Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Intel & MS High Precision Event Timer Implementation.
   4 *
   5 * Copyright (C) 2003 Intel Corporation
   6 *	Venki Pallipadi
   7 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
   8 *	Bob Picco <robert.picco@hp.com>
 
 
 
 
   9 */
  10
  11#include <linux/interrupt.h>
  12#include <linux/kernel.h>
  13#include <linux/types.h>
  14#include <linux/miscdevice.h>
  15#include <linux/major.h>
  16#include <linux/ioport.h>
  17#include <linux/fcntl.h>
  18#include <linux/init.h>
  19#include <linux/io-64-nonatomic-lo-hi.h>
  20#include <linux/poll.h>
  21#include <linux/mm.h>
  22#include <linux/proc_fs.h>
  23#include <linux/spinlock.h>
  24#include <linux/sysctl.h>
  25#include <linux/wait.h>
  26#include <linux/sched/signal.h>
  27#include <linux/bcd.h>
  28#include <linux/seq_file.h>
  29#include <linux/bitops.h>
  30#include <linux/compat.h>
  31#include <linux/clocksource.h>
  32#include <linux/uaccess.h>
  33#include <linux/slab.h>
  34#include <linux/io.h>
  35#include <linux/acpi.h>
  36#include <linux/hpet.h>
  37#include <asm/current.h>
  38#include <asm/irq.h>
  39#include <asm/div64.h>
  40
  41/*
  42 * The High Precision Event Timer driver.
  43 * This driver is closely modelled after the rtc.c driver.
  44 * See HPET spec revision 1.
  45 */
  46#define	HPET_USER_FREQ	(64)
  47#define	HPET_DRIFT	(500)
  48
  49#define HPET_RANGE_SIZE		1024	/* from HPET spec */
  50
  51
  52/* WARNING -- don't get confused.  These macros are never used
  53 * to write the (single) counter, and rarely to read it.
  54 * They're badly named; to fix, someday.
  55 */
  56#if BITS_PER_LONG == 64
  57#define	write_counter(V, MC)	writeq(V, MC)
  58#define	read_counter(MC)	readq(MC)
  59#else
  60#define	write_counter(V, MC)	writel(V, MC)
  61#define	read_counter(MC)	readl(MC)
  62#endif
  63
  64static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
  65static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
  66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67/* A lock for concurrent access by app and isr hpet activity. */
  68static DEFINE_SPINLOCK(hpet_lock);
  69
  70#define	HPET_DEV_NAME	(7)
  71
  72struct hpet_dev {
  73	struct hpets *hd_hpets;
  74	struct hpet __iomem *hd_hpet;
  75	struct hpet_timer __iomem *hd_timer;
  76	unsigned long hd_ireqfreq;
  77	unsigned long hd_irqdata;
  78	wait_queue_head_t hd_waitqueue;
  79	struct fasync_struct *hd_async_queue;
  80	unsigned int hd_flags;
  81	unsigned int hd_irq;
  82	unsigned int hd_hdwirq;
  83	char hd_name[HPET_DEV_NAME];
  84};
  85
  86struct hpets {
  87	struct hpets *hp_next;
  88	struct hpet __iomem *hp_hpet;
  89	unsigned long hp_hpet_phys;
  90	struct clocksource *hp_clocksource;
  91	unsigned long long hp_tick_freq;
  92	unsigned long hp_delta;
  93	unsigned int hp_ntimer;
  94	unsigned int hp_which;
  95	struct hpet_dev hp_dev[] __counted_by(hp_ntimer);
  96};
  97
  98static struct hpets *hpets;
  99
 100#define	HPET_OPEN		0x0001
 101#define	HPET_IE			0x0002	/* interrupt enabled */
 102#define	HPET_PERIODIC		0x0004
 103#define	HPET_SHARED_IRQ		0x0008
 104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105static irqreturn_t hpet_interrupt(int irq, void *data)
 106{
 107	struct hpet_dev *devp;
 108	unsigned long isr;
 109
 110	devp = data;
 111	isr = 1 << (devp - devp->hd_hpets->hp_dev);
 112
 113	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
 114	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
 115		return IRQ_NONE;
 116
 117	spin_lock(&hpet_lock);
 118	devp->hd_irqdata++;
 119
 120	/*
 121	 * For non-periodic timers, increment the accumulator.
 122	 * This has the effect of treating non-periodic like periodic.
 123	 */
 124	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
 125		unsigned long t, mc, base, k;
 126		struct hpet __iomem *hpet = devp->hd_hpet;
 127		struct hpets *hpetp = devp->hd_hpets;
 128
 129		t = devp->hd_ireqfreq;
 130		read_counter(&devp->hd_timer->hpet_compare);
 131		mc = read_counter(&hpet->hpet_mc);
 132		/* The time for the next interrupt would logically be t + m,
 133		 * however, if we are very unlucky and the interrupt is delayed
 134		 * for longer than t then we will completely miss the next
 135		 * interrupt if we set t + m and an application will hang.
 136		 * Therefore we need to make a more complex computation assuming
 137		 * that there exists a k for which the following is true:
 138		 * k * t + base < mc + delta
 139		 * (k + 1) * t + base > mc + delta
 140		 * where t is the interval in hpet ticks for the given freq,
 141		 * base is the theoretical start value 0 < base < t,
 142		 * mc is the main counter value at the time of the interrupt,
 143		 * delta is the time it takes to write the a value to the
 144		 * comparator.
 145		 * k may then be computed as (mc - base + delta) / t .
 146		 */
 147		base = mc % t;
 148		k = (mc - base + hpetp->hp_delta) / t;
 149		write_counter(t * (k + 1) + base,
 150			      &devp->hd_timer->hpet_compare);
 151	}
 152
 153	if (devp->hd_flags & HPET_SHARED_IRQ)
 154		writel(isr, &devp->hd_hpet->hpet_isr);
 155	spin_unlock(&hpet_lock);
 156
 157	wake_up_interruptible(&devp->hd_waitqueue);
 158
 159	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
 160
 161	return IRQ_HANDLED;
 162}
 163
 164static void hpet_timer_set_irq(struct hpet_dev *devp)
 165{
 166	unsigned long v;
 167	int irq, gsi;
 168	struct hpet_timer __iomem *timer;
 169
 170	spin_lock_irq(&hpet_lock);
 171	if (devp->hd_hdwirq) {
 172		spin_unlock_irq(&hpet_lock);
 173		return;
 174	}
 175
 176	timer = devp->hd_timer;
 177
 178	/* we prefer level triggered mode */
 179	v = readl(&timer->hpet_config);
 180	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
 181		v |= Tn_INT_TYPE_CNF_MASK;
 182		writel(v, &timer->hpet_config);
 183	}
 184	spin_unlock_irq(&hpet_lock);
 185
 186	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
 187				 Tn_INT_ROUTE_CAP_SHIFT;
 188
 189	/*
 190	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
 191	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
 192	 */
 193	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
 194		v &= ~0xf3df;
 195	else
 196		v &= ~0xffff;
 197
 198	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
 199		if (irq >= nr_irqs) {
 200			irq = HPET_MAX_IRQ;
 201			break;
 202		}
 203
 204		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
 205					ACPI_ACTIVE_LOW);
 206		if (gsi > 0)
 207			break;
 208
 209		/* FIXME: Setup interrupt source table */
 210	}
 211
 212	if (irq < HPET_MAX_IRQ) {
 213		spin_lock_irq(&hpet_lock);
 214		v = readl(&timer->hpet_config);
 215		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
 216		writel(v, &timer->hpet_config);
 217		devp->hd_hdwirq = gsi;
 218		spin_unlock_irq(&hpet_lock);
 219	}
 220	return;
 221}
 222
 223static int hpet_open(struct inode *inode, struct file *file)
 224{
 225	struct hpet_dev *devp;
 226	struct hpets *hpetp;
 227	int i;
 228
 229	if (file->f_mode & FMODE_WRITE)
 230		return -EINVAL;
 231
 232	mutex_lock(&hpet_mutex);
 233	spin_lock_irq(&hpet_lock);
 234
 235	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
 236		for (i = 0; i < hpetp->hp_ntimer; i++)
 237			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN) {
 238				continue;
 239			} else {
 240				devp = &hpetp->hp_dev[i];
 241				break;
 242			}
 243
 244	if (!devp) {
 245		spin_unlock_irq(&hpet_lock);
 246		mutex_unlock(&hpet_mutex);
