ep.maxpacket) &&
969 !(ureq->length % hs_ep->ep.maxpacket))
970 hs_ep->send_zlp = 1;
971 }
972
973 epsize |= DXEPTSIZ_PKTCNT(packets);
974 epsize |= DXEPTSIZ_XFERSIZE(length);
975
976 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
977 __func__, packets, length, ureq->length, epsize, epsize_reg);
978
979 /* store the request as the current one we're doing */
980 hs_ep->req = hs_req;
981
982 if (using_desc_dma(hsotg)) {
983 u32 offset = 0;
984 u32 mps = hs_ep->ep.maxpacket;
985
986 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
987 if (!dir_in) {
988 if (!index)
989 length = mps;
990 else if (length % mps)
991 length += (mps - (length % mps));
992 }
993
994 /*
995 * If more data to send, adjust DMA for EP0 out data stage.
996 * ureq->dma stays unchanged, hence increment it by already
997 * passed passed data count before starting new transaction.
998 */
999 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1000 continuing)
1001 offset = ureq->actual;
1002
1003 /* Fill DDMA chain entries */
1004 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1005 length);
1006
1007 /* write descriptor chain address to control register */
1008 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1009
1010 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1011 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1012 } else {
1013 /* write size / packets */
1014 dwc2_writel(epsize, hsotg->regs + epsize_reg);
1015
1016 if (using_dma(hsotg) && !continuing && (length != 0)) {
1017 /*
1018 * write DMA address to control register, buffer
1019 * already synced by dwc2_hsotg_ep_queue().
1020 */
1021
1022 dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1023
1024 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1025 __func__, &ureq->dma, dma_reg);
1026 }
1027 }
1028
1029 if (hs_ep->isochronous && hs_ep->interval == 1) {
1030 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1031 dwc2_gadget_incr_frame_num(hs_ep);
1032
1033 if (hs_ep->target_frame & 0x1)
1034 ctrl |= DXEPCTL_SETODDFR;
1035 else
1036 ctrl |= DXEPCTL_SETEVENFR;
1037 }
1038
1039 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1040
1041 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1042
1043 /* For Setup request do not clear NAK */
1044 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1045 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1046
1047 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1048 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1049
1050 /*
1051 * set these, it seems that DMA support increments past the end
1052 * of the packet buffer so we need to calculate the length from
1053 * this information.
1054 */
1055 hs_ep->size_loaded = length;
1056 hs_ep->last_load = ureq->actual;
1057
1058 if (dir_in && !using_dma(hsotg)) {
1059 /* set these anyway, we may need them for non-periodic in */
1060 hs_ep->fifo_load = 0;
1061
1062 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1063 }
1064
1065 /*
1066 * Note, trying to clear the NAK here causes problems with transmit
1067 * on the S3C6400 ending up with the TXFIFO becoming full.
1068 */
1069
1070 /* check ep is enabled */
1071 if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1072 dev_dbg(hsotg->dev,
1073 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1074 index, dwc2_readl(hsotg->regs + epctrl_reg));
1075
1076 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1077 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
1078
1079 /* enable ep interrupts */
1080 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1081}
1082
1083/**
1084 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1085 * @hsotg: The device state.
1086 * @hs_ep: The endpoint the request is on.
1087 * @req: The request being processed.
1088 *
1089 * We've been asked to queue a request, so ensure that the memory buffer
1090 * is correctly setup for DMA. If we've been passed an extant DMA address
1091 * then ensure the buffer has been synced to memory. If our buffer has no
1092 * DMA memory, then we map the memory and mark our request to allow us to
1093 * cleanup on completion.
1094 */
1095static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1096 struct dwc2_hsotg_ep *hs_ep,
1097 struct usb_request *req)
1098{
1099 int ret;
1100
1101 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1102 if (ret)
1103 goto dma_error;
1104
1105 return 0;
1106
1107dma_error:
1108 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1109 __func__, req->buf, req->length);
1110
1111 return -EIO;
1112}
1113
1114static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1115 struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
1116{
1117 void *req_buf = hs_req->req.buf;
1118
1119 /* If dma is not being used or buffer is aligned */
1120 if (!using_dma(hsotg) || !((long)req_buf & 3))
1121 return 0;
1122
1123 WARN_ON(hs_req->saved_req_buf);
1124
1125 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1126 hs_ep->ep.name, req_buf, hs_req->req.length);
1127
1128 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1129 if (!hs_req->req.buf) {
1130 hs_req->req.buf = req_buf;
1131 dev_err(hsotg->dev,
1132 "%s: unable to allocate memory for bounce buffer\n",
1133 __func__);
1134 return -ENOMEM;
1135 }
1136
1137 /* Save actual buffer */
1138 hs_req->saved_req_buf = req_buf;
1139
1140 if (hs_ep->dir_in)
1141 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1142 return 0;
1143}
1144
1145static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1146 struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
1147{
1148 /* If dma is not being used or buffer was aligned */
1149 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1150 return;
1151
1152 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1153 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1154
1155 /* Copy data from bounce buffer on successful out transfer */
1156 if (!hs_ep->dir_in && !hs_req->req.status)
1157 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1158 hs_req->req.actual);
1159
1160 /* Free bounce buffer */
1161 kfree(hs_req->req.buf);
1162
1163 hs_req->req.buf = hs_req->saved_req_buf;
1164 hs_req->saved_req_buf = NULL;
1165}
1166
1167/**
1168 * dwc2_gadget_target_frame_elapsed - Checks target frame
1169 * @hs_ep: The driver endpoint to check
1170 *
1171 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1172 * corresponding transfer.
1173 */
1174static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1175{
1176 struct dwc2_hsotg *hsotg = hs_ep->parent;
1177 u32 target_frame = hs_ep->target_frame;
1178 u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1179 bool frame_overrun = hs_ep->frame_overrun;
1180
1181 if (!frame_overrun && current_frame >= target_frame)
1182 return true;
1183
1184 if (frame_overrun && current_frame >= target_frame &&
1185 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1186 return true;
1187
1188 return false;
1189}
1190
1191/*
1192 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1193 * @hsotg: The driver state
1194 * @hs_ep: the ep descriptor chain is for
1195 *
1196 * Called to update EP0 structure's pointers depend on stage of
1197 * control transfer.
1198 */
1199static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1200 struct dwc2_hsotg_ep *hs_ep)
1201{
1202 switch (hsotg->ep0_state) {
1203 case DWC2_EP0_SETUP:
1204 case DWC2_EP0_STATUS_OUT:
1205 hs_ep->desc_list = hsotg->setup_desc[0];
1206 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1207 break;
1208 case DWC2_EP0_DATA_IN:
1209 case DWC2_EP0_STATUS_IN:
1210 hs_ep->desc_list = hsotg->ctrl_in_desc;
1211 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1212 break;
1213 case DWC2_EP0_DATA_OUT:
1214 hs_ep->desc_list = hsotg->ctrl_out_desc;
1215 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1216 break;
1217 default:
1218 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1219 hsotg->ep0_state);
1220 return -EINVAL;
1221 }
1222
1223 return 0;
1224}
1225
1226static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1227 gfp_t gfp_flags)
1228{
1229 struct dwc2_hsotg_req *hs_req = our_req(req);
1230 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1231 struct dwc2_hsotg *hs = hs_ep->parent;
1232 bool first;
1233 int ret;
1234
1235 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1236 ep->name, req, req->length, req->buf, req->no_interrupt,
1237 req->zero, req->short_not_ok);
1238
1239 /* Prevent new request submission when controller is suspended */
1240 if (hs->lx_state == DWC2_L2) {
1241 dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1242 __func__);
1243 return -EAGAIN;
1244 }
1245
1246 /* initialise status of the request */
1247 INIT_LIST_HEAD(&hs_req->queue);
1248 req->actual = 0;
1249 req->status = -EINPROGRESS;
1250
1251 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1252 if (ret)
1253 return ret;
1254
1255 /* if we're using DMA, sync the buffers as necessary */
1256 if (using_dma(hs)) {
1257 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1258 if (ret)
1259 return ret;
1260 }
1261 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1262 if (using_desc_dma(hs) && !hs_ep->index) {
1263 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1264 if (ret)
1265 return ret;
1266 }
1267
1268 first = list_empty(&hs_ep->queue);
1269 list_add_tail(&hs_req->queue, &hs_ep->queue);
1270
1271 /*
1272 * Handle DDMA isochronous transfers separately - just add new entry
1273 * to the half of descriptor chain that is not processed by HW.
1274 * Transfer will be started once SW gets either one of NAK or
1275 * OutTknEpDis interrupts.
1276 */
1277 if (using_desc_dma(hs) && hs_ep->isochronous &&
1278 hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1279 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1280 hs_req->req.length);
1281 if (ret)
1282 dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1283
1284 return 0;
1285 }
1286
1287 if (first) {
1288 if (!hs_ep->isochronous) {
1289 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1290 return 0;
1291 }
1292
1293 while (dwc2_gadget_target_frame_elapsed(hs_ep))
1294 dwc2_gadget_incr_frame_num(hs_ep);
1295
1296 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1297 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1298 }
1299 return 0;
1300}
1301
1302static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1303 gfp_t gfp_flags)
1304{
1305 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1306 struct dwc2_hsotg *hs = hs_ep->parent;
1307 unsigned long flags = 0;
1308 int ret = 0;
1309
1310 spin_lock_irqsave(&hs->lock, flags);
1311 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1312 spin_unlock_irqrestore(&hs->lock, flags);
1313
1314 return ret;
1315}
1316
1317static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1318 struct usb_request *req)
1319{
1320 struct dwc2_hsotg_req *hs_req = our_req(req);
1321
1322 kfree(hs_req);
1323}
1324
1325/**
1326 * dwc2_hsotg_complete_oursetup - setup completion callback
1327 * @ep: The endpoint the request was on.
1328 * @req: The request completed.
1329 *
1330 * Called on completion of any requests the driver itself
1331 * submitted that need cleaning up.
1332 */
1333static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1334 struct usb_request *req)
1335{
1336 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1337 struct dwc2_hsotg *hsotg = hs_ep->parent;
1338
1339 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1340
1341 dwc2_hsotg_ep_free_request(ep, req);
1342}
1343
1344/**
1345 * ep_from_windex - convert control wIndex value to endpoint
1346 * @hsotg: The driver state.
1347 * @windex: The control request wIndex field (in host order).
1348 *
1349 * Convert the given wIndex into a pointer to an driver endpoint
1350 * structure, or return NULL if it is not a valid endpoint.
1351 */
1352static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1353 u32 windex)
1354{
1355 struct dwc2_hsotg_ep *ep;
1356 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1357 int idx = windex & 0x7F;
1358
1359 if (windex >= 0x100)
1360 return NULL;
1361
1362 if (idx > hsotg->num_of_eps)
1363 return NULL;
1364
1365 ep = index_to_ep(hsotg, idx, dir);
1366
1367 if (idx && ep->dir_in != dir)
1368 return NULL;
1369
1370 return ep;
1371}
1372
1373/**
1374 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1375 * @hsotg: The driver state.
1376 * @testmode: requested usb test mode
1377 * Enable usb Test Mode requested by the Host.
1378 */
1379int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1380{
1381 int dctl = dwc2_readl(hsotg->regs + DCTL);
1382
1383 dctl &= ~DCTL_TSTCTL_MASK;
1384 switch (testmode) {
1385 case TEST_J:
1386 case TEST_K:
1387 case TEST_SE0_NAK:
1388 case TEST_PACKET:
1389 case TEST_FORCE_EN:
1390 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1391 break;
1392 default:
1393 return -EINVAL;
1394 }
1395 dwc2_writel(dctl, hsotg->regs + DCTL);
1396 return 0;
1397}
1398
1399/**
1400 * dwc2_hsotg_send_reply - send reply to control request
1401 * @hsotg: The device state
1402 * @ep: Endpoint 0
1403 * @buff: Buffer for request
1404 * @length: Length of reply.
1405 *
1406 * Create a request and queue it on the given endpoint. This is useful as
1407 * an internal method of sending replies to certain control requests, etc.
1408 */
1409static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1410 struct dwc2_hsotg_ep *ep,
1411 void *buff,
1412 int length)
1413{
1414 struct usb_request *req;
1415 int ret;
1416
1417 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1418
1419 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1420 hsotg->ep0_reply = req;
1421 if (!req) {
1422 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1423 return -ENOMEM;
1424 }
1425
1426 req->buf = hsotg->ep0_buff;
1427 req->length = length;
1428 /*
1429 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1430 * STATUS stage.
