Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Intel & MS High Precision Event Timer Implementation.
   4 *
   5 * Copyright (C) 2003 Intel Corporation
   6 *	Venki Pallipadi
   7 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
   8 *	Bob Picco <robert.picco@hp.com>
   9 */
  10
  11#include <linux/interrupt.h>
  12#include <linux/kernel.h>
  13#include <linux/types.h>
  14#include <linux/miscdevice.h>
  15#include <linux/major.h>
  16#include <linux/ioport.h>
  17#include <linux/fcntl.h>
  18#include <linux/init.h>
  19#include <linux/io-64-nonatomic-lo-hi.h>
  20#include <linux/poll.h>
  21#include <linux/mm.h>
  22#include <linux/proc_fs.h>
  23#include <linux/spinlock.h>
  24#include <linux/sysctl.h>
  25#include <linux/wait.h>
  26#include <linux/sched/signal.h>
  27#include <linux/bcd.h>
  28#include <linux/seq_file.h>
  29#include <linux/bitops.h>
  30#include <linux/compat.h>
  31#include <linux/clocksource.h>
  32#include <linux/uaccess.h>
  33#include <linux/slab.h>
  34#include <linux/io.h>
  35#include <linux/acpi.h>
  36#include <linux/hpet.h>
  37#include <asm/current.h>
  38#include <asm/irq.h>
  39#include <asm/div64.h>
  40
  41/*
  42 * The High Precision Event Timer driver.
  43 * This driver is closely modelled after the rtc.c driver.
  44 * See HPET spec revision 1.
  45 */
  46#define	HPET_USER_FREQ	(64)
  47#define	HPET_DRIFT	(500)
  48
  49#define HPET_RANGE_SIZE		1024	/* from HPET spec */
  50
  51
  52/* WARNING -- don't get confused.  These macros are never used
  53 * to write the (single) counter, and rarely to read it.
  54 * They're badly named; to fix, someday.
  55 */
  56#if BITS_PER_LONG == 64
  57#define	write_counter(V, MC)	writeq(V, MC)
  58#define	read_counter(MC)	readq(MC)
  59#else
  60#define	write_counter(V, MC)	writel(V, MC)
  61#define	read_counter(MC)	readl(MC)
  62#endif
  63
  64static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
  65static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
  66
  67/* A lock for concurrent access by app and isr hpet activity. */
  68static DEFINE_SPINLOCK(hpet_lock);
  69
  70#define	HPET_DEV_NAME	(7)
  71
  72struct hpet_dev {
  73	struct hpets *hd_hpets;
  74	struct hpet __iomem *hd_hpet;
  75	struct hpet_timer __iomem *hd_timer;
  76	unsigned long hd_ireqfreq;
  77	unsigned long hd_irqdata;
  78	wait_queue_head_t hd_waitqueue;
  79	struct fasync_struct *hd_async_queue;
  80	unsigned int hd_flags;
  81	unsigned int hd_irq;
  82	unsigned int hd_hdwirq;
  83	char hd_name[HPET_DEV_NAME];
  84};
  85
  86struct hpets {
  87	struct hpets *hp_next;
  88	struct hpet __iomem *hp_hpet;
  89	unsigned long hp_hpet_phys;
  90	struct clocksource *hp_clocksource;
  91	unsigned long long hp_tick_freq;
  92	unsigned long hp_delta;
  93	unsigned int hp_ntimer;
  94	unsigned int hp_which;
  95	struct hpet_dev hp_dev[] __counted_by(hp_ntimer);
  96};
  97
  98static struct hpets *hpets;
  99
 100#define	HPET_OPEN		0x0001
 101#define	HPET_IE			0x0002	/* interrupt enabled */
 102#define	HPET_PERIODIC		0x0004
 103#define	HPET_SHARED_IRQ		0x0008
 104
 105static irqreturn_t hpet_interrupt(int irq, void *data)
 106{
 107	struct hpet_dev *devp;
 108	unsigned long isr;
 109
 110	devp = data;
 111	isr = 1 << (devp - devp->hd_hpets->hp_dev);
 112
 113	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
 114	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
 115		return IRQ_NONE;
 116
 117	spin_lock(&hpet_lock);
 118	devp->hd_irqdata++;
 119
 120	/*
 121	 * For non-periodic timers, increment the accumulator.
 122	 * This has the effect of treating non-periodic like periodic.
 123	 */
 124	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
 125		unsigned long t, mc, base, k;
 126		struct hpet __iomem *hpet = devp->hd_hpet;
 127		struct hpets *hpetp = devp->hd_hpets;
 128
 129		t = devp->hd_ireqfreq;
 130		read_counter(&devp->hd_timer->hpet_compare);
 131		mc = read_counter(&hpet->hpet_mc);
 132		/* The time for the next interrupt would logically be t + m,
 133		 * however, if we are very unlucky and the interrupt is delayed
 134		 * for longer than t then we will completely miss the next
 135		 * interrupt if we set t + m and an application will hang.
 136		 * Therefore we need to make a more complex computation assuming
 137		 * that there exists a k for which the following is true:
 138		 * k * t + base < mc + delta
 139		 * (k + 1) * t + base > mc + delta
 140		 * where t is the interval in hpet ticks for the given freq,
 141		 * base is the theoretical start value 0 < base < t,
 142		 * mc is the main counter value at the time of the interrupt,
 143		 * delta is the time it takes to write the a value to the
 144		 * comparator.
 145		 * k may then be computed as (mc - base + delta) / t .
 146		 */
 147		base = mc % t;
 148		k = (mc - base + hpetp->hp_delta) / t;
 149		write_counter(t * (k + 1) + base,
 150			      &devp->hd_timer->hpet_compare);
 151	}
 152
 153	if (devp->hd_flags & HPET_SHARED_IRQ)
 154		writel(isr, &devp->hd_hpet->hpet_isr);
 155	spin_unlock(&hpet_lock);
 156
 157	wake_up_interruptible(&devp->hd_waitqueue);
 158
 159	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
 160
 161	return IRQ_HANDLED;
 162}
 163
 164static void hpet_timer_set_irq(struct hpet_dev *devp)
 165{
 166	unsigned long v;
 167	int irq, gsi;
 168	struct hpet_timer __iomem *timer;
 169
 170	spin_lock_irq(&hpet_lock);
 171	if (devp->hd_hdwirq) {
 172		spin_unlock_irq(&hpet_lock);
 173		return;
 174	}
 175
 176	timer = devp->hd_timer;
 177
 178	/* we prefer level triggered mode */
 179	v = readl(&timer->hpet_config);
 180	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
 181		v |= Tn_INT_TYPE_CNF_MASK;
 182		writel(v, &timer->hpet_config);
 183	}
 184	spin_unlock_irq(&hpet_lock);
 185
 186	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
 187				 Tn_INT_ROUTE_CAP_SHIFT;
 188
 189	/*
 190	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
 191	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
 192	 */
 193	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
 194		v &= ~0xf3df;
 195	else
 196		v &= ~0xffff;
 197
 198	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
 199		if (irq >= nr_irqs) {
 200			irq = HPET_MAX_IRQ;
 201			break;
 202		}
 203
 204		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
 205					ACPI_ACTIVE_LOW);
 206		if (gsi > 0)
 207			break;
 208
 209		/* FIXME: Setup interrupt source table */
 210	}
 211
 212	if (irq < HPET_MAX_IRQ) {
 213		spin_lock_irq(&hpet_lock);
 214		v = readl(&timer->hpet_config);
 215		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
 216		writel(v, &timer->hpet_config);
 217		devp->hd_hdwirq = gsi;
 218		spin_unlock_irq(&hpet_lock);
 219	}
 220	return;
 221}
 222
 223static int hpet_open(struct inode *inode, struct file *file)
 224{
 225	struct hpet_dev *devp;
 226	struct hpets *hpetp;
 227	int i;
