Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory subsystem support
   4 *
   5 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
   6 *            Dave Hansen <haveblue@us.ibm.com>
   7 *
   8 * This file provides the necessary infrastructure to represent
   9 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
  10 * All arch-independent code that assumes MEMORY_HOTPLUG requires
  11 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
  12 */
  13
  14#include <linux/module.h>
  15#include <linux/init.h>
  16#include <linux/topology.h>
  17#include <linux/capability.h>
  18#include <linux/device.h>
  19#include <linux/memory.h>
  20#include <linux/memory_hotplug.h>
  21#include <linux/mm.h>
 
  22#include <linux/stat.h>
  23#include <linux/slab.h>
  24#include <linux/xarray.h>
  25
  26#include <linux/atomic.h>
  27#include <linux/uaccess.h>
  28
  29#define MEMORY_CLASS_NAME	"memory"
  30
  31static const char *const online_type_to_str[] = {
  32	[MMOP_OFFLINE] = "offline",
  33	[MMOP_ONLINE] = "online",
  34	[MMOP_ONLINE_KERNEL] = "online_kernel",
  35	[MMOP_ONLINE_MOVABLE] = "online_movable",
  36};
  37
  38int mhp_online_type_from_str(const char *str)
  39{
  40	int i;
  41
  42	for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
  43		if (sysfs_streq(str, online_type_to_str[i]))
  44			return i;
  45	}
  46	return -EINVAL;
  47}
  48
  49#define to_memory_block(dev) container_of(dev, struct memory_block, dev)
  50
  51static int sections_per_block;
  52
  53static inline unsigned long memory_block_id(unsigned long section_nr)
  54{
  55	return section_nr / sections_per_block;
  56}
  57
  58static inline unsigned long pfn_to_block_id(unsigned long pfn)
  59{
  60	return memory_block_id(pfn_to_section_nr(pfn));
  61}
  62
  63static inline unsigned long phys_to_block_id(unsigned long phys)
  64{
  65	return pfn_to_block_id(PFN_DOWN(phys));
  66}
  67
  68static int memory_subsys_online(struct device *dev);
  69static int memory_subsys_offline(struct device *dev);
  70
  71static const struct bus_type memory_subsys = {
  72	.name = MEMORY_CLASS_NAME,
  73	.dev_name = MEMORY_CLASS_NAME,
  74	.online = memory_subsys_online,
  75	.offline = memory_subsys_offline,
  76};
  77
  78/*
  79 * Memory blocks are cached in a local radix tree to avoid
  80 * a costly linear search for the corresponding device on
  81 * the subsystem bus.
  82 */
  83static DEFINE_XARRAY(memory_blocks);
  84
  85/*
  86 * Memory groups, indexed by memory group id (mgid).
  87 */
  88static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC);
  89#define MEMORY_GROUP_MARK_DYNAMIC	XA_MARK_1
  90
  91static BLOCKING_NOTIFIER_HEAD(memory_chain);
  92
  93int register_memory_notifier(struct notifier_block *nb)
  94{
  95	return blocking_notifier_chain_register(&memory_chain, nb);
  96}
  97EXPORT_SYMBOL(register_memory_notifier);
  98
  99void unregister_memory_notifier(struct notifier_block *nb)
 100{
 101	blocking_notifier_chain_unregister(&memory_chain, nb);
 102}
 103EXPORT_SYMBOL(unregister_memory_notifier);
 104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105static void memory_block_release(struct device *dev)
 106{
 107	struct memory_block *mem = to_memory_block(dev);
 108	/* Verify that the altmap is freed */
 109	WARN_ON(mem->altmap);
 110	kfree(mem);
 111}
 112
 113unsigned long __weak memory_block_size_bytes(void)
 114{
 115	return MIN_MEMORY_BLOCK_SIZE;
 116}
 117EXPORT_SYMBOL_GPL(memory_block_size_bytes);
 118
 119/* Show the memory block ID, relative to the memory block size */
 
 
 120static ssize_t phys_index_show(struct device *dev,
 121			       struct device_attribute *attr, char *buf)
 122{
 123	struct memory_block *mem = to_memory_block(dev);
 
 124
 125	return sysfs_emit(buf, "%08lx\n", memory_block_id(mem->start_section_nr));
 
 126}
 127
 128/*
 129 * Legacy interface that we cannot remove. Always indicate "removable"
 130 * with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
 
 
 131 */
 132static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
 133			      char *buf)
 134{
 135	return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136}
 137
 138/*
 139 * online, offline, going offline, etc.
 140 */
 141static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 142			  char *buf)
 143{
 144	struct memory_block *mem = to_memory_block(dev);
 145	const char *output;
 146
 147	/*
 148	 * We can probably put these states in a nice little array
 149	 * so that they're not open-coded
 150	 */
 151	switch (mem->state) {
 152	case MEM_ONLINE:
 153		output = "online";
 154		break;
 155	case MEM_OFFLINE:
 156		output = "offline";
 157		break;
 158	case MEM_GOING_OFFLINE:
 159		output = "going-offline";
 160		break;
 161	default:
 
 
 162		WARN_ON(1);
 163		return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state);
 164	}
 165
 166	return sysfs_emit(buf, "%s\n", output);
 167}
 168
 169int memory_notify(unsigned long val, void *v)
 170{
 171	return blocking_notifier_call_chain(&memory_chain, val, v);
 172}
 173
 174#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
 175static unsigned long memblk_nr_poison(struct memory_block *mem);
 176#else
 177static inline unsigned long memblk_nr_poison(struct memory_block *mem)
 178{
 179	return 0;
 180}
 181#endif
 182
 183/*
 184 * Must acquire mem_hotplug_lock in write mode.
 
 
 185 */
 186static int memory_block_online(struct memory_block *mem)
 187{
 188	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
 189	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
 190	unsigned long nr_vmemmap_pages = 0;
 191	struct zone *zone;
 192	int ret;
 193
 194	if (memblk_nr_poison(mem))
 195		return -EHWPOISON;
 196
 197	zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group,
 198				  start_pfn, nr_pages);
 199
 200	/*
 201	 * Although vmemmap pages have a different lifecycle than the pages
 202	 * they describe (they remain until the memory is unplugged), doing
 203	 * their initialization and accounting at memory onlining/offlining
 204	 * stage helps to keep accounting easier to follow - e.g vmemmaps
 205	 * belong to the same zone as the memory they backed.
 206	 */
 207	if (mem->altmap)
 208		nr_vmemmap_pages = mem->altmap->free;
 209
 210	mem_hotplug_begin();
 211	if (nr_vmemmap_pages) {
 212		ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, zone);
 213		if (ret)
 214			goto out;
 215	}
 216
 217	ret = online_pages(start_pfn + nr_vmemmap_pages,
 218			   nr_pages - nr_vmemmap_pages, zone, mem->group);
 219	if (ret) {
 220		if (nr_vmemmap_pages)
 221			mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
 222		goto out;
 223	}
 224
 225	/*
 226	 * Account once onlining succeeded. If the zone was unpopulated, it is
 227	 * now already properly populated.
 228	 */
 229	if (nr_vmemmap_pages)
 230		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
 231					  nr_vmemmap_pages);
 232
 233	mem->zone = zone;
 234out:
 235	mem_hotplug_done();
 236	return ret;
 237}
 238
 239/*
 240 * Must acquire mem_hotplug_lock in write mode.
 241 */
 242static int memory_block_offline(struct memory_block *mem)
 243{
 244	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
 245	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
 246	unsigned long nr_vmemmap_pages = 0;
 247	int ret;
 248
 249	if (!mem->zone)
 250		return -EINVAL;
 251
 252	/*
 253	 * Unaccount before offlining, such that unpopulated zone and kthreads
 254	 * can properly be torn down in offline_pages().
 255	 */
 256	if (mem->altmap)
 257		nr_vmemmap_pages = mem->altmap->free;
 258
 259	mem_hotplug_begin();
 260	if (nr_vmemmap_pages)
 261		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
 262					  -nr_vmemmap_pages);
 263
 264	ret = offline_pages(start_pfn + nr_vmemmap_pages,
 265			    nr_pages - nr_vmemmap_pages, mem->zone, mem->group);
 266	if (ret) {
 267		/* offline_pages() failed. Account back. */
 268		if (nr_vmemmap_pages)
 269			adjust_present_page_count(pfn_to_page(start_pfn),
 270						  mem->group, nr_vmemmap_pages);
 271		goto out;
 272	}
 273
 274	if (nr_vmemmap_pages)
 275		mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
 276
 277	mem->zone = NULL;
 278out:
 279	mem_hotplug_done();
 280	return ret;
 281}
 282
 283/*
 284 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 285 * OK to have direct references to sparsemem variables in here.
 286 */
 287static int
 288memory_block_action(struct memory_block *mem, unsigned long action)
 