1431 */
1432 req->zero = 0;
1433 req->complete = dwc2_hsotg_complete_oursetup;
1434
1435 if (length)
1436 memcpy(req->buf, buff, length);
1437
1438 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1439 if (ret) {
1440 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1441 return ret;
1442 }
1443
1444 return 0;
1445}
1446
1447/**
1448 * dwc2_hsotg_process_req_status - process request GET_STATUS
1449 * @hsotg: The device state
1450 * @ctrl: USB control request
1451 */
1452static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1453 struct usb_ctrlrequest *ctrl)
1454{
1455 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1456 struct dwc2_hsotg_ep *ep;
1457 __le16 reply;
1458 int ret;
1459
1460 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1461
1462 if (!ep0->dir_in) {
1463 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1464 return -EINVAL;
1465 }
1466
1467 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1468 case USB_RECIP_DEVICE:
1469 reply = cpu_to_le16(0); /* bit 0 => self powered,
1470 * bit 1 => remote wakeup */
1471 break;
1472
1473 case USB_RECIP_INTERFACE:
1474 /* currently, the data result should be zero */
1475 reply = cpu_to_le16(0);
1476 break;
1477
1478 case USB_RECIP_ENDPOINT:
1479 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1480 if (!ep)
1481 return -ENOENT;
1482
1483 reply = cpu_to_le16(ep->halted ? 1 : 0);
1484 break;
1485
1486 default:
1487 return 0;
1488 }
1489
1490 if (le16_to_cpu(ctrl->wLength) != 2)
1491 return -EINVAL;
1492
1493 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1494 if (ret) {
1495 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1496 return ret;
1497 }
1498
1499 return 1;
1500}
1501
1502static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1503
1504/**
1505 * get_ep_head - return the first request on the endpoint
1506 * @hs_ep: The controller endpoint to get
1507 *
1508 * Get the first request on the endpoint.
1509 */
1510static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1511{
1512 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1513 queue);
1514}
1515
1516/**
1517 * dwc2_gadget_start_next_request - Starts next request from ep queue
1518 * @hs_ep: Endpoint structure
1519 *
1520 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1521 * in its handler. Hence we need to unmask it here to be able to do
1522 * resynchronization.
1523 */
1524static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1525{
1526 u32 mask;
1527 struct dwc2_hsotg *hsotg = hs_ep->parent;
1528 int dir_in = hs_ep->dir_in;
1529 struct dwc2_hsotg_req *hs_req;
1530 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1531
1532 if (!list_empty(&hs_ep->queue)) {
1533 hs_req = get_ep_head(hs_ep);
1534 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1535 return;
1536 }
1537 if (!hs_ep->isochronous)
1538 return;
1539
1540 if (dir_in) {
1541 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1542 __func__);
1543 } else {
1544 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1545 __func__);
1546 mask = dwc2_readl(hsotg->regs + epmsk_reg);
1547 mask |= DOEPMSK_OUTTKNEPDISMSK;
1548 dwc2_writel(mask, hsotg->regs + epmsk_reg);
1549 }
1550}
1551
1552/**
1553 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1554 * @hsotg: The device state
1555 * @ctrl: USB control request
1556 */
1557static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1558 struct usb_ctrlrequest *ctrl)
1559{
1560 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1561 struct dwc2_hsotg_req *hs_req;
1562 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1563 struct dwc2_hsotg_ep *ep;
1564 int ret;
1565 bool halted;
1566 u32 recip;
1567 u32 wValue;
1568 u32 wIndex;
1569
1570 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1571 __func__, set ? "SET" : "CLEAR");
1572
1573 wValue = le16_to_cpu(ctrl->wValue);
1574 wIndex = le16_to_cpu(ctrl->wIndex);
1575 recip = ctrl->bRequestType & USB_RECIP_MASK;
1576
1577 switch (recip) {
1578 case USB_RECIP_DEVICE:
1579 switch (wValue) {
1580 case USB_DEVICE_TEST_MODE:
1581 if ((wIndex & 0xff) != 0)
1582 return -EINVAL;
1583 if (!set)
1584 return -EINVAL;
1585
1586 hsotg->test_mode = wIndex >> 8;
1587 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1588 if (ret) {
1589 dev_err(hsotg->dev,
1590 "%s: failed to send reply\n", __func__);
1591 return ret;
1592 }
1593 break;
1594 default:
1595 return -ENOENT;
1596 }
1597 break;
1598
1599 case USB_RECIP_ENDPOINT:
1600 ep = ep_from_windex(hsotg, wIndex);
1601 if (!ep) {
1602 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1603 __func__, wIndex);
1604 return -ENOENT;
1605 }
1606
1607 switch (wValue) {
1608 case USB_ENDPOINT_HALT:
1609 halted = ep->halted;
1610
1611 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1612
1613 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1614 if (ret) {
1615 dev_err(hsotg->dev,
1616 "%s: failed to send reply\n", __func__);
1617 return ret;
1618 }
1619
1620 /*
1621 * we have to complete all requests for ep if it was
1622 * halted, and the halt was cleared by CLEAR_FEATURE
1623 */
1624
1625 if (!set && halted) {
1626 /*
1627 * If we have request in progress,
1628 * then complete it
1629 */
1630 if (ep->req) {
1631 hs_req = ep->req;
1632 ep->req = NULL;
1633 list_del_init(&hs_req->queue);
1634 if (hs_req->req.complete) {
1635 spin_unlock(&hsotg->lock);
1636 usb_gadget_giveback_request(
1637 &ep->ep, &hs_req->req);
1638 spin_lock(&hsotg->lock);
1639 }
1640 }
1641
1642 /* If we have pending request, then start it */
1643 if (!ep->req) {
1644 dwc2_gadget_start_next_request(ep);
1645 }
1646 }
1647
1648 break;
1649
1650 default:
1651 return -ENOENT;
1652 }
1653 break;
1654 default:
1655 return -ENOENT;
1656 }
1657 return 1;
1658}
1659
1660static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1661
1662/**
1663 * dwc2_hsotg_stall_ep0 - stall ep0
1664 * @hsotg: The device state
1665 *
1666 * Set stall for ep0 as response for setup request.
1667 */
1668static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1669{
1670 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1671 u32 reg;
1672 u32 ctrl;
1673
1674 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1675 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1676
1677 /*
1678 * DxEPCTL_Stall will be cleared by EP once it has
1679 * taken effect, so no need to clear later.
1680 */
1681
1682 ctrl = dwc2_readl(hsotg->regs + reg);
1683 ctrl |= DXEPCTL_STALL;
1684 ctrl |= DXEPCTL_CNAK;
1685 dwc2_writel(ctrl, hsotg->regs + reg);
1686
1687 dev_dbg(hsotg->dev,
1688 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1689 ctrl, reg, dwc2_readl(hsotg->regs + reg));
1690
1691 /*
1692 * complete won't be called, so we enqueue
1693 * setup request here
1694 */
1695 dwc2_hsotg_enqueue_setup(hsotg);
1696}
1697
1698/**
1699 * dwc2_hsotg_process_control - process a control request
1700 * @hsotg: The device state
1701 * @ctrl: The control request received
1702 *
1703 * The controller has received the SETUP phase of a control request, and
1704 * needs to work out what to do next (and whether to pass it on to the
1705 * gadget driver).
1706 */
1707static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1708 struct usb_ctrlrequest *ctrl)
1709{
1710 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1711 int ret = 0;
1712 u32 dcfg;
1713
1714 dev_dbg(hsotg->dev,
1715 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1716 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1717 ctrl->wIndex, ctrl->wLength);
1718
1719 if (ctrl->wLength == 0) {
1720 ep0->dir_in = 1;
1721 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1722 } else if (ctrl->bRequestType & USB_DIR_IN) {
1723 ep0->dir_in = 1;
1724 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1725 } else {
1726 ep0->dir_in = 0;
1727 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1728 }
1729
1730 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1731 switch (ctrl->bRequest) {
1732 case USB_REQ_SET_ADDRESS:
1733 hsotg->connected = 1;
1734 dcfg = dwc2_readl(hsotg->regs + DCFG);
1735 dcfg &= ~DCFG_DEVADDR_MASK;
1736 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1737 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1738 dwc2_writel(dcfg, hsotg->regs + DCFG);
1739
1740 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1741
1742 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1743 return;
1744
1745 case USB_REQ_GET_STATUS:
1746 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1747 break;
1748
1749 case USB_REQ_CLEAR_FEATURE:
1750 case USB_REQ_SET_FEATURE:
1751 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1752 break;
1753 }
1754 }
1755
1756 /* as a fallback, try delivering it to the driver to deal with */
1757
1758 if (ret == 0 && hsotg->driver) {
1759 spin_unlock(&hsotg->lock);
1760 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1761 spin_lock(&hsotg->lock);
1762 if (ret < 0)
1763 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1764 }
1765
1766 /*
1767 * the request is either unhandlable, or is not formatted correctly
1768 * so respond with a STALL for the status stage to indicate failure.
1769 */
1770
1771 if (ret < 0)
1772 dwc2_hsotg_stall_ep0(hsotg);
1773}
1774
1775/**
1776 * dwc2_hsotg_complete_setup - completion of a setup transfer
1777 * @ep: The endpoint the request was on.
1778 * @req: The request completed.
1779 *
1780 * Called on completion of any requests the driver itself submitted for
1781 * EP0 setup packets
1782 */
1783static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1784 struct usb_request *req)
1785{
1786 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1787 struct dwc2_hsotg *hsotg = hs_ep->parent;
1788
1789 if (req->status < 0) {
1790 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1791 return;
1792 }
1793
1794 spin_lock(&hsotg->lock);
1795 if (req->actual == 0)
1796 dwc2_hsotg_enqueue_setup(hsotg);
1797 else
1798 dwc2_hsotg_process_control(hsotg, req->buf);
1799 spin_unlock(&hsotg->lock);
1800}
1801
1802/**
1803 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1804 * @hsotg: The device state.
1805 *
1806 * Enqueue a request on EP0 if necessary to received any SETUP packets
1807 * received from the host.
1808 */
1809static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1810{
1811 struct usb_request *req = hsotg->ctrl_req;
1812 struct dwc2_hsotg_req *hs_req = our_req(req);
1813 int ret;
1814
1815 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1816
1817 req->zero = 0;
1818 req->length = 8;
1819 req->buf = hsotg->ctrl_buff;
1820 req->complete = dwc2_hsotg_complete_setup;
1821
1822 if (!list_empty(&hs_req->queue)) {
1823 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1824 return;
1825 }
1826
1827 hsotg->eps_out[0]->dir_in = 0;
1828 hsotg->eps_out[0]->send_zlp = 0;
1829 hsotg->ep0_state = DWC2_EP0_SETUP;
1830
1831 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1832 if (ret < 0) {
1833 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1834 /*
1835 * Don't think there's much we can do other than watch the
1836 * driver fail.
1837 */
1838 }
1839}
1840
1841static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1842 struct dwc2_hsotg_ep *hs_ep)
1843{
1844 u32 ctrl;
1845 u8 index = hs_ep->index;
1846 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1847 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1848
1849 if (hs_ep->dir_in)
1850 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1851 index);
1852 else
1853 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1854 index);
1855 if (using_desc_dma(hsotg)) {
1856 /* Not specific buffer needed for ep0 ZLP */
1857 dma_addr_t dma = hs_ep->desc_list_dma;
1858
1859 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1860 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1861 } else {
1862 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1863 DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1864 epsiz_reg);
1865 }
1866
1867 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1868 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1869 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1870 ctrl |= DXEPCTL_USBACTEP;
1871 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1872}
1873
1874/**
1875 * dwc2_hsotg_complete_request - complete a request given to us
1876 * @hsotg: The device state.
1877 * @hs_ep: The endpoint the request was on.
1878 * @hs_req: The request to complete.
1879 * @result: The result code (0 => Ok, otherwise errno)
1880 *
1881 * The given request has finished, so call the necessary completion
1882 * if it has one and then look to see if we can start a new request
1883 * on the endpoint.
1884 *
1885 * Note, expects the ep to already be locked as appropriate.
1886 */
1887static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1888 struct dwc2_hsotg_ep *hs_ep,
1889 struct dwc2_hsotg_req *hs_req,
1890 int result)
1891{
1892
1893 if (!hs_req) {
1894 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1895 return;
1896 }
1897
1898 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1899 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1900
1901 /*
1902 * only replace the status if we've not already set an error
1903 * from a previous transaction
1904 */
1905
1906 if (hs_req->req.status == -EINPROGRESS)
1907 hs_req->req.status = result;
1908
1909 if (using_dma(hsotg))
1910 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1911
1912 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1913
1914 hs_ep->req = NULL;
1915 list_del_init(&hs_req->queue);
1916
1917 /*
1918 * call the complete request with the locks off, just in case the
1919 * request tries to queue more work for this endpoint.
1920 */
1921
1922 if (hs_req->req.complete) {
1923 spin_unlock(&hsotg->lock);
1924 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1925 spin_lock(&hsotg->lock);
1926 }
1927
1928 /* In DDMA don't need to proceed to starting of next ISOC request */
1929 if (using_desc_dma(hsotg) && hs_ep->isochronous)
1930 return;
1931
1932 /*
1933 * Look to see if there is anything else to do. Note, the completion
1934 * of the previous request may have caused a new request to be started
1935 * so be careful when doing this.
1936 */
1937
1938 if (!hs_ep->req && result >= 0) {
1939 dwc2_gadget_start_next_request(hs_ep);
1940 }
1941}
1942
1943/*
1944 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
1945 * @hs_ep: The endpoint the request was on.
1946 *
1947 * Get first request from the ep queue, determine descriptor on which complete
1948 * happened. SW based on isoc_chain_num discovers which half of the descriptor
1949 * chain is currently in use by HW, adjusts dma_address and calculates index
1950 * of completed descriptor based on the value of DEPDMA register. Update actual
1951 * length of request, giveback to gadget.