 228
 229	if (file->f_mode & FMODE_WRITE)
 230		return -EINVAL;
 231
 232	mutex_lock(&hpet_mutex);
 233	spin_lock_irq(&hpet_lock);
 234
 235	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
 236		for (i = 0; i < hpetp->hp_ntimer; i++)
 237			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN) {
 238				continue;
 239			} else {
 240				devp = &hpetp->hp_dev[i];
 241				break;
 242			}
 243
 244	if (!devp) {
 245		spin_unlock_irq(&hpet_lock);
 246		mutex_unlock(&hpet_mutex);
 247		return -EBUSY;
 248	}
 249
 250	file->private_data = devp;
 251	devp->hd_irqdata = 0;
 252	devp->hd_flags |= HPET_OPEN;
 253	spin_unlock_irq(&hpet_lock);
 254	mutex_unlock(&hpet_mutex);
 255
 256	hpet_timer_set_irq(devp);
 257
 258	return 0;
 259}
 260
 261static ssize_t
 262hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
 263{
 264	DECLARE_WAITQUEUE(wait, current);
 265	unsigned long data;
 266	ssize_t retval;
 267	struct hpet_dev *devp;
 268
 269	devp = file->private_data;
 270	if (!devp->hd_ireqfreq)
 271		return -EIO;
 272
 273	if (count < sizeof(unsigned long))
 274		return -EINVAL;
 275
 276	add_wait_queue(&devp->hd_waitqueue, &wait);
 277
 278	for ( ; ; ) {
 279		set_current_state(TASK_INTERRUPTIBLE);
 280
 281		spin_lock_irq(&hpet_lock);
 282		data = devp->hd_irqdata;
 283		devp->hd_irqdata = 0;
 284		spin_unlock_irq(&hpet_lock);
 285
 286		if (data) {
 287			break;
 288		} else if (file->f_flags & O_NONBLOCK) {
 289			retval = -EAGAIN;
 290			goto out;
 291		} else if (signal_pending(current)) {
 292			retval = -ERESTARTSYS;
 293			goto out;
 294		}
 295		schedule();
 296	}
 297
 298	retval = put_user(data, (unsigned long __user *)buf);
 299	if (!retval)
 300		retval = sizeof(unsigned long);
 301out:
 302	__set_current_state(TASK_RUNNING);
 303	remove_wait_queue(&devp->hd_waitqueue, &wait);
 304
 305	return retval;
 306}
 307
 308static __poll_t hpet_poll(struct file *file, poll_table * wait)
 309{
 310	unsigned long v;
 311	struct hpet_dev *devp;
 312
 313	devp = file->private_data;
 314
 315	if (!devp->hd_ireqfreq)
 316		return 0;
 317
 318	poll_wait(file, &devp->hd_waitqueue, wait);
 319
 320	spin_lock_irq(&hpet_lock);
 321	v = devp->hd_irqdata;
 322	spin_unlock_irq(&hpet_lock);
 323
 324	if (v != 0)
 325		return EPOLLIN | EPOLLRDNORM;
 326
 327	return 0;
 328}
 329
 330#ifdef CONFIG_HPET_MMAP
 331#ifdef CONFIG_HPET_MMAP_DEFAULT
 332static int hpet_mmap_enabled = 1;
 333#else
 334static int hpet_mmap_enabled = 0;
 335#endif
 336
 337static __init int hpet_mmap_enable(char *str)
 338{
 339	get_option(&str, &hpet_mmap_enabled);
 340	pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
 341	return 1;
 342}
 343__setup("hpet_mmap=", hpet_mmap_enable);
 344
 345static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
 346{
 347	struct hpet_dev *devp;
 348	unsigned long addr;
 349
 350	if (!hpet_mmap_enabled)
 351		return -EACCES;
 352
 353	devp = file->private_data;
 354	addr = devp->hd_hpets->hp_hpet_phys;
 355
 356	if (addr & (PAGE_SIZE - 1))
 357		return -ENOSYS;
 358
 359	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 360	return vm_iomap_memory(vma, addr, PAGE_SIZE);
 361}
 362#else
 363static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
 364{
 365	return -ENOSYS;
 366}
 367#endif
 368
 369static int hpet_fasync(int fd, struct file *file, int on)
 370{
 371	struct hpet_dev *devp;
 372
 373	devp = file->private_data;
 374
 375	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
 376		return 0;
 377	else
 378		return -EIO;
 379}
 380
 381static int hpet_release(struct inode *inode, struct file *file)
 382{
 383	struct hpet_dev *devp;
 384	struct hpet_timer __iomem *timer;
 385	int irq = 0;
 386
 387	devp = file->private_data;
 388	timer = devp->hd_timer;
 389
 390	spin_lock_irq(&hpet_lock);
 391
 392	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
 393	       &timer->hpet_config);
 394
 395	irq = devp->hd_irq;
 396	devp->hd_irq = 0;
 397
 398	devp->hd_ireqfreq = 0;
 399
 400	if (devp->hd_flags & HPET_PERIODIC
 401	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
 402		unsigned long v;
 403
 404		v = readq(&timer->hpet_config);
 405		v ^= Tn_TYPE_CNF_MASK;
 406		writeq(v, &timer->hpet_config);
 407	}
 408
 409	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
 410	spin_unlock_irq(&hpet_lock);
 411
 412	if (irq)
 413		free_irq(irq, devp);
 414
 415	file->private_data = NULL;
 416	return 0;
 417}
 418
 419static int hpet_ioctl_ieon(struct hpet_dev *devp)
 420{
 421	struct hpet_timer __iomem *timer;
 422	struct hpet __iomem *hpet;
 423	struct hpets *hpetp;
 424	int irq;
 425	unsigned long g, v, t, m;
 426	unsigned long flags, isr;
 427
 428	timer = devp->hd_timer;
 429	hpet = devp->hd_hpet;
 430	hpetp = devp->hd_hpets;
 431
 432	if (!devp->hd_ireqfreq)
 433		return -EIO;
 434
 435	spin_lock_irq(&hpet_lock);
 436
 437	if (devp->hd_flags & HPET_IE) {
 438		spin_unlock_irq(&hpet_lock);
 439		return -EBUSY;
 440	}
 441
 442	devp->hd_flags |= HPET_IE;
 443
 444	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
 445		devp->hd_flags |= HPET_SHARED_IRQ;
 446	spin_unlock_irq(&hpet_lock);
 447
 448	irq = devp->hd_hdwirq;
 449
 450	if (irq) {
 451		unsigned long irq_flags;
 452
 453		if (devp->hd_flags & HPET_SHARED_IRQ) {
 454			/*
 455			 * To prevent the interrupt handler from seeing an
 456			 * unwanted interrupt status bit, program the timer
 457			 * so that it will not fire in the near future ...
 458			 */
 459			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
 460			       &timer->hpet_config);
 461			write_counter(read_counter(&hpet->hpet_mc),
 462				      &timer->hpet_compare);
 463			/* ... and clear any left-over status. */
 464			isr = 1 << (devp - devp->hd_hpets->hp_dev);
 465			writel(isr, &hpet->hpet_isr);
 466		}
 467
 468		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
 469		irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
 470		if (request_irq(irq, hpet_interrupt, irq_flags,
 471				devp->hd_name, (void *)devp)) {
 472			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
 473			irq = 0;
 474		}
 475	}
 476
 477	if (irq == 0) {
 478		spin_lock_irq(&hpet_lock);
 479		devp->hd_flags ^= HPET_IE;
 480		spin_unlock_irq(&hpet_lock);
 481		return -EIO;
 482	}
 483
 484	devp->hd_irq = irq;
 485	t = devp->hd_ireqfreq;
 486	v = readq(&timer->hpet_config);
 487
 488	/* 64-bit comparators are not yet supported through the ioctls,
 489	 * so force this into 32-bit mode if it supports both modes
 490	 */
 491	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
 492
 493	if (devp->hd_flags & HPET_PERIODIC) {
 494		g |= Tn_TYPE_CNF_MASK;
 495		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
 496		writeq(v, &timer->hpet_config);
 497		local_irq_save(flags);
 498
 499		/*
 500		 * NOTE: First we modify the hidden accumulator
 501		 * register supported by periodic-capable comparators.
