Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory subsystem support
   4 *
   5 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
   6 *            Dave Hansen <haveblue@us.ibm.com>
   7 *
   8 * This file provides the necessary infrastructure to represent
   9 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
  10 * All arch-independent code that assumes MEMORY_HOTPLUG requires
  11 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
  12 */
  13
  14#include <linux/module.h>
  15#include <linux/init.h>
  16#include <linux/topology.h>
  17#include <linux/capability.h>
  18#include <linux/device.h>
  19#include <linux/memory.h>
  20#include <linux/memory_hotplug.h>
  21#include <linux/mm.h>
  22#include <linux/stat.h>
  23#include <linux/slab.h>
  24#include <linux/xarray.h>
  25
  26#include <linux/atomic.h>
  27#include <linux/uaccess.h>
  28
  29#define MEMORY_CLASS_NAME	"memory"
  30
  31static const char *const online_type_to_str[] = {
  32	[MMOP_OFFLINE] = "offline",
  33	[MMOP_ONLINE] = "online",
  34	[MMOP_ONLINE_KERNEL] = "online_kernel",
  35	[MMOP_ONLINE_MOVABLE] = "online_movable",
  36};
  37
  38int mhp_online_type_from_str(const char *str)
  39{
  40	int i;
  41
  42	for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
  43		if (sysfs_streq(str, online_type_to_str[i]))
  44			return i;
  45	}
  46	return -EINVAL;
  47}
  48
  49#define to_memory_block(dev) container_of(dev, struct memory_block, dev)
  50
  51static int sections_per_block;
  52
  53static inline unsigned long memory_block_id(unsigned long section_nr)
  54{
  55	return section_nr / sections_per_block;
  56}
  57
  58static inline unsigned long pfn_to_block_id(unsigned long pfn)
  59{
  60	return memory_block_id(pfn_to_section_nr(pfn));
  61}
  62
  63static inline unsigned long phys_to_block_id(unsigned long phys)
  64{
  65	return pfn_to_block_id(PFN_DOWN(phys));
  66}
  67
  68static int memory_subsys_online(struct device *dev);
  69static int memory_subsys_offline(struct device *dev);
  70
  71static const struct bus_type memory_subsys = {
  72	.name = MEMORY_CLASS_NAME,
  73	.dev_name = MEMORY_CLASS_NAME,
  74	.online = memory_subsys_online,
  75	.offline = memory_subsys_offline,
  76};
  77
  78/*
  79 * Memory blocks are cached in a local radix tree to avoid
  80 * a costly linear search for the corresponding device on
  81 * the subsystem bus.
  82 */
  83static DEFINE_XARRAY(memory_blocks);
  84
  85/*
  86 * Memory groups, indexed by memory group id (mgid).
  87 */
  88static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC);
  89#define MEMORY_GROUP_MARK_DYNAMIC	XA_MARK_1
  90
  91static BLOCKING_NOTIFIER_HEAD(memory_chain);
  92
  93int register_memory_notifier(struct notifier_block *nb)
  94{
  95	return blocking_notifier_chain_register(&memory_chain, nb);
  96}
  97EXPORT_SYMBOL(register_memory_notifier);
  98
  99void unregister_memory_notifier(struct notifier_block *nb)
 100{
 101	blocking_notifier_chain_unregister(&memory_chain, nb);
 102}
 103EXPORT_SYMBOL(unregister_memory_notifier);
 104
 105static void memory_block_release(struct device *dev)
 106{
 107	struct memory_block *mem = to_memory_block(dev);
 108	/* Verify that the altmap is freed */
 109	WARN_ON(mem->altmap);
 110	kfree(mem);
 111}
 112
 113unsigned long __weak memory_block_size_bytes(void)
 114{
 115	return MIN_MEMORY_BLOCK_SIZE;
 116}
 117EXPORT_SYMBOL_GPL(memory_block_size_bytes);
 118
 119/* Show the memory block ID, relative to the memory block size */
 120static ssize_t phys_index_show(struct device *dev,
 121			       struct device_attribute *attr, char *buf)
 122{
 123	struct memory_block *mem = to_memory_block(dev);
 124
 125	return sysfs_emit(buf, "%08lx\n", memory_block_id(mem->start_section_nr));
 126}
 127
 128/*
 129 * Legacy interface that we cannot remove. Always indicate "removable"
 130 * with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
 131 */
 132static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
 133			      char *buf)
 134{
 135	return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
 136}
 137
 138/*
 139 * online, offline, going offline, etc.
 140 */
 141static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 142			  char *buf)
 143{
 144	struct memory_block *mem = to_memory_block(dev);
 145	const char *output;
 146
 147	/*
 148	 * We can probably put these states in a nice little array
 149	 * so that they're not open-coded
 150	 */
 151	switch (mem->state) {
 152	case MEM_ONLINE:
 153		output = "online";
 154		break;
 155	case MEM_OFFLINE:
 156		output = "offline";
 157		break;
 158	case MEM_GOING_OFFLINE:
 159		output = "going-offline";
 160		break;
 161	default:
 162		WARN_ON(1);
 163		return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state);
 164	}
 165
 166	return sysfs_emit(buf, "%s\n", output);
 167}
 168
 169int memory_notify(unsigned long val, void *v)
 170{
 171	return blocking_notifier_call_chain(&memory_chain, val, v);
 172}
 173
 174#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
 175static unsigned long memblk_nr_poison(struct memory_block *mem);
 176#else
 177static inline unsigned long memblk_nr_poison(struct memory_block *mem)
 178{
 179	return 0;
 180}
 181#endif
 182
 183/*
 184 * Must acquire mem_hotplug_lock in write mode.
 185 */
 186static int memory_block_online(struct memory_block *mem)
 187{
 188	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
 189	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
 190	unsigned long nr_vmemmap_pages = 0;
 
 191	struct zone *zone;
 192	int ret;
 193
 194	if (memblk_nr_poison(mem))
 195		return -EHWPOISON;
 196
 197	zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group,
 198				  start_pfn, nr_pages);
 199
 200	/*
 201	 * Although vmemmap pages have a different lifecycle than the pages
 202	 * they describe (they remain until the memory is unplugged), doing
 203	 * their initialization and accounting at memory onlining/offlining
 204	 * stage helps to keep accounting easier to follow - e.g vmemmaps
 205	 * belong to the same zone as the memory they backed.
 206	 */
 207	if (mem->altmap)
 208		nr_vmemmap_pages = mem->altmap->free;
 209
 
 
 
 
 210	mem_hotplug_begin();
 
 
 
 
 
 211	if (nr_vmemmap_pages) {
 212		ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, zone);
 
 213		if (ret)
 214			goto out;
 215	}
 216
 217	ret = online_pages(start_pfn + nr_vmemmap_pages,
 218			   nr_pages - nr_vmemmap_pages, zone, mem->group);
 219	if (ret) {
 220		if (nr_vmemmap_pages)
 221			mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
 222		goto out;
 223	}
 224
 225	/*
 226	 * Account once onlining succeeded. If the zone was unpopulated, it is
 227	 * now already properly populated.
 228	 */
 229	if (nr_vmemmap_pages)
 230		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
 231					  nr_vmemmap_pages);
 232
 233	mem->zone = zone;
 
 
 234out:
 
 
 235	mem_hotplug_done();
 236	return ret;
 237}
 238
 239/*
 240 * Must acquire mem_hotplug_lock in write mode.
 241 */
 242static int memory_block_offline(struct memory_block *mem)
 243{
 244	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
 245	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
 246	unsigned long nr_vmemmap_pages = 0;
 
 247	int ret;
 248
 249	if (!mem->zone)
 250		return -EINVAL;
 251
 252	/*
 253	 * Unaccount before offlining, such that unpopulated zone and kthreads
 254	 * can properly be torn down in offline_pages().
 255	 */
 256	if (mem->altmap)
 257		nr_vmemmap_pages = mem->altmap->free;
 258
 259	mem_hotplug_begin();
 260	if (nr_vmemmap_pages)
 261		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
 262					  -nr_vmemmap_pages);
 263
 264	ret = offline_pages(start_pfn + nr_vmemmap_pages,
 265			    nr_pages - nr_vmemmap_pages, mem->zone, mem->group);
 266	if (ret) {
 267		/* offline_pages() failed. Account back. */
 268		if (nr_vmemmap_pages)
 269			adjust_present_page_count(pfn_to_page(start_pfn),
 270						  mem->group, nr_vmemmap_pages);
 271		goto out;
 272	}
 273
 274	if (nr_vmemmap_pages)
 275		mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
 276
 277	mem->zone = NULL;
 
 
 
 
 
 278out:
 279	mem_hotplug_done();
 280	return ret;
 281}
 282
 283/*
 284 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 285 * OK to have direct references to sparsemem variables in here.
 286 */
 287static int
 288memory_block_action(struct memory_block *mem, unsigned long action)
 289{
 290	int ret;
 291
 292	switch (action) {
 293	case MEM_ONLINE:
 294		ret = memory_block_online(mem);
 295		break;
 296	case MEM_OFFLINE:
 297		ret = memory_block_offline(mem);
 298		break;
 299	default:
 300		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
 301		     "%ld\n", __func__, mem->start_section_nr, action, action);
 302		ret = -EINVAL;
 303	}
 304
 305	return ret;
 306}
 307
 308static int memory_block_change_state(struct memory_block *mem,
 309		unsigned long to_state, unsigned long from_state_req)
 310{
 311	int ret = 0;
 312
 313	if (mem->state != from_state_req)
 314		return -EINVAL;
 315
 316	if (to_state == MEM_OFFLINE)
 317		mem->state = MEM_GOING_OFFLINE;
 318
 319	ret = memory_block_action(mem, to_state);
 320	mem->state = ret ? from_state_req : to_state;
 321
 322	return ret;
 323}
 324
 325/* The device lock serializes operations on memory_subsys_[online|offline] */
 326static int memory_subsys_online(struct device *dev)
 327{
 328	struct memory_block *mem = to_memory_block(dev);
 329	int ret;
 330
 331	if (mem->state == MEM_ONLINE)
 332		return 0;
 333
 334	/*
 335	 * When called via device_online() without configuring the online_type,
 336	 * we want to default to MMOP_ONLINE.