1952 */
1953static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
1954{
1955 struct dwc2_hsotg *hsotg = hs_ep->parent;
1956 struct dwc2_hsotg_req *hs_req;
1957 struct usb_request *ureq;
1958 int index;
1959 dma_addr_t dma_addr;
1960 u32 dma_reg;
1961 u32 depdma;
1962 u32 desc_sts;
1963 u32 mask;
1964
1965 hs_req = get_ep_head(hs_ep);
1966 if (!hs_req) {
1967 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
1968 return;
1969 }
1970 ureq = &hs_req->req;
1971
1972 dma_addr = hs_ep->desc_list_dma;
1973
1974 /*
1975 * If lower half of descriptor chain is currently use by SW,
1976 * that means higher half is being processed by HW, so shift
1977 * DMA address to higher half of descriptor chain.
1978 */
1979 if (!hs_ep->isoc_chain_num)
1980 dma_addr += sizeof(struct dwc2_dma_desc) *
1981 (MAX_DMA_DESC_NUM_GENERIC / 2);
1982
1983 dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
1984 depdma = dwc2_readl(hsotg->regs + dma_reg);
1985
1986 index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
1987 desc_sts = hs_ep->desc_list[index].status;
1988
1989 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
1990 DEV_DMA_ISOC_RX_NBYTES_MASK;
1991 ureq->actual = ureq->length -
1992 ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
1993
1994 /* Adjust actual length for ISOC Out if length is not align of 4 */
1995 if (!hs_ep->dir_in && ureq->length & 0x3)
1996 ureq->actual += 4 - (ureq->length & 0x3);
1997
1998 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1999}
2000
2001/*
2002 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2003 * @hs_ep: The isochronous endpoint to be re-enabled.
2004 *
2005 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2006 * BNA (OUT endpoint) check the status of other half of descriptor chain that
2007 * was under SW control till HW was busy and restart the endpoint if needed.
2008 */
2009static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2010{
2011 struct dwc2_hsotg *hsotg = hs_ep->parent;
2012 u32 depctl;
2013 u32 dma_reg;
2014 u32 ctrl;
2015 u32 dma_addr = hs_ep->desc_list_dma;
2016 unsigned char index = hs_ep->index;
2017
2018 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2019 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2020
2021 ctrl = dwc2_readl(hsotg->regs + depctl);
2022
2023 /*
2024 * EP was disabled if HW has processed last descriptor or BNA was set.
2025 * So restart ep if SW has prepared new descriptor chain in ep_queue
2026 * routine while HW was busy.
2027 */
2028 if (!(ctrl & DXEPCTL_EPENA)) {
2029 if (!hs_ep->next_desc) {
2030 dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2031 __func__);
2032 return;
2033 }
2034
2035 dma_addr += sizeof(struct dwc2_dma_desc) *
2036 (MAX_DMA_DESC_NUM_GENERIC / 2) *
2037 hs_ep->isoc_chain_num;
2038 dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2039
2040 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2041 dwc2_writel(ctrl, hsotg->regs + depctl);
2042
2043 /* Switch ISOC descriptor chain number being processed by SW*/
2044 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2045 hs_ep->next_desc = 0;
2046
2047 dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2048 __func__);
2049 }
2050}
2051
2052/**
2053 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2054 * @hsotg: The device state.
2055 * @ep_idx: The endpoint index for the data
2056 * @size: The size of data in the fifo, in bytes
2057 *
2058 * The FIFO status shows there is data to read from the FIFO for a given
2059 * endpoint, so sort out whether we need to read the data into a request
2060 * that has been made for that endpoint.
2061 */
2062static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2063{
2064 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2065 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2066 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2067 int to_read;
2068 int max_req;
2069 int read_ptr;
2070
2071
2072 if (!hs_req) {
2073 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2074 int ptr;
2075
2076 dev_dbg(hsotg->dev,
2077 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2078 __func__, size, ep_idx, epctl);
2079
2080 /* dump the data from the FIFO, we've nothing we can do */
2081 for (ptr = 0; ptr < size; ptr += 4)
2082 (void)dwc2_readl(fifo);
2083
2084 return;
2085 }
2086
2087 to_read = size;
2088 read_ptr = hs_req->req.actual;
2089 max_req = hs_req->req.length - read_ptr;
2090
2091 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2092 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2093
2094 if (to_read > max_req) {
2095 /*
2096 * more data appeared than we where willing
2097 * to deal with in this request.
2098 */
2099
2100 /* currently we don't deal this */
2101 WARN_ON_ONCE(1);
2102 }
2103
2104 hs_ep->total_data += to_read;
2105 hs_req->req.actual += to_read;
2106 to_read = DIV_ROUND_UP(to_read, 4);
2107
2108 /*
2109 * note, we might over-write the buffer end by 3 bytes depending on
2110 * alignment of the data.
2111 */
2112 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2113}
2114
2115/**
2116 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2117 * @hsotg: The device instance
2118 * @dir_in: If IN zlp
2119 *
2120 * Generate a zero-length IN packet request for terminating a SETUP
2121 * transaction.
2122 *
2123 * Note, since we don't write any data to the TxFIFO, then it is
2124 * currently believed that we do not need to wait for any space in
2125 * the TxFIFO.
2126 */
2127static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2128{
2129 /* eps_out[0] is used in both directions */
2130 hsotg->eps_out[0]->dir_in = dir_in;
2131 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2132
2133 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2134}
2135
2136static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2137 u32 epctl_reg)
2138{
2139 u32 ctrl;
2140
2141 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2142 if (ctrl & DXEPCTL_EOFRNUM)
2143 ctrl |= DXEPCTL_SETEVENFR;
2144 else
2145 ctrl |= DXEPCTL_SETODDFR;
2146 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2147}
2148
2149/*
2150 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2151 * @hs_ep - The endpoint on which transfer went
2152 *
2153 * Iterate over endpoints descriptor chain and get info on bytes remained
2154 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2155 */
2156static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2157{
2158 struct dwc2_hsotg *hsotg = hs_ep->parent;
2159 unsigned int bytes_rem = 0;
2160 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2161 int i;
2162 u32 status;
2163
2164 if (!desc)
2165 return -EINVAL;
2166
2167 for (i = 0; i < hs_ep->desc_count; ++i) {
2168 status = desc->status;
2169 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2170
2171 if (status & DEV_DMA_STS_MASK)
2172 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2173 i, status & DEV_DMA_STS_MASK);
2174 }
2175
2176 return bytes_rem;
2177}
2178
2179/**
2180 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2181 * @hsotg: The device instance
2182 * @epnum: The endpoint received from
2183 *
2184 * The RXFIFO has delivered an OutDone event, which means that the data
2185 * transfer for an OUT endpoint has been completed, either by a short
2186 * packet or by the finish of a transfer.
2187 */
2188static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2189{
2190 u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2191 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2192 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2193 struct usb_request *req = &hs_req->req;
2194 unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2195 int result = 0;
2196
2197 if (!hs_req) {
2198 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2199 return;
2200 }
2201
2202 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2203 dev_dbg(hsotg->dev, "zlp packet received\n");
2204 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2205 dwc2_hsotg_enqueue_setup(hsotg);
2206 return;
2207 }
2208
2209 if (using_desc_dma(hsotg))
2210 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2211
2212 if (using_dma(hsotg)) {
2213 unsigned size_done;
2214
2215 /*
2216 * Calculate the size of the transfer by checking how much
2217 * is left in the endpoint size register and then working it
2218 * out from the amount we loaded for the transfer.
2219 *
2220 * We need to do this as DMA pointers are always 32bit aligned
2221 * so may overshoot/undershoot the transfer.
2222 */
2223
2224 size_done = hs_ep->size_loaded - size_left;
2225 size_done += hs_ep->last_load;
2226
2227 req->actual = size_done;
2228 }
2229
2230 /* if there is more request to do, schedule new transfer */
2231 if (req->actual < req->length && size_left == 0) {
2232 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2233 return;
2234 }
2235
2236 if (req->actual < req->length && req->short_not_ok) {
2237 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2238 __func__, req->actual, req->length);
2239
2240 /*
2241 * todo - what should we return here? there's no one else
2242 * even bothering to check the status.
2243 */
2244 }
2245
2246 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2247 if (!using_desc_dma(hsotg) && epnum == 0 &&
2248 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2249 /* Move to STATUS IN */
2250 dwc2_hsotg_ep0_zlp(hsotg, true);
2251 return;
2252 }
2253
2254 /*
2255 * Slave mode OUT transfers do not go through XferComplete so
2256 * adjust the ISOC parity here.
2257 */
2258 if (!using_dma(hsotg)) {
2259 if (hs_ep->isochronous && hs_ep->interval == 1)
2260 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2261 else if (hs_ep->isochronous && hs_ep->interval > 1)
2262 dwc2_gadget_incr_frame_num(hs_ep);
2263 }
2264
2265 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2266}
2267
2268/**
2269 * dwc2_hsotg_handle_rx - RX FIFO has data
2270 * @hsotg: The device instance
2271 *
2272 * The IRQ handler has detected that the RX FIFO has some data in it
2273 * that requires processing, so find out what is in there and do the
2274 * appropriate read.
2275 *
2276 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2277 * chunks, so if you have x packets received on an endpoint you'll get x
2278 * FIFO events delivered, each with a packet's worth of data in it.
2279 *
2280 * When using DMA, we should not be processing events from the RXFIFO
2281 * as the actual data should be sent to the memory directly and we turn
2282 * on the completion interrupts to get notifications of transfer completion.
2283 */
2284static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2285{
2286 u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2287 u32 epnum, status, size;
2288
2289 WARN_ON(using_dma(hsotg));
2290
2291 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2292 status = grxstsr & GRXSTS_PKTSTS_MASK;
2293
2294 size = grxstsr & GRXSTS_BYTECNT_MASK;
2295 size >>= GRXSTS_BYTECNT_SHIFT;
2296
2297 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2298 __func__, grxstsr, size, epnum);
2299
2300 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2301 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2302 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2303 break;
2304
2305 case GRXSTS_PKTSTS_OUTDONE:
2306 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2307 dwc2_hsotg_read_frameno(hsotg));
2308
2309 if (!using_dma(hsotg))
2310 dwc2_hsotg_handle_outdone(hsotg, epnum);
2311 break;
2312
2313 case GRXSTS_PKTSTS_SETUPDONE:
2314 dev_dbg(hsotg->dev,
2315 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2316 dwc2_hsotg_read_frameno(hsotg),
2317 dwc2_readl(hsotg->regs + DOEPCTL(0)));
2318 /*
2319 * Call dwc2_hsotg_handle_outdone here if it was not called from
2320 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2321 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2322 */
2323 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2324 dwc2_hsotg_handle_outdone(hsotg, epnum);
2325 break;
2326
2327 case GRXSTS_PKTSTS_OUTRX:
2328 dwc2_hsotg_rx_data(hsotg, epnum, size);
2329 break;
2330
2331 case GRXSTS_PKTSTS_SETUPRX:
2332 dev_dbg(hsotg->dev,
2333 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2334 dwc2_hsotg_read_frameno(hsotg),
2335 dwc2_readl(hsotg->regs + DOEPCTL(0)));
2336
2337 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2338
2339 dwc2_hsotg_rx_data(hsotg, epnum, size);
2340 break;
2341
2342 default:
2343 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2344 __func__, grxstsr);
2345
2346 dwc2_hsotg_dump(hsotg);
2347 break;
2348 }
2349}
2350
2351/**
2352 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2353 * @mps: The maximum packet size in bytes.
2354 */
2355static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2356{
2357 switch (mps) {
2358 case 64:
2359 return D0EPCTL_MPS_64;
2360 case 32:
2361 return D0EPCTL_MPS_32;
2362 case 16:
2363 return D0EPCTL_MPS_16;
2364 case 8:
2365 return D0EPCTL_MPS_8;
2366 }
2367
2368 /* bad max packet size, warn and return invalid result */
2369 WARN_ON(1);
2370 return (u32)-1;
2371}
2372
2373/**
2374 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2375 * @hsotg: The driver state.
2376 * @ep: The index number of the endpoint
2377 * @mps: The maximum packet size in bytes
2378 * @mc: The multicount value
2379 *
2380 * Configure the maximum packet size for the given endpoint, updating
2381 * the hardware control registers to reflect this.