 502		 * We never want to modify the (single) counter; that
 503		 * would affect all the comparators. The value written
 504		 * is the counter value when the first interrupt is due.
 505		 */
 506		m = read_counter(&hpet->hpet_mc);
 507		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 508		/*
 509		 * Then we modify the comparator, indicating the period
 510		 * for subsequent interrupt.
 511		 */
 512		write_counter(t, &timer->hpet_compare);
 513	} else {
 514		local_irq_save(flags);
 515		m = read_counter(&hpet->hpet_mc);
 516		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 517	}
 518
 519	if (devp->hd_flags & HPET_SHARED_IRQ) {
 520		isr = 1 << (devp - devp->hd_hpets->hp_dev);
 521		writel(isr, &hpet->hpet_isr);
 522	}
 523	writeq(g, &timer->hpet_config);
 524	local_irq_restore(flags);
 525
 526	return 0;
 527}
 528
 529/* converts Hz to number of timer ticks */
 530static inline unsigned long hpet_time_div(struct hpets *hpets,
 531					  unsigned long dis)
 532{
 533	unsigned long long m;
 534
 535	m = hpets->hp_tick_freq + (dis >> 1);
 536	return div64_ul(m, dis);
 537}
 538
 539static int
 540hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
 541		  struct hpet_info *info)
 542{
 543	struct hpet_timer __iomem *timer;
 544	struct hpets *hpetp;
 545	int err;
 546	unsigned long v;
 547
 548	switch (cmd) {
 549	case HPET_IE_OFF:
 550	case HPET_INFO:
 551	case HPET_EPI:
 552	case HPET_DPI:
 553	case HPET_IRQFREQ:
 554		timer = devp->hd_timer;
 555		hpetp = devp->hd_hpets;
 556		break;
 557	case HPET_IE_ON:
 558		return hpet_ioctl_ieon(devp);
 559	default:
 560		return -EINVAL;
 561	}
 562
 563	err = 0;
 564
 565	switch (cmd) {
 566	case HPET_IE_OFF:
 567		if ((devp->hd_flags & HPET_IE) == 0)
 568			break;
 569		v = readq(&timer->hpet_config);
 570		v &= ~Tn_INT_ENB_CNF_MASK;
 571		writeq(v, &timer->hpet_config);
 572		if (devp->hd_irq) {
 573			free_irq(devp->hd_irq, devp);
 574			devp->hd_irq = 0;
 575		}
 576		devp->hd_flags ^= HPET_IE;
 577		break;
 578	case HPET_INFO:
 579		{
 580			memset(info, 0, sizeof(*info));
 581			if (devp->hd_ireqfreq)
 582				info->hi_ireqfreq =
 583					hpet_time_div(hpetp, devp->hd_ireqfreq);
 584			info->hi_flags =
 585			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
 586			info->hi_hpet = hpetp->hp_which;
 587			info->hi_timer = devp - hpetp->hp_dev;
 588			break;
 589		}
 590	case HPET_EPI:
 591		v = readq(&timer->hpet_config);
 592		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
 593			err = -ENXIO;
 594			break;
 595		}
 596		devp->hd_flags |= HPET_PERIODIC;
 597		break;
 598	case HPET_DPI:
 599		v = readq(&timer->hpet_config);
 600		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
 601			err = -ENXIO;
 602			break;
 603		}
 604		if (devp->hd_flags & HPET_PERIODIC &&
 605		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
 606			v = readq(&timer->hpet_config);
 607			v ^= Tn_TYPE_CNF_MASK;
 608			writeq(v, &timer->hpet_config);
 609		}
 610		devp->hd_flags &= ~HPET_PERIODIC;
 611		break;
 612	case HPET_IRQFREQ:
 613		if ((arg > hpet_max_freq) &&
 614		    !capable(CAP_SYS_RESOURCE)) {
 615			err = -EACCES;
 616			break;
 617		}
 618
 619		if (!arg) {
 620			err = -EINVAL;
 621			break;
 622		}
 623
 624		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
 625	}
 626
 627	return err;
 628}
 629
 630static long
 631hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 632{
 633	struct hpet_info info;
 634	int err;
 635
 636	mutex_lock(&hpet_mutex);
 637	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
 638	mutex_unlock(&hpet_mutex);
 639
 640	if ((cmd == HPET_INFO) && !err &&
 641	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
 642		err = -EFAULT;
 643
 644	return err;
 645}
 646
 647#ifdef CONFIG_COMPAT
 648struct compat_hpet_info {
 649	compat_ulong_t hi_ireqfreq;	/* Hz */
 650	compat_ulong_t hi_flags;	/* information */
 651	unsigned short hi_hpet;
 652	unsigned short hi_timer;
 653};
 654
 655static long
 656hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 657{
 658	struct hpet_info info;
 659	int err;
 660
 661	mutex_lock(&hpet_mutex);
 662	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
 663	mutex_unlock(&hpet_mutex);
 664
 665	if ((cmd == HPET_INFO) && !err) {
 666		struct compat_hpet_info __user *u = compat_ptr(arg);
 667		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
 668		    put_user(info.hi_flags, &u->hi_flags) ||
 669		    put_user(info.hi_hpet, &u->hi_hpet) ||
 670		    put_user(info.hi_timer, &u->hi_timer))
 671			err = -EFAULT;
 672	}
 673
 674	return err;
 675}
 676#endif
 677
 678static const struct file_operations hpet_fops = {
 679	.owner = THIS_MODULE,
 680	.llseek = no_llseek,
 681	.read = hpet_read,
 682	.poll = hpet_poll,
 683	.unlocked_ioctl = hpet_ioctl,
 684#ifdef CONFIG_COMPAT
 685	.compat_ioctl = hpet_compat_ioctl,
 686#endif
 687	.open = hpet_open,
 688	.release = hpet_release,
 689	.fasync = hpet_fasync,
 690	.mmap = hpet_mmap,
 691};
 692
 693static int hpet_is_known(struct hpet_data *hdp)
 694{
 695	struct hpets *hpetp;
 696
 697	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
 698		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
 699			return 1;
 700
 701	return 0;
 702}
 703
 704static struct ctl_table hpet_table[] = {
 705	{
 706	 .procname = "max-user-freq",
 707	 .data = &hpet_max_freq,
 708	 .maxlen = sizeof(int),
 709	 .mode = 0644,
 710	 .proc_handler = proc_dointvec,
 711	 },
 712};
 713
 714static struct ctl_table_header *sysctl_header;
 715
 716/*
 717 * Adjustment for when arming the timer with
 718 * initial conditions.  That is, main counter
 719 * ticks expired before interrupts are enabled.
 720 */
 721#define	TICK_CALIBRATE	(1000UL)
 722
 723static unsigned long __hpet_calibrate(struct hpets *hpetp)
 724{
 725	struct hpet_timer __iomem *timer = NULL;
 726	unsigned long t, m, count, i, flags, start;
 727	struct hpet_dev *devp;
 728	int j;
 729	struct hpet __iomem *hpet;
 730
 731	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
 732		if ((devp->hd_flags & HPET_OPEN) == 0) {
 733			timer = devp->hd_timer;
 734			break;
 735		}
 736
 737	if (!timer)
 738		return 0;
 739
 740	hpet = hpetp->hp_hpet;
 741	t = read_counter(&timer->hpet_compare);
 742
 743	i = 0;
 744	count = hpet_time_div(hpetp, TICK_CALIBRATE);
 745
 746	local_irq_save(flags);
 747
 748	start = read_counter(&hpet->hpet_mc);
 749
 750	do {
 751		m = read_counter(&hpet->hpet_mc);
 752		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 753	} while (i++, (m - start) < count);
 754
 755	local_irq_restore(flags);
 756
 757	return (m - start) / i;
 758}
 759
 760static unsigned long hpet_calibrate(struct hpets *hpetp)
 761{
 762	unsigned long ret = ~0UL;
 763	unsigned long tmp;
 764
 765	/*
 766	 * Try to calibrate until return value becomes stable small value.