 247		return -EBUSY;
 248	}
 249
 250	file->private_data = devp;
 251	devp->hd_irqdata = 0;
 252	devp->hd_flags |= HPET_OPEN;
 253	spin_unlock_irq(&hpet_lock);
 254	mutex_unlock(&hpet_mutex);
 255
 256	hpet_timer_set_irq(devp);
 257
 258	return 0;
 259}
 260
 261static ssize_t
 262hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
 263{
 264	DECLARE_WAITQUEUE(wait, current);
 265	unsigned long data;
 266	ssize_t retval;
 267	struct hpet_dev *devp;
 268
 269	devp = file->private_data;
 270	if (!devp->hd_ireqfreq)
 271		return -EIO;
 272
 273	if (count < sizeof(unsigned long))
 274		return -EINVAL;
 275
 276	add_wait_queue(&devp->hd_waitqueue, &wait);
 277
 278	for ( ; ; ) {
 279		set_current_state(TASK_INTERRUPTIBLE);
 280
 281		spin_lock_irq(&hpet_lock);
 282		data = devp->hd_irqdata;
 283		devp->hd_irqdata = 0;
 284		spin_unlock_irq(&hpet_lock);
 285
 286		if (data) {
 287			break;
 288		} else if (file->f_flags & O_NONBLOCK) {
 289			retval = -EAGAIN;
 290			goto out;
 291		} else if (signal_pending(current)) {
 292			retval = -ERESTARTSYS;
 293			goto out;
 294		}
 295		schedule();
 296	}
 297
 298	retval = put_user(data, (unsigned long __user *)buf);
 299	if (!retval)
 300		retval = sizeof(unsigned long);
 301out:
 302	__set_current_state(TASK_RUNNING);
 303	remove_wait_queue(&devp->hd_waitqueue, &wait);
 304
 305	return retval;
 306}
 307
 308static __poll_t hpet_poll(struct file *file, poll_table * wait)
 309{
 310	unsigned long v;
 311	struct hpet_dev *devp;
 312
 313	devp = file->private_data;
 314
 315	if (!devp->hd_ireqfreq)
 316		return 0;
 317
 318	poll_wait(file, &devp->hd_waitqueue, wait);
 319
 320	spin_lock_irq(&hpet_lock);
 321	v = devp->hd_irqdata;
 322	spin_unlock_irq(&hpet_lock);
 323
 324	if (v != 0)
 325		return EPOLLIN | EPOLLRDNORM;
 326
 327	return 0;
 328}
 329
 330#ifdef CONFIG_HPET_MMAP
 331#ifdef CONFIG_HPET_MMAP_DEFAULT
 332static int hpet_mmap_enabled = 1;
 333#else
 334static int hpet_mmap_enabled = 0;
 335#endif
 336
 337static __init int hpet_mmap_enable(char *str)
 338{
 339	get_option(&str, &hpet_mmap_enabled);
 340	pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
 341	return 1;
 342}
 343__setup("hpet_mmap=", hpet_mmap_enable);
 344
 345static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
 346{
 347	struct hpet_dev *devp;
 348	unsigned long addr;
 349
 350	if (!hpet_mmap_enabled)
 351		return -EACCES;
 352
 353	devp = file->private_data;
 354	addr = devp->hd_hpets->hp_hpet_phys;
 355
 356	if (addr & (PAGE_SIZE - 1))
 357		return -ENOSYS;
 358
 359	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 360	return vm_iomap_memory(vma, addr, PAGE_SIZE);
 361}
 362#else
 363static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
 364{
 365	return -ENOSYS;
 366}
 367#endif
 368
 369static int hpet_fasync(int fd, struct file *file, int on)
 370{
 371	struct hpet_dev *devp;
 372
 373	devp = file->private_data;
 374
 375	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
 376		return 0;
 377	else
 378		return -EIO;
 379}
 380
 381static int hpet_release(struct inode *inode, struct file *file)
 382{
 383	struct hpet_dev *devp;
 384	struct hpet_timer __iomem *timer;
 385	int irq = 0;
 386
 387	devp = file->private_data;
 388	timer = devp->hd_timer;
 389
 390	spin_lock_irq(&hpet_lock);
 391
 392	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
 393	       &timer->hpet_config);
 394
 395	irq = devp->hd_irq;
 396	devp->hd_irq = 0;
 397
 398	devp->hd_ireqfreq = 0;
 399
 400	if (devp->hd_flags & HPET_PERIODIC
 401	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
 402		unsigned long v;
 403
 404		v = readq(&timer->hpet_config);
 405		v ^= Tn_TYPE_CNF_MASK;
 406		writeq(v, &timer->hpet_config);
 407	}
 408
 409	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
 410	spin_unlock_irq(&hpet_lock);
 411
 412	if (irq)
 413		free_irq(irq, devp);
 414
 415	file->private_data = NULL;
 416	return 0;
 417}
 418
 419static int hpet_ioctl_ieon(struct hpet_dev *devp)
 420{
 421	struct hpet_timer __iomem *timer;
 422	struct hpet __iomem *hpet;
 423	struct hpets *hpetp;
 424	int irq;
 425	unsigned long g, v, t, m;
 426	unsigned long flags, isr;
 427
 428	timer = devp->hd_timer;
 429	hpet = devp->hd_hpet;
 430	hpetp = devp->hd_hpets;
 431
 432	if (!devp->hd_ireqfreq)
 433		return -EIO;
 434
 435	spin_lock_irq(&hpet_lock);
 436
 437	if (devp->hd_flags & HPET_IE) {
 438		spin_unlock_irq(&hpet_lock);
 439		return -EBUSY;
 440	}
 441
 442	devp->hd_flags |= HPET_IE;
 443
 444	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
 445		devp->hd_flags |= HPET_SHARED_IRQ;
 446	spin_unlock_irq(&hpet_lock);
 447
 448	irq = devp->hd_hdwirq;
 449
 450	if (irq) {
 451		unsigned long irq_flags;
 452
 453		if (devp->hd_flags & HPET_SHARED_IRQ) {
 454			/*
 455			 * To prevent the interrupt handler from seeing an
 456			 * unwanted interrupt status bit, program the timer
 457			 * so that it will not fire in the near future ...
 458			 */
 459			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
 460			       &timer->hpet_config);
 461			write_counter(read_counter(&hpet->hpet_mc),
 462				      &timer->hpet_compare);
 463			/* ... and clear any left-over status. */
 464			isr = 1 << (devp - devp->hd_hpets->hp_dev);
 465			writel(isr, &hpet->hpet_isr);
 466		}
 467
 468		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
 469		irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
 470		if (request_irq(irq, hpet_interrupt, irq_flags,
 471				devp->hd_name, (void *)devp)) {
 472			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
 473			irq = 0;
 474		}
 475	}
 476
 477	if (irq == 0) {
 478		spin_lock_irq(&hpet_lock);
 479		devp->hd_flags ^= HPET_IE;
 480		spin_unlock_irq(&hpet_lock);
 481		return -EIO;
 482	}
 483
 484	devp->hd_irq = irq;
 485	t = devp->hd_ireqfreq;
 486	v = readq(&timer->hpet_config);
 487
 488	/* 64-bit comparators are not yet supported through the ioctls,
 489	 * so force this into 32-bit mode if it supports both modes
 490	 */
 491	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
 492
 493	if (devp->hd_flags & HPET_PERIODIC) {
 494		g |= Tn_TYPE_CNF_MASK;
 495		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
 496		writeq(v, &timer->hpet_config);
 497		local_irq_save(flags);
 498
 499		/*
 500		 * NOTE: First we modify the hidden accumulator
 501		 * register supported by periodic-capable comparators.
 502		 * We never want to modify the (single) counter; that
 503		 * would affect all the comparators. The value written
 504		 * is the counter value when the first interrupt is due.
 505		 */
 506		m = read_counter(&hpet->hpet_mc);
 507		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 508		/*
 509		 * Then we modify the comparator, indicating the period
 510		 * for subsequent interrupt.
 511		 */
 512		write_counter(t, &timer->hpet_compare);
 513	} else {
 514		local_irq_save(flags);
 515		m = read_counter(&hpet->hpet_mc);
 516		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 517	}
 518
 519	if (devp->hd_flags & HPET_SHARED_IRQ) {
 520		isr = 1 << (devp - devp->hd_hpets->hp_dev);
 521		writel(isr, &hpet->hpet_isr);
 522	}
 523	writeq(g, &timer->hpet_config);
 524	local_irq_restore(flags);
 525
 526	return 0;
 527}
 528
 529/* converts Hz to number of timer ticks */
 530static inline unsigned long hpet_time_div(struct hpets *hpets,
 531					  unsigned long dis)
 532{
 533	unsigned long long m;
 534
 535	m = hpets->hp_tick_freq + (dis >> 1);
 536	return div64_ul(m, dis);
 