 337	 */
 338	if (mem->online_type == MMOP_OFFLINE)
 339		mem->online_type = MMOP_ONLINE;
 340
 341	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
 342	mem->online_type = MMOP_OFFLINE;
 343
 344	return ret;
 345}
 346
 347static int memory_subsys_offline(struct device *dev)
 348{
 349	struct memory_block *mem = to_memory_block(dev);
 350
 351	if (mem->state == MEM_OFFLINE)
 352		return 0;
 353
 354	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
 355}
 356
 357static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 358			   const char *buf, size_t count)
 359{
 360	const int online_type = mhp_online_type_from_str(buf);
 361	struct memory_block *mem = to_memory_block(dev);
 362	int ret;
 363
 364	if (online_type < 0)
 365		return -EINVAL;
 366
 367	ret = lock_device_hotplug_sysfs();
 368	if (ret)
 369		return ret;
 370
 371	switch (online_type) {
 372	case MMOP_ONLINE_KERNEL:
 373	case MMOP_ONLINE_MOVABLE:
 374	case MMOP_ONLINE:
 375		/* mem->online_type is protected by device_hotplug_lock */
 376		mem->online_type = online_type;
 377		ret = device_online(&mem->dev);
 378		break;
 379	case MMOP_OFFLINE:
 380		ret = device_offline(&mem->dev);
 381		break;
 382	default:
 383		ret = -EINVAL; /* should never happen */
 384	}
 385
 386	unlock_device_hotplug();
 387
 388	if (ret < 0)
 389		return ret;
 390	if (ret)
 391		return -EINVAL;
 392
 393	return count;
 394}
 395
 396/*
 397 * Legacy interface that we cannot remove: s390x exposes the storage increment
 398 * covered by a memory block, allowing for identifying which memory blocks
 399 * comprise a storage increment. Since a memory block spans complete
 400 * storage increments nowadays, this interface is basically unused. Other
 401 * archs never exposed != 0.
 402 */
 403static ssize_t phys_device_show(struct device *dev,
 404				struct device_attribute *attr, char *buf)
 405{
 406	struct memory_block *mem = to_memory_block(dev);
 407	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
 408
 409	return sysfs_emit(buf, "%d\n",
 410			  arch_get_memory_phys_device(start_pfn));
 411}
 412
 413#ifdef CONFIG_MEMORY_HOTREMOVE
 414static int print_allowed_zone(char *buf, int len, int nid,
 415			      struct memory_group *group,
 416			      unsigned long start_pfn, unsigned long nr_pages,
 417			      int online_type, struct zone *default_zone)
 418{
 419	struct zone *zone;
 420
 421	zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages);
 422	if (zone == default_zone)
 423		return 0;
 424
 425	return sysfs_emit_at(buf, len, " %s", zone->name);
 426}
 427
 428static ssize_t valid_zones_show(struct device *dev,
 429				struct device_attribute *attr, char *buf)
 430{
 431	struct memory_block *mem = to_memory_block(dev);
 432	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
 433	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
 434	struct memory_group *group = mem->group;
 435	struct zone *default_zone;
 436	int nid = mem->nid;
 437	int len = 0;
 438
 439	/*
 440	 * Check the existing zone. Make sure that we do that only on the
 441	 * online nodes otherwise the page_zone is not reliable
 442	 */
 443	if (mem->state == MEM_ONLINE) {
 444		/*
 445		 * If !mem->zone, the memory block spans multiple zones and
 446		 * cannot get offlined.
 447		 */
 448		default_zone = mem->zone;
 449		if (!default_zone)
 450			return sysfs_emit(buf, "%s\n", "none");
 451		len += sysfs_emit_at(buf, len, "%s", default_zone->name);
 452		goto out;
 453	}
 454
 455	default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group,
 456					  start_pfn, nr_pages);
 457
 458	len += sysfs_emit_at(buf, len, "%s", default_zone->name);
 459	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
 460				  MMOP_ONLINE_KERNEL, default_zone);
 461	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
 462				  MMOP_ONLINE_MOVABLE, default_zone);
 463out:
 464	len += sysfs_emit_at(buf, len, "\n");
 465	return len;
 466}
 467static DEVICE_ATTR_RO(valid_zones);
 468#endif
 469
 470static DEVICE_ATTR_RO(phys_index);
 471static DEVICE_ATTR_RW(state);
 472static DEVICE_ATTR_RO(phys_device);
 473static DEVICE_ATTR_RO(removable);
 474
 475/*
 476 * Show the memory block size (shared by all memory blocks).
 477 */
 478static ssize_t block_size_bytes_show(struct device *dev,
 479				     struct device_attribute *attr, char *buf)
 480{
 481	return sysfs_emit(buf, "%lx\n", memory_block_size_bytes());
 482}
 483
 484static DEVICE_ATTR_RO(block_size_bytes);
 485
 486/*
 487 * Memory auto online policy.
 488 */
 489
 490static ssize_t auto_online_blocks_show(struct device *dev,
 491				       struct device_attribute *attr, char *buf)
 492{
 493	return sysfs_emit(buf, "%s\n",
 494			  online_type_to_str[mhp_default_online_type]);
 495}
 496
 497static ssize_t auto_online_blocks_store(struct device *dev,
 498					struct device_attribute *attr,
 499					const char *buf, size_t count)
 500{
 501	const int online_type = mhp_online_type_from_str(buf);
 502
 503	if (online_type < 0)
 504		return -EINVAL;
 505
 506	mhp_default_online_type = online_type;
 507	return count;
 508}
 509
 510static DEVICE_ATTR_RW(auto_online_blocks);
 511
 512#ifdef CONFIG_CRASH_HOTPLUG
 513#include <linux/kexec.h>
 514static ssize_t crash_hotplug_show(struct device *dev,
 515				       struct device_attribute *attr, char *buf)
 516{
 517	return sysfs_emit(buf, "%d\n", crash_hotplug_memory_support());
 518}
 519static DEVICE_ATTR_RO(crash_hotplug);
 520#endif
 521
 522/*
 523 * Some architectures will have custom drivers to do this, and
 524 * will not need to do it from userspace.  The fake hot-add code
 525 * as well as ppc64 will do all of their discovery in userspace
 526 * and will require this interface.
 527 */
 528#ifdef CONFIG_ARCH_MEMORY_PROBE
 529static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
 530			   const char *buf, size_t count)
 531{
 532	u64 phys_addr;
 533	int nid, ret;
 534	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
 535
 536	ret = kstrtoull(buf, 0, &phys_addr);
 537	if (ret)
 538		return ret;
 539
 540	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
 541		return -EINVAL;
 542
 543	ret = lock_device_hotplug_sysfs();
 544	if (ret)
 545		return ret;
 546
 547	nid = memory_add_physaddr_to_nid(phys_addr);
 548	ret = __add_memory(nid, phys_addr,
 549			   MIN_MEMORY_BLOCK_SIZE * sections_per_block,
 550			   MHP_NONE);
 551
 552	if (ret)
 553		goto out;
 554
 555	ret = count;
 556out:
 557	unlock_device_hotplug();
 558	return ret;
 559}
 560
 561static DEVICE_ATTR_WO(probe);
 562#endif
 563
 564#ifdef CONFIG_MEMORY_FAILURE
 565/*
 566 * Support for offlining pages of memory
 567 */
 568
 569/* Soft offline a page */
 570static ssize_t soft_offline_page_store(struct device *dev,
 571				       struct device_attribute *attr,
 572				       const char *buf, size_t count)
 573{
 574	int ret;
 575	u64 pfn;
 576	if (!capable(CAP_SYS_ADMIN))
 577		return -EPERM;
 578	if (kstrtoull(buf, 0, &pfn) < 0)
 579		return -EINVAL;
 580	pfn >>= PAGE_SHIFT;
 581	ret = soft_offline_page(pfn, 0);
 582	return ret == 0 ? count : ret;
 583}
 584
 585/* Forcibly offline a page, including killing processes. */
 586static ssize_t hard_offline_page_store(struct device *dev,
 587				       struct device_attribute *attr,
 588				       const char *buf, size_t count)
 589{
 590	int ret;
 591	u64 pfn;
 592	if (!capable(CAP_SYS_ADMIN))
 593		return -EPERM;
 594	if (kstrtoull(buf, 0, &pfn) < 0)
 595		return -EINVAL;
 596	pfn >>= PAGE_SHIFT;
 597	ret = memory_failure(pfn, MF_SW_SIMULATED);
 598	if (ret == -EOPNOTSUPP)
 599		ret = 0;
 600	return ret ? ret : count;
 601}
 602
 603static DEVICE_ATTR_WO(soft_offline_page);
 604static DEVICE_ATTR_WO(hard_offline_page);
 605#endif
 606
 607/* See phys_device_show(). */
 608int __weak arch_get_memory_phys_device(unsigned long start_pfn)
 609{
 610	return 0;
 611}
 612
 613/*
 614 * A reference for the returned memory block device is acquired.
 615 *
 616 * Called under device_hotplug_lock.
 617 */
 618static struct memory_block *find_memory_block_by_id(unsigned long block_id)
 619{
 620	struct memory_block *mem;
 621
 622	mem = xa_load(&memory_blocks, block_id);
 623	if (mem)
 624		get_device(&mem->dev);
 625	return mem;
 626}
 627
 628/*
 629 * Called under device_hotplug_lock.