2382 */
2383static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2384 unsigned int ep, unsigned int mps,
2385 unsigned int mc, unsigned int dir_in)
2386{
2387 struct dwc2_hsotg_ep *hs_ep;
2388 void __iomem *regs = hsotg->regs;
2389 u32 reg;
2390
2391 hs_ep = index_to_ep(hsotg, ep, dir_in);
2392 if (!hs_ep)
2393 return;
2394
2395 if (ep == 0) {
2396 u32 mps_bytes = mps;
2397
2398 /* EP0 is a special case */
2399 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2400 if (mps > 3)
2401 goto bad_mps;
2402 hs_ep->ep.maxpacket = mps_bytes;
2403 hs_ep->mc = 1;
2404 } else {
2405 if (mps > 1024)
2406 goto bad_mps;
2407 hs_ep->mc = mc;
2408 if (mc > 3)
2409 goto bad_mps;
2410 hs_ep->ep.maxpacket = mps;
2411 }
2412
2413 if (dir_in) {
2414 reg = dwc2_readl(regs + DIEPCTL(ep));
2415 reg &= ~DXEPCTL_MPS_MASK;
2416 reg |= mps;
2417 dwc2_writel(reg, regs + DIEPCTL(ep));
2418 } else {
2419 reg = dwc2_readl(regs + DOEPCTL(ep));
2420 reg &= ~DXEPCTL_MPS_MASK;
2421 reg |= mps;
2422 dwc2_writel(reg, regs + DOEPCTL(ep));
2423 }
2424
2425 return;
2426
2427bad_mps:
2428 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2429}
2430
2431/**
2432 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2433 * @hsotg: The driver state
2434 * @idx: The index for the endpoint (0..15)
2435 */
2436static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2437{
2438 int timeout;
2439 int val;
2440
2441 dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2442 hsotg->regs + GRSTCTL);
2443
2444 /* wait until the fifo is flushed */
2445 timeout = 100;
2446
2447 while (1) {
2448 val = dwc2_readl(hsotg->regs + GRSTCTL);
2449
2450 if ((val & (GRSTCTL_TXFFLSH)) == 0)
2451 break;
2452
2453 if (--timeout == 0) {
2454 dev_err(hsotg->dev,
2455 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
2456 __func__, val);
2457 break;
2458 }
2459
2460 udelay(1);
2461 }
2462}
2463
2464/**
2465 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2466 * @hsotg: The driver state
2467 * @hs_ep: The driver endpoint to check.
2468 *
2469 * Check to see if there is a request that has data to send, and if so
2470 * make an attempt to write data into the FIFO.
2471 */
2472static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2473 struct dwc2_hsotg_ep *hs_ep)
2474{
2475 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2476
2477 if (!hs_ep->dir_in || !hs_req) {
2478 /**
2479 * if request is not enqueued, we disable interrupts
2480 * for endpoints, excepting ep0
2481 */
2482 if (hs_ep->index != 0)
2483 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2484 hs_ep->dir_in, 0);
2485 return 0;
2486 }
2487
2488 if (hs_req->req.actual < hs_req->req.length) {
2489 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2490 hs_ep->index);
2491 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2492 }
2493
2494 return 0;
2495}
2496
2497/**
2498 * dwc2_hsotg_complete_in - complete IN transfer
2499 * @hsotg: The device state.
2500 * @hs_ep: The endpoint that has just completed.
2501 *
2502 * An IN transfer has been completed, update the transfer's state and then
2503 * call the relevant completion routines.
2504 */
2505static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2506 struct dwc2_hsotg_ep *hs_ep)
2507{
2508 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2509 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2510 int size_left, size_done;
2511
2512 if (!hs_req) {
2513 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2514 return;
2515 }
2516
2517 /* Finish ZLP handling for IN EP0 transactions */
2518 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2519 dev_dbg(hsotg->dev, "zlp packet sent\n");
2520
2521 /*
2522 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2523 * changed to IN. Change back to complete OUT transfer request
2524 */
2525 hs_ep->dir_in = 0;
2526
2527 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2528 if (hsotg->test_mode) {
2529 int ret;
2530
2531 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2532 if (ret < 0) {
2533 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2534 hsotg->test_mode);
2535 dwc2_hsotg_stall_ep0(hsotg);
2536 return;
2537 }
2538 }
2539 dwc2_hsotg_enqueue_setup(hsotg);
2540 return;
2541 }
2542
2543 /*
2544 * Calculate the size of the transfer by checking how much is left
2545 * in the endpoint size register and then working it out from
2546 * the amount we loaded for the transfer.
2547 *
2548 * We do this even for DMA, as the transfer may have incremented
2549 * past the end of the buffer (DMA transfers are always 32bit
2550 * aligned).
2551 */
2552 if (using_desc_dma(hsotg)) {
2553 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2554 if (size_left < 0)
2555 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2556 size_left);
2557 } else {
2558 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2559 }
2560
2561 size_done = hs_ep->size_loaded - size_left;
2562 size_done += hs_ep->last_load;
2563
2564 if (hs_req->req.actual != size_done)
2565 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2566 __func__, hs_req->req.actual, size_done);
2567
2568 hs_req->req.actual = size_done;
2569 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2570 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2571
2572 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2573 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2574 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2575 return;
2576 }
2577
2578 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2579 if (hs_ep->send_zlp) {
2580 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2581 hs_ep->send_zlp = 0;
2582 /* transfer will be completed on next complete interrupt */
2583 return;
2584 }
2585
2586 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2587 /* Move to STATUS OUT */
2588 dwc2_hsotg_ep0_zlp(hsotg, false);
2589 return;
2590 }
2591
2592 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2593}
2594
2595/**
2596 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2597 * @hsotg: The device state.
2598 * @idx: Index of ep.
2599 * @dir_in: Endpoint direction 1-in 0-out.
2600 *
2601 * Reads for endpoint with given index and direction, by masking
2602 * epint_reg with coresponding mask.
2603 */
2604static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2605 unsigned int idx, int dir_in)
2606{
2607 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2608 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2609 u32 ints;
2610 u32 mask;
2611 u32 diepempmsk;
2612
2613 mask = dwc2_readl(hsotg->regs + epmsk_reg);
2614 diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2615 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2616 mask |= DXEPINT_SETUP_RCVD;
2617
2618 ints = dwc2_readl(hsotg->regs + epint_reg);
2619 ints &= mask;
2620 return ints;
2621}
2622
2623/**
2624 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2625 * @hs_ep: The endpoint on which interrupt is asserted.
2626 *
2627 * This interrupt indicates that the endpoint has been disabled per the
2628 * application's request.
2629 *
2630 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2631 * in case of ISOC completes current request.
2632 *
2633 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2634 * request starts it.
2635 */
2636static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2637{
2638 struct dwc2_hsotg *hsotg = hs_ep->parent;
2639 struct dwc2_hsotg_req *hs_req;
2640 unsigned char idx = hs_ep->index;
2641 int dir_in = hs_ep->dir_in;
2642 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2643 int dctl = dwc2_readl(hsotg->regs + DCTL);
2644
2645 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2646
2647 if (dir_in) {
2648 int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2649
2650 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2651
2652 if (hs_ep->isochronous) {
2653 dwc2_hsotg_complete_in(hsotg, hs_ep);
2654 return;
2655 }
2656
2657 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2658 int dctl = dwc2_readl(hsotg->regs + DCTL);
2659
2660 dctl |= DCTL_CGNPINNAK;
2661 dwc2_writel(dctl, hsotg->regs + DCTL);
2662 }
2663 return;
2664 }
2665
2666 if (dctl & DCTL_GOUTNAKSTS) {
2667 dctl |= DCTL_CGOUTNAK;
2668 dwc2_writel(dctl, hsotg->regs + DCTL);
2669 }
2670
2671 if (!hs_ep->isochronous)
2672 return;
2673
2674 if (list_empty(&hs_ep->queue)) {
2675 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2676 __func__, hs_ep);
2677 return;
2678 }
2679
2680 do {
2681 hs_req = get_ep_head(hs_ep);
2682 if (hs_req)
2683 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2684 -ENODATA);
2685 dwc2_gadget_incr_frame_num(hs_ep);
2686 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2687
2688 dwc2_gadget_start_next_request(hs_ep);
2689}
2690
2691/**
2692 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2693 * @hs_ep: The endpoint on which interrupt is asserted.
2694 *
2695 * This is starting point for ISOC-OUT transfer, synchronization done with
2696 * first out token received from host while corresponding EP is disabled.
2697 *
2698 * Device does not know initial frame in which out token will come. For this
2699 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2700 * getting this interrupt SW starts calculation for next transfer frame.
2701 */
2702static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2703{
2704 struct dwc2_hsotg *hsotg = ep->parent;
2705 int dir_in = ep->dir_in;
2706 u32 doepmsk;
2707 u32 tmp;
2708
2709 if (dir_in || !ep->isochronous)
2710 return;
2711
2712 /*
2713 * Store frame in which irq was asserted here, as
2714 * it can change while completing request below.
2715 */
2716 tmp = dwc2_hsotg_read_frameno(hsotg);
2717
2718 dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2719
2720 if (using_desc_dma(hsotg)) {
2721 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2722 /* Start first ISO Out */
2723 ep->target_frame = tmp;
2724 dwc2_gadget_start_isoc_ddma(ep);
2725 }
2726 return;
2727 }
2728
2729 if (ep->interval > 1 &&
2730 ep->target_frame == TARGET_FRAME_INITIAL) {
2731 u32 dsts;
2732 u32 ctrl;
2733
2734 dsts = dwc2_readl(hsotg->regs + DSTS);
2735 ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2736 dwc2_gadget_incr_frame_num(ep);
2737
2738 ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2739 if (ep->target_frame & 0x1)
2740 ctrl |= DXEPCTL_SETODDFR;
2741 else
2742 ctrl |= DXEPCTL_SETEVENFR;
2743
2744 dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2745 }
2746
2747 dwc2_gadget_start_next_request(ep);
2748 doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2749 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2750 dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2751}
2752
2753/**
2754* dwc2_gadget_handle_nak - handle NAK interrupt
2755* @hs_ep: The endpoint on which interrupt is asserted.
2756*
2757* This is starting point for ISOC-IN transfer, synchronization done with
2758* first IN token received from host while corresponding EP is disabled.
2759*
2760* Device does not know when first one token will arrive from host. On first
2761* token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2762* and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2763* sent in response to that as there was no data in FIFO. SW is basing on this
2764* interrupt to obtain frame in which token has come and then based on the
2765* interval calculates next frame for transfer.
2766*/
2767static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2768{
2769 struct dwc2_hsotg *hsotg = hs_ep->parent;
2770 int dir_in = hs_ep->dir_in;
2771
2772 if (!dir_in || !hs_ep->isochronous)
2773 return;
2774
2775 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2776 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2777
2778 if (using_desc_dma(hsotg)) {
2779 dwc2_gadget_start_isoc_ddma(hs_ep);
2780 return;
2781 }
2782
2783 if (hs_ep->interval > 1) {
2784 u32 ctrl = dwc2_readl(hsotg->regs +
2785 DIEPCTL(hs_ep->index));
2786 if (hs_ep->target_frame & 0x1)
2787 ctrl |= DXEPCTL_SETODDFR;
2788 else
2789 ctrl |= DXEPCTL_SETEVENFR;
2790
2791 dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2792 }
2793
2794 dwc2_hsotg_complete_request(hsotg, hs_ep,
2795 get_ep_head(hs_ep), 0);
2796 }
2797
2798 dwc2_gadget_incr_frame_num(hs_ep);
2799}
2800
2801/**
2802 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2803 * @hsotg: The driver state
2804 * @idx: The index for the endpoint (0..15)
2805 * @dir_in: Set if this is an IN endpoint
2806 *
2807 * Process and clear any interrupt pending for an individual endpoint
2808 */
2809static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2810 int dir_in)
2811{
2812 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2813 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2814 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2815 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2816 u32 ints;
2817 u32 ctrl;
2818
2819 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2820 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2821
2822 /* Clear endpoint interrupts */
2823 dwc2_writel(ints, hsotg->regs + epint_reg);
2824
2825 if (!hs_ep) {
2826 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2827 __func__, idx, dir_in ? "in" : "out");
2828 return;
2829 }
2830
2831 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2832 __func__, idx, dir_in ? "in" : "out", ints);
2833
2834 /* Don't process XferCompl interrupt if it is a setup packet */
2835 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2836 ints &= ~DXEPINT_XFERCOMPL;
2837
2838 /*
2839 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2840 * stage and xfercomplete was generated without SETUP phase done
2841 * interrupt. SW should parse received setup packet only after host's
2842 * exit from setup phase of control transfer.
2843 */
2844 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2845 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2846 ints &= ~DXEPINT_XFERCOMPL;
2847
2848 if (ints & DXEPINT_XFERCOMPL) {
2849 dev_dbg(hsotg->dev,
2850 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2851 __func__, dwc2_readl(hsotg->regs + epctl_reg),
2852 dwc2_readl(hsotg->regs + epsiz_reg));
2853
2854 /* In DDMA handle isochronous requests separately */
2855 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2856 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2857 /* Try to start next isoc request */
2858 dwc2_gadget_start_next_isoc_ddma(hs_ep);
2859 } else if (dir_in) {
2860 /*
2861 * We get OutDone from the FIFO, so we only
2862 * need to look at completing IN requests here
2863 * if operating slave mode
2864 */
2865 if (hs_ep->isochronous && hs_ep->interval > 1)
2866 dwc2_gadget_incr_frame_num(hs_ep);
2867
2868 dwc2_hsotg_complete_in(hsotg, hs_ep);
2869 if (ints & DXEPINT_NAKINTRPT)
2870 ints &= ~DXEPINT_NAKINTRPT;
2871
2872 if (idx == 0 && !hs_ep->req)
2873 dwc2_hsotg_enqueue_setup(hsotg);
2874 } else if (using_dma(hsotg)) {
2875 /*
2876 * We're using DMA, we need to fire an OutDone here
2877 * as we ignore the RXFIFO.