 289{
 
 
 290	int ret;
 291
 
 
 292	switch (action) {
 293	case MEM_ONLINE:
 294		ret = memory_block_online(mem);
 
 
 
 295		break;
 296	case MEM_OFFLINE:
 297		ret = memory_block_offline(mem);
 298		break;
 299	default:
 300		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
 301		     "%ld\n", __func__, mem->start_section_nr, action, action);
 302		ret = -EINVAL;
 303	}
 304
 305	return ret;
 306}
 307
 308static int memory_block_change_state(struct memory_block *mem,
 309		unsigned long to_state, unsigned long from_state_req)
 310{
 311	int ret = 0;
 312
 313	if (mem->state != from_state_req)
 314		return -EINVAL;
 315
 316	if (to_state == MEM_OFFLINE)
 317		mem->state = MEM_GOING_OFFLINE;
 318
 319	ret = memory_block_action(mem, to_state);
 
 
 320	mem->state = ret ? from_state_req : to_state;
 321
 322	return ret;
 323}
 324
 325/* The device lock serializes operations on memory_subsys_[online|offline] */
 326static int memory_subsys_online(struct device *dev)
 327{
 328	struct memory_block *mem = to_memory_block(dev);
 329	int ret;
 330
 331	if (mem->state == MEM_ONLINE)
 332		return 0;
 333
 334	/*
 335	 * When called via device_online() without configuring the online_type,
 336	 * we want to default to MMOP_ONLINE.
 
 337	 */
 338	if (mem->online_type == MMOP_OFFLINE)
 339		mem->online_type = MMOP_ONLINE;
 340
 341	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
 342	mem->online_type = MMOP_OFFLINE;
 
 
 343
 344	return ret;
 345}
 346
 347static int memory_subsys_offline(struct device *dev)
 348{
 349	struct memory_block *mem = to_memory_block(dev);
 350
 351	if (mem->state == MEM_OFFLINE)
 352		return 0;
 353
 
 
 
 
 354	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
 355}
 356
 357static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 358			   const char *buf, size_t count)
 359{
 360	const int online_type = mhp_online_type_from_str(buf);
 361	struct memory_block *mem = to_memory_block(dev);
 362	int ret;
 363
 364	if (online_type < 0)
 365		return -EINVAL;
 366
 367	ret = lock_device_hotplug_sysfs();
 368	if (ret)
 369		return ret;
 370
 
 
 
 
 
 
 
 
 
 
 
 
 
 371	switch (online_type) {
 372	case MMOP_ONLINE_KERNEL:
 373	case MMOP_ONLINE_MOVABLE:
 374	case MMOP_ONLINE:
 375		/* mem->online_type is protected by device_hotplug_lock */
 376		mem->online_type = online_type;
 377		ret = device_online(&mem->dev);
 378		break;
 379	case MMOP_OFFLINE:
 380		ret = device_offline(&mem->dev);
 381		break;
 382	default:
 383		ret = -EINVAL; /* should never happen */
 384	}
 385
 
 386	unlock_device_hotplug();
 387
 388	if (ret < 0)
 389		return ret;
 390	if (ret)
 391		return -EINVAL;
 392
 393	return count;
 394}
 395
 396/*
 397 * Legacy interface that we cannot remove: s390x exposes the storage increment
 398 * covered by a memory block, allowing for identifying which memory blocks
 399 * comprise a storage increment. Since a memory block spans complete
 400 * storage increments nowadays, this interface is basically unused. Other
 401 * archs never exposed != 0.
 
 
 402 */
 403static ssize_t phys_device_show(struct device *dev,
 404				struct device_attribute *attr, char *buf)
 405{
 406	struct memory_block *mem = to_memory_block(dev);
 407	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
 408
 409	return sysfs_emit(buf, "%d\n",
 410			  arch_get_memory_phys_device(start_pfn));
 411}
 412
 413#ifdef CONFIG_MEMORY_HOTREMOVE
 414static int print_allowed_zone(char *buf, int len, int nid,
 415			      struct memory_group *group,
 416			      unsigned long start_pfn, unsigned long nr_pages,
 417			      int online_type, struct zone *default_zone)
 418{
 419	struct zone *zone;
 420
 421	zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages);
 422	if (zone == default_zone)
 423		return 0;
 424
 425	return sysfs_emit_at(buf, len, " %s", zone->name);
 426}
 427
 428static ssize_t valid_zones_show(struct device *dev,
 429				struct device_attribute *attr, char *buf)
 430{
 431	struct memory_block *mem = to_memory_block(dev);
 432	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
 433	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
 434	struct memory_group *group = mem->group;
 435	struct zone *default_zone;
 436	int nid = mem->nid;
 437	int len = 0;
 438
 439	/*
 440	 * Check the existing zone. Make sure that we do that only on the
 441	 * online nodes otherwise the page_zone is not reliable
 442	 */
 443	if (mem->state == MEM_ONLINE) {
 444		/*
 445		 * If !mem->zone, the memory block spans multiple zones and
 446		 * cannot get offlined.
 447		 */
 448		default_zone = mem->zone;
 449		if (!default_zone)
 450			return sysfs_emit(buf, "%s\n", "none");
 451		len += sysfs_emit_at(buf, len, "%s", default_zone->name);
 
 452		goto out;
 453	}
 454
 455	default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group,
 456					  start_pfn, nr_pages);
 457
 458	len += sysfs_emit_at(buf, len, "%s", default_zone->name);
 459	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
 460				  MMOP_ONLINE_KERNEL, default_zone);
 461	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
 462				  MMOP_ONLINE_MOVABLE, default_zone);
 463out:
 464	len += sysfs_emit_at(buf, len, "\n");
 465	return len;
 
 466}
 467static DEVICE_ATTR_RO(valid_zones);
 468#endif
 469
 470static DEVICE_ATTR_RO(phys_index);
 471static DEVICE_ATTR_RW(state);
 472static DEVICE_ATTR_RO(phys_device);
 473static DEVICE_ATTR_RO(removable);
 474
 475/*
 476 * Show the memory block size (shared by all memory blocks).
 477 */
 478static ssize_t block_size_bytes_show(struct device *dev,
 479				     struct device_attribute *attr, char *buf)
 480{
 481	return sysfs_emit(buf, "%lx\n", memory_block_size_bytes());
 482}
 483
 484static DEVICE_ATTR_RO(block_size_bytes);
 485
 486/*
 487 * Memory auto online policy.
 488 */
 489
 490static ssize_t auto_online_blocks_show(struct device *dev,
 491				       struct device_attribute *attr, char *buf)
 492{
 493	return sysfs_emit(buf, "%s\n",
 494			  online_type_to_str[mhp_default_online_type]);
 
 
 495}
 496
 497static ssize_t auto_online_blocks_store(struct device *dev,
 498					struct device_attribute *attr,
 499					const char *buf, size_t count)
 500{
 501	const int online_type = mhp_online_type_from_str(buf);
 502
 503	if (online_type < 0)
 