 537}
 538
 539static int
 540hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
 541		  struct hpet_info *info)
 542{
 543	struct hpet_timer __iomem *timer;
 
 544	struct hpets *hpetp;
 545	int err;
 546	unsigned long v;
 547
 548	switch (cmd) {
 549	case HPET_IE_OFF:
 550	case HPET_INFO:
 551	case HPET_EPI:
 552	case HPET_DPI:
 553	case HPET_IRQFREQ:
 554		timer = devp->hd_timer;
 
 555		hpetp = devp->hd_hpets;
 556		break;
 557	case HPET_IE_ON:
 558		return hpet_ioctl_ieon(devp);
 559	default:
 560		return -EINVAL;
 561	}
 562
 563	err = 0;
 564
 565	switch (cmd) {
 566	case HPET_IE_OFF:
 567		if ((devp->hd_flags & HPET_IE) == 0)
 568			break;
 569		v = readq(&timer->hpet_config);
 570		v &= ~Tn_INT_ENB_CNF_MASK;
 571		writeq(v, &timer->hpet_config);
 572		if (devp->hd_irq) {
 573			free_irq(devp->hd_irq, devp);
 574			devp->hd_irq = 0;
 575		}
 576		devp->hd_flags ^= HPET_IE;
 577		break;
 578	case HPET_INFO:
 579		{
 580			memset(info, 0, sizeof(*info));
 581			if (devp->hd_ireqfreq)
 582				info->hi_ireqfreq =
 583					hpet_time_div(hpetp, devp->hd_ireqfreq);
 584			info->hi_flags =
 585			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
 586			info->hi_hpet = hpetp->hp_which;
 587			info->hi_timer = devp - hpetp->hp_dev;
 588			break;
 589		}
 590	case HPET_EPI:
 591		v = readq(&timer->hpet_config);
 592		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
 593			err = -ENXIO;
 594			break;
 595		}
 596		devp->hd_flags |= HPET_PERIODIC;
 597		break;
 598	case HPET_DPI:
 599		v = readq(&timer->hpet_config);
 600		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
 601			err = -ENXIO;
 602			break;
 603		}
 604		if (devp->hd_flags & HPET_PERIODIC &&
 605		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
 606			v = readq(&timer->hpet_config);
 607			v ^= Tn_TYPE_CNF_MASK;
 608			writeq(v, &timer->hpet_config);
 609		}
 610		devp->hd_flags &= ~HPET_PERIODIC;
 611		break;
 612	case HPET_IRQFREQ:
 613		if ((arg > hpet_max_freq) &&
 614		    !capable(CAP_SYS_RESOURCE)) {
 615			err = -EACCES;
 616			break;
 617		}
 618
 619		if (!arg) {
 620			err = -EINVAL;
 621			break;
 622		}
 623
 624		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
 625	}
 626
 627	return err;
 628}
 629
 630static long
 631hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 632{
 633	struct hpet_info info;
 634	int err;
 635
 636	mutex_lock(&hpet_mutex);
 637	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
 638	mutex_unlock(&hpet_mutex);
 639
 640	if ((cmd == HPET_INFO) && !err &&
 641	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
 642		err = -EFAULT;
 643
 644	return err;
 645}
 646
 647#ifdef CONFIG_COMPAT
 648struct compat_hpet_info {
 649	compat_ulong_t hi_ireqfreq;	/* Hz */
 650	compat_ulong_t hi_flags;	/* information */
 651	unsigned short hi_hpet;
 652	unsigned short hi_timer;
 653};
 654
 655static long
 656hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 657{
 658	struct hpet_info info;
 659	int err;
 660
 661	mutex_lock(&hpet_mutex);
 662	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
 663	mutex_unlock(&hpet_mutex);
 664
 665	if ((cmd == HPET_INFO) && !err) {
 666		struct compat_hpet_info __user *u = compat_ptr(arg);
 667		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
 668		    put_user(info.hi_flags, &u->hi_flags) ||
 669		    put_user(info.hi_hpet, &u->hi_hpet) ||
 670		    put_user(info.hi_timer, &u->hi_timer))
 671			err = -EFAULT;
 672	}
 673
 674	return err;
 675}
 676#endif
 677
 678static const struct file_operations hpet_fops = {
 679	.owner = THIS_MODULE,
 680	.llseek = no_llseek,
 681	.read = hpet_read,
 682	.poll = hpet_poll,
 683	.unlocked_ioctl = hpet_ioctl,
 684#ifdef CONFIG_COMPAT
 685	.compat_ioctl = hpet_compat_ioctl,
 686#endif
 687	.open = hpet_open,
 688	.release = hpet_release,
 689	.fasync = hpet_fasync,
 690	.mmap = hpet_mmap,
 691};
 692
 693static int hpet_is_known(struct hpet_data *hdp)
 694{
 695	struct hpets *hpetp;
 696
 697	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
 698		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
 699			return 1;
 700
 701	return 0;
 702}
 703
 704static struct ctl_table hpet_table[] = {
 705	{
 706	 .procname = "max-user-freq",
 707	 .data = &hpet_max_freq,
 708	 .maxlen = sizeof(int),
 709	 .mode = 0644,
 710	 .proc_handler = proc_dointvec,
 711	 },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 712};
 713
 714static struct ctl_table_header *sysctl_header;
 715
 716/*
 717 * Adjustment for when arming the timer with
 718 * initial conditions.  That is, main counter
 719 * ticks expired before interrupts are enabled.
 720 */
 721#define	TICK_CALIBRATE	(1000UL)
 722
 723static unsigned long __hpet_calibrate(struct hpets *hpetp)
 724{
 725	struct hpet_timer __iomem *timer = NULL;
 726	unsigned long t, m, count, i, flags, start;
 727	struct hpet_dev *devp;
 728	int j;
 729	struct hpet __iomem *hpet;
 730
 731	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
 732		if ((devp->hd_flags & HPET_OPEN) == 0) {
 733			timer = devp->hd_timer;
 734			break;
 735		}
 736
 737	if (!timer)
 738		return 0;
 739
 740	hpet = hpetp->hp_hpet;
 741	t = read_counter(&timer->hpet_compare);
 742
 743	i = 0;
 744	count = hpet_time_div(hpetp, TICK_CALIBRATE);
 745
 746	local_irq_save(flags);
 747
 748	start = read_counter(&hpet->hpet_mc);
 749
 750	do {
 751		m = read_counter(&hpet->hpet_mc);
 752		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 753	} while (i++, (m - start) < count);
 754
 755	local_irq_restore(flags);
 756
 757	return (m - start) / i;
 758}
 759
 760static unsigned long hpet_calibrate(struct hpets *hpetp)
 761{
 762	unsigned long ret = ~0UL;
 763	unsigned long tmp;
 764
 765	/*
 766	 * Try to calibrate until return value becomes stable small value.
 767	 * If SMI interruption occurs in calibration loop, the return value
 768	 * will be big. This avoids its impact.
 769	 */
 770	for ( ; ; ) {
 771		tmp = __hpet_calibrate(hpetp);
 772		if (ret <= tmp)
 773			break;
 774		ret = tmp;
 775	}
 776
 777	return ret;
 778}
 779
 780int hpet_alloc(struct hpet_data *hdp)
 781{
 782	u64 cap, mcfg;
 783	struct hpet_dev *devp;
 784	u32 i, ntimer;
 785	struct hpets *hpetp;
 