 767	 * If SMI interruption occurs in calibration loop, the return value
 768	 * will be big. This avoids its impact.
 769	 */
 770	for ( ; ; ) {
 771		tmp = __hpet_calibrate(hpetp);
 772		if (ret <= tmp)
 773			break;
 774		ret = tmp;
 775	}
 776
 777	return ret;
 778}
 779
 780int hpet_alloc(struct hpet_data *hdp)
 781{
 782	u64 cap, mcfg;
 783	struct hpet_dev *devp;
 784	u32 i, ntimer;
 785	struct hpets *hpetp;
 786	struct hpet __iomem *hpet;
 787	static struct hpets *last;
 788	unsigned long period;
 789	unsigned long long temp;
 790	u32 remainder;
 791
 792	/*
 793	 * hpet_alloc can be called by platform dependent code.
 794	 * If platform dependent code has allocated the hpet that
 795	 * ACPI has also reported, then we catch it here.
 796	 */
 797	if (hpet_is_known(hdp)) {
 798		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
 799			__func__);
 800		return 0;
 801	}
 802
 803	hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs),
 804			GFP_KERNEL);
 805
 806	if (!hpetp)
 807		return -ENOMEM;
 808
 809	hpetp->hp_which = hpet_nhpet++;
 810	hpetp->hp_hpet = hdp->hd_address;
 811	hpetp->hp_hpet_phys = hdp->hd_phys_address;
 812
 813	hpetp->hp_ntimer = hdp->hd_nirqs;
 814
 815	for (i = 0; i < hdp->hd_nirqs; i++)
 816		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
 817
 818	hpet = hpetp->hp_hpet;
 819
 820	cap = readq(&hpet->hpet_cap);
 821
 822	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
 823
 824	if (hpetp->hp_ntimer != ntimer) {
 825		printk(KERN_WARNING "hpet: number irqs doesn't agree"
 826		       " with number of timers\n");
 827		kfree(hpetp);
 828		return -ENODEV;
 829	}
 830
 831	if (last)
 832		last->hp_next = hpetp;
 833	else
 834		hpets = hpetp;
 835
 836	last = hpetp;
 837
 838	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
 839		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
 840	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
 841	temp += period >> 1; /* round */
 842	do_div(temp, period);
 843	hpetp->hp_tick_freq = temp; /* ticks per second */
 844
 845	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
 846		hpetp->hp_which, hdp->hd_phys_address,
 847		hpetp->hp_ntimer > 1 ? "s" : "");
 848	for (i = 0; i < hpetp->hp_ntimer; i++)
 849		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
 850	printk(KERN_CONT "\n");
 851
 852	temp = hpetp->hp_tick_freq;
 853	remainder = do_div(temp, 1000000);
 854	printk(KERN_INFO
 855		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
 856		hpetp->hp_which, hpetp->hp_ntimer,
 857		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
 858		(unsigned) temp, remainder);
 859
 860	mcfg = readq(&hpet->hpet_config);
 861	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
 862		write_counter(0L, &hpet->hpet_mc);
 863		mcfg |= HPET_ENABLE_CNF_MASK;
 864		writeq(mcfg, &hpet->hpet_config);
 865	}
 866
 867	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
 868		struct hpet_timer __iomem *timer;
 869
 870		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
 871
 872		devp->hd_hpets = hpetp;
 873		devp->hd_hpet = hpet;
 874		devp->hd_timer = timer;
 875
 876		/*
 877		 * If the timer was reserved by platform code,
 878		 * then make timer unavailable for opens.
 879		 */
 880		if (hdp->hd_state & (1 << i)) {
 881			devp->hd_flags = HPET_OPEN;
 882			continue;
 883		}
 884
 885		init_waitqueue_head(&devp->hd_waitqueue);
 886	}
 887
 888	hpetp->hp_delta = hpet_calibrate(hpetp);
 889
 890	return 0;
 891}
 892
 893static acpi_status hpet_resources(struct acpi_resource *res, void *data)
 894{
 895	struct hpet_data *hdp;
 896	acpi_status status;
 897	struct acpi_resource_address64 addr;
 898
 899	hdp = data;
 900
 901	status = acpi_resource_to_address64(res, &addr);
 902
 903	if (ACPI_SUCCESS(status)) {
 904		hdp->hd_phys_address = addr.address.minimum;
 905		hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
 906		if (!hdp->hd_address)
 907			return AE_ERROR;
 908
 909		if (hpet_is_known(hdp)) {
 910			iounmap(hdp->hd_address);
 911			return AE_ALREADY_EXISTS;
 912		}
 913	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
 914		struct acpi_resource_fixed_memory32 *fixmem32;
 915
 916		fixmem32 = &res->data.fixed_memory32;
 917
 918		hdp->hd_phys_address = fixmem32->address;
 919		hdp->hd_address = ioremap(fixmem32->address,
 920						HPET_RANGE_SIZE);
 921		if (!hdp->hd_address)
 922			return AE_ERROR;
 923
 924		if (hpet_is_known(hdp)) {
 925			iounmap(hdp->hd_address);
 926			return AE_ALREADY_EXISTS;
 927		}
 928	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
 929		struct acpi_resource_extended_irq *irqp;
 930		int i, irq;
 931
 932		irqp = &res->data.extended_irq;
 933
 934		for (i = 0; i < irqp->interrupt_count; i++) {
 935			if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
 936				break;
 937
 938			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
 939						irqp->triggering,
 940						irqp->polarity);
 941			if (irq < 0)
 942				return AE_ERROR;
 943
 944			hdp->hd_irq[hdp->hd_nirqs] = irq;
 945			hdp->hd_nirqs++;
 946		}
 947	}
 948
 949	return AE_OK;
 950}
 951
 952static int hpet_acpi_add(struct acpi_device *device)
 953{
 954	acpi_status result;
 955	struct hpet_data data;
 956
 957	memset(&data, 0, sizeof(data));
 958
 959	result =
 960	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
 961				hpet_resources, &data);
 962
 963	if (ACPI_FAILURE(result))
 964		return -ENODEV;
 965
 966	if (!data.hd_address || !data.hd_nirqs) {
 967		if (data.hd_address)
 968			iounmap(data.hd_address);
 969		printk("%s: no address or irqs in _CRS\n", __func__);
 970		return -ENODEV;
 971	}
 972
 973	return hpet_alloc(&data);
 974}
 975
 976static const struct acpi_device_id hpet_device_ids[] = {
 977	{"PNP0103", 0},
 978	{"", 0},
 979};
 980
 981static struct acpi_driver hpet_acpi_driver = {
 982	.name = "hpet",
 983	.ids = hpet_device_ids,
 984	.ops = {
 985		.add = hpet_acpi_add,
 986		},
 987};
 988
 989static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
 990
 991static int __init hpet_init(void)
 992{
 993	int result;
 994
 995	result = misc_register(&hpet_misc);
 996	if (result < 0)
 997		return -ENODEV;
 998
 999	sysctl_header = register_sysctl("dev/hpet", hpet_table);
1000
1001	result = acpi_bus_register_driver(&hpet_acpi_driver);
1002	if (result < 0) {
1003		if (sysctl_header)
1004			unregister_sysctl_table(sysctl_header);
1005		misc_deregister(&hpet_misc);
1006		return result;
1007	}
1008
1009	return 0;
1010}
1011device_initcall(hpet_init);
1012
1013/*
1014MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1015MODULE_LICENSE("GPL");
1016*/
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Intel & MS High Precision Event Timer Implementation.