2878 */
2879 if (hs_ep->isochronous && hs_ep->interval > 1)
2880 dwc2_gadget_incr_frame_num(hs_ep);
2881
2882 dwc2_hsotg_handle_outdone(hsotg, idx);
2883 }
2884 }
2885
2886 if (ints & DXEPINT_EPDISBLD)
2887 dwc2_gadget_handle_ep_disabled(hs_ep);
2888
2889 if (ints & DXEPINT_OUTTKNEPDIS)
2890 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2891
2892 if (ints & DXEPINT_NAKINTRPT)
2893 dwc2_gadget_handle_nak(hs_ep);
2894
2895 if (ints & DXEPINT_AHBERR)
2896 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2897
2898 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
2899 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
2900
2901 if (using_dma(hsotg) && idx == 0) {
2902 /*
2903 * this is the notification we've received a
2904 * setup packet. In non-DMA mode we'd get this
2905 * from the RXFIFO, instead we need to process
2906 * the setup here.
2907 */
2908
2909 if (dir_in)
2910 WARN_ON_ONCE(1);
2911 else
2912 dwc2_hsotg_handle_outdone(hsotg, 0);
2913 }
2914 }
2915
2916 if (ints & DXEPINT_STSPHSERCVD) {
2917 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2918
2919 /* Move to STATUS IN for DDMA */
2920 if (using_desc_dma(hsotg))
2921 dwc2_hsotg_ep0_zlp(hsotg, true);
2922 }
2923
2924 if (ints & DXEPINT_BACK2BACKSETUP)
2925 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2926
2927 if (ints & DXEPINT_BNAINTR) {
2928 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2929
2930 /*
2931 * Try to start next isoc request, if any.
2932 * Sometimes the endpoint remains enabled after BNA interrupt
2933 * assertion, which is not expected, hence we can enter here
2934 * couple of times.
2935 */
2936 if (hs_ep->isochronous)
2937 dwc2_gadget_start_next_isoc_ddma(hs_ep);
2938 }
2939
2940 if (dir_in && !hs_ep->isochronous) {
2941 /* not sure if this is important, but we'll clear it anyway */
2942 if (ints & DXEPINT_INTKNTXFEMP) {
2943 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2944 __func__, idx);
2945 }
2946
2947 /* this probably means something bad is happening */
2948 if (ints & DXEPINT_INTKNEPMIS) {
2949 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2950 __func__, idx);
2951 }
2952
2953 /* FIFO has space or is empty (see GAHBCFG) */
2954 if (hsotg->dedicated_fifos &&
2955 ints & DXEPINT_TXFEMP) {
2956 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2957 __func__, idx);
2958 if (!using_dma(hsotg))
2959 dwc2_hsotg_trytx(hsotg, hs_ep);
2960 }
2961 }
2962}
2963
2964/**
2965 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2966 * @hsotg: The device state.
2967 *
2968 * Handle updating the device settings after the enumeration phase has
2969 * been completed.
2970 */
2971static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2972{
2973 u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2974 int ep0_mps = 0, ep_mps = 8;
2975
2976 /*
2977 * This should signal the finish of the enumeration phase
2978 * of the USB handshaking, so we should now know what rate
2979 * we connected at.
2980 */
2981
2982 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2983
2984 /*
2985 * note, since we're limited by the size of transfer on EP0, and
2986 * it seems IN transfers must be a even number of packets we do
2987 * not advertise a 64byte MPS on EP0.
2988 */
2989
2990 /* catch both EnumSpd_FS and EnumSpd_FS48 */
2991 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2992 case DSTS_ENUMSPD_FS:
2993 case DSTS_ENUMSPD_FS48:
2994 hsotg->gadget.speed = USB_SPEED_FULL;
2995 ep0_mps = EP0_MPS_LIMIT;
2996 ep_mps = 1023;
2997 break;
2998
2999 case DSTS_ENUMSPD_HS:
3000 hsotg->gadget.speed = USB_SPEED_HIGH;
3001 ep0_mps = EP0_MPS_LIMIT;
3002 ep_mps = 1024;
3003 break;
3004
3005 case DSTS_ENUMSPD_LS:
3006 hsotg->gadget.speed = USB_SPEED_LOW;
3007 ep0_mps = 8;
3008 ep_mps = 8;
3009 /*
3010 * note, we don't actually support LS in this driver at the
3011 * moment, and the documentation seems to imply that it isn't
3012 * supported by the PHYs on some of the devices.
3013 */
3014 break;
3015 }
3016 dev_info(hsotg->dev, "new device is %s\n",
3017 usb_speed_string(hsotg->gadget.speed));
3018
3019 /*
3020 * we should now know the maximum packet size for an
3021 * endpoint, so set the endpoints to a default value.
3022 */
3023
3024 if (ep0_mps) {
3025 int i;
3026 /* Initialize ep0 for both in and out directions */
3027 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3028 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3029 for (i = 1; i < hsotg->num_of_eps; i++) {
3030 if (hsotg->eps_in[i])
3031 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3032 0, 1);
3033 if (hsotg->eps_out[i])
3034 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3035 0, 0);
3036 }
3037 }
3038
3039 /* ensure after enumeration our EP0 is active */
3040
3041 dwc2_hsotg_enqueue_setup(hsotg);
3042
3043 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3044 dwc2_readl(hsotg->regs + DIEPCTL0),
3045 dwc2_readl(hsotg->regs + DOEPCTL0));
3046}
3047
3048/**
3049 * kill_all_requests - remove all requests from the endpoint's queue
3050 * @hsotg: The device state.
3051 * @ep: The endpoint the requests may be on.
3052 * @result: The result code to use.
3053 *
3054 * Go through the requests on the given endpoint and mark them
3055 * completed with the given result code.
3056 */
3057static void kill_all_requests(struct dwc2_hsotg *hsotg,
3058 struct dwc2_hsotg_ep *ep,
3059 int result)
3060{
3061 struct dwc2_hsotg_req *req, *treq;
3062 unsigned size;
3063
3064 ep->req = NULL;
3065
3066 list_for_each_entry_safe(req, treq, &ep->queue, queue)
3067 dwc2_hsotg_complete_request(hsotg, ep, req,
3068 result);
3069
3070 if (!hsotg->dedicated_fifos)
3071 return;
3072 size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3073 if (size < ep->fifo_size)
3074 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3075}
3076
3077/**
3078 * dwc2_hsotg_disconnect - disconnect service
3079 * @hsotg: The device state.
3080 *
3081 * The device has been disconnected. Remove all current
3082 * transactions and signal the gadget driver that this
3083 * has happened.
3084 */
3085void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3086{
3087 unsigned ep;
3088
3089 if (!hsotg->connected)
3090 return;
3091
3092 hsotg->connected = 0;
3093 hsotg->test_mode = 0;
3094
3095 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3096 if (hsotg->eps_in[ep])
3097 kill_all_requests(hsotg, hsotg->eps_in[ep],
3098 -ESHUTDOWN);
3099 if (hsotg->eps_out[ep])
3100 kill_all_requests(hsotg, hsotg->eps_out[ep],
3101 -ESHUTDOWN);
3102 }
3103
3104 call_gadget(hsotg, disconnect);
3105 hsotg->lx_state = DWC2_L3;
3106}
3107
3108/**
3109 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3110 * @hsotg: The device state:
3111 * @periodic: True if this is a periodic FIFO interrupt
3112 */
3113static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3114{
3115 struct dwc2_hsotg_ep *ep;
3116 int epno, ret;
3117
3118 /* look through for any more data to transmit */
3119 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3120 ep = index_to_ep(hsotg, epno, 1);
3121
3122 if (!ep)
3123 continue;
3124
3125 if (!ep->dir_in)
3126 continue;
3127
3128 if ((periodic && !ep->periodic) ||
3129 (!periodic && ep->periodic))
3130 continue;
3131
3132 ret = dwc2_hsotg_trytx(hsotg, ep);
3133 if (ret < 0)
3134 break;
3135 }
3136}
3137
3138/* IRQ flags which will trigger a retry around the IRQ loop */
3139#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3140 GINTSTS_PTXFEMP | \
3141 GINTSTS_RXFLVL)
3142
3143/**
3144 * dwc2_hsotg_core_init - issue softreset to the core
3145 * @hsotg: The device state
3146 *
3147 * Issue a soft reset to the core, and await the core finishing it.
3148 */
3149void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3150 bool is_usb_reset)
3151{
3152 u32 intmsk;
3153 u32 val;
3154 u32 usbcfg;
3155 u32 dcfg = 0;
3156
3157 /* Kill any ep0 requests as controller will be reinitialized */
3158 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3159
3160 if (!is_usb_reset)
3161 if (dwc2_core_reset(hsotg))
3162 return;
3163
3164 /*
3165 * we must now enable ep0 ready for host detection and then
3166 * set configuration.
3167 */
3168
3169 /* keep other bits untouched (so e.g. forced modes are not lost) */
3170 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3171 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3172 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3173
3174 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3175 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3176 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3177 /* FS/LS Dedicated Transceiver Interface */
3178 usbcfg |= GUSBCFG_PHYSEL;
3179 } else {
3180 /* set the PLL on, remove the HNP/SRP and set the PHY */
3181 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3182 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3183 (val << GUSBCFG_USBTRDTIM_SHIFT);
3184 }
3185 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3186
3187 dwc2_hsotg_init_fifo(hsotg);
3188
3189 if (!is_usb_reset)
3190 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3191
3192 dcfg |= DCFG_EPMISCNT(1);
3193
3194 switch (hsotg->params.speed) {
3195 case DWC2_SPEED_PARAM_LOW:
3196 dcfg |= DCFG_DEVSPD_LS;
3197 break;
3198 case DWC2_SPEED_PARAM_FULL:
3199 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3200 dcfg |= DCFG_DEVSPD_FS48;
3201 else
3202 dcfg |= DCFG_DEVSPD_FS;
3203 break;
3204 default:
3205 dcfg |= DCFG_DEVSPD_HS;
3206 }
3207
3208 dwc2_writel(dcfg, hsotg->regs + DCFG);
3209
3210 /* Clear any pending OTG interrupts */
3211 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3212
3213 /* Clear any pending interrupts */
3214 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3215 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3216 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3217 GINTSTS_USBRST | GINTSTS_RESETDET |
3218 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3219 GINTSTS_USBSUSP | GINTSTS_WKUPINT;
3220
3221 if (!using_desc_dma(hsotg))
3222 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3223
3224 if (hsotg->params.external_id_pin_ctl <= 0)
3225 intmsk |= GINTSTS_CONIDSTSCHNG;
3226
3227 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3228
3229 if (using_dma(hsotg)) {
3230 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3231 (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
3232 hsotg->regs + GAHBCFG);
3233
3234 /* Set DDMA mode support in the core if needed */
3235 if (using_desc_dma(hsotg))
3236 __orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3237
3238 } else {
3239 dwc2_writel(((hsotg->dedicated_fifos) ?
3240 (GAHBCFG_NP_TXF_EMP_LVL |
3241 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3242 GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3243 }
3244
3245 /*
3246 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3247 * when we have no data to transfer. Otherwise we get being flooded by
3248 * interrupts.
3249 */
3250
3251 dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3252 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3253 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3254 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3255 hsotg->regs + DIEPMSK);
3256
3257 /*
3258 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3259 * DMA mode we may need this and StsPhseRcvd.
3260 */
3261 dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3262 DOEPMSK_STSPHSERCVDMSK) : 0) |
3263 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3264 DOEPMSK_SETUPMSK,
3265 hsotg->regs + DOEPMSK);
3266
3267 /* Enable BNA interrupt for DDMA */
3268 if (using_desc_dma(hsotg))
3269 __orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3270
3271 dwc2_writel(0, hsotg->regs + DAINTMSK);
3272
3273 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3274 dwc2_readl(hsotg->regs + DIEPCTL0),
3275 dwc2_readl(hsotg->regs + DOEPCTL0));
3276
3277 /* enable in and out endpoint interrupts */
3278 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3279
3280 /*
3281 * Enable the RXFIFO when in slave mode, as this is how we collect
3282 * the data. In DMA mode, we get events from the FIFO but also
3283 * things we cannot process, so do not use it.
3284 */
3285 if (!using_dma(hsotg))
3286 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3287
3288 /* Enable interrupts for EP0 in and out */
3289 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3290 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3291
3292 if (!is_usb_reset) {
3293 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3294 udelay(10); /* see openiboot */
3295 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3296 }
3297
3298 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3299
3300 /*
3301 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3302 * writing to the EPCTL register..
3303 */
3304
3305 /* set to read 1 8byte packet */
3306 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3307 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3308
3309 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3310 DXEPCTL_CNAK | DXEPCTL_EPENA |
3311 DXEPCTL_USBACTEP,
3312 hsotg->regs + DOEPCTL0);
3313
3314 /* enable, but don't activate EP0in */
3315 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3316 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3317
3318 dwc2_hsotg_enqueue_setup(hsotg);
3319
3320 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3321 dwc2_readl(hsotg->regs + DIEPCTL0),
3322 dwc2_readl(hsotg->regs + DOEPCTL0));
3323
3324 /* clear global NAKs */
3325 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3326 if (!is_usb_reset)
3327 val |= DCTL_SFTDISCON;
3328 __orr32(hsotg->regs + DCTL, val);
3329
3330 /* must be at-least 3ms to allow bus to see disconnect */
3331 mdelay(3);
3332
3333 hsotg->lx_state = DWC2_L0;
3334}
3335
3336static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3337{
3338 /* set the soft-disconnect bit */
3339 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3340}
3341
3342void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3343{
3344 /* remove the soft-disconnect and let's go */
3345 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3346}
3347
3348/**
3349 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3350 * @hsotg: The device state:
3351 *
3352 * This interrupt indicates one of the following conditions occurred while
3353 * transmitting an ISOC transaction.