 630 */
 631struct memory_block *find_memory_block(unsigned long section_nr)
 632{
 633	unsigned long block_id = memory_block_id(section_nr);
 634
 635	return find_memory_block_by_id(block_id);
 636}
 637
 638static struct attribute *memory_memblk_attrs[] = {
 639	&dev_attr_phys_index.attr,
 640	&dev_attr_state.attr,
 641	&dev_attr_phys_device.attr,
 642	&dev_attr_removable.attr,
 643#ifdef CONFIG_MEMORY_HOTREMOVE
 644	&dev_attr_valid_zones.attr,
 645#endif
 646	NULL
 647};
 648
 649static const struct attribute_group memory_memblk_attr_group = {
 650	.attrs = memory_memblk_attrs,
 651};
 652
 653static const struct attribute_group *memory_memblk_attr_groups[] = {
 654	&memory_memblk_attr_group,
 655	NULL,
 656};
 657
 658static int __add_memory_block(struct memory_block *memory)
 659{
 660	int ret;
 661
 662	memory->dev.bus = &memory_subsys;
 663	memory->dev.id = memory->start_section_nr / sections_per_block;
 664	memory->dev.release = memory_block_release;
 665	memory->dev.groups = memory_memblk_attr_groups;
 666	memory->dev.offline = memory->state == MEM_OFFLINE;
 667
 668	ret = device_register(&memory->dev);
 669	if (ret) {
 670		put_device(&memory->dev);
 671		return ret;
 672	}
 673	ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
 674			      GFP_KERNEL));
 675	if (ret)
 676		device_unregister(&memory->dev);
 677
 678	return ret;
 679}
 680
 681static struct zone *early_node_zone_for_memory_block(struct memory_block *mem,
 682						     int nid)
 683{
 684	const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
 685	const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
 686	struct zone *zone, *matching_zone = NULL;
 687	pg_data_t *pgdat = NODE_DATA(nid);
 688	int i;
 689
 690	/*
 691	 * This logic only works for early memory, when the applicable zones
 692	 * already span the memory block. We don't expect overlapping zones on
 693	 * a single node for early memory. So if we're told that some PFNs
 694	 * of a node fall into this memory block, we can assume that all node
 695	 * zones that intersect with the memory block are actually applicable.
 696	 * No need to look at the memmap.
 697	 */
 698	for (i = 0; i < MAX_NR_ZONES; i++) {
 699		zone = pgdat->node_zones + i;
 700		if (!populated_zone(zone))
 701			continue;
 702		if (!zone_intersects(zone, start_pfn, nr_pages))
 703			continue;
 704		if (!matching_zone) {
 705			matching_zone = zone;
 706			continue;
 707		}
 708		/* Spans multiple zones ... */
 709		matching_zone = NULL;
 710		break;
 711	}
 712	return matching_zone;
 713}
 714
 715#ifdef CONFIG_NUMA
 716/**
 717 * memory_block_add_nid() - Indicate that system RAM falling into this memory
 718 *			    block device (partially) belongs to the given node.
 719 * @mem: The memory block device.
 720 * @nid: The node id.
 721 * @context: The memory initialization context.
 722 *
 723 * Indicate that system RAM falling into this memory block (partially) belongs
 724 * to the given node. If the context indicates ("early") that we are adding the
 725 * node during node device subsystem initialization, this will also properly
 726 * set/adjust mem->zone based on the zone ranges of the given node.
 727 */
 728void memory_block_add_nid(struct memory_block *mem, int nid,
 729			  enum meminit_context context)
 730{
 731	if (context == MEMINIT_EARLY && mem->nid != nid) {
 732		/*
 733		 * For early memory we have to determine the zone when setting
 734		 * the node id and handle multiple nodes spanning a single
 735		 * memory block by indicate via zone == NULL that we're not
 736		 * dealing with a single zone. So if we're setting the node id
 737		 * the first time, determine if there is a single zone. If we're
 738		 * setting the node id a second time to a different node,
 739		 * invalidate the single detected zone.
 740		 */
 741		if (mem->nid == NUMA_NO_NODE)
 742			mem->zone = early_node_zone_for_memory_block(mem, nid);
 743		else
 744			mem->zone = NULL;
 745	}
 746
 747	/*
 748	 * If this memory block spans multiple nodes, we only indicate
 749	 * the last processed node. If we span multiple nodes (not applicable
 750	 * to hotplugged memory), zone == NULL will prohibit memory offlining
 751	 * and consequently unplug.
 752	 */
 753	mem->nid = nid;
 754}
 755#endif
 756
 757static int add_memory_block(unsigned long block_id, unsigned long state,
 758			    struct vmem_altmap *altmap,
 759			    struct memory_group *group)
 760{
 761	struct memory_block *mem;
 762	int ret = 0;
 763
 764	mem = find_memory_block_by_id(block_id);
 765	if (mem) {
 766		put_device(&mem->dev);
 767		return -EEXIST;
 768	}
 769	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 770	if (!mem)
 771		return -ENOMEM;
 772
 773	mem->start_section_nr = block_id * sections_per_block;
 774	mem->state = state;
 775	mem->nid = NUMA_NO_NODE;
 776	mem->altmap = altmap;
 777	INIT_LIST_HEAD(&mem->group_next);
 778
 779#ifndef CONFIG_NUMA
 780	if (state == MEM_ONLINE)
 781		/*
 782		 * MEM_ONLINE at this point implies early memory. With NUMA,
 783		 * we'll determine the zone when setting the node id via
 784		 * memory_block_add_nid(). Memory hotplug updated the zone
 785		 * manually when memory onlining/offlining succeeds.
 786		 */
 787		mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE);
 788#endif /* CONFIG_NUMA */
 789
 790	ret = __add_memory_block(mem);
 791	if (ret)
 792		return ret;
 793
 794	if (group) {
 795		mem->group = group;
 796		list_add(&mem->group_next, &group->memory_blocks);
 797	}
 798
 799	return 0;
 800}
 801
 802static int __init add_boot_memory_block(unsigned long base_section_nr)
 803{
 804	int section_count = 0;
 805	unsigned long nr;
 806
 807	for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
 808	     nr++)
 809		if (present_section_nr(nr))
 810			section_count++;
 811
 812	if (section_count == 0)
 813		return 0;
 814	return add_memory_block(memory_block_id(base_section_nr),
 815				MEM_ONLINE, NULL,  NULL);
 816}
 817
 818static int add_hotplug_memory_block(unsigned long block_id,
 819				    struct vmem_altmap *altmap,
 820				    struct memory_group *group)
 821{
 822	return add_memory_block(block_id, MEM_OFFLINE, altmap, group);
 823}
 824
 825static void remove_memory_block(struct memory_block *memory)
 826{
 827	if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
 828		return;
 829
 830	WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
 831
 832	if (memory->group) {
 833		list_del(&memory->group_next);
 834		memory->group = NULL;
 835	}
 836
 837	/* drop the ref. we got via find_memory_block() */
 838	put_device(&memory->dev);
 839	device_unregister(&memory->dev);
 840}
 841
 842/*
 843 * Create memory block devices for the given memory area. Start and size
 844 * have to be aligned to memory block granularity. Memory block devices
 845 * will be initialized as offline.
 846 *
 847 * Called under device_hotplug_lock.
 848 */
 849int create_memory_block_devices(unsigned long start, unsigned long size,
 850				struct vmem_altmap *altmap,
 851				struct memory_group *group)
 852{
 853	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
 854	unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
 855	struct memory_block *mem;
 856	unsigned long block_id;
 857	int ret = 0;
 858
 859	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
 860			 !IS_ALIGNED(size, memory_block_size_bytes())))
 861		return -EINVAL;
 862
 863	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
 864		ret = add_hotplug_memory_block(block_id, altmap, group);
 865		if (ret)
 866			break;
 867	}
 868	if (ret) {
 869		end_block_id = block_id;
 870		for (block_id = start_block_id; block_id != end_block_id;
 871		     block_id++) {
 872			mem = find_memory_block_by_id(block_id);
 873			if (WARN_ON_ONCE(!mem))
 874				continue;
 875			remove_memory_block(mem);
 876		}
 877	}
 878	return ret;
 879}
 880
 881/*
 882 * Remove memory block devices for the given memory area. Start and size
 883 * have to be aligned to memory block granularity. Memory block devices
 884 * have to be offline.
 885 *
 886 * Called under device_hotplug_lock.
 887 */
 888void remove_memory_block_devices(unsigned long start, unsigned long size)
 889{
 890	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
 891	const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
 892	struct memory_block *mem;
 893	unsigned long block_id;
 894
 895	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
 896			 !IS_ALIGNED(size, memory_block_size_bytes())))
 897		return;
 898
 899	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
 900		mem = find_memory_block_by_id(block_id);
 901		if (WARN_ON_ONCE(!mem))
 902			continue;
 903		num_poisoned_pages_sub(-1UL, memblk_nr_poison(mem));
 904		unregister_memory_block_under_nodes(mem);
 905		remove_memory_block(mem);
 906	}
 907}
 908
 909static struct attribute *memory_root_attrs[] = {
 910#ifdef CONFIG_ARCH_MEMORY_PROBE
 911	&dev_attr_probe.attr,
 912#endif
 913
 914#ifdef CONFIG_MEMORY_FAILURE
 915	&dev_attr_soft_offline_page.attr,
 916	&dev_attr_hard_offline_page.attr,
 917#endif
 918
 919	&dev_attr_block_size_bytes.attr,
 920	&dev_attr_auto_online_blocks.attr,
 921#ifdef CONFIG_CRASH_HOTPLUG
 922	&dev_attr_crash_hotplug.attr,
 923#endif
 924	NULL
 925};
 926
 927static const struct attribute_group memory_root_attr_group = {
 928	.attrs = memory_root_attrs,
 929};
 930
 931static const struct attribute_group *memory_root_attr_groups[] = {
 932	&memory_root_attr_group,
 933	NULL,
 934};
 935
 936/*
 937 * Initialize the sysfs support for memory devices. At the time this function
 938 * is called, we cannot have concurrent creation/deletion of memory block
 939 * devices, the device_hotplug_lock is not needed.