 
 504		return -EINVAL;
 505
 506	mhp_default_online_type = online_type;
 507	return count;
 508}
 509
 510static DEVICE_ATTR_RW(auto_online_blocks);
 511
 512#ifdef CONFIG_CRASH_HOTPLUG
 513#include <linux/kexec.h>
 514static ssize_t crash_hotplug_show(struct device *dev,
 515				       struct device_attribute *attr, char *buf)
 516{
 517	return sysfs_emit(buf, "%d\n", crash_hotplug_memory_support());
 518}
 519static DEVICE_ATTR_RO(crash_hotplug);
 520#endif
 521
 522/*
 523 * Some architectures will have custom drivers to do this, and
 524 * will not need to do it from userspace.  The fake hot-add code
 525 * as well as ppc64 will do all of their discovery in userspace
 526 * and will require this interface.
 527 */
 528#ifdef CONFIG_ARCH_MEMORY_PROBE
 529static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
 530			   const char *buf, size_t count)
 531{
 532	u64 phys_addr;
 533	int nid, ret;
 534	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
 535
 536	ret = kstrtoull(buf, 0, &phys_addr);
 537	if (ret)
 538		return ret;
 539
 540	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
 541		return -EINVAL;
 542
 543	ret = lock_device_hotplug_sysfs();
 544	if (ret)
 545		return ret;
 546
 547	nid = memory_add_physaddr_to_nid(phys_addr);
 548	ret = __add_memory(nid, phys_addr,
 549			   MIN_MEMORY_BLOCK_SIZE * sections_per_block,
 550			   MHP_NONE);
 551
 552	if (ret)
 553		goto out;
 554
 555	ret = count;
 556out:
 557	unlock_device_hotplug();
 558	return ret;
 559}
 560
 561static DEVICE_ATTR_WO(probe);
 562#endif
 563
 564#ifdef CONFIG_MEMORY_FAILURE
 565/*
 566 * Support for offlining pages of memory
 567 */
 568
 569/* Soft offline a page */
 570static ssize_t soft_offline_page_store(struct device *dev,
 571				       struct device_attribute *attr,
 572				       const char *buf, size_t count)
 573{
 574	int ret;
 575	u64 pfn;
 576	if (!capable(CAP_SYS_ADMIN))
 577		return -EPERM;
 578	if (kstrtoull(buf, 0, &pfn) < 0)
 579		return -EINVAL;
 580	pfn >>= PAGE_SHIFT;
 581	ret = soft_offline_page(pfn, 0);
 
 
 
 
 
 582	return ret == 0 ? count : ret;
 583}
 584
 585/* Forcibly offline a page, including killing processes. */
 586static ssize_t hard_offline_page_store(struct device *dev,
 587				       struct device_attribute *attr,
 588				       const char *buf, size_t count)
 589{
 590	int ret;
 591	u64 pfn;
 592	if (!capable(CAP_SYS_ADMIN))
 593		return -EPERM;
 594	if (kstrtoull(buf, 0, &pfn) < 0)
 595		return -EINVAL;
 596	pfn >>= PAGE_SHIFT;
 597	ret = memory_failure(pfn, MF_SW_SIMULATED);
 598	if (ret == -EOPNOTSUPP)
 599		ret = 0;
 600	return ret ? ret : count;
 601}
 602
 603static DEVICE_ATTR_WO(soft_offline_page);
 604static DEVICE_ATTR_WO(hard_offline_page);
 605#endif
 606
 607/* See phys_device_show(). */
 
 
 
 
 608int __weak arch_get_memory_phys_device(unsigned long start_pfn)
 609{
 610	return 0;
 611}
 612
 613/*
 614 * A reference for the returned memory block device is acquired.
 615 *
 616 * Called under device_hotplug_lock.
 617 */
 618static struct memory_block *find_memory_block_by_id(unsigned long block_id)
 619{
 620	struct memory_block *mem;
 621
 622	mem = xa_load(&memory_blocks, block_id);
 623	if (mem)
 624		get_device(&mem->dev);
 625	return mem;
 626}
 627
 628/*
 629 * Called under device_hotplug_lock.
 
 
 
 
 
 630 */
 631struct memory_block *find_memory_block(unsigned long section_nr)
 632{
 633	unsigned long block_id = memory_block_id(section_nr);
 634
 635	return find_memory_block_by_id(block_id);
 636}
 637
 638static struct attribute *memory_memblk_attrs[] = {
 639	&dev_attr_phys_index.attr,
 640	&dev_attr_state.attr,
 641	&dev_attr_phys_device.attr,
 642	&dev_attr_removable.attr,
 643#ifdef CONFIG_MEMORY_HOTREMOVE
 644	&dev_attr_valid_zones.attr,
 645#endif
 646	NULL
 647};
 648
 649static const struct attribute_group memory_memblk_attr_group = {
 650	.attrs = memory_memblk_attrs,
 651};
 652
 653static const struct attribute_group *memory_memblk_attr_groups[] = {
 654	&memory_memblk_attr_group,
 655	NULL,
 656};
 657
 658static int __add_memory_block(struct memory_block *memory)
 
 
 
 
 659{
 660	int ret;
 661
 662	memory->dev.bus = &memory_subsys;
 663	memory->dev.id = memory->start_section_nr / sections_per_block;
 664	memory->dev.release = memory_block_release;
 665	memory->dev.groups = memory_memblk_attr_groups;
 666	memory->dev.offline = memory->state == MEM_OFFLINE;
 667
 668	ret = device_register(&memory->dev);
 669	if (ret) {
 670		put_device(&memory->dev);
 671		return ret;
 672	}
 673	ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
 674			      GFP_KERNEL));
 675	if (ret)
 676		device_unregister(&memory->dev);
 677
 678	return ret;
 679}
 680
 681static struct zone *early_node_zone_for_memory_block(struct memory_block *mem,
 682						     int nid)
 683{
 684	const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
 685	const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
 686	struct zone *zone, *matching_zone = NULL;
 687	pg_data_t *pgdat = NODE_DATA(nid);
 688	int i;
 689
 690	/*
 691	 * This logic only works for early memory, when the applicable zones
 692	 * already span the memory block. We don't expect overlapping zones on
 693	 * a single node for early memory. So if we're told that some PFNs
 694	 * of a node fall into this memory block, we can assume that all node
 695	 * zones that intersect with the memory block are actually applicable.
 696	 * No need to look at the memmap.
 697	 */
 698	for (i = 0; i < MAX_NR_ZONES; i++) {
 699		zone = pgdat->node_zones + i;
 700		if (!populated_zone(zone))
 701			continue;
 702		if (!zone_intersects(zone, start_pfn, nr_pages))
 703			continue;
 704		if (!matching_zone) {
 705			matching_zone = zone;
 706			continue;
 707		}
 708		/* Spans multiple zones ... */
 709		matching_zone = NULL;
 710		break;
 711	}
 712	return matching_zone;
 713}
 714
 715#ifdef CONFIG_NUMA
 716/**
 717 * memory_block_add_nid() - Indicate that system RAM falling into this memory
 718 *			    block device (partially) belongs to the given node.
 719 * @mem: The memory block device.
 720 * @nid: The node id.
 721 * @context: The memory initialization context.
 722 *
 723 * Indicate that system RAM falling into this memory block (partially) belongs
 724 * to the given node. If the context indicates ("early") that we are adding the
 725 * node during node device subsystem initialization, this will also properly
 726 * set/adjust mem->zone based on the zone ranges of the given node.
 727 */
 728void memory_block_add_nid(struct memory_block *mem, int nid,
 729			  enum meminit_context context)
 730{
 731	if (context == MEMINIT_EARLY && mem->nid != nid) {
 732		/*
 733		 * For early memory we have to determine the zone when setting
 734		 * the node id and handle multiple nodes spanning a single
 735		 * memory block by indicate via zone == NULL that we're not
 736		 * dealing with a single zone. So if we're setting the node id
 737		 * the first time, determine if there is a single zone. If we're
 738		 * setting the node id a second time to a different node,
 739		 * invalidate the single detected zone.
 740		 */
 741		if (mem->nid == NUMA_NO_NODE)
 742			mem->zone = early_node_zone_for_memory_block(mem, nid);
 743		else
 744			mem->zone = NULL;
 745	}
 746
 747	/*
 748	 * If this memory block spans multiple nodes, we only indicate
 749	 * the last processed node. If we span multiple nodes (not applicable
 750	 * to hotplugged memory), zone == NULL will prohibit memory offlining
 751	 * and consequently unplug.
 752	 */
 753	mem->nid = nid;
 754}
 755#endif
 756
 757static int add_memory_block(unsigned long block_id, unsigned long state,
 758			    struct vmem_altmap *altmap,
 759			    struct memory_group *group)
 760{
 761	struct memory_block *mem;
 
 762	int ret = 0;
 763
 764	mem = find_memory_block_by_id(block_id);
 765	if (mem) {
 766		put_device(&mem->dev);
 767		return -EEXIST;
 768	}
 769	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 770	if (!mem)
 771		return -ENOMEM;
 772
 773	mem->start_section_nr = block_id * sections_per_block;
 774	mem->state = state;
 