3354 * - Corrupted IN Token for ISOC EP.
3355 * - Packet not complete in FIFO.
3356 *
3357 * The following actions will be taken:
3358 * - Determine the EP
3359 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3360 */
3361static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3362{
3363 struct dwc2_hsotg_ep *hs_ep;
3364 u32 epctrl;
3365 u32 idx;
3366
3367 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3368
3369 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3370 hs_ep = hsotg->eps_in[idx];
3371 epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3372 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3373 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3374 epctrl |= DXEPCTL_SNAK;
3375 epctrl |= DXEPCTL_EPDIS;
3376 dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3377 }
3378 }
3379
3380 /* Clear interrupt */
3381 dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3382}
3383
3384/**
3385 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3386 * @hsotg: The device state:
3387 *
3388 * This interrupt indicates one of the following conditions occurred while
3389 * transmitting an ISOC transaction.
3390 * - Corrupted OUT Token for ISOC EP.
3391 * - Packet not complete in FIFO.
3392 *
3393 * The following actions will be taken:
3394 * - Determine the EP
3395 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3396 */
3397static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3398{
3399 u32 gintsts;
3400 u32 gintmsk;
3401 u32 epctrl;
3402 struct dwc2_hsotg_ep *hs_ep;
3403 int idx;
3404
3405 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3406
3407 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3408 hs_ep = hsotg->eps_out[idx];
3409 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3410 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3411 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3412 /* Unmask GOUTNAKEFF interrupt */
3413 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3414 gintmsk |= GINTSTS_GOUTNAKEFF;
3415 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3416
3417 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3418 if (!(gintsts & GINTSTS_GOUTNAKEFF))
3419 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3420 }
3421 }
3422
3423 /* Clear interrupt */
3424 dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3425}
3426
3427/**
3428 * dwc2_hsotg_irq - handle device interrupt
3429 * @irq: The IRQ number triggered
3430 * @pw: The pw value when registered the handler.
3431 */
3432static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3433{
3434 struct dwc2_hsotg *hsotg = pw;
3435 int retry_count = 8;
3436 u32 gintsts;
3437 u32 gintmsk;
3438
3439 if (!dwc2_is_device_mode(hsotg))
3440 return IRQ_NONE;
3441
3442 spin_lock(&hsotg->lock);
3443irq_retry:
3444 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3445 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3446
3447 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3448 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3449
3450 gintsts &= gintmsk;
3451
3452 if (gintsts & GINTSTS_RESETDET) {
3453 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3454
3455 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3456
3457 /* This event must be used only if controller is suspended */
3458 if (hsotg->lx_state == DWC2_L2) {
3459 dwc2_exit_hibernation(hsotg, true);
3460 hsotg->lx_state = DWC2_L0;
3461 }
3462 }
3463
3464 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3465
3466 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3467 u32 connected = hsotg->connected;
3468
3469 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3470 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3471 dwc2_readl(hsotg->regs + GNPTXSTS));
3472
3473 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3474
3475 /* Report disconnection if it is not already done. */
3476 dwc2_hsotg_disconnect(hsotg);
3477
3478 if (usb_status & GOTGCTL_BSESVLD && connected)
3479 dwc2_hsotg_core_init_disconnected(hsotg, true);
3480 }
3481
3482 if (gintsts & GINTSTS_ENUMDONE) {
3483 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3484
3485 dwc2_hsotg_irq_enumdone(hsotg);
3486 }
3487
3488 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3489 u32 daint = dwc2_readl(hsotg->regs + DAINT);
3490 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3491 u32 daint_out, daint_in;
3492 int ep;
3493
3494 daint &= daintmsk;
3495 daint_out = daint >> DAINT_OUTEP_SHIFT;
3496 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3497
3498 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3499
3500 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3501 ep++, daint_out >>= 1) {
3502 if (daint_out & 1)
3503 dwc2_hsotg_epint(hsotg, ep, 0);
3504 }
3505
3506 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3507 ep++, daint_in >>= 1) {
3508 if (daint_in & 1)
3509 dwc2_hsotg_epint(hsotg, ep, 1);
3510 }
3511 }
3512
3513 /* check both FIFOs */
3514
3515 if (gintsts & GINTSTS_NPTXFEMP) {
3516 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3517
3518 /*
3519 * Disable the interrupt to stop it happening again
3520 * unless one of these endpoint routines decides that
3521 * it needs re-enabling
3522 */
3523
3524 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3525 dwc2_hsotg_irq_fifoempty(hsotg, false);
3526 }
3527
3528 if (gintsts & GINTSTS_PTXFEMP) {
3529 dev_dbg(hsotg->dev, "PTxFEmp\n");
3530
3531 /* See note in GINTSTS_NPTxFEmp */
3532
3533 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3534 dwc2_hsotg_irq_fifoempty(hsotg, true);
3535 }
3536
3537 if (gintsts & GINTSTS_RXFLVL) {
3538 /*
3539 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3540 * we need to retry dwc2_hsotg_handle_rx if this is still
3541 * set.
3542 */
3543
3544 dwc2_hsotg_handle_rx(hsotg);
3545 }
3546
3547 if (gintsts & GINTSTS_ERLYSUSP) {
3548 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3549 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3550 }
3551
3552 /*
3553 * these next two seem to crop-up occasionally causing the core
3554 * to shutdown the USB transfer, so try clearing them and logging
3555 * the occurrence.
3556 */
3557
3558 if (gintsts & GINTSTS_GOUTNAKEFF) {
3559 u8 idx;
3560 u32 epctrl;
3561 u32 gintmsk;
3562 struct dwc2_hsotg_ep *hs_ep;
3563
3564 /* Mask this interrupt */
3565 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3566 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3567 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3568
3569 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3570 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3571 hs_ep = hsotg->eps_out[idx];
3572 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3573
3574 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3575 epctrl |= DXEPCTL_SNAK;
3576 epctrl |= DXEPCTL_EPDIS;
3577 dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3578 }
3579 }
3580
3581 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3582 }
3583
3584 if (gintsts & GINTSTS_GINNAKEFF) {
3585 dev_info(hsotg->dev, "GINNakEff triggered\n");
3586
3587 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3588
3589 dwc2_hsotg_dump(hsotg);
3590 }
3591
3592 if (gintsts & GINTSTS_INCOMPL_SOIN)
3593 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3594
3595 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3596 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3597
3598 /*
3599 * if we've had fifo events, we should try and go around the
3600 * loop again to see if there's any point in returning yet.
3601 */
3602
3603 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3604 goto irq_retry;
3605
3606 spin_unlock(&hsotg->lock);
3607
3608 return IRQ_HANDLED;
3609}
3610
3611static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
3612 u32 bit, u32 timeout)
3613{
3614 u32 i;
3615
3616 for (i = 0; i < timeout; i++) {
3617 if (dwc2_readl(hs_otg->regs + reg) & bit)
3618 return 0;
3619 udelay(1);
3620 }
3621
3622 return -ETIMEDOUT;
3623}
3624
3625static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3626 struct dwc2_hsotg_ep *hs_ep)
3627{
3628 u32 epctrl_reg;
3629 u32 epint_reg;
3630
3631 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3632 DOEPCTL(hs_ep->index);
3633 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3634 DOEPINT(hs_ep->index);
3635
3636 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3637 hs_ep->name);
3638
3639 if (hs_ep->dir_in) {
3640 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3641 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3642 /* Wait for Nak effect */
3643 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3644 DXEPINT_INEPNAKEFF, 100))
3645 dev_warn(hsotg->dev,
3646 "%s: timeout DIEPINT.NAKEFF\n",
3647 __func__);
3648 } else {
3649 __orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3650 /* Wait for Nak effect */
3651 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3652 GINTSTS_GINNAKEFF, 100))
3653 dev_warn(hsotg->dev,
3654 "%s: timeout GINTSTS.GINNAKEFF\n",
3655 __func__);
3656 }
3657 } else {
3658 if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3659 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3660
3661 /* Wait for global nak to take effect */
3662 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3663 GINTSTS_GOUTNAKEFF, 100))
3664 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3665 __func__);
3666 }
3667
3668 /* Disable ep */
3669 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3670
3671 /* Wait for ep to be disabled */
3672 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3673 dev_warn(hsotg->dev,
3674 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3675
3676 /* Clear EPDISBLD interrupt */
3677 __orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3678
3679 if (hs_ep->dir_in) {
3680 unsigned short fifo_index;
3681
3682 if (hsotg->dedicated_fifos || hs_ep->periodic)
3683 fifo_index = hs_ep->fifo_index;
3684 else
3685 fifo_index = 0;
3686
3687 /* Flush TX FIFO */
3688 dwc2_flush_tx_fifo(hsotg, fifo_index);
3689
3690 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3691 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3692 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3693
3694 } else {
3695 /* Remove global NAKs */
3696 __orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3697 }
3698}
3699
3700/**
3701 * dwc2_hsotg_ep_enable - enable the given endpoint
3702 * @ep: The USB endpint to configure
3703 * @desc: The USB endpoint descriptor to configure with.
3704 *
3705 * This is called from the USB gadget code's usb_ep_enable().
3706 */
3707static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3708 const struct usb_endpoint_descriptor *desc)
3709{
3710 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3711 struct dwc2_hsotg *hsotg = hs_ep->parent;
3712 unsigned long flags;
3713 unsigned int index = hs_ep->index;
3714 u32 epctrl_reg;
3715 u32 epctrl;
3716 u32 mps;
3717 u32 mc;
3718 u32 mask;
3719 unsigned int dir_in;
3720 unsigned int i, val, size;
3721 int ret = 0;
3722
3723 dev_dbg(hsotg->dev,
3724 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3725 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3726 desc->wMaxPacketSize, desc->bInterval);
3727
3728 /* not to be called for EP0 */
3729 if (index == 0) {
3730 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3731 return -EINVAL;
3732 }
3733
3734 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3735 if (dir_in != hs_ep->dir_in) {
3736 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3737 return -EINVAL;
3738 }
3739
3740 mps = usb_endpoint_maxp(desc);
3741 mc = usb_endpoint_maxp_mult(desc);
3742
3743 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3744
3745 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3746 epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3747
3748 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3749 __func__, epctrl, epctrl_reg);
3750
3751 /* Allocate DMA descriptor chain for non-ctrl endpoints */
3752 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3753 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3754 MAX_DMA_DESC_NUM_GENERIC *
3755 sizeof(struct dwc2_dma_desc),
3756 &hs_ep->desc_list_dma, GFP_ATOMIC);
3757 if (!hs_ep->desc_list) {
3758 ret = -ENOMEM;
3759 goto error2;
3760 }
3761 }
3762
3763 spin_lock_irqsave(&hsotg->lock, flags);
3764
3765 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3766 epctrl |= DXEPCTL_MPS(mps);
3767
3768 /*
3769 * mark the endpoint as active, otherwise the core may ignore
3770 * transactions entirely for this endpoint
3771 */
3772 epctrl |= DXEPCTL_USBACTEP;
3773
3774 /* update the endpoint state */
3775 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3776
3777 /* default, set to non-periodic */
3778 hs_ep->isochronous = 0;
3779 hs_ep->periodic = 0;
3780 hs_ep->halted = 0;
3781 hs_ep->interval = desc->bInterval;
3782
3783 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3784 case USB_ENDPOINT_XFER_ISOC:
3785 epctrl |= DXEPCTL_EPTYPE_ISO;
3786 epctrl |= DXEPCTL_SETEVENFR;
3787 hs_ep->isochronous = 1;
3788 hs_ep->interval = 1 << (desc->bInterval - 1);
3789 hs_ep->target_frame = TARGET_FRAME_INITIAL;
3790 hs_ep->isoc_chain_num = 0;
3791 hs_ep->next_desc = 0;
3792 if (dir_in) {
3793 hs_ep->periodic = 1;
3794 mask = dwc2_readl(hsotg->regs + DIEPMSK);
3795 mask |= DIEPMSK_NAKMSK;
3796 dwc2_writel(mask, hsotg->regs + DIEPMSK);
3797 } else {
3798 mask = dwc2_readl(hsotg->regs + DOEPMSK);
3799 mask |= DOEPMSK_OUTTKNEPDISMSK;
3800 dwc2_writel(mask, hsotg->regs + DOEPMSK);
3801 }
3802 break;
3803
3804 case USB_ENDPOINT_XFER_BULK:
3805 epctrl |= DXEPCTL_EPTYPE_BULK;
3806 break;
3807
3808 case USB_ENDPOINT_XFER_INT:
3809 if (dir_in)
3810 hs_ep->periodic = 1;
3811
3812 if (hsotg->gadget.speed == USB_SPEED_HIGH)
3813 hs_ep->interval = 1 << (desc->bInterval - 1);
3814
3815 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3816 break;
3817
3818 case USB_ENDPOINT_XFER_CONTROL:
3819 epctrl |= DXEPCTL_EPTYPE_CONTROL;
3820 break;
3821 }
3822
3823 /*
3824 * if the hardware has dedicated fifos, we must give each IN EP
3825 * a unique tx-fifo even if it is non-periodic.