 940 */
 941void __init memory_dev_init(void)
 942{
 943	int ret;
 944	unsigned long block_sz, nr;
 945
 946	/* Validate the configured memory block size */
 947	block_sz = memory_block_size_bytes();
 948	if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
 949		panic("Memory block size not suitable: 0x%lx\n", block_sz);
 950	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
 951
 952	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
 953	if (ret)
 954		panic("%s() failed to register subsystem: %d\n", __func__, ret);
 955
 956	/*
 957	 * Create entries for memory sections that were found
 958	 * during boot and have been initialized
 959	 */
 960	for (nr = 0; nr <= __highest_present_section_nr;
 961	     nr += sections_per_block) {
 962		ret = add_boot_memory_block(nr);
 963		if (ret)
 964			panic("%s() failed to add memory block: %d\n", __func__,
 965			      ret);
 966	}
 967}
 968
 969/**
 970 * walk_memory_blocks - walk through all present memory blocks overlapped
 971 *			by the range [start, start + size)
 972 *
 973 * @start: start address of the memory range
 974 * @size: size of the memory range
 975 * @arg: argument passed to func
 976 * @func: callback for each memory section walked
 977 *
 978 * This function walks through all present memory blocks overlapped by the
 979 * range [start, start + size), calling func on each memory block.
 980 *
 981 * In case func() returns an error, walking is aborted and the error is
 982 * returned.
 983 *
 984 * Called under device_hotplug_lock.
 985 */
 986int walk_memory_blocks(unsigned long start, unsigned long size,
 987		       void *arg, walk_memory_blocks_func_t func)
 988{
 989	const unsigned long start_block_id = phys_to_block_id(start);
 990	const unsigned long end_block_id = phys_to_block_id(start + size - 1);
 991	struct memory_block *mem;
 992	unsigned long block_id;
 993	int ret = 0;
 994
 995	if (!size)
 996		return 0;
 997
 998	for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
 999		mem = find_memory_block_by_id(block_id);
1000		if (!mem)
1001			continue;
1002
1003		ret = func(mem, arg);
1004		put_device(&mem->dev);
1005		if (ret)
1006			break;
1007	}
1008	return ret;
1009}
1010
1011struct for_each_memory_block_cb_data {
1012	walk_memory_blocks_func_t func;
1013	void *arg;
1014};
1015
1016static int for_each_memory_block_cb(struct device *dev, void *data)
1017{
1018	struct memory_block *mem = to_memory_block(dev);
1019	struct for_each_memory_block_cb_data *cb_data = data;
1020
1021	return cb_data->func(mem, cb_data->arg);
1022}
1023
1024/**
1025 * for_each_memory_block - walk through all present memory blocks
1026 *
1027 * @arg: argument passed to func
1028 * @func: callback for each memory block walked
1029 *
1030 * This function walks through all present memory blocks, calling func on
1031 * each memory block.
1032 *
1033 * In case func() returns an error, walking is aborted and the error is
1034 * returned.
1035 */
1036int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
1037{
1038	struct for_each_memory_block_cb_data cb_data = {
1039		.func = func,
1040		.arg = arg,
1041	};
1042
1043	return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
1044				for_each_memory_block_cb);
1045}
1046
1047/*
1048 * This is an internal helper to unify allocation and initialization of
1049 * memory groups. Note that the passed memory group will be copied to a
1050 * dynamically allocated memory group. After this call, the passed
1051 * memory group should no longer be used.
1052 */
1053static int memory_group_register(struct memory_group group)
1054{
1055	struct memory_group *new_group;
1056	uint32_t mgid;
1057	int ret;
1058
1059	if (!node_possible(group.nid))
1060		return -EINVAL;
1061
1062	new_group = kzalloc(sizeof(group), GFP_KERNEL);
1063	if (!new_group)
1064		return -ENOMEM;
1065	*new_group = group;
1066	INIT_LIST_HEAD(&new_group->memory_blocks);
1067
1068	ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b,
1069		       GFP_KERNEL);
1070	if (ret) {
1071		kfree(new_group);
1072		return ret;
1073	} else if (group.is_dynamic) {
1074		xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC);
1075	}
1076	return mgid;
1077}
1078
1079/**
1080 * memory_group_register_static() - Register a static memory group.
1081 * @nid: The node id.
1082 * @max_pages: The maximum number of pages we'll have in this static memory
1083 *	       group.
1084 *
1085 * Register a new static memory group and return the memory group id.
1086 * All memory in the group belongs to a single unit, such as a DIMM. All
1087 * memory belonging to a static memory group is added in one go to be removed
1088 * in one go -- it's static.
1089 *
1090 * Returns an error if out of memory, if the node id is invalid, if no new
1091 * memory groups can be registered, or if max_pages is invalid (0). Otherwise,
1092 * returns the new memory group id.
1093 */
1094int memory_group_register_static(int nid, unsigned long max_pages)
1095{
1096	struct memory_group group = {
1097		.nid = nid,
1098		.s = {
1099			.max_pages = max_pages,
1100		},
1101	};
1102
1103	if (!max_pages)
1104		return -EINVAL;
1105	return memory_group_register(group);
1106}
1107EXPORT_SYMBOL_GPL(memory_group_register_static);
1108
1109/**
1110 * memory_group_register_dynamic() - Register a dynamic memory group.
1111 * @nid: The node id.
1112 * @unit_pages: Unit in pages in which is memory added/removed in this dynamic
1113 *		memory group.
1114 *
1115 * Register a new dynamic memory group and return the memory group id.
1116 * Memory within a dynamic memory group is added/removed dynamically
1117 * in unit_pages.
1118 *
1119 * Returns an error if out of memory, if the node id is invalid, if no new
1120 * memory groups can be registered, or if unit_pages is invalid (0, not a
1121 * power of two, smaller than a single memory block). Otherwise, returns the
1122 * new memory group id.
1123 */
1124int memory_group_register_dynamic(int nid, unsigned long unit_pages)
1125{
1126	struct memory_group group = {
1127		.nid = nid,
1128		.is_dynamic = true,
1129		.d = {
1130			.unit_pages = unit_pages,
1131		},
1132	};
1133
1134	if (!unit_pages || !is_power_of_2(unit_pages) ||
1135	    unit_pages < PHYS_PFN(memory_block_size_bytes()))
1136		return -EINVAL;
1137	return memory_group_register(group);
1138}
1139EXPORT_SYMBOL_GPL(memory_group_register_dynamic);
1140
1141/**
1142 * memory_group_unregister() - Unregister a memory group.
1143 * @mgid: the memory group id
1144 *
1145 * Unregister a memory group. If any memory block still belongs to this
1146 * memory group, unregistering will fail.
1147 *
1148 * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some
1149 * memory blocks still belong to this memory group and returns 0 if
1150 * unregistering succeeded.
1151 */
1152int memory_group_unregister(int mgid)
1153{
1154	struct memory_group *group;
1155
1156	if (mgid < 0)
1157		return -EINVAL;
1158
1159	group = xa_load(&memory_groups, mgid);
1160	if (!group)
1161		return -EINVAL;
1162	if (!list_empty(&group->memory_blocks))
1163		return -EBUSY;
1164	xa_erase(&memory_groups, mgid);
1165	kfree(group);
1166	return 0;
1167}
1168EXPORT_SYMBOL_GPL(memory_group_unregister);
1169
1170/*
1171 * This is an internal helper only to be used in core memory hotplug code to
1172 * lookup a memory group. We don't care about locking, as we don't expect a
1173 * memory group to get unregistered while adding memory to it -- because
1174 * the group and the memory is managed by the same driver.
1175 */
1176struct memory_group *memory_group_find_by_id(int mgid)
1177{
1178	return xa_load(&memory_groups, mgid);
1179}
1180
1181/*
1182 * This is an internal helper only to be used in core memory hotplug code to
1183 * walk all dynamic memory groups excluding a given memory group, either
1184 * belonging to a specific node, or belonging to any node.