 
 775	mem->nid = NUMA_NO_NODE;
 776	mem->altmap = altmap;
 777	INIT_LIST_HEAD(&mem->group_next);
 778
 779#ifndef CONFIG_NUMA
 780	if (state == MEM_ONLINE)
 781		/*
 782		 * MEM_ONLINE at this point implies early memory. With NUMA,
 783		 * we'll determine the zone when setting the node id via
 784		 * memory_block_add_nid(). Memory hotplug updated the zone
 785		 * manually when memory onlining/offlining succeeds.
 786		 */
 787		mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE);
 788#endif /* CONFIG_NUMA */
 789
 790	ret = __add_memory_block(mem);
 791	if (ret)
 792		return ret;
 793
 794	if (group) {
 795		mem->group = group;
 796		list_add(&mem->group_next, &group->memory_blocks);
 797	}
 798
 799	return 0;
 
 800}
 801
 802static int __init add_boot_memory_block(unsigned long base_section_nr)
 803{
 804	int section_count = 0;
 
 805	unsigned long nr;
 806
 807	for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
 808	     nr++)
 809		if (present_section_nr(nr))
 810			section_count++;
 811
 812	if (section_count == 0)
 813		return 0;
 814	return add_memory_block(memory_block_id(base_section_nr),
 815				MEM_ONLINE, NULL,  NULL);
 816}
 817
 818static int add_hotplug_memory_block(unsigned long block_id,
 819				    struct vmem_altmap *altmap,
 820				    struct memory_group *group)
 821{
 822	return add_memory_block(block_id, MEM_OFFLINE, altmap, group);
 823}
 824
 825static void remove_memory_block(struct memory_block *memory)
 826{
 827	if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
 828		return;
 829
 830	WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
 831
 832	if (memory->group) {
 833		list_del(&memory->group_next);
 834		memory->group = NULL;
 835	}
 836
 837	/* drop the ref. we got via find_memory_block() */
 838	put_device(&memory->dev);
 839	device_unregister(&memory->dev);
 840}
 841
 842/*
 843 * Create memory block devices for the given memory area. Start and size
 844 * have to be aligned to memory block granularity. Memory block devices
 845 * will be initialized as offline.
 846 *
 847 * Called under device_hotplug_lock.
 848 */
 849int create_memory_block_devices(unsigned long start, unsigned long size,
 850				struct vmem_altmap *altmap,
 851				struct memory_group *group)
 852{
 853	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
 854	unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
 855	struct memory_block *mem;
 856	unsigned long block_id;
 857	int ret = 0;
 858
 859	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
 860			 !IS_ALIGNED(size, memory_block_size_bytes())))
 861		return -EINVAL;
 862
 
 863	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
 864		ret = add_hotplug_memory_block(block_id, altmap, group);
 865		if (ret)
 866			break;
 
 867	}
 868	if (ret) {
 869		end_block_id = block_id;
 870		for (block_id = start_block_id; block_id != end_block_id;
 871		     block_id++) {
 872			mem = find_memory_block_by_id(block_id);
 873			if (WARN_ON_ONCE(!mem))
 874				continue;
 875			remove_memory_block(mem);
 876		}
 877	}
 
 878	return ret;
 879}
 880
 881/*
 882 * Remove memory block devices for the given memory area. Start and size
 883 * have to be aligned to memory block granularity. Memory block devices
 884 * have to be offline.
 885 *
 886 * Called under device_hotplug_lock.
 887 */
 888void remove_memory_block_devices(unsigned long start, unsigned long size)
 889{
 890	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
 891	const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
 892	struct memory_block *mem;
 893	unsigned long block_id;
 894
 895	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
 896			 !IS_ALIGNED(size, memory_block_size_bytes())))
 897		return;
 898
 
 899	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
 900		mem = find_memory_block_by_id(block_id);
 901		if (WARN_ON_ONCE(!mem))
 902			continue;
 903		num_poisoned_pages_sub(-1UL, memblk_nr_poison(mem));
 904		unregister_memory_block_under_nodes(mem);
 905		remove_memory_block(mem);
 906	}
 
 
 
 
 
 
 
 907}
 908
 909static struct attribute *memory_root_attrs[] = {
 910#ifdef CONFIG_ARCH_MEMORY_PROBE
 911	&dev_attr_probe.attr,
 912#endif
 913
 914#ifdef CONFIG_MEMORY_FAILURE
 915	&dev_attr_soft_offline_page.attr,
 916	&dev_attr_hard_offline_page.attr,
 917#endif
 918
 919	&dev_attr_block_size_bytes.attr,
 920	&dev_attr_auto_online_blocks.attr,
 921#ifdef CONFIG_CRASH_HOTPLUG
 922	&dev_attr_crash_hotplug.attr,
 923#endif
 924	NULL
 925};
 926
 927static const struct attribute_group memory_root_attr_group = {
 928	.attrs = memory_root_attrs,
 929};
 930
 931static const struct attribute_group *memory_root_attr_groups[] = {
 932	&memory_root_attr_group,
 933	NULL,
 934};
 935
 936/*
 937 * Initialize the sysfs support for memory devices. At the time this function
 938 * is called, we cannot have concurrent creation/deletion of memory block
 939 * devices, the device_hotplug_lock is not needed.
 940 */
 941void __init memory_dev_init(void)
 942{
 943	int ret;
 
 944	unsigned long block_sz, nr;
 945
 946	/* Validate the configured memory block size */
 947	block_sz = memory_block_size_bytes();
 948	if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
 949		panic("Memory block size not suitable: 0x%lx\n", block_sz);
 950	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
 951
 952	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
 953	if (ret)
 954		panic("%s() failed to register subsystem: %d\n", __func__, ret);
 955
 956	/*
 957	 * Create entries for memory sections that were found
 958	 * during boot and have been initialized
 959	 */
 
 960	for (nr = 0; nr <= __highest_present_section_nr;
 961	     nr += sections_per_block) {
 962		ret = add_boot_memory_block(nr);
 963		if (ret)
 964			panic("%s() failed to add memory block: %d\n", __func__,
 965			      ret);
 966	}
 
 
 
 
 