3826 */
3827 if (dir_in && hsotg->dedicated_fifos) {
3828 u32 fifo_index = 0;
3829 u32 fifo_size = UINT_MAX;
3830 size = hs_ep->ep.maxpacket*hs_ep->mc;
3831 for (i = 1; i < hsotg->num_of_eps; ++i) {
3832 if (hsotg->fifo_map & (1<<i))
3833 continue;
3834 val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3835 val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
3836 if (val < size)
3837 continue;
3838 /* Search for smallest acceptable fifo */
3839 if (val < fifo_size) {
3840 fifo_size = val;
3841 fifo_index = i;
3842 }
3843 }
3844 if (!fifo_index) {
3845 dev_err(hsotg->dev,
3846 "%s: No suitable fifo found\n", __func__);
3847 ret = -ENOMEM;
3848 goto error1;
3849 }
3850 hsotg->fifo_map |= 1 << fifo_index;
3851 epctrl |= DXEPCTL_TXFNUM(fifo_index);
3852 hs_ep->fifo_index = fifo_index;
3853 hs_ep->fifo_size = fifo_size;
3854 }
3855
3856 /* for non control endpoints, set PID to D0 */
3857 if (index && !hs_ep->isochronous)
3858 epctrl |= DXEPCTL_SETD0PID;
3859
3860 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3861 __func__, epctrl);
3862
3863 dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3864 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3865 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
3866
3867 /* enable the endpoint interrupt */
3868 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3869
3870error1:
3871 spin_unlock_irqrestore(&hsotg->lock, flags);
3872
3873error2:
3874 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3875 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3876 sizeof(struct dwc2_dma_desc),
3877 hs_ep->desc_list, hs_ep->desc_list_dma);
3878 hs_ep->desc_list = NULL;
3879 }
3880
3881 return ret;
3882}
3883
3884/**
3885 * dwc2_hsotg_ep_disable - disable given endpoint
3886 * @ep: The endpoint to disable.
3887 */
3888static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3889{
3890 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3891 struct dwc2_hsotg *hsotg = hs_ep->parent;
3892 int dir_in = hs_ep->dir_in;
3893 int index = hs_ep->index;
3894 unsigned long flags;
3895 u32 epctrl_reg;
3896 u32 ctrl;
3897
3898 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3899
3900 if (ep == &hsotg->eps_out[0]->ep) {
3901 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
3902 return -EINVAL;
3903 }
3904
3905 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3906
3907 spin_lock_irqsave(&hsotg->lock, flags);
3908
3909 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3910
3911 if (ctrl & DXEPCTL_EPENA)
3912 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3913
3914 ctrl &= ~DXEPCTL_EPENA;
3915 ctrl &= ~DXEPCTL_USBACTEP;
3916 ctrl |= DXEPCTL_SNAK;
3917
3918 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3919 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3920
3921 /* disable endpoint interrupts */
3922 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3923
3924 /* terminate all requests with shutdown */
3925 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
3926
3927 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
3928 hs_ep->fifo_index = 0;
3929 hs_ep->fifo_size = 0;
3930
3931 spin_unlock_irqrestore(&hsotg->lock, flags);
3932 return 0;
3933}
3934
3935/**
3936 * on_list - check request is on the given endpoint
3937 * @ep: The endpoint to check.
3938 * @test: The request to test if it is on the endpoint.
3939 */
3940static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3941{
3942 struct dwc2_hsotg_req *req, *treq;
3943
3944 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
3945 if (req == test)
3946 return true;
3947 }
3948
3949 return false;
3950}
3951
3952/**
3953 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3954 * @ep: The endpoint to dequeue.
3955 * @req: The request to be removed from a queue.
3956 */
3957static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3958{
3959 struct dwc2_hsotg_req *hs_req = our_req(req);
3960 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3961 struct dwc2_hsotg *hs = hs_ep->parent;
3962 unsigned long flags;
3963
3964 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3965
3966 spin_lock_irqsave(&hs->lock, flags);
3967
3968 if (!on_list(hs_ep, hs_req)) {
3969 spin_unlock_irqrestore(&hs->lock, flags);
3970 return -EINVAL;
3971 }
3972
3973 /* Dequeue already started request */
3974 if (req == &hs_ep->req->req)
3975 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
3976
3977 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3978 spin_unlock_irqrestore(&hs->lock, flags);
3979
3980 return 0;
3981}
3982
3983/**
3984 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3985 * @ep: The endpoint to set halt.
3986 * @value: Set or unset the halt.
3987 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
3988 * the endpoint is busy processing requests.
3989 *
3990 * We need to stall the endpoint immediately if request comes from set_feature
3991 * protocol command handler.
3992 */
3993static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
3994{
3995 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3996 struct dwc2_hsotg *hs = hs_ep->parent;
3997 int index = hs_ep->index;
3998 u32 epreg;
3999 u32 epctl;
4000 u32 xfertype;
4001
4002 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4003
4004 if (index == 0) {
4005 if (value)
4006 dwc2_hsotg_stall_ep0(hs);
4007 else
4008 dev_warn(hs->dev,
4009 "%s: can't clear halt on ep0\n", __func__);
4010 return 0;
4011 }
4012
4013 if (hs_ep->isochronous) {
4014 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4015 return -EINVAL;
4016 }
4017
4018 if (!now && value && !list_empty(&hs_ep->queue)) {
4019 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4020 ep->name);
4021 return -EAGAIN;
4022 }
4023
4024 if (hs_ep->dir_in) {
4025 epreg = DIEPCTL(index);
4026 epctl = dwc2_readl(hs->regs + epreg);
4027
4028 if (value) {
4029 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4030 if (epctl & DXEPCTL_EPENA)
4031 epctl |= DXEPCTL_EPDIS;
4032 } else {
4033 epctl &= ~DXEPCTL_STALL;
4034 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4035 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4036 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4037 epctl |= DXEPCTL_SETD0PID;
4038 }
4039 dwc2_writel(epctl, hs->regs + epreg);
4040 } else {
4041
4042 epreg = DOEPCTL(index);
4043 epctl = dwc2_readl(hs->regs + epreg);
4044
4045 if (value)
4046 epctl |= DXEPCTL_STALL;
4047 else {
4048 epctl &= ~DXEPCTL_STALL;
4049 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4050 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4051 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4052 epctl |= DXEPCTL_SETD0PID;
4053 }
4054 dwc2_writel(epctl, hs->regs + epreg);
4055 }
4056
4057 hs_ep->halted = value;
4058
4059 return 0;
4060}
4061
4062/**
4063 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4064 * @ep: The endpoint to set halt.
4065 * @value: Set or unset the halt.
4066 */
4067static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4068{
4069 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4070 struct dwc2_hsotg *hs = hs_ep->parent;
4071 unsigned long flags = 0;
4072 int ret = 0;
4073
4074 spin_lock_irqsave(&hs->lock, flags);
4075 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4076 spin_unlock_irqrestore(&hs->lock, flags);
4077
4078 return ret;
4079}
4080
4081static struct usb_ep_ops dwc2_hsotg_ep_ops = {
4082 .enable = dwc2_hsotg_ep_enable,
4083 .disable = dwc2_hsotg_ep_disable,
4084 .alloc_request = dwc2_hsotg_ep_alloc_request,
4085 .free_request = dwc2_hsotg_ep_free_request,
4086 .queue = dwc2_hsotg_ep_queue_lock,
4087 .dequeue = dwc2_hsotg_ep_dequeue,
4088 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4089 /* note, don't believe we have any call for the fifo routines */
4090};
4091
4092/**
4093 * dwc2_hsotg_init - initalize the usb core
4094 * @hsotg: The driver state
4095 */
4096static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4097{
4098 u32 trdtim;
4099 u32 usbcfg;
4100 /* unmask subset of endpoint interrupts */
4101
4102 dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4103 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4104 hsotg->regs + DIEPMSK);
4105
4106 dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4107 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4108 hsotg->regs + DOEPMSK);
4109
4110 dwc2_writel(0, hsotg->regs + DAINTMSK);
4111
4112 /* Be in disconnected state until gadget is registered */
4113 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4114
4115 /* setup fifos */
4116
4117 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4118 dwc2_readl(hsotg->regs + GRXFSIZ),
4119 dwc2_readl(hsotg->regs + GNPTXFSIZ));
4120
4121 dwc2_hsotg_init_fifo(hsotg);
4122
4123 /* keep other bits untouched (so e.g. forced modes are not lost) */
4124 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4125 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4126 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4127
4128 /* set the PLL on, remove the HNP/SRP and set the PHY */
4129 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4130 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4131 (trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4132 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4133
4134 if (using_dma(hsotg))
4135 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4136}
4137
4138/**
4139 * dwc2_hsotg_udc_start - prepare the udc for work
4140 * @gadget: The usb gadget state
4141 * @driver: The usb gadget driver
4142 *
4143 * Perform initialization to prepare udc device and driver
4144 * to work.
4145 */
4146static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4147 struct usb_gadget_driver *driver)
4148{
4149 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4150 unsigned long flags;
4151 int ret;
4152
4153 if (!hsotg) {
4154 pr_err("%s: called with no device\n", __func__);
4155 return -ENODEV;
4156 }
4157
4158 if (!driver) {
4159 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4160 return -EINVAL;
4161 }
4162
4163 if (driver->max_speed < USB_SPEED_FULL)
4164 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4165
4166 if (!driver->setup) {
4167 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4168 return -EINVAL;
4169 }
4170
4171 WARN_ON(hsotg->driver);
4172
4173 driver->driver.bus = NULL;
4174 hsotg->driver = driver;
4175 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4176 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4177
4178 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4179 ret = dwc2_lowlevel_hw_enable(hsotg);
4180 if (ret)
4181 goto err;
4182 }
4183
4184 if (!IS_ERR_OR_NULL(hsotg->uphy))
4185 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4186
4187 spin_lock_irqsave(&hsotg->lock, flags);
4188 if (dwc2_hw_is_device(hsotg)) {
4189 dwc2_hsotg_init(hsotg);
4190 dwc2_hsotg_core_init_disconnected(hsotg, false);
4191 }
4192
4193 hsotg->enabled = 0;
4194 spin_unlock_irqrestore(&hsotg->lock, flags);
4195
4196 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4197
4198 return 0;
4199
4200err:
4201 hsotg->driver = NULL;
4202 return ret;
4203}
4204
4205/**
4206 * dwc2_hsotg_udc_stop - stop the udc
4207 * @gadget: The usb gadget state
4208 * @driver: The usb gadget driver
4209 *
4210 * Stop udc hw block and stay tunned for future transmissions
4211 */
4212static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4213{
4214 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4215 unsigned long flags = 0;
4216 int ep;
4217
4218 if (!hsotg)
4219 return -ENODEV;
4220
4221 /* all endpoints should be shutdown */
4222 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4223 if (hsotg->eps_in[ep])
4224 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4225 if (hsotg->eps_out[ep])
4226 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4227 }
4228
4229 spin_lock_irqsave(&hsotg->lock, flags);
4230
4231 hsotg->driver = NULL;
4232 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4233 hsotg->enabled = 0;
4234
4235 spin_unlock_irqrestore(&hsotg->lock, flags);
4236
4237 if (!IS_ERR_OR_NULL(hsotg->uphy))
4238 otg_set_peripheral(hsotg->uphy->otg, NULL);
4239
4240 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4241 dwc2_lowlevel_hw_disable(hsotg);
4242
4243 return 0;
4244}
4245
4246/**
4247 * dwc2_hsotg_gadget_getframe - read the frame number
4248 * @gadget: The usb gadget state
4249 *
4250 * Read the {micro} frame number
4251 */
4252static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4253{
4254 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4255}
4256
4257/**
4258 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4259 * @gadget: The usb gadget state
4260 * @is_on: Current state of the USB PHY
4261 *
4262 * Connect/Disconnect the USB PHY pullup
4263 */
4264static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4265{
4266 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4267 unsigned long flags = 0;
4268
4269 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4270 hsotg->op_state);
4271
4272 /* Don't modify pullup state while in host mode */
4273 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4274 hsotg->enabled = is_on;
4275 return 0;
4276 }
4277
4278 spin_lock_irqsave(&hsotg->lock, flags);
4279 if (is_on) {
4280 hsotg->enabled = 1;
4281 dwc2_hsotg_core_init_disconnected(hsotg, false);
4282 dwc2_hsotg_core_connect(hsotg);
4283 } else {
4284 dwc2_hsotg_core_disconnect(hsotg);
4285 dwc2_hsotg_disconnect(hsotg);
4286 hsotg->enabled = 0;
4287 }
4288
4289 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4290 spin_unlock_irqrestore(&hsotg->lock, flags);
4291
4292 return 0;
4293}
4294
4295static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4296{
4297 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4298 unsigned long flags;
4299
4300 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4301 spin_lock_irqsave(&hsotg->lock, flags);
4302
4303 /*
4304 * If controller is hibernated, it must exit from hibernation
4305 * before being initialized / de-initialized
4306 */
4307 if (hsotg->lx_state == DWC2_L2)
4308 dwc2_exit_hibernation(hsotg, false);
4309
4310 if (is_active) {
4311 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4312
4313 dwc2_hsotg_core_init_disconnected(hsotg, false);
4314 if (hsotg->enabled)
4315 dwc2_hsotg_core_connect(hsotg);
4316 } else {
4317 dwc2_hsotg_core_disconnect(hsotg);
4318 dwc2_hsotg_disconnect(hsotg);
4319 }
4320
4321 spin_unlock_irqrestore(&hsotg->lock, flags);
4322 return 0;
4323}
4324
4325/**
4326 * dwc2_hsotg_vbus_draw - report bMaxPower field
4327 * @gadget: The usb gadget state
4328 * @mA: Amount of current
4329 *
4330 * Report how much power the device may consume to the phy.