 786	struct hpet __iomem *hpet;
 787	static struct hpets *last;
 788	unsigned long period;
 789	unsigned long long temp;
 790	u32 remainder;
 791
 792	/*
 793	 * hpet_alloc can be called by platform dependent code.
 794	 * If platform dependent code has allocated the hpet that
 795	 * ACPI has also reported, then we catch it here.
 796	 */
 797	if (hpet_is_known(hdp)) {
 798		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
 799			__func__);
 800		return 0;
 801	}
 802
 803	hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs),
 804			GFP_KERNEL);
 
 
 805
 806	if (!hpetp)
 807		return -ENOMEM;
 808
 809	hpetp->hp_which = hpet_nhpet++;
 810	hpetp->hp_hpet = hdp->hd_address;
 811	hpetp->hp_hpet_phys = hdp->hd_phys_address;
 812
 813	hpetp->hp_ntimer = hdp->hd_nirqs;
 814
 815	for (i = 0; i < hdp->hd_nirqs; i++)
 816		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
 817
 818	hpet = hpetp->hp_hpet;
 819
 820	cap = readq(&hpet->hpet_cap);
 821
 822	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
 823
 824	if (hpetp->hp_ntimer != ntimer) {
 825		printk(KERN_WARNING "hpet: number irqs doesn't agree"
 826		       " with number of timers\n");
 827		kfree(hpetp);
 828		return -ENODEV;
 829	}
 830
 831	if (last)
 832		last->hp_next = hpetp;
 833	else
 834		hpets = hpetp;
 835
 836	last = hpetp;
 837
 838	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
 839		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
 840	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
 841	temp += period >> 1; /* round */
 842	do_div(temp, period);
 843	hpetp->hp_tick_freq = temp; /* ticks per second */
 844
 845	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
 846		hpetp->hp_which, hdp->hd_phys_address,
 847		hpetp->hp_ntimer > 1 ? "s" : "");
 848	for (i = 0; i < hpetp->hp_ntimer; i++)
 849		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
 850	printk(KERN_CONT "\n");
 851
 852	temp = hpetp->hp_tick_freq;
 853	remainder = do_div(temp, 1000000);
 854	printk(KERN_INFO
 855		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
 856		hpetp->hp_which, hpetp->hp_ntimer,
 857		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
 858		(unsigned) temp, remainder);
 859
 860	mcfg = readq(&hpet->hpet_config);
 861	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
 862		write_counter(0L, &hpet->hpet_mc);
 863		mcfg |= HPET_ENABLE_CNF_MASK;
 864		writeq(mcfg, &hpet->hpet_config);
 865	}
 866
 867	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
 868		struct hpet_timer __iomem *timer;
 869
 870		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
 871
 872		devp->hd_hpets = hpetp;
 873		devp->hd_hpet = hpet;
 874		devp->hd_timer = timer;
 875
 876		/*
 877		 * If the timer was reserved by platform code,
 878		 * then make timer unavailable for opens.
 879		 */
 880		if (hdp->hd_state & (1 << i)) {
 881			devp->hd_flags = HPET_OPEN;
 882			continue;
 883		}
 884
 885		init_waitqueue_head(&devp->hd_waitqueue);
 886	}
 887
 888	hpetp->hp_delta = hpet_calibrate(hpetp);
 889
 
 
 
 
 
 
 
 
 
 
 
 890	return 0;
 891}
 892
 893static acpi_status hpet_resources(struct acpi_resource *res, void *data)
 894{
 895	struct hpet_data *hdp;
 896	acpi_status status;
 897	struct acpi_resource_address64 addr;
 898
 899	hdp = data;
 900
 901	status = acpi_resource_to_address64(res, &addr);
 902
 903	if (ACPI_SUCCESS(status)) {
 904		hdp->hd_phys_address = addr.address.minimum;
 905		hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
 906		if (!hdp->hd_address)
 907			return AE_ERROR;
 908
 909		if (hpet_is_known(hdp)) {
 910			iounmap(hdp->hd_address);
 911			return AE_ALREADY_EXISTS;
 912		}
 913	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
 914		struct acpi_resource_fixed_memory32 *fixmem32;
 915
 916		fixmem32 = &res->data.fixed_memory32;
 917
 918		hdp->hd_phys_address = fixmem32->address;
 919		hdp->hd_address = ioremap(fixmem32->address,
 920						HPET_RANGE_SIZE);
 921		if (!hdp->hd_address)
 922			return AE_ERROR;
 923
 924		if (hpet_is_known(hdp)) {
 925			iounmap(hdp->hd_address);
 926			return AE_ALREADY_EXISTS;
 927		}
 928	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
 929		struct acpi_resource_extended_irq *irqp;
 930		int i, irq;
 931
 932		irqp = &res->data.extended_irq;
 933
 934		for (i = 0; i < irqp->interrupt_count; i++) {
 935			if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
 936				break;
 937
 938			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
 939						irqp->triggering,
 940						irqp->polarity);
 941			if (irq < 0)
 942				return AE_ERROR;
 943
 944			hdp->hd_irq[hdp->hd_nirqs] = irq;
 945			hdp->hd_nirqs++;
 946		}
 947	}
 948
 949	return AE_OK;
 950}
 951
 952static int hpet_acpi_add(struct acpi_device *device)
 953{
 954	acpi_status result;
 955	struct hpet_data data;
 956
 957	memset(&data, 0, sizeof(data));
 958
 959	result =
 960	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
 961				hpet_resources, &data);
 962
 963	if (ACPI_FAILURE(result))
 964		return -ENODEV;
 965
 966	if (!data.hd_address || !data.hd_nirqs) {
 967		if (data.hd_address)
 968			iounmap(data.hd_address);
 969		printk("%s: no address or irqs in _CRS\n", __func__);
 970		return -ENODEV;
 971	}
 972
 973	return hpet_alloc(&data);
 974}
 975
 976static const struct acpi_device_id hpet_device_ids[] = {
 977	{"PNP0103", 0},
 978	{"", 0},
 979};
 980
 981static struct acpi_driver hpet_acpi_driver = {
 982	.name = "hpet",
 983	.ids = hpet_device_ids,
 984	.ops = {
 985		.add = hpet_acpi_add,
 986		},
 987};
 988
 989static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
 990
 991static int __init hpet_init(void)
 992{
 993	int result;
 994
 995	result = misc_register(&hpet_misc);
 996	if (result < 0)
 997		return -ENODEV;
 998
 999	sysctl_header = register_sysctl("dev/hpet", hpet_table);
1000
1001	result = acpi_bus_register_driver(&hpet_acpi_driver);
1002	if (result < 0) {
1003		if (sysctl_header)
1004			unregister_sysctl_table(sysctl_header);
1005		misc_deregister(&hpet_misc);
1006		return result;
1007	}
1008
1009	return 0;
1010}
1011device_initcall(hpet_init);
1012
1013/*
1014MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1015MODULE_LICENSE("GPL");
1016*/
v4.17
 
   1/*
   2 * Intel & MS High Precision Event Timer Implementation.
   3 *
   4 * Copyright (C) 2003 Intel Corporation
   5 *	Venki Pallipadi
   6 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
   7 *	Bob Picco <robert.picco@hp.com>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13
  14#include <linux/interrupt.h>
  15#include <linux/kernel.h>
  16#include <linux/types.h>
  17#include <linux/miscdevice.h>
  18#include <linux/major.h>
  19#include <linux/ioport.h>
  20#include <linux/fcntl.h>
  21#include <linux/init.h>
 