1185 */
1186int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func,
1187			       struct memory_group *excluded, void *arg)
1188{
1189	struct memory_group *group;
1190	unsigned long index;
1191	int ret = 0;
1192
1193	xa_for_each_marked(&memory_groups, index, group,
1194			   MEMORY_GROUP_MARK_DYNAMIC) {
1195		if (group == excluded)
1196			continue;
1197#ifdef CONFIG_NUMA
1198		if (nid != NUMA_NO_NODE && group->nid != nid)
1199			continue;
1200#endif /* CONFIG_NUMA */
1201		ret = func(group, arg);
1202		if (ret)
1203			break;
1204	}
1205	return ret;
1206}
1207
1208#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
1209void memblk_nr_poison_inc(unsigned long pfn)
1210{
1211	const unsigned long block_id = pfn_to_block_id(pfn);
1212	struct memory_block *mem = find_memory_block_by_id(block_id);
1213
1214	if (mem)
1215		atomic_long_inc(&mem->nr_hwpoison);
1216}
1217
1218void memblk_nr_poison_sub(unsigned long pfn, long i)
1219{
1220	const unsigned long block_id = pfn_to_block_id(pfn);
1221	struct memory_block *mem = find_memory_block_by_id(block_id);
1222
1223	if (mem)
1224		atomic_long_sub(i, &mem->nr_hwpoison);
1225}
1226
1227static unsigned long memblk_nr_poison(struct memory_block *mem)
1228{
1229	return atomic_long_read(&mem->nr_hwpoison);
1230}
1231#endif
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory subsystem support
   4 *
   5 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
   6 *            Dave Hansen <haveblue@us.ibm.com>
   7 *
   8 * This file provides the necessary infrastructure to represent
   9 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
  10 * All arch-independent code that assumes MEMORY_HOTPLUG requires
  11 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
  12 */
  13
  14#include <linux/module.h>
  15#include <linux/init.h>
  16#include <linux/topology.h>
  17#include <linux/capability.h>
  18#include <linux/device.h>
  19#include <linux/memory.h>
  20#include <linux/memory_hotplug.h>
  21#include <linux/mm.h>
  22#include <linux/stat.h>
  23#include <linux/slab.h>
  24#include <linux/xarray.h>
  25
  26#include <linux/atomic.h>
  27#include <linux/uaccess.h>
  28
  29#define MEMORY_CLASS_NAME	"memory"
  30
  31static const char *const online_type_to_str[] = {
  32	[MMOP_OFFLINE] = "offline",
  33	[MMOP_ONLINE] = "online",
  34	[MMOP_ONLINE_KERNEL] = "online_kernel",
  35	[MMOP_ONLINE_MOVABLE] = "online_movable",
  36};
  37
  38int mhp_online_type_from_str(const char *str)
  39{
  40	int i;
  41
  42	for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
  43		if (sysfs_streq(str, online_type_to_str[i]))
  44			return i;
  45	}
  46	return -EINVAL;
  47}
  48
  49#define to_memory_block(dev) container_of(dev, struct memory_block, dev)
  50
  51static int sections_per_block;
  52
  53static inline unsigned long memory_block_id(unsigned long section_nr)
  54{
  55	return section_nr / sections_per_block;
  56}
  57
  58static inline unsigned long pfn_to_block_id(unsigned long pfn)
  59{
  60	return memory_block_id(pfn_to_section_nr(pfn));
  61}
  62
  63static inline unsigned long phys_to_block_id(unsigned long phys)
  64{
  65	return pfn_to_block_id(PFN_DOWN(phys));
  66}
  67
  68static int memory_subsys_online(struct device *dev);
  69static int memory_subsys_offline(struct device *dev);
  70
  71static const struct bus_type memory_subsys = {
  72	.name = MEMORY_CLASS_NAME,
  73	.dev_name = MEMORY_CLASS_NAME,
  74	.online = memory_subsys_online,
  75	.offline = memory_subsys_offline,
  76};
  77
  78/*
  79 * Memory blocks are cached in a local radix tree to avoid
  80 * a costly linear search for the corresponding device on
  81 * the subsystem bus.
  82 */
  83static DEFINE_XARRAY(memory_blocks);
  84
  85/*
  86 * Memory groups, indexed by memory group id (mgid).
  87 */
  88static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC);
  89#define MEMORY_GROUP_MARK_DYNAMIC	XA_MARK_1
  90
  91static BLOCKING_NOTIFIER_HEAD(memory_chain);
  92
  93int register_memory_notifier(struct notifier_block *nb)
  94{
  95	return blocking_notifier_chain_register(&memory_chain, nb);
  96}
  97EXPORT_SYMBOL(register_memory_notifier);
  98
  99void unregister_memory_notifier(struct notifier_block *nb)
 100{
 101	blocking_notifier_chain_unregister(&memory_chain, nb);
 102}
 103EXPORT_SYMBOL(unregister_memory_notifier);
 104
 105static void memory_block_release(struct device *dev)
 106{
 107	struct memory_block *mem = to_memory_block(dev);
 108	/* Verify that the altmap is freed */
 109	WARN_ON(mem->altmap);
 110	kfree(mem);
 111}
 112
 113unsigned long __weak memory_block_size_bytes(void)
 114{
 115	return MIN_MEMORY_BLOCK_SIZE;
 116}
 117EXPORT_SYMBOL_GPL(memory_block_size_bytes);
 118
 119/* Show the memory block ID, relative to the memory block size */
 120static ssize_t phys_index_show(struct device *dev,
 121			       struct device_attribute *attr, char *buf)
 122{
 123	struct memory_block *mem = to_memory_block(dev);
 124
 125	return sysfs_emit(buf, "%08lx\n", memory_block_id(mem->start_section_nr));
 126}
 127
 128/*
 129 * Legacy interface that we cannot remove. Always indicate "removable"
 130 * with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
 131 */
 132static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
 133			      char *buf)
 134{
 135	return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
 136}
 137
 138/*
 139 * online, offline, going offline, etc.
 140 */
 141static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 142			  char *buf)
 143{
 144	struct memory_block *mem = to_memory_block(dev);
 145	const char *output;
 146
 147	/*
 148	 * We can probably put these states in a nice little array
 149	 * so that they're not open-coded
 150	 */
 151	switch (mem->state) {
 152	case MEM_ONLINE:
 153		output = "online";
 154		break;
 155	case MEM_OFFLINE:
 156		output = "offline";
 157		break;
 158	case MEM_GOING_OFFLINE:
 159		output = "going-offline";
 160		break;
 161	default:
 162		WARN_ON(1);
 163		return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state);
 164	}
 165
 166	return sysfs_emit(buf, "%s\n", output);
 167}
 168
 169int memory_notify(unsigned long val, void *v)
 170{
 171	return blocking_notifier_call_chain(&memory_chain, val, v);
 172}
 173
 174#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
 175static unsigned long memblk_nr_poison(struct memory_block *mem);
 176#else
 177static inline unsigned long memblk_nr_poison(struct memory_block *mem)
 178{
 179	return 0;
 180}
 181#endif
 182
 183/*
 184 * Must acquire mem_hotplug_lock in write mode.
 185 */
 186static int memory_block_online(struct memory_block *mem)
 187{
 188	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
 189	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
 190	unsigned long nr_vmemmap_pages = 0;
 191	struct memory_notify arg;
 192	struct zone *zone;
 193	int ret;
 194
 195	if (memblk_nr_poison(mem))
 196		return -EHWPOISON;
 197
 198	zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group,
 199				  start_pfn, nr_pages);
 200
 201	/*
 202	 * Although vmemmap pages have a different lifecycle than the pages
 203	 * they describe (they remain until the memory is unplugged), doing
 204	 * their initialization and accounting at memory onlining/offlining
 205	 * stage helps to keep accounting easier to follow - e.g vmemmaps
 206	 * belong to the same zone as the memory they backed.
 207	 */
 208	if (mem->altmap)
 209		nr_vmemmap_pages = mem->altmap->free;
 210
 211	arg.altmap_start_pfn = start_pfn;
 212	arg.altmap_nr_pages = nr_vmemmap_pages;
 213	arg.start_pfn = start_pfn + nr_vmemmap_pages;
 214	arg.nr_pages = nr_pages - nr_vmemmap_pages;
 215	mem_hotplug_begin();
 216	ret = memory_notify(MEM_PREPARE_ONLINE, &arg);
 217	ret = notifier_to_errno(ret);
 218	if (ret)
 219		goto out_notifier;
 220
 221	if (nr_vmemmap_pages) {
 222		ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages,
 223						zone, mem->altmap->inaccessible);
 224		if (ret)
 225			goto out;
 226	}
 227
 228	ret = online_pages(start_pfn + nr_vmemmap_pages,
 229			   nr_pages - nr_vmemmap_pages, zone, mem->group);
 230	if (ret) {
 231		if (nr_vmemmap_pages)
 232			mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
 233		goto out;
 234	}
 235
 236	/*
 237	 * Account once onlining succeeded. If the zone was unpopulated, it is
 238	 * now already properly populated.
 239	 */
 240	if (nr_vmemmap_pages)
 241		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
 242					  nr_vmemmap_pages);
 243
 244	mem->zone = zone;
 245	mem_hotplug_done();
 246	return ret;
 247out:
 248	memory_notify(MEM_FINISH_OFFLINE, &arg);
 249out_notifier:
 250	mem_hotplug_done();
 251	return ret;
 252}
 253
 254/*
 255 * Must acquire mem_hotplug_lock in write mode.
 256 */
 257static int memory_block_offline(struct memory_block *mem)
 258{
 259	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
 260	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
 261	unsigned long nr_vmemmap_pages = 0;
 262	struct memory_notify arg;
 263	int ret;
 264
 265	if (!mem->zone)
 266		return -EINVAL;
 267
 268	/*
 269	 * Unaccount before offlining, such that unpopulated zone and kthreads
 270	 * can properly be torn down in offline_pages().
 271	 */
 272	if (mem->altmap)
 273		nr_vmemmap_pages = mem->altmap->free;
 274
 275	mem_hotplug_begin();
 276	if (nr_vmemmap_pages)
 277		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
 278					  -nr_vmemmap_pages);
 279
 280	ret = offline_pages(start_pfn + nr_vmemmap_pages,
 281			    nr_pages - nr_vmemmap_pages, mem->zone, mem->group);
 282	if (ret) {
 283		/* offline_pages() failed. Account back. */
 284		if (nr_vmemmap_pages)
 285			adjust_present_page_count(pfn_to_page(start_pfn),
 286						  mem->group, nr_vmemmap_pages);
 287		goto out;
 288	}
 289
 290	if (nr_vmemmap_pages)
 291		mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
 292
 293	mem->zone = NULL;
 294	arg.altmap_start_pfn = start_pfn;
 295	arg.altmap_nr_pages = nr_vmemmap_pages;
 296	arg.start_pfn = start_pfn + nr_vmemmap_pages;
 297	arg.nr_pages = nr_pages - nr_vmemmap_pages;
 298	memory_notify(MEM_FINISH_OFFLINE, &arg);
 299out:
 300	mem_hotplug_done();
 301	return ret;
 302}
 303
 304/*
 305 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 306 * OK to have direct references to sparsemem variables in here.