 967}
 968
 969/**
 970 * walk_memory_blocks - walk through all present memory blocks overlapped
 971 *			by the range [start, start + size)
 972 *
 973 * @start: start address of the memory range
 974 * @size: size of the memory range
 975 * @arg: argument passed to func
 976 * @func: callback for each memory section walked
 977 *
 978 * This function walks through all present memory blocks overlapped by the
 979 * range [start, start + size), calling func on each memory block.
 980 *
 981 * In case func() returns an error, walking is aborted and the error is
 982 * returned.
 983 *
 984 * Called under device_hotplug_lock.
 985 */
 986int walk_memory_blocks(unsigned long start, unsigned long size,
 987		       void *arg, walk_memory_blocks_func_t func)
 988{
 989	const unsigned long start_block_id = phys_to_block_id(start);
 990	const unsigned long end_block_id = phys_to_block_id(start + size - 1);
 991	struct memory_block *mem;
 992	unsigned long block_id;
 993	int ret = 0;
 994
 995	if (!size)
 996		return 0;
 997
 998	for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
 999		mem = find_memory_block_by_id(block_id);
1000		if (!mem)
1001			continue;
1002
1003		ret = func(mem, arg);
1004		put_device(&mem->dev);
1005		if (ret)
1006			break;
1007	}
1008	return ret;
1009}
1010
1011struct for_each_memory_block_cb_data {
1012	walk_memory_blocks_func_t func;
1013	void *arg;
1014};
1015
1016static int for_each_memory_block_cb(struct device *dev, void *data)
1017{
1018	struct memory_block *mem = to_memory_block(dev);
1019	struct for_each_memory_block_cb_data *cb_data = data;
1020
1021	return cb_data->func(mem, cb_data->arg);
1022}
1023
1024/**
1025 * for_each_memory_block - walk through all present memory blocks
1026 *
1027 * @arg: argument passed to func
1028 * @func: callback for each memory block walked
1029 *
1030 * This function walks through all present memory blocks, calling func on
1031 * each memory block.
1032 *
1033 * In case func() returns an error, walking is aborted and the error is
1034 * returned.
1035 */
1036int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
1037{
1038	struct for_each_memory_block_cb_data cb_data = {
1039		.func = func,
1040		.arg = arg,
1041	};
1042
1043	return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
1044				for_each_memory_block_cb);
1045}
1046
1047/*
1048 * This is an internal helper to unify allocation and initialization of
1049 * memory groups. Note that the passed memory group will be copied to a
1050 * dynamically allocated memory group. After this call, the passed
1051 * memory group should no longer be used.
1052 */
1053static int memory_group_register(struct memory_group group)
1054{
1055	struct memory_group *new_group;
1056	uint32_t mgid;
1057	int ret;
1058
1059	if (!node_possible(group.nid))
1060		return -EINVAL;
1061
1062	new_group = kzalloc(sizeof(group), GFP_KERNEL);
1063	if (!new_group)
1064		return -ENOMEM;
1065	*new_group = group;
1066	INIT_LIST_HEAD(&new_group->memory_blocks);
1067
1068	ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b,
1069		       GFP_KERNEL);
1070	if (ret) {
1071		kfree(new_group);
1072		return ret;
1073	} else if (group.is_dynamic) {
1074		xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC);
1075	}
1076	return mgid;
1077}
1078
1079/**
1080 * memory_group_register_static() - Register a static memory group.
1081 * @nid: The node id.
1082 * @max_pages: The maximum number of pages we'll have in this static memory
1083 *	       group.
1084 *
1085 * Register a new static memory group and return the memory group id.
1086 * All memory in the group belongs to a single unit, such as a DIMM. All
1087 * memory belonging to a static memory group is added in one go to be removed
1088 * in one go -- it's static.
1089 *
1090 * Returns an error if out of memory, if the node id is invalid, if no new
1091 * memory groups can be registered, or if max_pages is invalid (0). Otherwise,
1092 * returns the new memory group id.
1093 */
1094int memory_group_register_static(int nid, unsigned long max_pages)
1095{
1096	struct memory_group group = {
1097		.nid = nid,
1098		.s = {
1099			.max_pages = max_pages,
1100		},
1101	};
1102
1103	if (!max_pages)
1104		return -EINVAL;
1105	return memory_group_register(group);
1106}
1107EXPORT_SYMBOL_GPL(memory_group_register_static);
1108
1109/**
1110 * memory_group_register_dynamic() - Register a dynamic memory group.
1111 * @nid: The node id.
1112 * @unit_pages: Unit in pages in which is memory added/removed in this dynamic
1113 *		memory group.
1114 *
1115 * Register a new dynamic memory group and return the memory group id.
1116 * Memory within a dynamic memory group is added/removed dynamically
1117 * in unit_pages.
1118 *
1119 * Returns an error if out of memory, if the node id is invalid, if no new
1120 * memory groups can be registered, or if unit_pages is invalid (0, not a
1121 * power of two, smaller than a single memory block). Otherwise, returns the
1122 * new memory group id.
1123 */
1124int memory_group_register_dynamic(int nid, unsigned long unit_pages)
1125{
1126	struct memory_group group = {
1127		.nid = nid,
1128		.is_dynamic = true,
1129		.d = {
1130			.unit_pages = unit_pages,
1131		},
1132	};
1133
1134	if (!unit_pages || !is_power_of_2(unit_pages) ||
1135	    unit_pages < PHYS_PFN(memory_block_size_bytes()))
1136		return -EINVAL;
1137	return memory_group_register(group);
1138}
1139EXPORT_SYMBOL_GPL(memory_group_register_dynamic);
1140
1141/**
1142 * memory_group_unregister() - Unregister a memory group.
1143 * @mgid: the memory group id
1144 *
1145 * Unregister a memory group. If any memory block still belongs to this
1146 * memory group, unregistering will fail.
1147 *
1148 * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some
1149 * memory blocks still belong to this memory group and returns 0 if
1150 * unregistering succeeded.
1151 */
1152int memory_group_unregister(int mgid)
1153{
1154	struct memory_group *group;
1155
1156	if (mgid < 0)
1157		return -EINVAL;
1158
1159	group = xa_load(&memory_groups, mgid);
1160	if (!group)
1161		return -EINVAL;
1162	if (!list_empty(&group->memory_blocks))
1163		return -EBUSY;
1164	xa_erase(&memory_groups, mgid);
1165	kfree(group);
1166	return 0;
1167}
1168EXPORT_SYMBOL_GPL(memory_group_unregister);
1169
1170/*
1171 * This is an internal helper only to be used in core memory hotplug code to
1172 * lookup a memory group. We don't care about locking, as we don't expect a
1173 * memory group to get unregistered while adding memory to it -- because
1174 * the group and the memory is managed by the same driver.
1175 */
1176struct memory_group *memory_group_find_by_id(int mgid)
1177{
1178	return xa_load(&memory_groups, mgid);
1179}
1180
1181/*
1182 * This is an internal helper only to be used in core memory hotplug code to
1183 * walk all dynamic memory groups excluding a given memory group, either
1184 * belonging to a specific node, or belonging to any node.
1185 */
1186int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func,
1187			       struct memory_group *excluded, void *arg)
1188{
1189	struct memory_group *group;
1190	unsigned long index;
1191	int ret = 0;
1192
1193	xa_for_each_marked(&memory_groups, index, group,
1194			   MEMORY_GROUP_MARK_DYNAMIC) {
1195		if (group == excluded)
1196			continue;
1197#ifdef CONFIG_NUMA
1198		if (nid != NUMA_NO_NODE && group->nid != nid)
1199			continue;
1200#endif /* CONFIG_NUMA */
1201		ret = func(group, arg);
1202		if (ret)
1203			break;
1204	}
1205	return ret;
1206}
1207
1208#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
1209void memblk_nr_poison_inc(unsigned long pfn)
1210{
1211	const unsigned long block_id = pfn_to_block_id(pfn);
1212	struct memory_block *mem = find_memory_block_by_id(block_id);
1213
1214	if (mem)
1215		atomic_long_inc(&mem->nr_hwpoison);
1216}
1217
1218void memblk_nr_poison_sub(unsigned long pfn, long i)
1219{
1220	const unsigned long block_id = pfn_to_block_id(pfn);
1221	struct memory_block *mem = find_memory_block_by_id(block_id);
1222
1223	if (mem)
1224		atomic_long_sub(i, &mem->nr_hwpoison);
1225}
1226
1227static unsigned long memblk_nr_poison(struct memory_block *mem)
1228{
1229	return atomic_long_read(&mem->nr_hwpoison);
1230}
1231#endif
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Memory subsystem support
  4 *
  5 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
  6 *            Dave Hansen <haveblue@us.ibm.com>
  7 *
  8 * This file provides the necessary infrastructure to represent
  9 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 10 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 11 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 12 */
 13
 14#include <linux/module.h>
 15#include <linux/init.h>
 16#include <linux/topology.h>
 17#include <linux/capability.h>
 18#include <linux/device.h>
 19#include <linux/memory.h>
 20#include <linux/memory_hotplug.h>
 21#include <linux/mm.h>
 22#include <linux/mutex.h>
 23#include <linux/stat.h>
 24#include <linux/slab.h>
 
 25
 26#include <linux/atomic.h>
 27#include <linux/uaccess.h>
 28
 29static DEFINE_MUTEX(mem_sysfs_mutex);
 
 
 
 
 
 
 
 
 
 
 
 30
 31#define MEMORY_CLASS_NAME	"memory"
 
 
 
 
 
 32
 33#define to_memory_block(dev) container_of(dev, struct memory_block, dev)
 34
 35static int sections_per_block;
 36
 37static inline unsigned long base_memory_block_id(unsigned long section_nr)
 38{
 39	return section_nr / sections_per_block;
 40}
 41
 42static inline unsigned long pfn_to_block_id(unsigned long pfn)
 43{
 44	return base_memory_block_id(pfn_to_section_nr(pfn));
 45}
 46
 47static inline unsigned long phys_to_block_id(unsigned long phys)
 48{
 49	return pfn_to_block_id(PFN_DOWN(phys));
 50}
 51
 52static int memory_subsys_online(struct device *dev);
 53static int memory_subsys_offline(struct device *dev);
 54
 55static struct bus_type memory_subsys = {
 56	.name = MEMORY_CLASS_NAME,
 57	.dev_name = MEMORY_CLASS_NAME,
 58	.online = memory_subsys_online,
 59	.offline = memory_subsys_offline,
 60};
 61
 
 
 
 
 
 
 
 
 
 
 
 
 