  22#include <linux/poll.h>
  23#include <linux/mm.h>
  24#include <linux/proc_fs.h>
  25#include <linux/spinlock.h>
  26#include <linux/sysctl.h>
  27#include <linux/wait.h>
  28#include <linux/sched/signal.h>
  29#include <linux/bcd.h>
  30#include <linux/seq_file.h>
  31#include <linux/bitops.h>
  32#include <linux/compat.h>
  33#include <linux/clocksource.h>
  34#include <linux/uaccess.h>
  35#include <linux/slab.h>
  36#include <linux/io.h>
  37#include <linux/acpi.h>
  38#include <linux/hpet.h>
  39#include <asm/current.h>
  40#include <asm/irq.h>
  41#include <asm/div64.h>
  42
  43/*
  44 * The High Precision Event Timer driver.
  45 * This driver is closely modelled after the rtc.c driver.
  46 * See HPET spec revision 1.
  47 */
  48#define	HPET_USER_FREQ	(64)
  49#define	HPET_DRIFT	(500)
  50
  51#define HPET_RANGE_SIZE		1024	/* from HPET spec */
  52
  53
  54/* WARNING -- don't get confused.  These macros are never used
  55 * to write the (single) counter, and rarely to read it.
  56 * They're badly named; to fix, someday.
  57 */
  58#if BITS_PER_LONG == 64
  59#define	write_counter(V, MC)	writeq(V, MC)
  60#define	read_counter(MC)	readq(MC)
  61#else
  62#define	write_counter(V, MC)	writel(V, MC)
  63#define	read_counter(MC)	readl(MC)
  64#endif
  65
  66static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
  67static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
  68
  69/* This clocksource driver currently only works on ia64 */
  70#ifdef CONFIG_IA64
  71static void __iomem *hpet_mctr;
  72
  73static u64 read_hpet(struct clocksource *cs)
  74{
  75	return (u64)read_counter((void __iomem *)hpet_mctr);
  76}
  77
  78static struct clocksource clocksource_hpet = {
  79	.name		= "hpet",
  80	.rating		= 250,
  81	.read		= read_hpet,
  82	.mask		= CLOCKSOURCE_MASK(64),
  83	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
  84};
  85static struct clocksource *hpet_clocksource;
  86#endif
  87
  88/* A lock for concurrent access by app and isr hpet activity. */
  89static DEFINE_SPINLOCK(hpet_lock);
  90
  91#define	HPET_DEV_NAME	(7)
  92
  93struct hpet_dev {
  94	struct hpets *hd_hpets;
  95	struct hpet __iomem *hd_hpet;
  96	struct hpet_timer __iomem *hd_timer;
  97	unsigned long hd_ireqfreq;
  98	unsigned long hd_irqdata;
  99	wait_queue_head_t hd_waitqueue;
 100	struct fasync_struct *hd_async_queue;
 101	unsigned int hd_flags;
 102	unsigned int hd_irq;
 103	unsigned int hd_hdwirq;
 104	char hd_name[HPET_DEV_NAME];
 105};
 106
 107struct hpets {
 108	struct hpets *hp_next;
 109	struct hpet __iomem *hp_hpet;
 110	unsigned long hp_hpet_phys;
 111	struct clocksource *hp_clocksource;
 112	unsigned long long hp_tick_freq;
 113	unsigned long hp_delta;
 114	unsigned int hp_ntimer;
 115	unsigned int hp_which;
 116	struct hpet_dev hp_dev[1];
 117};
 118
 119static struct hpets *hpets;
 120
 121#define	HPET_OPEN		0x0001
 122#define	HPET_IE			0x0002	/* interrupt enabled */
 123#define	HPET_PERIODIC		0x0004
 124#define	HPET_SHARED_IRQ		0x0008
 125
 126
 127#ifndef readq
 128static inline unsigned long long readq(void __iomem *addr)
 129{
 130	return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
 131}
 132#endif
 133
 134#ifndef writeq
 135static inline void writeq(unsigned long long v, void __iomem *addr)
 136{
 137	writel(v & 0xffffffff, addr);
 138	writel(v >> 32, addr + 4);
 139}
 140#endif
 141
 142static irqreturn_t hpet_interrupt(int irq, void *data)
 143{
 144	struct hpet_dev *devp;
 145	unsigned long isr;
 146
 147	devp = data;
 148	isr = 1 << (devp - devp->hd_hpets->hp_dev);
 149
 150	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
 151	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
 152		return IRQ_NONE;
 153
 154	spin_lock(&hpet_lock);
 155	devp->hd_irqdata++;
 156
 157	/*
 158	 * For non-periodic timers, increment the accumulator.
 159	 * This has the effect of treating non-periodic like periodic.
 160	 */
 161	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
 162		unsigned long m, t, mc, base, k;
 163		struct hpet __iomem *hpet = devp->hd_hpet;
 164		struct hpets *hpetp = devp->hd_hpets;
 165
 166		t = devp->hd_ireqfreq;
 167		m = read_counter(&devp->hd_timer->hpet_compare);
 168		mc = read_counter(&hpet->hpet_mc);
 169		/* The time for the next interrupt would logically be t + m,
 170		 * however, if we are very unlucky and the interrupt is delayed
 171		 * for longer than t then we will completely miss the next
 172		 * interrupt if we set t + m and an application will hang.
 173		 * Therefore we need to make a more complex computation assuming
 174		 * that there exists a k for which the following is true:
 175		 * k * t + base < mc + delta
 176		 * (k + 1) * t + base > mc + delta
 177		 * where t is the interval in hpet ticks for the given freq,
 178		 * base is the theoretical start value 0 < base < t,
 179		 * mc is the main counter value at the time of the interrupt,
 180		 * delta is the time it takes to write the a value to the
 181		 * comparator.
 182		 * k may then be computed as (mc - base + delta) / t .
 183		 */
 184		base = mc % t;
 185		k = (mc - base + hpetp->hp_delta) / t;
 186		write_counter(t * (k + 1) + base,
 187			      &devp->hd_timer->hpet_compare);
 188	}
 189
 190	if (devp->hd_flags & HPET_SHARED_IRQ)
 191		writel(isr, &devp->hd_hpet->hpet_isr);
 192	spin_unlock(&hpet_lock);
 193
 194	wake_up_interruptible(&devp->hd_waitqueue);
 195
 196	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
 197
 198	return IRQ_HANDLED;
 199}
 200
 201static void hpet_timer_set_irq(struct hpet_dev *devp)
 202{
 203	unsigned long v;
 204	int irq, gsi;
 205	struct hpet_timer __iomem *timer;
 206
 207	spin_lock_irq(&hpet_lock);
 208	if (devp->hd_hdwirq) {
 209		spin_unlock_irq(&hpet_lock);
 210		return;
 211	}
 212
 213	timer = devp->hd_timer;
 214
 215	/* we prefer level triggered mode */
 216	v = readl(&timer->hpet_config);
 217	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
 218		v |= Tn_INT_TYPE_CNF_MASK;
 219		writel(v, &timer->hpet_config);
 220	}
 221	spin_unlock_irq(&hpet_lock);
 222
 223	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
 224				 Tn_INT_ROUTE_CAP_SHIFT;
 225
 226	/*
 227	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
 228	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
 229	 */
 230	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
 231		v &= ~0xf3df;
 232	else
 233		v &= ~0xffff;
 234
 235	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
 236		if (irq >= nr_irqs) {
 237			irq = HPET_MAX_IRQ;
 238			break;
 239		}
 240
 241		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
 242					ACPI_ACTIVE_LOW);
 243		if (gsi > 0)
 244			break;
 245
 246		/* FIXME: Setup interrupt source table */
 247	}
 248
 249	if (irq < HPET_MAX_IRQ) {
 250		spin_lock_irq(&hpet_lock);
 251		v = readl(&timer->hpet_config);
 252		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
 253		writel(v, &timer->hpet_config);
 254		devp->hd_hdwirq = gsi;
 255		spin_unlock_irq(&hpet_lock);
 256	}
 257	return;
 258}
 259
 260static int hpet_open(struct inode *inode, struct file *file)
 261{
 262	struct hpet_dev *devp;
 263	struct hpets *hpetp;
 264	int i;
 265
 266	if (file->f_mode & FMODE_WRITE)
 267		return -EINVAL;
 268
 269	mutex_lock(&hpet_mutex);
 270	spin_lock_irq(&hpet_lock);
 271
 272	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
 273		for (i = 0; i < hpetp->hp_ntimer; i++)
 274			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
 275				continue;
 276			else {
 277				devp = &hpetp->hp_dev[i];
 278				break;
 279			}
 280
 281	if (!devp) {
 282		spin_unlock_irq(&hpet_lock);
 283		mutex_unlock(&hpet_mutex);
 284		return -EBUSY;
 285	}
 286
 287	file->private_data = devp;
 288	devp->hd_irqdata = 0;
 289	devp->hd_flags |= HPET_OPEN;
 290	spin_unlock_irq(&hpet_lock);
 291	mutex_unlock(&hpet_mutex);
 292
 293	hpet_timer_set_irq(devp);
 294
 295	return 0;
 296}
 297
 298static ssize_t
 299hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
 300{
 301	DECLARE_WAITQUEUE(wait, current);
 302	unsigned long data;
 303	ssize_t retval;
 304	struct hpet_dev *devp;
 305
 306	devp = file->private_data;
 307	if (!devp->hd_ireqfreq)
 308		return -EIO;
 309
 310	if (count < sizeof(unsigned long))
 311		return -EINVAL;
 312
 313	add_wait_queue(&devp->hd_waitqueue, &wait);
 314
 315	for ( ; ; ) {
 316		set_current_state(TASK_INTERRUPTIBLE);
 317
 318		spin_lock_irq(&hpet_lock);
 319		data = devp->hd_irqdata;
 320		devp->hd_irqdata = 0;
 321		spin_unlock_irq(&hpet_lock);
 322
 323		if (data)
 324			break;