4331 */
4332static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
4333{
4334 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4335
4336 if (IS_ERR_OR_NULL(hsotg->uphy))
4337 return -ENOTSUPP;
4338 return usb_phy_set_power(hsotg->uphy, mA);
4339}
4340
4341static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4342 .get_frame = dwc2_hsotg_gadget_getframe,
4343 .udc_start = dwc2_hsotg_udc_start,
4344 .udc_stop = dwc2_hsotg_udc_stop,
4345 .pullup = dwc2_hsotg_pullup,
4346 .vbus_session = dwc2_hsotg_vbus_session,
4347 .vbus_draw = dwc2_hsotg_vbus_draw,
4348};
4349
4350/**
4351 * dwc2_hsotg_initep - initialise a single endpoint
4352 * @hsotg: The device state.
4353 * @hs_ep: The endpoint to be initialised.
4354 * @epnum: The endpoint number
4355 *
4356 * Initialise the given endpoint (as part of the probe and device state
4357 * creation) to give to the gadget driver. Setup the endpoint name, any
4358 * direction information and other state that may be required.
4359 */
4360static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4361 struct dwc2_hsotg_ep *hs_ep,
4362 int epnum,
4363 bool dir_in)
4364{
4365 char *dir;
4366
4367 if (epnum == 0)
4368 dir = "";
4369 else if (dir_in)
4370 dir = "in";
4371 else
4372 dir = "out";
4373
4374 hs_ep->dir_in = dir_in;
4375 hs_ep->index = epnum;
4376
4377 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4378
4379 INIT_LIST_HEAD(&hs_ep->queue);
4380 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4381
4382 /* add to the list of endpoints known by the gadget driver */
4383 if (epnum)
4384 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4385
4386 hs_ep->parent = hsotg;
4387 hs_ep->ep.name = hs_ep->name;
4388
4389 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4390 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4391 else
4392 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4393 epnum ? 1024 : EP0_MPS_LIMIT);
4394 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4395
4396 if (epnum == 0) {
4397 hs_ep->ep.caps.type_control = true;
4398 } else {
4399 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4400 hs_ep->ep.caps.type_iso = true;
4401 hs_ep->ep.caps.type_bulk = true;
4402 }
4403 hs_ep->ep.caps.type_int = true;
4404 }
4405
4406 if (dir_in)
4407 hs_ep->ep.caps.dir_in = true;
4408 else
4409 hs_ep->ep.caps.dir_out = true;
4410
4411 /*
4412 * if we're using dma, we need to set the next-endpoint pointer
4413 * to be something valid.
4414 */
4415
4416 if (using_dma(hsotg)) {
4417 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4418 if (dir_in)
4419 dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4420 else
4421 dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4422 }
4423}
4424
4425/**
4426 * dwc2_hsotg_hw_cfg - read HW configuration registers
4427 * @param: The device state
4428 *
4429 * Read the USB core HW configuration registers
4430 */
4431static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4432{
4433 u32 cfg;
4434 u32 ep_type;
4435 u32 i;
4436
4437 /* check hardware configuration */
4438
4439 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4440
4441 /* Add ep0 */
4442 hsotg->num_of_eps++;
4443
4444 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
4445 GFP_KERNEL);
4446 if (!hsotg->eps_in[0])
4447 return -ENOMEM;
4448 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4449 hsotg->eps_out[0] = hsotg->eps_in[0];
4450
4451 cfg = hsotg->hw_params.dev_ep_dirs;
4452 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4453 ep_type = cfg & 3;
4454 /* Direction in or both */
4455 if (!(ep_type & 2)) {
4456 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4457 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4458 if (!hsotg->eps_in[i])
4459 return -ENOMEM;
4460 }
4461 /* Direction out or both */
4462 if (!(ep_type & 1)) {
4463 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4464 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4465 if (!hsotg->eps_out[i])
4466 return -ENOMEM;
4467 }
4468 }
4469
4470 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4471 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4472
4473 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4474 hsotg->num_of_eps,
4475 hsotg->dedicated_fifos ? "dedicated" : "shared",
4476 hsotg->fifo_mem);
4477 return 0;
4478}
4479
4480/**
4481 * dwc2_hsotg_dump - dump state of the udc
4482 * @param: The device state
4483 */
4484static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4485{
4486#ifdef DEBUG
4487 struct device *dev = hsotg->dev;
4488 void __iomem *regs = hsotg->regs;
4489 u32 val;
4490 int idx;
4491
4492 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4493 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4494 dwc2_readl(regs + DIEPMSK));
4495
4496 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4497 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4498
4499 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4500 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4501
4502 /* show periodic fifo settings */
4503
4504 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4505 val = dwc2_readl(regs + DPTXFSIZN(idx));
4506 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4507 val >> FIFOSIZE_DEPTH_SHIFT,
4508 val & FIFOSIZE_STARTADDR_MASK);
4509 }
4510
4511 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4512 dev_info(dev,
4513 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4514 dwc2_readl(regs + DIEPCTL(idx)),
4515 dwc2_readl(regs + DIEPTSIZ(idx)),
4516 dwc2_readl(regs + DIEPDMA(idx)));
4517
4518 val = dwc2_readl(regs + DOEPCTL(idx));
4519 dev_info(dev,
4520 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4521 idx, dwc2_readl(regs + DOEPCTL(idx)),
4522 dwc2_readl(regs + DOEPTSIZ(idx)),
4523 dwc2_readl(regs + DOEPDMA(idx)));
4524
4525 }
4526
4527 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4528 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4529#endif
4530}
4531
4532/**
4533 * dwc2_gadget_init - init function for gadget
4534 * @dwc2: The data structure for the DWC2 driver.
4535 * @irq: The IRQ number for the controller.
4536 */
4537int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4538{
4539 struct device *dev = hsotg->dev;
4540 int epnum;
4541 int ret;
4542
4543 /* Dump fifo information */
4544 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4545 hsotg->params.g_np_tx_fifo_size);
4546 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4547
4548 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4549 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4550 hsotg->gadget.name = dev_name(dev);
4551 if (hsotg->dr_mode == USB_DR_MODE_OTG)
4552 hsotg->gadget.is_otg = 1;
4553 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4554 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4555
4556 ret = dwc2_hsotg_hw_cfg(hsotg);
4557 if (ret) {
4558 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4559 return ret;
4560 }
4561
4562 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4563 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4564 if (!hsotg->ctrl_buff)
4565 return -ENOMEM;
4566
4567 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4568 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4569 if (!hsotg->ep0_buff)
4570 return -ENOMEM;
4571
4572 if (using_desc_dma(hsotg)) {
4573 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4574 if (ret < 0)
4575 return ret;
4576 }
4577
4578 ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4579 dev_name(hsotg->dev), hsotg);
4580 if (ret < 0) {
4581 dev_err(dev, "cannot claim IRQ for gadget\n");
4582 return ret;
4583 }
4584
4585 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4586
4587 if (hsotg->num_of_eps == 0) {
4588 dev_err(dev, "wrong number of EPs (zero)\n");
4589 return -EINVAL;
4590 }
4591
4592 /* setup endpoint information */
4593
4594 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4595 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4596
4597 /* allocate EP0 request */
4598
4599 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4600 GFP_KERNEL);
4601 if (!hsotg->ctrl_req) {
4602 dev_err(dev, "failed to allocate ctrl req\n");
4603 return -ENOMEM;
4604 }
4605
4606 /* initialise the endpoints now the core has been initialised */
4607 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4608 if (hsotg->eps_in[epnum])
4609 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4610 epnum, 1);
4611 if (hsotg->eps_out[epnum])
4612 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4613 epnum, 0);
4614 }
4615
4616 ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4617 if (ret)
4618 return ret;
4619
4620 dwc2_hsotg_dump(hsotg);
4621
4622 return 0;
4623}
4624
4625/**
4626 * dwc2_hsotg_remove - remove function for hsotg driver
4627 * @pdev: The platform information for the driver
4628 */
4629int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4630{
4631 usb_del_gadget_udc(&hsotg->gadget);
4632
4633 return 0;
4634}
4635
4636int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4637{
4638 unsigned long flags;
4639
4640 if (hsotg->lx_state != DWC2_L0)
4641 return 0;
4642
4643 if (hsotg->driver) {
4644 int ep;
4645
4646 dev_info(hsotg->dev, "suspending usb gadget %s\n",
4647 hsotg->driver->driver.name);
4648
4649 spin_lock_irqsave(&hsotg->lock, flags);
4650 if (hsotg->enabled)
4651 dwc2_hsotg_core_disconnect(hsotg);
4652 dwc2_hsotg_disconnect(hsotg);
4653 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4654 spin_unlock_irqrestore(&hsotg->lock, flags);
4655
4656 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4657 if (hsotg->eps_in[ep])
4658 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4659 if (hsotg->eps_out[ep])
4660 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4661 }
4662 }
4663
4664 return 0;
4665}
4666
4667int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4668{
4669 unsigned long flags;
4670
4671 if (hsotg->lx_state == DWC2_L2)
4672 return 0;
4673
4674 if (hsotg->driver) {
4675 dev_info(hsotg->dev, "resuming usb gadget %s\n",
4676 hsotg->driver->driver.name);
4677
4678 spin_lock_irqsave(&hsotg->lock, flags);
4679 dwc2_hsotg_core_init_disconnected(hsotg, false);
4680 if (hsotg->enabled)
4681 dwc2_hsotg_core_connect(hsotg);
4682 spin_unlock_irqrestore(&hsotg->lock, flags);
4683 }
4684
4685 return 0;
4686}
4687
4688/**
4689 * dwc2_backup_device_registers() - Backup controller device registers.
4690 * When suspending usb bus, registers needs to be backuped
4691 * if controller power is disabled once suspended.
4692 *
4693 * @hsotg: Programming view of the DWC_otg controller
4694 */
4695int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4696{
4697 struct dwc2_dregs_backup *dr;
4698 int i;
4699
4700 dev_dbg(hsotg->dev, "%s\n", __func__);
4701
4702 /* Backup dev regs */
4703 dr = &hsotg->dr_backup;
4704
4705 dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4706 dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4707 dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4708 dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4709 dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4710
4711 for (i = 0; i < hsotg->num_of_eps; i++) {
4712 /* Backup IN EPs */
4713 dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4714
4715 /* Ensure DATA PID is correctly configured */
4716 if (dr->diepctl[i] & DXEPCTL_DPID)
4717 dr->diepctl[i] |= DXEPCTL_SETD1PID;
4718 else
4719 dr->diepctl[i] |= DXEPCTL_SETD0PID;
4720
4721 dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4722 dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4723
4724 /* Backup OUT EPs */
4725 dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4726
4727 /* Ensure DATA PID is correctly configured */
4728 if (dr->doepctl[i] & DXEPCTL_DPID)
4729 dr->doepctl[i] |= DXEPCTL_SETD1PID;
4730 else
4731 dr->doepctl[i] |= DXEPCTL_SETD0PID;
4732
4733 dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4734 dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4735 }
4736 dr->valid = true;
4737 return 0;
4738}
4739
4740/**
4741 * dwc2_restore_device_registers() - Restore controller device registers.
4742 * When resuming usb bus, device registers needs to be restored
4743 * if controller power were disabled.
4744 *
4745 * @hsotg: Programming view of the DWC_otg controller
4746 */
4747int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
4748{
4749 struct dwc2_dregs_backup *dr;
4750 u32 dctl;
4751 int i;
4752
4753 dev_dbg(hsotg->dev, "%s\n", __func__);
4754
4755 /* Restore dev regs */
4756 dr = &hsotg->dr_backup;
4757 if (!dr->valid) {
4758 dev_err(hsotg->dev, "%s: no device registers to restore\n",
4759 __func__);
4760 return -EINVAL;
4761 }
4762 dr->valid = false;
4763
4764 dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
4765 dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4766 dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4767 dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4768 dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4769
4770 for (i = 0; i < hsotg->num_of_eps; i++) {
4771 /* Restore IN EPs */
4772 dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4773 dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4774 dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4775
4776 /* Restore OUT EPs */
4777 dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4778 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4779 dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4780 }
4781
4782 /* Set the Power-On Programming done bit */
4783 dctl = dwc2_readl(hsotg->regs + DCTL);
4784 dctl |= DCTL_PWRONPRGDONE;
4785 dwc2_writel(dctl, hsotg->regs + DCTL);
4786
4787 return 0;
4788}