 307 */
 308static int
 309memory_block_action(struct memory_block *mem, unsigned long action)
 310{
 311	int ret;
 312
 313	switch (action) {
 314	case MEM_ONLINE:
 315		ret = memory_block_online(mem);
 316		break;
 317	case MEM_OFFLINE:
 318		ret = memory_block_offline(mem);
 319		break;
 320	default:
 321		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
 322		     "%ld\n", __func__, mem->start_section_nr, action, action);
 323		ret = -EINVAL;
 324	}
 325
 326	return ret;
 327}
 328
 329static int memory_block_change_state(struct memory_block *mem,
 330		unsigned long to_state, unsigned long from_state_req)
 331{
 332	int ret = 0;
 333
 334	if (mem->state != from_state_req)
 335		return -EINVAL;
 336
 337	if (to_state == MEM_OFFLINE)
 338		mem->state = MEM_GOING_OFFLINE;
 339
 340	ret = memory_block_action(mem, to_state);
 341	mem->state = ret ? from_state_req : to_state;
 342
 343	return ret;
 344}
 345
 346/* The device lock serializes operations on memory_subsys_[online|offline] */
 347static int memory_subsys_online(struct device *dev)
 348{
 349	struct memory_block *mem = to_memory_block(dev);
 350	int ret;
 351
 352	if (mem->state == MEM_ONLINE)
 353		return 0;
 354
 355	/*
 356	 * When called via device_online() without configuring the online_type,
 357	 * we want to default to MMOP_ONLINE.
 358	 */
 359	if (mem->online_type == MMOP_OFFLINE)
 360		mem->online_type = MMOP_ONLINE;
 361
 362	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
 363	mem->online_type = MMOP_OFFLINE;
 364
 365	return ret;
 366}
 367
 368static int memory_subsys_offline(struct device *dev)
 369{
 370	struct memory_block *mem = to_memory_block(dev);
 371
 372	if (mem->state == MEM_OFFLINE)
 373		return 0;
 374
 375	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
 376}
 377
 378static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 379			   const char *buf, size_t count)
 380{
 381	const int online_type = mhp_online_type_from_str(buf);
 382	struct memory_block *mem = to_memory_block(dev);
 383	int ret;
 384
 385	if (online_type < 0)
 386		return -EINVAL;
 387
 388	ret = lock_device_hotplug_sysfs();
 389	if (ret)
 390		return ret;
 391
 392	switch (online_type) {
 393	case MMOP_ONLINE_KERNEL:
 394	case MMOP_ONLINE_MOVABLE:
 395	case MMOP_ONLINE:
 396		/* mem->online_type is protected by device_hotplug_lock */
 397		mem->online_type = online_type;
 398		ret = device_online(&mem->dev);
 399		break;
 400	case MMOP_OFFLINE:
 401		ret = device_offline(&mem->dev);
 402		break;
 403	default:
 404		ret = -EINVAL; /* should never happen */
 405	}
 406
 407	unlock_device_hotplug();
 408
 409	if (ret < 0)
 410		return ret;
 411	if (ret)
 412		return -EINVAL;
 413
 414	return count;
 415}
 416
 417/*
 418 * Legacy interface that we cannot remove: s390x exposes the storage increment
 419 * covered by a memory block, allowing for identifying which memory blocks
 420 * comprise a storage increment. Since a memory block spans complete
 421 * storage increments nowadays, this interface is basically unused. Other
 422 * archs never exposed != 0.
 423 */
 424static ssize_t phys_device_show(struct device *dev,
 425				struct device_attribute *attr, char *buf)
 426{
 427	struct memory_block *mem = to_memory_block(dev);
 428	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
 429
 430	return sysfs_emit(buf, "%d\n",
 431			  arch_get_memory_phys_device(start_pfn));
 432}
 433
 434#ifdef CONFIG_MEMORY_HOTREMOVE
 435static int print_allowed_zone(char *buf, int len, int nid,
 436			      struct memory_group *group,
 437			      unsigned long start_pfn, unsigned long nr_pages,
 438			      int online_type, struct zone *default_zone)
 439{
 440	struct zone *zone;
 441
 442	zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages);
 443	if (zone == default_zone)
 444		return 0;
 445
 446	return sysfs_emit_at(buf, len, " %s", zone->name);
 447}
 448
 449static ssize_t valid_zones_show(struct device *dev,
 450				struct device_attribute *attr, char *buf)
 451{
 452	struct memory_block *mem = to_memory_block(dev);
 453	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
 454	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
 455	struct memory_group *group = mem->group;
 456	struct zone *default_zone;
 457	int nid = mem->nid;
 458	int len = 0;
 459
 460	/*
 461	 * Check the existing zone. Make sure that we do that only on the
 462	 * online nodes otherwise the page_zone is not reliable
 463	 */
 464	if (mem->state == MEM_ONLINE) {
 465		/*
 466		 * If !mem->zone, the memory block spans multiple zones and
 467		 * cannot get offlined.
 468		 */
 469		default_zone = mem->zone;
 470		if (!default_zone)
 471			return sysfs_emit(buf, "%s\n", "none");
 472		len += sysfs_emit_at(buf, len, "%s", default_zone->name);
 473		goto out;
 474	}
 475
 476	default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group,
 477					  start_pfn, nr_pages);
 478
 479	len += sysfs_emit_at(buf, len, "%s", default_zone->name);
 480	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
 481				  MMOP_ONLINE_KERNEL, default_zone);
 482	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
 483				  MMOP_ONLINE_MOVABLE, default_zone);
 484out:
 485	len += sysfs_emit_at(buf, len, "\n");
 486	return len;
 487}
 488static DEVICE_ATTR_RO(valid_zones);
 489#endif
 490
 491static DEVICE_ATTR_RO(phys_index);
 492static DEVICE_ATTR_RW(state);
 493static DEVICE_ATTR_RO(phys_device);
 494static DEVICE_ATTR_RO(removable);
 495
 496/*
 497 * Show the memory block size (shared by all memory blocks).
 498 */
 499static ssize_t block_size_bytes_show(struct device *dev,
 500				     struct device_attribute *attr, char *buf)
 501{
 502	return sysfs_emit(buf, "%lx\n", memory_block_size_bytes());
 503}
 504
 505static DEVICE_ATTR_RO(block_size_bytes);
 506
 507/*
 508 * Memory auto online policy.
 509 */
 510
 511static ssize_t auto_online_blocks_show(struct device *dev,
 512				       struct device_attribute *attr, char *buf)
 513{
 514	return sysfs_emit(buf, "%s\n",
 515			  online_type_to_str[mhp_default_online_type]);
 516}
 517
 518static ssize_t auto_online_blocks_store(struct device *dev,
 519					struct device_attribute *attr,
 520					const char *buf, size_t count)
 521{
 522	const int online_type = mhp_online_type_from_str(buf);
 523
 524	if (online_type < 0)
 525		return -EINVAL;
 526
 527	mhp_default_online_type = online_type;
 528	return count;
 529}
 530
 531static DEVICE_ATTR_RW(auto_online_blocks);
 532
 533#ifdef CONFIG_CRASH_HOTPLUG
 534#include <linux/kexec.h>
 535static ssize_t crash_hotplug_show(struct device *dev,
 536				       struct device_attribute *attr, char *buf)
 537{
 538	return sysfs_emit(buf, "%d\n", crash_hotplug_memory_support());
 539}
 540static DEVICE_ATTR_RO(crash_hotplug);
 541#endif
 542
 543/*
 544 * Some architectures will have custom drivers to do this, and
 545 * will not need to do it from userspace.  The fake hot-add code
 546 * as well as ppc64 will do all of their discovery in userspace
 547 * and will require this interface.
 548 */
 549#ifdef CONFIG_ARCH_MEMORY_PROBE
 550static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
 551			   const char *buf, size_t count)
 552{
 553	u64 phys_addr;
 554	int nid, ret;
 555	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
 556
 557	ret = kstrtoull(buf, 0, &phys_addr);
 558	if (ret)
 559		return ret;
 560
 561	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
 562		return -EINVAL;
 563
 564	ret = lock_device_hotplug_sysfs();
 565	if (ret)
 566		return ret;
 567
 568	nid = memory_add_physaddr_to_nid(phys_addr);
 569	ret = __add_memory(nid, phys_addr,
 570			   MIN_MEMORY_BLOCK_SIZE * sections_per_block,
 571			   MHP_NONE);
 572
 573	if (ret)
 574		goto out;
 575
 576	ret = count;
 577out:
 578	unlock_device_hotplug();
 579	return ret;
 580}
 581
 582static DEVICE_ATTR_WO(probe);
 583#endif
 584
 585#ifdef CONFIG_MEMORY_FAILURE
 586/*
 587 * Support for offlining pages of memory
 588 */
 589
 590/* Soft offline a page */
 591static ssize_t soft_offline_page_store(struct device *dev,
 592				       struct device_attribute *attr,
 593				       const char *buf, size_t count)
 594{
 595	int ret;
 596	u64 pfn;
 597	if (!capable(CAP_SYS_ADMIN))
 598		return -EPERM;
 599	if (kstrtoull(buf, 0, &pfn) < 0)
 600		return -EINVAL;
 601	pfn >>= PAGE_SHIFT;
 602	ret = soft_offline_page(pfn, 0);
 603	return ret == 0 ? count : ret;
 604}
 605
 606/* Forcibly offline a page, including killing processes. */
 607static ssize_t hard_offline_page_store(struct device *dev,
 608				       struct device_attribute *attr,
 609				       const char *buf, size_t count)
 610{
 611	int ret;
 612	u64 pfn;
 613	if (!capable(CAP_SYS_ADMIN))
 614		return -EPERM;
 615	if (kstrtoull(buf, 0, &pfn) < 0)
 616		return -EINVAL;
 617	pfn >>= PAGE_SHIFT;
 618	ret = memory_failure(pfn, MF_SW_SIMULATED);
 619	if (ret == -EOPNOTSUPP)
 620		ret = 0;
 621	return ret ? ret : count;
 622}
 623
 624static DEVICE_ATTR_WO(soft_offline_page);
 625static DEVICE_ATTR_WO(hard_offline_page);
 626#endif
 627
 628/* See phys_device_show(). */
 629int __weak arch_get_memory_phys_device(unsigned long start_pfn)
 630{
 631	return 0;
 632}
 633
 634/*
 635 * A reference for the returned memory block device is acquired.
 636 *
 637 * Called under device_hotplug_lock.