 325		else if (file->f_flags & O_NONBLOCK) {
 326			retval = -EAGAIN;
 327			goto out;
 328		} else if (signal_pending(current)) {
 329			retval = -ERESTARTSYS;
 330			goto out;
 331		}
 332		schedule();
 333	}
 334
 335	retval = put_user(data, (unsigned long __user *)buf);
 336	if (!retval)
 337		retval = sizeof(unsigned long);
 338out:
 339	__set_current_state(TASK_RUNNING);
 340	remove_wait_queue(&devp->hd_waitqueue, &wait);
 341
 342	return retval;
 343}
 344
 345static __poll_t hpet_poll(struct file *file, poll_table * wait)
 346{
 347	unsigned long v;
 348	struct hpet_dev *devp;
 349
 350	devp = file->private_data;
 351
 352	if (!devp->hd_ireqfreq)
 353		return 0;
 354
 355	poll_wait(file, &devp->hd_waitqueue, wait);
 356
 357	spin_lock_irq(&hpet_lock);
 358	v = devp->hd_irqdata;
 359	spin_unlock_irq(&hpet_lock);
 360
 361	if (v != 0)
 362		return EPOLLIN | EPOLLRDNORM;
 363
 364	return 0;
 365}
 366
 367#ifdef CONFIG_HPET_MMAP
 368#ifdef CONFIG_HPET_MMAP_DEFAULT
 369static int hpet_mmap_enabled = 1;
 370#else
 371static int hpet_mmap_enabled = 0;
 372#endif
 373
 374static __init int hpet_mmap_enable(char *str)
 375{
 376	get_option(&str, &hpet_mmap_enabled);
 377	pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
 378	return 1;
 379}
 380__setup("hpet_mmap", hpet_mmap_enable);
 381
 382static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
 383{
 384	struct hpet_dev *devp;
 385	unsigned long addr;
 386
 387	if (!hpet_mmap_enabled)
 388		return -EACCES;
 389
 390	devp = file->private_data;
 391	addr = devp->hd_hpets->hp_hpet_phys;
 392
 393	if (addr & (PAGE_SIZE - 1))
 394		return -ENOSYS;
 395
 396	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 397	return vm_iomap_memory(vma, addr, PAGE_SIZE);
 398}
 399#else
 400static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
 401{
 402	return -ENOSYS;
 403}
 404#endif
 405
 406static int hpet_fasync(int fd, struct file *file, int on)
 407{
 408	struct hpet_dev *devp;
 409
 410	devp = file->private_data;
 411
 412	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
 413		return 0;
 414	else
 415		return -EIO;
 416}
 417
 418static int hpet_release(struct inode *inode, struct file *file)
 419{
 420	struct hpet_dev *devp;
 421	struct hpet_timer __iomem *timer;
 422	int irq = 0;
 423
 424	devp = file->private_data;
 425	timer = devp->hd_timer;
 426
 427	spin_lock_irq(&hpet_lock);
 428
 429	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
 430	       &timer->hpet_config);
 431
 432	irq = devp->hd_irq;
 433	devp->hd_irq = 0;
 434
 435	devp->hd_ireqfreq = 0;
 436
 437	if (devp->hd_flags & HPET_PERIODIC
 438	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
 439		unsigned long v;
 440
 441		v = readq(&timer->hpet_config);
 442		v ^= Tn_TYPE_CNF_MASK;
 443		writeq(v, &timer->hpet_config);
 444	}
 445
 446	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
 447	spin_unlock_irq(&hpet_lock);
 448
 449	if (irq)
 450		free_irq(irq, devp);
 451
 452	file->private_data = NULL;
 453	return 0;
 454}
 455
 456static int hpet_ioctl_ieon(struct hpet_dev *devp)
 457{
 458	struct hpet_timer __iomem *timer;
 459	struct hpet __iomem *hpet;
 460	struct hpets *hpetp;
 461	int irq;
 462	unsigned long g, v, t, m;
 463	unsigned long flags, isr;
 464
 465	timer = devp->hd_timer;
 466	hpet = devp->hd_hpet;
 467	hpetp = devp->hd_hpets;
 468
 469	if (!devp->hd_ireqfreq)
 470		return -EIO;
 471
 472	spin_lock_irq(&hpet_lock);
 473
 474	if (devp->hd_flags & HPET_IE) {
 475		spin_unlock_irq(&hpet_lock);
 476		return -EBUSY;
 477	}
 478
 479	devp->hd_flags |= HPET_IE;
 480
 481	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
 482		devp->hd_flags |= HPET_SHARED_IRQ;
 483	spin_unlock_irq(&hpet_lock);
 484
 485	irq = devp->hd_hdwirq;
 486
 487	if (irq) {
 488		unsigned long irq_flags;
 489
 490		if (devp->hd_flags & HPET_SHARED_IRQ) {
 491			/*
 492			 * To prevent the interrupt handler from seeing an
 493			 * unwanted interrupt status bit, program the timer
 494			 * so that it will not fire in the near future ...
 495			 */
 496			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
 497			       &timer->hpet_config);
 498			write_counter(read_counter(&hpet->hpet_mc),
 499				      &timer->hpet_compare);
 500			/* ... and clear any left-over status. */
 501			isr = 1 << (devp - devp->hd_hpets->hp_dev);
 502			writel(isr, &hpet->hpet_isr);
 503		}
 504
 505		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
 506		irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
 507		if (request_irq(irq, hpet_interrupt, irq_flags,
 508				devp->hd_name, (void *)devp)) {
 509			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
 510			irq = 0;
 511		}
 512	}
 513
 514	if (irq == 0) {
 515		spin_lock_irq(&hpet_lock);
 516		devp->hd_flags ^= HPET_IE;
 517		spin_unlock_irq(&hpet_lock);
 518		return -EIO;
 519	}
 520
 521	devp->hd_irq = irq;
 522	t = devp->hd_ireqfreq;
 523	v = readq(&timer->hpet_config);
 524
 525	/* 64-bit comparators are not yet supported through the ioctls,
 526	 * so force this into 32-bit mode if it supports both modes
 527	 */
 528	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
 529
 530	if (devp->hd_flags & HPET_PERIODIC) {
 531		g |= Tn_TYPE_CNF_MASK;
 532		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
 533		writeq(v, &timer->hpet_config);
 534		local_irq_save(flags);
 535
 536		/*
 537		 * NOTE: First we modify the hidden accumulator
 538		 * register supported by periodic-capable comparators.
 539		 * We never want to modify the (single) counter; that
 540		 * would affect all the comparators. The value written
 541		 * is the counter value when the first interrupt is due.
 542		 */
 543		m = read_counter(&hpet->hpet_mc);
 544		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 545		/*
 546		 * Then we modify the comparator, indicating the period
 547		 * for subsequent interrupt.
 548		 */
 549		write_counter(t, &timer->hpet_compare);
 550	} else {
 551		local_irq_save(flags);
 552		m = read_counter(&hpet->hpet_mc);
 553		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 554	}
 555
 556	if (devp->hd_flags & HPET_SHARED_IRQ) {
 557		isr = 1 << (devp - devp->hd_hpets->hp_dev);
 558		writel(isr, &hpet->hpet_isr);
 559	}
 560	writeq(g, &timer->hpet_config);
 561	local_irq_restore(flags);
 562
 563	return 0;
 564}
 565
 566/* converts Hz to number of timer ticks */
 567static inline unsigned long hpet_time_div(struct hpets *hpets,
 568					  unsigned long dis)
 569{
 570	unsigned long long m;
 571
 572	m = hpets->hp_tick_freq + (dis >> 1);
 573	do_div(m, dis);
 574	return (unsigned long)m;
 575}
 576
 577static int
 578hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
 579		  struct hpet_info *info)
 580{
 581	struct hpet_timer __iomem *timer;
 582	struct hpet __iomem *hpet;
 583	struct hpets *hpetp;
 584	int err;
 585	unsigned long v;
 586
 587	switch (cmd) {
 588	case HPET_IE_OFF:
 589	case HPET_INFO:
 590	case HPET_EPI:
 591	case HPET_DPI:
 592	case HPET_IRQFREQ:
 593		timer = devp->hd_timer;
 594		hpet = devp->hd_hpet;
 595		hpetp = devp->hd_hpets;
 596		break;
 597	case HPET_IE_ON:
 598		return hpet_ioctl_ieon(devp);
 599	default:
 600		return -EINVAL;
 601	}
 602
 603	err = 0;
 604
 605	switch (cmd) {
 606	case HPET_IE_OFF:
 607		if ((devp->hd_flags & HPET_IE) == 0)
 608			break;
 609		v = readq(&timer->hpet_config);
 610		v &= ~Tn_INT_ENB_CNF_MASK;
 611		writeq(v, &timer->hpet_config);
 612		if (devp->hd_irq) {
 613			free_irq(devp->hd_irq, devp);
 614			devp->hd_irq = 0;
 615		}
 616		devp->hd_flags ^= HPET_IE;
 617		break;
 618	case HPET_INFO:
 619		{
 620			memset(info, 0, sizeof(*info));
 621			if (devp->hd_ireqfreq)
 622				info->hi_ireqfreq =
 623					hpet_time_div(hpetp, devp->hd_ireqfreq);
 624			info->hi_flags =
 625			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
 626			info->hi_hpet = hpetp->hp_which;
 627			info->hi_timer = devp - hpetp->hp_dev;
 628			break;
 629		}
 630	case HPET_EPI:
 631		v = readq(&timer->hpet_config);
 632		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
 633			err = -ENXIO;
 634			break;
 635		}
 636		devp->hd_flags |= HPET_PERIODIC;
 637		break;
 638	case HPET_DPI:
 639		v = readq(&timer->hpet_config);
 640		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
 641			err = -ENXIO;
 642			break;
 643		}
 644		if (devp->hd_flags & HPET_PERIODIC &&
 645		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
 646			v = readq(&timer->hpet_config);
 647			v ^= Tn_TYPE_CNF_MASK;
 648			writeq(v, &timer->hpet_config);
 649		}
 650		devp->hd_flags &= ~HPET_PERIODIC;