   4 *
   5 * Copyright (C) 2003 Intel Corporation
   6 *	Venki Pallipadi
   7 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
   8 *	Bob Picco <robert.picco@hp.com>
   9 */
  10
  11#include <linux/interrupt.h>
  12#include <linux/kernel.h>
  13#include <linux/types.h>
  14#include <linux/miscdevice.h>
  15#include <linux/major.h>
  16#include <linux/ioport.h>
  17#include <linux/fcntl.h>
  18#include <linux/init.h>
  19#include <linux/io-64-nonatomic-lo-hi.h>
  20#include <linux/poll.h>
  21#include <linux/mm.h>
  22#include <linux/proc_fs.h>
  23#include <linux/spinlock.h>
  24#include <linux/sysctl.h>
  25#include <linux/wait.h>
  26#include <linux/sched/signal.h>
  27#include <linux/bcd.h>
  28#include <linux/seq_file.h>
  29#include <linux/bitops.h>
  30#include <linux/compat.h>
  31#include <linux/clocksource.h>
  32#include <linux/uaccess.h>
  33#include <linux/slab.h>
  34#include <linux/io.h>
  35#include <linux/acpi.h>
  36#include <linux/hpet.h>
  37#include <asm/current.h>
  38#include <asm/irq.h>
  39#include <asm/div64.h>
  40
  41/*
  42 * The High Precision Event Timer driver.
  43 * This driver is closely modelled after the rtc.c driver.
  44 * See HPET spec revision 1.
  45 */
  46#define	HPET_USER_FREQ	(64)
  47#define	HPET_DRIFT	(500)
  48
  49#define HPET_RANGE_SIZE		1024	/* from HPET spec */
  50
  51
  52/* WARNING -- don't get confused.  These macros are never used
  53 * to write the (single) counter, and rarely to read it.
  54 * They're badly named; to fix, someday.
  55 */
  56#if BITS_PER_LONG == 64
  57#define	write_counter(V, MC)	writeq(V, MC)
  58#define	read_counter(MC)	readq(MC)
  59#else
  60#define	write_counter(V, MC)	writel(V, MC)
  61#define	read_counter(MC)	readl(MC)
  62#endif
  63
  64static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
  65static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
  66
  67/* A lock for concurrent access by app and isr hpet activity. */
  68static DEFINE_SPINLOCK(hpet_lock);
  69
  70#define	HPET_DEV_NAME	(7)
  71
  72struct hpet_dev {
  73	struct hpets *hd_hpets;
  74	struct hpet __iomem *hd_hpet;
  75	struct hpet_timer __iomem *hd_timer;
  76	unsigned long hd_ireqfreq;
  77	unsigned long hd_irqdata;
  78	wait_queue_head_t hd_waitqueue;
  79	struct fasync_struct *hd_async_queue;
  80	unsigned int hd_flags;
  81	unsigned int hd_irq;
  82	unsigned int hd_hdwirq;
  83	char hd_name[HPET_DEV_NAME];
  84};
  85
  86struct hpets {
  87	struct hpets *hp_next;
  88	struct hpet __iomem *hp_hpet;
  89	unsigned long hp_hpet_phys;
 
  90	unsigned long long hp_tick_freq;
  91	unsigned long hp_delta;
  92	unsigned int hp_ntimer;
  93	unsigned int hp_which;
  94	struct hpet_dev hp_dev[] __counted_by(hp_ntimer);
  95};
  96
  97static struct hpets *hpets;
  98
  99#define	HPET_OPEN		0x0001
 100#define	HPET_IE			0x0002	/* interrupt enabled */
 101#define	HPET_PERIODIC		0x0004
 102#define	HPET_SHARED_IRQ		0x0008
 103
 104static irqreturn_t hpet_interrupt(int irq, void *data)
 105{
 106	struct hpet_dev *devp;
 107	unsigned long isr;
 108
 109	devp = data;
 110	isr = 1 << (devp - devp->hd_hpets->hp_dev);
 111
 112	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
 113	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
 114		return IRQ_NONE;
 115
 116	spin_lock(&hpet_lock);
 117	devp->hd_irqdata++;
 118
 119	/*
 120	 * For non-periodic timers, increment the accumulator.
 121	 * This has the effect of treating non-periodic like periodic.
 122	 */
 123	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
 124		unsigned long t, mc, base, k;
 125		struct hpet __iomem *hpet = devp->hd_hpet;
 126		struct hpets *hpetp = devp->hd_hpets;
 127
 128		t = devp->hd_ireqfreq;
 129		read_counter(&devp->hd_timer->hpet_compare);
 130		mc = read_counter(&hpet->hpet_mc);
 131		/* The time for the next interrupt would logically be t + m,
 132		 * however, if we are very unlucky and the interrupt is delayed
 133		 * for longer than t then we will completely miss the next
 134		 * interrupt if we set t + m and an application will hang.
 135		 * Therefore we need to make a more complex computation assuming
 136		 * that there exists a k for which the following is true:
 137		 * k * t + base < mc + delta
 138		 * (k + 1) * t + base > mc + delta
 139		 * where t is the interval in hpet ticks for the given freq,
 140		 * base is the theoretical start value 0 < base < t,
 141		 * mc is the main counter value at the time of the interrupt,
 142		 * delta is the time it takes to write the a value to the
 143		 * comparator.
 144		 * k may then be computed as (mc - base + delta) / t .
 145		 */
 146		base = mc % t;
 147		k = (mc - base + hpetp->hp_delta) / t;
 148		write_counter(t * (k + 1) + base,
 149			      &devp->hd_timer->hpet_compare);
 150	}
 151
 152	if (devp->hd_flags & HPET_SHARED_IRQ)
 153		writel(isr, &devp->hd_hpet->hpet_isr);
 154	spin_unlock(&hpet_lock);
 155
 156	wake_up_interruptible(&devp->hd_waitqueue);
 157
 158	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
 159
 160	return IRQ_HANDLED;
 161}
 162
 163static void hpet_timer_set_irq(struct hpet_dev *devp)
 164{
 165	unsigned long v;
 166	int irq, gsi;
 167	struct hpet_timer __iomem *timer;
 168
 169	spin_lock_irq(&hpet_lock);
 170	if (devp->hd_hdwirq) {
 171		spin_unlock_irq(&hpet_lock);
 172		return;
 173	}
 174
 175	timer = devp->hd_timer;
 176
 177	/* we prefer level triggered mode */
 178	v = readl(&timer->hpet_config);
 179	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
 180		v |= Tn_INT_TYPE_CNF_MASK;
 181		writel(v, &timer->hpet_config);
 182	}
 183	spin_unlock_irq(&hpet_lock);
 184
 185	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
 186				 Tn_INT_ROUTE_CAP_SHIFT;
 187
 188	/*
 189	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
 190	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
 191	 */
 192	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
 193		v &= ~0xf3df;
 194	else
 195		v &= ~0xffff;
 196
 197	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
 198		if (irq >= nr_irqs) {
 199			irq = HPET_MAX_IRQ;
 200			break;
 201		}
 202
 203		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
 204					ACPI_ACTIVE_LOW);
 205		if (gsi > 0)
 206			break;
 207
 208		/* FIXME: Setup interrupt source table */
 209	}
 210
 211	if (irq < HPET_MAX_IRQ) {
 212		spin_lock_irq(&hpet_lock);
 213		v = readl(&timer->hpet_config);
 214		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
 215		writel(v, &timer->hpet_config);
 216		devp->hd_hdwirq = gsi;
 217		spin_unlock_irq(&hpet_lock);
 218	}
 219	return;
 220}
 221
 222static int hpet_open(struct inode *inode, struct file *file)
 223{
 224	struct hpet_dev *devp;
 225	struct hpets *hpetp;
 226	int i;
 227
 228	if (file->f_mode & FMODE_WRITE)
 229		return -EINVAL;
 230