 638 */
 639static struct memory_block *find_memory_block_by_id(unsigned long block_id)
 640{
 641	struct memory_block *mem;
 642
 643	mem = xa_load(&memory_blocks, block_id);
 644	if (mem)
 645		get_device(&mem->dev);
 646	return mem;
 647}
 648
 649/*
 650 * Called under device_hotplug_lock.
 651 */
 652struct memory_block *find_memory_block(unsigned long section_nr)
 653{
 654	unsigned long block_id = memory_block_id(section_nr);
 655
 656	return find_memory_block_by_id(block_id);
 657}
 658
 659static struct attribute *memory_memblk_attrs[] = {
 660	&dev_attr_phys_index.attr,
 661	&dev_attr_state.attr,
 662	&dev_attr_phys_device.attr,
 663	&dev_attr_removable.attr,
 664#ifdef CONFIG_MEMORY_HOTREMOVE
 665	&dev_attr_valid_zones.attr,
 666#endif
 667	NULL
 668};
 669
 670static const struct attribute_group memory_memblk_attr_group = {
 671	.attrs = memory_memblk_attrs,
 672};
 673
 674static const struct attribute_group *memory_memblk_attr_groups[] = {
 675	&memory_memblk_attr_group,
 676	NULL,
 677};
 678
 679static int __add_memory_block(struct memory_block *memory)
 680{
 681	int ret;
 682
 683	memory->dev.bus = &memory_subsys;
 684	memory->dev.id = memory->start_section_nr / sections_per_block;
 685	memory->dev.release = memory_block_release;
 686	memory->dev.groups = memory_memblk_attr_groups;
 687	memory->dev.offline = memory->state == MEM_OFFLINE;
 688
 689	ret = device_register(&memory->dev);
 690	if (ret) {
 691		put_device(&memory->dev);
 692		return ret;
 693	}
 694	ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
 695			      GFP_KERNEL));
 696	if (ret)
 697		device_unregister(&memory->dev);
 698
 699	return ret;
 700}
 701
 702static struct zone *early_node_zone_for_memory_block(struct memory_block *mem,
 703						     int nid)
 704{
 705	const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
 706	const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
 707	struct zone *zone, *matching_zone = NULL;
 708	pg_data_t *pgdat = NODE_DATA(nid);
 709	int i;
 710
 711	/*
 712	 * This logic only works for early memory, when the applicable zones
 713	 * already span the memory block. We don't expect overlapping zones on
 714	 * a single node for early memory. So if we're told that some PFNs
 715	 * of a node fall into this memory block, we can assume that all node
 716	 * zones that intersect with the memory block are actually applicable.
 717	 * No need to look at the memmap.
 718	 */
 719	for (i = 0; i < MAX_NR_ZONES; i++) {
 720		zone = pgdat->node_zones + i;
 721		if (!populated_zone(zone))
 722			continue;
 723		if (!zone_intersects(zone, start_pfn, nr_pages))
 724			continue;
 725		if (!matching_zone) {
 726			matching_zone = zone;
 727			continue;
 728		}
 729		/* Spans multiple zones ... */
 730		matching_zone = NULL;
 731		break;
 732	}
 733	return matching_zone;
 734}
 735
 736#ifdef CONFIG_NUMA
 737/**
 738 * memory_block_add_nid() - Indicate that system RAM falling into this memory
 739 *			    block device (partially) belongs to the given node.
 740 * @mem: The memory block device.
 741 * @nid: The node id.
 742 * @context: The memory initialization context.
 743 *
 744 * Indicate that system RAM falling into this memory block (partially) belongs
 745 * to the given node. If the context indicates ("early") that we are adding the
 746 * node during node device subsystem initialization, this will also properly
 747 * set/adjust mem->zone based on the zone ranges of the given node.
 748 */
 749void memory_block_add_nid(struct memory_block *mem, int nid,
 750			  enum meminit_context context)
 751{
 752	if (context == MEMINIT_EARLY && mem->nid != nid) {
 753		/*
 754		 * For early memory we have to determine the zone when setting
 755		 * the node id and handle multiple nodes spanning a single
 756		 * memory block by indicate via zone == NULL that we're not
 757		 * dealing with a single zone. So if we're setting the node id
 758		 * the first time, determine if there is a single zone. If we're
 759		 * setting the node id a second time to a different node,
 760		 * invalidate the single detected zone.
 761		 */
 762		if (mem->nid == NUMA_NO_NODE)
 763			mem->zone = early_node_zone_for_memory_block(mem, nid);
 764		else
 765			mem->zone = NULL;
 766	}
 767
 768	/*
 769	 * If this memory block spans multiple nodes, we only indicate
 770	 * the last processed node. If we span multiple nodes (not applicable
 771	 * to hotplugged memory), zone == NULL will prohibit memory offlining
 772	 * and consequently unplug.
 773	 */
 774	mem->nid = nid;
 775}
 776#endif
 777
 778static int add_memory_block(unsigned long block_id, unsigned long state,
 779			    struct vmem_altmap *altmap,
 780			    struct memory_group *group)
 781{
 782	struct memory_block *mem;
 783	int ret = 0;
 784
 785	mem = find_memory_block_by_id(block_id);
 786	if (mem) {
 787		put_device(&mem->dev);
 788		return -EEXIST;
 789	}
 790	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 791	if (!mem)
 792		return -ENOMEM;
 793
 794	mem->start_section_nr = block_id * sections_per_block;
 795	mem->state = state;
 796	mem->nid = NUMA_NO_NODE;
 797	mem->altmap = altmap;
 798	INIT_LIST_HEAD(&mem->group_next);
 799
 800#ifndef CONFIG_NUMA
 801	if (state == MEM_ONLINE)
 802		/*
 803		 * MEM_ONLINE at this point implies early memory. With NUMA,
 804		 * we'll determine the zone when setting the node id via
 805		 * memory_block_add_nid(). Memory hotplug updated the zone
 806		 * manually when memory onlining/offlining succeeds.
 807		 */
 808		mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE);
 809#endif /* CONFIG_NUMA */
 810
 811	ret = __add_memory_block(mem);
 812	if (ret)
 813		return ret;
 814
 815	if (group) {
 816		mem->group = group;
 817		list_add(&mem->group_next, &group->memory_blocks);
 818	}
 819
 820	return 0;
 821}
 822
 823static int __init add_boot_memory_block(unsigned long base_section_nr)
 824{
 825	int section_count = 0;
 826	unsigned long nr;
 827
 828	for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
 829	     nr++)
 830		if (present_section_nr(nr))
 831			section_count++;
 832
 833	if (section_count == 0)
 834		return 0;
 835	return add_memory_block(memory_block_id(base_section_nr),
 836				MEM_ONLINE, NULL,  NULL);
 837}
 838
 839static int add_hotplug_memory_block(unsigned long block_id,
 840				    struct vmem_altmap *altmap,
 841				    struct memory_group *group)
 842{
 843	return add_memory_block(block_id, MEM_OFFLINE, altmap, group);
 844}
 845
 846static void remove_memory_block(struct memory_block *memory)
 847{
 848	if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
 849		return;
 850
 851	WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
 852
 853	if (memory->group) {
 854		list_del(&memory->group_next);
 855		memory->group = NULL;
 856	}
 857
 858	/* drop the ref. we got via find_memory_block() */
 859	put_device(&memory->dev);
 860	device_unregister(&memory->dev);
 861}
 862
 863/*
 864 * Create memory block devices for the given memory area. Start and size
 865 * have to be aligned to memory block granularity. Memory block devices
 866 * will be initialized as offline.
 867 *
 868 * Called under device_hotplug_lock.
 869 */
 870int create_memory_block_devices(unsigned long start, unsigned long size,
 871				struct vmem_altmap *altmap,
 872				struct memory_group *group)
 873{
 874	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
 875	unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
 876	struct memory_block *mem;
 877	unsigned long block_id;
 878	int ret = 0;
 879
 880	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
 881			 !IS_ALIGNED(size, memory_block_size_bytes())))
 882		return -EINVAL;
 883
 884	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
 885		ret = add_hotplug_memory_block(block_id, altmap, group);
 886		if (ret)
 887			break;
 888	}
 889	if (ret) {
 890		end_block_id = block_id;
 891		for (block_id = start_block_id; block_id != end_block_id;
 892		     block_id++) {
 893			mem = find_memory_block_by_id(block_id);
 894			if (WARN_ON_ONCE(!mem))
 895				continue;
 896			remove_memory_block(mem);
 897		}
 898	}
 899	return ret;
 900}
 901
 902/*
 903 * Remove memory block devices for the given memory area. Start and size
 904 * have to be aligned to memory block granularity. Memory block devices
 905 * have to be offline.
 906 *
 907 * Called under device_hotplug_lock.
 908 */
 909void remove_memory_block_devices(unsigned long start, unsigned long size)
 910{
 911	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
 912	const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
 913	struct memory_block *mem;
 914	unsigned long block_id;
 915
 916	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
 917			 !IS_ALIGNED(size, memory_block_size_bytes())))
 918		return;
 919
 920	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
 921		mem = find_memory_block_by_id(block_id);
 922		if (WARN_ON_ONCE(!mem))
 923			continue;
 924		num_poisoned_pages_sub(-1UL, memblk_nr_poison(mem));
 925		unregister_memory_block_under_nodes(mem);
 926		remove_memory_block(mem);
 927	}
 928}
 929
 930static struct attribute *memory_root_attrs[] = {
 931#ifdef CONFIG_ARCH_MEMORY_PROBE
 932	&dev_attr_probe.attr,
 933#endif
 934
 935#ifdef CONFIG_MEMORY_FAILURE
 936	&dev_attr_soft_offline_page.attr,
 937	&dev_attr_hard_offline_page.attr,
 938#endif
 939
 940	&dev_attr_block_size_bytes.attr,
 941	&dev_attr_auto_online_blocks.attr,
 942#ifdef CONFIG_CRASH_HOTPLUG
 943	&dev_attr_crash_hotplug.attr,
 944#endif
 945	NULL
 946};
 947
 948static const struct attribute_group memory_root_attr_group = {
 949	.attrs = memory_root_attrs,
 950};
 951
 952static const struct attribute_group *memory_root_attr_groups[] = {
 953	&memory_root_attr_group,
 954	NULL,
 955};
 956
 957/*
 958 * Initialize the sysfs support for memory devices. At the time this function
 959 * is called, we cannot have concurrent creation/deletion of memory block
 960 * devices, the device_hotplug_lock is not needed.