 651		break;
 652	case HPET_IRQFREQ:
 653		if ((arg > hpet_max_freq) &&
 654		    !capable(CAP_SYS_RESOURCE)) {
 655			err = -EACCES;
 656			break;
 657		}
 658
 659		if (!arg) {
 660			err = -EINVAL;
 661			break;
 662		}
 663
 664		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
 665	}
 666
 667	return err;
 668}
 669
 670static long
 671hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 672{
 673	struct hpet_info info;
 674	int err;
 675
 676	mutex_lock(&hpet_mutex);
 677	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
 678	mutex_unlock(&hpet_mutex);
 679
 680	if ((cmd == HPET_INFO) && !err &&
 681	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
 682		err = -EFAULT;
 683
 684	return err;
 685}
 686
 687#ifdef CONFIG_COMPAT
 688struct compat_hpet_info {
 689	compat_ulong_t hi_ireqfreq;	/* Hz */
 690	compat_ulong_t hi_flags;	/* information */
 691	unsigned short hi_hpet;
 692	unsigned short hi_timer;
 693};
 694
 695static long
 696hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 697{
 698	struct hpet_info info;
 699	int err;
 700
 701	mutex_lock(&hpet_mutex);
 702	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
 703	mutex_unlock(&hpet_mutex);
 704
 705	if ((cmd == HPET_INFO) && !err) {
 706		struct compat_hpet_info __user *u = compat_ptr(arg);
 707		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
 708		    put_user(info.hi_flags, &u->hi_flags) ||
 709		    put_user(info.hi_hpet, &u->hi_hpet) ||
 710		    put_user(info.hi_timer, &u->hi_timer))
 711			err = -EFAULT;
 712	}
 713
 714	return err;
 715}
 716#endif
 717
 718static const struct file_operations hpet_fops = {
 719	.owner = THIS_MODULE,
 720	.llseek = no_llseek,
 721	.read = hpet_read,
 722	.poll = hpet_poll,
 723	.unlocked_ioctl = hpet_ioctl,
 724#ifdef CONFIG_COMPAT
 725	.compat_ioctl = hpet_compat_ioctl,
 726#endif
 727	.open = hpet_open,
 728	.release = hpet_release,
 729	.fasync = hpet_fasync,
 730	.mmap = hpet_mmap,
 731};
 732
 733static int hpet_is_known(struct hpet_data *hdp)
 734{
 735	struct hpets *hpetp;
 736
 737	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
 738		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
 739			return 1;
 740
 741	return 0;
 742}
 743
 744static struct ctl_table hpet_table[] = {
 745	{
 746	 .procname = "max-user-freq",
 747	 .data = &hpet_max_freq,
 748	 .maxlen = sizeof(int),
 749	 .mode = 0644,
 750	 .proc_handler = proc_dointvec,
 751	 },
 752	{}
 753};
 754
 755static struct ctl_table hpet_root[] = {
 756	{
 757	 .procname = "hpet",
 758	 .maxlen = 0,
 759	 .mode = 0555,
 760	 .child = hpet_table,
 761	 },
 762	{}
 763};
 764
 765static struct ctl_table dev_root[] = {
 766	{
 767	 .procname = "dev",
 768	 .maxlen = 0,
 769	 .mode = 0555,
 770	 .child = hpet_root,
 771	 },
 772	{}
 773};
 774
 775static struct ctl_table_header *sysctl_header;
 776
 777/*
 778 * Adjustment for when arming the timer with
 779 * initial conditions.  That is, main counter
 780 * ticks expired before interrupts are enabled.
 781 */
 782#define	TICK_CALIBRATE	(1000UL)
 783
 784static unsigned long __hpet_calibrate(struct hpets *hpetp)
 785{
 786	struct hpet_timer __iomem *timer = NULL;
 787	unsigned long t, m, count, i, flags, start;
 788	struct hpet_dev *devp;
 789	int j;
 790	struct hpet __iomem *hpet;
 791
 792	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
 793		if ((devp->hd_flags & HPET_OPEN) == 0) {
 794			timer = devp->hd_timer;
 795			break;
 796		}
 797
 798	if (!timer)
 799		return 0;
 800
 801	hpet = hpetp->hp_hpet;
 802	t = read_counter(&timer->hpet_compare);
 803
 804	i = 0;
 805	count = hpet_time_div(hpetp, TICK_CALIBRATE);
 806
 807	local_irq_save(flags);
 808
 809	start = read_counter(&hpet->hpet_mc);
 810
 811	do {
 812		m = read_counter(&hpet->hpet_mc);
 813		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 814	} while (i++, (m - start) < count);
 815
 816	local_irq_restore(flags);
 817
 818	return (m - start) / i;
 819}
 820
 821static unsigned long hpet_calibrate(struct hpets *hpetp)
 822{
 823	unsigned long ret = ~0UL;
 824	unsigned long tmp;
 825
 826	/*
 827	 * Try to calibrate until return value becomes stable small value.
 828	 * If SMI interruption occurs in calibration loop, the return value
 829	 * will be big. This avoids its impact.
 830	 */
 831	for ( ; ; ) {
 832		tmp = __hpet_calibrate(hpetp);
 833		if (ret <= tmp)
 834			break;
 835		ret = tmp;
 836	}
 837
 838	return ret;
 839}
 840
 841int hpet_alloc(struct hpet_data *hdp)
 842{
 843	u64 cap, mcfg;
 844	struct hpet_dev *devp;
 845	u32 i, ntimer;
 846	struct hpets *hpetp;
 847	size_t siz;
 848	struct hpet __iomem *hpet;
 849	static struct hpets *last;
 850	unsigned long period;
 851	unsigned long long temp;
 852	u32 remainder;
 853
 854	/*
 855	 * hpet_alloc can be called by platform dependent code.
 856	 * If platform dependent code has allocated the hpet that
 857	 * ACPI has also reported, then we catch it here.
 858	 */
 859	if (hpet_is_known(hdp)) {
 860		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
 861			__func__);
 862		return 0;
 863	}
 864
 865	siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
 866				      sizeof(struct hpet_dev));
 867
 868	hpetp = kzalloc(siz, GFP_KERNEL);
 869
 870	if (!hpetp)
 871		return -ENOMEM;
 872
 873	hpetp->hp_which = hpet_nhpet++;
 874	hpetp->hp_hpet = hdp->hd_address;
 875	hpetp->hp_hpet_phys = hdp->hd_phys_address;
 876
 877	hpetp->hp_ntimer = hdp->hd_nirqs;
 878
 879	for (i = 0; i < hdp->hd_nirqs; i++)
 880		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
 881
 882	hpet = hpetp->hp_hpet;
 883
 884	cap = readq(&hpet->hpet_cap);
 885
 886	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
 887
 888	if (hpetp->hp_ntimer != ntimer) {
 889		printk(KERN_WARNING "hpet: number irqs doesn't agree"
 890		       " with number of timers\n");
 891		kfree(hpetp);
 892		return -ENODEV;
 893	}
 894
 895	if (last)
 896		last->hp_next = hpetp;
 897	else
 898		hpets = hpetp;
 899
 900	last = hpetp;
 901
 902	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
 903		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
 904	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
 905	temp += period >> 1; /* round */
 906	do_div(temp, period);
 907	hpetp->hp_tick_freq = temp; /* ticks per second */
 908
 909	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
 910		hpetp->hp_which, hdp->hd_phys_address,
 911		hpetp->hp_ntimer > 1 ? "s" : "");
 912	for (i = 0; i < hpetp->hp_ntimer; i++)
 913		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
 914	printk(KERN_CONT "\n");
 915
 916	temp = hpetp->hp_tick_freq;
 917	remainder = do_div(temp, 1000000);
 918	printk(KERN_INFO
 919		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
 920		hpetp->hp_which, hpetp->hp_ntimer,
 921		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
 922		(unsigned) temp, remainder);
 923
 924	mcfg = readq(&hpet->hpet_config);
 925	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
 926		write_counter(0L, &hpet->hpet_mc);
 927		mcfg |= HPET_ENABLE_CNF_MASK;
 928		writeq(mcfg, &hpet->hpet_config);
 929	}
 930
 931	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
 932		struct hpet_timer __iomem *timer;
 933
 934		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
 935
 936		devp->hd_hpets = hpetp;
 937		devp->hd_hpet = hpet;
 938		devp->hd_timer = timer;
 939
 940		/*
 941		 * If the timer was reserved by platform code,
 942		 * then make timer unavailable for opens.
 943		 */
 944		if (hdp->hd_state & (1 << i)) {
 945			devp->hd_flags = HPET_OPEN;
 946			continue;
 947		}
 948
 949		init_waitqueue_head(&devp->hd_waitqueue);
 950	}
 951
 952	hpetp->hp_delta = hpet_calibrate(hpetp);
 953
 954/* This clocksource driver currently only works on ia64 */
 955#ifdef CONFIG_IA64
 956	if (!hpet_clocksource) {
 957		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
 958		clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
 959		clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
 960		hpetp->hp_clocksource = &clocksource_hpet;
 961		hpet_clocksource = &clocksource_hpet;
 962	}
 963#endif
 964
 965	return 0;
 966}
 967
 968static acpi_status hpet_resources(struct acpi_resource *res, void *data)
 969{
 970	struct hpet_data *hdp;
 971	acpi_status status;
 972	struct acpi_resource_address64 addr;
 973
 974	hdp = data;
 975
 976	status = acpi_resource_to_address64(res, &addr);
 977
 978	if (ACPI_SUCCESS(status)) {
 979		hdp->hd_phys_address = addr.address.minimum;
 980		hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
 