 62static BLOCKING_NOTIFIER_HEAD(memory_chain);
 63
 64int register_memory_notifier(struct notifier_block *nb)
 65{
 66	return blocking_notifier_chain_register(&memory_chain, nb);
 67}
 68EXPORT_SYMBOL(register_memory_notifier);
 69
 70void unregister_memory_notifier(struct notifier_block *nb)
 71{
 72	blocking_notifier_chain_unregister(&memory_chain, nb);
 73}
 74EXPORT_SYMBOL(unregister_memory_notifier);
 75
 76static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
 77
 78int register_memory_isolate_notifier(struct notifier_block *nb)
 79{
 80	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
 81}
 82EXPORT_SYMBOL(register_memory_isolate_notifier);
 83
 84void unregister_memory_isolate_notifier(struct notifier_block *nb)
 85{
 86	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
 87}
 88EXPORT_SYMBOL(unregister_memory_isolate_notifier);
 89
 90static void memory_block_release(struct device *dev)
 91{
 92	struct memory_block *mem = to_memory_block(dev);
 93
 
 94	kfree(mem);
 95}
 96
 97unsigned long __weak memory_block_size_bytes(void)
 98{
 99	return MIN_MEMORY_BLOCK_SIZE;
100}
101EXPORT_SYMBOL_GPL(memory_block_size_bytes);
102
103/*
104 * Show the first physical section index (number) of this memory block.
105 */
106static ssize_t phys_index_show(struct device *dev,
107			       struct device_attribute *attr, char *buf)
108{
109	struct memory_block *mem = to_memory_block(dev);
110	unsigned long phys_index;
111
112	phys_index = mem->start_section_nr / sections_per_block;
113	return sprintf(buf, "%08lx\n", phys_index);
114}
115
116/*
117 * Show whether the memory block is likely to be offlineable (or is already
118 * offline). Once offline, the memory block could be removed. The return
119 * value does, however, not indicate that there is a way to remove the
120 * memory block.
121 */
122static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
123			      char *buf)
124{
125	struct memory_block *mem = to_memory_block(dev);
126	unsigned long pfn;
127	int ret = 1, i;
128
129	if (mem->state != MEM_ONLINE)
130		goto out;
131
132	for (i = 0; i < sections_per_block; i++) {
133		if (!present_section_nr(mem->start_section_nr + i))
134			continue;
135		pfn = section_nr_to_pfn(mem->start_section_nr + i);
136		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
137	}
138
139out:
140	return sprintf(buf, "%d\n", ret);
141}
142
143/*
144 * online, offline, going offline, etc.
145 */
146static ssize_t state_show(struct device *dev, struct device_attribute *attr,
147			  char *buf)
148{
149	struct memory_block *mem = to_memory_block(dev);
150	ssize_t len = 0;
151
152	/*
153	 * We can probably put these states in a nice little array
154	 * so that they're not open-coded
155	 */
156	switch (mem->state) {
157	case MEM_ONLINE:
158		len = sprintf(buf, "online\n");
159		break;
160	case MEM_OFFLINE:
161		len = sprintf(buf, "offline\n");
162		break;
163	case MEM_GOING_OFFLINE:
164		len = sprintf(buf, "going-offline\n");
165		break;
166	default:
167		len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
168				mem->state);
169		WARN_ON(1);
170		break;
171	}
172
173	return len;
174}
175
176int memory_notify(unsigned long val, void *v)
177{
178	return blocking_notifier_call_chain(&memory_chain, val, v);
179}
180
181int memory_isolate_notify(unsigned long val, void *v)
 
 
 
182{
183	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
184}
 
185
186/*
187 * The probe routines leave the pages uninitialized, just as the bootmem code
188 * does. Make sure we do not access them, but instead use only information from
189 * within sections.
190 */
191static bool pages_correctly_probed(unsigned long start_pfn)
192{
193	unsigned long section_nr = pfn_to_section_nr(start_pfn);
194	unsigned long section_nr_end = section_nr + sections_per_block;
195	unsigned long pfn = start_pfn;
 
 
 
 
 
 
 
 
196
197	/*
198	 * memmap between sections is not contiguous except with
199	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
200	 * and assume memmap is contiguous within each section
 
 
201	 */
202	for (; section_nr < section_nr_end; section_nr++) {
203		if (WARN_ON_ONCE(!pfn_valid(pfn)))
204			return false;
205
206		if (!present_section_nr(section_nr)) {
207			pr_warn("section %ld pfn[%lx, %lx) not present\n",
208				section_nr, pfn, pfn + PAGES_PER_SECTION);
209			return false;
210		} else if (!valid_section_nr(section_nr)) {
211			pr_warn("section %ld pfn[%lx, %lx) no valid memmap\n",
212				section_nr, pfn, pfn + PAGES_PER_SECTION);
213			return false;
214		} else if (online_section_nr(section_nr)) {
215			pr_warn("section %ld pfn[%lx, %lx) is already online\n",
216				section_nr, pfn, pfn + PAGES_PER_SECTION);
217			return false;
218		}
219		pfn += PAGES_PER_SECTION;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220	}
221
222	return true;
 
 
 
 
 
 
223}
224
225/*
226 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
227 * OK to have direct references to sparsemem variables in here.
228 */
229static int
230memory_block_action(unsigned long start_section_nr, unsigned long action,
231		    int online_type)
232{
233	unsigned long start_pfn;
234	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
235	int ret;
236
237	start_pfn = section_nr_to_pfn(start_section_nr);
238
239	switch (action) {
240	case MEM_ONLINE:
241		if (!pages_correctly_probed(start_pfn))
242			return -EBUSY;
243
244		ret = online_pages(start_pfn, nr_pages, online_type);
245		break;
246	case MEM_OFFLINE:
247		ret = offline_pages(start_pfn, nr_pages);
248		break;
249	default:
250		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
251		     "%ld\n", __func__, start_section_nr, action, action);
252		ret = -EINVAL;
253	}
254
255	return ret;
256}
257
258static int memory_block_change_state(struct memory_block *mem,
259		unsigned long to_state, unsigned long from_state_req)
260{
261	int ret = 0;
262
263	if (mem->state != from_state_req)
264		return -EINVAL;
265
266	if (to_state == MEM_OFFLINE)
267		mem->state = MEM_GOING_OFFLINE;
268
269	ret = memory_block_action(mem->start_section_nr, to_state,
270				mem->online_type);
271
272	mem->state = ret ? from_state_req : to_state;
273
274	return ret;
275}
276
277/* The device lock serializes operations on memory_subsys_[online|offline] */
278static int memory_subsys_online(struct device *dev)
279{
280	struct memory_block *mem = to_memory_block(dev);
281	int ret;
282
283	if (mem->state == MEM_ONLINE)
284		return 0;
285
286	/*
287	 * If we are called from state_store(), online_type will be
288	 * set >= 0 Otherwise we were called from the device online
289	 * attribute and need to set the online_type.
290	 */
291	if (mem->online_type < 0)
292		mem->online_type = MMOP_ONLINE_KEEP;
293
294	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
295
296	/* clear online_type */
297	mem->online_type = -1;
298
299	return ret;
300}
301
302static int memory_subsys_offline(struct device *dev)
303{
304	struct memory_block *mem = to_memory_block(dev);
305
306	if (mem->state == MEM_OFFLINE)
307		return 0;
308
309	/* Can't offline block with non-present sections */
310	if (mem->section_count != sections_per_block)
311		return -EINVAL;
312
313	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
314}
315
316static ssize_t state_store(struct device *dev, struct device_attribute *attr,
317			   const char *buf, size_t count)
318{
 
319	struct memory_block *mem = to_memory_block(dev);
320	int ret, online_type;
 
 
 
321
322	ret = lock_device_hotplug_sysfs();
323	if (ret)
324		return ret;
325
326	if (sysfs_streq(buf, "online_kernel"))
327		online_type = MMOP_ONLINE_KERNEL;
328	else if (sysfs_streq(buf, "online_movable"))
329		online_type = MMOP_ONLINE_MOVABLE;
330	else if (sysfs_streq(buf, "online"))
331		online_type = MMOP_ONLINE_KEEP;
332	else if (sysfs_streq(buf, "offline"))
333		online_type = MMOP_OFFLINE;
334	else {
335		ret = -EINVAL;
336		goto err;
337	}
338
339	switch (online_type) {
340	case MMOP_ONLINE_KERNEL:
341	case MMOP_ONLINE_MOVABLE:
342	case MMOP_ONLINE_KEEP:
343		/* mem->online_type is protected by device_hotplug_lock */
344		mem->online_type = online_type;
345		ret = device_online(&mem->dev);
346		break;
347	case MMOP_OFFLINE:
348		ret = device_offline(&mem->dev);
349		break;
350	default:
351		ret = -EINVAL; /* should never happen */
352	}
353
354err:
355	unlock_device_hotplug();
356
357	if (ret < 0)
358		return ret;
359	if (ret)
360		return -EINVAL;
361
362	return count;
363}
364
365/*
366 * phys_device is a bad name for this.  What I really want
367 * is a way to differentiate between memory ranges that
368 * are part of physical devices that constitute
369 * a complete removable unit or fru.
370 * i.e. do these ranges belong to the same physical device,
371 * s.t. if I offline all of these sections I can then
372 * remove the physical device?
373 */
374static ssize_t phys_device_show(struct device *dev,
375				struct device_attribute *attr, char *buf)
376{
377	struct memory_block *mem = to_memory_block(dev);
378	return sprintf(buf, "%d\n", mem->phys_device);
 