 961 */
 962void __init memory_dev_init(void)
 963{
 964	int ret;
 965	unsigned long block_sz, nr;
 966
 967	/* Validate the configured memory block size */
 968	block_sz = memory_block_size_bytes();
 969	if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
 970		panic("Memory block size not suitable: 0x%lx\n", block_sz);
 971	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
 972
 973	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
 974	if (ret)
 975		panic("%s() failed to register subsystem: %d\n", __func__, ret);
 976
 977	/*
 978	 * Create entries for memory sections that were found
 979	 * during boot and have been initialized
 980	 */
 981	for (nr = 0; nr <= __highest_present_section_nr;
 982	     nr += sections_per_block) {
 983		ret = add_boot_memory_block(nr);
 984		if (ret)
 985			panic("%s() failed to add memory block: %d\n", __func__,
 986			      ret);
 987	}
 988}
 989
 990/**
 991 * walk_memory_blocks - walk through all present memory blocks overlapped
 992 *			by the range [start, start + size)
 993 *
 994 * @start: start address of the memory range
 995 * @size: size of the memory range
 996 * @arg: argument passed to func
 997 * @func: callback for each memory section walked
 998 *
 999 * This function walks through all present memory blocks overlapped by the
1000 * range [start, start + size), calling func on each memory block.
1001 *
1002 * In case func() returns an error, walking is aborted and the error is
1003 * returned.
1004 *
1005 * Called under device_hotplug_lock.
1006 */
1007int walk_memory_blocks(unsigned long start, unsigned long size,
1008		       void *arg, walk_memory_blocks_func_t func)
1009{
1010	const unsigned long start_block_id = phys_to_block_id(start);
1011	const unsigned long end_block_id = phys_to_block_id(start + size - 1);
1012	struct memory_block *mem;
1013	unsigned long block_id;
1014	int ret = 0;
1015
1016	if (!size)
1017		return 0;
1018
1019	for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
1020		mem = find_memory_block_by_id(block_id);
1021		if (!mem)
1022			continue;
1023
1024		ret = func(mem, arg);
1025		put_device(&mem->dev);
1026		if (ret)
1027			break;
1028	}
1029	return ret;
1030}
1031
1032struct for_each_memory_block_cb_data {
1033	walk_memory_blocks_func_t func;
1034	void *arg;
1035};
1036
1037static int for_each_memory_block_cb(struct device *dev, void *data)
1038{
1039	struct memory_block *mem = to_memory_block(dev);
1040	struct for_each_memory_block_cb_data *cb_data = data;
1041
1042	return cb_data->func(mem, cb_data->arg);
1043}
1044
1045/**
1046 * for_each_memory_block - walk through all present memory blocks
1047 *
1048 * @arg: argument passed to func
1049 * @func: callback for each memory block walked
1050 *
1051 * This function walks through all present memory blocks, calling func on
1052 * each memory block.
1053 *
1054 * In case func() returns an error, walking is aborted and the error is
1055 * returned.
1056 */
1057int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
1058{
1059	struct for_each_memory_block_cb_data cb_data = {
1060		.func = func,
1061		.arg = arg,
1062	};
1063
1064	return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
1065				for_each_memory_block_cb);
1066}
1067
1068/*
1069 * This is an internal helper to unify allocation and initialization of
1070 * memory groups. Note that the passed memory group will be copied to a
1071 * dynamically allocated memory group. After this call, the passed
1072 * memory group should no longer be used.
1073 */
1074static int memory_group_register(struct memory_group group)
1075{
1076	struct memory_group *new_group;
1077	uint32_t mgid;
1078	int ret;
1079
1080	if (!node_possible(group.nid))
1081		return -EINVAL;
1082
1083	new_group = kzalloc(sizeof(group), GFP_KERNEL);
1084	if (!new_group)
1085		return -ENOMEM;
1086	*new_group = group;
1087	INIT_LIST_HEAD(&new_group->memory_blocks);
1088
1089	ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b,
1090		       GFP_KERNEL);
1091	if (ret) {
1092		kfree(new_group);
1093		return ret;
1094	} else if (group.is_dynamic) {
1095		xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC);
1096	}
1097	return mgid;
1098}
1099
1100/**
1101 * memory_group_register_static() - Register a static memory group.
1102 * @nid: The node id.
1103 * @max_pages: The maximum number of pages we'll have in this static memory
1104 *	       group.
1105 *
1106 * Register a new static memory group and return the memory group id.
1107 * All memory in the group belongs to a single unit, such as a DIMM. All
1108 * memory belonging to a static memory group is added in one go to be removed
1109 * in one go -- it's static.
1110 *
1111 * Returns an error if out of memory, if the node id is invalid, if no new
1112 * memory groups can be registered, or if max_pages is invalid (0). Otherwise,
1113 * returns the new memory group id.
1114 */
1115int memory_group_register_static(int nid, unsigned long max_pages)
1116{
1117	struct memory_group group = {
1118		.nid = nid,
1119		.s = {
1120			.max_pages = max_pages,
1121		},
1122	};
1123
1124	if (!max_pages)
1125		return -EINVAL;
1126	return memory_group_register(group);
1127}
1128EXPORT_SYMBOL_GPL(memory_group_register_static);
1129
1130/**
1131 * memory_group_register_dynamic() - Register a dynamic memory group.
1132 * @nid: The node id.
1133 * @unit_pages: Unit in pages in which is memory added/removed in this dynamic
1134 *		memory group.
1135 *
1136 * Register a new dynamic memory group and return the memory group id.
1137 * Memory within a dynamic memory group is added/removed dynamically
1138 * in unit_pages.
1139 *
1140 * Returns an error if out of memory, if the node id is invalid, if no new
1141 * memory groups can be registered, or if unit_pages is invalid (0, not a
1142 * power of two, smaller than a single memory block). Otherwise, returns the
1143 * new memory group id.
1144 */
1145int memory_group_register_dynamic(int nid, unsigned long unit_pages)
1146{
1147	struct memory_group group = {
1148		.nid = nid,
1149		.is_dynamic = true,
1150		.d = {
1151			.unit_pages = unit_pages,
1152		},
1153	};
1154
1155	if (!unit_pages || !is_power_of_2(unit_pages) ||
1156	    unit_pages < PHYS_PFN(memory_block_size_bytes()))
1157		return -EINVAL;
1158	return memory_group_register(group);
1159}
1160EXPORT_SYMBOL_GPL(memory_group_register_dynamic);
1161
1162/**
1163 * memory_group_unregister() - Unregister a memory group.
1164 * @mgid: the memory group id
1165 *
1166 * Unregister a memory group. If any memory block still belongs to this
1167 * memory group, unregistering will fail.
1168 *
1169 * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some
1170 * memory blocks still belong to this memory group and returns 0 if
1171 * unregistering succeeded.
1172 */
1173int memory_group_unregister(int mgid)
1174{
1175	struct memory_group *group;
1176
1177	if (mgid < 0)
1178		return -EINVAL;
1179
1180	group = xa_load(&memory_groups, mgid);
1181	if (!group)
1182		return -EINVAL;
1183	if (!list_empty(&group->memory_blocks))
1184		return -EBUSY;
1185	xa_erase(&memory_groups, mgid);
1186	kfree(group);
1187	return 0;
1188}
1189EXPORT_SYMBOL_GPL(memory_group_unregister);
1190
1191/*
1192 * This is an internal helper only to be used in core memory hotplug code to
1193 * lookup a memory group. We don't care about locking, as we don't expect a
1194 * memory group to get unregistered while adding memory to it -- because
1195 * the group and the memory is managed by the same driver.
1196 */
1197struct memory_group *memory_group_find_by_id(int mgid)
1198{
1199	return xa_load(&memory_groups, mgid);
1200}
1201
1202/*
1203 * This is an internal helper only to be used in core memory hotplug code to
1204 * walk all dynamic memory groups excluding a given memory group, either
1205 * belonging to a specific node, or belonging to any node.
1206 */
1207int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func,
1208			       struct memory_group *excluded, void *arg)
1209{
1210	struct memory_group *group;
1211	unsigned long index;
1212	int ret = 0;
1213
1214	xa_for_each_marked(&memory_groups, index, group,
1215			   MEMORY_GROUP_MARK_DYNAMIC) {
1216		if (group == excluded)
1217			continue;
1218#ifdef CONFIG_NUMA
1219		if (nid != NUMA_NO_NODE && group->nid != nid)
1220			continue;
1221#endif /* CONFIG_NUMA */
1222		ret = func(group, arg);
1223		if (ret)
1224			break;
1225	}
1226	return ret;
1227}
1228
1229#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
1230void memblk_nr_poison_inc(unsigned long pfn)
1231{
1232	const unsigned long block_id = pfn_to_block_id(pfn);
1233	struct memory_block *mem = find_memory_block_by_id(block_id);
1234
1235	if (mem)
1236		atomic_long_inc(&mem->nr_hwpoison);
1237}
1238
1239void memblk_nr_poison_sub(unsigned long pfn, long i)
1240{
1241	const unsigned long block_id = pfn_to_block_id(pfn);
1242	struct memory_block *mem = find_memory_block_by_id(block_id);
1243
1244	if (mem)
1245		atomic_long_sub(i, &mem->nr_hwpoison);
1246}
1247
1248static unsigned long memblk_nr_poison(struct memory_block *mem)
1249{
1250	return atomic_long_read(&mem->nr_hwpoison);
1251}
1252#endif