 231	mutex_lock(&hpet_mutex);
 232	spin_lock_irq(&hpet_lock);
 233
 234	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
 235		for (i = 0; i < hpetp->hp_ntimer; i++)
 236			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN) {
 237				continue;
 238			} else {
 239				devp = &hpetp->hp_dev[i];
 240				break;
 241			}
 242
 243	if (!devp) {
 244		spin_unlock_irq(&hpet_lock);
 245		mutex_unlock(&hpet_mutex);
 246		return -EBUSY;
 247	}
 248
 249	file->private_data = devp;
 250	devp->hd_irqdata = 0;
 251	devp->hd_flags |= HPET_OPEN;
 252	spin_unlock_irq(&hpet_lock);
 253	mutex_unlock(&hpet_mutex);
 254
 255	hpet_timer_set_irq(devp);
 256
 257	return 0;
 258}
 259
 260static ssize_t
 261hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
 262{
 263	DECLARE_WAITQUEUE(wait, current);
 264	unsigned long data;
 265	ssize_t retval;
 266	struct hpet_dev *devp;
 267
 268	devp = file->private_data;
 269	if (!devp->hd_ireqfreq)
 270		return -EIO;
 271
 272	if (count < sizeof(unsigned long))
 273		return -EINVAL;
 274
 275	add_wait_queue(&devp->hd_waitqueue, &wait);
 276
 277	for ( ; ; ) {
 278		set_current_state(TASK_INTERRUPTIBLE);
 279
 280		spin_lock_irq(&hpet_lock);
 281		data = devp->hd_irqdata;
 282		devp->hd_irqdata = 0;
 283		spin_unlock_irq(&hpet_lock);
 284
 285		if (data) {
 286			break;
 287		} else if (file->f_flags & O_NONBLOCK) {
 288			retval = -EAGAIN;
 289			goto out;
 290		} else if (signal_pending(current)) {
 291			retval = -ERESTARTSYS;
 292			goto out;
 293		}
 294		schedule();
 295	}
 296
 297	retval = put_user(data, (unsigned long __user *)buf);
 298	if (!retval)
 299		retval = sizeof(unsigned long);
 300out:
 301	__set_current_state(TASK_RUNNING);
 302	remove_wait_queue(&devp->hd_waitqueue, &wait);
 303
 304	return retval;
 305}
 306
 307static __poll_t hpet_poll(struct file *file, poll_table * wait)
 308{
 309	unsigned long v;
 310	struct hpet_dev *devp;
 311
 312	devp = file->private_data;
 313
 314	if (!devp->hd_ireqfreq)
 315		return 0;
 316
 317	poll_wait(file, &devp->hd_waitqueue, wait);
 318
 319	spin_lock_irq(&hpet_lock);
 320	v = devp->hd_irqdata;
 321	spin_unlock_irq(&hpet_lock);
 322
 323	if (v != 0)
 324		return EPOLLIN | EPOLLRDNORM;
 325
 326	return 0;
 327}
 328
 329#ifdef CONFIG_HPET_MMAP
 330#ifdef CONFIG_HPET_MMAP_DEFAULT
 331static int hpet_mmap_enabled = 1;
 332#else
 333static int hpet_mmap_enabled = 0;
 334#endif
 335
 336static __init int hpet_mmap_enable(char *str)
 337{
 338	get_option(&str, &hpet_mmap_enabled);
 339	pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
 340	return 1;
 341}
 342__setup("hpet_mmap=", hpet_mmap_enable);
 343
 344static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
 345{
 346	struct hpet_dev *devp;
 347	unsigned long addr;
 348
 349	if (!hpet_mmap_enabled)
 350		return -EACCES;
 351
 352	devp = file->private_data;
 353	addr = devp->hd_hpets->hp_hpet_phys;
 354
 355	if (addr & (PAGE_SIZE - 1))
 356		return -ENOSYS;
 357
 358	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 359	return vm_iomap_memory(vma, addr, PAGE_SIZE);
 360}
 361#else
 362static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
 363{
 364	return -ENOSYS;
 365}
 366#endif
 367
 368static int hpet_fasync(int fd, struct file *file, int on)
 369{
 370	struct hpet_dev *devp;
 371
 372	devp = file->private_data;
 373
 374	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
 375		return 0;
 376	else
 377		return -EIO;
 378}
 379
 380static int hpet_release(struct inode *inode, struct file *file)
 381{
 382	struct hpet_dev *devp;
 383	struct hpet_timer __iomem *timer;
 384	int irq = 0;
 385
 386	devp = file->private_data;
 387	timer = devp->hd_timer;
 388
 389	spin_lock_irq(&hpet_lock);
 390
 391	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
 392	       &timer->hpet_config);
 393
 394	irq = devp->hd_irq;
 395	devp->hd_irq = 0;
 396
 397	devp->hd_ireqfreq = 0;
 398
 399	if (devp->hd_flags & HPET_PERIODIC
 400	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
 401		unsigned long v;
 402
 403		v = readq(&timer->hpet_config);
 404		v ^= Tn_TYPE_CNF_MASK;
 405		writeq(v, &timer->hpet_config);
 406	}
 407
 408	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
 409	spin_unlock_irq(&hpet_lock);
 410
 411	if (irq)
 412		free_irq(irq, devp);
 413
 414	file->private_data = NULL;
 415	return 0;
 416}
 417
 418static int hpet_ioctl_ieon(struct hpet_dev *devp)
 419{
 420	struct hpet_timer __iomem *timer;
 421	struct hpet __iomem *hpet;
 422	struct hpets *hpetp;
 423	int irq;
 424	unsigned long g, v, t, m;
 425	unsigned long flags, isr;
 426
 427	timer = devp->hd_timer;
 428	hpet = devp->hd_hpet;
 429	hpetp = devp->hd_hpets;
 430
 431	if (!devp->hd_ireqfreq)
 432		return -EIO;
 433
 434	spin_lock_irq(&hpet_lock);
 435
 436	if (devp->hd_flags & HPET_IE) {
 437		spin_unlock_irq(&hpet_lock);
 438		return -EBUSY;
 439	}
 440
 441	devp->hd_flags |= HPET_IE;
 442
 443	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
 444		devp->hd_flags |= HPET_SHARED_IRQ;
 445	spin_unlock_irq(&hpet_lock);
 446
 447	irq = devp->hd_hdwirq;
 448
 449	if (irq) {
 450		unsigned long irq_flags;
 451
 452		if (devp->hd_flags & HPET_SHARED_IRQ) {
 453			/*
 454			 * To prevent the interrupt handler from seeing an
 455			 * unwanted interrupt status bit, program the timer
 456			 * so that it will not fire in the near future ...
 457			 */
 458			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
 459			       &timer->hpet_config);
 460			write_counter(read_counter(&hpet->hpet_mc),
 461				      &timer->hpet_compare);
 462			/* ... and clear any left-over status. */
 463			isr = 1 << (devp - devp->hd_hpets->hp_dev);
 464			writel(isr, &hpet->hpet_isr);
 465		}
 466
 467		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
 468		irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
 469		if (request_irq(irq, hpet_interrupt, irq_flags,
 470				devp->hd_name, (void *)devp)) {
 471			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
 472			irq = 0;
 473		}
 474	}
 475
 476	if (irq == 0) {
 477		spin_lock_irq(&hpet_lock);
 478		devp->hd_flags ^= HPET_IE;
 479		spin_unlock_irq(&hpet_lock);
 480		return -EIO;
 481	}
 482
 483	devp->hd_irq = irq;
 484	t = devp->hd_ireqfreq;
 485	v = readq(&timer->hpet_config);
 486
 487	/* 64-bit comparators are not yet supported through the ioctls,
 488	 * so force this into 32-bit mode if it supports both modes
 489	 */
 490	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
 491
 492	if (devp->hd_flags & HPET_PERIODIC) {
 493		g |= Tn_TYPE_CNF_MASK;
 494		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
 495		writeq(v, &timer->hpet_config);
 496		local_irq_save(flags);
 497
 498		/*
 499		 * NOTE: First we modify the hidden accumulator
 500		 * register supported by periodic-capable comparators.