 
 
379}
380
381#ifdef CONFIG_MEMORY_HOTREMOVE
382static void print_allowed_zone(char *buf, int nid, unsigned long start_pfn,
383		unsigned long nr_pages, int online_type,
384		struct zone *default_zone)
 
385{
386	struct zone *zone;
387
388	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
389	if (zone != default_zone) {
390		strcat(buf, " ");
391		strcat(buf, zone->name);
392	}
393}
394
395static ssize_t valid_zones_show(struct device *dev,
396				struct device_attribute *attr, char *buf)
397{
398	struct memory_block *mem = to_memory_block(dev);
399	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
400	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
401	unsigned long valid_start_pfn, valid_end_pfn;
402	struct zone *default_zone;
403	int nid;
 
404
405	/*
406	 * Check the existing zone. Make sure that we do that only on the
407	 * online nodes otherwise the page_zone is not reliable
408	 */
409	if (mem->state == MEM_ONLINE) {
410		/*
411		 * The block contains more than one zone can not be offlined.
412		 * This can happen e.g. for ZONE_DMA and ZONE_DMA32
413		 */
414		if (!test_pages_in_a_zone(start_pfn, start_pfn + nr_pages,
415					  &valid_start_pfn, &valid_end_pfn))
416			return sprintf(buf, "none\n");
417		start_pfn = valid_start_pfn;
418		strcat(buf, page_zone(pfn_to_page(start_pfn))->name);
419		goto out;
420	}
421
422	nid = mem->nid;
423	default_zone = zone_for_pfn_range(MMOP_ONLINE_KEEP, nid, start_pfn, nr_pages);
424	strcat(buf, default_zone->name);
425
426	print_allowed_zone(buf, nid, start_pfn, nr_pages, MMOP_ONLINE_KERNEL,
427			default_zone);
428	print_allowed_zone(buf, nid, start_pfn, nr_pages, MMOP_ONLINE_MOVABLE,
429			default_zone);
430out:
431	strcat(buf, "\n");
432
433	return strlen(buf);
434}
435static DEVICE_ATTR_RO(valid_zones);
436#endif
437
438static DEVICE_ATTR_RO(phys_index);
439static DEVICE_ATTR_RW(state);
440static DEVICE_ATTR_RO(phys_device);
441static DEVICE_ATTR_RO(removable);
442
443/*
444 * Show the memory block size (shared by all memory blocks).
445 */
446static ssize_t block_size_bytes_show(struct device *dev,
447				     struct device_attribute *attr, char *buf)
448{
449	return sprintf(buf, "%lx\n", memory_block_size_bytes());
450}
451
452static DEVICE_ATTR_RO(block_size_bytes);
453
454/*
455 * Memory auto online policy.
456 */
457
458static ssize_t auto_online_blocks_show(struct device *dev,
459				       struct device_attribute *attr, char *buf)
460{
461	if (memhp_auto_online)
462		return sprintf(buf, "online\n");
463	else
464		return sprintf(buf, "offline\n");
465}
466
467static ssize_t auto_online_blocks_store(struct device *dev,
468					struct device_attribute *attr,
469					const char *buf, size_t count)
470{
471	if (sysfs_streq(buf, "online"))
472		memhp_auto_online = true;
473	else if (sysfs_streq(buf, "offline"))
474		memhp_auto_online = false;
475	else
476		return -EINVAL;
477
 
478	return count;
479}
480
481static DEVICE_ATTR_RW(auto_online_blocks);
482
 
 
 
 
 
 
 
 
 
 
483/*
484 * Some architectures will have custom drivers to do this, and
485 * will not need to do it from userspace.  The fake hot-add code
486 * as well as ppc64 will do all of their discovery in userspace
487 * and will require this interface.
488 */
489#ifdef CONFIG_ARCH_MEMORY_PROBE
490static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
491			   const char *buf, size_t count)
492{
493	u64 phys_addr;
494	int nid, ret;
495	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
496
497	ret = kstrtoull(buf, 0, &phys_addr);
498	if (ret)
499		return ret;
500
501	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
502		return -EINVAL;
503
504	ret = lock_device_hotplug_sysfs();
505	if (ret)
506		return ret;
507
508	nid = memory_add_physaddr_to_nid(phys_addr);
509	ret = __add_memory(nid, phys_addr,
510			   MIN_MEMORY_BLOCK_SIZE * sections_per_block);
 
511
512	if (ret)
513		goto out;
514
515	ret = count;
516out:
517	unlock_device_hotplug();
518	return ret;
519}
520
521static DEVICE_ATTR_WO(probe);
522#endif
523
524#ifdef CONFIG_MEMORY_FAILURE
525/*
526 * Support for offlining pages of memory
527 */
528
529/* Soft offline a page */
530static ssize_t soft_offline_page_store(struct device *dev,
531				       struct device_attribute *attr,
532				       const char *buf, size_t count)
533{
534	int ret;
535	u64 pfn;
536	if (!capable(CAP_SYS_ADMIN))
537		return -EPERM;
538	if (kstrtoull(buf, 0, &pfn) < 0)
539		return -EINVAL;
540	pfn >>= PAGE_SHIFT;
541	if (!pfn_valid(pfn))
542		return -ENXIO;
543	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
544	if (!pfn_to_online_page(pfn))
545		return -EIO;
546	ret = soft_offline_page(pfn_to_page(pfn), 0);
547	return ret == 0 ? count : ret;
548}
549
550/* Forcibly offline a page, including killing processes. */
551static ssize_t hard_offline_page_store(struct device *dev,
552				       struct device_attribute *attr,
553				       const char *buf, size_t count)
554{
555	int ret;
556	u64 pfn;
557	if (!capable(CAP_SYS_ADMIN))
558		return -EPERM;
559	if (kstrtoull(buf, 0, &pfn) < 0)
560		return -EINVAL;
561	pfn >>= PAGE_SHIFT;
562	ret = memory_failure(pfn, 0);
 
 
563	return ret ? ret : count;
564}
565
566static DEVICE_ATTR_WO(soft_offline_page);
567static DEVICE_ATTR_WO(hard_offline_page);
568#endif
569
570/*
571 * Note that phys_device is optional.  It is here to allow for
572 * differentiation between which *physical* devices each
573 * section belongs to...
574 */
575int __weak arch_get_memory_phys_device(unsigned long start_pfn)
576{
577	return 0;
578}
579
580/* A reference for the returned memory block device is acquired. */
 
 
 
 
581static struct memory_block *find_memory_block_by_id(unsigned long block_id)
582{
583	struct device *dev;
584
585	dev = subsys_find_device_by_id(&memory_subsys, block_id, NULL);
586	return dev ? to_memory_block(dev) : NULL;
 
 
587}
588
589/*
590 * For now, we have a linear search to go find the appropriate
591 * memory_block corresponding to a particular phys_index. If
592 * this gets to be a real problem, we can always use a radix
593 * tree or something here.
594 *
595 * This could be made generic for all device subsystems.
596 */
597struct memory_block *find_memory_block(struct mem_section *section)
598{
599	unsigned long block_id = base_memory_block_id(__section_nr(section));
600
601	return find_memory_block_by_id(block_id);
602}
603
604static struct attribute *memory_memblk_attrs[] = {
605	&dev_attr_phys_index.attr,
606	&dev_attr_state.attr,
607	&dev_attr_phys_device.attr,
608	&dev_attr_removable.attr,
609#ifdef CONFIG_MEMORY_HOTREMOVE
610	&dev_attr_valid_zones.attr,
611#endif
612	NULL
613};
614
615static struct attribute_group memory_memblk_attr_group = {
616	.attrs = memory_memblk_attrs,
617};
618
619static const struct attribute_group *memory_memblk_attr_groups[] = {
620	&memory_memblk_attr_group,
621	NULL,
622};
623
624/*
625 * register_memory - Setup a sysfs device for a memory block
626 */
627static
628int register_memory(struct memory_block *memory)
629{
630	int ret;
631
632	memory->dev.bus = &memory_subsys;
633	memory->dev.id = memory->start_section_nr / sections_per_block;
634	memory->dev.release = memory_block_release;
635	memory->dev.groups = memory_memblk_attr_groups;
636	memory->dev.offline = memory->state == MEM_OFFLINE;
637
638	ret = device_register(&memory->dev);
 