 
 981
 982		if (hpet_is_known(hdp)) {
 983			iounmap(hdp->hd_address);
 984			return AE_ALREADY_EXISTS;
 985		}
 986	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
 987		struct acpi_resource_fixed_memory32 *fixmem32;
 988
 989		fixmem32 = &res->data.fixed_memory32;
 990
 991		hdp->hd_phys_address = fixmem32->address;
 992		hdp->hd_address = ioremap(fixmem32->address,
 993						HPET_RANGE_SIZE);
 
 
 994
 995		if (hpet_is_known(hdp)) {
 996			iounmap(hdp->hd_address);
 997			return AE_ALREADY_EXISTS;
 998		}
 999	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
1000		struct acpi_resource_extended_irq *irqp;
1001		int i, irq;
1002
1003		irqp = &res->data.extended_irq;
1004
1005		for (i = 0; i < irqp->interrupt_count; i++) {
1006			if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
1007				break;
1008
1009			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
1010				      irqp->triggering, irqp->polarity);
 
1011			if (irq < 0)
1012				return AE_ERROR;
1013
1014			hdp->hd_irq[hdp->hd_nirqs] = irq;
1015			hdp->hd_nirqs++;
1016		}
1017	}
1018
1019	return AE_OK;
1020}
1021
1022static int hpet_acpi_add(struct acpi_device *device)
1023{
1024	acpi_status result;
1025	struct hpet_data data;
1026
1027	memset(&data, 0, sizeof(data));
1028
1029	result =
1030	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1031				hpet_resources, &data);
1032
1033	if (ACPI_FAILURE(result))
1034		return -ENODEV;
1035
1036	if (!data.hd_address || !data.hd_nirqs) {
1037		if (data.hd_address)
1038			iounmap(data.hd_address);
1039		printk("%s: no address or irqs in _CRS\n", __func__);
1040		return -ENODEV;
1041	}
1042
1043	return hpet_alloc(&data);
1044}
1045
1046static const struct acpi_device_id hpet_device_ids[] = {
1047	{"PNP0103", 0},
1048	{"", 0},
1049};
1050
1051static struct acpi_driver hpet_acpi_driver = {
1052	.name = "hpet",
1053	.ids = hpet_device_ids,
1054	.ops = {
1055		.add = hpet_acpi_add,
1056		},
1057};
1058
1059static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1060
1061static int __init hpet_init(void)
1062{
1063	int result;
1064
1065	result = misc_register(&hpet_misc);
1066	if (result < 0)
1067		return -ENODEV;
1068
1069	sysctl_header = register_sysctl_table(dev_root);
1070
1071	result = acpi_bus_register_driver(&hpet_acpi_driver);
1072	if (result < 0) {
1073		if (sysctl_header)
1074			unregister_sysctl_table(sysctl_header);
1075		misc_deregister(&hpet_misc);
1076		return result;
1077	}
1078
1079	return 0;
1080}
1081device_initcall(hpet_init);
1082
1083/*
1084MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1085MODULE_LICENSE("GPL");
1086*/