 501		 * We never want to modify the (single) counter; that
 502		 * would affect all the comparators. The value written
 503		 * is the counter value when the first interrupt is due.
 504		 */
 505		m = read_counter(&hpet->hpet_mc);
 506		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 507		/*
 508		 * Then we modify the comparator, indicating the period
 509		 * for subsequent interrupt.
 510		 */
 511		write_counter(t, &timer->hpet_compare);
 512	} else {
 513		local_irq_save(flags);
 514		m = read_counter(&hpet->hpet_mc);
 515		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 516	}
 517
 518	if (devp->hd_flags & HPET_SHARED_IRQ) {
 519		isr = 1 << (devp - devp->hd_hpets->hp_dev);
 520		writel(isr, &hpet->hpet_isr);
 521	}
 522	writeq(g, &timer->hpet_config);
 523	local_irq_restore(flags);
 524
 525	return 0;
 526}
 527
 528/* converts Hz to number of timer ticks */
 529static inline unsigned long hpet_time_div(struct hpets *hpets,
 530					  unsigned long dis)
 531{
 532	unsigned long long m;
 533
 534	m = hpets->hp_tick_freq + (dis >> 1);
 535	return div64_ul(m, dis);
 536}
 537
 538static int
 539hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
 540		  struct hpet_info *info)
 541{
 542	struct hpet_timer __iomem *timer;
 543	struct hpets *hpetp;
 544	int err;
 545	unsigned long v;
 546
 547	switch (cmd) {
 548	case HPET_IE_OFF:
 549	case HPET_INFO:
 550	case HPET_EPI:
 551	case HPET_DPI:
 552	case HPET_IRQFREQ:
 553		timer = devp->hd_timer;
 554		hpetp = devp->hd_hpets;
 555		break;
 556	case HPET_IE_ON:
 557		return hpet_ioctl_ieon(devp);
 558	default:
 559		return -EINVAL;
 560	}
 561
 562	err = 0;
 563
 564	switch (cmd) {
 565	case HPET_IE_OFF:
 566		if ((devp->hd_flags & HPET_IE) == 0)
 567			break;
 568		v = readq(&timer->hpet_config);
 569		v &= ~Tn_INT_ENB_CNF_MASK;
 570		writeq(v, &timer->hpet_config);
 571		if (devp->hd_irq) {
 572			free_irq(devp->hd_irq, devp);
 573			devp->hd_irq = 0;
 574		}
 575		devp->hd_flags ^= HPET_IE;
 576		break;
 577	case HPET_INFO:
 578		{
 579			memset(info, 0, sizeof(*info));
 580			if (devp->hd_ireqfreq)
 581				info->hi_ireqfreq =
 582					hpet_time_div(hpetp, devp->hd_ireqfreq);
 583			info->hi_flags =
 584			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
 585			info->hi_hpet = hpetp->hp_which;
 586			info->hi_timer = devp - hpetp->hp_dev;
 587			break;
 588		}
 589	case HPET_EPI:
 590		v = readq(&timer->hpet_config);
 591		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
 592			err = -ENXIO;
 593			break;
 594		}
 595		devp->hd_flags |= HPET_PERIODIC;
 596		break;
 597	case HPET_DPI:
 598		v = readq(&timer->hpet_config);
 599		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
 600			err = -ENXIO;
 601			break;
 602		}
 603		if (devp->hd_flags & HPET_PERIODIC &&
 604		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
 605			v = readq(&timer->hpet_config);
 606			v ^= Tn_TYPE_CNF_MASK;
 607			writeq(v, &timer->hpet_config);
 608		}
 609		devp->hd_flags &= ~HPET_PERIODIC;
 610		break;
 611	case HPET_IRQFREQ:
 612		if ((arg > hpet_max_freq) &&
 613		    !capable(CAP_SYS_RESOURCE)) {
 614			err = -EACCES;
 615			break;
 616		}
 617
 618		if (!arg) {
 619			err = -EINVAL;
 620			break;
 621		}
 622
 623		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
 624	}
 625
 626	return err;
 627}
 628
 629static long
 630hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 631{
 632	struct hpet_info info;
 633	int err;
 634
 635	mutex_lock(&hpet_mutex);
 636	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
 637	mutex_unlock(&hpet_mutex);
 638
 639	if ((cmd == HPET_INFO) && !err &&
 640	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
 641		err = -EFAULT;
 642
 643	return err;
 644}
 645
 646#ifdef CONFIG_COMPAT
 647struct compat_hpet_info {
 648	compat_ulong_t hi_ireqfreq;	/* Hz */
 649	compat_ulong_t hi_flags;	/* information */
 650	unsigned short hi_hpet;
 651	unsigned short hi_timer;
 652};
 653
 654static long
 655hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 656{
 657	struct hpet_info info;
 658	int err;
 659
 660	mutex_lock(&hpet_mutex);
 661	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
 662	mutex_unlock(&hpet_mutex);
 663
 664	if ((cmd == HPET_INFO) && !err) {
 665		struct compat_hpet_info __user *u = compat_ptr(arg);
 666		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
 667		    put_user(info.hi_flags, &u->hi_flags) ||
 668		    put_user(info.hi_hpet, &u->hi_hpet) ||
 669		    put_user(info.hi_timer, &u->hi_timer))
 670			err = -EFAULT;
 671	}
 672
 673	return err;
 674}
 675#endif
 676
 677static const struct file_operations hpet_fops = {
 678	.owner = THIS_MODULE,
 679	.llseek = no_llseek,
 680	.read = hpet_read,
 681	.poll = hpet_poll,
 682	.unlocked_ioctl = hpet_ioctl,
 683#ifdef CONFIG_COMPAT
 684	.compat_ioctl = hpet_compat_ioctl,
 685#endif
 686	.open = hpet_open,
 687	.release = hpet_release,
 688	.fasync = hpet_fasync,
 689	.mmap = hpet_mmap,
 690};
 691
 692static int hpet_is_known(struct hpet_data *hdp)
 693{
 694	struct hpets *hpetp;
 695
 696	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
 697		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
 698			return 1;
 699
 700	return 0;
 701}
 702
 703static struct ctl_table hpet_table[] = {
 704	{
 705	 .procname = "max-user-freq",
 706	 .data = &hpet_max_freq,
 707	 .maxlen = sizeof(int),
 708	 .mode = 0644,
 709	 .proc_handler = proc_dointvec,
 710	 },
 711};
 712
 713static struct ctl_table_header *sysctl_header;
 714
 715/*
 716 * Adjustment for when arming the timer with
 717 * initial conditions.  That is, main counter
 718 * ticks expired before interrupts are enabled.
 719 */
 720#define	TICK_CALIBRATE	(1000UL)
 721
 722static unsigned long __hpet_calibrate(struct hpets *hpetp)
 723{
 724	struct hpet_timer __iomem *timer = NULL;
 725	unsigned long t, m, count, i, flags, start;
 726	struct hpet_dev *devp;
 727	int j;
 728	struct hpet __iomem *hpet;
 729
 730	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
 731		if ((devp->hd_flags & HPET_OPEN) == 0) {
 732			timer = devp->hd_timer;
 733			break;
 734		}
 735
 736	if (!timer)
 737		return 0;
 738
 739	hpet = hpetp->hp_hpet;
 740	t = read_counter(&timer->hpet_compare);
 741
 742	i = 0;
 743	count = hpet_time_div(hpetp, TICK_CALIBRATE);
 744
 745	local_irq_save(flags);
 746
 747	start = read_counter(&hpet->hpet_mc);
 748
 749	do {
 750		m = read_counter(&hpet->hpet_mc);
 751		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 752	} while (i++, (m - start) < count);
 753
 754	local_irq_restore(flags);
 755
 756	return (m - start) / i;
 757}
 758
 759static unsigned long hpet_calibrate(struct hpets *hpetp)
 760{
 761	unsigned long ret = ~0UL;
 762	unsigned long tmp;
 763
 764	/*
 765	 * Try to calibrate until return value becomes stable small value.