 
 
 
 
 
639	if (ret)
640		put_device(&memory->dev);
641
642	return ret;
643}
644
645static int init_memory_block(struct memory_block **memory,
646			     unsigned long block_id, unsigned long state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647{
648	struct memory_block *mem;
649	unsigned long start_pfn;
650	int ret = 0;
651
652	mem = find_memory_block_by_id(block_id);
653	if (mem) {
654		put_device(&mem->dev);
655		return -EEXIST;
656	}
657	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
658	if (!mem)
659		return -ENOMEM;
660
661	mem->start_section_nr = block_id * sections_per_block;
662	mem->state = state;
663	start_pfn = section_nr_to_pfn(mem->start_section_nr);
664	mem->phys_device = arch_get_memory_phys_device(start_pfn);
665	mem->nid = NUMA_NO_NODE;
 
 
 
 
 
 
 
 
 
 
 
 
 
666
667	ret = register_memory(mem);
 
 
 
 
 
 
 
668
669	*memory = mem;
670	return ret;
671}
672
673static int add_memory_block(unsigned long base_section_nr)
674{
675	int ret, section_count = 0;
676	struct memory_block *mem;
677	unsigned long nr;
678
679	for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
680	     nr++)
681		if (present_section_nr(nr))
682			section_count++;
683
684	if (section_count == 0)
685		return 0;
686	ret = init_memory_block(&mem, base_memory_block_id(base_section_nr),
687				MEM_ONLINE);
688	if (ret)
689		return ret;
690	mem->section_count = section_count;
691	return 0;
 
 
 
692}
693
694static void unregister_memory(struct memory_block *memory)
695{
696	if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
697		return;
698
 
 
 
 
 
 
 
699	/* drop the ref. we got via find_memory_block() */
700	put_device(&memory->dev);
701	device_unregister(&memory->dev);
702}
703
704/*
705 * Create memory block devices for the given memory area. Start and size
706 * have to be aligned to memory block granularity. Memory block devices
707 * will be initialized as offline.
 
 
708 */
709int create_memory_block_devices(unsigned long start, unsigned long size)
 
 
710{
711	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
712	unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
713	struct memory_block *mem;
714	unsigned long block_id;
715	int ret = 0;
716
717	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
718			 !IS_ALIGNED(size, memory_block_size_bytes())))
719		return -EINVAL;
720
721	mutex_lock(&mem_sysfs_mutex);
722	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
723		ret = init_memory_block(&mem, block_id, MEM_OFFLINE);
724		if (ret)
725			break;
726		mem->section_count = sections_per_block;
727	}
728	if (ret) {
729		end_block_id = block_id;
730		for (block_id = start_block_id; block_id != end_block_id;
731		     block_id++) {
732			mem = find_memory_block_by_id(block_id);
733			mem->section_count = 0;
734			unregister_memory(mem);
 
735		}
736	}
737	mutex_unlock(&mem_sysfs_mutex);
738	return ret;
739}
740
741/*
742 * Remove memory block devices for the given memory area. Start and size
743 * have to be aligned to memory block granularity. Memory block devices
744 * have to be offline.
 
 
745 */
746void remove_memory_block_devices(unsigned long start, unsigned long size)
747{
748	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
749	const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
750	struct memory_block *mem;
751	unsigned long block_id;
752
753	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
754			 !IS_ALIGNED(size, memory_block_size_bytes())))
755		return;
756
757	mutex_lock(&mem_sysfs_mutex);
758	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
759		mem = find_memory_block_by_id(block_id);
760		if (WARN_ON_ONCE(!mem))
761			continue;
762		mem->section_count = 0;
763		unregister_memory_block_under_nodes(mem);
764		unregister_memory(mem);
765	}
766	mutex_unlock(&mem_sysfs_mutex);
767}
768
769/* return true if the memory block is offlined, otherwise, return false */
770bool is_memblock_offlined(struct memory_block *mem)
771{
772	return mem->state == MEM_OFFLINE;
773}
774
775static struct attribute *memory_root_attrs[] = {
776#ifdef CONFIG_ARCH_MEMORY_PROBE
777	&dev_attr_probe.attr,
778#endif
779
780#ifdef CONFIG_MEMORY_FAILURE
781	&dev_attr_soft_offline_page.attr,
782	&dev_attr_hard_offline_page.attr,
783#endif
784
785	&dev_attr_block_size_bytes.attr,
786	&dev_attr_auto_online_blocks.attr,
 
 
 
787	NULL
788};
789
790static struct attribute_group memory_root_attr_group = {
791	.attrs = memory_root_attrs,
792};
793
794static const struct attribute_group *memory_root_attr_groups[] = {
795	&memory_root_attr_group,
796	NULL,
797};
798
799/*
800 * Initialize the sysfs support for memory devices...
 
 
801 */
802void __init memory_dev_init(void)
803{
804	int ret;
805	int err;
806	unsigned long block_sz, nr;
807
808	/* Validate the configured memory block size */
809	block_sz = memory_block_size_bytes();
810	if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
811		panic("Memory block size not suitable: 0x%lx\n", block_sz);
812	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
813
814	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
815	if (ret)
816		goto out;
817
818	/*
819	 * Create entries for memory sections that were found
820	 * during boot and have been initialized
821	 */
822	mutex_lock(&mem_sysfs_mutex);
823	for (nr = 0; nr <= __highest_present_section_nr;
824	     nr += sections_per_block) {
825		err = add_memory_block(nr);
826		if (!ret)
827			ret = err;
 
828	}
829	mutex_unlock(&mem_sysfs_mutex);
830
831out:
832	if (ret)
833		panic("%s() failed: %d\n", __func__, ret);
834}
835
836/**
837 * walk_memory_blocks - walk through all present memory blocks overlapped
838 *			by the range [start, start + size)
839 *
840 * @start: start address of the memory range
841 * @size: size of the memory range
842 * @arg: argument passed to func
843 * @func: callback for each memory section walked
844 *
845 * This function walks through all present memory blocks overlapped by the
846 * range [start, start + size), calling func on each memory block.
847 *
848 * In case func() returns an error, walking is aborted and the error is
849 * returned.
 
 
850 */
851int walk_memory_blocks(unsigned long start, unsigned long size,
852		       void *arg, walk_memory_blocks_func_t func)
853{
854	const unsigned long start_block_id = phys_to_block_id(start);
855	const unsigned long end_block_id = phys_to_block_id(start + size - 1);
856	struct memory_block *mem;
857	unsigned long block_id;
858	int ret = 0;
859
860	if (!size)
861		return 0;
862
863	for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
864		mem = find_memory_block_by_id(block_id);
865		if (!mem)
866			continue;
867
868		ret = func(mem, arg);
869		put_device(&mem->dev);
870		if (ret)
871			break;
872	}
873	return ret;
874}
875
876struct for_each_memory_block_cb_data {
877	walk_memory_blocks_func_t func;
878	void *arg;
879};
880
881static int for_each_memory_block_cb(struct device *dev, void *data)
882{
883	struct memory_block *mem = to_memory_block(dev);
884	struct for_each_memory_block_cb_data *cb_data = data;
885
886	return cb_data->func(mem, cb_data->arg);
887}
888
889/**
890 * for_each_memory_block - walk through all present memory blocks
891 *
892 * @arg: argument passed to func
893 * @func: callback for each memory block walked
894 *
895 * This function walks through all present memory blocks, calling func on
896 * each memory block.
897 *
898 * In case func() returns an error, walking is aborted and the error is
899 * returned.
900 */
901int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
902{
903	struct for_each_memory_block_cb_data cb_data = {
904		.func = func,
905		.arg = arg,
906	};
907
908	return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
909				for_each_memory_block_cb);
910}