 766	 * If SMI interruption occurs in calibration loop, the return value
 767	 * will be big. This avoids its impact.
 768	 */
 769	for ( ; ; ) {
 770		tmp = __hpet_calibrate(hpetp);
 771		if (ret <= tmp)
 772			break;
 773		ret = tmp;
 774	}
 775
 776	return ret;
 777}
 778
 779int hpet_alloc(struct hpet_data *hdp)
 780{
 781	u64 cap, mcfg;
 782	struct hpet_dev *devp;
 783	u32 i, ntimer;
 784	struct hpets *hpetp;
 785	struct hpet __iomem *hpet;
 786	static struct hpets *last;
 787	unsigned long period;
 788	unsigned long long temp;
 789	u32 remainder;
 790
 791	/*
 792	 * hpet_alloc can be called by platform dependent code.
 793	 * If platform dependent code has allocated the hpet that
 794	 * ACPI has also reported, then we catch it here.
 795	 */
 796	if (hpet_is_known(hdp)) {
 797		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
 798			__func__);
 799		return 0;
 800	}
 801
 802	hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs),
 803			GFP_KERNEL);
 804
 805	if (!hpetp)
 806		return -ENOMEM;
 807
 808	hpetp->hp_which = hpet_nhpet++;
 809	hpetp->hp_hpet = hdp->hd_address;
 810	hpetp->hp_hpet_phys = hdp->hd_phys_address;
 811
 812	hpetp->hp_ntimer = hdp->hd_nirqs;
 813
 814	for (i = 0; i < hdp->hd_nirqs; i++)
 815		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
 816
 817	hpet = hpetp->hp_hpet;
 818
 819	cap = readq(&hpet->hpet_cap);
 820
 821	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
 822
 823	if (hpetp->hp_ntimer != ntimer) {
 824		printk(KERN_WARNING "hpet: number irqs doesn't agree"
 825		       " with number of timers\n");
 826		kfree(hpetp);
 827		return -ENODEV;
 828	}
 829
 830	if (last)
 831		last->hp_next = hpetp;
 832	else
 833		hpets = hpetp;
 834
 835	last = hpetp;
 836
 837	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
 838		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
 839	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
 840	temp += period >> 1; /* round */
 841	do_div(temp, period);
 842	hpetp->hp_tick_freq = temp; /* ticks per second */
 843
 844	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
 845		hpetp->hp_which, hdp->hd_phys_address,
 846		hpetp->hp_ntimer > 1 ? "s" : "");
 847	for (i = 0; i < hpetp->hp_ntimer; i++)
 848		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
 849	printk(KERN_CONT "\n");
 850
 851	temp = hpetp->hp_tick_freq;
 852	remainder = do_div(temp, 1000000);
 853	printk(KERN_INFO
 854		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
 855		hpetp->hp_which, hpetp->hp_ntimer,
 856		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
 857		(unsigned) temp, remainder);
 858
 859	mcfg = readq(&hpet->hpet_config);
 860	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
 861		write_counter(0L, &hpet->hpet_mc);
 862		mcfg |= HPET_ENABLE_CNF_MASK;
 863		writeq(mcfg, &hpet->hpet_config);
 864	}
 865
 866	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
 867		struct hpet_timer __iomem *timer;
 868
 869		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
 870
 871		devp->hd_hpets = hpetp;
 872		devp->hd_hpet = hpet;
 873		devp->hd_timer = timer;
 874
 875		/*
 876		 * If the timer was reserved by platform code,
 877		 * then make timer unavailable for opens.
 878		 */
 879		if (hdp->hd_state & (1 << i)) {
 880			devp->hd_flags = HPET_OPEN;
 881			continue;
 882		}
 883
 884		init_waitqueue_head(&devp->hd_waitqueue);
 885	}
 886
 887	hpetp->hp_delta = hpet_calibrate(hpetp);
 888
 889	return 0;
 890}
 891
 892static acpi_status hpet_resources(struct acpi_resource *res, void *data)
 893{
 894	struct hpet_data *hdp;
 895	acpi_status status;
 896	struct acpi_resource_address64 addr;
 897
 898	hdp = data;
 899
 900	status = acpi_resource_to_address64(res, &addr);
 901
 902	if (ACPI_SUCCESS(status)) {
 903		hdp->hd_phys_address = addr.address.minimum;
 904		hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
 905		if (!hdp->hd_address)
 906			return AE_ERROR;
 907
 908		if (hpet_is_known(hdp)) {
 909			iounmap(hdp->hd_address);
 910			return AE_ALREADY_EXISTS;
 911		}
 912	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
 913		struct acpi_resource_fixed_memory32 *fixmem32;
 914
 915		fixmem32 = &res->data.fixed_memory32;
 916
 917		hdp->hd_phys_address = fixmem32->address;
 918		hdp->hd_address = ioremap(fixmem32->address,
 919						HPET_RANGE_SIZE);
 920		if (!hdp->hd_address)
 921			return AE_ERROR;
 922
 923		if (hpet_is_known(hdp)) {
 924			iounmap(hdp->hd_address);
 925			return AE_ALREADY_EXISTS;
 926		}
 927	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
 928		struct acpi_resource_extended_irq *irqp;
 929		int i, irq;
 930
 931		irqp = &res->data.extended_irq;
 932
 933		for (i = 0; i < irqp->interrupt_count; i++) {
 934			if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
 935				break;
 936
 937			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
 938						irqp->triggering,
 939						irqp->polarity);
 940			if (irq < 0)
 941				return AE_ERROR;
 942
 943			hdp->hd_irq[hdp->hd_nirqs] = irq;
 944			hdp->hd_nirqs++;
 945		}
 946	}
 947
 948	return AE_OK;
 949}
 950
 951static int hpet_acpi_add(struct acpi_device *device)
 952{
 953	acpi_status result;
 954	struct hpet_data data;
 955
 956	memset(&data, 0, sizeof(data));
 957
 958	result =
 959	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
 960				hpet_resources, &data);
 961
 962	if (ACPI_FAILURE(result))
 963		return -ENODEV;
 964
 965	if (!data.hd_address || !data.hd_nirqs) {
 966		if (data.hd_address)
 967			iounmap(data.hd_address);
 968		printk("%s: no address or irqs in _CRS\n", __func__);
 969		return -ENODEV;
 970	}
 971
 972	return hpet_alloc(&data);
 973}
 974
 975static const struct acpi_device_id hpet_device_ids[] = {
 976	{"PNP0103", 0},
 977	{"", 0},
 978};
 979
 980static struct acpi_driver hpet_acpi_driver = {
 981	.name = "hpet",
 982	.ids = hpet_device_ids,
 983	.ops = {
 984		.add = hpet_acpi_add,
 985		},
 986};
 987
 988static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
 989
 990static int __init hpet_init(void)
 991{
 992	int result;
 993
 994	result = misc_register(&hpet_misc);
 995	if (result < 0)
 996		return -ENODEV;
 997
 998	sysctl_header = register_sysctl("dev/hpet", hpet_table);
 999
1000	result = acpi_bus_register_driver(&hpet_acpi_driver);
1001	if (result < 0) {
1002		if (sysctl_header)
1003			unregister_sysctl_table(sysctl_header);
1004		misc_deregister(&hpet_misc);
1005		return result;
1006	}
1007
1008	return 0;
1009}
1010device_initcall(hpet_init);
1011
1012/*
1013MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1014MODULE_LICENSE("GPL");
1015*/